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Preface

The landscape of modern research is increasingly defined by complexity and uncertainty. As

scholars and practitioners across diverse fields grapple with intricate data and ambiguous outcomes,

Bayesian analysis has emerged as a powerful tool for making sense of the world around us. This

reprint brings together a collection of studies that showcase the versatility and depth of Bayesian

methods, offering readers both theoretical insights and practical applications.

In compiling these studies, the goal was to highlight the unique strengths of Bayesian analysis

across a range of disciplines. Each study presents a detailed exploration of how Bayesian methods

can be applied to real-world problems, demonstrating their capacity to incorporate prior knowledge,

handle uncertainty, and update beliefs in light of new data.

The studies included in this reprint are diverse in their subject matter but united by a common

thread: the application of Bayesian analysis to answer pressing research questions. By walking

through these case studies, readers will see firsthand how Bayesian methods can model complex

phenomena, make predictions, and inform decision-making in contexts where traditional methods

may fall short.

This reprint is intended for researchers, students, and professionals who are interested in

deepening their understanding of Bayesian analysis through applied examples. While some

familiarity with Bayesian concepts will be helpful, the studies are presented with sufficient detail and

explanation to be accessible to those new to the field. Each study not only delves into the technical

aspects of Bayesian analysis but also provides context, discussing the implications of the findings and

the advantages and limitations of the Bayesian approach.

Bayesian analysis is more than just a set of statistical tools; it is a way of thinking about data and

uncertainty. This reprint will illustrate the power of that perspective through concrete examples,

showing how Bayesian methods can lead to more nuanced and informed conclusions. Whether

you are looking to apply Bayesian analysis in your own work or simply want to learn more about

its potential, I hope that these studies will inspire you to explore the rich possibilities that this

approach offers.

In an era where data-driven insights are crucial, the ability to reason effectively under

uncertainty is invaluable. The studies presented here serve as a testament to the growing importance

of Bayesian analysis in modern research, and I am excited to share them with you.

Diana Mindrila

Guest Editor
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Abstract: This study explores a new dimension of accelerated life testing by analyzing competing risk
data through Tampered Random Variable (TRV) modeling, a method that has not been extensively
studied. This method is applied to simple step-stress life testing (SSLT), and it considers multiple
causes of failure. The lifetime of test units under changeable stress levels is modeled using Power
Rayleigh distribution with distinct scale parameters and a constant shape parameter. The research
introduces unique tampering coefficients for different failure causes in step-stress data modeling
through TRV. Using SSLT data, we calculate maximum likelihood estimates for the parameters of our
model along with the tampering coefficients and establish three types of confidence intervals under
the Type-II censoring scheme. Additionally, we delve into Bayesian inference for these parameters,
supported by suitable prior distributions. Our method’s validity is demonstrated through extensive
simulations and real data application in the medical and electrical engineering fields. We also propose
an optimal stress change time criterion and conduct a thorough sensitivity analysis.

Keywords: tampered random variable; competing risk; step stress; censoring scheme; maximum
likelihood estimation; Bayes estimation; bootstrap method; simulation analysis

MSC: 62E10; 62F15; 62N05; 60E05; 62P30

1. Introduction

With ongoing improvements in the manufacturing sector, numerous industrial prod-
ucts, known for their high reliability and complex designs, are becoming increasingly usable
in everyday life. Accelerated life testing (ALT) addresses the challenge of evaluating such
products by exposing them to stress levels higher than their usual operating conditions, pro-
ducing rapid failures in turn. These growing stress factors—such as temperature, voltage,
and humidity—significantly influence the lifespan of electronic equipment, including elec-
tric bulbs, fans, computers, toasters, and more. By employing these high-stress factors in
ALT experiments, valuable insights concerning product reliability can be rapidly acquired
within a condensed experimental time frame. Analyzing reliability and making inferences
from it have gained significant interest in the literature, as illustrated by references [1–3].

ALT experiments can be conducted in two ways: with a starting constant high-stress
level or with a changeable stress factor that can be varied during different time intervals. In
the realm of ALT, there exists a specific class known as step-stress life testing (SSLT). This
method permits experimenters to incrementally increase the stress levels at predetermined

Mathematics 2024, 12, 1248. https://doi.org/10.3390/math12081248 https://www.mdpi.com/journal/mathematics1
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time points during the experiment. A basic form of SSLT is exemplified in experiments
involving only two stress levels, denoted as s1 and s2, along with a single, pre-determined
point in time, τ, at which the stress level shifts.

To understand how lifetime distributions vary under different stress levels, some basic
modeling assumptions are typically discussed:
• Cumulative Exposure models (CE). In this method, specific restrictions are applied

to ensure that the lifetime distributions at each progressive stress level align at their
designated transition points, maintaining continuity. This approach is detailed in
works by Sedyakin [4] and Nelson [5].

• Tampered Failure Rate (TFR) modeling. This technique involves adjusting the failure
rates, increasing them at each subsequent stress level. Key references for TFR modeling
include Bhattacharyya and Soejoeti [6], and Madi [7].

• The Tampered Random Variable (TRV) model. Here, the focus is on reducing the
remaining lifetime for each new stress level. For more information on this approach,
you can refer to Goel [8] and DeGroot and Goel [9].

• Step-stress partially accelerated life testing with a large amount of censored data.
This approach addresses the gap in estimating non-homogeneous distribution and
acceleration factor parameters under multiple censored data conditions. For more
details, one can refer to Khan and Aslam [10].

Additionally, Sultana and Dewanji [11] explored the relationships between the TRV
model and the two other models, TFR and CE, within a multi-step stress environment.
They noted that TRV modeling aligns with CE and TFR when the fundamental lifetime
distribution is exponential and the distributions at each stress level adhere to a scale-based
parametric family. Thus, it is observed that the above three models converge when the
fundamental distribution is exponential. TRV modeling stands out for its ability to be
generalized to multiple-step-stress situations more effectively than the other two models. It
also offers advantages in terms of modeling discrete and multivariate lifetimes, which are
more complex tasks for the CE and TFR models.

Comparing factors that lead to risk model failures is essential for comprehending the
contributing factors, detecting common changes, assessing model performance, and influ-
encing decision making and risk management. It assists in identifying important issues
that must be resolved to increase the precision and dependability of the model. The de-
velopment of more reliable models can be made possible by recognizing similar patterns
among various occurrences or outcomes that can be identified by understanding these
components. Additionally, it offers useful information for model creators and validators,
enabling them to improve model development processes, assumptions, and validation
processes for more accurate and dependable models. The competing risks concept refers to
the possibility of individual failure in a specific field owing to distinct factors. The cause-of-
failure indication and the individual failure time are examples of observable data in this
approach. When examining data on competing risks, the failure variables are typically
unrelated to one another which means that the two risk factors are statistically independent.
In the industrial and mechanical domains, fatigue and aging deterioration can lead to an
assembly device failing due to electrical/optical signal (voltage, current, or light intensity)
falling to an intolerable level. Numerous studies in the existing literature utilize CEM and
TFR modeling within competing risk scenarios. However, to the best of our knowledge,
research incorporating TRV modeling into the context of competing risk data is notably
scarce. See for example Sultana et al. [12], Ramadan et al. [13] and Tolba et al. [14].

In this work, TRV is used with the SSLT model under two independent competing
risk factors where the failure times follow the Power Rayleigh distribution. The sample
is observed under the Type-II censored scheme. The censoring schemes have been in-
troduced to solve the lack of information in lifetime experiments, saving time and costs.
Type-I censoring has a predetermined time, while Type-II censoring has predetermined
failure units.

The main goals of this study are summarized below:

2
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• Performing an inferential analysis to obtain point and interval estimation of the
unknown parameters of the distribution and the acceleration factor using both the
maximum likelihood estimator and the Bayesian method.

• Applying numerical methods like Monte Carlo simulation to assess the performance
of estimators obtained from Maximum Likelihood Estimation (MLE) and Bayesian
methods, focusing on their bias, mean squared error, and the coverage probability
(CP) for the confidence intervals.

• Evaluating real-world data sets from the medical field concerning AIDS infection,
alongside another study from electrical engineering involving the causes of the failure
of electronic components, serves to empirically assess the effectiveness of the newly
proposed model.

The structure of the remainder of this document is as follows: Section 2 outlines the
SSLT model under the TRV framework with the Power Rayleigh distribution. Section 3
details the methodologies used for point estimation, specifically using maximum likelihood
and Bayesian methods. Section 4 is dedicated to interval estimation, exploring three distinct
methods. Section 5 focuses on simulation analysis and presents the results in tabular form.
The determination of the optimal time for stress change and an analysis of sensitivity are
discussed in Section 6. An application using real-world data is examined in Section 7.
The paper concludes with a summary of the findings in Section 8.

2. Model Description

In this study, we consider the SSLT model with random failure time variables denoted
by U1 and U2 along with the stress levels s1 and s2 that are assumed to follow a Power
Rayleigh distribution with a common shape parameter γ and distinct scale parameters
λ1 and λ2. The two risk factors are called cause I and cause II and both are performed
using Type-II censored samples. At a prefixed time τ, the stress level moves from s1 to
s2. During the first stress level, the s1 units will operate until a specific time τ, following
which any remaining survivals that have not failed by time τ are moved to be tested under
accelerated conditions with an acceleration factor β. Consequently, the system will operate
under the second stress level s2 until we obtain the required failure times. The effect of
stress transition from the first stress to the accelerated condition may be explained by
multiplying the remaining lifetime by the acceleration factor β . Hence the TRV for U1 and
U2 is expressed as

Ũ1 =

{
U1 , 0 < t ≤ τ
τ + β(U1 − τ) , t > τ

(1)

and

Ũ2 =

{
U2 , 0 < t ≤ τ
τ + β(U2 − τ) , t > τ,

(2)

where τ is the time at which the stress changes and the acceleration parameter is 0 < β < 1.
We consider Power Rayleigh distribution as a lifetime model. The Rayleigh distri-

bution, a continuous distribution of significant practical relevance, has been the subject
of extensive study by various authors who have explored its statistical properties, infer-
ence methods, and reliability analysis. Additionally, a variety of extended versions of
the Rayleigh distribution have been introduced. For example, Rosaiah and Kantam [15]
applied the inverse Rayleigh to failure times data. Merovci [16] introduced the transmuted
Rayleigh and modeled the amount of nicotine in blood. Cordeiro et al. [17] studied the beta-
generalized Rayleigh distribution and its application. More generalizations of Rayleigh
distribution can be found in the literature and one may refer to [18–24].

The Power Rayleigh (PR) distribution was first introduced by Neveen et al. [25]. It
is a versatile and flexible statistical model known for its ability to handle a wide range
of data types. This distribution is particularly useful due to its capability to model data

3
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that exhibit a skewed pattern, which is common in many practical situations. The Power
Rayleigh distribution is characterized by two parameters that allow it to adapt to various
data shapes and sizes, making it more flexible than the standard Rayleigh distribution.
Its applications are diverse, ranging from reliability engineering and survival analysis to
modeling wind speed and signal processing. The flexibility in shape and scale provided by
the Power Rayleigh distribution makes it a valuable tool for analyzing and interpreting
real-world data in various scientific and engineering fields. We assume that the Power
Rayleigh distribution has a shape parameter γ and scale parameter λ, where both have
positive support, and then the cumulative distribution function (CDF) becomes

F(t) = 1 − e−
t2γ

2λ2 ,

and the probability density function (PDF) is

f (t) =
γ

λ2 t2γ−1e−
t2γ

2λ2 .

Consider a set of n units subjected to a life test starting at stress level s1. Failures and
their corresponding risks are documented over time. At a designated moment τ the stress
level shifts from s1 to s2, and the test runs until r (with r < n) failures are noted. If r
equals n, a complete dataset is collected as in a simple SSLT without data truncation. We
assume that each unit’s failure is attributable to one of two competing risks, each described
by a Power Rayleigh distribution with a consistent shape parameter γ but distinct scale
parameters λj for j = 1, 2, aligned with the TRV model.

The CDF for the lifetime Uj associated with risk j for j = 1, 2 is then expressed
as follows:

Fj(t) = Fj(t; γ, λj) =

⎧⎪⎪⎨⎪⎪⎩
1 − e

− t2γ

2λ2
j if 0 < t ≤ τ

1 − e
− (τ+β−1(t−τ))2γ

2λ2
j if t > τ

(3)

and the corresponding PDF of Uj is given by

f j(t) = f j(t; γ, λj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ

λ2
j
t2γ−1e

− t2γ

2λ2
j if 0 < t ≤ τ

γ

λ2
j β
(τ + β−1(t − τ))2γ−1e

− (τ+β−1(t−τ))2γ

2λ2
j if t > τ

(4)

Let us denote the overall failure time of a unit under test as U, which is obtained by
U = min{U1, U2}. Then, the CDF and PDF are easily obtained as

F(t) = F(t; γ, λ) = 1 − (1 − F1(t))(1 − F2(t)) =

{
1 − e−Λt2γ

if 0 < t ≤ τ

1 − e−Λ(τ+β−1(t−τ))2γ
if t > τ

(5)

and

f (t) = f (t; γ, λ) =

{
γΛt2γ−1e−Λt2γ

if 0 < t ≤ τ
γ
β Λ(τ + β−1(t − τ))2γ−1e−Λ(τ+β−1(t−τ))2γ

if t > τ,
(6)

respectively, where λ = (λ1, λ2) and Λ = 1
2λ2

2
+ 1

2λ2
1
. Furthermore, let C denote the

indicator for the cause of failure. Then, under our assumptions, the joint PDF of (U, C) is
given by

fU,C(t; γ, λ) = f j(t)[1 − Fk(t)] =

⎧⎨⎩
γ

λ2
j
t2γ−1e−Λt2γ

if 0 < t ≤ τ

γ

λ2
j β
(τ + β−1(t − τ))2γ−1e−Λ(τ+β−1(t−τ))2γ

if , t > τ,
(7)

4
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for j, k = 1, 2, j �= k.
In competing risk models, the assumption of independence is often considered to be

impractical. Identifiable issues may emerge if dependencies exist within the model or due
to a lack of covariates in the data. To mitigate these issues, we postulate a latent failure time
model and treat the risks U1 and U2 as independent. Let Nj1 represent the number of units
failing from risk j before time τ and Nj2 after τ, with Nj = Nj1 + Nj2, ensuring N1 + N2 ≤ r.
The sequence of observed failure times is 0 < t1:n1 < t2:n2 < · · · < tr:n. Let n̂1 denote the
observed value for N1, n̂2 denote the observed value for N2, and let N = (N1, N2) be the
vector of these counts.

In the next section, classical and Bayesian estimation methods are constructed to
estimate the unknown parameters for the Power Rayleigh and the accelerated constant β
under the two competing risk factors with the Type-II censoring scheme.

3. Point Estimation

In this study, two approaches to estimation are examined: the frequentist maximum
likelihood estimation (MLE) and the Bayesian estimation method. Section 4 is dedicated to
conducting a simulation analysis and applying numerical techniques to evaluate the efficacy
of these estimation strategies.

3.1. Maximum Likelihood Estimation

In this section, the maximum likelihood estimation MLE method is employed to
determine the unknown parameters of the Power Rayleigh distribution within the TRV
framework. Numerical methods, including the renowned Newton–Raphson technique, are
utilized to compute the necessary estimators. Subsequently, assuming the TRV model, we
construct the likelihood function of ψ = (γ, λ1, λ2, β) based on Type-II censored data as

L(ψ|(t, c)) =
n!

(n − r)!

n̂1

∏
i=1

fU,C(ti:n, ci)
r

∏
i=n̂1+1

fU,C(ti:n, ci)[1 − F(tr:n)]
n−r.

Here r = n̂1 + n̂2 = n11 + n12 + n21 + n22. By substituting Equations (5) and (7) into
the above likelihood equation we obtain

L(ψ|(t, c)) =
n!

(n − r)!

(
γrβ−n̂2

λ2n̂1
1 λ2n̂2

2

)
n̂1

∏
i=1

t2γ−1
i e−Λt2γ

i

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n . (8)

The log-likelihood function can be written as

�(ψ) =r log γ − n̂2 log β − 2n̂1 log λ1 − 2n̂2 log λ2 + (2γ − 1)

[
n̂1

∑
i=1

log(ti) +
r

∑
i=n1+1

log(τ + β−1(ti − τ))

]
−

Λ

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ

]
+ (n − r)t2γ

r:n.

(9)

The maximum likelihood estimations of the parameters (γ, λ1, λ2, β) are obtained by
differentiating the log-likelihood function �(ψ) with respect to the parameters (γ, λ1, λ2, β)
and setting the result to zero, so we have the following normal equations.

∂�(ψ)

∂γ
=

r
γ
+ 2

[
n̂1

∑
i=1

log(ti) +
r

∑
i=n̂1+1

log(τ + β−1(ti − τ))

]
−

Λ

[
n̂1

∑
i=1

t2γ
i log(ti) +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ log(τ + β−1(ti − τ))

]
+ (n − r)t2γ

r:n log(tr:n),

(10)

5



Mathematics 2024, 12, 1248

∂�(ψ)

∂β
= − n̂2

β
− (2γ − 1)

r

∑
i=n̂1+1

β−2(ti − τ))

(τ + β−1(ti − τ))
+ Λ

r

∑
i=n̂1+1

γβ−2(ti − τ)(τ + β−1(ti − τ))2γ−1, (11)

∂�(ψ)

∂λ1
=

−2n̂1

λ1
+ λ−3

1

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
(12)

and

∂�(ψ)

∂λ2
=

−2n̂2

λ2
+ λ−3

2

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
. (13)

For known γ and β, the MLEs of λ1 and λ2 are given by

λ̂1 =
1√

2(n̂1)
1
2

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

] 1
2

and

λ̂2 =
1√

2(n̂2)
1
2

[
n̂1

∑
i=1

t2γ
i +

r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

] 1
2

.

To address the system of nonlinear equations presented in Equations (10)–(13), numer-
ical approaches are essential. Various numerical methods have been applied in existing
research; in this instance, we employ the Newton–Raphson method. The outcomes of this
application are detailed in Section 5.

3.2. Bayesian Inference

In this section, we apply the Bayesian estimation technique to determine the unknown
parameters of the Power Rayleigh distribution. The fundamental principle of the Bayesian
approach posits that the model’s parameters are random variables with a predefined
distribution, referred to as the prior distribution. Given the availability of prior knowledge,
selecting an appropriate prior is crucial. We opt for the gamma conjugate prior distribution
for the parameters for many reasons, such as the flexibility in its nature with a non-
informative domain and the calculations’ simplicity making analytical or computational
updates to the posterior easier. Also, the positive of the domain makes it suitable for
modeling parameters. We perform the Bayesian inference method for estimating the
unknown parameters ψ = (γ, λ1, λ2, β). We assume independent gamma priors for γ, λ1 ,
and λ2 and a uniform prior for β. That is, γ, λ1 and λ2 have Gamma(ci, di), where ci, di
> 0, i = 1, 2, 3, are non-negative hyperparameters, and β follows uniform prior as follows:

π(β) = 1, 0 < β < 1.

The estimates have been developed under the square error loss function (SELF) and
the linear exponential loss function (LLF). Hence, the joint prior density of the independent
parameters is given by

π(ψ) = π(γ)π(λ1)π(λ2)π(β),

π(ψ) = γc1−1e−d1γλc2−1
1 e−d2λ1 λc3−1

2 e−d3λ2 , γ > 0, λ1 > 0, λ2 > 0, 0 < β < 1. (14)

6
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The joint posterior density function for the parameters can be derived by incorporat-
ing the observed censored samples, and the prior distributions of these parameters are
as follows:

π∗(ψ, t, c) =π(ψ) L(ψ|t, c)

=γc1−1e−d1γλc2−1
1 e−d2λ1 λc3−1

2 e−d3λ2
γrβ−n̂2

λ2n̂1
1

λ2n̂2
2

n̂1

∏
i=1

t2γ−1
i e−Λt2γ

i ×
r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n .

(15)

Thus, the conditional posterior densities of the parameters γ, λ1, λ2 , and β can be
obtained by simplifying Equation (15) as follows

π∗
1 (λ1|λ2, γ, β, t, c) =λ−2n̂1+c2−1

1 e−d2λ1
n̂1

∏
i=1

e−Λt2γ
i

r

∏
i=n̂1+1

e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n , (16)

π∗
2 (λ2|λ1, γ, β, t, c) =λ2n̂2+c3−1

2 e−d3λ2
n̂1

∏
i=1

e−Λt2γ
i

r

∏
i=n̂1+1

e−(τ+β−1(ti−τ))2γΛe−Λ(n−r)t2γ
r:n , (17)

π∗
3 (γ|λ1, λ2, β, t, c) =γr+c1−1e−d1γ

n̂1

∏
i=1

t2γ−1
i e−Λt2γ

i

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
e−Λ(n−r)t2γ

r:n (18)

and

π∗
4 (β|λ1, λ2, γ, t, c) =β−n̂2

r

∏
i=n̂1+1

(τ + β−1(ti − τ))2γ−1e−Λ(τ+β−1(ti−τ))2γ
. (19)

Since the Equations (16)–(19) cannot be computed explicitly, numerical techniques
are employed. One of the most powerful numerical techniques in Bayesian estimation is
the Monte Carlo Markov Chain method (MCMC). In this scenario, we suggest employing
the Metropolis–Hastings (M-H) sampling method within the Gibbs algorithm, utilizing a
normal proposal distribution as recommended by Tierney [26]. The procedure for Gibbs
sampling incorporating the (M-H) approach is outlined as follows:

(1) Set initial values
(

λ
(0)
1 , λ

(0)
2 , γ(0), β(0)

)
.

(2) Set j = 1.

(3) Using the following M-H algorithm, from π∗
1 (λ

(j−1)
1 |λ(j−1)

2 , γ(j−1), β(j−1), t, c)

π∗
2 (λ

(j−1)
2 |λ(j)

1 , γ(j−1), β(j−1), t, c) , π∗
3 (γ

(j−1)|λ(j)
1 , λ

(j)
2 , β(j−1), t, c) , and

π∗
4 (β(j−1)|λ(j)

1 , λ
(j)
2 , γ(j), t, c) generate λ

(j)
1 , λ

(j)
2 , γ(j), and β(j) with the normal proposal

distributions

N
(

λ
(j−1)
1 , var(λ1)

)
, N
(

λ
(j−1)
2 , var(λ2)

)
, N
(

γ(j−1), var(γ)
)

, and N
(

β(j−1), var(β)
)

,

and from the main diagonal in the inverse Fisher information matrix we obtained var(λ1), var(λ2),
var(γ), and var(β).

(4) Generate a proposal for λ∗
1 from N

(
λ
(j−1)
1 , var(λ1)

)
, λ∗

2 from N
(

λ
(j−1)
2 , var(λ2)

)
,

γ∗ from N
(

γ(j−1), var(γ)
)

, and β∗ from N
(

β(j−1), var(β)
)

.

(i) The acceptance probabilities are

7
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μλ1 = min
[

1, π∗
1 (λ

∗
1 |λ

(j−1)
2 ,γ(j−1) ,β(j−1) ,t,c)

π∗
1 (λ

(j−1)
1 |λ(j−1)

2 ,γ(j−1) ,β(j−1) ,t,c)

]
,

μλ2 = min
[

1, π∗
2 (λ

∗
2 |λ(j)

1 ,γ(j−1) ,β(j−1) ,t,c)

π∗
2 (λ

(j−1)
2 |λ(j)

1 ,γ(j−1) ,β(j−1) ,t,c)

]
,

μγ = min
[

1, π∗
3 (γ

∗|λ(j)
1 ,λ(j)

2 ,β(j−1) ,t,c)

π∗
3 (γ

(j−1) |λ(j)
1 ,λ(j)

2 ,β(j−1) ,t,c)

]
and

μβ = min
[

1, π∗
4 (β∗|λ(j)

1 ,λ(j)
2 ,γ(j) ,t,c)

π∗
4 (β(j−1) |λ(j)

1 ,λ(j)
2 ,γ(j) ,t,c)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(ii) From a Uniform (0, 1) distribution u1, u2,u3, and u4 are generated.

(iii) If u1 < μλ1 , accept the proposal and set λ
(j)
1 = λ∗

1, otherwise set λ
(j)
1 = λ

(j−1)
1 .

(iv) If u2 < μλ2 , accept the proposal and set λ
(j)
2 = λ∗

2, otherwise set λ
(j)
2 = λ

(j−1)
2 .

(v) If u3 < μγ, accept the proposal and set γ(j) = γ∗, otherwise set γ(j) = γ(j−1).
(vi) If u4 < μβ, accept the proposal and set β(j) = β∗, otherwise set β(j) = β(j−1).

(5) Set j = j + 1.

(6) Steps (3)–(5), are repeated N times to obtain λ
(j)
1 , λ

(j)
2 , γ(j), and β(j) , j = 1, 2, . . . N.

To guarantee convergence and eliminate the impact of initial value selection, the first
M simulated variants are eliminated. For a sufficiently high N, the chosen samples are then
ψ
(j)
k , j = M + 1, . . . N. The SEL function-based approximate BEs of ψk are generated using

ψ̂
(j)
k =

1
N − M

N

∑
j=M+1

ψ(j), k = 1, 2, 3, 4. (20)

The approximate Bayes estimates for ψk, under the Entropy loss function are given as

ψ̂
(j)
k =

[
1

N − M

N

∑
j=M+1

(ψ(j))−q

]−1
q

, k = 1, 2, 3, 4. (21)

4. Interval Estimation

Confidence interval estimation is a fundamental statistical method used to indicate
the reliability of an estimate. It provides a range of values, derived from sample data, that
is likely to contain the true value of an unknown population parameter. The concept is
central to inferential statistics and has numerous applications across various fields such
as engineering, economics, medicine, and the social sciences. Among its key properties,
the asymptotic interval is notable for its reliance on large sample sizes, where the distri-
bution of the estimate approaches a normal distribution, making it increasingly accurate
as the sample size grows. This property is particularly useful for electrical engineering
projects where large data sets are analyzed for reliability and performance assessments.

Credible intervals, on the other hand, are used in Bayesian statistics and represent the
range within which a parameter lies with a certain probability, given the observed data
and a prior belief about the parameter’s distribution. This approach is valuable in research
and development projects within electrical engineering, where prior knowledge or expert
opinions can be quantitatively incorporated into the analysis, offering a more nuanced
understanding of uncertainty.

Bootstrap intervals utilize resampling techniques to generate an empirical distribu-
tion of the estimator by drawing samples with replacements from the original dataset.

8
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This method does not assume a specific distribution, making it versatile and robust, es-
pecially in complex engineering studies where theoretical distributions are hard to justify.
The bootstrap approach is particularly important for evaluating the uncertainty of estimates
derived from small or non-standard datasets, providing a powerful tool for uncertainty
quantification in both academic research and practical applications.

The application and importance of these intervals lie in their ability to quantify the
uncertainty in estimates, guiding decision making and hypothesis testing. In electrical
engineering, for example, they can be used to assess the reliability of system parameters,
evaluate the performance of new designs, or validate models against empirical data. By un-
derstanding and applying these concepts, researchers, and practitioners can enhance the
rigor and credibility of their findings, contributing to more reliable and effective solutions
in their respective fields. The following subsections work out the previously mentioned
interval estimations.

4.1. Asymptotic Confidence Interval

This subsection presents the observed Fisher information matrix, commonly employed
for the construction of asymptotic confidence intervals (ACIs).

The MLEs (λ̂1, λ̂2, γ̂, β̂) are approximately normal with a mean of (λ̂1, λ̂2, γ̂, β̂) and
a variance matrix I−1(λ̂1, λ̂2, γ̂, β̂). Here, Î(λ1, λ2, γ, β) is the observed Fisher information
matrix, and it is defined as

Î(λ1, λ2, γ, β) =

⎛⎜⎜⎜⎜⎜⎜⎝
− ∂2�

∂λ2
1

− ∂2�
∂λ1∂λ2

− ∂2�
∂λ1∂γ − ∂2�

∂λ1∂β

− ∂2�
∂λ2∂λ1

− ∂2�
∂λ2

2
− ∂2�

∂λ2∂γ − ∂2�
∂λ2∂β

− ∂2�
∂γ∂λ1

− ∂2�
∂γ∂λ2

− ∂2�
∂γ2 − ∂2�

∂γ∂β

− ∂2�
∂β∂λ1

− ∂2�
∂β∂λ2

− ∂2�
∂β∂γ − ∂2�

∂β2

⎞⎟⎟⎟⎟⎟⎟⎠
(λ1,λ2,γ,β)=(λ̂1,λ̂2,γ̂,β̂)

, (22)

where the second partial derivatives are as follows:

∂2�

∂γ2 =
−r
γ2 − 2Λ

[
n̂1

∑
i=1

t2γ
i (log(ti))

2 +
r

∑
i=n̂1+1

(τ + β−1(ti − τ))2γ(log(τ + β−1(ti − τ)))2

]
+ (n − r)t2γ

r:n(log(tr:n))
2,

∂2�

∂β2 =(2γ − 1)
r

∑
i=n̂1+1

β−4(ti − τ)2 − 2β−3(ti − τ)(τ + β−1(ti − τ))

(τ + β−1(ti − τ))2 −

Λ
r

∑
i=n̂1+1

γβ−3(ti − τ)(τ + β−1(ti − τ))2γ−1
[
2 + (2γ − 1)(ti − τ)β−1(τ + β−1(ti − τ))−1

]
,

∂2�

∂λ2
1
=

2n̂1

λ2
1
− 3λ−4

1

[
n1

∑
i=1

t2γ
i +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
,

∂2�

∂λ2
2
=

2n̂2

λ2
2
− 3λ−4

2

[
n1

∑
i=1

t2γ
i +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ + (n − r)t2γ
r:n

]
,

9
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∂2�

∂γ∂β
=− 2

r

∑
i=n1+1

β−2(ti − τ)

(τ + β−1(ti − τ))2 +

Λ

[
r

∑
i=n1+1

β−2(ti − τ)
[
2γ(τ + β−1(ti − τ))2γ−1 log(τ + β−1(ti − τ))− (τ + β−1(ti − τ))2γ−2

]]
,

∂2�

∂γ∂λ1
=

−2
λ3

1

[
n1

∑
i=1

t2γ
i log(ti) +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ log(τ + β−1(ti − τ))

]
+ (n − r)t2γ

r:n log(tr:n)

∂2�

∂γ∂λ2
=

−2
λ3

2

[
n1

∑
i=1

t2γ
i log(ti) +

r

∑
i=n1+1

(τ + β−1(ti − τ))2γ log(τ + β−1(ti − τ))

]
+ (n − r)t2γ

r:n log(tr:n)

∂2�

∂β∂λ1
= −2γλ−3

1

r

∑
i=n1+1

β−2(ti − τ)(τ + β−1(ti − τ))2γ−1,

∂2�

∂β∂λ2
= −2γλ−3

2

r

∑
i=n1+1

β−2(ti − τ)(τ + β−1(ti − τ))2γ−1

∂2�

∂λ1∂λ2
= 0.

Consequently, the estimated asymptotic variance–covariance matrix V̂ for the MLEs
can be obtained by taking the inverse of the observed information matrix Î(λ1, λ2, γ, β)
which is given by

[
V̂
]
= Î−1 =

⎛⎜⎜⎜⎝
V̂ar
(
λ̂1
)

cov(λ̂1, λ̂2) cov(λ̂1, γ̂) cov(λ̂1, β̂)

cov(λ̂1, λ̂2) V̂ar
(
λ̂2
)

cov(λ̂2, γ̂) cov(λ̂2, β̂)

cov(λ̂1, γ̂) cov(λ̂2, γ̂) V̂ar(γ̂) cov(γ̂, β̂)

cov(λ̂1, β̂) cov(λ̂2, β̂) cov(γ̂, β̂) V̂ar
(

β̂
)
⎞⎟⎟⎟⎠. (23)

The 100(1 − ζ)% two-sided confidence interval can be written as

λ̂1 ± Z ζ
2

√
V̂ar
(
λ̂1
)
, λ̂2 ± Z ζ

2

√
V̂ar
(
λ̂2
)
, γ̂ ± Z ζ

2

√
V̂ar(γ̂), and β̂ ± Z ζ

2

√
V̂ar
(

β̂
)
, (24)

where Z ζ
2

is the percentile of the standard normal distribution with right-tail probability ζ
2 .

4.2. Credible Interval

Using the Metropolis–Hastings algorithm within the Gibbs sampling framework, we
determined the credible confidence interval (CCI). For clarity, we refer to subsection 3.2,
and the algorithm steps mentioned there. Proceeding after step (6), the 100(1 − ζ)% CCIs
of ψk where (ψ1, ψ2, ψ3, ψ4) = (λ1, λ2, γ, β) with ψ

(1)
k < ψ

(2)
k . . . < ψ

(N)
k , is given by(

ψk(N (ζ/2)), ψk(N (1−ζ/2))

)
.

10
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4.3. Bootstrap Interval

Bootstrap confidence intervals offer a versatile approach to estimating the uncertainty
of an estimator when the underlying distribution is unknown or complex. There are two
main types: the bootstrap-t and the bootstrap percentile (bootstrap-p) methods.

4.3.1. Parametric Boot-p

The bootstrap percentile (p) method involves generating a large number of bootstrap
samples from the original data. For each sample, the statistic of interest is calculated,
creating a distribution of these statistics. The confidence interval is then directly obtained
by taking percentiles from this empirical distribution. The following steps describe the
algorithm of this method:

(1) Based on x = x1:n, x2:n, . . . , xm:n, obtain λ̂1, λ̂2, γ̂, and β̂ by maximizing Equations (10)–
(13).

(2) Generate x∗ = x∗1:n, x∗2:n, . . . , x∗m:n from the PR distribution with parameters λ̂1, λ̂2, γ̂,
and β̂ based on Type-II censoring under TRV, by considering the algorithm presented
in [27].

(3) Obtain the bootstrap parameter estimation ψ̂∗
i =
(

λ̂1
∗
i , λ̂2

∗
i , γ̂∗

i , β̂∗
i ,
)

, with i = 1, 2, 3, . . . , N
boots using the MLEs under the bootstrap sampling.

(4) Repeat steps (2) and (3) N boot times, and obtain ψ̂∗
1 , ψ̂∗

2 , . . . , ψ̂∗
N boot

(5) Obtain ψ̂∗
(1), ψ̂∗

(2), . . . , ψ̂∗
(N boot) by arrange ψ̂∗

i , i = 1, 2, 3, . . . , N boot in ascending orders.

Define ψ̂boot−p = G−1
1 (z) for a given z, where G1(z) = P(ψ̂∗ ≤ z) denotes the cumu-

lative distribution function of ψ̂∗. The 100(1 − ζ)% approximate bootstrap-p CI of ψ̂ is
given by [

ψ̂boot−p

(
ζ

2

)
, ψ̂boot−p

(
1 − ζ

2

)]
. (25)

4.3.2. Parametric Boot-t

The bootstrap-t method is an adaptation of the traditional t-interval, designed to
handle situations where the sample size is small or the data do not meet the assumptions
of normality. It involves resampling the original data with replacements to generate a
large number of bootstrap samples. These are used to calculate a t-statistic, analogous
to the one used in traditional t-tests but derived from the bootstrap distribution. This
collection of t-statistics forms a distribution from which confidence intervals can be derived,
the bootstrap-t algorithm is itemized as follows:

(1) Repeat the initial three steps of the parametric Boot-p procedure.
(2) Calculate the variance–covariance matrix I−1∗ utilizing the delta method.
(3) Define the statistic T∗ψ as

T∗ψ =

(
ψ̂∗ − ψ̂

)√
̂var
(
ψ̂∗)

(4) Generate T∗ψ
1 , T∗ψ

2 , . . . , T∗ψ
N boot from repeating steps 2 − 5 N Boot times

(5) Sort the sequence T∗ψ

(1), T∗ψ

(2), . . . , T∗ψ

(N boot) by arranging ψ̂∗
i , i = 1, 2, 3, . . . , N boot in

T∗ψ
1 , T∗ψ

2 , . . . , T∗ψ
N boot in ascending order.

Define ψ̂boot−t = ψ̂ + G−1
2 (z)

√
̂var
(
ψ̂∗), where G2(z) = P(T∗ ≤ z) is the cumulative

distribution function of T∗ for a given z.
Then, the approximate bootstrap-t 100(1 − ζ)% CI of ψ̂ is obtained by[

ψ̂boot−t

(
ζ

2

)
, ψ̂boot−t

(
1 − ζ

2

)]
. (26)

11
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5. Simulation Analysis

In this section, we present various simulation methods to demonstrate the theoretical
results. Initially, we create accelerated PR datasets using the inverse transformation tech-
nique. To achieve this, we employ a quantile function derived from the equation where
V represents a random sample from the uniform distribution. Consequently, we generate
random samples of sizes 40, and 100 using Equation (27).

F−1
j (v, λ1, λ2, γ, β)=

⎧⎪⎪⎨⎪⎪⎩
[
−2λ2

j ln(1 − v)
]2γ

τ +

(
β
[
−2λ2

j ln(1 − v)
]2γ − τ

) (27)

where j = 1, 2. Moreover, within the Type-II censoring framework, we employed two
distinct predetermined numbers of failures for each sample size. Thus, we selected m = 25
and m = 35 for n = 40, and r = 75 and r = 90 for n = 100, respectively. We examined two
different sets of actual parameter values in this context. In the initial approach, we set
(λ1, λ2, γ, β) = (1.5, 1.8, 1.2, 0.8), (1.5, 1.8, 1.2, 0.3), (0.6, 0.7, 2, 0.3), and (0.6, 0.7, 2, 0.8) with
two distinct stress transition points: τ = 0.60 and τ = 0.90. In all scenarios, we determined
the stress transition points based on the ranges of the generated samples, which varied
depending on the chosen actual parameter values.

We employed the software developed by R Team et al. [28] for computational tasks.
For MLE computations, we utilized the “L-BFGS-B” method within the “optim” function to
optimize the profile log-likelihood function described in Equation (9) within the restricted
area of 0 < β < 1. We set the significance level to 0.05 for approximate confidence intervals.
Subsequently, we conducted simulations repeatedly for 5000 iterations. Observing that
the means of the gamma priors yield the real parameter values with the given hyper-
parameters. The determination of hyper-parameters relies on informative priors, which
are derived from the Maximum Likelihood Estimates (MLEs) of (λ1, λ2, γ) by aligning the

mean and variance of (λ̂1
j
, λ̂2

j
, γ̂j) with those of specified priors (Gamma priors). Here,

j = 1, 2, 3, . . . , k, where k denotes the number of available samples from the PR distribution.

By equating the moments of (λ̂1
j
, λ̂2

j
, γ̂j) with those of the gamma priors, we derive the

following set of equations:

1
k

k

∑
j=1

γ̂j =
c1

d1
,

1
k − 1

k

∑
j=1

(
γ̂j − 1

k

k

∑
j=1

γ̂j
)2

=
c1

d2
1

,

1
k

k

∑
j=1

λ̂1
j
=

c2

d2
,

1
k − 1

k

∑
j=1

(
λ̂1

j − 1
k

k

∑
j=1

λ̂1
j
)2

=
c2

d2
2

,

1
k

k

∑
j=1

λ̂2
j
=

c3

d3
and

1
k − 1

k

∑
j=1

(
λ̂2

j − 1
k

k

∑
j=1

λ̂2
j
)2

=
c3

d2
3

.

By solving the aforementioned system of equations, the estimated hyper-parameters
can be expressed as follows:

c2 =

( 1
k ∑k

j=1 λ̂1
j)2

1
k−1 ∑k

j=1

(
λ̂1

j − 1
k ∑k

j=1 λ̂1
j
)2 , d2 =

1
k ∑k

j=1 λ̂1
j

1
k−1 ∑k

j=1

(
λ̂1

j − 1
k ∑k

j=1 λ̂1
j
)2

c3 =

( 1
k ∑k

j=1 λ̂2
j)2

1
k−1 ∑k

j=1

(
λ̂2

j − 1
k ∑k

j=1 λ̂2
j
)2 , d3 =

1
k ∑k

j=1 λ̂2
j

1
k−1 ∑k

j=1

(
λ̂2

j − 1
k ∑k

j=1 λ̂2
j
)2

(28)
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c1 =

( 1
k ∑k

j=1 γ̂j)2

1
k−1 ∑k

j=1

(
γ̂j − 1

k ∑k
j=1 γ̂j

)2 , d1 =
1
k ∑k

j=1 γ̂j

1
k−1 ∑k

j=1

(
γ̂j − 1

k ∑k
j=1 γ̂j

)2 .

We executed the MCMC algorithm 12,000 times for each of the 5000 replications. We
then discarded the initial 2000 values during the burn-in period. Given that Markov chains
inherently produce samples with autocorrelation, we opted for a thinning strategy, selecting
every third variate to achieve uncorrelated samples from the post-burn-in sample pool.
As a result, we generated 1000 uncorrelated samples from Markov chains by repeating this
thinning process 5000 times.

In the simulation scenario, we present bias values and mean squared errors (MSEs)
for the point estimates, along with average lengths (ALs) and corresponding coverage
probabilities (CPs) of the approximate confidence intervals. Tables 1–4 display all results
from these simulation schemes. The performance of the point and interval estimations can
be itemized as follows:

• Our observations consistently show reduced biases, MSEs, and ALs as sample
sizes increase.

• The CPs mostly align closely with their anticipated 95% level.
• In general, the informative Bayes estimation method outperforms MLE, with the

disparity between the two estimators decreasing as the sample size grows. This
highlights the Bayesian methods’ advantage for smaller samples.

• In particular, confidence intervals based on the Highest Posterior Density (HPD)
method tend to be smaller than those based on the Approximate Confidence Interval
(ACI) method, while still providing similar CPs.

• Altering the pre-determined number of failures or stress change time yields com-
parable performances across all cases, demonstrating the consistent efficiency and
productivity of the theoretical findings.

• Increasing the sample size generally leads to improvements in bias, MSE, and the preci-
sion of confidence intervals across all methods. This is expected because larger samples
provide more information about the population. The number of bootstrap samples
m also influences the Bootstrap method’s accuracy and precision, with a higher m
usually leading to better estimates.

• changing the stress transition time point τ affects the estimation, especially for
Bayesian estimation under ELF that adjusts based on the distribution’s tail prop-
erties. Different τ values can lead to variations in bias and MSE, suggesting the
importance of choosing an appropriate τ value for accurate estimation.

13
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6. The Optimal Stress Change Time and Sensitivity Analysis

In this section, we describe an optimal method based on asymptotic variances in
maximum likelihood estimators. The inverse Fisher information matrix’s diagonals can be
used to compute the parameters’ asymptotic variances. In this section, we used the sum of
coefficients of variations (SVCs) as the optimal function instead of the sum of parameter
variances, as recommended and implemented by Samanta et al. ([29,30]). Samanta et al. [29]
proposed a method to calculate an optimal solution by minimizing the predicted value of
the SVC. Since the sum of variances can be calculated using the variance of any specific
parameter if the parameter values are on a different scale. That is why we employed the
expected value of the SVC by maximizing E(φ(τ)), where

φ(τ) =

√
F−1

11

λ̂1
+

√
F−1

22

λ̂2
+

√
F−1

33

γ̂
+

√
F−1

44

β̂
, (29)

where F−1
ii is the element in the main diagonal of the inverse Fisher information matrix that

was described by Equation (22). However, the closed forms of the parameters’ posterior
variances may be imprecisely estimated. Samanta et al. [30] recommend adopting the Gibbs
sampling technique for computation.

Step 1: Obtain the samples U1, U2 and U = min{U1, U2} using given τ , n, r and
parameter values.
Step 2: The objective function φ(τ) is calculated.
Step 3: For N times, repeat Step 1 to Step 2, and obtain φ1(τ), φ2(τ), . . . , φN(τ).
Step 4: The median of the objective functions is obtained and applied to φm(τ).
Step 5: For all possible values of τ repeat Step 1 to Step 4 .
Step 6: The optimal τ for which φm(τ) is the minimum is obtained.

Optimal stress change time τ values, indicated by τ∗ are determined for given n, r,
and ψi for i = 1, . . . , 4 and are reported in Table 5.

Table 5. Optimal stress change time τ for different sample sizes and parameter values by SVC φ(τ).

n τ m Table 1 Table 2 Table 3 Table 4

40

0.6
25 0.4225 0.3565 0.5263 0.5119

35 0.3850 0.3477 0.3439 0.3934

0.9
25 0.4215 0.3301 0.2896 0.2695

35 0.3384 0.3605 0.2680 0.2661

100

0.6
75 0.3600 0.2797 0.1999 0.2476

90 0.3199 0.2737 0.1683 0.2312

0.9
75 0.2850 0.2638 0.1686 0.2050

90 0.2349 0.2352 0.1567 0.2008

From Table 5, it is evident that the optimal stress change times, denoted as τ, fall within
the range of 0.6 to 0.9 for the first parameter set. As the range of the generated dataset is
not extensive, there is not a significant deviation in the range of τ in this initial case. It is
noticeable that the stress change times utilized in the simulations closely align with the
optimal stress change times. Hence, the consistency and effectiveness of the simulation
outcomes are contingent upon accurately determining the stress change time.
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7. Real Data Examples

In this section, two real data sets are examined for the suitability of the PR model with
tampered random variables under the Type-II censoring framework.

7.1. HIV Infection to AIDS

This example discusses the application of a real-life dataset focusing on male individ-
uals and their progression from HIV infections to AIDS over nearly 15 years. According
to the United States Center for Disease Control and Prevention, 54% of total diagnosed
adult AIDS cases in the U.S. up to 1996 were due to intimate contact with a person who
was HIV positive, also, an additional 40% of incident cases occurred in that same year.
A subset of the 54% who also engaged in injection drug use accounted for an additional 7%
of cumulative and 5% of incident cases in 1996. These data were collected during the era of
antiretroviral combined therapy in 1996. For further background information, readers are
directed to studies by Dukers et al. [31] and Xiridou et al. [32], while Putter et al. [33] and
Geskus et al. [34] cite this dataset as an example for competing risk analysis. The dataset
encompasses instances where some patients either remained uninfected or their outcomes
were censored in the study.

We focused on a pre-determined number of failures, setting r as 150 from a complete
dataset of n = 222. We also examined stress change times: τ = 4.6. For clarity, we present
the competing risk data as follows in Table 6, where the black color is ti < τ and the gold
color is ti > τ.

