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Preface

The scientific results of national and international projects in research and development are

presented, together with some overviews about the status of sensors for air quality monitoring. The

authors provide outlooks for sensor development and applications of sensor network data, showing

the results of sensor performance evaluations, data analyses, and proper network operation. This

content is addressed not only to researchers in the field of air quality studies but also to academics,

stakeholders, and technicians for air quality management. The editors would like to thank all the

authors, as well as the reviewers of the submitted manuscripts, for presenting these high-quality

reprints of publications in the Special Issue of the journal Sensors.

Klaus Schäfer and Matthias Budde

Collection Editors
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Abstract: Low-cost sensors can be used to improve the temporal and spatial resolution of an
individual’s particulate matter (PM) intake dose assessment. In this work, personal activity monitors
were used to measure heart rate (proxy for minute ventilation), and low-cost PM sensors were used
to measure concentrations of PM. Intake dose was assessed as a product of PM concentration and
minute ventilation, using four models with increasing complexity. The two models that use heart
rate as a variable had the most consistent results and showed a good response to variations in PM
concentrations and heart rate. On the other hand, the two models using generalized population data of
minute ventilation expectably yielded more coarse information on the intake dose. Aggregated weekly
intake doses did not vary significantly between the models (6–22%). Propagation of uncertainty
was assessed for each model, however, differences in their underlying assumptions made them
incomparable. The most complex minute ventilation model, with heart rate as a variable, has shown
slightly lower uncertainty than the model using fewer variables. Similarly, among the non-heart
rate models, the one using real-time activity data has less uncertainty. Minute ventilation models
contribute the most to the overall intake dose model uncertainty, followed closely by the low-cost
personal activity monitors. The lack of a common methodology to assess the intake dose and
quantifying related uncertainties is evident and should be a subject of further research.

Keywords: dose assessment; particulate matter; minute ventilation; low-cost sensors;
uncertainty assessment

1. Introduction

Application of low-cost air quality (AQ) sensors is on the rise and is being used to determine
air pollution in cities [1–4], monitoring of indoor AQ [5–7], and for exposure assessment [8–10].
Traditionally exposure studies use data from monitoring stations, questionnaires, or biomarkers [11],
and more recently land-use regression models [12,13] and other modelling techniques [14], while the
most sought-after method is measuring intake dose on a personal level [15]. To this end, low-cost
sensors that have become smaller and more energy-efficient, and now enable subjects to carry these
devices with them, can significantly improve the temporal and spatial resolution of information

Sensors 2020, 20, 1406; doi:10.3390/s20051406 www.mdpi.com/journal/sensors
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needed [16]. However, although continuous and rapid advances in sensing technologies are resulting
in improved accuracy, these devices still need extra validation and/or calibration before being put to
use [9,17,18]. They could employ a wide array of options to achieve more accurate results, such as
comparing with reference analysers [8] or using sophisticated artificial intelligence approaches [19].
On the other hand, assessing intake dose is not only dependent on the concentrations of pollutants, but
also other factors, mainly a person’s breathing rate or ventilation [20]. Several studies throughout the
past three decades have shown that minute ventilation is corelated with heart rate [21–24]. Ventilation
can be estimated by various approaches and models, which differ mostly by the number and type of
variables used, from more generalized approaches using sex, age, and ethnicity [25] with different kinds
of activities [26], to more specific and complex models with additional variables such heart rate [27],
forced vital capacity and breath frequency [28], and hip circumference [29]. All of these approaches
do offer some advantages, often as trade-offs to accuracy. Less complex approaches use personal
information, such as age and sex, and determine minute ventilation from generalized population
data [25,30], while more complex models use continuously monitored variables, such as heart rate
(HR) [27,28].

The aims of this study are as follows:

- to evaluate the applicability of different intake dose models by assessing the uncertainty associated
with each input variable;

- to estimate how the uncertainty propagates forward and affects the uncertainty of the model;
- to compare the results calculated with the models on two contrasting individuals;
- to evaluate the complexity of the models, time, and resource requirements and the burdens

participants have in providing the data.

In this work, four different approaches to assess the PM intake dose are compared, using data
obtained by two participants included in the sampling campaign conducted within the ICARUS H2020
project [31], which was separated into winter (February) and summer (May) campaigns, and took
place in the first half of 2019. The participants carried a portable PM sensor and a heart rate monitor
with them at all times and measured indoor and outdoor concentrations of PM during the entire
seven-day period.

The uncertainty associated with each intake dose assessment model was quantified and the
hypothesis was that the less complex models would provide data with more uncertainty, as they
use variables that have higher uncertainties and are based on more generalizations (e.g., average
minute ventilation for a 60-year-old female in a less complex model, in contrast with minute ventilation
derived directly from measured heart rate in more complex models). Propagation of uncertainty from
low-cost sensors and minute ventilation models to intake dose assessments was investigated. A crucial
component of the overall uncertainty assessment is to determine the validity of the PM concentration
data from the low-cost sensor. To this end, the performance of the low-cost PM sensor was evaluated by
collocating it with a reference instrument in an office environment. Moreover, uncertainties calculated
and presented for each minute ventilation model were not consistent from paper to paper, as was the
nomenclature regarding exposure science and metrology. These issues are addressed and discussed.

2. Materials and Methods

2.1. Terminology and Nomenclature

Terminology and nomenclature used in this work are based on the following sources. Terms
regarding the human–pollutant interaction (e.g., “personal exposure”, “intake dose”, “exposure
assessment”) were adopted from the Official International Society for Exposure Analysis glossary by
Zartarian et al. [31]. Terms related to metrology and statistics (e.g., “uncertainty”, “reproducibility”,
“validity”) were adopted from the International Vocabulary of Metrology [32].
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2.2. Measuring Particulate Matter Concentrations

A portable Arduino based low-cost PM measuring unit (referred to as PPM) was developed for
the ICARUS project [33] by IoTech Telecommunications, Thessaloniki, Greece [34], and used in this
research. Using Plantower, Beijing, China, pms5003 sensor [35], based on the laser light scattering
principle, the PPM unit provides data for concentrations of PM in one-minute resolution.

PM concentration data are provided in three size classes/channels: <1 μm (PM1), <2.5 μm (PM2.5),
and <10 μm (PM10). A detailed description of the instrument with specifications is provided in the
Supplementary Materials.

Weekly and daily averages of PM2.5 and PM10 measurements from the collocation and personal
monitors were additionally compared with values obtained from the government run AQ station, near
the centre of Ljubljana (2 km from where the collocation took place), to determine if the values were
close. The averages were compared to determine if the values measured by the sensors were in the
same range as those measured at the AQ station.

Collocation of the PPM Unit with a Reference Instrument

The PPM unit was collocated with a GRIMM (Durag Group, Hamburg, Germany) Model 11-A
(1.109) Aerosol Spectrometer (GRIMM), which was used as a research-grade reference instrument for
PM measurements. The collocation lasted one week, from 5 to 12 March 2019, and was located at
an office space with open windows at Jožef Stefan Institute, Ljubljana, Slovenia (LAT: 14.4879, LON:
46.0424). The PPM unit provided data with minute resolution and GRIMM with five-minute resolution.
Data recovery for the measuring period was 100% for the PPM unit and 99.8% for GRIMM. A more
detailed description of the instrument is available in the Supplementary Materials.

There was a four-hour period with light precipitation during the collocation, the mean (min – max)
temperature throughout the week was 12.3◦C (6.3◦C–16.3◦C) and relative humidity was 55% (36–65%).

2.3. Measuring Heart Rate and Physical Activity

Continuous HR measurements were made by using a commercial smart activity tracker (SAT),
a Vívosmart 3 from Garmin International [36]. The data were in minute temporal resolution and
provided values for HR, specific physical activity, steps taken, calories “burned”, distance walked,
and stress.

Uncertainty of SAT was estimated based on the work of Oniani et al. [37], who compared the same
device (Garmin Vivosmart 3) with an ECG (electrocardiogram). In their work, four participants were
selected, and equipped with four SAT devices each. An 80-min treadmill test was performed with each
participant, with four different speeds of walking, while being connected to an ECG monitor. The results
were presented with MAPE (mean absolute percentage error) and ICC (intraclass correlation) for each
device, in comparison to the ECG.

2.4. Calculating Personal Intake Dose of Airborne Particulate Matter

Intake dose of PM was calculated as a product of PM concentration, in this case, PM1 concentrations
for one-minute average values (as the results of the collocation showed, this proved to be the
measurement with the lowest uncertainty associated with it), measured with a PPM device, and minute
ventilation data, which was determined by four different models described below. The intake dose
model (M1–M4) calculation is presented in Equation (1):

intake dose =
.

VE ∗ PM1, (1)

where
.

VE presents minute ventilation (L min-1) and PM1 is the particulate matter concentration
measured with the PPM sensor (μg m-3).

Two of the described models (M1 and M2) use HR as a variable, and two (M3 and M4) do not,
and in turn use average minute ventilation data for specific population groups. Comparison between

3
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the four models was performed based on the data from two participants involved in the ICARUS
personal exposure assessment campaign in Ljubljana:

• P1: 60-year-old Caucasian female participant, weighing 62 kg, height 166 cm. P1 participated in
the campaign between 17 and 23 February 2019, and was located in Ljubljana the entire period.
P1 was employed as an office worker.

• P2: 35-year-old Caucasian male participant, weighing 66 kg, height 178 cm. P2 participated in
the campaign between 14 and 21 May 2019, and was also located in Ljubljana the entire period.
P2 was employed as a bike courier.

Using only one participant could skew the results, including another participant with a contrasting
profile (different personal characteristics, such as sex, height, and age) enables a more thorough
comparison. Two participants are enough for the purposes of this research, as the goal is to compare
models and not validate them for larger groups.

2.4.1. Model 1 (M1)

Minute ventilation model in M1 (
.

V
1
E) is based on the work of Greenwald et al. [28], who modelled

minute ventilation with HR, age, sex, and forced vital capacity (FVC) as variables, with the explicit
goal to use these data in pollution intake dose estimates. Data from 471 subjects from 8 different
studies were compiled in their research and enabled the researchers to gather a dataset of 14,550
one-minute data points. Here, their best performing model was selected, using HR data, combined
with information about the subject’s sex, age, height, and weight (used in determining FVC):

.
V

1
E = e−9.59HR2.39age0.274sex−0.204FVC0.520, (2)

where
.

V
1
E presents minute ventilation for M1; age is the age of the participant in years; sex is the

participants sex, where value 1 is male and 2 is female; and FVC is forced vital capacity.
FVC factor was estimated using the Global Lung Function Initiative methodology [38]. FVC for

P1 was 3.32 l (lower limit at 2.61 l, upper at 4.16 l, for a 90% confidence interval) and for P2 5.37 l
(lower: 4.30 l, upper: 6.45 l, for a 90% confidence interval).

M1 is calculated based on Equation (1).

2.4.2. Model 2 (M2)
.

V
2
E is based on the work of Zuurbier et al. [27], who used a simplified approach with only HR and

sex as variables:
.

V
2
E = (a ∗HR + b)e, (3)

where
.

V
2
E presents minute ventilation for M2, HR stands for heart rate, and a and b present the slope

and intersect based on sex (a is 0.023 and 0.021, b is 0.57 and 1.03, for females and males, respectively).
Their model is based on a study performed with 34 participants.

M2 is calculated based on Equation (1).

2.4.3. Model 3 (M3)
.

V
3
E follows an approach by Sarigiannis et al. [25], modelling mercury intake by combining age

and ethnicity-specific data of activity patterns, inhalation rates, and body weight, with a specific type
of microenvironment. Madureira et al. [30] use a similar approach for indoor intake dose of bioaerosol
particles. Each observation is multiplied with a breathing rate factor corresponding to the (hourly)
activity self-reported by the participant, but the model does not use any continuous variable, such
as HR.
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Following the described methods [25,30], in this research, activity reported by the participant in
a time activity diary (TAD) was differentiated into four groups, as listed in the U.S. Environmental
Protection Agency (EPA) Exposure Factors Handbook [39]: sedentary and passive activities (includes
sleep, nap, resting, working behind a desk, and watching TV), light intensity activities (cleaning,
cooking), moderate intensity activities (walking, working in garden), and heavy intensity activities
(sports, hard manual labour). Average minute ventilation was provided by this handbook for each

type of activity, differentiated by age, sex, and body weight.
.

V
3
E uses this information to determine

minute ventilation for each hourly interval.
M3 is calculated based on Equation (1).

2.4.4. Model 4 (M4)
.

V
4
E uses one of the most basic approaches to determine minute ventilation using only a few general

data points for the subject: age, sex, and weight. The EPA Exposure Factors Handbook, which provides
estimated minute ventilation according to the mean values determined for specific groups [39], also
provides generalized data for time spent in micro-locations, doing specific activities for each (age
and sex) group. With this information, using Equation (4), it is possible to calculate average minute
ventilation, weighted for per cent of time spent doing each activity.

.
V

4
E = (sP ∗ aVP + sLi ∗ aVLi + sMi ∗ aVMi + sHi ∗ aVHi) ∗ BW, (4)

where
.

V
4
E is minute ventilation for M4; and sP, sLi, sMi, and sHi present daily shares of time spent doing

P—passive, Li—light intensity, Mi—moderate intensity, and Hi—high-intensity activities, respectively.
The aV factors present average ventilations for that specific activity, according to age group and sex.
Factor BW is the subjects body weight, which must be included because the

.
VE data in the EPA

handbook are presented in “per kg of body weight” form.
M4 is calculated based on Equation (1).

2.5. Statistical Analysis and Determining the Uncertainty

After collocating PPM with the GRIMM, to determine the validity, a Wilks–Shapiro test was
conducted for each time-averaging interval to numerically determine normality and a q–q plot was
made to visually determine normality. The distribution was non-normal, which prompted the use of
the Spearman rank-order correlation test. For each comparison, a scatter plot was made with a linear
regression line and 95% confidence interval. RMSE (root mean square error), MAPE (mean absolute
percentage error), MAE (mean absolute error), R2, slope, and intercept values were calculated.

Summary statistics were calculated for all four models, PM1 concentrations, and HR, and for the
results iterating M1 over different heights and weights, as presented in the Supplementary Data.

The uncertainty for the PPM was estimated by collocating it with the GRIMM, which has a
reproducibility of 5% for the whole range [40]. This measure is carried forward to the PPM device
through the collocation process, which enabled the calculation of several statistical measures of
agreement (R2, MAPE, MAE, RMSE, MAE%). According to the GRIMM manual description, the MAPE
measure is the closest, and the uncertainty from the GRIMM is carried forward through the following
equation:

u(PPM) =

√
u(Grimm)2 + u(comparison)2, (5)

where u is the uncertainty.
All models used in this research had some measure of agreement listed in their evaluation. Not all

measures were the same, which makes some of the results incomparable between the models.
.

V
1
E, from Greenwald et al. [28], had the uncertainty expressed as “per cent error”, which is “the

difference between predictions and observations from cross-validation”, and in IQR (interquartile
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range). The median (IQR) per cent error was −0.664 (45.4)% [28]. With the Supplementary Data,
provided by the authors of the paper, it was possible to calculate other statistical measures (R2, MAPE,
MAE, RMSE). This calculated uncertainty presupposes that all the variables used are categorical (in the
cases of sex and weight, this is correct) and without uncertainty. This is not the case in this research,
where the SAT device has some uncertainty associated with it, as does the FVC value, with both having
different exponents in the model (2.39 for HR and 0.52 for FVC). To determine the overall uncertainty
of the model, all the component uncertainties were combined.

.
V

2
E, based on Zuurbier et al. [27], had its uncertainty presented with mean R2 values for each sex,

with SD and range [27]. In this case, the mean (SD) R2 values were 0.89 (0.06), 0.90 (0.07), and 0.90
(0.07) for women, men, and all together, respectively. Uncertainty explained in this way is different

than in
.

V
1
E and cannot be compared. To obtain a better comparison of the

.
V

1
E and

.
V

2
E models, the

supplementary data from Greenwald et al. [28] were used to calculate minute ventilation with the
.

V
2
E

model Equation (3) and compare it with the measured minute ventilation values in the Supplementary

Data. The same statistical measures were calculated for
.

V
2
E, as they were for

.
V

1
E. The SAT uncertainty

was also incorporated in the overall uncertainty of the model.
.

V
3
E uses data from tables provided by the EPA for certain age groups, which includes mean minute

ventilation values and some specific percentiles, such as the 5th and 95th percentile. The difference
between these two values provides a 90% confidence interval for the values used in this model.
Table 1 shows the percentiles of minute ventilation for P1 and P2 participants involved in this research.
The difference between the mean and the percentile is slightly larger at the 95th percentile than at the
5th percentile, with the average value being 34% for the 95th and 30% for the 5th percentile. The overall
uncertainty estimate was determined as the mean of all the differences with SD.

Table 1. Mean, 5th, and 95th percentile minute ventilation values for P1 and P2 with calculated
differences between the percentiles and the mean, provided in the Environmental Protection Agency
(EPA) Exposure Handbook [39].

Activity
Mean

[L/min]
5th %

[L/min]
95th %
[L/min]

|5th−mean|
mean

|95th−mean|
mean

P1

Sedentary and Passive 4.1 2.9 5.6 0.30 0.36
Light intensity 10 7.4 13 0.25 0.30

Moderate intensity 21 14 30 0.31 0.43
High intensity 39 24 58 0.38 0.46

P2

Sedentary and Passive 4.4 2.9 5.3 0.35 0.22
Light intensity 11 11 13 0.05 0.22

Moderate intensity 24 15 32 0.36 0.37
High intensity 43 27 58 0.36 0.36

Although
.

V
4
E uses a similar approach as

.
V

3
E, the uncertainty is different as the “share of the day”

values also have 5th and 95th percentile values and are not definitive, as in
.

V
3
E. As shown in Table 2,

the differences between the 5th and 95th percentiles and the mean vary quite substantially between
lower and higher intensity activities, with an average of 12% (14% for P2) in the “sedentary and
passive” category, and 121% (132% for P2) in the “high intensity” category. Each uncertainty interval
was weighted by the percentage of the day it represents, in contrast to the percentage it “should”

represent, which in this case is 1
4 . To assess the final uncertainty for

.
V

4
E, the uncertainty from minute

ventilation, as shown in Table 2, must be added by the method used in Equation (5).
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Table 2. Mean, 5th, and 95th percentile daily share of activity for P1 and P2, with calculated differences
between the percentiles and the mean, provided in the EPA Exposure Handbook [39].

Activity
Mean

[hours]
5th %

[hours]
95th %
[hours]

|5th−mean|
mean

|95th−mean|
mean

P1

Sedentary and Passive 13 11 14 0.12 0.12
Light intensity 6.5 4.1 9.4 0.37 0.45

Moderate intensity 4.6 1.7 7.1 0.63 0.56
High intensity 0.3 0.03 0.9 0.91 1.5

P2

Sedentary and Passive 12 11 14 0.13 0.14
Light intensity 5.7 2.8 10 0.51 0.83

Moderate intensity 5.7 1.3 8.9 0.78 0.56
High intensity 0.4 0.03 1.0 0.92 1.71

As calculating the intake dose is a product of PM concentration values and calculated minute
ventilation values, the uncertainty propagation is calculated by the method described in Equation (5).

All the calculations and visualizations were made in R v3.61 [41].

3. Results

3.1. Results of the Collocation

Figure 1 shows the correlation plots between GRIMM and PPM for the collocation with three
different time intervals (5, 30, and 60 min) and all three particle size classes (1, 2.5, and 10 μm).
Increasing the particle size reduces the linearity of the data points along the linear model regression
line, which is also apparent in the R2 values that start at ~0.97 for PM1, drop to ~0.89 for PM2.5,
and further drop down to ~0.68 for PM10 particles. As presented in Table 3, R2 values slightly increase
with larger time intervals, as evident with PM1 particles (from 0.97 to 0.98) and with PM10 particles
(from 0.66 to 0.69). These increases are relatively minimal and counteract the increase in the confidence
interval with larger time intervals. Similarly, as in the case of R2, RMSE values increase as the size of
the particles increases.

Mean (min–max) concentrations recorded for the PPM were 13.2 (0.4–47.4) μg/m3, 18.4 (0.8–61.6)
μg/m3, and 20.6 (1.0–69.8) μg/m3 for PM1, PM2.5, and PM10, respectively, while the mean (min–max)
GRIMM values were 11.7 (1.6–40) μg/m3, 15.2 (2.4–44.6) μg/m3, and 19.4 (2.7–103.4) μg/m3 for PM1,
PM2.5, and PM10, respectively. These numbers generally coincide with measurements from the
government-run AQ station in Ljubljana, which showed an average concentration of 11.4 μg/m3 for
PM2.5 and 18.9 μg/m3 for PM10 [42,43] for the same time period. For PM2.5, the PPM device measured
7.0 μg/m3 higher average values than the AQ station, and the GRIMM device 3.8 μg/m3 higher values.
For PM10, these values were 1.7 μg/m3 higher for the PPM, and 0.5 μg/m3 higher for GRIMM. As the
distance to the AQ station was 2 km, some deviation is expected and these numbers fall in this range
of expectations.

Although the PPM unit was validated for 5-, 30-, and 60-min intervals, intraclass differences of
R2 and RMSE values varied less than interclass differences. The uncertainty associated with 1-min
values for each size class should, therefore, be similar to the values calculated for 5-min averages.
These results show that the PM1 values with the highest possible temporal resolution (1-min) have the
least uncertainty, and are used to calculate intake doses.

7
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Figure 1. Correlation plots from collocating the portable Arduino based low-cost particulate matter
(PM) measuring (PPM) unit with GRIMM. Rows present different sizes of particulate matter (PM1 (a–c),
PM2.5 (d–f), PM10 (g–i)) and columns different time intervals (5 min (a,d,g), 30 min (b,e,h), 60 min
(c,f,i)).

Table 3. Relationship between portable Arduino based low-cost particulate matter (PM) measuring
(PPM) unit and GRIMM. RMSE, root mean square error.

PM class Time R2 RMSE Intercept Slope

PM1
5 min 0.97 2.15 0.83 1.06
30 min 0.97 2.01 0.80 1.06
60 min 0.98 1.96 0.80 1.06

PM2.5
5 min 0.89 6.30 −4.02 1.47
30 min 0.89 6.17 −4.09 1.47
60 min 0.89 6.11 −4.10 1.47

PM10
5 min 0.66 9.07 −3.75 1.25
30 min 0.68 8.76 −4.63 1.30
60 min 0.69 8.58 −5.01 1.32

3.2. Intake Dose Results

The results of the calculations, based on all four intake dose models, are shown in Figure 2, plot (a),
accompanied by plotted PM1 values for each participant in plot (b) and HR values in plot (c).
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As evident in plot (b), the PM1 concentrations were higher for P2 than for P1. This is also evident
in Table 4, where the summary statistics for PM1 concentrations show higher numbers for P2. The mean
PM1 values for P1 and P2 were 8.1 μg/m3 and 28.6 μg/m3, respectively, which is more than a three-fold
difference, and the maximum PM1 values were 87.0 μg/m3 and 338.0 μg/m3 for P1 and P2, respectively.
The measured PM2.5 values were in the same range as values reported by the government-run AQ
station in Ljubljana. Summary statistics for HR show that the maximum and standard deviation (SD)
values were higher for P2, but the differences are not as pronounced as with PM concentrations.

M1 and M2 intake dose assessments show a strong relationship. As evident in Table 4, both have
similar descriptive statistics, except the maximum intake dose value, which is noticeably higher for M1
with both P1 and P2.

M3 follows a somewhat similar pattern as M1 and M2, although some deviations are evident.
For P1, M3 mean value is ~15% higher than that of M1 and M2; the SD is almost double; and the
maximum value is 11% and 26% higher than M1 and M2, respectively. The median and the Q1 and Q3
values are 10–30% lower. Similar ratios are found for P2, except the median value is almost half that of
M1 and M2.

M4 shows noticeably different results for P1 and P2. As evident from plot (a) in Figure 2, the results
of M4 for P1 mostly follow the same trend as the other models. The summary statistics for M4, shown
in Table 4 (for P1), show somewhat higher values than those of M1 and M2. For P2, as shown in
Figure 2, the M4 results do not follow the trend of the doses based on other models as well as for P1.
Although the mean, SD, and Q3 values are lower than in the other three, the median is almost the same
(262.6 ng/min for M1 and M2, and 263.3 ng/min for M4).

Table 4. Descriptive statistics for intake dose assessments based on all four models, PM1 concentrations,
and heart rate (HR) values for both participants. Recovery represents the percent of data recovered,
where 100% is the entire period of observation. Sum represents the accumulated dose for the entire
week of observation.

Participant 1 (P1)

M1 M2 M3 M4 PM1 [μg/m3] HR [bpm]

Mean 60.2 58.8 69.6 75.9 8.1 63.8
SD 58.9 53.1 99.6 55.3 5.9 11.9

Median 43.3 44.4 29.1 65.8 7.0 62.0
Q1–Q3 25.0–73.7 26.2–74.3 16.6–63.1 37.6–104 4.0–11.0 55.0–70.0

Min–Max 0.0–729 0.0–609 0.0–820 0.0–818 0.0–87.0 38.0–148
Recovery [%] 78.2 78.2 80.7 80.7 80.7 97.2

Sum 599,520 580,128 589,983 617,486 67,352 /

Participant 2 (P2)

M1 M2 M3 M4 PM1 [μg/m3] HR [bpm]

Mean 415 359 493 314 28.6 66.3
SD 476 359 698 280 25.5 18.2

Median 263 262 109 263 24.0 63.0
Q1–Q3 108–542 140–465 91.5–595 219–373 20.0–34.0 52.8–76.0

Min–Max 0.0–5110 0.0–4033 0.0–5313 0.0–3708 0.0–338 39.0–170
Recovery [%] 66.7 66.7 51.2 68.1 68.1 98.6

Sum 2,764,423 2,391,141 2,522,915 2,136,003 194,702 /
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3.3. Results of Quantifying Uncertainty

All the sensors used in this research have some uncertainty in their measurements, which is
carried on to minute ventilation and intake dose calculations.

3.3.1. Uncertainty in PM and Heart Rate Sensors

The results for the statistical measures of agreement with the reference data calculated for the
PPM were as follows: R2 = 0.97, MAPE = 15.62%, MAE = 1.66, RMSE = 2.15, and MAE% = 14.17%.
After including the uncertainty (listed as reproducibility) of the GRIMM, the overall uncertainty of the
PPM is ~16%, which is estimated with the uncertainty propagation Equation (5).

The results from Oniani et al. [37] show that there is some disagreement between the SAT devices
and the ECG. MAPE values ranged from 4.34% to 16.00% (mean: 9.82%, median: 8.85%, SD: 3.56%),
and ICC from 0.91 to 0.02 (mean: 0.67, median: 0.71, SD: 0.25).

3.3.2. Uncertainties for Minute Ventilation Models
.

V
1
E statistical measures of agreement with the reference data were as follows: R2 = 0.82,

MAPE = 28%, MAE = 6.47, and RMSE = 9.41. Combining the mean value of the SAT uncertainty (9.82%
± 3.56%; weighted: 9.82% ± 3.56% ∗2.39 = 24% ± 9%), the mean value of the FVC 90% confidence
interval (~22% ± 2%; weighted: 22% ± 2% ∗0.52 = 11% ± 1%) and the MAPE of the model, using the

approach described in Equation (5), yields an estimate of overall uncertainty for
.

V
1
E of ~38% ± 9%.

.
V

2
E calculated statistical measures were as follows: R2 = 0.72, MAPE = 32%, MAE = 7.68,

and RMSE = 11.68. Adding the uncertainty in the SAT (9.82% ± 3.56%, adjusted to 9.82% ± 3.56% ∗
e = 27% ± 10%) to the 32% uncertainty in the model gives an estimate of the uncertainty of ~42%± 10%

for
.

V
2
E.
.

V
3
E uncertainty estimate was determined to be ~35% ± 7%, which can be considered an overall

uncertainty value, in this case, for a 90% confidence interval.
.

V
4
E uncertainty for the “share of day” variable is ~30% ± 16% for a 90% confidence interval.

The final average value with SD for overall uncertainty estimate, with minute ventilation uncertainty
included, is calculated to ~46% ± 17% for a 90% confidence interval.

3.3.3. Propagation of Uncertainty

By adding the uncertainty from the PPM device, the final uncertainties for the intake dose
assessment are 41% ± 9% and 45% ± 10%, for intake dose assessment models M1 and M2, respectively,
and 38% ± 7% and 49% ± 17% for M3 and M4, respectively.

4. Discussion

Collocating the PPM with the GRIMM showed that the low-cost sensor provides valid data.
These results showed that the sensor is fit for purpose, especially if the results of the smallest particles
measured (PM1) are considered.

Two participants were chosen to avoid skewed results. Most of their characteristics (age, height,
sex, gender, nature of their work, sampling season) were different enough to enable an indication of
the model’s response to the variation of respective input variables.

M1 and M2 intake dose assessment models show a strong relationship (Figure 2), deviating mostly
in peak concentrations, where M1 predicts a higher intake dose than M2. This is more evident with P2,
where the calculated intake dose is higher and the peaks are more pronounced. Interestingly, although
M1 uses more variables and was determined based on a larger number of participants in multiple
research than M2, they show similar results. M1 shows a greater response to higher concentrations of
PM than M2. M1 showed the highest intake dose to be 17% and 21% higher with P1 and P2, respectively,
than M2. P2 was exposed to PM1 concentrations more than three-times higher than P1, and the
difference in M1 and M2 rose. This indicates that M1 is more sensitive to elevated concentrations,
which could be a crucial aspect when determining the acute intake dose.
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There are more peaks, which are more pronounced in the M3 intake dose assessment model, but
the median values indicate that most of the calculated values are lower than in M1 and M2. Although,
the weekly intake doses do not differentiate much between the first three dose assessments and are
all around 0.59 mg for P1 and between 2.39 mg and 2.76 mg for P2. Calculating the intake dose on
a larger time interval would be as good with M3 as with M1 or M2. The issue, in this case, would
be the exaggerated response of the model to elevated concentrations. A better realignment of the
calculated values in M3 to M1 and M2 could be possible with a different interpretation of the TAD and
categorizing each activity more in line with the HR associated with it.

M4 intake dose assessment model results show that M1 and M2 are influenced by the HR variable
and do correspond to changes, most notably in time intervals with elevated HR and concentrations of
PM, while M4 does not. As it is only an “adjusted” PM value, meaning that all the PM measurements
are multiplied with the same value, it is not influenced by the higher HR differences, present with the
results from P2.

Uncertainty is associated with all stages of calculating intake dose of PM. There is inherent
uncertainty in the GRIMM, PPM, and Garmin devices, and uncertainty that comes from calculating
minute ventilation from HR, and all the generalizations associated with it. Using different models,
published in individual papers, shows that presenting uncertainty is not uniform in this field. Papers
describe the relationship between modelled and measured data with different statistical measures,
which makes assessing uncertainty difficult and sometimes incomparable. Although uncertainties

calculated for each minute ventilation model are not entirely comparable, the uncertainties for
.

V
1
E and

.
V

2
E can be compared separately, as can those for

.
V

3
E and

.
V

4
E.

Calculated statistical measures for
.

V
1
E and

.
V

2
E show that

.
V

2
E has poorer agreement with the

reference data (lower R2 value) and higher errors (higher MAPE, MAE, and RMSE). The model with

more variables (
.

V
1
E) can calculate data that are closer to the measured data for minute ventilation.

Both models have their uses, and although
.

V
2
E has poorer results of calculated statistical measures

than
.

V
1
E, it requires less information about the participant. Relatively high standard deviations in

the uncertainty (~ 1
4 of the value) show that the real uncertainty of the models is even closer than the

uncertainty values themselves would suggest.

Because the uncertainties for
.

V
3
E and

.
V

4
E were calculated in the same manner, they can be compared.

The results are as expected, where
.

V
4
E has a higher uncertainty than

.
V

3
E because the share of daily

activity has a certain level of uncertainty, which is propagated to the minute ventilation estimate, which
is also presented with an uncertainty interval.

The uncertainties calculated through a series of steps do provide some measure of the validity of
each minute ventilation model. Each of the models was provided with a specific measure of agreement
between the modelled and measured data, but as these measures were different, they are not entirely

comparable. This was somewhat compensated with further calculations for
.

V
1
E and

.
V

2
E. Further

research is needed to validate each model directly with reference data.

5. Limitations

Collocating the PPM device took place in a room with open windows, so the environment was a
mixture of outdoor and indoor, which is not the case during the deployment phase. Moreover, only one
PPM device was evaluated during colocation with the reference instrument. To truly determine the
validity of the sensor, more devices should be subjected to collocation for longer periods and in different
seasons and conditions. The device was stationary for the entire period, which is not representative
as the device is designed to be mobile. Indeed, most of the time, the device is stationary in real-life
circumstances, for example, in the office, at home, in the bedroom, or in a car. The collocation of the
device would be needed while it is mobile. Using the GRIMM device for the collocation was the only
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available option at the time, but in further validation of the PPM device, it should be compared to a
certified government AQ station or similar.

Data from two participants were used for the models. There were certain differences between the
participants, but they were also both Caucasian and had a similar height and weight. The latter is
also discussed in the Supplementary Materials. For both participants, there were some data missing,
and the TADs were somewhat incomplete or inconsistent. All of the models were also validated
indirectly by validating the minute ventilation and particulate matter concentrations separately. Future
research should develop methods for direct validation of the models, using real-time data with a high
temporal resolution for each observed variable, with research-grade instruments.

Measures of uncertainty were provided for all minute ventilation models, but were inconsistent
and not entirely comparable.

6. Conclusions

A comparison of the four different approaches to assess intake dose, using data from low-cost
sensors, was presented. Collocating the PPM device with a more expensive, research-grade instrument
showed that the sensor provides good data, and was reliable enough to use it to determine intake dose of
PM. Agreement with the reference instrument was better with smaller-sized particles, but the differences
for different time averaging intervals were only marginal (ΔR2 = 0.01–0.03). Considering these results,
PM1 concentrations were used for modelling, with the highest temporal resolution possible (1 min).

Four different minute ventilation models with increasing levels of complexity were used to
determine minute ventilation, which was then used to calculate the intake dose of PM. Intake dose
assessment models M1 and M2, which used HR as a variable, showed good agreement with each
other, although M1, which was more complex and used sex, age, height, weight, and FVC as variables,
showed more pronounced peaks and a stronger response to elevated HR and PM concentrations than
M2, which only used sex as a variable (apart from HR). Intake dose assessment M3 and M4 did not
use HR as a variable, but relied on generalized population data for specific activities, differentiated
by sex and age. M4 showed better agreement with M1 and M2 than M3, but this could be the result
of inaccurate activity classification. With further optimization, M3 could be improved and better
realigned with other models.

Comparing the uncertainties between all the minute ventilation models was not possible, owing
to different measures of uncertainty being reported for each model. After some additional calculations,

a direct comparison of
.

V
1
E and

.
V

2
E was possible and between

.
V

3
E and

.
V

4
E.

.
V

1
E had lower uncertainty

than
.

V
2
E, which is mostly associated with the model itself and less with the SAT and other variables.

The comparison of
.

V
3
E and

.
V

4
E showed that

.
V

3
E had less uncertainty associated with it than

.
V

4
E,

which was a direct consequence of
.

V
4
E using another set of generalized population data to determine

“share of the day” for each specific activity, for which
.

V
3
E had data from TADs. The minute ventilation

models contributed the largest share to the overall uncertainty of the intake dose assessment models,
followed by the SAT and finally the PPM.

As evident in this work, there are several different approaches for calculating the intake dose of
pollutants. This stems also from different goals that the developers of these models set out in their
respective studies. While some validate existing models, others try to evaluate the models predicting
ability. Future research can use these results to determine which model best suits their needs and
resources. While more complex models provide dose calculations on a minute-by-minute basis and
have less uncertainty, they also require more resources in terms of sensors used and invested time by
the researchers and the participants. This paper can also provide several options for future research in
PM intake dose assessment, from developing models with less uncertainty, using location data and
different sensors, and using the described models on larger groups.

As low-cost sensor technology is rapidly developing, there is an ever-expanding field of possibilities
of how to implement such technologies for sensing and intake dose assessments. To allow comparability
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between the results of these measurements and calculations, a more homogeneous approach to
presenting these finding and the uncertainties associated with them is needed. This work is a
contribution towards this goal—by using appropriate terms and methods, this paper will contribute
to further developing a unified methodological and terminological approach in this type of research.
Modelling the intake dose of PM, by determining certain variables with low-cost sensors, was shown
to be possible. Although there are many advantages, there is uncertainty that comes with this kind of
sampling, and researchers need to account for this aspect in reporting their data. As this technology
and these approaches become more widespread and distributed in the general public, users must be
made aware that these data can come with wide margins of uncertainty and should only be used as a
general guideline and not a scientific fact.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/5/1406/s1,
Figure S1: Boxplots of intake dose calculations with different height and weight variations as 67 referenced
in Table S3, Table S1 Basic specifications for GRIMM Model 11-A, Table S2: Excerpt from Plantower pms5003
datasheet with some relevant figures about the functionality of the sensor, Table S3: Matrix of all variations for
four different weights and heights. The Supplementary Materials (SI) contain extended descriptions of the sensors
used in this research, a more detailed overview of the data collection process, and a brief investigation of the
influence of weight and height of the participant on the final results.
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Abstract: Air quality monitors using low-cost optical PM2.5 sensors can track the dispersion of
wildfire smoke; but quantitative hazard assessment requires a smoke-specific adjustment factor (AF).
This study determined AFs for three professional-grade devices and four monitors with low-cost
sensors based on measurements inside a well-ventilated lab impacted by the 2018 Camp Fire in
California (USA). Using the Thermo TEOM-FDMS as reference, AFs of professional monitors were
0.85 for Grimm mini wide-range aerosol spectrometer, 0.25 for TSI DustTrak, and 0.53 for Thermo
pDR1500; AFs for low-cost monitors were 0.59 for AirVisual Pro, 0.48 for PurpleAir Indoor, 0.46 for
Air Quality Egg, and 0.60 for eLichens Indoor Air Quality Pro Station. We also compared public
data from 53 PurpleAir PA-II monitors to 12 nearby regulatory monitoring stations impacted by
Camp Fire smoke and devices near stations impacted by the Carr and Mendocino Complex Fires in
California and the Pole Creek Fire in Utah. Camp Fire AFs varied by day and location, with median
(interquartile) of 0.48 (0.44–0.53). Adjusted PA-II 4-h average data were generally within ±20% of
PM2.5 reported by the monitoring stations. Adjustment improved the accuracy of Air Quality Index
(AQI) hazard level reporting, e.g., from 14% to 84% correct in Sacramento during the Camp Fire.

Keywords: fine particles; air pollutant exposure; air quality monitoring; climate change impacts;
health hazard assessment; respiratory health

1. Introduction

Throughout the Western U.S., wildland fires have increased in frequency and intensity over the
past several decades due to climate change and the legacy of forest fire suppression [1–5]. Development
at the wildland urban interface also has contributed to wildfire frequency and increased their cost in
terms of human life and health and property damage [4,6].

Wildfire smoke contains fine particulate matter (PM2.5), toxic particle-phase constituents, ultrafine
particles, and many irritant gases including acrolein and formaldehyde. Exposure to elevated levels
of wildfire smoke specifically has been linked to many adverse health outcomes [7–11]. During
wildfire smoke episodes, air pollutant concentrations can increase substantially, and low-income
homes, which typically have high rates of uncontrolled air leakage, are particularly vulnerable [12].
Filtration can be cost-effectively applied to reduce exposures and health impacts of wildfire smoke in
buildings [13,14].

PM2.5 is often used to track wildfire smoke because it is an established health hazard and is
routinely measured at regulatory air quality monitoring stations. In the U.S., PM2.5 is regulated under
the Clean Air Act, with health-based standards of 12 μg m−3 annual average and 35 μg m−3 averaged
over 24 h [15]. The thresholds are set by the US EPA based on a systematic review of studies that
examine how deaths, strokes, and other indicators such as hospitalizations increase as ambient PM2.5
increases [16]. To provide information to the public about the hazard posed by PM2.5, both below
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and above the thresholds of the standard, EPA uses the air quality index, or AQI [17]. The AQI is a
piecemeal linear scale that relates PM2.5 concentrations to hazard level for sensitive subgroups and the
general population. The AQI is normally calculated on a daily basis; but the interval can be shortened
to as little as 3 h when ambient conditions change rapidly. It is also important to note that despite
the cautions communicated about the AQI, wildfire smoke may still present substantial health risk
and cause harm to individuals with pre-existing health conditions and vulnerabilities beyond that
presented in the PM2.5 AQI.

The U.S. Federal Reference Method (FRM) for determining fine particle concentrations is
gravimetric: it requires use of certified equipment to collect particles onto a filter which is equilibrated
to standard temperature and humidity conditions and weighed before and after air sampling [18,19].
Devices that use alternative measurement methods—typically with the goal of achieving hourly or
more resolved data—can be approved as Federal Equivalent Methods (FEM) by producing similar
results when collocated with FRM sampling at multiple sites across multiple seasons. Agreement
is acceptable when linear correlation is high (r > 0.97) with a slope of 1.00 ± 0.05 and intercept
≤ ±1 μg/m3. In practice, FEM monitors don’t always match collocated FRM measurements to these
specifications [20]. Also, since FEM certification is based on seasonal statistics of daily averages,
accuracy and precision may be lower for shorter averaging times.

Historically, it has been difficult to map the hazards posed by wildfire smoke because regulatory
air monitoring stations are sparse in many areas. During severe events, portable monitors have been
deployed to fill critical gaps in spatial coverage [21,22]; but that approach has been limited by the
high cost of purchasing and maintaining equipment that meet data quality standards [23]. At least
one low-cost monitor has been developed for the stated objective of filling this gap for wildfire smoke
monitoring [24]; but the extent of its use to date is unclear. One study used surface measurements
from regulatory air monitoring stations and low-cost particle monitor networks to translate satellite
images of aerosol optical depth into PM2.5 for mapping of wildfire spread [25]. In that study, PurpleAir
II monitors were compared to co-located FEM data but the evaluation did not include high PM2.5

concentrations (>100 μg/m3) or PM known to be predominantly wood smoke.
For years, industrial hygienists and researchers have measured PM2.5 inside and outside buildings

using real-time monitors that quantify aerosol concentrations by light scattering. These devices are
robust, have a wide dynamic range (3 or more orders of magnitude), and temporal resolution on the
order of seconds. However, the intensity of scattered light depends on aerosol properties including
size, shape, density, and refractive index [26,27]. Photometers are a main variant of optical monitor;
they measure and translate scattering from ensembles of particles to an estimated mass concentration
based on calibration with a defined aerosol [28,29]. Optical particle counters interpret scattering
generated from single particles moving through a laser to estimate particle size based on assumptions
about shape and optical properties; counts are aggregated over time to quantify number density by
size. Aerosol mass concentrations are estimated based on assumptions or collocated measurements to
determine particle density. Professional grade air quality monitors provide active flow control, sheath
airflow, and component diagnostic monitoring to achieve high consistency and durability; but they
cost thousands of dollars per unit and still require source-specific calibration factors or coincident
gravimetric sampling.

Collections of low-cost air quality monitors that are being deployed throughout the world [30–33]
could be used to track wildfire smoke events. However, the optical sensors used in the monitors vary
with aerosol properties [34–39] and adjustment factors specific to wildfire smoke are needed.

The present study had the following objectives: (1) using data collected during the November
2018 Camp Fire in Northern California, determine adjustment factors (AFs) for four low-cost and three
professional air quality monitors to improve their accuracy for measuring infiltrating PM2.5 associated
with wildfire smoke; (2) using publicly available data from regulatory air quality monitoring stations
(AQS) and nearby PurpleAir PA-II monitors at varied distances downwind from the fire, evaluate the
variability of AFs for this monitor across space and time for sites throughout the region; (3) quantify
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PA-II AFs for smoke from two other recent wildfires and compare them to AFs determined for the
Camp Fire; and (4) quantify the improvement in exposure estimates and AQI scores when the regional
AF is applied to individual monitors throughout the region.

2. Methods

2.1. Overview

During the Camp Fire in November 2018, air quality monitors were operated at Lawrence Berkeley
National Lab (LBNL) inside a small building with high infiltration air exchange and the doors to
outdoors propped open at times to promote infiltration of outdoor air and particulate matter (PM).
The monitors included one certified as a US EPA FEM, a wide range aerosol spectrometer designed
for indoor air quality research, two professional grade photometers, and four low-cost monitors that
use mass produced optical sensors. The latter group included three monitors purchased via retail
distribution in the U.S. and production units of an IAQ station for networked building monitoring
provided by the device maker (eLichens). PM2.5 concentrations reported by the alternative monitors
were compared to those of the FEM to quantify response and adjustment factors. The monitors are
listed in Table 1.

Table 1. Descriptions of monitors used in this study.

ID Device Data
Particle Sensor(s) and
Specifications for PM2.5

Calibration and Quality
Assurance Information Provided

by Manufacturer

AQE Air Quality Egg
2018 version 1 min

Two Plantower PMS5003 1

Effective range:
0–500 μg/m3

Max. range: ≥1000 μg/m3

Max. consistency error:
0~100 μg/m3: ±10 μg/m3

100~500 μg/m3: ±10%

https://airqualityegg.com/home
Reports mean PM2.5 and PM10 of
the two sensors. Each unit
checked for consistency with other
devices before shipping by
exposure to incense smoke in a
small room.

AVP IQAir
AirVisual Pro 10 s

AirVisual AVPM25b
Effective range:
0–1798 μg/m3

https://www.airvisual.com/
Sensors calibrated through
automatic process in controlled
chamber, using distinct aerosols
for PM1, PM2.5, PM10 using
Grimm 11-A.

PAI PurpleAir Indoor 80 s
Plantower PMS1003
Same specification as
PMS5003

https:
//www.purpleair.com/sensors
Data direct from sensor: PM1,
PM2.5 and PM10 in μg/m3,
number density (#/0.1 L) of
particles larger than the following
optical diameters: 0.3, 0.5, 1.0, 2.5,
5.0, 10 μm.

ELI
eLichens Indoor

Air Quality
Pro Station

1 min
Plantower PMS7003
Same specification as
PMS5003

https://www.elichens.com/elsi-
indoor-air-quality-station
Each station individually
calibrated against regulatory AQ
stations meeting EU standards.
Data are adjusted in real-time for
environmental conditions.
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Table 1. Cont.

ID Device Data
Particle Sensor(s) and
Specifications for PM2.5

Calibration and Quality
Assurance Information Provided

by Manufacturer

PA-II PurpleAir II
(outdoor) 80 s Two Plantower PMS5003

https:
//www.purpleair.com/sensors
Same as PAI.

TEOM

Model 1045-DF
Tapered Element

Oscillating
Microbalance with

Filter Dynamic
Measurement

System

12 min

Range: 0 to 1,000,000
μg/m3 Resolution: 0.1
μg/m3, Precision: ±2.0
μg/m3, 1-h avg

https://www.thermofisher.com/
Approved Federal Equivalent
Method U.S. EPA PM-2.5
Equivalent Monitor
EQPM-0609-182.

WRAS

Model 1.371 Mini
Wide-Range

Aerosol
Spectrometer

1 min

Combined electrical
mobility instrument with
optical particle
spectrometer.
Range: 0.1 μg/m3–
100 mg/m3

Electrical mobility sensing:
10 bins in range 10–193 nm,
Optical sensing 31 bins in
range 0.253–35 μm

https://www.grimm-aerosol.com
Optical spectrometer calibrated
using class I reference with
NIST-certified, mono-disperse
polystyrene latex (PSL) particles.
Electrical sensor calibrated using
GRIMM model 7811 with
poly-disperse aerosol of particles
with diameters of ~5 nm to ~300
nm generated from NaCl solution.
Aerosol is dried and
diffusion-neutralized.
A Differential Mobility Analyzer
(DMA) provides narrow size
distributions simultaneously to
the sensor and a reference Faraday
cup electrometer.

PDR Thermo pDR-1500 10 s

Laser optical photometer
Range: 0.001–400 mg/m3

Precision: larger of ±0.2%
of reading or
±0.0005 mg/m3.
Accuracy: ±0.5% reading
±precision

https://www.thermofisher.com/
Traceable to SAE Fine Test Dust.

DT TSI DustTrak
II-8533 2 min

Laser optical photometer
Range: 0.001 to 150 mg/m3

Flow Accuracy: ±5%
factory setpoint Internal
flow controlled

https://tsi.com/home/
Calibrated with ISO 12103–1,
A1 Ultrafine Test Dust.

1 Plantower documentation describes the analytical method as follows: “ . . . collect scattering light in certain angle
[and] obtain the curve of scattering light change with time. [By microprocessor, calculate] equivalent particle
diameter and the number of particles with different diameter per unit volume based on MIE theory. Product
documentation also reports “endurance max error” after 720 h of operation: as ±15 μg/m3 for 0~100 μg/m3 and
±15% for 100~500 μg/m3.

Additionally, we extracted and analyzed publicly available data collected at regulatory air quality
monitoring stations (AQS) and nearby PurpleAir PA-II monitors for three Western US wildfires.
For the Camp Fire, data were obtained for 12 Northern California (NorCal) AQS sites with high PM2.5

concentrations and 53 PA-II monitors near the 12 sites. Data were identified and analyzed for a single
AQS site and nearby PA-II monitor that were in an area impacted by the Carr and Mendocino Complex
Fires in California and for a single AQS and PA-II monitor impacted by the Pole Creek Fire in Utah.
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2.2. Wildland Fires

2.2.1. Camp Fire

At roughly 6:30 a.m. on November 8, 2018 a wildland fire started along Camp Creek Road near
Poe Dam in Butte County, Northern California. The fire spread quickly and ravaged the nearby town
of Paradise. It caused at least 86 fatalities and destroyed almost 19,000 buildings, many in the first
few hours. It ultimately burned over 150,000 acres and was not contained until November 25. A map
showing the area burned in the fire is provided in Figure 1.

 

Figure 1. Areas burned (red) and locations of air quality monitoring stations (green dots) reporting
hourly PM2.5 that also had nearby PA-II monitors. Gray images are the states of California (top) and
Utah (bottom) and red dots show the locations of the detailed maps with the states. The 75 km scale
marker applies to all three detailed images. Satellite images were obtained via Google Earth. Fire extent
data from https://fsapps.nwcg.gov/googleearth.php.

Strong off-shore katabatic winds on November 8 carried smoke throughout the most heavily
populated areas of Northern California. By 11:30 a.m. the smoke plume had reached Berkeley,
over 225 km away. Smokey conditions persisted in California’s Central Valley and the San Francisco
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Bay Area until November 21. A satellite image showing the extent of smoke coverage is provided as
Figure S1 in the Supplementary Material.

2.2.2. Carr and Mendocino Complex Fires

The Carr Fire started on July 23, 2018 in the Whiskeytown district in Shasta County, California.
The fire spread quickly over the next few days and burned over 28,000 acres by the evening of July 26.
It ultimately consumed nearly 230,000 acres and was not fully contained until August 30. The Mendocino
Complex Fire burned over 450,000 acres over the period from July 27 to November 7, 2018. The smoke
from the two fires appeared to combine over large areas in the northern portion of the Sacramento
Valley as shown in a satellite image provided as Figure S2. The areas burned by these two fires and the
location of the impacted AQS with nearby PA-II monitor is shown in Figure 1. These two fires are
henceforth described as the Carr/MC Fires.

2.2.3. Pole Creek Fire

The Pole Creek Fire was the largest fire in Utah in 2018; it consumed over 98,000 acres in a steep
mountain canyon approximately 90 km SSE from Salt Lake City. The smoke from the Pole Creek Fire
exhibited sharp diurnal behavior consistent with changing wind patterns in a mountain environment.
The AQS at Spanish Fork was the only station that recorded significant PM from the fire and had
a PurpleAir monitor nearby (4 km) with publicly available data throughout the smoke event. The area
burned and locations of AQS and PA-II monitors are shown in Figure 1; a satellite image of the smoke
is provided as Figure S3.

2.3. Monitors Deployed at LBNL

The monitors used at LBNL are described in detail below with summary notes in Table 1. Reference
PM2.5 data at LBNL were obtained using a Model 1405-DF Tapered Element Oscillating Microbalance
with Filter Dynamic Measurement System (TEOM) (Thermo Scientific, Waltham, MA, USA). This device
is approved as Federal Equivalent Method for 24 h measurements of PM2.5. As a check on the TEOM,
five pairs of filter-based gravimetric samples were collected and analyzed over the study period using
Gillian AirCon2 pumps (Sensidyne, St. Petersburg, FL, USA) drawing 10 liters per minute (l pm)
through an Personal Environmental Monitor for PM2.5 (SKC, Eighty Four, PA, USA). The AirCon2
actively adjusts flow based on an internal sensor and reports an error if the flow deviates by more
than 5% from the setting. The flow was also checked before each sample using a Gilian Gilibrator2
(Sensidyne). Gravimetric samples were collected on 37 mm diameter, 2 μm pore-size, TEFLO (Pall,
Port Washington, NY, USA) PTFE filters that were equilibrated at a temperature of 19.5 ± 0.5 ◦C and
relative humidity of 47.5 ± 1.5% for at least 24 h before weighing pre-and post-sampling. Filter weights
were determined using an SE2-F ultra-microbalance (Sartorius, Goettingen, Germany).

The Model 1371 Mini Wide Range Aerosol Spectrometer (WRAS) (Grimm Aerosol Technik,
Muldestausee, Germany) is designed specifically for indoor sampling and combines an optical particle
sensor that quantifies particles in 31 size bins from 0.25 to 35 μm mean diameter and an electrical
mobility spectrometer that quantifies particles in 10 size bins from 10 to 193 nm mean diameter.
In addition to size-resolved number concentrations, the WRAS calculates PM1, PM2.5 and PM10 mass
concentrations at 1-min time resolution based on the measured particle size distribution and an
assumed particle density. The WRAS uses the same optical sensor as the Grimm Model EDM180,
which is certified as an FEM. The EDM180 also includes a NafionTM dryer to reduce the potential for
high humidity to cause significant particle growth when sampling outdoors.

Measurements were additionally made with two professional grade aerosol photometers that
are used for industrial hygiene and research: a DustTrak II-8530 (DT) (TSI, Shoreview, MN, USA)
that was combined with a model 801,850 heated inlet system and a Thermo pDR-1500 (PDR). These
instruments have wide measurement ranges, starting at 1 μg m−3 and nominally extending to 150 and
400 mg m−3, respectively. Both have active flow control and filtered sheath air to keep the optical path
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clean. The PDR features temperature and humidity compensation (via software), and the heated inlet
on the DT is intended to prevent artifacts from high relative humidity (RH). The two instruments are
calibrated with Arizona test dust: A1-ultrafine for the DT, and A2-fine for the PDR. Figure S4 shows
the particle size distribution of the two dusts along with the average distribution of the smoke from the
Camp Fire. Manuals for both monitors recommend coincident gravimetric sampling for calibrations to
specific sources or environments and both offer flow-controlled internal filter collection. Based on the
work of Wallace et al. [29], TSI recommends a calibration factor of 0.38 when using the DT to sample
ambient air if no coincident gravimetric sample is obtained. The data reported in this paper uses the
default calibration for the PDR and a calibration factor of 1.0 for the DT to avoid confusion. The PDR
saved data every 10 s while the DT saved every 2 min. Notes on calibrations for the DT and PDR are
found in the Supplementary Materials.

Also deployed at LBNL were four low-cost IAQ monitors: the Air Quality Egg—2018 edition
(AQE) (Wicked Device LLC, Ithaca, NY, USA) the AirVisual Pro (AVP) (IQAir, Goldach, Switzerland),
the PurpleAir Indoor (PAI) (PurpleAir LLC, Draper Utah, USA), and the Indoor Air Quality Pro Station
from eLichens (ELI) (Gremoble, France). The AVP uses a proprietary AVPM25 b sensor and calibration
procedure. The PAI uses a single PMS1003 sensor (Plantower, Beijing, China) and directly reports its
output. The AQE incorporates dual Plantower PMS5003 sensors and reports the average of the two
sensors. The ELI uses a single Plantower PMS5003 and reports PM2.5 and PM10 after processing the
data with a proprietary algorithm. The low-cost sensors appear to use a hybrid approach of optical
particle sensing and photometry to estimate PM2.5. The Plantower sensors also report PM1 and particle
number concentrations in 6 size bins (>0.3, >0.5, >1.0, >2.5, >5.0, >10 μm). The AQE and ELI saved
data every minute, the AVP every 10 s, and the PAI every 80 s.

All monitors at LBNL were collocated within a 120 m3 laboratory housed within a single-story
building with two exterior doors at opposite sides. Doors were closed during most of the data collection
and there were no indoor sources; all PM2.5 in the room was thus infiltrated from outdoors. During
three periods multi-hour periods totaling 26 h, the two doors were opened to increase indoor PM2.5 to
be closer to outdoor levels. The room was not thermally conditioned. Daily high temperatures outdoors
at LBNL varied from 13.2 to 19.6 ◦C and overnight low temperatures were 6.9 to 14.7 ◦C during the
two weeks of the Camp Fire. Room high temperatures varied from 18.1 to 24.3 Dynamic Measurement
System (TEOMC and lows varied from 14.8 to 17.8 ◦C. The median temperature difference (inside to
outside) was 3.9 ◦C. The outdoor air exchange rate (AER) was not measured directly during smoke
monitoring; based on prior assessments we estimate that AERs were approximately 0.5 h−1 or lower
(refer to discussion in the Supplementary Materials) when the door was closed.

2.4. Data from Regulatory Air Quality Monitoring Stations

Data from air quality monitoring stations (AQS) in California were obtained from the Air Quality
and Meteorological Information System (AQMIS) maintained by the California Air Resources Board [40].
The regulatory network in California uses beta attenuation monitors (BAM) models 1020 and 1022
(Met One Instruments; Grants Pass, OR, USA) to record hourly PM2.5. A BAM draws air through
a size-selective inlet to set the PM mass fraction being measured (e.g., PM2.5 or PM10) then through
a filter tape to collect sample. Collected particles change the attenuation of beta rays passing through the
filter tape proportionally to the mass of particles collected. The change in mass over the measurement
time interval is divided by the sample air volume to calculate PM2.5 concentration.

Data from the Spanish Fork monitoring site that was impacted by the Pole Fire in Utah was
obtained from the Utah Department of Environmental Quality website [41]. The FEM monitor operating
at this site was a Thermo Scientific Model 5030i Synchronized Hybrid Ambient Real-time (SHARP)
particulate monitor. The SHARP monitor combines an optical particle counter with a beta attenuation
instrument. The optical portion of the instrument provides a data stream with high temporal resolution,
and the beta attenuation provides a mass measurement to dynamically adjust the optical instrument
and provide accurate time resolved PM mass concentration.
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2.5. PurpleAir Network

The PurpleAir PA-II monitor features two Plantower PMS5003 sensors, electronics, and software
to enable quick connection to the web via wifi-all packaged in a 4” PVC cap with an outdoor power
supply for weather protection. When setting up a new device the user is prompted to set the
geographic location and whether it is indoors or outdoors, with outdoors as the default. PurpleAir
provides a real-time, map-based data display (https://www.purpleair.com/map#1.1/0/--30) and enables
downloads of data from its server. Device owners have the option of making the data publicly available
or accessible only to users whom they designate. To our knowledge, PurpleAir had by far the largest
distributed network of PM sensors with publicly viewable data deployed around California at the time
of the Camp Fire. We also observed expansion of the network in terms of number of monitors and
spatial coverage during the fire.

The default setting on the PurpleAir map presents data as the US EPA PM2.5 AQI calculated from
the PM2.5 concentration reported by each Plantower sensor. The online map allows the user to display
any of the other data streams provided by the sensors and other AQI-type values. At the time of the
wildfires (and still on 07-May-2020), the site offered two “conversions” to adjust PM2.5 concentrations
and corresponding AQI values. The site attributes an “AQandU” calibration (0.778 * PA + 2.65) to
a long-term University of Utah study in Salt Lake City and an “LRAPA” calibration (0.5 * PA − 0.68) to
a Lane Regional Air Pollution Agency study of PA sensors. The University of Utah evaluated Plantower
sensors measuring ambient air in Salt Lake City during all seasons of the year [42,43]. The LRAPA
adjustment is from a winter study performed in a region of Oregon that has widespread use of wood
combustion heating and ambient PM2.5 that is predominantly composed of wood smoke when at its
highest levels [44].

2.6. Identification of Paired PA-II and Regulatory AQ Monitoring Data

To conduct the analysis described herein, we manually searched the PA map to identify PA-II
monitors within ~5 km of an AQS site that reported PM2.5 on an hourly basis during any of the fires
examined herein. To assess if PA-II and AQS data were appropriately paired, we considered local
topography such as the presence of valleys or mountains that could result in the PA and AQS seeing
different air masses and also viewed data to confirm basic synchronicity of trends. For the Camp Fire
we identified 53 PA-II monitors in the vicinity of 12 NorCal AQS sites. From these 53 PA-II devices,
we downloaded data from 97 sensors that reported data that appeared valid based on the review
described in the next section. The median distance between the AQS and PA-II monitors was 2.7 km,
the interquartile range was 1.1–4.6 km, and the full range was 0–11.6 km. For both the Carr/MC and
Pole Creek Fires we found a single PA-II monitor and nearby AQS combination. For the Carr/MC
Fire the AQS was approximately 50 km from the fire, and the PurpleAir was co-located with the site.
The AQS selected for the Pole Creek Fire was approximately 35 km from the fire and the PA-II monitor
was ~4 km from the AQS.

2.7. Analysis of Data from PA-II Monitors

The PA-II monitors report data at 80 s resolution. Many of the devices had occasional data gaps,
presumably due to wifi connectivity issues. AQS data are provided at 1 h resolution. The unadjusted
cf_1 data stream reported by the Plantower sensors to the PA-II monitor were used to calculate 1 h
averages and both PA-II and AQS data were aggregated to 4 h averages to account for the sites not
being precisely co-located. Correlations and adjustment factors were evaluated with the 4-h data
streams. (The cf_1 and cf_atm data streams were switched in PA-II reporting at the time of the fire [45],
but we have subsequently confirmed that the stream used in this study was the stream that is currently
labeled as cf_1).

Most PA-II devices provide data for each of the two onboard sensors and occasionally the sensors
read significantly different results. As a quality assurance screen, we reviewed data from all of the
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individual sensors of PA-II units. This was done by plotting the time series of the raw values along
with the AQS data on the same plot, visually identifying the outliers. We flagged any sensor that
substantially diverged from other nearby sensors, including from the same monitor. We also identified
devices that appeared to be indoors but were marked as outdoors, indicated by the two sensors of the
device agreeing closely and being well below the group or having occasional peaks (presumably from
indoor PM emissions) that did not appear in the other outdoor devices. Faulty sensors and presumed
indoor units were removed from the analysis.

3. Results

3.1. Reference Measurements at LBNL

Over the course of the fire, PM2.5 as measured by the TEOM inside the lab at LBNL averaged
47.3 μg m−3 or roughly half of the event-averaged concentrations of 93.2 and 93.9 μg m−3 at air quality
stations in Berkeley (4.5 km to the West) and Oakland-West (7.3 km to the Southwest). Figure S5
presents the time concentration profiles of hourly-averaged PM2.5 for these sites. Duplicate filters
provided consistent results and generally agreed with the TEOM (Figure S5). Some difference is
expected since the TEOM sampling sequence did not perfectly align with some filter sample intervals.

3.2. Measurements with Low-Cost, Professional and Research Monitors at LBNL

Time series of PM2.5 concentrations reported by all monitors deployed at LBNL are shown in
Figure 2, which shows that all tracked with the TEOM and all but the WRAS substantially over-reported
PM2.5 throughout the event. Responses relative to TEOM varied for both professional-grade and
low-cost monitors. For each monitor, we calculated the statistics of relative response (device reported
PM2.5 divided by TEOM PM2.5) using event-integrated and 4-h average data, with results provided in
Table S1. The event-integrated mean and median 4-h response factors were closest to unity for the
WRAS and farthest for the DustTrak.

Figure 2. Time series of PM2.5 as reported by all monitors tested at LBNL. The TEOM is a U.S. Federal
Equivalent Method, and thus considered as the reference data. The top group are the monitors utilizing
low-cost sensors and the bottom group are professional research grade monitors, with the TEOM
reference measurement shown with both groups. Refer to Table 1 for monitor descriptions.
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The DustTrak and pDR-1500 both use Arizona test dust as their calibration aerosol; and the devices
nevertheless provided different responses. The DustTrak calibration is based on A1 Ultrafine dust,
with mass median diameter (mmd) in the range of 3 to 5 μm. The PDR is calibrated with Arizona test
dust A2 Fine, with mmd of 8 to 10 μm. These calibration aerosols have very different size distribution
and optical properties than wildfire smoke, as shown in Figure S4. The two devices also use light
sources of different wavelengths and measure at different scattering angles.

3.3. Adjustment Factors Based on LBNL Measurements

Low-cost and professional monitor measurements were related to actual PM2.5, as measured by
the TEOM, by determining the best fit parameters for linear equations with zero or non-zero intercepts.
While prior studies have reported substantial non-zero intercepts when using low-cost monitors to
measure ambient aerosols [46–49], we found that for the wildfire smoke, the slopes were very similar
with zero or non-zero intercepts (see Figure S6). Based on this, we subsequently report adjustment
factors as simple scalars with no offset.

Adjustment factors (AF) to translate the PM2.5 reported by each instrument to the PM2.5 reported
by the TEOM (i.e., TEOM PM2.5/device PM2.5) were calculated for each 4-h interval of data and for the
entire event. Summary results, provided in Figure 3, show that AFs varied across devices and also
over time for each device. The DT had the least variability in part because it was used for only a few
days. The WRAS reported concentrations closest to the TEOM with a median AF of 0.85. Median AFs
for the monitors with low-cost sensors varied from 0.42 to 0.60.

Figure 3. Distributions of 4-h average adjustment factors determined from measurements in a naturally
ventilated lab over 13 days of elevated smoke from the Camp Fire.

An example of applying the AFs to adjust time-resolved data is provided in Figure 4. The bottom
panel shows the AFs for 4-h average data over the course of the fire for the three AVP units. The middle
panel shows that the adjusted time-series (using the median of the 4-h AFs across the event) closely
match the TEOM and the top panel shows that residual errors were almost all between −30% and
+20%. The same plot is provided for the PAI as Figure S7 in the Supplementary Materials. For both the
AVP and PAI, three units of each device agreed closely throughout the fire.
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Figure 4. Event-specific adjustment factors (ESAFs), adjusted data and error of adjusted data (relative to
co-located TEOM PM2.5) for 4-h average AVP measurements in a naturally ventilated lab over 13 days
of elevated smoke from the Camp Fire.

3.4. Measurements of PM2.5 and Adjustment Factors in Northern California and Utah

Table 2 provides summary data from the 12 NorCal air quality monitoring stations that had nearby
PA-II monitors at the time of the Camp Fire. The AQS sites varied in distance from the town of Paradise,
which was the focal point of the fire. The positions of the AQS sites relative to the burned area are
shown in Figure 1. Table S2 provides the number of PA-II monitors and reporting sensors. Given the
large distances, there was relatively small variation of PM2.5 across sites. Sacramento was closest and
had the highest mean concentration. Davis was nearly the same distance from the fire but had among
the lowest concentrations, possibly due to it being on the edge of the plume for much of the event
(based on satellite images). Sites between Vallejo and San Francisco showed remarkable consistency
with a relative standard deviation in the mean event concentration of 3.4%. Mean concentrations at the
two furthest sites, San Jose and Redwood City, were about 15% lower than most of the other sites.
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Table 2. Calculated linear fitting parameters with/out a zero offset and adjustment factors to quantify
wildfire smoke PM2.5 based on comparisons of 4-h means from PurpleAir PA-II monitors nearby to
Northern California regulatory air quality monitoring stations during the Camp Fire in 2018.

PM2.5 (μg m−3),
4-h avgs.

Linear Fits of 4-h avg Data
Relating PA-II to AQS

Adjustment Factors Based on 4-h
Ratios of AQS/PA-II

AQS Site
Distance

(km)
Mean 10th 90th

Slope, Zero
Intercept

Slope Intercept Mean SD Median 10th 90th

Sacramento 133 134 47 239 0.498 0.510 −3.2 0.509 0.106 0.487 0.393 0.626
Davis 137 82 15 169 0.425 0.410 3.0 0.411 0.165 0.419 0.293 0.558
Vallejo 192 92 38 175 0.490 0.490 0.0 0.490 0.142 0.490 0.373 0.641

Concord 206 87 33 160 0.474 0.445 4.9 0.494 0.167 0.494 0.341 0.758
San Pablo 210 93 47 162 0.504 0.455 9.7 0.499 0.108 0.488 0.397 0.630
San Rafael 213 89 46 153 0.495 0.505 −2.0 0.631 0.255 0.635 0.439 1.092
Berkeley 219 93 54 164 0.459 0.423 6.9 0.464 0.089 0.472 0.375 0.572

Oakland-West 224 94 51 161 0.532 0.509 3.9 0.465 0.079 0.458 0.383 0.563
Oakland-Laney 226 91 53 157 0.459 0.437 4.5 0.530 0.088 0.528 0.423 0.627
San Francisco 232 93 45 156 0.511 0.498 2.5 0.504 0.160 0.520 0.318 0.692
Redwood City 258 74 33 122 0.446 0.387 8.3 0.451 0.162 0.449 0.314 0.607

San Jose 270 80 40 126 0.574 0.536 4.9 0.482 0.140 0.484 0.353 0.593

Table 2 also presents linear fits, with zero and non-zero intercepts, relating 4-h intervals of PA-II
sensor and nearby AQS data. Table 2 presents AFs calculated for all AQS sites as the medians of all
available 4-h AFs from sensors near the sites. Distributions of daily AFs across sites over the course of
the fire are presented in Figure 5.

Figure 5. Variation in regional event-specific adjustment factor over time, shown as distributions of
daily ESAFs required for PA-II monitors to align with measurements at 12 regulatory monitoring sites
in Northern California during the Camp Fire in November 2018.

The median AF for the 12 AQS sites varied between 0.42 and 0.49 for the first 9 days, rose to
0.57–0.58 on Days 9–10, and declined over the last few days. To assess variance, we consider the relative
median absolute deviation (RMAD) statistic, which is analogous to the relative standard deviation
(RSD). The median RMAD for all the 4-h average AFs—including all days and all sensors —nearby to
individual AQS sites was 12% with an IQR of 8–18% (Figure S8). An event specific adjustment factor
(ESAF) for the Camp Fire was calculated as the median of all daily AFs for all AQS sites, providing a
value of 0.485. Examples of time-series adjusted with the regional ESAF are provided for three sites in
Figure 6. Whereas a prior study by Stampfer et al. [50] reported non-linear response for Plantower
sensors when PM2.5 was above 25 μg m−3, the PA data used in this study linearly tracked with PM2.5 to
above 200 μg m−3 as shown in Supplementary Figure S9. Since deviation from the linear relationship
occurred only at very high levels, which were infrequent (Figure S9) the simple linear adjustment
was applied.
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Figure 6. PM2.5 concentrations reported by regulatory air quality monitoring stations (AQS) and all
valid sensors of PurpleAir PA-II monitors nearby to three AQS sites during the Camp Fire in Northern
California in November 2018. Pink data are unadjusted and purple data are adjusted using the regional
event specific adjustment factor of 0.485.

Applying the regional adjustment factor to PA-II measurements throughout the area substantially
reduced errors relative to default PA-II output. Figure 7 presents the summary distributions of residual
errors of 4-h average data across all 12 AQS sites over all days of the smoke event using unadjusted values
along with three different adjustment factors. The median unadjusted error was +102% with an IQ range
of 74–133%. Using the regional ESAF from the Camp Fire produced an interquartile range of roughly
±15% in the residual error. The LRAPA adjustment available on the PurpleAir map at the time of the
fire produced very similar results as using the regional AF calculated in this study. Using the AQandU
correction resulted in concentration estimates that were 61% off at the median with an IQ range of 38–85%.

Figure 7. Distributions of errors for 4-h average PM2.5 concentrations for Northern California PA-II
monitors compared to regulatory monitors for the Camp Fire using different adjustment factors.
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We applied the same analysis to the single PA-II and AQS combination that was available during
the Carr/MC Fire. This site was heavily impacted by smoke from July 26 through August 12, 2018.
Figure 8 shows the errors for the PA-II compared to the Red Bluff AQS using both unadjusted and
adjusted data. The unadjusted PA-II monitor had a median error of +135% with an IQ range of
112–153%. When data were adjusted using the regional Camp Fire AF, median residual errors were
13% (3–22% IQR). When the Carr/MC data were adjusted with the AF determined for that fire, the IQR
of the residual error was −9.5 to 7% (with median of 0%).

Figure 8. Distributions of errors for 4-h average PM2.5 concentrations for Red Bluff PA-II direct readings
and after applying the regional event specific adjustment factors from Camp Fire (R-ESAF) or those
derived for the local Carr/Mendocino Complex Fire.

The Pole Creek Fire intermittently pushed smoke out into the Utah Valley from September 13
through September 24, 2018. Figure S8 shows the AQS and PA-II data—both unadjusted and adjusted
using the Camp Fire AF, along with errors in the adjusted data. The AQS data showed a strong diurnal
pattern with clean air in the evening around sunset and smoke starting to enter the valley by midnight
and peaking a few hours after sunrise. When performing the analysis of PA-II and AQS data for this
site, we focused only on the periods impacted by the smoke event by excluding any 4-h intervals where
the AQS was <35 μg m−3. When smoke was present, errors in the unadjusted PA-II PM2.5 were +111%
(66–212% IQR). Errors were reduced to 1.8% (−20 to +51% IQR) when using the Camp Fire regional
ESAF. When adjusting data with the AF determined for the Pole Creek Fire, the IQR of the residual
error was −21 to +48%.

Figure 9 shows the adjustment factors for the three fires. Three distributions are shown for the
Camp Fire: regional ESAFs from the 12 AQS sites, the AFs determined at the Berkeley AQS, and the
AFs measured inside the lab at LBNL. While AFs for the Berkeley AQS had a similar median and range
as those from sites across the region, AFs for the infiltrated PM2.5 at LBNL were lower. This could
be due to several factors. First is the possibility that the particle size distribution of PM2.5 inside the
lab was different than outside around the region. Since PM2.5 levels inside were lower by about a
factor of two, there was clearly some loss of particles relative to outside. It is well established that the
size distribution can change as penetration and deposition rates vary with particle size, leading to
uneven losses across the range of particle sizes [51–53]. Another possible factor is that the reference
instrument at LBNL was a TEOM while the air monitoring stations in Berkeley and elsewhere in
California used BAM instruments. A third potential factor is the different versions of the Plantower
sensor used in the PAI devices inside at LBNL (which use PMS1003 sensors) and the PA-II, which
uses the PMS5003 sensor. The two sensors have the same nominal specifications and appear to use
the same electronic components but they have different internal flow pathways. The Carr/MC Fire
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required a larger adjustment than was needed for the Camp Fire. The variability in the Pole Creek AFs
may be impacted by the diurnal variability (which was still present even when analyzing only those
intervals with PM2.5 > 35 μg/m3), coupled with the fact the PA-II was ~4 km away from the AQS for
this site. As the plume was moving either in or out it was hitting the PA-II and AQS at different times.
By contrast, for the California fires the plumes were present for days at a time reducing spatial and
temporal variability.

Figure 9. Event specific adjustment factors (ESAFs) calculated for PA-II monitors using data from three
wildfire smoke events in 2018. The LBNL results are for indoor monitoring of infiltrated PM2.5 in a lab
with an estimated outdoor air exchange rate of 0.5 h−1.

3.5. Impact of Adjustments on Air Quality Index Estimates

Adjustments to the reported concentrations translate to major changes to the associated AQIs
reported for PA-II monitors. Figure 10 provides examples for PA-II monitors nearby to three monitoring
sites during the Camp Fire in Northern California. For each site, three time series of 4-h AQI values
are presented. The top bar is calculated from unadjusted PA-II readings. The middle is calculated
from PA-II readings adjusted with the regional ESAF. And the bottom row is the 4-h AQI calculated
from AQS data. At the Sacramento site, which was the closest of the three to the fire at 135 km away,
unadjusted PA-II data indicated an AQI of “very unhealthy” or “hazardous” for 83% of the smoke
event. Adjusted data indicated an AQI in these categories 31% of the time, which is similar to the 30%
of time that the regulatory monitor reported AQI in these categories. Unadjusted sensor readings
indicated the correct AQI category 14% of the time whereas the adjusted PM2.5 provided the correct
AQI category 84% of the time. At the San Pablo site (210 km from the fire), unadjusted PA-II indicated
“very unhealthy” or “hazardous” for 59% of the event duration, which was much higher than the 17%
of time that PM2.5 measurements from the AQS indicated those AQI categories; adjusted PA-II data
indicated these AQI categories of concern 10% of the time. Overall, the AQI category calculated from
unadjusted PA-II data matched the AQS AQI only 29% of the time while the adjustment resulted in
the correct AQI range 65% of the time. At the San Jose site (270 km from the fire), unadjusted PA-II
indicated “very unhealthy” or “hazardous” for 34% of the event duration, whereas the 0% of time for
the ESAF-adjusted data was similar to the 2% for the AQMS. Unadjusted data predicted AQI 47% of
the time and adjustment led to the correct AQI category 66% of the time.
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Figure 10. Comparison of Air Quality Index (AQI) values calculated using unadjusted data from PA-II
monitors and the same data after correction with the regional, event specific AF to AQIs from PM2.5

data at regulatory monitoring sites in Northern California during Camp Fire.

Despite the overall improvements in AQI predictions, it is important to note that adjusted values
sometimes predicted a lower AQI hazard level than indicated by the nearby AQS.

3.6. Impact of Environmental Conditions on Adjustment Factors

PA-II adjustment factors were similar for the three fires, which occurred under varied seasonal
conditions: the MC/Carr fire occurred in early summer (June), the Pole Fire occurred in late summer
(September) and the Camp Fire occurred in late fall (late November). To assess the relationship between
AFs for wildfire smoke and those occurring at the same sites through the year, we analyzed data from
all of 2019 at measurement sites impacted by the Camp and MC/Carr fires in 2018. We first screened the
data to look only at 4-h intervals with PM2.5 above 12 μg/m3. Figures S11 and S12 show distributions
of temperature, RH, and PM2.5 for these intervals of elevated PM2.5 during each of the three main
seasonal conditions (winter = December through February; summer =May through September; and
shoulder = all other months), and for the period of each wildfire in 2018. During the Camp Fire,
RH spanned a range similar to the shoulder seasons and temperatures were closer to those during
winter. Consistent with this, the AF distribution was midway between the fall and winter distributions
during periods of elevated PM2.5. In Red Bluff, temperature and RH during the wildfire were similar
to 2019 summer periods with elevated PM2.5, but the distribution of AFs closely matched those during
winter elevated PM2.5. One possible reason for the similarity of wintertime and wildfire smoke AFs is
that a substantial fraction of elevated winter PM2.5 at both T-street and Red Bluff AQS sites may be
associated with smoke from home heating wood combustion. The effect of environmental conditions
is explored further in Figures S12 and S13, which show AFs as a function of RH, by season, at the two
sites. In both cases the AFs for wildfire smoke do not change much over a very broad range of RH
conditions. AFs also do not vary with RH during the winter. By contrast, AFs vary with humidity for
the summer and shoulder seasons. Collectively these results provide support for the hypothesis that
the AFs identified for smoke events are directly related to the characteristics of the smoke and do not
vary greatly with environmental conditions.

4. Discussion

Prior research indicates varying responses of optical particle sensors to smoke generated from
biomass combustion. In the most extensive and directly relevant study, McNamara et al. reported
ratios of DustTrak 8520 and 8530 models to gravimetric, FRM and FEM measurements of varied
instances of PM2.5 from wood smoke [54]. Inside homes with wood stoves, which had PM2.5 elevated
from loading and stoking events, ratios of DT to gravimetric measurements were 1.60 ± 1.05 (mean
AF = 0.63) across 43 sampling periods with mean (SD) gravimetric PM2.5 = 30.7 (34.7) μg/m3. DT to
gravimetric ratios were 1.59–1.70 (AF = 0.63–0.59) for sampling in a University of Montana laboratory
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during three 24-h periods impacted by forest fire smoke (gravimetric PM2.5 = 11.3, 21.2, 55.3 μg/m3).
For wintertime ambient sampling of PM2.5 impacted by wood smoke in Libby, Montana, DT to BAM
ratios were 1.43 ± 0.61 for BAM-reported PM2.5 of 24.6 ± 8.0 μg/m3. Dacunto et al. reported fireplace
wood smoke correction factors (equivalent to AF) of 0.44–0.47 for the TSI Sidepak photometer, which
is similar to the DT [55]. The previously reported AFs for wood and wildfire smoke are higher than
the DT AF of 0.25 measured at LBNL for infiltrated wildfire smoke. These differences are presumed
to result from variations in composition and size distributions of the measured aerosols, which had
varied generation, ageing, and environmental conditions. Using an early generation of the pDR
instrument, a U.S. Department of Agriculture study reported an AF of 0.53 for smoke generated in a
fire laboratory [56]; the same AF was measured in our current study for the modern version of the
pDR for infiltrated wildfire smoke.

There are limited published data on wood or wildfire smoke AFs for low-cost monitors. The Lane
Regional Air Protection Agency (LRAPA), which is in a region of Oregon that is impacted by wood
smoke from home heating, compared PA-II monitors to their network of FEMs and reported an AF
equation of 0.5 * PA(PM2.5)–0.66 [44]. This is offered as a checkbox conversion on the PA map and
closely aligns with the Camp Fire regional AF of 0.48. A long-term study of Plantower 1003 and
5003 sensors by the University of Utah reported equations relating hourly averaged individual sensor
readings to a collocated TEOM 1405-F FEM-approved monitor by season [42]. During the months of
Jun–Oct, which the authors described as “wildfire season” because of several fire events that occurred
during that period, slopes of the linear fits were in the range of 1.33–1.48 (roughly corresponding
to AFs of 0.68–0.75). However, since there were relatively few hours with PM2.5 > 40 μg/m3 over
the season and the analysis did not break out the fits during the few significant wildfire events, the
reported fits are not directly appropriate to adjusting Plantower sensor data during wildfire events
with high PM2.5 (e.g., >40 μg/m3).

5. Conclusions

Low-cost air quality monitors can be used to accurately estimate hyper-local concentrations,
regional dispersion, and health risk of PM2.5 from wildfire smoke if appropriate device-specific
adjustment factors are applied. Data from the existing network of outdoor PurpleAir II monitors is
currently available with substantial coverage in many locations throughout the world. While the
default PA-II response substantially over-reports wildfire smoke PM2.5, the data can be scaled using the
adjustment factor of 0.48 determined for the Camp Fire in Northern California, leading to substantially
more accurate air quality index estimates. Based on measurements at LBNL of infiltrating smoke PM2.5,
it appears that both professional grade photometers and other monitors using Plantower low-cost
optical PM sensors also substantially over-report wildfire PM2.5 values. A simple multiplicative
adjustment factor can bring the low-cost monitor response much closer to the PM2.5 and AQI that
would be reported by a regulatory monitor at the same location. Wildfire smoke AFs can vary across
locations and over time during a fire event and the median AFs from one event may differ somewhat
from those at other events. Yet even with these variations, application of a global AF can reduce bias
from roughly a factor of two to 20–30% or less. It is also possible to apply short term adjustment factors
by comparing the previous several hours of data from a deployed sensor to that form a nearby AQS if
one is available.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/13/3683/s1,
Figure S1: Satellite image of the Camp fire on 11/12/2018; Figure S2: Satellite image of the Carr and Mendocino
complex fires on 08/03/2018 20:43:47 GMT; Figure S3: Satellite image of the Pole Creek fire 9/13/2018 20:36:57 GMT.;
Figure S4: Mass distributions of wildfie smoke and two varieties of test dust; Figure S5: Time series of PM2.5
measured by TEOM in the laboratory at LBNL lab and at the Berkeley and Oakland-West regulatory air quality
monitoring sites during the 2018 Camp Fire in northern California; Figure S6: Adjustment factors, adjusted data
and error of adjusted data (relative to co-located TEOM PM2.5) for 4-h average PAI measurements in in a naturally
ventilated lab over 13 days of elevated smoke from the Camp Fire; Figure S7: Distributions of daily relative median
absolute deviations; Figure S8: Running 4 hr average data for the Pole Creek Fire at Spanish Fork UT; Figure S9:
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Error distributions for 4 h average data after applying Camp Fire event-specific regional adjustment factor to PA-II
monitors near air quality monitoring stations in Northern California. Figure S10: Environmental conditions and
PurpleAir II adjustment factors by season over running 4-h intervals with PM2.5 above 12 μg/m3 at the T-street air
quality monitoring station in Sacramento, CA; Figure S11: Environmental conditions and PurpleAir II adjustment
factors by season over running 4-h intervals with PM2.5 above 12 μg/m3 at the air quality monitoring station in Red
Bluff, CA; Figure S12: PurpleAir II adjustment factors and relative humidity by season over running 4-h intervals
with PM2.5 above 12 μg/m3 at the T-street air quality monitoring station in Sacramento, CA; Figure S13: PurpleAir
II adjustment factors and relative humidity by season over running 4-h intervals with PM2.5 above 12 μg/m3 at the
air quality monitoring station in Red Bluff, CA. Table S1: Median response of each monitor deployed at LBNL
relative to co-located TEOM, statistics for 4 h averages and event-integrated ratio; Table S2: Sensor data used to
calculate adjustment factors for quantifying infiltrating wildfire smoke PM2.5 using 4-h means from PurpleAir
PA-II monitors nearby to northern California regulatory air quality monitoring stations during the three western
US wild fires.
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Abstract: Many low-cost sensors (LCSs) are distributed for air monitoring without any rigorous
calibrations. This work applies machine learning with PM2.5 from Taiwan monitoring stations
to conduct in-field corrections on a network of 39 PM2.5 LCSs from July 2017 to December 2018.
Three candidate models were evaluated: Multiple linear regression (MLR), support vector regression
(SVR), and random forest regression (RFR). The model-corrected PM2.5 levels were compared with
those of GRIMM-calibrated PM2.5. RFR was superior to MLR and SVR in its correction accuracy and
computing efficiency. Compared to SVR, the root mean square errors (RMSEs) of RFR were 35% and
85% lower for the training and validation sets, respectively, and the computational speed was 35
times faster. An RFR with 300 decision trees was chosen as the optimal setting considering both the
correction performance and the modeling time. An RFR with a nighttime pattern was established as
the optimal correction model, and the RMSEs were 5.9 ± 2.0 μg/m3, reduced from 18.4 ± 6.5 μg/m3

before correction. This is the first work to correct LCSs at locations without monitoring stations,
validated using laboratory-calibrated data. Similar models could be established in other countries to
greatly enhance the usefulness of their PM2.5 sensor networks.

Keywords: efficient in-field PM2.5 correction; random forest model; particle sensing correction;
in-field calibration; PM sensing device

1. Introduction

Millions of premature deaths worldwide can be attributed to particulate matter with an
aerodynamic diameter less than or equal to 2.5 μm (PM2.5) [1,2], which is one of the human carcinogens
classified by the International Agency for Research on Cancer [3]. Rising PM2.5 levels in the ambient
air and their associated health impacts are important environmental health issues that concern the
general public, especially in developing countries [4,5]. In eastern Asia during 1998–2000, 51% of
the population lived in areas with annual mean PM2.5 levels above the recommended guideline of
the World Health Organization (35 μg/m3). This percentage increased to 70% during 2010–2012 [6],
showing the deterioration of the air quality in this region.

In resource-limited Asian countries, there are insufficient numbers of regulatory monitoring
stations in urban areas with high population densities. The purpose of the PM2.5 monitoring stations
of Environmental Protection Administrations (EPAs) worldwide is to assess the well-mixed ambient
pollutant levels. Therefore, such monitors are situated at a height of 10–15 m above the ground.
However, the intensive emissions of community pollution sources in Asia, such as restaurants and
temples, result in high PM2.5 levels in the immediate living environments of citizens at street level [7–10].
Even living in the same airshed, residents from different communities with different emission sources
are exposed to different PM2.5 levels, demonstrating the need for community air monitoring. In Taiwan
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island, there are 57 regular air monitoring stations, covering an area of 35,887 km2 [11]. Excluding the
two-thirds of mountainous areas with little population, on average, every 300 km2 of land area has
only one air quality station. Even in the capital area (Taipei metropolitan), every 141 km2 has only
one air quality station on average. Thus, there are still large monitoring gaps between these stations.
These gaps can be filled by the observations provided by low-cost sensors (LCSs) for ambient-level
and street-level air quality monitoring.

The United Stations Environmental Protection Agency (USEPA) noted that LCSs can be used
to fill the observational gaps of environmental monitoring after appropriate quality assurance and
quality control procedures [12]. Currently, there are more than 4000 PM2.5 LCSs in the citizen air
quality network (CAQN [13]) in Taiwan as a result of the collaboration of citizens, private enterprises,
and non-governmental organizations (NGOs) with partial government funding. The PM2.5 sensor
network on the Island of Taiwan is possibly one of the most densely distributed sensor networks in
the world [14,15], with (on average) three LCSs per 1 km2. CAQN has increased the environmental
awareness of Taiwanese citizens dramatically. However, these sensors installed by citizens or NGOs
are not calibrated, and data accuracy is not assured. Thus, their readings may be 2–3 times the actual
concentrations [10]. Such limitations in data quality have restrained the application of these sensors in
research and policy development.

LCSs need to be calibrated, since their readings usually deviate from those of research-grade
instruments [10]. The actual cut-offpoints of particle sizes for LCSs are not consistent with the statements
declared by the manufactures [16]; individual correction equations are, thus, needed for each sensor,
even those from the same batch [10]. Most environmental scientists evaluate the performance of
LCSs with side-by-side comparisons against research-grade instruments in the laboratory or in the
field. Research-grade instruments, which are considered the golden standard for such comparisons,
include instruments with measuring principles based on light scattering, oscillating tapered elements,
β-attenuation, and filter-weighing, such as GRIMM instruments [10,17–20], TSI SidePake AM510 [21,22],
tapered element oscillating microbalance [18,23], β-attenuation monitor [17–19,24,25], and ultrasonic
personal aerosol sampler [26]. Correction equations are established to adjust the LCS readings to
those of research-grade measurements. Mathematical models, such as linear regression [17–20,27]
or multiple linear regression (MLR) models [23,25,28], have been used to establish these correction
equations. The latter models usually consider ambient environmental factors.

To obtain accurate PM2.5 levels for LCSs, data correction is a necessary procedure. For thousands
of PM2.5 sensors already installed by citizens in the field, an innovative method for correction is needed,
since traditional laboratory or field evaluations with side-by-side comparisons require a great deal of
human resources and time. Furthermore, it is impractical to correct thousands of sensors. Innovative
data science techniques, such as machine learning, could also be used for correcting LCS readings [29].
Machine learning techniques have been used for air pollution issues for different purposes. Cheng et al.
applied transfer learning to correct the PM2.5 values of the citizen network in Beijing, China using the
PM2.5 levels from public environmental monitoring stations [30]. Pandey et al. predicted the levels of
ultrafine particles in China through a machine learning approach [31]. Hsieh et al. used an artificial
neural network and deep learning to analyze the proper position to install air pollution stations in
Beijing [32]. Zheng et al. analyzed and predicted the air quality in different areas through data mining
and machine learning using data from 43 cities in China [33]. Paas et al. used an artificial neural
network to acquire the mass concentrations and numbers of different sizes of particles in Germany [34].
Peng et al. forecasted the levels of ozone, PM2.5, and NO2 in Canada using multiple linear regression
and multi-layer perceptron neural networks [35]. Moreover, machine learning methods may provide a
significant accuracy improvement for gaseous and particle sensors [23,36].

Therefore, we proposed a hybrid method combining laboratory evaluations and data science to
ensure that the LCS networks provide accurate PM data [20]. First, the LCS data are corrected through
side-by-side laboratory comparisons for “seed” LCS devices, which can be installed strategically in
areas without EPA stations; secondly, statistical or machine learning methods are applied to adjust
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nearby uncalibrated LCS devices using data from the EPA stations or the seed LCS devices wherever
available. In this way, readings from uncalibrated LCS devices in the CAQN can be corrected to nearly
research-grade observations. The first part of obtaining reliable and robust correction equations is
to convert the readings of LCS devices to research-grade (or FEM-comparable) measurements via
side-by-side comparisons with research-grade instruments in the laboratory, as presented in [20].

The current work focuses on the second part of this process: Applying machine learning to correct
data from the LCS network with the PM2.5 values from Taiwan EPA stations. The objectives of this
work are: (1) To establish data correction models based on machine learning techniques with the
PM2.5 data from the Taiwan EPA to correct the readings of the sensor network; (2) to evaluate the
model performance with data from the same sensor network calibrated with laboratory evaluations;
and (3) to explore the best data correction models using choices of computing efficiency and day/night
periods. As can be seen in the later section, using in-field corrections with machine learning techniques,
the PM2.5 data quality of LCSs can be greatly improved. Furthermore, this is the first work to introduce
the use of a nighttime dataset instead of a whole-day dataset for the establishment of a data correction
model with machine learning in order to prevent interference from local emissions during the daytime.
This method can be further used to conduct in-field corrections for CAQN in Taiwan, as well as for
other sensor networks in other countries.

2. Materials and Methods

2.1. Sensor Network Introduction

The LCS network corrected by Taiwan EPA data in this work consists of LCS devices designed for
research purposes, namely, AS-LUNG-O. LCS devices integrate LCS, power, and data transmission
components. AS-LUNG-O is an LCS device integrated by our team and designed for long-term
outdoor monitoring for scientific research [10]. AS stands for Academia Sinica (the research institute
that supports its development), while LUNG indicates the human organ most commonly affected by
air pollutants, and O indicates the “outdoor” version. AS-LUNG-O (~650 USD basic manufacturing
costs) incorporates sensors for PM2.5 (PMS3003, Plantower, Beijing, China), CO2 (S8, Senseair AB,
Sweden), temperature/humidity (SHT31, SENSIRION, Staefa ZH, Switzerland), and Global Positioning
System (GPS, u-blox, Switzerland). The PM2.5 sensor, PMS3003, has been evaluated by several research
teams in laboratory environments. For example, Kelly et al. [18] obtained an R2 of 0.73–0.97 in wind
tunnels, and Sayahi et al. [37] obtained an R2 > 0.978 for 242 sets of PMS3003 in a controlled chamber.
These results indicated the good performance of PMS3003 compared to research-grade instruments.

The sensors for AS-LUNG-O are placed in a waterproof shelter connected to a solar panel
with backup batteries for the power supply, with the option to use household electricity, where
easily accessible. The size of the whole set is roughly 60 cm (W) × 50 cm (D) × 50 cm (H),
with a weight of approximately 4.8 kg. Data can be transmitted wirelessly using the built-in
4G modules to a cloud database with one-min intervals. An SD card was added as a complement
to avoid data loss during wireless transmission. Currently, most of the LCSs used in the CAQN
(http://www.aqmd.gov/aq-spec/product/edimax) in Taiwan are PMS5003 (Plantower, Beijing, China),
which is also a Plantower LCS.

AS-LUNG-O is a versatile LCS device capable of operating under the harsh weather conditions
in subtropical Taiwan, which experiences high humidity (e.g., The mean relative humidity (RH) was
74% in the year of 2016 [10]) and frequent Typhoons [38]. AS-LUNG-O can be installed on the light
poles in the streets and was used in a small town in a mountainous area to fill the data gaps of PM2.5

monitoring. The incremental PM2.5 concentration increases due to different community sources were,
thus, quantified using AS-LUNG-O [10]. Therefore, other communities without EPA monitoring
stations can also use AS-LUNG-O to acquire the PM2.5 levels.

This work uses data from the AS-LUNG-O network, including 39 AS-LUNG-O sets installed in
different communities since July 2017 around Taiwan (Figure 1). Twenty-eight sets were installed in
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urban communities in Taipei’s metropolitan areas with high population densities in northern Taiwan,
while two sets were placed in the suburban communities of Taipei. In addition, 6, 2, and 1 set(s) were
installed in central, southern, and eastern Taiwan, respectively. Out of the 28 sets in the urban communities
in Taipei, 27 were installed near certain community sources such as traffic, restaurants, temples, night
markets, etc., as described in [10]. These 27 sets were set-up at street-level on light poles around 2–2.5 m
above the ground. The other 12 sets were set-up at a high-level (around 10–15 m above the ground) on
the rooftops of elementary schools or government buildings to assess the PM2.5 in ambient air.

The AS-LUNG-O network is considered a research-grade sensor network, since the data
of AS-LUNG-O were corrected using correction equations based on laboratory evaluations with
side-by-side comparisons against a research-grade instrument for every AS-LUNG-O reading [10].
The research-grade instrument used in these laboratory evaluations was GRIMM 1.109 (GRIMM
Aerosol Technik GmbH and Co. KG, Ainring, Germany). The data from GRIMM 1.109 were in excellent
agreement (R2 = 0.999, with a bias of roughly ±11%) with the data from an EDM-180 (GRIMM Aerosol
Technik Ainring GmbH and Co, Ainring, German) [20], an FEM instrument designated by the USEPA
for PM2.5. The mean values of R2 for the correction equations were 0.97, with ranges from 0.82 to
0.99 for these 39 sets. Without data correction, AS-LUNG-O overestimates PM2.5 by about 1.5–2.9
times [10,20]. PM2.5 observations with 1 min resolutions from AS-LUNG-O were converted to GRIMM
comparable measurements according to the correction equations and saved in the cloud database for
this AS-LUNG-O network.

This research-grade AS-LUNG-O network provides a great opportunity to evaluate the feasibility
and performance of the correction models based on machine learning techniques. The raw PM2.5

readings of AS-LUNG-O corrected by the laboratory correction equations are “GRIMM-calibrated
PM2.5”, while those corrected by the machine learning techniques are “model-corrected PM2.5”.
The performance of the machine learning correction models can be evaluated by comparing the
GRIMM-calibrated PM2.5 with model-corrected PM2.5.

(a) (b) 

Figure 1. Cont.
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(c) 

Figure 1. Distribution of AS-LUNG-O sets, Environmental Protection Administration (EPA) stations,
and sensors of the citizen air quality network (CAQN) in (a) the whole of Taiwan island, (b) the Taipei
metropolitan area from July 2017 to December 2018, and (c) an AS-LUNG-O set at street level.

2.2. The Data Correction Models

This work applied machine learning techniques to correct the raw readings of AS-LUNG-O sets
with those of Taiwan EPA monitoring stations. Only EPA stations within 3 km of the AS-LUNG-O sets
were selected in our work. Out of the 57 regular Taiwan EPA stations, 11 stations were selected, including
6 stations in the north, 2 in central Taiwan, 2 in the south, and 1 in the east. Hourly measurements of
24 h during July 2017 and December 2018 from these stations were used to establish the data correction
models. The instruments used in Taiwan EPA [39] are Met One BAM-1020 (Met One, Inc., Grants Pass,
OR, USA) and VEREWA-F701 (VEREWA, Ltd., Germany).

To establish in-field data correction models, two machine learning techniques (introduced below)
were used in this work and compared with a correction model established using traditional MLR.
These three models used PM2.5 data from EPA stations as their simulation targets to adjust the raw
readings of AS-LUNG-O sets within a 3 km radius. These models were constructed using a personal
computer environment with an Intel® CoreTM i7-8700 and 32 GB RAM.

The inputs for these models were: (a) The raw PM2.5 readings, (b) the temperature, RH, latitude,
and longitude of the AS-LUNG-O sets, (c) the PM2.5 levels of the nearest EPA station, and (d) the
distance between AS-LUNG-O and the EPA station. These inputs (from July 2017 to December 2018)
were used for 10-fold cross-validation (90% of data randomly selected for the training set; the others
for the validation set) and holdout validation (50% of data randomly selected for the training set; the
others for the validation set) tests to evaluate the robustness of these three models. Since there were
only 1.5 years of data, we used the holdout method to generate the correction models; therefore, most
of the data could be kept to validate the models, which can avoid to overvaluing the performance of
the models under the situation of only using less data (10% of data) for the evaluation. Leaving more
data in the validation set (50% of data in the holdout validation in this study) could increase the power
of the model estimation. [40,41]. Data correction models were constructed using the training dataset,
and the validation dataset was used to evaluate the correction accuracy of the models built. The MLR
and machine learning models are introduced below.

The MLR model is established as follows:

PM2.5target = β0 + β1 × LCSPM2.5raw
+ β2 × T + β3 ×RH + β4 ×Month + β5 ×Day

+β6 ×Hr + β7 × lat + β8 × lon + β9 ×D
(1)

where β0 is the intercept; β1–β9 are the regression coefficients; PM2.5target is the simulation target of
the correction model, EPA PM2.5; LCSPM2.5raw

is the raw readings from AS-LUNG-O (μg/m3); T is the
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temperature (◦C); RH is relative humidity (%); Month, Day, and Hr (hour) are the time values of the
observations; lat and lon are the latitude and longitude of the AS-LUNG-O sets; and D is the distance
of the AS-LUNG-O and the nearest EPA station (km).

Two machine learning techniques used in this work were support vector machine (SVM) and
random forest (RF). SVM is based on the generalized portrait algorithm developed in the 1960s
by Russian mathematicians and is a supervised learning algorithm used for classification [42,43].
The SVM algorithm is a popular machine learning tool that offers solutions for both classification and
regression problems. The objective of SVM is to build an optimal hyperplane as a classifier in high
dimensional space, and the data points closest to the hyperplane are called support vectors. New data
are then divided by that classifier and predicted to belong to a category based on the hyperplane [44].
Our present work applies SVM to construct the support vector regression (SVR) model.

The random forest model is an ensemble learning method for classification and regression that
builds a multitude of decision trees during the training process and constructs the modes of the classes
or the mean predictions for classification and regression [45–47]. Using the random subspace method
to build decision trees was first proposed by Ho et al. [45]. Breiman [46] further proposed to use the
bagging algorithm to generate random forest to avoid over-fitting in the decision trees. The learning
targets are numerical variables rather than class labels [46,47]. Our present work applies a random
forest to construct a random forest regression (RFR) model.

2.3. Evaluation of the Correction Models

Figure 2 shows a flow chart of the data correction process. Raw PM2.5 readings with a 1 min
resolution were averaged to their hourly means to match the hourly observations from the nearest
EPA stations within a 3 km radius. If the numbers for the raw PM2.5 in one hour were less than
45, this hourly mean was discarded. After collecting all aforementioned input data, data correction
models with three different methods can be established. A model-corrected PM2.5 based on the optimal
correction model can be obtained and then compared with the GRIMM-calibrated PM2.5 corrected
based on traditional laboratory evaluations. In this way, the performance of the PM2.5 correction model
can be evaluated accordingly.

Since the differences between the AS-LUNG-O readings and EPA observations may be affected
by the community sources (of which emission activities change over time), the correction model
with the best performance will be constructed based on whole-day (24 h) or nighttime (00:00–06:00)
periods. The latter period was chosen because most of the community PM2.5 sources associated with
human activities were minimal during this period. The optimal correction model built with data from
nighttime patterns can be used to obtain the systematic relationships of data from AS-LUNG-O and EPA
instruments without interference from nearby sources around the locations of the AS-LUNG-O sets.