Table 6. Data from HIV Infection to AIDS dataset.

ti c ti c ti c ti c ti c ti c ti c ti c ti c ti c

0.112 1 2.048 1 2.798 1 3.373 0 3.8 0 4.389 1 5.018 0 5.566 0 5.982 1 6.461 0

0.137 1 2.053 1 2.814 1 3.439 1 3.817 1 4.394 1 5.021 1 5.574 0 6.018 1 6.511 1

0.474 1 2.155 0 2.866 1 3.477 0 3.819 0 4.4 1 5.082 1 5.582 0 6.042 0 6.516 1

0.824 1 2.177 0 2.875 0 3.477 1 3.88 1 4.52 1 5.106 1 5.618 0 6.042 1 6.579 0

0.884 1 2.234 0 2.891 0 3.486 0 3.94 1 4.523 1 5.12 1 5.667 0 6.045 0 6.733 0

0.969 1 2.283 0 2.982 1 3.513 0 3.953 0 4.583 0 5.224 1 5.678 0 6.054 0 6.801 0

1.013 1 2.322 1 3.039 1 3.535 0 3.975 0 4.608 0 5.251 0 5.7 1 6.177 0 6.82 1

1.101 1 2.513 1 3.064 0 3.584 1 4.033 1 4.69 0 5.314 1 5.703 1 6.195 0 6.85 1

1.205 1 2.533 0 3.064 1 3.592 0 4.079 1 4.734 1 5.336 1 5.723 0 6.199 0 6.866 0

1.44 0 2.565 1 3.195 0 3.639 0 4.099 0 4.811 0 5.374 1 5.73 1 6.218 1 6.943 1

1.462 1 2.571 1 3.214 0 3.647 0 4.219 0 4.854 1 5.454 1 5.736 1 6.224 0 6.955 0

1.503 1 2.631 1 3.22 1 3.663 0 4.219 0 4.909 1 5.478 1 5.886 1 6.267 0 6.979 1

1.593 1 2.672 0 3.242 0 3.707 0 4.23 1 4.966 1 5.525 1 5.889 1 6.311 1 7.006 0

1.837 0 2.683 0 3.258 1 3.724 0 4.334 1 4.981 0 5.555 0 5.908 1 6.412 0 7.17 1

1.889 1 2.705 0 3.315 0 3.797 1 4.375 1 5.013 0 5.563 1 5.938 0 6.439 1 7.302 0

Table 7 showcases the MLE alongside various fit metrics for the HIV Infection to AIDS
dataset, utilizing both the baseline model and SSLT as complete datasets. The analysis
derived from Table 7 indicates an adequate fit of the model to the data, evidenced by a
Kolmogorov–Smirnov P-value (KSPV) exceeding 0.05. Furthermore, the table provides a
range of fit indices, including the Consistent Akaike Information Criterion (CAIC), Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan–Quinn
Information Criterion (HQIC), all of which serve as measures of goodness-of-fit.
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Table 7. MLE and different measures of HIV Infection to AIDS data.

ti < τ size KSD PVKS AIC BIC CAIC HQIC

ti < max(t) 220 λ 5.6859 0.9111 0.0890 0.1853 602.8644 608.8856 602.9460 605.3106
γ 1.3300 0.0913

ti < τ 121
λ 3.9018 0.7312

0.1217 0.1813 260.7185 265.5074 260.8724 262.6399
γ 1.4365 0.1381

τ < ti < max(t) 101
λ 44.2060 20.9781

0.0612 0.9585 145.3549 152.0572 145.7241 148.0139γ 1.1368 0.1974

β 0.0432 0.0353

Table 8 presents the maximum likelihood and Bayesian point estimation in addition to
the interval estimates for the PR parameters derived from step-stress life testing using the
Tampered Random Variable model. Table 8 presents a reliability analysis that evaluates the
reliability function of various models through maximum likelihood and Bayesian methods
for estimating parameters. The models analyzed include those with a risk factor from
cause I, from cause II, and both under standard conditions, followed by an examination
under an accelerated framework. Additionally, the reliability of the TRV model is analyzed
in the context of two competing risk factors. The findings suggest that the TRV model
exhibits the greatest reliability among the models assessed, underscoring the robustness of
our proposed model. Figure 1 depicts the likelihood profile for the PR parameters based
on SSLT under the TRV model which indicates the existence of the maximum value for
the log-likelihood function. Figure 2 illustrates the trace plots and marginal posterior
probability density functions of the parameters for the PR distribution, employing SSLT
under the TRV model, as obtained via Bayesian estimation.

Table 8. MLE and Bayesian estimation for the parameters of PR based on SSLT under TRV.

MLE Bayesian

Estimates StEr Lower Upper Estimates StEr Lower Upper

λ1 6.0925 1.0225 4.0884 8.0966 6.1924 0.7669 4.6570 7.6641

γ 1.1113 0.1052 0.9050 1.3175 1.1176 0.0774 0.9679 1.2601

λ2 6.6004 1.1181 4.4089 8.7919 6.7538 0.8359 5.3139 8.4690

β 0.5539 0.0991 0.3596 0.7482 0.5801 0.1257 0.3312 0.8086

1 − F1(t̄; γ, λ1) 0.70965 0.71305

1 − F2(t̄; γ, λ2) 0.74660 0.75253

1 − F1(t̄; γ, λ1, β) 0.74056 0.74077

1 − F2(t̄; γ, λ2, β) 0.77422 0.77705

1 − (1 − F1(tr))(1 − F2(tr)) 0.97519 0.97895
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Figure 1. Likelihood profile (blue line) for parameters of PR based on SSLT under TRV model with
the maximum likelihood estimation (red dot): HIV infection to AIDS data.
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Figure 2. MCMC plots for parameters of PR based on SSLT under TRV model for HIV Infection to
AIDS data.(The blue color indicates the convergence line).

7.2. Electrical Appliances Data

The real-world dataset analyzed in reference [35] (p. 441) examines 36 small electronic
components subjected to an automated life test, where failures are categorized into 18 types.
However, out of the 33 identified failures, only seven modes were observed, with modes
6–9 recurring more than twice. Mode 9 failure is particularly significant. Consequently,
the dataset is categorized into two failure causes, c = 0 (mode 9 failure) and c = 1 (all other
modes). The provided data presents the failure times in sequence along with the respective
cause of each failure, the stress change time is selected to be τ = 2500 as detailed in Table 9.
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Table 9. Electrical appliances data.

ti c ti c ti c ti c ti c

11 1 381 1 1594 1 2400 0 2694 0

35 1 708 1 1925 0 2451 1 2702 1

49 1 958 1 1990 0 2471 0 2761 1

170 1 1062 1 2223 0 2551 0 2831 1

329 1 1167 0 2327 1 2568 0 3034 0

Table 10 discusses MLE and different measures used for the electrical appliances data
in baseline model and SSLT model as complete data. From the results in Table 10, we
note that the data are fitting of this model where the KSPV is greater than 0.05. Also,
some different measures have been obtained as CAIC, AIC, BIC goodness-of-ft measures,
and HQIC.

Table 10. MLE and different measures for electrical appliances data.

xi < τ Size Estimate StEr KSD PVKS AIC BIC CAIC HQIC

xi < max(xi) 25 λ 53.3420 43.2098 0.2403 0.0938 423.9574 426.3951 424.5028 424.6335
γ 0.5803 0.1044

xi < τ 18
λ 22.3780 16.9145

0.1772 0.5644 296.2920 298.0727 297.0920 296.5375
γ 0.4859 0.1002

τ < xi < max(xi) 7
λ 2814.8644 5262.1741

0.2066 0.8722 94.8192 94.6569 102.8192 92.8135γ 0.7401 0.1678

β 0.0036 0.0012

Table 11 presents the maximum likelihood and Bayesian point estimation in addition
to the interval estimates for the PR parameters derived from step-stress life testing using
the Tampered Random Variable model for the electrical appliances data. Similar to the
discussion of reliability analysis in the first data set in Table 8, the reliability analysis
presented in Table 11 indicates that the TRV model outperformed the other models. Figure 3
depicts the likelihood profile of PR parameters based on SSLT under the TRV model for
electrical appliances data. From Figure 3, we can conclude that the parameters of PR
distribution based on SSLT under TRV have maximum value for the log-likelihood function
for electrical appliances data. Figure 4 shows the trace plots and marginal posterior
probability density functions of the parameters for the PR distribution based on SSLT under
the TRV model, derived through Bayesian estimation for the electrical appliances data.

Table 11. MLE and Bayesian estimation for the parameters of PR based on SSLT under TRV: electrical
appliances data.

MLE Bayesian

Estimates StEr Lower Upper Estimates StEr Lower Upper

λ1 30.436 11.750 7.407 73.065 30.475 2.933 24.635 36.016
γ 0.456 0.091 0.277 0.635 0.453 0.022 0.412 0.495
λ2 37.277 16.856 4.240 89.915 37.313 3.475 31.022 44.277
β 0.086 0.043 0.0015 0.179 0.096 0.042 0.020 0.171

1 − F1(tr; γ, λ1) 0.44465 0.46349
1 − F2(tr; γ, λ2) 0.58258 0.59872

1 − F1(tr; γ, λ1, β) 0.12041 0.15590
1 − F2(tr; γ, λ2, β) 0.24386 0.28945

1 − (1 − F1(tr))(1 − F2(tr)) 0.97064 0.97549
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Figure 3. Likelihood profile (blue line) for parameters of PR based on SSLT under TRV model with
the maximum likelihood estimation (red dot): electrical appliances data.

0 2000 6000 10000

25
30

35
40

Iteration

λ
1

λ1

F
re

qu
en

cy

25 30 35 40

0.
00

0.
05

0.
10

0.
15

0 2000 6000 10000
0.

40
0.

45
0.

50

Iteration

γ

γ

F
re

qu
en

cy

0.40 0.45 0.50

0
5

10
15

0 2000 6000 10000

30
35

40
45

50

Iteration

λ
2

λ2

F
re

qu
en

cy

30 35 40 45 50

0.
00

0.
04

0.
08

0.
12

0 2000 6000 10000

0.
05

0.
10

0.
15

0.
20

Iteration

β

β

F
re

qu
en

cy

0.00 0.10 0.20

0
2

4
6

8

Figure 4. MCMC plots for parameters of PR based on SSLT under TRV model: electrical appliances
(The blue color indicates the convergence line).

8. Conclusions

In conclusion, this work has significantly contributed to the field of reliability engi-
neering through the application of the Tampered Random Variable (TRV) model within
the step-stress life testing (SSLT) framework, particularly focusing on the Power Rayleigh
distribution in the context of competing risks. By integrating TRV with SSLT under such
complex scenarios, the study has addressed critical gaps in current research, particularly
the various applications of TRV modeling in competing risk analyses.

The methodological advancements presented in this paper, including the use of maxi-
mum likelihood estimation and the Bayesian methods for inferential analysis, as well as
Monte Carlo simulations for estimator performance evaluation, represent a robust approach
to understanding and improving product reliability under varied stress conditions. These
techniques have been validated through empirical analysis of real-world datasets from
the medical sector, regarding AIDS infection, and the electrical engineering domain, focus-
ing on electronic component failures. The reliability evaluations underscore the model’s
empirical suitability and the potential for broader application.

Furthermore, the study’s exploration of Type-II censoring schemes as a solution to
information shortage in lifetime experiments highlights the practical value of the research,
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offering other options for more cost-effective and efficient testing methodologies. The com-
parison of TRV modeling with other established models (CEM and TFR) within a competing
risks framework not only clarifies the conditions under which these models converge but
also showcases the unique advantages of TRV in handling complex, multi-step-stress
situations and discrete or multivariate lifetime data.

The comprehensive analysis and the resulting insights into model precision, reliability,
and risk management presented in this study provide a solid foundation for future research
in this area. It opens up new ways for the development of more accurate and dependable
models, enhancing the decision making process and risk management strategies in the
medical, industrial, and mechanical domains.
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Abstract: In this research, the statistical inference of unknown lifetime parameters is proposed in
the presence of independent competing risks using a progressive Type-II censored dataset. The
lifetime distribution associated with a failure mode is assumed to follow the new Pareto distribution,
with consideration given to two distinct competing failure reasons. Maximum likelihood estimators
(MLEs) for the unknown model parameters, as well as reliability and hazard functions, are derived,
noting that they are not expressible in closed form. The Newton–Raphson, expectation maximization
(EM), and stochastic expectation maximization (SEM) methods are employed to generate maximum
likelihood (ML) estimations. Approximate confidence intervals for the unknown parameters, reliabil-
ity, and hazard rate functions are constructed using the normal approximation of the MLEs and the
normal approximation of the log-transformed MLEs. Additionally, the missing information principle
is utilized to derive the closed form of the Fisher information matrix, which, in turn, is used with
the delta approach to calculate confidence intervals for reliability and hazards. Bayes estimators are
derived under both symmetric and asymmetric loss functions, with informative and non-informative
priors considered, including independent gamma distributions for informative priors. The Monte
Carlo Markov Chain sampling approach is employed to obtain the highest posterior density credible
intervals and Bayesian point estimates for unknown parameters and reliability characteristics. A
Monte Carlo simulation is conducted to assess the effectiveness of the proposed techniques, with the
performances of the Bayes and maximum likelihood estimations examined using average values and
mean squared errors as benchmarks. Interval estimations are compared in terms of average lengths
and coverage probabilities. Real datasets are considered and examined for each topic to provide
illustrative examples.

Keywords: progressive type-II censored data; competing risk model; expectation maximization
algorithm; stochastic expectation maximization algorithm; Bayes theorem; Metropolis–Hastings
algorithm; observed Fisher information matrix; computer simulation; statistics and numerical data

MSC: 62F10; 62F12; 62F15; 62F40

1. Introduction

Lifetime studies offer a valuable approach across engineering sciences, medical fields,
and economics for exploring the survival distribution of entities or individuals. Analyzing
data from such studies necessitates the consideration of the anticipated lifetime distribution,
with typical distributions including the exponential, Weibull, Burr, Pareto, and Gamma
distributions. Among these, the Pareto distribution family is widely acknowledged in
the literature for its ability to model data with heavy tails. One significant outcome of
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advancements in Pareto modeling is the spotlight it casts on the advantageous properties
for measuring income inequality. The Pareto distribution has found applications in various
disciplines such as actuarial science, economics, finance, life testing, reliability, survival
analysis, and engineering, owing to its tractable nature as a lifespan model. However, it
becomes evident that modeling data with heavy-tailed distributions necessitates considera-
tions beyond the capabilities of the Pareto distribution alone. Hence, there arises a need for
alternatives. Several distributions based on the Pareto framework have been proposed to
address this need. The new Pareto (NP) distribution, introduced by [1], is one such recently
discovered distribution that merits further investigation due to its significance across multi-
ple domains. The probability density function (PDF) and cumulative distribution function
(CDF) of the NP distribution, denoted NP(α, β), are as follows:

f (x, α, β) =
2αβαxα−1

(xα + βα)2 , x ≥ β, α > 0, β > 0, (1)

and
F(x, α, β) = 1 − 2βα

xα + βα
, x ≥ β, α > 0, β > 0, (2)

where α and β denote the shape and scale parameters of the distribution, respectively. The
survival function (SF) for the NP distribution is derived from Equation (2) as follows:

S(x, α, β) =
2βα

xα + βα
, x ≥ β, α > 0, β > 0. (3)

The hazard rate function (HRF) can be formulated as

H(x, α, β) =
f (x, α, β)

1 − F(x, α, β)
=

αxα−1

(xα + βα)
, x ≥ β, α > 0, β > 0. (4)

To highlight certain unique characteristics of this function, its first derivative with
respect to x can be expressed as follows:

H
′
(x, α, β) =

α(α − 1)xα−2(xα + βα)− α2x2α−2

(xα + βα)2 =
αxα−2Δ(x)

(xα + βα)2 . (5)

As mentioned in some of the literature, ref. [2] reported that the NP hazard rate
function can be unimodal shaped or decreasing depending on its parameters. For x > β > 0,
it becomes evident that Δ(x) = (α − 1)βα − xα and Δ(β) = βα(α − 2) < 0 if α < 2.
Consequently, for α < 2, H

′
(x, α, β) < 0, indicating that H(x, α, β) is decreasing concerning

x. In the case of α > 2, the function H(x, α, β) exhibits a distinct mode at x = x0, where
H(x, α, β) increases for all x < x0 and decreases for all x > x0, with x0 = β{α − 1}1/α.
Figure 1 shows how the behavior of H(x, α, β) is changed when the significant increasing
of the parameters α and β happened, as we can see this effect very clearly from the graph.
It is clear to us from this figure that the hazard rate of the NP distribution may exhibit
either an upside-down bathtub (unimodal) shape or a decreasing trend, contingent upon
the values of various parameters.

The NP distribution is often employed for modeling a wide range of real-world
datasets, such as insurance, reliability, engineering, and economics. For example, ref. [1]
delved into the mathematical properties of the NP distribution, demonstrating its utility in
modeling income and reliability data through the analysis of seven real datasets. Ref. [3]
used the new Pareto distribution to explain the income of the upper-class group using
the Malaysian household incomes dataset from 2012–2019. Further insights into this
distribution were uncovered in [2], where the authors derived simpler formulas for relevant
risk measures and inequality indices. Ref. [4] conducted parameter estimation for the NP
distribution using two distinct methodologies: classical estimation and Bayesian inference,
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with the latter utilizing importance sampling. Additionally, ref. [5] explored parameter
estimation across various phases of progressively censored samples derived from the
NP distribution and made predictions regarding failure times for removed units using
a Bayesian approach and Markov chain Monte Carlo techniques. Furthermore, ref. [6]
applied this distribution to data on rainfall and COVID-19. Ref. [7] utilized Type-II censored
data and full samples to estimate NP distribution parameters employing the mixed Gibbs
sampling method. They used the NP distribution to model the data of the air conditioning
system in an aircraft, as well as some data for mechanical units. Recently, ref. [8] applied the
NP distribution to some different data, including the net worth of the affluent in Singapore
and China, the daily increment of NASDAQ-100, and the daily new-case rate of COVID-19.

α = 0.5 α = 1.5 α = 4.0

β = 0.5 β = 1.5 β = 4.0

Figure 1. The effects of parameters α and β on the hazard function of NP(α, β).

Recognizing the presence or absence of competing risks is pivotal when considering
the distribution of units’ lifetimes in research. In realistic testing scenarios, it is well
understood that failures often stem from multiple factors, competing within the lifespan
continuum. This phenomenon is referred to as a competing risk model in the statistical
literature and finds widespread application across various scientific domains, including
economics, medical sciences, electronic engineering, and social sciences. In the medical
field, for instance, reducing mortality rates from specific diseases is a key objective of public
health initiatives. However, assessing the impact on overall mortality and life expectancy
is complicated by the presence of competing causes of death. Individuals face risks from
various ailments like heart disease, diabetes, hypertension, cancer, AIDS, and tuberculosis,
all vying for their longevity, even though death is typically attributed to a single cause.
Similarly, in assessing the reliability of car tires, factors such as sidewall damage, punctures,
or tread wear can lead to failure, highlighting the competition among different failure
modes. In industrial reliability contexts, the focus on specific system components prone
to failure may overlook potential risks posed by other components, thus introducing a
competing risk problem. Competition among failure causes exists in each scenario, with
only one mode typically leading to failure. Therefore, the precise inference of each failure
mode in the presence of others becomes necessary. Moreover, in medical survival analysis
and industrial experimentation, the item of interest often becomes inadvertently lost or
removed before failure, leading to data censorship as a result of these investigations.

Due to the challenge of obtaining comprehensive lifespan data for every component
in life experiments, researchers often categorize control systems into two types: Type-I and
Type-II. Type-I censorship occurs when the experimental duration is fixed, and the number
of failures becomes random. Conversely, Type-II censorship arises when the experimental
time is unpredictable, but the number of failures is predetermined. Both types entail that
any remaining items cannot be removed before the test concludes. Therefore, a progressive
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Type-II censoring approach, introduced in [9], aims to streamline resources and reduce costs
by implementing multiple censoring stages according to a predefined scheme. The practical
implementation of progressive Type-II censorship involves initiating the experiment with
n units to be tested. The experiment concludes at the failure time of the mth (where m < n)
unit. Upon the occurrence of the first failure, R1 units are randomly selected from the
remaining n − 1 units, and the failure time, X1:m:n, is recorded. Subsequently, R2 units are
randomly removed after noting the second failure time, X2:m:n, and this process continues
until the mth product fails. At this point, all surviving units are removed, and the failure
time, Xm:m:n, is noted. Here, Rm represents the number of units removed for the mth time.
Thus, X1:m:n, X2:m:n, . . . , Xm:m:n constitute the progressive Type-II censored sample. It is
essential to note that the total number of units, n, is the sum of R1, R2, . . . , Rm and m, with
R1, R2, . . . , Rm being predefined constants. Further insights into censorship-related studies
can be found in [9], which serves as a valuable resource in this area. Building upon the
progressive Type-II censored sample drawn from an NP distribution, ref. [6] investigated
issues related to estimating unknown characteristics and predicting the failure periods of
the eliminated units.

In recent years, there has been a growing interest among researchers in statistical
inference, particularly concerning the presence of competing risks and various forms of
censoring in available data. A multitude of recent studies have addressed this topic, span-
ning different censoring schemes and statistical models. For instance, ref. [10] explored
competing risk analysis under Type-II hybrid censoring for the two-parameter exponential
distribution. Ref. [11] investigated statistical inference for competing hazard models using
progressive interval censored Weibull data. Ref. [12] analyzed a competing risk model
with Weibull distributions under a unified hybrid censoring scheme, deriving maximum
likelihood estimators and approximate confidence intervals for distributional parameters.
Similarly, ref. [13] focused on statistical inference for competing risk models with inverted
exponentiated distributions under a unified hybrid censoring scheme. Additionally, re-
searchers have examined various Bayesian and maximum likelihood estimation techniques
under different censoring scenarios and model assumptions. Notably, there is a noticeable
gap in the literature regarding the application of the new Pareto lifespan distribution within
competing risk models under any form of censorship. Hence, our study aimed to address
this gap by studying the maximum likelihood and Bayesian estimation of the unknown
parameters, reliability, and hazard rate functions of the NP distribution under progressively
censored competing risks models. Moreover, we introduce innovative methodologies, such
as employing expectation maximization (EM) and stochastic EM (SEM) algorithms for
deriving maximum likelihood estimators for the NP distribution, a novel approach not pre-
viously explored. To achieve these objectives, we employ a variety of methods, including
the Newton–Raphson method, EM, SEM algorithms, and Bayesian estimation techniques,
utilizing different loss functions and prior distributions. Furthermore, we conducted a
Monte Carlo simulation analysis to evaluate the efficacy of the proposed estimators using
metrics such as absolute bias, mean squared error, average width, and coverage probability.
Finally, we illustrate our findings using a real-world dataset, emphasizing the practical
relevance of our research.

This paper’s structure is organized as follows: Section 2 provides descriptions of
the models under the competing risks scenario. In Section 3, maximum likelihood esti-
mators (MLEs) and corresponding approximate confidence intervals (ACIs) for the NP
distribution’s unknown parameters in the progressively censored competing risk setting
are derived using the Newton–Raphson (NR) method. The existence and uniqueness of
MLEs are also discussed in this section. Section 4 applies the EM and SEM approximation
methods to obtain the MLEs of the unknown parameters. Additionally, a Fisher information
matrix is constructed to facilitate approximate interval estimations in this section. Section 5
utilizes the Markov chain Monte Carlo (MCMC) technique to generate Bayes estimates for
the unknown parameters, reliability, and hazard functions, assuming independent gamma
priors for the unknown parameters. HPD credible intervals for the unknown parameters
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are also established based on MCMC samples. Section 6 presents a Monte Carlo simulation
investigation to compare the suggested estimates in terms of average bias, mean squared
error (MSE), average width (AW), and coverage probability (CP). In Section 7, real-world
datasets and a simulation example are examined for illustrative purposes. Finally, Section 8
concludes the paper with some closing remarks.

2. Model and Data Overview

Consider a life testing experiment commencing with a set of n ∈ N identical units,
where the failure times of these units are denoted by X1, X2, . . . , Xn. To simplify, let us
assume that there are only two distinct causes of failure. Thus, for each unit i = 1, . . . , n,
we have Xi = min{Xi1, Xi2}, where Xik, (k = 1, 2) represents the latent failure time of the
ith unit under the kth cause of failure. We make the assumptions that the latent failure
times Xi1 and Xi2 are statistically independent and the pairs (Xi1, Xi2) are identically and
independently distributed (i.i.d).

As is clear from Figure 1, the effect of the β parameter is not significant on the hazard
function, unlike the α parameter. Therefore, here, we assume that the failure times follow
the NP distribution, with a common scale parameter β and distinct shape parameters (αk,
k = 1, 2). The CDF Fk(x) and the PDF of the jth failure cause of a random variable Xij are
provided in [1] as follows:

fk(x, Θ) =
2αkβαk xαk−1

(xαk + βαk )2 , and Fk(x, Θ) = 1 − 2βαk

xαk + βαk
, x ≥ β, αk > 0, β > 0. (6)

Given the observation Xi = min{Xi1, Xi2}, where Xi1 and Xi2 represent two distinct
failure times for a test unit, we solely consider the smaller of the two, indicating the overall
failure time. Subsequently, the CDF of this overall failure time is readily derived as follows:

F(x, Θ) = 1 − (1 − F1(x, Θ))(1 − F2(x, Θ)) = 1 −
(

2βα1

xα1 + βα1

)(
2βα2

xα2 + βα2

)
= 1 − 4

2

∏
j=1

βαk

(xαk + βαk )
, x ≥ β, αk > 0, β > 0. (7)

Consequently, the PDF can be represented as

f (x, Θ) =
4β(α1+α2)

[
(α1 + α2)x(α1+α2) + α2βα1 xα2 + α1βα2 xα1

]
x(xα1 + βα1)2(xα2 + βα2)2

= 4β(α1+α2)
2

∑
k=1

αkxαk−1

(xαk + βαk )2(xα3−k + βα3−k )

=
2

∑
k=1

fk(x, Θ)F̄(x, Θ), x ≥ β, αk > 0, β > 0. (8)

Subsequently, the survival and hazard functions manifest in the subsequent form:

S(t, Θ) = 4
2

∏
j=1

βαk

(tαk + βαk )
, t ≥ β, αk > 0, β > 0, (9)

and

H(t, Θ) =
2

∑
k=1

αkxαk−1

(xαk + βαk )
, t ≥ β, αk > 0, β > 0. (10)

Let

I(δi = k) =
{

1, δi = k
0, otherwise :

, i = 1, 2, . . . , m,
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then

mk =
m

∑
i=1

I(δi = k),

signifies the total count of units that failed because of cause k(k = 1, 2) and m1 + m2 = m.
In exploiting the independence of the latent failure times Xi1 and Xi2 for i = 1, 2, . . . , n, the
relative risk rate attributed to a specific cause (let us say, cause 1) can be derived as follows:

p = P(X1 < X2) =
∫ ∞

β
F1(x, α1, β) f2(x, α2, β)dx

=
∫ ∞

β

2α2βα2 xα2−1

(xα2 + βα2)2

(
1 − 2βα1

xα1 + βα1

)
dx

= 1 −
∫ ∞

β

4α2βα1+α2 xα2−1

(xα2 + βα2)2(xα1 + βα1)
dx. (11)

A numerical approach is necessary to solve the integral on the right side of Equation (11)
since it lacks an analytical solution. Once P(X1 < X2) is determined, P(X2 < X1) can be
computed using the relationship P(X2 < X1) = 1 − P(X2 < X1). Hence, if m1 ∼ Binomial
(m, p), then m2 ∼ Binomial(m, 1 − p). In progressive Type-II censoring, the total number
of failed individuals m and the predefined censored scheme (R1, R2, . . . , Rm) are specified
in advance, where Rm = n − m − ∑m

i=1 Ri. Consequently, the observed set of progressive
Type-II censored data with competing risks can be expressed as

(X1:m:n, δ1, R1), (XJ:m:n, δ2, Rm), . . . , (Xm, δm, Rm).

To simplify the notation, we denote Xi:m:n as Xi. Then, the likelihood equation for the
progressive Type-II censored data, based on the competing risk model, is expressed as

L = C(R)
m

∏
i=1

[ f1(xi)F̄2(xi)]
I(δi=1)

[ f2(xi)(F̄1(xi))]
I(δi=2)

[F̄1(xi)F̄2(xi)]
Ri , (12)

where

C(R) = n(n − R1 − 1)(n − R1 − R2 − m + 1), and F̄k(xi) = 1 − Fk(xi), k = 1, 2. (13)

3. Estimation of Maximum Likelihood Using Different Algorithms

A widely employed and highly regarded statistical estimation technique is MLE. MLE
stands out as a preferred and efficient choice for parametric estimation procedures, owing to
its consistency, efficiency, and asymptotic normality properties. This section is dedicated to
utilizing maximum likelihood to derive both point and interval estimates for the unknown
parameters α1, α2, and β, as well as for the reliability S(t, α1, α2, β) and hazard H(t, α1, α2, β)
functions, within the framework of progressive Type-II censoring with competing risk data.

3.1. MLEs via Newton–Raphson Algorithm

A widely utilized numerical technique for determining MLEs is the NR algorithm. In
this context, we outline the NR algorithm for computing the MLEs of α1, α2, β, S(t), and
H(t). Let x1:m:n < x2:m:n < · · · < xm:m:n denote the order statistics of Type-II progressively
censored data with competing risks from independent NP distributions NP(α1, β) and
NP(α2, β), respectively, and a pre-fixed censoring scheme (R1, R2, . . . , Rm). Henceforth, we
will use x = (x1, x2, . . . , xm) in lieu of (x1:m:n, x2:m:n, . . . , xm:m:n). The likelihood function
utilizing Equations (6) and (12) is presented as follows:

L ∝
m

∏
i=1

2

∏
k=1

⎧⎨⎩ αkβαk βα3−k xαk−1
i(

xαk
i + βαk

)2(xα3−k
i + βα3−k

)
⎫⎬⎭

I(δi=k)
m

∏
i=1

2

∏
k=1

{
βαk(

xαk
i + βαk

)}Ri

.
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In disregarding the additive constant, the log-likelihood function is expressed as

L = ln L =
2

∑
k=1

mk log αk + n log β
2

∑
k=1

αk +
2

∑
k=1

m

∑
i=1

(αk − 1)I(δi = k) log xi

−
2

∑
k=1

m

∑
i=1

Δk(δi, Ri) log
(

xαk
i + βαk

)
, (14)

where
Δk(δi, Ri) = I(δi = k) + Ri + 1, ; i = 1, 2, · · · ; and k = 1, 2. (15)

Taking the derivative of Equation (15) with respect to αk and β, where k = 1, 2, yields
the partial derivatives of the likelihood as follows:

∂L
∂αk

∝ mk
αk

+ n log β +
m

∑
i=1

I(δi = k) log xi −
m

∑
i=1

Δk(δi, Ri)

[
xαk

i log xi + βαk log β(
xαk

i + βαk
) ]

, (16)

and
∂L
∂β

∝
2

∑
k=1

{
nαk

β
−

m

∑
i=1

Δk(δi, Ri)αkβαk−1(
xαk

i + βαk
) }

. (17)

Concurrently solving the intricate nonlinear equations ∂L
∂αk

= 0 for k = 1, 2 and ∂L
∂β = 0

allows for the determination of the MLEs of αk and β. However, obtaining closed forms
for Equations (16) and (17) proves challenging. Hence, various numerical techniques, such
as NR, are employed to compute the MLEs for the unknown parameters. Notably, given
x ≥ β, the MLE for β is straightforwardly derived as β = x1. Furthermore, it is evident that
the MLE for αk can be obtained as a fixed-point solution of the following equation:

Φ(αk) = 1/αk, k = 1, 2, (18)

where

Φ(αk) = m−1
k

{
n log x1 +

m

∑
i=1

I(δi = k) log xi −
m

∑
i=1

Δk(δi, Ri)
(

xαk
i log xi + xαk

1 log x1
)(

xαk
i + xαk

1
) }

, k = 1, 2. (19)

The prevalent approach for numerically solving Equation (19) is through the straight-
forward iterative method, Φ

(
α
(j)
k

)
= α

(j)
k , where (j) is the value obtained in the jth iteration.

The solutions to the likelihood equations are denoted as α̂k (k = 1, 2) and β̂. The following
steps illustrate the specific processes involved in this iteration method:

Step 1: Initial values for Θ = (α1, α2, β) should be given with j = 0; that is,
Θ(0) = (α

(0)
1 , α

(0)
2 , β(0)).

Step 2: In the jth iteration, calculate ( ∂L
∂α1

, ∂L
∂α2

, ∂L
∂β )

T
∣∣∣
α1=α

(j)
1 ,α2=α

(j)
2 ,β=β(j)

and

I = I(α(j)
1 , α

(j)
2 , β(j)), where

I = I(α(j)
1 , α

(j)
2 , β(j)) =

⎡⎣ −L11 −L12 −L13
−L21 −L22 −L23
−L31 −L32 −L33

⎤⎦
α1=α

(j)
1 ,α2=α

(j)
2 ,β=β(j)

. (20)

The observed information matrix of the parameters α1, α2, and β is denoted as I. The
elements of the matrix I are as follows:

Lkk =
∂2L
∂α2

k
∝ −mk

α2
k
−

m

∑
i=1

[
Δk(δi, Ri)βαk xαk

i log2(xi/β)(
xαk

i + βαk
)2

]
, k = 1, 2, (21)
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L12 = L21 =
∂2L

∂αk∂α3−k
=

∂2L
∂α3−k∂αk

= 0 (22)

Lk3 = L3k =
∂2L

∂αk∂β
=

∂2L
∂β∂αk

=
n
β
−

m

∑
i=1

Δk(δi, Ri)βαk−1[xαk
i (1 − αk log(xi/β)) + βαk

](
xαk

i + βαk
)2 , (23)

and

L33 =
∂2L
∂β2 ∝ − n

β2

2

∑
k=1

αk − 2
2

∑
k=1

m

∑
i=1

αkβαk−2 I(δi = k)
[
βαk + (αk − 1)xαk

i
](

xαk
i + βαk

)2
−

2

∑
k=1

m

∑
i=1

[I(δi = 3 − k) + Ri]αkβαk−2[βαk + (αk − 1)xαk
i
](

xαk
i + βαk

)2 , k = 1, 2. (24)

Step 3: Set

(α
(j+1)
1 , α

(j+1)
2 , β(j+1))T = A × (

∂L
∂α1

,
∂L
∂α2

,
∂L
∂β

)T

∣∣∣∣
α1=α

(j)
1 ,α2=α

(j)
2 ,β=β(j)

,

where A = (α(j)
1 , α

(j)
2 , β(j))T + I−1(α

(j)
1 , α

(j)
2 , β(j)), (α1, α2, β)T is the transpose of

vector (α1, α2, β), and I−1(α
(j)
1 , α

(j)
2 , β(j)) represents the inverse of the matrix I(α(j)

1 , α
(j)
2 , β(j)).

Step 4: In setting j = j + 1, the MLEs of the parameters (denoted by α̂1, α̂2, β̂) can be

obtained by repeating Steps 2 and 3 until
∣∣∣∣(α

(j+1)
1 , α

(j+1)
2 , β(j+1)

)T −
(

α
(j)
1 , α

(j)
2 , β(j)

)T
∣∣∣∣ < ε,

where ε is a threshold value that is fixed in advance.
Utilizing the acquired point estimators and the invariance property of MLEs, we can

derive the estimates of the reliability and hazard functions from Equations (9) and (10),
which are expressed as follows:

Ŝ(t) = 4βα̂1+α̂2

[
2

∏
k=1

(tα̂k + β̂α̂k )

]−1

, and Ĥ(t) =
2

∑
k=1

α̂kxα̂k−1

(tα̂k + β̂α̂k )
, t > β > 0. (25)

3.2. Existence and Uniqueness of MLEs

The existence and uniqueness of the MLEs are fundamental aspects to consider in
statistical inference.

Theorem 1. The maximum likelihood estimator of αk, where k = 1, 2, exists and is unique for the
lifetimes of objects subject to competing risks and following the NP distribution with parameters
(α1, β) and (α2, β) when mk > 0 for k = 1, 2.

Proof. Since x ≥ β, we determine the MLE β̂ = x1, and the MLE α̂k of αk, k = 1, 2, can be
reported from the solution of the following equation:

∂L
∂αk

∝ mk
αk

+ n log x1 +
m

∑
i=1

I(δi = k) log xi −
m

∑
i=1

Δk(δi, Ri)

[
xαk

i log xi + xαk
1 log x1(

xαk
i + xαk

1
) ]

, k = 1, 2. (26)
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The left-hand side of Equation (26) is a continuous function. As αk approaches 0,
the left-hand side of Equation (26) tends to infinity, and as αk → ∞, the left-hand side of
Equation (26) tends to φ, where φ represents

φ = lim
αk→∞

∂L
∂αk

= n log x1 −
m

∑
i=1

I(δi = k) log xi −
m

∑
i=1

[I(δi = 3 − k) + Ri] log xi

= n log x1 −
m

∑
i=1

log xi = −
m

∑
i=2

log xi < 0. (27)

Hence, the solution of Equation (26) exists. Additionally, we find that the second
derivative of αk(k = 1, 2) takes the following form:

∂2L
∂α2

k
∝ −mk

α2
k
−

m

∑
i=1

[
Δk(δi, Ri)βαk xαk

i log2(xi/β)(
xαk

i + βαk
)2

]
< 0. (28)

As Equation (28) is always negative, Equation (26) has a unique solution, and this
solution represents the maximum likelihood estimator (MLE) of αk(k = 1, 2). Consequently,
we deduce that ∂L

∂αk
is a continuous function on (0, ∞), and it monotonically decreases

from ∞ to negative values. This demonstrates the existence and uniqueness of the MLE of
αk(k = 1, 2).

3.3. Approximate Confidence Intervals

In this section, we derive the approximate confidence intervals (ACIs) for the unknown
parameters α1, α2, and β, as well as for the reliability and hazard functions, utilizing the
asymptotic normality of the MLEs. This approach is based on the asymptotic proper-
ties of MLEs. Based on the regularity conditions, the MLEs (α̂1, α̂2, β̂) are approximately
normally distributed with mean (α1, α2, β) and variance–covariance matrix I−1(α̂1, α̂2, β̂).
Or equivalently, (

α̂1, α̂2, β̂
)− (α1, α2, β) ∼ N

(
0, I−1(α̂1, α̂2, β̂)

)
, (29)

where from (20),

I−1(α̂1, α̂2, β̂) =

⎡⎣ −L11 −L12 −L13
−L21 −L22 −L23
−L31 −L32 −L33

⎤⎦−1

Θ=Θ̂

=

⎡⎣ Var(α̂1) Cav(α̂1, α̂2) Cav(α̂1, β̂)
Cav(α̂2, α̂1) Var(α̂2) Cav(α̂2, β̂)
Cav(β̂, α̂2) Cav(β̂, α̂2) Var(β̂)

⎤⎦, (30)

is the inverse of the observed Fisher information matrix with Θ = (α1, α2, β). Furthermore,
the expression Lij =

∂2L
∂Θi∂Θj

, for i, j = 1, 2, 3, is given by Equations (21)–(24). Thus, the

100(1 − γ)% ACIs for α1, α2, and β are given by(
α̂1 ± Zγ/2

√
Var(α̂1)

)
,
(

α̂2 ± Zγ/2

√
Var(α̂2)

)
, and

(
β̂ ± Zγ/2

√
Var(β̂)

)
, (31)

where Zγ/2 is the upper (γ/2)-th point of the standard normal distribution N(0, 1). Al-
ternatively, the ACIs for S(t) and the hazard function H(t) can be constructed using the
asymptotic normality of the MLE. To derive these intervals, we employ the delta method
(Greene [14]) to estimate the variances of their estimators. The delta method is a statistical
technique used to approximate the probability distribution of a function of an asymp-
totically normal estimator by employing the Taylor series approximation. In utilizing
this method, the approximate variances of Ŝ(t) and Ĥ(t) are determined through the
following steps:

Step 1: Let Ω1 and Ω2 be two quantities that take the following forms:

Ω1 =

(
∂S(t)
∂α1

,
∂S(t)
∂α2

,
∂S(t)

∂β

)
and Ω2 =

(
∂H(t)

∂α1
,

∂H(t)
∂α2

,
∂H(t)

∂β

)
,
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where from Equations (9) and (10),

∂S(t)
∂αk

=
4βαk+α3−k tαk{log t − log β}
(tαk + βαk )2(tα3−k + βα3−k )

, k = 1, 2,

∂S(t)
∂β

= −4βα1+α2−1{(α1 + α2)tα1+α2 + α1βα2 tα1 + α2βα1 tα2}
(tα1 + βα1)2(tα2 + βα2)2 ,

∂H(t)
∂αk

=
tαk−1{tαk + βαk (1 + αk(log t − log β))}

(tαk + βαk )2 , k = 1, 2,

and
∂H(t)

∂β
= − 1

βt

2

∑
k=1

tαk α2
k βαk

(tαk + βαk )2 , k = 1, 2.

Step 2: Using the following formulas, determine the approximate variances of S(t)
and H(t):

Var(Ŝ(t)) �
[
Ω1Var(Θ̂)ΩT

1

]
Θ=Θ̂

, and Var(Ĥ(t)) �
[
Ω2Var(Θ̂)ΩT

2

]
Θ=Θ̂

, (32)

where Var(Θ̂) is obtained from (30) for Θ̂ = (α̂1, α̂2, β̂).
Step 3: Determine the 100(1 − γ)% asymptotic confidence intervals for S(t) and H(t)

using the following formula:(
Ŝ(t)± Zγ/2

√
Var(Ŝ(t))

)
, and

(
Ĥ(t)± Zγ/2

√
Var(Ĥ(t))

)
(33)

3.4. Log-Normal Approximation Confidence Intervals (LACIs)

In instances where the lower bound of the asymptotic confidence intervals may fall
below 0, conflicting with the prerequisite Θ > 0, the issue can be circumvented through
log transformation and the delta method. We have ln Θ̂ ∼ N(ln Θ, Var(ln Θ̂)), where

Var(ln Θ̂) = Var(Θ̂)

Θ̂2 . The log-transformed MLEs of Θ = (α1, α2, β) obtain their asymptotic
confidence intervals at 100(1 − γ)% as follows:⎡⎣Θ̂ exp

⎛⎝−Z(γ/2)

√
Var(Θ̂)

Θ̂2

⎞⎠, Θ̂ exp

⎛⎝Z(γ/2)

√
Var(Θ̂)

Θ̂2

⎞⎠⎤⎦, Θ̂ = (α̂1, α̂2, β̂). (34)

Similarly, the 100(1 − γ)% LACIs of S(t) and H(t) can be listed as[
Ŝ(t) exp

(
−Z(γ/2)

√
Var(Ŝ(t))

Ŝ(t)2

)
, Ŝ(t) exp

(
Z(γ/2)

√
Var(Ŝ(t))

Ŝ(t)2

)]
, (35)

and [
Ĥ(t) exp

(
−Z(γ/2)

√
Var(Ĥ(t))

Ĥ(t)2

)
, Ĥ(t) exp

(
Z(γ/2)

√
Var(Ĥ(t))

Ĥ(t)2

)]
. (36)

4. Expectation Maximization (EM) Algorithm

Given that the ML estimators are not straightforwardly derived and that initial values
can impact the maximum likelihood estimates obtained from the NR method, we resort
to the EM algorithm to compute the estimations of the unknown parameters (α1, α2, β),
alongside the reliability function S(t) and hazard function H(t) of the NP models. Ref. [15]
introduced a generic iterative approach for computing the MLEs of unknown parame-
ters when observed and censored data are available, known as the EM algorithm. This
method offers several advantages, such as its capability to address complex problems, the
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assured increase in log-likelihood with each iteration, the straightforward yet meticulous
computations, and the elimination of the necessity for second- and higher-order deriva-
tives. The EM algorithm comprises two key steps: the expectation step (E-step) and the
maximization step (M-step). In the E-step, the conditional expectation of the missing data
is determined based on the observed data and the current parameter estimates, and the
pseudo-log-likelihood function is calculated. Subsequently, in the M-step, the likelihood
function under the observed, and censored data are maximized. This method is particularly
useful for analyzing partially or censored datasets, such as those encountered in the Type-II
progressive censoring with competing risks sample model. Thus, we employed the EM
algorithm to obtain the MLEs of α1, α2, β, S(t), and H(t).

4.1. Point Estimation via EM Algorithm

Consider the observed sample denoted as X = (x1:m:n, x2:m:n, . . . , xm:m:n) and the
censored data as Z = (Z1, Z2, .., Zm), where Zi = (zi1, zi2, , ziRi ) for i = 1, 2, . . . , m. Here, the
censored data represent the missing data. It is important to note that the complete sample
comprises both the observed sample and the censored data. Thus, the complete sample is
represented as W = (X, Z). For the parameter set Θ = (α1, α2, β), the likelihood function
of the complete sample data W is expressed as

Lc(Θ) ∝
m

∏
i=1

2

∏
k=1

{
[ fk(xi:m:n)F̄3−k(xi:m:n)]

Ri

∏
j=1

[ fk
(
zij
)

F̄3−k
(
zij
)}I(δi=k)

. (37)

Hence, the log-likelihood function for α1, α2, and β derived from a complete sample is
given by

Lc =
2

∑
k=1

nk ln αk + n ln β
2

∑
k=1

αk +
2

∑
k=1

(αk − 1)

{
m

∑
i=1

I(δi = k)

(
log xi +

Ri

∑
j=1

log zij

)}

−
2

∑
k=1

{
m

∑
i=1

Ψ(δi)

[
log
(

xαk
i + βαk

)
+

Ri

∑
j=1

log(zαk
ij + βαk )

]}
, (38)

where nk = ∑m
i=1 I(δi = k)(Ri + 1) represents the total number of failures for each cause

in the complete dataset with size n, n = n1 + n2, and Ψ(d) = 2I(d = k) + I(d = 3 − k) =
I(d = k) + 1. After obtaining the log-likelihood function in Equation (38) with respect to α
and β and setting the normal equations to zero, the maximum likelihood estimators (MLEs)
of the parameters α1, α2, and β for the entire sample W can be determined as follows:

∂Lc

∂αk
=

nk
αk

+ n ln β +
m

∑
i=1

I(δi = k)

[
log xi +

Ri

∑
j=1

log zij

]

−
m

∑
i=1

Ψ(δi)

[(
xαk

i log xi + βαk log β
)(

xαk
i + βαk

) +
Ri

∑
j=1

zαk
ij log zij + βαk log β

(zαk
ij + βαk )

]
= 0, k = 1, 2, (39)

and
∂Lc

∂β
=

n ∑2
k=1 αk

β
−

2

∑
k=1

m

∑
i=1

Ψ(δi)

[
αkβαk−1

xαk
i + βαk

+
Ri

∑
j=1

αkβαk−1

zαk
ij + βαk

]
= 0. (40)

The pseudo-log-likelihood function changes during the E-step to become

nk
αk

+ n ln β +
m

∑
i=1

I(δi = k) log xi +
m

∑
i=1

I(δi = k)
Ri

∑
j=1

E
[
log zij|zij > xi

]
−

m

∑
i=1

Ψ(δi)

[
xαk

i log xi + βαk log β

xαk
i + βαk

+ E

(
zαk

ij log zij + βαk log β

zαk
ij + βαk

|zij > xi

)]
= 0, k = 1, 2, (41)
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and
n ∑2

k=1 αk

β
−

2

∑
k=1

m

∑
i=1

Ψ(δi)

[
αkβαk−1

xαk
i + βαk

+
Ri

∑
j=1

E

[
αkβαk−1

zαk
ij + βαk

|zij > xi

]]
= 0. (42)

In the following steps, we need to derive the following result.

Theorem 2. Given X1 = x1, . . . , Xi = xi, the conditional distribution of zij, j = 1, . . . , Ri, which
has the left-truncated NP distribution at xi, is given by

fZ|x(zij|Xi = xi = xi, α1, α2, β) =
fZ(zij|α1, α2, β)

1 − FX(xi|α1, α2, β)
, zij > xi, (43)

where FX(xi; α1, α2, β) and fZ(zij; α1, α2, β) can be found in Equations (7) and (8), respectively.