The indicators used for evaluating model performance are root mean square error (RMSE), Pearson
correlation coefficient (r), and coefficient of determination (R2). R2 is used to assess the predictive or
explanatory ability of the model and should be close to 1, while r shows the correlations between two
variables. The equation of RMSE is as follows:

RMSE =

√∑n
i=1(Yi −Mi)

2

n
(2)

The values of RMSE represent the difference between the model-corrected PM2.5 (Mi) and
referenced PM2.5 levels (Yi) (EPA PM2.5 used in the selection evaluation for the machine learning
methods; GRIMM-corrected PM2.5 used in the performance evaluation of the selected correction model).
Thus, the closer these values are to zero, the better the model performs. Additionally, for the final
model, mean absolute errors (MAEs) were also calculated for comparison with those from literature.
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Figure 2. Flow chart of the data correction process.

3. Results

3.1. Measurements of AS-LUNG-O Sets and EPA Stations

Table 1 shows a summary of the raw PM2.5 of the AS-LUNG-O sets and the PM2.5 observations
of the nearest EPA stations during July 2017 and December 2018, as classified by different seasons.
The range of PM2.5 for the EPA stations during this period is 2.0–135.0 μg/m3. It can be seen that the
highest PM2.5 means and the maximum PM2.5 occurred during winter for both the AS-LUNG-O and
EPA PM2.5 levels. The raw PM2.5 values of the AS-LUNG-O sets were, on average, higher than those
from the EPA by about 1.9–2.2 fold. These data were used to establish and evaluate the three data
correction models.
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Table 1. Seasonal mean with the standard deviation (SD), data range, and sample size (n) of the hourly
raw PM2.5 of AS-LUNG-O sets and EPA PM2.5 (μg/m3).

Raw PM2.5 of AS-LUNG EPA PM2.5
n

Mean (SD) Range (Min, Max) Mean (SD) Range (Min, Max)

Spring 48.0 (20.6) (3.1, 295.9) 24.3 (13.6) (2.0, 100.0) 19,924
Summer 28.4 (21.3) (1.0, 249.8) 12.9 (13.0) (2.0, 75.0) 37,638

Fall 36.8 (15.3) (1.0, 223.6) 19.3 (8.1) (2.0, 127.0) 43,624
Winter 51.5 (29.2) (1.0, 309.8) 27.0 (18.2) (2.0, 135.0) 25,195

3.2. Performance Evaluation of the Correction Models

We conducted 10-fold cross-validation and holdout validation tests to evaluate the robustness of
the models. The results of the 10-fold cross-validation test for MLR, SVR, and RFR were based on the
same training and validation datasets. The average values of RMSE and R2 for the results of the 10-fold
cross-validation test were 6.88 ± 0.10 μg/m3 and 0.76, 5.23 ± 0.08 μg/m3 and 0.86, and 4.36 ± 0.06 μg/m3

and 0.91, for MLR, SVR, and RFR, respectively. The results of the holdout evaluation test were
presented in Figure 3. The differences between the RMSEs of the 10-fold cross-validation and the
holdout validation tests were about averagely 0.03, 0.30, and 0.34 μg/m3 for MLR, SVR, and RFR,
respectively. Figure 3a–f show the distribution of model-corrected PM2.5 from the AS-LUNG-O sets
and EPA PM2.5 data in the training and validation sets with three different data correction models.
Based on the same training set of 63,190 data points, the computation time is 0.01, 8.16, and 0.23 minutes
for building models MLR, SVR, and RFR, respectively. The R2 of 0.76–0.99 for these three models
shows these models have good explanatory abilities. In terms of RMSE, RFR is the best model (1.73)
(Figure 3a,c,e). To further evaluate whether these models perform well for new datasets (Figure 3b,d,f),
63,191 data points from the validation sets were used to input these models. The RMSEs for RFR were
35% and 85% lower than those for SVR in evaluations of the training set and validation set, respectively.
The results show that the R2 values of these three models are 0.76–0.89, with the lowest RMSE value
(4.7) in RFR for the validation sets. Based on the above evaluation, RFR is chosen as the best data
correction model to be used for further applications.
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Figure 3. Model performance of (a) multiple linear regression (MLR) with a training set, (b) MLR with
a validation set, (c) support vector regression (SVR) with a training set, (d) SVR with a validation set,
(e) random forest regression (RFR) with a training set, and (f) RFR with a validation set. The RMSE, R2,
and n are listed in the graphs.
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3.3. Sensitivity Analysis of RFR

To optimize the computing efficiency of the RFR model, a sensitivity analysis of RFR was conducted
with 50 to 1000 decision trees (with 50-tree increases in each simulation) to assess the changes in
modeling efficiency. Figure 4 shows that RFR offers good model performance (RMSE = 1.81 and
R2 = 0.9843) when there are only 50 trees. As the decision trees increase, the modeling efficiency is
enhanced most significantly before the number of decision trees reaches 300. When the decision trees
number is 300, the RMSE is 1.73, and the R2 is 0.9858. Afterward, the efficiency enhancement is not
significantly altered by adding more decision trees, which takes more computing time. In the overall
evaluations, RFR with 300 decision trees was chosen as the model with the best efficiency.

Figure 4. Model efficiency of the random forest regression model.

3.4. Comparison of the Model-Corrected PM2.5 and GRIMM-Calibrated PM2.5

3.4.1. RFR with Whole-Day and Nighttime Patterns

A performance evaluation was further conducted for the RFR with a whole-day pattern using
a whole-day dataset based on four seasons. Table 2 shows that the RMSE is the lowest in the
summer model (mean: 5.4 μg/m3, ranging from 3.1 to 11.2 μg/m3), followed by the fall model (mean:
6.1 μg/m3, ranging from 3.7 to 10.0 μg/m3), while the RMSE values are slightly higher in the winter and
spring models (mean: 6.8 and 7.3 μg/m3, respectively). For certain AS-LUNG-O sets at community
locations, the r is as low as 0.33 between the model-corrected PM2.5 and GRIMM-calibrated PM2.5.
This discrepancy is possibly caused by some nearby community sources that could not be detected
by EPA monitoring stations. These community sources, such as traffic or restaurants, likely generate
PM2.5 in the daytime. Therefore, AS-LUNG-O may have different PM2.5 trends from the nearby EPA
station, leading to low correlations between these observations.

To focus on the systematic difference of the LCS and EPA observations, a data correction model
was established for the nighttime dataset only. Since emissions from community sources resulting from
human activity usually reached the lowest levels between 00:00 and 06:00, the data from this period
were used to establish the model. Afterward, the established RFR with a nighttime pattern was used to
correct the raw PM2.5 for all datasets (including both daytime and nighttime). This way, the readings of
AS-LUNG-O were adjusted according to the systematic differences between the AS-LUNG-O and EPA
instruments, while the extra PM2.5 increases due to community sources in the daytime could also be
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retained. Table 2 shows that the r-values of the model-corrected PM2.5 and GRIMM-calibrated PM2.5

were enhanced for the overall datasets, including both street-level and high-level AS-LUNG-O sets
(including both daytime and nighttime). In the seasonal models, the r-values for RFR with a whole-day
pattern were 0.83, 0.82, 0.85, and 0.90, which were improved to 0.92, 0.88, 0.88, and 0.94 for the RFR
with a nighttime pattern for the spring, summer, fall, and winter models, respectively.

Table 2. Performance evaluation of the random forest regression model (RFR) with whole-day and
nighttime patterns in overall AS-LUNG-O sets (street-level and high-level).

Overall Season
RMSE 1 Pearson Correlation

n
Mean (SD 2) Range (Min, Max) Mean (SD) Range (Min, Max)

RFR with
whole-day

patterns

Spring 7.3 (2.6) (4.1, 14.1) 0.83 (0.15) (0.34, 0.96) 19,924
Summer 5.4 (1.7) (3.1, 11.2) 0.82 (0.11) (0.33, 0.93) 37,638

Fall 6.1 (1.6) (3.7, 10.0) 0.85 (0.08) (0.53, 0.94) 43,624
Winter 6.8 (2.3) (3.5, 12.9) 0.90 (0.04) (0.79, 0.97) 25,195

RFR with
nighttime
patterns

Spring 6.7 (2.4) (2.6, 10.9] 0.92 (0.05) (0.80, 0.98) 19,924
Summer 5.7 (1.7) (2.8, 11.3) 0.88 (0.07) (0.57, 0.95) 37,638

Fall 5.7 (1.6) (3.2, 9.9) 0.88 (0.08) (0.68, 0.96) 43,624
Winter 6.1 (2.3) (2.4, 14.4) 0.94 (0.03) (0.86, 0.98) 25,195

1 RMSE, root mean square error; 2 SD, standard deviation.

The model improvement is most obvious in spring for certain street-level AS-LUNG-O sets.
Compared with the whole-day model with an r-value of 0.34, the r-value of the nighttime model is
enhanced to 0.81 (Table 3). Nevertheless, the r-values of certain AS-LUNG-O sets were not improved
with the nighttime models. It is possible that the trends of PM2.5 concentrations at these AS-LUNG-O
locations were different from those in the EPA stations, regardless of whether it was during the day
or night.

Table 3. Performance evaluation of the random forest regression model (RFR) with whole-day and
nighttime patterns in street-level AS-LUNG-O sets.

Street-Level Season
RMSE 1 Pearson Correlation

n
Mean (SD 2) Range (Min, Max) Mean (SD) Range (Min, Max)

RFR with
whole-day

patterns

Spring 7.1 (2.7) (4.1, 14.1) 0.84 (0.15) (0.34, 0.96) 17,255
Summer 5.4 (1.8) (3.1, 11.2) 0.83 (0.11) (0.33, 0.93) 30,710

Fall 5.8 (1.5) (3.7, 10.0) 0.85 (0.09) (0.53, 0.94) 32,606
Winter 6.5 (2.2) (3.5, 12.9) 0.91 (0.04) (0.79, 0.97) 19,448

RFR with
nighttime
patterns

Spring 6.5 (2.5) (2.6, 10.9) 0.93 (0.04) (0.81, 0.98) 17,255
Summer 5.6 (1.8) (2.8, 11.3) 0.89 (0.07) (0.57, 0.95) 30,710

Fall 5.7 (1.7) (3.2, 9.9) 0.89 (0.08) (0.68, 0.96) 32,606
Winter 5.9 (2.4) (2.4, 14.4) 0.94 (0.02) (0.89, 0.98) 19,448

1 RMSE, root mean square error; 2 SD, standard deviation.

Furthermore, the results of the model evaluation were categorized as street-level and high-level
(Tables 3 and 4, respectively). For data correction at a high-level, the r-values between the
model-corrected PM2.5 and GRIMM-calibrated PM2.5 are all above 0.68 in the whole-day models, while
the nighttime models between them are all above 0.75. These results indicate that the PM2.5 levels at
high-level AS-LUNG-O locations are moderately correlated with certain deviations from those of the EPA
stations in a 3 km radius. This correlation was enhanced in the nighttime model. The minimum r-values
of high-level AS-LUNG-O sets were improved from 0.68–0.83 to 0.75–0.86 (Table 4). This phenomenon
was also observed in the PM2.5 correction of certain street-level AS-LUNG-O sets; the minimum
r-values were improved from 0.33–0.79 to 0.57–0.89 (Table 3). However, the improvement of street-level
correlations was not as good as those of high-level AS-LUNG-O sets. The PM2.5 levels sensed by
street-level AS-LUNG-O locations are affected by local community sources, resulting in different PM2.5

patterns from those of the EPA stations. It is important to keep these local features while correcting LCS
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data with the systematic differences between LCS and research-grade instruments in the correction
procedures. Thus, based on the evaluations of RFR with whole-day patterns and nighttime patterns,
the latter were selected to correct the raw PM2.5 of AS-LUNG-Os.

Table 4. Performance evaluation of the random forest regression model (RFR) with whole-day and
nighttime patterns in high-level AS-LUNG-O sets.

High-Level Season
RMSE 1 Pearson Correlation

n
Mean (SD 2) Range (Min, Max) Mean (SD) Range (Min, Max)

RFR with
whole-day

patterns

Spring 8.8 (2.3) (7.2, 10.4) 0.78 (0.15) (0.68, 0.89) 2669
Summer 5.7 (1.3) (3.6, 7.6) 0.78 (0.07) (0.70, 0.88) 6928

Fall 7.3 (2.0) (4.6, 9.9) 0.84 (0.07) (0.75, 0.91) 11,018
Winter 8.0 (2.9) (4.6, 12.9) 0.88 (0.04) (0.83, 0.94) 5747

RFR with
nighttime
patterns

Spring 8.2 (1.9) (6.8, 9.5) 0.87 (0.09) (0.80, 0.94) 2669
Summer 5.8 (1.3) (4.1, 7.9) 0.85 (0.06) (0.76, 0.94) 6928

Fall 6.2 (1.7) (4.9, 9.3) 0.88 (0.09) (0.75, 0.95) 11,018
Winter 6.7 (2.2) (4.3, 9.6) 0.92 (0.03) (0.86, 0.94) 5747

1 RMSE, root mean square error; 2 SD, standard deviation.

3.4.2. PM2.5 Corrections by RFR

Figure 5a shows the RMSE values between the GRIMM-calibrated PM2.5 and model-corrected
PM2.5 using RFR with a nighttime pattern. The RMSEs were 2.6–10.9 (mean 6.7), 2.8–11.3 (mean 5.7),
3.2–9.9 (mean 5.7), and 2.4–14.4 (mean 6.1) μg/m3 for spring, summer, fall, and winter, respectively
(Table 2). Before the model correction, the RMSE values were 15.4–32.7 (mean 23.3), 6.1–19.4 (mean 13.4),
5.3–31.2 (mean 17.4), and 5.2–40.6 (mean 21.6) μg/m3 for spring, summer, fall, and winter, respectively.
Clearly, RFR can greatly reduce the RMSE values. The significant differences in RMSEs among different
seasons almost disappeared after correction with RFR (the nighttime pattern).

In addition, the MAE is used to evaluate the performance of RFR compared to the models in the
literature. Figure 5b shows MAE values between the model-corrected PM2.5 and GRIMM-calibrated
PM2.5 with RFR (nighttime pattern). The MAEs were 1.9–9.6 (mean 5.7), 2.4–9.0 (mean 4.9), 2.4–8.3
(mean 4.8), and 1.9–10.3 (mean 4.9) μg/m3 for spring, summer, fall, and winter, respectively. Before the
model correction, the MAE values were 14.6–30.1 (mean 21.5), 5.3–16.9 (mean 11.6), 4.4–27.6 (mean
15.2), and 4.1–36.6 (mean 18.8) μg/m3 for spring, summer, fall, and winter, respectively. In summary,
after correction, the RMSE was improved from 18.4± 6.5 to 5.9± 2.0 μg/m3, and the MAE was improved
from 16.2 ± 6.0 to 5.0 ± 1.8 μg/m3. This demonstrates that the RFR model greatly reduces MAEs, lowers
the overestimation of AS-LUNG-O raw data, and improves the agreements between AS-LUNG-O and
EPA PM2.5 levels.

Figure 6 shows a time series plot of the raw PM2.5 for AS-LUNG-O, the model-corrected PM2.5 with
RFR (nighttime pattern), and the GRIMM-calibrated PM2.5 for the whole year of 2018. After learning
from the PM2.5 observations of nearby EPA stations, the model-corrected PM2.5 levels were close
to the GRIMM-calibrated PM2.5. In addition, after being corrected by machine learning techniques,
the overestimation of the raw PM2.5 was greatly reduced. However, with nighttime models, the peak
values of model-corrected PM2.5 were retained (as shown in the graph) to preserve the contributions
of local community sources. After all, the purpose of community air quality monitoring is to assess
the contributions of local sources; these important local features need to be preserved during the data
correction processes.

49



Sensors 2020, 20, 5002

(a) 

(b) 

Figure 5. Correction results of RFR with a nighttime pattern for different seasons with (a) RMSE and
(b) MAE as performance indicators.
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Figure 6. Time-series of raw PM2.5, model-corrected PM2.5, and GRIMM-calibrated PM2.5.

4. Discussion

4.1. Comparison of in-Field PM2.5 Correction Models

Typically, environmental research groups apply monitoring instruments calibrated by the
manufacturers. For LCS sensors, Rai et al. [48] proposed a two-stage calibration process with
laboratory calibration performed by the manufacturers and calibration checks performed by the
end-users. This process would be ideal if the manufacturers followed the suggestions. However,
demanding manufacturers to calibrate LCSs may be unrealistic, since LCSs are made in larger quantities
with much lower costs than more expensive instruments. Therefore, calibration needed to be carried
out by the end-users as described in the introduction; most studies use laboratory evaluations before
installing LCSs to establish correction equations. Moreover, only a few studies developed in-field
data correction models for PM2.5 accuracy correction. Previously, we proposed a hybrid method
combining laboratory evaluations and data science to ensure that LCS networks provide accurate PM
data [20]. Statistical or machine learning methods were applied to adjust uncalibrated LCS devices
with research-grade data within 3 km of the radius from either nearby EPA stations or calibrated seed
LCS devices.

The focus of this work was to establish and evaluate three in-field data correction models for
a PM2.5 LCS network—namely, the MLR, SVR, and RFR models. The AS-LUNG-O network, with
individual correction equations for each LCS in the laboratory, offers a great opportunity to assess the
performance of the data correction models established by machine learning techniques. Based on the
results of the 10-fold cross-validation and holdout validation tests, there was only a little difference
between the RMSEs of the 10-fold cross-validation and holdout validation tests for MLR, SVR, and RFR.
Thus, to avoid overvaluing the performance of the models, we used the holdout validation to establish
our models. Among them, RFR is the best model, with an RMSE of 1.73 and an R2 of 0.99 based on
63,190 raw hourly data of 39 AS-LUNG-O sets corrected with the PM2.5 levels of EPA stations located
within a 3 km radius. In the validation set, RFR was not overfitted, and the data corrected with the RFR
model agreed well with the EPA observations. Thus, RFR was chosen as the data correction model.
This work demonstrated the applicability of RFR in correcting LCS networks. Previous studies used
statistical and machine learning models with data from regulatory stations to correct side-by-side LCS
sets on the same locations [15,30]. This work is the first to use data from monitoring stations to correct
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the data of the LCS network in other locations without monitoring stations. This work is unique in
providing LCS data (GRIMM-calibrated PM2.5) based on laboratory evaluations for comparison in
other locations.

Among the few in-field correction studies, one study applied the generalized additive model
(GAM) to correct LCSs installed at three Taiwan EPA stations during December 2017 [15]. The RMSE
values were reduced from 15.55–31.34 μg/m3 to 4.88–9.66 μg/m3 after correction. These results are
similar to our data correction model results, showing RMSE values of 5.2–40.6 μg/m3 that were reduced
to 4.3–9.6 μg/m3 (high-level PM2.5 corrected by RFR with nigh-time patterns in winter, see Table 4).
Our correction model used similar input data. However, while an individual GAM model needed to
be established for each LCS at least once every day [15], our model, with cumulative data of more
than one year, was constructed as a one-time effort, which saved much computing time. Another
study applied transfer learning to correct 10 months of PM2.5 data for LCSs located at seven public
environmental monitoring stations in Beijing, China, and obtained MAEs of 7–12 μg/m3 [30]. The RFR
model in our work obtained MAEs of 1.9–10.3 μg/m3 and performed at least comparable to or even
better than those previous in-field data correction models for PM2.5. Furthermore, our methodology is
also suitable to be applied to PM2.5 sensor networks in other countries.

One may concern that the upwind or downwind locations may also affect the relationship of
AS-LUNG-O readings and EPA measurements. Since the prevailing wind in Taiwan changes with the
season, the seasonal air flow variations were considered in the correction model by the variable of
“season”. This variable “season” also considered all other seasonal factors.

In addition, in real-world applications, the computing efficiency of a model is a key issue to
determine feasibility. The impressive computer efficiency of RFR is another advantage of the model, as
it can handle huge datasets for the in-field correction of sensor networks. Based on the same training
dataset, RFR needed only 0.23 minutes for training a model, while SVR needed approximately 8.16
minutes. In comparison, RFR was 35 times faster. With such fast computations, this method has
great potential to be expanded to CAQN in Taiwan, which includes more than 4000 uncalibrated
LCSs. Decreasing run time in the real-time corrections of CAQN can be carried out by increasing the
computational capacity with a larger CPU and RAM. Moreover, parallel processing can be applied in
model coding to speed up the correction task. Due to its fast computing efficiency, RFR is an excellent
model for big data analytics for any data applications in sensor networks.

It should be noted that the RFR can only be applied for sensor networks with PM2.5 LCSs, which
have good R2 with research-grade instruments. If the precision of PM2.5 LCS is not good, the RFR
cannot adjust this inherent disadvantage. One previous study only enhanced the r-value between LCSs
and research-grade instruments from 0.53 to 0.63 with RFR, since they used LCSs with R2 of 0.07 to 0.27
(compared to research-grade instruments) [49,50]. On the contrary, our present work used LCS devices
with good R2 (>0.95) [10,20], so that our RFR model showed good performance in data correction for
sensor networks. Thus, LCS with good precision is a prerequisite for a good data correction by RFR.

4.2. Limitations of This Work

There are some limitations to this work. RFR could greatly improve data accuracy, as shown by the
reduction of RMSEs and MAEs. However, there is still an average bias of 4.8–5.7 μg/m3 for four seasons
after correction. These deviations may come from the inherent differences in ambient (high-level)
PM2.5 levels and street PM2.5 levels. The latter is affected by various community sources, while the
former is measured by EPA monitoring stations purposely assessing well-mixed ambient PM2.5 levels
free from any local emission interference. The AS-LUNG-O sets were located within 3 km radius
of EPA stations. Theoretically, the PM2.5 levels were uniformly distributed within these distances.
Nevertheless, there were usually multiple localized sources (home factories, restaurants, traffic, etc.)
within 100–500 m in Taiwanese communities resulting in significant spatial variations. Therefore,
the PM2.5 levels at AS-LUNG-O locations were different from those in EPA stations. This further
demonstrates the necessity of establishing LCS networks to assess local ambient air.
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On the other hand, the heights of AS-LUNG-O sets and EPA stations might be another variable
for the correction model. Since there were only two types of height (ground level and high level) of
AS-LUNG-O sets, we did not consider the altitude in the current correction model. This variable could
be considered in the future.

Moreover, the performance of RFR may be improved by multiple year inputs, which may cover
more environmental conditions for building the decision trees. This could be evaluated further after
the accumulation of observations from the AS-LUNG-O network. Additionally, the co-localization of
some AS-LUNG-O sets with EPA stations could be conducted in the future for comparison under the
same environmental conditions.

5. Conclusions

Current data correction methods for PM2.5 sensor networks are mostly established in the laboratory
and in the field before LCS installation. For citizen PM2.5 sensor networks without calibration, this
work has developed an in-field data correction model with machine learning to adjust the accuracy
deviations of the LCS network to enhance the data applicability of these networks. With the RFR
model, the RMSEs and MAEs of the model-corrected PM2.5 and GRIMM-calibrated PM2.5 are greatly
reduced. The contributions of local community sources to street-level PM2.5 concentrations are also
preserved by RFR with a nighttime pattern (00:00 to 06:00). This work provides a feasible method for
the in-field data correction of uncalibrated PM2.5 sensor networks with machine learning techniques.
In addition, this work demonstrates the great potential of machine learning to enhance the agreement
of LCSs and research-grade instruments, and thus, expands the applications of machine learning in the
field of environmental monitoring.

Previously, we proposed a hybrid method combining laboratory evaluations and data science to
ensure that LCS networks provide accurate PM data. Statistical or machine learning methods were
applied to adjust uncalibrated LCS devices with data from nearby EPA stations or seed LCS devices
that have been corrected by laboratory side-by-side comparisons and installed strategically in areas
without EPA stations. The current work focuses on applying machine learning to correct the LCS
network with PM2.5 from the Taiwan EPA. Under the trend of the smart city movement, increasingly
more sensors will be installed in our living surroundings for air quality monitoring. Thus, accurate data
are essential to avoid false impressions of better or worse air quality leading to ineffective air pollution
control strategies. With the established in-field data correction models presented in this work and the
calibrated seed LCS devices, accurate PM2.5 data from the sensor networks can be further applied
to citizen science, public education, environmental research, and policymaking. Similar correction
models can be established in other countries based on this example to greatly enhance the applicability
and usefulness of PM2.5 sensor networks worldwide.
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Abstract: For the type approval of compression ignition (diesel) and gasoline direct injection vehicles,
a particle number (PN) limit of 6 × 1011 p/km is applicable. Diesel vehicles in circulation need to
pass a periodical technical inspection (PTI) test, typically every two years, after the first four years of
circulation. However, often the applicable smoke tests or on-board diagnostic (OBD) fault checks
cannot identify malfunctions of the diesel particulate filters (DPFs). There are also serious concerns
that a few high emitters are responsible for the majority of the emissions. For these reasons, a new PTI
procedure at idle run with PN systems is under investigation. The correlations between type approval
cycles and idle emissions are limited, especially for positive (spark) ignition vehicles. In this study the
type approval PN emissions of 32 compression ignition and 56 spark ignition vehicles were compared
to their idle PN concentrations from laboratory and on-road tests. The results confirmed that the
idle test is applicable for diesel vehicles. The scatter for the spark ignition vehicles was much larger.
Nevertheless, the proposed limit for diesel vehicles was also shown to be applicable for these vehicles.
The technical specifications of the PTI sensors based on these findings were also discussed.

Keywords: vehicle emissions; particle number; periodical technical inspection; idle; roadworthiness

1. Introduction

Air pollution, especially particulate matter (PM), has significant impacts on the health of the
European population. It was estimated that in 2016 the mass of PM below 2.5 micron was responsible
for about 412,000 premature deaths in Europe [1]. The road transport contributed to 11% of total PM
mass primary emissions in the 28 countries of the European Union in 2017 [1]. In addition to the PM
mass, there is also a concern about the contribution of traffic originated ultrafine (<0.1 μm) particles to
the detriment effect on human health [2], as the road traffic is the major ultrafine particle number source
in most cities [3]. Both the mass and number of traffic originated particles have shown significant
reductions in the last 15–20 years [4], and it is estimated that they will further decrease in Europe until
2030 [5]. The concentration reductions can be attributed to policies (e.g., more stringent Euro emission
standards), traffic management, and fleet restrictions (e.g., low emission zones) [4]. Policies focused
mainly on vehicle exhaust emissions, but as the levels have decreased, the contribution of non-exhaust
emissions (from brakes and tires) can contribute at similar levels [6].

In the European Union (EU) the particle number (PN) and PM mass vehicles exhaust emissions
have to respect some limits defined in the regulations. The type approval of a vehicle family requires
that some limits depending on the date of registration are respected (e.g., Euro 5). The procedure
includes measurement of the emissions of a representative vehicle during a pre-defined driving cycle
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in the laboratory under well controlled ambient conditions. The type approval cycle in Europe was the
NEDC (New European Driving Cycle), which was replaced by the WLTC (Worldwide harmonized
Light vehicles Test Cycle) in 2017 with Euro 6c (Commission Regulation EU 2017/1151). Furthermore,
in 2017 a Real-Driving Emissions (RDE) test on the road was introduced in the type-approval procedure
including a Not-To-Exceed (NTE) limit for PN with Euro 6d-temp (Commission Regulation EU
2017/1154) [7]. Further provisions ensure the conformity of production (i.e., checking sample vehicles
from the production line) and in-service conformity (checking vehicles already circulating in the streets).
The laboratory PN instruments are based on the Particle Measurement Programme (PMP) group
recommendations [8]. The on-road tests are conducted with portable emissions measurement systems
(PEMS) [9]. Limits are applicable for compression ignition (diesel) vehicles since 2011 (Euro 5b) and
gasoline direct injection (GDI) vehicles since 2014 (Euro 6b). The current PN limit of solid (nonvolatile)
particles is 6 × 1011 p/km. However, for the first three years (2014–2017), a limit of 6 × 1012 p/km could
be applied to new GDI vehicles upon request of the manufacturer [10].

The roadworthiness regulation (Directive 2014/45/EU, which repealed Directive 2009/40/EC)
ensures that all circulating vehicles are kept in a safe and environmentally acceptable condition.
It requires appropriate measures to prevent adverse manipulation of, or tampering with, vehicle
parts and components that could have a negative bearing on required safety and environmental
characteristics of the vehicle. In order to check the emissions of a vehicle, a periodical technical
inspection (PTI) test is required for all circulating vehicles, typically every two years, after the first four
years of circulation. Exhaust gas smoke emissions of diesel vehicles are measured with opacimeters
during free acceleration (no load from idle up to cut-off speed) with gear lever in neutral and clutch
engaged. Alternatively, the reading of OBD (on-board diagnostics) can be used, if available. However,
in a study with 400 vehicles, 6% of them had high smoke emissions and none of them had any DPF
(Diesel Particulate Filter) fault codes at the OBD reading [11], indicating that OBD systems are not
always well designed to detect DPF failures. Similarly, in another study the OBD was unable to detect
any DPF faults [12]. The opacity test is also obsolete for todays’ vehicles because the opacity limit
is quite high. A study showed that all vehicles with and without DPF could pass the current limits
(1.5 m−1 and 0.7 m−1 for Euro 5 and Euro 6, respectively) [13]. Another study showed that even a 100%
damaged DPF resulted in emissions well below the PTI limit, although 0.5% and 5% damage ratios
resulted in values exceeding the PN and PM mass limits in type approval tests [14]. Lowering the
opacity limits has the challenge that it is already close to the detection limit of the method (0.3 m−1).
Furthermore, a study showed that all diesel vehicles (Euro 5) with or without DPF had smoke emissions
<0.5 m−1 [15]. Recent studies concluded that, instead of using opacimeters for the determination of
smoke emissions, laser light scattering sensors could be used: they were sufficiently accurate and
stable, and had the necessary dynamic response characteristics and resolution for testing modern
vehicles [12,14]. However, a practicable calibration procedure needs to be defined for light scattering
sensors. Furthermore, concerns have been raised for their high dependence on the particle size and the
resulting low sensitivity for small nanoparticles [16].

Because current PTI procedures cannot detect such high emitters of PM, their DPFs are not repaired
or replaced and the contribution of these high emitters could increase the average fleet emissions [17],
even by a factor 30 [13]. Some studies showed that a small percentage of high polluting vehicles can
account for the majority of the emissions [18]. Depending on the pollutant, <10% of the fleet can
contribute 30–85% of the emissions [16,19–21]. Various inspections found that 5−15% of the inspected
vehicles were high emitters with damaged or removed DPFs [13,22]. The fail rate increased with
mileage: from 3% (<50,000 km) to 25% (>150,000 km). Identifying and removing from the road high
emitters (result of damaged or tampered particulate filters) should result in an important reduction of
the contribution of on-road transport to the total particle emissions.

The VERT (Verification of Emission Reduction Technologies) Association, Swiss, German,
and Dutch governmental organizations, metrological institutes, scientists, and equipment
manufacturers established an informal new periodical technical inspection (NPTI) technical working
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group. The working group is developing methodologies for both DPFs and NOx aftertreatment
systems [23]. In 2017 a White Paper summarized the proposal with a PN test at low idle for diesel
vehicles [24]. A report from TNO (Netherlands Organisation for Applied Scientific Research) in the
same year gave more details [25]. Low idle was chosen as it is simple: only the average of at least
15 s is needed, after a stabilization time of at least 15 s. Snap accelerations followed by low idle speed
operation were excluded because they resulted in a non-defined engine behavior. The accelerations
affected the activation of the EGR (exhaust gas recirculation) in a non-predictable and non-repeatable
way. The Netherlands introduced a PTI regulation in November 2019, applicable to Euro 5b and
later diesel vehicles, with a PN limit of 2.5 × 105 p/cm3, to be met at low idle [26]. The foreseen
implementation year is 2021, when measurement sensors will be available to the inspection centers.
Belgium and Germany are considering adopting a similar regulation.

Although the work with compression ignition vehicles is at a good level, the studies on positive
(spark) ignition vehicles are limited, and without clear conclusions whether the procedure used on
diesel vehicles is applicable. Furthermore, there is lack of correlation data of type approval emission
tests and idle concentrations. The objective of this study is to present comparisons of type approval
cycles and idle concentrations for both compression ignition and positive ignition vehicles and to
suggest thresholds based on the experimental results.

Section 2 describes the experimental setup and explains the analysis that was followed with an
example. Emissions on the complete laboratory and on-road type-approval cycles are compared to
laboratory hot and cold idle concentrations in Section 3. The impact of the DPF soot load on the
measured idle concentrations is presented in Section 4 along with the implications of these results for
the PTI instruments.

2. Materials and Methods

2.1. Experimental Setup

The typical experimental setup of this study is presented in Figure 1. The type-approval laboratory
measurements were conducted from a tunnel where the whole exhaust gas was diluted with filtered
air and using constant volume sampling (CVS).

The PN system was based on the Particle Measurement Programme (PMP) recommendations
and the regulation technical requirements (2017/1151). In all cases it was the AVL (Graz, Austria)
Advanced Particle Counter (APC 489) with an evaporation tube at 350 ◦C, and a Condensation particle
Counter (CPC) with 50% detection efficiency at 23 nm [27]. The vehicle followed a pre-defined test
cycle (NEDC or WLTC) and the emissions were determined in p/km (see, e.g., [28] for calculation
details). In order to have comparable conditions with PTI measurements that are sampling from the
tailpipe, a second PMP system identical or similar to the system at the dilution tunnel was connected
to the tailpipe. The idle solid particle concentrations were determined during cold start (<300 s) or
with hot engine in p/cm3.

In many cases on road tests were conducted using a PEMS (Portable Emissions Measurement
System) from AVL (MOVE). The PN-PEMS used a catalytic stripper at 300 ◦C and measured solid
particle number concentration with a cut-off of 23 nm by means of a diffusion charger sensor.
Euro 6b and older vehicles were tested with prototype PEMS, because the AVL MOVE was not available
then: the Nanomet 3 (from Testo, Lenzkirch, Germany; formerly Matter Engineering) which had
an evaporation tube at 300 ◦C and a diffusion charger to count solid particles or the modified NPET
(from Horiba, Kyoto, Japan) which had a catalytic stripper at 350 ◦C and a CPC with 50% detection
efficiency at 23 nm. Details about the PEMS instruments can be found elsewhere [9].
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Figure 1. Experimental setup of this study in the laboratory or on the road. In the laboratory the particle
number systems (PMP) where connected to the tailpipe and/or to the full dilution tunnel (CVS). On the
road particle number PEMS were used. The typical new PTI setup, used in some studies of the literature,
is also shown on the top left corner of the figure in dashed lines. CVS = Constant Volume Sampling;
EFM = Exhaust Flow Meter; PEMS = Portable Emissions Measurement System; PMP = Particle
Measurement Programme; PTI= Periodical Technical Inspection; RDE = Real-Driving Emissions.

2.2. Vehicles

Table 1 summarizes the number of vehicles and the tests that were available: WLTC or NEDC type
approval laboratory emissions and hot idle concentrations were available for all cases. In total, data
from 32 diesel vehicles (6 of them without DPF, and 6 from the literature), 31 GDI vehicles (4 with GPF,
2 from the literature), 18 PFI vehicles and 7 LPG or CNG vehicles were found. RDE emissions and cold
idle concentrations were available only for a fraction of the vehicles. For some older and relatively
high emitting vehicles, the idle concentrations were determined from the CVS because no tailpipe
measurements were available. Details will be given in the next section.

Table 1. Summary of available vehicles. Number after “+” are vehicles from literature (dedicated new
PTI test).

WLTC NEDC RDE Cold Idle Hot Idle Comment

Diesel w/o DPF 0 6 1 0 5 6 3 from CVS
Diesel with DPF 18 + 2 2 + 4 15 8 26

GDI w/o GPF 17 + 1 9 13 17 27 6 from CVS
GDI with GPF 3 + 1 0 2 2 4

PFI 14 4 13 13 18
LPG or CNG 7 0 4 6 7

1 two of them L-category mini cars CNG=Compressed Natural Gas; CVS=Constant Volume Sampling; DPF=Diesel
Particulate Filter; GDI = Gasoline Direct injection; GPF = Gasoline Particulate Filter; LPG = Liquefied Petroleum
Gas; NEDC = New European Driving Cycle; PFI = Port Fuel Injection; PTI = Periodical Technical Inspection; WLTC
=Worldwide harmonized Light Vehicles Test Cycle.

The data were taken from the following studies:

• TNO: PN emissions at low idle speed and NEDC tests of 4 different diesel vehicles with (cracked)
DPF or variable bypass [22,25].

• JRC PTI study: PN emissions at low idle and WLTC of 4 different vehicles (two diesel, one GDI,
one GDI with GPF), one of them (diesel) bypassing the DPF [29].

• PN-PEMS studies: Laboratory studies that compared PN-PEMS with PMP systems at the tailpipe
or the dilution tunnel [30–33]. From the studies that investigated the 10 nm PEMS, only the 23 nm
information was used [34,35].
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• Tailpipe studies: Laboratory studies that compared PMP systems at the tailpipe and the dilution
tunnel [28,36].

• Emissions monitoring: Laboratory and on-road assessment of various vehicles [37–46].
• Unpublished data: Internal data of older vehicles (non DPF diesel vehicles, or GDIs emitting

>6 × 1012 p/km).

No other studies were identified in the literature that reported both idle and type
approval emissions.

2.3. Analysis and Calculations

The data needed for the analysis were: idle emissions during cold start (within the first 300 s,
but after ignition on >30 s), idling emissions with hot engine (engine on >700 s, typically around
1500 s), PN emissions of type approval cycles (NEDC or WLTC), or RDE compliant tests. Figure 2
gives an example of the first 1500 s of a cold WLTC and an RDE test, in order to explain how the idle
data were estimated. The vehicle was a GDI with emissions approximately 3 × 1012 p/km.

Figure 2. Real time particle number (PN) emissions, exhaust flow rate and speed trace for the first
1500 s of: (a) a WLTC (upper panel) and (b) a RDE test (lower panel) of a Gasoline Direct Injection
(GDI) vehicle. Arrows indicate the appropriate y-axis. The green indexes at the time x-axis show the
period that idle concentrations were calculated. CVS = Constant Volume Sampling; DF = Dilution
Factor; RDE=Real-Driving Emissions; WLTC =Worldwide harmonized Light vehicles Test Cycle.
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2.3.1. Idle Concentrations

Starting with the laboratory WLTC test (Figure 2a), idling periods (i.e., speed is 0 km/h and exhaust
flow rate >3 kg/h) were at times around 100−120 s, 350−400 s, 1000 s and 1450 s. The “cold” idle
concentration levels were considered during the first idle (around 120 s in this example), after the first
ignition of the engine (>30 s) and before 300 s (defined as cold start duration in the European regulation).
The exclusion of the first 30 s was decided to exclude the very high start-up emissions due to incomplete
combustion [47,48]. It also ensured that the start-up emissions with gasoline fuel of CNG and LPG
vehicles would not be considered. Furthermore, measuring within 30 s would be very difficult
in practice with high risk of damaging the PTI systems due to condensation [49]. The “hot” idle
concentrations were determined at periods where the engine was on at least 700 s (e.g., for some
NEDCs at 780 s), but usually around 1000 or 1450 s. For the example of Figure 2a, the “hot” idle
concentrations were determined at around 1020 and 1470 s. The concentrations were measured with
PEMS or PMP systems measuring from the tailpipe (most of the cases with PMP systems). Averages
of the last 10 s were used in order to minimize any influence from concentrations of previous engine
modes. Data from the dilution tunnel were considered only for a few exceptional cases (7 GDIs and 3
diesel vehicles, all without particle filter) where no tailpipe measurements were available and there
was lack of the specific technologies and emission levels, i.e., GDIs emitting >6 × 1012 p/km and diesel
vehicles without DPF. Figure 2a also shows the concentrations estimated from the PMP system at
the dilution tunnel, taking into account the dilution factor (DF) at the dilution tunnel. The DF was
calculated by dividing the total dilution tunnel flow to the exhaust flow, typically estimated as the
difference between total flow and dilution air flow. While there is a rather good agreement at most parts
of the cycle, at idle the deviations are quite high (note the logarithmic scale of the y-axis). One reason
is the high uncertainty of the DF determination at idling periods: the exhaust flow is the difference of
two large values of similar magnitude. The other is the diffusion that takes place between the vehicle
and the dilution tunnel. While at high speeds (and exhaust flow rates) the effect is negligible, at idle,
due to the low flow rate and the long residence time, the effect is significant and the concentrations of
the section before the idling have a big impact.

Figure 2b plots the same information as in Figure 2a for an RDE trip. The specific RDE trip
was not fully compliant with the cold start provisions of the regulation (idling periods), because the
test was conducted before the entry into force of the regulation. In this specific example, the “cold”
idle concentrations were estimated at 100 s, while the “hot” at 900 and 1400 s. The idle emissions at
900 s were much lower than at 1400 s, nevertheless both values were used for the calculation of the
average. The PN concentrations were measured with a PEMS. A similar approach was used for the
other vehicles analyzed, depending on the available data.

2.3.2. Type Approval Cycle Emissions

The emission of the WLTC and the RDE tests were calculated according to the equations and the
procedures described in the relative regulations (i.e., PMP system at the dilution tunnel for NEDC or
WLTC, PEMS at the tailpipe for RDE tests) (Commission Regulation (EU) 2017/1151 and all amendments
and corrections). In some cases, laboratory cycles with hot engine start were available. In the text all
laboratory cycles (NEDC or WLTC) are with cold engine start, unless specified differently (hot NEDC
or hot WLTC).

2.3.3. Measurement Uncertainty

Table 2 summarizes the results of the GDI vehicle presented in Figure 2, where all the information
mentioned above was available. However, this was not always true for the rest vehicles, where only
limited information was available. Although the repeatability of the emission tests is within acceptable
levels (<10%, see last row of Table 2), there are significant differences at the absolute levels between
the different cycles and locations. Comparing cold and hot cycles, the cold cycle emissions are almost
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double for this vehicle (3.6 × 1012 p/km vs 1.8 × 1012 p/km). The high differences between cold and
hot cycles are well known. The enrichment of the air/fuel mixture during cold-start engine operation,
in order to compensate for the reduced fuel vaporization and elevated engine components friction, leads
to incomplete fuel combustion and higher emissions [50]. A difference of 23% is also noted between
tailpipe and dilution tunnel (3.6 × 1012 p/km vs 2.9 × 1012 p/km) for the cold WLTC. This difference
is 11% for the hot WLTC (1.8 × 1012 p/km vs 1.6 × 1012 p/km). Dedicated studies attributed these
differences to exhaust flow uncertainties (for both cold and hot WLTC) and particle agglomeration in
the transfer tube to the dilution tunnel especially during cold start (for cold WLTC) [28].

Table 2. Results for the vehicle presented in Figure 2. Numbers in brackets give one standard deviation
or half of max-min when two repetitions were available. Number of repetitions (n): n = 4 for cold WLTC
and RDE, n = 2 for hot WLTC. CVS = Constant Volume Sampling (dilution tunnel); RDE = Real-Driving
Emissions test; WLTC =Worldwide harmonized Light vehicles Test Cycle.

Cold WLTC
CVS

Cold WLTC
Tailpipe

Hot WLTC
CVS

Hot WLTC
Tailpipe

RDE 1

Tailpipe

Cold idle [p/cm3] 8.6 × 105

(42%)
17.1 × 105

(10%)
- - 23.4 × 105

(32%)

Hot idle [p/cm3] 4.8 × 105

(41%)
2.8 × 105

(4%)
3.9 × 105

(5%)
1.6 × 105

(16%)
6.1 × 105

(58%)

Cycle emissions [p/km] 2.9 × 1012

(±5%)
3.6 × 1012

(±7%)
1.6 × 1012

(±7%)
1.8 × 1012

(±6%)
1.8 × 1012

(±8%)
1 Not fully compliant with RDE regulation regarding idling cold start provisions.

The idle concentrations of a vehicle can have a wide range as well. For the vehicle of Table 2,
the “cold” idle concentrations were 17−23 × 105 p/cm3, when determined from the tailpipe,
but less than half when determined from the dilution tunnel. The hot idle emissions ranged from
1.6 to 6.1 × 105 p/cm3, the highest values measured at the RDE tests. For this specific example,
the concentration that would be plotted would be the 2.8 × 105 p/cm3. The repeatability which was
calculated from the particle concentrations (p/cm3) at different days varied from 5% to 41% at the
laboratory but it was 58% on the road.

Another example is the emissions of the GDI Golden car of the inter-laboratory exercise with
a Golden PN-PEMS [30]. The average laboratory (NEDC) emissions were 1 × 1012 p/km with one
standard deviation of all laboratories of 24%. The on-road tests had an average of 1.1 × 1012 p/km with
a similar standard deviation of 25%. The specific uncertainty includes the variability of the vehicle,
and the uncertainty of the (same) Golden measurement instrument and exhaust flow meter.

The previous examples give the order of magnitude of uncertainty that the results will have.
The PN emissions in one laboratory may have a variability of 10%, but the expected reproducibility
levels (i.e., variability between different laboratories) are 20–40% as many studies have shown
(see, e.g., reviewed studies in [31]). RDE tests could differ by a factor of two compared to the laboratory
type approval cycle. The idle concentrations have a repeatability of 5–60%, but the levels can differ by
a factor of 3−4, depending on when they were determined (i.e., engine conditions).

2.3.4. Start and Stop Function and Hybrids

There was one more difficulty in the collection of data. Many vehicles had the start and stop
function, so for them there were no idle emissions. For these vehicles, sometimes idle emissions were
available at the RDE trips and were used in the included dataset. Only cases where idle emissions
could be identified were included in the dataset.

The hybrid vehicles had a similar difficulty, because the engine was almost always off during
idling, regardless of the state of charge of the high voltage battery. For these vehicles, as typically the
engine is working in a small operation range of revolutions per minute (rpm), the “idle concentrations”
were estimated from the emissions of the vehicle at a constant low speed (below 50 km/h). For hybrid
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vehicles, the scatter of the WLTC emissions can also vary largely depending on the state of charge of
the battery. Here, the emissions at charge sustaining mode were considered, which correspond to the
maximum use of the internal combustion engine over the type-approval cycle. The number of hybrid
vehicles was low (5) and the emissions also low, below 7 × 1011 p/km (except one 1.5 × 1012 p/km),
so there was no reason to determine more accurately the idle levels.

3. Results

3.1. Compression Ignition Vehicles

Figure 3a illustrates the idle (p/cm3) and cycle (p/km) emission results for the compression
ignition vehicles. The 1 × 107 cm3/km dotted line is also shown as a guide to the eye. The vehicles
without DPF have emissions around 1014 p/km and the hot idle concentrations are around 107 p/cm3.
Note that one point with dark green background was a DPF equipped vehicle, with defect or removed
DPF. The DPF equipped vehicles have emissions up to 7 × 1011 p/km and hot idle concentrations
up to 3 × 104 p/cm3. The dedicated tests bypassing the DPF (TNO and JRC bypass PTI) fit nicely
on the 1 × 107 cm3/km (dotted) line. The points “DPF bypass” are the JRC tests bypassing the DPF
but determining the hot idle concentrations from the cycle (CVS) and a PMP system instead of a PTI
instrument. The idle concentrations differ almost by a factor of two compared to the dedicated test
(DPF bypass PTI). The different instruments used, in addition to the procedure itself, have contributed
to this difference. The scatter of points around the 1 × 107 cm3/km line is very high up to 1 × 105 p/cm3,
which corresponds to a detection limit of the methodology (i.e., determining high emitter from
idle emissions) of 1 × 1012 p/km. The Dutch proposed idle limit of 2.5 × 105 p/cm3 corresponds
approximately to 2.5 × 1012 p/km, approximately four times the type approval laboratory limit.

(a) (b)

Figure 3. Scatter plots of hot idle concentrations with WLTC (Worldwide harmonized Light vehicles
Test Cycle) or NEDC (New European Driving Cycle) type approval test cycles emissions at TNO or JRC
(rest points): (a) compression ignition vehicles; (b) positive ignition vehicles. Each point is a vehicle.
Hybrids have grey background. Vehicles with start and stop have light blue background. Horizontal
lines give the respective Particle Number (PN) limits. CNG = Compressed Natural Gas; DPF=Diesel
Particulate Filter; GDI = Gasoline Direct injection; GPF = Gasoline Particulate Filter; LPG = Liquefied
Petroleum Gas; PFI = Port Fuel Injection; PTI = Periodical Technical Inspection; PTI = Periodical
Technical Inspection.

3.2. Positive (Spark) Ignition Vehicles

Figure 3b plots the results for the spark (positive) ignition vehicles. The CNG and LPG fueled
vehicles have emissions up to 5 × 1011 p/km and the hot idle concentrations up to 4.5 × 104 p/cm3.
The PFI vehicles have emissions up to 3 × 1012 p/km and hot idle concentrations up to 1.1 × 105 p/cm3.
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The GDI vehicles have emissions up to 8× 1012 p/km and hot idle concentrations are up to 5 × 106 p/cm3.
The GPF equipped vehicles have emissions up to 4.3 × 1011 p/km and hot idle concentrations up
to 2 × 105 p/cm3. The GPF vehicle with the highest hot idle emissions was a hybrid, where the
idle emissions were determined at a constant speed because the engine was always off at 0 speed.
Otherwise the three vehicles propelled by the internal combustion engine fitted with a GPF had hot
idle concentrations lower than 3 × 103 p/cm3.

The scatter of points around the 1 × 107 cm3/km line is very high. Up to 2 × 105 p/cm3

idle concentrations there is no correlation between the type-approval emission and the hot idle
concentrations, indicating that the limit of detection of the methodology for spark ignition vehicles is
3 × 1012 p/km (i.e., below 2× 105 p/cm3 idle concentrations it is not possible to estimate the type-approval
emission, which are below 3 × 1012 p/km). Interestingly, hot idle concentrations >2.5 × 105 p/cm3,
which is the proposed idle limit for diesel vehicles, correspond to emissions >4 × 1012 p/km. Vehicles
with emissions >6 × 1012 p/km have idle concentrations >2 × 106 p/cm3.

3.3. Cold Idle Levels

As cold start emissions constitute a significant portion of the emissions, an effort was made to
see whether “cold” idle concentrations correlate better with the type approval cycle values. Figure 4
summarizes the results. The “DPF bypass” and “no DPF” points were taken from the CVS, while the
“DPF” points were taken from the tailpipe.

(a) (b)

Figure 4. Scatter plots of cold idle concentrations with WLTC (Worldwide harmonized Light vehicles
Test Cycle) or NEDC (New European Driving Cycle) type approval test cycles emissions: (a) compression
ignition vehicles; (b) positive ignition vehicles. Each point is a vehicle. Hybrids have grey background.
Vehicles with start and stop have light blue background. Horizontal lines give the respective Particle
Number (PN) limits. CNG = Compressed Natural Gas; DPF = Diesel Particulate Filter; GDI = Gasoline
Direct injection; GPF = Gasoline Particulate Filter; LPG = Liquefied Petroleum Gas; PFI = Port Fuel
Injection; PTI = Periodical Technical Inspection.

The points are shifted to the right (i.e., higher idle concentrations) compared to Figure 3 (hot idle),
especially for the DPF vehicles. Furthermore, the scatter seems higher due to the high variability of
cold start idle concentrations. However, the number of points are less than of Figure 3 and it is difficult
to draw a solid conclusion. The cold idle concentrations of the spark ignition vehicles did not have
better correlation with the type approval cycles. Only three GDI idle points were taken from CVS and
all the rest from the tailpipe. No idle level was found to indicate high emitters. Actually, the correlation
got worse.
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3.4. Idle and RDE Correlation

Another question is how representative the idle—type-approval cycle correlation is when vehicles
are driven on the road. Figure 5a compares WLTC or NEDC with RDE tests for vehicles for which both
tests were available. For the vehicles tested in this study the RDE tests were between 3 times lower and
two times higher than the corresponding WLTC results. This variability is higher than the maximum
measurement expected uncertainty of the PEMS (sensor plus exhaust flow meter) which is 50% [9].
There was no particular trend of a specific technology or fuel for larger or smaller differences between
laboratory and on-road results. Figure 5b shows hot idle concentrations versus the RDE emissions.
The results are quite similar to the idle-WLTC/NEDC scatter plot (Figure 3) and they indicate that
the idle and type approval cycle correlation is a good indication of the real world behavior of the
vehicle. However, there are only three points at or above 2.5 × 105 p/cm3: one having emissions
around 2.4 × 1012 p/km (idle 2.5 × 105 p/cm3), the other 9.1 × 1012 p/km (idle 5 × 105 p/cm3), and the
last one 2.9 × 1012 p/km (idle 5 × 106 p/cm3). The last point is not in agreement with the idle and type
approval cycle correlation where idle concentrations above 2 × 105 p/cm3 corresponded to emissions
>4 × 1012 p/km, but it’s quite near (2.9 × 1012 p/km). Thus, more studies correlating RDE and idle
concentrations are necessary for high emitting vehicles.

 
(a) 

 
(b) 

Figure 5. Scatter plots of RDE tests vs.: (a) cold start WLTC or NEDC; (b) hot idle concentrations. Hybrids
have grey background. Vehicles with start and stop have light blue background. CNG=Compressed
Natural Gas; DPF=Diesel Particulate Filter; GDI=Gasoline Direct injection; GPF=Gasoline Particulate
Filter; LPG = Liquefied Petroleum Gas; PFI = Port Fuel Injection; PTI = Periodical Technical Inspection.

4. Discussion

The aim of this study was to compare PN concentrations at low idle with PN emissions of type
approval cycles (WLTC or NEDC). The only dedicated tests (i.e., type approval test and then hot idle
test) were taken from the literature. The remaining data points were based on averages of hot idle
concentrations measured during the laboratory or on-road tests.

This approach had some challenges. First of all, the idle PN concentrations were not constant
throughout the test. Typically, during cold start, higher concentrations were measured. But, even with
hot engine the levels varied significantly. A factor of 3–4 as variability was sometimes seen, and the
repeatability (i.e., the idle concentrations at the same time period over different days) was not so good
(<60%). Similar behavior has been seen in other studies and has been attributed to the different exhaust
gas recirculation (EGR) percentage [22]. Many vehicles utilized start and stop, so it was challenging to
find the idle concentrations. Moreover, the hybrid vehicles switched the engine offwhen the speed
was zero. The laboratory type approval tests had much better repeatability (10%), but reproducibility
levels of 20–40% are common for PN measurements at different laboratories [31,51].
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4.1. Limit of Detection of PTI Methodology

4.1.1. Compression Ignition Vehicles

The results of the compression ignition vehicles showed that the correlation of idle concentrations
and type approval cycle emissions is quite good for idle concentrations >1 × 105 p/cm3 and emission
levels >1 × 1012 p/km. Below these levels the data had a high scatter. This finding is important because
it demonstrates that the limit of detection of the PTI sensors does not need to be too low and even
2.5 × 104 p/cm3 (10% of the limit), which is the minimum required accuracy in the Dutch regulation,
is more than enough.

4.1.2. Spark Ignition Vehicles

The results of the positive (spark) ignition vehicles did not have a good correlation, as the scatter
was very high. Nevertheless, the results indicated that the limit of detection of the methodology is
around 3 × 1012 p/km. Hot idle concentrations of >2.5 × 105 p/cm3 corresponded to >4 × 1012 p/km
emission levels. These results are very encouraging as the same limit for diesel vehicles (2.5 × 105 p/cm3)
may be applicable to spark ignition vehicles. For high emitting GDIs (i.e., >6 × 1012 p/km), the idle
emissions were >2 × 106 p/cm3. However, the idle levels of the high emitting GDI vehicles were
determined from the CVS, thus they could be different compared to direct tailpipe measurements,
and further studies are necessary to confirm these results.

The correlation did not improve (actually got worse) when the cold idle concentrations were used.
Thus, it is not necessary to define a cold test for PTI testing, which is also impractical as most of the
times vehicles undergo PTI in warm conditions. As mentioned in the Dutch regulation, the test can be
done with cold engine, but if it fails, it should be repeated with warm engine.

The results are in agreement and further expand the findings of a previous study on GDIs [22]:
the hot idle concentrations of the tested GDI vehicles with GPF (three Euro 6d-temp) were
0.1−1.2 × 104 p/cm3, while for those without GPF (three Euro 5 or Euro 6b) were 5–10 × 104 p/cm3.
The pre-GPF emissions of the Euro 6d-temp GDIs were high: 0.1–5.8 × 106 p/cm3. Combining these
results with ours, it seems that GPF equipped vehicles have similar behavior with DPF equipped diesel
vehicles: the idle concentrations are lower than 2–3 × 104 p/cm3 (exception the hybrid GPF vehicle).
In most cases, GDI vehicles without GPF have higher idle concentrations. Thus, identifying tampering
of the GPF may be possible. However, this needs more research because there are already GDI vehicles
without GPF having low idle concentrations and type-approval emissions. In addition, idle levels of
104 p/cm3 to 2 ×105 p/cm3 correspond to relatively low emissions (6 × 1011 p/km to 2 × 1012 p/km).

4.1.3. Reasons of High Scatter

As already indicated, while for compression ignition (diesel) engines, the hot idle emissions
had a relative good correlation with the type approval cycle, this was not the case for the positive
(spark) ignition engines. In diesel engines fuel is injected into the engine cylinder and mixes with
high temperature-pressure air [52]. As the piston moves to the top-dead-center, the mixture reaches
the ignition point and the combustion of the charge starts as premixed combustion and continues as
diffusion limited combustion. Although the overall air-to-fuel ratio is lean, combustion occurs when
vaporized fuel mixes with air stoichiometrically. Soot emissions are generally formed at the fuel-rich
side of the reaction zone in the diffusion combustion phase [53]. Diesel combustion is heterogeneous
in nature, compared to spark ignition engines in which the combustible mixture is predominantly
homogenous. In conventional PFI engines, fuel is injected into the intake port so that fuel and air
flow simultaneously into the combustion chamber during the intake process, and a homogeneous
air–fuel mixture is formed. PFI engines have low emissions at steady state conditions or light loads.
Spikes of PN are seen when driving requires fuel enrichment, such as cold start, accelerations and high
loads [54]. As the majority of the emissions originates from these events, the idle concentrations do not
necessarily correlate with the overall cycle emissions. In GDI engines, fuel is sprayed directly into
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the combustion chamber. This leads to incomplete fuel evaporation due to the limited time available
for fuel and air mixing, resulting in localized rich combustion and PM formation [55]. Additionally,
a small amount of fuel may impinge on the piston and make direct contact with the cold cylinder walls,
which may lead to diffusion combustion and subsequent PM formation [56], in particular during fuel
enrichment events. Thus, it seems that the idle concentrations cannot “represent” the fuel enrichment
events of the GDI engines.

The even higher scatter of vehicles equipped with particulate filters (DPF, GPF) can be explained
by the different mechanism of particles’ appearance. Particulate filters are generally very efficient in
removing particles, with filtration efficiencies >95% [52,57]. Nonetheless, in some cases, high particle
concentrations are measured during cold start [8]. The main reason for these emissions are small
defects in the mat used to mount the brick in the canister, resulting in reduced filtration efficiency [58].
The defects close as the particulate filter heats up and the filtration increases. The second issue
with filters is that the filtration efficiency depends on the accumulated soot and deposited ash.
For example, emissions are very high immediately after a regeneration event, but drop significantly
only after a few minutes of driving [8]. Similarly, over time, due to deposited ash that cannot be burnt
during regenerations, the filtration efficiency on average improves. In particular for GPFs, filtration
improvements of 10–15% after only 3000 km have been reported [59]. It is expected that a normal use
will cover more than 3000 km in four years when the first PTI will take place.

4.2. DPF Soot Load and Idle Levels

Table 3 summarizes the WLTC idle concentrations of three DPF equipped vehicles just before and
immediately after regeneration events. The cold idle concentrations were determined at 120 s, while the
hot idle concentrations at 1000 s. Immediately after regeneration, the cold idle exceeded the limit of
2.5 × 105 p/cm3 for two of the vehicles. However, the hot idle concentrations were <3 × 103 p/cm3 for
all three vehicles. Thus, driving 10–15 min after a regeneration event should be sufficient to form a soot
cake at the DPF and drop the idle concentrations at the typical levels for the specific vehicle.

Table 3. Particle number (PN) cycle emissions and cold idle (at 120 s) and hot idle (at 1000
s) concentrations for WLTCs (Worldwide harmonized Light vehicles Test Cycle) just before and
immediately after regenerations.

Vehicle PN [p/km] Cold Idle [p/cm3] Hot Idle [p/cm3] Study

DPF #1 before 2.6 × 109 n/a <1.0 × 103 [34]
DPF #1 after 2.0 × 1011 2.8 × 105 1.0 × 103 [34]

DPF #2 before 3.0 × 109 <1.0 × 103 <1.0 × 103 [35]
DPF #2 after 9.5 × 1011 1.5 × 106 2.0 × 103 [35]

DPF #3 before 1 2.0 × 109 n/a 1.0 × 103 [42]
DPF #3 after 1 6.0 × 1010 1.8 × 104 2.7 × 103 [42]

1 Measured from the dilution tunnel.

4.3. Implications for PTI Sensors

The results section was based on PEMS and PMP systems. PMP systems typically weight >50 kg
and are fixed in the laboratory. PN-PEMS typically weight >10 kg and can easily fit in the trunk or on
the hook of a vehicle. Both instruments are handled by experienced and specialized personnel. PTI
instruments should be handheld in a garage type of environment and therefore they have to be robust
and easy to use. Sensors that weight only 0.4 kg have been reported, however the prototype instruments
are much heavier [60]. Obviously, their technical specifications cannot be as strict as of those of PEMS
or PMP systems. Table 4 summarizes the efficiency (i.e., ratio to a reference system) requirements of
PEMS and PMP systems [8,9], along with those of PTI sensors based on the Dutch legislation [26],
and the Swiss regulation for construction machinery [61]. The Dutch regulation can be considered
representative of future PTI regulations for diesel cars of other countries. The efficiency requirements
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are very similar for all regulations with only minor differences (e.g., calibration size and polydispersity
for the Swiss regulation). The required accuracy is around 30% at large sizes (efficiency 0.70 to 1.30).
The Dutch regulation requires maximum measurement error of 25% or 2.5 × 104 p/cm3 (whichever is
larger). Although the 2.5 × 104 p/cm3 concentration is higher than the 5 × 103 p/cm3 zero level required
for PEMS, it is sufficient, as it was shown in the results section. The maximum concentration requested
for these sensors is 5 × 106 p/cm3. This concentration is appropriate for DPF equipped vehicles, even
with cracks or partial damage, but not for older diesel vehicles without DPF.

Table 4. Efficiency requirements for various systems using monodisperse (mono) or polydisperse
(poly) aerosol.

Diameter Aerosol 23 nm 30 nm 50 nm 70−100 nm 200 nm

PMP 1 Mono 0.33–0.60 0.59–0.91 0.99–1.00 1.00–1.13 1.00–1.14
PEMS 2 Mono 0.20–0.60 0.30–1.20 0.60–1.30 0.70–1.30 0.50–2.00

Diameter Aerosol 23 nm 41 nm 50 nm 80 nm 200 nm

Dutch PTI 3 Mono 0.20–0.60 - 0.60 – 1.30 0.70–1.30 -
Swiss PTI 4 Poly <0.50 >0.40 - 0.70–1.30 <3.00

1 Estimated from Regulation (EU) 2017/1151 requirements for separate parts; 2 Regulation (EU) 2017/1154; 3 Dutch
regulation No. IENW / BSK-2019/202498 [26]; 4 Swiss regulation for construction machinery VAMV SR 941.242 [61].
PMP = Particle Measurement Programme; PEMS = Portable Emissions Measurement Systems; PTI = Periodical
Technical Inspection; VAMV = Ordinance of the FDJP on Exhaust Gas Analyzers.

At 23 nm the required efficiency is around 40% (± 20%). The requirement is quite similar to the
estimated efficiency of the PMP systems (33–60%). The 23 nm size was selected by the PMP group
in order to include the smaller soot particles, but at the same time exclude any nucleation mode
volatile particles [8]. The PEMS and PTI requirements for the steepness of the cut-off curve are not
as strict as for the PMP system. Thus, particles <23 nm may be counted. This should not be an issue
for diesel vehicles, for which the majority of particles are >23 nm (e.g., [7]). The only exception is
during cold start where high concentrations of nonvolatile sub-23 nm particles at idle or low speeds
can be seen [42,62,63]. At hot idle the nonvolatile (solid) sub-23 nm particles are absent [63]. For spark
ignition vehicles though the sub-23 nm particles can be as many as those >23 nm [7,47,64].

The efficiency requirements of PMP systems can be achieved only by condensation particle
counters (CPCs) [65], while those of PEMS or PTI regulations with both CPCs and advanced diffusion
charging counters [9,66,67]. Opacimeters or light scattering instruments would fail these specifications.

The volatile removal efficiency requirements of the different regulations are summarized in
Table 5. The new PTI requirements are similar to the PMP requirements for systems measuring >23 nm
(>99% of 30 nm tetracontane particle). The PTI requirement is much easier than the one for PEMS
(mass >1 mg/m3), yet as the lower cut-off diameter is at 23 nm the evaporation efficiency is sufficient.
Diesel vehicles have high air-fuel ratio and condensation is unlikely. Volatile nucleation mode particles
can be seen with high exhaust gas temperature and high sulfur content [68], but at other conditions
are less likely. For spark ignition engines nucleation particles at low idle are also not probable [69].
However, volatile compounds can grow the sub-23 nm solid particles in the >23 nm range, affecting
the results and the comparability between different instruments. Thus, some thermal pre-treatment
is necessary. Theoretically, the tetracontane removal requirement is easily achievable by heating the
aerosol at 200 ◦C [70]. Discussion on the thermal pre-treatment topic can be found elsewhere [57,71,72].
Commercial systems use catalytic stripper, sensors at elevated temperature or include hot dilution
(see detailed discussion of available equipment elsewhere [16]).

Currently, the instruments used for PTI testing are prototypes and similar to the PEMS [17].
Thus, their measurement uncertainty is around 35% and compared to the PMP systems at the full
dilution tunnel the differences are around 50% [9]. Other smaller PTI sensors had differences by a
factor of two during a measurement campaign [29]. Thus, it is necessary to further characterize the
instruments that will appear in the market in the future.
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Table 5. Volatile removal efficiency requirements of tetracontane particles for various systems.

Diameter Aerosol Diameter Number Conc. Mass Conc. Efficiency

PMP 1 Mono or poly ≥30 nm ≥104 p/cm3 - ≥99%
PEMS 2 Poly ≥50 nm - ≥1 mg/m3 ≥99%

Dutch PTI 3 Mono ≥30 0.5−1 × 104 p/cm3 - ≥95%
Swiss PTI 4 Poly ≥30 <105 p/cm3 - ≥95%

1 Regulation (EU) 2017/1151; 2 Regulation (EU) 2017/1154; 3 Dutch regulation No. IENW / BSK-2019/202498 [26];
4 Swiss regulation for construction machinery VAMV 941.242 [61]. PMP = Particle Measurement Programme;
PEMS = Portable Emissions Measurement Systems; PTI = Periodical Technical Inspection; VAMV = Ordinance of
the FDJP on Exhaust Gas Analyzers.

All results and the discussion so far focused on the current regulation which counts nonvolatile
particles >23 nm. Recently, in the Global Technical Regulation (GTR 15) of the worldwide harmonized
light vehicles test procedure (WLTP), the new proposal includes counting solid particles >10 nm [73].
For countries adopting this option, the new PTI procedures should be adopted accordingly. As discussed
previously, for diesel vehicles the effect should be minimal (other than changing the cut-off size of
the instruments), however for spark ignition vehicles further studies are needed. For example, high
concentrations of sub-23 nm solid particles have been reported for CNG and PFI vehicles (see, e.g., [7,64]).
For filtered equipped vehicles the effect should be small because sub-23 nm particles should be captured
with high efficiency, but for faulty filters of spark ignition vehicles high concentration of both >23 nm
and sub-23 nm particles will pass through the faulty filter and this needs to be examined.

5. Conclusions

The new periodical technical inspection (PTI) procedure will require measurement of vehicle
exhaust particle number (PN) concentrations at idle. In this study the PN emissions of type approval
cycles were compared with low idle concentrations for diesel, gasoline (GDI or PFI), CNG and LPG
vehicles. For diesel vehicles the correlation was good for PN levels >1 × 1012 p/km (idle concentration
>1 × 105 p/cm3). At lower emission levels the cycle emissions depended significantly on the cold start
emissions, due to the existence of DPFs. However, the correlation did not improve correlating the
emissions with the cold idle concentrations.

For positive (spark) ignition vehicles, no correlation between cycle emissions and idle
concentrations could be found. For this category of vehicles, the emissions are mainly produced during
fuel enrichments, e.g., during cold start, accelerations, or high loads. Nevertheless, idle concentrations
>2.5 × 105 p/cm3 were related to emission levels >4 × 1012 p/km and idle concentrations >2 × 106 p/cm3

were related to emission levels >6 × 1012 p/km. Although these levels are a first step in defining limits
for this category of vehicles, more dedicated studies are necessary, especially if a correlation against
RDE is also of interest. Further tests are also needed for hybrid vehicles.

The current PTI technical specifications are comparable to those of on-board and laboratory
type-approval systems and of sufficient stringency. The current PTI systems are similar to the on-board
systems. However, as they will become smaller in size and less complex, more tests with dedicated
PTI sensors are also important in order to assess their measurement uncertainty.
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Abstract: Air pollution in urban areas is a huge concern that demands an efficient air quality control
to ensure health quality standards. The hotspots can be located by increasing spatial distribution
of ambient air quality monitoring for which the low-cost sensors can be used. However, it is
well-known that many factors influence their results. For low-cost Particulate Matter (PM) sensors,
high relative humidity can have a significant impact on data quality. In order to eliminate or reduce
the impact of high relative humidity on the results obtained from low-cost PM sensors, a low-cost
dryer was developed and its effectiveness was investigated. For this purpose, a test chamber was
designed, and low-cost PM sensors as well as professional reference devices were installed. A
vaporizer regulated the humid conditions in the test chamber. The low-cost dryer heated the sample
air with a manually adjustable intensity depending on the voltage. Different voltages were tested to
find the optimum one with least energy consumption and maximum drying efficiency. The low-cost
PM sensors with and without the low-cost dryer were compared. The experimental results verified
that using the low-cost dryer reduced the influence of relative humidity on the low-cost PM sensor
results.

Keywords: low-cost sensor; PM sensor; air quality sensor; low-cost dryer; humidity influence on
PM; air pollutants; air quality monitoring

1. Introduction

1.1. Air Quality and Low-Cost Sensors

During the last years, the importance of good ambient air quality has strongly
increased around the world. According to the World Health Organization (WHO), nine
out of ten people live in places where the air quality guidelines are not fulfilled and every
year poor air quality is related to 4.2 million premature deaths [1]. This is due to its
relation to many negative effects on human health not only regarding respiratory diseases
like deterioration of lung function, worsening of asthma symptoms, allergic reactions and
airway obstruction [2], but also stroke, heart diseases and cancer [1,3–5]. Additionally,
the impacts are not only related to human beings, but also to the ecosystems and earth
climate system [6,7].

Considering these air pollution impacts, the air quality monitoring is nowadays of
great concern, because it provides the necessary information to develop and implement
suitable methods to improve ambient air quality. For this purpose, municipalities and
authorities install stationary air quality monitoring stations in specific locations based on
a measurement strategy and criteria for setting up the monitoring stations, e.g., height of
sample inlets, distance to crossings, distance to roads, number of people impacted by air
pollution, etc. [8]. These monitoring stations are usually equipped with devices, which
are checked for accuracy in accordance with standards. These devices provide precise
and reliable data about the air quality situation of the area. However, these instruments
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are in general costly and require highly trained professionals for their maintenance and
operation [9]. Thus, only a small number of monitoring stations can be installed in a large
area, which limits the spatial resolution. A good spatial resolution is necessary especially
in areas where the pollutant distribution is not homogeneous, because of the influence of
different sources as in the case of an urban environment [10].

In order to solve that issue, different citizen science groups and research institutes
started investigation on using the low-cost sensors for this purpose available mainly for
indoor air quality measurements and compared the results with the reference instru-
ments [11,12]. These investigations helped to develop the low-cost sensors in a way
that they could also be used for ambient air quality. Several companies have started to
produce low-cost sensors, which are able to measure the air quality with lower expenses
for operation and maintenance, allowing the possibility to deploy in large numbers and
create a detailed air pollution map. Nevertheless, this new technology has the disadvan-
tage that it is highly affected by different meteorological parameters, resulting in lower
data quality [13]. Therefore, if a suitable solution to this problem can be found, then the
low-cost sensors have the potential to work as a good support for the current conventional
air quality monitoring stations [14].

1.2. Particulate Matter and Its Classification

The airborne Particulate Matter (PM) suspended in the atmosphere is formed by
either natural or anthropogenic sources. PM is one of the most important pollutants
when investigating air pollution due to its great impact on the environment and human
health [15].

Airborne PM is a complex mixture of solid and liquid particles that can be:

(a) Primary, emitted directly into the atmosphere from either natural process such
as windblown dust, smoke from forest fires, volcanic eruptions or anthropogenic
processes such as automobile exhaust, smoke from power plants, etc.

(b) Secondary, formed by chemical reactions of gaseous components.

The transportation and environmental impact of PM depends on factors such as
originating sources, composition and size of the PM. The classification based on size
distribution can predict the residence time in the air as well as the transportation distance.
In terms of health impacts, it can estimate the deposition intensity in the respiratory
system. Hence, the air quality policies and emission regulations propose the PM limit
values according to size fractions.

The PM size fractions are mostly represented as PM10, PM2.5 and PM1. PM10 are
inhalable particles that may reach the upper part of the airways and lungs, while PM2.5
and PM1 are inhalable as well, but they can easily penetrate the lungs and perhaps might
reach deeper parts of the lungs such as alveoli. The official limit values of PM are typically
available for PM10 (coarse particles) and PM2.5 (fine particles), because in these fractions
the PM is small enough to be inhaled and respired [16]. The impacts that PM can imply
on the environment are diverse. The vegetation can be altered by the deposition of PM
to the vegetated surfaces, which is mainly influenced by the PM size distribution and
to a small extent on the chemical composition of the PM. Some of the effects caused by
the PM can be abrasion, radiative heating and reduction of photosynthetic activity. In
addition, the alkaline and acidic components may damage the surface or be absorbed
through the cuticle [7].

In Figure 1, the most common PM and the diameter range in which they can be
found is shown.

It is very important to understand that the size, composition and concentration of
PM strongly depend on the local activities, meteorological conditions and the PM itself.
The size, number and chemical compositions can be transformed by several mechanisms
until the PM is removed from the atmosphere. The PM is classified into three groups
depending on the path they follow once they are formed as shown in Figure 2 [15].
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Figure 1. Particle size range for different airborne Particulate Matter (PM) [15].

Figure 2. Schematic diagram of a typical size distribution and formation mechanisms for atmo-
spheric particles [15].

(a) Nucleation mode (<0.2 μm diameter): Emitted from processes involving condensa-
tion of hot vapors or through gas to particle conversion in the atmosphere.

(b) Accumulation mode (0.2–2 μm diameter): These are grown from nucleation mode
by coagulation or condensation of vapors.

(c) Coarse mode (>2 μm diameter): Formed by mechanical abrasion processes (soil dust,
sea spray and many industrial dusts fall).

Fine particles are characterized by their etiology, their ability to remain suspended in
the air and to carry material that is absorbed on their surface. The smaller the particle
diameter, the longer it remains suspended in the air and the more hazardous it is [17].
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1.3. Influence of Relative Humidity on Low-Cost PM Sensors

In many recent studies, it has been demonstrated that the low-cost PM sensors are
highly affected when they work under humid conditions and overestimate the actual
PM concentration [10,18–20]. The measurement principle for most of these low-cost PM
sensors is light scattering principle with which the particles are counted. The number of
particles is then converted to the PM mass concentration. The error occurs because the
low-cost PM sensor counts not only the dry particles but also the wet water droplets that
can happen at high levels of relative humidity and occur through condensation of the
water vapor [19–21].

In 2018, Jayaratne et al. studied the behavior of the low-cost PM sensor model
PMS1003 from the company Plantower. This low-cost PM sensor was tested against
reference instruments in the laboratory and under field conditions. During the field
experiments, there was fog formation in the early morning and the low-cost PM sensor
considered these small water droplets as PM. Furthermore, the authors stated that a
strong hygroscopic growth rate of PM mass was observed. The authors found that under
high relative humidity levels, the low-cost PM sensors show a concentration 46% higher
than the reference [19].

Akpootu and Gana presented the results obtained after the observation of hygro-
scopic growth on water soluble aerosols in 2013. The authors showed that at low relative
humidity levels (below 50%) the aerosols do not show a significant increment in their size.
However, at higher relative humidity levels, this effect is much more pronounced and can
be expressed as an exponential curve [22].

Another recent study published regarding this topic was from the authors Brattich
et al. that focused on two long-term measurement campaigns in order to compare
the correlation between different low-cost PM sensors and reference instruments using
different statistical approaches. In this publication, it was found that all low-cost PM
sensors are highly affected during misty, cloudy and foggy conditions [10].

By keeping this problem in mind, the aim of this research was to develop and assess
the performance of a low-cost dryer, which should be able to reduce or eliminate the neg-
ative effect of high relative humidity conditions on the ambient air quality measurements
using low-cost PM sensors.

2. Measurement Technique and Methodology

2.1. Low-Cost PM Sensors and Reference Instruments

For the selection of the low-cost PM sensor for this research, previous studies per-
formed by the authors and other researchers as well as the technical features and price of
the low-cost PM sensors available in the market was taken into account. Numerous in-
vestigations were performed to compare different low-cost PM sensors with professional
instruments in order to find the most suitable one for ambient air quality measure-
ments [20,23,24]. Calibration models were also developed to improve the data quality
obtained from these low-cost sensors [25]. The authors also tested well-known low-cost
PM sensors such as SDS011 (Nova Fitness), PMS5003 (Plantower), OPC-N2 and OPC-N3
(Alphasense) to use them for ambient air quality measurements. OPC-N3 from the com-
pany Alphasense was chosen for this research as it showed better results compared to
other low-cost PM sensors [26,27].

This low-cost PM sensor has a measurement size range from 0.35 μm to 40 μm
sorting into 24 size bins. The time resolution of this low-cost PM sensor is one second and
it provides a real-time histogram as well as the flowrate of the sampling air. This low-cost
PM sensor also measures the temperature and relative humidity of the measurement
chamber [28].

The reference instrument used to compare the results obtained from the low-cost PM
sensor was an aerosol spectrometer, model EDM180 from the company Grimm Aerosol
Technik Ainring GmbH & Co. KG. This device is able to measure the particle size range
from 0.23 μm to 32 μm in 31 different size bins. It also measures ambient air temperature
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and relative humidity using a climate sensor. This device is equipped with a Nafion
membrane-based dryer [29].

2.2. Experimental Setup

The experimental setup was designed to simulate the ambient air conditions on
a laboratory scale. The experimental setup is shown in Figure 3. A test chamber was
prepared, in which the measurements took place. The reference devices and the low-cost
PM sensors along with particle generation and relative humidity control system were
installed. The test chamber should be placed around 2 m above the ground as only the
inlets of the reference devices and the low-cost PM sensors should be present inside the
test chamber. For this reason, a metallic support that is shown in red color in Figure 3
was used to carry the test chamber. During the experiments, two low-cost PM sensors
were installed in the test chamber. One of the low-cost PM sensors was equipped with
a low-cost dryer (N3+dryer) and the other one without a low-cost dryer (N3). These
low-cost sensors were compared with two reference instruments. One of these reference
instruments was operated with a dryer (RI+dryer) and the other one without it (RI).

Figure 3. Experimental setup for laboratory measurements.

The following equipment were placed inside the test chamber as it can be seen in the
Figure 4.

• Vaporizer to simulate the humid conditions in the test chamber.
• Ventilator to homogenize the PM distribution inside the box.
• Inlet of the reference instruments and low-cost PM sensors.
• Temperature and relative humidity sensors.

The low-cost dryer for the low-cost PM sensors was developed to reduce the relative
humidity by heating the sampling air so that the influence of high relative humidity
on the measured PM concentration can be reduced or eliminated. The low-cost dryer
consisted of a thermally conductive brass inner tube on which winding of a metallic coil
made from a resistive material such as constantan was done. A ceramic foil was put in
between the inner tube and metallic coil to distribute the heat evenly throughout the inner
tube. The heat is conducted through the inner tube to the sampling air. The thermally
conductive properties of the ceramic foil allowed the proper heat transfer to the inner
tube. The inner tube was insulated using an isolation foam to avoid any thermal loss
and an outer tube was used to keep the low-cost dryer stable and to protect it from any
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mechanical destruction from outside. In Figure 5, the schematic diagram of the low-cost
dryer developed during this research is shown.

Figure 4. Test chamber configuration for experiments at different voltages.

Figure 5. Schematic diagram of the low-cost dryer.

The temperature of the low-cost dryer was controlled by adjusting the voltage
applied to the metallic coil. For this system, a voltage range of 5 to 9 V was tested for this
setup to find the optimum voltage for the operation of low-cost dryer. Using 5 windings
per cm and 5-watt power on a 45 cm active surface of the dryer, it was possible to ensure a
minimum of 5 volts required for the setup. The equations below show the corresponding
formulas applied with a specific resistance of 0.97 ohms per meter for the metallic coil
used in this project. The calculation results are shown in Table 1.

R = V2/P (1)

I = V/R (2)

Table 1. Calculations for the low-cost dryer.

Tube Winding Wire Resistance Low-Cost Dryer

Diameter
(mm)

Length
(cm)

Contour
(cm)

Length
(cm)

Density
(cm)

Total
length
(cm)

Length
(m)

Specific
(Ω/m)

Total
(Ω)

Power
(W)

Current
(mA)

Voltage
(V)

8 50 2.5 45 5 225 5.65 0.97 5.5 5 952 5.2
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2.3. Methodology

This research was categorized in three steps. The first step consisted of setting up
the test chamber for the experiments using the low-cost PM sensors with and without
low-cost dryer and the reference instruments. Once the experimental setup was finalized,
the second step was to find the optimum voltage to be used for the low-cost dryer. These
experiments are further explained in Section 2.3.1. After finding the optimum voltage for
the low-cost dryer, the third step was to check the performance and the efficiency of the
low-cost dryer. Experiments were also performed to investigate the influence of low-cost
dryer heating on the PM. In these experiments synthetic dust (Eskal14) from the company
KSL Staubtechnik GmbH was used as particles and the experimental design was adjusted
accordingly. These experiments are further explained in Section 2.3.2.

The experiments were carried out following a certain pattern containing different
phases. This allowed to have a systematic analysis to test the performance of the low-cost
dryer. The phases during the experiment were classified as following:

• Stabilizing phase: The phase in which the conditions inside the test chamber were
allowed to stabilize after switching on the equipment.

• PM concentration increase phase: The phase in which the PM concentration was
increased in the test chamber using a vaporizer and/or a particle distributor.

• Settling phase: The phase in which the PM concentration was allowed to settle after
particle generation.

• Low-cost drying phase: The phase in which the low-cost dryer installed on one of
the two low-cost PM sensors (N3+dryer) was activated.

• Final phase: The phase in which the low-cost dryer was switched off and the instru-
ments were allowed to run for some more time.

2.3.1. Experiments to Determine the Optimum Voltage for Low-Cost Dryer Operation

The experiments to obtain the optimum voltage for dryer operation followed the
pattern in which the stabilizing phase took place for 15 min. After this time, the vaporizer
was switched on for three minutes, reaching a considerable PM concentration. The settling
phase was seven minutes. Then the low-cost dryer installed at one of the low-cost PM
sensors (N3+dryer) was switched on, while the other low-cost PM sensor was operated
without the dryer (N3). The dryer was switched off after 20 to 30 min. In that way, it
was possible to study and evaluate the effectivity of the low-cost dryer. The theoretical
temporal variation of an ideal PM concentration curve during a standard experiment is
shown graphically in Figure 6.

The above experiment was run at 6, 6.5, 7, 7.5, 8 and 9 volts. The optimum voltage
was selected by comparing the ratio between the low-cost PM sensor without the low-
cost dryer to the one with the dryer. This optimum voltage setting should be found to
correctly dimension the low-cost dryer. A regulated thermal energy based on the sample
air temperature and relative humidity could be used for the low-cost dryer operation.

2.3.2. Experiments with Synthetic Dust

These experiments were conducted using synthetic dust with a particulate size
distribution between 1 μm and 10 μm. The synthetic dust used for these experiments
was a temperature resistant calcium carbonate “Eskal14”. This synthetic dust was chosen
because of its narrow particle size distribution, excellent fluidity and suitability for wet
applications [30]. The PM concentration generated during these experiments could not
be calculated and hence it should be known only by means of the reference instruments.
These experiments were performed using the optimum voltage applied to the low-cost
dryer that was found in the previous set of experiments. The test chamber configuration
for the experiments with synthetic dust is shown in Figure 7.
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Figure 6. Temporal variation of an ideal PM concentration curve during a standard experiment.

Figure 7. Test chamber configuration for the experiments with synthetic dust.

The experiments with synthetic dust were divided in two parts. In the first part, the
experiments were performed using synthetic dust only. In the second part, the experi-
ments were done using both synthetic dust and the vaporizer. These set of experiments
were compared with each other to observe the behavior of PM concentration with and
without the addition of water vapors through the vaporizer in the presence of synthetic
dust. The experimental pattern was similar to previous experiments. However, the
particle distribution technique and the experimental time were modified. The duration
of these experiments was different due to different settling time of the synthetic dust
particles with and without the vaporizer. The temporal variation of the PM concentrations
while using only the synthetic dust is shown graphically in Figure 8 and the temporal
variation of the PM concentrations while using the synthetic dust and vaporizer is shown
graphically in Figure 9.
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Figure 8. Temporal variation of an ideal PM concentration curve using synthetic dust only.

 

Figure 9. Temporal variation of an ideal PM concentration curve using synthetic dust and vaporizer.

3. Results and Discussion

In this section, the results obtained from the set of experiments mentioned in the
previous section are shown.

3.1. Optimum Voltage for the Dryer Operation

As mentioned before, the heating of the low-cost dryer was controlled by applying
different voltages. If the applied heating is less than required, then the low-cost dryer
would not be able to efficiently remove the relative humidity effects on the results of
the low-cost PM sensor. If the applied heating is more than required, then there is a
chance that some part of the PM is evaporated that can lead to an underestimation of
the PM concentration. By keeping that in mind, different voltages were tested during
this research namely 6, 6.5, 7, 7.5, 8 and 9 volts. The results of 7, 8 and 9 volts are
presented in Figures 10–12, respectively. These experiments were performed according to
the procedure explained in Figure 6.
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Figure 10. PM concentration comparison for testing the low-cost dryer at an applied voltage of 7 V.

Figure 11. PM concentration comparison for testing the low-cost dryer at an applied voltage of 8 V.

Figure 12. PM concentration comparison for testing the low-cost dryer at an applied voltage of 9 V.

84



Sensors 2021, 21, 804

In Figure 10, the experiment using the applied voltage of 7 V is shown. At the start
of the experiment, the PM concentrations were allowed to stabilize in the test chamber
for the first 15 min (stabilizing phase). The PM concentration measured by the low-cost
PM sensors and the reference instruments at the end of this phase were below 10 μg/m3.
After switching the vaporizer on, the PM concentration measured by the low-cost PM
sensors as well as the reference instruments increased. It is noticeable that the PM10 and
PM2.5 concentrations measured by the low-cost PM sensors and the reference instruments
were similar. This indicates that the particles (water vapors) generated by the vaporizer
were fine and the majority of these were below PM2.5 fraction. The peak PM10 and PM2.5
concentrations measured by the low-cost PM sensors and the reference instruments were
in the range of 350 to 450 μg/m3 and 325 to 425 μg/m3, respectively. Even though a
ventilator was used to distribute the particles homogeneously in the test chamber, still
small variation in the PM concentrations measured by the low-cost PM sensors and the
reference instruments was observed, which was assumed to be due to different inlet
positions of these devices. The relative humidity was also increased in the test chamber
during the operation of the vaporizer. After the vaporizer was switched off, the PM
concentration measured by the low-cost PM sensors and the reference instruments started
to decrease. The particles were allowed to settle before the low-cost dryer was switched on
for one of the low-cost PM sensors. After around 25 min from the start of the experiment,
the low-cost dryer was switched on for one of the low-cost PM sensors (N3+dryer). A
significant decrease in PM concentrations can be observed for N3+dryer as compared to
the low-cost PM sensor without the low-cost dryer (N3). At around 30 min from the start
of the experiment, the PM concentration measured by N3 was almost double than the PM
concentration measured by N3+dryer. The reference instruments were operated with and
without the dryer from the start of the experiment as it was not possible to change the
dryer settings for reference instruments during the experiment. The PM concentration
measured by the reference instrument operating with the dryer (RI+dryer) was slightly
lower than the PM concentration measured by the reference instrument operating without
the dryer (RI). It is interesting to see that after increasing the PM concentration using
the vaporizer, the PM concentration measured by RI+dryer had a similar concentration
decline curve as the one measured by RI. It is assumed that since the reference instrument
dryer works on a different principle (Nafion membrane) than heating to reduce the
relative humidity, it does not instantly dry out the artificially generated particles using
vaporizer. In the final phase, after switching off the low-cost dryer for N3+dryer at around
50 min from the start of the experiment, the PM concentration measured by N3+dryer
increased slightly and nearly matched the PM concentration measured by N3.

The results obtained from the experiments performed for testing the other voltages
had the same pattern. However, by increasing the applied voltage, the decline concentra-
tion curve for N3+dryer became steeper. Figures 11 and 12 show the experiments using
the voltage of 8 V and 9 V, respectively.

The behaviors of temperature and relative humidity were also observed throughout
these experiments. These two parameters were measured at the inlet of the instruments
using the climate sensor of the reference instruments. Apart from that, a temperature
and relative humidity sensor is enclosed in the raw housing of the low-cost PM sensors.
These measurements assist in understanding the performance of low-cost dryer during
its operation. The experiments were performed at different temperature and relative
humidity levels. As an example, the results of temperature and relative humidity for the
low-cost sensor N3+dryer in the course of 8 V applied voltage experiment are shown in
Figure 13. The temperature and relative humidity at the inlet of N3+dryer is shown in
Figure 13 as solid orange and dashed orange lines, respectively. The temperature at the
inlet of N3+dryer was constant at around 22 ◦C for the whole experiment. The relative
humidity was marginally above 40% at the start of the experiment. A rise in relative
humidity can be seen after 15 min from the start, when the vaporizer was switched on.
For this experiment, the relative humidity peak was slightly above 50%. The vaporizer
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was switched off after three minutes of operation and the relative humidity started to
decline after that. The temperature and relative humidity inside N3+dryer are shown in
Figure 13 with solid pink and dashed pink lines, respectively. The temperature inside
N3+dryer was somewhat below 30 ◦C that was moderately higher than the one at the
inlet of N3+dryer while the relative humidity was lower compared to the N3+dryer inlet.
This can be because of the working of electronics and mechanical parts inside N3+dryer.
The increase in N3+dryer inside temperature can be observed after 30 min from the
start of the experiment once the low-cost dryer is switched on. The peak temperature
of approximately 37 ◦C was achieved at around 50 min from the start of the experiment.
A slight decrease in this temperature is to be seen at the end of the experiment after
switching off the low-cost dryer. The increase in N3+dryer inside relative humidity is also
visible after the vaporizer is switched on. However, it is reduced considerably during the
drying phase and it reached to a minimum value of below 20% which is even lower than
the inside relative humidity of N3+dryer at the start of the experiment. After switching off
the low-cost dryer, a minor increase in N3+dryer inside relative humidity was observed
at the end of the experiment.

Figure 13. Temperature and relative humidity results for N3+dryer at an applied voltage of 8 V.

In order to understand the effectivity of the low-cost dryer, the ratios of PM concen-
trations measured by N3 and N3+dryer were calculated. Table 2 shows the results of
the PM concentration ratios of N3 to N3+dryer at different voltages. These ratios were
calculated when the low-cost dryer for N3+dryer was switched on during the low-cost
drying phase. For a complete comparison, the ratios were obtained at three different
points during the low-cost drying phase namely the start, mid and end of this phase. The
results show that the average PM10 and PM2.5 concentration ratio of N3 to N3+dryer
during the low-cost drying phase is in the range of 2 to 3 for the applied voltage of 6,
6.5, 7 and 7.5 V. There is a significant increase in PM concentration ratio for 8 V, where it
reaches the value of around 4, which is the highest value for the tested voltages applied.
Hence, the optimum voltage applied to the low-cost dryer for its operation was decided
to be 8 V for further experiments using the synthetic dust.

3.2. Experiments with Synthetic Dust

These experiments were performed using the synthetic dust with the optimum
voltage (8 V) for the low-cost dryer found in the previous experiments. These experiments
were carried out using two different methods. The first method was to execute the
experiment using only synthetic dust without using the vaporizer as mentioned before
in Figure 8, while the other method included both synthetic dust and vaporizer that is
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explained in Figure 9. The settling time of the synthetic dust particles was much faster
than particles produced by the vaporizer. Therefore, the duration of these experiments
was reduced. These experiments lasted between 25 to 35 min.

Table 2. PM concentration ratios of N3 to N3+dryer at different voltages.

Low-Cost Drying
Phase

6 V 6.5 V 7 V 7.5 V 8 V 9 V

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Start 1.7 1.7 1.8 1.8 2.2 2.2 2.4 2.3 3.5 3.4 1.4 1.4

Mid 3.0 2.8 3.2 3.2 3.4 3.3 3.4 3.3 4.6 4.4 4.5 4.3

End 2.5 2.3 2.9 2.8 2.5 2.4 2.7 2.9 4.1 3.8 5.0 4.3

Average 2.4 2.3 2.6 2.6 2.7 2.6 2.8 2.8 4.1 3.9 3.6 3.3

In the experiment without vaporizer, shown in Figure 14, the stabilizing phase was
for around 10 min. After that, the particles (synthetic dust) were distributed in the test
chamber for around 30 s. The synthetic dust particles were coarser than PM2.5 fraction.
This is the reason that PM10 concentration measured by the low-cost PM sensors was
increased during the particle distribution, while no change in PM2.5 concentration was
observed during this phase. Since the PM10 concentration declined rapidly after the
particle distribution, therefore the settling phase was very short for around 30 s. A
momentary increase in PM concentration measured by the N3+dryer as compared to the
N3 during the start of particle distribution was observed, which was assumed to be due
to non-homogeneous particle distribution in the start. This momentary concentration
difference disappeared rapidly in the settling phase. After that, the low-cost dryer was
activated for N3+dryer for around 3 min. There was no significant difference of PM10
concentration measured by the low-cost sensors during the low-cost drying phase, which
was expected as the relative humidity in the test chamber was not increased using
vaporizer. This experiment showed that the particles were not destroyed from the heat of
the low-cost dryer. It also showed that in the absence of water vapors, the N3 and the
N3+dryer measured almost the same PM concentration. Hence, the low-cost dryer does
not reduce the PM concentration in dry conditions.

Figure 14. PM concentration for the synthetic dust experiment without vaporizer.

The same experiment was performed again with vaporizer for which the results
are shown in Figure 15. The stabilizing phase was again for 10 min. In the PM concen-
tration increase phase, the vaporizer was switched on for 5 min. The PM10 and PM2.5
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concentration measured by the low-cost sensors increased to around 250 μg/m3 due to
the vaporizer. In the last 30 s of this phase, the synthetic dust was distributed in the test
chamber. This caused an increase in PM10 concentration for both the low-cost PM sensors
in the range of 1600 to 1800 μg/m3. The particles were allowed to settle for 30 s. After that
the low-cost dryer was switched on for N3+dryer for 10 min. The effect of low-cost dryer
is evident from the PM concentration comparison for N3 and N3+dryer. The low-cost
dryer swiftly dried out the particles (water vapors) from the vaporizer, while the synthetic
dust particles remained that sedimented quickly due to gravity. After switching off the
low-cost dryer, the PM concentration slightly increased as it was observed in the previous
experiments with vaporizer.

Figure 15. PM concentration for the synthetic dust experiment with vaporizer.

4. Quality Assurance

Quality assurance was done to improve the reliability of the results obtained from
the experiments. A comparison of the two reference instruments as well as the two
low-cost PM sensors was performed before the experiments as a quality assurance. This
assured that the results obtained from the reference instruments as well as the low-cost
PM sensors are comparable to each other. The reference instruments and the low-cost
sensors were tested by increasing the PM concentration using the vaporizer and then
letting it settle. This procedure was repeated 10 times. A linear regression correction
was applied to the data, which was then used for the whole experiments to have a valid
comparison of the devices.

In Figure 16, the results of PM concentrations of the reference instruments during
quality assurance with the same dryer settings, i.e., dryer switched off, are shown. The
particle size distribution during the quality assurance was below 2.5 μm. Therefore, the
results of PM10 and PM2.5 are overlapping. It can be seen from the results that both the
reference instruments follow the same pattern during the peak as well as during the fall
of the PM concentration.

The low-cost PM sensors were also tested in the same way as the reference instru-
ments. In Figure 17, the PM concentrations of the low-cost PM sensors during quality
assurance with the same dryer settings, i.e., dryer switched off, are presented. The results
here are similar to the ones obtained with the reference instruments. The PM10 and PM2.5
concentrations are similar as the particle size distribution lies below 2.5 μm.
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Figure 16. PM concentrations of the reference instruments during quality assurance.

Figure 17. PM concentrations of the low-cost PM sensors during quality assurance.

In Figures 18 and 19, the correlation of the reference instruments with the low-
cost PM sensors for both PM10 and PM2.5 concentrations is shown. In Figure 18a,b,
the comparison of PM10 concentration of RI and RI+dryer respectively to the PM10
concentration of both low-cost PM sensors (N3 and N3+dryer) with same dryer settings
are shown. It can be seen that both low-cost PM sensors showed decent correlation of
above 90% with the reference instruments (RI and RI+dryer) for PM10 concentration.

Figure 18. (a) Comparison of PM10 concentration of the reference instrument (RI) to the PM10 concentration of both
low-cost PM sensors (N3 and N3+dryer) with the same dryer settings. (b) Comparison of PM10 concentration of RI+dryer
to the PM10 concentration of both low-cost PM sensors (N3 and N3+dryer) with the same dryer settings.
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(a) (b)

Figure 19. (a) Comparison of PM2.5 concentration of RI to the PM2.5 concentration of both low-cost PM sensors (N3 and
N3+dryer) with the same dryer settings. (b) Comparison of PM2.5 concentration of RI+dryer to the PM2.5 concentration of
both low-cost PM sensors (N3 and N3+dryer) with the same dryer settings.

The PM2.5 concentrations were compared in a similar way. In Figure 19a, the
comparison of PM2.5 concentration of RI to the PM2.5 concentration of both low-cost
PM sensors (N3 and N3+dryer) is displayed, while in Figure 19b the comparison of
PM2.5 concentration of RI+dryer to the PM2.5 concentration of both low-cost PM sensors
(N3 and N3+dryer) with same dryer settings is shown. A correlation of around 95%
was observed considering PM2.5 concentration for both low-cost PM sensors with the
reference instruments (RI and RI+dryer).

5. Conclusions

It was concluded that the low-cost dryer is suitable for the application of measuring
PM concentration using low-cost PM sensors. The low-cost dryer is able to eliminate
the negative effects of relative humidity on the PM results measured by the low-cost PM
sensors. The PM concentration comparison of the low-cost PM sensor with and without
the low-cost dryer indicated that the low-cost dryer could dry out the water vapors
generated from the vaporizer.

For operating the low-cost dryer with the low-cost PM sensor, the applied voltage
controlled the heat applied to the low-cost dryer. The increase in applied voltage had
a direct relation with the heat applied to the low-cost dryer. However, a significant
increase of PM concentration ratio (PM concentrations measured by the low-cost PM
sensor without the low-cost dryer to PM concentrations measured by the low-cost PM
sensor with the low-cost dryer) was observed for the experiment with applied voltage of
8 V. This applied voltage helped to correctly dimension the low-cost dryer. A regulated
thermal energy based on the sample air temperature and relative humidity could be used
for the low-cost dryer operation.

The heat applied to the sample air through the low-cost dryer was adequate en-
suring that there is no particle loss due to heating. No significant difference in the PM
concentrations was observed by applying the heat and without it for the experiment
with synthetic dust only, which indicated that low-cost dryer does not destroy the PM.
The experiments with the synthetic dust demonstrated that the low-cost dryer should be
suitable for measurements in real conditions.

The measurement technique and methodology presented in this research can be
applied as it is or with some modifications to investigate the effect of the low-cost dryer
on other low-cost PM sensors as a future work. The length of the low-cost dryer can be
optimized for smaller platforms in order to make it more practical for field measurements.
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Abstract: Existing government air quality monitoring networks consist of static measurement
stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are
very large, expensive and require significant amounts of maintenance. As a promising solution, low-
cost sensors are being introduced as complementary, air quality monitoring stations. These sensors
are, however, not reliable due to the lower accuracy, short life cycle and corresponding calibration
issues. Recent studies have shown that low-cost sensors are affected by relative humidity and
temperature. In this paper, we explore methods to additionally improve the calibration algorithms
with the aim to increase the measurement accuracy considering the impact of temperature and
humidity on the readings, by using machine learning. A detailed comparative analysis of linear
regression, artificial neural network and random forest algorithms are presented, analyzing their
performance on the measurements of CO, NO2 and PM10 particles, with promising results and an
achieved R2 of 0.93–0.97, 0.82–0.94 and 0.73–0.89 dependent on the observed period of the year,
respectively, for each pollutant. A comprehensive analysis and recommendations on how low-cost
sensors could be used as complementary monitoring stations to the reference ones, to increase
spatial and temporal measurement resolution, is provided.

Keywords: air pollution measurements; low-cost sensors; calibration; machine learning; artificial
neural network; temperature and relative humidity

1. Introduction

Most of the population is currently living in urban areas and a decade ago it was
estimated that, at that time, the number was already higher than fifty percent [1], and the
newest predictions published by WHO (World Health Organization) estimate that this
number will increase up to seventy percent by the year 2050 [2]. Although the increase in
population is not directly linked to the increase in pollution, a large number of people does
give rise to a various number of pollution emitters. This is consequently accompanied
by the increasing number of areas where the air pollution level is high above the defined
ranges and could seriously affect the citizens’ health [3], which is associated with a series
of acute and chronic diseases and is considered as one of the major health challenges
at the moment (the limits for very high air pollutions: 50 mg

m3 for CO, 400 μg
m3 for NO2

and 180 μg
m3 for PM10). In [4], it is reported that in the year 2016, in low and middle-

income countries, the citizens’ mortality was heavily influenced by air pollution, and air
pollution was linked to more than 4.2 million deaths per year (which represents 11.6% of
all deaths). To combat that problem, the WHO issued the Air Quality Guidelines [5] about
the recommendation regarding the activities concerning the pollution problem. There are
also EU Directives defined on the ambient air quality [6,7] and many countries developed
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and implemented appropriate legislation. The most recognized air pollutants are CO,
NO2, SO2, O3 and particulate matter (PM2.5, PM10). The EU Directive on reference
methods, data validation and location of sampling points for the assessment of ambient
air quality [7], contains detailed instructions and recommendations concerning the used
reference methods, obtained data validation and selection of the location of sampling
points for adequate air quality monitoring.

So far, in urban areas, the usual approach of the measurement of the air quality is the
deployment of national networks of public monitoring stations, which are quite reliable,
but, on the other hand, they are located at fixed positions, quite large and heavy [8].
Furthermore, they have a high price and annual recalibration costs, while due to the fixed
and sparse positions, they provide the information only about the regional air quality
while lacking the spatial resolution to provide local measurements, thus making the
citizens’ exposure to the pollutants untrackable.

Contemporary, new generation, low-cost, off-the-shelf sensors look like a promising
solution that could be used for complementary measurements for the areas that are not,
and could not be, covered by public monitoring stations. Due to their high availability,
low-cost sensors have great potential to be integrated into the portable low-cost Micro
Sensing Units (MSUs) that can be used for air quality measurements. MSUs are mo-
bile, have a wireless communication module and their maintenance costs are low. By
applying the Internet of Things (IoT) concept, the data are remotely and periodically
in real-time sent to a server in a cloud via the appropriate communication type (2G,
3G, 4G, WiFi, LoRa, etc.) where appropriate data storage, processing and visualization
are performed [9]. They could be installed across the cities utilizing the existing public
infrastructure (installed on public transport vehicles, public buildings, mounted on lamp
posts, etc.). Additionally, it could be carried around by individuals, i.e., pedestrians and
cyclists, thus allowing crowdsourcing [10], or even attached to drones. On the other
hand, their main drawbacks are a short life cycle, low accuracy and most importantly,
various influential calibration factors. The collected data might not always be accurate
enough (due to the nature of electrochemical processes in the sensors and the influence of
relative humidity, temperature and dust on the measurements) and in-field or laboratory
calibration and periodical recalibrations are necessary, while the wireless transmission, in
its nature, may introduce transmission errors and in the case of a wireless network failure,
could be out of use. Furthermore, every sensor should be additionally calibrated, and the
measurement accuracy of every single sensor highly depends on the sensor’s chemical
and physical characteristics.

In the authors’ previous work [11], a methodology for the calibration of off-the-shelf
air quality sensors is proposed and evaluated. The calibration process is based on the use
of statistical algorithms and offset values obtained from the public measurement stations.
The sensors were evaluated during a nine-month campaign in order to understand the
seasonal influence on their behavior and a Common Air Quality Index (CAQI) [12] was
calculated and compared with the public monitoring station. Obtained results were in a
high level of agreement between the compared systems. The comparison between the
results has shown that low-cost sensors could be used with a relatively high reliability as
a complementary network to public monitoring stations, but it was also concluded that
every sensor has its own sensitivity to temperature and relative humidity that influence
the measurement accuracy.

Observed CO and NO2 sensors are electrochemical, and their performances are
affected by temperature and relative humidity due to the nature of electrochemical
processes ongoing during the measurements. Additionally, during the usage, the NO2
sensor has a higher loss of sensitivity than CO, and the NO2 gasis, by its nature, unstable at
low concentrations. On the other hand, the influence of relative humidity and temperature
on the PM10 sensor, which is optical, is caused by particle growth due to water absorption.
The sensor sensitivity to temperature and relative humidity poses a great challenge,
as it can hardly be modeled with a simple function. The linear regression (LR) model
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and the multi linear regression model (MLR), are the most widely used techniques to
calibrate low-cost sensor data against a reference measurement. However, when modeling
different dependencies is concerned, the scientific field of Artificial intelligence, more
precisely machine learning (ML), has shown great promise. This field relies on different
methods that have a basis in mathematical theory, and as such, have found many uses
in both modern research and industry. Using the powerful tools of ML, it is possible to
model a sensor’s dependencies on temperature and relative humidity and thus provide
a more precise and reliable, yet low-cost measurement. In recent years, different types
of Artificial Neural Networks (ANN) have been used for the calibration of low-cost air
quality monitoring sensors in the laboratory or field conditions. Additionally, in order
to achieve better results, for some low-cost air quality sensor types, it is recommended
to examine the non-linear dependencies (exponential, logarithmic, quadratics) between
the influencing variables, such as Random Forest (RF) [13,14], Support Vector Machines
(SVR) [14,15] and the Gradient Boosting Regression Tree (GBRT) model [16]. The aim of
this paper is to compare linear, different ANN and ML algorithms for in-field calibration
of a low-cost sensor platform based on the collocation method.

Related Work

The problem of field calibration methods for low-cost sensors was investigated
in detail in [17,18]. The authors used the following calibration methods: LR, ANN
and MLR. They have concluded that the most suitable calibration method was ANN
using raw or scaled sensor inputs (higher correlation coefficient), while LR and MLR
have been shown to produce lower performances, since these methods do not take into
consideration all interfering factors with their weighted effect (relative humidity and
temperature). For observed CO, CO2 and NO sensors, they concluded that ambient
parameters such as relative humidity and temperature are necessary as algorithm inputs
for appropriate calibration.

In [19], the authors stressed that the sensors’ performances are very sensitive to the
environmental operating conditions, i.e., relative humidity and temperature due to the
gas-sensing process that involves fairly complex reactions depending on the environment
conditions, and that corresponding chemical reactions also vary from daytime to night-
time in the urban atmosphere, which additionally degrades the performance of the
sensors. They did not provide measurement principles, but rather discussed in detail
the sensors and measurement devices issues with the focus on calibration issues. In
general, manufacturers provide some correction factors for temperature and relative
humidity, but for outdoor conditions, where relative humidity and temperature could
change significantly on diurnal and seasonal bases, more sophisticated corrections are
required.

In the scope of the CITY-SENSE project [20], authors tried to find the optimal calibra-
tion method for low-cost gas sensors for ambient air pollutants; the LR, MLR and ANN
methods were compared and it was concluded that the ANN showed the best results for
CO sensors.

In [21], data were collected from devices monitoring NO2, installed in traffic and
the urban environment. A two-step calibration method was proposed; firstly, MLR was
used, where the output is the value that contains the information about the error, which
was then used as the input to more sophisticated algorithms: ANN, SVM and RF. The
proposed method has shown that at high concentrations, NO2 sensors could closely meet
the Air Quality Directive’s standards of accuracy, but they have also concluded that each
individual sensor behaves differently. A very detailed analysis of the possibilities to
correct the ambient PM measurement under high relative humidity (RH) conditions is
presented in [22]. It was shown that by exploiting the measured particle size distribution,
an adequate correction algorithm could be derived (using κ-Köhler theory) that highly
improves measurement performance.
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The authors [23] consider the problems concerning low-cost sensors calibration,
having in mind the possible set of tens of thousands, or even millions, of air quality
sensors deployed. They expect to use data storage and processing capability at the
edge of the network [24]. For calibration, they propose the usage of a deep learning
model consisting of convolution layers, fully connected neural network layers and long
short-term memory (LSTM) layers that model temporal dependencies.

In [25], the authors investigated the performance for CO, NO2 and O3 sensors, first
by using laboratory calibration, and then by conducting field experiments. They have
performed the integration of ANNs with fuzzy logic, which leads to the creation of an
adaptive neuro-fuzzy inference system (ANFIS) [26], thus making a single framework
that uses the advantages of both techniques. The result evaluation shows that the ANFIS
has high correlation coefficients in comparison to the reference system.

In [27], the authors explored the influence of relative humidity and the effect of
atmospheric fog on the performance of a low-cost air particle mass PM sensor, in the
laboratory and field conditions. The results have shown that there was no clear effect until
relative humidity exceeded about 75%, while above this value, due to particle growth,
the sensor started to show a steady increase in the measurements. The reason for this is
that when the relative humidity is higher, it results in particle growth and fog that are
detected by the particle monitoring equipment, that does not contain drying facilities at
the sample inlets (which is the case with low-cost particle sensors). Observing this, it
was concluded that this effect must be taken into account when using low-cost particle
sensors in such environments.

The authors of [28] investigated the effect of relative humidity and air temperature
on CO, NO, NO2 and O3. Tests were conducted for six relative humidity levels from 10%
to 85% and four temperature levels of 10–45 ◦C in the laboratory. After the development
of the correction algorithm, field measurements were performed (November 2019). A
performance analysis showed that the developed algorithm improved the data quality
of the sensors in most of the cases, as CO, NO, and NO2 sensors showed a satisfactory
improvement, while the O3 sensor had the least improvement. When sensors were
exposed to high temperatures, NO2 and O3 sensors mostly behaved poorly.

In [29], the authors used sensors from different manufacturers and performed a
calibration by using different methods. They have concluded that for CO and NO sensors,
the MLR methods were the best solution for calibration, although ANN shows the same
performances as MLR for NO. For NO2 and O3 sensors, supervised learning models,
such as SVR, RF and ANN, proved to be the best methods for calibration. For PM2.5, the
best performances were obtained by using linear models, when the relative humidity
measurements were less than 75%. For higher relative humidity values, the calibration
using the Köhler theory is the most promising method.

In [30], an evaluation of the Aeroqual Ltd. Series 500 semiconducting metal oxide
O3 and an electrochemical NO2 sensor was performed by comparison with UK national
network reference analyzers for more than 2 months in central Edinburgh. The obtained
O3 sensor measurements were in high correlation with the reference system, while the
NO2 sensor suffered from co-sensitivity to O3, and the measurement error correction was
developed by using LR.

A developed mobile PM2.5 sensing system was presented in [31], where eight sensing
nodes were mounted on different city bus lines. Sensors were calibrated by using an
ANN where the inputs, relative humidity and temperature were taken into account. A
Gaussian Process regression algorithm was developed and implemented, so that by using
measurements obtained from multiple sensors, PM2.5 values of locations within the
observed region of interest, without direct measurements, could be interpolated.

In [32], an in-field measurement was conducted for CO, NO, NO2, O3, PM2.5, PM10
and SO2, and compared to the reference data. The calibration methods used were LR,
ANN and RF. For the case of LR calibration, only the variable that was being calibrated
was used as the input. For ANN and RF methods, all the measurements from each unit
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were used. In the case of CO, NO and NO2 sensors, satisfactory performances with
LR were shown, but the additional improvement was obtained after the ANN and RF
calibration. For the case of O3, ANN and especially RF calibration have shown better
performances than LR. Finally, for the PM2.5, PM10 and SO2 sensors, both the ANN and
the RF improve the results in comparison to the LR, and again, as in the previous case
with O3, RF showed better performances than the ANN algorithm.

In [33], NO, NO2 and O3 were observed and the authors explored the performance of
dynamic neural networks in comparison to the static feed-forward ANN, where relative
humidity and temperature were taken into account. For all considered sensors, it was
shown that the dynamic neural network architectures were superior to the classical feed-
forward ANN, since its architecture considers several consecutive measurements, as
opposed to the static ANN that considers only one. The design, implementation and
evaluation of a novel client–cloud system are presented in [34], and two types of internet-
connected particulate matter (PM2.5) monitors were created. Sensor calibration consisted
of two algorithms that were combined, ANN and Gaussian Process regression. The main
difference between the two algorithms was that the ANN was used for calibrating a single
sensor, while the Gaussian Process regression was used to combine the data from multiple
sensors with different confidence levels, which was proven in this paper to provide a
significant improvement after the applied ANN calibration.

In [35], PM2.5 and PM10 were observed and three different algorithms were used
for sensor calibration: LR, ANN and SVM. The algorithms were first implemented with
two variants. Firstly, by using the PM concentration values, relative humidity and
temperature as the inputs and the reference PM data as outputs. Secondly, the algorithms
were implemented using the mentioned inputs with the addition of wind direction and
wind speed. For each algorithm and particle type, the models performed better than in
the first variant where wind direction and wind speed were not considered. With both
input sets, the ANN was the superior algorithm.

In paper [36], authors performed a detailed study for the seasonal behavior of PM2.5,
and applied different ML algorithms to perform sensor calibration, including temperature
and humidity changes as factors that influence the accuracy of the sensors.

In Table 1, an overview of references used calibration methods, and commonly
used metrics (correlation coefficient R and corresponding R2 value, RMSE (Root Mean
Squared Error) and NRMSE (Normalized Root Mean Squared Error) [29]) for evaluation
are provided.

Table 1. Types of calibration models used in the literature.

Pollutant Calibration Model References Metrics

CO LR Drajic [11], Spinelle [17], Spinelle [18], Topalovic [20], Samad [28],
Karagulian [29], Lin [30], Borrego [32]

R, R2, RMSE,
NRMSE

CO ANN Spinelle [17], Spinelle [18], Topalovic [20], Motlagh [23], Alhasa [25],
Karagulian [29], Borrego [32]

R, R2, RMSE,
NRMSE

CO RF Karagulian [29], Borrego [32] R2, RMSE

NO2 LR Drajic [11], Spinelle [17], Spinelle [18], Cordero [21], Karagulian [29],
Borrego [32] R2, RMSE

NO2 ANN Spinelle [17], Spinelle [18]. Motlagh [23], Alhasa [25], Samad [28],
Karagulian [29], Borrego [32], Espositi [33] R2, RMSE

NO2 RF Cordero [21], Karagulian [29], Borrego [32] R2, RMSE
PM10 LR Drajic [11], Jayaratne [27], Karagulian [29], Borrego [32] R2, RMSE
PM10 ANN Motlagh [23], Karagulian [29], Borrego [32] R2, RMSE
PM10 RF Karagulian [29], Borrego [32] R2, RMSE
PM2.5 LR Di Antonio [22], Chen [35] R2, RMSE
PM2.5 ANN Gao [31], Chang [34], Chen [35] R2, RMSE
PM2.5 RF Wang [36] R2, RMSE
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It should be noted that the authors used sensors from different manufacturers, device
units from different manufacturers, different measurement sampling and averaging
periods, different measurement campaign periods (total period of measurements and
season) and different methodology (co-location method, laboratory method in controlled
environment, mobile laboratory), so it is not possible to conduct a “fair” comparison of
the metrics results.

The idea of the development and deployment of a low-cost sensor network for air
quality monitoring is present in modern research. In [37] authors proposed a hybrid sensor
network architecture with both stationary and mobile devices. They have developed a
model for predicting the pollutant level, algorithms for hybrid network deployment and
deployed a sensor network in a building. In [38] the capability of a network with low-cost
PM sensors to capture PM spatial and temporal variations is explored. Six devices are
mounted on fences/walls in the city of Southampton. The locations were chosen to be
set around a school, while one of them was placed close to the road. Promising results
were obtained, and in the next step, the authors plan to improve the spatial–temporal
resolution by deploying 40 air quality monitoring devices in the area of 50 km2 around
the city. The authors of [39], deployed 24 air quality devices across the city of Oslo
on the kindergarten premises. The focus was on measuring the NO2 (as one of the
primary pollutants caused by traffic) to observe the proposed data fusion methodology
for creating urban air quality maps. They showed that it was possible to obtain and
extract valuable information from the deployed sensor network and develop urban air
quality maps with high resolution by using the data fusion methodology. In [40], authors
observed a network with 10 devices deployed in the city of Bari (schools, streets, port,
buildings) on the fixed locations and one mobile device that was mounted on top of
the public bus (CO, CO2, NO2, O3, SO2, PM1, PM2.5, PM10, T and RH). It was quite a
long campaign (June 2015–December 2017) and after a detailed result analysis, it was
concluded that the usage of low-cost sensor devices showed promising results that could
address the data quality objective of the indicative measurements [6]. The authors of [41]
developed a rapid deployment method for low-cost sensors deployment. The method
has three phases: preparation, implementation and modification. In the first phase,
the model is fed by basic input data (objectives, spatial data preparation, elimination
rules), then the implementation phase includes information about the desired deployment
density, unnecessary area elimination and algorithm settings. The proposed algorithm
takes into account the geographic environment, available power supply, transmission
networks, etc. The obtained result is the recommended number of sensor and deployment
locations. In [42], the authors deployed 40 sensor devices (NO, NO2, CO, CO2) at the
London Heathrow Airport and defined an analytical approach in order to distinguish
long transport emissions from the airport emissions. The study was conducted during a
five–week period (October–November 2012) and the implemented approach has managed
to calculate ratios of the airport activities in different locations of the airport. They claim
that their sensor network approach could be applied to a wide range of environmental
pollution studies. A survey on existing state-of-the-art showed that the influence of
RH and T on pollutant measurements is undisputable. It was also shown that different
types of ML algorithms can successfully model these dependencies and improve the
accuracy of various low-cost sensors. However, to the best of our knowledge, no paper
has performed a comparative analysis of the calibration for low-cost sensors for CO, NO2
and PM10, taking into account RH and T influence, while comparing the results obtained
with and without the RH and T as input features to the algorithm, thus quantifying
the improvements RH and T can contribute to. Furthermore, no research paper has
performed the calibration of low-cost CO, NO2 and PM10 sensors on data gathered from
four different seasons, and tested the calibration of low-cost sensors using data from two
consecutive years.

In this paper, the approach (LR calibration is used as a benchmark) from our earlier
work [11] is taken further to additionally improve the calibration algorithms with the
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aim of increasing the measurement accuracy, taking into account the impact of the air
RH and T on the readings by developing appropriate RH and T corrections by using
ML. A detailed comparative analysis of the sensors’ behavior during a long observation
time is performed (2 consecutive years). The selected observed months are from four
different seasons (February, April, August, October), to ensure that the analysis of the
applied ML algorithms performance is conducted on various weather conditions, thus
taking into account different values of relative humidity and temperature depending on
the observed season.

Even though the influence of RH and T on the low-cost sensors is “well-known”,
and there is existing research that proves the correlation, there is no research that has
quantified the differences in the performance of ML algorithms on calibration, including
these two parameters (i.e., weather conditions). The calibration of a sensor was also
conducted using a small sample of data from the observed month in combination with
the data gathered from a preceding year.

The main contributions of the paper are the method and approach for the calibration
of the low-cost sensors (CO, NO2 and PM10) using corrective measures (impact of RH
and T), evaluated on different ML algorithms for the measurements taken during four
different seasons over the period of two years. It was shown that all analyzed sensors are
highly operable in the observed period (in accordance with their warranty period), with
acceptable performances that are significantly improved by using proposed calibration
algorithms and procedures, so that they can be used reliably in MSUs to provide a better
spatial resolution within air quality measurement networks.

In addition to this, the discussion section contains a detailed analysis and recommen-
dations on how low-cost sensors could be used for complementary measurements in order
to increase spatial and temporal measurement resolution in combination with existing
public monitoring networks. The deployment expenses are considered; the details about
one possible low-cost monitoring station are provided from a practical point of view
(device weight, dimensions, data transmission technology selection, etc.). Recommenda-
tions about the selection of location and mounting of a device are given. Finally, a hybrid
sensor network approach is elaborated, which consists of reference monitoring stations
supported by multiple low-cost devices. In this approach, low-cost sensors are virtually
co-located with the reference monitoring station, thus making the recalibration process
much easier. On the other hand, reference monitoring stations are supported and are
implicitly expanded with spatially distributed complementary measurements.

The paper is organized as follows: In Section 2, the calibration procedure is explained,
and the used ML methods are described. In Section 3, obtained results and the evaluation
of performances are presented. In Section 4, a discussion about the results and paper
contribution is elaborated. Finally, Section 5 provides conclusions and directions for
future work.

2. Materials and Methods

2.1. Sensors and Data Collection

The collection of the data was performed by using a single low-cost sensor station and
a single public air quality Automatic Monitoring Station run by the Serbian Environmental
Protection Agency as a reference. The data from the public air quality monitoring station
in Belgrade (Serbia) was collected during the period February–October during 2019
and in the same period (February–October) during 2020. The low-cost sensor station
sensors are used from an air quality DunavNET ekoNET device AQ10x [9] for outdoor
air quality measurements. This device is equipped with CO, NO2, SO2, O3 (Alphasense),
temperature, air pressure, relative humidity sensors (Bosch BME 280), PM1, PM2.5 and
PM10 (Plantower). The data from the device are then statistically correlated to the values
captured from the official monitoring station for the exact same time intervals.

Having in mind that CO, NO2 and PM10 are not previously evaluated in this manner
and that these are the most commonly used sensors, we have selected them for further
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evaluation. The reference measurement stations that were used in this paper provide
pollutant measurements that are averaged on an hourly basis. On the other hand, the
low-cost sensors that are used provide measurements every minute are then averaged for
each hour to match the reference ones. Technical specifications of sensors are given in
Table 2.

Table 2. Sensor’s characteristics.

Pollutant Manufacturer Model Range Unit

CO Alphasense CO-B4 0–50 ppm ppm or mg/m3

NO2 Alphasense NO2-B43F 0–20 ppm ppb or μg/m3

PM10 Plantower PMS7003 0~1000 μg/m3 μg/m3

2.2. Calibration Methods

The performance of sensor devices (MSUs) is usually assessed using the mean error
and/or correlation coefficients with respect to a reference laboratory or public monitoring
stations’ equipment data. However, the behavior of the low-cost sensors calibrated in
a laboratory can change from the laboratory to the field environment due to certain
interferences (different gases, higher range of T and RH) that were not evaluated in the
laboratory. In the field collocation of devices, with reference public monitoring stations or
professional measuring instruments, measurements helped to compare and calibrate the
low-cost sensors according to the data obtained, and in this case, the advantage is that the
low-cost sensors were exposed directly to the desired environment in which they are to be
deployed. Different approaches are used to increase the accuracy of the measurement and
to develop correction algorithms. Although the low-cost sensors are to be tested under
several established conditions and compared to reference instruments, there is a lack of
uniform guidelines, protocols or standards for the application of this new technology for
regulatory purposes [29].

For calibration purposes, one of the most common methods, (suitable also because
of its implementation simplicity) the Least Squares Method (LSM) [43], was used. It
performs line fitting based on the minimization of the sum of the squares of deviations
from a straight line S = ∑n

i=1(yi − a − bxi)
2 and calculates the line coefficients a and b.

Let n be the number of experimental points, i.e., number of conducted measurements.
Denoting by yi the reference values (from the public monitoring station) and by xi the
measured values (from AQ10x device). After “calibration”, i.e., calculation of parameters
a and b by LSM, the next step is to calculate the correlation of the obtained “calibrated”
results with the results from the public monitoring station.

In Table 3, the mean, median and standard deviation values for T and RH for
observed months and years are presented:

Table 3. Averaged/Median/Standard deviation (Std) values for T and RH.

Parameter February April August October

Average T [◦C] 2019
Average T [◦C] 2020

6.8
7.7

9.2
11.7

25.1
23.7

16.3
18.6

Median T [◦C] 2019
Median T [◦C] 2020

8.1
5.9

11.1
9.7

23.2
24.9

17.9
16.1

Std T [◦C] 2019
Std T [◦C] 2020

5.5
3.9

4.9
5.7

4.6
4.5

4.5
3.9

Average RH [%] 2019
Average RH [%] 2020

74.1
71.3

54.3
48.9

59.2
60.1

64.9
62.1

Median RH [%] 2019
Median RH [%] 2020

70.9
72.7

51.1
52.1

61.3
59.5

61.8
64.1

Std RH [%] 2019
Std RH [%] 2020

16.5
17.4

16.1
17.1

19.3
15.1

16.4
15.8
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As a benchmark for a detailed study performed in this paper, in Table 4, correspond-
ing R2 coefficients are given for observed gases collected during four different parts of the
year 2019 (February, April, August, October). LR calibration method is applied. For all
four observed periods of interest, the sample size was a 15-day period, and the reference
values are obtained once per hour (averaged measurement values per one hour), yielding
the sample size of 15 × 24 = 360 per month.

Table 4. Coefficients obtained for observed periods of 2019.

Pollutant
R2

February April August October

CO 0.933 0.949 0.861 0.946
NO2 0.784 0.846 0.671 0.828
PM10 0.716 0.849 0.664 0.786

From Table 4, it can be concluded that T and RH (stated in Table 1) considerably
influence the behavior of low-cost sensors, which is visible for the period of February and
August when low and high T influence measurements (the lowest R2 was in August when
temperatures were extremely high on average and in February when the temperatures
were low). RH also had an influence, especially in the period when these values were high.
Extreme values of T (low and high) and RH (high values) could cause a “peak” in the
measurements from one side, and from the other, T (low and high) shifts the sensitivity of
measurements to the lower levels, which correspondingly produces results with lower
accuracy (it is visible in February and August).

2.3. Machine Learning Algorithms

As the first step of calibration performance evaluation, several ML algorithms are
selected that showed good performance in previous studies, and performed initial evalu-
ation in order to obtain the most promising algorithms for further detailed evaluation. In
this paper, a comparison between different ML algorithms using 10-fold cross-validation
was performed with a 70/30 train–test split (for the data grouped together from all four
observed periods). The evaluated algorithms were LR, two architectures of ANNs, RF,
SVM and AdaBoost. The evaluation was performed for each measured pollutant sepa-
rately, with the input for each algorithm being RH, T and the raw low-cost sensor data,
and the output is the data from the reference sensor for the respective pollutant (Figure 1).

Figure 1. Measurement correction.

Each algorithm was evaluated using the metrics R2, RMSE and NRMSE.
The results of the cross-validation are shown in Table 5.
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Table 5. Averaged metrics calculated on the test sets during cross-validation 2019.

Algorithm
CO NO2 PM10

R2 RMSE R2 RMSE R2 RMSE

Linear regression 0.935 0.066 0.737 13.412 0.837 12.551
Neural network 1 (2 HL 1) 0.941 0.065 0.869 9.450 0.839 12.583
Neural network 2 (3 HL) 0.943 0.063 0.872 9.344 0.850 12.124

AdaBoost 0.924 0.074 0.843 10.360 0.846 14.560
Random forest 0.945 0.060 0.894 8.540 0.872 11.123

SVM 0.933 0.070 NC 2 NC 0.835 12.748
1 HL, hidden layer; 2 NC, non-convergent.

The two algorithms that have achieved the best performance (highest R2 and the
lowest RMSE) regarding all three measured pollutants are ANN [44] (with 3 HL) and
RF [45]. These two algorithms were used for further calibration testing.

During the initial cross-validation, two ANN architectures were tested, one with two
hidden layers, and one with three hidden layers. Each of the hidden layers had 20 neurons,
and the activation function of the hidden layers was the hyperbolic tangent. The ANN
with three hidden layers had achieved better results for all pollutants, so this particular
architecture was used for further calibration testing in this paper. The ANN overfitting
was regulated by keeping the number of neurons per layer relatively low while tracking
the loss function on the validation set (25% of the training set). The RF contained 100
decision trees and each decision tree had all three features (low-cost sensor measurement,
RH and T) as the input since selecting anything less than three features would make some
trees lack the low-cost sensor measurement as an input, which would make them unable
to create valid predictions. Both the mentioned algorithms were implemented in the
Python programming language. The RF was implemented using the scikit-learn library,
while the ANN was implemented in TensorFlow.

3. Results and Performance Evaluation

In this section, obtained calibration results for the selected methods (LR, ANN and
RF) are presented and the performance evaluation is conducted. Firstly, we observed
the behavior of the selected algorithms when data from all four months in 2019 are
concatenated. In Table 6. the averaged results of the cross-validation using data from all
the months are presented. In the case of LR, there is no train (calibration)/test period,
rather the algorithm is applied to the whole data set. For the RF and ANN algorithms, the
results on the calibration set are expected to be better than the ones on the test set, but the
test results correspond to the results that the algorithm could obtain in practice. Having
this in mind, the ML algorithms will be compared based on the test set results, with the
benchmark results being the ones obtained by the LR performed on the entire dataset.

Table 6. All months 2019, CO, NO2, PM10, LR, ANN, RF, calibration and test set.

Pollutant, Algorithm (Input Features)
R2 RMSE NRMSE

Calibration Test Calibration Test Test

CO, LR (raw) 0.931 0.068 0.264
CO, ANN (raw) 0.927 0.927 0.070 0.070

CO, ANN (raw, RH, T) 0.945 0.943 0.061 0.063 0.244
CO, RF (raw) 0.988 0.915 0.028 0.075

CO, RF (raw, RH, T) 0.994 0.945 0.022 0.060 0.233
NO2, LR (raw) 0.793 11.980 0.455

NO2, ANN (raw) 0.809 0.797 11.610 11.913
NO2, ANN (raw, RH, T) 0.908 0.872 8.040 9.340 0.348

NO2, RF (raw) 0.967 0.762 4.817 12.860
NO2, RF (raw, RH, T) 0.986 0.894 3.162 8.543 0.325

PM10, LR (raw) 0.794 14.112 0.453
PM10, ANN (raw) 0.782 0.774 14.687 14.969

PM10, ANN (raw, RH, T) 0.910 0.850 9.482 12.121 0.389
PM10, RF (raw) 0.959 0.709 6.374 17.198

PM10, RF (raw, RH, T) 0.982 0.872 4.140 11.124 0.357
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It is shown that there is a clear difference between the results achieved when RH
and T are included as the input to the ML algorithm calibration process. Better results
were achieved regardless of which pollutant was selected, and regardless of the set type
(calibration or test) in the case when RH and T are included as a calibration factor. The
obtained results are to be expected since the influence of RH and T on low-cost sensors
cannot be disputed. Furthermore, it is shown that both algorithms (RF and ANN) can
model these influences successfully. It is also important to note that when the raw sensor
data are the only input, ANN achieves superior results on the test set, regardless of the
pollutant. This is most likely due to the ability of the ANN to better model non-linear
functions of single variables due to the presence of activation functions. On the other
hand, RF is superior if RH and T are taken into consideration.

It can be concluded that CO has the overall lowest value for NRMSE, which is
expected, since CO generally shows the best R2 value. It can also be observed that both
the ANN and RF additionally lower the RMSE, and therefore the NRMSE value for
each pollutant. By using the NRMSE parameters as a measure of comparison between
the performances of the algorithms for different pollutants, we can see that the biggest
improvement can be seen for the NO2 with the RF algorithm. This stands in line with the
biggest improvement for the R2 factor, which is present in the same case.

In the following text, we explore the calibration results for each observed month in
2019 separately. Tables 7–10 contain the results obtained using the 10-fold cross-validation
only on the data from the corresponding month in 2019 (i.e., February, April, August
and October), with a 50/50 train/test split. This data split was used instead of the
70/30 one because of the size of the dataset for each individual month, to ensure testing
was performed on a sufficiently large data sample. In the case of LR, there are no train/test
periods, rather the algorithm is applied to the whole data set.

Table 7. February 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.933 0.053
CO, ANN (raw, RH, T) 0.980 0.968 0.031 0.038

CO, RF (raw, RH, T) 0.993 0.934 0.017 0.052
NO2, LR (raw) 0.784 8.940

NO2, ANN (raw, RH, T) 0.857 0.832 7.986 8.625
NO2, RF (raw, RH, T) 0.985 0.904 2.360 5.976

PM10, LR (raw) 0.716 12.012
PM10, ANN (raw, RH, T) 0.780 0.737 11.567 12.549

PM10, RF (raw, RH, T) 0.962 0.767 4.436 10.221

The results in Table 7 show that for the CO calibration, only the ANN algorithm
surpassed the reference LR results. For the other two pollutants, RF has proven to be
better with a significant improvement achieved for the NO2.

Table 8. April 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.949 0.054
CO, ANN (raw, RH, T) 0.982 0.974 0.032 0.039

CO, RF (raw, RH, T) 0.996 0.970 0.015 0.042
NO2, LR (raw) 0.846 9.278

NO2, ANN (raw, RH, T) 0.889 0.866 9.463 10.001
NO2, RF (raw, RH, T) 0.993 0.943 2.008 5.695

PM10, LR (raw) 0.849 8.070
PM10, ANN (raw, RH, T) 0.888 0.867 8.111 8.680

PM10, RF (raw, RH, T) 0.984 0.891 2.806 7.204
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Results for the month of April stand in line with the results from February, indicating
that the ANN models the CO sensor dependencies better than RF. Furthermore, PM10
and NO2 were better modeled by the RF, which is also in line with the results from the
previous month.

Table 9. August 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.861 0.048
CO, ANN (raw, RH, T) 0.894 0.885 0.039 0.047

CO, RF (raw, RH, T) 0.978 0.927 0.019 0.033
NO2, LR (raw) 0.671 11.286

NO2, ANN (raw, RH, T) 0.940 0.767 4.590 10.130
NO2, RF (raw, RH, T) 0.961 0.817 3.620 9.460

PM10, LR (raw) 0.664 8.740
PM10, ANN (raw, RH, T) 0.813 0.678 6.985 8.664

PM10, RF (raw, RH, T) 0.967 0.731 2.882 7.935

The month of August has the lowest R2 factor for the LR, for each pollutant. The
improvements of this factor, however, are still present and indicate the applicability of
the ML algorithms. In this month, the RF was shown to be better than the ANN for
every pollutant.

Table 10. October 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.946 0.068
CO, ANN (raw, RH, T) 0.969 0.968 0.052 0.062

CO, RF (raw, RH, T) 0.991 0.949 0.028 0.067
NO2, LR (raw) 0.828 13.761

NO2, ANN (raw, RH, T) 0.893 0.875 10.880 11.820
NO2, RF (raw, RH, T) 0.988 0.914 3.698 9.786

PM10, LR (raw) 0.786 16.492
PM10, ANN (raw, RH, T) 0.910 0.819 4.550 9.570

PM10, RF (raw, RH, T) 0.977 0.824 5.623 8.940

The results from October show that the best algorithm for CO is the ANN. Regarding
the NO2 and PM10 measurements, the RF was superior to the ANN.

It is shown that for every month in 2019, the RF obtained the best results both for
NO2 and PM10 measurements. However, the results for the CO are mostly in favor of
the ANN, which achieved the best results for every month except August, where the
RF performed better. It is important to note that the trend of lowering the RMSE does
correspond to the increase in the R2 factor, in each observed month individually, and
for every applied algorithm. The trends that the R2 factor and RMSE follow within one
month are important, but the comparison between months does have to include a careful
evaluation since the lower concentrations of pollutants tend to influence the R2 score
negatively but can lower the RMSE.

As a further step of evaluation, we present the scatter plots for different pollutants
and the applied algorithms, i.e., LR, ANN and RF. For ANN and RF algorithms, the values
from the test set are presented. In Figure 2, the results for the case where the data from
all months in 2019 is concatenated together, are presented. The axis limits were chosen
to maximize the usage of the space within each graph, and as such, cause a number of
outlier measurements to be on the border of some graphs.
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Figure 2. Test results from all observed months of 2019.

The scatter plots of the data from all months in 2019 show that if only the LR is
implemented, the best correlation with the reference measurements is obtained for the
CO. ANN and RF both improve the CO calibration, with the ANN having dispersed point
placement and the RF having clusters. Particularly, the RF shows scatter points clustered
into vertical lines. This means that for a small interval of reference measurements, the RF
algorithm tends to return the same values. Although the NO2 low-cost sensor has the
same measurement principle as the CO one, the nature of these pollutants and the sensors
that measure them do vary. For example, in the NO2–LR scatter plot, it is clearly shown
that by only using the raw sensor measurements as the inputs, a good linear correlation
cannot be obtained, which was possible for CO. This is due to the nature of the data,
as two different linear trends can be observed in the mentioned scatter plot. The ANN
and RF algorithms show a clear improvement, although visibly less successful than the
CO results. The PM10 scatter plots show that a single linear trend is present in the data
and that both ML algorithms improve the correlation. It is interesting to note that due
to the smaller number of data points (less than 50 in both the training and test set) with
the higher PM10 concentration values (above 100 ug

m3 ), the ANN seems to be unable to
produce the higher values for PM10 concentration and maxes out at around 125 ug

m3 . The
RF, on the other hand, does not seem to have this problem. The reason is due to the
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way both algorithms are structured, ANN has a single complex structure and adapts its
weights numerically to optimize the loss function based on the data from the calibration
set. Should the number of data points in a certain range be limited, their influence on
the weights of the network will be insufficient to make the ANN output values in that
particular range. On the other hand, the RF has many simpler structures (decision trees)
where each is trained on a part of the calibration dataset, and this training process does
not optimize a single model to the data, rather it fits many models on parts of the dataset.

In the following paragraphs, the results of the measurements obtained in the year
2020 are presented. The observation periods are the same as in 2019, i.e., for February,
April, August and October. The methodology used for 2020 is the same as the one used
for the year 2019, averaged hourly values obtained from devices were compared with
measurements obtained from the reference station, for the same periods of the year on a
15-day level.

Firstly, we observe the R2 values obtained by using LR on only the raw sensor data
for the appropriate month in 2020. Secondly, we use all the data from 2019 as the training
data and evaluate it on the data from a given month in 2020. Finally, we train a second RF
on a sample of 4 days from the respective 2020 month and combine it with the RF trained
on 2019 data. The idea is that by combining a small sample from the respective month
with the data from the previous year, a significant improvement of the sensor performance
could be achieved. The results obtained on the test sets (four different splits of 4/11 days
of the respective 2020 month) were averaged and displayed in table format for each of
the observation months of 2020. The RF algorithm was selected since it achieved the best
results when using all the data from 2019 as shown in Table 5.

Observing the results obtained for the month of February 2020 (Table 11), using both
the data from 2019 and 2020, the advantages of having a years’ worth of measurements
are clear. Regarding the CO measurements, the results obtained after the calibration on
the 2019 data decrease the R2 factor, but also lower the RMSE. A similar result, with both
the R2 and RMSE lowered, is obtained using the RF trained on the four calibration days
from 2020. Finally, the CO results obtained using a linear regression on the outputs of the
two RF algorithms show a merely identical R2 to the initial data, with the lowest RMSE
out of all the previously mentioned cases. The NO2 measurements show that the linear
combination of the RF algorithms shows the highest R2 factor, followed closely by the
2019 RF algorithm. The linear combination of the RF algorithms achieves by far the lowest
RMSE for the NO2 measurements. PM10 measurements show that the linear regression
based on the outputs of two RF algorithms show the highest R2 factor alongside the
lowest RMSE, which stands in line with the data from the other two pollutants. Overall,
for the month of February, combining the algorithms trained on the data from 2019 and
2020 gives the best results.

Table 11. February 2020 test results, CO, NO2, PM10.

Pollutant (Input Set) R2 RMSE

CO, LR (raw) 0.952 0.091
CO, RF (2019) 0.953 0.077

CO, RF (2019 + 2020) 0.957 0.065
NO2, LR (raw) 0.830 18.564
NO2, RF (2019) 0.853 15.667

NO2, RF (2019 + 2020) 0.856 10.564
PM10, LR (raw) 0.833 28.356
PM10, RF (2019) 0.844 12.071

PM10, RF (2019 + 2020) 0.863 11.046

During the month of April (Table 12), there are some differences from the results
obtained in February. In April, a state of emergency was declared in Serbia. This has, in
turn, caused a steep decrease in the concentrations of all pollutants due to the lowered
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traffic. This made it more difficult for the algorithms to correctly pick up on the depen-
dencies between the raw and reference data. The combination of two RF algorithms has
a lower R2 factor than both the raw data and the results from the 2019 RF calibration.
On the other hand, the obtained RMSE for the linear combination of the RF algorithms
is by far the lowest out of all the obtained results for the CO measurements. The NO2
results are similar to the results from February with the linear combination of the two RFs
having both the highest R2 and the lowest RMSE. The PM10 results show the highest R2

factor for the raw data measurements. The results obtained from the RF calibrated on
2019 data are acceptable but the results from the 2020 calibration data are quite poor. This
is due to the high variations of PM10 values in April 2020 (measurements up to 450 μg

m3 ,
while all other months’ measurements were up to 141 μg

m3 ). This is quite interesting since
the extremely high PM10 values (>200 μg

m3 ) occurred after relaxing the state of emergency
measures in Serbia. All other pollutant concentrations were also increased in the same
period but not as drastically. The lowest RMSE is obtained for the linear combination of
RFs but the R2 factor is significantly decreased.

Table 12. April 2020 test results, CO, NO2, PM10.

Pollutant (Calibration Set) R2 RMSE

CO, LR (raw) 0.954 0.079
CO, RF (2019) 0.955 0.064

CO, RF (2019 + 2020) 0.956 0.051
NO2, LR (raw) 0.569 23.625
NO2, RF (2019) 0.676 21.973

NO2, RF (2019 + 2020) 0.689 15.316
PM10, LR (raw) 0.786 71.302
PM10, RF (2019) 0.732 49.949

PM10, RF (2019 + 2020) 0.739 48.516

The results obtained for the month of August (Table 13) show a significantly lower R2

value on the raw data for all pollutants, compared to the previous two observed months.
The CO results show that the combination of RF algorithms based on data from 2019 and
2020 has the highest R2 value and the lowest RMSE. The NO2 and PM10 measurements
have a relatively low R2 value on the raw data, but the RF algorithms behave differently
for these two pollutants. The best results for the NO2 are obtained for the combination of
the two RF algorithms, with the R2 value almost unchanged from the raw data, but with
a significantly lower RMSE. On the other hand, the PM10 results are quite poor indicating
no possibility for calibration. The lifetime of a PM sensor based on the manufacturer
declaration is 1 year and at the moment of these measurements, it was already 1 year
and 7 months “old”, so this loss of accuracy is expected behavior. On the other hand, CO
and NO2 sensors have a warranty of 2 years, but a slight degradation of accuracy is to be
expected (notable for the NO2 sensor).

Table 13. August 2020 test results, CO, NO2, PM10.

Pollutant (Calibration Set) R2 RMSE

CO, LR (raw) 0.764 0.074
CO, RF (2019) 0.787 0.054

CO, RF (2019 + 2020) 0.801 0.035
NO2, LR (raw) 0.476 24.134
NO2, RF (2019) 0.440 17.834

NO2, RF (2019 + 2020) 0.477 7.917
PM10, LR (raw) 0.408 17.935
PM10, RF (2019) 0.303 8.872

PM10, RF (2019 + 2020) 0.249 8.201
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The results obtained from the October data (Table 14) indicate further degradation
of the PM10 sensor and an operable state of the NO2 sensor. Although the results
from August could indicate that both of the mentioned sensors suffered from significant
degradation, it is clear that the NO2 sensor was still operable in October while the PM10
sensor has lost its functionality. The calibration results for CO show that the lowest RMSE
was achieved when the two RF algorithms are combined, while the highest R2 factor is
present for the raw data, but with a significantly higher RMSE. For the NO2 results, the
highest R2 factor is obtained by combining both RF algorithms, while the lowest RMSE is
obtained using only the RF trained on the data from 2019.

Table 14. October 2020 test results, CO, NO2, PM10.

Pollutant (Calibration Set) R2 RMSE

CO, LR (raw) 0.901 0.081
CO, RF (2019) 0.903 0.069

CO, RF (2019 + 2020) 0.904 0.059
NO2, LR (raw) 0.748 15.432
NO2, RF (2019) 0.779 10.993

NO2, RF (2019 + 2020) 0.785 10.366
PM10, LR (raw) 0.213 30.217
PM10, RF (2019) 0.134 26.418

PM10, RF (2019 + 2020) 0.219 34.650

The results obtained from the data of 2020 show that a significant improvement in the
sensors’ performance can be achieved by using a year’s worth of data in combination with
just 4 days from a respective month. The CO sensor shows a high initial correlation for
each month but an increased RMSE value when compared to the measurements from 2019,
although the measurement value range was similar. This does imply sensor degradation,
but the degradation can be easily modeled, and the results obtained from using both 2019
and 2020 data show promising results. The NO2 sensor does not achieve the results that
are as good as the CO sensor, but it is still sufficiently accurate and shows an improvement
with the implemented algorithms. The PM10 sensor has the most prominent degradation
as it is practically unusable going forward from the month of August 2020 (while it is
usable in February and April). Overall, apart from the limited lifetime of the PM10 sensor,
the data acquired during 2019 has shown to be applicable in the calibration of the same
sensor in 2020, with only 4 days from the observed month in 2020 as training data.

4. Discussion

In this paper, we have first considered data from CO, NO2 and PM10 obtained from a
9-month measurement campaign (from February to October 2019). In order to understand
the behavior of the sensors’ performances, four different periods (February, April, August,
October 2019) are observed, thus considering different values of RH and T. Different
ML algorithms were used, that take into account RH and T in the calibration process,
and the results are compared with the benchmark results obtained by the LR method. It
was shown that the results from this experiment were satisfactory and that they can be
further improved using the selected ML algorithms. This is important since it implies the
possibility of using low-cost sensors alongside reference ones, to create better spatial and
temporal measurement resolution. Generally, RF outperforms the ANN algorithm values
except for the CO pollutant (although RF is better than the ANN in August). By using ML
algorithms, the R2 values are increased for all pollutants in the observed months. These
improvements are summarized in Table 15.
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Table 15. R2 improvements for CO, NO2, PM10, LR, ANN, RF, by months in 2019.

Pollutant
R2 Improvement

February April August October

CO 0.035 0.025 0.066 0.022
NO2 0.120 0.097 0.146 0.086
PM10 0.051 0.042 0.067 0.038

The best improvement for every pollutant out of all the months in 2019 is achieved
in the month of August (and after that in February, where the influence of RH and T on
sensors was the second-highest). This could seem counter-intuitive since the best achieved
R2 values for August are the lowest out of all the months. However, the measurements
of the pollutants in August show the lowest R2 score when the LR algorithm is applied,
indicating the high influence of weather conditions on the measurements in that month.
The highest improvement rate achieved in August is a great example of how ML algo-
rithms can achieve much more than a simple linear calibration, as they can successfully
model non-linear dependencies between features. It is also important to mention that the
achieved results for every individual month are obtained using cross-validation based
only on the data from that particular month. The fact that such a clear improvement can
be achieved with limited data acquisition represents a significant conclusion in this field
of research. Acquiring air quality data is highly time-dependent as the process cannot be
sped up in order to obtain a larger dataset. By showing that ML algorithms can be used
both on every individual month, and on the concatenated data from all months, it is clear
that ML algorithms do not only successfully scale up with larger datasets, but also that
they can be scaled down to work with rather sparse data. Regarding the improvements
for the pollutants, the highest R2 increase for every month is achieved for NO2, followed
by PM10, and finally CO. This could mean that the influence of RH and T on the low-cost
sensors for NO2 is substantial and that the ML models successfully accommodated the
sensors’ shortcomings. The CO correlation after LR is relatively high for each month, so a
more modest improvement is expected, and PM10 particles stand somewhere in between
CO and NO2 regarding the improvement rate.

In Table 16, the improvements when using data from all of the months are sum-
marized. Both ML algorithms show improvements, but RF shows slightly better per-
formances than ANN in all analyzed test cases, so only the improvements for RF are
presented.

Table 16. R2 improvements for CO, NO2, PM10, RF, all months in 2019.

Pollutant R2 Improvement

CO 0.014
NO2 0.101
PM10 0.078

The improvements achieved using RF algorithms for the concatenated data from all
of the months show that the ML algorithms can successfully be used on a dataset with
varying weather conditions. It is also important to note that the results achieved for the
concatenated data from all moths are obtained using a 70/30 train–test split, while the
data for each individual month are obtained with a 50/50 train test–split. With a larger
dataset and a more favorable train–test split, it would be expected that the improvements
listed in Table 16 would be better than the individual improvements for each month, but
that is not always the case. For example, the improvements for NO2 for the month of April
are greater than the ones achieved for all months combined. The reason for this is the
wide variety of values of RH, T and NO2 in the dataset consisting of all four months and
a relatively low data count for such a feature space. If a substantial quantity of data were
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available, a deep learning algorithm could be implemented that would most probably
successfully model all different dependencies. In this implementation, with a limited data
quantity, the division of the calibration problem into monthly calibrations could be the
optimal way, as is shown in the acquired results.

We have then focused on the measurement campaign conducted in the year 2020,
repeating measurements with the same methodology as in the year 2019, the same four
months are observed with the same measurement protocol. The observations from 2020
were used to analyze the possibility of using data from the preceding year to calibrate the
same sensor in the present. It was also interesting to analyze the sensors’ performance
after an entire year of in-field measurements.

The obtained values for the CO sensor show that the overall performance of the
sensor in 2020 is quite equivalent to the one from 2019. Considering that the R2 values
are high for this sensor, a high usability of this low-cost device for at least two years is
possible. The NO2 sensor does not have a performance as good as the CO one and the
degradation is a bit more prominent. On the other hand, the R2 factor during the 2020
months is still acceptable and shows that the NO2 sensor is also operable after two year’s
worth of measurements. The PM10 sensor has shown to be the most sensitive and the
results show it is operable through February and April 2020. This stands in line with the
sensors’ warranties, as the CO and NO2 sensors have a 2-year warranty period and the
PM10 sensor has a 1-year warranty.

The best-obtained results, using a combination of two RF algorithms, show a range
of improvements. The improvements for the CO R2 factor, ranging from 0.002 to 0.037, are
overall not incredibly high. The initial R2 for this pollutant is, however, quite high, and
achieving a great improvement has shown to be unlikely. The NO2 R2 factor has the best
improvement out of all the considered pollutants, ranging from 0.001 to 0.12. The PM10
sensor has shown an improvement of 0.03 in February, where the calibration process
could be applied. The obtained results do not differ greatly from the improvements that
were achieved with the 2019 data.

In this paper, a comparative analysis of ML algorithms through a span of four months
during two consecutive years (2019, 2020) is performed. The months selected are from
four different seasons so that the analysis of the ML algorithm performance could be
performed on various weather conditions. Furthermore, a comparative analysis between
different ML algorithms was performed, as well as the investigation of the influence
relative humidity and temperature can have on the calibration. The difference between
the performance of algorithms that are based solely on the raw pollutant measurements,
and the ones that include RH and T as input features are shown. An investigation of
the possibilities of calibrating a sensor from the data gathered in the preceding year is
also performed. It is shown that by combining the data from 2019 and a small sample
of 4 days from the observed month in 2020, the improvements could be comparable
to the results obtained in 2019 when 7.5 days from the observed month were used for
calibration. This opens the possibility of reducing the duration of the calibration period of
a low-cost sensor in a given month by using previously acquired data. It is important to
note that different low-cost devices can perform differently and that one of the limitations
of this work is that the analysis was performed on a single low-cost device. It was also
impossible to acquire a continual stream of data from a reference monitoring station that
could cover an entire year, which would surely be beneficial for the calibration process.

Based on this comprehensive study, it is proven that the measurement accuracy of
every single sensor has its own sensitivity to T, RH, etc., and that for every pollutant a
different approach for increasing the reliability of measurements should be developed
and applied. By applying ML algorithms on the pollutant measurements, measurement
accuracy is further improved, thus allowing low-cost sensors higher reliability and capa-
bility to be used as a complementary network to public monitoring stations, which will
allow much higher measurement granularity, and the ability to observe air pollution at
micro-locations. Furthermore, the integration of low-cost air quality measurement sensors
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will enable a higher density of air pollution assessment in urban areas and the develop-
ment of sophisticated location-aware services for environmental protection, intelligent
traffic control, accident detection, air pollutant transport and dispersion monitoring, etc.
A detailed explanation of how it could be performed is provided in the following text.

A Hybrid Sensors Network Approach

It is obvious that by increasing the number of deployed devices and providing
a higher measurement frequency, one will obtain the results with better quality and
accuracy, thus improving the detection of the sources of pollution and personal exposure.
Low-cost devices are without a doubt more cost-effective than public monitoring stations.
Based on the available vendor’s information, the average ratio is between 1:20 and 1:25,
i.e., the cost of one public monitoring station is comparable with the cost of 20–25 low-cost
devices for the same set of pollutants observed. In order to obtain more insight into
the usage of one possible low-cost device [9], we have provided more detailed device
characteristics and universal recommendations about the selection of the location and
mounting of the device. Device dimensions are 180 × 180 × 265 mm3, weight is 1.5 kg
and power consumption is 2.5 W. Different data transmission technologies are supported:
GPRS, 3G, 4G, NB-IoT, LoRa, SigFox and WiFi. Generally, a low-cost device could be
mounted on a wall, pole, pillar or some other solid object. It is also important to take
into account the scope of monitoring (use case), distance from the pollution source, area
topography, presence of different kinds of obstructions and the availability of appropriate
deployment space. The objective of urban air quality monitoring is to capture and
understand pollution trends and people exposure in the observed areas (depending on
the use case it could be micro (up to 0.1 km), middle (0.1–0.5 km), neighborhood (0.5–4
km) or urban scales (4–50 km) [46,47]. Urban areas usually have local microclimate
areas with different pollution conditions that could be of very small scales. Finally,
in order to create a more accurate estimation of pollution, which is actually the goal
of this paper, it is useful to install devices with low-cost sensors as complementary
measurement devices that could be installed virtually anywhere. Collecting the data
from these devices allows the creation of city pollution maps that can provide a deeper
understanding of pollutants spatial distributions over specific areas, and on the other
hand, high temporal resolution is provided using real-time measurements conducted
every minute. In order to predict air quality with a higher accuracy, ML could be applied
to help identify pollution hotspots. Reference monitoring stations are accurate but placed
on fixed locations and quite expensive, while low-cost devices are cheap and mobile but
suffer from a problem of accuracy and calibration. The most promising solution appears
to be a combination of these two kinds of monitoring stations, i.e., the creation of a hybrid
sensor network that combines the best of these two monitoring approaches. In this hybrid
sensor network, a reference monitoring station is supported by multiple low-cost devices.
In this way, sensors are virtually co-located with the reference monitoring station and
their recalibration process is much easier (thus providing higher measurement accuracy),
while reference monitoring stations are enhanced by spatially distributed complementary
measurements. If some of the sensors start to suffer from in-accuracy, recalibration could
be performed by correlation with a reference monitoring station or cross-calibration
by comparison with recently re-calibrated devices in the area.Our future work will be
devoted to the development of a model for the deployment of hybrid sensor networks
and recommendations for the number of nodes and their spatial distribution (density).

5. Conclusions

In this paper, different ML algorithms are applied on the low-cost sensors’ measure-
ments in order to improve the calibration algorithms taking into account the impact of
the air RH and T on the readings.

The main contributions of the research described in this paper are the method and
approach for the calibration of the low-cost sensors (CO, NO2 and PM10) using corrective

111



Sensors 2021, 21, 3338

measures (impact of RH and T). The method was evaluated on different ML algorithms for
the measurements taken during four different seasons (February, April, August, October)
in a period of two consecutive years.

The CO, NO2 and PM10, have shown satisfactory improvements after applying ML
correction algorithms (the best improvements were obtained for NO2, then for PM10 and
finally for CO). RF has shown better performances for NO2 and PM10 pollutants, while
ANN was better for CO. With these corrections, the accuracy of the low-cost sensors’
measurement becomes more reliable and closer to the measurements obtained from
reference monitoring stations. Depending on the observed period, R2 is in the range from
0.927–0.970 for CO, 0.817–0.943 for NO2 and 0.731–0.891 for PM10.

After the analysis of the data from 2019, data from 2020 was taken into consideration.
The 2020 data was gathered during the same months as the data from 2019 to observe
sensor degradation and the possibility of calibration based on the data from the preceding
year. The obtained results show that a valuable improvement on the sensors’ performance
can be achieved by using 2019 data in combination with just 4 days from a respective
month in 2020. Regarding sensor degradation, the results are promising for the CO and
NO2 sensors, while the PM10 sensor had significant degradation in the second half of
2020.

Finally, the results of the research have shown that the low-cost sensors with adequate
correction algorithms could be used as good support for the current traditional air quality
monitoring stations. A detailed analysis performed on how low-cost sensors could be
used for measurements in order to increase spatial and temporal measurement resolution
together with public reference monitoring stations, i.e., a hybrid sensor network approach
is elaborated.

For future work, the influence of weather conditions on other types of pollutant
measurements using low-cost sensors (SO2, PM2.5, O3) will be performed. The cross-
sensitivity between pollutants can also be measured, by experimenting with different
pollutants as input features to the ML algorithms. The development of more complex ML
models (1D convolutional neural networks and long short-term memory networks) will
also be conducted, which will be trained on larger data samples. Finally, a hybrid sensor
network approach will be analyzed in more detail. The possibilities of cross-calibration
between low-cost sensors will be performed, by calibrating several low-cost sensors at
the same measuring site and analyzing if the calibration models can be swapped between
the sensors and still obtain satisfactory results.
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Abstract: We designed and built a network of monitors for ambient air pollution equipped with low-
cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment
within a large epidemiological study. This paper describes the development of a series of hourly
and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4),
nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)—
which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound
region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the
region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes,
and over 100 residences, including the homes of epidemiological study participants, with the
goal of improving long-term pollutant exposure predictions at participant locations. Calibration
models improved when accounting for individual sensor performance, ambient temperature and
humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors.
Predictions from the final daily models for CO and NO performed the best considering agreement
with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO:
RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3

were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high
levels of calibration performance add confidence that low-cost sensor measurements collected at
the homes of epidemiological study participants can be integrated into spatiotemporal models of
pollutant concentrations, improving exposure assessment for epidemiological inference.

Keywords: low-cost sensors; sensor network; hazardous gases; air pollution; exposure assessment;
environmental epidemiology

1. Introduction

Air pollution is a major contributor to the global burden of disease [1]. Gaseous
pollutants—such as carbon monoxide (CO), oxides of nitrogen (NOx), and ozone (O3)—
cause a range of deleterious respiratory and cardiovascular health effects [2]. Low-cost
sensors and multipollutant low-cost monitors (LCMs) equipped with multiple sensors to
measure air pollution are emerging tools that have the potential to change the paradigm in
environmental health—one of a limited number of high-quality measurements, from regu-
latory agency monitors to dense networks of lower-quality sensors and monitors operated
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by diverse groups of users [3–9]. However, little work has been done to evaluate the appli-
cation of these sensors—especially gas pollutant sensors—to exposure assessments within
the context of epidemiological human health studies, which have different requirements
than regulatory/non-regulatory community ambient air monitoring applications [10].

Electrochemical sensors are among the most common types of low-cost gas sen-
sors [3,11]; they rely on a chemical reaction (oxidation or reduction) taking place between
a sensor’s working electrode (WE) and a target gas, producing an electrical signal pro-
portional to the gas concentration [12,13]. Like other low-cost sensors, electrochemical
sensors are small, inexpensive, portable, modular, and consume less power compared to
traditional monitoring equipment, allowing for dense, networked deployment [12,14–21].
By increasing spatial coverage, these types of low-cost networks have the potential to
contribute to the assessment of air pollution exposure, and can be used in epidemiological
studies relying on the characterization of exposures at specific times and locations relevant
to the health outcomes observed for study participants [22,23].

To overcome the lower accuracy, precision, sensitivity, and specificity of low-cost
sensors, end users must rigorously calibrate them in the field/laboratory [6,12,24]. Many
researchers have described procedures for calibrating electrochemical sensors in the
field [6,13,17,25–29], which has generally been favored over laboratory calibration, be-
cause it is difficult to simulate ambient, real-world conditions—such as low target species
concentrations, co-pollutants, and large ranges of physical parameters, such as tem-
perature and relative humidity (RH) [23]. Additionally, recent reports advocating for
standardized protocols for testing and evaluating sensor performance highlight the need
for increased confidence in data quality and the demand for low-cost sensors among
diverse groups [30].

Recent electrochemical sensor calibration studies have generally found that machine
learning algorithms such as k-nearest neighbors, clustering, random forests, and neural
network models outperform multiple linear regression models [26,31–36]. However, there
is concern that unsupervised machine learning approaches treat these sensors as “black
boxes”, when in fact they are based on electrochemistry and designed to respond linearly
to increasing concentrations of specific pollutant species when controlling for relatively
few environmental covariates [3,12,13]. For this mechanistic reason, and to protect against
model overfitting and a reliance on opaque machine learning algorithms, we favor a
multiple linear regression approach. Additionally, multiple linear regression models offer
several advantages compared to machine learning methods; these include the: (1) ease of
implementation, model building, and parameter interpretation; (2) ability to generalize
beyond the range of the training data; (3) provision of best estimates of offset and gain
calibration terms; (4) lower data requirements; and (5) direct application to raw sensor
data to obtain calibrated concentrations [37].

In this study, we used regulatory monitoring data from the Puget Sound region
(encompassing the Seattle–Tacoma, WA metropolitan area) to develop and evaluate field
calibration models for Alphasense carbon monoxide (CO), nitrogen monoxide (NO),
nitrogen dioxide (NO2), and ozone (O3) B4 series gas sensors built into networked, multi-
pollutant LCMs. We demonstrate and offer practical strategies to approach and evaluate
sensor calibration, specifically for an audience of epidemiological researchers, who are
familiar with multiple linear regression methods. In future works, we plan to incorporate
these LCM network predictions into spatiotemporal models of air pollution that will be
used in the exposure assessment of participants in two long-term epidemiological studies.

2. Materials and Methods

2.1. Study Context

This calibration study takes place within the context of two large epidemiological
cohorts exploring relationships between air pollution and deleterious health effects: the
“Adult Changes in Thought Air Pollution” (ACT-AP) study [38] and the “Multi-Ethnic
Study of Atherosclerosis and Air Pollution” (MESA Air) study [39]. The ACT-AP study
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investigated the associations between chronic exposure to air pollution and the effects
on brain aging and the risk of Alzheimer’s disease, and was based in the Puget Sound
region. The MESA Air study investigated the relationships between exposure to air
pollutants and the progression of cardiovascular disease in cities in New York, Maryland,
North Carolina, Minnesota, Illinois, and California. The LCMs used in both the ACT-AP
and MESA Air studies shared key parts of their calibration in the Puget Sound, even
though there are no MESA Air cities within the region. In both of these studies, the health
outcomes are thought to be, in part, related to ambient air pollution exposure, and the
goal of the exposure assessment was to obtain time-averaged air pollution concentrations
incorporating data from calibrated low-cost gas sensors at the residential locations of
study participants—a typical approach in air pollution epidemiological studies.

The focus of this analysis is on the Puget Sound findings, where most of our data were
collected, while in Appendix A, we also provide results from one of the MESA Air cities—
Baltimore, MD. Baltimore has very different environmental conditions compared to the
Puget Sound, and the goals of that analysis were to (1) determine whether calibration
procedures carried out in the Puget Sound region translated well to Baltimore, given their
environmental differences; and (2) explore calibration options with limited co-location
data, using data from both the Puget Sound and Baltimore co-location periods.

2.2. Low-Cost Monitor Deployment

From May 2017 to March 2019, we deployed 54 low-cost monitors for the ACT-AP
and MESA Air studies, rotating the monitors in at least two seasons to among over
100 residential locations for the ACT-AP study (many at ACT-AP participant homes) and
two regulatory agency monitoring sites measuring gas pollutants in the Puget Sound
region. (Additional details about the MESA Air co-location in Baltimore are presented in
Appendix A). All LCMs were periodically co-located at Puget Sound Clean Air Agency
(PSCAA) sites throughout the study, and air pollutant reference data collected during
periods of co-location form the basis for the sensor calibration. LCMs calibrated in this
study were also rotated out of the Puget Sound region in order to collect data in other
MESA Air cities.

2.3. Low-Cost Monitor and Sensor Descriptions

The LCMs were designed and constructed at the University of Washington. Each
LCM was built with four electrochemical gas sensors—CO-B4, NO-B4, NO2-B43F, and
OX-B431 (Alphasense Ltd., Great Notley, UK)—which detect CO, NO, NO2, and O3 +
NO2, respectively (Table 1). These gas sensors were selected because of their price (USD
~200), availability of sensors for gases of interest, performance, and ease of use compared
to other sensor types (e.g., metal oxide sensors). The LCMs were also equipped with
sensors for temperature and RH (HumidIcon HIH6130-021-001, Honeywell International
Inc., Charlotte, NC). We did not include ambient air pressure sensors in the LCMs (nor
did we investigate the inclusion of pressure in our calibration models), since electro-
chemical sensors do not meaningfully respond to changes in ambient air pressure [12,40].
The LCMs also had pairs of two different types of particulate matter sensors (Shinyei
PPD42NS and Plantower PMS A003); in previous work, we have reported on the cali-
bration and performance of these particulate matter sensors during the 2017–2018 time
period [41]. Ancillary and supporting hardware included a thermostatically controlled
heater, a fan, a memory card, a modem, and a microcontroller running custom firmware
to sample, save, and transmit LCM data every five minutes to a secure server. Additional
information about the design, specifications, and construction of the LCMs is provided in
the Supplementary Materials.
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Table 1. Summary of Alphasense Ltd. (Great Notley, UK) gas sensors used in the low-cost monitor
network.

Model Analyte(s) Sensor Noise (ppb) 1 Range (ppm) 2 Reference

CO-B4 CO 4 1000 [42]
NO-B4 NO 15 20 [43]

NO2-B43F NO2 12 20 [44]
OX-B431 O3, NO2 4 20 [45]

1: Statistical uncertainty described by the manufacturer as ±2 standard deviations of measurements expressed
in ppb. 2: Limit of performance warranty.

To address the well-known issue of NO2–O3 cross-sensitivity, in our LCMs we
implemented an industry strategy where a pair of similar oxidizing gas-type sensors is
deployed—one with an O3 filter between the sensor and the atmosphere that permits the
detection of NO2 only (NO2-B43F), and one unfiltered sensor that detects both NO2 and
O3 (OX-B431). The filter, composed of manganese dioxide (MnO2), acts as a catalyst in the
decomposition of O3 to O2 [46]. By determining the NO2 concentration via the NO2-B43F
sensor, the OX-B431 sensor signal can be used to calculate the O3 concentration [46]. The
electrochemical sensors in our LCMs were also equipped with an auxiliary electrode
(Aux), which provides a method of accounting for sensor drift, because it ages in the same
way as the WE, but is not permitted to interact with the environment, including the target
gas, temperature, and RH.

2.4. Co-Location of LCMs with Air Quality System Monitors

The US Environmental Protection Agency (EPA) collects and reports air quality and
air pollution data from monitors operated by federal, state, local, and tribal air pollution
control agencies through their Air Quality System (AQS). The principles of operation of
AQS direct-reading instruments for gaseous pollutants vary for different gases [47], and
in the Puget Sound region, instruments employ gas nondispersive infrared radiation (CO),
chemiluminescence (NO, NO2), and ultraviolet absorption (O3) spectroscopy. Regulatory
data were obtained from the EPA’s AQS server and the PSCAA website [48,49]. The
locations of regulatory agency monitoring sites (hereafter referred to as “agency sites”)
and a description of their setting are shown in Table 2. The data quality objectives (DQOs)
for agency measurements require that the bias and percentage coefficient of variation be
within (±) 10%, 15%, 15%, and 7% for CO, NO, NO2, and O3, respectively. A summary of
agency DQOs for Beacon Hill for the study period is provided in Supplementary Table S1;
the agency met its DQOs during all quarters of this calibration study. A schematic of the
main LCM co-location site, Beacon Hill, is provided in Supplementary Figure S1. Note
that 10th and Weller is a near-roadway site downwind of a major interstate highway and,
thus, has higher concentrations of traffic pollution (CO, NO, and NO2) than Beacon Hill.
Furthermore, 10th and Weller does not measure O3, because it typically forms further
downwind of roadways.

Table 2. Summary of agency site characteristics, co-colocation statistics, and average gas concentrations during co-location
with LCMs, temperature, and relative humidity.

Agency Site Site Type
# LCMs Ever
Co-Located

Co-Location
Monitor-Days

(Weeks)

CO
(ppb)

Mean ± SD 1

NO
(ppb)

Mean ± SD 1

NO2
(ppb)

Mean ± SD 1

O3
(ppb)

Mean ± SD 1

Avg Temp
(◦C)

Mean ± SD 2

Avg RH
(%)

Mean ± SD 2

Beacon Hill Suburban 54 204,498 (99) 223 ± 89 6 ± 10 11 ± 5 20 ± 9 11 ± 4 76 ± 12
10th and
Weller Urban 1 3 525 (89) 422 ± 131 27 ± 18 20 ± 7 — 4 13 ± 5 72 ± 11

1: The average concentration, temperature, and RH values were averaged across daily observations at the site when both LCM and agency
reference data were available, and therefore depend on co-location schedule, which differs across sites. 2: The average temperature and RH
values were estimated based on the LCM sensors, and then were calibrated with reference temperature and RH data from the Beacon Hill
site in order to provide standard units. 3: The LCM co-located at 10th and Weller was also briefly co-located at Beacon Hill. 4: Ozone was
not measured at 10th and Weller station.
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2.5. Sensor Quality Assurance and Data Exclusion Criteria

Automated weekly reports were created to identify data quality issues from LCMs
and allow for timely replacement of broken sensors. Sensor data were flagged for several
quality criteria, including data completeness, departure from a typical range of values or
daily variation, and correlation with nearby LCMs. Flags were developed with multiple
levels of severity for each quality criterion, and then a weighting of flags was used
to prioritize which sensors were most important to replace. Reports were developed
with R markdown and CSS/HTML in a 3-panel format designed for clear and efficient
communication of large amounts of information: a flag table panel clearly identified
the highest priority issues; a navigation panel allowed for easy navigation to further
information on any issue, and the main panel included the complete plots and tables for
all sensors (Figure S2).

Throughout the study period we excluded data from malfunctioning sensors identi-
fied in our automated weekly reports and data from the first eight hours after LCMs were
moved to a new location (giving LCMs time to warm up). Errors and malfunction that led
to missing data included a broken sensor, data failing to be recorded, clock-related errors
(e.g., no valid time recorded by the LCM), LCM power loss (e.g., LCM was unplugged),
and data transmission failure. We also identified periods of high air pollution associated
with the wildfire season and holiday fireworks (4 and 5 July) and excluded sensor data
during model fitting to prevent high outlier concentrations from having undue influence
on our calibration models, and for consistency with PM sensors in the network. In sensi-
tivity analyses, the inclusion/exclusion of these potentially higher concentration periods
had a negligible effect on LCM calibration models.

2.6. Calibration Models

Calibration models were developed using data between May 2017 and March 2019.
LCMs recorded and reported data every five minutes, which were then averaged to the
hourly and daily time scales. After data exclusions, we required a minimum of 75% data
completeness on the five-minute timescale before averaging to the hourly or daily scales
(i.e., at least 9 out of 12 5-min data points were required to include the hourly average in
our analysis).

We started by estimating pollution concentrations using the manufacturer’s provided
calibration terms:

Gas Concentration =
[(WE − V0,WE)− (Aux − V0, Aux)]

sensitivity ∗ gain
, (1)

The manufacturer provides both sensor-specific values of Vo and sensitivity upon
purchase, as well as “typical” values for each type of sensor in its documentation [50]—
both of which we investigated.

Next, we built a series of stepwise multiple linear regression calibration models
for each gas on both the hourly and daily timescales, including WE and Aux values as
separate independent terms. Additional terms included sensor ID (categorical), tem-
perature (linear), RH (linear), interactions between the WE and temperature and WE
and RH, and co-pollutant concentrations. We explored including sensor-specific slopes
and sensor-specific intercepts as well as sensor-specific intercepts and common slopes,
because each sensor could potentially have its own unique calibration slope and intercept.
Sensor-specific intercepts were estimated by calculating baseline adjustments through an
algorithm that leveraged co-location periods shared by different sensors, and assumed
that the difference in baseline between sensors remained constant.

The simplest multiple linear regression model we developed (Model 1 for each gas)
included terms for WE, Aux, and sensor ID; using O3 as an example, it took the form:

Yt = β0 + β1 × I(ID) + β2 × WEOX−B431
ID,t + β3 × AuxOX−B431

ID,t + εID, t, (2)
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where Yt = observation of the agency O3 measurement (ppb) at time t co-located with
OX-B431 sensor ID; β0 and the vector β1 allow for sensor-specific intercepts; β2 and β3 =
regression coefficients for WE and Aux sensor signals, respectively; I(ID) = unique sensor
ID coded as n-1 (53) indicator (i.e., factor) variables—one for each LCM other than the
reference LCM; WEOX−B431

ID,t = signal from the working electrode in mV; AuxOX−B431
ID,t =

signal from the auxiliary electrode in mV; and εID,t = random error. The final calibration
models for each gas were more complex, and in addition to WE, Aux, and sensor ID,
important terms in our model building included temperature, RH, interactions between
the WE and temperature and WE and RH, and co-pollutants. For example, the final model
for O3 (Model 4) was:

Yt = β0 + β1 × I(ID) + β2 × WEOX−B431
ID,t + β3 × AuxOX−B431

ID,t

+β4 × NO2
cal

ID,t + β5 × Tempspl−1
ID,t + β6 × Tempspl−2

ID,t + β7 × Tempspl−3
ID,t

+β8 × RHspl−1
ID,t + β9 × RHspl−2

ID,t + β10 × Tempspl−1
ID,t × WEOX−B431

ID,t

+β11 × Temp spl−2
ID,t × WEOX−B431

ID,t + β12 × Temp spl−3
ID,t × WEOX−B431

ID,t

+β13 × RHspl−1
ID,t × WEOX−B431

ID,t + β14 × RHspl−2
ID,t × WEOX−B431

ID,t + εID,t

(3)

where Yt, β0, β1, I(ID), WEOX−B431
ID,t , AuxOX−B431

ID,t , and εID,t have the same definitions as in
Equation (2) above; β2–β14 = regression coefficients; NO2

cal
ID,t is the previously calibrated

concentration of NO2 determined by the NO2-B43F sensor in the same monitor as OX-
B431 sensor ID; Tempspl−k

ID,t = kth basis functions of the temperature b-splines (knots at 4

and 21 ◦C), based on the temperature sensor in the same monitor; and RHspl−j
ID,t = jth basis

functions of the relative humidity b-splines (knot at 60%), based on the RH sensor in the
same monitor. Interaction terms between the temperature, RH, and working electrodes
are also included for more flexible adjustment for temperature effects on the low-cost
sensors. If multiple sensors (ID1, ID2, . . . , IDm) are co-located at an agency site at the
same time t, then the observed agency measurements Yt will be the same. Final calibration
models for each gas are presented in the Supplementary Materials (Equations (S1)–(S4)).

In addition to the calibration models developed for the Puget Sound region, in Appendix A,
we briefly discuss models specific to Baltimore (one of the MESA Air study cities).

2.7. Cross Validation and Model Evaluation

We evaluated models with a 10-fold cross-validation (CV) technique, following
prior methods used for PM sensors [41]. Model performance was evaluated with cross-
validated summary measures, including the root-mean-square error (RMSE) and R2, as
well as with residual plots with reference concentration measurements, temperature, RH,
and time. The 10-fold CV approach randomly partitions weeks of monitoring with co-
located LCM and agency reference data into 10 folds. Typically, 10-fold CV partitions data
based on individual observations. However, using data from adjacent days to both fit and
evaluate models could result in artificially inflated performance measures. To minimize
the effects of temporal correlation on our CV evaluation measures, we disallowed data
from the same calendar week from being used to both train and test the models.

To assess sensor baseline drift over time, we modeled changes in residuals—between
low-cost sensor predictions fitted with final calibration models and agency reference
measurements—against deployment time. We used the slope of this best fit of residuals
over time to estimate drift, focusing on sensors that were co-located with agency reference
instruments over a period of at least one year, for at least 20% of the time. For the sensor
of each type that had the longest duration of co-location at an agency site, we plotted
the residuals between low-cost sensor predictions from the final calibration model and
agency reference measurements over time.

All statistical analyses were carried out with R version 3.6.2.
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3. Results

3.1. Site Descriptive Characteristics and LCM Co-Location

Measures of LCM co-location, including the number of monitor days and number
of unique weeks with co-located LCMs, temperature, RH, and gas pollutants measured
by reference instruments at each of the two agency sites are summarized in Table 2.
Automated weekly reports identified malfunctions and led to replacement of 1, 9, 3, and
9 sensors for CO, NO, NO2, and O3, respectively. The Beacon Hill site had reference
instruments for each of the gases under study, was co-located with each of 54 LCMs
over the course of the study, and served as our primary calibration site. Beacon Hill is
described as a “suburban” site by the agency, though it is located within the Seattle city
limits, and is generally thought of as capturing “typical urban air quality impacts” for the
region [51]. This site also generally had lower average pollutant concentrations compared
to the 10th and Weller site, which had one co-located LCM for the study period (this LCM
was also briefly co-located at Beacon Hill). The PSCAA considers the 10th and Weller site
to be an “urban center” and a “near-road” site, located adjacent to an eight-lane highway
with six additional on- and off-ramps (the distance from the station to the middle of these
14 lanes is ~60 m, and 6 m from the nearest on-ramp).

Based on the LCMs’ total deployment time (i.e., the sum of co-located and non-co-
located days), the percentage of time with co-located LCM-agency reference measure-
ments was 16% (O3), 20% (CO), and 21% (NO, and NO2). LCM deployment for each
gas is displayed in Figure S3. Co-located times were used for calibration (black points of
Figure S3). Data from times when LCMs were not co-located with agency monitors but
were deployed at volunteers’ or study participants’ houses are represented by red points
of Figure S3. These LCM measurements at residential locations will be input into regional
spatiotemporal pollutant models in order to improve estimates of gas pollutant exposure
for participants in the ACT-AP study. One LCM remained co-located at each agency
site for all or nearly all of the study period; all other LCMs were relocated throughout
the study region, and included brief co-location periods at agency sites for calibration
purposes. Due to QA/QC exclusions, downtime for movement or maintenance, and
periods when LCMs were rotated outside of the Puget Sound region to other MESA Air
cities, there were times when LCMs did not contribute to calibration or measurement
data (times with neither black nor red points in Figure S3).

3.2. Evaluation of Calibration Models

Summaries of daily scale models for each gas with their performance measures are
presented in Table 3 and Table S2. The NO2 sensor showed the greatest improvement
in CV performance statistics, from a basic model—which included terms for the WE,
Aux, and sensor ID (Model 1: CV-RMSE = 5 ppb; CV-R2 = 0.35)—to the final model,
which included additional terms for temperature, RH, interactions between the WE
and temperature splines (knots at 4 and 21◦C) and WE and RH spline (knot at RH
= 60%), and CO concentration from the CO-B4 sensor (Model 4: CV-RMSE = 3 ppb;
CV-R2 = 0.79). In contrast, CO benefitted the least from the inclusion of additional terms
from the basic model—which included terms for WE, Aux, and sensor ID (Model 1:
CV-RMSE = 29 ppb; CV-R2 = 0.94)—to the final model selected, which included additional
terms for temperature, RH, and interaction terms between the WE and temperature and
WE and RH (Model 3: CV-RMSE = 18 ppb; CV-R2 = 0.97). To gauge sensor-specific
variability, we estimated the variation of the sensor-specific intercepts across sensors
for both the simplest model (Model 1) and the final model for each gas (Table S3). The
final model standard deviations were 40, 24, 24, and 62 ppb for CO, NO, NO2, and O3,
respectively.

Comparisons of daily LCM predictions using final daily calibration models and
agency reference measurements are shown in Figure 1 and, overall, are in good agreement,
with most data falling near and distributed evenly about the 1:1 line, as highlighted by the
best fit LOESS smoother in blue. Residuals of low-cost sensor predictions calculated from
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final calibration models versus agency reference concentrations, temperature, and RH
for CO, NO, NO2, and O3 are shown in Figure 2. Generally, the residuals were centered
around zero, and did not exhibit trends with reference concentrations, temperature, or
RH. Results from calibration models built and evaluated on the hourly scale generally
followed those on the daily scale, and are presented in the Supplementary Materials
(Table S2).

Table 3. Summary of daily model terms and performance measures for the manufacturer’s calibration, a simple calibration
model, and the final calibration model for CO, NO, NO2, and O3.

Gas Terms Model Number CV-RMSE (ppb) CV-R2

CO
Manufacturer’s sensor-specific slope and intercept 1 0 150 0.49
WE, Aux, and sensor ID 1 29 0.94
WE, Aux, sensor ID, temperature, RH, and WE–temperature and WE–RH
interactions 3 18 0.97

NO
Manufacturer’s sensor-specific slope and intercept 1 0 36 0.41
WE, Aux, and sensor ID 1 2 0.97
WE, Aux, Sensor ID, and temperature and RH splines 2 with WE interactions 4 2 0.97

NO2

Manufacturer’s sensor-specific slope and intercept 1 0 24 0.08
WE, Aux, and sensor ID 1 5 0.35
WE, Aux, Sensor ID, temperature and RH splines 2 with WE interactions, and
[CO]CO-B4

3 4 3 0.79

O3

Manufacturer’s sensor-specific slope and intercept 1 0 41 0.04
WE, Aux, and sensor ID 1 5 0.66
WE, Aux, Sensor ID, temperature and RH splines 2 with WE interactions, and
[NO2]NO2-B43F

4 4 4 0.81

1: RMSE and R2 summary measures not cross-validated. 2: Spline knots: temperature = 40, 70 ◦F, RH = 60%. 3: Previously calibrated CO
concentration from the CO-B4 sensor. 4: Previously calibrated NO2 concentration from the NO2-B43F sensor.

Figure 1. Comparison of daily agency reference measurement versus low-cost sensor predictions
derived from the final daily models for: (a) CO, (b) NO, (c) NO2, and (d) O3. The dashed line is the
1:1 line; and the solid blue line is the LOESS smoother.
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Figure 2. Residuals of low-cost sensor predictions calculated from final daily calibration models against daily agency
reference measurements, temperature, and RH for: (a–c) CO, (d–f) NO, (g–i) NO2, and (j–l) O3. The dashed line is y = 0;
and the solid blue line is the LOESS smoother.

We observed drift in each type of sensor in our network over the deployment period.
The modeled changes in residuals from daily sensor predictions fitted with the final
calibration models, which are an estimate of average drift, are summarized in Table S4.
The mean drift (range) for each type of sensor was –11 (–21, 18); –1 (–4, 2); 1 (–3, 5); and
–6 (–11, 2) ppb for CO, NO, NO2, and O3, respectively. Examples of this estimate of sensor
drift over time are shown in Figure 3; we chose to display LCM ACT7 located at 10th
and Weller for CO, NO, and NO2, and LCM ACT2 at Beacon Hill for O3, because these
were the LCMs that spent the most amount of time co-located with an agency reference
instrument (O3 was only monitored at Beacon Hill).
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Figure 3. Examples of low-cost sensor residuals between final daily model predictions and agency reference measurement
for: (a) CO, (b) NO, (c) NO2, and (d) O3 over the study period. Residuals over time are a proxy for drift that may also
capture sources of variation not completely adjusted for in calibration. The dashed line is y = 0; the solid blue line is the
LOESS smoother; and the solid black line is a least squares fit, the slope of which corresponds to the estimates provided in
Table S4, while the shaded area indicates the range of the manufacturer’s estimate of sensor noise provided in Table 1 (Note:
axis was restricted for CO, omitting two outlying data points below –100 ppb).

4. Discussion

In this study, we demonstrated the successful deployment, field calibration, and cross-
validation of a low-cost sensor network for multiple gaseous pollutants over multiple
seasons and a wide range of pollutant concentrations representative of the study area. We
considered multiple calibration models on the hourly and daily time scales, and showed
the gains in sensor prediction performance that can be achieved by building a series of
multiple linear regression models, starting with the primary variables WE, Aux, and
sensor ID.

The CV-RMSE and CV-R2 of our final daily calibration models met or exceeded the
performance measures reported in other recent studies [19,28,52], providing evidence
that a high level of performance compared to agency reference measurements can be
attained with rigorous calibration procedures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE
= 2 ppb, R2 = 0.97; NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). For
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CO, NO, and O3, the biggest performance gains in terms of the CV-RMSE and CV-R2

were made between the manufacturer’s calibration model and a basic multiple linear
regression model that included terms for the working and auxiliary electrodes and sensor
ID. For NO2, the improvement in CV-R2 between measurements using the manufacturer’s
calibration model and the basic model, and between the basic and final models, were
comparable.

The results for the range of multiple linear regression models constructed exhibits the
value of adding additional calibration terms; however, additional terms did not necessar-
ily result in improved performance (Table S2). For example, for models that implemented
an algorithm to calculate sensor-specific intercepts by making baseline adjustments to
the WE and Aux during co-location periods shared by different sensors (Models 6 and 7),
performance was not improved in the Puget Sound region. The algorithm did, however,
improve model performance in another MESA Air city (Baltimore, MD), where there
were more limited co-location data on which to perform a field calibration (details from
Baltimore are provided in Appendix A). The models with the highest CV-RMSE and
CV-R2 were not necessarily chosen as final models, because we also considered simplicity
of implementation, a trade-off of added modeling complexity for the marginal improve-
ments observed, our desire to align model forms across pollutants for consistency, and
caution of overfitting (the latter specifically relevant to Models 5–7). Our series of models
provides a guide on the nature and complexity of the calibration required for a given
level of performance.

Our results confirm the importance of inter-sensor differences, particularly calibra-
tion intercept terms, and the effects of temperature and RH on sensor response, consistent
with previous studies [52,53], and justify their inclusion in calibration models. For two
of the gases (NO2 and O3), we observed that sensor performance was dependent on
inclusion of other gases in the calibration model, although the reasons differed. For
example, we found that including the low-cost CO sensor predictions in the NO2 sensor
calibration model may have improved calibration performance because the two gases
share a common traffic-related source, and the concentration of CO can provide infor-
mation on the calibration of NO2. In contrast, creating the best O3 model depends on
the inclusion of NO2 concentration due to the function of the OX-B431 sensor, since its
output is the combination of the signal from NO2 and O3, and therefore requires the
concentration of NO2, which is determined using the previously calibrated NO2-B43F
sensor. In other words, the order in which sensors are calibrated matters.

Even though our low-cost sensors were equipped with auxiliary electrodes to counter
the effects of aging, we still observed changes in sensor drift over time. The potential
effects of this drift differed by gas, given the noise of the sensors’ signals and the low
mean pollutant concentrations in the study region. For example, the observed mean drift
(range) among 10 CO sensors was –11 (–21, 18) ppb, highly variable, greater than the
sensor noise, and between 3 and 5% of the mean pollutant concentrations measured by
agency monitors. In contrast, the observed mean drift (range) among 12 NO2 sensors was
1 (–3, 5) ppb, more uniform, less than the sensor noise, and approximately 10% of the
typical concentrations. While the range of calibration models we built addressed several
of the well-documented challenges of these low-cost gas sensors (including sensor-specific
calibration slopes and intercepts, physical parameters such as temperature and RH, and
cross-sensitivity with co-pollutants), we chose not to account for the effects of baseline
drift that were not captured in other variables. Instead, we characterized the drift using
the residuals of predictions from our final models. While an imperfect proxy for drift
(for example, because our final models may not perfectly capture seasonal fluctuations
or other unaccounted for factors), the results are easily converted to and interpreted as
changes in gas concentration.

We faced several logistical and methodological challenges in calibrating and de-
ploying these gas sensors for epidemiology. The LCMs in our network were generally
limited in their co-location with agency reference instruments, because extended periods
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of co-location prevented an LCM from being deployed elsewhere in the study region
at the homes of ACT-AP study participants for pollutant exposure predictions. These
competing interests forced a compromise between duration of co-location in order to
achieve better calibration and deployment for epidemiological purposes. Because of
sensor-specific responses, each low-cost sensor would have ideally been repeatedly co-
located with agency reference instruments at the same time, in order to avoid differences
in calibration conditions, and for enough time to be exposed to the full ranges of pollutant
concentration, temperature, and RH. Multiple simultaneous co-location periods would
also assist in quantifying sensor drift. In practice, this ideal scenario was not possible
due to space and logistical constraints at agency sites; however, a compromise involving
groups of sensors with shared schedules may have been better than our less rigorously
designed timing.

A compromise design may have allowed for more convenient adjustment of sensor-
specific differences, thus improving our ability to address other calibration challenges. In
contrast with our previous experience with low-cost PM sensors, which did not exhibit
such prominent sensor-specific differences, the same sensor co-location design was not as
problematic because the PM sensors did not require sensor-specific adjustments [41]. In
hindsight, our study design was better suited for low-cost PM sensor calibration rather
than gas sensors, because it allowed for both long and continuous periods with agency
reference instruments for calibration and deployment at many other sites in and beyond
the Puget Sound region. Another challenge we encountered in the Puget Sound region
using these low-cost sensors was that typical pollution levels were often lower than the
noise of the sensors’ signals, which is often used in the estimation of the limit of detection.
For example, the sensor noise for NO reported by the manufacturer is 15 ppb, and 66% of
all agency NO measurements were below 15 ppb (92% at Beacon Hill and 25% at 10th
and Weller). With typical NO concentrations less than 15 ppb (Table 2), it is not surprising
that 12% of NO sensor predictions were below zero.

In this study all of our calibration procedures to produce low-cost sensor predictions
were completed post-deployment, and only retrospectively did we predict gas concen-
trations with LCMs. While this procedure suits our ultimate epidemiological objectives,
where long-term average pollutant concentrations are required for exposure assessment,
this may not be practicable for end users who require more immediate or “real-time”
predictions from low-cost sensors. The potential for sensors to serve as real-time direct-
reading instruments is compelling; however, the error associated with those predictions
may be higher if the sensors undergo a less rigorous or extensive calibration procedure.

5. Conclusions

This paper demonstrates the field calibration of low-cost electrochemical gas sensors
in an LCM network with regulatory agency monitoring data. Models using manufacturer-
provided calibration terms performed poorly. However, the performance of the sensors
improved substantially with rigorous multiple linear regression calibration procedures.
We found that the inclusion of environmental factors—such as temperature and RH,
co-pollutants, and terms for sensor ID—was important, contributing to performance
gains. Increasing the duration of sensor co-location with regulatory agency instruments
to improve calibration models is at odds with deployment for measurement purposes,
and these competing interests must be managed. Calibrated low-cost electrochemical gas
sensor data can provide measurements of ambient air pollution that have the potential to
improve exposure assessment in environmental epidemiology studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21124214/s1: Materials and Methods: Low-cost monitor and sensor descriptions; Equa-
tions (S1–S5): Final calibration models for CO, NO, NO2, and O3; Table S1: Summary of quarterly
agency data quality indicators for the study period at the Beacon Hill site. Target data quality
objectives are provided for each gas; Table 2: Descriptions of calibration models with summary
performance statistics of sensor predictions. Models were fitted and predictions were generated
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on the same timescales (hourly or daily); Table S3: Estimates of intercept variability across sensors
for simple and final daily scale calibration models (in ppb); Table S4: Estimated sensor drift for
monitors co-located with agency reference instruments over at least one year, estimated in ppb
by estimating the slope of a best fit least squares regression of residuals over time; Figure S1.
Schematic of the main low-cost monitor calibration site, Beacon Hill, in Seattle, WA; Figure S2:
Example of automated weekly QA/QC reports to identify sensor errors and exclude data; Figure
S3: Deployment of low-cost monitors in the Puget Sound region for CO, NO, NO2, and O3. Black
indicates days LCMs were co-located with an agency reference instrument, and red indicates days
they were not co-located. Monitors at the top of each panel were MESA Air monitors and located
outside of the Puget Sound region for much of the study period, and during those times contributed
neither calibration data nor data characterizing pollutant concentrations in the Puget Sound; Data
S1: Daily calibration dataset.
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Appendix A

This appendix presents background, methods, and results for the MESA Air city
Baltimore, MD.

Appendix A.1. Background

As part of the MESA Air study, LCMs were deployed in six metropolitan areas
between spring 2017 and winter 2019: New York, NY; Baltimore, MD; Chicago, IL; Los
Angeles, CA; Minneapolis and Saint Paul, MN; and Winston Salem, NC. Within each city
except Baltimore, five to seven LCMs were deployed, with half co-located at regulatory
agency monitoring sites. In Baltimore, we deployed 30 LCMs, providing the most data
and the best opportunity to explore various calibration approaches for the CO, NO2,
and NO low-cost gas sensors. The goals of this analysis were to (1) determine whether
calibration procedures carried out in the Puget Sound region translated well to Baltimore,
a city with very different environmental conditions compared to the Puget Sound region;
and (2) explore calibration options with limited co-location data using data from both the
Puget Sound and Baltimore co-location periods.

Appendix A.2. Methods

Compared to the Puget Sound, where there were 205,023 monitor-days of co-location
for calibration and evaluation, the number of monitor-days was much more limited in
Baltimore, with 498 (CO), 1604 (NO), and 2092 (NO2). In addition, as shown in Figure A1,
only a subset of the 30 Baltimore LCMs was co-located in Baltimore (4 for CO and 13 for
NO and NO2), limiting our ability to conduct calibration co-location in Baltimore and
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account for inter-sensor differences. We therefore explored two options for calibration: (1)
fitting models in the Puget Sound region, then evaluating those models with data from
the limited amount of co-location data with agency reference instruments in Baltimore;
and (2) pre-adjusting the WE and Aux values based on co-location in Puget Sound, then
fitting and evaluating models without sensor-specific intercepts using co-location data in
Baltimore.

Figure A1. MESA Air study LCM co-location in Baltimore, MD for: (a) CO, and (b) NO and NO2.

The first strategy took advantage of the larger number of monitors that were co-
located with agency reference instruments (in theory providing an opportunity to adjust
for inter-sensor variability), but suffered from a low number of co-location monitor days,
and ignored important environmental/climactic differences between the Puget Sound
and Baltimore that could affect calibration. The second strategy offered the advantage of
using Baltimore co-location data while still accounting for inter-sensor differences as an
alternative to fitting sensor intercepts. In this Appendix, we present the results for both of
these approaches.

The first model, B1, was comparable to Model 1 for each gas presented in the main
text of this paper for the Puget Sound, including terms for WE, Aux, and sensor ID,
and was fit in the Puget Sound and evaluated in Baltimore. For the rest of the models
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developed for Baltimore, we pre-adjusted the WE and Aux of each sensor based on
co-location in the Puget Sound, then created a series of multiple linear regression models
with different covariates (B2–B8, approximately following the progression of Models 1–7
in the Puget Sound). The pre-adjustment algorithm we developed to address inter-sensor
differences had the following steps:

1. Consider all pairwise comparisons for sensors that were ever co-located, and create
a matrix for both WE and Aux that records these pairwise average differences.

2. Fill in missing data using a weighting scheme based on the time of co-location and
relying on multiple degrees of separation.

3. After several iterations, the sensor differences relative to a single reference sensor
are obtained, which can be used to adjust the sensor signal (mV).

We calculated the CV RMSE and R2 with respect to agency reference measurements
to assess the performance of the Baltimore models, similar to our methods in the Puget
Sound.

Appendix A.3. Results and Discussion

The calibration models developed in the Puget Sound performed worse than the
LCMs that remained in the region for the duration of the study (discussed in the main
text of this paper), and did not translate well to Baltimore (Table A1). For CO and NO, the
CV-RMSE increased and the CV-R2 decreased when evaluating models fit in the Puget
Sound. For NO2, the performance was poor in the Puget Sound, and remained poor when
applied in Baltimore.

Table A1. Summary of model B1 with terms for WE, Aux, and Sensor ID. Model B1 was fit in the Puget Sound and evaluated
in Baltimore, MD on the daily timescale.

Fit in Puget Sound Evaluated in Baltimore

#
Co-Location

Sites

# Monitor
Days

Co-Location

CV-RMSE
(ppb)

CV-R2
#

Co-Location
Sites

# Monitor
Days

Co-location

CV-RMSE
(ppb)

CV-R2

CO 1 494 19 0.97 2 498 56 0.51
NO 1 520 5 0.89 4 1604 8 0.45
NO2 1 507 6 0.22 4 2029 6 0.20

The Baltimore models with pre-adjusted terms for WE and Aux (based on co-location
in the Puget Sound), then fit and evaluated on Baltimore co-location, are presented in
Table A2. The models that included pre-adjusted WE and Aux terms had the advantage of
using Baltimore-specific data, while still adjusting for sensor differences calculated during
co-location periods in the Puget Sound. In effect, we approximated sensor calibration
intercepts based on co-location in the Puget Sound, where each sensor had co-location
data, then generalized calibration coefficients for the remaining model terms based on the
limited number of LCMs with Baltimore co-location data.

While the pre-adjustment improved performance slightly in this study, this algorithm
may not translate well to other regions, and reproduction of the technique should be
approached cautiously, because it is not a well-established method. Baltimore calibration
models had worse CV performance measures compared to those developed in the Puget
Sound region, and we attribute this to the more limited co-location data available for
calibration. Generally, the Baltimore CV performance measures were poor, and did not
meet our acceptance criteria.
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Table A2. Descriptions and prediction performance statistics of calibration models with each sensor pre-adjusted in the
Puget Sound, then fit and evaluated in Baltimore, MD. Models were fit and predictions were generated on the daily
timescale.

CO NO NO2

Model Terms
CV-RMSE

(ppb)
CV-R2 CV-RMSE

(ppb)
CV-R2 CV-RMSE

(ppb)
CV-R2

B2 Pre-adjusted WE, pre-adjusted Aux 51 0.53 7 0.61 5 0.33
B3 Model B2 with temperature and RH 39 0.73 7 0.58 5 0.40

B4 Model B3 with WE–temperature and WE–RH
interactions 36 0.76 7 0.62 5 0.36

B5 Model B3 with WE– and Aux–temperature
and WE– and Aux–RH interactions 37 0.75 7 0.64 5 0.29

B6 Model B2 with WE–temperature spline and
WE–RH spline interactions 41 0.70 7 0.63 5 0.41

B7 Model B4 with WE–Aux interaction 37 0.74 7 0.62 5 0.45
B8 Model B4 with WE spline 38 0.74 7 0.61 5 0.36
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In-Field Calibration Method of Low-Cost Gas Sensors for Ambient Air Pollutants: Comparison of Linear, Multilinear and
Artificial Neural Network Approaches. Atmos. Environ. 2019, 213, 640–658. [CrossRef]

36. Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L. R. Subramanian A Machine
Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring.
Atmos. Meas. Tech. 2018, 11, 291–313. [CrossRef]

37. Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet Things J.
2018, 5, 4857–4870. [CrossRef]

38. ACT-AP Air Pollution, the Aging Brain and Alzheimer’s Disease | Environmental & Occupational Health Sciences. Available
online: https://deohs.washington.edu/air-pollution-aging-brain-and-alzheimers-disease (accessed on 8 November 2019).

39. MESA MESA Air Study | Environmental & Occupational Health Sciences. Available online: https://deohs.washington.edu/
mesaair/mesa-air-study (accessed on 11 March 2020).

40. Chou, J. Hazardous Gas Monitors: A Practical Guide to Selection, Operation and Applications; McGraw-Hill Professional Publishing:
New York, NY, USA, 2000; ISBN 0-07-135876-5.

41. Zusman, M.; Schumacher, C.S.; Gassett, A.J.; Spalt, E.W.; Austin, E.; Larson, T.V.; Carvlin, G.; Seto, E.; Kaufman, J.D.; Sheppard, L.
Calibration of Low-Cost Particulate Matter Sensors: Model Development for a Multi-City Epidemiological Study. Environ. Int.
2020, 134, 105329. [CrossRef]

131



Sensors 2021, 21, 4214

42. Alphasense Ltd. CO-B4 Carbon Monoxide Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/
uploads/2019/09/CO-B4.pdf (accessed on 8 November 2019).

43. Alphasense Ltd. NO-B4 Nitric Oxide Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/20
19/09/NO-B4.pdf (accessed on 8 November 2019).

44. Alphasense Ltd. NO2-B43F Nitrogen Dioxide Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/
uploads/2019/09/NO2-B43F.pdf (accessed on 8 November 2019).

45. Alphasense Ltd. OX-B431 Oxidising Gas Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/
uploads/2019/09/OX-B431.pdf (accessed on 8 November 2019).

46. Hossain, M.; Saffell, J.; Baron, R. Differentiating NO 2 and O 3 at Low Cost Air Quality Amperometric Gas Sensors. ACS Sens.
2016, 1, 1291–1294. [CrossRef]

47. EPA List of Designated Reference and Equivalent Methods. Available online: https://www.epa.gov/sites/production/files/20
19-08/documents/designated_reference_and-equivalent_methods.pdf (accessed on 1 May 2020).

48. EPA Air Quality System (AQS). Available online: https://www.epa.gov/aqs (accessed on 20 March 2020).
49. PSCAA Puget Sound Clean Air Agency, WA | Official Website. Available online: https://pscleanair.gov/ (accessed on 20 March

2020).
50. Alphasense Ltd. Alphasense 4-Electrode Individual Sensor Board (ISB); User Manual 085-2217. 2019. Available online: http:

//www.apollounion.com/en/p-Alphasense-4-electrode-Individual-Sensor-Board-486.html (accessed on 19 June 2021).
51. PSCAA. 2019 Air Quality Data Summary; Puget Sound Clean Air Agency. 2020. Available online: https://pscleanair.gov/

DocumentCenter/View/4164/Air-Quality-Data-Summary-2019 (accessed on 19 June 2021).
52. Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost

Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ. Int. 2017, 99, 293–302. [CrossRef]
53. Spinelle, L.; Aleixandre, M.; Gerboles, M.; European Commission; Joint Research Centre; Institute for Environment and

Sustainability. Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the Monitoring of Air Pollution; Publications Office:
Luxembourg, 2013; ISBN 978-92-79-32691-2.

132



sensors

Article

An Approximation for Metal-Oxide Sensor Calibration for Air
Quality Monitoring Using Multivariable Statistical Analysis

Diego Sales-Lérida 1,*, Alfonso J. Bello 2, Alberto Sánchez-Alzola 2 and Pedro Manuel Martínez-Jiménez 1

1 Department of Automation Engineering, Electronics and Computer Architecture and Networks, University
of Cádiz, 11519 Cádiz, Spain; pedromanuel.martinez@uca.es

2 Department of Statistic and Operations Research, University of Cádiz, 11510 Cádiz, Spain;
alfonsojose.bello@uca.es (A.J.B.); alberto.sanchez@uca.es (A.S.-A.)

* Correspondence: diego.lerida@uca.es

Abstract: Good air quality is essential for both human beings and the environment in general. The
three most harmful air pollutants are nitrogen dioxide (NO2), ozone (O3) and particulate matter.
Due to the high cost of monitoring stations, few examples of this type of infrastructure exist, and the
use of low-cost sensors could help in air quality monitoring. The cost of metal-oxide sensors (MOS)
is usually below EUR 10 and they maintain small dimensions, but their use in air quality monitoring
is only valid through an exhaustive calibration process and subsequent precision analysis. We
present an on-field calibration technique, based on the least squares method, to fit regression models
for low-cost MOS sensors, one that has two main advantages: it can be easily applied by non-expert
operators, and it can be used even with only a small amount of calibration data. In addition, the
proposed method is adaptive, and the calibration can be refined as more data becomes available.
We apply and evaluate the technique with a real dataset from a particular area in the south of Spain
(Granada city). The evaluation results show that, despite the simplicity of the technique and the
low quantity of data, the accuracy obtained with the low-cost MOS sensors is high enough to be
used for air quality monitoring.

Keywords: air quality; metal-oxide sensor; monitoring; multivariable regression models;
model calibration

1. Introduction

Good air quality is essential for both humanity and the natural environment. Eco-
nomic activities such as energy production, industry and agriculture, as well as the
dramatic rise in traffic, release air pollutants into the environment that can lead to serious
problems for our health [1]. In fact, the poor quality of air is the cause of more than
400,000 premature deaths in Europe each year, as well as a decrease in quality of life by
causing or exacerbating asthma and respiratory problems [2,3].