Proof. The proof is comprehensible and can be explored in detail in [16]. Hence, based
on Equation (43), the conditional expectations described in Equations (39) and (42) are
generated, as illustrated below:

E1(xi, α1, α2, β) = E[log zi|zi > xi]

=
4β(α1+α2)

1 − FX(xi; α1, α2, β)

2

∑
k=1

∞∫
xi

αkyαk−1 log y

(yαk + βαk )2(yα3−k + βα3−k )
dy, (44)

E2(xi, α1, α2, β) = E

[
zαk

ij log zij + βαk log β

zαk
ij + βαk

|zij > xi

]

=
4β(α1+α2)

1 − FX(xi; α1, α2, β)

2

∑
k=1

∞∫
xi

αkyαk−1 log(yαk log y + βαk log β)

(yαk + βαk )3(yα3−k + βα3−k )
dy, (45)

and

E3(xi, α1, α2, β) = E

[
αkβαk−1

zαk
ij + βαk

|zij > xi

]

=
4β(α1+α2)

1 − FX(xi; α1, α2, β)

2

∑
k=1

∞∫
xi

α2
kyαk−1βαk−1

(yαk + βαk )3(yα3−k + βα3−k )
dy. (46)

In the M-step of the EM algorithm, at the (l + 1) iteration, the value of β(l+1) is first
obtained by solving the following equation:

n ∑2
k=1 α

(l)
k

β(l+1)
−

2

∑
k=1

m

∑
i=1

Ψ(δi)

⎡⎢⎢⎣ α
(l)
k

(
β(l+1)

)α
(l)
k −1

x
α
(l)
k

i +
(

β(l+1)
)α(l)k −1

+
Ri

∑
j=1

E3

(
xi, α

(l)
1 , α

(l)
2 , β(l)

)⎤⎥⎥⎦ = 0.

The estimate of β might then be obtained by

β̂ =

[
n

2

∑
k=1

α
(l)
k

]⎧⎪⎪⎨⎪⎪⎩
2

∑
k=1

m

∑
i=1

Ψ(δi)

⎡⎢⎢⎣ α
(l)
k

(
β(l+1)

)α
(l)
k −1

x
α
(l)
k

i +
(

β(l+1)
)α(l)k −1

+
Ri

∑
j=1

E3(xi, α
(l)
1 , α

(l)
2 , β(l))

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

−1

. (47)
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After obtaining β(l+1), solve the following to obtain α
(l+1)
1 and α

(l+1)
2 :

nk

α
(l+1)
k

+ n ln β(l+1) +
m

∑
i=1

I(δi = k) log xi −
m

∑
i=1

Ψ(δi)

⎡⎢⎣ x
α
(l+1)
k

i log xi + β(l+1)α(l+1)
k log β(l+1)

x
α
(l+1)
k

i + β(l+1)α(l)k

⎤⎥⎦
+

m

∑
i=1

I(δi = k)
Ri

∑
j=1

E1(xi, α
(l)
1 , α

(l)
2 , β(l+1))−

m

∑
i=1

Ψ(δi)
Ri

∑
j=1

E2(xi, α
(l)
1 , α

(l)
2 , β(l+1)) = 0, k = 1, 2.

The estimate of αk might then be obtained by

α̂k =
nk⎧⎨⎩∑m

i=1 Ψ(δi)

⎡⎣ x
α
(l+1)
k

i log xi+β
(l+1)α

(l+1)
k log β(l+1)

x
α
(l+1)
k

i +(β(l+1))
α
(l)
k

⎤⎦− ∑m
i=1 I(δi = k) log xi

⎫⎬⎭− n ln β(l+1)

+
nk

∑m
i=1 Ψ(δi)∑Ri

j=1 E2(xi, α
(l)
1 , α

(l)
2 , β(l+1))− ∑m

i=1 I(δi = k)∑Ri
j=1 E1(xi, α

(l)
1 , α

(l)
2 , β(l+1))

. (48)

The next iteration uses (α(l+1)
1 , α

(l+1)
2 , β(l+1)) as the new value of (α1, α2, β). Now, an

iterative process can be employed to obtain the necessary maximum likelihood estimates
of α1, α2 , and β. This iterative procedure continues until∣∣∣α(l+1)

1 − α
(l)
1

∣∣∣+ ∣∣∣α(l+1)
2 − α

(l)
2

∣∣∣+ ∣∣∣β(l+1) − β(l)
∣∣∣ < ε,

for a predetermined small value of ε and some l. This suggested approach converges
to the local maximum likelihood as the log-likelihood increases with each iteration. We
use the maximum likelihood estimates of the parameters based on the entire sample as
starting values in the expectation maximization technique. Henceforth, we denote the
maximum likelihood estimates of α1, α2, and β as their respective MLEs: α̂1EM, α̂2EM, and
β̂EM. Furthermore, the MLEs of S(t) and H(t) can be straightforwardly derived using the
in-variance property of the MLEs. These are given as

ŜEM(t) =
4β

α̂1EM+α̂2EM
EM

2

∏
k=1

(tα̂kEM + β̂α̂kEM )

, and Ĥ(t) =
2

∑
k=1

α̂kEMxα̂kEM−1

(tα̂kEM + β̂α̂kEM )
, t > β > 0. (49)

4.2. Point Estimation via Stochastic Expectation Maximization (SEM) Algorithm

Most EM algorithms follow a simple closed-form approach, iterating through two phases.
However, a notable limitation of the EM method is its susceptibility to becoming trapped in
a saddle point, particularly when handling high-dimensional or complex data such as cen-
sored lifespan models (see [17]). Notably, the EM equations mentioned earlier lack a closed
form, necessitating numerical computation. Hence, to obtain maximum likelihood estima-
tors, we employed the SEM method in this context. The SEM algorithm, proposed in [18],
replaces the expectation step (E-step) of the EM method with a stochastic step (S-step).
This modification involves substituting each missing datum with a randomly generated
value from the conditional distribution of the missing data, based on the observed data and
current parameter values. By incorporating random values obtained from the conditional
distribution of the missing data, the SEM algorithm augments the observed sample. It is
often preferred over the EM approach due to its simplicity, avoidance of complex computa-
tions, and lack of reliance on calculating conditional expectations. Moreover, studies have
demonstrated that the SEM approach is robust to initial values and performs effectively
with small sample sizes; see [19]. Let W = (X, Z) represent the complete dataset, where X
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= (x1, x2, . . . , xm) denotes the observed data, and Zi = (zi1, zi2, , ziRi ) for i = 1, 2, . . . , m, and
j = 1, 2, . . . , Ri signifies the censored data when xi fails. Following the SEM algorithm’s
principle, we initially generate the missing samples zij, i = 1, 2, . . . , m and j = 1, 2, . . . , Ri,
from the truncated conditional distribution below:

GZ(zij; α1, α, β|zij > xi) =
FZ(zij; Θ)− FXi (xi; α1, α, β)

1 − FXi (xi; α1, α, β)
, zij > xi. (50)

To obtain a random sample from Equation (50), we start by generating a random value
from the uniform distribution U(0, 1), denoted as u. Subsequently, the realization of zij is
derived as

zij = F−1(u + (1 − u)FXi (xi; Θ)), (51)

where F−1(.) represents the inverse function of F(.), as defined in Equation (7). Subse-
quently, in replacing each value of zij with the value generated by Equation (53), the ML
estimators of α1, α2, and β at the (l + 1)th stage are obtained from Equations (39) and (40)
using

β(l+1) =

[
n

2

∑
k=1

α
(l)
k

]⎧⎪⎪⎨⎪⎪⎩
2

∑
k=1

m

∑
i=1

Ψ(δi)

⎡⎢⎢⎣ α
(l)
k

(
β(l)
)α

(l)
k −1

x
α
(l)
k

i +
(

β(l)
)α(l)k −1

+
Ri

∑
j=1

α
(l)
k

(
β(l)
)α

(l)
k −1

z
α
(l)
k

ij +
(

β(l)
)α(l)k

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

−1

, (52)

and

α
(l+1)
k =

nk⎧⎨⎩∑m
i=1 Ψ(δi)

⎡⎣ x
α
(l)
k

i log xi+(β(l+1))
α
(l)
k log β(l+1)

x
α
(l)
k

i +(β(l+1))
α
(l)
k

⎤⎦− ∑m
i=1 I(δi = k) log xi

⎫⎬⎭− n ln β(l+1)

+
nk

∑m
i=1 Ψ(δi)∑Ri

j=1
z

α
(l)
k

ij log zij+(β(l+1))
α
(l)
k log β(l+1)

z
α
(l)
k

ij +(β(l+1))
α
(l)
k

− ∑m
i=1 I(δi = k)∑Ri

j=1 log zij

. (53)

Like in the EM algorithm, the iterations can be terminated when∣∣∣α(h+1)
1 − α

(h)
1

∣∣∣+ ∣∣∣α(h+1)
2 − α

(h)
2

∣∣∣+ ∣∣∣β(h+1) − β(h)
∣∣∣ < ε.

4.3. Fisher Information Matrix

This section presents the observed Fisher information matrix derived from [20]’s
concept of missing values. It is worth noting that this observed Fisher information matrix
can be utilized for constructing asymptotic confidence intervals. The missing information
principle, referenced in various scholarly articles, can be summarized as follows:

Observed information = Complete information − Missing information. (54)

Let us employ the notation shown as follows: Θ = (α1, α, β); X: the observed data;
W: the complete data; and IX(Θ), IW(Θ), and IW|X(Θ) represent the observed, complete,
and missing information, respectively. By the definition in [20], observed information
is the difference between complete and missing information; this may be stated in the
following manner:

IX(Θ) = IW(Θ)− IW|X(Θ). (55)
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The complete information matrix IW(Θ) is provided as follows:

IW(Θ) = −E
[

∂2 ln L(W, Θ)

∂Θ2

]
Θ=(α1,α2,β)

=

⎡⎣ a11(α1, α2, β) a12(α1, α2, β) a13(α1, α2, β)
a21(α1, α2, β) a22(α1, α2, β) a23(α1, α2, β)
a31(α1, α2, β) a32(α1, α2, β) a33(α1, α2, β)

⎤⎦
|Θ=Θ̂

. (56)

The symbol aij(α1, α2, β) represents the matrices’ elements for IW(Θ). They are listed
in the following order:

akk = −E

[
∂2 ln L(Θ)

∂α2
k

]
=

2
n

∑
i=1

E

[
βαk (log xi − log β)2xαk

i(
xαk

i + βαk
)2

]
−

n

∑
i=1

E
[

U1(x, αk, α3−k, β)2

V(x, αk, α3−k, β)2

]
+

n

∑
i=1

E
[

U2(x, αk, α3−k, β)

V(x, αk, α3−k, β)

]
,

where

U1(x, αk, α3−k, β) =

[
βα3−k (1 + αk ln xi)xαk

i + α3−kβαk xα3−k
i ln β

+(1 + (αk + α3−k) ln xi)x(αk+α3−k)
i

]
,

U2(x, αk, α3−k, β) = βα3−k ln xi(2 + αk ln xi)xαk
i + α2βαk xα3−k

i ln2 β

+ ln xi[2 + (αk + α3−k) ln xi]x
αk+α3−k
i ,

and
V(x, αk, α3−kβ) =

[
αkβα3−k xαk

i + α3−kβαk xα3−k
i + (αk + α3−k)x(αk+α3−k)

i

]
,

ak(3−k) = a(3−k)k = −E
[

∂2 ln L(Θ)

∂αk∂α3−k

]
= −E

[
∂2 ln L(Θ)

∂α3−k∂αk

]

=
n

∑
i=1

E

⎡⎢⎢⎢⎢⎣
2

∏
k=1

U1(x, αk, α3−k, β)(1 + V(x, αk, α3−k, β) )

V(x, αk, α3−k, β)2

⎤⎥⎥⎥⎥⎦,

ak3 = a3k = −E
[

∂2 ln L(η)
∂αk∂β

]
= −E

[
∂2 ln L(η)

∂β∂αk

]
=

−n
β

+ 2
n

∑
i=1

E

[
βαk−1[βαk + (1 + αk log β − αk log xi)xαk

i
](

xαk
i + βαk

)2
]

+
n

∑
i=1

⎡⎣α3−kxα3−k
i

[
xαk

i β(αk+α3−k)(α3−k + αk(αk − α3−k) log β + αk(α3−k − αk) log xi)
]

(V(x, αk, α3−k, β))2

⎤⎦
+

n

∑
i=1

⎡⎣α3−kxα3−k
i

[
α3−kβα3−k x2αk

i + α3−kβ2αk xα3−k
i

]
V(x, αk, α3−k, β)2

⎤⎦
+

n

∑
i=1

α3−kxα3−k
i

[
(βαk (α3−k + αk(αk + α3−k) log β − αk(αk + α3−k) log xi))x(αk+α3−k)

i

]
V(x, αk, α3−k, β)2 ,
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and

a33 = −E
[

∂2 ln L(η)
∂β2

]
=

n
β2

2

∑
k=1

αk + 2
2

∑
k=1

n

∑
i=1

E

[
αkβαk−2[(αk − 1)xαk

i − βαk
](

xαk
i + βαk

)2
]

−
n

∑
i=1

E

⎡⎢⎣α2
kα2

3−k

(
βαk xα3−k

i + βα3−k xαk
i

)2

β2[V(x, αk, α3−kβ)]2

⎤⎥⎦
+

n

∑
i=1

E

⎡⎣αkα3−k

[
(α3−k − 1)βα3−k xαk

i + (αk − 1)βαk xα3−k
i

]
β2[V(x, αk, α3−k, β)]

⎤⎦,

where for every function g(y), the expected value is provided by

E[g(y)] =
∞∫

0

g(y) f (y, α1, α2, β)dy = 4β(α1+α2)
2

∑
k=1

αk

∞∫
β

g(y)yαk−1

(yαk + βαk )2(yα3−k + βα3−k )
dy. (57)

Moreover, when considering a single observation that was censored at the time of the
ith failure, the Fisher information matrix is obtained as follows:

Ii
W|X(Θ) = −EZi |Xi

[
∂2 ln fZ|X(zi|zi > xi, α1, α2, β)

∂Θ2

]
Θ=(θ,β,λ)

=

⎡⎣ b11(xi, α1, α2, β) b12(xi, α1, α2, β) b13(xi, α1, α2, β)
b21(xi, α1, α2, β) b22(xi, α1, α2, β) b23(xi, α1, α2, β)
b31(xi, α1, α2, β) b32(xi, α1, α2, β) b33(xi, α1, α2, β)

⎤⎦
|Θ=Θ̂

. (58)

wherein fZ|X(zi|zi > xi, α1, α2, β) is given by Equation (43). It is therefore simple to retrieve
the expected missing information as

IW|X(Θ) =
m

∑
i=1

Ri Ii
W|X(Θ), (59)

where Ii
W|X(Θ) and Im

W|X(Θ) are the information matrix of a single observation for the
truncated NP distribution with left truncation at x.

For brevity and simplicity, assume that � = fZ|X(zi|zi > xi, α1, α2, β). From
Equations (7), (8), and (43), the logarithm of the PDF of the truncated NP distribution
with left truncation at xi can be listed as the PDF of the truncated NP distribution with left
truncation at xi, which can be listed as

ln� = ln
[
(α1 + α2)z

(α1+α2)
i + α2βα1ziα2 + α1βα2ziα1

]
− B +

2

∑
k=1

ln(xαk
i + βαk ), (60)

where

B = ln(zi) + 2
2

∑
k=1

ln(xαk
i + βαk ).
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The negative expected value of the second partial derivatives with respect to α1, α2,
and β are obtained by

bkk(.) = −E

[
∂2 ln�

∂α2
k

]
= − xαk

i βαk (ln xi − ln β)2

(xαk
i + βαk )2

+ 2
2

∑
k=1

E

⎡⎣ zαk
ij βαk

(
ln zij − ln β

)2
(zαk

ij + βαk )2

⎤⎦
+ E

⎡⎢⎣ z2α1
i (zα2

ij + βα2)2 − z(α1+α2)
i α2βα1(zα2

ij (α1 + α2) + α1βα2) ln2 zij[
(α1 + α2)z

(α1+α2)
i + α2βα1ziα2 + α1βα2ziα1

]2
⎤⎥⎦

+ E

⎡⎢⎣2z(α1+α2)
i α2βα1(zα2

ij + βα2) ln β − z(α1+α2)
i α2βα1(zα2

ij (α1 + α2) + α1βα2) ln2 zij[
(α1 + α2)z

(α1+α2)
i + α2βα1ziα2 + α1βα2ziα1

]2
⎤⎥⎦

+ E

⎡⎢⎣2z(α1+α2)
i α2βα1 ln zij(−zα2

ij − βα2 + (zα2
ij (α1 + α2) + α1βα2) ln β)[

(α1 + α2)z
(α1+α2)
i + α2βα1ziα2 + α1βα2ziα1

]2
⎤⎥⎦,

bk3(.) = b3k(.) = −E
[

∂2 ln�

∂αk∂β

]
= − βαk−1[xαk

i + βαk + αkxαk
i
(
ln zij − ln β

)]
(xαk

i + βαk )2

+E

⎡⎣ βαk−1
[
zαk

ij + βαk + αkzαk
ij
(
ln zij − ln β

)]
(zαk

ij + βαk )2

⎤⎦, k = 1, 2 ,

b33(.) = −E
[

∂2 ln�

∂β2

]
= −α1βαk−2[(α1 − 1)xαk

i − βαk )
]

(xαk
i + βαk )2

+ E

⎡⎣α1βαk−2
[
(α1 − 1)zαk

ij − βαk )
]

(zαk
ij + βαk )2

⎤⎦.

The inverse of the observed Fisher information matrix IX(Θ) at the maximum likeli-
hood estimates Θ̂EM = (Θ̂1EM, Θ̂2EM, Θ̂EM) is the asymptotic variance–covariance matrix
of the Θ̂EM.

I−1
X (Θ̂EM) =

[
IW(Θ̂EM)− IW|X(Θ̂EM)

]−1
. (61)

Accordingly, for Θ = (α1, α2, β), the 100(1 − γ)% asymptotic confidence interval is
then given by(

α̂1EM ± Zγ/2

√
Var(α̂1EM)

)
,
(

α̂2EM ± Zγ/2

√
Var(α̂2EM)

)
, and

(
β̂EM ± Zγ/2

√
Var(β̂EM)

)
, (62)

and the 100(1 − γ)% log-transformed MLE confidence intervals of Θ = (α1, α2, β) through
the EM algorithm are as follows:[

Θ̂EM exp

(
−Z(γ/2)

√
Var(Θ̂EM)

Θ̂2
EM

)
, Θ̂ exp

(
Z(γ/2)

√
Var(Θ̂EM)

Θ̂2
EM

)]
, Θ̂ = (α̂1, α̂2, β̂). (63)

In using the delta method in the same way as presented in Section 3, the estimators of
S(t) and H(t) can be obtained.

5. Bayesian Estimation

In this section, Bayesian estimates for the NP distributions are generated based on
progressively censored competing risks samples, focusing on the unknown parameters α1,
α2, and β, alongside the reliability function S(t) and the hazard function H(t). Estimations
are derived considering three distinct loss functions: the general entropy loss function
(GELF), LINEX loss function (LLF), and squared error loss function (SELF). While the LINEX
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and GE loss functions exhibit asymmetry, the squared error loss function is symmetric,
affording equal weight to both over- and under-estimations. Given its prevalence in the
Bayesian literature, the SELF is often chosen for its symmetry; however, in cases where
over-estimation or under-estimation holds varying degrees of significance, asymmetric loss
functions such as the LINEX come into play. In Bayesian estimation, prior distributions
for parameters are essential, drawing from previous experiences and available parameter
information. Since the NP distribution lacks a natural conjugate prior, and joint conjugate
priors are not feasible for unknown parameters, independent gamma priors with hyper-
parameters (ai, bi), i = 1, 2, 3, are recommended for all positive parameters in the model.

π1(α1) ∝ αa1−1
1 e−b1α1 , π2(α2) ∝ αa2−1

2 e−b2α2 and π3(β) ∝ βa3−1e−b3β; α1, α2, β2 > 0. (64)

In this context, it is presumed that each hyper-parameter, denoted as (ai, bi), i = 1, 2, 3,
is known and non-negative. This assumption leads to the proposition of a specific prior
distribution, representing a scenario where non-informative priors for the parameters
are available. Consequently, the joint prior distribution of (α1, α2, β) can be expressed
as follows:

π(α1, α2, β) ∝ αa1−1
1 αa2−1

2 βa3−1e−(b1α1+b2α2+b3β). (65)

In combining the prior information from Equation (65) with the likelihood function
presented in Equation (14), the joint posterior distribution can be represented as follows:

π∗(α1, α2, β|x) ∝ αa1−1
1 αa2−1

2 βa3−1e−(b1α1+b2α2+b3β)
m

∏
i=1

2

∏
k=1

⎧⎨⎩ αkβαk βα3−k xαk−1
i(

xαk
i + βαk

)2(xα3−k
i + βα3−k

)
⎫⎬⎭

I(δi=k)

×
m

∏
i=1

2

∏
k=1

{
βαk(

xαk
i + βαk

)}Ri

. (66)

The Bayes estimator of any function of α1, α2 , and β, say Φ(α1, α2, β) under the SE,
LINEX, and GE loss functions, can be expressed as

Φ̂BS = E(Φ(α1, α2, β)|x) =
∫ ∞

x1

∫ ∞
0

∫ ∞
0 Φ(α1, α2, β)π∗(α1, α2, β|x)dα1dα2dβ∫ ∞

x1

∫ ∞
0

∫ ∞
0 π∗(α1, α2, β|x)dα1dα2dβ

, (67)

Φ̂LINEX = −1
c

log

∫ ∞
x1

∫ ∞
0

∫ ∞
0 e−cΦ(α1,α2,β)π∗(α1, α2, β|x)dα1dα2dβ∫ ∞

x1

∫ ∞
0

∫ ∞
0 π∗(α1, α2, β|x)dα1dα2dβ

, (68)

and

Eα1,α2,β|x
(

g(α1, α2, β)−q) = ∫ ∞
x1

∫ ∞
0

∫ ∞
0 Φ(α1, α2, β)−qπ∗(α1, α2, β|x)dα1dα2dβ∫ ∞

x1

∫ ∞
0

∫ ∞
0 π∗(α1, α2, β|x)dα1dα2dβ

. (69)

Numerically solving the Bayes estimators becomes necessary as they are not explicitly
obtained under the SE or LINEX loss functions. Hence, we propose deriving the Bayes
estimators of α1, α2 , and β using the MCMC method. Initially, the fully conditional
posterior distribution π∗(αk|x, β) of αk is

π∗(αk|x, β) ∝ α
ak+mk−1
k βnαk e−bkαk

m

∏
i=1

x(αk−1)I(δi=k)
i

m

∏
i=1

(
xαk

i + βαk
)−(Δk(δi ,Ri)), k = 1, 2, (70)

and the fully conditional posterior distribution π∗(β|x, α1, α2) of β is
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π∗(β|x, α1, α2) ∝ βa3−1+n(αk+α3−k)e−b3β
m

∏
i=1

2

∏
k=1

⎧⎨⎩ xαk−1
i(

xαk
i + βαk

)2(xα3−k
i + βα3−k

)
⎫⎬⎭

I(δi=k)

×
m

∏
i=1

2

∏
k=1

{
1(

xαk
i + βαk

)}Ri

. (71)

The absence of closed-form solutions for the three posterior distributions necessitates
the utilization of the Metropolis–Hastings algorithm to derive our Bayes estimators from
posterior samples. The Metropolis–Hastings (M-H) algorithm is a valuable tool for generat-
ing random samples from the posterior distribution by leveraging a proposal density, as
detailed in [21,22]. The Algorithm 1 proceeds through the following stages:

Algorithm 1 MCMC algorithm

Step 1: Choose an initial guess of (α1, α2, β) denoted by (α(0)1 , α
(0)
2 , β(0)), and set i = 1.

Step 2: Using the following Metropolis–Hustings, generate β(l) from π∗, with the normal proposal distribution,

N
(

β(i−1), Var(β)
)

, where (β(i−1)) is the current value of β, and Var(β) is a variance of β. Perform the
following:

i Generate a proposal β∗ from N
(

β(i−1), Var(β)
)

;

ii Evaluate the acceptance probability ρ = min

{
1,

π∗(β∗|α(i−1)
1 , α

(i−1)
2 , x)

π∗(β(j−1)|α(i−1)
1 , α

(i−1)
2 , x)

}
;

iii Generate a u from a Uniform(0, 1) distribution;
iv If u ≤ ρ, accept the proposal and set β(l) = β∗; else, set β(l) = β(l−1).

Step 3: In the same way as in the previous step, generate α
(i)
k from π∗

(
α
(i−1)
k |x, β(i)

)
with the normal proposal

distribution N
(

α
(i−1)
k , Var(αk)

)
, where (α(i−1)

k ) is the current value of αk , and Var(αk) is a variance of
αk .

Step 4: For given t, compute the reliability and hazard functions:

S(t, α
(i)
1 , α

(i)
2 , β(i)) = 4

2

∏
j=1

⎡⎣ β(i)α(i)k

tα
(i)
k + β(i)α(i)k

⎤⎦,

and

H(t, Θ) =
2

∑
k=1

⎡⎣ β(i)α(i)k

tα
(i)
k + β(i)α(i)k

⎤⎦.

Step 5: Set i = i + 1.
Step 6: Repeat steps (2 − 4) N times and obtain the desired number of samples. After discarding the first M

burn-in samples, the remaining N − M samples are used to obtain the Bayesian estimates.
Step 7: It is now possible to calculate the Bayes estimate of Φ = Φ(α1, α2, β) under the SE, LINEX, and GE

loss functions as

Φ̂S =
1

N − M

N

∑
i=M+1

Φ(α
(1)
1 , α

(1)
2 , β(1)),

Φ̂LINEX =
−1
c

log

[
1

N − M

N

∑
i=M+1

e−cΦ(α
(1)
1 ,α(1)2 ,β(1))

]
,

and

β̂GE =

[
1

N − M

N

∑
l=M+1

Φ(α
(1)
1 , α

(1)
2 , β(1))−q

] −1
q

,

where Φ = Φ(α1, α2, β) denotes parameters α1, α2, β, S(t), and H(t).
Step 8: Order Φ(M+1), Φ(M+2), . . . , Φ(N) as Φ(1) < Φ(2) < · · · < Φ(N−M). Consequently,(

Φ[(N−M)α/2], Φ[(N−M)(1−α/2)]

)
yields the 100(1 − γ)% Bayesian credible interval of Φ. In this case, [q] stands for the integer part of q.
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6. Actual Data Illustration

The main objective of this part is to illustrate how the recommended techniques may
be used in real-world situations. The first example includes the failure times of electrical
appliances. The source of this dataset is listed in [23]. This real data collection, which [24]
first looked at, contains 18 electrical equipment failure times. Only failure mode 11 is seen
to occur more than twice out of all the failure modes found in these data. In this article,
failure mode 11 was regarded as reason number one (cause-1), and the other failure modes
as cause number two (cause-2)). In this instance, we treat X1 and X2 as failing because
of two competing risks under cause-1 and cause-2, respectively. It is observed that there
are 8 failures attributed to cause-1 and 13 failures attributed to cause-2. Data analysis
begins with dividing the original set of data by 100. Since this transformation is only a scale
change, it will not have an impact on this study’s results. Table 1 displays the electrical
appliance survival times results.

Table 1. Electrical appliance survival times.

Cause1 0.98 4.13 4.95 6.92 10.65 11.93 14.67 19.37

Cause2 0.12 4.95 0.16 5.57 0.16 6.16 0.46 11.07
0.46 14.67 0.52 0.98 2.70

We first look at whether or not these datasets can be analyzed using the NP distribution
before moving on. It is commonly known that the Kolmogorov–Simirnov (K–S) test may
be used with both extremely small and large samples. The Kolmogorov–Smirnov distances
and the accompanying p-values (with bracket) for cause-1 and -2 are, respectively, 0.3637
(0.2405) and 0.1792 (0.7981). Because both causes’ associated p-values are clearly higher
than the significance level of γ = 0.05, we are unable to reject the null hypothesis that the
data for electronic applications originate from the NP distribution. Figure 2 displays the
plot of the empirical vs. the fitted CDFs. Furthermore, the most widely used graphical
approach for model validation is quantile–quantile (Q-Q), which determines if the fitted
model agrees with the provided data. Let F̂(x) be the estimated value of F(x) given
x1, x2, . . . , xn. Point F̂(i/n) vs. xi:n, where i = 1, 2, . . . , n, was plotted as a Q-Q scatter
diagram. The estimated and observed quantiles are displayed in a Q-Q plot. The points
on the Q-Q plot should demonstrate a 45 straight line if the model matches the data well.
Figure 3 displays the appliance failure data together with the quantile–quantile (Q-Q) plot.
As can be seen in Figure 3, there is a rough straight-line pattern that suggests a good match
for the NP model. Furthermore, one crucial graphical technique for determining whether
or not the data may be applied to a particular distribution is the total time test (TTT) plot.
The TTT plot’s empirical form is provided by τ(k/n) =

[
∑k

i=1 xi:n − (n − k)xk:n

]
/(∑n

i=1 xi),
k = 1, 2, . . . , n, where xi:n denotes the sample’s order statistics. In a graphic representation
of the TTT plot, the HRF is growing (or decreasing) if the TTT plot is concave (or convex),
and it is constant if the TTT plot is graphically portrayed as a straight diagonal. When
the TTT plot is convex and then concave, the HRF is U-shaped; otherwise, it is unimodal.
Figure 4 shows the TTT plot for the two datasets. The failure data’s total time on the test
(TTT) plot in Figure 4 illustrates the increasing and decreasing hazard rate for cause-1 and
cause-2, respectively, which is consistent with the NP distribution.

Figure 2. Fitted and empirical CDFs associated with NP distribution for two causes.
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Figure 3. Q-Q plots associated with NP distribution for two causes.

Figure 4. T-T plots associated with NP distribution for two causes.

Three groups of progressive Type-II samples are formed based on the total failure data
from Table 1 and are displayed in Table 2. These generated samples are used to estimate the
MLEs and Bayes estimates of α1, α2, β, S(t), and H(t) together with their standard errors
(in parenthesis).

Table 2. Progressive Type-II data for electrical appliance data, with n = 21 and m = 15.

Sc. I (6, 014) (0.12, 2) (0.16, 2) (0.16, 2) (0.46, 2) (0.46, 2)
(0.52, 2) (0.98, 2) (0.98, 1) (2.70, 2) (4.95, 2)
(55.7, 2) (61.6, 2) (10.65, 1) (11.93, 1) (14.67, 2)

Sc. II (16, 09) (0.12, 2) (0.16, 2) (0.46, 2) (0.46, 2) (0.52, 2)
(0.98, 2) (0.98, 1) (2.70, 2) (4.13, 1) (4.95, 2)
(4.95, 1) (6.92, 1) (11.93, 1) (14.67, 2) (14.67, 1)

Sc. III (014, 6) (0.12, 2) (0.16, 2) (0.16, 2) (0.46, 2) (0.46, 2)
(0.52, 2) (0.98, 2) (0.98, 1) (2.70, 2) (4.13, 1)
(4.95, 2) (4.95, 1) (5.57, 2) (6.16, 2) (10.65, 1)

In real-world data analysis, choosing the starting parameters for an NR algorithm is
a challenging task. For Sc. I, the initial guess of β is taken to be the x1, and a graphical
approach presented in [25] is utilized to calculate the MLE shape parameters α1 and α2,
where, from Equation (19), the curves of 1

αk
and Φ(αk) are plotted in Figure 5. According to

Figure 5, for k = 1, 2, the crossing points of the two functions ( 1
αk

, Φ(αk)) are around 0.1543
and 0.4605, respectively. To acquire the MLEs of α1 and α2, we thus recommend starting
the iteration with α1 = 0.15 and α2 = 0.46 as initial values. Moreover, a contour plot of the
log-likelihood function of α1 and α2 with respect to β = x1 is shown in Figure 6.

Figure 5. The MLE shape parameters with NP distribution.
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Based on these initial values, we first calculated the MLEs of α1, α2, β, S(t), and H(t)
using the NR approach. Table 3 presents the values of the MLEs and estimated standard
errors of the MLEs of α1, α2, β, S(t), and H(t), where t = 0.4 is the calculation point for the
reliability function S(t) and the hazard rate H(t) function. We also analyzed the dataset (Sc.
I) using the EM and SEM methods developed in Section 4. The NR approach is used to set
the starting values of α1, α2 and β for the EM and SEM algorithms as related MLEs. Table 3
also includes a list of all point estimation results for the MLEs using the EM and SEM
methods, along with estimated standard errors. It can be seen from the standard errors
that the estimations produced by the NR approach are often higher than those produced
by the EM or SEM algorithms. Next, the 95% asymptotic confidence intervals of α1, α2, β,
S(t), and H(t) were computed using the asymptotic normality of the MLEs and missing
information principal techniques.

Figure 6. Contour plot of the log-likelihood function of α1 and α2.

The next step would be to compute the Bayes estimates of α1, α2, β, S(t), and H(t)
against the SE, LINEX, and GE loss functions using the MCMC samples. Selecting the hyper-
parameters in a real dataset while using Bayesian estimating is a very difficult operation
since the true value is not known in advance. Hence, we combine the non-informative prior
assumptions (ai = bi = 0, i = 1, 2, 3) with the MCMC approach to build Bayes estimators.
The initial assumptions for executing the MCMC algorithm are thought to be the MLEs
estimations of α1, α2, and β. In employing 30,000 posterior sample points and ignoring the
burn-in of the first 5000 times, the Bayes estimates of α1, α2, β, S(t), and H(t) are evaluated
using the M-H method. A proposed density function that follows a normal distribution
may be built in order to use the MCMC approaches, using the variance–covariance matrix
and mean equal to the MLEs of the unknown parameters.
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Table 3. ML and Bayesian point estimates (first row) and their standard errors (second row) of α1, α2,
β, S(t), and H(t) for the real data.

MLE Bayes

Loss Function

Scheme Parameter NR EM SEM SEL LINEX GEL

c = −2 c = 2 q = −2 c = 2

Sc. I: (6, 014) α1 0.1523 0.1111 0.1091 0.1501 0.1510 0.1498 0.1513 0.1466
(0.0218) (0.0061) (0.0065) (0.0048) (0.0521) (0.0072) (0.0014) (3.1353)

α2 0.4638 0.4917 0.4835 0.4567 0.4650 0.4534 0.4603 0.4458
(0.0356) (0.0319) (0.0291) (0.0146) (0.7900) (0.0117) (0.0137) (0.3379)

β 0.1200 0.1200 0.1200 0.1141 0.1142 0.1140 0.1143 0.1139
(0.0146) (0.0143) (0.0133) (0.0009) (0.0077) (0.0014) (0.0002) (1.1689)

S(t = 0.5) 0.6070 0.6104 0.6162 0.6006 0.6038 0.5994 0.6017 0.5974
(0.0224) (0.0237) (0.0217) (0.0092) (0.9349) (0.0055) (0.0110) (0.0874)

H(t = 0.5) 0.7807 0.7773 0.7616 0.7742 0.7987 0.7650 0.7802 0.7561
(0.0611) (0.0474) (0.0432) (0.0247) (0.7132) (0.0105) (0.0392) (0.1149)

Table 3. Cont.

MLE Bayes

Loss Function

Scheme Parameter NR EM SEM SEL LINEX GEL

c = −2 c = 2 q = −2 c = 2

Sc. II: (16, 09) α1 0.2318 0.1722 0.1834 0.1560 0.1569 0.1557 0.1572 0.1527
(0.0234) (0.0093) (0.0118) (0.0048) (0.0537) (0.0071) (0.0015) (2.7634)

α2 0.3056 0.3561 0.3782 0.4108 0.4181 0.4080 0.4142 0.4005
(0.0263) (0.0204) (0.0241) (0.0136) (0.5889) (0.0119) (.0115) (0.4275)

β 0.1200 0.1200 0.1200 0.1156 0.1156 0.1155 0.1156 0.1154
(0.0157) (0.0157) (0.0137) (0.0009) (0.0077) (0.0014) (0.0002) (1.1245)

S(t = 0.5) 0.6566 0.6594 0.6406 0.6276 0.6304 0.6265 0.6285 0.6249
(0.0213) (0.0246) (0.0210) (0.0085) (0.9958) (0.0049) (0.0107) (0.0722)

H(t = 0.5) 0.6411 0.6378 0.6851 0.7066 0.7268 0.6992 0.7119 0.6910
(0.0492) (0.0306) (0.0369) (0.0223) (0.9597) (0.0107) (0.0323) (0.1335)

Sc. III: (014, 6) α1 0.1290 0.2161 0.2236 0.1481 0.1489 0.1478 0.1492 0.1447
(0.0160) (0.0113) (0.0158) (0.0047) (0.0497) (0.0069) (0.0014) (3.1217)

α2 0.2950 0.2182 0.2261 0.3992 0.4054 0.3967 0.4022 0.3900
(0.0227) (0.0114) (0.0165) (0.0130) (0.5229) (0.0116) (0.0106) (0.4435)

β 0.1200 0.1200 0.1200 0.1157 0.1157 0.1157 0.1157 0.1155
(0.0170) (0.0181) (0.0155) (0.0009) (0.0076) (0.0014) (0.0002) (1.1088)

S(t = 0.5) 0.7198 0.7162 0.7071 0.6389 0.6413 0.6378 0.6396 0.6364
(0.0206) (0.0250) (0.0204) (0.0083) (1.0171) (0.0047) (0.0105) (0.0661)

H(t = 0.5) 0.4971 0.5010 0.5212 0.6784 0.6953 0.6721 0.6832 0.6644
(0.0367) (0.0204) (0.0296) (0.0211) (0.96918) (0.0107) (0.0293) (0.1419)

It is not a secret that, for the LINEX loss function, overestimation has a larger penalty
than underestimation when c > 0, and the opposite is true when c < 0. Additionally, when
c approaches 0, the LINEX loss function becomes symmetric and behaves somewhat like
the SE loss function. The Bayes estimates were produced under the LINEX loss function
discussed here for two different values of c = −5 and +2. Furthermore, in the general
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entropy (GE) loss function, the values of parameter q were chosen to be −2 and +2. The
point Bayes estimates for α1, α2, β, S(t), and H(t) were been computed and are presented
in Table 3, along with the estimated standard errors and the corresponding 95% credible
ranges in Table 4.

Table 4. The 95% interval estimates of α1, α2, β, S(t), and, H(t) for the real data.

Scheme Method α1 α2 β S(t = 0.5) H(t = 0.5)

Sc. I: (6, 014) ACI (−0.0127, 0.3172) (0.1936, 0.7340) (0.0094, 0.2306) (0.4370, 0.7768) (0.3165, 1.2448)
LACI (0.0515, 0.4498) (0.2590, 0.8305) (0.0477, 0.3016) (0.4588, 0.8030) (0.4308, 1.4147)
EM (0.0730, 0.1689) (0.0679, 0.8047) (0.0486, 0.2963) (0.4548, 0.8194) (0.4891, 1.2353)
SEM (0.0690, 0.1727) (0.3062, 0.7636) (0.0519, 0.2775) (0.4717, 0.8047) (0.4949, 1.1718)
HPD (0.1149, 0.1892) (0.3496, 0.5749) (0.1077, 0.1208) (0.5305, 0.6692) (0.5986, 0.9751)

Sc. II: (16, 09) ACI (0.0535, 0.4101) (0.1064, 0.5049) (0.0010, 0.2390) (0.4951, 0.8180) (0.2679, 1.0142)
LACI (0.1074, 0.5002) (0.1592, 0.5866) (0.0445, 0.3235) (0.5135, 0.8396) (0.3582, 1.1474)
EM (0.1144, 0.2591) (0.1114, 0.5502) (0.0445, 0.3235) (0.4969, 0.8751) (0.4430, 0.9185)
SEM (0.1124, 0.2993) (0.2332, 0.6136) (0.0505, 0.2852) (0.4995, 0.8216) (0.4550, 1.0317)
HPD (0.1206, 0.1949) (0.3145, 0.5210) (0.1090, 0.1221) (0.5594, 0.6896) (0.5536, 0.8917)

Table 4. Cont.

Scheme Method α1 α2 β S(t = 0.5) H(t = 0.5)

Sc. III: (014, 6) ACI (0.0068, 0.2511) (0.12215, 0.4679) (−0.0089, 0.2489) (0.5637, 0.8758) (0.2186, 0.7755)
LACI (0.0500, 0.3325) (0.1642, 0.5301) (0.0410, 0.3514) (0.5795, 0.894) (0.2839, 0.8704)
EM (0.1452, 0.3216) (0.1452, 0.3247) (0.0382, 0.3770) (0.5495, 0.9334) (0.3673, 0.6833)
SEM (0.1306, 0.3829) (0.1299, 0.3934) (0.0449, 0.3204) (0.5678, 0.8805) (0.3389, 0.8016)
HPD (0.1144, 0.1860) (0.3082, 0.5035) (0.1092, 0.1223) (0.5743, 0.6981) (0.535, 0.8502)

To assess the convergence of the Markov chain Monte Carlo (MCMC) method for the
studied dataset, we present density plots as well as trace plots of the MCMC outputs for
the parameters α1, α2, β, S(t = 0.4), and H(t = 0.4) in Figure 7. These graphs demonstrate
the good convergence of all the parameters considered for different chains. Furthermore,
it appears that the samples come from the same posterior density because all of the plots
display a very strong overlap of the density plots for different chains. Moreover, as Figure 6
illustrates, the estimated estimations of α1, α2, β, S(t = 0.4), and H(t = 0.4) for each sample
were typically symmetrical. Thus, the trace and density graphs appear to indicate that the
MCMC approach has a high degree of convergence.

Figure 7. MCMC trace plot (first row) and histogram (second row) of α1α2, β, S(t), and H(t) for
electrical appliance dataset. Dashed lines (---) represent the posterior means and soled lines (—)
represent the lower and upper bounds of the 95% probability interval.
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The results are shown in Tables 3 and 4, where the recommended Bayes estimates
outperform the most frequent estimates in terms of the lowest standard errors. Moreover,
the HPD credible intervals estimates outperform the ACIs, LACIs, EM, and SEM estimates
with respect to the shortest ILs. This example also shows how similar the results of all
the traditional estimations are to one another. However, it should be mentioned that
the MLEs that employed the SEM approach had the lowest standard errors. As a result,
machine learning estimates obtained from SEM algorithms frequently performed better
than estimates obtained from the NR and EM techniques. Furthermore, it is important to
keep in mind that the techniques utilized to compute the point and interval estimators
based on Sc. I were also applied to Sc. II and Sc. III; Tables 4 and 5 present the results.

Table 5. The average confidence lengths (AL) and the corresponding coverage percentages (CP) of
α1, α2, β, S(t), and H(t) based on ML and Bayes estimates for censoring Scheme I.

MLE MCMC

(n, m) Normal Log-Normal EM SEM NIP IP

AL CP AL CP AL CP AL CP AL CP AL CP

(30, 20) α1 1.6237 0.813 2.1950 0.875 0.9999 0.859 0.8271 0.879 0.6282 0.821 0.3709 0.953
α2 1.8054 0.829 2.1247 0.894 1.1388 0.894 0.9577 0.893 0.6601 0.893 0.3912 0.962
β 1.1514 0.939 0.9871 0.907 0.6561 0.993 0.5441 0.965 0.1149 0.955 0.0888 0.962

S(t) 0.6043 0.931 0.4201 0.918 0.3986 0.974 0.3984 0.993 0.2481 0.887 0.1547 0.955
H(t) 1.7221 0.814 2.4435 0.945 1.1505 0.957 1.0194 0.989 0.6702 0.821 0.3983 0.947

α1 1.3480 0.958 1.7874 0.958 0.9596 0.942 0.7644 0.930 0.6000 0.921 0.3610 0.951
α2 1.4875 0.959 2.0442 0.967 1.0825 0.975 0.9265 0.925 0.6509 0.932 0.3891 0.973
β 0.9636 0.967 0.9715 0.981 0.6422 0.992 0.5230 0.975 0.1086 0.940 0.0818 0.962

S(t) 0.5822 0.919 0.4166 0.964 0.3851 0.981 0.3891 0.961 0.2344 0.937 0.1510 0.964
H(t) 1.3756 0.934 2.1249 0.972 1.0145 0.946 0.9082 0.958 0.6618 0.939 0.3929 0.947

(50, 35) α1 1.2839 0.918 1.4703 0.92 0.7550 0.976 0.6222 0.975 0.5180 0.933 0.3367 0.963
α2 1.4564 0.933 1.6739 0.913 0.8297 0.988 0.6838 0.981 0.5379 0.932 0.3562 0.957
β 0.7670 0.941 0.8492 0.987 0.4937 0.982 0.4152 0.992 0.0658 0.941 0.0537 0.951

S(t) 0.3253 0.939 0.3310 0.933 0.3032 0.979 0.3018 0.998 0.1907 0.954 0.1299 0.959
H(t) 1.5651 0.925 1.6949 0.913 0.8331 0.990 0.7230 0.986 0.5360 0.955 0.3619 0.975

(50, 45) α1 0.8591 0.984 0.8793 0.982 0.7458 0.98 0.5786 0.927 0.4609 0.962 0.3255 0.960
α2 0.9730 0.991 0.9849 0.973 0.7969 0.982 0.6612 0.960 0.4832 0.947 0.3414 0.933
β 0.5536 0.956 0.5688 0.988 0.4890 0.963 0.4065 0.971 0.0640 0.956 0.0513 0.960

S(t) 0.3050 0.950 0.3090 0.961 0.3021 0.955 0.3029 0.965 0.1754 0.963 0.1225 0.967
H(t) 1.0225 0.980 0.9891 0.979 0.8227 0.968 0.6432 0.968 0.4920 0.953 0.3474 0.968

(80, 60) α1 0.8289 0.982 0.8434 0.981 0.5849 0.967 0.4650 0.945 0.3932 0.923 0.2984 0.955
α2 0.9331 0.969 0.9519 0.973 0.6289 0.952 0.5183 0.936 0.4051 0.920 0.3142 0.946
β 0.5308 0.990 0.5584 0.980 0.3909 0.967 0.3256 0.976 0.0398 0.979 0.0349 0.954

S(t) 0.2513 0.964 0.2535 0.967 0.2408 0.982 0.2397 0.987 0.1462 0.942 0.1120 0.972
H(t) 0.9486 0.965 0.9531 0.972 0.6359 0.980 0.5298 0.973 0.4116 0.963 0.3193 0.969

(80, 75) α1 0.6538 0.981 0.6768 0.945 0.5681 0.962 0.4429 0.973 0.3748 0.929 0.2913 0.962
α2 0.7093 0.957 0.7327 0.980 0.6158 0.957 0.4813 0.964 0.3895 0.937 0.3038 0.952
β 0.4266 0.966 0.4394 0.982 0.3827 0.981 0.3171 0.958 0.0362 0.963 0.0337 0.967

S(t) 0.2441 0.947 0.2461 0.971 0.2378 0.964 0.2396 0.972 0.1356 0.965 0.1066 0.960
H(t) 0.7276 0.993 0.7456 0.994 0.6214 0.989 0.4642 0.987 0.3995 0.971 0.3128 0.946
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7. Simulation Study

This section compares the performances of suggested estimate methods under progres-
sive Type-II censoring using Monte Carlo simulations. A Monte Carlo simulation analysis
was carried out using the Mathematica version 11 statistical program. A comparison
is made between point estimators for competing risk lifetimes parameters based on the
following perspectives:

(i) Bias = 1
Ns ∑Ns

i=1
∣∣Θi − Θ̂i

∣∣, where Θi and Θ̂i stand for the unknown parameters
and the associated estimations, and Ns is the number of simulation repeats. The higher
agreement of the experimental data with the estimated model is shown by the smaller
value of the average bias.