There are several pollutants involved in air quality characterization, such as SOx, CO,
NOx, O3, or particulate matter pollution [4,5]. From all of them, three of the most harmful
air pollutants, in terms of damage to ecosystems, are nitrogen dioxide (NO2), ozone
(O3) and particulate matter (specifically PM2.5, which is directly related to traffic) [6–9].
Thus, it is very important to monitor and analyze these elements in the air, especially in
towns and cities, in order to detect dangerously high levels and take actions to reduce
pollution [10,11].

In this regard, several agencies around the world are responsible for the air quality
monitoring of their corresponding regions, such as the European Environment Agency
(EEA) in Europe, or the Environmental Protection Agency (EPA) in the United States. Their
data give relevant and reliable information to policymaking agents [12]. In particular, the
use of air quality models to assess the potential changes in urban air quality concentrations
is a fundamental element of air quality management. In this type of modeling, the
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input data require high spatio-temporal resolution to capture the variability in the urban
environment. However, one of the main technical difficulties nowadays is the lack, or low
quality, of input data on concentrations [13]. Due to the high cost of monitoring stations,
only a few examples of this type of infrastructure have been deployed in cities, providing
limited spatial coverage [14].

In order to address this problem, recent environmental agencies’ reports suggest that
cities should participate in the input data acquisition, complementing official monitoring
data with additional measurements of local air quality [13]. In this sense, the cities are
increasingly aware of the potential for low-cost ‘citizen science’ sensors to help support the
results of their air quality modeling [15,16]. These sensors offer air pollution monitoring
at a lower cost and smaller size than conventional methods, making it possible for them
to be installed in many more locations [17–19]. However, the accuracy of input data in
air quality modeling is as important as the quantity of measures. Thus, the use of citizen
science and citizen participation in air quality monitoring by means of these low-cost
sensors is only feasible if they can provide accurate information [20,21].

Currently, the three most popular types of low-cost air quality sensors are elec-
trochemical sensors (EC), metal-oxide sensors (MOS) and photoionization detectors
(PID) [22,23]. Since the objective is to achieve the widest possible distribution of air
monitoring sensors in cities, their price is an essential factor. In this sense, the cost of EC
and PID sensors is prohibitive for most consumers (they can cost more than EUR 100). On
the contrary, the cost of MOS sensors, which are usually below EUR 10, as well as their
small dimensions, make them an excellent option for use by citizens [24,25]. However, it
should be noticed that, in air quality monitoring, the pollutant concentration that sensors
should capture is usually very small: in the order of parts per billion (ppb) or “μg/m3”. In
this sense, the World Health Organization (WHO) casts some doubts on the reliability of
low-cost sensors when the calibration methods provided by manufacturers are employed,
because these methods may be questionable regarding very low concentrations [26]. Thus,
the WHO, as well as the EEA [10], only recommends the use of these devices for air
quality monitoring through an exhaustive calibration process and subsequent precision
analysis [27,28].

In most of the works in the literature, sensor calibration is performed under labora-
tory conditions [29–31]. In this type of approach, controlled environments are created by
injecting known concentrations of the specific pollutants to be measured. However, in
these ideal laboratory conditions, other variables that are present in real environments
are not taken into account. On the one hand, there could be particles of other components
that are different from the pollutants to be measured in the specific region where the
sensors should be used which are not considered in a laboratory. On the other hand, al-
though other environmental factors in the specific region can be simulated in a laboratory,
such as the temperature and relative humidity of the air, they may differ from the actual
conditions [32].

In order to face these problems, several on-field calibration techniques have been pro-
posed in the literature [33–36], which are based on the data obtained from the monitoring
stations of the regional government agencies. This way, sensors are calibrated using the
specific environmental conditions of the region where they will be used, and are, therefore,
adapted to its temperature, humidity and air composition. In most of these works, the
proposed calibration techniques are complex and not very intuitive, and they are applied
by experts in the field. In addition, in those studies, a large amount of calibration data
is available from sensors, since they have been placed close to the reference monitoring
stations for long periods of time. However, we should remember that the objective of
these low-cost sensors is the use of citizen science and citizen participation in air quality
monitoring. Thus, in real situations, the sensors will be calibrated by field workers who
are usually not so expert in applying complex techniques, and the available data for
calibration may be limited, since locations close to monitoring stations cannot be used for
long periods of time.
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In this work, we present an on-field calibration technique for low-cost MOS sensors
that tries to solve both problems commented on above: it can be easily applied by non-
expert operators, and it can be used even with only a small amount of calibration data.
The proposed technique is based on the well-known regression analysis tool [37–39],
which is widely used for data modeling in a great variety of fields. In our approach,
we have studied the different kinds of regression techniques in the literature, and we
have selected the most appropriate one, taking into account the number of independent
variables, the type of dependent variables and the shape of the regression curve. We
apply and evaluate this technique with a real dataset from a particular area in the south of
Spain (Granada city). The training and test data were used to fit and validate the model,
respectively, using the R software [40]. The evaluation results show that, despite the
simplicity of the technique and the low quantity of data, the accuracy obtained with the
low-cost MOS sensors is high enough to be used for air quality monitoring. In addition,
the proposed method is adaptive, in the sense that the calibration can be refined as more
data become available.

The rest of the paper is organized as follows. In Section 2, we briefly present the
sensors that are usually employed to measure the air pollutant concentrations, giving
more details to the low-cost MOS used in this work, we describe and analyze the dataset
used to validate the calibration technique, and we explain the calibration methodology.
In Section 3, we apply this methodology to fit the pollutant concentrations corresponding
to ozone (O3), nitrogen dioxide (NO2) and carbon monoxide (CO). The obtained results
are statistically studied and discussed in Section 4, while Section 5 contains the main
conclusions of this paper.

2. Material and Methods

2.1. Sensors

Before going into details about the sensors used in this work to measure air pollutant
concentrations, we should clarify that the unit selected to express these concentrations
will be “μg/m3” because this is the form used by the European Commission for regulation
in the European framework.

The European air quality standards set by the Ambient Air Quality Directive (EU,
2008) for the protection of human health [41], the air quality guidelines (AQGs) set by the
World Health Organization (WHO) [42], and their subsequent revisions, define several
aspects of values for the different pollutants, like typical qualitative levels, the averaging
period, the time by which limit values can be overcome in a year, or alert values. In Spain,
there are certain laws that refer to these standards; the most recent of their revisions were
passed on 28 January 2011 in the form of the directive RD102/2011. Table 1 shows some
of its aspects.

Table 1. Qualitative levels as referred to for the quantitative levels of each pollutant, and the averaging period used in each
of them, following the European EEA standards.

Qualitative
Index

SO2 μg/m3

(24 h Average
Value)

O3 μg/m3

(8 h Average
Value)

NO2 μg/m3

(1 h Average
Value)

CO μg/m3

(8 h Measured
Value)

PM10 μg/m3

(24 h Measured
Value)

Good 0–63 0–60 0–100 0–5000 0–25
Moderate 63–125 60–120 100–200 5000–10,000 25–50

Poor 125–187 120–180 200–300 10,000–15,000 50–75
Very Poor >187 >180 >300 >15,000 >75

As mentioned in Section 1, in this study we have proposed the use of MOS sensors,
since they are the most accessible to users from an economic point of view. These sensors
are composed of a semiconductor layer, generally, tin dioxide (SnO2), which makes them
especially sensitive to other oxides, and, by controlling the doping of the semiconductor,
it is possible to make the material more sensitive to certain parameters. Therefore, when
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there are higher concentrations of these parameters in sampled air, the conductivity of
this layer changes its values. It is worth mentioning that this conductivity keeps a direct
relation with temperature, and, in general terms, they change in a proportional form. In
addition, it should be noticed that, after a certain temperature, the sensibility to target
gases can decrease, negatively affecting the quality of sensor detection. To take advantage
of this property, electrodes are inserted into the detection layer of the sensor in order to
increase its temperature in a controlled way (by using a heating circuit, such as a voltage
divider with resistors) [43–45].

In particular, the MOS sensors used in this work are the ones incorporated in the de-
vices developed in the “EcoBici (Kers bike)” research project (file number G-GI3002/IDIC)
which resulted in a patented invention, application number P201600319 and publication
number ES2638715 [46]. These devices were designed to take air quality values, accu-
mulating the data and being able to configure the time in which the averages are sent
to a web server, in real time, through the deployment of a sensor network using XBee
technology (protocol ZigBee). The parameters measured by these devices are CO, O3
and NO2. It should be noticed that these sensors are non-specific sensors since they can
measure other gases apart from the main gas [43], but these secondary gases are not
those considered in this paper. It is worth mentioning that O3 and NO2 are linked by the
Leighton relationship. Nevertheless, the proposed methodology is not affected by this
relationship since it is already considered in the parameter estimation.

For the calibration tests, the devices were adapted to send the temporal average
of the three parameters every 10 min in order to be synchronized with the calibration
equipment. Figure 1 shows the three sensors incorporated in EcoBici end devices, which
include an MQ-7 sensor for CO measuring [43], an MQ-131 sensor for O3 [44] and an
MiCS-2714 sensor for NO2 [45].

Figure 1. Telemetering devices from the EcoBici project.

The concentration values given by the curves in datasheets [43–45] are much higher
than the values that should be measured in terms of air quality. Although some of the
sensor manufacturers guarantee that the device is able to detect the presence of gas at
tens of ppb, our own experience can confirm the information from the WMO, cited in
Section 1, and discourage the use of these curves for low concentrations.

In order to carry out the measurement campaign for field calibration, we used
the highly sophisticated equipment located in the sampling stations belonging to the
Environment Council of the Andalusian government. In these sampling stations, which
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are mostly composed of measurement analyzers, the pollutant concentrations are taken
continuously, 24 h/day, 365 days per year, except for breakdowns. The cost of this type of
equipment generally exceeds the barrier of EUR 10,000, and it is used to analyze a single
parameter. It should be noted that each autonomous community or region has its own
criteria to collect the data. In the case of Andalusia, the analyzers used in their stations
take a sample of the ambient air, previously conditioned and homogenized, and analyze
it in periods ranging from 10 s to 10 min, depending on the pollutant to be analyzed. This
information is averaged in 10 min periods, stored and published by the Spanish Ministry
of Air Quality [47], and on the Andalusian Council website (available from the following
day) [48].

In order to select the most suitable sampling stations for calibration campaigns,
several factors should be taken into account, such as the latest calibration reviews of the
station, accessibility, and measurements range obtained of the different parameters in the
station in several days. Regarding the data range, it is highly important to choose a station
that can provide a wide range of values in the different parameters to be calibrated. For
example, if a station where quantitative O3 values do not exceed 50 ppb after several days
is selected, the sensor may not be properly calibrated for higher concentration values.
According to this criterion, a station localized in Granada city was selected from more
than 100 Andalusian Council monitoring stations. Figure 2 shows a photo of the Granada
sampling station, where it is possible to identify the EcoBici devices on it, next to the
station analyzers.

 

Figure 2. Field calibration of 10 EcoBici devices on the front of an Andalusian Council sampling
station in Seville City.

Finally, it is important to take into account the particular conditions of temperature
and humidity in Granada city, since both parameters affect the best adjustment of sensors,
as will be seen in the data section. In fact, both parameters were requested by the agency
in charge of the sampling station after the measurement campaign. In any case, if these
data could not be obtained from the corresponding agency, another option would be to
place temperature and humidity sensors in the devices.

2.2. Description of Dataset

The real dataset of the work in the present paper involves measurements, taken
by both analyzers and sensors, of three particular gaseous pollutants: ozone, nitrogen
dioxide and carbon monoxide, in addition to temperature and humidity measurements
by the agency. The observations are collected in 490 registers which were taken from
midnight, 00:00 h, 08/05/2016 until 09:30 h, 11/05/2016, at a ten-minute frequency. The
respective pollutant variables corresponding to the analyzers, from now on also called
patterns, have been denoted as “O3”, “NO2” and “CO”, the respective pollutant variables
corresponding to the sensors as “O3s”, “NO2s” and “COs”, the temperature variable as
“temp”, and the humidity variable as “hum”. To obtain a better fit of the models, we
have added a new variable, called “COsR”, which is a version of COs without trend. The
rectified COsR time series has been obtained by the ratio of the sensor values and its
adjusted least squares regression line. Moreover, we have translated the time series to the
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sensor range modifying the scale. Therefore, finally, we count 9 variables of work in the
dataset: temp, hum, O3, NO2, CO, O3s, NO2s, COs and COsR.

The following sections show how to predict the pattern values for the gaseous
pollutants O3, NO2 and CO, applying multivariable regression models and selecting the
best fit by using the measurements of the sensors, O3s, NO2s and COs, and the values of
temperature and humidity. That is, a general expression of the model would be:

Y = f(X1, X2, . . . , X5), (1)

where Y represents the pattern values, (X1, X2, . . . , X5) represent the measurements of
the sensors and the temperature and humidity values, and f represents the convenient
functional form of the model.

2.3. Methodology

The prediction and model assessment (or validation) are closely related to each other.
Particularly, in our task, several models have been considered, of which, those that we
have observed to best fit in each case will be analyzed and presented. It is important to
mention that, although we have considered different more complex functional forms for
the regression models, they have not managed to significantly improve the fits obtained
by simple multilinear regression models in all cases. Therefore, the expression of the
model used for the fit takes the form:

Y = α0 + α1 X1 + α2 X2 + α3 X3 + α4 X4 + α5 X5, (2)

where αi ∈ R, for i = 0,1, . . . ,5, are the independent term and the contribution of the
variables Xi in the model. Both fitting to a dataset and choosing the best multilinear
regression model can be easily done using the lm and step functions from the R stats
package (there are many works on the internet that show how to do it, such as [49,50]).

In order to evaluate the best fitting model, we have performed the following method.
We have split the sample into two disjoint subsets to estimate the prediction error, treating
one subset as the training set and the other as the test set (split by vertical lines in
Figures 3 and 4). We used the training set to regress each gaseous pollutant on the rest
of the variables. Afterward, we predicted a new gaseous pollutant value by applying
the fitted model to the new values of the test set. The prediction was compared with the
real response value and the prediction ability of the regression model. This provided
a measure for the quality of the prediction, which was evaluated by its mean squared
prediction error.

(a) (b) 

Figure 3. Cont.
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(c) (d) 

Figure 3. (a–d) Plots of the evolution over time of the indicated gaseous pollutants in black lines for
the patterns and in blue lines for the sensors (and for the transformation of the variable COs, COsR).
Each vertical line separates the training dataset (on the left) from the test dataset (on the right).

 
(a) (b) 

Figure 4. (a) The red line corresponds with the evolution over time of the temperature; (b) the blue
line corresponds with the evolution in time of the humidity. Each vertical line separates the training
dataset (on the left) from the test dataset (on the right).

Training and Test Sets

The methodology applied for each pollutant is similar. Firstly, we evaluate the
different regression models using the dataset with all records and choose the one that best
fits. Secondly, in order to perform a prediction test, we divide the whole dataset into two
subsets: the training dataset and the test dataset.

The training dataset contained the measurements corresponding to the period from
00:00 h on 08/05/2016 until 08:00 h on 10/05/2016. Thirdly, using this subset, we fit the
regression model chosen by fixing the coefficients of the model using the least squares
method. The test dataset contained the measurements corresponding to the period from
08:10 h on 10/05/2016 until 09:30 h on 11/05/2016. It is important to mention that
the test dataset contained an entire daily cycle, which let us include the possible daily
periodicities. Fourthly, with the regression model fitted in the previous phase, we obtain
the predictions for the test dataset and compare the results with respect to the pattern
values of the test dataset.

3. Results

3.1. Analysis of Dataset

We can observe in Figure 3a that, in a different proportion, the evolution over time
of the measurements taken by the sensor for nitrogen dioxide is closely related and also
directly to the pattern values. In addition, in the same sense, we can observe in Figure
3b that there is a high association between ozone measurements, but in this case with
an inverse relationship. The previous observations are supported by the correlation
coefficients: ρ(O3,O3s) = −0.8227, ρ(NO2,NO2s) = 0.6118.

In Figure 3c, we do not observe the existence of an evident relationship between the
carbon monoxide measurements captured by the sensor and its corresponding pattern
values. In addition, ρ(CO,COs) = −0.3735, which is a low correlation. In line with
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COs, it is possible to appreciate the existence of a decreasing trend in concentration
over time that does not exist in the pattern values curve. In order to better visualize
any relationship, we have decided to eliminate the slope of the curve, creating the new
variable COsR. However, as we can see in Figure 3d, there is still no evidence of any
relationship after removing the slope, and, in this case, an even lower correlation is
obtained (ρ(CO,COsR) = −0.1467). We kept the variable COsR in the dataset because the
results in the model-fitting work improved.

3.2. Fitting Ozone
3.2.1. Selection of the Model

In the case of ozone, first, we considered a multilinear regression model with different
combinations among the measurements of the sensors for O3s, NO2s and COs, in addition
to the temperature and humidity measurements. Afterward, we chose the measures of
COs instead of its version without a decreasing trend, COsR, obtaining a better adjustment
and results. In particular, the model that best fits is:

O3 = α0 + α1 COsR + α2 NO2s + α3 O3s + α4 temp + α5 hum, (3)

where αi ∈ R, for i = 0,1, . . . ,5.
Adjusting the model by the least squares method to the dataset with all records,

we obtain the αi values contained in Table 2. We observed that all variables considered
were significant for the model. In addition, we know that the model manages to explain
75.08% of the total variability of O3, and the predictions of the model have a correlation
of 0.8665 with the measures of the O3 pattern. In the left plot of Figure 5, we compared
the values predicted by the model with the measurements of the O3 pattern. We can see
in the histogram of the net prediction errors of the model that visually these do not differ
too much from adjusting to a normal distribution (although the normality hypothesis was
rejected when the Shapiro–Wilk test was applied).

Table 2. The table contains the summary of the model described in Equation (3), adjusted to the
dataset with all records. We can see the estimated values and the standard errors of the coefficients,
the test statistics and p-values of their significance tests (for i = 0,1, . . . ,5, the null hypothesis is
αi = 0), the statistics of the residuals and the goodness of fit.

Coefficients Estimate Std. Error t Value p-Value

α0 −406.43899 54.43049 −7.467 3.85 × 10−13

α1 0.66569 0.07036 9.461 <2 × 10−16

α2 0.09424 0.02109 4.468 9.82 × 10−6

α3 −0.56357 0.03175 −17.752 <2 × 10−16

α4 −1.01488 0.31333 −3.239 0.00128
α5 −0.44478 0.07294 −6.098 2.20 × 10−9

Residuals:
Min 1Q Median 3Q Max

−31.110 −5.171 1.232 6.224 30.671

R-squared: 0.7508
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(a) (b) 

Figure 5. (a) The fitted values by the model and the pattern values for ozone; (b) the histogram of the net prediction errors
of the model.

3.2.2. Evaluation of the Selected Model

Now, adjusting the model by the least squares method to the training dataset, we
obtain the αi values contained in Table 3. We can see that all variables considered in the
model are significant and that it manages to explain 71.27% of the total variability of
O3 for the training dataset. In Figure 6, for the test dataset, we can compare the values
predicted by the model with the measurements of the O3 pattern and, in the histogram
of the net prediction errors of the model, we can observe that these do not differ from a
normal distribution. In addition, applying the Shapiro–Wilk test, we obtain a p-value of
0.4424, being able to consider the net prediction errors as normal, with mean μ = −4.2807
and standard deviation σ = 10.8789. The predictions of the model have a correlation of
0.8824 with the measures of the O3 pattern for the test dataset.

Table 3. The table contains the summary of the model described in Equation (3), adjusted to the
training dataset.

Coefficients Estimate Std. Error t Value p-Value

α0 −413.68158 69.18787 −5.979 5.81 × 10−9

α1 0.69410 0.08865 7.830 6.68 × 10−14

α2 0.10644 0.02793 3.812 0.000165
α3 −0.61144 0.04218 −14.497 <2 × 10−16

α4 −1.99947 0.42228 −4.735 3.25 × 10−6

α5 −0.43273 0.08206 −5.274 2.42 × 10−7

Residuals:
Min 1Q Median 3Q Max

−32.143 −4.406 1.603 5.626 19.206

R-squared: 0.7127
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(a) (b) 

Figure 6. Both graphs with the test dataset. (a) The fitted values by the model and the pattern values for ozone; (b) the
histogram of the net prediction errors of the model.

3.3. Fitting Nitrogen Dioxide

As in the ozone case, firstly we have selected the best fit for nitrogen dioxide, which
corresponds to the following multilinear regression model:

NO2 = α0 + α1 COs + α2 NO2s + α3 O3s + α4 temp + α5 hum, (4)

where αi ∈ R, for i = 0,1, . . . ,5.
In Table A1 we can see the αi values when we fit the model to the dataset with all

records. It can also be seen that all variables are significant for the model, and that the
model manages to explain 68.10% of the total variability of NO2. The model predictions
have a correlation of 0.8252 with the NO2 pattern. In Figure A1, it is possible to compare
the NO2 values predicted by the model with those of the pattern and the histogram of
the net prediction errors of the model, which do not differ too much from adjusting to a
normal distribution.

To evaluate the chosen model, it was adjusted to the training dataset, obtaining the
αi values contained in Table A2. In this case, all variables considered are also significant
and it managed to explain 65.55% of the total variability of NO2. In Figure A2, for the test
dataset, we can see the NO2 values predicted by the model, and in the histogram of the
net prediction errors of the model, we can see that they also did not differ from a normal
distribution. The predictions of the model had a correlation of 0.8301 with the measures
of the NO2 pattern for the test dataset.

3.4. Fitting Carbon Monoxide

The selected model for carbon monoxide has the following expression:

CO = α0 + α1 COsR + α2 NO2s + α3 O3s + α4 temp + α5 hum, (5)

where αi ∈ R, for i = 0,1, . . . ,5.
In this case, adjusting the model to the dataset with all records, the model explains

57.93% of the total variability of CO, and the corresponding predictions have a correlation
of 0.7611 with the CO pattern. In Table A3 we can see the αi values that were obtained, all
variables being significant. We can also see the predictions of the model and the histogram
of its net prediction errors in Figure A3.

Regarding the evaluation of the selected model, once it was adjusted to the training
dataset, it explained 47.49% of the total variability and its predictions had a correlation of
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0.7769 with the CO pattern. All variables considered are significant for the model, as we
can see in Table A4, in addition to the values of the coefficients. In Figure A4, for the test
dataset, we can observe the CO values predicted by the model and the histogram of the
net prediction errors of the model, which do not differ from a normal distribution.

4. Discussion

We observed that all the models generated overcame the global significance contrasts
(p-values < 0.01) and almost all the individual significance contrasts. In particular, the
p-values of NO2s from Tables A3 and A4 show that the null hypothesis cannot be rejected
by 10% of the significance level (0.09886 and 0.15552, respectively), the reason why the
coefficient of NO2s in the model of CO is statistically equal to 0. Nevertheless, when this
variable is removed from the model, although it simplifies it, neither the adjustment nor
the prediction improves. Furthermore, an extension of the dataset will induce the NO2
sensor to have a higher influence in the model, providing a better fit for them, as happens
with the other pollutants. For this reason, we decided to keep this variable in the model.

Focusing on ozone measurements, and considering all the datasets, the model ob-
tained explains 75.08% of the variability of the data (R-squared), leaving less than 25%
to the residuals. We also observed a high direct correlation (0.8665) with the measures
of this pollutant pattern. This coefficient indicated a good correspondence between the
observations and the predictions of this sensor. Moreover, the histogram of the prediction
errors was not normally distributed (Shapiro–Wilk test rejected), although we observed a
rough 0 symmetry distribution (Figure 5b).

Nevertheless, when we consider the training dataset for this pollutant, the least
square model when adjusted has a lower value of R-squared (71.27%), although it is close
to the previous goodness of fit. In this case, the model overcomes the Shapiro–Wilk test on
the prediction errors (they follow a normal distribution n(−4.28;10.88), p-value = 0.4424).
It can be seen that 95% of the central prediction errors are between −23 and 12.2 μg/m3

with a median of −4.2 μg/m3. The interquartile range is 13.1 μg/m3. In the boxplot
shown in Figure 7a, we observe only 3 outlier values from 337 data points. In Figure 7b,
the theoretical normal quantiles, compared to prediction errors, display a good agreement
in the central quantiles (points near the straight blue line).

(a) (b) 

Figure 7. (a) Boxplot of O3 prediction errors; (b) theoretical normal quantiles compared to prediction er-
rors.

In the case of nitrogen dioxide, we observed that the model obtained explained
68.10% of the variability with a 0.8252 correlation with the NO2 pattern. The prediction
errors histogram has a slight right asymmetry, although it does not differ excessively
from a normal distribution (Figure A1b). Focusing on the training data, we observed a
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similar value of R-squared (65.55%), and the prediction errors were distributed with the
same right asymmetry as before. The mean value of the prediction errors was negative
(−11.5 μg/m3), with a standard deviation of 12.14 μg/m3. These values indicated that the
prediction values were greater than the real values, so the model overestimated the NO2
values. The asymmetric coefficient is 0.4292, so the distribution shows a right asymmetry
with more concentration of negative values of the prediction errors. This bias also shows
that the model was overestimating the pattern value measures. We found that 95% of
the central prediction errors are between −28.3 and 9.1 μg/m3 with a median of −12.6
μg/m3. The interquartile range is 16.2 μg/m3. Figure 8a shows the rough symmetry
of the NO2 distribution and Figure 8b presents the deviation of the theoretical normal
quantities and the NO2 prediction errors.

(a) (b) 

Figure 8. (a) Boxplot of NO2 prediction errors; (b) theoretical normal quantiles compared to
prediction errors.

Regarding the carbon monoxide values, we needed to use the detrended measures
of the CO sensor (COs) because the fit is better than COsR. In this case, the variability
explained is lower (57.93%) regarding all the data, dropping to 47.49% of the total variabil-
ity considering the training dataset. Clearly, the distribution of the prediction errors did
not follow a normal distribution, with a strong right asymmetry with some values well
over 100 μg/m3 (asymmetric coefficient: 1.4045). The mean value is 29.84 μg/m3 with
a standard deviation of 55.51 μg/m3. These values indicate that the prediction values
were lower than the real ones, so the model underestimated the CO values. Clearly,
the adjustment of CO was not as good as the fit of the other pollutants, even after the
detrending process. We found that 95% of the central prediction errors were between
−34.3 and 164.5 μg/m3, with a median of −17.5 μg/m3. The interquartile range is also
the highest one, with 53 μg/m3. Figure 9a shows the clear right asymmetry of the CO
distribution and Figure 9b presents the deviation of the theoretical normal quantities and
the CO prediction errors.
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(a) (b) 

Figure 9. (a) Boxplot of CO prediction errors; (b) theoretical normal quantiles compared to
prediction errors.

5. Conclusions

In this paper, we present an on-field calibration technique for low-cost MOS sensors,
using an adaptive method based on multivariate regression and rigorous statistical
analysis. The results show a good adjustment with, at worst, almost 50% of the variability
explained by the model. In particular, we found 71.27%, 65.55% and 47.49% of the
variability explained for O3, NO2 and CO, respectively. Considering the short time
interval used to estimate the model (less than 2.5 days), and achieving these adjustment
values, it is expected that expanding the time series would improve the results.

In the case of O3, we obtained the best fit. Ozone prediction errors followed a
symmetrical distribution with no bias (the Shapiro–Wilks normality test passed 95%
confidence). On the other hand, the NO2 and CO prediction errors distribution had a
right symmetry, which indicates a greater tail of the distribution in positive values. In
these pollutants, the prediction values are generally overestimated with respect to the
pattern ones. Overall, we observed a better quality on the fit with higher data.

We observed that the values of CO have the worst fit, which affected the R-squared
with the variables considered. To model it, we needed to detrend the sensor measures of
monoxide to include them in the calculus. Despite that, the prediction errors were greater
than the others, with an average of 29 μg/m3 and a marked right bias. We consider that
this lack of adjustment in CO was caused by the high time of response of the sensor, the
daily variability of this pollutant and the short time interval. Although its calibration may
be improved using other more complex models, we consider that for a first approach, the
linear multivariate regression is the best-balanced model.

Despite the limitations of the sensors and the dataset used, we obtained a good
fit of these gaseous pollutants with respect to the values of the analyzers, while using
measurements obtained with low-cost MOS sensors. After the application of our method-
ology, we observed that the O3 and NO2 adjusted parameters can be used to give reliable
information to citizens and could be used by government agencies for policymaking.

In future works, we will explore other and more complex statistical modeling to
enhance the results. We will also verify the possibility of calibrating other MOS sensors
through the use of sensors calibrated with the proposed methodology, instead of using
control stations. In addition, two of the main disadvantages of the MQ-7 sensor are the
delay in the response of the measure and the discontinuous operation mode. In relation to
the delay, this is due to the fact that it was designed to measure in ranges 100 times greater
than those measured in air quality. Nowadays, new CO sensors working in continuous
mode, with the capacity for measuring lower concentrations, has emerged, and these will
be considered to replace MQ-7 sensors in future experiments.
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Appendix A

This section contains tables and figures that complement Sections 3.3 and 3.4.

Table A1. The table contains the summary of the model described in Equation (4) adjusted to the
dataset with all records.

Coefficients Estimate Std. Error t Value p-Value

α0 205.52408 13.85254 14.837 <2 × 10−16

α1 −0.38428 0.02208 −17.402 <2 × 10−16

α2 −0.10342 0.02386 −4.335 0.000017738
α3 0.48487 0.03688 13.146 <2 × 10−16

α4 4.89923 0.43472 11.270 <2 × 10−16

α5 0.41505 0.07775 5.338 0.000000144
Residuals:

Min 1Q Median 3Q Max
−29.964 −7.158 −1.064 5.946 45.364

R-squared: 0.681

Table A2. The table contains the summary of the model described in Equation (4) adjusted to the
training dataset.

Coefficients Estimate Std. Error t Value p-Value

α0 306.28198 23.25716 13.169 <2 × 10−16

α1 −0.56296 0.03834 −14.685 <2 × 10−16

α2 −0.12499 0.02869 −4.357 1.76 × 10−5

α3 0.53380 0.04452 11.989 <2 × 10−16

α4 6.29591 0.55686 11.306 <2 × 10−16

α5 0.72325 0.09612 7.525 5.04 × 10−13

Residuals:
Min 1Q Median 3Q Max

−25.390 −6.507 −0.237 5.456 40.765

R-squared: 0.6555
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(a) (b) 

Figure A1. (a) The fitted values by the model and the pattern values for nitrogen dioxide; (b) the
histogram of the net prediction errors of the model.

 
(a) (b) 

Figure A2. Both graphs with the test dataset. (a) The fitted values by the model and the pattern
values for nitrogen dioxide; (b) the histogram of the net prediction errors of the model.

Table A3. The table contains the summary of the model described in Equation (5) adjusted to the
dataset with all records.

Coefficients Estimate Std. Error t Value p-Value

α0 3604.9455 261.9849 13.760 <2 × 10−16

α1 −4.4098 0.3387 −13.021 <2 × 10−16

α2 0.1679 0.1015 1.654 0.09886
α3 1.1791 0.1528 7.716 6.90 × 10−14

α4 4.5623 1.5081 3.025 0.00262
α5 1.6188 0.3511 4.611 5.13 × 10−6

Residuals:
Min 1Q Median 3Q Max

−132.41 −26.88 −3.60 25.60 210.30

R-squared: 0.5793
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(a) (b) 

Figure A3. (a) The fitted values by the model and the pattern values for carbon monoxide; (b) the
histogram of the net prediction errors of the model.

 
(a) (b) 

Figure A4. Both graphs with the test dataset. (a) The fitted values by the model and the pattern
values for carbon monoxide; (b) the histogram of the net prediction errors of the model.

Table A4. The table contains the summary of the model described in Equation (5) adjusted to the
training dataset.

Coefficients Estimate Std. Error t Value p-Value

α0 4077.0760 321.4378 12.684 <2 × 10−16

α1 −5.0366 0.4119 −12.229 <2 × 10−16

α2 0.1847 0.1297 1.424 0.15552
α3 0.8636 0.1959 4.407 0.00001417
α4 6.0151 1.9619 3.066 0.00235
α5 2.0935 0.3812 5.492 0.00000008

Residuals:
Min 1Q Median 3Q Max

−72.537 −27.893 −3.568 22.071 224.530

R-squared: 0.4749
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Abstract: In this paper, we present a detailed analysis of the public data provided by low-cost
sensors (LCS), which were used for spatial and temporal studies of air quality in Krakow. A PM
(particulate matter) dataset was obtained in spring in 2021, during which a fairly strict lockdown
was in force as a result of COVID-19. Therefore, we were able to separate the effect of solid fuel
heating from other sources of background pollution, mainly caused by urban transport. Moreover,
we analyzed the historical data of PM2.5 from 2010 to 2019 to show the effect of grassroots efforts
and pro-clean-air legislation changes in Krakow. We designed a unique workflow with a time-
spatial analysis of PM1, PM2.5, and PM10, and temperature data from Airly(c) sensors located in
Krakow and its surroundings. Using geostatistical methods, we showed that Krakow’s neighboring
cities are the main sources of air pollution from solid fuel heating in the city. Additionally, we
showed that the changes in the law in Krakow significantly reduced the PM concentration as
compared to neighboring municipalities without a fossil fuel prohibition law. Moreover, our
research demonstrates that informative campaigns and education are important initiating factors in
order to bring about cleaner air in the future.

Keywords: air pollution measurements; air quality monitoring; LCS; particulate matter; air quality
in Krakow; anthropogenic emission; spatio-temporal geostatistics; fossil fuels

1. Introduction

Air pollution is a major problem for modern society. Research shows that PM expo-
sure is responsible for over 7% of deaths and more than 4% of disabilities globally [1].
Health problems can be related to short-term and long-term exposure [2]. Short-term
exposure can cause asthma [3], high blood pressure, myocardial infarction, and even
death, as a result of damage to the respiratory or cardiovascular systems [4,5]. Long-
term exposure may contribute to the development of diseases such as lung cancer [6],
pneumonia [7], crescendo angina (a type of acute coronary syndrome) [8], chronic ob-
structive pulmonary disease [9], and it can be even responsible for low birth weight [10].
It was observed that PM exposure is also a factor for certain neurological diseases such as
Parkinson’s and Alzheimer’s disease [11].

Suburbanization and the fast-growing urban population have caused an increased
demand for heating. This is particularly apparent from the beginning of autumn until
the end of spring in Central Europe. The geographical location of the city of Krakow
(Poland), which is situated in the Vistula River valley, and the local weather conditions
favor the accumulation of pollutants in the city [12]. For years, Krakow has had a bad
reputation for significantly exceeding the norms for the concentration of particulate matter
in the air (the 8th worst city in the European Union (EU) according to the World Health
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Organization (WHO) report [13]). In 2012, the organization Krakow Smog Alert initiated
an informative campaign focused on the bad air quality in Krakow [14]. A year later,
this initiative turned into a mass social movement. The citizens of Krakow organized a
public protest in which they demanded legal changes and better air quality. By the end of
the same year, the Małopolska Voivodeship (the highest administrative region in Poland,
which is akin to a province in other countries) assembly passed a law prohibiting the use
of solid fuels for heating households. As a result of an appeal against the law, it did not
enter into force as planned in 2018. In 2015, the Małopolska Voivodeship assembly passed
another law prohibiting the use of solid fuels in Krakow that successfully entered into
force in 2019 [15]. Presently, it is prohibited to use coal, wood, or biomass in Krakow city
for central heating, any systems that emit hot air, or liquid heating installations, including
fireplaces, space heaters, stoves, etc. The regulations also include a ban on the use of coal,
wood, and biomass for food preparation. According to the new rules, gaseous fuels such
as liquefied natural gas or light heating oil are allowed.

Air monitoring in the European Union member states is regulated by the directive
2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambi-
ent air quality and cleaner air for Europe (AAQD) [16]. In the EU, air quality stations
are divided into three groups: urban traffic sites (located in urbanized areas or near
high-traffic zones), urban background sites (for general population measurements), and
regional background sites (general rural observations). According to the European Union
Commission Staff working document SWD(2019) 427 final, in 2017, there were 4332 moni-
toring stations in all member states (278 in Poland), including 3130 PM10 total sampling
points per pollutant (288 in Poland) and 1543 PM2.5 total sampling points per pollutant
(111 in Poland) [17]. Krakow is located in zone PL1201 and has a total population of
756,183 and an area of 327 km2. In zone PL1201, three automatic measurements of PM10
and PM2.5, two manual measurements for PM10, and one manual measurement for
PM2.5 are available [18]. Some of Krakow’s surrounding areas are in zone PL1203, which
is the zone for the whole Małopolska area (over 14,700 km2). In this zone, six automatic
measurements and 10 manual measurements for PM10 are available, and four manual
measurements for PM2.5 are available [19]. The reference measurements and instruments
used in Poland are described in the following documents: PN-EN 12341 (for gravimetric
measurements) and PN-EN 16450 (for automatic measurements) [20]. The current EU and
Polish standards are 25 μg/m3 (1-year averaging period) for PM2.5 concentrations, and 50
μg/m3

(24-h averaging period) and 40μg/m3 (1-year averaging period) for PM10 concentrations [21].
In general, the low-cost sensors (LCS) can be categorized into electrochemical sensors,

photoionization detectors, optical particle counters, and optical sensors. Currently, the
European Union regulation does not allow for the use of LCS for official air quality
reporting. This is related to the questionable data quality from these sensors as compared
with official gravimetric measurements. LCS measurements can be affected by many
weather-related factors; however, in well-prepared environments and stations, they can
provide a similar data quality to official government measurements [22]. In this paper, we
present research regarding the use of popular, low-cost Airly optic sensors (http://airly.eu,
accessed on 29 July 2021). These sensors were used in air quality studies in Niedzica
(Poland) [23] and for health risk research [24]. There was another evaluation of Airly
sensors in 2018 as part of the LIFE Integrated Project “Implementation of Air Quality
Plan for Małopolska Region—Małopolska in a healthy atmosphere”. Tests were performed
according to the PN-EN 12341:2014-07 and PN-EN 16450:2017-05 standards based on
an agreement concluded between the Lesser Poland Voivodeship Main Inspectorate
of Environmental Protection Provincial Inspectorate for Environmental Protection in
Krakow, AGH University of Science and Technology, and the community of Dobczyce,
in cooperation with the Krakow Smog Alert Association. The results obtained for seven
different LCS pairs of sensors (each pair produced by a different company) showed that
only Airly devices provided adequate results. After calibration, the sensors provided
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satisfactory results in relation to the reference stations [25]. The measurement quality
of the Airly sensors was also examined by AIRLAB during the Microsensors Challenge
2019, using the SET method [26]; their accuracy was 7.6 out of 10 [27]. Airly sensors were
calibrated in the laboratory before the study. Measurements from a sensor in a particular
location were assigned a dynamic calibration factor (created by machine learning (ML)
and artificial intelligence (AI) algorithms) based on the characteristics of the location.
Data are available to the public after ML/AI corrections.

Grassroots movements and local authority activities allowed for a significant im-
provement in air quality in Krakow [28]; however, air pollution problems still occur
during spring and autumn. In this paper, we investigate whether the remaining problem
seems to be mainly associated with the transport of pollutants from neighboring villages
and towns. The study presented in this paper used popular, low-cost Airly sensors (for
more details see http://airly.eu, accessed on 29 July 2021) to analyze whether there was a
transmission of pollutants from neighboring areas to the city of Krakow in spring 2021.
The impact of air pollution on human health (2005–2020) in the city of Krakow is well
described by Bokwa [29] and by Traczyk and Gruszecka-Kosowska [12]. Our research
focuses on the spatial-temporal analysis of the PM1, PM2.5, and PM10 contents obtained
from approximately 100 Airly sensors (data available from: https://map.airly.org/ [30],
accessed on 29 July 2021) located in Krakow and its surroundings. As a result of the
COVID-19 pandemic, it was possible to study the effect of heating with the use of solid
fuel more precisely, because of the limited traffic as compared to regular years. Research
carried out by the Department of the City Traffic Engineer shows that the traffic volume
during the coronavirus pandemic (at the 15 main city intersections) was as much as 40%
lower as compared to pre-pandemic years [31]. We analyzed the changes in pollution
levels in the city center over the last 10 years and during spring in 2021 in the city and its
surroundings.

Our goals were to study:

1. The temporal and spatial distribution of air pollution in Krakow and nearby areas.
We wanted to check whether pollution from heating households with fossil fuels
in neighboring towns and villages migrates to Krakow and increases the level of
pollution in the city. Our goal was to identify the main sources of pollution in the
vicinity of Krakow and to assess the scale of the problem;

2. The effectiveness of the anti-smog policy that was gradually introduced in Krakow.
Local authorities and organizations have been working since 2011 to change the air
quality in Krakow. We wanted to study if these activities are related to changes in
the PM concentration over the years.

The 2021 spring period was exceptionally favorable for this type of research (temporal
and spatial distribution of PM). Overall, it was a period of abnormally low temperatures
for this time of year, mainly due to the polar vortex disturbances. The simultaneous influx
of cold Arctic air and the relatively large insolation caused successive periods of warmer
temperatures and significant rapid cooling. In warmer periods, the air was cleaned of
the so-called low-emission pollution, which is the main source of smog in and around
Krakow [32]. With rapid cooling, there was an abrupt increase in low emissions from
poor-quality heating systems often found outside the urban area, in a region not covered
by the pro-clean-air legislation. This significantly helped the identification of local sources
of pollution, which, in conditions of long-term, constant pollution of the environment in
winter, could be hidden by the high background level.

2. Materials and Methods

Measurements of PM1, PM2.5, and PM10 from 90 optical Airly PM Sensors were
used. Figure 1 shows the locations of the sensors used in this research. The receivers
were selected to cover both the city of Krakow and its surroundings. Airly sensors are
one of the most popular in the Krakow area and can provide a high density of spatial
data [33]. As a result of their convenience and relatively low price, they are also gaining
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popularity throughout the country [23,24] and around the world [34]. Airly sensors for
PM measurements are optical sensors that measure light scattering. The accuracy of the
results from such devices is strongly related to the physical properties of the particles,
which can vary depending on location and season [35]. The manufacturer of Airly sensor
states that the PM1 measurement range is 0–500 μg/m3 (5 μg/m3 accuracy in the range
0–100 μg/m3 and 10 μg/m3 in the range 101–500 μg/m3), and the PM2.5 and PM10
measurement range is 0–1000 μg/m3 (10 μg/m3 accuracy in the range 0–100 μg/m3,
10% in the range 101–500 μg/m3, and 20% in the range 501–1000 μg/m3). Aside from
PM concentrations, the basic Airly sensor measures pressure in hPa (in the range 700–
1200 hPa, with an accuracy of 1 hPa), the temperature in ◦C (in the range −40–80 ◦C, with
an accuracy of 0.5 ◦C), and the humidity (in the range 0–100%, with an accuracy of 3%).
The smallest measurement interval is 5 minutes. The samples are sent to the database via
GSM protocol and are available from the Airly website or API. Sensors can use a solar
power supply [36].

Figure 1. Locations of the Airly sensors used in the research (red dots) with the names of cities,
towns, and villages in which they are located.

PM2.5 concentration data from the last 10 years (2010–2019) were used to determine
trends using the Seasonal and Trend Decomposition with Loess method (STL), which
was introduced by Cleveland et al. [37]. Raw data are difficult to interpret directly as,
on certain days, there may be abnormally high PM concentration values. Unprocessed
identification of such data does not necessarily translate into the general trend. Standard
trend estimation methods (linear, polynomial, running average, etc.) can lead to incorrect
conclusions as a result of not including seasonality or nonlinear relations. STL allows
for data decomposition into trend, seasonal cycle, and even reminder component, which
includes unusual data observations. The use of targeted data processing techniques
can significantly improve data interpretation [38,39]. Data came from the Polish Chief
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Inspectorate For Environmental Protection database [40]. These data came from one
to three sensors located in the city center. In the years in which more than one sensor
was available, the results were averaged; the data for days in which no reading was
available were recovered by linear interpolation. The major law changes were highlighted,
beginning in 2012, when Krakow Smog Alert initiated an informative campaign. In 2013,
grassroots civil demonstrations and protests occurred. This was the beginning of various
similar events in Krakow. Thanks to public involvement and the actions of the authorities,
it was possible to enforce a law prohibiting the use of solid fuels for heating. Unfortunately,
the law was successfully challenged. Thanks to Environmental Law changes in Poland in
2015, it was possible to pass a second law prohibiting the use of solid fuels in Krakow in
2016 [41], which, after the adaptation period, went fully into force in 2019. During this
period, various other changes were conducted to Polish regulations, including changing
the emission norms in 2018. Aside from changes to the law and the education process,
other factors must be considered, such as the anomalously warm winter of 2014/2015.

Despite the ban on the use of solid fuels in Krakow, a periodic increase in air pollution
could be observed in the city, especially during late autumn, winter, and early spring.
This situation was even observed during the COVID-19 pandemic, during which traffic
was almost 40% lower than before. Thanks to the dense distribution of LCS Airly sensors,
it was possible to analyze data from Krakow and its surroundings. Airly sensors located
up to 30 kilometers from the center of Krakow were used for these tests. There are about
364 such sensors in the analyzed area, but they are distributed very irregularly. In certain
areas, sensors are a matter of meters apart, in others, there is not a single sensor for several
kilometers. To enable the correct distribution, efforts were made to select their location
so that they would comprise a quasi-regular measurement grid. It is difficult to obtain
a regular sensor grid using Airly API. This is because anyone can buy an Airly sensor,
making their distribution irregular. The area of study (Figure 1) was divided into a regular,
100-point grid, according to the X and Y axes. In this area, 364 LCSs were available. We
designed the algorithm to search for the sensor located closest to each of the 100 regularly
distributed points in this area. For further analysis, we used no more than one sensor per
point. The algorithm was written in R as follows:

1. Define the area of investigation;
2. Use function makegrid and divide into 100 regularly distributed points;
3. Read all sensors’ geographical positions;
4. Use k-nearest-neighbours to find the distance from sensors to a particular grid point;
5. Assign unique index number to sensors in relation to distance to grid points;
6. Choose the sensor closest to the grid point;
7. Exclude the sensors assigned to a particular grid point if the distance between them

is less than 1
4 of the distance between the neighboring grid points;

8. Save assigned sensor index numbers, and X and Y positions.

A satisfactory network of 90 sensors was, thus, obtained. We obtained an even
distribution of measurement points, which we were able to fit into the open Airly license.
To check if the Airly sensors measurements were sufficiently legible for use in the analysis,
we compared them with the readings of the closest government sensors. We averaged
the Airly measurements in 24-h periods and compared them with analogical scale mea-
surements from government stations. Then, we calculated the differences between the
government and Airly sensor measurements.

The general analysis of smog conditions was carried out using charts and maps
created in R by fitting a thin plate spline surface to our data. This method is a special
case of kriging; however, it guarantees a “smooth” surface [42], which is desirable when
analyzing the dispersion propagation of pollutants. This step was performed for the
identification of particularly interesting spatial-time snapshots (see the animation in the
Supplementary Materials). Thereafter, we took a closer look at these data, comparing
them with the temperature data.
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To observe the inflow and outflow of air pollution in Krakow, the analysis of tempera-
ture changes in relation to the feeling of relative cold was performed. To observe the effect
of household heating when the temperature drops below the comfort zone, KDE plots of
PM were prepared. For two chosen dates, maps of PM1, PM2.5, and PM10 together with
temperature were constructed. For grid preparation, the minimal curvature method was
used, with grid spacing of approximately 500 meters in the X and Y directions.

3. Results

3.1. Historical Data Analysis Using Official Government Data from Reference Stations

The STL decomposition of PM2.5 obtained from official government sensors is
shown in Figure 2. It is clearly visible that education, grassroots initiatives, and multilevel
political involvement is crucial. Along with the increase in environmental awareness in
society over the years, changes in the law and a stable decrease in emissions were visible.
However, selective bans on the use of solid fuels in individual cities, without taking into
account surrounding towns and cities, may cause a temporary excessive increase in the
concentration of PM in the city, where the prohibition law is in force.

Figure 2. Krakow’s PM2.5 concentration (grey) and its STL trend (red) in the years 2010–2019 together with major law
changes and grassroots action.

3.2. Low-Cost Sensors for Inflow and Outflow Monitoring of PM1, PM2.5, and PM10

Table 1 shows a summary of the basic statistical analysis for all data. The data
were characterized by a compact distribution, i.e., outliers were rare. The mean value
of PM10 for this period (7 March to 16 April 2021) was lower than the EU standard
(1-year averaged—40 μg/m3). PM2.5 was slightly higher than that proposed by the EU
standard (3-year averaged—25 μg/m3); however, the median for PM2.5 was approxi-
mately the same as the standard.
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Table 1. Summary of basic statistics for the measured parameters from Airly sensors in spring in
Krakow, 2021, during the COVID-19 pandemic.

Temp (◦C)
Pressure

(hPa)
Humidity

(%)

PM1 PM2.5 PM10

μg/m3

Min −7.37 994.40 17.65 0.02 0.21 0.28

1st Qu 1.02 1012.80 63.47 9.62 14.69 17.21

Median 3.72 1017.50 76.19 16.00 25.14 31.49

Mean 4.81 1016.80 74.39 18.35 29.72 37.12

3rd Qu 7.71 1021.10 87.25 23.36 37.68 49.56

Max 28.46 1032.70 100.00 148.54 305.25 376.18

For a better understanding of the air pollution problem in Krakow, an analysis of
960 h was conducted. Table 2 shows the correlation coefficients between all measured
parameters for 90 detectors, for all time points. It was clear to see that PM1, PM2.5, and
PM10 were correlated.

Table 2. Correlation coefficients for the measured parameters from Airly sensors for all data points.

Temp
(◦C)

Pressure
(hPa)

Humidity
(%)

PM1 PM2.5 PM10

μg/m3

Temp (◦C) 1.000 0.048 −0.583 −0.369 −0.357 −0.374

Pressure (hPa) 0.048 1.000 0.111 0.241 0.258 0.235

Humidity (%) −0.583 0.111 1.000 0.342 0.341 0.354

PM2.5

μg/m3
−0.369 0.241 0.342 1.000 0.997 0.997

PM1 −0.357 0.258 0.341 0.997 1.000 0.995

PM10 −0.374 0.235 0.354 0.997 0.995 1.000

From all 90 sensors, sensor 36808 in Niepołomice was the closest to a government
sensor. The government station is located on 3 May Street in Niepołomice (SE part of
the investigated area). Table 3 shows statistics for the calculated time-series difference
between 24-h averaged measurements of PM10 from government stations (GOV) and
the Airly sensor in Niepołomice. The correlation coefficient for these measurements
between 7 March and 16 April 2021 was 0.93. A comparison between the 24-h averaged
measurements of Airly sensor 36808 and the government sensor located on 3 May street
is shown in Figure 3.

Table 3. Statistics for the difference in PM10 measurements between government station and Airly
sensor 36808 for 24-h averaged periods between 7 March and 16 April 2021.

Min 1st Qu Median Mean 3rd Qu Max

GOV and 36808 sensors
difference (μg/m3)

−19.157 −7.425 −3.593 −3.001 1.069 17.407
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Figure 3. Twenty-four-hour averaged measurements of PM10 from government stations (blue) and
the Airly sensor (green) in Niepołomice.

3.3. Analysis of Air Pollution Inflow and Outflow According to Temperature Changes

Figure 4 shows the temperature measurements from 7 March to 16 April 2021 together
with the STL trend. Our aim was to show the inflow and outflow of air pollution in
Krakow. To indicate the proper time and date, it was necessary to deeply study the
temperature changes, as this is one of the main factors affecting whether people heat their
households or not. It was possible to designate 10 temperature intervals: the first was
the 7 to 10 March, which was stable at around 0 ◦C; the second was from the 11 to 14
March, during which the average temperature trend increase was visible; the next was
a slowly decreasing period from 14 to 21 March, at the end of which the temperature
reached its minimum value; the 4th period was up until the 2 April, when temperature
stably increased (excepting a 1-day trend break); the next period was from the 2 to 5
April, wherein the temperature decreased to around 1–2 ◦C and stabilized on this value
for 5 days; then, there were four three-day periods, in which the temperature first rose,
then stabilized, before dropping again, and stabilizing once more in the last period. The
11th of March was chosen to study the effect of the air pollution outflow, and the 18th
of March was chosen to study the effect of the air pollution inflow. Firstly, those days
were characterized by an upward or downward temperature trend. Secondly, according
to the relationship between the Predicted Mean Vote (PMV) and Perceived Temperature
(PT) indicator in the study by Jendritzky et al. [43], it was shown that most people
classified temperature between 0 and 20 ◦C as comfortable, and when the temperature
decreases below 0 ◦C, most people classify it as cold. Figure 5 shows the increase in PM
concentrations when the temperature dropped below the aforementioned comfortable
temperature. In the first-row kernel density estimate plots for PM1, PM2.5, and PM10
versus temperature from the 18th of March, 18:00 was plotted. The second row contains
the same plots but from 24:00. At 18:00, the temperature was above zero, and for all
temperature points, the distribution of PM was similar. At 24:00, the distortion in the
distribution symmetry is visible. White arrows indicate the increase in PM in the air. This
is in clear accordance with the PMV and PT study.

Figure 4. The temperature in Krakow between the 7th of March and 16th April (blue) and the temperature STL trend (red).
The green line indicates zero Celsius degree point; grey boxes are days chosen for the inflow and outflow study Orange
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For the air pollution inflow, measurements from 12:00, 18:00, and 24:00 were used.
For the air pollution outflow, measurements from 00:00, 04:00, and 08:00 were used. This
is because people begin to heat their houses after sunset, which, in March, is around
17:00. To observe the effect of inflow, we analyzed midday, when the PM concentration
was expected to be low at almost every sensor, then at 18:00, when the PM should have
been visible in the surroundings of Krakow, and then at midnight, when the inflow effect
was expected to be visible in the city. For outflow, we began at midnight, when the
concentration of PM in the city due to inflow was expected to be high. We then proceeded
in 4-h intervals to investigate the change.

Figure 5. Kernel density estimate plots of PM1, PM2.5, PM10 and temperature at 18:00 and 24:00 on the 18th of March.
Arrows indicate the increase in PM related to temperature and also to PT and PMV.

Figure 6 shows the air pollution inflow to Krakow, while Figure 7 shows the air
pollution outflow. In the first row, the PM1 concentration was presented for three different
hours, the second presents similar maps for PM2.5, the third shows PM10, and the fourth
presents the temperature. Crosses represent LCS. Considering the inflow of air pollutants
into Krakow from surrounding towns and cities, it is clear to see that, at noon, Krakow
city was the warmest area on the map; however, the PM concentrations were low in and
around the city. At 18:00, the temperature was stable; this was similar at every point
with an average of approximately 1 ◦C. In certain places outside Krakow, air pollution
was starting to increase. These were places where the temperature was lower than in the
surrounding receivers, close to the thermal comfort limit (see white arrows in Figure
6). However, despite a significant increase in PM in neighboring towns and villages, the
air quality in Krakow remained good. This situation changed with time. At midnight, it
could be clearly seen that the pollutants diffused into Krakow; however, the level of PM
contamination was still lower in the city of Krakow. The maps show that PM10 pollution
increased the most, and PM1 pollution the least.
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In the case of an outflow of pollutants, it is again visible in the concentration analysis
that, at midnight, the accumulation of pollutants was the result of their diffusion from
neighboring municipalities. The 11th of March was chosen because, on this day, the
temperature in the morning began to rise above the comfort temperature. In this way, we
were able to exclude the additional influx of pollutants resulting from heating houses in
the morning.

Figure 6. Temperature maps of air pollutions entering (PM1, PM2.5, PM10) Krakow on 18 March 2020. White arrows
indicate areas in which the temperature was below the comfort zone.
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Figure 7. Temperature maps of air pollution leaving (PM1, PM2.5, PM10) Krakow on 11 March 2020.
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4. Discussion

The statistics in Table 1 demonstrate that the distribution of Airly data from March to
April 2021 was compact. There were no outliers and abnormally high or low indications.
This was probably related to the Airly data preparation, as their measurements are filtered
and corrected by their internal machine-learning and artificial intelligence algorithms.
According to the correlation coefficients values in Table 2, it is clearly visible that PM1,
PM2.5, and PM10 were correlated. This was expected as the individual particulate matter
of a given fraction also contains information about particles of a smaller fraction. In
this case, the PM2.5 data were used to prepare an animation (see the Supplementary
Materials) to show the hourly changes in spring 2021. It was, therefore, also justified to
use the PM2.5 historical data from the government stations to show the general trend of
air pollution contamination in Krakow over the last decade.

Airly sensor 36808 in Niepołomice provided comparable results (averaged over a
24-h period) to the closest government station. They were highly correlated, i.e., the
correlation coefficient was 0.93 for the investigated period and the average difference
between their measurements was 3 μg/m3. There were days (see Figure 3) in which the
Airly sensors inflated or underestimated the results; however, the general measurement
distribution was similar to that provided by the government sensors. This was sufficient
to trace relative spatial-temporal changes with Airly LCS measurements. Aside from
the comparative analysis of indications from government stations and Airly sensors,
research conducted by the Marshal’s Office in the Małopolska Region showed that Airly
sensors give reliable measurements [25], better than other tested devices. Airly provides
results that are already processed and corrected with the use of their machine-learning
algorithms. However, LCS have their limitations and can easily be affected by various
external factors. It can be difficult to correct raw data, while taking into account all factors.
On the other hand, official government stations did not provide sufficient spatial coverage
for our study. The presented accuracy of Airly sensors was sufficient to track the relative
changes in air pollution in Krakow. The potential anomalous indication of a single station
was easy to eliminate by analyzing the distribution. We did not notice such indications
on our maps.

To analyze the inflow (Figure 6) and outflow (Figure 7) of air pollution in Krakow, we
chose days in which the temperature changed from comfortable to cold (inflow), and from
cold to comfortable. It was practical to find periods in which the temperature changed
from cold to comfortable or vice versa. Whether people start to heat their homes basically
depends on their perception of the temperature, so there was no reason to choose the
28th of March for example, which was characterized by a break in the upward trend,
as even if the temperature dropped, it was still perceived as comfortable. This effect is
clearly visible in Figure 5, which shows the kernel density estimate plots for different
PM for different hours in relation to temperature. All PM concentrations rose in areas
where the temperature dropped below 0 ◦C. This effect can also be observed in the maps.
Air pollution started to increase in certain places outside Krakow at around 18:00. On
the temperature maps, there were places where the temperature was lower than in the
surrounding receivers. Aside from the relatively low value, the temperature in these
places was very close to the thermal comfort limit (see Figure 6 white arrows). This
observation could be very important in the future for forecasting air pollution.

Figures 6 and 7 contain wind arrow indicators; however, the wind speed was low on
these days. The maps presented in Figures 6 and 7, and in the Supplementary animation,
demonstrate that the process responsible for air pollution arriving to the city was related
to both pollution blowing in on the wind and particular matter from surrounding towns
and villages in the hills around diffusing and settling in Krakow, which is located in the
valley. This valuable observation will allow for the better modeling of pollutant transport
in the future.

PM contamination increased in Krakow depending on the fraction size. The highest
increase could be seen for PM10, and the lowest for PM1. This may be because the
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lighter fractions could more easily remain at high altitudes and were not measured by
devices located at a height of 1.5–8 m. The other reason may be related to the sources
of air pollution. We considered fossil fuel use for household heating, so higher PM10
contamination was expected. In the case of pollution outflow, the city was most exposed
to heavy PM10 dust, which, due to its size, is present at highest concentrations in the
morning. The city of Krakow, as a result of its location in the valley, does not have
favorable conditions for the outflow of pollutants, which was clearly shown by the
distributions on the maps. We can see in Figure 7 that PM10 contamination remained in
the city the longest and higher concentrations coincided with the course of rivers. Rivers
tend to have an erosive base and usually flow at their lowest point. Perhaps it is because
of their location that air pollution stays in these areas the longest. Another reason may be
the increased presence of water vapor and the formation of mists in those areas. This may
act to impede air movement and, consequently, the migration of heavier fractions of air
pollution.

5. Conclusions

Our research clearly showed that a dense network of Airly low-cost sensors aids
in the spatial and time analyses of air pollution inflow and outflow in Krakow. The
ongoing COVID-19 pandemic allowed us to analyze the effect of pollutant diffusion from
neighboring municipalities to Krakow, without introducing noise resulting from car traffic.
It was shown that, apart from the daily temperature changes themselves, perceptible
thermal comfort is an important factor. The subjective feeling of cold influences whether
the inhabitants of neighboring municipalities heat their houses or not.

We utilized the STL decomposition method, the 10-year trend of PM2.5 concentration,
the PM2.5 concentration, and data concerning the law and educational changes. Aside
from physical factors such as the warm winter in 2014/2015, it was demonstrated that the
Krakow and Małopolska Voivodeship authorities performed effective steps to improve
air quality in the city. Moreover, it was demonstrated that the education and engagement
of the local community were effective and important in this regard. A downward trend
was visible from the time when the Krakow Smog Alert began its informative campaign
in 2012.

The law prohibiting the use of solid fuels for heating in Krakow city brought about
the intended reduction in PM. Unfortunately, as a result of its geographic location and the
lack of similar bans in neighboring municipalities, Krakow is still exposed to pollution
that exceeds air quality standards. Of course, long-term low emissions and its downwind
transport completely fill urban areas over time; however, in the transition seasons, in
which increased emissions last several days, the air in the city was of radically better
quality than in the outskirts.

Our study clearly showed that the influx of PM1, PM2.5, and PM10 by diffusion was
the greatest from the following towns: from the west—Rybna, Czernichów, and Brzeźnica;
from the southwest—Brody, Skawina, Rzozów, Radziszów, Krzywaczka, Czechówka,
and Zakliczyn; from the southeast—Dobczyce, Czasław, Kwapinka, Wieliczka, and
Niepołomice; from the northeast—Proszowice, Waganowice, Słomniki, and Prandocin;
from the
northwest—Więckowice, Paczółtowice, Czubrowice, Gotkowice, Skała, and Gołyszyn. It
also seems that the PM may be transported from sources a greater distance to the south,
perhaps from Podhale, but this will be the focus of future research. The longest-lasting
deposited dust was that of the PM10 fraction.

Supplementary Materials: Animation is available online at https://www.mdpi.com/article/10
.3390/s21155208/s1, Animation S1: PM2.5 changes in Krakow and its neighborhood between 7
March and 16 April 2021.
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Abstract: Following the increase in stringency of the European regulation limits for laboratory
and real world automotive emissions, one of the main transport related aspects to improve the air
quality is the mass scale in-use vehicle testing. Solid particle number (SPN) emissions have been
drastically reduced with the use of diesel and gasoline particulate filters which, however, may get
damaged or even been tampered. The feasibility of on-board monitoring and remote sensing as
well as of the current periodical technical inspection (PTI) for detecting malfunctioning or tampered
particulate filters is under discussion. A promising methodology for detecting high emitters is
SPN testing at low idling during PTI. Several European countries plan to introduce this method for
diesel vehicles and the European Commission (EC) will provide some guidelines. For this scope
an experimental campaign was organized by the Joint Research Centre (JRC) of the EC with the
participation of different instrument manufacturers. Idle SPN concentrations of vehicles without
or with a malfunctioning particulate filter were measured. The presence of particles under the
current cut-off size of 23 nm as well as of volatile particles during idling are presented. Moreover,
the extreme case of a well performing vehicle tested after a filter regeneration is studied. In most of
the cases the different sensors used were in good agreement, the high sub-23 nm particles existence
being the most challenging case due to the differences in the sensors’ efficiency below the cut-off
size.

Keywords: periodical technical inspection; in-use vehicle emissions; particle number; diffusion
charger; condensation particle counter; sub-23 nm particles

1. Introduction

Strong scientific evidence on adverse health effects of particulate matter (PM) [1]
has driven regulators to implement stricter limits to vehicles equipped with combustion
engines because they were considered an important contributor of PM. In the Euro-
pean Union (EU), additionally to PM mass, a solid particle number (SPN) limit for
particles >23 nm (SPN23) is also imposed to vehicles equipped with diesel and gasoline
direct injection engines [2,3]. The SPN23 limit drove to the implementation of very efficient
particulate filters. For example, diesel particulate filters have typically >99% solid particle
number reduction efficiency [4], and gasoline particulate filters can also exceed >90%
efficiency [5,6]. The stricter PM regulations in combination with the efficient PM exhaust
after-treatment systems have resulted in reduced urban PM levels over the last years in
European cities [7,8].

One issue that still remains open is the durability of exhaust after-treatment and
tampering. Particulate filters become more efficient after their usage due to the formation
of a soot cake and ash accumulation on their surface that traps soot particles [9]. Indeed,
after the regeneration of a filter, the efficiency drops down significantly and increases
de novo after the accumulation of soot [10]. However, defects of the particulate filters
may reduce their trapping efficiency [11]. For example, laboratory and commercial
fleet DPF (diesel particulate filter) failure studies have shown that uncontrolled filter
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regeneration with high temperature peaks in combination with the presence of ash
may provoke thermal damages at the DPF’s substrate and more specifically pinholes,
melts, and cracks [12–14]. Additionally, DPF tampering by vehicle owners has been
reported with the aim of reducing fuel consumption and the need to perform the periodic
regeneration [15]. Although these cases are a small percentage of the fleet, they can
contribute significantly to the total fleet emissions. For example, a study of 300 diesel Euro
5 and Euro 6 vehicles sampled from the Belgian commercial fleet showed that 15% of high
SPN emitters may increase the fleet emissions by a factor of 30 [16]. Another study found
that 10% of highest SPN emissions can be responsible for 85% of the fleet emissions [17].
The determination of high emitters effect on the national fleet emissions may depend on
several factors that increase the uncertainty but considering the DPF and GPF (gasoline
particulate filter) efficiency, it is undeniable that vehicles with malfunctioning or removed
particulate filters dominate the SPN emissions.

At EU level, the conformity of the vehicles to the emission limits over their useful
lifetime (currently 160,000 km) is checked via the in-service conformity (ISC) testing (up
to 100,000 km or 5 years). ISC testing is done to well-maintained vehicles following the
type approval procedures. While ISC is conducted by the vehicle manufacturers and
the type approval authorities, market surveillance, which was recently introduced in the
regulation, can be done by independent institutes at a wider range of test conditions. A
few well maintained vehicles with up to 160,000 km on the odometer are also selected [18].
Market surveillance is a very useful tool in order to detect defeat devices as well as assess
the durability of after-treatment exhaust. Due to the high cost of laboratory and on-road
testing, these tests cannot be applied to a mass scale. Thus, tampered or badly maintained
vehicles are not controlled.

For large scale fleet monitoring on-board monitoring (OBM), remote sensing and
periodical technical inspection (PTI) are the most appropriate tools. The idea of OBM is
similar to the on-board diagnostics (OBD) of the vehicle [19]. However, instead of only
checking the malfunctions of the vehicle, sensors are used to monitor the actual emissions.
This concept has been successfully applied to heavy-duty vehicles in China [20]. In
Europe discussions are on-going for OBM introduction in the Euro 7 regulation, but
at the moment there are no robust particle number sensors. Remote sensing is wide
spread [21,22]. From the big amount of data, durability issues at vehicle model level
can be identified. It is also possible to identify high emitters. The application to particle
number though is very limited [23].

In the framework of PTI, an opacity measurement is implemented for controlling
the particulate filter but as modern engine and filter technologies have become very
efficient, there are concerns on the sensitivity of this method [16,24]. Over the last years
an informal technical working group for new periodic technical inspection (NPTI) proce-
dures has been formed, aiming to develop methodologies for detecting DPF and de-NOx
aftertreatment technologies malfunctions. A methodology that seems to be very efficient
for detecting tampered of malfunctioning particulate filters is the SPN measurement
at idling. Especially for diesel vehicles the idling SPN concentrations may correlate
well with SPN emissions during regulatory tests. Two studies that correlated regulatory
tests measured in the laboratory and during on-road tests with low idling emissions
(mostly extracted by the same tests) found that diesel vehicles that complied with regu-
lation limits (6 × 1011 #/km) had <1 × 105 #/cm3 low idling concentrations [25,26]. In
another study, idling concentration in the order of 2.5 × 105 #/cm3 corresponded to
>1012 #/km and was proposed as a possible limit for PTI [24]. Low idling diesel SPN
concentrations >1 × 105 #/cm3 are correlated to >6 × 1011 #/km that is the current reg-
ulatory limit [17]. Instead, for gasoline vehicles the correlation is more difficult to be
done [25] because they mainly produce particles during fuel enrichments [27] and not nec-
essarily at idle. Nevertheless, the uncertainty of the methodology and the instrumentation
has also to be taken into account in the determination of a limit.

168



Sensors 2021, 21, 8325

Switzerland was the first country to introduce a high idling test for particles >23 nm
(SPN23) for non-road machineries. For light and heavy duty vehicles the Netherlands was
the pioneer and a PTI procedure measuring solid particles >23 nm will be introduced on
the 1 July 2022. Belgium will also introduce the SPN measurement in the PTI in July 2022
and Germany will follow in January 2023. Emission limits, applicable vehicles, and testing
procedures have differences from one country to the other. For example, the Netherlands
has a limit of 106 #/cm3 for Euro 5 and 6 vehicles and a 15 s measurement, while Germany
2.5 × 105 #/cm3 only for Euro 6 vehicles with three repeats of 30 s measurements. A recent
proposal from the VERT (Verification of Emission Reduction Technologies) association
suggested a lower limit of 5 × 104 #/cm3 both for diesel and gasoline vehicles equipped
with particulate filter [28]. VERT proposes the performance of three 15 s measurements. In
parallel to national initiatives also the European Commission is preparing a harmonized
procedure but each member state will have the possibility to introduce the procedure as
an additional measure within their own national competence. An important aspect of
introducing a PTI test is the characteristics of the sensors used to perform the measurement.
The sensors must be robust enough for the garage environment, simple in operation for
non-expert staff, and of low cost. This large-scale production of PTI sensors needs some
compromise regarding technical specifications that fulfill the required preciseness for
detecting faulty or removed particulate filters. The main specifications of PTI devices
that count solid particles are their efficiency to remove volatile particles and their lower
detection size (that should be around 23 nm). Their background level and their maximum
concentration are important aspects as well.

The approaches to these requirements are numerous. The heart of the sensors is the
particle detector, which is typically based on optical particle counting after condensation
of an alcohol on the pre-existing particles or measurement of electrical current after
diffusion charging of the pre-existing particles. Condensation particle counters (CPCs)
have a heated section where aerosol particles are exposed to supersaturated vapors and
a colder section where vapors condense on particles and grow them to sizes that are
detectable with optical methods. Different working fluids can be used for this application,
most typically butanol and isopropanol. CPCs usually operate near ambient temperatures
but recently also high temperature CPCs have been developed [29], but without any
commercial system available at the time of writing. Their counting efficiency is near to
unity at large sizes, their cut-off size may be influenced by the nature of the particles [30].
Diffusion chargers (DCs) utilize electrical detection of particles. Particles are charged by a
corona charger which is typically unipolar but also systems with bipolar charging have
been developed. After the corona charger, an electro-precipitator removes all free ions
and finally the particles’ current is measured either with an electrometer or with a faraday
cage [31,32]. Diffusion chargers do not use working fluids and can operate also at higher
temperatures [33]. Compared to CPCs, DCs can measure higher particle concentrations
but have higher background levels. Finally, their counting efficiency does not reach a
plateau region as the CPC at large sizes due to the dependency of the charging efficiency
on particles’ size.

In order to remove volatile particles and measure only solids, three different technolo-
gies are typically used: (i) heated (or evaporation) tube [34], (ii) thermodesorption using
a thermal denuder [35], (iii) catalytic stripper that oxidizes hydrocarbons and optionally
also traps sulfur compounds [36–38]. A review on volatile removal technologies can be
found in [39].

Some systems have a sampling line; some others dilute at the sampling point. While
differences to these approaches have been discussed in the literature due to different
agglomeration and thermophoretic losses [40], in the PTI testing, where the exhaust
gas temperatures are low and the concentrations also low, the differences should be
small. High dilution may also be important in avoiding volatile artifacts when measuring
particles below 23 nm [41]. For PTI systems though the dilution depends more on the
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upper limit they are designed to reach. Diffusion chargers usually have a high upper
concentration limit and can measure even without dilution.

In the context of introducing a harmonized PTI procedure in the EU, the Joint
Research Centre (JRC) of the European Commission performed an experimental campaign
using PTI sensors from different manufacturers. Testing aimed to study the specifications
of the sensors used for PTI applications and the level of particle emissions at low idling of
different vehicles. A reference instrument compliant to the technical requirements of the
type approval regulation was used for comparison with the different sensors. Different
cases were studied; vehicles without a filter or malfunctioning filter, low idling after
a DPF regeneration. Finally, sub-23 nm and volatile particles were measured in order
to study their effect on the SPN sensors performance. The paper is divided in (i) the
experimental section where we present the specifications of the sensors, the procedures,
and the vehicles; (ii) the results were we focus on the performance of the sensors; (iii)
the discussion section where we identify all parameters that are important for future
regulation; and (iv) the conclusions.

2. Materials and Methods

2.1. Experimental Setup and Procedure

Tests were performed in the vehicle emissions laboratory of the Joint Research Centre
(JRC). The tested vehicles were placed in a laboratory with temperature varying from 20
to 27 ◦C. Figure 1 presents the experimental setup. All tests were performed at low idling
with sampling directly from a depth of 30 cm in the tailpipe. Each of the six PTI sensors
was measuring in parallel with reference systems.

Figure 1. Schematic of the experimental setup. In red we show heated parts. Either ‘REF A’ or ‘REF
B’ setups were employed while SPN-PTI sensors #1 to #6 were measuring sequentially.

The reference system (Nanomet 1, Testo, Titisee-Neustadt, Germany) was based
on the technical requirements of the type approval EU regulation (2017/1151) and the
Particle Measurement Programme (PMP) recommendations [42]. For this reason, quite
often it is called the PMP system. It consisted of a 1 m hot sampling line at 150 ◦C, a
hot dilution stage at 150 ◦C (dilution around 50:1), an evaporation tube operating at
350 ◦C, a secondary dilution stage (dilution around 5:1) at ambient temperature and a
TSI (Shoreview, MN, USA) model 3790 Condensation Particle Counter (CPC) with 50%
counting efficiency at 23 nm, CE23 = 50%. Additionally, a TSI model 3792 CPC with
65% efficiency at 10 nm, CE10 = 65%, was employed in parallel in order to measure solid
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particle number down to 10 nm. This reference setup will be called from now on ‘REF
A’ and the SPN measurements with the 23 nm and 10 nm CPCs as SPN23 and SPN10,
respectively. The ratio (SPN10 − SPN23)/SPN23 will be called sub-23 nm fraction.

The SPN concentrations were calculated with the Particle Concentration Reduction
Factor (PCRF) that included the dilution factor and the average particle losses of particles
with size 100 nm, 50 nm, 30 nm. The particle losses at 50 nm were 5% more than at 100 nm
(PCRF50/PCRF100 = 1.05) and at 30 nm 29% more (PCRF30/PCRF100 = 1.29). The average
PCRF was 300 in all tests. The sampling line did not add significant particle losses; for
inlet flow 1.5 lpm and sampling line with length 1 m the diffusion losses of particles with
size 23 nm is ~2%. The reference CPCs have been used in inter-laboratory exercises and
during linearity checks for concentrations up to 104 #/cm3 they had a slope between
0.9 and 1.1 and R2 > 0.99 [43,44]. For CPC concentrations >104 #/cm3, (i.e., measured
concentrations >3 × 106 #/cm3) the accuracy of the reference system was not in the ±10%
and the measurement uncertainty increased. These cases are indicated in the “Results”
section. For SPN10 no additional correction was performed for the diffusion losses of
sub-23 nm particles, as prescribed in the Global Technical Regulation (GTR) 15. Particle
losses at 15 nm were higher than the average PCRF by a factor of 2.2.

For some tests, the reference system setup was modified: while the hot sampling line
was kept at 150 ◦C, the primary hot dilution was set to 80 ◦C, and the evaporation tube
was switched off. Downstream of the system, a TSI model 3792E CPC with 65% efficiency
at 10 nm was measuring total particle number (both solid and semi-volatile) emissions
(TPN10). With these sampling conditions nucleation of volatiles was probably suppressed,
but nucleation of semi-volatiles was possible. A portion of the diluted aerosol flow
was driven to a catalytic stripper model CS015 from Catalytic instruments (Rosenheim,
Germany) with wall temperature 375 ◦C and then to the 23 nm CPC 3790 and 10 nm CPC
3792 in order to measure SPN23 and SPN10, respectively. Henceforth, this setup is called
‘REF B’ while the ratio (TPN10 − SPN10)/SPN10 is called volatile fraction. The PCRF of
this setup was 225 (due to different temperatures used). The SPN23 and SPN10 measured
downstream of the catalytic stripper and were additionally corrected by a factor of 1.4 to
take into account the catalytic stripper’s particle losses at sizes 30 nm, 50 nm, and 100 nm.

The systems in setup ‘REF A’ or ‘REF B’, whichever was applicable, were measuring
and logging continuously the SPN23 and SPN10 (and TPN10 with ‘REF B’) concentrations
during low idling. The sampling point of both ‘REF A’ and ‘REF B’ was, similarly to
the PTI sensors, 30 cm inside the tailpipe. After the ignition of the vehicle’s engine the
PTI sensors were measuring sequentially for a predetermined time period that lasted
from 15 (Sensors #1 to #4) to 45 (Sensor #5) seconds (3 repetitions of 15 s) according to the
recommendations of the country of homologation that they followed. Sensors #1 to #4
had also a stabilization time of 15 s before measuring. Sensor #6 had only a continuous
measurement option but its measurement time period was chosen to be similar to the rest
of sensors and between 15 and 45 s. Before each measurement Sensors #1 to #4 performed
an automatic or semi-automatic zero offset and leakage test. For Sensors #5 and #6 and the
CPCs used at ‘REF A’ or ‘REF B’, whichever was applicable, the zero offset was checked
before testing with a HEPA filter.

The measurement order of the PTI sensors changed from one test to another in order
to have different concentration levels for all sensors. The duration of each idling test
lasted from 10 to 30 min. Measurements were performed also during the cold start of the
vehicles in order to have a wider range of concentrations. In some cases, the vehicle was
switched off and on several times. The PTI sensors were compared against ‘REF A’ or ‘REF
B’. Due to the absence of any possibility for post-process alignment, the data alignment
was done with a timer during the test. Experimental time started when ‘REF A’ or ‘REF
B’ logging started and for each PTI sensor we recorded the time of measurement. No
on-board diagnostics (OBD) measurements were available during the testing campaign.
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2.2. PTI Sensors

Sensors #1 to #5 were provided from the manufacturers to JRC for the testing cam-
paign. The companies in alphabetical order were: Capelec (Montpelier, France) and
Pegasor (Tampere, Finland), DEKATI (Kangasala, Finland), Mahle (Stuttgart, Germany),
TEN (Baambrugge, The Netherlands), and TSI (Aachen, Germany). Some of them were
commercially available while others prototypes. Sensor #6 was owned by JRC and it was
the NPET of TSI, homologated for PTI measurements of non-road mobile machinery in
Switzerland.

2.2.1. Sampling and Measurement Technologies

Table 1 presents the PTI devices that were tested. For each device we report whether
there was a heated sampling line or not, the dilution ratio (if applicable), the technology
for removal of volatiles, the principle of particle detection, and finally the regulations
each sensor complied with. Some of the sensors may comply also with other regulations
(e.g., DE, BE) but we only report the country in which they applied for or obtained
homologation at the time that this paper was written. Sensors #3 and #5 were prototypes
and no specific country of homologation was defined.

Table 1. Sampling and measurement technologies used at the PTI sensors.

PTI Sampling Line Dilution (Temp.) Volatile Particle Remover Particle Detector Certification

#1 Heated (75 ◦C) No Thermal denuder (150 ◦C) DC NL
#2 Heated (90 ◦C) Venturi (150 ◦C) Evaporation tube (200 ◦C) DC NL
#3 Heated (60 ◦C) No Evaporation tube (300 ◦C) DC N/A
#4 Heated (70 ◦C) 200:1 (ambient) Evaporation tube (250 ◦C) CPC NL
#5 Not heated 20:1 (ambient) Catalytic stripper (350 ◦C) CPC N/A
#6 Not heated 10:1 (ambient) Catalytic stripper (350 ◦C) CPC CH

CH = Switzerland; CPC = Condensation Particle Counter; DC = Diffusion Charger; N/A = not available; NL = Netherlands.

Sensors #1 to #4 had a heated line at different temperatures in the range of 60 ◦C to
90 ◦C. Sensors #5 and #6 diluted the aerosol at the sampling point with a bifurcated flow
diluter that filters part of the inlet flow and uses it as dilution air. Sensors #1 and #3 had
no dilution while Sensor #2 had very low dilution. Sensor #4 diluted the aerosol flow
200:1 by using two ejector diluters with dilution ratio ~14. In order to remove volatile
particles Sensor #1 included a thermal denuder, Sensors #2, #3, #4 included a heated or
evaporation tube, and Sensors #5, #6 a catalytic stripper. Sensors #1 to #3 used a diffusion
charger (DC) and #4 to #6 a condensation particle counter (CPC) as particle detectors.

All Sensors except from Sensor #3 were equipped with a water trap downstream the
sampling line at the inlet of the device. All DC-based sensors used a unipolar charger to
charge the particles. Sensor #2 sampled the aerosol using the Venturi effect while particles
were charged after being mixed with a particle-free flow of positive ions generated
by a corona charger. An ion trap collected ions that did not attach on particles while
the particle number concentration was calculated by the escaping current which was
continuously measured [45]. Sensor #3 used a diffusion charger, an ion trap, a diffusion
particle collector, and an electrical detector while it operated at low pressure. Sensor #4
inlet flow was 1.2 lpm. It used a mixing type CPC [46] with cut-off size at 10 nm while
particles in the range 10–23 nm were removed with a diffusion screen placed upstream
the CPC. Sensors #5 and #6 had an inlet flow of 0.7 lpm but only 0.1 lpm was driven
to the CPC. The rest of the inlet flow bypassed the CPC. The CPCs of the PTI sensors
operated with isopropanol. For Sensors #4 and #6 the operator had to fill the working
fluid while Sensor #5 incorporated a bag filled with the working fluid that had to be filled
after certain number of measurements.
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2.2.2. Calibration Values

Table 2 summarizes the Swiss and Dutch technical requirements regarding the
counting efficiency of the sensor at different particle sizes, the linearity of the sensor at a
specific particle size, and finally the efficiency of removing tetracontane (C40) particles
which are considered to represent (semi)volatile particles. VERT proposes the same
specifications as Dutch regulation but additionally requires an additional efficiency of <2
at 200 nm. The German regulation will set the same specifications as those required in the
current European regulation for SPN-PEMS (Regulation 2017/1154).

Table 2. Requirements for PTI sensors at different regulations (CH, NL, VERT) and calibration values of the PTI sensors as
provided by the manufacturers.

Counting Efficiency Linearity (80 nm) VRE

23 nm 50 nm 80 nm 200 nm Polydisperse 30 nm Tetracontane

CH <0.50 * 0.70–1.30 <1.30 >90% (<105 #/cm3)
NL 0.20–0.60 0.60–1.30 0.70–1.30 - 0.75–1.25 >95% (<105 #/cm3)

VERT 0.20–0.60 0.60–1.30 0.70–1.30 <2.00 0.75–1.25 >95% (<105 #/cm3)
#1 0.34 0.75 1.00 - 1.03 (80 nm) >95% (104 #/cm3)
#2 0.47 0.86 1.12 - 0.99 (76 nm) >95% (105 #/cm3)
#3 0.43 0.76 1.00 1.67 0.99 (37–56 nm) 100% (>104 #/cm3)

#4 0.40 0.90 1.00 1.15 0.998 (poly) 99.9% (3.5 × 104

#/cm3)
#5 0.55 0.95 1.02 (70 nm) 1.04 N/A N/A
#6 0.33 0.55 (41 nm) - - 1.04 (no size info) >99%

* >0.4 at 41 nm. VRE = Volatile Removal Efficiency. In brackets the concentration of volatile particles; N/A = not available.

Table 2 presents also the counting efficiency, linearity, and volatile particle removal
efficiency of the PTI sensors of the specific system that was used at the JRC campaign. The
specification of the sensors changes according to the applicable regulation. The reported
values were provided by the PTI sensors manufacturers and not tested by us.

2.3. Vehicles

In this study, six vehicles were tested at low idling. Table 3 presents for each vehicle,
the model year and the Euro emissions standard it fulfilled, the existence of a particulate
filter, the mileage, the engine displacement/power, and the fuel that was used. The
notation we use is ‘V’ and the number of the vehicle. All vehicles were light duty
homologated as M1 (=passenger cars) from Euro 3 to Euro 6d regulations. Five diesel and
one gasoline with direct injection engine were tested. Note that for V4 an engine out flow
was extracted and driven to the tailpipe where it was mixed with the DPF-out flow in
order to simulate a malfunctioning DPF.

Table 3. Main characteristics of tested vehicles.

Code Euro Fuel Year Mileage (km) Engine Displacement (cm3) Power (kW) Particulate Filter

V1 6b Diesel 2017 23,540 1.560 88 Yes
V2 6d Diesel 2019 4.100 1.999 132 Yes
V3 4 Diesel 2009 209,000 1.997 100 Yes
V4 6d Diesel 2020 4.200 1.968 110 Yes 1

V5 5b Gasoline DI 2012 151,831 1.197 77 No
V6 3 Diesel 2004 286,000 2.993 150 No

1 An engine-out flow was available and mixed with the DPF-out flow. DI = Direct Injection. DPF = Diesel Particulate Filter.
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3. Results

3.1. Vehicles without Particulate Filter

Figure 2 presents the low idling emissions of two vehicles without particulate filter;
a diesel (V6) and a gasoline direct injection (V5). Figure 2a plots the SPN23 and SPN10
emissions of V6 measured with the setup ‘REF A’. Both SPN23 and SPN10 of V6 low
idling emissions were ~107 #/cm3. This is in agreement with previous studies that
reported >107 #/cm3 [47,48] for diesel vehicles without DPF. Note that the reference
system measured >3 × 106 #/cm3 so the SPN23 was probably underestimated. Some
PTI devices reported SPN emissions that were higher than the limit proposed by the
(corresponding) regulation they follow. Specifically, Sensors #1 and #2 report up to 2 ×
106 #/cm3 twice as high the Dutch limit, and the Sensor #5 up to 5 × 105 #/cm3. This is
not the upper concentration limit of the sensors but the threshold value they use to report
fail of the vehicle. In the cases that PTI sensors reached this upper limit we added a red
circle (see Figure 1a). Even if PTI sensors underestimated in some cases the SPN23, they
all reported that the vehicle failed to comply with regulation due to SPN concentrations
higher than 2 × 106 #/cm3 (Sensor #5 has a limit at 5 × 105 #/cm3). Thus, all sensors
detected that this vehicle was a high emitter. Sensor #2 was not available during this test.

 
(a) (b) 

Figure 2. Particle number concentrations during low idling with cold start engine of direct injection vehicles without
particulate filter: (a) diesel V6; (b) gasoline V5. Points in red circle show that the PTI sensors reported a threshold
concentration that corresponds in automatic failure (2 × 106 #/cm3 for NL or 5 × 105 #/cm3 for DE).

Figure 2b reports the emissions of V5 after two engine ignitions; one with cold engine
and one with hot that was performed approximately 30 min after the vehicle was switched
off. During the first test the setup ‘REF B’ was used and SPN23, SPN10 and TPN10 were
measured, while during the second test only SPN23 and SPN10 were measured with
‘REF A’. SPN23 emissions were initially >>106 #/cm3 while after the first 300 s they were
~3 × 105 #/cm3. The 10 nm to 23 nm concentration (SPN10–23) was ~35% more than SPN23
throughout the test (see also Section 3.6). After 600 s of idling, the concentration decreased
to 6.5 × 104 #/cm3. A very similar concentrations profile was also observed during the
second test, the lowest SPN23 being 3.5 × 104 #/cm3. Interestingly, the concentration was
not stable throughout the test but fluctuated significantly.

In general, all sensors were precise enough. The difference of Sensors #2, #5, and
#6 to SPN23 were within ±19% and of Sensor #1 within ±34%. The highest differences
compared to SPN23 were 54% and 38% for instruments #3 and #4, respectively. The
variability of the emissions (defined as standard deviation of SPN23 divided by average
SPN23 for the specific time period) was 15% and 6% for these two tests, respectively. The
measurement with the device #4 was repeated at a more stable idling emissions point and
the deviation with ‘REF B’ system decreased to 7%. During the second test, the highest
PTI sensors deviation occurred for Sensor #4 but the SPN23 standard deviation was >40%.
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Even after 400 s the SPN23 standard deviation was >10% that resulted in high uncertainty
for the PTI sensors results that were measuring only for a frame of 15 s (except for Sensor
#5 and Sensor #6).

3.2. Malfunctioning DPF

Figure 3 plots the emissions of two vehicles with reduced DPF efficiency. Figure
3a presents the SPN23 and SPN10 emissions of V3 (setup ‘REF A’) which was a Euro 4
with mileage >200,000 km. Initially, SPN23 emissions were higher than 106 #/cm3 and
gradually decreased to 8.5 × 105 #/cm3. After 380 s, SPN23 decreased steeply to ~3.8 ×
105 #/cm3 and then stabilized. When SPN emissions stabilized, SPN10–23 was ~350% more
than SPN23 for V3 (see Section 3.6). Initially, SPN10 and TPN10 concentrations were >3 ×
106 #/cm3 but after the first 380 s they decreased to their accurate measurement range.
The PTI sensors had a good agreement with the SPN23 measurements when emissions
stabilized except for Sensor #2 and to a lesser degree for Sensor #1 which overestimated
the concentrations. In one case, a PTI sensor indicated that emissions were higher than
2 × 106 #/cm3 that results an immediate failure in the NL regulation. For this case we
added a red circle in Figure 3a.

  
(a) (b) 

Figure 3. Particle number concentration during low idling with cold start engine for: (a) Euro 4 diesel V3; (b) Euro 6d
with DPF bypass V4. Points in red circle show that the PTI sensors reported a threshold concentration that corresponds in
automatic failure (2 × 106 #/cm3 for NL or 5 × 105 #/cm3 for DE).

Figure 3b plots the SPN23, SPN10 and TPN10 emissions of V4 (setup ‘REF B’). For this
vehicle an engine-out flow was bypassed and mixed with the flow downstream of the
DPF. The concentration was initially 2.8 × 106 #/cm3 and gradually decreased down to
2.7 × 105 #/cm3. The SPN23 concentration range spanned over the limits imposed by both
Netherlands (1.0 × 106 #/cm3) and Germany (2.5 × 105 #/cm3). Engine- and DPF-out
SPN23 emissions of V4 were found to be ~5 × 106 #/cm3 and ~5 × 103 #/cm3, respectively.
Thus, the filter bypass applied in our study reduced the DPF efficiency from ~99.9% to
~93%. Similar to Figure 3a, when PTI sensors reported the failure value of 2 × 106 #/cm3

we added a red circle. When concentrations were near the Dutch limit, the PTI sensors
were accurate detecting those cases where the emissions exceeded the limit. Specifically,
Sensors #1, #2, #3, #4, and #6 detected all the cases that SPN23 was higher than the Dutch
limit (1.0 × 106 #/cm3). Sensor #5 had a limit of 5 × 105 #/cm3. When SPN23 decreased
to values lower than 1.0 × 106 #/cm3

, the sensors were still in good accuracy but in two
cases Sensors #1 and #2 overestimated SPN23 by 119% and 68%, respectively. Sensor #5
did not measure in the presented test. Its efficiency when measuring the PN emissions of
V4 will be discussed in Section 3.6.. Note that SPN10 and TPN10 measurements during the
first ~600 s had high uncertainties due to elevated concentration values (>3 × 106 #/cm3).
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3.3. After DPF Regeneration

Figure 4a plots the SPN23 and SPN10 low idle concentrations of diesel vehicle V2
(‘REF A’) and compares them to PTI sensors measurements. After the first cold start
engine ignition, two more ignitions at hot engine conditions followed (around 1300 s
and 2400 s, respectively). The engine remained switched off only for few minutes before
the two hot engine ignitions. The concentration was initially very high, >106 #/cm3,
and gradually decreased two orders of magnitude. The profile indicates that the DPF
efficiency was increasing during the test and thus, our measurements were performed
right after a regeneration. No OBD was available to confirm our assumption.

 
(a) (b) 

Figure 4. Particle number concentration during low idling: (a) After regeneration: V2 cold start and two hot starts. Hot
engine ignitions were done few minutes after switching off the engine; (b) High sub-23 nm fraction: V1 cold start and one
hot start.

Sensors #1 and #3 were very precise while the rest of the sensors underestimated
the SPN23 emissions. During the first seconds of the first ignition, Sensors #2 and #4
underestimated SPN23 significantly but their deviation decreased at the second and third
tests at levels near the accuracy requirement of NL regulation (~25%).

3.4. High Sub-23 nm Fraction

Figure 4b plots SPN23, SPN10, and TPN10 emissions of V1 (setup ‘REF A’) and
compares them to the PTI sensors measurements. Initially the SPN23 concentration was
>2 × 105 #/cm3. After ~80 s the SPN23 decreased steeply to ~6 × 104 #/cm3 and then
gradually down to 4 × 104 #/cm3. The concentration of particles below 23 nm were almost
seven times the concentration of particles >23 nm. This means that the mean particles
size was below 23 nm. All PTI sensors overestimated significantly the SPN23 emissions.
A second measurement was performed with hot engine ~25 min after switching off the
engine. The results were similar to the first measurement. The sensor with the smallest
deviation was Sensor #3 (85–91% difference), while the rest deviated 222–433% (Sensor
#1), 464–515% (Sensor #2), 28–141% (Sensor #4), 83–226% (Sensor #5), and 128–144%
(Sensor #6).

3.5. Total Particles

TPN10 concentrations (solid and volatile particles) were measured with setup “REF
B” for V1, V4, and V5. Table 4 summarizes the volatiles fraction calculated as the absolute
value of the ratio of SPN10-TPN10 to SPN10. Volatiles fraction is very low for the gasoline
V5 (6%), while for the diesel vehicles V1 and V4 are 46% and 56%, respectively. The
volatile fraction at low idling was low for these three vehicles. The highest fraction was
detected for V4 that had also an engine-out flow that did not pass through the diesel
oxidation catalyst (DOC) that oxidizes hydrocarbons.
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Table 4. Mean concentrations and sub-23 nm and volatile fractions.

Vehicle Comment SPN23 (#/cm3) SPN10 (#/cm3) Sub-23 nm Fraction TPN10 (#/cm3) Volatiles Fraction

V1 DPF (high sub-23) 4.0 × 104 3.5 × 105 775% 4.5 × 105 47%
V2 DPF (after regen.) 4.8 × 104 5.0 × 104 5% -
V3 DPF (old) 3.8 × 105 1.7 × 106 346% -
V4 DPF (bypass) 2.7 × 105 7.0 × 105 158% 1.1 × 106 57%
V5 G-DI (no filter) 7.6 × 104 1.0 × 105 35% 1.1 × 105 6%
V6 No DPF 8.9 × 106 1.4 × 107 63% -

Sub-23 nm fraction = (SPN10 − SPN23)/SPN23. Volatile fraction = (TPN10 − SPN10)/SPN10.

3.6. Summary of Results

Table 4 summarizes the SPN23, SPN10, TPN10, the sub-23 nm fraction of solid particles
emitted by the tested vehicles defined as SPN10–23/SPN23, and the volatile fraction. The
stabilized parts of the concentrations were used to calculate the fractions. The standard
deviation of the calculated fractions was <3% except for V5 where standard deviation
was 7%.

The SPN23 levels were from 4.0 × 104 #/cm3 (V1) up to 8.9 × 106 #/cm3 for the
vehicle without DPF (V6). The vehicle with a fraction of the exhaust bypassing the DPF
had a concentration of 2.7 × 105 #/cm3 (V4) and the high mileage DPF vehicle a slightly
higher (V3). Both of them were higher than Germany’s limit (2.5 × 105 #/cm3), but lower
than the Dutch limit (1.0 × 106 #/cm3).

The sub-23 nm fraction was very high for V1, V3, and V4 (>150%). In these cases,
the inclusion of sub-23 nm particles in the regulation may change the status of a vehicle
from ‘pass’ to ‘fail’. For example, V1 had SPN23 4.0 × 104 #/cm3, but SPN10 3.5 × 105

#/cm3, which is higher than the Germany’s limit of 2.5 × 105 #/cm3. V4′s SPN23 was at
the limit, but SPN10 exceeded the limit by far. Such high sub-23 nm fractions indicate the
importance of the cut-off size of the PTI sensors. This was clear with the tests of V1 that
had the higher sub-23 nm fraction (Figure 4b).

Figure 5 correlates the PTI sensors to SPN23 measurements. Additionally, we plot
the SPN10 and, when available, the TPN10 in order to study the effect of sub-23 nm and
volatile particles on the performance of PTI sensors. The vertical solid lines divide the
number concentrations for different vehicles. V6 is not plotted because most sensors
saturated.

 
(a) (b) 

 
(c) (d) 

Figure 5. Cont.
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(e) (f) 

Figure 5. Summary of PTI sensors measurements and comparison with SPN23 measured with a PMP compliant system.
SPN10 and TPN10 (when available) are also provided. (a) PTI #1; (b) PTI #2; (c) PTI #3; (d) PTI #4; (e) PTI #5; (f) PTI #6.

Figure 6a plots the deviation of the PTI sensors compared to the SPN23 concentrations
in function of the sub-23 nm fraction. When the sub-23 nm fraction is <100% the accuracy
of the PTI sensors is very good. When the sub-23 nm fraction is 200% or more the
deviations become bigger, especially for Sensors #1 and #2. CPC based sensors and
DC-based Sensor #3 were less influenced by the presence of small particles. Figure 6b
plots the deviation of the PTI sensors against the SPN23 measured with the reference
system. Measurement uncertainty is in general higher at lower concentrations but there
is no clear trend between the measured concentration and the sensors’ deviation. The
scatter is due to the sensitivity of the sensors to the sub-23 nm fraction as described in
Figure 6a.

 
(a) (b) 

Figure 6. Summary of the deviation of the PTI sensors plotted against: (a) the sub-23 nm fraction (SPN10 − SPN23)/SPN23);
(b) the solid particle number of particles down to 23 nm (SPN23).

4. Discussion

This is one of the first studies that assessed sensors for the PTI of vehicles. Previous
studies used prototypes [48–50], or the Swiss approved sensor [24]. Here from the
six sensors tested, one had the approval (certificate) for the Swiss PTI (Sensor #6), two
were prototypes without a specified country for homologation (Sensors #3 and #5), and
three sensors (Sensors #1, #2 and #4) had either approval (certificate) for PTI testing
or were ready for approval in Netherlands. All of the sensors fulfilled the technical
requirements of the countries they had the approval from, or the VERT recommendations.
In principle, depending on the regulation, an uncertainty of ±30% is expected from the
technical specifications (see Table 2). Even though such small differences were indeed
seen, there were some cases of much higher differences (up to 5 times higher). The key
message of this study was that the reason of these high differences was the high (or low)
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sensitivity of the sensors to particles smaller than 23 nm (Figure 6a), which is the current
lower size in the regulations. Most importantly, these sub-23 nm particles were “solid”
and not volatiles. The implications of this finding will be discussed in more details below.

4.1. The Role of Sub-23 nm Particles in the PTI Sensors Deviation

Up to 160% sub-23 nm fraction could be handled acceptably by the PTI sensors
(Figure 6a). At 200% sub-23 nm value, two DC−based sensors started deviating by
>150%. The CPC-based systems had high deviations (>100%) at >400% sub-23 nm values.
The declared counting efficiencies of the PTI sensors at 23 nm presented in Table 2 do not
justify these high differences. Thus, the rationale for the differences observed is possibly
due to the efficiency of the sensors at sizes below 23 nm. The counting efficiency of
CPCs at sizes below the cut-off size decreases steeper than diffusion chargers. A recent
study on the uncertainty of regulatory particle number measurements [40] found that
at 50 nm a PMP system (CPC-based) and a portable emissions measurement system,
SPN-PEMS (both CPC- and DC-based), have very similar efficiencies (~90%). Instead,
at 15 nm the PMP system would typically measure in the range 16–23% while CPC-
based PEMS ~24% and DC-based ~33%. Thus, a DC-based PEMS may measure even
double sub-23 nm particles concentration compared to a high losses PMP system with
16% efficiency at 15 nm. Even if PTI sensors are not necessarily equal to PEMS systems
the aforementioned differences give important input on the differences observed in this
study. A previous study [47] has calculated the possible under- and over-estimation of
SPN23 of PTI instruments as a factor of the geometric mean diameter. The upper maximal
SPN23 measurement deviation for geometric mean diameters in the range 35–77 nm
was estimated to be 18% to 84%; higher geometric mean diameters and lower geometric
standard deviations resulted higher deviations. In addition to the sub-23 nm effect on
the sensors’ accuracy we also studied possible linearity issues (Figure 6b) but no clear
trend was observed between deviation and concentration. Moreover, it was not clear
whether the sensors that overestimated the emissions were affected by volatile particles.
The total particles were measured for the two diesel vehicles with high sub-23 nm fraction.
They were approximately 50% higher than the solid particles. As the concentration of
solid particles below 23 nm was very high, we believe that any volatile particles would
be mainly condensed on the existing solid nanoparticles, rather than forming a separate
volatile nucleation mode. During idling of diesel engines, the air to fuel ratio is very
high and small volatile particles fraction is emitted compared to other engine operation
conditions [51]. More studies are needed to assess the volatile removal efficiency of the
sensors under realistic and extreme conditions (i.e., with existence of nucleation mode
particles).

4.2. Sub-23 nm Particles at Idling

The second point that needs to be discussed is what are the particles below 23 nm and
whether their concentration is high. Diesel engines typically produce size distributions
with geometric mean diameters in the range of 50–70 nm [42]. Thus, in general they have
a low sub-23 nm particles fraction. Formation of sub-23 nm particles have been recently
reported during urea or ammonia injection [52]. These particles were also found to carry
high charge at high exhaust gas temperatures [53]. In our study, half of the diesel vehicles
were not equipped with SCR (selective catalytic reduction for NOx). For the tests with the
vehicles with SCR (V2, V4), due to the low exhaust gas temperatures at idling, we believe
that no urea injection took place and due to the low exhaust gas temperature no such
particles were formed even if any ammonia desorbed from the catalyst. Indeed, V2 had
very low sub-23 nm values while particle emissions of V4 mainly originated by the engine-
out flow and, thus, they were not influenced by possible urea injection. Furthermore,
we did not observe any significant variation of the sub-23 nm value that would indicate
release of ammonia (Figure 3b). Another case with high concentration of solid particles
below 23 nm is idling. This has been shown and confirmed repeatedly in the literature
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and it is assumed that they are heavy polyaromatic hydrocarbons (PAHs) that cannot
evaporate at 350 ◦C [54]. The concentration of these particles was extremely high for
vehicle V1 (7.5 times of SPN23), but still high for V3 and V4 (1.5 to 3.5 times of SPN23). If
we also consider the particle losses of sub-23 nm particles due to diffusion (not corrected
in this study), their fraction would be even higher (1.5–2 times). For the remaining diesel
vehicles, the fraction of particles below 23 nm was <65%. What is important to note is that
the high concentration of particles below 23 nm at idling does not extrapolate to other
engine operation modes or the type approval cycle. Dedicated tests with V1 showed
that the SPN23 type approval cycle emissions were 1.48 × 1011 #/km, but for the same
cycle the SPN10 emissions were 1.85 × 1011 #/km. Thus, the approximately 700% higher
SPN10 idle concentration corresponded to only 27% higher SPN10 cycle emissions. There
was also no correlation between SPN23 idle concentrations and sub-23 nm fraction (see
Table 4). Combining this lack of correlation with the lack of correlation of idle sub-23
nm fraction and type approval cycle sub-23 nm fraction, it can be concluded that the PTI
sensors need to avoid counting this fraction.

4.3. The Importance of PTI Sensors Efficiency in the Sub-23 nm Size Region

The third question that needs to be answered is whether this sensors′ concentration
uncertainty at low particle sizes is important. For vehicles having low idle emissions (i.e.,
<5 × 104 #/cm3) an error on the order of 5 times (e.g., V1), will bring the result close to
the German limit. For a vehicle close to the German limit an error on the order of 3 is
still below the Dutch limit (e.g., V3 or V4). When discussing limits, the uncertainty of the
whole procedure should also be taken into account. The idle concentration can give an
estimation of the type approval cycle emissions (factor 107 cm3/km), but this factor has
an uncertainty margin of at least 2 (for diesel vehicles); for gasoline vehicles the factor is
much higher [25]. Thus, a vehicle that is close to the type approval limit (6 × 1011 #/km),
taking into account the factor 2 would have idle concentration of up to 1.2 × 105 #/cm3.
By setting a limit of 2.5 × 105 #/cm3 (German regulation) an additional factor of 2 is
permitted for the PTI sensors uncertainty. In our study two vehicles were close to the
German limit: V3 (old DPF) and V4 (bypassed DPF). All PTI sensors correctly identified
that idling emissions of these two vehicles were >2.5 × 105 #/cm3, but in many cases the
SPN23 emissions were significantly overestimated. V3 with idle concentration of 3.8×105

#/cm3 was precisely assessed by Sensors #5 and #6 (within 2%). The average deviation of
Sensors #3 and #4 was 32% and 70%, respectively. Sensors #1 and #2 overestimated >150%
due to the high fraction of particles below 23 nm (346%). SPN23 of V4, when reducing the
DPF efficiency from 99.9% to 93%, was 2.7 × 105 #/cm3 and the sub-23 nm fraction was
158%. Similar to V1 all PTI sensors overestimated the SPN23; on average (for each sensor’s
measurements) Sensors #3−#6 were within 52% while Sensors #1 and #2 overestimated
by 273% and 187%, respectively.

One vehicle had higher emissions than the Dutch limit: V6 (no DPF). This vehicle
had emissions close to 1 × 107 #/cm3. Except from Sensor #5 that reported the failure
threshold value in the German regulation (5 × 105 #/cm3), all sensors detected that this
vehicle had >2 × 106 #/cm3 that results in an immediate fail in the Dutch regulation. The
idle concentrations of <5 × 104 #/cm3 of V2 were measured accurately by all sensors
within 20% (sub-23 nm fraction 5%). On the other hand, the idle concentrations of V1,
which were at the same levels (4 × 104 #/cm3) were not determined accurately by all
sensors due to the high sub-23 nm fraction (770%). Sensors #3 and #6 measured <1 × 105

#/cm3, but Sensors #1, #2, #4 and #5 above; Sensors #1 and #2 even above the German
limit in some cases. V1 type approval cycle emissions are well below the limit. Thus, with
the current Dutch regulation technical requirements, the German limit might result in
some false “fails”. Any limit at this or lower level needs more rigorous characterization
of the cut-off curve of the sensors.
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4.4. Gasoline Vehicles

The discussion focused on diesel vehicles, because the upcoming Dutch, German, and
Belgian PTI regulations will apply only to diesel vehicles. The reason is that tampering
or malfunction of DPFs will have a significant impact on the emissions, because the
engine out emissions are very high (around 1014 #/km) [24]. On the other hand, the
SPN23 emissions of gasoline vehicles even without any particulate filter are near the
regulation limit (around 1012 #/km), while modern gasoline vehicles may emit one order
of magnitude lower SPN23 [3,55]. Thus, the detection of existence or malfunctioning of
the filter is very difficult. A previous study also showed that is difficult to find a good
correlation between idle concentration and type approval emissions [25]. More studies in
this direction are necessary.

5. Conclusions

In this study, the measurement of low idling emissions of different vehicles was
performed with six SPN sensors designed for periodical technical inspection (PTI) ap-
plications and a reference system that measured >23 nm (SPN23) and >10 nm (SPN10),
and in some cases also the total particle number >10 nm (TPN10). Our scope was twofold;
to evaluate the efficiency of the PTI23 sensors in the context of the limits set by different
current or future PTI regulations and to provide input on the procedures. The cases
we studied were: high sub-23 nm particles and volatiles fraction, emissions after a DPF
regeneration, and vehicles without particulate filter or with a malfunctioning filter.

SPN23 low idling emissions of a diesel vehicle without a DPF were around 1 × 107 #/cm3,
one order of magnitude higher than the Dutch limit, and easily detectable by all sensors.
For malfunctioning DPFs we found emissions SPN23 slightly higher than the German limit
of 2.5 × 105 #/cm3. In one case (V4), the DPF efficiency of a well performing vehicle was
controllable reduced from ~99.9% to ~93% and SPN23 emissions were 2.7 × 105 #/cm3.
SPN23 emissions were very high after a DPF regeneration (even > 3.8 × 105 #/cm3) and
gradually decreased to <1 × 105 #/cm3 showing the necessity of a short conditioning
(e.g., some minutes of driving) of the vehicle in these cases. Finally, the SPN23 low idling
emissions of a GDI vehicle without a filter were much lower (<1 × 105 #/cm3) than the
currently proposed limits pointing the necessity of performing more studies on both the
procedures and the PTI limit for gasoline vehicles.

Our results suggest that PTI requirements for PN measurements may be met by both
CPC- and DC-based sensors. All sensors detected high emitters (>1 × 106 #/cm3) and for
low sub-23 nm fractions their accuracy was within 50% in most of the cases. The highest
deviations of the PTI23 sensors were observed when the sub-23 nm fraction was high. The
SPN10–23 was even 775% higher than SPN23 in one case (V1), much higher than typical
values for diesel vehicles, showing that diesel engines may emit high concentrations of
nonvolatile nucleation particles during idling. Two out of the three DC-based sensors
(Sensors #1 and #2) were mostly affected by the presence of sub-23 nm particles and
overestimated significantly SPN23 resulting in false ‘fails’ in case that a limit in the order
of 2.5 × 105 #/cm3 will be imposed. The volatile particles down to 10 nm were ~50% for
two diesel vehicles and 6% for a gasoline (G-DI) vehicle more than SPN10. In these three
cases no correlation was found between volatiles and sensors deviation.
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Abstract: Analyses of the relationships between climate, air substances and health usually concentrate
on urban environments because of increased urban temperatures, high levels of air pollution and the
exposure of a large number of people compared to rural environments. Ongoing urbanization, demo-
graphic ageing and climate change lead to an increased vulnerability with respect to climate-related
extremes and air pollution. However, systematic analyses of the specific local-scale characteristics
of health-relevant atmospheric conditions and compositions in urban environments are still scarce
because of the lack of high-resolution monitoring networks. In recent years, low-cost sensors (LCS)
became available, which potentially provide the opportunity to monitor atmospheric conditions with
a high spatial resolution and which allow monitoring directly at vulnerable people. In this study, we
present the atmospheric exposure low-cost monitoring (AELCM) system for several air substances
like ozone, nitrogen dioxide, carbon monoxide and particulate matter, as well as meteorological
variables developed by our research group. The measurement equipment is calibrated using multiple
linear regression and extensively tested based on a field evaluation approach at an urban background
site using the high-quality measurement unit, the atmospheric exposure monitoring station (AEMS)
for meteorology and air substances, of our research group. The field evaluation took place over a
time span of 4 to 8 months. The electrochemical ozone sensors (SPEC DGS-O3: R2: 0.71–0.95, RMSE:
3.31–7.79 ppb) and particulate matter sensors (SPS30 PM1/PM2.5: R2: 0.96–0.97/0.90–0.94, RMSE:
0.77–1.07 μg/m3/1.27–1.96 μg/m3) showed the best performances at the urban background site,
while the other sensors underperformed tremendously (SPEC DGS-NO2, SPEC DGS-CO, MQ131,
MiCS-2714 and MiCS-4514). The results of our study show that meaningful local-scale measurements
are possible with the former sensors deployed in an AELCM unit.

Keywords: electrochemical sensors; metal oxide semiconductor sensors; particulate matter sensors;
urban air quality; smart environment monitoring (SEM)

1. Introduction

Worldwide, one of the greatest and most challenging problems is the degradation of
air quality, especially when caused by human activities. In the year 2019, according to the
World Health Organization (WHO), 99% of the Earth’s population was living in regions
where the air quality guideline levels given by the WHO were not achieved [1].

Recently, the WHO global air quality guidelines were updated based on the latest
systematic reviews of exposure-response studies [2]. For the classical air pollutants, which
include particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), carbon monoxide
(CO) and sulfur dioxide (SO2), an improved assessment of their adverse effects on health
in low-, mid- and high-income countries took place in the last 15 years, achieved, for
instance, through the progress in measurements, modelling, data availability and exposure
analysis [2]. Olschewski et al. have shown that high-mortality events of patients with
cancer are strongly linked with above-average levels of NO2 and PM2.5 during unfavorable
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weather conditions in late winter until spring, which leads to the accumulation of polluted
air [3]. Generally, weather conditions and the atmospheric state influence the transport,
mixing ratio, transformation and deposition of air substances; hence they are important
factors defining the air quality level [4–6]. Many studies show that short- as well as
long-term exposures to O3 are associated with a higher morbidity and mortality [7–9].
Moreover, major evidence exists that cardiovascular mortality and morbidity is related to
PM exposure [10–12]. CO, a highly poisonous gas [13], is another air pollutant detrimental
to human health, being associated with acute respiratory and cardiovascular diseases, for
example [14,15]. The combination of the high impact of ambient air pollution on human
health with a still not satisfactory spatial resolution of air quality monitoring worldwide
points at the need for an increase in measurement resolution of health-deteriorating air
pollutants. The lack of high-resolution air pollutant monitoring is due to the high initial
and maintenance costs of regular devices for monitoring air pollution [16–18].

Therefore, it is reasonable to aim at developing custom multipollutant air-quality
monitoring systems to characterize the variation of those classic pollutants in a high spatial
resolution and which are also far less cost-intensive compared to official measurement
devices. In the last decade, an increasing number of companies started to produce low-cost
sensors (LCS) or even whole sensor systems (SSys), which include supporting components
(e.g., enclosure, power supply, hardware and software for data treatment). This also
sparked the endeavors of researchers to build low-cost air quality monitoring networks as a
complementary source of information [16]. While these manufactured sensor systems were
evaluated, for instance, through collocation experiments [18], researchers also evaluated
the sole sensors or sensor systems embedded in their own custom-built measurement
systems [19–22]. In this work, we do the latter and introduce the atmospheric exposure low-
cost monitoring (AELCM) device, which can deliver high spatial and temporal resolution
data of air pollutant concentrations and climate parameters for Internet of Things (IoT)
applications using an Arduino and Pycom microcontroller board.

Generally, lower-cost monitoring devices for gaseous pollutants in ambient air use
electrochemical sensors (EC) or metal oxide sensors (MOS), while optical particle counters
(OPC) are used the most for the detection of PM [23]. All these sensor types are incor-
porated in the first version of the AELCM, which also includes a low-cost sensor for the
measurement of temperature and humidity inside the box. The sensor output can be highly
dependent on the variation of these meteorological variables [24–26]. The incorporated
sensors in the AELCM box are supposed to measure the classic pollutants PM2.5, NO2,
O3 and CO. While low-cost sensors offer many potential advantages, there are also major
disadvantages. Their overall short lifespan, lack of long-term stability, signs of inter-sensor
unit variability, cross-sensitivity and the need to calibrate them using reference instruments
because of the lack of sufficient conversion formulas for individually purchased sensors
are detrimental to their overall use in a systematic and beneficial way [16].

In addition to a technical presentation of the AELCM, we also want to address the
performance of the used sensors (some of them are rarely evaluated, such as the digital gas
sensors manufactured by SPEC Sensors) in the context of some of the issues these sensors
entail. For this purpose, we are using the reference measurements of the atmospheric
exposure monitoring station (AEMS) for air substances and meteorological variables, while
our AELCM boxes are mounted next to the station.

2. Materials and Methods

2.1. AELCM Design and Collocation Experiment

The first version of the atmospheric exposure low-cost monitoring box uses an Ar-
duino Mega 2560 Rev3 board for the collection of sensor measurements. Moreover, the
Arduino device is used for the control of the other embedded hardware in the AELCM
box. The board uses an ATmega 2560, which is a power-efficient and performant 8-bit
microcontroller [27].
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The Arduino Mega 2560 provides a wide variety of features, while the most important
features for our measurement system were the 16 MHz crystal oscillator, an available
USB connection, the high number of digital input/output pins and analogue input pins,
as well as the amount of memory. For communication with external devices, such as a
secure digital (SD) card module (which enables storage of measurement data on a memory
card) or a real-time clock (RTC), the board provides SPI, four UARTs (hardware serial
ports) and I2C. The synchronous serial data protocol called the serial peripheral interface
(SPI) is used to communicate with the SD card module and to control it. The universal
asynchronous receiver-transmitter (UART) protocol and the serial communication bus
I2C (inter-integrated circuit) are two additional communication protocols being used. The
connection between the board and its external devices was mostly realized through different
self-designed printed circuit boards (PCBs). These custom-built PCBs included a so-called
bus board, a sensor board and a communication board. The PCBs have individual slots
for different hardware (for instance, sensors, SD card module, data modem and optional
GPS module).

Data transmissions and regular syncs of the external Adafruit DS3231 RTC are realized
through a GPy board by Pycom based on the Espressif ESP32 SoC (System on Chip) [28].
The external real-time clock is used to guarantee that the system time of an AELCM unit
is still precise, even if there is poor network connectivity. Next to location tracking, time
synchronizations in countries with a lack of IoT infrastructure could be realized through
the optional GPS module (Adafruit Mini GPS PA1010D). The GPy is a triple-bearer, offering
connectivity in form of WiFi, Bluetooth and cellular LTE-CAT-M1/NB1. We are using
long-term evolution for machines (LTE-M) to enable the AELCM box to gain a connection
to the internet, which requires an IoT Nano–SIM. We are employing an IoT SIM card by the
carrier 1NCE. Likewise, for transmitting data successfully we needed a communication
device that supports modern security standards, such as TLS version 1.2 (Transport Layer
Security). In addition, a minimal peak current consumption during transmissions was
needed. Both requirements are features of the GPy. Two uninterruptable power supplies
(Adafruit PowerBoost 1000C) provide current of up to 1 ampere at a voltage between 5 and
5.2 volts (V) for the GPy and the rest of the measurement system via the mains or batteries
separately [29]. The separation exists to avoid a possible instability of an AELCM unit
that is due to voltage drops caused by potential high current consumption greater than
1 ampere during data transmissions. Moreover, it provides more flexibility with respect
to the operation of metal oxide sensors, which consume vastly more current by design
because they use heaters in contrast to electrochemical gas sensors. The integrated LCD is
used for more comfortable deployment in the field, confirming if the boot up of an AELCM
unit is successful or if hardware components are failing.

The housing, shown in Figure 1b, is a modified ABS plastic box, which is actively
ventilated through a fan to probe the ambient air. The fan functions as an exhaust fan,
removing air from inside the box. The resulting air flow direction is toward the bottom
left of the box. The fan guarantees a constant air flow over the gas sensors and the
meteorological sensor, which are described in Table 1.

The revolutions per minute (RPM) of the fan blades are 2000 RPM, causing a flow
velocity between 0.8 and 0.9 m/s at the end of the bottom exhaust pipe of an AELCM
box [39]. 3D printing was an essential tool for customizing the box and securing the
used hardware.

The gas sensors in Table 1 can be separated into two categories: electrochemical
gas sensors (SPEC DGS) and metal oxide gas sensors (MiCS-2714, MiCS-4514, MQ131).
Electrochemical gas sensors generate a measurable current while in contact with their target
gas [40]. The amount of measured current depends on the concentration of the target gas.
This relationship is utilized to estimate gas concentrations. Metal oxide sensors on the
other hand feature a semiconductor layer. The conductivity of this layer changes with the
fractions of the gases in the air to which a metal oxide type gas sensor is sensitive [16]. We
can measure this change and translate it into estimations of gas concentrations of a specific
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gas. For the measurement of PM, an optical particle counter (OPC) was used, called SPS30.
Through the interaction of laser beams and particles, resulting in scattered light inside a
measurement cell collected by a photodetector, the mass concentration of suspended matter
with diameters smaller than or equal to specific aerodynamic diameters (PM2.5 and PM1)
can be estimated [38].

(a) (b)

Figure 1. Photographs of the AEMS and an AELCM unit, which is mounted on the fence next to
the AEMS: (a) the stationary air and climate measurement station of the Chair for Regional Climate
Change and Health, Faculty of Medicine, University of Augsburg; and (b) the housing of an AELCM
unit consists of a weather-proof NEMA (National Electrical Manufacturers Association) enclosure
(ABS Plastic Case, PN: NBB-22251; L × W × H: 37 cm × 27 cm × 15 cm). The unit includes a sensor
board (equipped with gas sensors and a meteorological sensor) connected to a bus board, which in
turn is connected to an Arduino Mega 2560 Rev3 and an external RTC (A). The communication board
is equipped with an antenna-equipped Pycom GPy and an SD card module (B). An uninterruptable
power supply for the communication device (GPy) and a second one for the measurement system
and its external devices (LCD, fan and SD card module) are each connected to a LiPo battery (C).
A liquid crystal display (LCD) shows the status and functionality of the AELCM unit (D). The DC
PWM fan inside the enclosure (ODROID-H2 DC Fan; L × H × D: 92 mm × 92 mm × 25 mm) makes
use of the custom air inlet (top right) and custom air outlet (bottom left) for the exchange of air (E).
The SPS30 located at the bottom of the box directly coupled to the ambient air through a short plastic
pipe (F). Both uninterruptable power supplies are connected to a two-port USB charger plugged into
a regular power socket (G).

Table 1. Overview of the specifications of the sensors that can be used in the AELCM unit.

Measured
Variable

Sensor Manufacturer
Measuring

Range

Accuracy *
(Repeatability) *

[Precision] *

Approx. Price
(Euro) 2020

Temperature
Humidity BME280 [30] Bosch −40–65 ◦C

0–100%
±0.5–±1.5 ◦C

±3% 1 5

O3 MQ131 [31] Winsen 0.01–1 ppm / 20
NO2 MiCS-2714 [32] SGX Sensortech 0.05–10 ppm / 10
CO MiCS-4514 [33] SGX Sensortech 1–1000 ppm / 14

O3 DGS-O3 968-042 [34] SPEC Sensors 0–5 ppm ±15%
(<±3%) 80

NO2 DGS-NO2 968-043 [35] SPEC Sensors 0–5 ppm ±15%
(<±3%) 80

CO DGS-CO 968-034 [36] SPEC Sensors 0–1000 ppm ±15%
(<±3%) 80

PM1/2.5 SPS30 [37,38] Sensirion 0–1000 μg/m3 [±10 μg/m3 at 0 to 100 μg/m3]
[±10% at 100 to 1000 μg/m3]

32

* This information is given if the manufacturer’s sensor data sheet provided it. 1 20–80%RH, 25 ◦C, including hys-
teresis.
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The measurement of the meteorological parameters of relative humidity and tempera-
ture are relevant for analyzing LCS output. The neglect of meteorological conditions can
lead to a sensor output and in consequence to model-estimated concentration levels, which
can be questionable as mentioned in the introduction.

In our configuration, the measurements of these two variables taken by a BME280 are
an integral part of the model-based output adjustments of the sensors embedded in an
AELCM unit. The possible influence of these parameters on the sensor outputs given by
electrochemical- and metal oxide-type sensors are also evident in the official documents of
manufacturers who produce these types of sensors [31,40].

The Arduino board, a device with a 5 V logic level, was interfaced with the digital
gas sensors (DGS) by SPEC sensors using UART hardware serial ports and logic-level
converters, given that these sensors are devices operating on 3.3 V. These units give gas
concentrations in parts per billion (ppb) and were rarely analyzed in regards of their
performance in reports or other scientific literature in the past compared to the electro-
chemical sensors of the manufacturer Alphasense (e.g., B4-series and A4-series), which are
up-to-date, common sights in experiments or low-cost sensor systems for gaseous air pollu-
tants [22,23,41]. Therefore, we have decided to evaluate the performance of these sensors
as well. The communication between the SPS30, BME280, Adafruit ADS1115, Adafruit
DS3231 and Arduino board was realized by I2C. The analogue sensors MQ131, MiCS-2714
and MiCS-4514 were connected to the Adafruit ADS1115 analog-to-digital converter (ADC)
to read their outputs.

AELCM units were collocated with the air and climate measurement station of the
Chair of Regional Climate Change and Health next to the University Hospital Augsburg
in an urban background setting shown in Figure 1a named AEMS (location: 48◦ 23.04′ N,
10◦ 50.53′ E; Germany). The measurement station and its instruments are provided by the
company Horiba (APOA-370, principle: non-dispersive ultra-violet-absorption method
(NDUV), APNA-370, principle: chemiluminescence method (CLD), APMA-370, principle:
non-dispersive infrared (NDIR) absorption method, APDA-372, principle: optical light-
scattering). The AEMS provides measurements of the air constituents O3, nitrogen oxides
(NO, NO2 and NOx), CO and fine dust (PM1, PM2.5, PM4 and PM10). Additionally, the
AEMS is equipped with a Lufft WS600-UMB, which measures the meteorological variables
air temperature, relative humidity, precipitation intensity, precipitation type, precipitation
amount, air pressure, wind direction and wind speed.

An internal datalogger called the μIO-Expander averages the gas concentration mea-
surements to 3 min means, while the concentrations of PM fractions are rolling means,
averaged over 15 min time intervals by the datalogger. Measurements of an AELCM unit
take place every 10 s and get saved on an SD card inside an SD card module.

The Arduino board averages the collected data to 3 min means and sends them
to the GPy via a software serial port established on the Arduino board. This step was
necessary because all hardware serial ports (UART) are occupied by digital gas sensors.
The GPy sends the averaged data in real time to our database, being embedded in the
server infrastructure of the University of Augsburg.

2.2. Data and Data Treatment

We deployed three AELCM units with slightly different sensor configurations and
different deployment dates, which are summarized in Table 2. The general analysis period
ended on 24 October 2021. The longest time series is available for the unit AELCM003,
which was deployed in late February 2021. The units AELCM004 and AELCM005 were
deployed in June 2021. The different deployment dates are a result of the development of a
custom surface-mounted device (SMD) socket for the MiCS-2714 and MiCS-4514, which
was not completed by the end of February 2021 (Figures S1.1 and S1.2). A custom SMD
socket was developed to avoid manually soldering the MiCS devices to the sensor board,
possibly damaging them in the process.
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Table 2. General information about the deployed AELCM units’ individual LCS configurations
including the amount of available data for the first atmospheric exposure monitoring network
(AEMN) experiment for every deployed AELCM unit since their individual deployment dates.

No. AELCM
Unit

Deployment Date Missing Sensors *
Available Data

Logger/Database

003
MiCS-271426 February 2021
MiCS-4514 100%/95.56%

004
4 June 2021

DGS-CO21 June 2021 100%/94.95%

005 4 June 2021 DGS-CO n. A./96.91%
* The standard sensor equipment of the first version of an AELCM unit is shown in Table 1. Therefore, missing
sensors relate to the introduced sensors in Table 1.

Eventually, we decided to deploy the first AELCM box called AELCM003 without
MiCS sensors. Originally, the box AELCM004 was deployed at the same date as the unit
AELCM005, but we had to readjust the SMD sockets for the MiCS sensors multiple times
for this box, so that the official measurement start was 21st of June for the AELCM004 unit.

The issues with the current MiCS socket made us redesign it. The latest MiCS socket
board could not be implemented in the first version of the AELCM units anymore be-
cause it was not compatible with the current sensor boards in the already deployed units
(Figures S1.3 and S1.4). We also decided not to employ any SPEC DGS-CO devices in
later units anymore after looking into its initial performance in the field experiment. The
reasoning behind this decision is given in Section 3.

Overall, saving the measurement data with the microSD breakout by the manufacturer
SparkFun on a SD memory card worked well. We could retrieve all the measurement data
for the AELCM units 003 and 004. Unfortunately, the SD memory card of AELCM005
stopped functioning, so the raw data for this measurement system were not available
(n. A.). Nevertheless, we could still use the 3 min averages saved to our database.

During the field experiment, the GPy boards were able to send most of the averaged
measurement data to our database. Approximately 95% or more of the averaged data were
successfully sent. The missing averages in the database can be explained with ongoing
network issues on the carrier side or with a rare problem, where the GPy is losing its
internet connection and cannot recover solely with a board reset. Only a manual power
cycle resolved this issue. We recommend integrating a metal–oxide–semiconductor field-
effect transistor (MOSFET) controlled by a microcontroller or microcontroller board, such
as in our case an Arduino board, to power-cycle the GPy automatically in those cases.

While called SPEC DGS-O3, this EC sensor has a 1:1 sensitivity to NO2; hence, it must
be deployed with a NO2 sensor to estimate the concentration of O3 correctly [34]. Thus,
the AEMS measurements for NO2 were subtracted from the measurements of the DGS-O3
units. Most of the data sheets of the different employed gas sensors recommend a warm-up
time before actually using the sensor output for estimates. The digital gas sensors by SPEC
sensors show a startup output profile after getting powered. The length of the output
stabilization process may depend on the length of time the sensor was unpowered or the
sensor type [34–36]. The observed stabilization periods of the digital outputs were different
between the DGS used in the field experiment, but in general were shorter than a day. On
that account, the first 24 h of measurements of the SPEC DGS devices were not included in
this analysis. Another important detail is that the digital gas sensors and even the AEMS
gas measurement devices show a slight degree of noise in their measurements. This is a
normal feature inherent to their technical design and becomes most evident in negative
gas-concentration measurements (DGS, AEMS). Consequently, negative hourly means of
gas concentrations were flagged and set to zero ppb.

The noise levels for the AEMS gas measurement devices have been kept between
±0.5 ppb (APOA, APNA) and ±10 ppb (APMA) through recalibrations. Subtracting
the AEMS NO2 levels from the output of the DGS-O3 could also result in negative ppb
concentrations, showing that there are limitations in sensing lower levels of O3 and/or NO2
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with the DGS-O3. A warm-up phase also exists for the MQ131 according to its data sheet.
Because we do not know how long a sensor was not operated after being manufactured and
stored at a sensor distributor’s warehouse, we decided to exclude a week of sensor data
from the MQ131 before evaluating its actual output. This amount of removed data is related
to a storage time of more than six months for the MQ131 [31]. The data sheets for the MiCS
sensors do not provide any information about a needed warm-up duration. Consequently,
we also removed the first week of measurements of the MiCS sensors. Our decision is based
on the data sheet of the MQ131 (another metal oxide sensor), which was described earlier.
All low-cost gas sensor data were averaged to hourly means, while the sensor data of the
low-cost PM sensor SPS30 were averaged to 15 min means. Since the SD memory card data
were not available for the unit AELCM005, we used the transmitted 3 min averages for this
unit. For this measurement system, hourly means and 15 min means were only calculated,
when all data were available for the averaging process, otherwise an hourly mean or 15 min
mean was flagged as a missing value. Furthermore, we limited the evaluation of the SPS30
to its output for the fractions PM1 and PM2.5 because of its technical limitation to provide
proper estimates for the fractions PM4 and PM10 [38]. We also removed the first 24 h of
measurements for the SPS30 after observing on multiple occasions that there is an initial
stabilization period (the PM2.5, PM4 and PM10 measurements become identical after some
time) after powering this device.

The 3 min averages for the gaseous air pollutants given by the reference measurement
station AEMS were averaged to hourly means. Because the concentrations of the PM
fractions are provided as rolling averages by the AEMS over a time span of 15 min, we
extracted the data at the minutes 0, 15, 30 and 45 for every hour (e.g., 14:00, 14:15, 14:30 and
14:45 CET) and used these as a reference basis for the evaluation of the SPS30. The system
time of the AEMS is CET, while the system time of the AELCM units is UTC. Subsequently,
we adjusted the time stamps of the AELCM measurement data to CET. Portions of the
reference data had to be excluded or were not available. The reason is, on the one hand,
regular maintenance work involving the power grid of the University Hospital, where
no power is available to operate the measurement station. On the other hand, the AEMS
must be regularly maintained and checked (e.g., feeding of reference gas or reference dust,
recalibration of measurement devices and filter exchange) to guarantee a reliable operation
and high-quality data output.

2.3. Methods
2.3.1. Calibration

We built multiple linear regression models (MLR) for the LCS to calibrate the hourly
means of the gaseous sensor data and 15 min means of PM sensor data. We did not expect
that adding every possible predictor in our MLR models would result in a significant im-
provement of the model, so we selected a reasonable set of predictors using the following
steps: (1) using a Spearman rank correlation to obtain a first general impression about the
strength of the relationship between low-cost sensor output and reference measurements;
(2) building MLR models (calibration functions) for each sensor based on their data out-
put considering environmental influences on sensor output and reference measurements
(AEMS); and (3) predictor selection for the final regression models for every individual
LCS deployed based on the found models in step (2). The last step is realized through a
stepwise regression involving a sequential replacement algorithm and an out-of-sample
(OOS) approach using the RMSE as an evaluation parameter. The sequential replacement
algorithm was provided by the package leaps in statistics software R [42]. The final regres-
sion models are introduced in Section 2.3.4 for every LCS. For the development of the MLR
models in step (2), we start with a common set of predictors for each model, which includes
the sensor data output, atmospheric humidity and air temperature. This can be regarded as
the simplest model realization (baseline model, see Equation (3)). We adjust this baseline
model where necessary, considering the usual MLR model assumptions, including the
inspection of the residuals.
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It must be mentioned that a common problem of a linear regression on atmospheric
time-series data with a high temporal resolution is also apparent in this analysis. A standard
assumption for building an MLR model is independent residuals, which is violated in this
work. Additionally, multicollinearity (e.g., between air temperature and relative humidity)
is another common issue within the subject of modelling air pollution based on LCS
data. Air temperature also has a positive effect on the buildup of O3 near the surface.
Nevertheless, we are using MLR models because MLR is still the most common basic
approach for building calibration functions to process LCS data given by new measurement
systems such as our AELCM unit before developing or approaching more sophisticated
calibration models in future works [23,41,43]. We thoroughly evaluate every final regression
model and estimate the RMSE and coefficient of determination as recommended in other
literature [23].

2.3.2. Evaluation Statistics

To obtain a first guess about the (monotonic) relationship between the raw LCS output
and the reference data given by the AEMS and the meteorological parameters, we use the
Spearman rank correlation [44]. The Spearman rank correlation is defined as:

rrank =
Cov(R(LCSRaw), R(AEMSre f ))

σR(LCSRaw)
σR(AEMSre f )

, (1)

given by the standardized covariance of the ranked data values of the raw LCS measurements
(R(LCSRaw)) and ranked observations of the AEMS (R(AEMSref )). The standard deviations
that belong to these ranked data values are σR(LCSRaw)

and σR(AEMSref )
, respectively.

For evaluating the calibration functions, we use two measures of the model fit: co-
efficient of determination (R2) and the root-mean-square error (RMSE) [44]. R2 can be
understood as a measure of the proportion of variation of the predictand accounted for or
described by a regression model. The mean squared error (MSE) is the arithmetic average
of the squared difference between predictions and observations, reflecting the average
forecast accuracy. The MSE is defined as:

MSE =
1
N

N

∑
i=1

(
LCSadji − AEMSre fi

)2
, (2)

where LCSadji and AEMSref i
describe the ith pair of N pairs of model-adjusted LCS mea-

surements and observations of the AEMS. The MSE is particularly sensitive to outliers
caused by the squaring of errors. We use the RMSE, which can be expressed as the square
root of the MSE, RMSE =

√
MSE, to describe the error between calibration (adjusted) data

and reference data.

2.3.3. Stepwise Regression

For a given air pollutant LCS, we are building linear regression models (MLR) as
calibration functions for the LCS output. Hence, we are using the raw LCS output and the
meteorological measurements of air temperature and relative humidity as predictors and
the AEMS output as the predictand. We are screening the group of predictor candidates
using a stepwise regression method to decide upon which and how many predictors to use.
A stepwise regression is an automated filtering procedure that follows systematic rules in
adding or removing variables with predictive power from a regression model according to
a selection criterion [44,45]. After every regression step (final found p predictor model), an
out-of-sample (OOS) procedure is performed.

The autocorrelation functions for the hourly and 15 min means of the AEMS data
show an autocorrelation pattern for every pollutant (Figure S2.1). This indicates that the
observational data at the analyzed time scales were dependent. Cerqueira et al. show that
an OOS approach is an appropriate choice for model validation under this circumstance [46].
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For this reason, we rely on the OOS approach to evaluate the models, considering the
apparent dependence structure of the data.

Summarizing this method, which is described in detail in [46], a random point t in time
(e.g., 10 September 2021 12:00:00 CET) of the time series ts is chosen to separate the training
and evaluation data. The previous window with reference to t comprising 60% of ts is used
for training and the following window of 10% of ts is used for testing. For 10 repetitions,
we receive 10 randomly chosen dates t, which separate the training and evaluation sets.
The sizes of the training and evaluation sets depend on the length of the available LCS time
series and reference data (see Table 2 and Section 2.2). Finally, considering the average,
minimum and maximum RMSE for the training and evaluation period for every p predictor
model, we have chosen the final regression equation for a LCS (S3). In the case different
predictive variables for a p predictor model were chosen between repetitions, the most
chosen predictor combination defined the final p predictor regression model. In addition,
results of a fivefold cross validation (CV) are included in the supplement of this study
because of its common use in model evaluation (S4). The conclusions drawn from the CV
approach are similar to the findings for the OOS approach in this study.

2.3.4. Regression Models

First, we introduce the baseline linear regression model:

LCSadj = b0 + b1LCSRaw + b2T + b3RH, (3)

where LCSRaw is the raw output of the low-cost pollutant sensor, while T and RH are tem-
perature and relative humidity, respectively, given by the meteorological low-cost sensor
inside the AELCM unit. LCSadj is the model-predicted low-cost sensor output. Transforma-
tions of predictors and/or predictands are the result of a lack of homoscedasticity and/or
Gaussian distributed residuals. Based on the calibration strategy introduced in Section 2.3.1,
we build the following models, where:

[DGS-O3]adj = b0 + b1[DGS-O3]Raw + b2
[DGS-O3]2Raw − 1

2
+ b3T + b4RH, (4)

is the final calibration function for all deployed DGS-O3 units. DGS-O3Raw is corrected
by AEMSref for NO2 considering that the DGS-O3 has a 1:1 sensitivity to O3 and NO2
(DGS-O3Ox), so that:

[DGS-O3]Raw = [DGS-O3]Ox − [AEMS-NO2]re f , (5)

while for the DGS-NO2, we used the following regression models:

log
(
[DGS-NO2]adj

)
= b0 + b1[DGS-NO2]Raw + b2T + b3RH, (6)

[DGS-NO2]adj = b0 + b1[DGS-NO2]Raw + b2T + b3RH, (7)

where the former calibration function was used for unit AELCM003 and the latter one for
the other deployed AELCM units. For the deployed DGS-CO device the regression model

[DGS-CO]adj = b0 + b1[DGS-CO]Raw + b2T + b3RH, (8)

was chosen. For all MQ131, MiCS-2714 and MiCS-4514 sensors we used the following
calibration functions:

[MQ131]adj = b0 + b1[MQ131]Raw + b2T + b3RH, (9)

[MiCS-2714]adj = b0 + b1[MiCS-2714]Raw + b2T + b3RH, (10)
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log
(
[MiCS-4514]adj

)
= b0 + b1[MiCS-4514]Raw + b2T + b3RH. (11)

For adjusting the measured concentrations of a SPS30 for the fractions PM1 and PM2.5,
we used the regression model:

log
(
[SPS30]adj

)
= b0 + b1 log([SPS30]Raw) + b2T + b3RH, (12)

for the unit AELCM003, while using the calibration function:

log
(
[SPS30]adj

)
= b0 + b1log([SPS30]Raw) + b2RH, (13)

for the other units.

3. Results and Discussion

The environmental conditions and pollution concentrations based on hourly (15 min)
means are provided in Table 3. Erroneous measurements of the ambient air temperature
and relative humidity were removed. At least 85% of the data of both variables had to be
available for the calculation of the mean values.

Table 3. Statistics based on the hourly (15 min) means of the different atmospheric variables measured
by the AEMS between the 27 February 2021 and 24 October 2021. For O3, NO2 and CO hourly gas
[ppb] and for PM 15 min concentration means [μg/m3] were used. The temperature [◦C] and relative
humidity [%] statistics are based on hourly means.

Atmospheric
Variable

Min 25th Percentile Mean 75th Percentile Max

O3 0.00 16.79 27.79 38.01 85.65
NO2 0.38 2.59 6.24 8.39 36.99
CO 93.44 141.55 176.89 196.69 1366.96

PM1 0.20 3.21 7.46 10.36 44.23
PM2.5 0.32 4.14 8.72 11.91 136.51

Temperature −4.27 8.21 12.94 17.46 31.68
Relative

Humidity 17.94 58.54 71.15 86.22 95.46

In our work, not every LCS shows the premise of being a good-quality source of
information according to the employed evaluation parameters. It was evident that some
LCS could not reflect the patterns in the reference data well or at all, making them factually
useless. Table 4 gives a general overview about the suitability of the deployed LCS in
building a low-cost monitoring network for air constituents.

Generally, the results of our field experiment indicate that only the electrochemical
sensor SPEC DGS-O3 and the PM sensor SPS30 are reasonable choices for LCS used in a
low-cost atmospheric exposure monitoring network.

The other electrochemical sensors, DGS-NO2 and DGS-CO, showed no capability to
measure the given concentrations at the measurement station according to the coefficient of
determination and the Spearman rank correlation. The correlations were close to zero for
two DGS-NO2 devices. For the longest running DGS-NO2, the Spearman rank correlation
only amounted to 0.18. The low predictive power of these NO2 sensors is also reflected
in the coefficients of determination (R2: 0.28–0.59). Since they are not able to sense their
target gas at all or only in a very weak way, they cannot describe the variability of ambient
NO2 to a satisfying degree. The DGS-CO even showed a negative correlation (Rs: −0.25),
implying that it only produced noise. Thus, we have decided not to employ any SPEC
DGS-CO devices in later AELCM units anymore after looking into their initial performance
in the field experiment and testing different units, which all showed the same behavior as
the SPEC DGS-CO operated in the field experiment. During a field experiment done by
the Air Quality Sensor Performance Evaluation Center (AQ-SPEC), out of the DGS-CO,
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DGS-NO2 and DGS-O3 measurement units, only for the DGS-CO was there evidence that
the LCS is able to sense ambient CO [47]. The concentration levels of ambient CO at the
University Hospital Augsburg were, overall, lower in our field experiment compared to
the measured concentrations in the field experiment of AQ-SPEC. This implies that the
DGS-CO (at least the ones purchased from sensor distributors) is not useable for sensing
lower concentrations of CO (Figure S6.2).

Table 4. Evaluation statistics for every LCS used in the AELCM units: Spearman rank correlation
(Rs), root-mean-square error (RMSE) and the coefficient of determination (R2). For the calculation of
R2 and RMSE, all model-adjusted LCS data (hourly gas [ppb] and 15 min PM concentration means
[μg/m3]), while for Rs all raw LCS data for every individual sensor are used (excluding the data
taken during the warm-up duration). The AEMS data are used as reference. For all LCS data, besides
the SPS30, the RMSE is in ppb. For SPS30 data, the RMSE is in μg/m3.

No. AELCM
Unit

DGS-O3 DGS-NO2 DGS-CO
MQ131

(O3)
MiCS-2714

(NO2)
MiCS-4514

(CO)
SPS30

(PM1/PM2.5)

003

Rs: 0.90 Rs: 0.18 Rs: −0.25 Rs: −0.55 / / Rs: 0.97/0.94
RMSE: 6.74 RMSE: 3.47 RMSE: 53.67 RMSE: 6.53 / / RMSE: 1.07/1.96

R2: 0.80 R2: 0.59 R2: 0.20 R2: 0.81 / / R2: 0.96/0.90

004

Rs: 0.50 Rs: −0.02 / Rs: −0.26 Rs: 0.28 Rs: 0.39 Rs: 0.97/0.95
RMSE: 7.79 RMSE: 3.61 / RMSE: 7.81 RMSE: 4.16 RMSE: 30.53 RMSE: 0.77/1.27

R2: 0.71 R2: 0.35 / R2: 0.71 R2: 0.15 R2: 0.66 R2: 0.97/0.94

005

Rs: 0.97 Rs: −0.01 / Rs: −0.28 Rs: 0.53 Rs: −0.49 Rs: 0.96/0.94
RMSE: 3.31 RMSE: 3.80 / RMSE: 6.31 RMSE: 3.51 RMSE: 44.95 RMSE: 0.87/1.51

R2: 0.95 R2: 0.28 / R2: 0.83 R2: 0.40 R2: 0.27 R2: 0.96/0.91

In contrast to the results of the AQ-SPEC field evaluation experiment, we found that
most of the deployed DGS-O3 were able to detect changes in O3 concentration levels, albeit
with differences, as can be seen in the evaluation statistics in Table 4. The raw output
of the DGS-O3 deployed in AELCM005 shows the strongest relationship with the refer-
ence measurements (Rs: 0.97) and the smallest error (RMSE: 3.31 ppb), and provides the
highest coefficient of determination (R2: 0.95). As a result, it is evident that the DGS-O3
deployed with AELCM005 shows the best level of agreement with the reference measure-
ments, while the other DGS-O3 units show a lesser performance (RMSE: 6.74–7.79 ppb;
R2: 0.71–0.80). Therefore, we conclude that every DGS-O3 (or any other promising LCS)
must be individually screened (evaluated) and calibrated before considering them for use
in any monitoring application, since even identical sensors show different characteristics
in response to the same environmental conditions, such as temperature, humidity and
ambient O3 concentrations (Figure S7.1; Table 3).

Figures 2 and 3 show the model-adjusted and the raw and model-adjusted hourly
means of measured O3 concentrations in ppb given by SPEC DGS-O3 units deployed
with the low-cost monitoring systems AELCM003, AELCM004 and AELCM005 plotted
against the hourly means of the reference measurements of ambient O3 given by the AEMS.
Additionally, the time series data in Figure 2 were smoothed using rolling 24 h averages to
make deviations from the reference data more detectable. The figures for the other sensors
in Supplement S6 are presented in the same manner. The AELCM boxes were deployed
at different points in time because of the reasons mentioned in Section 2.2. Generally,
box AELCM003 offers the longest time-series data for most of the LCS. The top panel
in Figure 2 belongs to AELCM003 and indicates that the found model for the DGS-O3
describes the variability in the reference measurements reasonably well. On the other
hand, quite large discrepancies between the model-adjusted LCS output and reference
measurements can also be found (top panels in Figures 2 and 3), resulting in a rather high
error expressed through an RMSE of 6.74 ppb. The calculated average of the RMSE for the
repeated holdout procedure (10 evaluation periods) is also high and amounts to 8.21 ppb
(Table S3.1). Therefore, we doubt that quantitative predictions for this DGS-O3 are possible
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with the current model approach. Qualitative predictions in the form of an estimation of
trends in the O3 concentration levels could still be possible with the current model approach
but must be investigated in future works. The DGS-O3 deployed with AELCM004 was the
worst performing sensor out of the three DGS-O3 considering the reference measurements,
which is evident from the deviations between the rolling 24 h averages in the middle panel
of Figure 2. The higher deviations compared to the DGS-O3 deployed in AELCM003 and
AELCM005 are also shown through the RMSE statistic, which is 7.79 ppb. Considering
the strength of the deviations and the only moderate relationship with the reference
measurements (Rs: 0.50), a qualitative and quantitative use of the DGS-O3 deployed with
AELCM004 with the current model is questionable. This is also evident from the scatterplot
in the middle panel of Figure 3. Looking at the bottom panels of Figures 2 and 3, a far
more positive outlook for this LCS is provided through the results for the DGS-O3 of
AELCM005. The DGS-O3 deployed in AELCM005 exhibits the strongest relationship
(Rs: 0.97; R2: 0.95) and the smallest deviation from the reference measurements (RMSE:
3.31 ppb). In addition, the calculated root-mean-square errors for the predictions indicate
the robustness of the final regression model (Table S3.1). The model robustness is evident
by comparing the determined average, minimum and maximum RMSE for the training
periods with their corresponding counterparts of the evaluation periods, which produce
quite similar errors. For the selected training periods, the average RMSE is 3.09 ppb, while
the individual root-mean-square errors lie between 2.49 and 3.65 ppb for the 10 training
periods. For the selected evaluation periods, the average RMSE is 2.67 ppb, while the
individual root-mean-square errors lie between 2.42 and 3.09 ppb for the 10 evaluation
periods (Table S3.1). We would consider the DGS-O3 deployed with AELCM005 as the
most promising LCS for realizing reasonable predictions of ambient O3 concentration using
an MLR model.

Figure 3 shows clearly how differently identical LCS units can behave under the same
environmental conditions and pollution concentrations. While the bottom panel shows a
strong linear relationship between the raw LCS data and the reference measurements, the
top panel suggests a strong nonlinear relationship with the reference. The middle panel
indicates highly noisy raw LCS data of little quality. The problem of inter-sensor unit
variability is thus apparent.

After discussing the electrochemical sensors, we are looking with more detail at the
deployed metal oxide sensors.

While for the model-adjusted MQ131 sensor output moderate to high coefficients
of determination were determined (R2: 0.71–0.83), the raw sensor output only shows a
weak-to-moderate relationship with the reference measurements (Rs: −0.55–−0.28).

A negative relationship exists because the sensor resistance increases with higher
concentrations of O3 [31]. The only moderate relationship for the MQ131 with its target
gas reference measurements is also indicated in the stepwise selection process of predictor
variables during the initial model-building process. During the model-training process,
none of the MQ131 sensors could be selected as best 1-predictor model in our stepwise
regression. Thus, a meteorological variable or two meteorological variables, in this case
relative humidity or/and temperature, yielded a better performance than the sensor output
itself. As a result, for most training periods, relative humidity was chosen as the best
variable with the most predictive power in a one-predictor model. The stronger relationship
between meteorological variables and ambient O3 is also reflected in the Spearman rank
correlation between LCS measurements and reference measurements (relative humidity Rs:
−0.76–−0.80; temperature Rs: 0.47–0.74; Table S5.1). Based on our analyses, we question
the usefulness of the MQ131 in a low-cost monitoring network.
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Figure 2. Model-adjusted hourly concentration means of different deployed SPEC DGS-O3 using
multiple linear regression vs. hourly concentration means of reference measurements given by the
AEMS for ambient O3 in ppb. The RMSE is in ppb. For smoothing the hourly concentration means, a
rolling 24 h average is used: (Top) SPEC DGS-O3 deployed in AELCM003; (Middle) SPEC DGS-O3
deployed in AELCM004; and (Bottom) SPEC DGS-O3 deployed in AELCM005.

We draw the same conclusion for the MiCS LCS. Neither the MiCS-2714 nor the
MiCS-4514 showed promising results in our field experiment considering the evaluation
parameters shown in Table 4. After gaining a first impression about the usefulness of these
sensors (MiCS-2714 Rs: 0.28–0.53; MiCS-4514 Rs: −0.49–0.39), their sensor output as a
predictor for ambient NO2 and ambient CO is rather questionable. This is also reflected in
the quality of the model-adjusted output of these sensors. The coefficients of determination
are quite low (MiCS-2714 R2: 0.15–0.40; MiCS-4514 R2: 0.27–0.66). On the one hand, the
reason could be that the overall concentration levels during the measurement campaign
were too low for the sensors to sense their target gases. According to their data sheets, the
MiCS-2714 has a detection range between 0.05 and 10 ppm, while the MiCS-4514 has a
detection range between 1 and 1000 ppm. An ambient hourly mean of NO2 of 50 ppb was
never reached during the measurement period of these sensors.
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Figure 3. Raw (left) and model-adjusted (right) hourly concentration means of different deployed
SPEC DGS-O3 vs. hourly concentration means of reference measurements given by the AEMS for
ambient O3 in ppb: (Top) SPEC DGS-O3 deployed in AELCM003; (Middle) SPEC DGS-O3 deployed
in AELCM004; and (Bottom) SPEC DGS-O3 deployed in AELCM005. Multiple linear regression is
used for adjusting the raw LCS data.

For the analysis periods of the deployed MiCS-4514, no hourly mean of ambient
CO higher than 1 ppm was reached. Another reason could be that our former custom-
built, initial prototype SMD socket for the MiCS sensors worked insufficiently, so the
measurements were taken under unfavorable circumstances. The issues could be potentially
resolved by our latest version, which needs to be investigated by another field experiment
(Figures S1.3 and S1.4).

Considering the evaluation statistics given above for the deployed LCS, the metal
oxide gas sensors performed the worst in our field experiment; therefore, we do not
consider using them for future AELCM units.

Because of the poor performance of the used electrochemical and metal oxide NO2 LCS,
we used the NO2 reference measurements of the AEMS to correct the raw measurements of
the SPEC DGS-O3 units (see Section 2.2) before applying any calibration function.

In our analyses, the PM sensor SPS30 was the best performing LCS. Each of the SPS30
devices showed for PM with aerodynamic diameters smaller than or equal to 2.5 and 1 μm
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strong agreements with the reference measurements, indicated through the evaluation
statistics in Table 4 and in the stepwise regression results (Tables S3.7 and S3.8). The raw
LCS data show a strong relationship with the reference measurements of the AEMS for
both PM classes, but also an increasing spread with increasing reference measurements
(Figures 4 and 5). For PM2.5, the Spearman rank correlation lies between 0.94 and 0.95 and
for PM1 between 0.96 and 0.97. The high level of agreement is also visible in the model-
adjusted LCS output shown in Figures 6 and 7, in the RMSE values and in the R2 values.
Furthermore, the scatterplots show that the model-adjusted data align much better with
the reference data. For PM2.5, the coefficients of determination are between 0.90 and 0.94
and for PM1 they are between 0.96 and 0.97. The model-adjusted LCS PM1 values describe
the variability of the reference measurements slightly better than the model-adjusted LCS
PM2.5 measurements.

Figure 4. Raw (left) and model-adjusted (right) 15 min concentration means of different deployed
SPS30 vs. 15 min concentration means of reference measurements given by the AEMS for PM2.5 in
μg/m3: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004; and (Bottom)
SPS30 deployed in AELCM005. Multiple linear regression is used for adjusting the raw LCS data.

The slightly worse agreement of model-adjusted PM2.5 values with the reference
measurements is also reflected in the higher errors. These discrepancies expressed through
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the RMSE are between 1.27 and 1.96 μg/m3 but are between 0.77 and 1.07 μg/m3 for
the model-adjusted PM1 values. The calibration functions found for the deployed SPS30
devices create good estimates overall. However, the figures and scatterplots also show that
for higher PM2.5 and PM1 concentrations the error between estimate and reference can
increase, resulting in underestimations of particulate matter concentrations. This behavior
is less apparent for the model-adjusted PM1 concentrations.

Figure 5. Raw (left) and model-adjusted (right) 15 min concentration means of different deployed
SPS30 vs. 15 min concentration means of reference measurements given by the AEMS for PM1 in
μg/m3: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004; and (Bottom)
SPS30 deployed in AELCM005. Multiple linear regression is used for adjusting the raw LCS data.

It should be noted that we cannot explain the high peaks in some of the PM reference
measurements so far. After explicitly checking the provided logs of the datalogger for
these measurements producing the peaks in Figure 6, we could not find any error mes-
sages related to them, so therefore they appear to be regular measurements. Because the
deployed SPS30 consistently show great agreement with the reference measurements and
are deployed with the AELCM boxes just next to the AEMS, we assume that the probed air
of the AEMS during these moments was highly different to the probed air by every single
deployed SPS30. One of the reasons could be that suspended matter in the form of pollen
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could have entered the AEMS locally, which affected the measurements in these points in
time, while the measurements of the deployed SPS30 did not get affected.

Figure 6. Model-adjusted 15 min concentration means of different deployed SPS30 using multiple
linear regression vs. 15 min concentration means of reference measurements given by the AEMS for
PM2.5 in μg/m3. The RMSE is in μg/m3. For smoothing the 15 min concentration means a rolling
24 h average is used: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004;
and (Bottom) SPS30 deployed in AELCM005.

It should also be mentioned that for the introduced calibration functions for the raw
PM1 measurements the difference between training errors and evaluation errors are gener-
ally quite low for all deployed SPS30. This indicates also that the current models seem to
have a good skill for predicting PM1 concentrations, or rather for adjusting raw PM1 output
of an SPS30 accordingly (Table S3.8). While the calculated RMSE values for the training and
evaluation periods are higher for the model-adjusted PM2.5 measurements, we can also
see similar magnitudes of errors between the training and evaluation periods (Table S3.7).
Again, this indicates that the current models for adjusting raw PM2.5 concentrations given
by an SPS30 are showing good skill.

201



Sensors 2022, 22, 3830

Figure 7. Model-adjusted 15 min concentration means of different deployed SPS30 using multiple
linear regression vs. 15 min concentration means of reference measurements given by the AEMS for
PM1 in μg/m3. The RMSE is in μg/m3. For smoothing the 15 min concentration means a rolling 24 h
average is used: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004; and
(Bottom) SPS30 deployed in AELCM005.

The United States Environmental Protection Agency (U.S. EPA) recognizes LCS as
tools that are not useable for regulatory purposes in their current state. According to
the U.S. EPA, LCS technology could be potentially used as a complementary source of
information, including, for example, hot-spot localization, identification of potential sites
for regulatory monitoring and better understanding of local air quality [48]. For that reason,
the U.S. EPA started developing performance target reports for air-quality sensors used in
nonregulatory applications. The first performance-target reports for O3 and PM2.5 sensors
were finished in 2021 [49,50]. These are based on the findings of scientific literature reviews,
among other things, conducted by the U.S. EPA. We use both reports to further assess if
the DGS-O3 and SPS30 could be used for nonregulatory purposes based on the calculated
metrics (RMSE, R2) in this study for hourly (15 min) model-adjusted (corrected) data. The
base testing protocol for a field test recommends an RMSE smaller than or equal to 5 ppb
and an R2 value of at least 0.80 to consider an O3 LCS for nonregulatory supplemental
and informational monitoring (NSIM) applications in ambient, outdoor and fixed-site
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environments [49]. For PM2.5, an RMSE smaller than or equal to 7 μg/m3 and an R2

value of at least 0.70 is needed to regard a PM LCS for NSIM purposes [50]. The DGS-O3
employed in AELCM003 and AELCM005 both fulfill the latter requirement (R2: 0.80, 0.95),
but only for the DGS-O3 of AELCM005 is the error in an acceptable range (RMSE: 3.31 ppb)
for NSIM applications. Instead of 15 min means, the recommended performance metrics
and target values for PM2.5 are based on 24 h averages. Considering the individual results
for the model-adjusted 15 min means of all employed SPS30 (RMSE: 1.27–1.96 μg/m3; R2:
0.90–0.94), the calculated daily averages and their corresponding performance metrics and
target values fulfill the PM2.5 NSIM requirements.

For both LCS, it must be noted that not all recommended requirements for base testing
were fulfilled. For instance, three O3 and PM LCS of the same model were not deployed
at the same date (Table 2). Again, it must be said that the metrics were calculated using
corrected LCS data. The U.S. EPA emphasizes in both target reports that test protocols
were provided for estimating the out-of-the-box LCS performance and potential variation
among identical sensors. Nevertheless, considering the recommended target values for
base testing by the U.S. EPA and the calculated metrics in this study, only the SPS30 appears
to be useable for NSIM applications. The DGS-O3 needs improvement to be regarded for
NSIM purposes, considering its obvious strong inter-sensor unit variability.

4. Conclusions

In this work, besides introducing the technical aspects of our research group’s own
monitoring device, the atmospheric exposure low-cost monitoring (AELCM) for meteo-
rological variables and air constituents, we also evaluated the performance of low-cost
sensors for the air pollutants O3, NO2, CO and PM with aerodynamic diameters smaller
than or equal to 2.5 and 1 μm during a field experiment in an urban background area.

The overall quality and quantity of data for different air substances (PM and O3) and
the stability of our measurement devices in the field over their individual measurement
periods (4 to 8 months) show that our prototype AELCM devices are built on a solid
foundation for actual individual exposure monitoring. Based on our gained experiences
during the field experiment, we already included new features in our latest version of the
AELCM, which will be used in future works. The new features are as follows: we eliminated
the need of manual power cycling because of data modem instabilities by using a MOSFET.
Additionally, it is possible to retrieve all measurement data using the file transfer protocol
(FTP). This feature is especially useful for countries where the network infrastructure is not
as developed for low-power data transmissions (in our instance LTE-M) as in Germany,
but a degree of connectivity is needed without interrupting the measurement process of an
AELCM box. Furthermore, the status of an SD memory card belonging to an AELCM unit
can be checked in the database. Through this feature, we can act accordingly and replace a
damaged card immediately. The already existing and latest feature set of our AELCM units
and their flexibility given through a modular PCB design (easily switchable and stackable
custom boards with different functions) make them promising devices for further research
related to exposure monitoring.

To evaluate the sensors, we used the Spearman rank correlation for the raw mea-
surements and a multiple linear regression approach for training and testing the sensor
data. The basis of this evaluation process were the reference measurements given through
high-quality measurement devices of the atmospheric exposure monitoring station (AEMS)
belonging to the Chair for Regional Climate Change and Health of the University of Augs-
burg. Ultimately, we found that the deployed metal oxide gas sensors seem not to be
useful for exposure monitoring given the circumstances in our field experiment. Either
these sensors could not offer meaningful sensor output for the given pollution levels or
our current sockets were too flawed in their design (not including the MQ131) to use these
sensors to their full potential. The deployed electrochemical sensor for O3 called SPEC
DGS-O3 was the only electrochemical gas sensor that showed any degree of promise, but
also strong inter-sensor unit variability. It must be noted, though, that this sensor must
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be combined with another NO2 LCS to use its full potential, since its measurements get
affected strongly by NO2. Only two of these O3 sensors showed promise under the aspect
of at least qualitative predictions. We ordered this LCS (and every other LCS used in this
study) from a distributor and not from the manufacturer directly.

The manufacturer SPEC Sensors offers individual calibrations of sensors from the
same production batch. Considering the inter-sensor unit variability for the SPEC DGS-O3,
it would be interesting to see if calibrated sensors from the same batch show a reduced
inter-sensor variability and measurement error. The inter-sensor variability increases
the challenge of calibrating the sensors. It hints at the possible difficulty of finding a
generalized calibration model for the SPEC DGS-O3. The PM LCS called SPS30 shows very
good calibration performance, given the reasonably small errors during the training and
testing periods. As a result, we consider this sensor to be a good choice for any future
AELCM unit.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s22103830/s1, Figure S1.1: Top view of the AELCM sensor board
with MiCS sensor sockets for the MiCS-4514 on the left and MiCS-2714 on the right side at the bottom
of the printed circuit board used in this study. Figure S1.2: Side view of the AELCM sensor board
with the MiCS sensor sockets for the MiCS-4514 on the left and MiCS-2714 on the right side used in
this study. Figure S1.3: Top view of the latest MiCS sensor socket board for the MiCS-2714 on the
left and MiCS-4514 on the right side at the top of the printed circuit board. Figure S1.4: Side view of
the latest MiCS sensor socket board for the MiCS-2714 and MiCS-4514. Figure S2.1: Autocorrelation
coefficients for different lags of different air pollutants measured by the Atmospheric Exposure
Monitoring Station (AEMS). The observation period is between the 27 February 2021 and 24 October
2021. The concentrations of the air pollutants ozone, nitrogen dioxide and carbon monoxide are
measured in the measurement unit ppb (hourly means), while the particulate matter measurements
are measured in the measurement unit μg/m3 (15-min means). From top to bottom: O3, NO2,
CO, PM2.5 and PM1. Table S3.1: Average, minimum and maximum RMSE for ambient ozone in
parts per billion (ppb) and for each p predictor model regarding LCS SPEC DGS-O3 deployed with
specific AELCM units. The performance estimation method is the repeated holdout procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S3.2: Average, minimum and maximum RMSE for ambient nitrogen dioxide in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-NO2 deployed with specific
AELCM units. The performance estimation method is the repeated holdout procedure using reference
data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S3.3:
Average, minimum and maximum RMSE for ambient carbon monoxide in parts per billion (ppb)
and for each p predictor model regarding LCS SPEC DGS-CO deployed with specific AELCM units.
The performance estimation method is the repeated holdout procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S3.4: Average,
minimum and maximum RMSE for ambient ozone in parts per billion (ppb) and for each p predictor
model regarding LCS MQ131 deployed with specific AELCM units. The performance estimation
method is the repeated holdout procedure using reference data of the AEMS and model-calibrated
(adjusted) LCS data based on hourly averages. Table S3.5: Average, minimum and maximum RMSE
for ambient nitrogen dioxide in parts per billion (ppb) and for each p predictor model regarding LCS
SGX MiCS-2714 deployed with specific AELCM units. The performance estimation method is the
repeated holdout procedure using reference data of the AEMS and model-calibrated (adjusted) LCS
data based on hourly averages. Table S3.6: Average, minimum and maximum RMSE for ambient
carbon monoxide in parts per billion (ppb) and for each p predictor model regarding LCS SGX
MiCS-4514 deployed with specific AELCM units. The performance estimation method is the repeated
holdout procedure using reference data of the AEMS and model-calibrated (adjusted) LCS data based
on hourly averages. Table S3.7: Average, minimum and maximum RMSE for ambient particulate
matter PM2.5 in microgram per cubic meter (μg/m3) and for each p predictor model regarding
SPS30 deployed with specific AELCM units. The performance estimation method is the repeated
holdout procedure using reference data of the AEMS and model-calibrated (adjusted) LCS data based
on 15-min averages. Table S3.8: Average, minimum and maximum RMSE for ambient particulate
matter PM1 in microgram per cubic meter (μg/m3) and for each p predictor model regarding SPS30
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deployed with specific AELCM units. The performance estimation method is the repeated holdout
procedure using reference data of the AEMS and model-calibrated (adjusted) LCS data based on
15-min averages. Table S4.1: Average, minimum and maximum RMSE for ambient ozone in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-O3 deployed with specific
AELCM units. The performance estimation method is the 5-fold cross validation procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S4.2: Average, minimum and maximum RMSE for ambient nitrogen dioxide in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-NO2 deployed with specific
AELCM units. The performance estimation method is the 5-fold cross validation procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S4.3: Average, minimum and maximum RMSE for ambient carbon monoxide in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-CO deployed with specific
AELCM units. The performance estimation method is the 5-fold cross validation procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S4.4: Average, minimum and maximum RMSE for ambient ozone in parts per billion (ppb)
and for each p predictor model regarding LCS MQ131 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S4.5: Average,
minimum and maximum RMSE for ambient nitrogen dioxide in parts per billion (ppb) and for
each p predictor model regarding LCS SGX MiCS-2714 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S4.6: Average,
minimum and maximum RMSE for ambient carbon monoxide in parts per billion (ppb) and for
each p predictor model regarding LCS SGX MiCS-4514 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S4.7: Average,
minimum and maximum RMSE for ambient particulate matter PM2.5 in microgram per cubic meter
(μg/m3) and for each p predictor model regarding SPS30 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on 15-min averages. Table S4.8: Average,
minimum and maximum RMSE for ambient particulate matter PM1 in microgram per cubic meter
(μg/m3) and for each p predictor model regarding SPS30 deployed with specific AELCM units.
The performance estimation method is the 5-fold cross validation procedure using reference data
of the AEMS and model-calibrated (adjusted) LCS data based on 15-min averages. Table S5.1:
Spearman rank correlations between different LCS output (MQ131 output, temperature and relative
humidity) and reference measurements of ambient ozone for all AELCM units. As starting points for
AELCM003, AELCM004 and AELCM005 we use the measured data at 5 March 2021, 28 June 2021 and
11 June 2021 respectively. The ending date is the 24 October 2021. Figure S6.1: Model-adjusted hourly
concentration means of different deployed SPEC DGS-NO2 using multiple linear regression vs. hourly
concentration means of reference measurements given by the AEMS for ambient nitrogen dioxide
in ppb. For smoothing the hourly concentration means a rolling 24-h average is used: (Top) SPEC
DGS-NO2 deployed in AELCM003; (Middle) SPEC DGS-NO2 deployed in AELCM004; (Bottom)
SPEC DGS-NO2 deployed in AELCM005. Figure S6.2: Model-adjusted hourly concentration means
of a SPEC DGS-CO deployed in AELCM003 using multiple linear regression vs. hourly concentration
means of reference measurements given by the AEMS for ambient carbon monoxide in ppb. For
smoothing the hourly concentration means a rolling 24-h average is used. Figure S6.3: Model-adjusted
hourly concentration means of different deployed MQ131 using multiple linear regression vs. hourly
concentration means of reference measurements given by the AEMS for ambient ozone in ppb. For
smoothing the hourly concentration means a rolling 24-h average is used: (Top) MQ131 deployed in
AELCM003; (Middle) MQ131 deployed in AELCM004; (Bottom) MQ131 deployed in AELCM005.
Figure S6.4: Model-adjusted hourly concentration means of different deployed MiCS-2714 using
multiple linear regression vs. hourly concentration means of reference measurements given by the
AEMS for ambient nitrogen dioxide in ppb. For smoothing the hourly concentration means a rolling
24-h average is used: (Top) MiCS-2714 deployed in AELCM004; (Bottom) MiCS-2714 deployed in
AELCM005. Figure S6.5: Model-adjusted hourly concentration means of different deployed MiCS-
4514 using multiple linear regression vs. hourly concentration means of reference measurements
given by the AEMS for ambient carbon monoxide in ppb. For smoothing the hourly concentration
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means a rolling 24-h average is used: (Top) MiCS-4514 deployed in AELCM004; (Bottom) MiCS-4514
deployed in AELCM005. Figure S7.1: Raw hourly means of ambient ozone measured by SPEC
DGS-O3 units deployed in AELCM003, AELCM004 and AELCM005 compared with hourly means
of ambient ozone measurements given by the reference station AEMS. For smoothing the hourly
concentration means a rolling 24-h average is used.
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1000 Ljubljana, Slovenia
4 Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of

Thessaloniki, 54124 Thessaloniki, Greece
5 HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and

Innovation, 54124 Thessaloniki, Greece
6 Department of Science, Technology and Society, University School of Advanced Study IUSS, 27100 Pavia, Italy
* Correspondence: rok.novak@ijs.si

Abstract: Air pollution exposure is harmful to human health and reducing it at the level of an individ-
ual requires measurements and assessments that capture the spatiotemporal variability of different
microenvironments and the influence of specific activities. In this paper, activity-specific and general
indoor and outdoor exposure during and after a period of high concentrations of particulate matter
(PM), e.g., an atmospheric thermal inversion (ATI) in the Ljubljana subalpine basin, Slovenia, was
assessed. To this end, personal particulate matter monitors (PPM) were used, worn by participants of
the H2020 ICARUS sampling campaigns in spring 2019 who also recorded their hourly activities. ATI
period(s) were determined based on data collected from two meteorological stations managed by the
Slovenian Environmental Agency (SEA). Results showed that indoor and outdoor exposure to PM
was significantly higher during the ATI period, and that the difference between mean indoor and
outdoor exposure to PM was much higher during the ATI period (23.0 μg/m3) than after (6.5 μg/m3).
Indoor activities generally were associated with smaller differences, with cooking and cleaning even
having higher values in the post-ATI period. On the other hand, all outdoor activities had higher
PM values during the ATI than after, with larger differences, mostly >30.0 μg/m3. Overall, this work
demonstrated that an individual-level approach can provide better spatiotemporal resolution and
evaluate the relative importance of specific high-exposure events, and in this way provide an ancillary
tool for exposure assessments.

Keywords: personal exposure; particulate matter; atmospheric thermal inversion; personal monitoring;
exposure assessment

1. Introduction

Airborne particulate matter (PM) negatively impacts human health, reduces life ex-
pectancy, and increases mortality, and is a particularly important health risk in urban
environments as traffic and other factors additionally contribute to higher concentrations
of PM and other pollutants [1–5].

A common approach to assessing exposure is using monitoring stations that measure
outdoor concentration levels of various pollutants and require compliance with regulatory
protocols, which makes them the reference standard in an urban environment for evaluating
long-term trends, outdoor concentrations, and city-wide exposure assessments [6]. On the
other hand, they are expensive to operate, physically large, and consequently limited in
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number and coverage. While there are several options to use data from monitoring stations
to estimate indoor exposure [7], static outdoor stations are not able to capture the variability
of exposure based on an individual’s activities and daily movement trajectory [8]. Multiple
studies have shown that collecting data on air quality and exposure on an individual level,
in contrast to city-wide monitoring, provides higher spatiotemporal granularity to observe
individual-level exposure and daily fluctuations in diverse indoor and outdoor urban
settings, including the impact of atmospheric thermal inversions (ATIs) [9–11]. Exposure
assessments based on individual-level measurements usually show higher recorded values
than estimates based on data from monitoring stations [12,13], and therefore assessments
that use community average concentrations of PM can underestimate the health burden
of air pollution [14]. Personal monitoring devices can be used to estimate negative health
outcomes from exposure to higher PM concentrations [15] as well as the importance
of socioeconomic variables, e.g., sociodemographic status, urban mobility, and living
conditions, when assessing exposure to PM [16]. To further explore the applicability of
PM monitors in individual-level exposure research, their performance should be assessed
within a period that would show distinct differences in exposure during activities and
in microlocations that the individual records. A period with persistent ATIs in a suitable
wintertime environment (e.g., an alpine basin) could provide the necessary conditions, as it
is characterized by two clearly delimited periods of high and low concentrations of PM.

ATIs that occur in urban environments, as a consequence of atypical temperature
gradients, produce a “cap” which reduces the diffusion of dust, smoke, and other air
pollutants [17] and can cause concentrations of air pollutants to increase, with a high level
of spatiotemporal variability throughout the urban environment [18,19]. An elevated level
of exposure during ATIs can lead to detrimental health effects, mostly as an increase in
the incidence of acute respiratory diseases, asthma, and cardiovascular diseases [20–22].
However, increased exposure on an individual level during ATIs is still poorly understood.

A unique set of conditions present in a subalpine basin (Ljubljana, Slovenia),
e.g., concave shape, extended periods of anticyclonic conditions, and drag associated
with the complex topography, resulting in frequent foggy days and ATIs, which in turn
cause a buildup of PM [23]. The Ljubljana basin experiences frequent short-lived inversions
in all seasons, though persistent inversions occur mostly in the colder part of the year [24].
Meteorological conditions are a driving factor in determining air quality in Ljubljana, and
can surpass the importance of emission ceilings [25]. Although air quality has been im-
proving in most European cities over the past decade, Ljubljana, as of 27 July 2022, ranks
279 out of 344 cities from the European Environment Agency (EEA) member countries in
terms of air quality, with an average PM concentration of 15.7 μg/m3, measured in 2020
and 2021, labeled as “poor air quality” by the EEA [26]. ATIs, compounded by the poor air
quality in Ljubljana during winter, temporarily increase exposure to PM and offer a distinc-
tive perspective on high-exposure events in urban environments, which individual-level
monitoring could help to assess in more detail.

This study used next-generation sensing and monitoring (NGSM) technology—a wearable
PM monitor—to determine how these types of devices could provide fine-grained spa-
tiotemporal resolution of personal exposure to PM10 in a period of persistent ATIs and
immediately after, based on individual activities and microlocations. Individual-level
exposure assessments were based on data obtained from personal PM monitors (PPM)
used as part of the ICARUS H2020 project [27], where participants carried the devices for
one week in a heating and non-heating season, and additionally provided hourly data on
their activities, transport mode, and microlocations [28].

2. Materials and Methods

2.1. Collecting Particulate Matter Data

For assessing exposure on an individual level a wearable device called the PPM
(shown in Figure 1) was used, which provided data on PM1, PM2.5, and PM10 concen-
trations, ambient temperature, relative humidity, and location/GPS data with minute
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resolution. The devices were designed and constructed for the ICARUS project [29] by
IoTech Telecommunications, Thessaloniki, Greece [30] and are based on the Arduino plat-
form and the Plantower, Beijing, China, pms5003 sensor [31,32]. To determine whether the
device provided data that was fit for purpose and accurate, a validation was conducted
by collocating the PPM with a GRIMM (Durag Group, Hamburg, Germany) model 11-A
(1.109) aerosol spectrometer, which showed that the PPM had relatively high accuracy and
was fit for purpose, further described in Novak et al. [33].

 

Figure 1. PPM device (white box attached to clothes) worn by a participant.

Participants were instructed to wear the PPM for the entire duration of the study or
have it placed near them if they performed sedentary or stationary activities, e.g., office
work or sleeping. The data were collected on an internal SD card and exported via a web
app/portal and stored on a local drive. Each participant had to fill out a time activity
diary (TAD) and indicate what the characteristic activity was that they were performing
each hour of the day for seven days. Data were used from the ICARUS heating season
sampling campaign, which took place from 16 February 2019 to 12 March 2019.

To observe the trend of PM10 concentrations in Ljubljana during and after the pe-
riod with persistent ATIs, city-wide data on PM10 concentrations (30 min values) and
meteorological conditions (temperature and wind speed) were provided by the Slovenian
Environmental Agency (SEA) [34] from the urban background reference station in the
Bežigrad district of Ljubljana. Preliminary observations showed that a period with per-
sistent ATIs could have occurred in Ljubljana in the same period as the heating season
sampling campaign. Data from the monitoring stations were collected for the period from
10 February 2019 to 15 March 2019 to provide additional context.

2.2. Determining ATIs

ATIs were determined by analyzing temperature gradients between stations at dif-
ferent elevations, per the Largeron and Staquet [35] pseudo-vertical temperature gradient
method (TGM), which presupposes two assumptions: (1) horizontal homogeneity of the
temperature field and (2) the quasi-linearity of the temperature profile. When these consid-
erations are met, the ratio of the temperature and height difference between the stations
(ΔT/Δz) can be used to determine the stability of the boundary layer when the inversion
occurs [35]. Kikaj et al. [23] determined that these assumptions were met for low- and
medium-lying stations in and around the Ljubljana basin in the colder months of the
year. High-elevation stations showed moderate correlation coefficients when calculating
horizontal air temperature homogeneity and were, in the scope of this paper, only used to
estimate the height of the inversion layer by determining if the inversion persisted up to
the height of the station.
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Measurements were collected from three automatic weather stations (AWS), one low-
lying station located in the center of Ljubljana (station Bežigrad—AWS-B), one medium-
lying station situated on a hill at the border of the basin (Topol—AWS-T) and one high-lying
station at the northern border of the basin (Krvavec—AWS-K), shown in Table 1 with their
respective elevations, coordinates, and collected parameters. The stations cover the central,
western, and northwestern parts of the Ljubljana basin, as shown in Figure 2. All stations
measure and report air temperature at 2 m above ground, at 7:00, 14:00, and 21:00, each day.

Table 1. Automatic weather stations (AWS) used to determine ATIs, their locations, elevations, and
parameters collected.

Station Meters above Sea Level Coordinates Parameters

AWS-B 299 m 46.0654 N, 14.5123 E Temperature, PM10
AWS-T 692 m 46.0940 N, 14.3713 E Temperature
AWS-K 1742 m 46.2978 N, 14.5335 E Temperature

 

Figure 2. Geographical locations of automatic weather stations Bežigrad, Topol, and Krvavec.
Top: Locations on a topographical map of Slovenia and neighboring countries with the location of
the Ljubljana basin. Bottom: 3D visualization of locations and their respective elevations with vertical
exaggeration (2), designed with the Qgis2threejs plugin [36] in QGIS 3.20.1-Odense [37].
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As per the TGM, the ratio of the temperature difference between stations AWS-B and
AWS-T to their difference in elevation (ΔT/Δz) was used to indicate the stability of the
boundary layer and consequently when an inversion occurred, as shown in Equation (1):

ΔT
Δz

=
ΔTT,B

ΔzT,B
× 103 (1)

where ΔTT,B is the temperature difference between the AWS-T and AWS-B station and
ΔzT,B is the height difference between AWS-T and AWS-B station.

Positive values indicate an ATI, and periods when values consistently show ΔT/Δz > 0
for at least 72 consecutive hours indicate persistent inversions, as shown in Equation (2):

ΔT
Δz

> 0 for ≥ 72 h (2)

The definition of 72 h for a persistent ATI is based on the criteria set by Largeron
and Staquet [35].

2.3. Treatment of Data from the PPMs and TADs

After harmonizing the data sets of the PPM and TAD (described in detail in
Novak et al. [38]), data were selected based on a specific set of criteria: (a) they were
part of the heating period data set, (b) data were available for the period when ATIs
occurred, (c) the PPM consistently provided data, and (d) the TADs were filled out.

A key procedure was to assign an indoor/outdoor label to each minute value. As
the GPS data provided by the PPM did not provide accurate enough spatial resolution
to determine if the person was indoors or outdoors, data on activities in the TAD and
temperature measured by the PPM were used as follows:

- Outdoor activities in the TAD were: using a bicycle, walking, running outdoors,
participating in outdoor sports activities, and three generic labels: “Home.OUT”,
“Office.OUT”, and “Other.OUT”. For indoor activities, there were similar generic
labels included, “Home.IN”, “Office.IN”, and “Other.IN”, as well as resting and
sleeping indoors, playing, indoor sporting activities, cooking, cleaning, and smoking
indoors. More specific activities were included in the generic labels;

- Primarily, activity and microlocation labels from the TADs were used to determine
if the person was indoors or outdoors. To further refine the accuracy of the in-
door/outdoor variable, ambient temperature data recorded by the PPM were used;

- During the observed period from late February to early March in 2019, the outdoor
temperatures as measured by AWS-B never exceeded 19 ◦C in Ljubljana. Using this
value as the highest base value gave an approximate highest possible temperature
for outdoor activities, though it did have some drawbacks as the device could be
exposed to direct sunlight and show higher values than those recorded at automatic
weather stations;

- The PPM was collocated with a reference instrument (Testo SE & Co. KGaA, Lenzkirch,
Germany, Testo 435-2 sensor with an external IAQ probe [39]) to assess the accuracy of
the temperature measurements. Results showed that the PPM had a very high correla-
tion (0.98) with the values recorded by the reference instrument, though the values
consistently showed 4.5 ◦C higher values than the reference instrument. Though the
PPM had precise values, they were not accurate. There are several possible causes,
most probably due to the positioning of the sensor enclosed in the device close to a
warm rechargeable battery. Temperature difference was even higher during the first
half hour of charging the battery. This does not affect the outdoor measurements as it
is reasonable to assume that the device was not charged during outdoor activities;

- Considering the above (the temperature in Ljubljana never exceeding 19 ◦C and the
4.5 ◦C (offset) higher values of the PPM), activities were removed from the outdoor
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category if they had a temperature above 23.5 ◦C, and similarly removed from the
indoor category if the temperatures were below 23.5 ◦C.

In some cases, certain inputs in the TADs could overlap between indoor and outdoor
microlocations, where a person selected an indoor activity because it represented a majority
of the hour, though they spent an amount of time in that same hour outside, e.g., preparing
a meal for 40 min then going for a walk would be indicated as an indoor activity for this
hour even though the person spent a third of the time outdoors. Using the temperature
correction improved the accuracy of the activity dataset.

2.4. Data Selection and Evaluation

Exposure was calculated for the period between 16–22 February 2019 and 23 February
to 12 March 2019, the first being the period with a persistent ATI event and two days of
latency for the PM concentrations as observed at the AWS-B, and the second being the
period after the inversion dispersed. Exposure in each respective domain and time period
was calculated based on Equation (3):

Ed,p =
∑n

i=1 mi

n
(3)

where E is the cumulative exposure, d indicates the domain (indoor, outdoor, or activity)
and p the period (during ATI or post-ATI) of exposure, mi represents each respective
minute measurement in the spatiotemporal period, and n the number of measurements
made in that period. A cumulative exposure approach was used to determine the baseline
differences between the ATI and post-ATI periods, inter-activity differences, and how
cumulative exposure assessments based on personal monitors fared in contrast to an
assessment based on data collected from monitoring stations. Minute values of PM10
collected from the PPMs carried by the participants were aggregated and averaged based
on each respective domain (temporal, spatial, activity).

The periods chosen were determined based on the results of the ATI calculations, wind
speed data, and data on the height of the inversion layer. Only certain activities from the
collected dataset were considered in the scope of this paper; some were removed due to the
unavailability of the data in both periods, e.g., smoking and burning of incense/candles.
After eliminating participants who didn’t have any PM10 data or empty TADs, the period
with persistent ATIs had fewer individuals available (3) than the post-ATI period (24).
Some of the data were removed from certain participant datasets if they did not meet the
required temperature criteria. Mean values with standard deviation were calculated for all
indoor and outdoor activities and plotted in boxplots. A one-way ANOVA was performed
on the final dataset, in combination with a Tukey’s HSD (honestly significant difference)
post-hoc test for pairwise comparisons.

3. Results and Discussion

3.1. ATIs

Figure 3 shows the ΔT/Δz values calculated for the period from 10 February to
15 March 2019 to provide some context for the observed ATIs and patterns in the fluc-
tuations of ΔT/Δz [◦C/km]. An ATI is defined by ΔT/Δz > 0 ◦C/km, which is present
several times in Figure 3, most frequently in the mornings (colored black) when the tem-
peratures in the valley were still lower than in higher elevations. This pattern indicates
diurnal inversions, formed every night due to radiative cooling of the soil, producing a
very stable surface layer particularly associated with alpine valleys [35].

A persistent ATI, defined as ΔT/Δz > 0 ◦C/km for at least 72 consecutive hours, as
indicated in Equation (2), is present in only one period, from 16 February to 19 February,
shaded gray in Figure 3, with an exception on 18 February at 14:00 with a ΔT/Δz of
−0.25 ◦C/km. As this individual observation indicated only a small negative number, the
decision was made to include this and the next three measurements in the period of the
persistent ATI, as the daily average still showed a high ΔT/Δz, as well as the three days
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following the end of this period. Importantly, the presence of the inversion is key, and the
strength of the inversion does not play a vital role in the scope of this research. The days
between 20 February and 22 February still experienced frequent inversions and primarily
showed high levels of PM10 concentrations, and so were consequently included in the post-
ATI period to better capture the true exposure associated with ATIs. Persistent ATIs occur
in Ljubljana multiple times per year; based on Equation (2) and data collected from SEA [34]
there were three periods in 2019 with persistent ATIs: 16 to 19 February, 22 to 26 October,
and 23 to 27 December.

Figure 3. ΔT/Δz between Bežigrad and Topol stations from 10 February to 15 March 2019. Period
with persistent ATI shaded in grey.

The period following the persistent ATI shows sporadic occurrences of inversions
during morning and evening measurements, which completely stop on 22 February. After
25 February there is a period of diurnal ATIs in the morning hours with the highest ΔT/Δz
value on 27 February at 18.3 ◦C/km. Data from AWS-B also showed that on 23 February
average wind speeds increased from 0.2 to 5.0 m/s and average temperatures decreased
from 9.1 ◦C to 1.1 ◦C.

Estimate of Boundary Layer Height

Data collected from the AWS-K station showed that the inversion layer did not surpass
the height of the station itself (1742 m) in any of the measurements made at 12:00 in
the period between 10 February and 15 March 2019. On the other hand, there were
several instances in the 7:00 measuring interval, most common during the period with
persistent ATIs. A case of inversion that stood out happened on 17 February 2019 at the
7:00 interval, when the AWS-B station measured a temperature of −2.1 ◦C, and AWS-K
6.7 ◦C (a difference of 8.8 ◦C). Moreover, observing data from the highest-lying station in
Slovenia (Kredarica, at elevation 2513 m.a.s.l., some 60 km distance from AWS-B), revealed
a temperature of 0.8 ◦C, indicating that the boundary layer was above this height on
17 February 2019 at 7:00.

3.2. PM Measurements at the Monitoring Station

As evident in Figure 4, the concentrations of PM10 as measured at the AWS-B started
increasing as the ATIs became more frequent, peaking on 20 February, a day after the
period with persistent ATIs ended. This shows a latency effect of rising PM concentrations
in relation to ATIs, as the inversions continued during morning and evening measuring
intervals and affected the concentrations of PM10. The highest value of PM10 was recorded
on 20 February, with 75 μg/m3, which decreased rapidly and reached its lowest point
three days later on 23 February, with 11 μg/m3. Mean values for the high-PM period
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(16–22 February, shaded green in Figure 4) and low-PM period (23 February–15 March,
shaded blue in Figure 4) were 47.7 μg/m3 and 23.2 μg/m3, respectively, shown with dashed
lines in Figure 4 for both periods.

 
Figure 4. Measured daily PM10 concentrations in the observed period from 10 February to 15 March
2019, collected from AWS-B. Persistent ATI period with a latent increase of PM concentrations shaded
green, the post-ATI period included in the analysis shaded blue. Dashed red lines show mean PM10

values for each period.

3.3. Data Collected from PPMs and TADs

The entire ICARUS dataset (in Ljubljana) consisted of 1,439,231 observations of
107 variables, which was refined to 136,115 observations of 32 variables for the purposes
of this paper, including timestamps, indoor and outdoor activities, PM10 concentrations,
and temperature. Next, the data were separated into four groups—indoor and outdoor
during the ATI (with 10,622 and 1931 observations, respectively), and indoor and outdoor
post-ATI period (with 59,719 and 6664 observations, respectively).

As evident in Tables 2 and 3, there are certain activities that have a large number
of recorded instances, e.g., resting, sleeping, cycling, and generic “home”, “office”, and
“other”, and some activities that have few instances, e.g., sports and running. The lowest
number of instances (61) are recorded for running during the period with persistent ATIs,
which is due to the fact that the recorded temperatures for most of the running period were
higher than the elimination criteria for outdoor activities (23.5 ◦C). Almost all the values
for the number of instances per activity in the post-ATI period were higher, as this period
was longer and included more participants. Note that the “office” activity in Table 3 shows
the number of instances for outdoor activities during the individual’s work hours.

Table 2. Number of instances for each indoor activity during the ATI period and in the
post-ATI period.

Period Cleaning Cooking Home Office Other Resting Sleeping Sports

ATI 395 472 8535 1319 632 1414 3638 142

post-ATI 2060 3686 41,320 11,346 4921 15,525 19,287 373

Table 3. Number of instances for each outdoor activity during the ATI period and in the
post-ATI period.

Period Bicycle Foot Home Office Other Running Sports

ATI 1057 538 184 1170 366 61 295

post-ATI 1312 1822 1583 967 3479 294 1825
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3.4. Exposure Assessment

Figure 5 shows that exposure to PM10 calculated based on Equation (3), as measured
by the PPM, was higher indoors and outdoors during the persistent ATI event, compared
to the post-ATI period. During the ATI period participants were exposed to a mean PM10
concentration of 43.5 μg/m3 (σ ± 26.8 μg/m3) indoors, and 66.5 μg/m3 (σ ± 23.5 μg/m3)
outdoors, which is in stark contrast with the post-ATI period where indoor and outdoor
exposures were 31.2 μg/m3 (σ ± 56.8 μg/m3) and 37.7 μg/m3 (σ ± 96.1 μg/m3), respec-
tively. As determined by the ANOVA test (and subsequently the Tukey’s HSD test), the
differences between the means were statistically significant, and the results show that there
was a real difference between all four microlocation combinations (indoors during and after
ATI, and outdoors during and after ATI). This result shows that elevated levels of PM10
outdoors impacts the cumulative exposure to PM10 indoors and outdoors. Moreover, these
results show that the difference in indoor and outdoor exposure was much higher during
the period of ATIs (23.0 μg/m3) than after (6.5 μg/m3), which indicates that exposure to
PM can be influenced by high-exposure events during specific activities and in specific
microlocations during a period with persistent ATIs.

 
Figure 5. Calculated exposure to PM10 indoors and outdoors in the period with a persistent ATI event
(in green) and the post-ATI period (blue), collected from the PPM devices. Values above 100 μg/m3

were removed from the plot to better visualize the differences between mean (diamond) and median
values (line).

Comparing the results obtained from the AWS-B monitoring station with the PPM
data shows that the cumulative outdoor exposure assessment during the period with
persistent ATIs yields a similar result regardless of which method was used (57.9 μg/m3

for the monitoring station and 66.5 μg/m3 for the PPM). Outdoor exposure in the post-ATI
period shows a moderately different result, where the monitoring station showed a mean
value of 23.2 μg/m3 and the PPM 37.7 μg/m3. This discrepancy could be a consequence
of the PPM better capturing the actual individual exposure when the participant moved
throughout the city, e.g., elevated levels of PM in some areas due to the street canyon
effect [40], urban green spaces and foliage [41,42], construction sites [43], or a specific action
that the person was performing. Outdoor data from the PPM showed 181 instances (3%
of all recordings) of PM10 concentrations ≥200 μg/m3 in the post-ATI period, while there
were only 2 in the period with ATIs. The ability of the PPM to capture actual individual
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exposure is further illustrated by comparing indoor data from the PPM with monitoring
stations, which showed lower concentrations for the PPM compared to AWS-B during the
ATI period (43.5 μg/m3 and 57.9 μg/m3, respectively), and higher in the post-ATI period
(31.2 μg/m3 for the PPM data, 23.2 μg/m3 for monitoring station).

Exposure to PM10 (calculated using Equation (3)) while performing different indoor
activities varied between 15.0 μg/m3 for indoor sports during the post-ATI period and
69.2 μg/m3 for non-determined other indoor activities during the ATI period, as shown
in Figure 6. Indoor activities during the ATI period had mostly the highest mean values
of PM10, with the exception of cleaning and cooking, which were almost the same as in
the post-ATI period. The largest difference was for indoor sporting activities, which had a
difference of 32.9 μg/m3 between the two periods. Engaging in sporting activities indoors
can prompt the person in the enclosed space to open windows or doors to cool down and
ventilate the room, consequently causing an influx of air with a higher concentration of
PM10 during an ATI event [44]. The next-highest difference was for other indoor activities
(69.2 μg/m3 during ATI and 38.7 μg/m3 during post-ATI period), which often included
a combination of different already-listed activities and various others. This difference is
more difficult to explain due to the variability of different activities, which might include
dust resuspension, use of incense, having an open window, etc.

Figure 6. Exposure to PM10 for different indoor activities, during the ATI event (green) and af-
ter (blue), collected with the PPMs. Plot limited to 100 μg/m3 on the y axis to better illustrate
the differences.

On the other hand, mean concentrations of PM10 for the “cleaning” activity were
higher in the post-ATI period by 2.3 μg/m3, and only slightly lower for cooking (difference
of 0.5 μg/m3), though the median shows much lower values. Cooking and cleaning are
important sources of indoor PM, and sporadic high emission events such as frying of food
or dust resuspension during cleaning can increase exposure to a higher concentration than
exposure during ATI events [45–47]. These events are not captured by monitoring stations
and can even be missed by stationary indoor sensors if they are not present in all rooms.
Individual-level monitoring shows data on a very granular level and includes specific
high-emission events.

Figure 7 illustrates the differences between the distribution, mean, and median values
of PM10 for all outdoor activities during the ATI period and post-ATI. Almost all outdoor
activities show higher recorded values during the ATI period than the post-ATI period. The
differences range from 15.7 μg/m3 for running to 45.9 μg/m3 for outdoor sports that don’t
include running, with the exception of the “home” activity, which was higher during the
post-ATI period by 1.7 μg/m3. A possible explanation for a higher concentration would be
that outdoor activities around the home can include gardening, burning of gardening and
agricultural residues [48], and home-improvement activities that often include some kind
of construction (sanding wood, mixing cement, demolishing objects, etc.) which present a
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source of particulate matter [49,50]. Such activities can be expected to occur more frequently
during the post-ATI period with clearer weather and could elevate the concentrations of
PM10. Participants could also differently interpret specific outdoor “home” activities,
e.g., resting on a semi-enclosed balcony. Although the mean values do not differ much for
the “Home.OUT” activity, the median values show that there is still a difference between
these two time periods and indicate that the higher mean value of outdoor activities in
the post-ATI period could be influenced by a few high-exposure events. For illustration,
if the high-exposure events (>100 μg/m3) are removed, the mean value decreases from
61.9 μg/m3 to 30.1 μg/m3, while the median value drops from 33 μg/m3 to 27 μg/m3.

Figure 7. Exposure to PM10 for different outdoor activities, during (green) and after the period with
persistent ATI (blue), collected with the PPMs. Plot limited to 100 μg/m3 on the y axis to better
illustrate the differences between mean and median values.

Riding a bicycle shows the highest recorded mean value of PM10 among all pre-
classified activities, with 77.2 μg/m3. As cyclists cover large distances and areas in an urban
environment compared to pedestrians, they could potentially cross through more areas with
higher concentrations of PM10, e.g., construction areas, heavy traffic, and intersections [51],
and increase their exposure based on extreme values, high-exposure events, and higher
spatiotemporal variations [52]. Moreover, cyclists are regularly forced to share traffic lanes
with motor vehicles, which increases their exposure to PM [53]. A risk-benefit balance
assessment between active travel-related physical activity and exposure to air pollution
shows that in areas with PM2.5 concentrations of >100 μg/m3, harms would exceed benefits
after 90 min of bicycling per day or more than 10 h of walking per day [54]. On the other
hand, our research revealed that there is a fairly large discrepancy between the mean
and median value for cycling in the post-ATI period, which is a consequence of several
brief high-exposure events (>100 μg/m3) that represent 4.3% of the recorded values for
the cycling activity. If these specific events are omitted, the mean value decreases from
46.5 μg/m3 to 19.9 μg/m3, which is close to the median value of 15 μg/m3 (14 μg/m3,
after high-exposure values are removed).

As evident for the “foot” (walking) activities in the post-ATI period in Figure 7,
pedestrians had a smaller difference between their mean and median value of exposure of
1.4 μg/m3. Moreover, the walking activity had a smaller number of high-exposure events
of >100 μg/m3 (0.9% of all recorded values), which had a lower mean value of 181.3 μg/m3,
compared to values for cycling >100 μg/m3 with a mean value of 633.4 μg/m3. A similar
trend is present for the period with ATIs. Pedestrians are exposed to varying concentrations
of PM throughout the urban environment based on different types of road, traffic volume,
time of day, and season [55], or specific high-exposure events, e.g., queuing by or walking
across a crosswalk [56], which influence their cumulative exposure. As they move slower
and cover less distance than cyclists, the variability can be lower, moreover, they are
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less frequently exposed to direct traffic exhaust than cyclists. Exposure of pedestrians is
influenced by background concentrations and on smaller local roads by the pedestrians
themselves who resuspend dust and might increase the concentrations of coarser fractions
of PM [57].

These results illustrate how the difference in exposure between the ATI and the post-
ATI period for the outdoor activities is larger than for the indoor activities, indicating that
specific activities and the associated sources of PM increase exposure indoors.

4. Limitations

Certain limitations were observed in this study. Data in the ICARUS sampling cam-
paign in Ljubljana were collected in only one non-heating season at the end of February and
the beginning of March, which resulted in only a single period with persistent ATIs. This
research could be further improved by analyzing multiple periods in different years and in
different locations/cities, though this would present the logistical challenge of organizing
yearly sampling campaigns with hundreds of participants. The sampling campaign began
just as the period of persistent ATIs started, which prevented any comparisons with data
prior to the ATI period.

Personal monitors based on low-cost sensors often have issues regarding their usability,
data accuracy, and technical malfunctions. The PPMs used in this study frequently stopped
working, did not record data, had poor accuracy of GPS data, ran out of battery, and
showed data that were clearly erroneous, which resulted in data loss and also increased
the workload of researchers and field workers. PM values recorded for certain activities,
e.g., running, could be erroneous due to the aforementioned issues.

An additional limitation of the study was the manual logging of activity data by the
participants, who frequently logged data for several days at once and sometimes mistakenly
chose the wrong activity, which increased the possibility of errors. The activities did not
have the same frequency in the two periods (during and post-ATI), and some were recorded
only in one period and consequently eliminated from this analysis.

5. Conclusions

Within the scope of this research, an analysis of the applicability of personal PM
monitor-based individual-level exposure assessments for capturing the spatiotemporal
variability of individual exposure profiles was made. Two contrasting periods in terms of
meteorological conditions and air quality—a period with persistent atmospheric thermal
inversions (ATIs) and a post-ATI period—were used to determine how the aforementioned
approach can assess exposure during specific activities and in specific microlocations. Data
were collected on indoor and outdoor activities performed by participants in Ljubljana.
Exposure was compared by observing the statistical values of the recorded data in the
two distinct periods and comparing it with data collected from monitoring stations.

Results showed that the difference in indoor and outdoor exposure was much higher
during the period of ATIs (23.0 μg/m3) than after (6.5 μg/m3). Indoor activities generally
showed less difference in mean and median values, with cooking and cleaning having
higher values in the post-ATI period than during the ATI. On the other hand, almost all
outdoor activities had higher PM values during the ATI than after. Several conclusions can
be drawn from these results:

1. Periods with persistent ATIs present a fitting opportunity to assess the applicability
of personal monitors to capture the spatiotemporal variability of indoor and outdoor
exposure. A clear distinction in terms of PM concentrations between the two pe-
riods provides an opportunity to observe how high-exposure events can influence
cumulative exposure;

2. Exposure to PM10 is higher during periods with persistent ATIs, when ambient
concentrations increase due to specific meteorological conditions. This is evident
indoors and outdoors and for almost all activities, except for a few that are mainly
influenced by the PM10 associated with the respective activity. Indoor concentrations
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are lower than the outdoor concentrations during the period with ATIs, though they
are still higher than indoor and outdoor concentrations in the post-ATI period;

3. Using activity data enables an individual-level scale analysis of exposure and illus-
trates that the influence of activities on exposure indoors should not be disregarded
when assessing cumulative exposure. Activities can directly, e.g., cooking and clean-
ing, or indirectly reduce air quality, e.g., opening a window during a period with poor
outdoor air quality;

4. Measuring exposure on an individual level is necessary to capture high-exposure
events in microlocations. These results showed that several high-exposure events can
greatly raise exposure levels. Additionally, personal monitors can detect trends and
show how specific routines influence exposure;

5. These measurements confirm that there are high levels of exposure indoors even in
high-income countries that mostly don’t use solid fuels for cooking and heating. A
better understanding of activity-specific exposure could provide a basis for policies
that can more accurately address exposure to poor air quality.

Overall, this study demonstrated that utilizing personal monitors in exposure assess-
ments can provide better spatiotemporal resolution and capture specific high-exposure events.
These devices provide an ancillary tool that can indicate trends and guide further research.

Future work should include more detailed activities and a better spatiotemporal
resolution. Personal monitors could be further improved to better record, store, harmonize
and transfer data, detect outliers, have on-the-fly calibration options, and integrate multiple
devices. Reducing the proportion of data that are recorded by human input via an approach
with automated activity recognition could improve exposure assessments [58]. Exposure
models that rely solely on outdoor measuring stations or indoor stationary devices fail to
capture high-exposure events and could be improved by integrating data from personal
monitors. Moreover, data from personal monitors could be integrated into agent-based
models to supplement other data sources [59], e.g., monitoring stations, statistical and
demographic data, etc.

This research addressed exposure to particulate matter, though there are numerous
other air pollutants that could be further investigated by employing personal monitors.
Moreover, current AQ guidelines often do not include indoor environments or individual-
level exposure. Results obtained in the scope of this research should be further developed
and transferred into policy, to include approaches that utilize data on a personal scale and
the specifics related to human behavior in urban environments.
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Abstract: Accurate calibration of low-cost gas sensors is, at present, a time consuming and difficult
process. Laboratory calibration and field calibration methods are currently used, but laboratory
calibration is generally discounted due to poor transferability, and field methods requiring several
weeks are standard. The Enhanced Ambient Sensing Environment (EASE) method described in this
article, is a hybrid of the two, combining the advantages of a laboratory calibration with the increased
accuracy of a field calibration. It involves calibrating sensors inside a duct, drawing in ambient
air with similar properties to the site where the sensors will operate, but with the added feature
of being able to artificially increases or decrease pollutant levels, thus condensing the calibration
period required. Calibration of both metal-oxide (MOx) and electrochemical (EC) gas sensors for the
measurement of NO2 and O3 (0–120 ppb) were conducted in EASE, laboratory and field environments,
and validated in field environments. The EC sensors performed marginally better than MOx sensors
for NO2 measurement and sensor performance was similar for O3 measurement, but the EC sensor
nodes had less node inter-node variability and were more robust. For both gasses and sensor types
the EASE calibration outperformed the laboratory calibration, and performed similarly to or better
than the field calibration, whilst requiring a fraction of the time.

Keywords: low-cost sensors; metal oxide sensor; electrochemical sensor; calibration protocol; calibration

1. Introduction

Poor air quality (AQ) constitutes a global public health emergency. Estimates of the
global death toll caused by air pollution reach up to 9 million per year, or ∼1 in 6 deaths,
and this number is increasing [1–4]. The impact of poor AQ on the cardiopulmonary system
has been known for many years, but emerging studies link pollution exposure to a massive
range of adverse health impacts, extending from dementia, Parkinson’s disease, and cog-
nitive impairment, to diabetes, obesity and issues with the reproductive system [2,5–7]. It
may, in fact, be damaging every organ in the human body [8]. Nitrogen dioxide (NO2)
and Ozone (O3) are gas phase pollutants, with high spatiotemporal variability in urban
environments and known health impacts [9,10]. The World Health Organisation Global
Air Quality Guideline for NO2 is 10 μg m−3 (∼5 ppb) as an annual mean, and for O3 is
60 μg m−3 (∼30 ppb) as an 8-h mean for peak season [9].