(ii) Mean squared error (MSE) = 1
Ns ∑Ns

i=1
(
Θi − Θ̂i

)2. An improved estimate performance
is shown by a lower MSE value. Each and every result is derived from 1000 replications.

Additionally, average confidence lengths (ACLs) (a better interval estimate perfor-
mance is correlated with a smaller width) and coverage percentages (CPs) (the proba-
bility that the real parameter values lie within the range of the interval estimations) are
used to evaluate interval estimators of asymptotic and HPD intervals. If the CP is 95%,
then a confidence interval estimator works well. The significance threshold that we em-
ployed was γ = 0.05. We created progressive Type-II censored competing risk data,
where the parameters’ true values of the NP distribution are arbitrarily assumed to be
(α1, α2, β) = (0.7, 0.8, 0.5). The hazard rate functions in Figure 1 were used to determine
the values of α1, α2, and β. In order to conduct this simulation research, we chose three
distinct censoring schemes, which are detailed below, for (n, m) = (30, 20), (30, 25), (50,35),
(50,45), and (80, 75):

Sc. I: R1 = R2 =···= Rm−1 = 0 and Rm = n − m;
Sc. II: R1 = n − m and R2 = R3···= Rm−1 = 0;
Sc. III: R1 = R2 =···= Rm−1 = 1 and Rn−m+1 = · · · = Rm = 0.
Here, Sc. I is equivalent to the conventional Type-II censoring technique, and Sc. II is

Type-I censoring. After the samples are created, we use the NR, EM, and SEM algorithms to
obtain the MLEs of the parameters α1, α2, β, S(t), and H(t). The EM and SEM procedures
began, in each case, with the true values of the parameters, and the iteration ended when the
absolute value of the difference between the two successive iterations for each of the three
parameters was less than 10−5. Figures 8–12 display the ABs and MSEs of the MLEs for α1,
α2, β, S(t), and H(t), respectively. Additionally, we use the missing information principle,
the asymptotic distribution of the MLEs, and the log-transformed MLEs to generate the
95% confidence intervals for α1, α2, β, S(t), and H(t) (at time t = 1.0).

Figure 8. Relationship between the three censoring schemes, bias, and MSE values for different
estimates of α1 at different sample sizes.

In Bayesian calculations, the non-informative prior (NIP) and informative prior (IP) for
unknown parameters (α1, α2, β, S(t), H(t)) are taken into account. The hyper-parameters
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allocated to proper Bayes are a1 = 4, a2 = 5, a3 = 15, and b1 = b1 = b3 = 10, for which
the corresponding true means and prior means are the same. The hyper-parameters are
allocated values of ai = bi = 0 (NIP) for an improper prior case. Prior I and prior II are used
to denote informative and non-informative Bayes estimators, respectively. Additionally,
squared error loss (SEL), LINEX loss, and general entropy loss (GEL) are the three distinct
loss functions that are taken into consideration when evaluating all Bayes estimators of
unknown parameters (α1, α2, β, S(t), H(t)). It was assumed that the values for the LINEX
and GE loss parameters were ±2 for both c and q. The Bayesian estimates are obtained
using the M-H technique described in Section 4. In order to construct α1, α2, and β for
this procedure, we used normal proposal densities from Equations (70) and (71). The
initial values of α1, α2, and β in this procedure are the MLEs, or actual parameters values.
Following Section 5’s instruction, we created N = 10,000 MCMC samples and discarded
the first M = 1000 values as the burn-in period. Thus, the SE, LINEX, and GE loss functions
were used to construct the Bayes estimates of α1, α2, β, S(t), and H(t), based on 9000 M-H
sample data points. Using the M-H samples, we obtained the 95% symmetric credible
intervals of α1, α2, β, S(t), and H(t). Figures 8–12 show the relationships between the
progressively censoring schemes (Cs.), bias, and MSE values for different estimates of α1,
α2, β, S(t), and H(t) at different sample sizes.

Figure 9. Relationship between the three censoring schemes, bias, and MSE values for different
estimates of α2 at different sample sizes.

Figure 10. Relationship between the three censoring schemes, bias, and MSE values for different
estimates of β at different sample sizes.

Overall, the numerical results displayed in each figure demonstrate that the recom-
mended estimates generally outperform the expectations as n increases. In every instance,
it is noted that biases and mean square errors decrease with increasing sample size. For all
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unknown parameters, the Bayesian estimators outperform the MLE estimators, primarily
because the Bayesian approach considers both the data and prior information about the
unknown parameters, whereas the MLEs just consider the data. Informative prior Bayesian
estimators perform better than non-informative prior estimators for the same reason. When
m increases with a fixed n or n increases with a fixed m, the estimator performances of all
the unknown parameters improve. Both the MSE and the bias of the Bayesian estimators
and MLEs decrease. Therefore, one strategy to improve the outcome estimate is to increase
the effective sample size. The best Bayes estimates for the reliability function S(t) are under
the GE loss function with q = +2, whereas the Bayesian estimates under the LINEX loss
function with c = −2 are better than those under the SE or GE loss functions for α1, α2, β,
and H(t). The values of the MSE and bias of all Bayes estimates for α1, α2, β, S(t), and H(t),
are presented also in Figures 8–12. Finally, the ALs and associated CPs of the estimated
confidence intervals for α1, α2, β, S(t), and H(t), are also presented in Tables 5–7.

Figure 11. Relationship between the three censoring schemes, bias, and MSE values for different
estimates of S(t) at different sample sizes.

Figure 12. Relationship between the three censoring schemes, bias, and MSE values for different
estimates of H(t) at different sample sizes.

We found that the SEM strategy produces better confidence intervals than either the NR
or EM strategies in terms of average length. Still, when compared to the five recommended
methods (NR, log normal, EM, SEM, and HPD), credible intervals from the HPD perform
best. This suggests that their ALs are smaller than at the nominal level, and their CPs
are closer to those at the nominal level. Furthermore, informative prior Bayesian credible
intervals outperform non-informative prior intervals. Additionally, Bayesian credible
intervals with an informative prior perform better than intervals with a non-informative
prior. This is true for all parameters α1, α2, β, S(t), and H(t).
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Finally, it can be seen that for point and interval estimations with various combinations
of sample size (m, n) and censoring schemes, the Bayesian technique with an informative
prior provides excellent results. Additionally, varied estimates of the parameters exhibit
varied performances under varied loss functions. As a result, if it is possible to access
previous knowledge about the unknown parameters, the Bayesian approach is preferable.
If not, we often select the Bayesian approach with a non-informative prior when the sample
size is modest.

Table 6. The average confidence lengths (ALs) and the corresponding coverage percentages (CPs) of
α1, α2, β, S(t), and H(t) based on ML and Bayes estimates for censoring Scheme II.

MLE MCMC

(n, m) SC. II. Normal Log-Normal EM SEM NIP IP

AL CP AL CP AL CP AL CP AL CP AL CP

(30, 20) α1 1.5193 0.895 1.6258 0.882 0.9935 0.928 0.7426 0.893 0.6698 0.939 0.3817 0.957
α2 1.7420 0.921 1.6777 0.915 1.0981 0.948 0.8834 0.909 0.6671 0.946 0.3898 0.961
β 0.9044 0.958 1.1778 0.935 0.6592 0.950 0.5508 0.955 0.1093 0.963 0.0793 0.953

S(t) 0.4201 0.975 0.4715 0.960 0.3997 0.970 0.3899 0.973 0.2534 0.971 0.1528 0.958
H(t) 1.8289 0.961 1.8724 0.965 1.0964 0.974 0.9507 0.964 0.7084 0.980 0.4041 0.980

(30, 25) α1 1.2936 0.941 1.4567 0.967 0.9519 0.938 0.7178 0.941 0.6087 0.933 0.3673 0.948
α2 1.4650 0.965 1.5402 0.955 1.0203 0.925 0.8544 0.953 0.6261 0.972 0.3835 0.936
β 0.8076 0.989 0.9287 0.971 0.6531 0.996 0.5227 0.962 0.1076 0.981 0.0784 0.968

S(t) 0.4157 0.986 0.4258 0.989 0.3897 0.986 0.3733 0.971 0.2331 0.967 0.1508 0.955
H(t) 1.5254 0.957 1.6910 0.976 1.0679 0.950 0.8992 0.964 0.6516 0.942 0.3949 0.970

(50, 35) α1 1.2055 0.948 1.3211 0.957 0.7105 0.965 0.6148 0.893 0.5241 0.963 0.3396 0.965
α2 1.3169 0.963 1.4668 0.969 0.8546 0.970 0.6863 0.925 0.5227 0.957 0.3530 0.932
β 0.7246 0.959 0.8016 0.979 0.5434 0.979 0.4267 0.962 0.0656 0.951 0.0511 0.950

S(t) 0.3171 0.974 0.3375 0.963 0.3165 0.983 0.3110 0.960 0.1921 0.976 0.1285 0.912
H(t) 1.4375 0.968 1.5127 0.982 0.9394 0.974 0.8413 0.907 0.5463 0.980 0.3603 0.956

(50, 45) α1 0.9863 0.939 1.1346 0.986 0.6559 0.954 0.5835 0.964 0.4596 0.978 0.3251 0.976
α2 1.0898 0.944 1.2108 0.982 0.8202 0.959 0.6485 0.962 0.4750 0.969 0.3395 0.957
β 0.5891 0.919 0.6406 0.987 0.4996 0.960 0.4037 0.974 0.0545 0.983 0.0442 0.948

S(t) 0.3082 0.941 0.3248 0.965 0.3079 0.952 0.3039 0.978 0.1716 0.982 0.1254 0.969
H(t) 1.0969 0.963 1.2396 0.984 0.8263 0.903 0.6334 0.980 0.4870 0.985 0.3460 0.973

(80, 60) α1 0.9161 0.942 1.0169 0.940 0.5611 0.949 0.4416 0.931 0.3910 0.947 0.2987 0.920
α2 0.9987 0.950 1.1559 0.936 0.6181 0.957 0.4962 0.935 0.4153 0.952 0.3161 0.927
β 0.5661 0.923 0.6106 0.967 0.3879 0.964 0.3240 0.941 0.0407 0.962 0.0358 0.940

S(t) 0.2579 0.946 0.2619 0.977 0.2391 0.959 0.2311 0.940 0.1478 0.968 0.1116 0.953
H(t) 1.0316 0.962 1.1103 0.981 0.6150 0.961 0.4751 0.953 0.4163 0.972 0.3184 0.946

(80, 75) α1 0.6010 0.961 0.6203 0.948 0.5501 0.959 0.4264 0.973 0.3425 0.958 0.2758 0.949
α2 0.6664 0.947 0.6861 0.962 0.6082 0.971 0.4835 0.964 0.3604 0.967 0.2889 0.951
β 0.4067 0.956 0.4177 0.967 0.3757 0.961 0.3124 0.957 0.0381 0.955 0.0343 0.953

S(t) 0.2405 0.969 0.2424 0.982 0.2294 0.974 0.2206 0.970 0.1303 0.959 0.1046 0.960
H(t) 0.6694 0.965 0.6841 0.980 0.6066 0.98 0.4728 0.952 0.3575 0.969 0.2904 0.957
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Table 7. The average confidence lengths (ALs) and the corresponding coverage percentages (CPs) of
α1, α2, β, S(t), and H(t) based on ML and Bayes estimates for censoring Scheme III.

MLE MCMC

(n, m) SC. II. Normal Log-Normal EM SEM NIP IP

AL CP AL CP AL CP AL CP AL CP AL CP

(30, 15) α1 1.5068 0.899 1.4165 0.858 0.9673 0.885 0.7862 0.944 0.6975 0.962 0.3918 0.961
α2 1.6727 0.901 1.7901 0.874 1.1628 0.909 0.8341 0.958 0.8879 0.954 0.4046 0.958
β 1.0934 0.912 0.9106 0.906 0.6737 0.924 0.5371 0.966 0.0941 0.927 0.0761 0.974

S(t) 0.4288 0.933 0.4575 0.961 0.4020 0.964 0.4025 0.984 0.2780 0.932 0.1532 0.966
H(t) 1.7791 0.947 1.8364 0.931 1.1477 0.950 0.7730 0.975 0.9280 0.974 0.4366 0.970

Table 7. Cont.

MLE MCMC

(n, m) SC. II. Normal Log-Normal EM SEM NIP IP

AL CP AL CP AL CP AL CP AL CP AL CP

(30, 25) α1 1.3599 0.913 1.3795 0.925 0.9205 0.921 0.7257 0.967 0.6561 0.887 0.3765 0.964
α2 1.5155 0.925 1.5960 0.930 1.0907 0.955 0.7793 0.935 0.7043 0.927 0.3968 0.949
β 0.8601 0.973 0.8983 0.941 0.6328 0.956 0.5146 0.969 0.0871 0.947 0.0660 0.964

S(t) 0.4246 0.924 0.4310 0.966 0.3961 0.971 0.3949 0.978 0.2374 0.927 0.1516 0.973
H(t) 1.5901 0.927 1.6530 0.965 1.0548 0.975 0.7520 0.967 0.7243 0.913 0.4109 0.982

(50, 35) α1 1.1810 0.927 1.2832 0.934 0.7542 0.935 0.5438 0.961 0.5691 0.943 0.3529 0.958
α2 1.2960 0.932 1.3718 0.939 0.8244 0.960 0.6138 0.972 0.5942 0.937 0.3789 0.952
β 0.7910 0.965 0.7164 0.951 0.4985 0.957 0.4045 0.954 0.0518 0.985 0.0505 0.961

S(t) 0.3211 0.919 0.3403 0.945 0.3054 0.968 0.3171 0.956 0.2032 0.972 0.1310 0.964
H(t) 1.3949 0.941 1.4298 0.967 0.8321 0.974 0.5927 0.964 0.6323 0.968 0.3892 0.956

(50, 45) α1 0.9155 0.929 0.9655 0.947 0.7336 0.951 0.5136 0.960 0.4960 0.939 0.3374 0.971
α2 1.0021 0.932 0.8673 0.954 0.8185 0.956 0.6092 0.941 0.5172 0.923 0.3542 0.957
β 0.5830 0.970 0.6341 0.962 0.4952 0.970 0.3910 0.965 0.0465 0.947 0.0460 0.962

S(t) 0.3160 0.961 0.3228 0.969 0.3026 0.968 0.3116 0.971 0.1774 0.912 0.1278 0.967
H(t) 1.0408 0.968 1.1734 0.959 0.8248 0.973 0.5837 0.959 0.5487 0.913 0.3681 0.960

(80, 60) α1 0.7033 0.949 0.7603 0.944 0.5849 0.949 0.4429 0.962 0.4814 0.940 0.3286 0.967
α2 0.7783 0.938 0.8430 0.957 0.6654 0.907 0.5021 0.956 0.4995 0.912 0.3537 0.981
β 0.4680 0.968 0.5810 0.962 0.3909 0.968 0.3082 0.972 0.0362 0.973 0.0336 0.973

S(t) 0.3098 0.977 0.3194 0.977 0.2413 0.983 0.2397 0.966 0.1621 0.867 0.1172 0.965
H(t) 0.9821 0.951 1.0190 0.964 0.6566 0.987 0.4692 0.961 0.5280 0.867 0.3666 0.947

(80, 75) α1 0.6538 0.955 0.6768 0.978 0.5726 0.968 0.3996 0.969 0.3748 0.953 0.2913 0.962
α2 0.7093 0.943 0.7327 0.980 0.6289 0.965 0.4813 0.973 0.3895 0.987 0.3045 0.957
β 0.4266 0.976 0.4394 0.981 0.3878 0.971 0.3050 0.968 0.0301 0.960 0.0296 0.967

S(t) 0.2441 0.981 0.2461 0.979 0.2408 0.967 0.2378 0.971 0.1356 0.959 0.1067 0.961
H(t) 0.7276 0.963 0.7456 0.994 0.6359 0.989 0.4640 0.987 0.3995 0.981 0.3126 0.948

8. Conclusions

In this study, we took into consideration progressive Type-II censoring data for the
statistical inference of unknown lifespan parameters when competing failure mechanisms
are present but independent. The lifespan distribution for each cause of failure is assumed
to correspond to a NP distribution. The maximum likelihood and Bayesian estimate
techniques are taken into consideration in order to accomplish our goal. This study was
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conducted on the point and approximate confidence interval estimations for the hazard rate
functions, reliability, and unknown parameters. We note that in using both the SEM and
EM techniques, the complexity related to the numerical computation of the MLEs may have
been significantly reduced. To produce the Bayesian estimates under the squared error,
LINEX, and GE loss functions, and the corresponding credible intervals, the Metropolis–
Hastings method was used in the Bayesian paradigm. We analyzed a real-world dataset
to illustrate the techniques presented in this article. We then carried out an extensive
simulation analysis to contrast the effectiveness of different estimators. When there is no
subjective information, it was found that the MLEs perform rather well. With subjective
information available, the Bayesian estimators perform better than the MLEs, as predicted.

While units failing because of two competing risks are subject to progressive Type-II
censoring, it should be noted that the results also apply to cases where there are multiple
causes of failure and to other types of failure data cases, including complete data, Type-II
censoring, and progressive first-failure censoring. The optimal design and sample plan of
progressive censoring under the competing risk model appear to be interesting topics for
additional investigation and will be looked into in the future.
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Abstract: In this study, we introduce two novel discrete counterparts for the Rayleigh–Lindley
mixture, constructed through the application of survival and hazard rate preservation techniques.
These two-parameter discrete models demonstrate exceptional adaptability across various data types,
including skewed, symmetric, and monotonic datasets. Statistical analyses were conducted using
maximum likelihood estimation and Bayesian approaches to assess these models. The Bayesian
analysis, in particular, was implemented with the squared error and LINEX loss functions, incor-
porating a modified Lwin Prior distribution for parameter estimation. Through simulation studies
and numerical methods, we evaluated the estimators’ performance and compared the effectiveness
of the two discrete adaptations of the Rayleigh–Lindley distribution. The simulations reveal that
Bayesian methods are especially effective in this setting due to their flexibility and adaptability. They
provide more precise and dependable estimates for the discrete Rayleigh–Lindley model, especially
when using the hazard rate preservation method. This method is a compelling alternative to the
traditional survival discretization approach, showcasing its significant potential in enhancing model
accuracy and applicability. Furthermore, two real data sets are analyzed to assess the performance of
each analog.

Keywords: discretization methods; hazard rate; maximum likelihood; Bayesian inference; simulation;
Monte Carlo Markov Chain

MSC: 62E10; 62F15; 62N05; 60E05; 62P30

1. Introduction

With every passing day, the data available in our world are growing rapidly, requiring
the development of new statistical distributions to create more accurate representations
of various phenomena and experiments being examined. Although most lifetime data
appear continuous, the reality is that these are discrete observations, promoting the search
for more suitable techniques to convert continuous distribution into discrete forms that
more closely align with the data of interest. There are multiple motivations for frequently
employing discrete distributions in statistical modeling.

Discrete distributions model data that assume a countable or finite set of numbers,
like the number of units being tested, the tally of people in a queue, the occurrence of tails
in flipping a coin, or the count of failed products in the manufacturing process. These
distributions are particularly straightforward and interpretable because they represent data
that adopt a specific range of values. The probability mass function (pmf)and the probability
generating function (pgf) associated with discrete distribution are basic functions specifying
the likelihood of each potential result. Moreover, discrete distributions often come with
closed-form formulas for their pmf or pgf, facilitating their mathematical handling and
enabling efficient calculation of probabilities and statistical moments without needing to
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resort to integration. Additionally, discrete distributions are versatile in modeling numerous
real-life scenarios, such as species distribution within ecosystems, genetic variation within
populations, or traffic flow across networks. Hence, they are computationally efficient, as
their pmf or pgf can be used to compute probabilities and moments without having to
integrate over an interval.

Recently, different discrete models have been created, mainly in medical, engineering,
reliability, and survival analysis, among others. For detailed insights and employment
for discrete distributions, one might consult references [1,2] in addition to other sources.
Consequently, numerous researchers have extensively contributed to the creation and
enhancement of discrete reliability theory from diverse perspectives. The analysis of
continuous random variables commonly employs a range of techniques, including the
probability density function (PDF), cumulative distribution function (CDF), moments, and
hazard rate functions, along with other methods. To convert these continuous models
into discrete ones, several discretization techniques have been proposed and documented
in scholarly articles, aiming to establish a suitable discrete distribution that mirrors the
continuous model. Different discretization methods appeared in the literature, see for
example, Refs. [3–5] that provide a review of several discretization methods.

Commonly, researchers adopt a widely recognized discretization method based on the
survival function. In references [6,7], the discrete analogs of normal and the Rayleigh distri-
butions were presented, respectively, with the authors employing the survival technique for
the discretization method. Following this methodology, the discrete version of Burr Type-II
distribution was explored in [8]. Also, Ref. [9] discussed the discrete additive analog of the
Weibull distribution. Ref. [10] discretized the half-logistic distribution and employed it in a
reliability and risk analysis. One may refer also to [11–17] for more examples of discrete
versions of the distributions.

Haj Ahmad and Almetwally [18] used three different discretization methods for the
generalized Pareto distribution, the results look stimulating and there is motivation to
continue using them in this field. Still, there is an enduring necessity to refine existing
discrete models and develop new ones for better representation and fitting of big data that
appear and spread constantly in everyday human life.

In this paper, we apply two distinct discretization techniques to convert the continuous
Rayleigh–Lindley distribution (RLD) into a discrete form.

• The survival discretization method: The advantage of employing the survival dis-
cretization technique lies in its ability to preserve the statistical characteristics of the
basic distribution, such as the median and percentiles, alongside the distribution’s
general shape. However, a limitation of this approach is its computational demand,
often necessitating the use of numerical methods to handle complicated distributions.

• The hazard rate preservation method: This technique is designed to maintain the
hazard function’s structure when transitioning from a continuous to a discrete setting.
The hazard function, which represents the instant rate of failure at any given time, is
crucial for understanding the likelihood of an event occurring at a specific moment,
provided the event has not yet occurred. One of the primary benefits of this method
is its ability to closely replicate the behavior of the original continuous distribution
in a discrete framework. This is particularly valuable in reliability engineering and
survival analysis, where the timing of events is critical. A limitation of this approach
is that it may require substantial computational resources, especially for complex
distributions or when high precision is needed. This may limit its applicability in
real-time or resource-constrained environments.

Efficiency in discretization methods is defined by how effectively these methods can
transform continuous data into discrete forms while ensuring accuracy and retaining the
usefulness of the data with minimal information loss. There are several ways to measure
the efficiency of discretization methods, depending on the specific application and the type
of data being discretized. Some common measures of efficiency include information loss,
number of intervals, discretization error, and robustness, among others. The efficiency in
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this work is examined through the idea of minimizing the bias and mean squared error of
the estimated parameters; this is established for each discrete analog of the RLD.

This study aims to achieve several key objectives. Firstly, to present two new discrete
versions of the continuous RLD and explore their characteristics. Secondly, to conduct
inferential statistics for the parameters of these newly generated distributions and assess
the estimation performance. Thirdly, to evaluate the effectiveness of the new discrete
distributions by examining the bias and mean square error (MSE) of the estimators through
simulations and numerical methods, including the Monte Carlo technique, and finally, to
use real data examples as illustrative examples of the applications of the discrete analog
of RLD.

The novelty of this research stems from the fact that the hazard preservation dis-
cretization method has been virtually unused by researchers. Hence, we will explore the
two analogs, examining how the frequentist and Bayesian estimation techniques perform
when determining the point estimation for the parameters of the proposed discrete distri-
butions. Ultimately, our goal is to identify which analog demonstrates greater efficiency in
reducing bias and mean squared error (MSE) within the estimation framework

The remainder of this paper is structured as follows: Model descriptions and the
discretization methods are detailed in Section 2. Section 3 is dedicated to evaluating some
statistical functions for both analogs. In Section 4, the maximum likelihood estimation is
carried out, while Section 5 delves into Bayesian inference. Simulation analysis, results, and
discussions are provided in Section 6. Section 7 showcases real data analysis, and finally,
concluding remarks are offered in Section 8.

2. Rayleigh–Lindley Distribution and Methods of Discretization

The Rayleigh–Lindley Distribution (RLD) is a continuous distribution that builds
upon the foundations of both the Rayleigh and Lindley distributions. The statistical
characteristics, inferential statistics, and reliability analysis of the RLD have been thoroughly
investigated by Haj Ahmad et al. [19]. This distribution offers several advantages over the
original distributions and numerous others. Additionally, previous research has shown that
the Rayleigh–Lindley Distribution (RLD) is more effective at handling datasets with smaller
values than larger ones. Moreover, as the hazard rate increases, the Rayleigh–Lindley
model demonstrates superior performance in fitting data sets from the engineering field
when compared to the Weibull, Lindley, Rayleigh, Burr X, and Power Lindley distributions.
However, its continuous nature restricts its applicability for originally discrete datasets.
By discretizing the RLD, we obtain a new distribution that can handle count data while
retaining the RLD’s capacity for tail modeling. This paper introduces two discrete analogs
of the RLD.

The probability density function (pdf) for the continuous RLD is given as follows

f (x; α, θ) =
θ2

α2 (θ + 1)(x + 1)eθx

[
eθx(θ + 1)− (1 + θ + θx)

(1 + θ + θx)3

]
exp
[−1

2α2 (
(1 + θ)eθx

(1 + θ + θx)
− 1)2

]
, x > 0, (1)

and the survival function (S ) is given by

S(x; α, θ) = exp

[
−1
2α2

(
(1 + θ)eθx

(1 + θ + θx)
− 1
)2]

, (2)

in which θ, α > 0 are the scale parameters.
The hazard rate function for the RLD is

h(x; α, θ) =
θ2

α2 (θ + 1)(x + 1)eθx

[
eθx(θ + 1)− (1 + θ + θx)

(1 + θ + θx)3

]
. (3)

In this study, our objective is to establish a new discrete version of the RLD, leading
to the creation of two discrete analogs. The first analog is derived using the survival
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discretization method and is referred to as DRLD1. The second discrete analog is derived
using the hazard preservation method and is denoted by DLRD2. The pmf and the CDF of
each distribution and their properties are presented in the following subsections.

2.1. The Method of Survival Discretization

Roy [6,7] introduced the pmf for a discrete distribution, utilizing the survival function
for its definition, and expressed it in the following manner:

P(X=k)=S(k)−S(k+1), k= 0, 1, 2, . . . (4)

with S(x) denoting the survival function given by Equation (2); therefore, the pmf for the
first Discrete Rayleigh–Lindley distribution analog (DRLD1) is given by:

P(k) = e−ω(α,θ,k) − e−ω(α,θ,k+1) (5)

where ω(α, θ, i) = 1
2α2

[
(1+θ)eθi

1+θ+θi − 1
]2

.
The DRLD1 distribution under the survival discretization method has a CDF

F(k)=1 − e−ω(α,θ,k+1) (6)

The hazard rate function for the DRLD1 is given by

hDRLD1(k) = exp[−ω(α, θ, k) + ω(α, θ, k + 1)] − 1

Figures 1 and 2 illustrate the behavior of the pmf and the hazard rate function, respectively,
for DRLD1 with different parameter values.

Figure 1. Graphs for the pmf of the DRLD1 distribution with various parameter values of α and θ.

(a) (b)
Figure 2. 3D surface plot of hazard rate of DRLD1 distribution. (a) α = 1.5, (b) θ = 1.

The limiting behavior of DRLD1 at the boundary points are:
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limk→∞ P(k) = 0
limα→∞ P(k) = 0
limk→0 P(k) = 1 − e−ω(α,θ,1)

limθ→∞ P(k) = 0
From the limiting behavior and Figure 1, we can summarize the effect of the parameters

on the pmf of DRLD1 as follows:

• Effect of α: As the value of α increases, the pmf curves tend to flatten, indicating a
broader spread of the probabilities across different values of k. This suggests that a
larger α parameter will reduce the rate at which probabilities decay, leading to a more
uniform distribution of the probability mass over the range of k. It highlights α’s role
in controlling the dispersion of the distribution.

• Effect of θ: The parameter θ affects the shape and skewness of the pmf curves. For a
fixed α, varying θ alters how quickly the probabilities decrease as k increases. Higher
values of θ tend to produce curves that drop off more sharply. This effect might be
due to the exponential terms involving θ in the ω function, affecting the exponential
decay rate of the pmf .

In summary, the parameter α primarily influences the spread or variation of the
distribution, with higher values leading to a flatter pmf curve. On the other hand, θ plays
a crucial role in determining the distribution’s shape and how the probability mass is
concentrated across different k values, with higher values leading to a more pronounced
decay in probabilities as k increases.

This analysis illustrates the importance of these parameters in shaping the behavior
of the distribution and highlights the flexibility of the DRLD1 model in accommodating
various probability distributions based on the choice of parameter values.

In Figure 2, the hazard rate function is plotted with different parameter values for
DRLD1, from which we can illustrate the behavior of the hazard function. The effect of the
parameters on the hazard rate is presented as follows:

• Hazard rate with θ = 1: With a fixed θ, the increasing values of α tend to modulate the
hazard rate’s sensitivity to changes in k. Specifically, lower values of α yield steeper
curves, indicating a higher hazard rate change rate over k. Conversely, higher α values
result in more gradual curves, suggesting a slower change in the hazard rate over k.
This style highlights α’s influence on spreading the risk over time, with higher values
smoothing the rate of change in the hazard rate.

• Hazard rate with α = 1: Keeping α constant, the variation in θ values reveals distinct
trends in the hazard rate’s evolution. Lower θ values produce relatively flat curves,
indicating a more uniform hazard rate across k. As θ increases, the curves show a
sharper descent, underscoring a rapid decrease in the hazard rate after an initial peak.
This behavior showcases θ’s role in determining the hazard rate’s peak and subsequent
decline, with higher values accelerating the peak’s onset.

These findings illuminate the effects of α and θ on the DRLD1’s hazard rate. α acts
as a dispersion control, affecting the pace at which the hazard rate changes over time. θ
influences the distribution’s skewness and the rapidity of the hazard rate’s peak, affecting
how quickly the probability of an event occurring decreases after reaching a certain point.
The utilization of distinct colors for each parameter combination in the plots not only aids
in visual discrimination but also in comprehensively understanding the accurate impact
of α and θ on the hazard rate’s behavior, providing valuable insights for modeling and
interpreting the dynamics of events described by the DRLD1.

2.2. Hazard Preservation Method

This method maintains the integrity of the hazard rate function through a two-step
process. Initially, assume X is a continuous random variable with CDF F(x), ranges over
the interval [0, ∞), and is utilized to create X1, a new continuous random variable. This
new variable X1 is characterized by a hazard rate function hX1(x) = e−F(x), (x ≥ 0). A
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comprehensive understanding of this methodology is referred to in [5], which serves as an
excellent resource. The discrete analog Y has a survival function that is described as follows:

P(Y ≥ k) =
(
1 − hX1(1)

)(
1 − hX1(2)

)
. . .
(
1 − hX1(k − 1)

)
, k = 1, 2, . . . , m (7)

The pmf is written by

P(Y = k) =

⎧⎨⎩
hX1(0), k = 0,(

1 − hX1(1)
)(

1 − hX1(2)
)

. . .
(
1 − hX1(k − 1)

)
hX1(k), k = 1, 2, . . . , m,

0, otherwise.
(8)

It is important to highlight that the domain of Y corresponds to the value of m (which may
not necessarily be finite), so it is chosen to ensure the condition 0 ≤ h(y) ≤ 1 is fulfilled.

For X1 we define its hazard rate as

hX1(y) = exp

⎡⎢⎣e

[
−1
2α2

(
(1+θ)eθy

(1+θ+θy)−1
)2
]
− 1

⎤⎥⎦,

It is obvious that the condition 0 ≤ h(y)≤ 1 holds. The survival function in Equation (7)
for the DRLD2 is written as

P(Y ≥ k) =
k−1

∏
i=1

(
1 − exp

(
e−ω(α,θ,i) − 1

) )
. (9)

Hence, the CDF is

P(Y < k) = 1 −
k−1

∏
i=1

(
1 − exp

(
e−ω(α,θ,i) − 1

) )
(10)

The pmf is written as

P(Y = k) =

{
1, k = 0

exp
[
e−ω(α,θ,k) − 1

]
∏k−1

i=1 (1−exp
[
e−ω(α,θ,i) − 1

]
), k = 1, 2, . . . , m

(11)

The hazard rate for the DRLD2 is given by

hDRLD2(k) = exp
[
e−ω(α,θ,k) − 1

]
, k = 1, 2, . . . , m (12)

It is clear from Equation (12) that the hazard rate is a decreasing function for k.
Figures 3 and 4 show the behavior of the pmf and the hazard rate function respectively

of the DRLD2 for different parameter values.

Figure 3. Graphs for the pmf of the DRLD2 with various parameter values of α and θ.
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(a) (b)
Figure 4. 3D surface plot of hazard rate of DRLD2 distribution. (a) α = 1, (b) θ = 1.

For the pmf of DRLD2 it can be realized from Figure 3 that for different values of the
parameters, the pmf decreases, The influence of α and θ is summarized as follows:

• As k increases from 1 onwards, the probability P(Y = k) shows a decreasing trend
for all combinations of α and θ. However, the rate of decrease and the pattern of the
probabilities vary significantly with different values of α and θ. This variation illus-
trates how these parameters modulate the distribution, affecting both the likelihood
of higher k values and the distribution’s tail.

• The decay pattern of P(Y = k) as k increases suggests that the distribution’s tail
becomes thinner or heavier depending on the values of α and θ. For some parameter
combinations, the probability decreases more sharply, indicating a thinner tail. In
contrast, other combinations show a more gradual decrease, suggesting a heavier tail
and hence a higher probability of larger k values.

• Comparing curves of different colors (each representing a unique combination of α
and θ) indicates that higher values of α and/or θ generally result in a quicker drop-off
in the probability as k increases. This suggests that larger values of these parameters
make higher k values less likely, potentially due to the increased spread or dispersion
introduced by α and the rate of decrease in probability mass with k influenced by θ.

• The product term in the pmf for k > 0 accumulates the effect of all previous k values,
introducing a dependence that shapes the overall distribution. The gradual decrease
for k > 1 highlights the cumulative impact of preceding probabilities, emphasizing
the distribution’s memory of past values. This effect is particularly noticeable in
distributions where the probabilities do not drop to near-zero immediately, illustrating
the balance between the likelihood of consecutive events.

In summary, the plot and the behavior of P(Y = k) underscore the critical roles of α
and θ in determining the distribution’s characteristics. The parameters not only influence
the initial probabilities but also significantly impact the distribution’s long-tail behavior,
with implications for how likely higher k values are under different conditions.

The unimodality property of the DRLD1 and DRLD2 distribution, as well as the
decreasing hazard rate curve, are consistent with the characteristics of the continuous RL
distribution, see [19].

Figure 4 represents the hazard rate behavior for the DRLD2 under different parameter
values. In plot (a) where α is fixed at 1, the hazard rate is plotted against θ and k. The color
gradient represents the magnitude of the hazard rate, with red being higher and blue being
lower. This plot shows a more pronounced curve in the surface as θ increases, indicating
that the hazard rate is more sensitive to changes in θ than to changes in α from the next
plot (b). As θ increases, for a given value of k, the hazard rate decreases, suggesting that the
parameter θ has an inverse relationship with the hazard rate.

In plot (b) where θ is fixed at 1, the hazard rate is shown as a function of α and k.
Again, the color gradient from red to blue indicates a decrease in the hazard rate value.
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The surface plot shows that as k increases, the hazard rate decreases smoothly without any
abrupt changes. For a fixed k, as α increases, the hazard rate decreases as well, which can
be observed from the gradient of the surface.

The behavior of the hazard rate in these plots can point out the reliability of a system,
where a lower hazard rate suggests a lesser likelihood of failure over time. The exact
interpretation would depend on the context of the parameters α, θ, and k, which could
represent physical properties or design parameters in an engineering system.

Understanding these relationships can help in designing systems with desired reliabil-
ity characteristics or in making predictions about system longevity or failure rates. For a
more detailed analysis, it would be necessary to know the specific context and definitions of
these parameters. Consequently, finding the estimated values of these parameters will lead
to a better understanding and prediction of the system’s reliability and failure times. Hence,
our next step is to use statistical inference to observe classical and Bayesian estimations for
the model parameters.

3. Statistical Functions

In this section, statistical functions such as Quantile, moments, skewness, kurtosis,
and ordered statistics are discussed for both discrete analogs of RLD.

3.1. Quantile Function

Due to the complexity of the CDF of DRLD1 and DRLD2, isolating k in the expression
of ω(α, θ, k) analytically is non-trivial and likely not possible to be exact due to the nature
of the expression involving both exponential and rational terms in k. Instead of an exact
analytical expression, one can use approximations or numerical methods for practical
applications. See Table 1 for some quantile values.

Table 1. Statistics for DLRD1 samples.

(α, θ) Q1 Median Q3 Mean Variance Skewness Kurtosis Range

(0.30, 0.80) 0.00 0.00 0.00 0.1906 0.1543 1.5755 3.4821 0–1
(1.50, 0.50) 2.00 3.00 4.00 3.0135 1.1724 −0.3520 2.8274 0–6
(1.00, 0.50) 2.00 2.00 3.00 2.3541 0.8954 −0.2713 2.7926 0–5
(0.20, 0.40) 0.00 1.00 1.00 0.8416 0.3669 0.0978 2.6259 0–3
(0.60, 0.60) 1.00 1.00 2.00 1.2112 0.4552 −0.0750 2.5224 0–3

3.2. Moments

Moments are important statistical functions. They provide comprehensive information
about the shape and characteristics of a probability distribution and have many applications
in quality control, risk management, and environmental studies among others. To find the
moments for the DRLD1, assume two non-negative random variables k∼DRLD1(α, θ), and
l∼DRLD2(α, θ). The sth moment, say μ′

s and μ∗′
s for DRLD1 and DRLD2 can be expressed,

respectively, as follows:

μ′
s =

∞

∑
k=0

ks
[
e−ω(α,θ,k) − e−ω(α,θ,k+1)

]
. (13)

and

μ∗′
s =

∞

∑
l=0

lsP(Y = l). (14)

where P(Y = l) is defined by Equation (11). An exact expression for the sth moment cannot
be derived, therefore the Matlab (R2023a) software is useful for numerically evaluating the
moment. Tables 1 and 2 explore some functions like the mean, variance, skewness (SK), and
kurtosis (Kt) for different values of α and θ for DRLD1 and DRLD2, respectively. It can be
noticed that the DRLD1 distribution is appropriate for modeling under-dispersed data since
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in this model the variance is smaller than the mean, which is the case with some standard
classical discrete distributions. In addition, the positive and negative skewness values show
that this distribution can be skewed to the right or left. Also, a minimal skew value that
tends to zero indicates a possible symmetry curve for the pmf. The statistics for the DRLD2
indicate the suitability of this distribution to model both over and under-dispersed data
since the variance can be greater and less than the mean. For different parameter values,
the skewness can be positive and negative and some values are small enough to ensure a
symmetric pattern of the pmf. A higher kurtosis is an indicator of substantial tail risk and
are potential outliers compared to a normal distribution. One can realize the distribution
changes by varying θ and α.

Table 2. Statistics for DLRD2 samples.

(α, θ) Q1 Median Q3 Mean Variance Skewness Kurtosis Range

(0.30, 0.80) 0.00 1.00 2.00 1.25 3.58 2.29 9.67 0–15
(1.50, 0.50) 0.00 1.00 1.00 0.51 0.27 0.16 1.59 0–3
(1.00, 0.50) 0.00 0.00 1.00 0.51 0.29 0.76 7.56 0–7
(0.20, 0.40) 0.00 1.00 1.00 0.82 1.80 3.58 21.75 0–16
(2.00, 3.00) 0.00 1.00 2.00 1.36 3.91 2.14 9.18 0–17
(3.50, 0.50) 0.00 1.00 1.00 0.51 0.25 −0.01 1.07 0–2
(4.00, 0.50) 0.00 1.00 1.00 0.50 0.25 0.01 1.06 0–2

3.3. Order Statistics

Let Z1, Z2, . . . , Zn be a random sample with the DRLD1 and Z1:n, Z2:n, . . . , Zn:n denote
the corresponding order statistics. Then, the CDF of ith order statistics at the value z can be
written as follows

Fi:n(z; α, θ) =
n

∑
i=1

(
n
m

)
[Fi(z; α, θ)]m[1 − Fi(z; α, θ)]n−m. (15)

By using the negative Binomial theorem, we have

Fi:n(z; α, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

[Fi(z; α, θ)]m+j. (16)

Therefore,

Fi:n(z; α, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j[
1 − e−ω(α,θ,k+1)

]m+j
. (17)

Consequently, the pmf of the ith order statistic under the DRLD1 can be derived and
expressed as follows

fi:n(z; α, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j [
e−ω(α,θ,k) − e−ω(α,θ,k+1)

]m+j
.

So, the rth moments of zi:n can be written as follows

E(Zr
i:n) =

∞

∑
z=0

n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

zr
[
e−ω(α,θ,k) − e−ω(α,θ,k+1)

]m+j
.

In a similar argument, the order statistics under the DRLD2 can be obtained by using
Equations (10) and (11).
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4. Maximum Likelihood Estimation

In this part of the study, we calculate the undetermined parameters for both versions of
the DRLD distribution by applying the Maximum Likelihood Estimation (MLE) approach.
To determine the required estimators, we use numerical methods, specifically adopting the
well-known Newton–Raphson method for the numerical computation.

Let x1, . . . , xn represent a random sampling from DRLD1. From the pmf in Equation (5),
the log likelihood function is given by:

�(α, θ) =
n

∑
k=1

log(e−ω(α,θ,k) − e−ω(α,θ,k+1))

The Maximum Likelihood Estimators (MLEs) for the parameters α and θ are derived by
calculating the partial derivatives of the likelihood function �(α, θ) for α and θ, respectively.
These equations are then set to zero, and the resulting system of equations is solved
numerically to obtain the estimations.

∂�(α, θ)

∂α
=

n

∑
k=1

−ωα(α, θ, k)e−ω(α,θ,k) + ωα(α, θ, k + 1)e−ω(α,θ,k+1)

e−ω(α,θ,k) − e−ω(α,θ,k+1)
= 0 (18)

∂�(α, θ)

∂θ
=

n

∑
k=1

−ωθ(α, θ, k)e−ω(α,θ,k) + ωθ(α, θ, k + 1)e−ω(α,θ,k+1)

e−ω(α,θ,k) − e−ω(α,θ,k+1)
= 0,

Such that ωα(α, θ, k) = ∂ω(α,θ,k)
∂α = − 2

α ω(α, θ, k) and

ωθ(α, θ, k) =
∂ω(α, θ, k)

∂θ
=

θkeθk

α2

[
(1 + θ)eθk

1 + θ + θk
− 1

][
1

1 + θ + θk
+

1 + k

(1 + θ + θk)2

]
.

Similarly, the MLEs of α and θ can be evaluated under DRLD2, in this case, the
log-likelihood function can be written depending on the pmf in Equation (11) as follows:

L(α, θ) =
n

∑
k=1

log

(
exp
[
e−ω(α,θ,k) − 1

] k−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

)

L(α, θ) =
n

∑
k=1

(
e−ω(α,θ,k) − 1

)
+

n

∑
k=1

k−1

∑
i=1

log
[
1 − exp

(
e−ω(α,θ,i) − 1

)]
Therefore, the partial derivatives of L(α, θ) to α and θ are

∂L(α, θ)

∂α
=

n

∑
k=1

−ωα(α, θ, k)e−ω(α,θ,k) +
n

∑
k=1

k−1

∑
i=1

ωα(α, θ, i)exp
(

e−ω(α,θ,i) − 1
)

e−ω(α,θ,i)

1 − exp
(
e−ω(α,θ,i) − 1

) = 0, (19)

∂L(α, θ)

∂θ
=

n

∑
k=1

−ωθ(α, θ, k)e−ω(α,θ,k) +
n

∑
k=1

k−1

∑
i=1

ωθ(α, θ, i)exp
(

e−ω(α,θ,i) − 1
)

e−ω(α,θ,i)

1 − exp
(
e−ω(α,θ,i) − 1

) = 0.

Solving the system of two nonlinear Equations (18) and (19) can only be done numeri-
cally. Numerous numerical methods have been employed in the literature; in this case, we
are utilizing the Newton–Raphson method. The discussion results are presented in Section 6.

5. Bayesian Inference

In this section, we employ the Bayesian approach to determine the unknown pa-
rameters of the two discrete RL distributions. The Bayesian technique assumes that the
parameters of the model are random variables adhering to a distribution known as the prior
distribution. Often, prior information is not readily available, necessitating the selection
of an appropriate prior. In this study, we opt for a joint conjugate prior distribution for
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the parameters α and θ, referred to as the modified Lwin Prior. This prior is specified by
assigning a Gamma distribution to α and a Pareto (I) distribution to θ. Consequently,

α ∼ Gamma(a1, b1) and θ|α ∼ Pareto(I)(αa2, b2)

where a1, a2, b1, and b2 are non-negative hyperparameters of the assumed distributions.
Reference [20] highlighted that expressing θ conditional on α holds more significance than
the reverse. Furthermore, they advocate that it is more pertinent to assume the prior
distributions for α and θ as independent.

Thus, the prior distributions for α and θ are presented as follows:

π1(α) =
b1

a1

Γ(a1)
αa1−1e−b1α,

π2(θ|α) =αa2

θb2
(

θ

b2
)
−a2α

.

Therefore, the joint prior function for α and θ is

π(α, θ) ∝
αa1

θ
e−b1α(

θ

b2
)
−a2α

(20)

The joint posterior of α and θ under condition of data availability is given as

p(α, θ|x) = 1
K

L(x/α,θ)π(α, θ)

where L(x/α, θ) is the likelihood function of the DRLD, π(α, θ) is the joint prior given by
Equation (20), and K =

∫∫
L(x/α, θ)π(α, θ)dαdθ.

The process of estimating the parameters for the DRLD distribution has been examined
through the use of both symmetric squared error (SE) and asymmetric LINEX loss functions.
An evaluation of how well the estimators perform under these loss functions was conducted
via a simulation study. Criteria such as the bias and mean square error (MSE) are utilized
to determine the effectiveness of the estimation techniques.

The following loss functions are employed for estimating posterior functions.

(i) Squared error (SE) loss function: assuming SE loss function, Bayes estimation for the
parameters α and θ are defined as the mean or expected value for the joint posterior

α̂SE =
1
K

∫∫
αL(x/α, θ)π(α, θ)dαdθ

θ̂SE =
1
K

∫∫
θL(x/α, θ)π(α, θ)dαdθ (21)

(ii) LINEX loss function: under LINEX loss function, estimating parameters with Bayesian
method is written as

α̂LIN = −1
h

ln[
1
K

∫∫
e−hαL(x/α, θ)π(α, θ)dαdθ]

θ̂LIN = −1
h

ln[
1
K

∫∫
e−hθ L(x/α, θ)π(α, θ)dαdθ], (22)

where h is the value of the shape factor and it represents the orientation of asymme-
try; hence, in our study we select the values of h to be 1.5 and −1.5 in the simula-
tion analysis.

To calculate the expected values and perform the double integration required in
Equations (21) and (22), it is necessary to employ numerical approaches. We have chosen
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to apply the Markov Chain Monte Carlo (MCMC) strategy, specifically utilizing the Gibbs
sampling method, hence, we developed an appropriate R code to facilitate this process. For
additional information on this technique, interested readers can consult the reference [21].

We have to discuss two cases listed below as we developed two different discretization
methods on the continuous RLD.

Case 1
Utilizing the survival discretization method results in the derivation of DRLD1, whose

pmf is provided by Equation (5). The corresponding joint posterior density is as follows:

p1(α, θ/x) =
1
K

n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

]αa1

θ
e−b1α(

θ

b2
)
−a2α

(23)

= Gα(a1 + 1, b1)Λ(α, θ),

where, Λ(α, θ) = 1
K ∏n

i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

]
θ−αa2−1

b2
−αa2

, and G(.,.) denoting the Gamma
distribution.

The Bayes inference for the parameters α and θ under SE loss function is obtained
using Equation (21) and the posterior density is obtained using Equation (23)

α̂SE =
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

] αa1+1

θ
e−b1α(

θ

b2
)
−a2α

dαdθ

θ̂SE =
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

]
θ−a2α αa1 e−b1α(b2)

a2αdαdθ

Using the LINEX loss function, Bayesian estimation is derived from Equation (22) in
conjunction with the posterior density detailed in Equation (23)

α̂LIN = −1
h

ln[
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

] αa1

θ
e−(b1+h)α(

θ

b2
)
−a2α

dαdθ]

θ̂LIN = −1
h

ln[
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

] αa1

θ
e−b1α−hθ(

θ

b2
)
−a2α

dαdθ]

Case 2
The second discretization method of RL produces DRLD2 with the pmf presented in

Equation (11), so the joint posterior density is given by

p2(α, θ/x) =
1
K

n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

αa1

θ
e−b1α(

θ

b2
)
−a2α

=
1
K

G
α
(a1 + 1, b1)Ψ(α, θ)

where Ψ(α, θ) = ∏n
j=1 exp

[
e−ω(α,θ,j) − 1

]
∏

j−1
i=1 (1−exp

[
e−ω(α,θ,i) − 1

]
) θ−a2α−1

b2
−a2α

Bayes estimation for the parameters α and θ under SE loss function is given as

α̂SE =
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

αa1+1

θ
e−b1α(

θ

b2
)
−a2α

dαdθ

θ̂SE =
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
) αa1 e−b1α(

θ

b2
)
−a2α

dαdθ

With the LINEX loss function, Bayesian estimation for the parameters is obtained by:
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α̂LIN = − 1
h

ln[
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

αa1

θ
e−(b1+h)α

(
θ

b2

)−a2α

dαdθ]

θ̂LIN = − 1
h

ln[
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,j) − 1

]
)

αa1

θ
e−b1α−hθ(

θ

b2
)
−a2α

dαdθ]

6. Simulation Analysis

Through this section, our goal is to assess how well the two discrete variants of the continuous
RL distribution perform by examining the point estimation accuracy of the unknown parameters in
terms of bias and MSE. Furthermore, we will compare their performance using various loss functions
outlined in Section 5. We will present some noteworthy findings and outcomes after this section.

In the simulation scenario, 10,000 iterations of random samples are generated using suitable
R-code. Some predetermined parameters values for α and θ are {0.5, 2}, with a sample size n =
{50, 100, 150} being considered.

The simulation analysis for estimating the parameters of the two discrete analogs of RL distri-
bution is presented in Tables 3 and 4. Primary findings from the simulation study are summarized
as follows:

Table 3. The MLE and the Bayesian inference for DRLD1 with estimation bias and MSE with various
values of parameters.

MLE Bayes (SE) Bayes (LINEX-1.5) Bayes (LINEX 1.5)

α θ n Bias MSE Bias MSE Bias MSE Bias MSE

0.5

0.5

50 α 0.2767 0.2983 0.3212 0.2058 0.4068 0.3078 0.2397 0.1283
θ 0.0082 0.0132 0.0124 0.0089 0.0207 0.0093 0.0392 0.0086

100 α 0.2356 0.2307 0.1285 0.0419 0.1434 0.0487 0.1136 0.0359
θ 0.0363 0.0107 −0.0113 0.0045 −0.0183 0.0044 −0.0338 0.0046

150 α 0.3009 0.0997 0.0808 0.0182 0.0866 0.0197 0.0751 0.0167
θ 0.0337 0.0020 −0.0104 0.0038 −0.0144 0.0037 −0.0246 0.0038

2

50 α 0.5566 0.3608 0.5221 0.5461 0.6359 0.7618 0.4130 0.3687
θ −0.3494 0.1234 −0.4743 0.3857 −0.4029 0.3057 −0.5439 0.4715

100 α 0.5084 0.3463 0.4526 0.2419 0.4738 0.2654 0.4059 0.2168
θ −0.3299 0.1133 −0.3927 0.1791 −0.3753 0.1629 −0.4083 0.1943

150 α 0.4642 0.3350 0.4105 0.1794 0.4233 0.1915 0.3955 0.1657
θ −0.3048 0.1024 −0.3731 0.1465 −0.3596 0.1355 −0.3847 0.1562

2

0.5

50 α 0.0949 0.0189 0.1408 0.2011 0.2307 0.2592 0.0498 0.1630
θ −0.0359 0.0015 −0.0340 0.0024 −0.0332 0.0024 −0.0349 0.0025

100 α 0.0936 0.0175 0.0366 0.0458 0.0540 0.0493 0.0193 0.0432
θ −0.0325 0.0012 −0.0328 0.0018 −0.0308 0.0018 −0.0328 0.0018

150 α 0.0828 0.0162 0.0199 0.0170 0.0263 0.0177 0.0135 0.0165
θ −0.0276 0.0011 −0.0309 0.0017 −0.0302 0.0017 −0.0309 0.0017

2

50 α 0.4530 0.3211 0.3866 0.4378 0.5541 0.6896 0.2218 0.2658
θ −0.1637 0.0295 −0.1801 0.0399 −0.1737 0.0376 −0.1866 0.0422

100 α 0.3739 0.3020 0.1408 0.0698 0.1632 0.0806 0.1182 0.0603
θ −0.1179 0.0215 −0.1206 0.0344 −0.1520 0.0335 −0.1721 0.0415

150 α 0.2530 0.2695 0.0899 0.0274 0.0982 0.0298 0.0815 0.0251
θ −0.1195 0.0176 −0.1209 0.0314 −0.1421 0.0308 −0.1621 0.0405
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Table 4. The MLE and the Bayesian inference for DRLD2 with estimation bias and MSE with various
values of parameters.

MLE Bayes (SE) Bayes (LINEX-1.5) Bayes (LINEX 1.5)

α θ n Bias MSE Bias MSE Bias MSE Bias MSE

0.5

0.5

50 α 0.2661 0.2635 0.3323 0.2177 0.4237 0.3308 0.2455 0.1332
θ 0.0026 0.0145 0.0151 0.0089 0.0236 0.0094 0.0063 0.0085

100 α 0.2373 0.2410 0.1272 0.0432 0.1426 0.0501 0.1119 0.0371
θ 0.0377 0.0125 −0.0133 0.0048 −0.0131 0.0047 −0.0054 0.0050

150 α 0.3020 0.0999 0.0801 0.0185 0.0860 0.0201 0.0742 0.0169
θ 0.0339 0.0020 −0.0125 0.0020 −0.0114 0.0038 −0.0046 0.0040

2

50 α 0.5574 0.3163 0.4552 0.2611 0.4168 0.1873 0.2431 0.1400
θ −0.3524 0.1254 −0.3046 0.1185 −0.2390 0.1031 −0.2154 0.0947

100 α 0.2587 0.2349 0.2426 0.2183 0.2045 0.1892 0.2040 0.1297
θ −0.3340 0.1162 −0.3042 0.1020 −0.2402 0.1018 −0.2044 0.0922

150 α 0.1574 0.2035 0.1421 0.1750 0.1417 0.1486 0.1390 0.1136
θ −0.3046 0.1023 −0.2380 0.0915 −0.1307 0.0901 −0.0939 0.0816

2

0.5

50 α 0.0541 0.0109 −0.0601 0.0101 0.0914 0.0103 −0.0666 0.0101
θ −0.0363 0.0015 −0.0391 0.0013 −0.0395 0.0013 −0.0393 0.0013

100 α 0.0496 0.0102 0.0479 0.0033 −0.0536 0.0035 −0.0564 0.0031
θ −0.0330 0.0012 −0.0361 0.0009 −0.0390 0.0009 −0.0385 0.0009

150 α 0.0317 0.0092 −0.0398 0.0014 −0.0231 0.0014 −0.0449 0.0013
θ −0.0288 0.0012 −0.0358 0.0008 −0.0380 0.0008 −0.0369 0.0009

2

50 α 0.0541 0.0109 0.0431 0.0070 0.0555 0.0114 0.0305 0.0037
θ −0.0363 0.0015 −0.0215 0.0013 −0.0206 0.0012 −0.0223 0.0014

100 α 0.0496 0.0102 0.0322 0.0014 0.0352 0.0017 0.0291 0.0012
θ −0.0330 0.0012 −0.0224 0.0012 −0.0218 0.0011 −0.0229 0.0012

150 α 0.0317 0.0092 0.0214 0.0013 0.0225 0.0014 0.0201 0.0011
θ −0.0288 0.0012 −0.0244 0.0012 −0.0234 0.0011 −0.0252 0.0013

• It is evident that the estimated parameter values approach the true values as the sample size
increases. This is indicated by the reduction in both MSE and bias with larger sample sizes,
demonstrating the consistency of the proposed estimators.

• When working with small sample sizes, Bayesian estimation with LINEX loss function yields the
lowest MSE and bias for estimating the parameter θ. In contrast, the SE loss function produces
the smallest MSE and bias for estimating α.

• For big sample sizes, LINEX loss function consistently achieves the lowest MSE and bias for the
two parameters α and θ.

• For both parameters α and θ, the Bayesian methods generally show a different bias and MSE
pattern compared to MLE. Specifically, the Bayesian SE method tends to have lower MSE than
MLE in many cases, suggesting that it might provide more accurate and reliable estimates under
certain conditions. For nearly all scenarios, both the LINEX and SE loss functions result in the
lowest bias and MSE values across various sample sizes.

• The LINEX penalties introduce variability in the performance, with LINEX-1.5 generally result-
ing in higher bias and MSE for α, especially when α = 2, suggesting a sensitivity to the loss
function’s shape.

• The performance of the estimation methods varies significantly between the two parameter
settings α and θ = 0.5 vs. 2. For instance when α and θ are both set to 2, the bias and MSE are
generally higher compared to when they are set to 0.5. This suggests that the true values of the
parameters can significantly affect the difficulty of the estimation problem.

When comparing the performance of the estimation methods for the parameters of the two
DGPD analogs, several insights emerge regarding the performance of these methods across different
conditions. Below are some general observations.
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• Across both distributions, the Bayesian methods, particularly with the Standard Error (SE)
approach, often show a lower MSE compared to the MLE, suggesting that in the context of these
simulations, Bayesian methods might offer a more robust approach under certain conditions.

• The bias for parameter α in DRLD2 seems to have less variability across different methods and
conditions compared to DRLD1. For example, in DRLD2, the bias values for α are generally
closer to zero, especially in the Bayesian SE and LINEX (−1.5) scenarios, indicating poten-
tially more accurate estimations. For parameter θ, the bias is also generally lower in DRLD2,
suggesting that the estimation methods may perform better on this distribution for θ.

• The MSE values for both α and θ tend to be lower in DRLD2 across most methods and conditions,
indicating a more precise estimation. This is particularly evident in the Bayesian SE and LINEX
(−1.5) methods, where the improvement in MSE is clear.

• The impact of increasing sample size on improving bias and MSE appears to be more consistent
in DRLD2 than in DRLD1, especially for the Bayesian methods. This suggests that DRLD2 may
be more amenable to these estimation techniques as the sample size increases.

• The Bayesian methods, especially with SE and LINEX (−1.5), show a notable improvement in
DRLD2 over DRLD1 in terms of both bias and MSE. This could be indicative of the Bayesian
methods being particularly well-suited for the characteristics of DRLD2.

The comparison between the two tables highlights that DRLD2 generally allows for more accu-
rate parameter estimation than DRLD1, as evidenced by lower bias and MSE across various methods
and conditions. The improvement is particularly noticeable with Bayesian estimation methods,
suggesting that these methods may be more effective for distributions with characteristics similar to
DRLD2. This could be due to differences in the underlying properties of the two distributions, such
as their sensitivity to sample size and the specific challenges they present for parameter estimation.

7. Real Data Examples

This section presents the analysis using a real dataset. The main goal of this section is to examine
the usefulness and applicability of the proposed discrete analogs to real phenomena. The first dataset
consists of the number of fires that occurred in Greece between 1 July and 31 August 1998. We only
take into account fires in forest districts. We considered a sample of data with a size of 24. The
minimum value is 1, the first quartile is 4, the median value is 7.5, the mean value is 6.88, the third
quartile is 9, the maximum value is 12, and the variance value is 8.9. The data are as follows:

Dataset I: 4, 3, 10, 5, 4, 5, 12, 3, 8, 10, 11, 6, 1, 8, 9, 9, 4, 8, 11, 8, 6, 4, 7, 9.
These data hae been discussed by [22]. We apply the Chi-square goodness of fit measure for

testing DRLD1 with the above set of data, the results are explored in Table 5. The observed p-value
indicates the suitability of DRLD1 to fit these data. Additionally, Figure 5 illustrates the connection
between observed probability distribution with the expected one, as well as the empirical CDF with
the expected CDF plot, and finally the Q-Q plot.

Table 5. MLE estimate and chi-square measure for dataset I.

Parameters MLE p-Value Test Statistics

DRLD1 α 0.1684 0.8366 0
θ 0.0849

Figure 5. P-P, Empirical CDF VS estimated CDF, and Q-Q plots for dataset I with DRLD1.

The second dataset represents a 25-day COVID-19 data set from the United States Virgin Islands,
recorded in May 2021. These data comprise daily new deaths. The data are as follows:

Dataset II: 4, 12, 3, 5, 12, 6, 9, 13, 10, 26, 32, 13, 10, 20, 18, 2, 18, 14, 24, 7, 30, 16, 26, 17, 23. The
data are available on the Worldometer website at [23]. Applying the Chi-square goodness of fit test
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to assess the appropriateness of the DRLD2 distribution for this dataset indicates that this model
is relatively well-suited for analyzing these data. The results are detailed in Table 6. Additionally,
Figure 6 displays the P-P plot, the empirical and estimated cumulative distribution functions, and the
Q-Q plot.

Table 6. MLE estimate and chi-square measure for dataset II.

Parameters MLE p-Value Test Statistics

DRLD2 α 0.1098 0.0853 0
θ 0.0305

Figure 6. P-P, Empirical CDF VS estimated CDF and Q-Q plots for dataset II with DRLD2.

8. Conclusions

Discrete distributions are a natural choice for modeling data that are limited to a finite or
countably infinite set of values, due to their simplicity, closed-form expressions, and ability to
model real-world phenomena. They are also computationally efficient and can be used to model
categorical data. In this study, the author developed two new discrete analogs of the Raleigh–Lindley
distribution. Their statistical properties are discussed, then estimation methods are applied to
assess the performance of estimation methods for the two analogs. The simulation study illustrates
the performance of MLE and Bayesian methods in estimating DRLD parameters. The choice of
estimation method and the specification of the Bayesian loss function can significantly impact the
bias and MSE of the estimates. These findings underscore the importance of considering the specific
context of the parameter estimation problem, including the sample size and the true parameter
values, when selecting an estimation approach. It was obtained that the new hazard preservation
method enhances the performance of estimation methods, this is especially evident in the Bayesian
estimation approaches, indicating that these techniques may be better suited for distributions that
share characteristics with DRLD2. This distinction could stem from the unique attributes of the two
distributions, including how they respond to changes in sample size and the particular obstacles they
pose for estimating parameters. Finally, two real data examples from the environment and health
fields are examined to assess the performance of each analog.
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Abstract: It has been more than a decade since sequential indicator simulation was proposed to model
geological features. Due to its simplicity and easiness of implementation, the algorithm attracts the
practitioner’s attention and is rapidly becoming available through commercial software programs for
modeling mineral deposits, oil reservoirs, and groundwater resources. However, when the algorithm
only uses hard conditioning data, its inadequacy to model the long-range geological features has
always been a research debate in geostatistical contexts. To circumvent this difficulty, one or several
pieces of soft information can be introduced into the simulation process to assist in reproducing such
large-scale settings. An alternative format of Bayesian sequential indicator simulation is developed
in this work that integrates a log-linear pooling approach by using the aggregation of probabilities
that are reported by two sources of information, hard and soft data. The novelty of this revisited
Bayesian technique is that it allows the incorporation of several influences of hard and soft data
in the simulation process by assigning the weights to their probabilities. In this procedure, the
conditional probability of soft data can be directly estimated from hard conditioning data and then be
employed with its corresponding weight of influence to update the weighted conditional portability
that is simulated from the same hard conditioning and previously simulated data in a sequential
manner. To test the algorithm, a 2D synthetic case study is presented. The findings showed that
the resulting maps obtained from the proposed revisited Bayesian sequential indicator simulation
approach outperform other techniques in terms of reproduction of long-range geological features
while keeping its consistency with other expected local and global statistical measures.

Keywords: Bayesian updating; sequential indicator simulation; kriging; probability aggregation

MSC: 62C10

1. Introduction

High-quality probabilistic modeling of categorical variables (e.g., geological domains
based on lithological description) is a vital demand in many geoscience disciplines, as it
provides the basement for modeling the continuous variables (e.g., grade of elements and
properties of rock) throughout the domain of study. This modeling process offers several
applications in mineral resource estimation [1,2], statistic reservoir modeling [3,4], and
modeling of aquifers in hydrogeology [5], to name a few. To model the categorical variables,
among others, truncated Gaussian simulation [6,7], plurigaussian simulation [8,9], multiple-
point statistics [5], and sequential indicator simulation [10–12] received significant attention
for building such categorical models. The latter, modeling of a continuous variable, is more
popular due to its simplicity and straightforwardness, and the algorithm itself is available
in several commercial software programs. The resulting models are acceptable where there
are no large-scale geological patterns. However, in the case of having curvilinear or long-
range geological features, the algorithm produces very patchy and unstructured results,
which is a legitimate criticism of this method [13,14]. The reason is that sequential indicator
simulation only takes into account the two-point statistical measures of the geological
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domains that are informed by hard data. To solve this issue, several variations of sequential
indicator simulation have been developed that consider the soft information as secondary
data to inform the large-scale geological variability at the target simulation nodes, which
substantially improves the applicability of the method. In this context, hard and soft data
refer to measured values at the borehole via the sampling points and interpretive geological
models at target grid nodes, respectively.

A possible solution to include secondary/soft information in the process of simulation
is to use the probability aggregation concept [15]. A proper evaluation of different probabil-
ity aggregation methods with special attention to their applicability using geoscientific data
is conducted by Allard et al. [16]. They showed that the log-linear pooling outperforms the
linear pooling when integrating them with the truncated Gaussian and the Boolean models
in geostatistics. The integration of log-linear pooling in several geostatistical algorithms
has already been developed for various applications: interpolation of satellite images [17],
3D multiple-point statistics using 2D training images [18], multiple-point geostatistical sim-
ulations using secondary exhaustive information [19], and Bayesian sequential Gaussian
simulation for modeling the continuous hydrogeophysical data [20].

Probability aggregation is also employed specifically in sequential indicator simulation.
Among others, Bayesian sequential indicator simulation [21] was introduced to integrate a
simple Bayesian updating rule to construct a local posterior distribution of the geological
domains at the target grid node. This work was developed to model the lithofacies in
static reservoirs where the soft data can be informed by seismic attributes for the different
lithofacies. Another form of Bayes’ law was introduced by Ortiz and Deutsch [22], where
the indicator formalism in this sequential simulation technique is updated by using the
multiple-point configuration of the soft data. The method is proposed to simulate the
continuous variable in the context of mineral resource estimation, where the soft conditional
probability is advised by using the production data such as blasthole. However, in these
methods, the hard and soft data use equal constant weights, meaning identical influence
on the final simulation results. To overcome this limitation, a revised version of Bayesian
sequential indicator simulation is proposed in this study for the purpose of modeling the
categorical variables (e.g., geological domains) that are integrated with a log-linear pooling
approach. The soft information in this enhanced process of simulation is inferred from an
interpolation technique using only the hard conditioning data at the sampling point.

The outline of the paper is as follows. In Section 2, the methodology is explained with
its main mathematical properties. Then, the proposed approach is tested and validated
through a synthetic case study in Section 3. Finally, Section 4 provides the discussion
and conclusions.

2. Sequential Indicator Simulation

2.1. Conventional Sequential Indicator Simulation

Sequential indicator simulation [10–12] is a stochastic methodology for modeling M
categories, for which they are exhaustive and mutually exclusive at all data locations. This
means that one of the categories must predominate at each individual sample point.

In order to perform a sequential indicator simulation algorithm, first, the categorical
variable Th through the hard conditioning data h at sample locations χ is transformed into
a matrix of M hard indicator variables, characterized as:

I(χ;μ) =
{

1, i f category M predominates at sample location χ
0, otherwise

μ = 1, . . . , M (1)

In this equation, predominating category M at location χ that is converted to indicators
necessitates that ∑m

μ=1 I(χ;μ) = 1.
In the second step, a random path is identified to visit each node of the target grid only

once. The next step is to estimate the corresponding category at randomly selected target
node grid node χ′, using the indicators that are obtained through Equation (1) at hard
conditioning data. There are different methodologies in geostatistics that can be utilized for
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this purpose. Among others, the simple kriging method provides promising results. This
geostatistical interpolation paradigm is built based on three constraints [23]: (a) the estima-
tor is a weighted linear combination of the available hard data (linearity constraint), (b) the
estimator is unbiased, that is, the expectation of the error is 0 (unbiasedness constraint), and
(c) the error variance is minimum (optimality constraint). The first restriction necessitates
writing the estimator as a linear combination (weighted average) of the neighboring hard
data to estimate the variable of interest Th(χ) at target grid node χ′:

T∗
h
(
χ′) = ∑υ

β=1 ωSK
β

(
χ′)T(χβ

)
+
[
1 − ∑υ

β=1 ωSK
β

(
χ′)]× m (2)

where data υ are composed of neighboring hard conditional data; m is the global declustered
mean value of the corresponding variable Th(χ), ωSK

β (χ′; μ) is the weights assigned to
the variable T at the location χβ(β = 1, . . . , υ). The weights needed in Equation (2) are
achievable by solving a covariance matrix for each χ′ as:

∑ν

β=1 ωSK
β C
(
χα − χβ

)
= C
(
χα − χ′) α = 1, . . . , ν (3)

where C is the covariance of variable T. Solving the kriging system in Equation (3) to
obtain the weights ωSK

β requires the knowledge of covariance of variable T. In this respect,
the lineal model of regionalization is widely used to fit such covariances, owing to its
mathematical simplicity and tractability [9,23]. In this model, the covariance C is defined
as weighted sum of L basic covariances, also called basic nested structures:

C(h) = ∑L
l=0 blCl(h) (4)

where for each structure (l = 1, . . . , L), bl is the positive sill of basic permissible covariance
model Cl(h).

Therefore, one can use the simple kriging paradigm to estimate the corresponding
category μ at the target grid node. Since the initial data is already converted to indicators,
then the aim of simple kriging in this step is to establish the conditional probability of
occurrence of each indicator I(χ;μ) at the corresponding target grid node χ′:

I∗h
(
χ′; μ
)
= ∑υ

β=1 ωSIK
β

(
χ′; μ
)

I
(
χβ; μ

)
+
[
1 − ∑υ

β=1 ωSIK
β

(
χ′; μ
)]× πμ (5)

where data υ are composed of neighboring hard conditional indicators and previously
simulated indicator values; the πμ is the global declustered proportion of each category
(i.e., prior probability or prior proportion), which equivalently can be defined as E{I(χ;μ)};
ωSIK

β (χ′; μ) is the weights assigned to the indicator variable I
(
χβ; μ

)
at the χβ(β = 1, . . . , υ)

of this indicator variable. The weights needed in Equation (5) are achievable by solving a
covariance matrix for each χ′ using Equation (3). Then, the permissible model of C(h) can
be inferred from the direct calculation of covariance over each indicator variable I(χ;μ) or
it can be deduced from the calculation of variogram over indicator variable I(χ;μ). In this
case, the variogram can then be converted to covariance to be embedded into Equation (3)
for computing the corresponding weights ωSIK

β (χ′; μ).
Since each M category is independently estimated, an order relation deviation is

expected for the estimated conditional probabilities. This signifies that the probabilities
do not always sum to one, and the existence of negative probabilities is expected. The
reason is that some of the weights obtained by solving the simple kriging system via
Equation (3) receive negative or high values. These particular weights lead to producing
some negative values or very high values for estimated indicators, which are more than
1 [24–26]. Then, in the fourth step, the deviations in probabilities for order relation should
be rectified [26]. In this respect, one can utilize the bounds correction, signifying that all
negative estimated values are set to 0, and all high values (more than 1) are set to 1. Then, a
normalization of probabilities is needed to force the summation of all estimated conditional
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probabilities to reach 1 at all target grid nodes ∑m
μ=1 I(χ′;μ) = 1 [23]. Once the probabilities

of each indicator are estimated and their order related problems are corrected, then one
can define any ordering of the M categories and build a cumulative distribution function
(cdf-type function). Afterward, the fifth step includes drawing a random number U from a
uniform distribution in [0, 1] by Monte Carlo simulation. Therefore, the simulated category
T(1)

h at location χ′ can be obtained with an inverse of the quantile associated with that
generated random number in [0, 1]. In the sixth step, the simulated value is added to the
hard conditioning data, and then the algorithm proceeds to the next target node, following
the identified random path, repeating steps from one to five. In order to generate another
realization T(i)

h , i = 2, . . . , r, with r total number of realizations, one needs to repeat the
entire algorithm with a different random path. These simulated values are obtained by
only hard conditioning data- h. However, the current methodology is poor in reproduction
of connectivity or large-scale geological features between sample points. In the following,
we show how soft information can be incorporated to simulate the values at target nodes,
enforcing the connectivity in the outcomes.

2.2. Revisited Bayesian Sequential Indicator Simulation

If the secondary evidence, known as soft information, is available at the target node χ′,
the conditional probability of occurrence of each category μ obtained from Equation (5) can
be updated accordingly. Let us denote event Ψ, a category that needs to be simulated at
target grid node, and Δi(i = 1, . . . , n) represent n information of that underlying category,
for which they are inferred by using the hard conditioning data, soft data, or any other
source of information. Indeed, we aim at approximating the probability P(Ψ|Δ1, . . . , Δn)
based upon the coexisting information of the n conditional probabilities. Probability
aggregation [16] is used to construct an approximation of the true conditional probability
by utilizing an aggregation operator Ω, which is also known as the pooling operator or
pooling formula:

P(Ψ|Δ1, . . . , Δn) ≈ Ω(P(Ψ|Δ 1), . . . , P(Ψ|Δ n)) (6)

In the case of having a prior probability Δ0 for the category sought, then Equation (6)
can be generalized to:

P(Ψ|Δ0, . . . , Δn) ≈ Ω(P(Ψ|Δ 0), . . . , P(Ψ|Δ n)) (7)

Among others, aggregation operators based on the multiplication of probabilities
appear to be more suited in geoscience than those formulated based on an addition operator
(Allard et al. 2012). These product-based pooling operators are linear operators of the
logarithms of the probabilities [16]:

ln P(Ψ|Δ) = ln Z + ∑n
i=1 λi ln P(Ψ|Δ i) (8)

where Z is a normalizing constant. This expression equivalently can be converted to the
multiplication of probabilities:

P(Ψ|Δ 0, . . . , Δn) ∝ P (Ψ|Δ0)
1−∑n

i=1 λi ∏n
i=1 P (Ψ|Δi)

λi (9)

where λi are positive weights with restriction ∑n
i=1 λi = 1 to verify external Bayesianity. In

Equation (9), there is no restriction on the weights.
In the context of sequential indicator simulation using the secondary data, subject to

having one hard conditioning data Δh and one soft information Δs, log-linear pooling can
be simplified to combine the information provided by these two sources of information:

P(Ψ|Δ 0, Δh, Δs) ∝ P(Ψ|Δ 0)
1−λh−λs ·P(Ψ|Δ h)

λh ·P(Ψ|Δ s)
λs (10)
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where P(Ψ|Δ 0) is prior probability of each category πμ; λh and λs are the weights that can
be arbitrary assigned to the hard and soft data, and ∑n

i=1 λi = 1 is always verified.
Therefore, the conditional probability of occurrence of each category μ obtained from

Equation (5) can be updated by using Equation (10) as:

I∗U
(
χ′; μ
)
= π

1−λh−λs
μ × I∗h

(
χ′; μ
)λh × I∗s

(
χ′; μ
)λs (11)

where I∗S is soft information, for which its conditional probability of occurrence of category
μ can be reported from an interpretive geological block model at the target grid node. For
instance, wireframing or hand contouring can provide such a geological block model [2].
However, it is somehow tedious to produce such a probabilistic information from a de-
terministic interpretive model of geological domains in the region of study. There is an
alternative way to convert this deterministic model to conditional probabilities, as thor-
oughly explained in [27]. In this study, we propose to obtain I∗S values from simple kriging
of the indicators at hard conditioning data. These estimated values provide probabilistic
information of the occurrence of that category μ at the corresponding target grid node
I∗s (χ′; μ). However, to obtain I∗h (χ

′; μ)λh , we take both the neighboring hard conditional
indicator data and also the previously simulated indicator values as a typical practice in
conventional sequential indicator simulation as explained in Section 2.1. In practice, the
soft information I∗S in this probability aggregation method helps improve the conventional
sequential indicator simulation for better reproduction of long-range geological structures.
The most important issue in this approach is to properly assign the weights of hard λh and
soft data λs. In the case of λh = 1 and λs = 1, Equation (11) simplifies to the traditional
Bayesian sequential indicator simulation as proposed in [21].

2.3. Optimal Evaluation of Weighting Mechanism

The proposed log-linear pooling approach in Equation (10) allows one to identify
different or equal weighting schemes for a specific category that are coming from differ-
ent sources of information. These are prior proportion, primary (hard) and secondary
(soft) data, where their weights can dictate the intensity of their influence in the final
probability aggregation resulting through Equation (11). The proposed methodology
in this work highly depends on the proper assignation of these weights so that their
improper designation yields completely different results. These weights can be either
assigned equally or ranked differently, for instance, based on the opinion of an expert.
Allard et al. [16] suggested using a log-likelihood approach to optimally identify these
weights. Nassbaumer et al. [20] proposed a multi-step sophisticated approach to change
the weights multiple times during the simulation process following a Monte Carlo-type
search. In this study, we used an empirical technique to assign the weights that gradually
change in the interval of [0, 2], allowing the testing of our algorithm conveniently. The
algorithm for identification of optimal weights is as follows:

1. Testing the algorithm with 24 different experiments of λh and λs as provided in
Table 1.

2. Evaluating the performance of the experiments by calculating the error in the repro-
duction of the proportion of indicators.

3. Evaluating the performance of the experiments by calculating the error in matching
percentage with the reference map.

4. Evaluating the performance of the experiments by calculating the error in the repro-
duction of connectivity measures of the categories.

5. Evaluating the performance of the experiments by calculating the error in the repro-
duction of spatial continuity of the categories.

6. Fitting polynomial function to interpolate the errors.
7. Obtaining the optimal weights based on minimum error.
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Table 1. Twenty-four experiments based on different weighting schemes of λh and λs; 1 − λh − λs

introduces the weight of prior proportion for the category sought.

λh λs 1−λh−λs Note

SIS-0–0.5 0 0.5 0.5 Revisited Bayesian simulation (Pure soft simulation)
SIS-0–2 0 1 0 Revisited Bayesian simulation (Pure soft simulation)

SIS-0–1.5 0 1.5 −0.5 Revisited Bayesian simulation (Pure soft simulation)
SIS-0–2 0 2 −1 Revisited Bayesian simulation (Pure soft simulation)

SIS-0.5–0 0.5 0 0.5 Revisited Bayesian simulation (Pure hard simulation)
SIS-0.5–0.5 0.5 0.5 0 Revisited Bayesian simulation
SIS-0.5–1 0.5 1 −0.5 Revisited Bayesian simulation

SIS-0.5–1.5 0.5 1.5 −1 Revisited Bayesian simulation
SIS-0.5–2 0.5 2 −1.5 Revisited Bayesian simulation
SIS-1–0 1 0 0 Revisited Bayesian simulation (Pure hard simulation/Traditional simulation)

SIS-1–0.5 1 0.5 −0.5 Revisited Bayesian simulation
SIS-1–1 1 1 −1 Revisited Bayesian simulation (Doyan’s simulation)

SIS-1–1.5 1 1.5 −1.5 Revisited Bayesian simulation
SIS-1–2 1 2 −2 Revisited Bayesian simulation

SIS-1.5–0 1.5 0 −0.5 Revisited Bayesian simulation (Pure hard simulation)
SIS-1.5–0.5 1.5 0.5 −1 Revisited Bayesian simulation
SIS-1.5–1 1.5 1 −1.5 Revisited Bayesian simulation

SIS-1.5–1.5 1.5 1.5 −2 Revisited Bayesian simulation
SIS-1.5–2 1.5 2 −2.5 Revisited Bayesian simulation
SIS-2–0 2 0 −1 Revisited Bayesian simulation (Pure hard simulation)

SIS-2–0.5 2 0.5 −1.5 Revisited Bayesian simulation
SIS-2–1 2 1 −2 Revisited Bayesian simulation

SIS-2–1.5 2 1.5 −2.5 Revisited Bayesian simulation
SIS-2–2 2 2 −3 Revisited Bayesian simulation

In the above criteria, reproduction of proportions refers to the examination of re-
production of πμ in the simulation results. Connectivity measures τ(d) is defined as the
probability that two target grid nodes belonging to category μ are connected [28]:

τ(d) = P(χ′ ⇔ χ′ + d
∣∣χ′, χ′ + d ∈ μ) (12)

where τ(d) is a non-decreasing function as d increases. The connectivity function can be
estimated by:

τ̂(d) =
#N(χ′ ⇔ χ′ + d|χ′, χ′ + d ∈ μ)

#N(χ′, χ′ + d ∈ μ)
(13)

where τ̂(d) is the estimate of connectivity function for distance d, #N(χ′ ⇔ χ′ + d|χ′, χ′+
d ∈ μ) the number of target grid nodes, separated by a vector of distance d, that belong
to category μ and are connected and #N(χ′, χ′ + d ∈ μ) the number of target grid nodes,
deparated by a vector of distance d, that belong to category μ and that may or may not
be connected.

Concerning the spatial continuity evaluation, a variogram can be a satisfying mea-
surement. To do so, experimental variogram γ(d) computes the average dissimilarity
between data separated by vector d. It is calculated as half the average difference between
components of every data pair [9,29]:

γ(d) =
1

2N(d) ∑N(d)
β=1

[
T
(
χβ

)− T
(
χβ + d

)]2 (14)

where
[
T
(
χβ

)− T
(
χβ + d

)]2 is a d-increment of the indicator variable T and N(d) is the
number of pair.

Through the synthetic case study, we show how the method proposed does work and
how these weights can be optimally identified.
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3. Results

3.1. Synthetic Case Study

To test the proposed methodology and evaluate the optimal weighting parameters, a
synthetic case study is considered. For this purpose, one categorical variable, including
two indicators/categories, is non-conditionally simulated on a 2D 300 m × 300 m domain
consisting of 300 × 300 nodes by using plurigaussian simulation [8] associated with an
anisotropic spatial continuity. Ten realizations are produced, and the one (reference map
hereafter) is selected in such a way that it shows long connectivity along easting and
relatively short connectivity along elevation coordinates (Figure 1A). In order to mimic the
vertical sampling pattern like the ones in the actual case studies, 100 points are randomly
sampled from the reference map along elevation to constitute four synthetic boreholes
throughout the domain. However, in order to evaluate the algorithm properly, two target
areas are of paramount importance. These are identified by two ellipses (I and II) in
Figure 1A. In fact, we are interested in producing the realizations that honor the connectivity
of the categories through these two critical areas when there are few hard conditioning
data points. Therefore, it was intended to sample only one category per each of these two-
target areas (Figure 1B). The lack of data in these two areas can be an excellent signature
for evaluating the proposed method. Consequently, this synthetic dataset is used in the
proposed algorithm to compare the simulation results with a reference map to provide
evaluation debates.

Figure 1. Reference dataset, (A) reference map, (B) synthetic sampled dataset; only one sample is
preserved in the target areas I and II to better evaluate the revisited Bayesian sequential indicator
simulation in this study.

The connectivity on the selected map, to be considered a reference map, is also verified
by computing the connectivity functions [23] over this realization along the specified
coordinates (Equation (13)).

As can be observed from Figure 2, there is approximately 50% and 0.0% probability that
categories A and B are connected from west to east and from south to north, respectively.
This interpretation is obtained by looking at the connectivity measures at large lag distances
when they reach a steady range around the lag of 240. This is also compatible with the visual
inspection of the map illustrated in Figure 1A. Therefore, this is an interesting reference
map for further analysis in this study.
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Figure 2. Connectivity measures along Easting (back dashed line) and Elevation (green dashed line)
for (A) category A, and (B) category B.

Once the synthetic sampling points are identified, the next step in the proposed algo-
rithm is to produce a map that reports the soft data at target nodes to be used subsequently
for log-linear pooling probability aggregation in revisited Bayesian sequential indicator
simulation through Equation (6). In this study, simple kriging is used to map the soft infor-
mation for each indicator. Therefore, after variogram analysis, the categories/indicators
are estimated on the target grid nodes using up to 40 conditioning data in a moving neigh-
borhood configuration (Figure 3). Due to the existence of indicator value at synthetic
sample points, these maps are deemed as the probability of occurrence of the correspond-
ing category P(Ψ|Δ s)

λs at the target node, for which they can be used as soft information
I∗S in Equation (7). One advantage of this map is that one can recognize the probability
of connectivity between the boreholes, which is favorable information for modeling the
categories with long connectivity.

Figure 3. Probability of occurrence of (A) category A and (B) category B obtained by estimating the
conditioning indicator data on the target grid nodes. These maps are used as soft information in the
proposed algorithm.

The next step in the revisited Bayesian sequential indicator simulation in this study
is to implement the simulation algorithm but using updating scheme of Equation (11)
to update the probability of occurrence of the corresponding category I∗h (χ

′; μ)λh . As
mentioned earlier, the updated probability I∗U(χ′; μ) highly depends on the assignation of
weights λh and λs. A method is used to test different weighting schemes in Equation (11)
to evaluate the optimum weighting values in the revisited Bayesian sequential indicator
simulation. In this technique, λh ∈ {0, 2} and λs ∈ {0.5, 2}, and the prior proportion
ranging with a weight of 1 − λh − λs. These 24 trials are shown in Table 1.

In this examination, the trials with λh = 0 and λs ∈ {0.5, 2}, signify that the revisited
Bayesian sequential indicator simulation is only based on the soft information (pure soft
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simulation hereafter). Those trials with λs = 0 and λh ∈ {0.5, 2}, denote that the resulting
revisited Bayesian sequential indicator simulation is solely yielded on the hard conditioning
data (pure hard simulation hereafter). The trial represents the conventional sequential
indicator simulation with λh = 1 and λs = 0. The trial providing the simulation results
with λh = 1 and λs = 1 presents the traditional Bayesian Updating approach as proposed
in Doyen et al. [21] (Doyan’s simulation hereafter). There are some links between Doyan’s
simulation and sequential indicator simulation that uses a collocated cokriging by different
implementation mechanisms [13]. All these subgroups are some special cases of the
revisited Bayesian sequential indicator simulation as proposed in this study. However, in
order to be clearer about these subgroups, another subgroup is defined, which is called
Revisited Bayesian simulation hereafter, for which λh and λs vary between {0, 2} and {0.5,
2}, respectively, but excluding the weights belonging to pure soft simulation, pure hard
simulation, traditional simulation, and Doyan’s simulation. A summary of these techniques
is provided in Table 2. A note is also provided in Table 1 to link the trials in Table 1 to the
subgroups in Table 2.

Table 2. Comparison of some key properties of the log-linear pooling aggregation approach in this
study; weight of the prior proportion for the category sought is 1 − λh − λs.

Aggregation Equation for
P(Ψ|Δ0,Δh,Δs)

λh λs

Pure soft simulation P(Ψ|Δ 0)
1−λs ·P(Ψ|Δ s)

λs 0 {0.5, 2}
Pure hard simulation P(Ψ|Δ 0)

1−λh ·P(Ψ|Δ h)
λh {0.5, 2} 0

Traditional simulation P(Ψ|Δ 0)
1−λh−λs ·P(Ψ|Δ h)

λh ·P(Ψ|Δ s)
λs 1 0

Doyan’s simulation P(Ψ|Δ 0)
1−λh−λs ·P(Ψ|Δ h)

λh ·P(Ψ|Δ s)
λs 1 1

Revisited Bayesian simulation P(Ψ|Δ 0)
1−λh−λs ·P(Ψ|Δ h)

λh ·P(Ψ|Δ s)
λs {0, 2} {0.5, 2}

Implementation of simulation for all the trials was conducted under a moving neigh-
borhood scheme with up to 40 hard conditioning data and 40 previously simulated data.
The sequential paradigm is followed a random sequence while using a multiple-grid simu-
lation procedure. The number of realizations is 100. Some realizations from each subgroup
(presented in Table 2) are selected for visualization (Figure 4). The rest of the realizations
for the other trials are provided in Appendix A (Figure A1). As can be seen, the results
obtained by using only pure soft information dramatically failed in reproducing the shape
of both categories A and B, which do not show the underlying structure. In pure hard
simulation, when λh ≤ 0.5, the resulting maps are quite patchy (Figure 4B). However, by
increasing the weight of hard data, the shape of category B, to some extent, is regenerating.
It can be seen that the reproduction of connectivity is highly controlled by the weight
assigned to soft data (Figure 4D,F). One of its particular cases is the one with λh = 1 and
λs = 0 (Figure 4F), where it shows the result of traditional sequential indicator simulation.
The shape of category B on the left and on the right sides is more or less reproduced, but
the continuity of category B is disconnected around area II, shown by a white ellipse in
Figure 4A. This is a typical problem of traditional sequential indicator simulation, in which
the geological features with long connectivity cannot be produced properly. Doyan’s simu-
lation, which represents conventional Bayesian updating in Equation (11), could produce
the general shape of category B in the places where enough conditioning data are available,
but again it failed to produce the connectivity of interest in area II (Figure 4E). In these
figures, the revisited Bayesian simulation with λh = 1 and λs = 2 seems to be the most
promising one among others.
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Figure 4. Comparison of (A) reference map with resulting simulation maps obtained from (B) pure
soft simulation, (C) revisited Bayesian simulation, (D) pure hard simulation, (E) Doyan’s simulation,
and (F) traditional simulation.

3.2. Validation

However, the results depicted in Figure 4 are only one single realization of each trial,
and one might be interested in examining the probability maps obtained from 100 realiza-
tions that assess the uncertainty in the categories at a local (node-by-node) scale for better
validation. The maps are constructed by calculating, for each grid node, the frequency of
occurrence of category B over 100 conditional realizations (Figure 5). They constitute a com-
plement to the reference map insofar as they show the risk of finding a category different
from the one that has been expected. The sectors with little uncertainty are those associated
with a high probability for a given category (painted in red in Figure 5), indicating that
there is little risk of not finding category B, or those associated with a very low probability
(painted in dark blue in Figure 5), indicating that one is pretty sure of not finding this
category, while the other sectors (painted in light blue, green or yellow in Figure 5) are
more uncertain. As can be observed, the revisited Bayesian simulation method with λh = 1
and λs = 2 provides the most prominent results to give the high probability of connectivity
close to areas I and II, as we expect from the reference map. The rest of the probability
maps are presented in Appendix B (Figure A2).
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Figure 5. Comparison of (A) reference map with resulting simulation maps obtained from (B) pure
soft simulation, (C) revisited Bayesian simulation, (D) pure hard simulation, (E) Doyan’s simulation,
and (F) traditional simulation.

From the probability maps, one can build a categorical map by selecting, for each grid
node, the most probable category. This model can then be compared to the reference map
in order to identify the grid nodes for which the category matches the most probable one
and also the grid nodes for which there is a mismatch (Figure 6). The latter grid nodes
are mostly located near the border of the two categories. As can be observed, revisited
Bayesian simulation (Figure 6C) and traditional simulation (Figure 6E) provided better
results compared to other experiments.
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Figure 6. The matches and mismatches with respect to (A) reference map for resulting simulation
maps obtained from (B) pure soft simulation, (C) revisited Bayesian simulation, (D) pure hard
simulation, (E) Doyan’s simulation, and (F) traditional simulation.

3.3. Assessment of Optimal Weights

It is shown that the revisited Bayesian simulation method with weights λh = 1 and
λs = 2, by visual inspection, can deliver the most promising results compared to the
reference dataset; this has been achieved qualitatively by using only the realizations and
probability maps. To show this also quantitatively, a validation step is performed to assess
the accuracy of the obtained weights. To secure the optimum weights of λh and λs, four
criteria were assessed by calculating the error deducing from:

(A) The difference between the reproduced proportion of indicators through the realiza-
tions and the proportion of categories/indicators in the reference map.

(B) The difference in the percentage of the match [27] between the most probable categor-
ical map and the reference map.

(C) The difference between the connectivity function of each indicator and the connectivity
function in the reference map.

(D) The difference between the variogram reproduction of the indicators and the original
variogram of the indicators in the reference map.

In all these criteria, the underlying parameter is calculated over individual realizations,
and then it is averaged. The average value is compared with the original parameter obtained
from the reference map. The difference (error) is then taken into account as the main criterion
for evaluating the optimal weights of λh and λs. For each criterion, 24 experiments are
available, where their errors are calculated. Different polynomial functions are tested to
interpolate the errors within the trials. The one is selected for each that offers the highest R2.
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As can be seen from Figure 7, there are two optimal weight candidates that worth
to be discussed. It seems that when the λh is equal to 1 and 1.5, and λs is equal to 2, the
errors in variogram reproduction along Easting (Figure 7G), connectivity for both categories
(Figure 7C,E), and slightly variogram reproduction along Northing (Figure 7H) are quite
low and almost equivalent. However, this is not true when one considers the errors in
proportion reproduction (Figure 7A), match percentage (Figure 6B), and northing connec-
tivity for both categories (Figure 7D,F). The individual realizations and the probability
maps obtained from these two weights (Appendix A) also corroborated these quantitative
findings. Therefore, these numerical examinations also verified that λh = 1 and λs = 2
are two optimal weights for the corresponding probability aggregation in the proposed
revisited sequential indicator simulation approach in this case study.