Further efforts to quantify the links between AQ and health, and to produce tar-
geted solutions, particularly for individual pollutants, are hampered however by the
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scarcity of AQ monitoring [11,12]. Reference standard monitoring utilises large and ex-
pensive instruments based on chemiluminescence for NO2 and UV photometry for O3
measurements [13,14], while pollutant concentrations vary rapidly in time and space, their
measurement has low spatiotemporal resolution in developed countries due to the size
and cost of traditional reference standard monitoring stations [12], and can be almost
non-existent in low and middle-income countries, where the greater burden of poor AQ is
felt [2,4,10]. Modelling of air pollution levels, through parameterised semi-empirical mod-
els, is an alternative, but often challenged by lack of high quality input and calibrated data,
as modelling can not stand alone, but should be used in combination with measurements
(see Hertel et al., 2007 [15]).

Low-cost sensors (LCS) have the potential to revolutionise air quality monitoring.
There is no agreed definition of a low-cost sensor, however, they are far cheaper, smaller
and record with greater time-resolution than traditional methods [12,16–18]. This means
that they can be deployed in greater numbers, used in mobile applications, and in areas
where monitoring is not currently possible, all with high time-resolution. Hence hot-spots,
point-sources, indoor concentrations and even personal exposure levels can be identified
and measured [12]. Monitoring programmes and epidemiological studies could also be
implemented in lower income countries, which until now have had to reply on findings
extrapolated from studies in other areas, that may underestimate the effects of poor AQ [19].

Many companies are already producing LCS commercially, and this has led to their
use in scientific studies and citizen science projects, as well as privately [20,21]. However,
together with the many benefits LCS have over traditional methods, they also have out-
standing issues with data quality. In particular, LCS suffer from issues with selectivity,
sensitivity, and stability, all of which detract from their overall accuracy [12,17,22,23]. These
issues are typical to all LCS but also depend on the sensor’s principle of operation, and the
context they are used in. In this study, we focus on gas sensors for NO2 and O3, based
on Metal-Oxides (MOx) and Electrochemical (EC) cells. These are the most widely used
LCS for NO2 and O3 measurement, with EC being more common [22,24]. They are both
chemo-resistive sensors; MOx operate by measuring resistance change across a metal-oxide
surface resulting from gas adsorption [25], and EC cells by using amperometry to measure
the current of a redox reaction which is proportional to the gas concentration present in the
air above the cell [26]. Further details of the individual sensors are given in Section 2. Both
of these sensor types suffer particular issues with drift/ageing, cross-sensitivity between
pollutants, and effects from temperature (T) [27–29].

Resultant data quality can be drastically improved with effective sensor calibration
(and hardware approaches described in Section 2). Pre-deployment calibration is used
to identify sources of error and develop calibration models that bring the sensors into
best possible agreement with reference instruments [18]. Post-deployment calibration is
necessary to maintain this during longer deployments, however, there is not currently a
recognised standard procedure for calibration, and many commercial sensors are sold un-
calibrated [22,30]. Calibration is individual and must be repeated for each LCS unit. Ideally
each unit should also have a different calibration model for individual environments,
as different co-pollutant levels and environmental factors will alter their response [24].
Once deployed, the drift in response will also be individual, dependent on both the LCS’s
original characteristics and it’s environment. Therefore, individual re-calibration should
also be performed when necessary [24,27].

The prevailing calibration methods are either Field (also called co-location) calibration
or laboratory (Lab) calibration, both of which have known drawbacks [18,22]. Laboratory
calibration can be performed relatively quickly, in any laboratory with appropriate equip-
ment, and the range of pollutant concentrations, relative humidity (RH), and T levels, can
be chosen. However, laboratory-based calibrations rarely perform well when validated in
real field conditions [16,31] and, in a recent review of LCS for AQ monitoring, 90% of LCS
studies surveyed (for NO2 and O3 measurement) utilised Field calibration [22]. The exact
reason for this difference in efficacy has not been determined, however, it is thought to be
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due to meteorological and co-pollutant fluctuations in the field environment, which are
not accurately represented in the laboratory, as well as the high cost associated with an
effective laboratory calibration setup. There may also be contaminants in the laboratory
environment for example volatile organic compounds (VOCs) and their oxidation products,
not found in the field.

Field calibration is considered superior, particularly if calibration occurs in a similar
geographical area to the actual measurement and in the same season of the year. However,
it is time intensive, typically requiring several weeks to observe a comprehensive range
of concentrations, particularly for more complex models, requires access to an official
reference station or similar staging area, and leaves to chance whether or not the full
range of pollutant concentrations is encountered [30,32–34]. Field calibration models may
also not be transferable if moved between sites with different concentration profiles, co-
pollutant matrices or prevailing meteorological conditions [22,35,36]. It has been claimed
that the Laboratory and Field calibration methods are complementary and a combination
of data from both methods is required for a full assessment of sensor performance and the
production of a robust calibration model [16,26].

Within the different methods used to obtain calibration data (e.g., Field calibration
and Laboratory calibration) there are many calibration models available, chiefly; Linear Re-
gression (LR), Multivariate Linear Regression (MLR), or a range of Machine Learning (ML)
algorithms, such as artificial neural networks, random forest and support vector regression,
amongst others [22,30,36]. The most suitable calibration approach for all situations has not
been determined. Complex ML algorithms often perform better than MLR when observing
training data and if sensors are not moved after calibration, but can perform poorly after
sensors are transferred to a different site [30,36]. This may be due to the complex models
over-fitting specific aspects of the training site that are not directly related to pollutant
concentrations, whereas, a simpler LR or MLR model may appear worse during training
but not have a significant increase in error after transfer [33,37].

In this study, a ‘hybrid’ calibration method is described. This calibration method is
a combination of both the Laboratory and the Field calibration methods, as the Hybrid
calibration method draws ambient air into an insulated, well-mixed duct with a steady
flow. This ensures that the air maintains similar properties to those observed outdoors.
Inlets for adding NO2 and O3, as well as an activated carbon filter were also added to
the duct. Thereby, sensor nodes placed inside the duct are exposed to ambient pollution
levels, as well as artificially increased and lowered levels. The responses from the LCS are
compared to reference monitors sampling the duct from the outside. This system is called
the Enhanced Ambient Sensing Environment or EASE.

Previous works have been performed on the development of optimal laboratory
calibration setups, but without the addition of ambient pollutants/conditions, this work
was drawn on in the initial stages of the EASE design [38,39]. However, these typically
focus on the manipulation and control of experimental conditions, whereas the main
focus of the EASE setup is on preserving ambient conditions, whilst having the added
advantage of manipulating the pollutant concentrations. This means that the LCS can be
calibrated according to ambient concentrations, under realistic conditions in terms of RH,
T, and the presence of a co-pollutant matrix, but with additional spiking of pollutants to
ensure that the full span of pollutant concentrations is included in the calibration, within a
short time-period. At points, filtration of the incoming air is also used, for identifying the
zero/baseline response of the sensors under ambient conditions.

This study paves the way for future calibration methods that are faster and more
accurate for real-world use. In this work, the EASE method is compared with Field and
Laboratory calibration methods for 12 MOx and 15 EC sensors. Calibration was performed
separately for the two sensor types and with differing setups. The main differences in the
overall protocol is that the MOx sensors were EASE calibrated in Copenhagen, Denmark,
and also Field calibrated and validated in Copenhagen, 3 km away, whereas, the EC
sensors were calibrated in Copenhagen but were Field calibrated and validated in Surrey,
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UK, and with a longer separation in time. Furthermore, the MOx nodes were laboratory
calibrated at Copenhagen University whereas the EC sensors were laboratory calibrated by
their manufacturer prior to node assembly.

The main aim of the work is to compare the three different calibration methods (Field,
Lab and EASE) for both sensor types (MOx and EC) as well as comparison between the
sensors. The EASE method gave better results than Laboratory calibration and had similar
results to Field calibration, whilst requiring a fraction of the time. The EC sensors performed
better than the MOx nodes for NO2 measurement and similarly for O3 measurement,
but with less inter-variability between nodes.

2. Materials and Methods

In this section, the sensor node hardware is described, followed by the calibration
setups and procedures for each of the three calibration methods, separately, for both node
types. The data analysis was conducted in R [40], using the ggplot2 [41] and Openair [42]
packages for data visualisation.

2.1. Sensor Nodes

In this article, ‘sensor’ refers to individual sensing devices, e.g., a metal-oxide chip,
whereas ‘sensor node’ or ‘node’ refers to a complete package including sensors, housing,
sampling system, and the ability to internally log or broadcast data.

Two types of sensor nodes were used in this study, both are prototypes developed
by AirLabs ApS for monitoring urban air quality and called ‘AirNodes’. Both nodes
measure NO2 and O3, Generation 2 (Gen 2) AirNodes do so with MOx sensors, whereas
Generation 5 (Gen 5) AirNodes utilise electrochemical cells. The relevant sensors to this
study are detailled for both nodes in Table 1, schematics and images of the nodes are shown
in Figures 1 and 2.

Table 1. Relevant sensors within the Gen 2 and Gen 5 nodes. The output column describes sensor
output after processing and calibration.

Node Sensor Producer Type Output

Gen 2 MiCS-6814 SGX Sensortech/AirLabs MOx NO2/ppb
Gen 2 MiCS-6814 SGX Sensortech/AirLabs MOx O3/ppb
Gen 5 NO2-B43F Alphasense/AirLabs EC NO2/ppb
Gen 5 OX-B431 Alphasense/AirLabs EC O3/ppb

Figure 1. AirNode Gen 2 (left) and cross-section of the AirNode Gen 2 gas sampling system, showing
both of the MOx cells in series, the filter between them, and the fan behind them (right).
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Figure 2. Gen 5 node views, node with heat-shield installed (left), and cross-section of the node with
sensor locations (right).

2.1.1. Gen 2 MOx Nodes

In the MOx node, the gas sensors used are MiCS-6814 metal-oxide sensors from SGX
Sensortech [43]. Each sensor chip contains three sensing elements (s1, s2, s3), each of these
has a heating element, a magnified image of the sensor is shown in Figure A5. Sensing
element three (pure WO3) is optimised for measuring oxidising gasses and therefore its
output is primarily used in this context. Element 2 is designed for the measurement of
reducing gases and element 1 for ammonia. The sensing mechanism of a MOx is reliant on
surface reactions, therefore the grain size, thickness and porosity of the MOx surface layer
will alter the sensitivity and response rate of the MOx sensor to a pollutant. These effects
are explained further in other studies [44–46].

The method used to create the MOx film will affect the microstructure of it’s surface
and therefore the performance, and even when the same method is used for sensor chips
of the same model. the microstructure of each chip can vary. In use, the performance of
individual sensor chips can be highly variable, meriting individual calibration. An image
of the chips, showing surface structure, difference in drop size and damage to a sensing
element is shown in Figure A5.

The chips are operated with temperature cycling operation (TCO), which is a technique
developed by Schütze and coworkers [47]. Cycling the operating temperature means that
at a certain point in the cycle the optimal temperature for binding of a specific gas will
be reached, thus providing the highest sensitivity for the gas of interest. Species on the
surface can also be burnt off at high temperatures, cleaning the surface. In the Gen 2 MOx
sensor, the cycle is optimised for NO2 and O3 and the sensor output is recorded at the high
and low points of each cycle. A schematic of the nodes is shown in Figure 1, two sensors
(MOX1 and MOX2) measure the sampled air in series, with an integrated O3 filter between
them, this removes O3 and therefore sensor 1 is exposed to both gasses, whereas sensor 2
(after the filter) is exposed to NO2 without the presence of O3. The output of both sensors
is then used in determining the concentrations of the gasses, and the cross-sensitivity can
be mitigated [48].

Each complete Gen 2 node is installed in a weatherproof enclosure (88 × 88 × 90 mm)
with inlets, exhaust holes, and a fan for active sampling, illustrated in Figure 1. Active
sampling was found to be integral to sensor performance. The sensing elements consume
the gas of interest when measuring; if the air around the sensor were stagnant, a lower and
less linear response would be observed than with active flow.

2.1.2. Gen 5 EC Nodes

The Gen 5 nodes (shown in in Figure 2) contain EC cells from Alphasense, a NO2-B43F
cell [49], which has a MnO2 filter that reduces O3, and a OX-B431 cell [50] which does not
have the filter and is sensitive to both NO2 and O3. The O3 concentration can be found
from the difference between cell responses (analogously to the MOx nodes). The EC cells
do not rapidly consume the target gas and therefore active sampling is not included in
the node design (schematics of the node are shown in Figure 2). The cells are sensitive to
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temperatures above 20 ◦C, however, and a sun shield is added to the node body to mitigate
heat build-up. A temperature sensor is also included within the node and during this
study the nodes internal temperature did not exceed the threshold of 20 ◦C at which a
temperature correction is necessary. The node body dimensions are 190 × 105 × 70 mm.

Use of these sensors has been extensively reported in a number of studies [22,26,28],
but in simple terms, each cell contains a working electrode (WE) and an auxiliary electrode
(AE). The WE is exposed to the environment and is where the redox reactions occur,
resulting in a change in current. The AE has the same structure as the WE but is not exposed
to ambient air, and so is not affected by gas concentrations, only other environmental
parameters such as temperature. The difference in output between the two electrodes,
therefore, corresponds to changes in concentration at the EC cell surface. AirLabs have
developed a printed circuit board (PCB) for converting the cell output from nA into mV,
the board has a conversion rate of 0.735 mV/nA.

2.2. Calibration Method Overview

The MOx and EC nodes underwent separate calibration procedures, the timings of
these are detailed in Table A4. In order to validate the methods, the nodes were co-located
for several weeks at reference stations, this co-location was split into training for the Field
calibration and a validation period. The same nodes were also calibrated over ∼3 days
each in the EASE and Lab setups. The performance of the Field, EASE and Laboratory
models over the validation period were then compared, a schematic of this is shown in
Figure 3. The evaluation statistics for validation of the calibration models (for all methods)
are calculated based on a comparison between the nodes and reference instruments during
the Field validation period, with the different calibration models applied.

Figure 3. Schematic of calibration periods. The blocks sizes are not to scale for time, Field training
should be 7 times the size of EASE and Laboratory training. Arrows indicate calibration models.
The CPH location stands for Copenhagen, AS for Alphasense, and SUR for Surrey. Lab is short
for laboratory.

A general overview of the methods is presented in Table 2, and the protocols for each
node and calibration method are described below.

Table 2. Calibration method overview. A schematic showing the time-series for the different methods
is included in Figure 3.

Field Laboratory EASE

RH/% Ambient 25, 50, 75 Ambient
T/◦C Ambient 10, 20 Ambient

[C]/ppb Ambient 0-80-0 Ambient + 0, 40, 80
Time taken ∼3 weeks (preferably) ∼3 days ∼3 days

Resource intensity Low (but requires station access) High Medium
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2.2.1. MOx Laboratory Calibration Protocol

Laboratory calibration of the MOx nodes took place inside a 1 m3 chamber, made
from aluminium, stainless steel and Perspex, situated inside a larger climate-controlled
chamber (Viessmann A/S), this setup is already partially described in Bulot et al. [51] (2020).
A schematic of the Laboratory calibration setup is shown in Figure 4, it includes an ozone
generator and O2 flask (pure O2), as well as an NO2 flask (1–2.3% NO2 in N2) and mass
flow controllers (MFCs, 0–100 ml min−1). A Model 42i chemiluminescence NOx Analyser
(Thermo-Fisher Scientific, Waltham, MA, USA) was used for NO2 measurement as well as
a direct absorbance analyser, a Model 405 nm (2B Technologies, Boulder, CO, USA). Ozone
was measured with a BMT 930 UV photometer, and RH and T were monitored with an
HTU21D digital sensor. In order to control RH levels, filtered, dry air was supplied to
the chamber, via a MFC directly (lowering RH) or diverted through a Nafion membrane
submerged in water (increasing RH). The chamber air was mixed with three fans in X,Y
and Z directions, test mixing with CO2 is shown in Figure A4.

The Laboratory testing protocol consisted of arranging the nodes inside the chamber
and sealing it before steadily increasing pollutant concentrations (NO2 or O3 separately)
from zero to ∼80 ppb, before allowing the concentration to steadily decay, at RH of 25, 50
and 75% (±15%), and T of 12 and 20 ◦C (±2 ◦C), respectively. Resulting in 6 concentration
spikes for each pollutant in total, over the course of 3 days. An example time-series of of an
O3 concentration spike is shown in Figure 5.

Figure 4. Laboratory calibration setup schematic for the Gen 2 MOx nodes.

Figure 5. Example O3 spike from the MOx Laboratory calibration.

2.2.2. MOx EASE Calibration Protocol

A schematic of the EASE calibration setup is shown in Figure 6. It consists of an
insulated galvanised steel duct (32 × 32 cm cross-section), which acts as the mixing chamber,
and is connected to a blower fan with 12 cm diameter ducting. The inlet to the system was
extended 2 m away from the building through a window on the 5th floor. Inlets for the
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addition of NO2 (50 ppm NO2 in N2 flask) and O3 (pure O2 passed through an O3 generator)
were also added to the main inlet and their flow controlled by MFCs (0–100 mL min−1).
The duct is equipped with flow, RH and T probes (LS control ES991 and ES989), mixing
fans, and outlets for NO2 and O3 monitors (Model 405 nm NOx monitor and BMT 930 UV
photometer). As the setup is insulated, and a relatively large throughput of air is used,
the interior of the chamber is similar to the ambient air outdoors, however the setup
has the advantage of being able to artificially increase (with gas flasks or generators) or
decrease (with an activated carbon filter) pollutant concentrations. An example section of a
concentration profile, with spikes and a ‘rush-hour’ period, is shown in Figure 7.

The chosen EASE calibration protocol required 48 h per pollutant (or 72 h total for
both pollutants as the ambient measurements can be used for NO2 and O3 calibration),
during which time the sensors were exposed to ambient pollutant concentrations through-
out, except for zeroing periods and pollutant spikes, at low (∼40 ppb), medium (∼80 pbb)
and high (∼100 pbb) concentrations for NO2 and O3 independently. With each lasting
∼45 min and occurring during non-rush hour periods. During the rush hour periods NO2
and O3 concentrations are not altered. The flow was held constant throughout and RH and
T dictated by the ambient environment. A 24 h example section is shown in Figure 7.

Figure 6. EASE calibration setup. This schematic is representative of the setup used for both MOx
and EC calibration.

Figure 7. EASE calibration setup example concentrations, note the artificial spikes from 12:00 to 21:00,
and morning rush hour period from 06:00 to 10:00.

2.2.3. MOx Field Calibration Protocol

The MOx Field calibration took place at the H. C. Andersens Boulevard (HCAB)
roadside monitoring station in Copenhagen, Denmark, operated under the NOVANA
program (the Danish National Monitoring Program for Water and Nature [52]). HCAB is a
highly trafficked street with relatively high air pollution levels. The nodes were co-located
at the station from 22nd December 2020 until 3rd February 2021 (43 days). The period
before 12th January 2021 was designated as the training period (21 days) and post as the
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validation period (22 days). During the co-location mean RH was 80% (range: 58–96%),
and mean T was 2.1 ◦C (range: −6.2–9.1 ◦C). A time-series of the reference NO2 and O3
concentrations during the co-location is shown in Figure 8. The nodes were installed at the
same height and approximately the same distance from the traffic at HCAB as the inlet for
the reference instruments. A schematic of the setup is also shown in Figure 8.

The reference instrument for NO2 is a chemiluminescence NOx monitor (Teledyne
API model T200). Reference O3 measurements were recorded via UV-absorption at 254 nm
with a Teledyne API model T400. The detection limit for both monitors is below 1 ppb,
with precision of ±5%. Reference station data is recorded at 30 min time-resolution and
therefore the LCS data was averaged to the same level for analysis.

Figure 8. MOx Field calibration and validation setup (left) and pollutant time-series (right). In the
setup schematic the node location is the blue rectangle and the reference inlet is the green circle.

2.2.4. MOx Calibration Models

As the Laboratory and EASE models in this study must inherently be transferable
between sites, a simple MLR was chosen to produce the calibration models, to avoid
overfitting to a specific environment [30,36]. An individual stepwise-selected model was
used for each of the MOx nodes for all of the MOx calibration methods, where the input
variables were the following, for predicting both NO2 and O3:

PNO2 or O3 =

a0 + a1 ∗ MOX1_s2_high + a2 ∗ MOX1_s2_low + a3 ∗ MOX1_s2_o f f set + a4 ∗ MOX1_s2_scale+

a5 ∗ MOX1_s3_high + a6 ∗ MOX1_s3_low + a7 ∗ MOX1_s3_o f f set + a8 ∗ MOX1_s3_scale+

a9 ∗ MOX2_s2_high + a10 ∗ MOX2_s2_low + a11 ∗ MOX2_s2_o f f set + a12 ∗ MOX2_s2_scale+

a13 ∗ MOX2_s3_high + a14 ∗ MOX2_s3_low + a15 ∗ MOX2_s3_o f f set + a16 ∗ MOX2_s3_scale+

a17 ∗ RH + a18 ∗ T

(1)

where a0 is the offset and a1–a16 are the calibration coefficients, and a17 and a18 are the
temperature and relative humidity correction coefficients, calculated using the method
of multiple least squares, separately for each MOx node. Due to the temperature cycle
(described in Section 2.1.1), the MOx sensor provides several parameters obtained as raw
data, as seen in Equation (1). For each sensor chip (s2 and s3), a scale and offset are provided
for both the high- and low-temperature period in the temperature cycle, and the average
conductance during the two temperature periods is also provided. Since two sensors are
included in the MOx node, and measure the air in series, with an O3 filter between them,
the readings from both sensors (MOX1 and MOX2) are included. Parameters from sensing
element two (s2) and three (s3) are both included as input variables in the model, even
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though only s3 is optimised for oxidising gases. Parameter s2 was included to check for
interference, but if none were found (p-value > 0.05), the input variables were removed
before doing the stepwise-selected model. The stepwise-selected model is determined
based on the step function in R with the mode of stepwise search done with a ‘forward’
and ‘backward’ direction until the lowest Akaike Information Criterion (AIC) was found.
Temperature and RH were included as input parameters in the models, but the stepwise-
selection model disregarded them as inputs as they did not improve the final MOx node
calibration models.

2.2.5. EC Laboratory Calibration Protocol

The EC cells (NO2-B43F [49] and OX-B431 [50]) are produced by Alphasense and each
cell is tested in a single pass setup, yielding zero current (nA) and sensitivity (nA ppm−1)
values, prior to dispatch [53]. Tests are conducted with a flow of 5 L min−1, T of 22 ± 2 ◦C
and RH of 45 ± 15%. Alphasense is confident in the linearity of cell response within the
specified measurement range (0–20 ppm) and therefore only test at pollutant concentrations
of zero ppb, and one known concentration (not disclosed). Tables of sensitivities and zero
values for the cells are included in the Appendix A (Tables A1 and A2).

2.2.6. EC EASE Calibration Protocol

For the EC nodes, a scaled-up duct system was constructed (38 × 50 cm cross-section)
to accommodate the larger node bodies, and different gas monitors were used, a Thermo
Electron Model 42C chemiluminescence NOx Analyzer and a Thermo Scientific Model
49i Ozone Analyzer. Otherwise, the calibration followed a similar procedure to the MOx
EASE calibration, except that ∼120 ppb was used for the ‘high’ exposure level, and the
inlet concentration was filtered during the artificial pollutant spikes for better consistency.
An example plot of the full procedure is displayed in Figure 9. The EASE setup in Figure 6
is also representative of the EC calibration setup.

Figure 9. Example concentration profile from EC calibration in the EASE setup.

2.2.7. EC Field Calibration Protocol

The EC co-location took place at Surrey University, Guildford, United Kingdom,
where the EC nodes were mounted in front of the Thomas Telford Building Air Quality
Lab, on the university campus, at ∼1 m from the ground. This is the same level as the
intake of the reference monitors (Figure 10), which are operated by Surrey University.
The co-location took place between 9th December 2021 and 23rd December 2021 (15 days),
and was split into training and validation periods which consist of measurements before
and after 15th December 2021, respectively. During the co-location internal node mean RH
was 44% (range: 32–58%) and internal node mean T was 11.2 ◦C (range: 1.10–18.1 ◦C). Since
the co-location took place on the university campus, low NO2 levels were encountered,
relative to the HCAB co-location. The O3 levels were similar, a time-series of reference
pollutant concentrations is shown in Figure 10. The reference instrument for NO2 was
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a Serinus Ecotech 40 NOx monitor, whereas reference O3 measurements were recorded
via a Thermo Fisher Scientific 49i Ozone monitor. All reference data was obtained with
1-mintime resolution, and therefore the node data did not need to be aggregated.

Figure 10. EC Field calibration and validation setup (left), and pollutant time-series (right).

2.2.8. EC Calibration Models

For the Laboratory calibration, the supplied coefficients (see Tables A1 and A2 in the
Appendix A) and the recommended equations are utilised. Concentrations of NO2 are
predicted from the NO2-B43F cell (cell 2), using Equation (2) to find corrected WE output
(WE2C), from raw WE output (WE2v), WE sensor zero (WE20), temperature dependent
correction factor (nT1 ), raw AE output (AE2v) and AE sensor zero (AE20). Which is then
used in Equation (3) with the supplied sensitivity (S2) and an offset (C2) to convert the
output into ppb. The sensitivities, sensor zeroes and temperature dependent correction
factor are supplied by the manufacturer, the offset (if included) is determined by Field
co-location. The sensitivities are multiplied by −10 due to the change in cell output when
using the AirLabs PCB and not an Alphasense PCB, this is omitted from the equations
for clarity.

WE2C = (WE2v − WE20)− nT1(AE2v − AE20) (2)

PNO2 = WE2C ∗ S2 + C2 (3)

Predicted O3 concentration is calculated from the difference in response between the
two cells. Corrected output for cell 1 WE (WE1C) is determined in the same way as WE2C,
except that the variables relate to cell 1, as shown in Equation (4), and afterwards, the O3
concentration can be determined based on Equation (5):

WE1C = ((WE1v − WE10)− nT2(AE1v − AE10)) (4)

PO3 = (WE1C ∗ S1 − WE2C ∗ S2) + C1 (5)

Alterations were made to these stock equations after testing. The supplied temperature
dependent correction factor (nT1 ) for NO2 prediction was 1 if T is 0–10 ◦C and 0.6 for
temperatures 10–20 ◦C, whereas nT2 for O3 prediction was 1.5 if T is below 10 ◦C and 1.7
for temperatures 10–20 ◦C, although when this was applied, the R2 value of the model
dropped drastically. When the difference between modelled and reference NO2 or O3
concentration was plotted against temperature for the modelled concentration without a
temperature correction, there was no relation between the error and temperature in the
range experienced at the test site, and therefore the nT1 and nT2 values were set to 1. This is
in agreement with other deployments of the sensors, where a temperature dependence is
not noticeable below 20 ◦C.

For the EASE and Field calibration models, similar equations are used, however the
supplied sensitivities and zero values for the cells were not included. For prediction of
NO2 concentrations the voltage change in cell 2 is found from the difference between the
WE and AE outputs, as shown in Equation (6), and the predicted O3 concentration is found
by subtracting cell 2 response from cell 1 response, as shown in Equation (7).
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PNO2 = (WE2v − AE2v) ∗ SN + CN (6)

PO3 = ((WE1V − AE1V)− (WE2V − AE2V)) ∗ SO + CO (7)

The sensitivities, SN and SO, as well as offsets, CN and CO, are determined using the
method of multiple least squares, separately for each EC node.

3. Results and Discussion

In the following section, the different calibration methods are compared, firstly for the
MOx nodes, followed by the EC nodes, and finally the different sensor types are compared
with each other. Results from the validation of the EASE setup against a reference station
are included in the Appendix A, Appendix A.1.

In the review by Karagulian et al. (2019) [22], a good level of agreement for a sensor
with a reference instrument is denoted by a R2 value of >0.75 and a slope ‘close’ to 1.0,
which we take to mean 1± 0.3, this definition will be used in the following analysis. The R2

value gives a measure of the goodness of fit between variables but does not account for
bias. Relative bias is denoted by a slope that diverges from 1. A non-zero intercept denotes
absolute bias and impacts the limit-of-detection, this is also recorded and discussed for
each method [22]. The root mean square error (RMSE), mean bias error (MBE), and mean
absolute error (MAE) are also included as statistical indicators for the models.

3.1. Mox Node Results

Results for the validation of MOx sensor calibration with each method are displayed
in Table 3 and selected statistical indicators are shown in Figure 11. Example time-
series of NO2 and O3 for one of the nodes during the validation period are shown in
Figures 12 and 13, respectively.

Table 3. Evaluation statistics for validation of the MOx nodes with all of the calibration methods,
all values are means over all MOx nodes with their corresponding standard deviation of the results
shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2

Laboratory 0.67 (0.22) 1.6 (0.39) 11 (21) 8.5 (3.0) −16 (17) 21 (11)
EASE 0.80 (0.065) 1.6 (0.63) −11 (19) 6.8 (1.2) −3.5 (13) 13 (2.7)
Field 0.83 (0.12) 1.6 (0.24) −6.5 (4.9) 6.2 (2.2) −7.7 (3.2) 8.8 (2.9)

O3

Laboratory 0.82 (0.11) 1.4 (0.54) −6.4 (5.3) 3.2 (0.98) 5.2 (16) 11 (12)
EASE 0.93 (0.062) 1.2 (0.16) −2.2 (6.9) 1.9 (0.90) −1.3 (4.5) 4.3 (1.4)
Field 0.96 (0.037) 0.88 (0.12) 1.4 (0.9) 1.4 (0.67) 0.87 (2.8) 2.2 (2.3)

It was found that individual models of this prototype node were highly variable and
some were unstable and gave poor results. Nodes that had training R2 values < 0.75 and
or validation R2 < 0.1 were discounted from the study, consequently, 5 of the 12 nodes
had to be discounted. The poor reliability of the nodes is presumably due to issues with
the complex sampling/filtration system, or the fragile MOx chips, as some of the broken
nodes had low sampling flows or damaged chips, an example chip is shown in Figure A5).
After calibration, it was found that the response of the MOx cells changed dramatically at
temperatures <0 ◦C, presumably due to perturbation of the TCO. Negative temperatures
were present only in the Field validation period and not the Field training (or EASE or
Laboratory training), and all models performed poorly when temperatures were <0 ◦C in
the validation period, therefore, these data were also removed from the validation to better
compare the models.

Overall, MOx sensor measurement of O3 was superior to NO2, with R2 values of 0.96
vs. 0.83 in the Field validation, and better performance for all calibration methods. In terms
of the different calibration methods, the Laboratory method was least successful, followed
by the EASE method, with the Field being most effective. All six statistical indicators
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follow this pattern (Laboratory < EASE < Field) in terms of R2 and slope difference from 1,
intercept difference from zero, and size of RMSE, MBE, and MAE, except for Field NO2
MBE, which is greater than EASE MBE, and slope which is the same for all methods.
In the case of slope and intercept, a mean value can be misleading as these parameters can
be above or below the optimum value (1 or 0, respectively), which is why the standard
deviations and boxplots are included. One of the nodes calibrated for NO2 with the
Laboratory method had a negative slope (−0.9) for the validation, this pulled the mean
slope value closer to 1 despite being a poor and anomalous result and therefore was
removed from the analysis. Despite the EASE and Field methods performing better than
the Laboratory method, they do not meet the requirements for ‘good’ sensor performance
for NO2 measurements, due to slope values that are too high (1.6). However, the EASE and
Field calibrated O3 measurements are well within the requirements, with particularly high
R2 values (0.93 and 0.96) and acceptable slope values (1.2 and 0.88).

Figure 11. Comparison of R2, slope, and RMSE for calibration model validation of MOx sensors with
the different methods for both NO2 (left) and O3 (right). Lab is short for laboratory.
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Figure 12. Example NO2 time-series from a single MOx node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.

In conclusion, the EASE method outperforms the Laboratory method with similar
overall results to the Field method, but the sensor hardware only performs well enough
for O3 measurement, as even the Field calibrated NO2 measurements are not within the
requirements for a good sensor, under these conditions. The MOx nodes also had poor
reliability, with a large fraction being discounted, and did not perform well at negative
temperatures (although they were not trained under negative temperatures).

3.2. EC Node Results

Results for validation of the EC sensors with all three methods are displayed in Table 4,
and selected statistics are displayed in Figure 14. Example time-series of NO2 and O3
during the validation period are shown in Figures 15 and 16, respectively. Results from
the calibration training periods are found in Table A6 in the Appendix A. The mean NO2
concentration was low during the entire period (training and validation) at 10.4 ppb,
and particularly low during the training period (7.7 ppb, vs. 13 ppb in the validation
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period). This means that at times the levels are near the limit of detection for the cells
(reported previously as ∼4 ppb [54]). Therefore a lower R2 value is recorded for the
sensor output compared with the reference instruments in the training period, relative to
the validation period (0.49 vs. 0.83), whereas the mean O3 concentrations were greater
throughout, and the R2 for the O3 measurement is similar for both periods (∼0.83) [55,56].
The Field calibration performs very well for O3 (R2 = 0.83, slope = 0.97) but over-predicts
NO2 concentrations in the validation period (slope = 1.4), which is most likely due to
the short training period, with lower NO2 levels than the validation period. As stated
previously, ∼3 weeks or longer is recommended for Field calibration.

Figure 13. Example O3 time-series from a single MOx node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.
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Table 4. Evaluation statistics for validation of the EC nodes with all calibration methods. Note that
the statistics for the Laboratory calibration are calculated after the Field offsets, shown in Table A3,
have been applied. All values are means over all EC nodes with their corresponding standard
deviation shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2

Laboratory 0.83 (0.025) 1.3 (0.11) −2.7 (1.1) 2.6 (0.20) −1.1 (0.42) 2.4 (0.19)
EASE 0.83 (0.027) 1.2 (0.13) −2.6 (5.2) 2.6 (0.22) 0.32 (4.2) 3.9 (2.2)
Field 0.83 (0.027) 1.4 (0.17) −2.6 (1.4) 2.6 (0.22) −1.6 (0.49) 2.6 (0.39)

O3

Laboratory 0.83 (0.027) 0.73 (0.10) 6.1 (2.3) 3.4 (0.27) −2.8 (1.7) 4.5 (1.1)
EASE 0.83 (0.027) 1.3 (0.17) −8.3 (7.6) 3.4 (0.27) 2.7 (4.9) 5.3 (2.5)
Field 0.83 (0.027) 0.97 (0.073) −0.092 (1.7) 3.4 (0.27) 0.47 (0.95) 2.8 (0.29)

Figure 14. Comparison of R2, slope, and RMSE for calibration model validation of EC sensors with
the different methods for both NO2 (left) and O3 (right). Lab is short for laboratory.
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Figure 15. Example NO2 time-series from a single EC node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.

The R2 and RMSE values for validation of the EC nodes with different methods are
essentially the same, unlike the MOx nodes for which R2 differs between methods. This
is because the EC cells have a more linear response to pollutant concentrations, and less
output variables, and therefore a change in the slope between methods does not alter the
coefficient of determination. This is also reflected by a generally better performance and
lower inter-unit variability for the EC nodes.

It was found that the the Laboratory coefficients provided by the EC manufacturer
(Alphasense) yield results that scale well with concentration increase in the Field, with a
slope similar to the Field calibrations (∼1.3), however the intercept of the Laboratory
predicted concentrations were either greatly above or below zero (between −175 and
+126 ppb) when applied to the Field data. Consequently, a Field offset correction was also
identified, based on the the Field calibration training period. The offsets are shown in the
Appendix A in Table A3 and as an example by the light blue lines in Figures 15 and 16.
This means that the pure Laboratory calibration would only be usable for measuring
relative changes, and not absolute values, unless a short Field co-location is performed to
determine their offset (as is the case for the statistics in Table 4 and the dark blue lines in
Figures 15 and 16).

241



Sensors 2022, 22, 7238

Figure 16. Example O3 time-series from a single EC node during the validation of the different
calibration methods, compared with data from the reference instrument. Lab is short for laboratory.

The zero coefficients supplied by Alphasense were included in the Laboratory cali-
bration models, as described in Section 2.2.8, but this only partially reduced the range of
intercepts encountered for the validation period (e.g., from 184 ppb down to 166 ppb for
NO2), compared with not using the zero coefficients, and just subtracting the AE from the
WE response. The offset issue may be partly due to the use of a PCB designed by AirLabs
in the Gen 5 EC node, which complicates the use of the ’zero’ coefficients supplied by
Alphasense, as the electronic offset may be altered. However, the large variability in offset
between units suggests that individual offset calibration is necessary for each cell in the
Field, regardless of the PCB used. In the application note from Alphasense, it is stated
that large over/under-estimation may occur if using just Laboratory coefficients and that a
secondary correction method is normally required [53], which was the case here. However,
the scale for the models produced by the Laboratory calibration was impressive. Potentially
a simple on-site zero air calibration, or calibration at a single fixed concentration, could be
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used together with the Laboratory calibration model coefficients to improve their results.
This will be tested as part of a future study.

Temperature correction using the nT coefficients supplied was also tested but did
not improve the results. A correlation linking the difference between model predictions
and reference measurements was not observed for NO2 measurements during the Field
validation. For O3, a decrease in absolute difference was observed for increasing tempera-
tures, meaning that the sensors appear to perform better for O3 measurements at greater
temperatures, however O3 concentration also had a strong correlation with temperature,
meaning that the increased absolute accuracy is due to the sensors having lower absolute
error at greater concentrations. When temperature was included in the training of the MLR
model for the Field method it did not improve results in the Field validation. This suggests
that below 20 ◦C using the difference between the WE and AE is sufficient to account
for any sensitivity that the EC sensors have towards temperature increase. This is also
evidenced by the strong performance from the Field trained model (R2 = 0.83, slope = 0.97),
which does not include temperature.

In conclusion, the Field and EASE methods perform similarly for both NO2 and O3
measurements, all being in good agreement with the reference, except for Field NO2 which
has a slope slightly above the acceptable range, as described above. It is also clear to see
from the time-series in Figures 15 and 16 that these methods result in models that track the
observed data well. In this case, EASE performs essentially as well as the Field calibration,
with a better slope for NO2, worse for O3, but meeting the criteria for both. This is despite
the fact that EASE calibration was performed in CPH and the nodes validated in Surrey,
UK, although it should also be noted that the Field calibration was shorter than is optimal.
Overall we believe this study demonstrates EASE as a viable alternative to Field calibration
for the EC nodes.

3.3. Node Comparison

As can be seen in Figures 8 and 10, the concentration profiles in the Field co-locations
periods are very different. The HCAB co-location (MOx nodes) is longer and importantly
for the NO2 calibration has a large NO2 concentration range during the Field training
period (0–81 ppb). Meanwhile the Surrey Field training period (EC nodes) is short and has
a lower mean NO2 level (7.7 ppb), with a lower NO2 concentration range (0.50–29 ppb),
followed by a validation period with a slightly greater mean NO2 concentration (13 ppb).
A lower mean concentration can result in a lower R2 value regardless of the sensor being
tested, and validating sensors using a concentration range greater than the training range is
not optimal [34,55,56]. Half-hourly data is the maximum resolution available from HCAB,
whereas the Surrey co-location data had a one-minute time resolution, using greater time-
resolution generally results in lower performance statistics. Therefore, it is difficult to
compare the Field calibration of the sensors under these differing conditions. However,
the EC nodes appear to have been trained and validated under more challenging conditions
and yet still perform as well as or better than the MOx nodes.

Temperature is also a factor in the training/validation of the models, but again is diffi-
cult to compare. It was warmer during the Surrey co-location than the HCAB co-location (11
vs. 2.8 ◦C), but the sensors respond differently to temperature changes. The MOx sensors
operate poorly below 0 ◦C, whereas the EC cells operate well at negative temperatures,
but lose sensitivity at greater temperatures (particularly above 20 ◦C), which were not
present during the co-location.

The laboratory MOx training consisted of a number of concentration, T and RH
combinations (although temperatures were greater than those encountered in the field).
In contrast, the EC Laboratory calibration consisted of a zero calibration and one other
concentration/T/RH combination. This may partly explain the large offsets produced by
the EC Laboratory method. In terms of the EASE training, the MOx nodes were trained and
tested in the same geographical area, which is the preferred method for EASE calibration,
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whereas the EC nodes were trained in Copenhagen, Denmark and tested in Surrey, UK.
Despite this, the EASE method performs well for the EC nodes.

It is clear that the EC Gen 5 nodes are more robust and less variable than the MOx
nodes as none of them had to be discounted from the analysis, compared with 41% of the
Gen 2 MOx nodes. It seems that the fan/filter system in the MOx nodes and sensors chips
themselves are vulnerable to damage.

Overall, If using the best calibration method in each case (Field or EASE), the statistics
for the different sensors appear similar, for NO2 measurement, EC: R2 = 0.83, slope = 1.2,
MOx: R2 = 0.83, slope = 1.6 and for O3 measurement, EC: R2 = 0.83, slope = 0.97, MOx:
R2 = 0.96, slope = 0.88. However, when all factors are taken into account, including the
less optimal EC Field co-location and the unreliability of the MOx nodes, the EC nodes are
judged as superior.

4. Conclusions

This study demonstrates how the EASE calibration method performs better than pure
Laboratory calibration and similarly to a Field calibration (and in some cases better, e.g., EC
NO2), whilst requiring a fraction of the time, being completed in days instead of weeks.
The EASE method even performed well when nodes were calibrated in Copenhagen,
Denmark and validated in Surrey, UK, up to 3 months later, suggesting that using a site
with similar characteristics (e.g., Urban, European) and at least within the same season,
yields acceptable results. Although, we expect even better results from calibration at or
nearer to the intended measurement site and directly before deployment.

Although the EASE method performed well under the circumstances in this study and
can expose sensors to the full expected range of pollutant concentrations in a condensed
period, it does not ’condense’ the RH and T exposure. These meteorological parameters
have less impact on the node output than concentration range, at least within certain ranges
(e.g., T < 20 ◦C for EC and >0 ◦C for MOx), therefore in most cases, we expect that if the
calibration is performed in the same season as the deployment an EASE calibration will be
sufficient. However, the temperature during the co-location should be monitored and if it
is outside of the optimal operating range for the sensors, then either a separate temperature
correction should be applied, or data may need to be discounted. The EASE method will be
best applied to shorter deployments, e.g., one season, but is still expected to perform better
than Laboratory calibration over longer deployments. The issue with not capturing an
appropriate range for meteorological factors is also present for Field calibration methods,
as can be seen from the MOx data in this study. Theoretically, longer Field calibrations could
solve this issue, for instance a year long co-location would ensure the sensors encounter
a large meteorological range, but this is not viable for most LCS, and in particular for EC
sensors, due to their overall lifetime and the drift they exhibit during deployment. We
propose that additional EASE calibration periods during a deployment would be a better
solution. The speed of an EASE calibration also means it is a viable option for conducting
pre- and post-deployment calibration, and using the the combined calibration models to
account for drift.

Laboratory calibration did not produce a calibration model meeting the requirements
for a ‘good’ sensor performance in any of the cases in this study. A potential improvement
would be to model the expected concentration, RH and T of the site during a deployment
and then to use a range around them for the defined Laboratory parameters. Although this
would not account for potential co-pollutant species present at the deployment site.

The secondary purpose of this study was to compare the Gen 2 MOx nodes and
the Gen 5 EC nodes. It is clear from the results that despite the Field co-location being
less optimal for the EC nodes (shorter, lower concentration range, lower mean NO2 level,
warmer), they out-perform the MOx nodes for NO2 measurements, for O3 the results from
both sensor types were similar and rate as ‘good’ for Field and EASE calibration. However,
the MOx nodes were less reliable.

244



Sensors 2022, 22, 7238

The method is in its infancy but we expect that further testing and iteration of the
procedure will improve the results, particularly when dealing with correlated or anti-
correlated pollutants that the sensors are cross-sensitive to. The natural progression for
this work would be to either install an EASE system directly at a reference station and
use that for optimal EASE calibration for the surrounding area, or to build a mobile EASE
system inside a vehicle that could be used for condensed calibration at the exact site at
which nodes will be measuring, and to validate the sensors in the same setup. This could
provide rapid and accurate calibration on-demand. Based on the results from this study,
the method appears to perform well enough to invest in this.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Auxiliary Electrode
AQ Air Quality
EASE Enhanced ambient Sensing Environment
EC ElectroChemical
HCAB H. C. Andersens Boulevard
LCS Low-Cost Sensor
LR Linear Regression
MAE Mean Absolute Error
MBE Mean Bias Error
MFC Mass Flow Controller
ML Machine Learning
MLR Multivariate Linear Regression
MOx Metal-Oxide
PCB Printed Circuit Board
RH Relative Humidity
RMSE Root Mean Square Error
T Temperature
TCO Temperature Cycling Operation
WE Working Electrode
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Appendix A. Equipment Tests and Training Parameters

Appendix A.1. EASE

Prior to use, the EASE setup was compared against data from the urban-background
monitoring station operated under the NOVANA program (the Danish National Monitoring
Program for Water and Nature [52]) on the roof of the neighbouring building, (H.C. Ørsted
Institute), to confirm that it would correctly track fluctuations in ambient pollution levels.
The system was in good agreement for trends in NO2 (R2 = 0.77) and O3 (R2 = 0.84),
shown in Figure A1, although with lower values for both pollutants. This may be due
to reaction on the walls of the system or the difference in position compared with the
reference monitors. T and RH were higher and lower, respectively, in the EASE setup than
the reference station but followed the same trends (R2 of 0.79 and 0.84, respectively, shown
in Figure A2) and were in good agreement with a RH and T probe mounted 2 m outside
the building. The mixing and homogeneity of the setup was also probed and found to be
satisfactory (results displayed in Figure A3).

Figure A1. Time-series (above) and scatter-plots (below) showing the correspondence between the
EASE duct and nearby reference station for NO2 (left) and O3 (right) measurements.
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Figure A2. Time-series (above) and scatter-plots (below) showing the correspondence between the
EASE duct and nearby reference station for T (left) and RH (right) measurements.

Table A1. Sensitivity and zero currents for NO2-B43F cells, provided by Alphasense.

Node
NO2-B43F
Cell Serial

WE Zero
Current/nA

AE Zero
Current/nA

Sensitivity/

(nA ppm−1)

ANG500012 202750622 32.16 18.29 −386.68
ANG500149 202750349 19.86 2.84 −338.6
ANG500151 202750350 25.54 18.60 −348.85
ANG500174 202750153 30.58 11.35 −400.24
ANG500194 202750122 30.90 8.51 −380.38
ANG500208 202750105 31.21 12.30 −412.38
ANG500218 202750639 33.73 18.92 −379.75
ANG500219 202750638 33.42 21.44 −384.32
ANG500224 202055609 9.46 9.14 −341.13
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Table A1. Cont.

Node
NO2-B43F
Cell Serial

WE Zero
Current/nA

AE Zero
Current/nA

Sensitivity/

(nA ppm−1)

ANG500225 202055604 25.22 17.66 −319.37
ANG500245 202240647 52.97 20.49 −393.62
ANG500252 202750601 24.91 17.34 −355.63
ANG500254 202750119 31.84 14.19 −374.39
ANG500255 202750110 35.63 15.76 −368.87
ANG500259 202750112 35.94 10.72 −382.58

Figure A3. Results of mixing test in EASE duct, the sampling line was moved between points P1
and P4 shown in the schematic (above) at the realtive times shown in the plot (below). As can be
seen from the plot there was not a significant difference in NO2 either for the different points or the
same points at different times. The small fluctuations in concentration over time are caused by slight
fluctuations in total flow through the duct.
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Figure A4. Figure displaying the results of chamber mixing tests, including: schematic showing
5 different node placements in the chamber, in their corresponding colours (below), and time-series
(plots A and C) and scatter-plots (plots B and D) of two different mixing tests, where the CO2

concentration was incrementally increased before rapidly venting the chamber (A,B) and slowly
increased before leaving to steadily decay (C,D).
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Figure A5. Example MOx sensor surfaces (4× magnification), bottom sensor is damaged.

Table A2. Sensitivity and zero currents for OX-B431 cells, provided by Alphasense.

Node
OX-B431

Cell Serial
WE Zero

Current/nA
AE Zero

Current/nA
Sensitivity/

nA ppm−1

ANG500012 204050221 25.22 9.77 −656.87
ANG500149 204071554 37.20 24.59 −548.26
ANG500151 204071553 39.09 21.12 −586.25
ANG500174 204070150 47.29 17.66 −480.64
ANG500194 204751304 −29.01 11.67 −599.18
ANG500208 204070439 34.36 11.98 −543.37
ANG500218 204070440 33.42 7.25 −585.94
ANG500219 204070441 44.45 17.97 −489.46
ANG500224 204070407 20.49 14.19 −627.87
ANG500225 204070406 37.52 10.72 −570.02
ANG500245 204851926 33.73 16.71 −584.20
ANG500252 204851922 39.41 20.18 −613.37
ANG500254 204851921 43.51 19.86 −613.05
ANG500255 204851916 36.89 17.34 −626.76
ANG500259 204851918 35.63 19.86 −559.77

Table A3. Field offsets applied to the Laboratory calibration of the EC nodes, including the minimum
and maximum offset applied for each pollutant, and the difference between them.

Node Offset Applied NO2/ppb Offset Applied O3/ppb

ANG500012 24.80 52.20
ANG500149 55.28 52.50
ANG500151 58.55 −62.56
ANG500174 69.03 −11.60
ANG500194 37.55 43.46
ANG500208 76.79 −55.55
ANG500218 −21.66 46.76
ANG500219 44.61 −127.34
ANG500224 −20.53 −10.62
ANG500225 36.25 −90.69
ANG500245 −7.93 122.58
ANG500252 18.78 125.58
ANG500254 45.48 −7.23
ANG500255 105.74 −89.34
ANG500259 101.61 −175.24
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Table A3. Cont.

Node Offset Applied NO2/ppb Offset Applied O3/ppb

Max 105.74 125.58
Min −21.66 −175.24

Difference 127.41 300.82

Table A4. Summary of calibration period dates. * EASE separated into 2 batches, ** EASE separated
into 7 batches, tested alongside other nodes.

Node Field EASE Laboratory

MOx 22nd December 2020 : 3rd February 2021 * 21st February 2021 : 26th February 2021 12th March 2021 : 15th March 2021
EC 9th December 2021 : 23rd December 2021 ** 1st September 2021 : 5th October 2021 Prior to dispatch (then sealed)

Table A5. Evaluation statistics for training of the MOx nodes with all of the calibration methods. All
values are means over all MOx nodes with their corresponding standard deviation shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2

Laboratory 0.90 (0.047) 1.0 (0.0) 0.0 (0.0) 9.9 (2.7) 0.0 (0.0) 6.6 (1.7)
EASE 0.96 (0.014) 1.0 (0.0) 0.0 (0.0) 3.7 (0.67) 0.0 (0.0) 2.6 (0.32)
Field 0.92 (0.040) 1.0 (0.0) 0.0 (0.0) 3.6 (0.86) 0.0 (0.0) 2.6 (0.67)

O3

Laboratory 0.99 (0.011) 1.0 (0.0) 0.0 (0.0) 3.3 (1.2) 0.0 (0.0) 2.2 (0.86)
EASE 0.97 (0.013) 1.0 (0.0) 0.0 (0.0) 2.7 (0.72) 0.0 (0.0) 1.5 (0.51)
Field 0.96 (0.040) 1.0 (0.0) 0.0 (0.0) 1.2 (0.71) 0.0 (0.0) 0.90 (0.57)

Table A6. Evaluation statistics for training of the EC nodes with all of the calibration methods.
Laboratory coefficients were not available from the calibration performed by the manufacturer. Note
that the Field training period encompassed low NO2 concentrations, near the LOD, resulting in a
low R2 value. All values are means over all EC nodes with their corresponding standard deviation
shown in brackets.

Pollutant Method R2 Slope Intercept/ppb RMSE/ppb MBE/ppb MAE/ppb

NO2
EASE 0.94 (0.040) 1.0 (0.0) 0.0 (0.0) 5.2 (1.6) 0.0 (0.0) 4.0 (1.4)
Field 0.49 (0.082) 1.0 (0.0) 0.0 (0.0) 3.3 (0.22) 0.0 (0.0) 2.5 (0.19)

O3
EASE 0.96 (0.026) 1.0 (0.0) 0.0 (0.0) 4.6 (1.1) 0.0 (0.0) 2.9 (1.2)
Field 0.84 (0.047) 1.0 (0.0) 0.0 (0.0) 2.8 (0.38) 0.0 (0.0) 2.2 (0.29)
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Abstract: Industrial environments are frequently composed of potentially toxic and hazardous
compounds. Volatile organic compounds (VOCs) are one of the most concerning categories of
analytes commonly existent in the indoor air of factories’ facilities. The sources of VOCs in the
industrial context are abundant and a vast range of human health conditions and pathologies are
known to be caused by both short- and long-term exposures. Hence, accurate and rapid detection,
identification, and quantification of VOCs in industrial environments are mandatory issues. This
work demonstrates that graphene oxide (GO) thin films can be used to distinguish acetic acid,
ethanol, isopropanol, and methanol, major analytes for the field of industrial air quality, using
the electronic nose concept based on impedance spectra measurements. The data were treated by
principal component analysis. The sensor consists of polyethyleneimine (PEI) and GO layer-by-
layer films deposited on ceramic supports coated with gold interdigitated electrodes. The electrical
characterization of this sensor in the presence of the VOCs allows the identification of acetic acid
in the concentration range from 24 to 120 ppm, and of ethanol, isopropanol, and methanol in a
concentration range from 18 to 90 ppm, respectively. Moreover, the results allows the quantification
of acetic acid, ethanol, and isopropanol concentrations with sensitivity values of (3.03 ± 0.12) ∗ 104,
(−1.15 ± 0.19) ∗ 104, and (−1.1 ± 0.50) ∗ 104 mL−1, respectively. The resolution of this sensor to
detect the different analytes is lower than 0.04 ppm, which means it is an interesting sensor for use as
an electronic nose for the detection of VOCs.

Keywords: volatile organic compounds; VOC; industrial environment; indoor air; air quality; acetic
acid; ethanol; methanol; isopropanol; electronic nose; impedance spectroscopy; layer-by-layer films

1. Introduction

The indoor environment of industrial facilities, particularly in production lines and
warehouses, is commonly populated by a large variety of potentially polluting and haz-
ardous compounds [1–3]. Their presence in the air arises from the multitude of emit-
ting sources existent in these kinds of scenarios and leads to well-known and worthy-of-
attention consequences for the employee’s health [4,5]. Volatile organic compounds (VOCs)
are among the most concerning of these potentially hazardous analytes.

Volatile organic compounds correspond to organic compounds whose vapor pressure,
at 293.15 K, equals or exceeds 10 Pa, i.e., they are volatile at room temperature [6]. Consider-
ing their nature, VOC-emitting sources can be arranged into two distinct categories, natural
sources and anthropogenic sources. Natural sources include fauna and flora emissions.
Smoking, cooking, or cleaning, and all the products related to these activities, such as
tobacco, food, perfumes, personal care creams, and detergents, for example, are among the
main anthropogenic sources of VOCs. A vast range of daily-use objects, namely clothes,
furniture, building materials, paints, fuels, sprays, pesticides, glues, writing materials, and
copying devices, are equally relevant anthropogenic sources of VOCs [2,7,8].
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At an industrial level, VOCs are a common element of the indoor air of the facilities
since the activities that are usually undertaken in such locations are conducive to the
emission of these kinds of analytes. For instance, in coating industries and facilities with
painting, printing, or similar activities, it is rather common for the detection of relevant
amounts of alcohol-based VOCs in the atmosphere due to the frequent use of solvents,
paints, and other coating solutions [9–11]. Automotive, electronics, and comparable as-
sembly lines are equally replete with numerous sources of VOCs, namely, the chemicals,
solvents, or rubbers, and the welding, drying, heating, and coating processes often em-
ployed during the production [3,12,13]. The manufacturing facilities of personal care and
cleaning products, due to the intense utilization of VOCs-based chemicals in their formulas,
are major contributors to the presence of VOCs in both indoor and outdoor air [14–16].
Summarizing, independently of the undertaken activities, industrial facilities are often
crowded by sources of VOCs such as acetic acid, ethanol, isopropanol, methanol, and
many others.

Exposure to VOCs in both short- and long-term scenarios is known for causing an
extensive list of pathologies and health conditions that ranges from harmless biological
reactions to health-threatening diseases [17]. In simpler cases, exposure to VOCs leads to
allergic or inflammatory reactions in the respiratory tract, and cutaneous and ocular tissues.
Headaches, nausea, dizziness, visual disorders, memory impairment, emesis, epistaxis,
and fatigue are equally ordinary and well-known reactions of the human organism to the
presence of VOCs [18,19]. A cause–consequence relation between continued exposure to
VOCs and the development of dangerous forms of cancer has equally been studied. Lung,
oral, and even breast cancer are examples of VOC-related carcinogenic pathologies [20,21].

Due to all the aforementioned facts, it is mandatory to study, develop, and implement
analytical tools that enable the accurate and rapid detection, identification, and quantifica-
tion of the presence of VOCs in the indoor air of industrial facilities and, consequently, the
prevention of potential hazards to both the environment and employees’ health.

Several techniques have been scientifically addressed regarding their suitability for
the assessment of VOCs. These techniques include both multisensor array-based proce-
dures and analytical techniques such as chromatographic and spectrometric approaches.
Independently of the designation or the nature of the system, their core purpose is the
detection of specific and potentially dangerous analytes.

Regarding chromatographic and spectrometric systems, their suitability for the detec-
tion of VOCs has been largely investigated in a substantial amount of practical applications
that include air quality assessment, safety conditions, food characterization, drug detection,
clinical scenarios, and many others [1,22–24]. The main advantages of analytical techniques
such as liquid chromatography (LC), gas chromatography (GC), mass spectrometry (MS),
or ion mobility spectrometry (IMS) include their high levels of sensitivity and precision,
wide dynamic concentration ranges, analytical flexibility, and almost real-time monitoring
capability. Notwithstanding these advantages, they also have some limitations, namely,
their lack of portability and high costs, the necessity for sample preparation, and the
requirement for qualified personnel [25–27].

Aiming to circumvent the mentioned limitations, the development of sensor array-
based systems dedicated to specific scenarios has gained relevance as a cheaper and
simpler solution [28,29]. These systems enable an accurate and rapid qualification and
quantification of VOCs through the interactions that occur on the surface of the sensor when
they experience contact with the analyte [30,31]. Due to their flexibility and scientifically
relevant results, sensor array-based systems have proved their suitability for the assessment
of common VOCs such as acetone [32], ethanol [33], butanol [34], formaldehyde [35],
triethylamine [36], methanol [37], isopropanol [38], ethyl acetate [39], benzene [40], or
acetic acid [41], among many others.

The development of electronic tongues [42–44] and noses [30] based on featured or-
ganic thin films of graphene as sensing units have been widely addressed over the past
years; an approach that can also be used for the development of VOC-dedicated elec-
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tronic noses and tongues. For these cases, a sensor array is normally required. Graphene
molecules and derivatives were shown to be suitable to be used to detect a panoply of
molecules, macromolecules, and even viruses; thus, making them an invaluable tool in
many fields (e.g., medicine, industry, genetics, criminology) [45]. Moreover, graphene
oxide (GO) can be used in both electrical and optical devices [46]. Graphene oxide and poly
(allylamine hydrochloride) (PAH) layer-by-layer thin films (LBL) have been characterized
with respect to their growth with the number of bilayers, morphology, and electrical prop-
erties [47]. The electrical characterization of these PAH/GO films revealed a semiconductor
behaviour that makes these films interesting for the development of sensors by probing
their electrical property changes when submitted to different environments [47]. This
work proposes the development of a graphene oxide thin-film-based sensor using the
layer-by-layer technique, towards the detection, identification, and quantification of indus-
trially relevant VOCs, namely acetic acid, ethanol, isopropanol, and methanol. Impedance
spectroscopy was used as a probe of the sensor response in terms of the analyte and con-
centration and data were processed through principal component analysis (PCA). The
achieved results revealed the potential of the sensor being used not only to discriminate
these compounds in a complex mixture but also to quantify them, which could be a factor
that adds value towards its use for air quality control and public health.

2. Materials and Methods

2.1. Materials

Polyethyleneimine (PEI) and graphene oxide (GO), utilized for the preparation of thin
films, were purchased from Sigma-Aldrich. Standards of acetone (C3H6O; 58.08 gmol−1;
99.0%) and isopropanol (C3H8O; 60.10 gmol−1; 98.0%) were purchased from Laborspirit-
Labchem. Standards of ethanol (C2H6O; 46.07 gmol−1; 99.8%) and methanol (CH4O;
32.04 gmol−1; 99.8%) were obtained from Honeywell. Standard of acetic acid (C2H4O2;
60.05 gmol−1; 99.8%) was purchased from Fisher Scientific. The ceramic-based sensor
supports with deposited gold interdigitated electrodes (IDE) were acquired from Metrohm
DropSens (length: 22.8 mm; width: 7.6 mm; thickness: 1 mm; electrodes width: 200 μm;
distance between electrodes: 200 μm).

2.2. Preparation of Sensor

Thin films of PEI and GO polyelectrolytes were adsorbed by layer-by-layer (LbL)
technique on ceramic-based sensor supports with deposited gold IDE. This technique
basically settles down on electrostatic forces of the polyelectrolytes that enable the applica-
tion of alternated electrically charged polyelectrolytes [48]. To do so, the supports were
alternatively immersed in the PEI and GO aqueous solutions, positively and negatively
charged polyelectrolyte solutions with concentrations of 2.5 × 10−1 and 3.2 × 10−1 mg/mL,
respectively. Between each immersion, a wash procedure, consisting of the immersion
of the support in ultrapure water to remove eventual excesses of polyelectrolyte, was
undertaken. Once completing each immersion sequence, the support was dried with a
gentle nitrogen air blasting. The described procedure corresponds to the deposition of a
bilayer and was repeated 15 times, leading to the deposition of the multilayer thin films
of polyelectrolyte in the surface of the ceramic-based support, and forming the sensors
denominated as (PEI/GO)15. Detailed information regarding the procedure was previously
described in the literature [49,50].

2.3. Impedance Spectroscopy

Impedance spectroscopy was the analytical technique selected for the characterization
of sensor units’ response to the industrial solvents mentioned above. Detailed information
on experimental setup has been described by Magro et al. [30]. Basically, a custom-made
chamber with a volume of 58 L was employed to create a controlled atmosphere and
assess the electrical impedance response of the thin films. Initially, the chamber was
evacuated to pressure of 10−3 mbar and the previously calibrated sample of the target VOCs
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was introduced into a round-bottom glass flask. The VOC sample was then volatilized
and purged through compressed synthetic air (ALPHAGAZTM 1 AR—Air Liquide). The
sensor units were previously placed in the respective sample holder in the chamber and,
as next step, their electrical response to the VOCs was measured with an impedance
analyzer (Solartron 1260 Impedance/Gain-Phase Analyzer coupled with a 1296A Dielectric
Interface-AMETEK Scientific Instruments) and assessed with a dedicated software (SMaRT
Impedance Measurement Software, version 3.3.1-AMETEK Scientific Instruments). A
frequency range of 1 to 106 Hz and an AC voltage of 25 mV were applied during the
impedance assessment. To ensure that the signal is representative of the sensor’s response,
these measurements were performed in triplicate.

2.4. Data Treatment

Principal component analysis (PCA) was used to reduce the data size and to obtain
a new space of orthogonal components aiming to distinguish the different samples and
respective concentrations [51]. For this analysis, the electrical impedance and impedance
angle spectra were considered. It is relevant to emphasize that these values were both
collected in a frequency range of 1 Hz to 1 MHz for each sample at different concentrations.
Since three replicas were registered, the spectra used in this analysis correspond to the
average of those three measurements.

3. Results

Impedance Results

Figure 1 illustrates the impedance (a) and impedance angle (b) spectra of (PEI/GO)15
films deposited on the surface of gold IDEs when submitted to an atmosphere of different
concentrations of acetic acid (I), ethanol (II), methanol (III), and isopropanol (IV), repre-
sented by the VOCs’ evaporated volume. It should be mentioned that, for better clarity and
interpretation of the plots present in the figure, the error bars measured for these spectra
were not included. Nonetheless, it is relevant to state that both these frequency-dependent
measurements presented error values lower than 1% among the three replicas.

Figure 1. Cont.
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Figure 1. Impedance (a) and impedance angle (b) spectra of the sensor devices when exposed
to atmospheres with different concentrations of acetic acid (I), ethanol (II), methanol (III), and
isopropanol (IV).

To verify if the PEI/GO thin films can distinguish the different concentrations of the
measured VOCs, the impedance magnitude and impedance angle at fixed frequencies were
analyzed for the different VOCs’ concentrations. The evaporated volume can be directly
related with the concentration levels through the ratio between the mass of the analyte
and the mass of the air in the chamber. The mass of each analyte was calculated for each
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volume through their density. The same approach was employed to calculate the mass of
the air existent in the interior of the 58 L volume chamber. Once both the analyte mass
for each volume and the total mass in the interior of the chamber were calculated, the
corresponding concentrations were estimated by the mentioned ratio. Table 1 summarizes
the evaporated volumes and respective concentration levels for the four analysed analytes.
The concentration levels were converted to ppm scale for easier comprehension.

Table 1. Evaporated volumes (μL) and respective concentration levels (ppm) for the four considered
VOCs; acetic acid, ethanol, methanol, and isopropanol.

Volume
(μL)

Concentration
(ppm)

Acetic Acid Ethanol Methanol Isopropanol

200 24 18 18 18
500 60 45 45 45

1000 120 90 90 90

Figure 2a–d show both the impedance magnitude and impedance angle at 104 Hz,
plotted as a function of the evaporated volume and, consequently, the concentration of acetic
acid, ethanol, methanol, and isopropanol, respectively. These graphs clearly demonstrate
that the electrical measurements can distinguish between the different concentrations since
both the magnitude and angle vary with the concentration if only a VOC type is considered.
However, when analyzing the measured values of magnitude and angle at this chosen
frequency, one cannot distinguish between the different alcohol VOCs, meaning that is
necessary to analyze the data achieved for all the frequencies with mathematical methods
such as the PCA method. This analysis allows conclusions to be made as to whether
the impedance magnitude and impedance angle spectra depend on the different samples
and allows discrimination between the VOCs and their respective concentrations using a
single sensor.

Figure 2. Impedance magnitude and impedance angle at a fixed frequency of 104 Hz for different
concentrations of acetic acid (a), ethanol (b), methanol (c), and isopropanol (d) in air. The lines
between the experimental points are guidelines.
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4. Discussion

As one intends to distinguish between different VOCs using a single sensor, the PCA
method was applied to both the impedance magnitude and impedance angle spectra data
measured for the different concentrations of acetic acid, ethanol, methanol, and isopropanol.
The PCA score plots of all the measured data for all the four target analytes in air at different
concentrations are shown in Figure 3a. By analyzing this figure, one can observe that well
defined PCA score regions can be defined for each type of measured VOC, allowing
discrimination between the samples in the concentrations measured using a single sensor.

Figure 3. Cont.
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Figure 3. (a) PCA score plot after analyzing all the measured data for the detection of acetic acid,
ethanol, methanol, and isopropanol in air at different concentrations; (b) evolution of PC1 components
as a function of solvent volume; (c) evolution of PC2 components as a function of solvent volume.

To analyze if the calculated principal components PC1 and PC2 are concentration-
dependent, the achieved values of PC1 and PC2 were plotted as a function of the VOC’s
volume in Figure 3b,c, respectively. Interestingly, the evolution of PC1 with the solvent
volume shows that, except for the PC1 value associated to samples without VOCs and for
the acetic acid sample with a volume of 200 μL, one can calculate a PC1 average value for
each type of sample. The calculated values and respective error bars are present in Table 2.
Therefore, it is possible to state that the PC1 value can distinguish the ethanol, methanol,
and isopropanol in air samples and the acid acetic for higher concentrations. On the other
hand, Figure 3c clearly demonstrates that the PC2 components can discriminate the VOCs’
concentrations, with methanol being the exception. The sensitivity of the sensor when
submitted to the different VOCs was estimated by fitting the PC2 data versus concentration
with a straight line. The fitting parameters are listed in Table 2, where the sensitivity values
correspond to the slope of the PC2 parameters versus the concentration. Sensitivity values
of 30,300 ± 1200, −11,500 ± 1900, and −11,000 ± 5000 mL−1 were calculated for acetic
acid, ethanol, and isopropanol, respectively. Since the slope calculated for the case of
methanol PC2 data is very low, one decided to calculate the PC2 average. All these values
are displayed in Table 2. From these results, one can conclude that this unique sensor can
distinguish the different target VOCs and, except for methanol, the VOCs’ concentration in
the analyzed range.

Table 2. Summarization of the values achieved from Figure 3b,c. The columns PC1 Average and PC2
Average represent the mean value calculated from data of Figure 3b,c for the case of methanol, not
considering the null concentration data. The sensitivity corresponds to the slope of the straight lines
fitting PC2 data displayed in Figure 3c.

VOC PC1 Average
Sensitivity

(mL−1)
PC2 Average

Acetic acid (1.98 ± 0.01) × 108 * (3.03 ± 0.12) × 104 -
Ethanol (2.23 ± 0.54) × 107 (−1.15 ± 0.19) × 104 -

Methanol (7.4 ± 0.1) × 107 - (−0.066 ± 2.81) × 106

Isopropanol (4.19 ± 0.23) × 107 (−1.1 ± 0.5) × 104 -
* For concentrations higher than or equal to 60 ppm.
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To compare the achieved data with the results of other sensors existent in the liter-
ature, one presents Table 3 where the values of the resolution and range values of the
developed sensor are compared with the values of different sensors. To calculate the sensor
resolution for this work, the minimum measurable values were considered, as described
elsewhere [52]. As in the present results, the principal component 2 (PC2) values are lin-
early dependent on the concentration in ppm (C). The sensitivity (S) was calculated by the
slope of the straight line, ΔPC2/ΔC, used to fit the data. Therefore, ΔPC2/ΔC = S ± u(S),
with u(S) being the uncertainty of sensitivity given also by the fitting. The resolution
corresponds to the calculated value of ΔC in which ΔC = u(S)/S. This procedure enabled
the estimation of the resolution values of 0.005, 0.015, and 0.04 ppm for acetic acid, ethanol,
and isopropanol, respectively. As aforementioned, due to the very low slope calculated
for methanol, one opted to not estimate the sensitivity and, consequently, the resolution
values of this case. From the comparison included in Table 3, one can conclude that the
methodology described in this work leads to limited resolution even though the studied
range is of an intermediate level. The achieved values of resolution indicate that this sensor
can be used in the development of an electronic nose for the detection of VOCs.

Table 3. Comparison of the achieved sensors with others available in literature.

Sensor
Resolution

(ppm)
Range
(ppm)

Acetic acid [53] 1.2 1–13
Acetic acid [54] 1 10–100
Acetic acid [55] 0.5 0.5–2000
Acetic acid [56] 0.73 1–15
Acetic acid (this work) 0.005 24–240

Ethanol [57] 0.05 1–200
Ethanol [58] 3 30–145
Ethanol [59] 1 1–200
Ethanol [60] 0.15 0.15–5
Ethanol (this work) 0.015 18–180

Methanol [61] 0.015 1.14–11.36
Methanol [62] 10 100–300
Methanol [63] 0.5 0.5–700
Methanol [64] 10 100–500
Methanol (this work) - 18–180

Isopropanol [65] 2 2–100
Isopropanol [66] 1 1–100
Isopropanol [67] 1 1–1000
Isopropanol [68] 1 5–1000
Isopropanol (this work) 0.04 18–180

5. Conclusions

A unique sensor based on GO oxide thin films was used to simultaneously detect
four industrially relevant VOCs, acetic acid, ethanol, methanol, and isopropanol, by mea-
suring the impedance magnitude and impedance angle spectra responses in terms of
concentrations and processing the data through PCA. The results lead to the conclusion
that the impedance data allow both the different VOCs samples and their concentrations
to be distinguished in the range of hundreds of ppm. From the PCA results, one can
conclude that the principal component PC1 values can distinguish the ethanol, methanol,
and isopropanol in air samples and also the acid acetic for higher concentrations, while
from principal component PC2, one can discriminate the VOCs’ concentrations with the
exception of methanol. The sensitivities of the sensor are 30,300 ± 1200, −11,500 ± 1900,
and −11,000 ± 5000 mL−1 for the acetic acid, ethanol, and isopropanol, respectively. The
resolution values for this sensor are lower than 0.04 ppm, which proves the relevancy
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of using this sensor in the sensor array of an electronic nose for the qualification and
quantification of VOCs.
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Abstract: The nature of the constituent components of composite materials can significantly affect the
character of their interaction with the gas phase. In this work, nanocrystalline In2O3 was synthesized
by the chemical precipitation method and was modified using reduced graphene oxide (rGO). The
obtained composites were characterized by several analysis techniques—XRD, TEM, SEM, FTIR and
Raman spectroscopy, XPS, TGA, and DRIFTS. The XPS and FTIR and Raman spectroscopy results
suggested the formation of interfacial contact between In2O3 and rGO. The results of the gas sensor’s
properties showed that additional UV illumination led to a decrease in resistance and an increase in
sensor response at room temperature. However, the presence of humidity at room temperature led
to the disappearance of the response for pure In2O3, while for the composites, an inversion of the
sensor response toward ammonia was observed. The main reason may have been the formation of
NH4NO3 intermediates with further hydrolysis and decomposition under light illumination with the
formation of nitrite and nitrate species. The presence of these species was verified by in situ DRIFT
spectroscopy. Their strong electron-accepting properties lead to an increase in resistance, which
possibly affected the sensor signal’s inversion.

Keywords: metal oxide gas sensor; nanocrystalline indium oxide; reduced graphene oxide;
UV activation; humidity effect; low temperature detection; NH3 sensor

1. Introduction

Resistive-type gas sensors based on wide-gap semiconductor oxides are widely used
in practical applications. A variety of commercial types are available on the market for
the detection of toxic, polluting, and explosive gases [1,2]. However, the main effort of
researchers is aimed at eliminating and minimizing the existing disadvantages, such as
the thermal degradation of the sensitive layer, high power consumption, negative effects
of humidity, and low selectivity [3–8]. The commonly used metal oxide semiconductors
(MOSs), such as SnO2, In2O3, ZnO, WO3, TiO2, etc., show significant sensitivity toward
different pollutant gases, but their high electrical resistance limits their gas-sensing per-
formances at low operating temperatures. Many recent studies highlighted the use of
perspective strategies to improve sensor performance: the use of modifiers depending on
the nature of the analyte [9,10], applying filters [11], the use of photoactivation [12–15], and
heterostructure creation [16–18].

In this regard, van der Waals two-dimensional (2D) materials, heterostructures, and
devices, such as graphene and transition metal dichalcogenides, due to their unusual
electronic and optical characteristics, can be quite effective [19–22]. The main advantages
are their flexibility to change their electronic properties, in particular, the high electron
mobility at room temperature for graphene, which allows the creation of p–n junctions, as
well as the dependence of the band gap in such materials on the number of layers, which
allows the control of the spectral characteristics of the resulting materials [23,24]. Previously,

Sensors 2023, 23, 1517. https://doi.org/10.3390/s23031517 https://www.mdpi.com/journal/sensors266



Sensors 2023, 23, 1517

it was shown that the formation of a heterostructure between MOS and graphene can lead
to efficient charge transfer, leading to an improvement in photocatalytic activity [25–29].

It should be noted that composite heterostructures of MOS with 2D materials, in-
cluding graphene and its derivatives, have also shown promise in the field of gas sen-
sors [30,31]. Hence, Quang et al. showed that tuning the Schottky barrier height and barrier
width at the tiny area of contact between graphene and a SnO2 nanowire through the
adsorption/desorption of gas molecules led to outstanding gas-sensing characteristics [32].
Shekhirev et al. studied CVD-grown graphene nanoribbon films that could reliably rec-
ognize VOCs from different chemical classes [33]. Abideen et al. [34] developed rGO
nanosheet-loaded ZnO nanofibers with significantly higher responses toward different oxi-
dizing and reducing gases than pure ZnO. This enhancement was proposed to be due to the
creation of local p–n heterojunctions. Similarly, Tammanoon et al. [35] achieved a sensitive
and selective NO2 sensor made from an electrolytically exfoliated graphene/flame-spray-
made SnO2 composite operated at low temperatures. In combination with In2O3, which is
highly chemically stable and has a large number of free charge carriers in the conduction
band, surface oxygen vacancies, and active chemisorbed oxygen, such composites are able
to effectively detect gases at room temperature [36–39]. On one hand, ammonia is widely
used in various fields, including the agricultural, medical, and chemical industries. On the
other hand, the production of large volumes leads to an increase in its concentration in
the environment, which negatively affects human health. Thus, according to the NIOSH
(National Institute for Occupational Safety and Health) for NH3, the TWA (time-weighted
average concentration for up to a 10 h workday during a 40 h workweek) is 25 ppm and
the ST (short-term exposure limit) is 35 ppm [40].

Nevertheless, it is also important to study the influence of light irradiation on the
processes occurring at the solid–gas interface. Light radiation with the corresponding
emission energy can lead to an increase in the concentration of charge carriers in a semi-
conductor matrix due to the generation of an electron–hole pair, to a change in the type
and concentration of surface adsorption centers, and also to the formation of highly active
radical particles that contribute to the oxidation of analyte molecules. All of the above can
contribute to an increase in the sensitivity of sensors by accelerating ongoing processes. In
particular, photogenerated holes can recombine with electrons localized on chemisorbed
particles and lead to a decrease in the recovery time. In addition, for future practical
applications, it is important to know the nature and character of the interaction of gas
molecules with the material of the sensitive layer under different operating conditions,
including high humidity values.

Herein, in this work, we obtained In2O3 and In2O3/rGO nanocomposites with vary-
ing rGO contents and conducted a systematic analysis of the chemical composition and
interfacial interactions between components. The research explored the simultaneous
influence of light irradiation and relative humidity, which can simulate the environmental
conditions outside. The experimental results show that UV activation can enhance the
sensing response toward NH3 at room temperature. The effect of humidity appears as an
inversion of the sensor signal. A possible reason may be the photochemical conversion
of surface NH4NO3 to nitrite and nitrate species. This study provides useful information
for further understanding the influence of complex conditions on the sensing behavior of
composite materials at room temperature.

2. Materials and Methods

2.1. Material Synthesis
2.1.1. Synthesis of Nanocrystalline In2O3

The synthesis of the In2O3 nanocrystalline semiconductor oxide was performed via
the chemical precipitation method. The synthesis procedure consisted of the precipita-
tion of indium (III) hydroxide from an In(NO3)3 aqueous solution of its salt (5.00 g of
In(NO3)3 × 4.5 H2O in 50 mL of deionized water). Precipitation was carried out by adding
13.3 M ammonia solution dropwise until pH ~ 6 was reached. The obtained dense gel was
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repeatedly washed several times and precipitated by centrifugation (8000× g rpm for 4 min)
with 25 mM NH4NO3 solution and finally with deionized water to remove side products.
The quality of purification from nitrate groups was checked using the Quantofix indicator
(Macherey-Nagel, Düren, Germany). The resulting product was dried at T = 50 ◦C and
then annealed at T = 300 ◦C for 24 h in air.

2.1.2. Synthesis of Composite Materials

Commercial rGO from “Lition Company” (Dubna, Russia) was used to obtain the com-
posite materials. rGO was synthesized by a modified Hummer’s method, then dispersed
and stored in ethylene glycol to maintain the degree of reduction. A pre-weighed amount
of the rGO suspension was added to the In2O3 powder and further diluted with 1 mL of
citric acid (6.5 mM). The resulting mixture was stored for 20 min in an ultrasonic bath at a
temperature of 50 ◦C to obtain a uniform distribution for the constituent components. The
powder was dried at T = 50 ◦C and then annealed at T = 150 ◦C in air for 10 h. As a result,
In2O3/rGO composites with a rGO content of 0.5 and 1.0 wt.% were obtained.

2.2. Materials Characterization

The phase composition of the as-prepared samples was characterized by X-ray powder
diffraction (XRD) using a DRON-4 X-ray diffractometer (Burevestnik, Moscow, Russia)
with Cu Ka radiation (λ = 1.5418 Å) and Raman spectroscopy using an i-Raman Plus
spectrometer (BW Tek, Plainsboro, NJ, USA) equipped with a BAC 151C microscope and
a laser with an excitation wavelength of 532 nm. The morphology and composition of
the samples were analyzed by scanning electron microscopy (SEM) using a Carl Zeiss
SUPRA 40 FE-SEM instrument (Carl Zeiss AG, Jena, Germany) with an Inlens SE detector.
Transmission electron microscopy (TEM) studies were performed using the high-resolution
electronic transmission microscope JEOL JEM-2100F at 200 kV.

Thermogravimetric analysis with mass spectral analysis of gaseous products (TG-MS)
was carried out using a NETZSCH STA 449 instrument combined with a QMS-409 mass
spectrometer (Netzsch-Gerätebau GmbH, Selb, Germany). The samples were heated in
airflow (30 mL/min) at a rate of 10 ◦C/min in the temperature range of 25–700 ◦C.

Infrared spectra were recorded on a Spectrum One Fourier-transform infrared spec-
trometer (Perkin Elmer Inc., Waltham, MA, USA) in the transmission mode and the
wavenumber range of 400–4000 cm−1 with a step of 1 cm−1. Sample preparation con-
sisted of pressing the samples (about 5 mg) with KBr (50 mg) to obtain tablets (6 mm
diameter and 0.5 mm thickness). Diffuse reflectance infrared Fourier-transform spec-
troscopy (DRIFTS) was also performed on a Spectrum One Fourier-transform infrared
spectrometer (Perkin Elmer Inc.) with the DiffusIR annex and flow chamber HC900 (Pike
Technologies, Fitchburg, WI, USA) in the range of 4000–1000 cm−1 with a resolution of
4 cm−1 and accumulation of 30 scans. The samples (35 mg) were placed in ceramic crucibles
(5.0 mm diameter, 3.5 mm depth) and placed into the heating chamber. The samples were
preheated to 150 ◦C for 1 h to remove weakly adsorbed species and then cooled down to
room temperature. The spectra were recorded at room temperature under a controlled flow
rate of 100 mL/min in a gas mixture containing 100 ppm NH3 in dry air or with a relative
humidity (RH) of 70%.

X-ray photoelectron spectroscopy (XPS) studies were carried out on an OMICRON
ESCA+ spectrometer (Scienta Omicron, Uppsala, Sweden) with an aluminum anode
equipped with an AlKα XM1000 monochromatic X-ray source (radiation energy 1486.6 eV
and power 252 W). To eliminate the local charge on the analyzed surface, a CN-10 charge
neutralizer with an emission current of 6 μA and beam energy of 1 eV was used. The
analyzer transmission energy was 20 eV. The spectrometer was calibrated toward the Au4f
7/2 line at 84.1 eV. The pressure in the analyzer chamber did not exceed 10−9 mbar. All
spectra were accumulated at least three times. The fluctuation in the position of the peaks
did not exceed ±0.1 eV.
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Specially designed micro-hotplates were used for resistance measurements. The micro-
hotplates consisted of a dielectric substrate (0.9 mm × 0.9 mm × 0.15 mm) made from
Al2O3. There were platinum electrodes for heating on the back side of the substrates, and
the electrodes on the top side were intended to measure the resistance. The electrodes and
heater were made using Pt-based paste by the screen-printing method. The synthesized
samples in the form of powders were pre-dispersed with ethanol and deposited as a thick
film on the surface of the dielectric substrate to cover the electrodes. The films were sintered
at T = 150 ◦C in air for 5 h.

Gas sensor measurements were performed using laboratory-made equipment with a
flow cell. DC measurements were carried out in the temperature range of 150–25 ◦C with
a step of 25 ◦C. During the tests, the concentration of the analyte gas was controlled by
mass flow controllers by mixing a certified gas mixture with purified air. Gas was supplied
through the cell with a flow rate of 100 mL/min. The measurements were carried out with
a cyclic change in the atmosphere’s composition: air with analyte for 15 min and pure air
for 30 min. Preliminarily, for 100 min, the chamber with sensors was purged with purified
air at a temperature of 150 ◦C. The sensor signal was calculated as:

S =
R(air)− R(gas)

R(gas)
× 100%,

where R(air) is the sensor’s resistance in air and R(gas) is the sensor’s resistance under a
gas-containing atmosphere (NH3).

The relative humidity in the DRIFTS and sensor measurements was controlled by
regulating the ratio of dry and wet stream flows and was registered by a hygrometer
IVTM-7 (Practic-NC, Zelenograd, Russia). A UV light-emitting diode (LED, λmax = 365 nm,
P = 3.5 mW/cm2) was used for irradiation.

3. Results and Discussion

3.1. Characteristics of Composite Materials

The phase composition of the obtained samples was characterized using ICDD PDF-2
for In2O3 (6-416) (Figure 1). The X-ray diffraction patterns corresponded to the In2O3 phase
with the cubic bixbyite structure, which indicated that the synthesized sample was single-
phase. The X-ray patterns of the composite materials did not have significant differences,
suggesting no influences on the structural characteristics after modification. The particle
sizes of indium oxide in the pure sample and composites, estimated by the Scherrer formula
from the most intense peaks, were approximately equal and corresponded to 7–8 nm.

Figure 1. XRD patterns of the In2O3 and In2O3/rGO composites.

According to the TEM images (Figure 2a), indium oxide nanoparticles had a shape
close to spherical with a size in the range of 7–10 nm, which was in good agreement with
the values obtained from XRD data. In addition, crystalline particles with interplanar
spacings d = 0.29 nm corresponding to the In2O3 (222) plane were found.
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Figure 2. TEM images (a–c) and SEM images (d–f) of the In2O3 (a,d), rGO (b,e), and In2O3/rGO
composite (c,f).

The rGO nanosheets (Figure 2b,e) had a typical 2D morphology and visually ap-
peared to be crumpled due to tightly attached layers. According to the SEM, images
the nanocrystalline In2O3 had a three-dimensional and porous structure with sintered
grains (Figure 2d). The obtained composites consisted of agglomerated In2O3 nanoparticles
attached by two-dimensional graphene flakes in the form of bridges (Figure 2c,f).

The structure of the semiconductor oxide and composite materials was also studied
by Raman spectroscopy. Figure 3a shows the Raman spectra of nanocrystalline In2O3, rGO,
and the composite materials in the frequency range of 90–2500 cm−1. Characteristic Raman
modes corresponding to the body-centered cubic lattice of In2O3 were observed at 122.5,
298.5, 357.2, 487.6, and 621.5 cm−1. The vibration of the In-O bond of the [InO6] structural
units was observed at 122.5 cm−1. The vibrational mode at 298.5 cm−1 was associated with
a bending vibration of the [InO6] octahedra, while the modes at 487.6 and 621.5 cm−1 were
attributed to the stretching vibrations of the [InO6] octahedra. The band at 357.2 cm−1

corresponded to the stretching vibrations of the In-O-In bonds [41–43]. The broad band
at 447.3 cm−1 corresponded to surface structural defects due to the small particle size of
nanocrystalline In2O3 [44].

 

Figure 3. Raman spectra (a) and FTIR spectra (b) of the In2O3, rGO, and In2O3/rGO composites.

Reduced graphene oxide has two characteristic vibrational modes at 1346.3 and
1599.8 cm−1, which are designated as D and G modes, respectively. The G-mode (E2g
symmetry) is due to the stretching vibrations of carbon atoms (C-C) in the plane. This peak
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can be observed in the Raman spectra for all carbon structures containing sp2 hybridized
bonds, while the D-mode (A1g symmetry) becomes active in the presence of any defect
in the ideal structure. Therefore, it can be seen as a band caused by disturbances and it
can be described as a “breathing oscillation” of hexagonal aromatic carbon rings [45]. For
the In2O3/rGO (0.5%) and In2O3/rGO (1.0%) composite materials, the intensity of the
Ag and Tg vibrational modes corresponding to indium oxide decreased with increasing
rGO content. This may have been due to the fact that rGO, which had a black color,
absorbed green laser radiation to a greater extent; therefore, scattering in it will occur with
greater probability. The presence of D and G bands indicated the preservation of the rGO
structure after synthesis and thermal treatment. Moreover, a red shift in the position of the
G-band occurred with increasing rGO content in composites from 1599.8 cm−1 (for rGO)
to 1592.6 cm−1 (for In2O3/rGO (0.5%)) and to 1582.8 cm−1 (for In2O3/rGO (1%)). This
gradual shift may indicate a charge transfer as a result of chemical bond formation with
the surface of In2O3 [46].

The level of disorder in graphene oxide can be qualitatively estimated from the ratio of
the intensities of the D and G bands (ID/IG). From pure rGO (ID/IG = 0.98) to composites
(ID/IG = 1.02 and 1.04), an increase in this ratio was observed, which may have indicated
an increase in the surface oxygen-containing functional groups that formed upon bonding
with a semiconductor oxide [47,48]. The increase in the ID/IG ratio may have also indicated
a decrease in the number of graphene layers [27].

Figure 3b shows the results of the study of samples by FTIR spectroscopy. The peaks
of adsorbed water (1628 cm−1) and hydroxyl groups (3000–3670 cm−1) can be observed
in the spectra. In the low-frequency region, In2O3 and composite materials exhibited
characteristic peaks corresponding to the vibrations of the In-O bonds in the crystal lat-
tice [49]. The presence of vibration bands corresponding to nitrate ions (1385 cm−1) may
have been due to residual impurities from the precursor that could not be washed during
the synthesis procedure.

The spectrum of rGO is characterized by the presence of vibration bands with weak
intensities, which most likely belong to different surface functional groups: hydroxyl (C–
OH), epoxy (C–O–C), carbonyl (C=O), or carboxyl (COOH). Thus, a wide band in the region
of 910–1320 cm−1 corresponds to the superposition of stretching vibrations of the (C-O),
(C-C), and (C-O-C) bonds. The bands at 580, 1400, 1565, and 1720 cm−1 were associated
with vibrations of the (C-C), (-COOH), (C=C), and (C=O) bonds, respectively [49–51].

At the same time, the FTIR spectra of the composites were characterized by the appear-
ance of a new peak at 1576 cm−1 (C=O or C=C). The intensity of this peak increased with
an increase in the rGO content. The obtained results indicated the efficient immobilization
of rGO with the semiconductor oxide. Such contact can provide an electronic interaction
between In2O3 and rGO, which can lead to better charge separation.

XP spectra of the samples are shown in Figure 4. For the rGO sample, both the C 1s
and O 1s spectra differed from those of pure In2O3 and the In2O3/rGO (1%) composite.
The deconvolution of the C 1s spectrum showed that it consisted of sp2 bonding C=C, sp3

bonding C-C, and C=O (or O-C=O) bonds at 284.2, 285.7, and 288.2 eV, respectively [52].
The O 1s spectrum consisted of the following three components: a C=O (carbonyl and
carboxyl) bond at 531.1 eV, a C-O (epoxy) bond at 531.9 eV, and an O-H (hydroxyl) bond at
533 eV [53]. The C1s spectrum of the pure In2O3 sample consisted of several components
of adventitious carbon. Thus, an intense peak at 285.2 eV corresponded to sp3 bonding
C-C, the broad peak at 286.4 eV was due to C-OH and C-O-C bonds, while the peak at
289 eV corresponded to the O-C=O bond or carbonate contamination CO2−

3 [54]. For the
In2O3/rGO (1%) composite sample, a shift and an increase in the quantitative ratio of
these components could be observed, which may have indicated an interaction between
In2O3 and rGO. An additional shift of 0.3 eV for the In 3d spectrum toward higher binding
energies also indicated charge redistribution and transfer at the interface.
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Figure 4. C 1s (a) and O 1s (b) X-ray photoelectron spectra of the In2O3 and In2O3/rGO (1%) composite.

The O1s spectra of pure In2O3 could be fitted using three peaks with maxima at binding
energies of 530, 530.6, and 531.9 eV. The lowest binding energy region was associated with
lattice oxygen (O2−), while the middle region could be assigned to oxygen ions with lower
electron density (O−) in the subsurface. The coordination number of the oxygen ions in
these sites was lower and it could indicate the defective structure of the metal oxide [55].
The appearance of the peaks in the higher-binding-energy region was due to chemically
adsorbed oxygen-containing species on the sample’s surface [56,57]. These peaks shifted by
0.3 eV to the higher binding energy for the In2O3/rGO (1%) composite. Moreover, the ratio
of their content (O2−:O−:Osurf) changed between pure In2O3 (40:24:36) and the composite
(41:20:39), which indicated the compensation of oxygen deficiencies leading to an increase
in surface species, including chemisorbed oxygen ions.

Figure 5 shows the TG curve and temperature dependencies of the ionic currents
corresponding to gaseous products released from the reduced graphene oxide. The analysis
showed that, in the temperature range of 50–200 ◦C, there was a slight increase in the mass
of the sample, which was accompanied by a decrease in the ion currents for m/z = 18 (H2O).
Most likely, rGO was partially oxidized at this stage. At T = 450 ◦C, the destruction of the
rGO skeleton began: C–C bonds were broken, resulting in the formation of CO2 (m/z = 44).
It should be noted that, in this temperature range, the mass loss was almost 100%.

Figure 5. TG curve and temperature dependencies of ionic currents corresponding to H2O (m/z = 18)
and CO2 (m/z = 44) during rGO fragmentation and oxidation.
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3.2. Gas Sensor Measurements

Figure 6 shows the change in the resistance of the obtained sensors depending on
the gas phase composition under different conditions. It is noteworthy that the sensors
did not exhibit baseline drift across the entire measurement range, even under a humid
atmosphere. It can be seen that, under an atmosphere of dry air (Figure 6a,b), all samples
behaved like n-type semiconductors: when 20 ppm of ammonia (reducing gas) was added,
the resistance decreased due to reaction (1), and under an atmosphere of purified air, the
resistance increased again as reaction (2) could proceed.

2NH3(gas) +
3
β

Oα−
β(ads) → N2(gas) + 3H2O(gas) +

3α

β
e−, (1)

β

2
O2(gas) + αe− → Oα−

β(ads) (2)

where NH3(gas) represents the ammonia molecules in the gas phase and O−α
β(ads) represents

chemisorbed oxygen species (α = 1 and 2 for once- and twice-charged particles, respectively;
β = 1 and 2 for atomic and molecular forms, respectively).

Figure 6. Dynamic changes in sensors’ resistance with periodic changes in the gas phase composition
(20 ppm NH3–purified air) in the temperature range of 150–25 ◦C under various experimental
conditions: (a) under dark conditions with dry air; (b) under UV illumination with dry air; and
(c) under UV illumination with a relative humidity of 70% (RH = 70%).

A high electrical conductivity of the rGO compared with MOS led to a decrease in the
baseline resistance for composites under dark conditions (Figure 6a) [22]. As the resistance
of the semiconductor materials increased with decreasing temperature, at low operating
temperatures (25 and 50 ◦C), the resistance value reached above the detection limit of the
device (R > 1010 Ohm), so the data were noisy and illegible, which led to measurement and
calculation difficulties.

As illustrated in Figure 7a, the addition of p-type rGO to the n-type In2O3 semiconduc-
tor matrix formed a p-to-n transition at the interface of the obtained composite. Electrons
would be transferred from In2O3 with a lower work function (4.3 eV) to rGO with a higher
work function (4.7 eV), resulting in depletion layer formation until the equilibrium of the
Fermi level was reached [58–61]. As a result, a potential barrier would be created at the het-
erojunction. The formation of p–n heterojunction led to an increase in the resistance value
of the composites, which could be observed based on the dependences of the resistance
over time (Figure 6b,c). In addition, it could significantly reduce the rate of recombination
of electron–hole pairs and promote their separation and migration to the semiconductor
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surface under the action of internal electric fields. Figure 7b represents the response and
recovery time for the In2O3/rGO (1%) composite to 20 ppm NH3 under UV illumination.
The results show that increasing the operating temperature led to a decrease in both the
response and recovery times. At the same time, comparing with Figure 8, one can notice
that the slower the reaction preceded, the higher the sensor signal. This was achieved in
the low temperature range, while at higher temperatures, partial desorption of oxygen
from the surface may have occurred.

 

         (a) (b) 

Figure 7. A schematic illustration of the p–n heterojunction formation in the rGO–In2O3 interface (a);
response and recovery times of the In2O3/rGO (1%) composite under UV illumination at different
operating temperatures (b).

Figure 8. Temperature dependence of the sensor signal of the materials upon the detection of 20 ppm
NH3 under various experimental conditions: (a) under dark conditions with dry air; (b) under UV
illumination with dry air; and (c) under UV illumination with a relative humidity of 70% (RH = 70%).

In the case of UV illumination (Figure 6b), a decrease in resistance of all sensors was
observed, thereby achieving a reproducible response to NH3, even at room temperature.
When In2O3 semiconductor particles were exposed to UV irradiation, photogenerated elec-
trons and holes were formed (3). An increase in the concentration of photoelectrons in the
conduction band led to a decrease in the base resistance of the In2O3 sample, particularly
compared with composites. In the latter case, rGO flakes could cover the surface of the
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semiconductor, thereby preventing the interaction of UV radiation with the semiconduc-
tor’s solid surface. An increase in the concentration of charge carriers in the conduction
band could enhance the adsorption of oxygen from the atmosphere (reaction 2), which, in
turn, could stimulate reaction (1). Acting as an electron acceptor, rGO could prevent the
rapid recombination of electrons and holes [62].

In2O3
hν→ e−+h+ (3)

Nevertheless, in the first two cases, the unmodified In2O3 exhibited a higher sensor
signal compared with the composite materials (Figure 8a,b). However, it is worth noting
that UV illumination significantly improved the response to NH3, especially in the low-
temperature region.

An interesting case is the third one (Figures 6c and 8c), when the measurements were
carried out under an atmosphere with RH = 70%. First, it can be noticed that the baseline
resistance of the sensors decreased by more than one order of magnitude compared with
the measurements under a dry atmosphere. It is mentioned in the literature that this
phenomenon may have been associated with an increase in the electron concentration in
the conduction band due to the following reactions [63]:

H2O(gas) + In(lat) + O(lat) = [In(lat) − OH] + [O(lat)H]·· + e− (4)

H2O(gas) + 2In(lat) + O(lat) = 2[In(lat) − OH] + VO·· + 2e− (5)

2H2O(gas) + 4In(lat) + O2
−

(ads) = 4[In(lat) − OH] + e− (6)

In the temperature range of 100–150 ◦C, the resistance of the sensors fluctuated at the
noise level and there were no significant changes, indicating the negative effect of water
vapor on the detection of ammonia and the lack of charge transfer occurring. In the low
temperature range (25–75 ◦C), the effect of inversion of the sensor signal was observed,
and the lower the measurement temperature, the better this effect revealed itself. This
situation implies that, under an atmosphere containing ammonia, the resistance increased,
and under an atmosphere of purified air, it decreased.

The minimum detectable NH3 concentration was calculated by plotting calibration
curves, which had a good linear relationship with the ammonia concentration (Figure 9). The
minimum measurable sensor response was estimated using the ratio of R(av)/(R(av) − 3σ),
where R(av) is the average resistance in pure air and σ is the standard deviation of resistance
in pure air. The noise level of the sensors was calculated as the changes in the relative
response of the sensor over the baseline or the root-mean-square deviation (RMSnoise).
Sensitivity was determined as ΔR/Δc. The obtained results are presented in Table 1. It
can be observed that the In2O3/rGO (1%) composite demonstrated the lowest value of the
minimum detectable NH3 concentration, RMSnoise, and sensitivity at T = 50 ◦C. However,
it should be noted that the obtained values were quite close.

Table 1. Minimum detectable NH3 concentration cmin, RMSnoise, and sensitivity of the sensors
measured at 25 ◦C and 50 ◦C under dry air conditions and UV illumination.

Sample

T = 25 ◦C T = 50 ◦C

Cmin,
ppm

RMSnoise,
× 10−3

Sensitivity,
ppb−1

Cmin,
ppm

RMSnoise,
× 10−3

Sensitivity,
ppb−1

In2O3 1.71 18.02 31.5 1.1 14.12 38.5

In2O3/rGO
(0.5%) 1.78 20.65 34.7 1.04 13.5 38.8

In2O3/rGO
(1%) 1.88 21.12 33.6 1.0 12.53 37.4
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Figure 9. Change in the samples’ resistances depending on the NH3 concentration (5–10–15–20 ppm)
(a); calibration curves at T = 25 ◦C (b) and T = 50 ◦C (c).

3.3. In Situ DRIFTS Analysis

In order to analyze in more detail the effect of humidity on the nature of the change
in resistance, a study entailing DRIFT spectroscopy was carried out. The spectra were
recorded at room temperature in dry air and humid air (RH = 70%). The samples were
preliminarily kept under a flow of purified air at T = 150 ◦C for 40 min. The results are
shown in Figure 10.

Figure 10. In situ DRIFT spectra of the In2O3 (a) and In2O3/rGO (1%) (b) samples after 100 ppm
NH3 adsorption for 50 min at room temperature in dry air and humid air (RH = 70%).

After 5 min of NH3 exposure, narrow peaks in the range of 1210–1240 cm−1 were
immediately detected. These bands were assigned to NH3

+ species adsorbed on Lewis
acid sites. An additional confirmation may be offered by the appearance of N-H stretching
vibrations at the wavenumber of 3360 cm−1 related to NH3

+ species under an atmosphere
of dry air. The appearance of bands in the range of 1428–1488 cm−1 was associated with
NH4

+ species as a result of ammonia adsorption on Brønsted acid sites, including terminal
In-OH groups. Such adsorption was accompanied by a decrease in the intensity of the
bands of OH groups [49,64].
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Intense peaks corresponding to molecularly adsorbed NH3 on Lewis acid sites in
the range of 1606–1682 cm−1 appeared only under the dry atmosphere, while under
humid conditions, they disappeared or decreased in intensity [65]. This may indicate, by
implication, the predominant coverage of the surface and, accordingly, the occupation
of active sites by water molecules. However, the IR band corresponding to NH3

+ did
not change in intensity both under dry and humid air, which could be due to stronger
interaction with Lewis acid sites compared with hydroxyl groups.

It can be noticed from Figure 3b that residual nitrate groups remained in the composi-
tion of the samples after synthesis due to the precursor. In the presence of ammonia, they
could react with the formation of a surface intermediate, likely NH4

+–NO3
− species. This

was confirmed by the appearance of absorption bands in the region of 1324–1392 cm−1.
Previously, the same surface species with similar vibration frequencies were also detected
on different catalysts: during the reaction between NO2 and a NH3-pre-adsorbed Cu-
exchanged SAPO-34 catalyst [65], a V2O5–WO3/TiO2 catalyst after exposure to NH3 and
NO2 [66], and an Fe-zeolite-based catalyst after exposure to NO2 over a NH3-pre-adsorbed
sample [67]. The main characteristic infrared vibrational frequencies, which were found
according to the results of DRIFTS analysis, are shown in Table 2 [49,64,68,69].

Table 2. Assignments of IR absorption bands (cm−1) that appeared in the DRIFT spectra on the
surface of In2O3 and In2O3/rGO (1%) samples under different conditions.