Figure 7. Validation by computing the error for (A) Proportion reproduction, (B) Match percentage,
(C) Easting connectivity-R1, (D) Northing connectivity-R1, (E) Easting connectivity-R2, (F) Northing
connectivity-R2, (G) Variogram-Easting, (H) Variogram-Northing; weight-hard data (λh) and weight-
soft data (λs).
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4. Discussion and Conclusions

A methodology proposed in this study revisits the traditional Bayesian sequential
indicator simulation. This versatile model uses a log-linear pooling probability aggrega-
tion approach to integrate the probabilities that are coming from different sources. The
algorithm makes the job easier to find the soft information by using only an available
geostatistical interpolation technique to inform the soft data at the target data location.
Different weighting options were also tested, and through a numerical examination, it
was revealed that different weights that are assigned to each source of information pro-
duce different results. Indeed, the incorporation of sources of information with different
influences was overlooked through all previously Bayesian sequential indicator simulation
approaches. The results of this study compared with traditional sequential indicator simula-
tion algorithms, and it was shown that the long-range structures could be better produced.
Nevertheless, the method proposed is not restricted to only two sources of information.
Equation (5) can be generalized to include more sources of information, and the weights can
simply be tuned. However, the methodology needs some numerical experiments to assess
the optimal weights. Further research can focus on developing a sophisticated technique
to infer the weights automatically. The proposed algorithm is tested in a synthetic case
study, but it can also be tested in an actual case study. To set the optimal weights, one
solution is to use the production dataset as a benchmark. This information may only be
available partially in a domain. The obtained weights can be taken into account for resource
reconciliation in other parts of the domain, where only exploratory data are available and
one does not have access to production data. Another avenue of research can further
develop the method to model the non-stationary domains.
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Figure A1. Realizations obtained from revisited Bayesian sequential indicator simulation by different
assignations of weights.
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Figure A2. Probability maps obtained from revisited Bayesian sequential indicator simulation by
different assignations of weights.
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Abstract: The Hidden Markov Model (HMM) is a crucial probabilistic modeling technique for
sequence data processing and statistical learning that has been extensively utilized in various en-
gineering applications. Traditionally, the EM algorithm is employed to fit HMMs, but currently,
academics and professionals exhibit augmenting enthusiasm in Bayesian inference. In the Bayesian
context, Markov Chain Monte Carlo (MCMC) methods are commonly used for inferring HMMs, but
they can be computationally demanding for high-dimensional covariate data. As a rapid substitute,
variational approximation has become a noteworthy and effective approximate inference approach,
particularly in recent years, for representation learning in deep generative models. However, there has
been limited exploration of variational inference for HMMs with high-dimensional covariates. In this
article, we develop a mean-field Variational Bayesian method with the double-exponential shrinkage
prior to fit high-dimensional HMMs whose hidden states are of discrete types. The proposed method
offers the advantage of fitting the model and investigating specific factors that impact the response
variable changes simultaneously. In addition, since the proposed method is based on the Variational
Bayesian framework, the proposed method can avoid huge memory and intensive computational
cost typical of traditional Bayesian methods. In the simulation studies, we demonstrate that the
proposed method can quickly and accurately estimate the posterior distributions of the parameters
with good performance. We analyzed the Beijing Multi-Site Air-Quality data and predicted the PM2.5
values via the fitted HMMs.

Keywords: Hidden Markov Models; high-dimensional data; shrinkage prior; variational inference

MSC: 62F15; 65K10; 62M05

1. Introduction

Hidden Markov Models (HMMs) are a statistical model used to describe the evolu-
tion of observable events that depend on internal factors or states, which are not directly
observable and called hidden states. Each hidden state can transition to another hidden
state, including itself, with a certain probability, while we cannot observe them directly, we
infer their presence and transitions between them based on observable outputs. HMMs
have been widely used in various applications, including speech recognition, bioinfor-
matics, natural language processing, and financial markets. In practice, HMMs often face
high-dimensional issues, that is, a large number of covariates (or high-dimensional co-
variates) and multiple states result in high-dimensional parameters existing in the HMMs.
The high-dimensional issue may result in the overfitting for the HMMs. The challenge then
becomes identifying important variables or parameters in different hidden states. Thus,
efficient parameter estimation and hidden Markov chain recovering are significant for the
high-dimensional HMMs.
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Currently, there have been many methods for estimating parameter estimation and
recovering hidden Markov chains, including recursive algorithms [1–4] and traditional
Bayesian methods [5,6]. Bayesian inference [7,8] is a versatile framework that utilizes
sophisticated hierarchical data models for learning and consistently quantifies uncertainty
in unknown parameters through the posterior distribution [9]. However, computing the
posterior is demanding even for moderately intricate models and frequently necessitates
approximation. Moreover, traditional Bayesian methods (e.g., Markov chain Monte Carlo
(MCMC)) for the HMMs is often considered a black-box method by many statisticians due to
its reliance on simulations to produce computable results, which is generally inefficient and
unnecessary. Traditional Markov Chain Monte Carlo (MCMC) methods may also exhibit
slow convergence and extended running times, as documented in prior studies [10–12].

The Variational Bayesian approach is an alternative to traditional MCMC algorithm
in high-dimensional issue. Variational inference (VI) based on Bayesian method [13–16]
can approximate posterior distributions quickly [17], since VI uses the Kullback–Leibler
(KL) divergence to measure the difference between the variational posterior and the true
posterior, and transforms the statistical inference problem into a mathematical optimization
problem by minimizing the KL divergence. Therefore, the variational approach is as close
as possible to the true posterior distribution according to the KL divergence. Wang and
Blei [17] have proved that the variational posterior is consistent to the true posterior distri-
bution. Moreover, there have been many efficient optimization algorithms to approximate
complex probability densities such as coordinate-ascent (CAVI) [18] and gradient-based
methods [15,19]. Currently, there exist many VI research studies for the HMMs [20–24].
For example, MacKay [20] was the pioneering proponent of the application of variational
methods to HMMs, with a focus only on cases with discrete observations. Despite the
limited comprehension of the state-removal phenomenon, which is that removing certain
states from an HMM for simplifying the HMM while preserving its essential statistical
properties does not significantly affect the the ability of the HMM to represent the underly
stochastic process, variational methods are gaining popularity for HMMs within the ma-
chine learning community. C. A. McGrory [21] extended the deviance information criterion
for Bayesian model selection within the Hidden Markov Model framework, utilizing a
variational approximation. Nicholas J. Foti [22] devised an SVI algorithm to learn HMM
parameters in settings of time-dependent data. Since VI can be seen as a special instance
of the EM algorithm [23], Gruhl [23] integrates both approaches and uses the multivariate
Gaussian output distribution of VI to train the HMM. Ding [24] employed variational
inference techniques to investigate nonparametric Bayesian Hidden Markov Models built
on Dirichlet processes. These processes enable an unbounded number of hidden states and
adopt an infinite number of Gaussian components to handle continuous observations. How-
ever, variational inference has not been fully explored in HMMs, especially in HMMs with
a high-dimensional covariate. It is important to note that research frequently entails using
high-dimensional covariate datasets in real-world applications. When high-dimensional
HMMs contain a large number of parameters, there is a possibility of overfitting the given
data set. The challenge then becomes identifying which covariates have a substantial im-
pact on the interpretation of observations and state shifts in each hidden state of the model,
and which covariates have a negligible effect. This process is important for improving
the predictive accuracy of the model, reducing the risk of overfitting, and improving the
interpretability of the model.

In this article, we develop a Variational Bayesian method for variable selection. We
utilize the double-exponential shrinkage prior [25–28] as the prior of coefficients in each
hidden state models, to screen vital variables that affect each hidden state and obtain hidden
Markov regression models. We use mean-field variational inference to identify variational
densities for approximating complex posterior densities, via minimizing the difference
between the approximate probability density and the actual posterior probability density.
Moreover, we adopt the Monte Carlo Co-ordinate Ascent VI (MC-CAVI) [29] algorithm to
compute the necessary expectations within the CAVI. Since the variational inference is a fast
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alternative to the MCMC method and can avoid large memory and intensive computational
cost compared to traditional Bayesian methods, the proposed approach inherits the good
properties of variational inference, and can quickly and accurately estimate the posterior
distributions and the unknown parameters. In the simulation studies and real data analysis,
the proposed method outperforms the common methods in term of variable selection
and prediction.

The main contributions of this article are as follows: First, the proposed method can
perform variable selection for high-dimensional HMMs, and offer the advantage of fitting
the model and investigating specific factors that impact the response variable changes
simultaneously. Since the proposed method uses double-exponential shrinkage prior,
which has the feature of being able to select important variables, the proposed method
can simultaneously select important variables to the response variable and estimate the
corresponding parameters. Second, since the proposed method is based on the Variational
Bayesian framework, the proposed method can avoid huge memory and intensive compu-
tational cost of the traditional Bayesian methods, especially for the high-dimensional issue.
Finally, we demonstrate that the proposed method can quickly and accurately estimate the
posterior distributions of the parameters with good performance in the simulation studies.
Moreover, we analyze Beijing Multi-Site Air-Quality data and predict the PM2.5 values
well via the fitted HMMs.

The rest of the article is organized as follows: Section 2 introduce the Hidden Markov
Model with high-dimensional covariate and shrinkage priors in the Bayesian inference.
In Section 3, we propose an efficient Variational Bayesian estimation method with the
double-exponential shrinkage prior for variable selection of the high-dimensional HMMs
(HDVBHMM). In Section 4, we conduct simulation studies to investigate the finite sample
performances of the proposed method. In Section 5, Beijing Multi-Site Air-Quality data are
analyzed and the efficiency of the proposed method is verified. Section 6 concludes our
work. Technical details are presented in the Appendix A.

2. Model and Notation

2.1. Hidden Markov Model

In this section, we first introduce Hidden Markov Models (HMMs). The HMMs are
a type of doubly stochastic process that occurs over discrete time intervals and includes
observations yt and latent states zt. In a traditional Hidden Markov Model without co-
variates, the observation yt depends only on the current potential state zt. The conditional
distribution of the observation yt when given the potential state zt = k can be expressed as:

yt | zt = k ∼ Fk(θk),

where Fk(θk) denotes a certain family of distributions, such as the normal distribution
N
(
μk, σ2

k
)
. Extended HMM models can include covariates xt ∈ Rp . That is, the set of

observations is y = (y1, . . . , yT) and x = (x1, . . . , xT). Specifically, for y = (y1, . . . , yT),
z = (z1, . . . , zT) and x = (x1, . . . , xT), the model expression is as follows:

yt | xt, zt = k, β, σ2 ∼ N
(

x�t βk, σ2
)

for t = 1, . . . , T,

where the symbol N represents the normal distribution, σ2 denotes the variance of yt,
and β = (β1, . . . , βK)

� is the coefficient of the covariate at all hidden states. In the article,
we consider the high-dimensional issue of the covariate. We denote the dummy variable
corresponding to zt as the vt = (vt1, . . . , vtK)

�, where vtk = 1 and other elements being
zero if zt = k. Thus,

P
(

yt | xt, β, σ2
)
=

K

∏
k=1

P
(

yt | xt, zt = k, β, σ2
)vtk

=
K

∏
k=1

P
(

yt | xt, βk, σ2
)vtk

.
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In hidden Markov chains, each hidden state zt is independent from z1, . . . , zt−2 and
zt+1, . . . , zT conditionally on zt−1. Therefore, we can assume that the probability distribu-
tion of z1 is given by z1 ∼ P(z1|π) = (π1, π2, . . . , πK)

�, where ∑K
k=1 πk = 1 and πk > 0.

The conditional probability of zt given zt−1 is assumed as:

P(zt | zt−1, A) =
K

∏
k=1

K

∏
j=1

A
vt−1,j vtk
jk ,

where A is the transition matrix with elements Aij for i, j = 1, . . . , K, ∑K
j=1 Aij = 1 and

Aij > 0, and Aij represents the probability of transitioning from state i to state j. Thus,
the joint distribution is as follows:

P
(
y, z | x, π, A, β, σ2)

= P(z1|π)∏T
t=2 P(zt | zt−1, A)∏T

t=1 P
(
yt | xt, β, σ2)

=
(

∏K
k=1 π

v1k
k

)(
∏T

t=2 ∏K
k=1 ∏K

j=1 A
vt−1,j vtk
jk

)(
∏T

t=1 ∏K
k=1 P

(
yt | xt, β, σ2, zt = k

)vtk
)

.

(1)

2.2. Prior Selection in the HMMs

To make Variational Bayesian inference, we require specifying the prior of the parame-
ters π, A, β and σ2. Based on the characteristics of π = (π1, π2, . . . , πK), ∑K

k=1 πk = 1 and
πk > 0, Dirichlet distribution is applied to the prior distribution of π as follows:

π ∼ Dir
(

α(π)
)

, (2)

where α(π) =
(

α
(π)
1 , . . . , α

(π)
K

)�
, ∑K

k=1 α
(π)
k = 1, and α

(π)
k > 0. In the model, A denotes the

transition matrix of the hidden state z and can be expressed as follows:

A =

⎛⎜⎝ A11 . . . A1K
...

. . .
...

AK1 . . . AKK

⎞⎟⎠.

Like Nicholas [22], we specify the prior of the jth row of the transition matrix A as:

Aj ∼ Dir
(

α
(A)
j

)
for j = 1, . . . , K, (3)

where α
(A)
j =

(
α
(A)
j1 , α

(A)
j2 , . . . , α

(A)
jK

)�
, ∑K

k=1 α
(A)
jk = 1, and α

(A)
jk > 0. Since σ2 is variance of

the y, we specify the prior of the σ2 as

σ2 ∼ f
(

σ2
)
=

1
σ2 . (4)

In a high-dimensional and sparse issue, we consider the double-exponential shrinkage
prior [25,27] as the prior of β, defined as follows:

βk | σ2, τ1, . . . , τ2
p ∼ Np

(
0, σ2Dτ

)
,

Dτ = diag
(

τ2
1 , . . . , τ2

p

)
,

τ2
m ∼ Exp

(
λ2

2

)
for m = 1, 2, . . . , p,

λ2 ∼ Γ(r, δ),

(5)
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where Γ represents gamma distribution and Exp(·) represents the exponential distribu-
tion. The above prior can select important variables of the HMMs in each hidden state.
Bayesian approaches can be used to solve the parameter estimation question with the
above prior information. However, in high-dimensional data, the traditional Bayesian
methods (e.g., MCMC) require huge memory and intensive computational cost. The
Variational Bayesian approach is an alternative to the traditional MCMC algorithm in
high-dimensional issue. Next, we introduce the proposed Variational Bayesian inference
for high-dimensional HMMs.

3. Variational Bayesian Inference for the HMMS

3.1. Mean Field Variational

Mean-field Variational Bayesian inference is a prevalent approach in variational infer-
ence, and aims to identify an approximate density by minimizing the difference between
the approximate probability density and the actual posterior probability density, while
being bounded by the Kullback–Leibler divergence. In this subsection, we proposed the
mean-field variational inference for HMMS with the high-dimensional covariates.

Let D be an observed data set, D = {y, x} with response set y = {yi | i = 1, . . . , n}
and covariate set x = {xi | i = 1, . . . , n}, and θ = {π, A, β, σ2, τ2

m, λ2}. The θ and z include
all parameters in the HMMs. We focus on the posterior distribution of parameters θ and the
hidden state zt. Assume that there is an approximate density family Q containing possible
densities over the parameters θ, z. Minimizing the Kullback–Leibler (KL) divergence
between the member of the family q(θ, z) and the true posterior P(θ, z | D) is to obtain the
optimal density approximation of the true posterior, with variational inference prioritizing
optimization rather than sampling. That is,

q∗(θ, z) = arg min
q(θ,z)∈Q

KL(q(θ, z)‖P(θ, z | D)),

where the KL-divergence is:

KL(q(θ, z)‖P(θ, z | D)) =
∫

q(θ, z) log
{

q(θ, z)
P(θ, z|D)

}
d(θ, z).

The KL-divergence can be further written as:

KL(q(θ, z)‖P(θ, z | D))

=Eq[log q(θ, z)]− Eq[log P(θ, z | D)]

=Eq[log q(θ, z)]− Eq[log P(θ, z, D)] + log P(D),

where log P(D) is a constant, Eq denotes the expected value of θ and z drawn from the
distribution q. Thus, minimizing the KL divergence is equivalent to maximizing the
following evidence lower bound (ELBO):

ELBO(q) = Eq[log P(θ, z, D)]− Eq[log q(θ, z)]. (6)

From another perspective, the ELBO comprises the negative KL divergence and
log P(D).

According to the mean-field variational framework [30,31], the parameters are as-
sumed to be posterior independent of each other and to be controlled by a separate factor
in the variational density. In the HMMs, q(θ, z) is decomposed as:

q(θ, z) = q(π)q(A)q
(

σ2
)

q
(

τ2
m

)
q
(

λ2
) T

∏
t=1

q(zt). (7)
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Each parameter θi and latent state z is governed by its own variational factor. The
forms of q(θi) and q(z) are unknown, but the form of the hypothesized factorization is
determined. In the optimization process, the optimal solutions of these variational factors
q(θi) and q(z) are obtained by maximizing the ELBO of Equation (6) by the coordinate
ascent method. Based on the consistency of the Variational Bayesian [17], the variational
densities over the mean-field family are still consistent to the posterior densities, even
though the mean field approximating family can be a brutal approximation. More generally,
one can consider structured variational distributions involving partial factorizations that
correspond to tractable substructures of parameters [32]. In this article, we only consider
the mean field framework. To express the variational posterior formula concisely, we define
φ = {θ, z} and rewrite q(θ, z) as q(φ).

3.2. The Coordinate Ascent Algorithm for Optimizing the ELBO

Based on the variational density decomposition, we can obtain each factor of the
variational density via maximizing the ELBO. Let qi(φi) for i = 1, 2, . . . , b be the ith factor of
the variational density in .The common approaches to maximize the ELBO mainly include
a Coordinate Ascent Variational Inference (CAVI) and a gradient-based approach [33].
The CAVI approach sequentially optimizes each factor of the variational density of the
mean field to obtain a local maximizer for the ELBO, while keeping the others fixed. Based
on the CAVI approach, we can obtain the optimal variational density q∗i (φi) as follows:

q∗i (φi) ∝ exp
{

E−i
[
log P

(
φi− , φi, φi+ , D

)]}
, (8)

where i− (or i+) refers to the ordered indexes that are less than (or greater than) i. Let
φ−i := (φi− , φi+). The vector φ−i represents the vector φ with the ith component φi removed.
The E−i denotes the expectation with respect to φ−i.

Based on the joint distribution (1), the priors (2)–(5) and Formula (8), we can derive all
variational posteriors (see Appendix A for details). The variational posterior of the π is:

q∗(π) ∼ Dir
(

α(π)

)
, (9)

where α(π) = E(z1) + α(π). The variational posterior of the Aj is:

q∗
(

Aj
) ∼ Dir

(
α(Aj)

)
for j = 1, . . . , K, (10)

where α(Aj)
= ∑T

t=2 E
(
vt−1,jvtk

)
+ α

(A)
jk . The variational posterior of the βk is:

q∗(βk) ∼ Np(βk; μk, Σk), (11)

where
Σk =

(
E
(

1
σ2

)
∑T

t=1 E(vtk)xtx�t + E
(

1
σ2

)
E
(

D−1
τ

))−1
,

μk = Σk

(
E
(

1
σ2

)
∑T

t=1 yt · E(vtk) · xt

)
.

The variational posterior of the σ2 is:

q∗
(

σ2
)
∼ Inverse-Gamma

(
α(σ2), β(σ2)

)
, (12)
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where α(σ2) =
T
2 and β(σ2) =

1
2 ∑T

t=1 ∑K
k=1 E(vtk)

[(
yt − x�t μk

)2
+ x�t Σkxt

]
. The variational

posterior of the τ2
m is:

q∗
(

τ2
m

)
∼ Generalized-Inverse–Gaussian (Cτm , aτm , bτm), (13)

where aτm = E(λ2), bτm = E(1/σ2)∑K
k=1 E(β2

km), and Cτm = 1 − K/2. The variational
posterior of the λ2 is:

q∗
(

λ2
)
∼ Γ
(

α(λ2), β(λ2)

)
, (14)

where α(λ2) = p + r and β(λ2) = δ + 1
2 ∑

p
m=1 E

(
τ2

m
)
.

Based on the dependencies of hidden states, we divide the posterior of z into three
parts. The variational posterior of the z1 is:

q∗(z1) ∼ Mult
(

P(z1)

)
, (15)

where the Mult represents multinomial distribution, P(z1)
= (P(z1)1, . . . , P(z1)K)

� and

P(z1)k = exp{E[log πk]} exp
{

E
[
log P

(
y1 | x1, βk, σ2

)]} K

∏
j=1

exp
{

E
[
v2j
]
E
[
log Akj

]}
.

The variational posterior of the zt for t = 2, . . . , T − 1 is:

q∗(zt) ∼ Mult
(

P(zt)

)
for t = 2, . . . , T − 1, (16)

where P(zt) = (P(zt)1, . . . , P(zt)K)
� and

P(zt)k = exp
(
E
[
log P

(
yt | xt, βk, σ2)]) · ∏K

j=1 exp
{

E
[
log Ajk

]
E
(
vt−1,j

)}
·∏K

j=1 exp
{

E
[
log Akj

]
E
(
vt+1,j

)}
.

The variational posterior of the zT is:

q∗(zT) ∼ Mult
(

P(zT)

)
, (17)

where P(zT) = (P(zT)1, . . . , P(zT)K)
� and

P(zT)k = exp
{

E
[
log P

(
yT | xT , βk, σ2

)]}
·

K

∏
j=1

exp
{

E
[
log Ajk

]
E(vT−1, j)

}
.

The expectation E
[
log P

(
yt | xt, βk, σ2)] in the above variational posteriors (15)–(17) is

expressed as follows:

E
[
log P

(
yt | xt, βk, σ2

)]
= −1

2
log(2π)− 1

2
E[log(σ2)]− 1

2
E(

1
σ2 )
[
(yt − x�t μk)

2 + x�t Σkxt

]
.
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Note that the expectation part of some parameter posterior formulas is difficult to
derive analytically. One feasible method is to use Monte Carlo (MC) sampling to approx-
imate the expectation part that cannot be derived analytically, that is, the Monte Carlo
Coordinate Ascent VI (MC-CAVI) [29] algorithm. The MC-CAVI recursion approaches
have been proved to be convergent to the maximizer of the ELBO with arbitrarily high
probability under regularity conditions. In the article, we also use MC-CAVI to obtain the
intractable expectations.

3.3. Implementation

Assume that the expectations E−i[log P(φi−, φi, φi+, D)] for i ∈ I within an index set I
can be analytically obtained across all updates of the variational density q∗(φ), and cannot
be analytically obtained for i /∈ I. For the MC-CAVI method, intractable integrals can be
approximated using the MC methods if i /∈ I. Specifically, for i /∈ I, the samples with
the sample size N ≥ 1 are drawn from the current q∗−i(φ−i) to obtain the expectation
estimations as follows:

Ê−i[log P(φi−, φi, φi+, D)] =
∑N

n=1 log P
(

φ
(n)
i− , φ

(n)
i , φ

(n)
i+ , D

)
N

.

The Algorithm 1 summarizes the implementation of MC-CAVI, where the qi,k(φi)
denotes the density of the ith density factor after it has undergone the kth updates,
and q−i,k(φ−i) refers to the density of all density factors except the ith factors after the
kth updates to the factors preceding the ith factor and the k − 1 updates to the blocks
following it.

Algorithm 1 Main iteration steps of MC-CAVI
Necessary: Number of iteration cycles T.
Necessary: Quantity of Monte Carlo samples denoted as N.
Necessary: E−i

[
log P

(
φi− , φi, φi+ , D

)]
in closed form for i ∈ I .

1. Initialize qi,0(φi) for i = 1, . . . , b.
2. for k = 1 . . . T :
3. for i = 1 . . . b :
4. If i ∈ I :
5. Set qi,k(φi) ∝ exp

{
E−i,k

[
log P

(
φi− , φi, φi+ , x, y

)]}
;

6. If i /∈ I :
7. Obtain N samples

(
φ
(n)
i− ,k, φ

(n)
i+ ,k−1

)
from q−i,k(θ−i) for n = 1, 2, . . . , N;

8. Set qi,k(φi) ∝ exp

{
∑N

n=1 log p
(

φ
(n)
i− ,k ,φi ,φ

(n)
i+ ,k−1,D

)
N

}
;

9. end
10. end.

Combining with the MC-CAVI algorithm, we can summarize the implementation
algorithm for variational posteriors for all parameters as follows in Algorithm 2. Based
on the Algorithm 2, we can adopt the variational posterior means of the parameters as
the estimators.
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Algorithm 2 Variational Bayesian Algorithm for the high-dimensional HMMs
Data Input: {(xt, yt)}, t = 1, . . . , T;
Hyperparameter Input: α(π), r > 0, δ > 0, and α

(A)
jk for k, j = 1, . . . K;

Initialize: α(π), α(Aj)
, α(σ2), β(σ2), β(λ2), Σk and μk for k = 1, . . . K,

aτm and bτm for m = 1, . . . , p, iteration-index � = 1, a sufficiently small ε = 10−6

and a maximum iteration times M = 1000;
While the absolute change of the iterated ELBO |L� − L�−1| > ε and � < M do:

Update α(π) and q∗(π) according to Equation (9);
Estimate E[log πk] by the MC method;
for j = 1, . . . , K :

Update α(Aj)
and q∗(Aj) according to Equation (10);

Estimate E
[
log Ajk

]
by the MC method;

end
for k = 1, . . . , K :

Update Σk, μk and q∗(βk) according to Equation (11);
end
Update α(σ2), β

(
σ2) and q∗(σ2) according to Equation (12);

Estimate E
[
log(σ2)

]
by the MC method;

for m = 1, . . . , p :
Update aτm , bτm and q∗(τ2

m) according to Equation (13);
end
Update β(λ2) and q∗(λ2) according to Equation (14);
Update P(z1)

and q∗(z1) according to Equation (15);
Update P(zt) and q∗(zt) according to Equation (16);
Update P(zT) and q∗(zT) according to Equation (17);
Compute the ELBO using the formula (6), denoted as L�,
and the absolute change of the iterated ELBO |L� − L�−1|;
� → �+ 1;

Output: the variational densities q∗(π), q∗(Aj) for j = 1, . . . , K, q∗(βk) for k = 1, . . . , K,
q∗(σ2), q∗(λ2), q∗(τ2

m) for m = 1, . . . , p, and q∗(zt) for t = 1, . . . , T;
and the posterior modes of parameters βk for k = 1, . . . , K.

4. Simulation Studies

In this section, we carry out simulation studies to investigate the finite sample per-
formances of the proposed method, denoted as HDVBHMM. To evaluate the prediction
performance, we compare the proposed method with some commonly used and popular
methods, including Back Propagation Neural Network (BP), Long Short-Term Memory
(LSTM), and Random Forest. The experimental code can be found via the github link
(https://github.com/LiuWei-hub/VBHDHMM, accessed on 23 March 2024).

We consider the dataset {xt, yt : t = 1, . . . , T}, where T is the number of the discrete
time intervals, the covariate xt is generated from the Gaussian distribution Np

(
0, 2Ip

)
,

and yt = x�t βzt + εt, in which the random error εt ∼ N
(
0, σ2), and zt is hidden state. Here,

the initial hidden state z1 is generated from Mult(π), where π = (π1, π2, . . . , πK). For
t = 2, . . . , T, the hidden state zt is generated from Mult

(
Aj
)
, where Aj = (A1i, A2i, . . . AKi)

and Ajk = P(zt = k | zt−1 = j). We set the number of hidden states K = 3, σ = 0.4,
and (π1, π2, . . . , πK) = (0.6, 0.3, 0.1)�.

To assess the predictive performance, we use the samples in the last m time intervals as
the testing set and the samples in the first T − m time intervals as the training set. In addi-
tion, we use four criteria: (1) the mean absolute percentage error MAPE = 100%

m ∑m
t=1

∣∣∣ ŷt−yt
yt

∣∣∣,
where yt is the true value and ŷt represents the predicted value; (2) the root mean square

error RMSE =
√

1
m ∑m

t=1(yt − ŷt)
2; (3) the mean absolute error MAE = 1

m ∑m
t=1|yt − ŷt|;
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and (4) R2 = 1 − ∑m
t=1(ŷt−yt)

2

∑m
t=1(y−yt)

2 , where y represents the sample mean, ∑m
t=1(ŷt − yt)

2 is the

error caused by the prediction, and ∑m
t=1(ȳ − yt)

2 is the error caused by the mean. The
smaller the MAPE, RMSE and MAE values are, the better the performance of the method
is. The larger the R2 is, the better the performance of the method is. To evaluate the
performance of the parameter estimation, we use two criteria: (1) the root mean square

error loss RMSE =
√

1
n ∑n

i=1
(
θ̂i − θ

)2
, where n is the number of repeated experiments, θ̂i

is the estimated value of the parameter obtained in the ith experiment, and θ is the true
parameter value; and (2) Bias(θ̂) = 1

n ∑n
i=1 θ̂i − θ. The RMSE and Bias values closer to zero

imply better performance for the method. We repeat 10 simulation examples and calculate
the average values of the above metrics for each method.

4.1. Experiment 1

In experiment 1 , we consider different dimensions p = 20, 30 and 40. In addition,
the state transition matrix A is set as follows:

A =

⎛⎝ 0.2 0.3 0.5
0.1 0.6 0.3
0.5 0.4 0.1

⎞⎠.

Due to K = 3, we have three regression coefficients β1, β2, β3. We set the coefficient as
follows:

β = (β1, β2, β3)
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 1 1.5
−2 −2 −1.5
2 1.5 1
−1 −1.5 −2
0 0 0
...

...
...

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p×3

where the first four rows are nonzero and other elements are zero. We set the number of the
discrete time intervals T = 300 and the sample size in the testing set m = 10. In addition,
the hyperparameters r, δ in the HDVBHMM method are set to 1. The results are shown in
Tables 1 and 2.

In Table 1, the smaller MAPE, RMSE, and MAE index values, the better the algorithm
performance. The larger the R2 index, the better the algorithm performance. Bold indicates
the optimal result in each scenario. It is clear that our method is optimal in all cases
(bold), especially for p = 20, p = 30, and p = 40. In the small sample case, the prediction
performance of the LSTM method decreases significantly as the dimensionality of the
covariates increases. The prediction performance of the Random Forest and BP methods
is not stable with increasing covariate dimensions. Although the performance of our
method decreases as the covariate dimension increases, it is still significantly better than
the other methods. Table 2 shows the RMSE and Bias of the estimated values of β and
A. From Table 2, we can see that the proposed method performs well. Two metrics are
small when the covariate dimension is 20 and 30. When the dimension is increased to 40,
the value of the RMSE index increases, but it is still within the acceptable range.
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Table 1. Average values of four metrics of all approaches with standard deviation in each parenthesis
based on 10 simulations under T = 300.

p Method
Estimate Performance

MAPE RMSE MAE R2

p = 20

LSTM 0.957 (1.109) 1.183 (0.132) 1.416 (0.316) 0.871 (0.057)
BP 0.948 (1.018) 1.210 (0.175) 1.492 (0.436) 0.826 (0.117)

Random Forest 1.215 (1.844) 1.430 (0.194) 2.081 (0.531) 0.741 (0.119)
HDVBHMM 0.467 (0.325) 1.008 (0.152) 1.038 (0.329) 0.887 (0.082)

p = 30

LSTM 0.949 (0.485) 1.354 (0.266) 1.898 (0.740) 0.789 (0.144)
BP 1.312 (0.685) 1.524 (0.198) 2.358 (0.615) 0.659 (0.169)

Random Forest 1.081 (0.641) 1.568 (0.223) 2.505 (0.717) 0.595 (0.252)
HDVBHMM 0.876 (0.919) 1.186 (0.244) 1.461 (0.629) 0.861 (0.073)

p = 40

LSTM 1.471 (1.121) 1.404 (2.471) 2.026 (0.716) 0.763 (0.131)
BP 1.555 (1.218) 1.427 (0.156) 2.060 (0.412) 0.772 (0.117)

Random Forest 1.210 (0.718) 1.457 (0.231) 2.173 (0.736) 0.754 (0.115)
HDVBHMM 1.023 (0.759) 1.155 (0.264) 1.398 (0.619) 0.822 (0.202)

In the Long-Term and Short-Term Memory methods, the learning rate is lr = 0.001, the number of training cycles
(Epochs) is set to 50, and the size of the hidden layer is set to 10. The hidden layer of the BP method consists
of 20 neurons, and the maximum number of iterations is set to 10,000. In the random forest regression model,
the number of trees is set to 100. The bold results are the optimal ones among four methods.

Table 2. Average values of the RMSE and Bias of A and β based on 10 replications in Experiment 1.

p Parameter
Estimate Performance

RMSE Bias

p = 20 β 0.001 0.001
A 0.002 0.001

p = 30 β 0.002 0.001
A 0.005 0.001

p = 40 β 0.004 0.001
A 0.011 0.001

To better illustrate the performance of parameter estimation, Figure 1 shows box plots
of the estimator values of A, β1, β2, β3 under p = 30, where the horizontal coordinate
is the index of the variables and the vertical coordinate is the values of estimators. The
corresponding figures on p = 20 and p = 40 are shown in Appendix A.2. For the estimators
β1, β2 and β3, we can see the first four elements are estimated close to the true value, and the
remaining values are estimated clear to zero; This implies that the proposed method can
achieve good variable selection performance. In addition, all elements of the state increment
matrix A are estimated close to the true values, which also confirms the good performance
of our method.

In addition, to further verify that the algorithm is sensitive to the choice of hyperparam-
eters r, δ, we conduct experiments on data with a covariate dimension of 30. Consider the
following three experiments, the first with r = 0.5, δ = 0.5; the second with r = 1.0, δ = 1.0;
and the third with r = 1.5, δ = 1.5. The experimental results show that the estimation
results are not sensitive to the choice of the two hyperparameters r and δ. The images of
the Gamma distributions for the three different hyperparameter settings are very similar in
shape. This similarity may contribute to the reason why, for a certain range of variations in r
and δ values, the model’s performance may not show sensitivity to these hyperparameters.
We show the results in Appendix A.4.
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Figure 1. Box plots of the estimator values of A, β1, β2, β3 based on 10 experiments under p = 30
and T = 300. The horizontal coordinate is the index of the variables and the vertical coordinate is the
value of the estimators.

4.2. Experiment 2

In experiment 2, we consider the higher dimension cases: p = 60, 90, 120. We set the
same A as experiment 1 and the coefficient as follows:

β = (β1, β2, β3)
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.5 1 1.5
−2 −2 −1.5
2 1.5 1
−1 −1.5 −2

...
...

...
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p×3

where the first four rows are nonzero and other elements are zero. We set the number of
discrete time intervals T = 600 and the sample size in the testing set m = 10. In addition,
the hyperparameters r and δ in the HDVBHMM method are set to 1. The results are shown
in Tables 3 and 4.

As can be seen in Table 4, when the covariate dimensions are increased and the
sample size reaches 600, our method still performs well among the four methods. It
should be noted that when the covariate dimension is 90 and 120, the MAPE metric of the
random forest method is slightly smaller than our method. In addition, as the covariate
dimension increases from p = 60 to P = 120, the performance of the LSTM method decreases
significantly, which is the worst performance among the four methods. This shows that
LSTM does not perform well on such small-sample high-dimensional datasets. As the
dimensionality of the covariates increases, although the BP and Random Forest methods
show better prediction performance than the LSTM method, they are also poorer than the
prediction performance of the HDVBHMM method. Overall, our method outperforms the
other three methods in terms of prediction performance as the dimensionality increases,
suggesting that our method performs better on small-sample high-dimensional datasets.

Figure 2 shows box plots of the estimator values of A, β1, β2, β3 under p = 90.
The corresponding figures on p = 60 and p = 120 are shown in Appendix A.3. From
Figure 2, we can see that the regression coefficients β1, β2, and β3 are accurately estimated.
the first four elements are estimated close to the true value, and the remaining values
are estimated clear to zero. It implies that the proposed method can successfully achieve
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variable screening even as the covariate dimension increases. In addition, all elements of
the state increment matrix A are estimated close to the true values, which also confirms the
good performance of the proposed method.

Table 3. Average values of four metrics of all approaches with standard deviation in each parenthesis
based on 10 simulations under T = 600.

p Method
Estimate Performance

MAPE RMSE MAE R2

p = 60

LSTM 1.608 (1.826) 1.524 (0.104) 2.332 (0.304) 0.722 (0.126)
BP 1.511 (1.326) 1.513 (0.209) 2.328 (0.662) 0.725 (0.143)

Random Forest 1.236 (1.748) 1.459 (0.175) 2.159 (0.525) 0.728 (0.151)
HDVBHMM 0.851 (0.871) 1.091 (0.218) 1.235 (0.489) 0.884 (0.078)

p = 90

LSTM 1.690 (2.046) 1.725 (0.152) 2.998 (0.542) 0.523 (0.282)
BP 2.780 (5.010) 1.606 (0.225) 2.626 (0.706) 0.636 (0.239)
RF 0.718 (0.365) 1.374 (0.246) 1.942 (0.694) 0.797 (0.091)

HDVBHMM 0.878 (0.887) 1.156 (0.249) 1.392 (0.617) 0.862 (0.135)

p = 120

LSTM 1.941 (1.839) 1.884 (0.372) 3.677 (1.389) 0.463 (0.323)
BP 1.235 (1.023) 1.651 (0.274) 2.792 (0.854) 0.684 (0.181)

Random Forest 0.832 (0.679) 1.571 (0.193) 2.502 (0.621) 0.718 (0.154)
HDVBHMM 0.910 (0.717) 1.321 (0.253) 1.804 (0.718) 0.763 (0.393)

In the Long-Term and Short-Term Memory methods, the learning rate is lr = 0.001, the number of training cycles
(Epochs) is set to 50, and the size of the hidden layer is set to 10. The hidden layer of the BP method consists
of 20 neurons, and the maximum number of iterations is set to 10,000. In the random forest regression model,
the number of trees is set to 100. The bold results are the optimal ones among four methods.

Figure 2. Box plots of the estimator values of A, β1, β2, β3 based on 10 experiments under p = 90
and T = 600. The horizontal coordinate is the index of the variables and the vertical coordinate is the
value of the estimators.
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Table 4. Average values of the RMSE and Bias of A and β based on 10 replications in Experiment 2.

p Parameter
Estimate Performance

RMSE Bias

60 β 0.001 0.001
A 0.002 0.001

90 β 0.001 0.001
A 0.005 0.001

120 β 0.015 0.007
A 0.034 0.009

5. Application to Real Datasets

In this section, we focus on Beijing Multi-Site Air-Quality data, which include 6 major
air pollutants and 6 related meteorological variables at multiple locations in Beijing. These
air-quality measurements are created by the Beijing Municipal Environmental Monitoring
Center. In addition, meteorological data at each air quality location are paired with the
nearest weather station provided by the China Meteorological Administration. The data
span from 1 March 2013 to 28 February 2017. In our study, we consider PM2.5 concentration
as response variable, and PM10 concentration, SO2 concentration, NO2 concentration,
CO concentration, O3 concentration, Temperature (TEMP), Pressure (PRES), Dew point
temperature (DEWP), Precipitation (RAIN), and Wind speed (WSPM) as covariates; that is,
p = 10. In order to study the performance on small sample datasets, we delete the missing
values in the data and select the data samples in the first 200 time intervals from the Shunyi
observation point in Beijing in 2017 for analysis. To assess the predictive performance, we
use the first 140 samples as the training set, and the remaining 60 samples as the testing set.
We compare the proposed method with the BP neural network, LSTM and Random Forest
method similar to Section 4.

One of the main challenges in implementing the HMM is to determine the optimal
number of hidden states. The Akaike Information Criterion (AIC) and the Bayesian In-
formation Criterion (BIC) are two common model selection techniques, which select the
best model by balancing the fitting accuracy and complexity of the model. In selecting
the number of hidden states for a Hidden Markov Model, both AIC and BIC evaluate
multiple models containing different numbers of states and select an optimal model that
balances fitting accuracy and complexity. Multiple HMMs are trained separately using
different numbers of hidden states, then the AIC or BIC values are calculated for each
model, and finally the model with the smallest AIC or BIC value is selected [34]. Similar
to the work of Dofadar et al. [34], we use AIC and BIC to select the number of the hidden
states. The AIC equation used in this study is given by AIC = 2k − 2L, where k is the
number of free parameters in the model and L is the log probability value. The formula for
k used in this research is k = n2 + 2n − 1, where n is the current value of the hidden state.
The BIC equation used in this study is expressed as BIC = ln(T)k − 2L, where T is the total
number of observations. To find the best number of hidden states, we calculate AIC and
BIC values based on the different numbers of hidden states: 2, 3, 4, and 5. The results are
shown in Figure 3. Figure 3 shows that when the number of hidden states is 3, the AIC and
BIC values are the smallest, indicating that choosing the number of hidden states as 3 is the
closest to the real model. Therefore, we set the the number of hidden states K = 3.

Similar to Section 4, we calculate MAPE, RMSE, MAE and R2 to evaluate the predictive
performance. Since the time series data are positively skewed, MAE and MASE are
the best evaluation metrics for evaluating the model performance [35]. The results are
shown in Table 5. From Table 5, we can see that the MAPE and MAE of the proposed
HDVBHMM method are smaller than ones of other methods, and the R2 value of the
proposed method is larger than one of other methods, indicating that the performance of
the HDVBHMM method is better than other methods. Among the other three competing
methods, the MAPE and MAE values of the Random Forest method are lowest among
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those of the three competing methods, but its MAPE and MAE are still much larger than
ones of the proposed method. The BP method is the worst performing among four methods
with MAE = 27.570 and MAPE = 1.025.

To better illustrate the predictive performance, Figure 4 shows the true data and
predicted values via four methods on the testing set. From Figure 4, we can see that in the
first 30 time points, the proposed method fits the true values very well. In the second set of
30 time points, as the prediction time period increases, the predicted values exhibit a slight
error, but they are still better than those of other methods. Overall, the prediction accuracy
of the proposed method is much better than ones of other methods in term of both short
and long time periods.

Figure 3. AIC and BIC values when the number of hidden states is 2, 3, 4, and 5 on the real dataset.

Figure 4. Comparison of observed hourly PM2.5 emissions (test set) with PM2.5 emissions predicted
by four methods.
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Table 5. Prediction Performance of Four Methods on the testing data.

Method MAPE RMSE MAE R2

Random Forest 1.043 4.039 16.318 0.941
BP 1.025 5.250 27.570 0.852

LSTM 0.462 4.924 24.249 0.876
HDVBHMM 0.317 2.249 5.058 0.993

In the Long-Term and Short-Term Memory methods, learning rate is lr = 0.001, the number of training cycles
(Epochs) is set to 50, and the size of the hidden layer is set to 40. the BP method contains 12 neuron hidden
layers and the maximum number of iterations is set to 10,000. The hyperparameters hyperparameters r, δ in the
HDVBHMM method were set to 1.0. The bold results are the optimal ones among four methods.

The estimated values of β corresponding to the three states are shown in Table 6. From
Table 6, we can see that PM10, SO2, TEMP (temperature), DEWP (dew point temperature),
RAIN (precipitation), and WSPM (wind speed) have the greatest influence on PM2.5
emissions in state 1. PM10, SO2, TEMP, and DEWP are the four factors that have a negative
effect on the presence of PM2.5 emissions in the area, and as these four factors increase,
PM2.5 emissions will decrease; meanwhile RAIN and WSPM have a positive effect on the
presence of PM2.5 in the area. Rainfall and high wind speed may have increased PM2.5
concentrations through physical effects (such as windblown dust). The prediction formula
of the PM2.5 in State 1 is as follows:

PM2.51 =− 0.833PM10 − 0.349SO2 + 0.003CO − 0.03NO2 − 0.09O3 − 2.625TEMP

− 0.017PRES − 3.552DEWP + 1.524RAIN + 3.547WSPM.

Table 6. Estimates of the regression coefficients β for each hidden state.

State PM10 SO2 NO2 CO O3 TEMP PRES DEWP RAIN WSPM

State 1 −0.833 −0.349 −0.030 0.003 −0.090 −2.625 −0.017 −3.552 1.524 3.547
State 2 0.965 −0.230 −0.189 −0.003 0.004 −2.154 −0.010 0.745 −4.227 3.891
State 3 −0.303 1.080 1.462 0.000 −0.279 18.55 −0.123 −0.127 9.057 19.217

In addition, PM10, Sulfur Dioxide, Nitrogen Dioxide, TEMP (temperature), DEWP
(dew point temperature), RAIN (precipitation), and WSPM (wind speed) have the largest
effect on PM2.5 in State 2. The results showed that in state 2, some chemical reactions led
to the depletion of gases such as SO2 and NO2, which reduced the production of PM2.5,
and rainfall also reduced the production of PM2.5. The high wind speed led to an increase
in PM2.5 concentration, probably because the wind speed increased the diffusion and
transport of particulate matter. The prediction formula of the PM2.5 in this State is as
follows:

PM2.52 =0.965PM10 − 0.23SO2 − 0.003CO − 0.189NO2 − 0.04O3 − 2.154TEMP

− 0.01PRES + 0.745DEWP − 4.227RAIN + 3.891WSPM.

PM10, SO2, NO2, O3, TEMP (temperature), PRES (pressure), DEWP (dew point tem-
perature), RAIN (precipitation), and WSPM (wind speed) have the greatest impact on
PM2.5 in state 3. It is worth noting that the increase in variables such as SO2 and NO2
leads to an increase in PM2.5 concentration. In addition, the significant positive coefficients
for temperature indicate that higher temperatures promote the formation of PM2.5, which
may be related to the acceleration of certain chemical reactions by high temperatures. The
increase in SO2 and NO2 may promote the formation of secondary particulate matter, which
in turn increases the PM2.5 concentration. Wind speed increases particulate dispersion,
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and rainfall may also promote the formation of secondary particulate matter from some
soluble substances. The prediction formula of the PM2.5 in this State is as follows:

PM2.53 =− 0.303PM10 + 1.08SO2 + 1.462NO2 − 0.279O3 + 18.55TEMP

− 0.123PRES − 0.127DEWP + 9.057RAIN + 19.217WSPM.

In summary, the regression coefficients for the three states reflect the effects of different
environmental factors on PM2.5 concentrations. The positive and negative signs and mag-
nitudes of these coefficients can provide scenarios on how to manage and predict PM2.5
concentrations by controlling these environmental factors under different environmental
conditions. In particular, the fact that temperature, rainfall and wind speed have differ-
ent effects on PM2.5 concentrations in different states suggests that PM2.5 management
needs to take into account complex meteorological conditions and interactions between
air pollutants.