Functional Groups
In2O3 In2O3/rGO (1%)

Dry Air RH = 70% Dry Air RH = 70%

NO2
−, monodentate nitrite - - - 1078

NH3
+ on Lewis acid site 1210 1240 1210 1235

ν(NO3) in NH4NO3 species 1324, 1378 1363 1340, 1380 1392
NH4

+ on Brønsted acid site 1428 1488 1428 1468
NO3

−, chelating bidentate nitrate - - - 1555
NH3, molecularly adsorbed on Lewis acid sites 1606 1614, 1665 1614, 1682 -

ν(N-H) in NH3 3360 - 3360 -
ν(OH) 3530–3715 3600–3715 3450–3740 3320–3820

From Figure 10b, it is clear that, after NH3 was introduced to the chamber with 70%
background humidity, new bands at 1078 and 1555 cm−1 appeared. These bands could
be attributed to monodentate nitrite and chelating bidentate nitrate species. However,
the exact identification of these bands is an ambiguous task due to the overlapping of the
absorption regions of various structural fragments, including nitrates and nitrites (both
monodentate and bidentate species) [68,69].

It can be observed from Figure 6c that the effect of sensor signal inversion was ob-
served, even for pure In2O3 at T = 50 and 75 ◦C under a humid atmosphere, while at
T = 25 ◦C, it was observed exclusively for composites. Hence, it can be assumed that
the main factor affecting the signal inversion was the indium oxide matrix. From the
DRIFTS results, it was found that the interaction with ammonia resulted in the formation of
NH4NO3 species. It could be assumed that further interaction of this fragment with water
molecules in a sufficiently high humid atmosphere (RH = 70%) led to the formation of
nitric acid. The reaction pathway might have involved NH4NO3 hydrolysis on the surface
of particles. The formed intermediate nitric acid may have been decomposed under light
illumination to produce NO2 [70–74]. In the case of the In2O3/rGO composites, rGO flakes
could serve as an additional path for charge transfer due to heterocontact and side reactions
on the surface.

Recently, Ma et al. comprehensively investigated the photolysis of various nitrates
on different mineral oxides [75]. It was found that NH4NO3 had the highest rate of NO2
production, even at room temperature, compared with the other studied nitrates. Moreover,
this rate was higher under a humid atmosphere compared with dry air. The authors used
UV irradiation with 365 nm wavelength (as in this work) and assumed that photoinduced
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electrons and holes (reaction (3)) could promote the photolysis of NH4NO3 on the metal
oxide’s surface (reactions (7) and (8)). The photochemical reaction between the water and
photogenerated hole could enhance the surface acidity and facilitate NO2 production.

NO−
3 + h+ → NO3 (7)

2NO3
hν→ 2NO2 +O2 (8)

Nitrogen dioxide, being a strong electron acceptor, can attract electrons from the
conduction band, thereby leading to an increase in the resistance of the sensors and con-
sequently inverting the signal (reaction (9)). The electron affinity of NO2 (2.27 eV, [76])
is greater than that of O2 (0.44 eV, [77]). Therefore, in the subsequent competing process
between NO2 and O2 (according to the products of reaction (5)), nitrogen dioxide will
predominate. It is also worth noting that the signal inversion is reproducible (Figure 6c),
which may indicate the regeneration of NH4NO3. The formation of nitrate species can
proceed via reaction (10) and, according to the DRIFTS results, further interaction with
ammonia can lead to NH4NO3 formation again.

NO2 + e− → NO−
2 (9)

2NO2 +O2+e− → 2NO−
3 (10)

4. Conclusions

Composite materials based on nanocrystalline In2O3 and rGO were synthesized and
investigated. The obtained Raman and FTIR spectroscopy results indicate the efficient
immobilization of rGO with a semiconductor oxide matrix. The influence of UV activation
and humidity on the gas-sensing behavior of In2O3/rGO composites was also studied.

When ammonia interacted with composite materials, the main adsorption sites were
provided by the porous surface of In2O3. Additional surface modification with rGO, which
consisted of flakes with large lateral sizes, could limit the access to and interaction with
the analyte gas molecules, resulting in a reduced sensor signal in dry air. However, UV
illumination led to the generation of electron–hole pairs in the In2O3 structure, as this
energy was comparable to its band gap. An increase in the electron concentration in the
conduction band promoted greater oxygen adsorption and, accordingly, more efficient
interaction with ammonia. At the same time, under an atmosphere with high relative
humidity, the predominant active centers, including chemisorbed oxygen, were occupied
or replaced by adsorbed water. On one hand, this led to an increase in conductivity, and
on the other hand, the decrease in the concentration of chemisorbed oxygen limited the
oxidation of ammonia and further charge transfer. As a result, the sensor signal for pure
In2O3 was noticeably reduced.

Based on the in situ DRIFTS analysis, it is proposed that residual nitrate groups can
react with ammonia, resulting in the formation of surface intermediates, likely NH4NO3
species. The combined influence of humidity and UV illumination could lead to the
hydrolysis of NH4NO3 on the In2O3 surface, followed by photolysis, or immediately
undergo a photochemical reaction. As a result, nitrite and nitrate species were formed.
Due to their electron-accepting nature, they led to a decrease in conductivity, resulting
in an inversion of the sensor signal when detecting ammonia at low temperatures. The
appearance of these groups was proven by DRIFT spectroscopy. The effect of signal
inversion was most clearly expressed for a composite with a rGO content of 1% at room
temperature in RH = 70%. In this case, rGO flakes could serve as an additional path for
charge transfer due to heterocontact and side reactions on the surface.

Author Contributions: Conceptualization, X.L. and M.R.; methodology, M.R., X.L. and A.N.; formal
analysis, A.N.; investigation, A.N., T.S. and S.M.; data curation, A.N. and T.S.; writing—original draft

278



Sensors 2023, 23, 1517

preparation, A.N. and M.R.; writing—review and editing, A.N., X.L. and M.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research, grant number
21-53-53018, and the National Natural Science Foundation of China, grant number 62111530055.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The spectral research and thermal analysis were carried out using the equipment
purchased using funds from the Lomonosov Moscow State University Program of Development. The
TEM experiments were conducted using equipment from the “Nanochemistry and Nanomaterials”
center supported by the Program of Development of Lomonosov Moscow State University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gas Sensor Market Size, Share & Trends Analysis Report by Product, by Type, by Technology, by End Use, by Region, and
Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/gas-sensors-market
(accessed on 5 January 2023).

2. Gas Sensor Market by Gas Type. Available online: https://www.marketsandmarkets.com/Market-Reports/gas-sensor-market-
245141093.html (accessed on 16 January 2023).

3. Park, S.Y.; Kim, Y.; Kim, T.; Eom, T.H.; Kim, S.Y.; Jang, H.W. Chemoresistive materials for electronic nose: Progress, perspectives,
and challenges. InfoMat 2019, 1, 289–316. [CrossRef]

4. Saruhan, B.; Lontio Fomekong, R.; Nahirniak, S. Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing
Characteristics. Front. Sens. 2021, 2, 657931. [CrossRef]

5. Kim, S.; Brady, J.; Al-Badani, F.; Yu, S.; Hart, J.; Jung, S.; Tran, T.T.; Myung, N.V. Nanoengineering Approaches Toward Artificial
Nose. Front. Chem. 2021, 9, 629329. [CrossRef] [PubMed]

6. Jeong, S.Y.; Kim, J.S.; Lee, J.H. Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation
Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. [CrossRef] [PubMed]

7. Reddy, B.K.S.; Borse, P.H. Review—Recent Material Advances and Their Mechanistic Approaches for Room Temperature
Chemiresistive Gas Sensors. J. Electrochem. Soc. 2021, 168, 057521. [CrossRef]

8. Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review.
Nano Energy 2021, 79, 105369. [CrossRef] [PubMed]

9. Krivetskiy, V.V.; Rumyantseva, M.N.; Gaskov, A.M. Chemical modification of nanocrystalline tin dioxide for selective gas sensors.
Russ. Chem. Rev. 2013, 82, 917–941. [CrossRef]

10. Rumyantseva, M.N.; Gas’Kov, A.M. Chemical modification of nanocrystalline metal oxides: Effect of the real structure and
surface chemistry on the sensor properties. Russ. Chem. Bull. 2008, 57, 1106–1125. [CrossRef]

11. Van Den Broek, J.; Weber, I.C.; Güntner, A.T.; Pratsinis, S.E. Highly selective gas sensing enabled by filters. Mater. Horiz. 2021, 8,
661–684. [CrossRef]

12. Chizhov, A.; Rumyantseva, M.; Gaskov, A. Light Activation of Nanocrystalline Metal Oxides. Nanomaterials 2021, 11, 892.
[CrossRef]

13. Nasriddinov, A.; Rumyantseva, M.; Shatalova, T.; Tokarev, S.; Yaltseva, P.; Fedorova, O.; Khmelevsky, N.; Gaskov, A. Organic-
inorganic hybrid materials for room temperature light-activated sub-ppm no detection. Nanomaterials 2020, 10, 70. [CrossRef]
[PubMed]

14. Suh, J.M.; Eom, T.H.; Cho, S.H.; Kim, T.; Jang, H.W. Light-activated gas sensing: A perspective of integration with micro-LEDs
and plasmonic nanoparticles. Mater. Adv. 2021, 2, 827–844. [CrossRef]

15. Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-Temperature Gas Sensors under Photoactivation: From Metal Oxides to 2D Materials;
Springer: Singapore, 2020; Volume 12, ISBN 0123456789.

16. Sowmya, B.; John, A.; Panda, P.K. A review on metal-oxide based p-n and n-n heterostructured nano-materials for gas sensing
applications. Sens. Int. 2021, 2, 100085. [CrossRef]

17. Walker, J.M.; Akbar, S.A.; Morris, P.A. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review.
Sens. Actuators B Chem. 2019, 286, 624–640. [CrossRef]

18. Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko,
A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; et al. p-CoOx/n-SnO2 nanostructures: New highly selective materials for H2S detection.
Sens. Actuators B Chem. 2018, 255, 564–571. [CrossRef]

19. Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016,
353, 1–25. [CrossRef]

279



Sensors 2023, 23, 1517

20. Avsar, A.; Tan, J.Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G.K.W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A.S.; O’Farrell, E.C.T.;
et al. Spin-orbit proximity effect in graphene. Nat. Commun. 2014, 5, 1–6. [CrossRef] [PubMed]

21. Benítez, L.A.; Savero Torres, W.; Sierra, J.F.; Timmermans, M.; Garcia, J.H.; Roche, S.; Costache, M.V.; Valenzuela, S.O. Tunable
room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 2020, 19, 170–175. [CrossRef]

22. Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater.
2016, 1, 16042. [CrossRef]

23. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect
in Atomically Thin Carbon Films. Mater. Sci. 2004, 306, 666–669. [CrossRef]

24. Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010,
105, 136805. [CrossRef] [PubMed]

25. Huang, H.; Yue, Z.; Li, G.; Wang, X.; Huang, J.; Du, Y.; Yang, P. Heterostructured composites consisting of In2O3 nanorods and
reduced graphene oxide with enhanced interfacial electron transfer and photocatalytic performance. J. Mater. Chem. A 2014, 2,
20118–20125. [CrossRef]

26. An, X.; Yu, J.C.; Wang, Y.; Hu, Y.; Yu, X.; Zhang, G. WO 3 nanorods/graphene nanocomposites for high-efficiency visible-light-
driven photocatalysis and NO 2 gas sensing. J. Mater. Chem. 2012, 22, 8525–8531. [CrossRef]

27. Perera, S.D.; Mariano, R.G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K.J. Hydrothermal Synthesis of Graphene-TiO2
Nanotube Composites with Enhanced Photocatalytic Activity. ACS Catal. 2012, 2, 949–956. [CrossRef]

28. Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano 2010, 4,
380–386. [CrossRef]

29. Devi, P.; Singh, J.P. Visible light induced selective photocatalytic reduction of CO2 to CH4on In2O3-rGO nanocomposites. J. CO2
Util. 2021, 43, 101376. [CrossRef]

30. Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A review on chemiresistive room temperature gas sensors based on
metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213. [CrossRef]

31. Sun, D.; Luo, Y.; Debliquy, M.; Zhang, C. Graphene-enhanced metal oxide gas sensors at room temperature: A review. Beilstein J.
Nanotechnol. 2018, 9, 2832–2844. [CrossRef]

32. Van Quang, V.; Van Dung, N.; Sy Trong, N.; Duc Hoa, N.; Van Duy, N.; Van Hieu, N. Outstanding gas-sensing performance of
graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 2014, 105, 1–5. [CrossRef]

33. Shekhirev, M.; Lipatov, A.; Torres, A.; Vorobeva, N.S.; Harkleroad, A.; Lashkov, A.; Sysoev, V.; Sinitskii, A. Highly Selective Gas
Sensors Based on Graphene Nanoribbons Grown by Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2020, 12, 7392–7402.
[CrossRef]

34. Abideen, Z.U.; Katoch, A.; Kim, J.H.; Kwon, Y.J.; Kim, H.W.; Kim, S.S. Excellent gas detection of ZnO nanofibers by loading with
reduced graphene oxide nanosheets. Sens. Actuators B Chem. 2015, 221, 1499–1507. [CrossRef]

35. Tammanoon, N.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C.
Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-
Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures. ACS Appl. Mater. Interfaces 2015, 7, 24338–24352.
[CrossRef] [PubMed]

36. Gu, F.; Nie, R.; Han, D.; Wang, Z. In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room
temperature. Sens. Actuators B Chem. 2015, 219, 94–99. [CrossRef]

37. Andre, R.S.; Mercante, L.A.; Facure, M.H.M.; Mattoso, L.H.C.; Correa, D.S. Enhanced and selective ammonia detection using
In2O3/reduced graphene oxide hybrid nanofibers. Appl. Surf. Sci. 2019, 473, 133–140. [CrossRef]

38. Tian, Z.; Song, P.; Yang, Z.; Wang, Q. Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-
temperature NH3 sensing. Chin. Chem. Lett. 2020, 31, 2067–2070. [CrossRef]

39. Fang, W.; Yang, Y.; Yu, H.; Dong, X.; Wang, R.; Wang, T.; Wang, J.; Liu, Z.; Zhao, B.; Wang, X. An In2O3 nanorod-decorated
reduced graphene oxide composite as a high-response NOx gas sensor at room temperature. New J. Chem. 2017, 41, 7517–7523.
[CrossRef]

40. The National Institute for Occupational Safety and Health (NIOSH). NIOSH Pocket Guide to Chemical Hazards, September 2007;
NIOSH Publication No. 2005–149; NIOSH: Cincinnnati, OH, USA, 2007; Volume 15.

41. Kranert, C.; Schmidt-Grund, R.; Grundmann, M. Raman active phonon modes of cubic In2O3. Phys. Status Solidi-Rapid Res. Lett.
2014, 8, 554–559. [CrossRef]

42. Garcia-Domene, B.; Ortiz, H.M.; Gomis, O.; Sans, J.A.; Manjón, F.J.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S.N.;
Errandonea, D.; Martínez-García, D.; et al. High-pressure lattice dynamical study of bulk and nanocrystalline In 2O3. J. Appl.
Phys. 2012, 112, 123511. [CrossRef]

43. Nasriddinov, A.; Tokarev, S.; Fedorova, O.; Bozhev, I.; Rumyantseva, M. In2O3 Based Hybrid Materials : Interplay between
Microstructure, Photoelectrical and Light Activated NO2 Sensor Properties. Chemosensors 2022, 10, 135. [CrossRef]

44. Kim, W.J.; Pradhan, D.; Sohn, Y. Fundamental nature and CO oxidation activities of indium oxide nanostructures: 1D-wires,
2D-plates, and 3D-cubes and donuts. J. Mater. Chem. A 2013, 1, 10193–10202. [CrossRef]

45. Ferrari, A.C. Interpretation of Raman spectra of disordered and amorphous carbon. Schweiz. Z. Hydrol. 1969, 31, 632–645.
[CrossRef]

280



Sensors 2023, 23, 1517

46. Yadav, R.; Joshi, P.; Hara, M.; Yoshimura, M. In situ electrochemical Raman investigation of charge storage in rGO and N-doped
rGO. Phys. Chem. Chem. Phys. 2021, 23, 11789–11796. [CrossRef] [PubMed]

47. Gangwar, P.; Singh, S.; Khare, N. Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry.
Appl. Phys. A 2018, 124, 620. [CrossRef]

48. Childres, I.; Jauregui, L.A.; Park, W.; Caoa, H.; Chena, Y.P. Raman spectroscopy of graphene and related materials. New Dev.
Photon Mater. Res. 2013, 1, 1–20.

49. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; Wiley: Hoboken, NJ, USA, 1981; Volume 5,
ISBN 0471852988.

50. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic
Chemistry, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009.

51. Sheka, E.F. Digital Twins Solve the Mystery of Raman Spectra of Parental and Reduced Graphene Oxides. Nanomaterials 2022,
12, 4209. [CrossRef]

52. Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes Nanotub. Carbon
Nanostruct. 2020, 28, 1048–1058. [CrossRef]

53. Kwan, Y.C.G.; Ng, G.M.; Huan, C.H.A. Identification of functional groups and determination of carboxyl formation temperature
in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 2015, 590, 40–48. [CrossRef]

54. Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis:
Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [CrossRef]

55. Dupin, J.C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides.
Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [CrossRef]

56. Zhou, S.; Chen, M.; Lu, Q.; Zhang, Y.; Zhang, J.; Li, B.; Wei, H.; Hu, J.; Wang, H.; Liu, Q. Ag Nanoparticles Sensitized In2O3
Nanograin for the Ultrasensitive HCHO Detection at Room Temperature. Nanoscale Res. Lett. 2019, 14, 365. [CrossRef]

57. Wu, L.Q.; Li, Y.C.; Li, S.Q.; Li, Z.Z.; Tang, G.D.; Qi, W.H.; Xue, L.C.; Ge, X.S.; Ding, L.L. Method for estimating ionicities of oxides
using O1s photoelectron spectra. AIP Adv. 2015, 5, 097210. [CrossRef]

58. Wang, Y.; Liu, L.; Sun, F.; Li, T.; Zhang, T.; Qin, S. Humidity-Insensitive NO2 Sensors Based on SnO2/rGO Composites. Front.
Chem. 2021, 9, 681313. [CrossRef]

59. Zhang, X.; Sun, J.; Tang, K.; Wang, H.; Chen, T.; Jiang, K.; Zhou, T.; Quan, H.; Guo, R. Ultralow detection limit and ultrafast
response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Microsyst. Nanoeng.
2022, 8, 67. [CrossRef] [PubMed]

60. Jin, Y.; Zheng, Y.; Podkolzin, S.G.; Lee, W. Band gap of reduced graphene oxide tuned by controlling functional groups. J. Mater.
Chem. C 2020, 8, 4885–4894. [CrossRef]

61. Lang, O.; Pettenkofer, C.; Sánchez-Royo, J.F.; Segura, A.; Klein, A.; Jaegermann, W. Thin film growth and band lineup of In2O3 on
the layered semiconductor InSe. J. Appl. Phys. 1999, 86, 5687–5691. [CrossRef]

62. Gillespie, P.N.O.; Martsinovich, N. Origin of Charge Trapping in TiO2/Reduced Graphene Oxide Photocatalytic Composites:
Insights from Theory. ACS Appl. Mater. Interfaces 2019, 11, 31909–31922. [CrossRef]

63. Can, I.; Weimar, U.; Barsan, N. Operando Investigations of Differently Prepared In2O3-Gas Sensors. Proceedings 2017, 1, 432.
[CrossRef]

64. Zhou, G.; Zhong, B.; Wang, W.; Guan, X.; Huang, B.; Ye, D.; Wu, H. In situ DRIFTS study of NO reduction by NH3 over
Fe-Ce-Mn/ZSM-5 catalysts. Catal. Today 2011, 175, 157–163. [CrossRef]

65. Luo, J.Y.; Oh, H.; Henry, C.; Epling, W. In Situ-DRIFTS Study of Selective Catalytic Reduction of NOx by NH3 over Cu-Exchanged
SAPO-34. Appl. Catal. B Environ. 2012, 123–124, 296–305. [CrossRef]

66. Nova, I.; Ciardelli, C.; Tronconi, E.; Chatterjee, D.; Bandl-Konrad, B. NH3-NO/NO2 chemistry over V-based catalysts and its role
in the mechanism of the Fast SCR reaction. Catal. Today 2006, 114, 3–12. [CrossRef]

67. Malpartida, I.; Marie, O.; Bazin, P.; Daturi, M.; Jeandel, X. The NO/NO x ratio effect on the NH 3-SCR efficiency of a commercial
automotive Fe-zeolite catalyst studied by operando IR-MS. Appl. Catal. B Environ. 2012, 113–114, 52–60. [CrossRef]

68. Leblanc, E.; Perier-Camby, L.; Thomas, G.; Gibert, R.; Primet, M.; Gelin, P. NOx adsorption onto dehydroxylated or hydroxylated
tin dioxide surface. Application to SnO2-based sensors. Sens. Actuators B Chem. 2000, 62, 67–72. [CrossRef]

69. Hadjiivanov, K.I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev.-Sci. Eng. 2000, 42,
71–144. [CrossRef]

70. Baergen, A.M.; Donaldson, D.J. Photochemical renoxification of nitric acid on real urban grime. Environ. Sci. Technol. 2013, 47,
815–820. [CrossRef]

71. Ye, C.; Gao, H.; Zhang, N.; Zhou, X. Photolysis of Nitric Acid and Nitrate on Natural and Artificial Surfaces. Environ. Sci. Technol.
2016, 50, 3530–3536. [CrossRef]

72. Schuttlefield, J.; Rubasinghege, G.; El-Maazawi, M.; Bone, J.; Grassian, V.H. Photochemistry of adsorbed nitrate. J. Am. Chem. Soc.
2008, 130, 12210–12211. [CrossRef]

73. Nanayakkara, C.E.; Jayaweera, P.M.; Rubasinghege, G.; Baltrusaitis, J.; Grassian, V.H. Surface photochemistry of adsorbed nitrate:
The role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces. J. Phys. Chem. A 2014, 118,
158–166. [CrossRef]

281



Sensors 2023, 23, 1517

74. Ye, C.; Zhang, N.; Gao, H.; Zhou, X. Photolysis of particulate nitrate as a source of HONO and NOx. Environ. Sci. Technol. 2017,
51, 6849–6856. [CrossRef]

75. Ma, Q.; Zhong, C.; Ma, J.; Ye, C.; Zhao, Y.; Liu, Y.; Zhang, P.; Chen, T.; Liu, C.; Chu, B.; et al. Comprehensive Study about the
Photolysis of Nitrates on Mineral Oxides. Environ. Sci. Technol. 2021, 55, 8604–8612. [CrossRef]

76. Zhou, Z.; Gao, H.; Liu, R.; Du, B. Study on the structure and property for the NO2 + NO2- electron transfer system. J. Mol. Struct.
THEOCHEM 2001, 545, 179–186. [CrossRef]

77. Protocol, M.; Cao, C.; Chen, Y.; Wu, Y.; Deumens, E. Electron Affinity of the O2 Molecule. Int. J. Quantum Chem. 2011, 111,
4020–4029. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

282



sensors

Article

Laboratory Comparison of Low-Cost Particulate Matter Sensors
to Measure Transient Events of Pollution—Part B—Particle
Number Concentrations

Florentin Michel Jacques Bulot 1,2,*, Hugo Savill Russell 3,4,5,6, Mohsen Rezaei 6, Matthew Stanley Johnson 4,6,

Steven James Ossont 7, Andrew Kevin Richard Morris 8, Philip James Basford 1, Natasha Hazel Celeste Easton 2,9,

Hazel Louise Mitchell 1, Gavin Lee Foster 9, Matthew Loxham 2,10,11,12 and Simon James Cox 1,2

1 Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
p.j.basford@soton.ac.uk (P.J.B.); hlm1g16@soton.ac.uk (H.L.M.); s.j.cox@soton.ac.uk (S.J.C.)

2 Southampton Marine and Maritime Institute, University of Southampton, Southampton SO16 7QF, UK;
nhcs1g13@soton.ac.uk (N.H.C.E.); m.loxham@soton.ac.uk (M.L.)

3 Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University,
DK-4000 Roskilde, Denmark; hugo.russell@envs.au.dk

4 AirScape UK, London W1U 6TQ, UK; matthew.johnson@airscape.ai or msj@chem.ku.dk
5 Department of Environmental Science, Atmospheric Measurement, Aarhus University,

DK-4000 Roskilde, Denmark
6 Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark; mohsen@chem.ku.dk
7 BizData, Melbourne, VIC 3000, Australia; steven.ossont@bizdata.co.nz
8 National Oceanography Centre, Southampton SO14 3ZH, UK; andmor@noc.ac.uk
9 School of Ocean and Earth Science, National Oceanography Centre, University of Southampton,

Southampton SO14 3ZH, UK; gavin.foster@noc.soton.ac.uk
10 Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
11 National Institute for Health Research, Southampton Biomedical Research Centre,

Southampton SO16 6YD, UK
12 Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
* Correspondence: florentin.bulot@centraliens.net

Abstract: Low-cost Particulate Matter (PM) sensors offer an excellent opportunity to improve our knowl-
edge about this type of pollution. Their size and cost, which support multi-node network deployment,
along with their temporal resolution, enable them to report fine spatio-temporal resolution for a given
area. These sensors have known issues across performance metrics. Generally, the literature focuses on
the PM mass concentration reported by these sensors, but some models of sensors also report Particle
Number Concentrations (PNCs) segregated into different PM size ranges. In this study, eight units each
of Alphasense OPC-R1, Plantower PMS5003 and Sensirion SPS30 have been exposed, under controlled
conditions, to short-lived peaks of PM generated using two different combustion sources of PM, exposing
the sensors’ to different particle size distributions to quantify and better understand the low-cost sensors
performance across a range of relevant environmental ranges. The PNCs reported by the sensors were
analysed to characterise sensor-reported particle size distribution, to determine whether sensor-reported
PNCs can follow the transient variations of PM observed by the reference instruments and to determine
the relative impact of different variables on the performances of the sensors. This study shows that the
Alphasense OPC-R1 reported at least five size ranges independently from each other, that the Sensirion
SPS30 reported two size ranges independently from each other and that all the size ranges reported by
the Plantower PMS5003 were not independent of each other. It demonstrates that all sensors tested here
could track the fine temporal variation of PNCs, that the Alphasense OPC-R1 could closely follow the
variations of size distribution between the two sources of PM, and it shows that particle size distribution
and composition are more impactful on sensor measurements than relative humidity.

Keywords: low-cost sensors; particle number concentration; laboratory study; fine particles; particulate
matter; air pollution
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1. Introduction

Exposure to air pollution is a major cause of environmental morbidity and mortality
in the world at present, with Particulate Matter (PM) air pollution being associated with
8.9 million premature deaths per year [1,2]. PM air pollution varies with fine spatio-
temporal granularity and can have heterogeneous composition and concentration over
a specific area [3]. Current regulatory monitoring networks are based on cumbersome
and expensive apparatus that means monitoring with the spatial coverage required to
comprehensively understand the spread of air pollution is not feasible. Given the recently
substantially reduced WHO exposure limits [4], down to 5 μg/m3 as an annual mean for
PM2.5, there is an increased need for monitoring. At this lower threshold, local sources can
often be the factor causing exceedance, which makes information concerning local levels
and sources more important than they have been in the past [5]. The EU is moving towards
adopting the more stringent WHO standard [6] and voices in the community are saying
that the only way to ensure compliance is by using dense networks of low-cost sensors in
populated areas [7].

Low-cost PM sensors have been used in the literature and in various projects around
the world to determine PM mass concentrations, especially when deployed as networks
of sensors to improve the limited spatio-temporal coverage of existing monitoring net-
works [5]. Considerable research has been conducted to reach a known level of precision
and accuracy with some studies achieving the data quality objectives of reference-grade
instruments with the proper calibration methods and frequencies [8], at high temporal reso-
lution, providing data that was not previously available to determine population exposure
to PM air pollution at a finer level. However, some of these sensors provide not only PM
concentrations but also Particle Number Concentrations (PNCs) for different size ranges,
for example by giving PNC in the range 0.3–1 μm and PNC in the range 1–2.5 μm. They are
based on light scattering and generally claim to measure particles of diameters 0.3–10 μm,
and it is important to note that the scattering efficiency decreases as the diameter is close
to or lower than 0.3 μm therefore implying a lower performance in the response to the
lower size ranges of particles. Standard metrics for PM have evolved through the last few
decades [9]. For example, in the US, the 1971 National Ambient Air Quality Standards was
set for PM as total suspended particles. Later in 1987, following new evidence on the health
effects of PM, the standards were revised to focus on PM10. In 1997, the first standards
for PM2.5 were issued to account for the health impact of this size fraction. Although
current legal limits are based on PM mass concentration, not all PM is equally harmful and
other properties of the particles may be significant in terms of health impact, such as their
composition, shape, size, etc. [10]. Therefore, size distribution of PM could be a promising
metrics to better capture the health impact of PM.

There is variation in what is reported with some sensors giving a detailed size distribu-
tion and others only outputting PNC with a restricted number of size ranges. For instance,
the Plantower PMS5003 outputs six different size ranges and the Alphasense OPC-R1
outputs 13 size ranges. The ability of the sensors to report PNCs of different size fractions
can be used to identify sources of pollution. Indeed, in Delhi, India, Hagan et al. [11] used
the first three size ranges of an Alphasense OPC-N2, in conjunction with data on other air
pollutants (CO, NO2, SO2, O3) to successfully identify sources of pollution using positive
matrix factorisation. Additionally, we previously demonstrated reference-grade improve-
ments to the performances of Plantower PMS5003 and Sensirion SPS30 through calibration
methods based on the PNCs reported by these sensors [12]. Similarly, Wallace et al. [13,14]
developed a calibration method using the PNCs reported by the Plantower PMS5003 that
outperformed calibration methods based on mass concentrations. This improvement in
performances was confirmed by further long-term studies [15,16].

There are broadly two types of low-cost PM sensors [17]: (1) volume scattering, or
integrating nephelometers, that measure the light scattered by an ensemble of particles;
and (2) single particle counters which count individual particles. The two types have
different sensitivities to aerosol parameters and environmental factors [18]. However, there
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is disagreement in the literature about which sensor belongs to which type. There is also
concern about whether these low-cost PM sensors can accurately segregate PNCs into
different size ranges [17–21]. Recently, Ouimette et al. [22] conducted a detailed study of
the PurpleAir sensors (PurpleAir, Draper, UT, USA) (which use two Plantower PMS5003s
(Plantower, Nanchang City, China)) comparing them to a research-grade integrating neph-
elometer and developed a physical model that showed that the Plantower PMS5003 is a
cell-reciprocal nephelometer providing a reliable measurement of the aerosol scattering
coefficients for particles in the range 0.26–0.46 μm. Ouimette et al. [22] is one of the rare
studies that focused on sensor-reported PNCs. A few laboratory studies have been con-
ducted regarding the size segregation capacity of the sensors [19,21,23,24]. Three of these
studies have focused only on sensor-reported mass concentrations, while one has also
studied sensor-reported PNCs. All of the above studies examined sensor performances
with stable concentrations of PM over periods ranging from 5 min to 1 h, depending on the
study. They exposed the sensors to PM of a variety of sources and sizes. Several studies
highlighted that low-cost PM sensors are susceptible to a range of environmental factors,
namely particle composition, size distribution and Relative Humidity (RH). However,
different studies obtained contrasting results concerning RH which suggests that other
factors may be at play that are not accounted for.

Feature selection methods quantify the contribution of individual features (here envi-
ronmental factors) to the variability of an output variable (here sensor-reported PNCs) [25].
They are one of the most popular techniques to improve the explainability of machine
learning models [26], which are often used to correct measurements from low-cost sensors.
Feature selection methods are divided into three sub-categories of method: filter-based,
wrapper-based and embedded methods [27]. Filter-based methods class the variables using
different metrics such as the Pearson coefficient or the Akaike information criterion (AIC).
They do not account for possible correlation between variables and are prone to miss-
ing patterns [28]. Wrapper-based methods iteratively use supervised learning techniques
(e.g., linear model, support vector machine) to classify the variables. They apply algorithms
such as recursive feature selection and greedy forward selection. They are generally more
accurate than filter-based methods but risk over-fitting and are more computationally
intensive [28]. Finally, embedded methods have the reduction of the number of variables
embedded in their algorithms, such as Lasso regression, elastic net regression or random
forest. They constitute a trade-off between filter and wrapper-based methods [29]. Nonethe-
less, the features selected are dependent on the methods chosen and the best practice is to
use different methods concomitantly and to compare their results [25].

The current study is the second part of a comprehensive experiment that aimed to
characterise the response of a range of low-cost PM sensors to transient events of PM
pollution. The first part of this study [30] focused on sensor-reported mass concentrations
while this current contribution focuses on sensor-reported PNCs. Sensors measuring at a
10 s temporal resolution were exposed to short-lived peaks of PM pollution (≈1 min) gen-
erated by lighting candles and incense sticks at different RH levels. Using two combustion
sources, we can assess the performance of the sensors across different size distributions.
Understanding the response of these sensors to short-lived events of PM pollution is im-
portant especially if these sensors are to be used indoors, where polluting activities may
last only for a few minutes [31], or used outdoors as a network for tracking events of PM
pollution as they spread through an area [32]. These data could also be integrated into
models to further their granularity through data fusion techniques [33]. Here, we compare
eight units of each sensor model, Sensirion SPS30, Plantower PMS5003 and Alphasense
OPC-R1, at a total of 24 low-cost PM sensors, at 10 s resolution. A TSI OPS 3330 (TSI
Inc., Shoreview, MN, USA)is used as a reference instrument. The aim is to characterise
sensor-reported particle size distribution, to determine whether sensor-reported PNCs
can follow the transient variations of PM observed by the reference instruments and to
determine the relative impact of different variables on the performances of the sensors.

The objectives of this study are:
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1. To determine whether the sensors can be used at a high temporal resolution to follow
trends of PNCs.

2. To determine whether the different sensor-reported PNCs are independent from each
other and characterise their accuracy.

3. To characterise the capacity of these sensors to capture the size distribution of PM.
4. To determine environmental factors impacting the response of the sensors.

2. Materials and Methods

2.1. Low-Cost PM Sensors

The low-cost sensors were mounted in the air quality monitors developed in John-
ston et al. [34], without their environmental enclosure as can be seen in Figure 1. The
absence of enclosure helps reduce potential residual heat build-up in the vicinity of the
sensors. The low-cost sensors studied here are the Plantower PMS5003, the Sensirion SPS30
and the Alphasense OPC-R1. These sensors were chosen because they output PNCs of the
PM measured for different size fractions. Table 1 presents the different size ranges of these
three models of sensors. The Honeywell HPMA115S0 and the Novafitness SDS018 were
also measuring during the experiment but the data they produced were not used in this
study as they only report PM mass concentrations. All the low-cost sensors tested here are
optical measurement devices based on Mie light-scattering. Four air quality monitors were
used concomitantly, each containing two of each of the sensor models mentioned above, at
a total of eight sensors of each model. In each air quality monitor, the sensors were plugged
in via USB to a Raspberry Pi, powered through Power Over Ethernet (PoE) and controlled
using Python 3.6 libraries [35–37]. The data recorded by all the sensors were averaged over
10 s for cross-comparison purposes. Relative humidity and temperature were measured by
each of the four air quality monitors using a Sensirion SHT35 [38] (±1.5% RH and ±0.1 °C).

The Plantower PMS5003 reports six size ranges called gr03um, gr05um, gr10um,
gr25um, gr50um and gr100um, which represent, respectively, PNCs of particles >0.3 μm,
>0.5 μm, >1 μm, >2.5 μm, >5 μm and >10 μm. The PNCs are reported as particles per
0.1 L of air. According to Sayahi et al. [39], the Plantower PMS5003 has a flow rate of
≈0.1 L/min and a wavelength of 640 ± 10 nm with light polarised at 90° [22]. The size
ranges of the Plantower PMS5003 have been recalculated to obtain distinct size ranges
similarly to Wallace et al. [14]. The size ranges obtained are as follows: n03_05, n05_10,
n10_25, n25_50 and n50_100 which represent, respectively, PNCs of particles 0.3–0.5 μm,
0.5–1.0 μm, 1.0–2.5 μm, 2.5–5.0 μm and 5.0–10.0 μm.

The Sensirion SPS30 reports size ranges called n05, n1, n25, n4 and n10, which rep-
resent, respectively, PNCs in the range 0.3–0.5 μm, in the range 0.3–1 μm, in the range
0.3–2.5 μm, in the range 0.3–4 μm and in the range 0.3–10 μm. It utilises a laser beam of
660 nm wavelength and reports PNCs as particles/cm3. The Sensirion SPS30s are calibrated
by their manufacturer against a TSI OPS 3330 or a TSI DustTrak DRX 8533. The accuracy of
the calibration is then verified by the manufacturer using an atomized potassium chloride
solution [40]. For the Sensirion SPS30, according to the manufacturer, particles above
4 μm are not directly measured but determined from the other size ranges using a particle
distribution profile. The Sensirion SPS30 is certified for UK indicative monitoring and,
although the sensors used in this study were acquired prior to the certification, private com-
munication with the manufacturer confirmed that there had been no significant changes
between the sensors used here and the sensors used for the certification. The size ranges of
the Sensirion SPS30 were also recalculated to obtain distinct size ranges. The size ranges
obtained are as follows: n03_05, n05_1, n1_25, n25_4 and n4_10 which represent, respec-
tively, PNCs in the range 0.3–0.5 μm, in the range 0.5–1 μm, in the range 1–2.5 μm, in the
range 2.5–4 μm and in the range 4–10 μm.
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(a)

(b)

Figure 1. (a) Sensors tested from left to right: Plantower PMS5003, Sensirion SPS030, Alphasense
OPC-R1, adapted from Bulot et al. [30]. (b) Position of the sensors tested within each air quality
monitor. From left to right, top to bottom: two Plantower PMS5003s (red circle 1), one Novafitness
SDS018, two Honeywell HPMA115S0s, two Alphasense OPC-R1 (red circle 2), two Sensirion SPS30s
(red cicle 3) and one Novafitness SDS018. All the inlets are facing down. Reprinted/adapted with
permission from Bulot et al. [30]. 2020, by the authors.

The Alphasense OPC-R1 is a single particle counter, which utilises a laser beam at a
639 nm wavelength, which can theoretically count up to 10,000 particles/s or
2500 particles/cm3 with a maximum coincidence probability of 0.7% at 1000 particles/cm3.
The PNCs are output as particles/cm3 into 16 different size ranges (see Table 1) and can
measure particles in the range 0.35–12.4 μm. It has a flow rate of 0.24 L/min. The Al-
phasense OPC-R1 was calibrated by its manufacturer using monodisperse Polystyrene
Sphere (PLS) particles against an Alphasense OPC-R1, which itself had previously been
calibrated against a TSI OPS 3330 [41].

Table 1. Size ranges of the Plantower PMS5003, Sensirion SPS30, Alphasense OPC-R1 and
TSI OPS 3330.

Sensor Size Ranges (μm)

PMS5003 >0.3; >0.5; >1; >2.5; >5; >10
SPS30 0.3–0.5; 0.3–1; 0.3–2.5; 0.3–4; 0.3–10

OPC-R1 0.4–0.7; 0.7–1.1; 1.1–1.5; 1.5–1.9; 1.9–2.4;
2.4–3; 3–4; 4–5; 5–6; 6–7; 7–8;

8–9; 9–10; 10–11; 11–12; 12–12.4
OPS 3330 0.3–0.4; 0.4–0.5; 0.5–0.6; 0.6–0.7; 0.7–0.9; 0.9–1.1;

1.1–1.4; 1.4–1.7; 1.7–2.2; 2.2–2.7; 2.7–3.3;
3.3–4.2; 4.2–5.2; 5.2–6.5; 6.5–8.0; 8.0–10
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2.2. Reference Instruments
2.2.1. TSI OPS 3330

The TSI Optical Particle Sizer (OPS) 3330 (TSI Inc., Shoreview, MN, USA) is an optical
instrument based on light scattering which reports PNCs divided into 16 size ranges (see
Table 1), reported in particles/cm3, in the range 0.3–10 μm. It uses a laser beam at 660 nm
and a flow rate of 1 L/min. It is calibrated by its manufacturer for size using Polystyrene
Sphere (PLS) [42]. In this study, the TSI OPS 3330 was used as a reference instrument and
set to measure every 10 s. The size ranges of the TSI OPS 3330 were recalculated to match
the size ranges of the different models of sensors to enable comparison. The method for
redistributing the size ranges is described below in the Section 2.4.

2.2.2. Aerasense Nanotracer

The Aerasense Nanotracer (Oxility BV, Venray, The Netherlands) counts particles in
the range 10–300 nm based on diffusion charging. It is measuring below the advertised
cut-off size of the low-cost sensors. It was calibrated by its manufacturer using KNO3
polydisperse particles and has a flow rate of 0.3–0.4 L/min. It is used because some of the
sensors may be able to measure below 0.3 μm.

2.3. Experimental Conditions

The experimental conditions and set-up are the same as in Bulot et al. [30], the relevant
elements are summarised here and the experimental set-up is described in Figure 2. The test
chamber was placed in an environmental chamber where the temperature was controlled
and set to 23 °C. The temperature inside the test chamber varied in the range 26–29 °C
throughout the experiments. Candle and incense smoke were used as the two different
combustion sources, enabling testing at different particle size distributions. Candle smoke,
here produced by smouldering, contains mostly particles in the range 0.02–0.1 μm with
particle size peaks in the range 0.03–0.05 μm in terms of PNC [43,44]. For incense smoke,
particles are mostly within the range 0.05–0.7 μm with a peak at 0.2 μm, in terms of PNC [45].
Five sets of experiments were conducted. For each set of experiments, several peaks of
candle smoke were generated, followed by a longer concentration of candle smoke, then the
air was cleaned of particles using the Electrostatic Precipitator (ESP), then a series of peaks
of incense smoke were generated followed by a stable concentration of incense smoke.
The peaks of PM lasted around 1 min and had a targeted concentration of 20–50 μg/m3 as
measured in real-time by a DustTrak DRX 8533 Desktop (TSI Inc., Shoreview, RC, USA).
During each experiment, the RH was set at different targets: 54, 69, 72, 76 and 79% RH. RH
was controlled by a mist generator. RH was measured by the Sensirion SHT35 RH and
temperature sensors built into each of the air quality monitors. RH was taken as the median
reading of the four SHT35 sensors (as the distribution of RH recorded by the sensors was
not normal). The experimental conditions are further described in Bulot et al. [30], along
with some statistical analysis of the RH measured by the SHT35 sensors. Targeted RHs
were set higher but could not be achieved with this experimental set-up. The range of RH
attained in this study may not be sufficient to capture the impact of this environmental
factor and the behaviour of the sensors may change for higher levels of RH.

The residual heat generated by the electronics and the sensors inside the air quality
monitors means that the RH and temperature condition inside the air quality monitor
are higher than the conditions surrounding the air quality monitors. For instance, in
one of our previous studies, we noticed the RH was 15% lower inside the air quality
monitor than outside [12]. It is not clear whether the particles have sufficient time to adjust
to these conditions before being measured by the sensors. To avoid any impact of the
phenomenon described above, the enclosure of the air quality monitors was removed
during the experiment as can be seen in Figure 2.

The particle size distribution from the TSI OPS 3330 is available in Figure A13 and
shows that, for candle-generated PM, there is less than 10 particles/cm3 above 5 μm and
for incense-generated PM above 2.5 μm. Given the low values of PNC above 2.5 μm, only
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the size ranges of the sensors having a lower cut size < 2.5 μm will be considered during
this study.

(a)

(b)

Figure 2. (a) Schematic showing the arrangement of the test chamber and supporting equipment,
adapted from Bulot et al. [30]. (b) Image showing the air quality boxes located in the test cham-
ber. Reprinted/adapted with permission from Bulot et al. [30]. 2020, by the authors. Mass Flow
Controllers (MFCs).

2.4. Data Analysis
2.4.1. Feature Selection Methods

As detailed in the introduction of this paper, the outcome of feature selection methods
depends on the methods chosen, and it is best practice to use different methods concomi-
tantly and to compare their results. In this paper, we tested three methods: Ridge regression,
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Boruta and Recursive Feature Elimination (RFE) with Support Vector Machines (SVM).
Ridge regression feature selection is an extension of the linear model with a penalisation
term on the residual of the sums of squares using the L2 norm [46]. Ridge regression is an
embedded method, as the selection of features is part of its algorithms. Boruta and RFE are
both wrapper methods. Boruta is a wrapper based on random forest; it starts by adding
shuffled copies of the existing variables to the dataset, called shadow variables. It then
trains a random forest on this dataset and measures the variable importance (using the
variable importance measure built into the random forest) and compares the importance of
the initial variables to the importance of the shadow variables. Variables that obtained a
significantly lower score than the higher score of the shadow variables are removed. It then
reiterates the process [47]. RFE was initially developed to enable SVM to perform feature
selection [48]. It trains a SVM model, computes a ranking criterion for all the variables
considered (the weights of the SVM) and then removes the feature with the smallest ranking
criterion. Filter-based methods have not been tested here as they generally do not allow
for complex interactions between the variables considered. It is important to note that the
scores obtained across the different methods cannot be compared; only the relative scores
of each variable within a method can be compared.

In this study, the following variables are used for feature selection to predict each size
range of each sensor: the source of PM (candle or incense), the number of particles <0.3 μm
(measured by the Nanotracer), the number of particles in the range 0.3–0.8 μm (measured
by the TSI OPS 3330), the number of particles in the range 0.3–10 μm (measured by the TSI
OPS 3330) and RH. The feature selection methods are performed on the data from the five
different levels of RH and using both sources of PM, aggregated by model of sensor.

2.4.2. Lognormal Size Distribution

Particle size distribution is presented using lognormal distributions of the normalised
concentrations calculated using the following formula, for each size range of the instrument
considered:

dN
dlog(Dp)

=
dN

log(Dp,u)− log(Dp,l)
(1)

with dN the PNC, Dp,u the diameter of the upper boundary of the size range and Dp,l the
diameter of the lower boundary of the size range.

2.4.3. Redistribution of OPS Size Ranges

The sensors and the TSI OPS 3330 measure the particle distribution using different
numbers of size ranges or different cut-off diameters. In this study, we recalculate the size
ranges of the TSI OPS 3330 to match the size ranges of each sensor tested. Overlapping size
range fractions are computed with the formulas used by Di Antonio et al. [49] and shown
in Figure 3 for a simple example. For this example, the equivalent TSI OPS 3330 size range
bops

eq is defined by:
bops

eq = bops
0 × flow + bops

1 + bops
2 × fupp (2)

with

flow =
bops

0,upp − blow

bops
0,upp − bops

0,low
(3)

and

fupp =
bupp − bops

2,low

bops
2,upp − bops

2,low
(4)
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Figure 3. Principle of the redistribution of the size ranges of the TSI OPS 3330 to match the size
ranges of each model of sensor with bsensor the sensor size range, blow and bupp the lower and upper
cut size of the sensor size range, bops

i the i corresponding size ranges of the TSI OPS 3330, bops
i,low and

bops
i,upp the lower and upper cut sizes of the ith size range of the TSI OPS 3330, and flow and fupp the

lower and upper fractions of the size ranges corresponding to blow and bupp.

2.4.4. Software and Data

The data were analysed using R 4.2.2 (R Foundation for Statistical Computing, Vienna,
Austria) [50]. The underlying dataset is openly available at https://doi.org/10.5281/
zenodo.7808620), and the code used for the analysis and to generate the tables and graphs
of this study is openly available at https://doi.org/10.5281/zenodo.7808794. Boruta feature
selection was conducted using the Boruta package [47]. RFE-SVM was conducted using
the Caret package [51] using a 10 times repeated cross-validation, based on SVM radial [52].
Ridge was performed using the packages caret and glmnet [53] with a 10 times repeated
cross-validation, and a grid search to optimise the penalisation coefficient λ between 0
and 1. The in-between variability between sensors of the same models was characterised
by some of our previous works [12,30] which showed that this variability was relatively
low. Therefore, the results presented here were aggregated over all the sensors for a given
model, apart from the time series presented later for which a single sensor of each model
was randomly selected. The size distributions of each individual sensor are presented in
Appendix B.

3. Results

3.1. Correlation Between the Different Size Ranges

Tables 2–4 present the correlations obtained by the different models of sensors across
the different size ranges they report. For comparison, the same has been done for the
equivalent size ranges calculated from the TSI OPS 3330 readings and these are presented
between brackets in the same tables. This gives a baseline for the levels of correlation to
expect in the actual size distribution of the particles measured. If the difference between
correlation between the sensor size ranges and the correlation of the TSI OPS 3330 is >0.15,
we consider that the two considered size ranges of the sensors are not truly independent.
If the difference in correlation is <0.15, the size ranges of the sensors are considered
independent.

For the Plantower PMS5003, the three size ranges were not independent from each
other. For the Alphasense OPC-R1, all the size ranges were independent from each other.
For the Sensirion SPS30, n03_05 and n05_1 were not independent from each other although
to a lower extent than what was observed for the first size range of the Plantower PMS5003.
n03_05 and n1_25 were independent from each other, and n05_1 and n1_25 were also
independent from each other.
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Table 2. Correlation and linear model between the different Particle Number Concentration (PNC)
size ranges reported by the Plantower PMS5003 during the period of the study. The numbers between
brackets represent the correlation between equivalent size ranges of the TSI OPS 3330. Cells are
shaded in red if the difference between the correlation of the sensor and the TSI OPS 3330 is greater
than 0.15. If the sensor size ranges accurately measured the size distribution, they should obtain a
similar correlation to the TSI OPS 3330.

PMS5003
n05_10 n10_25

Range 0.5–1 μm 1–2.5 μm

R2 n03_05 0.3–0.5 μm 0.99 (0.53) 0.86 (0.14)
R2 n05_10 0.5–1 μm 0.80(0.64)

Table 3. Correlation and linear model between the different Particle Number Concentration (PNC)
size ranges reported by the Sensirion SPS30 during the period of the study. The numbers between
brackets represent the correlation between equivalent size ranges of the TSI OPS 3330. Cells are
shaded in red if the difference between the correlation of the sensor and the TSI OPS 3330 is greater
than 0.15. If the sensor size ranges accurately measured the size distribution, they should obtain a
similar correlation to the TSI OPS 3330.

SPS30
n05_1 n1_25

Range 0.5–1 μm 1–2.5 μm

R2 n03_05 0.3–0.5 μm 0.73(0.53) 0.18 (0.14)
R2 n05_1 0.5–1 μm 0.70 (0.64)

Table 4. Correlation and linear model between the different Particle Number Concentration (PNC)
size ranges reported by the Alphasense OPC-R1 during the period of the study. The numbers between
brackets represent the correlation between equivalent size ranges of the TSI OPS 3330. Cells are
shaded in red if the difference between the correlation of the sensor and the TSI OPS 3330 is greater
than 0.15. If the sensor size ranges accurately measured the size distribution, they should obtain a
similar correlation to the TSI OPS 3330.

OPCR1
Bin1 Bin2 Bin3 Bin4

Range 0.7–1.1 μm 1.1–1.5 μm 1.5–1.9 μm 1.9–2.4 μm

R2 Bin0 0.35–0.7 μm 0.31 (0.43) 0.19 (0.17) 0.14 (0.09) 0.12 (0.06)
R2 Bin1 0.7–1.1 μm 0.78 (0.80) 0.61 (0.64) 0.53 (0.53)
R2 Bin2 1.1–1.5 μm 0.93 (0.96) 0.88 (0.89)
R2 Bin3 1.5–1.9 μm 0.96 (0.98)

3.2. Time Series of the Experiments

The time series presented in Figures 4–6 are focused on the experiment performed
at 69% RH for brevity and the time series for the other experiments are available in
Figures A1–A12. They show similar results to Experiment 2. The first seven peaks corre-
spond to the generation of peaks of candle-generated PM followed by stable concentrations
of candle-generated PM, then a series of six peaks of incense-generated PM and a sta-
ble concentration of incense-generated PM. For this section, the size ranges of the OPS
have been converted to the size ranges of each individual sensor. The y-axis follows a
logarithmic scale.

For the three models of sensors, the time series of the different size ranges closely
followed the variation of the size ranges of the TSI OPS 3330, for both sources of particles.
For the Plantower PMS5003, for candle-generated PM, the magnitude of sensor-reported
PNC was 10 times lower than the magnitude of the TSI OPS 3330, for all the size ranges
of this sensor model. For incense-generated PM, the first size range (0.3–0.5 μm) was also
10 times lower than the magnitude of the TSI OPS 3330, but the second size range (0.5–
1 μm) obtained the same magnitude as the TSI OPS 3330 for peaks but underestimated
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PNC for the stable concentration of incense-generated PM. This size range also presented a
downward slope for stable concentrations of incense-generated PM, which did not match
the TSI OPS 3330 measurements. The third size range (1–2.5 μm) for incense-generated
PM overestimated PNC for peak concentrations but, for the stable concentration, it started
by over-reporting before then under-reporting. For the Sensirion SPS30, the magnitude
was about 100 times lower for all the size ranges. For its first size range (0.3–0.5 μm) little
difference was observed between candle- and incense-generated PM; for its second size
range (0.5–1 μm), while the TSI OPS 3330 recorded lower PNC for incense-generated PM
than for candle-generated PM, the Sensirion SPS30 recorded similar levels of PNC for
the two sources. For the third size range (1–2.5 μm), the sensor under-reported more for
incense than for candle-generated PM. For the Alphasense OPC-R1, the magnitude of the
first size range (from 0.35–0.7 μm) was about 10 times lower; this size range also presented
a lot of variability that was not present in the measurement made by the TSI OPS 3330. For
the other size ranges of this sensor, the magnitude was similar to the TSI OPS 3330: for the
size range 0.7–1.1 μm, the Alphasense OPC-R1 slightly over-reported PNC while, for the
three remaining size ranges, it slightly under-reported PNC compared to the TSI OPS 3330.

Figure 4. Time series of the Particle Number Concentration (PNC) size ranges of the Plantower
PMS5003 compared with the size ranges computed from the OPS size ranges. On the left of the
dotted line, PM was generated using a candle, on the right using incense. The different categories
are, from left to right and top to bottom, n03_05 (in the range 0.3–0.5 μm), n05_10um (in the range
0.5–1 μm), and n10_25um (in the range 1–2.5 μm).
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Figure 5. Time series of the Particle Number Concentration (PNC) size ranges of the Sensirion SPS30
compared with the size ranges computed from the OPS size ranges. On the left of the dotted line, PM
was generated using a candle, on the right using incense. The different categories are, from left to
right and top to bottom, n03_05 (in the range 0.3–0.5 μm), n05_1 (in the range 0.5–1 μm), and n1_25
(in the range 1–2.5 μm).

3.3. Feature Selection

Tables 5–7 present the importance of the variables (source; PNC 0.01–0.3 μm; PNC
0.3–0.8 μm; PNC 0.3–10 μm; RH) for the different size ranges of the sensors, computed
by using the three methods described in the Section 2.4.1: Boruta, Ridge and RFE-SVM.
High scores denote the relevance of the variable to explain the size range considered. Each
method computes their score differently and the values obtained should not be compared
between the methods.

For the Plantower PMS5003, RH was consistently given a score of zero or close-to-zero.
For the two first size ranges, the PNC for particles 0.01–0.3 μm was given the highest scores
for the Boruta and Ridge method and a high score for the RFE-SVM method. The third size
range was given lower scores for this variable for the three methods. The source of the PM
was given relatively low scores for the first two size ranges and scores close to zero for the
third size range. PNCs 0.3–0.8 μm and 0.3–10 μm were given high scores for all methods
and all size ranges.
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Figure 6. Time series of the Particle Number Concentration (PNC) size ranges of the Alphasense
OPC-R1 compared with the size ranges computed from the OPS size ranges. On the left of the dotted
line, PM was generated using a candle, on the right using incense. The different categories are, from
left to right and top to bottom, Bin0 (in the range 0.4–0.7 μm), Bin1 (in the range 0.7–1.1 μm), Bin2 (in
the range 1.1–1.5 μm), Bin3 (in the range 1.5–1.9 μm) and Bin4 (in the range 1.9–2.4 μm).

For the Sensirion SPS30, similarly, RH was given low scores for its three size ranges for
all three methods. Source was given a low score for the first size range but obtained high
scores for the second size range for Boruta and Ridge, and the highest scores for the third
size range for Ridge and RFE-SVM. PNC for particles 0.01–0.3 μm was given relatively low
scores on the three size ranges.

PNCs 0.3–0.8 μm and 0.3–10 μm were given the highest scores for all methods for the
first size range and relatively high scores for the second size range. For the third size
range, PNC 0.3–0.8 μm was given low scores for Ridge and RFE-SVM but a high score for
Boruta, and PNC 0.3–10 μm was given high scores for Boruta and Ridge but a low score for
RFE-SVM.

For the Alphasense OPC-R1, RH was given low scores, of zero or close-to-zero, for
most size ranges and most methods except for Bin1 for Boruta and Ridge for which it was
given moderate scores. Source was given the highest score for Bin2 to Bin4 for the three
methods, the highest score for Bin1 for Boruta and Ridge, and a moderate score for RFE-
SVM. The first size range was given lower scores for source. PNC for particles 0.01–0.3 μm
was given relatively low scores for all methods for all size ranges. PNCs 0.3–0.8 μm and
0.3–10 μm were given moderate to high scores on all size ranges for the three methods
considered.
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Table 5. Scores of the feature selection methods for the different size ranges of the Plantower PMS5003
computed using (a) Boruta, (b) Ridge, (c) RFE-SVM. High scores denote the relevance of the variable
to explain the size range. Each method computes the score differently and the values obtained should
not be compared between the methods. PNC 0.01–0.3 μm is measured by the Nanotracer and the
other two size fractions are measured by the TSI OPS 3330.

PMS5003
n03_05 n05_1 n10_25

0.3–0.5 μm 0.5–1 μm 1–2.5 μm

Method (a) (b) (c) (a) (b) (c) (a) (b) (c)

Source 18 31 13 22 38 17 6 1 0
PNC 0.01–0.3 μm 49 100 50 52 100 52 16 30 24
PNC 0.3–0.8 μm 29 75 63 27 67 59 30 95 80
PNC 0.3–10 μm 28 65 60 26 51 55 33 100 81
RH 9 0 0 10 0 0 7 0 0

Table 6. Scores of the feature selection methods for the different size ranges of the Sensirion SPS30
computed using (a) Boruta, (b) Ridge, (c) RFE-SVM. High scores denote the relevance of the variable
to explain the size range. Each method computes the score differently and the values obtained should
not be compared between the methods.

SPS30
n03_05 n05_1 n1_25

0.3–0.5 μm 0.5–1 μm 1–2.5 μm

Method (a) (b) (c) (a) (b) (c) (a) (b) (c)

Source 6 0 4 32 68 5 6 100 23
PNC 0.01–0.3 μm 17 26 22 16 0 6 17 0 5
PNC 0.3–0.8 μm 31 100 79 26 36 35 31 11 3
PNC 0.3–10 μm 33 84 79 27 100 40 33 76 5
RH 9 8 0 16 28 2 7 16 3

Table 7. Scores of the feature selection methods for the different size ranges of the Alphasense
OPC-R1 computed using (a) Boruta, (b) Ridge, (c) RFE-SVM. High scores denote the relevance of
the variable to explain the size range. Each method computes the score differently and the values
obtained should not be compared between the methods.

OPC-R1
Bin0 Bin1 Bin2 Bin3 Bin4

0.35–0.7 μm 0.7–1.1 μm 1.1–1.5 μm 1.5–1.9 μm 1.9–2.4 μm

Method (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Source 17 22 10 35 100 16 74 100 35 69 100 36 69 100 35
PNC 0.01–0.3 μm 12 3 23 10 1 3 14 15 5 13 12 5 13 10 5
PNC 0.3–0.8 μm 35 100 98 20 0 32 23 33 15 23 34 13 21 35 13
PNC 0.3–10 μm 29 85 96 21 81 34 33 95 16 32 95 15 32 96 14
RH 5 0 0 15 46 7 8 0 0 5 0 0 4 0 0

3.4. Particle Size Distribution

Figure 7 presents the size distribution measured by the sensors and the TSI OPS 3330
during stable concentrations of candle- and incense-generated PM. The data are averaged
per sensor model and are average over the five sets of experiments. The different size
distributions recorded by the TSI OPS 3330 in each experiment are presented in Figure A13.
To facilitate the visualisation, the data from the Sensirion SPS30 has been multiplied by 100
and the data from the Plantower PMS5003 by 10.

For the TSI OPS 3330, the incense-generated PM showed a relatively steeper decrease
of PNC with increasing sizes and higher PNC with candle-generated PM for particles
>0.5 μm than for incense-generated PM.
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The Plantower PMS5003 reported almost the same distribution for candle- and incense-
generated PM and surprisingly reported higher numbers for incense-generated PM than
for candle-generated PM. For candle-generated PM, the magnitude was off by a factor
10. For incense-generated PM, the Plantower PMS5003 over-reported PNC for particles
about <0.6 μm and under-reported for particles of wider diameter. The Sensirion SPS30
presented the same steeper decrease than the TSI OPS 3330 between candle- and incense-
generated PM and detected fewer particles >0.7 μm for incense-generated PM than for
candle-generated PM. As in the time series, the magnitude of this sensor differed by a
factor of 100. For the Alphasense OPC-R1, the steeper decrease between incense- and
candle-generated PM was also present. The magnitude of the first size range was much
lower for the sensor than for the TSI OPS 3330 for both sources of PM but the other sizes
followed each other with almost similar magnitude.

The readings of the individual sensors are available in Appendix B Figures A14–A16
and limited variability was observed between units of the same model of sensor for each
size range although the Alphasense OPC-R1 demonstrated a higher variability for its first
size range.

Figure 7. Particle size distribution reported by the sensors and the OPS TSI for stable concentrations
of incense- and candle-generated PM, aggregated over the five experiments and per sensor model.
For each sensor model, the data presented is the average per size range. The dots are on the midpoint
of the size ranges. To facilitate the visualisation, the data from the Sensirion SPS30 has been multiplied
by 100 and the data from the Plantower PMS5003 by 10. The dots represent the actual datapoints
used to construct the plot.

4. Discussion

The particle size distribution showed that Plantower PMS5003 did not capture the
difference in size distribution between candle and incense smoke. Incense smoke had
clearly fewer particles >0.5 μm than candle smoke, according to the TSI OPS 3330; however,
while this was not captured by the Plantower PMS5003, it was captured by the Sensirion
SPS30 to a certain extent and more clearly by the Alphasense OPC-R1. The size distribution
captured by the latter sensor was close to the size distribution measured by the TSI OPS 3330,
except for its first size range (0.35–0.7 μm). Ouimette et al. [22] found that the Plantower
PMS5003 behaved as an integrating nephelometer, reporting correctly the aerosol scattering
coefficient for particles in the range 0.26–0.46 μm. Using the global database of PurpleAir
sensors, they also showed that the Plantower PMS5003 obtained similar shape of size
distribution in different sites outdoors around the world, this being partly attributed to
the fact that aerosol scattering coefficient of outdoor PM is generally constant. Similarly,
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He et al. [21] showed that the different size ranges of the Plantower PMS5003 had cut-off
diameters in the range 0.1–0.7 μm, when testing the sensors with ammonium sulfate and
sodium chloride. Together, these support the claim that the size distribution is computed
by an algorithm rather than actually measured for each size ranges. Tryner et al. [19]
studied the size segregation of the mass concentration reported by the Plantower PMS5003
and the Sensirion SPS30 in an environmental chamber, and exposed eight of each of these
sensor models to stable concentrations of PM in the range 10–1000 μg/m3 lasting around
45 min each and generated using ammonium sulfate, Arizona road dust, NIST urban PM,
wood smoke and oil mist with PLS of different diameters (0.1, 0.27, 0.72 and 2 μm). They
found that the Plantower PMS5003 obtained similar shape of size distribution for all the
diameters of PLS and for the different sources of pollution. However, Kuula et al. [23]
exposed Plantower PMS5003 and Sensirion SPS30 sensors, amongst other sensor models, to
monodisperse particles of diameters in the range 0.45–9.8 μm and they showed that, while
the Plantower PMS5003 misclassified the size of the particles, it was still producing two
different signals, one for particles 0.3–2.5 μm and one for particles 2.5–10 μm. Similarly,
Zamora et al. [24] exposed the sensor to PLS of 0.081, 0.3, 0.8, 1.1, 2.5 and 4.8 μm and
while the Plantower PMS5003 misclassified and misreported the size distribution of the
particle measured, it showed some differences in the size distribution it reported between
the different diameters tested. These suggest that the algorithm used by the Plantower
PMS5003 may include a second measurement to compute the size distribution it reports.
This is further supported by: (1) the between size range correlations obtained here by the
sensor; and (2) the Plantower PMS5003 differences between the scores obtained for PNC
<0.3 μm for its first two size ranges and the third size range.

The Sensirion SPS30 captured some of the variations in the size distribution between
incense and candle-generated PM. Tryner et al. [19] obtained two different sizes, using
sensor-reported PM mass concentrations, for PLS particles of 0.1 and 0.27 μm, and of
0.72 and 2 μm, in contrast to the Plantower PMS5003. Nonetheless, in their study, the
Sensirion SPS30 did not agree with the Aerodynamic Particle Sizer Spectrometer that was
used as a reference instrument. Kuula et al. [23], again using sensor-reported PM mass
concentrations, suggested that this sensor was able to differentiate two different size ranges,
0.3–0.9 μm and 0.7–1.3 μm, with a valid detection range for PM1 mass concentration. The
correlations obtained here between the different size ranges of the sensors support the fact
that this sensor is able to differentiate two size ranges: 0.3–0.5 μm and 1–2.5 μm.

The Alphasense OPC-R1 showed clear differences between its size ranges, which gen-
erally followed the correlation obtained by the TSI OPS 3330, for both PM sources. In our
2020 study [30], which analysed the same set of experiments but focused on sensor-reported
mass concentrations, the Alphasense OPC-R1 obtained lower correlation coefficients be-
tween the mass concentration of the sensors and a DustTrak DRX 8533 for incense- than for
candle-generated PM. This could have several explanations: (1) the algorithm used by the
Alphasense OPC-R1 to convert PNC to mass concentration is based on factors, which differ
according to specific properties of the particles measured; (2) there are some differences in
the measurement taken by the TSI OPS 3330 and the DustTrak DRX 8533, which is unlikely
as they are based on the same technology and are made by the same manufacturer.

For the three models of sensors, the variables that impacted their readings the most
were the variables linked to the particle size distribution, followed by source, with RH hav-
ing less impact on the readings. This corroborates the suggestion in our earlier paper [30]
that the performances of the sensors are primarily impacted by the size distribution of the
particles and secondarily the source of those particles. This also means that, at RH < 79%,
this variable does not need to be corrected. This would need to be verified on different
sources of PM, especially with sources having a different size distribution and refractive
index than candle and incense. Jayaratne et al. [54] showed that the Plantower PMS1003
and a DustTrak DRX8530 started to over-report PM mass concentration for RH > 75%.
Tryner et al. [19] also found an impact of RH on the readings of the Plantower PMS5003 and
the Sensirion SPS30 for RH > 75–80%. Conversely, Holder et al. [55] and Liang et al. [56],
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who both studied the response of the sensors to wild fire smoke, showed that it was not
necessary to include RH in the correction models. Similarly, in a year-long outdoor study
in a port city, Bulot et al. [12] showed only marginal improvements in models including RH
compared to models not including it. Taken together, these suggest that the impact of RH
is highly dependent on the composition of the aerosol being measured. This would explain
why different studies conducted in different settings, in different places or countries, obtain
conflicting results with regard to RH.

We found here that the accuracy of the readings of the first two size ranges of the
Plantower PMS5003 were impacted by PNC <0.3 μm. This is similar to the results ob-
tained by both He et al. [21], who developed a transfer-function based model that pre-
dicted that the sensor would output a signal for particles with diameter <0.3 μm, and by
Ouimette et al. [22] whose physical model of the Plantower PMS5003 as an integrating
nephelometer, based on the Mie theory, also predicted that the sensor would be able to mea-
sure particles <0.3 μm, in direct proportion to their contribution to the aerosol scattering
coefficient. The Alphasense OPC-R1 and the Sensirion SPS30 readings were not impacted
by the PNC in that size range. While it is quite clear that the Alphasense OPC-R1 is an
Optical Particle Counter (OPC), this, along with the differences observed earlier on the
sensitivity to particle size distribution between the Plantower PMS5003 and the Sensirion
SPS30, may suggest that the Sensirion SPS30 is not an integrated nephelometer and/or
measures and interprets the PNC differently from the Plantower PMS5003. Tryner et al. [19]
also suggested that these two sensors had a different method for measuring or interpreting
light-scattering data.

This experimental set-up has some limitations that must be accounted for before
extrapolating its results. The sensors were only tested against two combustion sources of
pollution, and environmental particles will have different physical and chemical properties
(i.e., hygroscopicity, refractive index and particle size). Additionally, the range of RH was
limited and the temperature was set in the range 26–29 °C which does not reflect the range
of environmental conditions to which the sensors would be exposed in outdoor conditions.

As these sensors are expected to be used in large monitoring networks, for extended
periods of time, it is critical to characterise their potential drift with time. This is not possible
with the data collected during this study. There is conflicting evidence in the literature on
this subject. Tryner et al. [19], in their laboratory experiment, simulated the ageing of the
Sensirion SPS30 and the Plantower PMS5003 by exposing them to mass concentrations
in the range 7300–33,000 μg/m3 for 18 h to emulate the outdoor concentrations these
sensors would encounter over a year, and showed that some performance degradation
occurred for three out of eight of the Plantower PMS5003s tested but not for the Sensirion
SPS30. However, it is likely that the really high concentrations to which the sensors were
exposed may over-estimate their time drift. Indeed, in our previous outdoor study [57],
the performances of different low-cost sensors, including the Plantower PMS5003, were
evaluated over a year outdoor, and no performance degradation was found. Several
studies lasting from a couple of months to a year or more found no drift over time of the
sensors [24,58–60]. Wallace et al. [16] studied eight Purple Air sensors for 1.5 to 3 years
indoors and outdoors, and found little evidence to support a temporal drift. Similarly,
Collier-Oxandale et al. [61] conducted a three year long analysis of the performances of a
network of 400 Purple Air II sensors (which use two Plantower PMS5003 each) deployed
across 14 communities in the USA, and found that the performances of the sensors were
mainly explained by seasonal variations but found little evidence of a temporal drift.

Although the three models of sensors were able to capture the temporal variations
of the PNC, as reported by the TSI OPS 3330, the only sensor that reliably reported the
particle size distribution of the aerosols was the Alphasense OPC-R1.

5. Conclusions

In this study, eight sensors of each of three models, Alphasense OPC-R1, Plantower
PMS5003 and Sensirion SPS30, at a total of 24 sensors, were studied at a 10 s resolution and
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exposed to short-lived events of PM pollution, generated from two combustion sources
having a different size distribution profile, at varying levels of RH.

The time series obtained revealed that the sensors were able to closely follow PNC
variation measured by the reference TSI OPS 3330, for both sources of PM, but for the Plan-
tower PMS5003 and the Sensirion SPS30 PNC measurements recorded were, respectively,
10 and 100 times lower than the measurements of the TSI OPS 3330. For the Sensirion
SPS30, the second and third size ranges under-reported more than the first size range for
incense-generated PM than for candle-generated PM. The magnitude was correct for the
Alphasense OPC-R1, except for its first size range, 0.35–0.7 μm.

Regarding the independence of the size range reported by the sensors and their
accuracy, the Plantower PMS5003 reported two independent signals; the Alphasense OPC-
R1 reports an independent signal for each of its size ranges; the Sensirion SPS30 reported
two independent signals for 0.3–0.5 μm and 1–2.5 μm. The analysis conducted suggested
that the Plantower PMS5003 and the Sensirion SPS30 had a different method for measuring
or interpreting light-scattering data, and reporting the determined PNC.

For capturing the particle size distribution, the Plantower PMS5003 showed no dif-
ference between incense- and candle-generated PM, while the two other sensors recorded
differences that were also recorded by the TSI OPS 3330. The Alphasense OPC-R1 measured
values that were close to the data reported by the TSI OPS 3330, except for its first size
range (0.35–0.7 μm).

The analysis of the feature selection revealed that the sensors were more susceptible
to the composition of the particles and their size distribution than to RH at the levels
of humidity considered. We therefore recommend that a RH correction is not required
below 75–79%. PNC in the range 0.01–0.3 μm impacted the first size range of the Plantower
PMS5003 supporting the fact that this sensor is an integrating nephelometer.

For studies requiring more detailed knowledge of the particle size distribution of the
aerosol measured, the Alphasense OPC-R1 should be preferred, although our previous
study [30] also showed that this sensor was less suited to report PM mass concentration for
the two sources of PM used here. If a more general image of the particle size distribution
is sufficient, the Sensirion SPS30 should be considered. It is not clear from the results
of this study whether the Plantower PMS5003 can be used in this scenario but it can be
used to measure the general trends of PNC. This work shows that there is added value
in directly using the PNC instead of PM mass concentration, as the size ranges provide
some level of information about the particle size distribution, especially in the case of the
Alphasense OPC-R1. This differential information collected by the PNC size ranges can
be used to improve the calibration models developed to calibrate the sensors to standard
performances and provide extra granularity with regard to source profiling.
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Appendix A. Time Series

Appendix A.1. RH = 54%

Figure A1. Time series of the Particle Number Concentration (PNC) size ranges of the Plantower
PMS5003 compared with the size ranges computed from the OPS size ranges for RH = 54%. The
different categories are (a) n03_05 (in the range 0.3–0.5 μm), (b) n05_10 (in the range 0.5–1 μm) and
(c) n10_25 (in the range 1–2.5 μm).
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Figure A2. Time series of the Particle Number Concentration (PNC) size ranges of the Sensirion
SPS30 compared with the size ranges computed from the OPS size ranges for RH = 54%. The different
categories are n03_05 (in the range 0.3–0.5 μm), n05_1 (in the range 0.5–1 μm) and n1_25 (in the range
1–2.5 μm).

Figure A3. Time series of the Particle Number Concentration (PNC) size ranges of the Alphasense
OPC-R1 compared with the size ranges computed from the OPS size ranges for RH = 54%. The
different categories are Bin0 (in the range 0.4–0.7 μm), Bin1 (in the range 0.7–1.1 μm), Bin2 (in the
range 1.1–1.5 μm), Bin3 (in the range 1.5–1.9 μm and Bin4 (in the range 1.9–2.4 μm).
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Appendix A.2. RH = 72%

Figure A4. Time series of the Particle Number Concentration (PNC) size ranges of the Plantower
PMS5003 compared with the size ranges computed from the OPS size ranges for RH = 72%. The
different categories are (a) n03_05 (in the range 0.3–0.5 μm), (b) n05_10 (in the range 0.5–1 μm) and
(c) n10_25 (in the range 1–2.5 μm).

Figure A5. Time series of the Particle Number Concentration (PNC) size ranges of the Sensirion
SPS30 compared with the size ranges computed from the OPS size ranges for RH = 72%. The different
categories are n03_05 (in the range 0.3–0.5 μm), n05_1 (in the range 0.5–1 μm) and n1_25 (in the range
1–2.5 μm).
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Figure A6. Time series of the Particle Number Concentration (PNC) size ranges of the Alphasense
OPC-R1 compared with the size ranges computed from the OPS size ranges for RH = 72%. The
different categories are Bin0 (in the range 0.4–0.7 μm), Bin1 (in the range 0.7–1.1 μm), Bin2 (in the
range 1.1–1.5 μm), Bin3 (in the range 1.5–1.9 μm and Bin4 (in the range 1.9–2.4 μm).

Appendix A.3. RH = 76%

Figure A7. Time series of the Particle Number Concentration (PNC) size ranges of the Plantower
PMS5003 compared with the size ranges computed from the OPS size ranges for RH = 76%. The
different categories are (a) n03_05 (in the range 0.3–0.5 μm), (b) n05_10 (in the range 0.5–1 μm) and
(c) n10_25 (in the range 1–2.5 μm).
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Figure A8. Time series of the Particle Number Concentration (PNC) size ranges of the Sensirion
SPS30 compared with the size ranges computed from the OPS size ranges for RH = 76%. The different
categories are n03_05 (in the range 0.3–0.5 μm), n05_1 (in the range 0.5–1 μm) and n1_25 (in the range
1–2.5 μm).

Figure A9. Time series of the Particle Number Concentration (PNC) size ranges of the Alphasense
OPC-R1 compared with the size ranges computed from the OPS size ranges for RH = 76%. The
different categories are Bin0 (in the range 0.4–0.7 μm), Bin1 (in the range 0.7–1.1 μm), Bin2 (in the
range 1.1–1.5 μm), Bin3 (in the range 1.5–1.9 μm and Bin4 (in the range 1.9–2.4 μm).
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Appendix A.4. RH = 79%

Figure A10. Time series of the Particle Number Concentration (PNC) size ranges of the Plantower
PMS5003 compared with the size ranges computed from the OPS size ranges for RH = 79%. The
different categories are (a) n03_05 (in the range 0.3–0.5 μm), (b) n05_10 (in the range 0.5–1 μm) and
(c) n10_25 (in the range 1–2.5 μm).

Figure A11. Time series of the Particle Number Concentration (PNC) size ranges of the Sensirion
SPS30 compared with the size ranges computed from the OPS size ranges for RH = 79%. The different
categories are n03_05 (in the range 0.3–0.5 μm), n05_1 (in the range 0.5–1 μm) and n1_25 (in the range
1–2.5 μm).
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Figure A12. Time series of the Particle Number Concentration (PNC) size ranges of the Alphasense
OPC-R1 compared with the size ranges computed from the OPS size ranges for RH = 79%. The
different categories are Bin0 (in the range 0.4–0.7 μm), Bin1 (in the range 0.7–1.1 μm), Bin2 (in the
range 1.1–1.5 μm), Bin3 (in the range 1.5–1.9 μm and Bin4 (in the range 1.9–2.4 μm).

Appendix B. Particle Size Distribution

Figure A13. Size distribution measured from the OPS during the different experiments for peaks
and stable concentrations of incense and candle smoke. The axes are in a logarithmic scale. N
is the number of particles in # 1/cm; Dp is the mean diameter of the particles. Adapted from
Bulot et al. [30].
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Particle Size Distribution per Sensor

Figure A14. Particle size distribution reported by the PMS5003 and the OPS TSI for stable con-
centrations of incense and candle. The dots represent the actual datapoints used. To facilitate the
visualisation, the data from the Plantower PMS5003 were multiplied by a factor of 10.

Figure A15. Particle size distribution reported by the SPS30 and the OPS TSI for stable concentrations
of incense and candle. The dots represent the actual datapoints used. To facilitate the visualisation,
the data from the Sensirion SPS30 were multiplied by a factor of 100.
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Figure A16. Particle size distribution reported by the OPCR1 and the OPS TSI for stable concentra-
tions of incense and candle. The dots represent the actual datapoints used.
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Abstract: Greenhouse gas (GHG) emissions reporting and sustainability are increasingly important
for businesses around the world. Yet the lack of a single standardised method of measurement, when
coupled with an inability to understand the true state of emissions in complex logistics activities,
presents enormous barriers for businesses to understanding the extent of their emissions footprint.
One of the traditional approaches to accurately capturing and monitoring gas emissions in logistics
is through using gas sensors. However, connecting, maintaining, and operating gas sensors on
moving vehicles in different road and weather conditions is a large and costly challenge. This
paper presents the development and evaluation of a reliable and accurate sensing technique for
GHG emissions collection (or monitoring) in real-time, employing the Internet of Things (IoT) and
Artificial Intelligence (AI) to eliminate or reduce the usage of gas sensors, using reliable and cost-
effective solutions.

Keywords: IoT; greenhouse gas; sustainable logistics; emissions; supply chain; AI

1. Introduction

Transport activity accounts for around one fifth of global carbon dioxide (CO2) emis-
sions. Freight road activity accounts for around 29.4% of all transport emissions [1].
Demand for freight is expected to triple by 2050 compared to 2015, according to the Inter-
national Transport Forum [2], fuelled by global supply chains, burgeoning economies in
the developing world, and a rise in e-commerce activities.

In Australia, transport is the third-largest source of local greenhouse gases, accounting
for 18.7% of all national emissions in 2022 [3]. The transport sector is also one of the
strongest contributors to emissions growth in Australia. Emissions from transport have
increased by nearly 60% since 1990—more than any other sector in the economy [3].
Within transport, road freight and supply chains present challenges to successful emissions
reduction. Freight transport is a significant contributor to the sector’s emissions, and it is
expected to grow as a proportion of total emissions [3].
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Transport is facing growing pressure from regulators, financiers, and consumers to
accelerate the transition to zero emissions. To enable the required reductions in the use
of fossil fuels in the transportation sector, the sector will need to undergo a profound
transformation in its energy use and the ability to accurately measure emissions from fossil
fuels. There is a growing focus on the logistics emissions reporting function, as companies
seek to uncover one of the least-known yet potentially highly carbon-intensive parts of
their organisation’s operations. The granularity and accuracy of reporting is critical for the
advancement of future states of logistics emissions management. Whilst many companies
are still grappling with the backward-looking reporting task, to make a meaningful impact
in logistics emissions, there needs to be a transition to forward-looking and performance
monitoring of logistics emissions. Transport sector emissions analysis has been the focal
point of numerous researches for many years. The studies show that there are multiple
factors—including weather, road condition, vehicle condition, vehicle weight, and driving
behaviour—that have significant impacts on vehicle emissions [4–10].

Analysis of vehicle emissions is normally conducted in laboratory environments,
on a chassis dynamometer [11,12]. However, the studies show that there is a significant
difference between data captured in a laboratory environment and data captured on
roads [12,13].

Although laboratory analysis can capture useful data regarding vehicle emissions, it
is almost impractical to evaluate all the real-world metrics that impact vehicle emissions in
a laboratory environment. Laboratory emissions analysis has been found to underestimate
emissions rates by 10–20% [11]. As a result, many researchers tend to install portable
exhaust gas analysis devices on vehicles, to capture on-road data. However, installing and
capturing on-road data can pose significant challenges.

The accuracy of these devices for long-term data collection is one of the challenges,
because they need calibration before each measurement. Exhaust gas analysers are ana-
lytical devices that measure the concentration of a specific gas within a mixture of other
gases. These devices typically comprise different gas sensors, using industry-standard
non-dispersive infrared (NDIR) and chemical sensor technologies. NDIR technology mea-
sures the concentration of a gas, by determining how much infrared energy is absorbed at
a select wavelength band that corresponds to a resonant mode spectrum of the analysed
gas molecule. The chemical sensors technologies used in the analyser are usually based
on electrochemical and metal-oxide semiconducting sensors, which suffer from long-term
stability, selectivity, and fast response and recovery. The electrochemical sensors require
regular replacement of electrolytes; therefore, the short life of these chemical sensors would
add to the cost of experiments.

We previously conducted research in developing and installing an Internet of Things
(IoT)-based platform, called ParcEMon [14], to capture live data from a delivery van, so
as to analyse parcel-level emissions. During this research, multiple challenges were faced,
in retrieving continuous data from the delivery van by using a gas analyser comprising
different gas sensors, so as to measure the concentration of carbon monoxide (CO), carbon
dioxide (CO2), hydrocarbons (HC), oxygen (O2), and nitrogen oxide (NOx) gases, as shown
in Table 1.

One of the main challenges was installation of the gas analyser in a secure location, to
be able to collect and analyse the gas flow without being impacted by vehicle movement
and road condition in a real world context.

Since the gas analyser control unit was required to be close and connected to the gas
flow, it could not be installed inside the cabin, as it could pose safety issues to the driver
and other passengers. Therefore, the gas analyser was secured outside the car. However,
there are multiple factors that can impact the possibility of installing the gas analyser and
related accessories outside the car.
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Table 1. Gas analyser specifications.

CO (carbon monoxide)
HC (hydrocarbons—hexane (gasoline),

Gases propane (LPG), or methane (CNG or LNG))
CO2 (carbon dioxide)
O2 (oxygen)
NO (NOx, nitric oxide)

Analysis Method CO, HC, CO2: NDIR (non-dispersive infra-red)
O2, NO: electro-chemical sensor
CO: 0–10.00%
HC (hexane and propane): 0–9999 ppm

Ranges HC (methane) 0.000–5.000%
CO2: 0–20.0%
O2: 0.0–25.0%
NO: 0–5000 ppm

Gas Sample Rate 350 mL/min typical. (flow-control pneumatic system).

The first issue is that a vehicle’s sudden movements and vibrations can loosen the
different components that transfer the gas flow to the gas analyser, including the exhaust
nuzzle and gas pipe. As a result, all these components must be firmly installed, to withstand
the vehicle movements and vibrations. In addition, a change in road conditions can also
impact the gas analyser functionality. Bumpy roads can cause road surface contact with
the devices and stop or suspend the sensors’ functionality. Moreover, dirt roads can cause
gravel to hit the analyser or can cause mud splash on the analyser, which can cause full or
partial blockage of gas flow, thus impacting the data quality. Moreover, rainy weather can
also cause water splash on the analyser, which can damage the sensors and impact their
functionality. Furthermore, installing the analyser in a sealed enclosure is also not practical,
because there must be airflow, so as to avoid concentrated gas around the gas analyser,
which can result in false data readings. Another issue regarding analyser installation is
the high degree of heat emitted from the exhaust. This can damage the analyser pipe and
sensors and cause data loss. A further challenge, regarding utilisation of a gas analyser in
live data collection, is that the sensors normally require periodic checks, to ensure data
quality and the functionality of the sensors. For example, one of the components of such
gas analysers, which is connected to the exhaust nuzzle, is a water filter. This filter is
required to reduce the moisture entering the gas analyser unit. After some hours of driving,
and also depending on the weather conditions, this filter must be unplugged, to empty the
water accumulated inside it, because the moisture that enters the gas analyser can impact
the sensors’ accuracy and data quality. Moreover, the sensors require to be periodically
restarted (i.e., zeroing) and calibrated, to improve measurement accuracy. Such periodic
check-up requirements hinder the usage of such sensors for long-term data collection in a
real world context.

Having discussed the challenges of deployment of a gas analyser to collect live data
from on-road vehicles, investigation of alternative solutions to analysing vehicle emissions
without employing gas sensors was a potential research area. These challenges could be
addressed by using artificial intelligence (AI) techniques to estimate vehicle emissions
based on vehicle data, such as speed, revolutions per minute (RPM), acceleration, and
deceleration. By employing the dataset that has been collected using a gas analyser,
the correlation between driver behaviour and vehicle emissions could be determined.
The obtained dataset could then be used as a training set, to predict vehicle emissions in
the long run, based on driver behaviour without a gas analyser. Such an approach could
help to eliminate the challenge of installing a gas analyser and, at the same time, estimating
the impact of driving behaviour on vehicle emissions.
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In this research, the dataset collected, using a physical gas analyser and ParcEMon
platform [14], was used to develop the training set, as well as to analyse the accuracy and
validity of the machine learning technique, in predicting vehicle emissions.

This paper presents an AI-enabled emissions monitoring technique (referred as ArtE-
Mon) that aims to utilise AI to replace a physical gas analyser attached to the exhausts
and to produce accurate emissions reporting. The main contributions of this paper are
as follows:

• An effective technique to align and merge the measurements from various IoT data
sources, through a series of methods, from processing raw data to predictive emissions
modelling using information from on-board diagnostics (OBDs), temperature, and
humidity sensors.

• A weighted ensemble model that assigns weights based on the performance of the
tree-based and stacked models, to estimate CO2 emissions.

• A feasibility study of our solution, through an experimental approach to evaluating
how we predict emissions from the IoT data, without using a gas analyser.

The remainder of this paper is organised as follows. Section 2 describes three emissions
reporting frameworks, as well as their comparison. Section 3 describes the architecture
and methodology of the ArtEMon. Sections 4 and 5 describe the IoT data collection,
preprocessing, and the performance of our emissions prediction. Finally, Sections 6 and 7
describe the discussion, future work, and conclusion of this paper.

2. Greenhouse Gas Emissions Reporting Frameworks

Corporate monitoring and reporting of Scope 3 GHG emissions [15] from the ‘last-
mile’ in the up-and-downstream transportation of goods services has been prioritised by
governments and companies since the Paris Agreement of 2015 [16], with international and
regional frameworks developed on the foundations of the Greenhouse Gas Protocol [17]
initiative now in use.

The GHG Protocol Corporate Standard groups a company’s GHG emissions into three
categories, from Scope 1 to Scope 3: Scope 1 refers to direct emissions; Scope 2 refers to
indirect emissions and represents the emissions resulting from the generation of purchased
energy (e.g., grid-supplied electricity); Scope 3 covers all the other indirect emissions in the
company’s value chain that are not included in Scope 2 [17,18].

Scope 3 emissions can constitute a significant part of a company’s overall GHG
footprint [19]. With estimates placed as high as 75% of all emissions for many companies [20],
it is not surprising that the value of modelling, working with, and reporting Scope 3
emissions data is being recognised. Emissions data can be used to support investment,
procurement, and sales strategies, by assessing the impact of various freight scenarios and
predicting carbon return on investments. It provides a metric that allows companies to
identify inefficiencies in their logistics network and work towards improved efficiencies.
Companies can track progress towards climate goals and demonstrate corporate social
responsibility, including positive climate and health impacts [21].

However, managing the collection and analysis of GHG emissions data remains a
complex and frustrating challenge for companies. Current, local, and real-time data that
account for the emissions produced in the delivery of domestic goods and services (whether
by truck or freight consignment, courier, express post and parcel, or public transport
networks) are not readily available data that are accessible for use. Current reporting is
based on applying one of a range of available calculators, to estimate GHG emissions by
measuring the distance a parcel travels and the fuel expended over the distance. In such
approaches, there are many variables that cannot be easily accounted for, such as speed,
road incline, and driver behaviour.

For companies to report Scope 3 emissions, they must apply the methodology from
one of several key frameworks available for use, developed by different industry consor-
tia in different regions and contexts. These frameworks include the Carbon Disclosure
Project (CDP) [22], the EconTransistIT methodology [23], the GHG Protocol [17], the Global
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Logistics Emissions Council (GLEC) European framework [24], the Taskforce on climate-
related financial disclosures [25], the USA’s Environmental Protection Agency’s Smartway
Program [26], and the Australian National Greenhouse Energy Reporting Scheme [3].
More recently the International Standards Organisation, have published ISO 14083 [27],
"Greenhouse gas management and related activities—Quantification and reporting of
greenhouse gas emissions of transport operations", with the aim of providing a common
methodology for the quantification and reporting of greenhouse gas emissions; however,
its use remains voluntary.

For this project, the research team evaluated three of the leading regional frameworks,
to develop an understanding of their use, the types of data collected, approaches to data
collection, methodologies for calculating Scope 3 emissions, and granularity of reporting.
These frameworks include GLEC [24], Smartway [26], and NGERS [28]. The objectives
and approaches of the three frameworks are informed by and inform one other, but there
are significant differences in their methodologies. Each framework varies in its approach
to the measurement of GHG emissions and gases prioritisation (see Figure 1). While
NGERS [28] establishes goals and specifies gases for emissions reporting, it does not present
a methodology for Scope 3 data collection at all. Therefore, further evaluation has focused
on a comparison of the GLEC [24] and Smartway [26] frameworks, including consideration
of how each works with different calculation tools, different decision trees, and sets of
historic data made available (See Figure 2). Each framework applies different assumptions
about routes and different approaches to the measurement of fuel consumption per gram
(FPG), and each varies in the range of gases reported [24,26,28].

Figure 1. Gases included in the compared frameworks [24,26,28].

For Scope 3 emissions, the absence of a single standardised method for measuring
and modelling emissions across complex logistics activities, compounded by significant
issues in sourcing and collecting accurate and timely data for reporting, presents enormous
barriers for companies. There is an uncertainty about the accuracy of reported data, and
about their ability to pursue the most cost-effective carbon mitigation strategies. This is
exacerbated in Australia, where—under the National Greenhouse and Energy Reporting
Act [29]—GHG emissions reporting is not yet mandatory [3], and the sheer complex-
ity of data collection and reporting means that many who could participate voluntarily
and benefit from more effective and efficient close-to-real-time reporting, are simply not
participating.
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Figure 2. GHG reporting frameworks comparison.

3. Architecture and Methodology

The main objective of the research reported in this paper was to develop a complete
end-to-end IoT-and-AI-enabled solution for monitoring GHG emissions from combustion
engine vehicles, without relying on exhaust gas analysers. The IoT is defined as connecting
a countless number of sensors and various devices (referred to as ‘things’) through the
internet, paving the way for innovative services and products [30].

Figure 3 illustrates the testbed architecture used to collect the raw data employed in
this research. The development of this testbed was presented in [14]. The sensor data were
collected from four different types of sensors, as follows:

• Gas Analyser (5 Gases): The analyser measured the concentration of carbon monoxide
(CO), carbon dioxide (CO2), fuel-dependant hydrocarbons (HC), oxygen (O2), and
nitrogen oxide (NOx) gases emitted from the exhaust of a delivery van. The data
collected from the gas analyser were used to train and validate the AI models.

• OBDs: vehicle on-board diagnostics data were collected from the instrumented vehicle,
to be used by the AI models. An OBD2 scanner provided comprehensive access
to live and recorded data from the vehicle, including vehicle speed, acceleration,
deceleration, and engine and fuel system operating conditions. These data were
required, to correlate driving conditions to the emissions recorded by the gas analyser.
OBDs sensory data are easy to collect, and are available from the majority of new cars
produced over the past several years.
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• Temperature and humidity sensor: the data related to the ambient condition of the
delivery van were collected, using a temperature and humidity sensor located under-
neath the van.

Figure 3. IoT -based testbed architecture.

The IoT sensor node included a small single-board computer (i.e., a Raspberry Pi) that
was connected to the reporting gas analyser and OBD2 port through Bluetooth. The gas
analyser collected the emissions data in real time and sent it to the computer through
a serial cable. The data streams were annotated and synchronised in the computer and
sent to the cloud through a broadband internet connection. This IoT sensor node was
also connected to a dashcam and GPS module, to track the location of the vehicle and
its speed and acceleration. A power bank was included, to provide the required power
for running the IoT sensor node. In addition, the implemented enclosure included an
automobile auxiliary power outlet for charging the power bank. Finally, a cooling system
and environmental monitoring sensors (i.e., temperature and humidity) were deployed, to
monitor the ambient temperature and humidity and to maintain the temperature inside the
IoT sensor node enclosure. A detailed description of the testbed is described in [14].

Field testing was undertaken with a diesel delivery van in Vermont South in Victoria,
Australia. The field trial was conducted under typical ‘everyday’ or naturalistic driving
conditions, employing a driver who regularly drove the vehicle. The vehicle was moni-
tored while making its usual deliveries under normal driving conditions on urban roads,
major arterial roads, and freeways. This included regular stop-and-go traffic, acceleration,
deceleration, and smooth uniform driving during the trial.

The gas analyser was installed in the carriage, close to the exhaust, without interfering
with driving conditions or safety, allowing for the collection of data under the ordinary
driving conditions experienced by the driver, as illustrated in Figure 4.

The primary sensors used for the data collection included a gas analyser, vehicle
onboard diagnostics (OBDs), and environmental condition sensors (i.e., humidity and tem-
perature sensors). The data collected from these sensors were heterogeneous and contained
inherent noise. These heterogeneous data were then processed, to remove noise and to
identify relevant features. The data collected from the sensors were stored on the computer,
using the JSON format. The first step involved reading the JSON files containing the sensor
measurements and converting the raw timestamp (i.e., UNIX time) to a valid date–time
format, for time-based data reporting. The timestamp was used as the main parameter, to
perform the fusion of the heterogeneous data collected from various different sensors.

318



Sensors 2023, 23, 7971

Figure 4. Gas analyser installed under the van.

4. IoT Sensory Data Preprocessing

This section presents a discussion on the processing of the IoT sensory data. The first
step involved reading the sensor data measurements and converting the raw timestamp to
a valid date–time format. This produced 43,782 (gas analyser, including five gases), 14,562
(OBDs, including RPM, speed, FPG, etc.), and 192,972 (temperature and humidity) data
points on the first day of the experiment.

4.1. Noise Removal

The next part of the IoT data processing involved identifying and removing incorrect
sensor measurements. Most of the incorrect measurements were from the gas analyser.
These measurements contained incorrect characters or partial values. Such measurements
were considered as noise and were dropped from the analysis. There were several reasons
for these noises, such as data loss because of communication issues, as the gas analyser
was using serial protocol to transfer the data, using a long cable.

After removing all the rows containing the incorrect values, a total of 40,894 valid data
points from the gas sensor measurements were used in the analysis.

4.2. Zeroing Process

Gas analysers need to purge the gas and perform calibration, based on the reference
gases in the ambient air, frequently, to provide accurate readings. The gas analyser we used
was set to purge the gas and perform the calibration process every 10 min.

We flagged the readings between the start-zeroing and finish-zeroing intervals. For that
duration, the gas reading were not valid and were removed from the dataset, accordingly.

4.3. Lag Identification

There is usually a delay associated with gas analyser measurements when compared to
the OBDs. This is because the gas concentration is measured by the gas analyser at the end
of the exhaust pipe. The gas must travel through the exhaust pipe to reach the gas analyser,
where it is sensed, and this normally takes a few seconds. The challenge here was to identify
the right amount of delay and then offset the gas analyser measurements, to adjust the delay
and align them with measurements from the other sensors. All the sensor measurements
were first indexed based on their timestamp, and the measurements were re-sampled to
the nearest one second of the time series, because the sensors reported measurements at
millisecond granularity. Re-sampling usually introduces null values at the timestamps that
were not in the original time series. Imputation is an important data preprocessing step
for handling incomplete data, as the machine learning models for analysing IoT data from
heterogeneous sensors commonly assume that the sensor data is complete. Such modelling
results, which include missing or incomplete data, may be inaccurate and unreliable. It
was, therefore, important to interpolate the missing values, by using the mean value of
the respective features. Then, the used RPM measurements from the OBDs were used as a
reference timestamp and were compared to the CO2 measurements from the gas analyser
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at various time intervals, to visually study the lag. As seen in Figure 5, the visual analysis
of the time series helped to identify the delay, which was found to be approximately 6 s.

Figure 5. Identifying delay in gas analyser measurements.

4.4. Offsetting, Re-Sampling, and Interpolating Measurements

To align the gas analyser measurements with the rest of the sensor measurements,
the gas analyser measurements were offset by around 6 s and were aligned with the rest of
the sensor measurements. IoT sensors do not necessarily produce data at regular intervals,
and the IoT time series is highly irregular, with regard to its sampling rate, which makes the
processing and analysis of such data challenging—specifically, when the data are received
independently from multiple sensors, while they are being processed and analysed together.
This makes the re-sampling of such irregular and unevenly spaced time series to a more
regular and consistent frequency an important part of the IoT data processing step. To
obtain a refined set of measurements, all data received from the gas analyser, OBDs, and
temperature sensors were interpolated with their mean values at every one-second interval.

After performing interpolation on the data with the mean values of individual features,
to fill the time points where there were no measurements, the next step was to align all
measurements that had a common start and end time, because the starting and ending
times of measurements are different for all sensors. This was required, to eliminate any
missing values for the time series that ended early.

Table 2 identifies the starting and ending times of all the IoT sensors for the first day
of the experiment. After re-sampling for every one second, interpolating, and aligning the
measurements, a total of 15,778 data points were obtained from the gas, OBDs, temperature,
and humidity sensors on a single day. All measurements from the sensors where the
corresponding speed was reported as zero were also excluded. This allowed us to have a
uniform time series for all measurements.

Table 2. Starting and ending time of all IoT Sensors.

Sensor Starting Time Ending Time

OBDs 08:54:58 13:17:57
Gas Analyser 08:50:16 14:57:23

Temperature and humidity 08:52:26 14:58:34

4.5. Relevant Feature Selection

To estimate the CO2 emissions, various features of the vehicles—such as speed, RPM,
coolant temperature, acceleration, and throttle—were used [31–33]. Singh et al. [33] identi-
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fied that speed and acceleration are highly correlated with CO2 emissions; however, these
features on their own provide limited support in estimating CO2 emissions.

As seen in Algorithm 1, the merged measurements from all the sensors in this research
(the OBDs sensors combined with the gas, temperature, and humidity sensors) were used
to construct a dataset for understanding CO2 emissions. The final feature set, presented in
Table 3, included information on the RPM, FPG, speed, temperature, and humidity, and the
target feature was CO2.

Algorithm 1: IoT sensor data preprocessing.
Input : sensor measurements from gas analyser (A), OBDs (B), temperature and

humidity (C)
Output : modelling dataset E
for each measurement in A do

remove noise
perform zeroing process

end for
for each measurement in A do

offset ∀ measurement by 6 s
end for
for all measurements in A,B,C do

re-sample ∀ 1 s
interpolate with μ values
align timestamps

end for
Construct modelling dataset E by merging A,B,C

Table 3. Feature set for estimating CO2 emissions.

Feature Units of Measurement Range of Feature Values

engine RPM revolutions per minute 0–6000
fuel consumption (FPG) grams per second 0–300

vehicle speed kilometres per hour (km/h) 0–120
air temperature Celsius (°C) 0–30

humidity relative humidity in percentage (%) 0–100

5. Predicting CO2 Emissions

Ensemble learning is a class of machine learning technique that works by utilising
multiple base learners that collectively improve the predictive performance. LightGBM [34],
gradient boosting [35], and xGBoost [36] are some of the popular algorithms that have been
used for regression and classification applications. In this paper, various gradient-boosting
decision tree algorithms were used, including gradient boosting [35], xGBoost [36], and
LightGBM [34]. Gradient-boosting decision trees are an ensemble of decision trees that
use the best split points to learn the decision trees, make predictions on each decision tree,
and then combine the individual predictions with those of other trees in the ensemble, to
produce a strong prediction. Gradient boosting works by optimising the loss function; it
sequentially tries to find new weak learners, based on the residuals from the previous weak
learners in each iteration. During each iteration, gradient boosting attempts to minimise
the loss function.

Although gradient boosting works well with both categorical and continuous data,
it sometimes overemphasises outliers and is computationally expensive. The xGBoost
works by growing trees horizontally and is robust enough in handling heterogeneous data
types and distributions. Moreover, xGBoost can efficiently handle sparse data patterns
and also helps in handling overfitting [36]. LightGBM is a greedy implementation of the
gradient boosting framework that uses gradient-based one-side sampling to grow trees
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vertically, which enables better identification of relationships between input and target
features. However, LightGBMs are sensitive to outliers and can lead to overfitting if they
are not handled properly [34,37].

Various techniques based on deep learning [32–36,38], support vector machines [32],
ensemble models [38], and xGBoost [36] have been used in the literature, for estimating
CO2 emissions from data gathered from vehicles.