6. Conclusions

In this paper, the variable selection for high-dimensional HMMs is studied based
on the variational inference. We develop a Variational Bayesian method with the double-
exponential shrinkage prior for variable selection. The proposed method can quickly
and accurately estimate the posterior distributions and the unknown parameters. In the
simulation studies and real data analysis, the proposed method outperforms the common
methods in term of variable selection and prediction. In the Beijing Multi-Site Air-Quality
analysis, we select the optimal number of the hidden stats based on the AIC and BIC
methods, and fit the HMMs of the response variable PM2.5. In the current research work,
we investigate variational inference for linear HMMs with high dimensional covariates;
that is, the mean of the response variable is linear with respect to the high dimensional
covariates. Many of the relationships between variables in practical applications may be
not linear, so variational inference for nonlinear HMMs is worth studying. In addition, it is
assumed that the variances in observations are the same in different hidden states in this
study, but in practical applications, heteroskedasticity may be more in line with real-world
data characteristics. For that reason, the heteroskedasticity issue for HMMs is also worth
exploring deeply. Moreover, Ivan Gorynin’s work [36] verifies that the Pairwise Markov
Model (PMM) outperforms the traditional HMM in terms of accuracy when the observed
variable y is highly autocorrelated or when the hidden chain is not Markovian. Unlike the
HMM, which assumes that the hidden chain z is Markovian, the PMM assumes that (z, y)
is Markovian. Since hidden chains are not necessarily Markovian in the PMM, it is more
general than the HMM. Parameter estimation of PMM models is done using Variational
Bayesian methods in the work of Katherine Morales [37]. However, the effect of including
the covariate x on the target variable y was not considered in their work. Therefore, as an
extension of the proposed method, which replaces the HMM with the PMM, the inclusion
of high-dimensional covariates in the PMM may yield more accurate predictions.
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Appendix A

Appendix A.1. Variational Posterior of Parameters

We derive the optimal variational densities based on Formula (8). The complete likeli-
hood function of the model is:
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We derive the conditional posterior distribution of A as:
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According to Equation (10), The variational posterior distribution of Aj is given by:
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Similarly, we derive the conditional posterior distribution of σ2 as:
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The variational posterior distribution of σ2 is given by:
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We derive the conditional posterior distribution of λ2 as:
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We derive the conditional posterior distribution of τ2
m. Note that since the variational

posterior of τ2
m is difficult to obtain, we derive the variational posterior of 1
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as:
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where aτm = E(λ2), bτm = E(1/σ2)∑K
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km), and Cτm = 1 − K/2.

We derive the conditional posterior distribution of β as:
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The variational posterior distribution of β is given by:

q∗(β) ∝ exp{E[log P(β | ·)]}
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We derive the conditional posterior distribution of π:

P(π | ·) ∝ P
(

Y, z | X, π, A, β, σ2
)

P(π)

∝ P(z1|π)P(π)
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.

The variational posterior distribution of π is given by:

q∗(π) ∝ exp{E[log P(π|·)]}

∝ exp
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)
.

Finally, we derive the variational posterior of z. Based on the dependencies of hidden
states, we divide the variational posterior of z into the following three parts.

We derive the conditional posterior distribution of z1 as:

P(z1 | ·) ∝ P
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The variational posterior distribution of z1 is given by:

q∗(z1) ∝ exp{E[log P(z1 | ·)]}

∝ exp
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We derive the conditional posterior distribution of zt for t = 2, . . . , T − 1 as:

P(zt | ·) ∝ P
(

Y, z | X, π, A, β, σ2
)

∝ P(z1 | π)
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The variational posterior distribution of zt for t = 2, . . . , T − 1 is given by:

q∗(zt) ∝ exp{E[log P(zt | ·)]}
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We derive the conditional posterior distribution of zT as:

P(zT | ·) ∝
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∏
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.

The variational posterior distribution of zT is given by:

118



Mathematics 2024, 12, 995

q∗(zT) ∝ exp{E[log P(zT | ·)]}
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Appendix A.2. Box Plots of the Estimator Values Based on 10 Experiments under p = 20, 40 and
T = 200

Figure A1. Box plots of the estimator values of A, β1, β2, and β3 based on 50 experiments under
p = 20 and T = 200. The horizontal coordinate is the index of the variables and the vertical coordinate
is the values of the estimators.

Figure A2. Box plots of the estimator values of A, β1, β2, and β3 based on 50 experiments under
p = 40 and T = 200. The horizontal coordinate is the index of the variables and the vertical coordinate
is the values of the estimators.
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Appendix A.3. Box Plots of the Estimator Values Based on 50 Experiments under p = 60, 120 and
T = 600

Figure A3. Box plots of the estimator values of A, β1, β2, and β3 based on 10 experiments under
p = 60 and T = 600. The horizontal coordinate is the index of the variables and the vertical coordinate
is the values of the estimators.

Figure A4. Box plots of the estimator values of A, β1, β2, and β3 based on 10 experiments under
p = 120 and T = 600. The horizontal coordinate is the index of the variables and the vertical
coordinate is the values of the estimators.

Appendix A.4. Sensitivity Analysis Results for Different Hyperparameter Settings

To further understand whether the algorithm is sensitive to the choice of hyperpa-
rameters r, δ, we conduct experiments on simulated data with a sample size of 300 and a
covariate dimension of 30 similar to Section 4. Consider the following experiments with
three different hyperparameter settings, the first r = 0.5, δ = 0.5; the second r = 1.0, δ = 1.0;
and the third r = 1.5, δ = 1.5.
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Table A1. The hyperparameters were set to r = 0.5, δ = 0.5; r = 1.0, δ = 1.0; and r = 1.5,
δ = 1.5 to compute the mean of the four metrics, with standard deviations in parentheses, based on
10 simulations under the conditions of T = 300, p = 30.

p Method
Estimate Performance

MAPE RMSE MAE R2

p = 30

r = 0.5, δ = 0.5 0.8766
(0.9195)

1.1861
(0.2441)

1.4605
(0.6291)

0.8617
(0.0739)

r = 1.0, δ = 1.0 0.8766
(0.9195)

1.1861
(0.2441)

1.4606
(0.6291)

0.8616
(0.0739)

r = 1.5, δ = 1.5 0.8766
(0.9195)

1.1861
(0.2440)

1.4606
(0.6290)

0.8616
(0.0739)

The experimental results show that the estimation results are not sensitive to the
choice of the two hyperparameters r and δ. The images of the Gamma distributions for
the three different hyperparameter settings are very similar in shape. It implies that the
performances of the proposed method are not sensitive to these hyperparameters for a
certain range of variations in r and δ values.
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Abstract: Various discrete lifetime distributions have been observed in real data analysis. Numerous
discrete models have been derived from a continuous distribution using the survival discretization
method, owing to its simplicity and appealing formulation. This study focuses on the discrete analog
of the newly generalized Rayleigh distribution. Both classical and Bayesian statistical inferences are
performed to evaluate the efficacy of the new discrete model, particularly in terms of relative bias,
mean square error, and coverage probability. Additionally, the study explores different important
submodels and limiting behavior for the new discrete distribution. Various statistical functions have
been examined, including moments, stress–strength, mean residual lifetime, mean past time, and
order statistics. Finally, two real data examples are employed to evaluate the new discrete model.
Simulations and numerical analyses play a pivotal role in facilitating statistical estimation and data
modeling. The study concludes that the discrete generalized Rayleigh distribution presents a notably
appealing alternative to other competing discrete distributions.

Keywords: generalized Rayleigh; maximum likelihood estimation; Bayes estimation; reliability;
simulation analysis; Monte Carlo Markov chain; goodness-of-fit measures

MSC: 62E10; 62F15; 62N05; 60E05; 62P30

1. Introduction

As each day passes, the volume of data in our world increases exponentially, necessi-
tating the development of new statistical distributions to better characterize the features
of many phenomena and experiments. While a great deal of lifetime data appear to be
continuous, they are originally discrete. This discrepancy ensures the need for more appro-
priate methods to generate discrete distributions that more accurately represent the data in
the experiment. Discrete distributions are frequently employed in statistical modeling for
several reasons.

Discrete distributions are used to model data that can only take on a finite or countably
infinite number of values, such as counts, proportions, and binary outcomes, for example,
the number of customers in a store, the number of heads in a coin flip, or the number of
defective items in a production line. Discrete distributions are often easy to understand
and interpret as they model data that take on a limited number of values. The probability
mass function (pmf ) or probability generating function (pgf ) of a discrete distribution is a
simple function that provides the probability of each possible outcome. Also, many discrete
distributions have closed-form expressions for their pmf or pgf, which makes it easy to
work with them mathematically. This allows for efficient computation of probabilities and
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moments without the need for integration. Furthermore, discrete distributions can be used
to model a wide variety of real-world phenomena, such as the distribution of species in
an ecosystem, the distribution of genetic variations in a population, or the distribution of
traffic on a road network.

Recently, many discrete distributions have been considered, particularly in medicine,
engineering, reliability, survival analysis, and more. For more descriptions and applications
of discrete distributions, refer to [1–9]. Hence, many authors have conducted much work
to originate and develop discrete models from different aspects.

The characterization of continuous random variables can be performed either by
their probability density function, cumulative distribution function, moments, moment-
generating function, hazard rate functions, or others. Different discretization methods
appeared in the literature to create an appropriate discrete distribution based on the
underlying continuous model.

By deriving discrete analogs or counterparts of well-known continuous distributions,
statisticians can better tailor their models to the specific nature of the data. Usually, creating
a discrete analog from a continuous distribution is based on the principle of preserving one
or more characteristic properties of the continuous one. Consequently, different ways to
discretize a continuous distribution appear in the literature depending on the property the
researcher intends to preserve; for example, Lai [10] used the survival and the hazard rate
preservation methods to create discrete distributions from different continuous ones. Haj
Ahmad and Almetwally [11] used the survival, hazard rate, and probability distribution
function preservation methods to discretize the generalized Pareto distribution.

The benefit of using the survival discretization method is that it can maintain the
statistical properties of the original distribution, including median and percentiles, in addi-
tion to the overall shape of the distribution. A drawback of this method is that it can be
computationally intensive and may require numerical methods for complex distributions.

For the hazard preservation method, the main benefit is that it preserves the hazard
function of the continuous distribution. This is important in applications like reliability
analysis where the failure rate is a key parameter. On the other hand, mathematical
complexity can be viewed using this method, especially for continuous distributions
with nonlinear hazard functions. This complexity can increase computational time and
resource requirements. Another drawback of the hazard preservation method is that it
only preserves the hazard function, but other characteristics of the distribution (like mean,
variance, or skewness) may not be as accurately retained. For more details about other
discretization methods and their properties, one may refer to [12,13] who provided a review
of several discretization methods.

From the previous research work, it is evident that the results look appealing and
motivational to continue creating new discrete distributions to model new data.

In the present study, we obtain a discrete analog of the continuous new generalized
Rayleigh distribution (NGRD) using the survival discretization method that depends on
the survival function. See for example [6,7], in which the survival discretization approach
was used to obtain the discrete normal and discrete Rayleigh distributions, respectively.
Using the same approach, more discrete distributions have been introduced and studied;
see for example [14–23].

Still, there is an enduring need to create and develop more discrete models and to
generate new ones because of modeling and fitting real data, which appear and spread
constantly in human life. The efficiency in discretization methods refers to the ability of
a method to produce accurate and useful discretized versions of continuous data with
minimal loss of information. Also, discrete distributions derived from continuous ones
can inherit their flexibility and adaptability. This allows statisticians to model a wider
range of data characteristics, such as skewness or kurtosis, which might be difficult with
standard discrete distributions. In statistical methodology, continuous distributions may
have characteristics that are missing in the discrete space; hence, creating discrete analogs
can fill these gaps, providing new tools for data analysis.
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The suggested discrete model with three parameters offers an immense degree of
fitness to skewed, symmetric, monotone, and inverse J-shape types of data. Therefore, some
statistical functions and properties are achieved, in addition to observing the submodels
and limiting behavior of the proposed discrete distribution. Examining statistical inference
is crucial; therefore, point and interval estimation for the unknown parameters using the
maximum likelihood estimator and the Bayesian method is performed.

Simulation analysis via numerical techniques such as Monte Carlo simulation is
employed to evaluate the estimators using the maximum likelihood and the Bayesian
estimation methods to compare the performance of these two methods. The efficiency
is assessed using the relative bias, the mean squared error, and the coverage probability
of the confidence intervals. Two real datasets are analyzed to emphasize the empirical
validation of the new model, where several goodness-of-fit measures are employed. The
first example is related to the industrial field, where several strikes that occurred in coal
mining in the UK were recorded over four weeks. Modeling and predicting the number
of strikes will save human lives and money. The second example is related to the number
of fires that occurred in Greece’s forests in the year 1998 during the summer months. The
main purposes of this study are, first, to introduce new discrete analogs of the continuous
NGRD and evaluate some of its important statistical functions, second, to perform the
inferential statistics related to the new distributions’ parameters and compare the results,
and, third, to assess the efficiency of the new discrete distribution by modeling real data
examples and comparing the goodness-of-fit measures with other discrete distributions
that were studied earlier in the literature.

The originality of this work emanates from the basis of exploring the creation of a new
discrete analog from less commonly used continuous distributions and investigating their
properties, potential applications, and how they compare to existing distributions. Also,
it focuses on specific application areas, such as the industrial, engineering, and reliability
fields. To our knowledge, no previous work has studied the discrete new generalized
Rayleigh distribution and employed it to model real-life data examples from different
scientific fields.

The authors’ contributions to this study can be summarized as follows:
• Development of a New Discrete Model: Creation of a discrete analog of the contin-

uous new generalized Rayleigh distribution (NGRD) using the survival discretiza-
tion method.

• Statistical Functions and Properties: Achievement of various statistical functions and
properties of the proposed discrete distribution, including observing its submodels
and limiting behavior.

• Statistical Inference Examination: Conducting point and interval estimation for the
unknown parameters using both the maximum likelihood estimator (MLE) and the
Bayesian method.

• Simulation Analysis for Estimator Evaluation: Implementation of numerical tech-
niques such as Monte Carlo simulation to evaluate the estimators derived from MLE
and Bayesian estimation methods through relative bias, mean squared error, and cov-
erage probability of confidence intervals

• Empirical Validation via Real Data Analysis: Analyzing two real datasets to validate
the new model empirically, including modeling industrial and environmental phe-
nomena.

• Comparison with other Distributions: Comparing the goodness of fit of the new
model with other discrete distributions previously studied in the literature.

The remaining parts of this work are organized as follows: Section 2 describes the new
generalized Rayleigh distribution. The discretization methods are presented in Section 3,
along with some statistical functions. In Section 4, the maximum likelihood and the
Bayesian inference are presented. In Section 5, simulation analysis and the tabulated results
are carried out. Some real data examples are provided in Section 6. Finally, conclusions are
remarked on in Section 7.
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2. Model Description

The Rayleigh distribution (RD) is a continuous distribution that has much practical
importance; hence, many of its statistical characteristics, inference, and reliability analysis
have been studied by several authors, and numerous extended forms of the Rayleigh
distribution have been proposed. For example, Ref. [24] applied the inverse Rayleigh to the
failure times data. Ref. [25] introduced the transmuted Rayleigh and used it to model the
amount of nicotine in the blood. In [26], the authors studied the beta-generalized Rayleigh
distribution and its application. Ref. [27] obtained the transmuted inverse Rayleigh distri-
bution to lifetime data. Ref. [28] obtained a new modified Rayleigh distribution named the
Kumaraswamy generalized Rayleigh distribution with application to real data. For more
information, refer to [29–31]. In this work, we are interested in studying a new form of the
Rayleigh distribution called a new generalized Rayleigh distribution (NGR), which was
first introduced by Shen et al. [32]. It has three parameters and it was shown that the NGR
is suitable for modeling large data values rather than small data values. However, as a
continuous distribution, it is restricted from describing discrete data forms. Discretizing
the NGR distribution is our goal; therefore, it yields a subsequent distribution that accom-
modates the countable data while retaining the influential tail modeling characteristics of
the NGR. In this study, we carry out a discrete version of the NGR and use it to model
real data.

The probability density function (pdf ) and the survival function (S) of the continuous
NGR are provided respectively as:

f (x; α, β, θ) =
2αβθ(α − 1)xe−θx2

(1 − e−θx2
)

β−1[
α −
(

1 − e−θx2
)β
]2 , x > 0, (1)

and

S(x; α, β, θ) =
α[1 −

(
1 − e−θx2

)β
]

α −
(

1 − e−θx2
)β

, (2)

in which the parameters α > 1, β > 0, θ > 0.
The hazard rate function is

h(x; α, β, θ) =
2βθ(α − 1)xe−θx2

(1 − e−θx2
)

β−1[
1 −
(

1 − e−θx2
)β
][

α −
(

1 − e−θx2
)β
]2 . (3)

To identify submodels or special distributions that arise from this general form, we can
consider different values or limits of parameters α, β, and θ. Here are some special cases:

1. Standard Rayleigh Distribution: When θ = 1 and β = 1, the term (1 − e−x2
) simpli-

fies to the CDF of the standard Rayleigh distribution. This is observed if the parameter
α also approaches infinity, which simplifies the formula to 1 − e−x2

, the CDF of the
standard Rayleigh distribution.

2. Exponential Distribution: If β approaches infinity, the term Λ = (1 − e−θx2
)β can

approach an exponential-like behavior for small values of x, depending on how θ
is defined.

3. Modified Rayleigh Distribution: For specific fixed values of α and β, you can obtain
various forms of modified Rayleigh distributions, where the behavior is measured by
the degree of skewness and kurtosis determined by these parameters.

4. Weibull-like Distribution: By interchanging between θ and β, especially when β is not
equal to 1, the distribution can possess Weibull-like properties.
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By discretizing the continuous range of x, discrete versions of this distribution can be
derived, which may be useful for certain types of count data or integer-valued measurements.

Since our goal in this work is to define a new discrete NGR distribution, we gener-
ate a discrete analog based on the survival discretization method, which is denoted by
DNGR. The pmf and cumulative distribution function (CDF) are obtained. Furthermore,
the moments, stress–strength function, the mean residual, and mean past lifetimes, order
statistics, and L-moments are obtained. All these statistical functions are used for studying
the features of the DNGR.

3. The Discrete New Generalized Rayleigh Distribution

Roy and Gupta [3,4] defined the probability mass function (pmf ) for a discrete distri-
bution using the survival function and it was expressed as follows:

P(X = k) = S(k)− S(k+1), k= 0, 1, 2, . . . (4)

where S(x) is the survival function provided by Equation (2); hence, the pmf of the discrete
analog of NGR distribution, namely DNGR, is written as

P(X = k) =
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)
, (5)

where Λ(k; θ, β) =
(

1 − e−θk2
)β

.
The CDF of the DNGR distribution can be written as

P(X<k) = F(k+1) = 1 − α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)
. (6)

The quantile function with given values of parameters as α, β, and θ of the DNGR
distribution is provided by

xi =

√√√√−1
θ

ln

[
1 −
(

αq
α + q − 1

)1/β
]
− 1; q = [0, 1], i = 1, . . . , n. (7)

The hazard rate function (HRF) of the DNGR distribution is provided by

hDNGR1(k) =
[1 − Λ(k; θ, β)][α − Λ(k + 1; θ, β)]

[α − Λ(k; θ, β)][1 − Λ(k + 1; θ, β)]
− 1. (8)

We also observe that the reversed hazard rate function for the DNGR of this distribu-
tion is provided by

rDNGR(k; α, β, θ) =
f (k; α, β, θ)

F(k + 1; α, β, θ)
, (9)

rDNGR(k; α, β, θ) =

[
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]
×
[

α − Λ(k + 1; θ, β)

(α − Λ(k + 1; θ, β))− α[1 − Λ(k + 1; θ, β)]

] (10)

In Figure 1, the bar charts represent each parameter α, θ, and β that has a specific role
in the behavior of the pmf, and their effects are observable when we fix one and vary the
others. An explanation of the effect of each parameter based on the plots is as follows:

1. Effect of α when θ and β are changeable:
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When α is fixed, the variations in θ and β create different trends in the probability
values. Higher values of θ tend to stretch the curve horizontally, meaning, for a
given α, as θ increases, the decrease in probability values with increasing k is less
steep. Higher values of β tend to amplify the curve vertically, making the probability
have fewer values for higher k values. The reaction between θ and β at a fixed α
demonstrates that θ affects the spread of the distribution, while β affects the sharpness
of the probability decrease.

2. Effect of θ when α and β are changeable:
With θ fixed, the changes in α and β show distinct patterns. An increase in α generally
results in higher probability values across all k. This is because a higher α relative
to Λ(k; θ, β) increases the numerator and decreases the denominator of the function
P(X = k), resulting in a larger overall value. The effect of β at a fixed θ is similar to its
effect when α is fixed; it controls the sharpness of the decrease in probability values.
Higher β values cause a quicker decline in probability as k increases.

3. Fixing β and varying α and θ, we can see that
As α increases, for a fixed β, the overall probability values increase, similar to when θ
is fixed. The role of θ here is nuanced; for lower values of k, the impact of changing θ is
minimal, but, as k increases, higher θ values preserve higher probabilities, indicating
a wider spread in the distribution. From the above explanations, it is clear that α
primarily scales the probability values, β determines the rate at which the probability
values decline as k increases (sharpness of the distribution), and θ controls the spread
or dispersion of the distribution across k values. The combination of these three
parameters can thus shape the function’s distribution in various ways, and each has a
distinctive role in the form of the probability curve.
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(a)

(b)

Figure 1. Cont.

(c)

Figure 1. The pmf bar charts for the DNGR, (a) when α = 2, (b) when β = 2, and (c) when θ = 1.

In Figure 2, the plots represent the HRF of the DNGR distribution for various com-
binations of parameters α, θ, and β. Each subplot corresponds to a different set of these
parameters. The values of k range from 1 to 10. The curves are increasing for different
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values of the parameters; we can realize the effect of increasing the parameter θ while
keeping other parameters fixed by going steeply to the left. For the effect of β, assuming
other parameters are fixed, it can be figured by increasing in a slower mode when k takes
small values. Finally, the effect of increasing the values of α while fixing the remaining
parameters is going to the left more steeply.

The limiting behavior of DNGR for different choices in parameter values at the bound-
ary points includes

limk→∞ p(k) = 0, limk→0 p(k) = 0,
limα→1 p(k) = 0, limα→∞ p(k) = Λ(k + 1; θ, β)− Λ(k; θ, β),
limθ→0 p(k) = 0, limθ→∞ p(k) = 0,
limβ→0 p(k) = 0, and limβ→∞ p(k) = 0.

From the above limiting behavior of the DNGR, some submodels and special cases
can be derived, such as

1. Discrete standard Rayleigh Distribution: When θ = 1 and β = 1, and α approaches
infinity, the pmf simplifies to (1 − e−(x+1)2

)− (1 − e−x2
), which represents the pmf

of the discrete Rayleigh distribution created from applying the survival discretiza-
tion method.

2. Discrete Exponential-like Distribution: For large values of β and specific values of
θ, the DNGR distribution might possess characteristics similar to an exponential
distribution for smaller values of k, where the exponential decay behavior is more
evident, since the term Λ = (1 − e−θk2

)β has a decaying form and can be considered
as exponential-like function.

3. Discrete Uniform Distribution: If the parameters α, β, and θ are chosen such that the
pmf becomes constant for all k within a certain range, the DNGR distribution could
approximate a discrete uniform distribution.

4. Geometric-like Distribution: By adjusting θ and β, you might be able to create a
distribution that behaves like the geometric distribution, especially if the probability
of larger k values decays like the geometric series.

These possible submodels and special cases demonstrate the versatility and adaptabil-
ity of the DNGR distribution. The ability to derive such a variety of distributions from a
single distribution highlights the potential utility of the DNGR distribution in modeling
a wide range of discrete data scenarios. Each submodel or special case would be suited
to different types of data and could provide unique insights depending on the context of
the analysis.
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Figure 2. The HRF of the DNGR distribution.

3.1. Moments

Assume a non-negative random variable k ∼ DNGR(α, β, θ). The sth moment, say ψ‘
s,

can be expressed as follows

ψ′
s =

∞

∑
k=0

ks f (k; α, β, θ),

and then

ψ′
s =

∞

∑
k=0

ks
[

α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]
. (11)

It is impossible to write an exact form of the sth moment; hence, R programming
with version (4.3.0) is helpful, and the moment is evaluated numerically. Equation (11) is
convergent for α > 1, β > 0 , and θ > 0 .
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Table 1 explores some functions like the minimum, mean, variance, maximum, skew-
ness (SK), and kurtosis (Kt) for different values of α, β, and θ. In addition, the DNGR
distribution is appropriate for modeling both over- and under-dispersed data since, in this
model, the variance can be smaller than the mean, which is the case with some standard
classical discrete distributions, in addition to the positive and negative skewness values,
which show that this distribution can be skewed to the right or left. Also, a very small skew
value that tends to zero indicates a symmetry possible curve for the pmf. A higher kurtosis
means more of the variation is due to infrequent extreme deviations as opposed to frequent
modestly sized deviations. By varying θ, α, and β, one can realize the distribution changes.
For instance, with θ = 0.8 and α = 0.5, β changing from 0.84 to 2.73 drastically increases the
kurtosis, indicating a heavier tail.

Table 1. Summary of descriptive statistics for the DNGR distribution.

θ α β Minimum Mean Variance Maximum SK Kt

0.8

1.05 0.3 0 1.5140 0.4643 3 −0.0700 1.2956

1.05 1.2 0 1.9760 0.3338 4 −0.0563 1.3066

1.05 2.5 0 2.1890 0.3176 4 −0.0479 1.3039

1.05 3 1 2.2420 0.3137 4 −0.0461 1.3030

2.2 0.3 0 0.6480 0.4305 3 0.1245 1.1141

2.2 1.2 0 1.2470 0.3664 3 0.0229 1.2125

2.2 2.5 0 1.5330 0.3252 3 0.0203 1.2296

2.2 3 0 1.6020 0.3179 3 0.0212 1.2320

3 0.3 0 0.5810 0.4098 3 0.1629 1.1205

3 1.2 0 1.1880 0.3570 3 0.0373 1.2097

3 2.5 0 1.4770 0.3178 3 0.0320 1.2281

3 3 0 1.5450 0.3163 3 0.0325 1.2307

1.5

1.05 0.3 0 1.0800 0.2799 3 −0.0699 1.2957

1.05 1.2 0 1.4600 0.2827 3 −0.0564 1.3066

1.05 2.5 0 1.6570 0.2396 3 −0.0481 1.3039

1.05 3 0 1.7020 0.2214 3 −0.0461 1.3031

2.2 0.3 0 0.4520 0.2860 2 0.1244 1.1142

2.2 1.2 0 0.9210 0.2190 2 0.0229 1.2125

2.2 2.5 0 1.1120 0.1616 2 0.0203 1.2295

2.2 3 0 1.1510 0.1624 2 0.0213 1.2321

3 0.3 0 0.4010 0.2725 2 0.1629 1.1205

3 1.2 0 0.8800 0.2258 2 0.0374 1.2096

3 2.5 0 1.0830 0.1503 2 0.0321 1.2280

3 3 0 1.1210 0.1485 2 0.0325 1.2306
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Table 1. Cont.

θ α β Minimum Mean Variance Maximum SK Kt

3

1.05 0.3 0 0.8230 0.1598 2 −0.0700 1.2956

1.05 1.2 0 0.9890 0.0689 2 −0.0563 1.3067

1.05 2.5 0 1.0460 0.0680 2 −0.0480 1.3040

1.05 3 0 1.0610 0.0734 2 −0.0459 1.3031

2.2 0.3 0 0.2800 0.2038 2 0.1245 1.1143

2.2 1.2 0 0.6820 0.2231 2 0.0229 1.2123

2.2 2.5 0 0.8840 0.1127 2 0.0203 1.2296

2.2 3 0 0.9200 0.0857 2 0.0210 1.2320

3 0.3 0 0.2420 0.1856 2 0.1628 1.1204

3 1.2 0 0.6360 0.2357 2 0.0374 1.2097

3 2.5 0 0.8590 0.1292 2 0.0321 1.2280

3 3 0 0.9020 0.0985 2 0.0325 1.2307

3.2. Stress–Strength Analysis

The stress–strength (reliability) analysis is an important tool in mechanical design.
The idea relies on the probability of failure that is obtained from the probability of r
exceeding r∗. Assume that both r and r∗ are in the positive domain. The expected
reliability (R∗) can be calculated by

R∗ = P[Kr ≤ Kr∗ ] =
∞

∑
k=0

fKr (k)RKr∗ (k), (12)

in which Kr ∼ DNGR(α1, β1, θ1) and Kr∗ ∼ DNGR(α2, β2, θ2), and then R∗ can be ex-
pressed as follows

R∗ =
∞

∑
k=0

[
α1[1 − Λ1(k; θ1, β1)]

α1 − Λ1(k; θ1, β1)
− α1[1 − Λ1(k + 1; θ1, β1)]

α1 − Λ1(k + 1; θ1, β1)

][
α2[1 − Λ2(k; θ2, β2)]

α2 − Λ2(k; θ2, β2)

]
,

where Λ1(k; θ1, β1) =
(

1 − e−θ1k2
)β1

and Λ2(k; θ2, β2) =
(

1 − e−θ2k2
)β2

.
We cannot obtain a closed form for the above equation; consequently, simulation anal-

ysis is utilized to obtain a numerical solution. In Section 6, numerical analysis is performed
to obtain the value of the stress–strength function under two real data applications.

3.3. The Mean Residual and the Mean Past Lifetimes

In reliability and survival analysis, many lifetime measures have been discussed in the
literature. They were defined to study the aging behavior of the experimental units. One of
these measures is the mean residual lifetime (MRL), which is a helpful tool in determining
burn-in and maintenance policies. For discrete distributions, the MRL is defined as follows:

ζ(i) = E(k − i | k ≥ i) =
1

S(i)

l

∑
j=i+1

S(j); i ∈ N, (13)

where 0 < l < ∞.
If the random variable k follows the DNGR distribution with parameters α, β, and θ,

which is denoted by k ∼ DNGR(α, β, θ), then the MRL is expressed as

ζ(i) =
α − Λ(i; θ, β)

α[1 − Λ(i; θ, β)]

l

∑
j=i+1

α[1 − Λ(j; θ, β)]

α − Λ(j; θ, β)
. (14)
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The mean past lifetime (MPL) is another important measure in reliability analysis.
The MPL measures the time elapsed after the failure of K units given that the system has
failed sometime earlier to i. In the discrete case, the MPL is defined as follows

ζ∗(i) = E(i − k|k < i) =
1

F(i − 1)

i

∑
m=1

F(m − 1); i ∈ N− {0}, (15)

where ζ∗(0) = 0; see [33].
Then,

ζ∗(i) =
[

1 − α − Λ(i; θ, β)

α[1 − Λ(i; θ, β)]

]−1 i

∑
m=1

[
1 − α[1 − Λ(m − 1; θ, β)]

α − Λ(m − 1; θ, β)

]
. (16)

3.4. Order Statistics

Let K1, K2, . . . , Kn be a random sample with the DNGR distribution and
K1:n, K2:n, . . . , Kn:n denote the corresponding order statistics. Then, the CDF of ith order
statistics at the value k can be written as follows

Fi:n(k; α, β, θ) =
n

∑
i=1

(
n
m

)
[Fi(k; α, β, θ)]m[1 − Fi(k; α, β, θ)]n−m. (17)

By using the negative binomial theorem, then

Fi:n(k; α, β, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

[Fi(k; α, β, θ)]m+j. (18)

Therefore,

Fi:n(k; α, β, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j[
1 − α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)

]m+j
. (19)

Consequently, the pmf of the ith order statistic under the DNGR can be derived and
expressed as follows

fi:n(k; α, β, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j [
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]m+j
.

So, the υth moments of ki:n can be written as follows

E(Kν
i:n) =

∞

∑
k=0

n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

kν

[
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]m+j
.

4. Estimation

Two estimation methods are considered in this work: frequentist maximum likelihood
estimation (MLE) and the Bayesian estimation method. Simulation analysis and numerical
techniques are performed in Section 5 to assess the performance of these estimation methods.
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4.1. Maximum Likelihood Estimation

In this section, we use the maximum likelihood estimation MLE method to estimate
the unknown parameters of the DNGR distributions. To evaluate the required estimators,
numerical techniques are used, such as the well-known Newton–Raphson technique.

Let x1, . . . , xn be a random sample following the DNGR, and then, from pmf in Equa-
tion (5), the log-likelihood function is written as

�(α, β, θ) = ∑n
k=1 log(α(α − 1)) + log(Λ(xk+1; θ, β)− Λ(xk; θ, β))

−log(α − Λ(xk; θ, β)) − log(α − Λ(xk+1; θ, β))
(20)

The MLEs for α, β, and θ are obtained by finding the partial derivatives of �(α, β, θ)
for α, β, and θ, then equating the three equations to zero and solving numerically.

∂�(α, β, θ)

∂α
=

n

∑
k=1

2α − 1
α(α − 1)

− 1
α − Λ(xk; θ, β)

− 1
α − Λ(xk+1; θ, β)

= 0, (21)

∂�(α, β, θ)

∂β
=

n

∑
k=1

Λβ(xk+1; θ, β)− Λβ(xk; θ, β)

Λ(xk+1; θ, β)− Λ(xk; θ, β)
+

Λβ(xk; θ, β)

α − Λ(xk; θ, β)
+

Λβ(xk+1; θ, β)

α − Λ(xk+1; θ, β)
= 0 (22)

and

∂�(α, β, θ)

∂θ
=

n

∑
k=1

Λθ(xk+1; θ, β)− Λθ(xk; θ, β)

Λ(xk+1; θ, β)− Λ(xk; θ, β)
+

Λθ(xk; θ, β)

α − Λ(xk; θ, β)
+

Λθ(xk+1; θ, β)

α − Λ(xk+1; θ, β)
= 0. (23)

Such that Λβ(xk; θ, β) = ∂Λ(xk ;θ,β)
∂β = Λ(xk; θ, β)log(1 − e−θxk

2
) and Λθ(xk; θ, β) =

∂Λ(xk ;θ,β)
∂θ = βxk

2e−θxk
2
Λ(xk; θ, β − 1). To solve the system of nonlinear Equations (21)–(23),

only numerical methods are helpful. Many numerical techniques were used in the literature;
here, we use the Newton–Raphson method, and all results are illustrated in Section 5.

4.2. Bayesian Inference

The Bayesian estimation method is used in this section to estimate the unknown
parameters of the DNGR. The basic assumption of the Bayesian method is that the model
parameters are considered random variables that follow a distribution known as the prior
distribution. Since prior information is usually only available, we must specify a suitable
prior option. We choose the gamma conjugate prior distribution for the parameters α, β,
and θ. It is defined by assuming gamma distributions for α, β, and θ.

Therefore, the prior distributions for α, β, and θ can be written as

π1(α) =
b1

a1

Γ(a1)
αa1−1e−b1α,

π2(β) =
b2

a2

Γ(a2)
βa2−1e−b2β

and

π3(θ) =
b3

a3

Γ(a3)
θa3−1e−b3θ

where a1, a2, a3, b1, b2, and b3 are nonnegative hyper parameters of the assumed distributions.
Hence, the joint prior for α, β, and θ is

π(α, β, θ) ∝ αa1−1βa2−1θa3−1e
−(b1α+b2β+b3θ)

. (24)
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The joint posterior of α, β, and θ given the data is defined as

π∗(α, β, θ | x) =
1
k

L(x | α, β, θ)π(α, β, θ), (25)

where L(x | α, β, θ) is the likelihood function of the DNGRD and K =
∫ ∫ ∫

L(x |
α, β, θ)π(α, β, θ)dαdβdθ.

The DNGRD parameters are estimated using a symmetric squared error (SE) loss
function. A simulation study is used to investigate the performance of the estimators using
the aforementioned loss function. As criteria for the superiority of the estimation methods,
the bias, the mean square error (MSE), the average length (AL) of the confidence intervals,
and the coverage probability (CP) are computed.

Under the SE loss function, Bayes estimation for the parameters α, β, and θ is defined
as the mean or expected value regarding the joint posterior, provided as

α̂SE =
1
k

∫∫∫
αL(x | α, β, θ)π(α, β, θ)dαdθ (26)

β̂SE =
1
k

∫∫∫
βL(x | α, β, θ)π(α, β, θ)dαdθ (27)

θ̂SE =
1
k

∫∫∫
θL(x | α, β, θ)π(α, β, θ)dαdθ (28)

To evaluate the expected values and triple integration in Equations (26)–(28) , nu-
merical methods are required. We choose to use the Markov chain Monte Carlo (MCMC)
technique via the Gibbs sampling method and by developing appropriate R code. The joint
posterior density is

π∗(α, β, θ|x) = 1
K

n

∏
i=1

[
[1 − Λ(i; θ, β)]

α − Λ(i; θ, β)
− [1 − Λ(i + 1; θ, β)]

α − Λ(i + 1; θ, β)

]
αa1 βa2−1θa3−1e

−(b1α+b2β+b3θ)
(29)

Bayes estimation for parameters α, β, and θ under SE loss function is performed
respectively using Equations (26)–(28) and the posterior density Equation (29).

The estimators are numerically evaluated simulations using R codes under the SE loss
function, and their results are summarized and presented in Tables 2 and 3.

Table 2. MLE and Bayes for parameters of DNGR distribution: α = 1.5.

α = 1.5 MLE Bayesian

θ β n RB MSE Lower Upper CP RB MSE Lower Upper

0.8 0.5

30

α 0.3587 1.5243 0.2760 4.8362 96.4% −0.0637 0.1796 1.1698 1.6971

θ 0.1163 0.3028 0.3278 1.4583 94.8% −0.0900 0.1096 0.5657 0.8743

β 2.8414 1.6217 0.3864 3.4549 97.4% 0.2762 0.1846 0.4248 0.8864

70
α 0.1490 1.4933 0.3716 4.8186 96.2% −0.1036 0.2005 1.1424 1.5800

θ 0.0150 0.1898 0.4403 1.1837 94.0% −0.0572 0.0651 0.6586 0.8455

β 1.4425 1.5862 0.8267 3.6157 96.0% 0.3645 0.2151 0.4609 0.9003

100

α 0.2670 1.2867 0.4987 4.2996 96.6% −0.0749 0.1473 1.2081 1.5686

θ 0.0141 0.1323 0.5527 1.0698 94.8% −0.0573 0.0556 0.6889 0.8096

β 0.9287 1.0745 0.9939 3.2935 96.2% 0.2963 0.1636 0.5165 0.7786

200

α 0.2572 1.0381 0.5976 4.0743 93.4% −0.0433 0.0803 1.3303 1.5184

θ −0.0401 0.1044 0.5730 0.9629 95.0% −0.0446 0.0400 0.7257 0.7991

β 0.8044 0.9101 1.4005 3.6436 93.2% 0.1773 0.0955 0.5222 0.6549
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Table 2. Cont.

α = 1.5 MLE Bayesian

θ β n RB MSE Lower Upper CP RB MSE Lower Upper

0.8 2

30

α −0.2630 0.4948 0.5194 1.6917 96.4% −0.0723 0.1817 1.1206 1.6439

θ 0.1964 0.2533 0.5674 1.3469 95.0% −0.1627 0.1504 0.5360 0.8156

β 0.1821 0.6169 1.3875 3.3410 95.4% 0.0193 0.1575 1.7350 2.3384

70

α −0.2876 0.4697 0.7042 1.4329 98.2% −0.0650 0.1782 1.1407 1.6102

θ 0.1781 0.2057 0.6514 1.2336 95.4% −0.1452 0.1284 0.5898 0.8055

β 0.1783 0.6075 1.3907 3.2658 97.6% 0.0268 0.1401 1.8049 2.2871

100

α −0.2344 0.4531 0.8432 1.4810 99.8% −0.0867 0.1618 1.1862 1.5461

θ 0.1899 0.1968 0.7066 1.1973 95.4% −0.1317 0.1115 0.6174 0.7637

β 0.1585 0.5414 1.4561 3.1780 96.6% 0.0243 0.0945 1.8941 2.2078

200

α −0.2144 0.3822 0.8523 1.4703 99.6% −0.0418 0.0796 1.3468 1.5366

θ 0.1631 0.1540 0.7699 1.0910 94.8% −0.1128 0.0931 0.6638 0.7529

β 0.1403 0.5402 1.3709 3.0190 98.4% 0.0133 0.0482 1.9454 2.0992

1.3

0.5

30

α −0.0161 1.8375 0.1289 5.0806 95.2% −0.0893 0.2022 1.1191 1.6715

θ 0.2417 0.5574 0.7108 2.5176 97.0% −0.0770 0.1671 0.9649 1.5162

β 2.9986 1.9656 0.1495 4.4932 95.4% 0.2996 0.1973 0.4097 0.8957

70

α −0.0127 1.8093 0.2549 4.9173 96.0% −0.1216 0.2207 1.1361 1.5891

θ 0.2073 0.4650 0.8261 2.3130 96.8% −0.0716 0.1243 1.0573 1.3653

β 1.0203 1.8424 0.2329 4.2970 96.0% 0.4009 0.2295 0.4769 0.9082

100

α −0.0157 1.2760 0.2963 3.5147 95.8% −0.0973 0.1743 1.1848 1.5360

θ 0.1764 0.4309 0.8514 2.2450 97.2% −0.0625 0.1035 1.0952 1.3359

β 0.9256 0.9678 0.5612 3.8173 96.2% 0.3340 0.1821 0.5292 0.8175

200

α −0.0142 0.9294 0.3171 3.0604 96.4% −0.0507 0.0912 1.3314 1.5228

θ 0.0813 0.3153 0.8228 1.9886 98.0% −0.0378 0.0594 1.1915 1.3146

β 0.5671 0.6315 0.6249 3.0816 99.2% 0.1931 0.1029 0.5286 0.6659

2

30

α −0.3113 0.6551 0.1315 1.9347 99.4% −0.1012 0.2185 1.0986 1.6487

θ 0.1534 0.3004 1.0585 1.9403 93.6% −0.1306 0.2070 0.9252 1.3786

β 0.1334 0.7466 0.8986 3.6349 98.4% 0.0235 0.1570 1.7458 2.3302

70

α −0.3117 0.6555 0.1310 1.9338 99.4% −0.1027 0.2185 1.0986 1.6487

θ 0.1526 0.2934 1.0744 1.9225 93.8% −0.1263 0.2067 0.9265 1.3857

β 0.1323 0.7438 0.9007 3.6028 98.4% 0.0216 0.1529 1.7548 2.3035

100

α −0.3207 0.4811 1.0057 1.0321 93.8% −0.0914 0.2108 1.1902 1.4334

θ 0.1929 0.2756 1.3192 1.7823 100.0% −0.1151 0.1656 1.0148 1.2705

β 0.0887 0.1776 1.9162 2.1927 100.0% 0.0154 0.0757 1.9316 2.1534

200

α −0.3188 0.4782 1.0096 1.0341 93.3% −0.0538 0.0946 1.3235 1.5159

θ 0.1594 0.2403 1.3682 1.7462 94.7% −0.0763 0.1043 1.1427 1.2673

β 0.0809 0.1683 1.9258 2.1821 95.9% 0.0140 0.0496 1.9582 2.1127
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Table 3. MLE and Bayes for parameters of DNGR distribution: α = 3.

α = 3 MLE Bayesian

θ β RB MSE Lower Upper CP RB MSE Lower Upper

1.3

0.5

30
α 0.1917 2.0185 0.2210 7.3712 96.2% −0.0038 0.1558 2.6689 3.2541

θ 0.5325 1.0676 0.3977 3.5868 93.2% −0.0696 0.1621 0.9486 1.4541

β 9.3388 5.0389 1.4536 8.8852 96.4% 0.4023 0.2277 0.5010 0.8988

70
α 0.3736 1.8015 1.3537 6.8878 92.6% −0.0071 0.1313 2.7384 3.2252

θ 0.3598 0.6399 0.9110 2.6245 95.2% −0.0784 0.1300 1.0446 1.3579

β 9.7520 5.4079 0.7873 9.9648 96.4% 0.5596 0.2929 0.6081 0.9368

100
α 0.3083 2.0838 0.2612 7.5884 95.4% −0.0040 0.0897 2.8073 3.1475

θ 0.3510 0.5847 1.0390 2.4735 96.2% −0.0627 0.1003 1.1033 1.3265

β 9.7169 5.4798 0.3857 10.3312 93.6% 0.4114 0.2145 0.5799 0.8143

200
α 0.8118 3.5689 0.3173 10.5536 95.8% −0.0021 0.0452 2.9092 3.0800

θ 0.3223 0.4785 1.2655 2.1725 95.8% −0.0367 0.0585 1.1795 1.3146

β 9.6584 5.0771 2.2548 8.4036 96.0% 0.2381 0.1241 0.5548 0.6959

0.9

30
α −0.1503 1.6360 0.5364 5.6349 95.6% −0.0038 0.1618 2.6992 3.3379

θ 0.3752 0.8357 0.4565 3.1191 97.8% −0.1104 0.1934 0.9110 1.3977

β 6.1647 6.2502 0.8019 5.0945 97.0% 0.1488 0.1888 0.7805 1.3184

70
α −0.1584 1.0898 0.6006 4.4492 97.6% −0.0134 0.1395 2.7034 3.2184

θ 0.1830 0.4443 0.8017 2.2740 93.0% −0.1119 0.1694 0.9717 1.2952

β 5.3507 5.0649 2.6369 4.7944 97.8% 0.1222 0.1722 0.8992 1.2938

100
α 0.1317 2.0370 0.6525 4.3156 94.2% −0.0031 0.0883 2.8246 3.1589

θ 0.2120 0.4331 0.9200 2.2311 92.0% −0.0901 0.1313 1.0629 1.2857

β 6.4228 6.0394 3.2486 4.1124 96.4% 0.1633 0.1653 0.8964 1.1761

200
α 0.1701 1.6929 0.3436 3.6772 94.2% −0.0031 0.0461 2.8961 3.0742

θ 0.1568 0.2695 1.1578 1.8498 95.0% −0.0485 0.0704 1.1800 1.3009

β 6.7695 6.3441 3.5224 3.8463 97.2% 0.0836 0.0848 0.9010 1.0514

2

0.5

30
α −0.1881 0.6957 1.6375 3.2338 95.6% −0.0047 0.1551 2.6721 3.2679

θ −0.0411 0.5058 0.9386 2.8969 90.0% −0.0553 0.1959 1.5765 2.2175

β 4.5180 2.5199 0.5683 4.9497 96.8% 0.2992 0.1983 0.3997 0.9025

70
α −0.2116 0.8253 1.3305 3.3996 100.0% −0.0067 0.1355 2.6983 3.2384

θ −0.0649 0.6639 0.5929 3.1475 97.2% −0.0726 0.1869 1.6464 2.0764

β 4.1615 2.3945 0.2558 4.9057 100.0% 0.4675 0.2563 0.5129 0.9282

100
α −0.2105 0.8825 1.1588 3.5784 100.0% −0.0039 0.0929 2.8218 3.1785

θ −0.0837 0.6576 0.5849 3.0803 100.0% −0.0565 0.1382 1.7356 2.0397

β 3.8575 2.2378 0.2023 4.6552 100.0% 0.3167 0.1723 0.5349 0.7985

200
α −0.0747 0.3607 2.2214 3.3303 92.6% −0.0021 0.0450 2.9162 3.0799

θ −0.2174 0.5774 0.8199 2.3105 95.2% −0.0275 0.0695 1.8580 2.0248

β 3.0823 1.7603 0.3725 3.7098 95.4% 0.1803 0.0975 0.5084 0.6579

1.1

30
α −0.4095 1.4678 0.1957 3.3470 99.6% −0.0073 0.1620 2.6815 3.2895

θ −0.0105 0.6870 0.6319 3.3262 100.0% −0.0911 0.2397 1.5140 2.1195

β 2.5931 3.5294 0.1257 8.0306 99.6% 0.1034 0.1881 0.9228 1.5108

70
α −0.3289 1.1819 0.7368 3.2901 100.0% −0.0127 0.1424 2.6825 3.1929

θ −0.1004 0.6782 0.5283 3.0700 100.0% −0.0941 0.2211 1.5755 1.9901

β 2.3766 2.7979 1.7584 5.6701 97.8% 0.1644 0.2140 1.0552 1.4943

100
α −0.2776 0.9788 1.1578 3.1769 92.8% −0.0075 0.0892 2.8212 3.1590

θ −0.1742 0.6667 0.5362 2.7671 93.0% −0.0655 0.1549 1.7024 2.0002

β 2.3582 2.7976 1.6383 5.7497 98.2% 0.1111 0.1451 1.0470 1.3534

200
α −0.2445 0.8234 1.5320 3.0013 93.8% −0.0041 0.0453 2.8966 3.0706

θ −0.2436 0.5653 0.9504 2.0750 97.4% −0.0367 0.0844 1.8520 2.0008

β 2.2435 2.5427 2.3663 4.7694 96.6% 0.0569 0.0753 1.0850 1.2456
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5. Simulation Analysis

In this section, Monte Carlo simulations are performed to assess the effectiveness of
the suggested estimators for the parameters α, θ, and β that were established in Section 4.1.
We will sum up by providing the simulation scenario. The findings of the simulation are
then offered for debate.