In this paper, predicting CO2 emissions was based on ensemble learning techniques [39]
that combine multiple regression models [40], which have been reported, in previous stud-
ies, to improve the prediction accuracy of machine learning algorithms [39]. Further
improvements have also been achieved by incorporating strategies that combine various
ensemble formation designs, such as stacked generalisation [40] and blending [41]. Stacked
generalisation, proposed by Wolpert [42], is a procedure [43] that consists of several base
learners (first level) and a meta learner (second level), where the outputs from the first level
serve as inputs to the second level meta learners. The first-level regressors are fitted to the
same training set that is used to prepare the inputs for the second-level regressor, which
may lead to overfitting. However, the techniques proposed in [44] extend the standard
stacking algorithm, using out-of-fold predictions, and produce the data from the first-level
regressor, which serves as input for the second-level regressor, by splitting the dataset into
k folds and, in every successive k rounds, k − 1 folds are then utilised, to fit the first-level
regressor. Furthermore, in each round, the first-level regressors are applied on the sub-
set of the data that were initially excluded from the model fitting during each iteration.
This allows the resulting predictions to be stacked and then forwarded as inputs to the
second-level regressor, and then the first-level regressors are fitted on the entire dataset, to
maximise the prediction accuracy. Blending is another ensemble approach that is derived
from stacking [41], but differs by not using k-fold cross-validation to generate training data
for the meta learner. However, it makes use of a one-holdout set, which allows a small
portion of the data from the training set to be used for making predictions that can be used
as inputs to the meta model.

In this paper, a weighted ensemble approach was used, which worked by assigning
weights based on the individual model performance. Before the construction of the stacked
model, the actual dataset was divided into training and test sets. The training set was then
used to construct the stacked model, as shown in Figure 6. Following the identification of
the best performing model from the individual baseline models during the stacking phase,
weights were assigned to each of these models, with a higher weight to the stacked model
followed by the best performing baseline model. The weighted predictions were then
blended, to generate the final prediction. Using the model performances of the baseline
models and the weighted ensemble (blended) model (Figure 7), weights of ws = 0.4,
wg = 0.3, wx = 0.15, and wl = 0.15 were assigned, respectively, to the stacked, gradient
boosting, xGBoost, and LightGBM models, following which, the weighted predictions were
blended, to estimate the CO2 emissions.
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Figure 6. Stacked model, to estimate CO2 emissions.

Figure 7. Weighted ensemble model, to estimate CO2 emissions.

5.1. Model Performance

In the weighted blended approach, the dataset is divided into k = 10 consecutive
folds, with the shuffle parameter set to True, to avoid non-random assignment of the data
points in the training and test sets. Each fold is used once for validation, while the rest
of the k − 1 folds then make up the training set. The root mean square error was used
as a key performance measure for scoring. The mean square error returned by the cross-
validation scoring function is always negative, and by selecting a negative mean squared
error for scoring, the scoring function returns a positive score when the score has to be
maximised and negates it when the score should be minimised. The baseline models were
first trained individually, using the most common gradient-boosting tree-based machine
learning algorithms in gradient boosting [35], xGBoost [36], and LightGBM [34], to identify
the best-performing model baseline model. The stacked model was constructed using the
best-performing baseline model as the meta model. The baseline models and the stacked
model were used to construct the weighted ensemble model. The root mean square error
(RMSE) metric was applied, to measure and compare the models’ performance. The RMSE
metric indicated how far the predicted CO2 was from the average CO2 emissions. As seen
in Figure 8, the RMSE score on the test dataset, using a higher weight gradient-boosting
regressor as a meta regressor in the weighted ensemble model, was 1.8625, which was
marginally better than the baseline gradient boosting model.
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Figure 8. Model performance of blended, gradient boosting, xGBoost, and LightGBM baseline models.

Figure 9 illustrates a visual assessment of how well the predictions made by a weighted
ensemble model align with actual CO2 measurements. The plot has the model’s predictions
on the vertical (y) axis and the observed CO2 values on the horizontal (x) axis. From this
figure, it is evident that the data points cluster closely around a diagonal line, often referred
to as the regression line. This line represents the scenario where predicted values perfectly
match actual values.

Figure 9. Actual vs. Predicted CO2 Emissions of the Weighted ensemble model from Test Data.

In our context of predicting CO2 emissions, this closeness indicates that the model’s
predictions are highly accurate. The tight distribution around the diagonal line suggests
that the predicted CO2 values closely resemble the actual CO2 measurements. Furthermore,
the vertical distance between each data point and the regression line, known as the predic-
tion error or residual, appears small for most data points. Small prediction errors imply
that the model’s predictions are very close to the actual values.

It is worth mentioning that the absence of significant patterns or systematic deviations
from the diagonal line indicates that the model does not exhibit bias. This uniformity in
predictions across the entire range of observed values is desirable in various applications.

In summary, the proximity of predicted CO2 values to the diagonal line reflects the
excellent performance of the weighted ensemble model in providing accurate predictions.
This outcome is highly favourable in data analysis, particularly in the context of IoT-
based greenhouse gas sensing for real-time emissions monitoring applications, as it instils
confidence in the model’s reliability for making predictions and drawing inferences.

5.2. Explaining CO2 Predictions

Lundberg et al. [45], have identified that interpretations and explanations of the
predictions are as important as the accuracy of a predictive model.
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When explaining CO2 predictions from the machine learning models, the predicted
CO2, f (x), can be represented as the sum of its computed SHAP values and a fixed
base value:

f (x) = basevalue + sum(SHAPvalues). (1)

A SHAP (SHapley Additive exPlanations) [45] or Shapley value is the average marginal
contribution of a feature value across all possible combinations, whereas the base value is
the mean value of the target feature (CO2) in the dataset. The distribution of Shapley values
helps in understanding the impact of FPG, RPM, humidity, temperature, and speed on CO2
predictions, both at local (individual) and global (population) levels. Local interoperability
explains the individual predictions for each data instance, i.e., how the model arrived at a
decision, in terms of the contributions of its input features, whereas global interoperability
describes the expected behaviour of the machine learning model, with respect to the overall
distribution of the values of all the input features. SHAP values are additive in nature,
i.e., the SHAP values of FPG, RPM, humidity, temperature, and speed will always add
up to the difference between the predicted CO2 from the baseline model and the current
CO2 prediction that is being explained. Figure 10 provides information on the relationship
between the features’ actual values and Shap values, i.e., the colour bar represents the actual
values of the features (FPG, RPM, humidity, temperature, and speed) for each instance.
A red-coloured dot indicates a relatively high value of the feature, and vice versa with a
blue-coloured dot. We can see that higher values of FPG have positive SHAP values, i.e.,
the dots extending towards the right, forming the horizontal (0-axis) line are red, which
indicates that FPG leads to higher CO2 predictions.

Figure 10. Relative feature importance and their relationship to the predicted CO2.

6. Discussion and Future Research

This paper describes the weighted ensemble approach, and the modelling results of
this technique demonstrate that CO2 emissions can be predicted using data from onboard
sensors from vehicles with considerably fewer features. The major contributions from
this study can be summarised into (a) a weighted blended approach that uses data from
onboard sensors to learn the CO2 emissions characteristics, (b) visual analysis, to identify
and offset the lag from gas analyser measurements, and (c) performance comparison of the
weighted ensemble approach to other popular tree-based approaches, such as LightGBM,
xGBoost, gradient boosting, and stacked modelling approaches. The weighted ensemble
approach works by assigning weights to each of the individual baseline models and the
stacked model for predicting CO2 emissions.

In this approach, the highest weight was assigned to the stacked model, and then,
among the baseline models, we assigned a higher weight to the best-performing baseline
model, i.e., the gradient-boosting regressor, and then equally distributed the weight among
the rest of the baseline models. However, it would be interesting to see the model per-
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formance on hyper-parameter tuned stacked and weighted ensemble models, instead of
the baseline models, and also to compare the performance of the hyper-parameter tuned
stacked model to the weighted ensemble model. Long et al. [46] have identified that geo-
graphical features (such as roads around mountainous regions), weather conditions (such
as wind gusts, wind direction, and rainfall, etc.), and geographic terrains can impact CO2
emissions from vehicles. Furthermore, as our model does not generalise well, to accurately
predict CO2 emissions at very low and high levels, it would be interesting to include
contextual data in the model, describing the geographical features and traffic conditions,
such as rush hours.

In Section 5.2, we also briefly explained the relative features importance and their
relationships to the predicted CO2 emissions. In this paper, we have only focused on
global interpretability, when explaining CO2 predictions [47]. However, in order to provide
comprehensive explainability of the predicted CO2 emissions and the feature values, it is
important to (a) relate the CO2 emissions with a variety of contextual information, such as
geographical locations, and then explain the emissions, and (b) include local interpretability,
when explaining the individual predictions.

Lastly, it is important to note that in application scenarios requiring substantial com-
putational resources for real-time prediction of multiple transport vehicles, there are tech-
niques like Map-Reduce [48,49], data approximation [50], contextualisation [51,52], and
situation-aware computing [53] that can be employed, to achieve scalable real-time compu-
tation to meet the time-bound requirements [54,55].

7. Conclusions

Emissions reporting and sustainability have garnered significant global attention.
However, a critical issue is the absence of a universally accepted method for quantifying
emissions, especially in the case of Scope 3 emissions. This lack of standardisation, coupled
with the complexities of logistics operations, poses substantial hurdles for businesses
striving to comprehensively grasp and report their environmental impact. Traditionally,
a common method for accurately capturing and monitoring gas emissions in logistics has
centred on deploying gas sensors. Nonetheless, managing these sensors on moving vehicles,
especially in the presence of varying road and weather conditions, poses a significant
challenge. In this paper, we presented an innovative solution to addressing this challenge.
Our approach leverages the IoT and AI, to eliminate reliance on gas sensors for real-time
GHG emissions reporting, while accurately predicting CO2 emissions.
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Abstract: There is a consensus within the scientific community regarding the effects on the environ-
ment, health, and climate of the use of renewable energy sources, which is characterized by a rate of
harmful polluting emissions that is significantly lower than that typical of fossil fuels. On the other
hand, this transition towards the use of more sustainable energy sources will also be characterized by
an increasingly widespread electrification rate. In this work, we want to discuss whether electricity
distribution and transmission networks and their main components are characterized by emissions
that are potentially harmful to the environment and human health during their operational life.
We will see that the scientific literature on this issue is rather limited, at least until now. However,
conditions are reported in which the network directly causes or at least promotes the emissions
of polluting substances into the environment. For the most part, the emissions recorded, rather
than their environmental or human health impacts, are studied as part of the implementation of
techniques for the early determination of faults in the network. It is probable that with the increasing
electrification of energy consumption, the problem reported here will become increasingly relevant.

Keywords: battery; electric distribution; electric transmission; pollution; power cable; sensor;
switch; transformer

1. Introduction

Climate and environmental emergencies are increasingly drawing worldwide attention
to the need to increase the rate of renewable energy sources (RES) in the global energy
mix [1]. In 2022, electricity represented about 38% of the global energy mix, but since
more than 60% of it was produced by fossil fuels, its real contribution in terms of an
environmental and climate friendly source was around just 15% [2]. As a matter of fact, in
the same year, the overall percentage of RES in terms of global world energy consumption
was only just over 14%; it is worth mentioning here that this rate is expected to become
higher than 60% in 2050 [3]. The growing use of renewable energy sources brings about
environmental benefits that are effectively measurable in terms of a reduction in climate-
changing gas emissions and, more generally, in a decrease in polluting substances [4]. For
example, from 2005 to 2018, despite a global increase in primary energy consumption of
around 44%, a threefold increase in the use of renewables made it possible to obtain a net
decrease of almost 130 kt in the concentrations of all major pollutants, and the major impact
on this effect can be attributed to photovoltaic and wind power diffusion [4,5].

Car electrification is expected to play a key role in this scenario. Although a large
abatement of NOx, CO, CO2, and VOC exposure can be obtained by the introduction of
electric cars at a fast pace, fine particulate exposure cannot be reduced comparatively due
to non-exhaust emissions (brake, tyre, and road wear), which represent the most relevant
particulate pollution sources [6]. Furthermore, tyre-related particulate emissions could
increase due to a possible increase in electric car weight. Despite this, an overall gas
pollutant exposure from private transport of close to zero can be foreseen [7,8].

The replacement of fossil fuels with renewable energy sources directly generating elec-
tricity calls for the substantial implementation and strengthening of the electric transmission
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and distribution network, as well as for the replacement of any machine or equipment
based on fossil fuels with others based on electric propulsion. One of the results of such
a transformation is that power lines, cables, transformers, substation equipment, and
charge storage apparatus are expected to correspondingly increase both in number and in
dimensions. How deeply this process would impact human lives and the quality of the
environment in which we live is not completely known. Certainly, the use of lower temper-
ature energy processes will bring benefits both in terms of the CO2 footprint and a decrease
in the concentrations of the pollutants specifically connected to the use of fossil fuels [9,10].
Nevertheless, the energy transition also involves aspects that, if not decidedly negative,
are still questionable and whose overall environmental impact deserves to be investigated
in greater detail. The first is related to the energy and environmental costs of production,
recycling, and recovery of the raw materials that make it possible [11]. However, another
aspect that needs to be considered is that the quantitative increase in transmission lines,
substations, batteries, etc. will lead to a corresponding increase in sources that can modify
the environment both in terms of physical and chemical polluting agents. With regard
to the former, these effects are mainly related to electromagnetic pollution and acoustic
noise. As far as the former is considered, from a strictly scientific point of view, the effect of
electromagnetic fields on the health of living organisms may still be considered as an open
research topic although low-frequency magnetic fields (ELF-MF), typical for example of
transmission lines, have already been classified by the International Agency for Research on
Cancer (IARC) as possibly carcinogenic, and recent studies have confirmed their possible
negative role on health [12–14]. With regard to acoustic noise, intensity levels in the order
of tens of decibels, perfectly detectable by those who live near electrical substations, were
reported by Piana and Roozen and mainly attributed to mechanical effects [15]. Even more
interesting is the case of the noise generated by high voltage lines that can reach several
tens of decibels at the source, which is known to be correlated with the corona effect [16].

In this paper, we discuss a topic that has been less addressed, up to now, in the scientific
and technical literature: electricity transmission and distribution networks as atmospheric
chemical polluting agents. In Section 2, the network components, their malfunctions, and
specific emissions are reported, and in Section 3 the commercial solutions available for the
various network components are reported. Finally, a discussion of the results is presented
in Section 4, and general conclusions are drawn in Section 5.

2. Network Components, Malfunctions, and Specific Emissions

In this section, the connections between emissions and normal or faulty operating
conditions in different elements of the power transport, distribution, and use network are
reviewed. Figure 1 schematically shows the main components of an electric transmission
and distribution network: the HVPL cables carry the electricity from an electric power
plant to a transformer, and through the use of proper switchgears, LVPLs eventually
carry the energy underground to cities. In general, such a system is already equipped
with various monitoring sensors [17]. A network of this type is normally assumed to be
characterized by practically zero emissions in terms of air polluting substances during
its operation, except when malfunctions are observed in one or more of the components
that characterize the network itself. Consequently, chemical sensors are only referred to
as some specific components. The scientific literature reporting how these components,
during the operating lifetime and in case of malfunction, may emit one or more gaseous
components will be reported and discussed with the aim of understanding if the emitted
pollutant concentrations can be correlated with a specific failure.
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Figure 1. The general structure of an electric transmission and distribution network with its main
components: the HVPL cables that carry the electricity from a power plant to a transformer, the
switch cabinets, and the LVPLs carrying energy to the city.

In this scenario, the possibility of using arrays of solid-state sensors to monitor the
operating status of the aforementioned components and prevent the onset of serious
anomalies in the network is discussed. This paragraph is structured in sub-paragraphs, each
of which focuses on a specific network component: Section 2.1 is related to transmission
and distribution cables; Section 2.2 is related to transformation substations and distribution
panels; Section 2.3 is related to switches; and Section 2.4 is related to batteries.

2.1. Transmission and Distribution Lines

During the operating lifetime of an electrical transmission and distribution power line,
its components show signs of physical fatigue due to ageing wear in particular operating
conditions or specific unexpected damage. At present, in the EU, the electric grid extends
for more than 106 km and is expected to strongly increase in length because of the foreseen
massive electrification. Due to such a large and pervasive diffusion, power lines and
cables can be considered as the most pervasive source of air pollution in terms of toxic
emissions into the atmosphere in cases of both overheating and fire. This last occurrence
is, of course, the most dangerous. Burjupati and Arunjothi, for example, studied the toxic
emissions associated with cable fires and concluded that even lethal concentrations of CO,
CO2, HCHO, HCl, and SO2 can be reached in a burning event [18]. The main problem is
obviously related to the combustion of the polymers and the various additives used for
cable fabrication, with the burning of plastic components being well known in the literature
as a source of toxic compounds at concentrations associated with this type of phenomenon,
which are always very high. A detailed list of 40 pollutants released during such a burning
event is reported by Ortner and Hensler [19]. It is worth noting here that such a problem
is also correlated to any of the plastic-based components, such as the plastic cabinets
used throughout the network. In case of cables overheating, dioctyl phthalate (DOP) and
2-ethylhexanol (2-EH) are normally released well before the burning event. Interestingly
enough, an increased risk of overheating has also been reported for underground cables
used for distribution networks if they partly come from overhead cables, especially in
the case of solar exposition [20]. From the point of view of air pollution, both in case of
overheating and in case of burning, the most appropriate equipment to detect specific air
pollutants is FTIR, XPS, gas chromatography, and other similar techniques. These tools
have the disadvantage of being expensive, complex, and unsuitable for continuous analysis,
as Densley points out in Ref. [21]. However, in the case of overheating of electrical cables,
solid-state monitoring-based solutions have recently been proposed that allow for the
development of equipment suitable for more distributed monitoring. Han and coworkers,
for example, proposed MOX sensors for the detection of DOP and 2-EH compounds gen-
erally present in the overheating phenomena of many electrical cables [22]. Although the
work does not provide any evidence on the concentrations of the gases released during
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the overheating event and subsequently detected, the authors conclude that the solid-state
sensors are suitable for detecting the presence of DOP and 2-EH well before the onset of fire
phenomena. This technique can therefore be useful for preventing fire damage. Liu and
coworkers compared both commercial and homemade sensor arrays for the same purpose
to detect DOP, 2-EH, and benzene [23]. In addition, in this study, the concentrations of the
target gases are not reported. The work concludes, similarly to Han and coworkers, that the
investigated technique allows for the detection of DOP and 2EH well before the ignition of
fire in electrical cables. A similar conclusion was reached by Knoblauch and co-authors [24],
who studied a solid-state sensor array based on SnO2 with different additives. The applied
system is shown to be able to detect toxic components (CO, propylene) even before the
cables show changes in color due to overheating. From the point of view of the concentra-
tions emitted, one of the few relevant studies concerns the emission of toxic gases from the
ageing of electrical cables used in nuclear power plants (and therefore subject to particularly
restrictive regulations). This study shows how, in the case of twenty-year ageing structures,
CO, HCl, and HBr concentrations that exceed the permitted limits are measured, whereas
in the case of SO2, a sensible increase in gas emission over time is observed. In conclusion, a
significant increase in the overall toxicity index proposed for the system under examination
can be measured in any case [25]. Transmission networks exhibit peculiar properties related
to their HV operation. High-voltage power lines (HVPLs) may in fact behave as a source
of charged aerosols and ions. Specifically, corona effects in HVDC lines usually generate
atomic oxygen and other radicals, including OH or ions, mostly through the ionization of
nitrogen molecules and their compounds. Deposition of particulate matter or dirt generally
enhances the effect and hence ion production [26]. The production of ions and aerosols
poses environmental and safety issues because it can add to inhalable pollutants in di-
rectly exposed populations, including HVPL maintenance workers [27,28]. Recently, Jung
et al. implemented a measurement campaign in 2019 to establish correlations between
aerosol concentrations and operative parameters near HVPLs. Their results confirmed that
measured concentrations are correlated with operative conditions and specifically with
current and magnetic fields, whereas a high correlation was found between fine particulate
(equal or smaller than 10 um) concentrations and humidity [29]. It is worth noting that
under extreme weather conditions, elastic extension or fatigue failures in conductors, poles,
crossarms, or surrounding objects (trees) have been found to be responsible for wildfire
ignition, generating volatiles whose detection can act as an alarm trigger [30]. Because of
the corona effect, HVPLs are found to be sources of atmospheric pollutants such as ozone
and nitrogen oxides [31]. Therefore, power transmission networks can be considered as a
collection of connected linear sources of air pollution. It is extremely difficult to quantify
the actual absolute (and hence relative) impact on the recorded pollution levels, which may
vary locally in space and time due to accumulation and transport patterns depending on
weather and topographic conditions [32]. Elansky et al. showed that ozone levels near
220 kV powerlines are 2 ppb higher than background recordings, whereas an average excess
of 2.5 ppb to 4.6 ppb was recorded at multiple sites near 500 kV powerlines [33]. They also
attempted an overall evaluation, revealing that emissions by high-voltage power trans-
mission lines during the 1990s could have globally accounted for 400–600 × 103 tons/year,
at least 0.1% of ozone tropospheric formation by photochemical processes. Local expo-
sure has also been investigated in other studies. Cociorva and co-authors quantified the
potential additional intake of pollutants in the area of HVPLs through ad hoc measure-
ment campaigns. Peak ozone and nitrogen oxide concentrations were found to exceed
levels measured in the surrounding background areas by 13% and 30%, respectively [31].
Interestingly, hourly concentration patterns reported anomalous peaks during the night.
Valuntaite and co-authors focused on ozone measurements near two 330 kV high-voltage
transmission lines arranged parallel to each other and found an excess of 2% in terms of
atmospheric ozone near the lines [34]. Dirty or faulty insulators are known cases of arcing
issues that may cause increased emissions of ozone. Ionized ozone may in turn lower
air insulation properties, causing direct phase-to-phase or phase-to-metal cage discharge
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with considerable risks for infrastructural faults targeting distribution nodes. Detection
of high levels of ozone can be considered an alarming condition, signaling impending
faults. Figure 2 provides a graphical representation of the most relevant polluting issues
concerning power lines. On the left, the major pollutants observed in the case of cables
overheating or the corona effect are shown, while the case of cables burning is shown on
the right.

Figure 2. Polluting emissions in case of power lines overheating and the corona effect (left) and
cables burning (right).

2.2. Switchgears

While the association between ozone and electrical discharge is well known in the
electrical engineering maintenance field, there is limited use of volatiles or particulate
monitoring tools in electrical power transmission and distribution components. A notable
example is reported in the 2020 study by Kakar [35]. There, an IoT system based on ozone
sensors was developed for switchgear monitoring purposes. Anomalous conditions are
screened and detected for predictive maintenance applications. This capability can be
exploited to activate and optimize maintenance actions on switchgear components. On
the other hand, for its direct impact on fugitive currents in insulators (also captured in
IEC68150 [36] design recommendations), air pollution analysis and, in particular, aerosol
concentration measurements were also used in [37] to assess status and predict faults in
HV disconnectors, which was reviewed in [38].

2.3. Power Transformers

Power transformers are critical nodes of the electric power grid. These generally
highly reliable systems are expected to have an useful operational lifetime of more than
25 years when operating temperatures are maintained between 65 ◦C and 95 ◦C, but this can
be extended to up to 60 years when these conditions are preserved and proper maintenance
regularly conducted. Gas generation in transformers is a relevant process connected to
regular operation. Therefore, it is an important indicator of its health status [39].

In fact, for oil- and silicone-immersed transformers, slight damage to different parts
of this infrastructure node can lead to an increase in dissolved gases that can be detected
well in advance of a critical malfunction arising [40,41]. During normal operations, several
analytes and compounds are released in the oil, including hydrogen (H2), methane (CH4),
acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide (CO), and carbon
dioxide (CO2), most of which are found at low concentrations. Fast increases in their
absolute or relative concentrations are anomalous events that can signal impending faults.
Thermal failures, discharges, long-term exposure to electromagnetic fields, and the presence
of water in the oil facilitate cracking and unpredicted chemical reactions, in turn generating
H2, CO, and VOCs that dissolve into the oil itself and whose concentrations are related to
the temperature, as shown in Table 1 [42]. Hence, continuous monitoring of the mixture of
dissolved gas by DGA can be a powerful tool for predictive maintenance applications for
these components [43]. Chemical sensors, including gas sensors, have also been reported
for use in continuous monitoring applications for power transformers, and IEEE standards
based on fuzzy logic or machine learning have been proposed to recognize the type of
faults and their origin, such as excessive heat, arcing, or discharge phenomena [44]. Under

333



Sensors 2024, 24, 587

specific conditions, peculiar compounds are released in oil, which are consequences of
specific types of faults. Furfural, for example, is released because of insulation paper
(winding) ageing. Therefore, furfural content or its proxies (primarily CO and CO2 and
their ratio) can be exploited to obtain an estimate of the degree of polymerization in the
winding insulation to predict the transformer’s lifetime, as attempted in [45], or transformer
status, as attempted in [46,47]. Insulation deterioration can also be highlighted by carbon
monoxide emissions. Acetylene may be a proxy signal for overheating, partial discharge,
or even arcing (which in turn can also induce overheating).

Table 1. H2, CO, and VOCs observed during transformer operation, whose concentrations are related
to the temperature and to the fault typology.

GAS Fault Type Concentration–Temp

<250 ◦C 250 ◦C < t < 350 ◦C >350 ◦C

H2 Discharge, arcing Low Average (growing) High
C2H2 Temp fault Absent Low High
CO Temp fault, cellulose Absent Low High

C2H2 Arcing Absent Absent High
CH4 Discharge Low High Low
C2H6 Discharge Absent High Low

Depending on the solubility of the target gas, fault detection can be best observed with
gas sensors or by sampling of the oil reservoir, its headspace, or the transformer headspace
itself. Hydrogen is, in fact, likely to easily escape the transformer and could be found at
significant concentrations in the transformer headspace. This detection, however, will not
provide information on the location of its production. Nitrogen, CO, and methane, which
also share low solubility in the oil, are instead associated with the presence of both thermal
and electrical faults [38], and their presence can be detected in the transformer headspace.
Monitoring gas release in insulator fluids or headspace emissions is considered a critical
issue for the preservation of these valuable assets. Regarding fugitive emissions, it has
already been shown that distributed gas sensing may be an effective approach for their
monitoring. In a study by Minglei et al., a complete solution following this approach was
exploited and lab-tested for the monitoring of hydrogen emissions [48]. Figure 3 depicts
the gas emissions that can be found in the transformer environment and whose relative
concentrations can be correlated to specific faults.

C2H6 

CH4 

CO 

H2 

C2H2 

C5H4O2 

Figure 3. H2, Methane, CO, and the various VOCs that are detectable in the electric transformer environment.

2.4. Batteries

In modern power grids, batteries are a basic facility that provides inertia for system
balance in the presence of distributed and variable energy sources. Unfortunately, they
are prone to catastrophic malfunctions leading to fires and, more rarely, explosions [17].
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In the automotive industry, new regulations now oblige that dangers to car passengers
be signaled minutes before a dangerous event may occur [49]. Once started, fires can be
particularly difficult to extinguish when the storage system size is significant because of
the large DC power arc. The most common causes are electrical or mechanical runaways
caused by overcharging, undercharging, or even short circuits caused by connected devices,
including inverters. Harmful or dangerous gases are emitted before the fire takes place or
in its initial stages during thermal runaways. Among them are HF at high volumes, which
could be fatal when emitted in confined environments, carbon monoxide, methane, and
VOCs. Ethylene carbonate, ethyl-methyl carbonate, diethyl carbonate, dimethyl carbonate,
and propylene carbonate can be found in Li-ion batteries off-gassing from electrolytes
and are considered the most relevant [50,51]. Actual ignition may render most of these
components oxidized to harmless combustion by-products; however, since ignition must
be avoided by any means, ignition denial may cause them to reach concentrations that
easily lead to fatal outcomes for inhaling humans [52]. Even before thermal runaway may
start, it has been demonstrated that CO2 emissions may signal this impending dangerous
event, and chemical sensors may be used for alarming and for identifying the need for
venting [53]. An increase in the concentration of hydrogen may also be considered as
an early thermal runaway precursor due to unwanted electrolysis along with electrolyte
vapor and gases produced by degassing of failing LIB batteries closer to thermal runaway
events [54]. Because of the variety of emitted compounds and analytes, the use of a
chemical multisensory device coupled with pattern recognition software for enhancing
detection performance, rejecting false positives, and avoiding unwanted interference is
recommended. In Table 2, the gaseous emissions so far reported by different authors and
the main triggering events are summarized.

Table 2. Anomalous electric battery gas emissions so far reported.

Expected Gas/Volatile Emission Relevant Event Reference

HF (Fluoridic Acid) Thermal runaway, suppressed fire and explosion [52,53,55]

H2 (Hydrogen) Unwanted electrolysis, thermal runaway [53,54,56–58]

CO (Carbon Monoxide) Thermal runaway, fire and explosion [52,53]

CO2 (Carbon Dioxide) Thermal runaway, fire and explosion [53,56,58]

EMC (Ethyl Methyl Carbonate) Electrolyte loss or vaporization, thermal runaway, suppressed
fire and explosion, unsuppressed fire and explosion (traces) [50–52,54–56,58,59]

DMC (Diethyl Methyl Carbonate) Electrolyte loss or vaporization, thermal runaway, suppressed
fire and explosion, unsuppressed fire and explosion (traces) [50–52,54–56,58,59]

EC (Ethylene Carbonate)
Electrolyte loss or vaporization, thermal runaway,

unsuppressed fire and explosion (traces), suppressed fire and
explosion

[50–52,54–56,58,59]

DEC (Diethyl Carbonate) Electrolyte loss or vaporization, unsuppressed fire and
explosion (traces), suppressed fire and explosion [50–52,54–56,58,59]

C2H4 (Ethylene) Thermal runaway [54,58]

CH4 (Methane) Thermal runaway [54]

C2H6 (Ethane) Thermal runaway [54,56]

C2H2 (Acetylene) Thermal runaway [54]

C4H10 (Butane) Thermal runaway [54]

C6H6 (Benzene) Unsuppressed fire and explosion (traces), suppressed fire and
explosion [52–54]

C6H5CH3 (Toluene) Unsuppressed fire and explosion (traces), suppressed fire and
explosion [52]
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Table 2. Cont.

Expected Gas/Volatile Emission Relevant Event Reference

(C6H5)2 (Biphenyl) Unsuppressed fire and explosion (traces), suppressed fire and
explosion [52]

C3H4O (Acrolein) Unsuppressed fire and explosion (traces), suppressed fire and
explosion [52]

Finally, in Figure 4, a graphical representation of gas emissions in failing batteries
is presented.

Figure 4. Gas emissions in failing batteries before unwanted electrolysis (a), in mechanical failure (b),
and during thermal runaways (c,d) as conceptualized and depicted in [54]. The final ignition case is
also considered (e). Refer to Table 2 for acronyms.

3. Commercial Systems

As mentioned above, during their operating lifetime, electric grid components may
be sources of air polluting gases and aerosols. The effect is particularly severe up to the
point of resulting in lethal concentrations in the case of malfunctions occurring in one
or more equipment components. Continuous monitoring enables so-called data-based
maintenance, a concept that assumes that component faults can be forecasted and that
ageing processes can be monitored to properly schedule on-site intervention. Several
companies are currently investing in research regarding methods for real-time monitoring
of components of the electrical infrastructure to improve the reliability of power distribution
systems. Honeywell (Charlotte, NC, USA) offers a large variety of gas sensors connected to
the cloud that are directly remotely accessible for both reconfiguration and data transfer.
The XNX, XCD, XRL, and S3000 series [60] all offer the possibility to monitor CO and
CO2. The XNX series also allows for the monitoring of H2, while the XRL series can
sample O3. The mentioned quantities are important data in the case of transmission and
distribution lines in the proximity of which these gases can be found, and the presence of
these gases could reveal an upcoming fault. General Monitors (Irvine, CA, USA) has in
its portfolio the toxic gas detector TS4000 [61] with replaceable electrochemical cells, and
the system is reconfigurable to satisfy any specific requirements. This system can be used
for transmission and distribution line monitoring. Honeywell series 700-AS switches are
equipped with two types of sensors: catalytic sensors and electrochemical sensors [62].
WoMaster has in-catalog sensors for H2, CO, CO2, O3, etc. They offer the possibility of
putting together more sensors in a single case. Each sensor communicates with an RS485
bus connected to a gateway that exploits LORA communication or the Internet. Ad hoc
WI-FI + LTE gateways and LORA NBIoT gateways to complete the network are also
available [63]. The collected data can be sent to a proprietary server with no additional
costs. These sensors are suitable for applications in the energy-transforming domain, as
well as in transmission line applications or power station monitoring. Bosch proposes an
all-in-one solution (BME688) that exploits artificial intelligence to obtain measurements of
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VOCs, VSCs, H2, CO, pressure, temperature, and humidity with a single sensor that can
communicate the measurements to external systems [64]. This solution can be applied in
the case of power transformers and battery monitoring. If a higher sampling frequency
is required, Gas Sensing Solutions proposes the SprintIR®-R CO2 Sensor (CO2 Meter,
Ormond Beach, FL, USA) for the measurement of carbon dioxide [65]. They claim that this
sensor can take 50 measurements per second, ideal for high-speed monitoring of CO2 or
locations where gas concentration might change rapidly. Honeywell proposes the Li-ion
Tamer Gen3 sensor, which detects the electrolytic vapors of lithium-ion batteries. It also
provides monitoring of the temperature and humidity of the environment [66]. Readings
of gas, temperature, and humidity are sent via CanBus to the hub for storage or resending.
These last sensors are useful for battery condition monitoring. Honeywell series 700 RL
sensors are methane sensors that can be used in battery status monitoring. Methane is
in fact emitted before a fire occurs during thermal runaway. In addition, CO2 sensors
can be used for fire prevention purposes in the case of battery monitoring, and, in this
case, the SprintIR®-R CO2 Sensor mentioned before can be used to quickly sample the air
surrounding the battery to capture the rapid increase in the concentration of CO2. Schneider
(Rueil-Malmaison, France) offers a closed solution for cable overheating, especially for
power cabinets [67]. Vaisala (Vantaa, Finland) has been operating in the field of power
measurement for many years. For power transformer condition monitoring there are
several solutions, such as the OPT 100 [68], a DGA monitoring system claimed to require
zero maintenance that is capable of auto-calibration.

4. Discussion

In this paper, a subset of research works highlighting the correlation between power
grid electrical equipment operating conditions and specific gas emissions is reported
and reviewed. It has been observed that in the case of transmission and distribution
cables overheating, substantial concentrations of DOP and 2-EH are released into the air.
Anomalous concentrations of ozone in the proximity of HV power lines, mainly due to
the corona effect, have also been reported. However, only a limited subset of studies
have analyzed such emissions in terms of their air pollution effect. Emitted ions are also
known precursors of aerosol pollutants, but their concentration increase in the immediate
surroundings is still disputed, although increased deposition due to HV has been clearly
shown. To the best of our knowledge, the contribution of these emissions to air quality has
not been considered in pollutant emissions inventories as they are expected to be, at least
at present, too low to influence the balance. However, some authors have reported that
the quantitative balance of ozone at the surface can be significantly affected near HVPLs.
Ozone is present also in the case of the malfunction of switchgears and may itself contribute
to further damages. Due to their extension, transmission and distribution power line cables
should be carefully monitored in terms of their possible polluting emissions in case of
cables burning when lethal limits for humans can be exceeded. During normal operation,
oil-immersed power transformers release various gases both in the oil and eventually in
air, including H2, CH4, C2H2, C2H4, CO, and CO2. The concentration of these gases has
been observed to increase rapidly in the case of equipment anomalies. Electric batteries
carry with them an intrinsic danger of overheating and thermal runaway that can lead to
fire. In the time directly preceding the fire, VOCs, CO2, CH4, and H2 are released. Based
on this evidence, some considerations can be made regarding the opportunity, perhaps the
need, to enhance overall system reliability using condition monitoring, or in other words
by electric system data-based maintenance operating by continuously monitoring the main
asset of the system itself. Traditional approaches are based on redundancy, selectivity, and
draw out technologies. Continuous condition monitoring allows system availability to be
obtained at a reasonable cost. Installing IoT gas sensors along with power grid devices
allows single components to communicate their status continuously. When a component
reaches a predefined limit, it can be scheduled to be substituted at a time before the failure,
thus avoiding environmental issues. In the case analyzed in this work, monitoring could be
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continuously performed on samples of the concentration of gases in proximity of the facility
under observation. Several market solutions that allow for the design of an interconnected
network of sensors are already available. Once all the useful information is collected,
machine learning algorithms can be trained to recognize classified patterns of forthcoming
failure. Furthermore, the grade of pollution can be estimated because, during normal
operation, toxic gases are released.

5. Conclusions

The above-reviewed papers show that an operating electric transmission and dis-
tribution network may emit several atmospheric pollutants both in its normal everyday
operation, such as in the case of HVPL cables because of the corona effect, and because
of increasingly dangerous anomalies. Such emissions can, in general, be correlated to the
specific fault a component is going to suffer. As a result, several IoT-based sensor systems
that are suitable for implementing preventive fault detection are under investigation or
even already on the market. It is worth noting that few papers have discussed the case of
distribution networks, which is, on the contrary, quite relevant in terms of their possible
effect on city environments. Moreover, quantitative investigations of the emitted gas con-
centrations are almost entirely absent. Future research should probably focus on these two
aspects that are of relevance in terms of the expected massive electrification.
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Abstract: Recent advances in sensor technology for air pollution monitoring open new possibilities
in the field of environmental epidemiology. The low spatial resolution of fixed outdoor measurement
stations and modelling uncertainties currently limit the understanding of personal exposure. In this
context, air quality sensor systems (AQSSs) offer significant potential to enhance personal exposure
assessment. A pilot study was conducted to investigate the feasibility of the NO2 sensor model
B43F and the particulate matter (PM) sensor model OPC-R1, both from Alphasense (UK), for use
in epidemiological studies. Seven patients with chronic obstructive pulmonary disease (COPD)
or asthma had built-for-purpose sensor systems placed inside and outside of their homes at fixed
locations for one month. Participants documented their indoor activities, presence in the house,
window status, and symptom severity and performed a peak expiratory flow test. The potential
inhaled doses of PM2.5 and NO2 were calculated using different data sources such as outdoor data
from air quality monitoring stations, indoor data from AQSSs, and generic inhalation rates (IR) or
activity-specific IR. Moreover, the relation between indoor and outdoor air quality obtained with
AQSSs, an indoor source apportionment study, and an evaluation of the suitability of the AQSS
data for studying the relationship between air quality and health were investigated. The results
highlight the value of the sensor data and the importance of monitoring indoor air quality and activity
patterns to avoid exposure misclassification. The use of AQSSs at fixed locations shows promise for
larger-scale and/or long-term epidemiological studies.

Keywords: air quality; low-cost sensors; indoor air; exposure assessment; source apportionment;
I/O ratio

1. Introduction

Air pollution has long been known to affect health, and it contributes heavily to the
Global Burden of Disease [1,2]. As stated in the United Nations Sustainable Development
Goals, improving air quality is a pillar of improving global health and well-being (Goal
3), as well as creating safe and sustainable cities (Goal 11) [3]. However, as it stands
now, approximately 6.7 million deaths can be attributed to air pollution each year [4].
The most recent WHO air quality guidelines describe air pollution as “the single biggest
environmental threat to human health” [5].

The number of epidemiological studies showing the health effects of air pollution has
been growing in recent years, but it is far from being complete [6]. With more research
emerging, the effects of both long- and short-term exposure to pollutants are now better
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understood. It is also recognised that the level of exposure at which harmful long-term
health problems can occur is significantly lower than was thought before [5,7].

The current standard to measure air quality relies on permanent outdoor monitoring
stations. While these stations provide accurate and continuous measurements, both the
equipment-purchase and maintenance costs are high. Due to their expense, their spatial
distribution across the world is limited [8]. According to Fuller et al. [4], most urban areas
in Europe and North America have at least one measurement station, which corresponds
to one station for every 100,000 to 500,000 people, approximately. Due to the high spatial
variability of pollutant concentrations, the existing distribution of monitoring stations is
inadequate for accurately measuring air quality across different microenvironments [7,9].

Standard outdoor monitoring stations leave another gap in understanding air quality’s
relation to health, in that only ambient outdoor air is measured. The majority of the
population in developed countries spends most of their time in indoor environments [10].
Bulot et al. [11] report that indoor pollution exposure causes around half of all pollutant-
related deaths and that the associated risks “cannot be accurately studied by outdoor
monitoring stations”. Any individual’s exposure to pollution cannot be fully described
without understanding both the indoor and outdoor air quality [12].

As with many problems linked to climate change, there is a clear disparity in pollution
exposure across the globe [13,14]. Low- and middle-income countries (LMICs) bear the
brunt of deaths and economic loss due to air pollution [4]. Even as conditions improve
in some wealthier countries, air quality continues to deteriorate in many LMICs [15].
According to the WHO, this is in part due to economic development in LMICs being
reliant on fossil fuel burning [5]. Not only is there global inequality in exposure but also
in resources available to effectively measure pollution levels [16,17]. Sub-Saharan Africa
is reported by Fuller et al. [4] to have roughly one permanent measurement station per
15.9 million people. This extreme imbalance further emphasizes the need for alternative
measurement methods [18].

Air quality sensor systems (AQSSs) for monitoring air quality have shown potential
as practical solutions to these needs [19–22]. Current research in this field is focused on
two main approaches: the dynamic or direct approach, which utilizes portable sensors,
and the static or indirect approach, which relies on stationary sensors. The difference in
cost and the portability of smaller sensors allow studies that track individual exposure, in
contrast to the bulkier reference-grade instruments. For example, a study using wearable
sensors on bicycles demonstrated that the health benefits associated with cycling could be
partially offset by exposure to traffic-related air pollution along the route [23]. Moreover,
multipollutant AQSSs have been developed and tested for estimating individual-level
pollutant doses with promising results [24–26]. However, these studies also highlighted the
limitations and significant resources required for evaluating in-transit or commuting data.

The widespread use of AQSSs has also enhanced research on exposure assessment
across different microenvironments. A study conducted on a university campus in Beijing,
China, used fixed AQSSs to investigate the impact of outdoor-origin PM2.5 on potential
inhaled doses indoors [27]. Amegah et al. [28] conducted a study at traffic hotspots in Accra
(Ghana) using Purple Air PA-II monitors and self-reported health questionnaires and found
consistent evidence that PM2.5 exposure among street traders increases the occurrence of
respiratory and cardiovascular symptoms.

The increased spatio-temporal resolution provided by AQSS networks has the poten-
tial to improve our understanding of individual exposure pathways [29]. The future of
environmental health studies lies in the integration of big data from sensors and models.
Research on data fusion has already explored both the dynamic and static approaches.
For instance, recent studies have demonstrated that combining stationary AQSSs with
dispersion models can enhance assessments of pollutant exposure, including human mo-
bility patterns [30–32]. Other researchers have focused on integrating model data with
information from wearable sensors [33,34], enabling more accurate exposure assessments
and better health risk management.
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Epidemiological studies will benefit immensely from the enhanced spatial resolution
enabled by AQSSs. In particular, resource-limited regions can find in AQSSs a solution to
close the data gap left by the scarce or non-existent monitoring and help address air quality
management [35]. As stated by Vilcassim and Thurston [7], AQSSs will be a key part of
“more democratized, high resolution, and inter-connected air (and health) monitoring,
generating ‘big data’ for complex, but more inclusive, research”.

In this study, a pilot project was carried out to evaluate the feasibility of using AQSSs
at fixed locations for epidemiological investigations. This study aimed to evaluate the use
of AQSSs over a longer timeframe, which so far has not been thoroughly studied [36,37].
To this end, custom-built stationary sensor systems for NO2 and PM2.5 were deployed for
approximately 30 days both in- and outside the homes of seven individuals diagnosed
with asthma or chronic obstructive pulmonary disease (COPD). Participants recorded their
indoor daily activities as well as the window status and home presence on an hourly basis.
Using this information alongside the AQSS data, we analysed the activity-specific indoor
and outdoor NO2 and PM2.5 ratio (I/O ratio) and conducted indoor source apportionment.
Additionally, indoor activities were classified into four intensity levels and the activity
adjusted inhalation rates (IR) were calculated based on them. This information has been
used to evaluate the exposure misclassification of the potential NO2 and PM2.5 dose.
Comparisons of the calculated potential doses were made between using outdoor air
quality monitoring stations or indoor AQSS data, and using generic IR versus activity
adjusted IR. The results were compared with other studies, and a comprehensive discussion
of the challenges encountered during the study was included as well. Finally, a qualitative
symptomatology analysis was conducted to explore the suitability of the AQSS data for
studying the relationship between air quality and health. The health data used in this
analysis were self-reported by participants using a health questionnaire that we developed.

2. Methods

2.1. Study Design and Population

This study took place in Stuttgart, the sixth largest city in Germany with an estimated
population of 630,000. Stuttgart has a unique and complicated meteorological and urban
climate since the city centre is set in a basin surrounded by hills, and only opens to the
northwest, where it meets the Neckar River Valley [38]. The geographical situation, combined
with the fact that the busy main roads traverse the basin, often leads to temperature inversions
during the cold months, which in turn worsens the air quality in the city centre [39].

The measurement campaign lasted approximately six months, spanning from winter to
spring. The first measurements were taken on 19 December 2019 and the last measurements
on 28 May 2020. The indoor and outdoor AQSSs were deployed in the patient’s home for
approximately one month.

The AQSSs were checked once in the middle of the measurement period to ensure
that everything was working properly and that data were still being collected. The dates
when AQSSs were deployed and checked in each patient’s home are detailed in Table S1 in
the Supplementary Materials.

Personnel of the pulmonology practice assisted in recruiting patients to participate in
this study. The criteria for a patient to qualify for participation in this study included, among
others, being aged 18 years and over, being diagnosed with COPD or asthma, not requiring
supplemental oxygen therapy, and living near a busy road in Stuttgart. Seven adult subjects
of varying ages and diagnoses participated in this study. The demographics of the patients
are shown in Table S2. Patients provided written consent for their participation, and all
collected data were kept pseudo-anonymous. Individuals are referred to by a patient
identification number (ID). This number was assigned by the doctor to maintain patient
anonymity. In this manuscript, the participants are referred to by numbers from 1 to 7.
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2.2. Materials

Two AQSSs were designed, tailored to their usage either indoors or outdoors (see
Figure S1 in the Supplementary Materials). The NO2 and PM2.5 sensors were from the com-
pany Alphasense (Great Notley, UK), model B43F and OPC-R1, respectively. Additionally,
a temperature and relative humidity (RH) sensor model HYT221 from the company IST
(Ebnat-Kappel, Switzerland) was included in both sensor systems. The indoor AQSSs were
positioned in the participants’ living room, chosen based on patients’ feedback indicating
it as their primary location for daily activities. Patients 1, 2, 3, 6, and 7 each had a single
outdoor AQSS placed by their house. For patient 4, two AQSSs were placed outside on
opposite sides of the house. One AQSS was positioned on the street-facing side of the house,
while the other faced towards the garden. From here on, to differentiate between the two
outdoor AQSSs for patient 4 they are referred to as either “street” or “garden”. Outdoor
data for patient 2 were lost due to a heavy storm. Patient 5 did not provide consent for an
outdoor AQSS. The patients were unable to view the sensor data during the measurement
period to avoid prompting changes in their everyday routines.

The air quality monitoring station operated by the University of Stuttgart at Haupt-
stätter Street was used for co-location. This station represents a traffic hotspot and is
located in the city centre. The approximate locations of the patients’ homes and the outdoor
monitoring station are shown in Figure S1 in the Supplementary Materials.

2.3. Data Collection

A summary of the data collected (or excluded) for each patient is shown in Table S3. At
the start of the experiment, each participant’s home was mapped using observations from
an in-person visit, and together with the patient, an environmental survey about the house,
the daily routines, the building, and the area was conducted. Examples of information from
the environmental survey include the type of landscape around the home, the distance
from the nearest busy road, the type of stove, and whether there are additional residents
in the home. Selected results from these environmental surveys are shown in Table S4 for
all participants.

Patients were instructed to complete a logbook, recording hourly information across
three distinct categories: patient location, activities at home, and room environment. The
environmental category specifically included details such as window status (open, closed,
or tilted), air conditioning use, and the presence of a functioning fireplace. However, none
of the patients reported having either air conditioning or a fireplace in operation. Therefore,
the analysis presented in this manuscript focuses solely on the window status within the
room environment category. An example logbook is provided in Figure S2.

The category “activities at home”, also called activity log, included ten common indoor
activities. As activities were tracked each hour, sometimes multiple activities were recorded
during the same hour. There were also some hours for which no data were provided. In
the data analysis, several default values were selected to account for instances where a
patient did not report any activities. The default values were set to “home”, “unknown”,
and “window closed” accordingly. The three grouping categories, their possible values,
and the default value are given in Table 1. Patients who had a garden or balcony (2, 3, 4,
5, 6, and 7) were asked to log when they used it during the day. For patients who had
additional residents in their homes (3, 5, 6, 7), the activities of the additional residents were
not recorded.

Participants were also asked to complete a daily health survey about the presence
and severity of respiratory symptoms. Another key method to monitor asthma and COPD
patient’s health is to check lung function. For that purpose, each patient was given a peak
flow meter, shown how to use it properly, and asked to self-test their peak expiratory flow
(PEF) each evening. PEF is the rate at which air exits the lungs in one quick and forceful
exhale and is given in units of L min−1.
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Table 1. Groups of activities tracked by patients and assigned default values.

Category Possible Values Default Value

Patient location
Home

Not home
Garden or balcony

Home

Window status
Window closed
Window tilted
Window open

Window closed

Activity

Sleeping
Exercising
Reading

Computer
TV or radio

Cooking
Eating
Visitor

Cleaning

Unknown

2.4. Data Analysis
2.4.1. Overview

As shown in Figure 1, source data from AQSSs, our outdoor monitoring station in
Hauptstätter Street, health surveys, and logbooks were merged into a single comprehensive
dataset, categorised by date and time, patient ID, and whether the data were collected
indoors or outdoors. For the data gathered from participants’ homes, the percentage of
completeness after data cleaning was calculated and is presented in Table S5. None of the
NO2 sensors achieved 100% data completeness due to the exclusion of the warm-up periods.

Figure 1. Schema of the data analysis.

The raw sensor data were corrected using artificial neural networks (ANN) and linear
regression for NO2 and PM2.5, respectively, followed by conversion into hourly and daily
averages. Logbook information was digitalised and categorised into the following groups:
patient location, window status, and activities. This information was used in the I/O ratio
and the source apportionment studies as well as for the calculation of the activity-specific
IR according to the activity intensity levels.

Subsequently, the health score was calculated using the health surveys and, together
with the PEF and the AQSS data, evaluated in a qualitative symptomatology study. Finally,
the NO2 and PM2.5 potential doses (Dp) were calculated using pollutant concentrations
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(c(t)) from the outdoor monitoring station or the indoor AQSS and the activity-specific IR or
the generic IR. The data analysis was carried out in the R software (v 4.2.2). The following
sections provide a detailed description of the data processing and evaluation.

2.4.2. Sensor Data Quality Assurance

The calibration and evaluation of the sensors took place before deployment. A separate
paper focusing on the calibration and performance evaluation of the NO2 and PM2.5 sensor
units will be published soon. Data for PM2.5 concentrations were taken from the raw
sensor data every two seconds. First, data from times with any sensor overflow errors were
removed. Next, the univariate linear regression shown in Equation (1) was applied to the
PM2.5 data before hourly averages were taken.

ccorr = m craw + b (1)

Here, ccorr is the corrected pollutant concentration in μg m−3, m is the correction coef-
ficient, craw is the sensor’s raw reading in μg m−3, and b is the correction constant or offset
in μg m−3. These correction factors were found by co-locating reference-grade instruments
and the indoor and outdoor AQSSs in indoor and outdoor conditions, respectively. Table S6
lists the values of the correction parameters for each sensor. The outdoor PM2.5 sensor
had a dryer at its inlet to avoid the effect of hygroscopic growth of particles at high RH. A
detailed evaluation of the thermal dryer is described in Chacón-Mateos et al. [40].

The corrections of NO2 sensor data were achieved using machine learning (ML)
methods. Several ML models were investigated to determine which model best corrected
the data for variations caused by changes in temperature and RH. Models applied during
the study were support vector regressor (SVR), random forest regressor (RFR), and ANN
together with multiple linear regression (MLR). Each model was run on both indoor
and outdoor data. The predictions of the ML models were compared with the NO2
concentrations measured by diffusion tubes placed in participants’ homes alongside the
indoor and outdoor AQSSs. ANN results were most comparable to the passive sampling
data. Moreover, ANN was deemed to be the most robust, and capable of handling the
influence of the RH and temperature on the sensor signal. The NO2 sensor data were first
averaged in 10 min intervals before being processed using the ANN model.

2.4.3. Activity Specific I/O Ratio

To investigate if AQSSs can be used to determine which indoor activities contribute
most to indoor pollution and the effect of outdoor air and ventilation on indoor air, the I/O
ratio was calculated for the nine logged activities. For hours during which participants
logged multiple activities, each listed activity was considered individually rather than
treating the multiple activities as a group. By splitting groups of activities, the calculated
hourly concentration is attributed to each of the activities happening in that hour. This
method is used to approximate the contribution of each activity to the total pollutant
concentration but may lead to estimation errors. Take as an example, two activities logged
in an hour, one which generates substantial pollution (cooking) and the other which does
not generate any (sleeping). By assigning the hourly pollutant concentration average to
the high-emission activity (cooking), its overall contribution may be underestimated. The
reverse is true for a low-emission activity (sleeping), in that its contribution to the hour
may be overestimated using this method.

To determine the I/O ratio associated with each activity, only indoor activities were
included, and only if they occurred for multiple patients in the dataset. The categories
“Not Home” and “Garden or Balcony” were therefore excluded from this analysis. For
patient 4, who had two outdoor sensors, the data from the street-side sensor were used.
As the indoor PM2.5 concentration of patient 7 was, on average, 12 times higher than all
other participants, the I/O ratio for PM2.5 was evaluated separately. The outdoor PM2.5
sensor in the house of patient 6 stopped working properly from 19 April 2020 until the end
of the deployment on 30 April 2020, and therefore, only the first 15 days were used for the
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data analysis. Patients 2 and 5 were excluded from these results due to the lack of outdoor
sensor data.

2.4.4. Source Apportionment

The activities recorded in the logbooks, combined with the sensor data, were used
to determine the variation in indoor air quality due to participant actions. The goal was
to determine which activities generated the highest pollution concentrations for NO2
and PM2.5 and whether they could be tracked using stationary AQSSs. For this analysis,
activities were included as they were reported in the logbook, with multiple activities
occurring during the same hour. Activities are only included if they occurred for a minimum
of 30 h across all patients to focus only on the most common combinations of activities.

2.4.5. Symptomatology

To assess the feasibility of using AQSSs to investigate the relationship between symp-
tom severity and air quality, a health questionnaire was developed based on the Asthma
Control Test (ACT) and COPD Assessment Test (CAT). Symptoms included in the ques-
tionnaire were the following: feelings of tightness in their chest, dyspnea or shortness of
breath, cough, sputum or coughing up mucus, wheezing, impairment of their daily life,
and how much they used their rescue inhaler during the day. A sample of the health survey
is shown in Figure S3 in the Supplementary Materials.

A health score was calculated based on the results of the daily questionnaire regarding
the presence and severity of symptoms. Each of the possible answers to the questions in
the health survey was rated from zero to four. The health score was calculated as the sum
of these individual points for each single day. The maximum score possible was 28. A high
health score means that the patient’s symptoms were more severe. A score of zero would
mean no symptoms were present on the day.

The results of the daily PEF measurements were analysed without further processing
in L min−1. The PEF device was able to measure airflows between 50 and 800 L min−1. The
health scores and the daily PEF measurements were examined individually for each patient.

2.4.6. Exposure Assessment

In this section, the calculations of the potential inhaled dose are explained. First, each
activity in the logbook was assigned to an intensity level, based on how strenuous the
activity may be. These estimates of intensity are taken from Chapter 6 of the U.S. EPA’s
Exposure Factors Handbook [41]. There are five intensity levels used here, as defined by
the EPA. Resting corresponds to sleeping or napping, sedentary describes mainly static
activities such as watching television or reading, light includes cooking or other standing
activities, and moderate is described as walking, easy cycling, or climbing stairs [41]. This
classification is used to predict the IR of a patient for the hour. The IR and the intensity
level assigned for each activity according to age and sex are shown in Table S7. For hours
where no activities were recorded, the generic IR was used. No IR or dose was calculated
for the periods when patients were not home as the patient would not be in the same area
of the sensor, making the calculations inaccurate for their true exposure.

Given that multiple activities with varying intensities were sometimes recorded within
the same hour, we conducted an analysis to assess the influence of IR variability. We cal-
culated the minimum, maximum, and mean IR and used them to estimate the potential
inhaled dose indoors. The mean was estimated under the assumption that each recorded
activity accounted for equal fractions of the hour. For example, if both “Cooking” and
“Sleeping” were marked for 8:00 am, it was assumed that the person cooked and slept for
30 min each. To calculate the hourly minimum (or maximum) IR values, the lowest (or
highest) intensity activities were used. The results were compared against the potential
dose calculated using a generic IR. For the pollutant concentration, the indoor sensor data
were used. Hours for which no specific activity-adjusted IR existed, for example, “Visi-
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tor”, were assigned the generic IR. Only days when 85% of activity data were completed
were included.

After determining the hourly IR values, the potential inhaled dose (Dp), which is the
amount of pollutant that is inhaled by an individual [41], can be calculated as shown in
Equation (2) [42].

Dp =
∫ t2

t1

c(t) IR(t) dt (2)

where c is the indoor or outdoor pollutant concentration, IR is the inhalation rate, and t
is the time. Doses are often presented as dose rates, i.e., the amount of dose per unit time
(e.g., μg hour−1) [42].

Krause [43] proposes three methods for calculating the potential dose. The first is
to use a generic IR together with the pollutant data from an outdoor monitoring station.
The second is to use the generic IR and pollutant concentrations from a portable AQSS,
which is deployed in the same microenvironment as the individual. The third method
is to calculate the potential dose from the activity adjusted IR and the personal AQSS
pollutant data. In our work, an additional fourth method is used, which is to calculate the
dose using the activity-adjusted IR with the outdoor monitoring station data. This fourth
method is used to give a complete comparison of exposure estimation variability using
local indoor or ambient outdoor data. Additionally, the comparison of the two IR (generic
or activity-adjusted) calculations using AQSS data may give insight into the importance
of using the activity-adjusted IR. If the calculated doses were similar, it would show that
the use of an adjusted IR is unnecessary. In summary, the four methods used to calculate
potential inhaled dose are as follows:

(A) Generic IR + outdoor monitoring station data
(B) Activity-adjusted IR + outdoor monitoring station data
(C) Generic IR + indoor AQSS data
(D) Activity-adjusted IR + indoor AQSS data

3. Results

3.1. Relationship between Indoor and Outdoor Air Quality
3.1.1. General Comparison

To make a comparison of the indoor and outdoor air quality measured by the AQSSs,
the hourly concentrations of PM2.5 and NO2 for the entire measurement period are plotted
in Figure 2 for each patient. The central box of the boxplot contains 50% of the data
(interquartile range, IQR) and the inner line corresponds to the median. The whiskers
extend to the smallest and largest observations within 1.5 times the IQR from the quartiles,
with outliers plotted as individual dots. Outdoor data for patient 4 are taken from the
street-facing AQSS. Patients 2 and 5 did not have any outdoor data to report.

The outdoor PM2.5 concentrations were higher than the indoor concentrations for
patients 1, 3, and 4. Median PM2.5 concentrations in the home of patient 6 were similar
for both indoor and outdoor microenvironments, with more occasional peaks observed
indoors. All patients, excluding patient 7, had roughly similar indoor PM2.5 concentrations
among them, with median measurements falling below 10 μg m−3. Patient 7 had much
higher concentrations of PM2.5 inside than outside, with the median concentration above
40 μg m−3. From the logbook and the environmental questionnaire, it is known that
patient 7 often lit multiple scented candles in the house and blew them out without proper
ventilation, which is most probably the reason for the high PM2.5 concentrations.

The comparison of indoor and outdoor NO2 is shown in Figure 2b. Some slightly
negative values were measured for NO2 (patients 2, 4, and 6) which is an artefact of
the ANN models used to process the data. We should also take into consideration that
it is especially difficult to measure low NO2 concentrations precisely with the tested
electrochemical sensors as the relative expanded uncertainty is considerably larger than for
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high concentrations [44]. The average concentrations together with the relative expanded
uncertainties (REU) of the NO2 and PM2.5 measurements are presented in Table S8.

Figure 2. Hourly concentrations of (a) PM2.5 and (b) NO2 for each patient over the entire measurement
period. Note that the y-axis in panel (a) is on a logarithmic scale and that, in panel (b), the unexpected
high NO2 concentrations in the house of patient 1 may be due to an overestimation caused by the
ANN correction.

For NO2, the outdoor concentrations were higher than indoors for patients 3, 4, and
6. Patients 1 and 7 showed the opposite trend. For patient 1, indoor NO2 concentrations
were roughly 30 μg m−3. This is more than twice as high as the indoor NO2 measurements
of most other patients. As NO2 passive samples were not collected for patient 1, it is
challenging to determine whether the elevated indoor NO2 concentrations accurately reflect
true conditions or are a result of the ANN model used for calibration. Previous analysis of
ML and MLR correction models does suggest an overestimation of NO2 concentration by
the ANN model for patient 7 [45].

For patient 4, two outdoor AQSSs were installed to determine if there were measurable
differences in air quality on opposite sides of the house. Figure 3 shows the PM2.5 and NO2
concentrations measured indoors, as well as outside on the garden and street sides of the
house. Both PM2.5 and NO2 concentrations are lower indoors than outdoors. In general,
PM2.5 concentrations tend to be more variable indoors compared with outdoors, while
the opposite trend is observed for NO2, with more consistent levels indoors and greater
variability outdoors.

The street-facing AQSS measured higher PM2.5 concentrations than the unit placed in
the garden. There was a larger spread in garden-side NO2 measurements, with a median
of 35 μg m−3, slightly higher than for the street-facing side (29 μg m−3). The REU for the
garden-side NO2 sensor at the median was ±13 μg m−3 and was greater than the REU
of the street-side NO2 sensor (±7 μg m−3). It is possible that the overestimations of the
NO2 concentrations seen at the garden side were due to the ANN calibration. The NO2
passive samples measured an average of 24 μg m−3 and 23 μg m−3 for the street and the
garden side, respectively, during the same period. This may indicate that the street sensor
slightly overestimated the NO2 concentrations, whereas the sensor placed in the garden
overestimated the NO2 concentrations by approximately 12 μg m−3.
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Figure 3. Hourly concentrations of (a) PM2.5 and (b) NO2 for patient 4 at indoor, garden, and street
locations. Note that the y-axis in panel (a) is on a logarithmic scale.

The percentage of time that each patient spent at home, the status of the windows in
the living room, and the time contribution of home activities are visualised in Figure 4. All
patients spent the majority of the time at home, 83% on average, which is consistent with
the results of previous studies [24]. Patient 2 spent the least amount of time at home (76%)
while patient 4 spent the most time at home (93%). This means that the home environment
is a crucial part of understanding personal exposure. The percentage of time spent at home
in our study is slightly higher than the statistics compiled by Klepeis et al. [10], which
reported that most people are at home for roughly 70% of the day. This difference could be
due to COVID-19 related restrictions happening from the middle of March 2020 and lasting
until the end of April 2020. The COVID-19 restrictions affected patients 3, 4, and 6.

Figure 4. Percentage of patients’ time grouped by (a) patient location, (b) window status, and
(c) activities at home.

All patients had the windows closed for the majority of the time, 85% on average, with
only four patients ever reporting to have tilted the windows, as opposed to fully opening
them. Given that the measurements took place in winter and spring, it is expected that the
windows would be closed most of the time. The activities that patients spent the most time
on were “Sleeping”, “Computer”, and “TV or Radio”. “Unknown” also accounted for a
significant amount of each patient’s time.

3.1.2. Activity Specific I/O Ratio

The mean I/O ratios associated with each activity, under various ventilation conditions
(window closed, open, or tilted), are presented in Figure 5 for four of the participants (for
patients 2 and 5, outdoor AQSS data were not available). As the PM2.5 data collected in
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the house of patient 7 were extremely high due to the scented candles, the results of the
activity specific PM2.5 I/O ratio of patient 7 are presented in Figure S4.

Figure 5. I/O ratios for (a) PM2.5 and (b) NO2 associated with individual activities, grouped by
window status.

For all activities, PM2.5 had the largest I/O ratio when the windows were closed, indi-
cating that there are significant sources of PM2.5 indoors. Another factor that may influence
the results is the measurement period. The measurement campaign was conducted during
the colder months when ventilation is typically minimised to reduce energy costs. Without
adequate ventilation, the generated PM2.5 can stay several hours in the air. The activities
“Cleaning”, “Cooking”, “Eating”, “TV or Radio”, “Computer”, “Exercising”, and “Visitor”
were found to be significant indoor sources of PM2.5 when the windows were closed. Only
“Sleeping” and “Reading” had an I/O ratio of less than one for all window statuses, indi-
cating that the PM2.5 concentration outdoors was higher than indoors. A fact observed in
Figure 5 is that opening or tilting windows effectively reduces indoor PM2.5 concentrations
during activities such as “Cleaning”, “Computer”, “Cooking”, “Eating”, and “TV or Radio”.
The only activity that showed the opposite trend was sleeping. This is because indoor
PM2.5 concentrations were lower than outdoor concentrations during sleeping; therefore,
keeping the window tilted for the whole night increased the I/O ratio. A detailed analysis
of the hourly indoor and outdoor PM2.5 and NO2 concentrations together with the activities
and the window status can be seen in the Supplementary Materials, Figures S5–S26. The
results are presented in one-week segments, to be able to better associate pollutant peaks
with specific activities and window status.

The I/O ratios for NO2 were lower than one during most activities, suggesting there
were fewer sources of NO2 indoors. When the windows were closed, the only activities with
an I/O ratio slightly greater than one were “Cooking”, “Eating”, “Exercising”, “Unknown”,
and “Visitor”. Cooking is known to be a source of NO2, especially from the use of gas stoves
or ovens [46]. Eating and cooking were frequently marked at the same hour. Moreover, the
concentrations measured during “Eating” may have been created in the previous “Cooking”
activity and what we measured was the “Post-cooking”, i.e., the transportation of pollutants
from the kitchen to the living room where the AQSS was located. For 50% of the activities,
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i.e., “Cleaning, “Reading”, “Sleeping”, “Unknown”, and “TV or Radio”, the I/O ratios for
NO2 were higher than one when windows were open. This is in accordance with findings
from Stamp et al. [47], who recorded increased I/O ratios for NO2 when windows were
open. Other activities such as “Computer”, “Cooking”, and “Exercising” showed higher
NO2 I/O ratios when the windows were closed or tilted as compared with when they
were open.

3.1.3. PM Advisory Study

From 21 January to 26 January 2020, a PM advisory (Feinstaubalarm) was active in
Stuttgart during which sensors were deployed at the home of patient 1. These alerts are
issued in conjunction with the German Weather Service (DWD) when certain conditions
are met, including PM10 levels exceeding 30 μg m−3, the absence of rain, and low wind
speeds. Figure 6 shows the hourly PM2.5 concentrations from the indoor and outdoor
AQSSs during the event and the two preceding days. It can be observed that the outdoor
PM2.5 concentration reached its maximum (60 μg m−3) on the night of 23 January and that
the average PM2.5 concentrations measured indoors increased gradually throughout the
entire period of the PM alert.

Figure 6. Indoor and outdoor PM2.5 concentrations measured by the AQSSs deployed at the home
of patient 1 during the PM alert, along with the corresponding window status. Periods when the
window was open are indicated by a grey background.

The I/O ratio was analysed alongside window status and temperature to assess the
impact of ventilation on indoor air quality under poor outdoor air quality conditions,
as presented in Figure 7. A marked difference was observed in the change of the PM2.5
I/O ratio when the windows were open. The peaks represent increases in indoor PM2.5
concentrations as polluted outdoor air enters through the open window. In the six days
preceding the PM alert, the average I/O ratio increased by 16% when the windows were
open. However, during the PM alert period, the I/O ratio rose by 49% when the windows
were open, compared with when they were closed. This suggests a significant impact
of window opening on indoor air quality during periods of elevated outdoor pollution.
Temperature drops on the 20th and 23rd, which were not associated with open windows,
coincided with peaks in the I/O ratio. This confirms that the windows were open during
those hours even though the patient did not register it.

Moreover, Figure 7 evidences that the PM2.5 I/O ratio during nighttime hours progres-
sively increased each day throughout the PM advisory period. This trend can be attributed
to the infiltration of outdoor air into the house, which can occur through structural imper-
fections in window seals or doorways [48]. This phenomenon was observed in the home of
patient 1, who reported in the environmental survey that the windows were 40 years old
and inadequately sealed. Although the windows were kept open 2% less frequently during
the PM alert period compared with the preceding week (16% vs. 18% of the time), indoor
PM2.5 concentrations increased by 85% during the alert period.
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Figure 7. Time series of the mean hourly I/O ratio for PM2.5 and indoor temperature during the PM
alert, combined with window status.

The daily mean of the I/O ratio during the PM advisory and the two preceding days
is shown in Figure 8. The daily indoor and outdoor PM2.5 concentrations can be seen in
Figure S27. There was an increase in the I/O ratio from 22 January to 25 January before
it decreased again. The trend of increasing daily I/O ratio, together with the progressive
rise in indoor PM2.5 concentrations, may prove the infiltration of PM2.5 in the home. The
outdoor PM2.5 concentrations began to decrease gradually on the 23rd, but the I/O ratio
did not decrease until the 26th.

Figure 8. Daily PM2.5 I/O ratio before, during, and after the PM alert.

3.2. Source Apportionment

The results of the PM2.5 and NO2 concentrations associated with each activity are
shown in Figure 9. Here, activity and pollutant data were grouped across multiple patients.
The individual results of all patients, except for patient 5 due to lack of activity data, are
presented in the Supplementary Materials in Figures S28 and S29.

The highest NO2 values across all activities were measured in the house of patient
1. As explained in Section 3.1.1, the ANN model used for the calibration of the sensor
may have overestimated the concentrations in this particular case. The highest NO2
concentrations corresponded to the category “Reading, TV or Radio”. This unexpected
result was significantly influenced by the generally higher concentrations measured in the
house of patient 1. Other activities that were associated with high NO2 concentrations were
“Cooking”, “Eating”, and “Cleaning”. Even though most patients had electric stoves, it is
also possible for elevated NO2 concentrations to occur if the oven is used [46]. Patient 3 was
the only participant who used a gas stove, yet they did not exhibit significantly higher NO2
concentrations compared with the other patients. NO2 is a reactive gas and “deposition
and reactions may occur during transport” which may lead to a decrease in concentration
over a short distance [46]. This may lead to variations in NO2 concentration throughout
the home.
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Figure 9. Indoor (a) PM2.5 and (b) NO2 concentrations associated with an activity or group of
activities; patient values represented by colour-coded points. Note that the x-axis in panel (a) is on a
logarithmic scale.

As for PM2.5, “Cooking, Eating” showed higher concentrations than “Cooking”. Sev-
eral possible factors may explain the higher concentrations measured during “Cooking,
Eating”. Since most patients had closed kitchens, it is possible that emissions were con-
tained within the kitchen until cooking was finished. At that point, the participant would
have opened the door to move to another area of the house, allowing the kitchen pollution
to reach the living room where the sensor was located. Another possible explanation is,
again, the discrete nature of the logbook. It is possible that cooking occurred at the end of
one hour, with the majority of any heating steps occurring at the beginning of the next hour
and eating occurring at the end. In those cases, the activity group “Cooking, Eating” would
contain the times when the most pollutants were generated. For both PM2.5 and NO2, high
concentrations were measured during the activity “Eating”, which may be explained by
the same reasons as “Cooking, Eating”.

As expected, most sedentary or resting activities were not associated with high pol-
lutant concentrations. Concentrations of both pollutants were low during “Sleeping”,
“Computer”, and “TV or Radio”. During sedentary activities, PM settles, as it is not agi-
tated by the physical movement of the participants. These hours were shown to have the
lowest PM2.5 concentrations, which is supported by other studies [43,49].

The activities recorded by Krause [43] differ from those logged in our work due to
the use of portable sensors, which allowed Krause the study of different mobility patterns
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(car, walk, cycle, train, etc.). In their study, all home activities were grouped into one single
category, except for sleeping. Though it was not possible to parse out the concentrations
during different home activities, their observations during sleep were in good agreement
with the results of this study. In both cases, the median PM2.5 concentrations fell below
5 μg m−3. The results for NO2 varied slightly: in Krause’s study, the median was less than
5 μg m−3, compared with approximately 10 μg m−3 shown in Figure 9.

In Figure 10, the time series of the PM2.5 concentration measured in the house of
patient 2 is plotted to observe the temporal variation in indoor air quality with respect to
the recorded activities. Results for all patients including the window status are shown in
the Supplementary Materials, Figures S5–S26.

Figure 10. Hourly indoor PM2.5 concentration for patient 2 from 18 January to 24 January 2020,
combined with recorded activities.

The time series clearly shows that the PM2.5 concentrations reached a minimum during
sleeping times (light blue) and increased again in the morning as other actions started to
occur. Some peaks, which are marked with arrows, occurred when cleaning or cooking
were logged. Hours, when multiple activities were logged, are shown by overlapping
colours as seen on 23 January. Other a priori unexpected peaks were also recorded, such as
on 21 January, when a PM2.5 peak occurred while the patient had marked “Not Home”.
This could be explained due to either a logging error by the patient or the presence of
another person in the house.

3.3. Symptomatology

In this section, the data of the health score and the PEF measurements are combined
with the air quality data measured by the AQSSs. The results of the health scores and PEF
measurements are given in Table 2. Patients 1 and 3, who were diagnosed with COPD,
had higher minimum, mean, and maximum health scores than the other patients, who
had asthma. This metric shows that they did have more difficulty breathing in their day-
to-day lives. Patients 4, 6, and 7 all reported days when they experienced no symptoms
(health score = 0). Patient 5 did not complete the health survey, and patient 2 developed
bronchitis during the second week of measurements, necessitating antibiotic treatment.
Consequently, their health data have been excluded from the analysis. Missing values in
PEF measurements were caused by a delay in the delivery of the peak flow meters.

356



Sensors 2024, 24, 5767

Table 2. Mean, minimum, and maximum health score and PEF values for all participants.

Patient ID
Health Score (0–28) PEF (L min−1)

Minimum Mean Maximum Minimum Mean Maximum

1 10 14.5 20 - - -
2 - - - - - -
3 6 11.1 18 500 540 580
4 0 1.6 4 370 400 430
5 - - - - - -
6 0 1.0 5 800 800 800
7 0 1.2 4 290 324 370

The qualitative relationship between symptom severity and pollutant concentrations
can be observed by plotting the pollutant concentrations and health symptoms together
throughout the measurement period for each patient. The results for patients 1 and 3 are
shown in Figures 11 and 12, respectively. Events or changes in the severity of symptoms
are highlighted with blue rectangles. The results for the remaining patients are presented
in the Supplementary Materials (Figures S30–S32).

Figure 11. Hourly indoor and outdoor PM2.5 and NO2 concentrations and self-reported daily health
score data from patient 1.

As discussed in the previous section, there was a PM advisory raised from 21 Jan-
uary to 26 January during the measurements in the house of patient 1. During this time,
outdoor PM2.5 concentrations increased gradually, and indoor concentrations progres-
sively rose. There were constant changes in the health scores during the month, with the
worst scores occurring on the 19th and 20th. During the week following the PM advisory
(28 January–5 February), the health score also gradually increased.

Patient 3, shown in Figure 12, showed several indoor peaks of PM2.5 during the
measurements, as well as three weeks with increased outdoor concentrations. PEF mea-
surements varied from day to day but consistently decreased whenever the health score
increased, indicating that the health score is an accurate method for describing actual pa-
tient health. However, this correlation between health score and peak flow varied between
the participants. The health score of patient 3 exhibited day-to-day variability. Generally,
an increase in the health score was observed some days after a rise in outdoor PM2.5. For
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instance, following the days with elevated PM concentrations (27–28 March), the increase
in the health score on 29 March was also accompanied by a decrease in the PEF. A longer
study would be necessary to determine if the observed pattern persists over longer periods.

Figure 12. Hourly measured pollutant concentration and self-reported daily health score and PEF
data from patient 3.

3.4. Exposure Assessment

The analysis of personal exposure was carried out in three parts. First, the influence of
the estimated activity-adjusted IR on the potential inhaled dose was analysed. Second, the
exposure misclassification was examined by comparing data from the outdoor monitoring
station or generic IR with indoor data from AQSSs and activity-adjusted IR. Third, the
activities with the greatest impact on personal exposure were identified.

3.4.1. Analysis of the Variability in the Inhalation Rate and Its Effect on the Potential
Inhaled Dose

The statistical results of the average, minimum, and maximum daily potential inhaled
doses (Dp) of PM2.5 and NO2, calculated using the activity-adjusted IR, as well as the daily
doses calculated using the generic IR, are shown in Figure 13. There is little difference
among the maximum, mean, or minimum of the Dp calculated using activity-adjusted IR.
This may suggest that hours containing multiple activities do not significantly impact the
total daily potential dose. It is also true that, for most hours during which two activities
were performed, the activities had the same intensity level, resulting in the same IR. This
can be seen in the activities listed in Figure 9 where only the most common activities
were included. The most common pairs of activities were “Computer, TV or Radio”,
“Reading, TV or Radio”, and “Cooking, Eating”. All activities in these groups are classified
as sedentary activities, except cooking which is classified as light intensity. As there is
no significant difference between the maximum, mean, and minimum, the mean activity-
adjusted IR was used for the calculation of the potential inhaled NO2 and PM2.5 doses.
Moreover, it can also be seen in Figure 13 that the generic IR overestimates the potential
inhaled doses compared with the activity-adjusted IR.
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Figure 13. Comparison of daily mean potential inhaled dose of (a) PM2.5 and (b) NO2, calculated
using the generic IR and the maximum, the mean, and the minimum activity adjusted IR. Error bars
indicate the standard deviation in daily dose estimations.

A comparison of the daily doses for individual patients is shown in Figure 14. Patient 7
experiences up to 5 times higher daily doses of PM2.5, due to the habit of lighting scented
candles. Patients 1, 3, 4, and 6 show the same pattern as in Figure 13, i.e., generic IR
produces the highest dose estimates. However, patients 2 and 7 show the opposite. This
is because the calculated daily dose is affected by the individual’s activity level. If an
individual is more active at home, their activity adjusted IR will be higher than the generic
rate for most of the hours. These differences are shown in Table 3, which lists the mean
hourly activity adjusted and generic IR of each patient during active indoor hours, i.e.,
excluding sleeping hours. Patients 2 and 7 show a higher mean hourly activity adjusted IR
compared with the generic IR. In these cases, the exposure will be underestimated when
using a generic IR. For all the other cases, the generic IR is overestimated which triggers
the overestimation of the daily doses seen in Figure 14. Based on these results, the use of a
generic IR for the time spent indoors is not recommended. Further studies including more
participants may see more differences in exposure between people with different lifestyles
and levels of activity.

Table 3. Average of the generic and activity adjusted hourly IR for individual patients (excluding
sleeping hours).

Patient ID
Hourly Mean IR (L min−1)

Activity Adjusted Generic

1 7.0 9
2 9.2 6.8
3 8.3 9.9
4 5.3 8.5
6 9.5 12.1
7 9.5 8.5
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Figure 14. Daily potential dose of (a) PM2.5 and (b) NO2, calculated using generic, maximum, mean,
and minimum IR, for individual patients.

3.4.2. Exposure Misclassification

The result of the daily mean potential NO2 and PM2.5 doses calculated using four
different methods (see Section 2.4.6) across all patients is shown in Figure 15. Two trends
emerge across the four methods. First, calculating daily potential doses using the outdoor
monitoring station data, as in methods A and B, yields significantly different results
compared with using indoor data from stationary AQSSs. Second, the use of the generic IR
(methods A and C) overestimates the daily dose compared with the activity-adjusted IR.

Figure 15. Comparisons of four potential inhaled dose calculation methods for (a) PM2.5 and (b)
NO2. Error bars indicate standard deviation.

From Figure 15a, we can also derive that the indoor environment and the individ-
ual’s habits have a strong impact on personal exposure. Patient 7 had a median indoor
concentration of 56 μg m−3, compared with 7 μg m−3 at the Hauptstätter Street outdoor
monitoring station, due to the continuous use of scented candles and improper ventilation.
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Thus, the daily potential PM2.5 doses calculated including the indoor PM2.5 sensor data
of patient 7 in the average are much higher than when using the data from the outdoor
monitoring station. This indicates that the use of outdoor PM2.5 data may result in either
over- or underestimation, depending on the individual’s habits. For NO2, the trends shown
in Figure 15b indicate a clear overestimation of the potential dose when using outdoor
data from the monitoring station and generic IR compared with using indoor data and
activity-adjusted IR. These findings may extend to other indoor environments with similar
conditions and cooking habits.

The results of the potential dose have been compared with the outcomes from Krause [43]
in the AIRLESS project with portable sensors. There, participants were split between those
living in an urban area, Beijing, and a peri-urban area, Pinggu. From the comparison of the
outcomes, it can be concluded that both studies agree on the fact that using the outdoor pollu-
tant concentration from outdoor monitoring stations may trigger exposure misclassification.

Krause estimated the exposure in Beijing while at home using the activity adjusted IR
and portable AQSSs to be roughly 400 and 300 μg day−1 for PM2.5 and NO2, respectively.
Those outcomes are higher than the estimations of 150 μg day−1 for PM2.5 and 140 μg day−1

for NO2 using stationary indoor AQSS data and activity-adjusted IR, as shown in Figure 15.
The higher potential doses calculated by Krause for AIRLESS study participants may be
due to two reasons. Firstly, Beijing has overall higher concentrations of both PM2.5 and
NO2. Median indoor concentrations of PM2.5 were nearly five times higher in Beijing
compared with Stuttgart (25 versus 5 μg m−3). For NO2, median home concentrations were
roughly 15 μg m−3 in the AIRLESS project and 12 μg m−3 averaged across participants
in this study. The second reason may lie in Krause’s use of a generic IR for the times
when participants were at home. As we have seen in Figure 15, the use of a generic IR
overestimates the results of potential PM2.5 and NO2 doses. In our study, we have proven
that “home” is a very complex microenvironment where multiple activities with different
intensity levels can occur. Considering that, in both studies, patients are at home for more
than 80% of the time, using a generic IR for the entire time spent indoors may also be a
source of exposure misclassification.

3.4.3. Activity-Specific Potential Inhaled Dose

To identify the indoor activities contributing most to personal exposure, the potential
dose for PM2.5 and NO2 was calculated for each hour and grouped by the activities
occurring during that hour, as shown in Figure 16. It is clear from Figure 16 that the highest
potential doses were recorded during the most strenuous activities. “Exercising” was the
activity with the highest intensity from those recorded on the activity log and is associated
with the highest hourly doses of both PM2.5 and NO2. For PM2.5, the median dose during
“Exercising” (about 16 μg hour−1) is more than twice as much as the next highest potential
dose which occurs during “Cleaning” (about 6 μg hour−1).

Calculating the potential dose using an activity-adjusted IR changes the weight that
each activity carries for personal exposure as compared with simply using a generic IR.
When looking at exposure based on potential dose, more strenuous activities such as
exercising contribute more than sedentary ones. Activities such as cooking or cleaning,
which are both known to generate pollutants and fall into the “light” or “moderate”
intensity level, have both the highest concentrations and potential doses. Given that
different indoor activities contribute variably to personal exposure based on their associated
concentrations and/or intensity levels, it is important not to overlook these variations by
relying on a generic IR for the time at home.
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Figure 16. (a) PM2.5 and (b) NO2 potential inhaled dose associated with each unique group of
activities. Patient values represented by colour-coded points. Note that the x-axis in (a) is on a
logarithmic scale.

4. Discussion

4.1. Air Quality Sensors
4.1.1. Data Loss and Data Quality

The percentage of completeness of the sensor data was between 92% and 100% for the
PM2.5 sensors and between 76 and 99% for the NO2 sensors. Data losses could have been
reduced by adding Wi-Fi or LTE modules to the sensor systems. In that way, misfunctions
and problems could have been identified sooner. The exclusion of data from the warm-
up period for the NO2 sensors caused the loss of the first hours in each of the sensor
deployments, from 4 up to 24 h.

The primary challenge regarding the uncertainty of the sensor data lies in determining
the suitability of the calibration parameters obtained two weeks prior to the campaign
for use during the measurements at homes lacking reference instruments, particularly
for indoor microenvironments. The transfer of calibration parameters becomes complex
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when relocating sensors from their original co-located positions, and ensuring accurate
performance in the new location cannot be guaranteed [50]. The use of passive samples for
NO2 is a simple tool to obtain a reference value.

During the study, we detected inconsistencies in some of the calibrated NO2 sensor
data, for instance, the higher NO2 concentration in the garden side compared with the
street side during the measurements at the home of patient 4. Moreover, the indoor NO2
concentrations at the home of patient 1 were most probably overestimated too. However,
without a reference value, it is not possible to validate these results. Future studies should
explore effective strategies for managing calibration transfer.

Lastly, some negative values were still present in the NO2 datasets after calibration
(patients 2, 4, and 6). Measuring low concentration levels with the current NO2 electro-
chemical sensors implies a higher uncertainty of the measurements. However, we have
seen that concentration peaks are well detected. Considering this, air quality sensors have
more potential in those regions or indoor microenvironments where high concentrations
are expected.

4.1.2. Use of Stationary Sensors

The AQSSs were positioned in the living room, chosen based on participants’ reported
highest occupancy, to ensure monitoring in the area most frequented by the patients. There
is a possibility of underestimating exposure during activities occurring outside of the
living room. Questions were raised, especially regarding cooking, which is known to
raise pollutant concentrations. This may be particularly important for patients who have
closed kitchens. In the future, multiple sensors could be placed in multiple areas of a
single home to determine the difference across several rooms. Consideration should be
given to deploying sensors in additional indoor environments, such as workplace offices,
where patients routinely spend significant time. This broader sensor placement strategy
can provide a more comprehensive understanding of personal exposure patterns.

The stationary deployment of AQSSs raises concerns about the accuracy of personal
exposure estimates, particularly when patients are not in the sensor’s vicinity, such as
when away from home. However, the convenience and minimal disruption afforded by
stationary AQSSs in the home, as opposed to carrying portable sensors, are advantageous,
especially for long-term studies.

The results of this study, using sensor systems at fixed locations, were compared with
those of a similar study from Krause [43] using portable sensors. During the study with
portable sensors, it was found that even though the highest dose per minute was observed
during commuting, the time in transit accounts for less than 10% of total time, with the
home environment emerging as the predominant contributor to the total dose [43]. This
suggests that our methodology of using stationary sensors for indoor and outdoor microen-
vironments may be sufficient to estimate exposure in long-term studies but may lack the
sensitivity required to investigate short-term health effects resulting from pollution peaks.

Although it was shown that the exposure estimates calculated using data from indoor
stationary sensors and portable sensors were similar due to the predominant contribution of
the home environment, there remain scenarios where stationary sensor data may not suffice
for determining exposure. In our study, the patients spent an average of 83% of their time
at home. Individuals who spend more time outside their homes may necessitate the use of
portable sensors or multiple stationary sensors strategically placed in environments where
they spend the most time. This consideration is particularly crucial in regions with high
pollution levels where outdoor exposure may significantly impact overall exposure levels.

4.2. Nature of Participant-Reported Data

Assessing the veracity of self-reported data from participants poses a significant
challenge. In certain instances, recorded parameters may be correlated with proxy variables
that facilitate the validation of reported activities. For example, sudden temperature
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changes may be an indicator of the opening of a window. However, most other activities
recorded by patients are more difficult to verify.

Accurately determining individuals’ actions without invasive monitoring presents a
complex challenge. However, invasive monitoring may not always be feasible due to par-
ticipant reluctance or study demands. Participants may be unwilling to continuously wear
sensors or record data for extended periods. If study requirements are overly demanding,
there is a risk of non-compliance. Providing monetary compensation to volunteers is an
option, but it does not guarantee data quality.

While there is no feasible method to ensure complete cooperation and accuracy in
recording data, good communication with participants, education about the study’s ob-
jectives, proper training, and regular checks can enhance the likelihood of complete and
accurate data collection.

4.3. Activity Specific I/O Ratio

The I/O ratios of activities, when grouped by window status, were affected by the
discrete nature of activity reporting. Patients could only record an event as occurring for
a full hour. Especially in winter, it is unlikely that any patient kept the windows open
for an entire hour. Additionally, there could be a lag between certain activities and the
measurement of the pollutant, resulting in peak concentrations being recorded in the
following hour and causing the peak to be misassigned. Diapouli et al. [51] found that in
their study of the I/O ratio of PM mass and number concentration in residential buildings
during various activities, cooking caused the highest I/O ratio, which is consistent with
the results for PM2.5 presented in Figure 5. Together with “Cooking”, hours when “Eating”
occurred had high I/O ratios as well. “Eating” often took place in the same hour as, or
immediately following, cooking. Most patients had closed kitchens, which could result in
pollutants not reaching the sensors in the living room until cooking was finished and the
patient had moved to another room to eat. These results include all instances of “Eating”,
whether it was the only activity during the hour or not. If “Eating” occurred simultaneously
with “Cooking”, the I/O ratios may be overestimated.

4.4. Source Apportionment

The results of the source apportionment showed that the data of the stationary PM2.5
and NO2 sensors together with the logbook are able to accurately attribute peaks in con-
centration to indoor activities occurring in the same hour. For this analysis, the activities
that were recorded together for the same hour were considered as a unique group. In
essence, “Cooking” is treated as a separate activity from “Cooking, Eating”. When it was
distributed to patients, 13 single activities were listed on the activity log. After completion
of the pilot study, 113 unique groups of activities were recorded among all patients. This
emphasizes the difficulty of discretizing the contribution of any single activity to personal
exposure. It is not possible with this method to isolate emissions from a single activity
during hours when multiple activities were logged simultaneously. Still, from the methods
used here, general conclusions can be made about which indoor activities generate the
highest pollutant concentrations.

4.5. Symptomatology

There is uncertainty in health data because symptoms vary greatly among individuals.
Many factors can trigger asthma symptoms, including weather, exposure to allergens or
other irritants, activity level, and strong emotions [52]. These triggers may build on each
other to further exacerbate symptoms. This complexity makes it challenging to discern
which symptoms are directly related to changes in air quality.

Moreover, the differences in how individuals perceive their symptoms make compar-
isons between multiple participants more complex. To overcome that, the health ques-
tionnaire was designed specifically to avoid the subjectivity of the patients, with answers
aiming to quantify the symptom severity (e.g., coughed once briefly, coughed briefly sev-
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eral times, coughed almost every hour, etc.). Overall, the trends in how symptoms change
become more important in drawing conclusions about larger populations. An increase in
symptom severity is a strong indicator of how one’s health is affected.

The use of other quantitative measurements can have disadvantages when participants
complete measurements themselves. Even a simple lung function test may pose compliance
difficulties in longer-term studies. Firstly, the training of patients by qualified personnel is
crucial for correct data collection. Secondly, the effort a single patient puts in can vary from
day to day, impacting the reliability of the results. It is known that patient motivation drops
with time. Jiang et al. [53] found that in a two-week study of asthma symptom tracking,
patient compliance had already dropped by the second week. Another study on asthma
patient compliance with long-term PEF measurements found that after 6 months, only
50% of participants still recorded accurate PEF values [54]. Addressing these challenges is
crucial for ensuring the reliability and validity of the data collected over extended periods.

Despite the limitations of patient-recorded health data, there are several advantages
of using a symptom log. First, it is one of the least invasive methods for obtaining health
data, as patients do not need to visit a medical office or make appointments. Secondly,
the only type of lung function testing undertaken was the PEF, which is simple and easy
to do at home. The health data collected in this study was independent of the day of the
week, as patients reported daily. Additionally, unlike studies using hospital admission data,
symptoms were recorded across all levels of severity. This enabled the identification of the
onset of symptom aggravation, rather than solely noting when symptoms reached a specific
severity threshold. Future studies with a large number of participants could investigate the
lag effect between changes in symptoms, including the evaluation of specific symptoms,
and changes in pollutant concentrations. Such studies could examine correlations starting
from the same day and extending up to a week later, as identified to be the longest delayed
response time [55].

In summary, although this pilot study cannot determine the precise influence and lag
between peaks in pollutant concentration and subsequent increases in health scores, the
presented results demonstrate the potential use of AQSSs for environmental epidemiology
at fixed locations. Stationary sensors collect data from indoors and the surroundings
effortlessly for the patient, which makes them an appropriate technique for long-term
epidemiological studies. The continuous indoor and outdoor monitoring gives a better
understanding of the quality of the air each individual breathes.

Moreover, the health score system developed for this study consistently shows plausi-
ble information on symptom intensity with fluctuations from day to day, so that changes in
the state of health or symptom burden are easy to understand and can be analysed using
the point scores. Even with varying disease severity, there are sufficient intra-individual
fluctuations to document day-dependent deviations in symptom burden and relate them to
the air quality data. The PEF measurement is a useful addition as an objective parameter.

4.6. Exposure Assessment

One of the current limitations of determining personal exposure is the variability in
individual behaviour and activities. In this study, the activity log was used to determine
the patient’s activity level. However, there are some challenges when using a method such
as the activity log. Partly, this is due to the previously mentioned limitations of using
participant self-recorded data. However, some difficulties occur when participants must
select actions for a discrete amount of time. For instance, there were many cases during the
study where participants had marked multiple activities in one hour. This is logical, given
that not all activities last a full hour, or start exactly on the hour. This practice introduces
uncertainty, particularly when activities vary in intensity, potentially affecting the accuracy
of exposure estimates. In this study, the mean IR was used, assuming equal time allocation
for each recorded activity within an hour. The results of the variability analysis indicated
that this assumption did not significantly alter the estimated exposure outcomes.
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Another potential source of uncertainty is the methodology to calculate the potential
inhaled dose. In this study, each activity was considered separately, and the entire amount
of pollutant measured during an hour was attributed to each activity performed in that
hour. This approach may have led to the under- or overestimation of the potential dose
associated with each activity. For instance, if a “sedentary” activity such as sleeping
occurred in the same hour as a “light” activity with high emissions like cooking, the dose
attributed to the sedentary activity would be overestimated due to the contribution from
the more active one.

The variation in the IR, which depends on overall individual fitness or health, may
contribute to uncertainty in personal exposure estimates. IR values predicted by the EPA
are typically calculated for healthy populations [56]. In this study, no adjustments were
made to account for the fact that participants had respiratory problems. However, evidence
suggests that this may not significantly affect accuracy. Corlin et al. [56] studied the IR
in a population with a high percentage of individuals with respiratory or cardiac health
conditions and found that EPA estimates remained accurate. They included adjustments
for weight in their calculations, which were not possible in our study. Given the limited
number of studies addressing this concern, it should be considered in future research.

Another limitation of using the EPA-estimated IR is the somewhat loose definition
of activity intensity. For instance, if a patient recorded “Exercising”, it was assumed to be
light exercise indoors and labelled as “moderate intensity”. However, the actual intensity
could vary, either higher or lower, without confirmation of the exact nature of the exercise.
For future studies, recording and including heart rate data could enhance the accuracy
of determining an individual’s activity level and improve IR calculations. Additionally,
investigating the duration of elevated IR during more intense activities would provide
valuable insights.

Finally, the comparison of the results of the potential inhaled dose with the AIRLESS
study has shown that (I) both studies agree on pointing out outdoor air quality data
from outdoor monitoring stations as a possible source of exposure misclassification, and
(II) the results may be overestimated when assuming a generic IR for the time spent at
home. It would be worth considering the possibility of assuming a generic IR for the time
participants spend outdoors rather than for the time they spend indoors. As nearly 80% of
the exposure occurs in the home environment, the contribution of travel methods (car/bus,
train, walk, cycle, motorcycle) represents a small percentage of the total dose. This approach
could reduce the exposure misclassification caused by the use of generic IR for the time
spent at home while minimizing participant effort. In regions where people spend most of
their time indoors, it may not be necessary to use portable air quality sensors to estimate
personal exposure. This potential simplification could streamline both data collection and
analysis processes, given the inherent complexities associated with deploying portable
sensors, both from a participant engagement and data analysis perspective. For those cases,
the methodology used in our pilot study, combined with multiple sensors placed in other
indoor environments used by participants (e.g., work office), may be sufficient. Overall,
our results underscore the importance of both indoor measurements and activity adjusted
IR for accurately calculating personal exposure.

On the whole, even though our study was limited by the sample size (seven par-
ticipants), it demonstrates the significant value of AQSSs in acquiring indoor data for
exposure assessment. The widespread use of (calibrated) AQSSs will potentially help to
reduce the bias in evaluating gender differences in mortality due to air pollution as indoor
measurements reflect more accurately the quality of air to which women and girls are
frequently exposed [57]. Furthermore, the granular data collected by AQSSs could drive
targeted interventions, enabling policymakers to address specific sources of indoor air
pollution, which is not regulated currently, thereby enhancing public health protection and
potentially reducing long-term healthcare costs.
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5. Conclusions

In this work, a pilot project to study the feasibility of using stationary air quality
sensors for PM2.5 and NO2 in epidemiological research was conducted. It was found that
the calibrated AQSSs to be used indoors and outdoors at fixed locations were able to run
for the month of the study with practically no issues in performance. The results of the
exposure assessment showed that using either generic IR or outdoor monitoring station
data leads to exposure misclassification. In this study, individuals spent an average of 83%
of their time at home. That implies that the use of stationary AQSSs is sufficient for tracking
the majority of one’s personal exposure. Future studies could scale up the methodology
used here and, using multiple stationary AQSSs, overcome the limitations of this study, as
we only measured the air quality in the living room.

A detailed analysis of the indoor and outdoor data measured by the AQSSs in the home
of patient 1 revealed a leakage through the window sealing, demonstrating that indoor
air quality is influenced not only by routines and behaviours but also by ventilation and
building characteristics. Additionally, the source apportionment and activity specific I/O
ratio results showed that data from stationary AQSSs, when combined with information
from a logbook, can accurately identify and attribute concentration peaks to specific indoor
activities. This approach also allows for the evaluation of the influence of outdoor air and
ventilation patterns on indoor air quality.

The activity specific concentration and potential dose were calculated and compared
with the results of the AIRLESS study. It was shown that there are significant differences
in the weight an indoor activity has on personal exposure depending on its intensity. The
calculation of the IR, taking into account the information of the activity log, reduces the
uncertainty compared with the use of a generic IR in the home environment.

The results of this study showed consistent indications of symptom intensity fluc-
tuations from day to day, making changes in health status or symptom burden easy to
understand and analyse using point scores. Despite varying disease severity, sufficient
intra-individual fluctuations were documented to relate day-dependent deviations in symp-
tom burden to air quality data. The examination methods used (health survey, peak flow
meter) are therefore considered to be valid for studying the effects of air pollution on
vulnerable patient groups with chronic respiratory diseases or asthma. To exclude other
influences or confounding variables, a parallel recording of activities and events in the
logbook was essential. Overall, this study emphasizes the importance of measuring air
quality indoors and tracking activity data for studying personal exposure and how air
quality sensors may potentially find good use in the field of environmental epidemiology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24175767/s1, Table S1: Dates of AQSS installation, checks, and
collection for each patient; Table S2: Participant demographics; Figure S1: (a) Map of Stuttgart
showing locations of the outdoor air quality monitoring station (blue circle) and participants’ homes
where sensors were deployed (yellow diamonds), (b) outdoor AQSS and (c) indoor AQSS; Table S3:
Data collected for each participant; Table S4: Selected results of the environmental questionnaire filled
out by patients; Figure S2: Logbook; Table S5: Data completeness after cleaning steps, presented as a
percentage; Table S6: Correction parameters for each PM2.5 sensor; Figure S3: Health questionnaire;
Table S7: Inhalation rates for each intensity level, categorised by associated activities, age and gender;
Table S8: Median NO2 and PM2.5 concentrations and uncertainties associated with each AQSS;
Figure S4: I/O ratios for PM2.5 associated with individual activities, grouped by window status for
patient 7; Figure S5: Time series of pollutant concentration combined with logged activities and
window status, for patient 1, week 1; Figure S6: Time series of pollutant concentration combined
with logged activities and window status, for patient 1, week 2; Figure S7: Time series of pollutant
concentration combined with logged activities and window status, for patient 1, week 3; Figure S8:
Time series of pollutant concentration combined with logged activities and window status, for
patient 1, week 4; Figure S9: Time series of pollutant concentration combined with logged activities
and window status, for patient 2, week 1; Figure S10: Time series of pollutant concentration combined
with logged activities and window status, for patient 2, week 3; Figure S11: Time series of pollutant
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concentration combined with logged activities and window status, for patient 2, week 4; Figure S12:
Time series of pollutant concentration combined with logged activities and window status, for
patient 3, week 1; Figure S13: Time series of pollutant concentration combined with logged activities
and window status, for patient 3, week 2; Figure S14: Time series of pollutant concentration combined
with logged activities and window status, for patient 3, week 3; Figure S15: Time series of pollutant
concentration combined with logged activities and window status, for patient 3, week 4; Figure S16:
Time series of pollutant concentration combined with logged activities and window status, for
patient 4, week 1; Figure S17: Time series of pollutant concentration combined with logged activities
and window status, for patient 4, week 2; Figure S18: Time series of pollutant concentration combined
with logged activities and window status, for patient 4, week 3; Figure S19: Time series of pollutant
concentration combined with logged activities and window status, for patient 6, week 1; Figure S20:
Time series of pollutant concentration combined with logged activities and window status, for
patient 6, week 2; Figure S21: Time series of pollutant concentration combined with logged activities
and window status, for patient 6, week 3: Note that the outdoor sensor stopped working on 19 April
2020 at 3:00 am; Figure S22: Time series of pollutant concentration combined with logged activities
and window status, for patient 6, week 4; Figure S23: Time series of pollutant concentration combined
with logged activities and window status, for patient 7, week 1; Figure S24: Time series of pollutant
concentration combined with logged activities and window status, for patient 7, week 2; Figure S25:
Time series of pollutant concentration combined with logged activities and window status, for
patient 7, week 3; Figure S26: Time series of pollutant concentration combined with logged activities
and window status, for patient 7, week 4; Figure S27: Daily indoor and outdoor PM2.5 concentrations
during PM alert (from 21 January to 26 January 2020) during the measurement campaign in the home
of patient 1; Figure S28: Individual activity specific PM2.5 (left) and NO2 (right) concentrations, for
patients 6 and 7: Note that the PM2.5 concentrations are on a logarithmic scale; Figure S29: Individual
activity specific PM2.5 (left) and NO2 (right) concentrations, for patients 1, 2, and 3 and 4: Note
that the PM2.5 concentrations are on a logarithmic scale; Figure S30: Hourly indoor and outdoor
(garden and street) PM2.5 and NO2 concentrations, self-reported health score and PEF for patient 4;
Figure S31: Hourly indoor and outdoor PM2.5 and NO2 concentrations, self-reported health score
and PEF for patient 6: Note that the outdoor sensor stopped working on 19 April 2020 at 3:00 am;
Figure S32: Hourly indoor and outdoor PM2.5 and NO2 concentrations, self-reported health score
and PEF for patient 7.
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