5.1. Simulation Scenario

In this subsection, several Monte Carlo simulation studies are carried out to assess the
effectiveness of the acquired maximum likelihood estimates and Bayesian estimation of
α, θ, and β. Now, we suggest the following steps to gather a sample from the DNGR model:

• Set α, θ, and β to their actual values as shown:
In Table 2: α = 1.5, θ = 0.8, β = 0.5, α = 1.5, θ = 0.8, β = 2, α = 1.5, θ = 1.3, β = 0.5,
α = 1.5, θ = 1.3, β = 2.
In Table 3: α = 3, θ = 1.3, β = 0.5, α = 3, θ = 1.3, β = 0.9, α = 3, θ = 2, β = 0.5,
α = 3, θ = 2, β = 1.1.

• Specific values for n (total test units) should be determined as 30, 70, 100, 200.
• Generate a uniform random variable within the range of 0 to 1. Utilize the quantile

function described in Equation (7) to produce a random sample from the DNGR(α, θ, β)
distribution. Afterwards, round the quantity of samples to the nearest whole number.

• Compute the MLEs and 100(1 − γ)% via ‘maxLik’ package in R program with version
number (4.3.0), with Fisher information matrix (Hessian matrix).

• Use ‘coda’ package in R program with version number (4.3.0), to obtain the Bayes’
inferences by running the MCMC sampler 12,000 times and 2000 is burn-in.

• Repeat the above steps 5000 times.
• The relative bias (RB), mean squared error (MSE), average lower, average upper,

and coverage probability (CP) of the parameter are specifically determined for each
group (n, or actual value of the parameter). For more details about comparing in-
terval estimates, we discuss using the CP requirement in our evaluations. R 4.2.2
programming language is used to carry out all numerical analyses. In Tables 2 and 3,
respectively, all numerical findings for α, β, and θ are obtained and presented.

5.2. Simulation Conclusion

The performance of the suggested point and interval estimate algorithms is the main
topic of this subsection. We can infer the following facts from Tables 2 and 3:

• The acquired estimates of the unknown parameters α, θ, and β generally perform well
in terms of lowest MSE, RB, and difference between upper and lower values with CP.

• The MSE, RB, and CI of α, θ, and β tend to decline as n rises. This result supports the
associated estimates’ consistency property of DNGR distribution when the necessary
sample size is raised.

• As the true value of β increases, for each setting, the MSE, RB, and CL measures
of unknown parameters α and β decrease, while they increase regarding unknown
parameter θ.

• The MSE, RB, and CL measures of all unknown parameters α, θ, and β increase for
each set as the true value of θ grows.

• For CI of Bayesian, the credible interval decreases when the sample size increases.
• Almost always, and regardless of sample size, Bayesian estimation based on the SE

loss function yields the minimal RB and MSE values.

6. Real Data Examples

This section presents the analysis of two applications using different real datasets.
The main goals of this section are

• Examine the usefulness and applicability of the proposed model to real phenomena;
• Show the applicability of the inferential results to a real practical situation;
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• Evaluate whether the proposed model is a better choice than the other seven models.

Data I: The first dataset includes the number of strikes that occurred in the UK coal
mining industry over four consecutive week periods between 1948 and 1959. It was derived
from Kendall [34]. An empirical model was used to analyze this example by Ridout and
Besbeas [35] and is presented in Table 4.

Table 4. Data I: The number of strikes and their frequency that occurred in the UK coal mining
industry.

data 0 1 2 3 4 or more

Freq 46 76 24 9 1

Data II: The number of fires that occurred in Greece between 1 July and 31 August,
1998. We only take into account fires in forest districts. These data have a sample size of
124. The minimum value is 0, the first quartile is 2, the median value is 4, the mean value is
5.065, the third quartile’s maximum value is 8, and the variance value is 18.256. The data
are as follows: 2, 4, 4, 3, 3, 1, 2, 4, 3, 1, 1, 0, 5, 5, 0, 3, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 4, 2, 2, 1, 2, 1, 2, 0, 2, 2, 1, 0, 3, 2, 1, 2, 2, 7, 3, 5, 2, 5, 4, 5, 6, 5, 4, 3, 8, 4, 3, 8, 4, 4, 3, 10, 5, 4, 5,
12, 3, 8, 12, 10, 11, 6, 1, 8, 9, 12, 9, 4, 8, 12, 11, 8, 6, 4, 7, 9, 15, 12, 15, 15, 12, 9, 16, 7, 11, 9, 11, 6,
5, 20, 9, 8, 8, 5, 7, 10, 6, 6, 5, 5, 15, 6, 8, 5, 6. These data were discussed by [36].

Based on the first and second datasets, the DNGRD probability model is contrasted and
compared with the other seven competing models to show the reliability and superiority of
the proposed model, including Poisson, binomial, geometric, discrete Burr (DB) by [37],
discrete Marshall–Olkin Lomax (DMOL) by [38], new discrete Lindley (NDL) by [39],
and discrete odd perks exponential (DOPE) by [40] distributions. To specify the best
model, several criteria are used, namely: Akaike (AIC = 2p − 2l̂), where p is the length
of the model parameter and l̂ is log-likelihood value, consistent Akaike (CAIC = −2l̂ +

2np
n−p−1 ), Bayesian (BIC = −2l̂ + p ln(n)), and Hannan–Quinn (HQIC = −2l̂ + p ln(ln(n))
information criteria. Along with these, the X2 − square statistic and its p-value are taken
into account. If a probability model distribution has the highest p-value and the lowest
values for all other metrics, it is obvious that it will provide the best fit for a particular
collection of data. The maximum likelihood estimates (with their standard errors (St.Es)),
as well as the fitted model selection criteria, are shown in Tables 5 and 6 using the R
programming language and the ’bbmle’ package in R program with version number (4.3.0),
that was recommended.

To compare the performance and efficiency of the DNGR distribution with other
distributions listed in Table 5, using measures of goodness of fit and p-values, we can
proceed as follows:

1-DNGR versus DOPE:
DNGR shows a better fit with a lower AIC, CAIC, BIC, and HQIC. The chi-squared

value is lower for DNGR, indicating a better fit. DNGR has a higher p-value, suggesting a
better fit to the data than DOPE.

2-DNGR versus Binomial/Poisson:
DNGR has a higher p-value than both binomial and Poisson distributions, indicating a

more suitable model for the data. The information criteria (AIC, CAIC, HQIC) for DNGR are
lower compared to binomial and Poisson, suggesting a better fit than binomial and Poisson.

3-DNGR versus DMOL:
DNGR and DMOL have comparable p-values, but DNGR shows better performance

in terms of information criteria.
4-DNGR versus DB:
DNGR has a higher p-value than DB, indicating that DNGR shows slightly better

performance in terms of information criteria.
5-DNGR versus Geometric/NDL:
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DNGR outperforms both geometric and NDL distributions in terms of p-value, in-
dicating a significantly better fit. DNGR has lower information criteria values, further
suggesting its superiority in model fitting. Overall, DNGR appears to offer a more efficient
and suitable fit for Data I compared to the other listed distributions.

Table 5. MLE estimates and different measures of fit for Data I.

Estimators SE AIC CAIC BIC HQIC X2 p-Value

DNGR

α 33.0996 13.6357

382.7571 382.9150 391.9067 386.4733 3.6721 0.4522θ 0.3343 0.0434

β 0.9276 0.1425

DOPE

α 39.3584 3.5957

387.5354 387.6933 396.6850 391.2516 5.2373 0.2638θ 0.2757 0.0264

β 3.1307 0.5099

Binomial θ 0.9937 0.1315 386.1302 386.1562 389.1801 387.3689 10.1078 0.0387

Poision θ 0.9936 0.0798 386.1302 386.1562 389.1801 387.3689 9.8986 0.0422

DB
α 4.6524 0.6986

388.4190 388.4974 394.5187 390.8964 5.4076 0.2480
β 0.5940 0.0448

DMOL

α 21.1960 7.5845

386.4288 386.5867 395.5784 390.1450 3.9771 0.4091θ 1.8892 0.3088

β 0.0028 0.0009

Geometric θ 0.5017 0.0284 433.1343 433.1603 436.1842 434.3731 50.7984 0.0000

NDL θ 0.5017 0.0284 433.1343 433.1603 436.1842 434.3731 50.7984 0.0000

Table 6. MLE estimates and different measures for Data II.

Estimators SE AIC CAIC BIC HQIC X2 p-Value

DNGRD

α 12.5091 2.5308

668.4150 668.6150 676.8759 671.8520 22.8025 0.2986θ 0.0122 0.0027

β 0.4495 0.1299

DOPE

α 44.2111 9.3605

685.1374 685.3374 693.5983 688.5744 32.6330 0.0370θ 0.0134 0.0017

β 0.7291 0.0844

Binomial θ 0.9608 0.2622 821.7835 821.8163 824.6038 822.9292 12776.3387 0.0000

Poision θ 5.0645 0.2021 821.7835 821.8163 824.6038 822.9292 26469.5465 0.0000

DB
α 2.5385 0.4910

748.2257 748.3249 753.8663 750.5170 91.3536 0.0000
β 0.7611 0.0425

DMOL

α 4.6349 1.8610

674.2602 674.4602 682.7210 677.6972 25.0095 0.2011θ 13.0180 3.2683

β 0.0031 0.0018

Geometric θ 0.1649 0.0135 675.3352 675.3679 678.1554 676.4808 27.5152 0.1214

NDL θ 0.1649 0.0135 675.3352 675.3679 678.1554 676.4808 27.5152 0.1214

Figures 3–5 confirm these results for Data I (the black point refer to data; the pink
point refer to DNGR distribution). Additionally, it is evident from Data II in Table 6 that the
DNGR distribution is the best distribution among all the examined models in terms of the P-
value, whereas Figures 6–8 confirm these results for Data II. Figure 3 confirms the results of
MLE fitting and demonstrates the existence, uniqueness, and maximum point of likelihood
value of the likelihood estimates for Data I. Figure 4 regarding associated empirical CDF
and estimated CDF plot illustrates the connection between observed cumulative probability
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and observation through a visual plot and also Q–Q plot for Data I. Figure 5 highlights
estimated frequency by using PMF for each comparative model for Data I. Table 7 indicates
survival and hazard rate functions for DNGR distribution with different values of Data
I, noting that the survival value decreased when the values of Data I increased, while the
hazard rate value increased when the values x of Data I increased.

Figure 6 confirms the results of MLE fitting and demonstrates the existence, unique-
ness, and maximum point of likelihood value of the likelihood estimates for Data II. Figure 7
regarding associated empirical CDF and estimated CDF plot illustrates the connection be-
tween observed cumulative probability and observation through a visual plot and Q–Q
plot for Data II. Figure 8 highlights estimated frequency by using PMF for each compar-
ative model for Data II. Table 8 indicates survival and hazard rate functions for DNGR
distribution with different values of Data II, noting that the survival values decreased when
the values of Data II increased, while the hazard rate value increased when the values x of
Data II increased.
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Figure 3. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data I.
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Figure 4. Estimated CDF and Q–Q plot of DNGR by using MLE: Data I.

Table 7. Survival and hazard rate functions for DNGR distribution with different values of Data I.

x S (x; 33.0994, 0.3343, 0.9275) h (x; 33.0994, 0.3343, 0.9275)

0 0.6952 0.4383

1 0.2518 1.7607

2 0.0472 4.3343

3 0.0045 9.3889

4 0.0002 19.2691
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Figure 5. Estimated PMF of each comparative model by using MLE: Data I.
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Figure 7. Estimated PMF of each comparative model by using MLE: Data II.

Table 8. Survival and hazard rate functions for DNGR distribution with different values of Data II.

x S (x; 12.5091, 0.0122, 0.4495) h (x; 12.5091, 0.0122, 0.4495)

0 0.8721 0.1466

2 0.6577 0.1572

4 0.4725 0.1879

5 0.3919 0.2059

8 0.2023 0.2686

20 0.0023 0.6490
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Figure 8. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data II.

7. Conclusions

In this study, the authors successfully developed a novel discrete analog from the
continuous generalized Rayleigh distribution denoted by DNGR through the application
of the survival discretization method. Several key attributes of the DNGR model were
studied, such as its unimodal probability mass function, which exhibits varying degrees
of symmetry and skewness based on parameter selection. Comprehensive statistical
measures for DNGR were derived, including moments, stress–strength function, moment-
generating function, and mean residual and mean past lifetimes. The potential submodels
and special cases derived from the DNGR demonstrate the versatility and adaptability of
the DNGR distribution, which can be suitable for modeling different types of data and
could provide unique insights depending on the context of the analysis. Furthermore,
the practical applicability of the work was enhanced by conducting detailed simulation
analyses and presenting the results in tabular form. Point and interval estimation using
both the maximum likelihood and the Bayesian methods were obtained, supplementing
these with simulation analyses executed using R code. This was complemented by a
numerical analysis aimed at evaluating the estimation methods for DNGR’s unknown
parameters and assessing the efficiency of these methods. A significant aspect of their
contribution is the application of the DNGR model to real-world data. Two real data
examples were selected, one from the industrial sector concerning UK coal mining strikes
and another focusing on environmental issues related to fires in Greece. Their analysis
revealed that the DNGR model outperformed seven competitive discrete distributions in
various goodness-of-fit measures, demonstrating its superior ability to model the given
datasets effectively. This finding was further illustrated through detailed tables and figures
showcasing the properties and efficiency of the new model. As a pathway for future
work, the authors suggest exploring alternative discretization methods to assess their
performance and applicability to a broader range of real-life data scenarios.
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Abstract: Alzheimer’s disease (AD) affects about a tenth of the population aged over 65 and nearly
half of those over 85, and the number of AD patients continues to grow. Several studies have shown
that the ε4 variant of the apolipoprotein E (APOE) gene is potentially associated with an increased
risk of AD. In this study, we aimed to investigate the causal effect of APOE-ε4 on Alzheimer’s
disease under the potential outcome framework and evaluate the individualized risk of disease onset
for APOE-ε4 carriers. A total of 1705 Hispanic individuals from the Washington Heights-Inwood
Columbia Aging Project (WHICAP) were included in this study, comprising 453 APOE-ε4 carriers
and 1252 non-carriers. Among them, 265 subjects had developed AD (23.2%). The non-parametric
Bayesian additive regression trees (BART) approach was applied to model the individualized causal
effects of APOE-ε4 on disease onset in the presence of right-censored outcomes. The heterogeneous
risk of APOE-ε4 on AD was examined through the individualized posterior survival probability
and posterior causal effects. The results showed that, on average, patients carrying APOE-ε4 were
0.968 years younger at onset than those with non-carrying status, and the disease risk associated
with APOE-ε4 carrying status was 3.9% higher than that for non-carrying status; however, it should
be noted that neither result was statistically significant. The posterior causal effects of APOE-ε4
for individualized subjects indicate that 14.41% of carriers presented strong evidence of AD risk
and approximately 38.65% presented mild evidence, while around 13.71% of non-carriers presented
strong evidence of AD risk and 40.89% presented mild evidence. Furthermore, 79.26% of carriers
exhibited a posterior probability of disease risk greater than 0.5. In conclusion, no significant causal
effect of the APOE-ε4 gene on AD was observed at the population level, but strong evidence of AD
risk was identified in a sub-group of APOE-ε4 carriers.

Keywords: Bayesian model; individualized disease risk; right-censored data; Alzheimer’s disease

MSC: 62P10

1. Introduction

Alzheimer’s disease (AD) is a devastating neurological disease that affects millions
of people around the world. About one in ten people over 65 and almost half of people
over 85 suffer from AD [1], and the number of afflicted individuals continues to grow
annually. It has been revealed that the apolipoprotein E locus (APOE) gene is associated
with an increased risk of AD onset, in both sporadic and familial forms [2,3]. Particularly,
among three alleles, the epsilon 4 (E4 or ε4) variant of APOE has been found to be an
important factor in the etiology of more than half of all AD [2,4]. Thus, determining
how to quantify the risk of APOE-ε4 on AD is critical. In previous studies, a research
team from Duke University concluded that APOE-ε4 was associated with AD as a major
risk factor using the Mantel–Haenszel correlation statistic and Cox proportional hazard
model [2]. Another study using logistic regression has also revealed that APOE-ε4 was
associated with a higher AD risk [4]. A meta-analysis showed that APOE-ε4 was a major
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risk factor across ethnic groups, ages, and gender [5]. In addition, a twin study suggested
that multiple susceptibility genes along with APOE-ε4 contributed to around 80% of AD
cases [6]. However, the above studies on the effects of the gene on AD were all based
on statistical association analysis. So far, to the best of our knowledge, there have been
very limited studies evaluating the risk of APOE-ε4 on AD in terms of causal effect at
individualized level [2,5,6]. Assessing the AD risk using the causal effect of APOE-ε4 at
the individual level could help to target patients who may be susceptible to APOE-ε4 [7,8].

Treatment effects (or risk) of specific treatments or interventions are usually evaluated
at population level in randomized controlled trial (RCT) studies. However, in practice,
clinical decisions are often made at the individual level. Real-world observations include
large amounts of clinical information about patients, hence offering us an opportunity to
infer the treatment effects for heterogeneous patients, even from a causal perspective. It is
well known that the causal effect of treatment can be inferred under the potential outcome
framework by Rubin [9], which usually requires strong assumptions before performing
causal inference. An advantage of the potential outcome framework is that it can be em-
ployed to infer the individualized treatment effect [10], for which the causal effect of a
specific treatment can be identified under the assumption that treatment is independent of
potential outcome of treatment and control, given the pre-treatment covariates. The individ-
ualized treatment effect (ITE) is an important measure that has been widely investigated in
the field of personalized medicine [11], which helps to quantify individualized responses to
specific treatments for heterogeneous individuals by calculating the difference of outcomes
between treatment and control for any patient. A major challenge in the models of the
ITE method is to handle the non-linear relationship between the covariates and survival
outcomes, especially in the presence of complex censoring.

Bayesian additive regression trees (BART) is an ensemble learning method by which
the value of any unknown function can be approximated through the summation of a
series of Bayesian regression trees. In particular, BART is flexible, powerful, and can handle
the complex non-linear relationships and interactions among covariates [12,13]. More
importantly, the Bayesian framework allows for the construction of 95% credible intervals
for statistical inference. In practice, BART applies to both continuous and binary outcomes;
hence, it has a wide range of applications. It has also recently been generalized to survival
analysis [14,15] and can handle right-censored data [16], even interval-censored data [17].
Furthermore, BART is suitable for observational studies [12]. Therefore, the BART method
can also be used to estimate the ITE and conduct causal inference. Finally, BART can easily
be extended to various settings, and a generalized BART model that unifies extensions
is called general BART [18]. Generalized BART is commonly used for non-parametric or
semi-parametric problems, correlated outcomes, survey matching problems, and models
with weaker distributional assumption. The flexible extensibility of BART is a particular
advantage in practical applications.

In this article, we aim to assess the causal risk of APOE-ε4 on AD in the presence
of right-censored observations under the potential outcome framework and examine the
individualized risk of disease onset for APOE-ε4 carriers. To the best of our knowledge,
the data analysis in existing studies focused on AD has concluded merely in terms of the
correlation, instead of the causal association between AD and APOE-ε4. The novelty of
this article lies in the investigation of causal associations between APOE-ε4 and AD using
BART, a hybrid Bayesian and machine learning method, which enables us to estimate and
infer the causal effect of interest at both the population and individual level. In particular,
the key contributions of this paper are as follows:

• We apply the BART method to a non-parametric AFT model for right-censored data;
• We infer the causal effect of APOE-ε4 on AD at both population and individual levels

under the potential outcome framework;
• We explore heterogeneous evidence of the causal effect and identify important vari-

ables associated with the causal effect.
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The remainder of this article is organized as follows. The data, notation, and statistical
models are described in Section 2. In Section 3, we present the results regarding the
estimated gene effect of APOE-ε4 on AD with respect to age at onset and onset risk for
each patient. We conclude with a brief discussion in Section 4.

2. Model and Methods

2.1. Notation

Suppose there are n patients in the study. For the ith patient, let Ỹi denote the true
AD onset time and Ci denote the censoring time. Denote the observed AD onset time as
Yi = min(Ỹi, Ci) and the censoring indicator as Δi = I(Ỹi ≤ Ci). Let Wi be an indicator
of carrying the APOE-ε4 gene, such that Wi = 1 indicates assignment to the treatment
group and Wi = 0 indicates assignment to the control group. Let Xi denote a p × 1
vector of baseline covariates. Therefore, the observed data can be denoted as O = {Oi =
(Yi, Δi, Wi, Xi) : i = 1, · · · , n}. We make some regular assumptions for identifying the
causal effect. First, the treatment assignment is strongly ignorable. Denote Yi(1) and Yi(0)
as the potential outcomes under the treatment Wi = 1 and the control Wi = 0, respectively.
We assume that the treatment Wi is independent of the potential outcome Yi(1) and Yi(0),
given Xi. Furthermore, the treatment probabilities for the patients are bounded away from
0 and 1; that is, Pr(Wi = 1|Xi) ∈ (0, 1).

2.2. Non-parametric Accelerated Failure Time BART Model

To explore the causal effect of APOE-ε4 on Alzheimer’s disease using a general and
flexible model, we consider a non-parametric AFT model, defined as follows

log Ỹ = f (W, X) + ε, (1)

where Ỹ is modeled using a non-linear function and the residual term ε satisfies E(ε|W, X) = 0.
In the following, we name (1) as the AFT-BART model.

For the model regression, we use Bayesian additive regression trees to approximate
the unknown non-linear function f (W, X). Let T denote a binary tree that consists of
the tree structure and the interior node decision rules leading to subsequent nodes; in
particular, all of the interior nodes of T have decision rules. Rules decide a (W, X) pair
to either the left or right node. Let M = {μ1, μ2, ..., μb} be the parameter values (mean
response of the subgroup of observations) associated with the b leaf nodes of the tree T.
Given the tree model (T, M) and a pair (W, X), we can define the value obtained at the leaf
node and report the value μ associated with that leaf node. BART consists of two parts: A
sum-of-trees model and a regularization prior. We denote the single tree model function as
g(W, X; T, M). The regression function m is represented in BART as a sum of the individual
tree contributions

f (W, X) =
m

∑
j=1

g(W, X; Tj, Mj), (2)

where each (Tj, Mj) denotes a single tree model. Let T(−j) be the set of all trees except for
Tj, and define M(−j) similarly. The sum-of-tree model begins taking the fit from the first
weak-learning tree, g(W, X; T1, M1). After the fitting process, the model subtracts the first
fit from the observed response and forms residuals. Then, the model fits the next tree to the
residuals. The above procedure is performed m times in total. In the spirit of boosting, the
number of trees in the model can be large, allowing each tree to contribute only a small
part to the total fit. Over-fitting can be avoided through the use of a regularization prior,
which limits the fit of each (Tj, Mj) tree. The second piece of BART is the prior. In our
analysis, we used the prior settings recommended for the AFT-BART model [14]. When
using BART, the AFT model is fully non-parametric, and both the regression function and
error distribution are modeled non-parametrically. The random error term ε follows a
flexible location mixture of normal densities.
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In essence, Algorithm 1 is an algorithm for the non-parametric AFT model in the
presence of right-censored data, which is an extension of the BART model. In particular, it
assumed to be a DP mixture model for the residual distribution. Under the non-parametric
AFT framework, it deals with right censoring using a data augmentation technique with
truncated normal distribution.

Algorithm 1 Bayesian algorithm for the AFT-BART model.
Input: Data Di = (Yi, Xi, δi), i = 1, 2, ..., n, initial values for Tb, Mb, b = 1, ..., m,
the (τi, σ) on the residual, i = 1, 2, ..., n, and other parameters variables θ =
(m, k, α, β).

1: To update T∗
b , M∗

b | T(−b), M(−b), θ, D, transform original Yi to Yi − μ̂AFT as the re-
sponses.

2: Update T1, ..., Tm and M1, ..., Mm as in Algorithm 2.
3: Update f (Xi) | T1, ..., Tm, M1, ..., Mm.
4: To update the parameters related to the residual distribution:

5: Update cluster labels S1, ...Sn with probability P(Si = h) ∝ πhφ

(
log Yi − f (Xi)− τh

σ

)
,

let nh = ∑n
i=1 1{Si = h}.

6: Sample stick-breaking weights Vh ∼ Beta(αh, βh), αh = 1 + nh, βh = M ∑H
k=h+1 nk,

h = 1, ..., H − 1,
let VH = 1.

7: Set πh = Vh ∏k<h(1 − Vk), h = 1, ..., H, set update mixture proportions.
8: Sample unconstrained cluster locations

τ∗
h ∼ N

(
σ2

τ

nhσ2
τ + σ2

n

∑
i=1

{log Yi − f (Xi)}1{Si = h},
σ2

τ σ2

nhσ2
τ + σ2

)
.

9: Update constrained cluster locations τh = τ∗
h − μG∗ , where μG∗ = ∑H

h=1 πhτ∗
h .

10: Update mass parameter M ∼ Gamma
(

ψ1 + H − 1, ψ2 − ∑H−1
h=1 log(1 − Vh)

)
.

11: Update σ2 ∼ Inv-Gamma( v+n
2 , ŝ2+kv

2 ), where ŝ2 = ∑H
h=1 ∑n

i=1{log Yi − f (Xi) −
τh}21{Si = h}.

12: for i ∈ {δi = 0} do
13: Sample log zi ∼ Truncated-Norm( f (Xi) + τSi , σ2; log Yi), set Yi = zi.
14: end for
15: Compute the final log Ŷi = f (Xi) + μ̂AFT .
Output: New values of Tb, Mb, b = 1, ..., m, and (τi, σ), i = 1, 2, ..., n.

In AFT-BART, (α, β, k, m) on f and (G, σ) on ε are treated as parameters in a formal
statistical model. We used the prior settings recommended for AFT-BART [1]. After setting
the prior on the parameters, the posterior can be computed using a Markov chain Monte
Carlo (MCMC) technique; in particular, a Gibbs sampler was extended for computation
of the posterior. After updating the trees and the terminal leaf node parameters, the
parameters of the residual distribution can then be updated. The part of the residual
distribution J can be expressed as

Ji | τi, σ2 ∼ N(τi, σ2), for i = 1, .., n, σ2 ∼ kv/χ2

τi ∼ G, G | M ∼ CDP(M, G0), M ∼ Gamma(ψ1, ψ2). (3)

Here, the mixing distribution G is truncated to have a large, finite number of compo-
nents H. Vh ∼ Beta(1, M) for h = 1, ..., H − 1. We summarize the algorithm for this model
as Algorithm 1. In the analysis, we set 5000 as the number of MCMC iterations to be treated
as burn-in and 1000 as the number of iterations for posterior drawing. Furthermore, we set
the number of trees as 200.
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Base on the above models, we can estimate the individualized treatment effect (ITE),
which can be expressed as the difference in expected log disease-onset time in the treatment
group versus that in the control group. The ITE τ(x) for a subject with covariate x can be
calculated as

τ(x) = E(log(Y)|W = 1, X = x)− E(log(Y)|W = 0, X = x)

= f (1, x)− f (0, x). (4)

In this scenario, the ITE represents the difference in age at onset of AD for patients.

2.3. Onset Probability Analysis

Let the binary outcome of AD be Y, where Y = 1 denotes the onset endpoint of
the participant and Y = 0 denotes the unobserved endpoint of the participant. It is
straightforward to adapt or extend BART to the probit model. Define

p(X) = P(Y = 1|X = X) = Φ[ f (X)], (5)

where

f (X) =
m

∑
j=1

g(X; Tj, Mj) (6)

and Φ[·] is the cumulative distribution function of standard normal distribution, Tj denotes
the jth binary regression tree, and Mj denotes the associated terminal node parameters
of tree j. Each probability p(x) is obtained as a function of f (x). This idea differs from
traditional aggregate classifier approaches, which often use a majority or average vote
based on an ensemble of weak learners. For posterior calculation, the latent variables

Z1, · · · , Zn
i.i.d∼ N(G(x), 1) are introduced into the model [19], with Yi = 1 if Zi > 0 and

Yi = 0 if Zi ≤ 0. Here, i.i.d∼ means independent and identically distributed. Finally, we
obtain Zi|Yi = 1 ∼ max{N[g(x), 1], 0} and Zi|yi = 0 ∼ min{N[g(x), 1], 0}. We summarize
the BART method [12,20] in Algorithm 2.

Algorithm 2 Bayesian back-fitting algorithm for updating BART
Input: Data Di = (Yi, Xi), i = 1, 2, ..., n, initial values for Tb, Mb, b = 1, · · · , m, and other
parameters/variables θ = (m, k, α, β).

1: To update T∗
b , M∗

b | T(b), M(b), θ, D:
2: for b in 1:m do
3: Compute partial residuals Rb = Yi − ∑m

j �=b g(Xi; Tb, Mb).

4: Compute L(Tb; T(b), M(b), θ) =
∫ (

∏n
i=1 p(Rb | Tb, Mb, T(b), M(b), θ)

)
p(Mb | Tb, θ)dMb.

5: Propose T∗
b = q(T∗

b ; Tb).

6: Set a ← L(T∗
b ;T(b) ,M(b) ,θ)p(T∗

b )

L(Tb ;T(b) ,M(b) ,θ)p(Tb)

q(Tb ;T∗
b )

q(T∗
b ;Tb)

.

7: Sample u ∼ U(0, 1)
8: if u < min(a, 1) then
9: Tb ← T∗

b .
10: end if
11: Sample Mb ∼ p(Mb | Tb, T(b), M(b), θ, D), μbi ∼ N(0, σ2

μ).
12: end for
13: Draw σ | T1, · · · , Tm, M1, · · · , Mm, y, σ ∼ vλ/χ2

v.
Output: New values of Tb, Mb, b = 1, · · · , m.

In the binary case, the ITE τ(x) for a patient with covariate vector x can be defined as

τ(x) = P(Y = 1|W = 1, X = x)− P(Y = 1|W = 0, X = x). (7)
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In this scenario, the ITE represents the risk of onset of AD for a patient.

2.4. Posterior Inference Statistics

To predict the outcome Y for a particular x, we take the empirical average of the after
burn-in sample f ∗1 , · · · , f ∗K, as follows:

1
K

K

∑
k=1

f ∗k (x). (8)

The individual-level causal effects can be estimated as

1
K

K

∑
k=1

f ∗k (1, x)− f ∗k (0, x). (9)

Given the conditions on the X values in the sample, the conditional average treatment
effect can be estimated as follows

1
N

N

∑
i=1

E[Yi(1)|Xi]− E[Yi(0)|Xi] =
1
N

N

∑
i=1

f (1, xi)− f (0, xi). (10)

We utilize the posterior probabilities of the differential treatment effect to detect the
presence of heterogeneous treatment effects

Di = P{θ(xi) > 0|y, δ}, (11)

along with the closely related quantity

D∗
i = max{1 − 2Di, 2Di − 1}. (12)

Here, Di denotes the posterior probability that measures whether θ(xi) is greater than
or equal to 0. For patient i, there exists a strong evidence of a differential treatment effect if
D∗

i > 0.95; that is, Di ≥ 0.975 or Di ≤ 0.025. Mild evidence of a differential treatment effect
exists if D∗

i > 0.80; that is, Di ≥ 0.9 or Di ≤ 0.1.
Another research line involves quantifying the heterogeneous treatment effects using

the proportion of individuals who benefit from treatment. The proportion of benefit
measure provides an interpretation and a useful quantity for determining the presence
of cross-over or qualitative interactions among variables. The treatment effect in some
cases may have the opposite sign, in comparison to the overall average treatment effect. A
low proportion of patients benefiting in a situation where an overall treatment benefit has
been determined may indicate the existence of cross-over interactions. With the treatment
differences θ(x), we define the benefit proportion as

Q =
1
n

n

∑
i=1

I{θ(xi) > 0}. (13)

Here, Q is the posterior mean, which is the average of the posterior probabilities of
treatment benefit p̂i = P{θ(xi) > 0|y, δ}. Treatment assignment for a patient can be decided
according to the posterior probabilities of treatment benefit with p̂i > 0.5 or p̂i < 0.5.

Based on the above, we summarize the methods for determining the continuous
survival outcome and binary outcome in Algorithm 3. The corresponding R codes and a
brief intrduction of the implementation are presented in Appendix A.
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Algorithm 3 Effect Estimation of APOE-ε4 on AD
Input: Two data sets in total, n training samples in each. Di = (Yi, Wi, Xi), i = 1, 2, · · · , n;
D̃i = (Yi, Wi, Xi, δi), i = 1, 2, · · · , n.

1: For continuous outcome,
predict log Y(i) | Tb, Mb, b = 1, · · · , m, (τi, σ), D̃i, i = 1, 2, · · · , n from Algorithm 1.

2: Compute (4)
3: For classification of binary outcome,

predict log Zi | Tb, Mb, b = 1, · · · , m, (τi, σ), Di, i = 1, 2, · · · , n from Algorithm 2.
4: Compute P(Y = 1|X) = Φ(Zi).
5: Compute (7)
6: Extract information from the posterior,
7: Compute τ∗(x) = f ∗k (1, x)− f ∗k (0, x).
8: Construct credible interval (τ0.025, τ0.975) | τ∗(x), where P{τ∗(x) < τ0.025} =

0.025, P{τ∗(x) < τ0.975} = 0.975.
9: Compute (11) and (12).

Output: τ(x) and 95% CI of age at onset, τ(x) and 95% CI of onset risk, evidence for
heterogeneity of treatment effect D∗

i .

3. Application

WHICAP is an ongoing community-based study of aging and dementia among elderly
subjects residing in Northern Manhattan [21]. Proband participants were identified from
Medicare records aged 65 years or older and recruited in 1992 and 1999. The prevalence
of AD and dementia in proband participants was carefully monitored during the study.
Dense genome-wide genotypes were collected in probands with more than two million
SNPs. We focused on Hispanics, as they are one of the largest and fastest-growing ethnic
groups in the United States [22]. They are generally under-studied, and the incidence of
AD has been shown to increase by twofold in Hispanic elderly individuals, compared to
white individuals [23]. Although WHICAP provides pedigree information and familial
observations of probands, parents, and siblings, we only considered the probands in this
study, as the genotypes in relatives of the proband were unobservable.

For this study, we enrolled 1705 probands of Alzheimer’s disease with observed AD
onset time, where 453 (27%) were APOE-ε4 carriers while 1252 (73%) were non-carriers.
The characteristics of probands with AD onset time are summarized in Table 1. Furthermore,
there were 1720 probands whose disease status (i.e., AD or not) was observable, where
458 participants were APOE-ε4 carriers and 1262 were non-carriers. We also included three
baseline covariates in the model: sex, educational attainment level, and race. The survival
endpoint that we examined was the age at onset of patients (reported in years). We divided
educational attainment into three levels (“<−0.9”, “−0.9∼0.5”, and “0.5 ∼ 2.0”). For the
binary response model, we only included sex and educational attainment.

3.1. Overall Causal Effect of Patients at Onset

We estimated the causal effect of APOE-ε4 on Alzheimer’s disease using BART [24]
and a BART-based accelerated failure time model. We also compared the AFT-BART
method with other existing methods under the potential outcome framework. The first
method involved the application of the AFT interaction model [17]. For our application, the
ITE was calculated by subtracting the estimate under control assignment from the estimate
under treatment assignment. Another related method used two separate AFT models: one
for the treatment group and another one for the control group. The other method was
based on a survival Causal Tree and Causal Forests. We built each survival Causal Tree
using the function CausalTree in the R package SurvivalCausalTree [25].
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Table 1. Characteristics of probands with Alzheimer’s disease for continuous age at onset.

Characteristic APOE-ε4 Carriers Non-Carriers Total

Total. 453 1252 1705
Onset age—no.

(%)
60∼70 22 (5) 60 (5) 82 (5)
70∼80 192 (42) 429 (34) 621 (36)
80∼90 203 (45) 591 (47) 794 (47)

90 ∼ 100 36 (8) 172 (14) 208 (12)
Sex—no.(%)

male 155 (34) 432 (35) 587 (34)
female 298 (66) 820 (65) 1118 (66)

Educational—no. (%)
<−0.9 94 (21) 266 (21) 360 (21)

−0.9∼0.5 242 (53) 620 (50) 862 (51)
0.5∼2.0 117 (26) 366 (29) 483 (28)

Race—no. (%)
Race-1 113 (25) 425 (34) 538 (32)
Race-2 174 (38) 363 (29) 537 (31)
Race-3 161 (36) 441 (35) 602 (35)
Race-4 5 (1) 23 (2) 28 (2)

The causal effects of APOE-ε4 on Alzheimer’s disease, according to the models,
are presented in Table 2. The analysis causal effect using AFT-BART indicated that the
conditional average effect of the APOE-ε4 gene on Alzheimer’s disease was −0.032 in log
years difference; that is, patients with the APOE-ε4 gene presented 0.032 log years earlier
age at onset than patients without APOE-ε4, on average. From the results using AFT-BART
and BART to analyze the non-censored data, the age at onset was 0.001 and 0.003 log years
earlier than those without APOE-ε4, respectively.

Table 2. The causal effects of APOE-ε4 on Alzheimer’s disease according to BART and BART-based
accelerated failure time models (unit: log years).

Methods Mean 2.5% 97.5%

AFT-BART −0.032 −0.059 0.024
AFT 0.079 0.056 0.102

Two-AFT 0.044 −0.015 0.103
SCT −0.013 −− −−

Note: AFT-BART denotes non-parametric Bayesian accelerated failure time model, AFT denotes the method based
on one AFT model, Two-AFT denotes the method based on two separate AFT models, SCT denotes the method
based on survival Causal Tree.

The survival time posteriors for patients with and without APOE-ε4 are presented in
Figure 1. The red line is the posterior survival time of patients with APOE-ε4, while the
black line is the posterior survival time of patients without APOE-ε4. It can be seen that
the two lines do not overlap completely, which directly indicates that patients with APOE-
ε4 tend to present an earlier onset of Alzheimer’s disease, compared to those without
APOE-ε4.

Table 3 presents the difference in AD onset risk associated to APOE-ε4. The results
show that patients with the APOE-ε4 gene have an onset risk of AD of 0.166, while those
without APOE-ε4 gene have an onset risk of AD of 0.127. Thus, the APOE-ε4 gene increases
the mean onset risk by 0.039 for patients with APOE-ε4, compared with those without it.
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Figure 1. (left) Density of survival time for groups with and without APOE-ε4; and (right) posterior
of survival time for groups with and without APOE-ε4.

Table 3. The estimated treatment effects of APOE-ε4 on AD by BART for onset risk with 95% credible
interval.

Value Mean 2.5% 97.5%

Risk diff 0.039 −0.002 0.075
Gene prob 0.166 0.058 0.361
None prob 0.127 0.052 0.292

3.2. Distribution of Causal Effect for Patients

To characterize the variation in the causal effect of APOE-ε4 on AD, we plotted the
histogram and distribution of causal effect for patients, as presented in Figure 2. Smooth
posterior estimates provide the causal effect distribution of APOE-ε4 on Alzheimer’s
disease for all patients. The histogram was constructed using all point estimates from both
patients with and without the APOE-ε4 gene. The blue part indicates the total treatment
effect for patients with APOE-ε4, while the red part indicates the treatment effect for
patients without APOE-ε4. Three peaks can be observed in the histogram, both for all
patients and for the individual groups. The major patients with APOE-ε4 presented an
earlier age at onset than those without APOE-ε4: about 0.06 and 0.01 log years earlier at
onset. However, a minority of patients presented opposite results. Among these patients,
the patients with APOE-ε4 had about 0.03 log years earlier time of AD onset than patients
without APOE-ε4. It seems that these patients presented Alzheimer’s disease onset at a
later age, or were affected by the existence of cross-over interactions. Overall, the majority
of patients showed an earlier age of onset associated to APOE-ε4.

Figure 2. Distribution of causal effect on APOE-ε4.
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3.3. Individualized Treatment Effect

Figure 3 presents the individualized treatment effect estimates for the 1705 patients,
clearly indicating an overall earlier age at onset associated to APOE-ε4 for patients. The
estimates consist of posterior means of treatment effect with corresponding 95% credible
intervals for all patients. There are two obvious groups of patients, according to the
difference in onset time. The patients whose treatment effect was less than 0 had an earlier
age at onset due to the APOE-ε4 gene. It is clear that some patients had the treatment
effect and 95% credible intervals below zero. The causal effect of APOE-ε4 on Alzheimer’s
disease in these patients presented significant statistical significance. The variation in the
treatment effects suggests substantial heterogeneity in response to APOE-ε4, which may
be due to some individualized characteristics.

Figure 3. Posterior of causal effect for individual patients, where the red line shows the posterior
mean treatment effect for all of the patients, and the gray area show the 95% credible interval of each
individualized APOE-ε4 gene effect on AD.

The patients which presented a significant causal effect caused by APOE-ε4 were
extracted, for 515 patients in total. Table 4 presents the patients with and without significant
ITE, grouped by sex, race, and education level. In particular, 171 patients were male and
344 were female; in terms of the education level of patients, 116 patients received education
of low level, 259 patients received education of middle level, and 140 patients received high
level education; as for race, the number of patients characterized by the four races were
138, 176, 191, and 10, respectively.

3.4. Covariate-Specific Treatment Effects

We constructed partial dependence plots for survival time (in years) of patients, along
with the posterior distributions of treatment effect in male and female groups, each of
the four races, and sub-groups defined according to educational attainment level. For the
male and female groups, the posterior of survival time for male and female patients and
difference in survival time between male and female patients are presented in Figure 4.
The posterior of onset distribution and treatment effect in the male group were not distinct
from those in the female group.

Next, we examined the four race groups of patients, and the posterior survival time
and difference in survival time for the four groups are presented in Figure 4. The onset
distributions and treatment effects in the first three race groups were highly similar, but
distinct from those for the fourth race group. The possible explanation is that the sample
size of fourth race group was very small (28 patients), and only accounted for 28%.

Figure 4 presents the posterior of the survival time and difference in survival time for
patients grouped by educational attainment level. The partial dependence plots clearly
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show differences between patients with and without APOE-ε4 in the posterior distribution,
except for a crossover point, where the sample size may have not been large enough. In the
posterior of treatment effect, the median curves for both patients with and without APOE-
ε4 were below zero, clearly indicating the earlier age at onset caused by the APOE-ε4 gene.

Table 4. Patients with and without significant ITE, grouped by sex, race, and education level.

Significant Not Significant

Characteristic Count Percentage (%) Count Percentage (%)

Total 515 30 1190 70
Sex—no. (%)

male 171 33 415 35
female 344 67 774 65

Education—no. (%)
<−0.9 116 23 244 21

−0.9∼0.5 259 50 603 51
0.5∼2.0 140 27 343 29

Race—no. (%)
Race-1 138 27 400 34
Race-2 176 34 361 30
Race-3 191 37 411 35
Race-4 10 2 18 2

Figure 4. (top-left) Density of survival time by sex; (top-middle) Posterior of survival time by
sex; (top-right) Difference in survival time by sex; (mid-left) Density of survival time by race;
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(mid-middle) Posterior of survival time by race; (mid-right) Difference in survival time by race;
(bottom-left) Density of survival time by education level; (bottom-middle) Posterior of survival time
by education level; and (bottom-right) Difference in survival time by education level.

3.5. Individual Survival Curves

Figure 5 displays the individual posterior survival curves; in particular, there were
1705 individual survival curves associated to patients. The gray and black lines indicate
the survival curves for patients with and without APOE-ε4, respectively. Although the
survival curves of the two groups overlap to some extent, the patients without APOE-ε4
had a higher survival proportion than those with APOE-ε4, overall. At the same age, the
patients with APOE-ε4 presented higher onset probability than those without APOE-ε4.
The red and green lines are the posterior mean survival curves for patients with and
without APOE-ε4, respectively; it can be seen that the red line lies above the green line.
This indicates that patients with APOE-ε4 are more likely to have an earlier onset of AD
than those without APOE-ε4.

Figure 5. Individual posterior survival curves for patients.

3.6. Evidence for Heterogeneous Treatment Effects

The posterior probabilities of treatment benefit are provided in Table 5. Table 5 shows
that, among patients with APOE-ε4, 29.80% of patients presented strong evidence of
a differential treatment effect, while approximately 54.97% of patients presented mild
evidence. Among patients without APOE-ε4, approximately 30.35% of patients presented
strong evidence of a differential treatment effect, while 56.39% presented mild evidence. For
the proportion of patients who benefited from treatment, 77.93% of patients with APOE-ε4
and 78.83% of patients exhibited a posterior probability of benefit greater than 0.5. These
patients are more likely to have an earlier age at onset caused by the APOE-ε4 gene.

Table 5 also shows that the probability of difference of onset among patients with
and without APOE-ε4. Among patients with APOE-ε4, 14.41% of patients presented
strong evidence of Alzheimer’s disease onset risk, while approximately 38.65% presented
mild evidence. Among patients without APOE-ε4, approximately 13.71% of patients
presented strong evidence of Alzheimer’s disease onset risk, while 40.89% presented
mild evidence. Furthermore, posterior probabilities of treatment benefit can be used for
treatment assignment for patients with p̂i > 1/2 or p̂i < 1/2 when estimating onset risk.
It was found that 79.26% of patients with APOE-ε4 and 82.57% of patients exhibited a
posterior probability of benefit greater than 0.5. These patients are more likely to have
higher onset risk caused by the APOE-ε4 gene.
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Table 5. Posterior probabilities of APOE-ε4 carrier benefit and differential treatment effect among
subjects with and without APOE-ε4.

Measurement Posterior Probabilities APOE-ε4 None

Onset age P{θ(xi) < 0 | y, δ} ∈ (0.99, 1] 15.45 14.86
P{θ(xi) < 0 | y, δ} ∈ (0.95, 0.99] 23.18 24.92
P{θ(xi) < 0 | y, δ} ∈ (0.75, 0.95] 27.37 25.96
P{θ(xi) < 0 | y, δ} ∈ (0.50, 0.75] 11.92 13.10
P{θ(xi) < 0 | y, δ} ∈ (0.25, 0.50] 11.92 10.78
P{θ(xi) < 0 | y, δ} ∈ (0, 0.25] 10.15 10.38

D∗
i > 0.95 29.80 30.35

D∗
i > 0.80 54.97 56.39

Onset probability P{θ(xi) > 0 | y, δ} ∈ (0.99, 1] 9.83 8.64
P{θ(xi) > 0 | y, δ} ∈ (0.95, 0.99] 9.83 12.76
P{θ(xi) > 0 | y, δ} ∈ (0.75, 0.95] 41.49 43.34
P{θ(xi) > 0 | y, δ} ∈ (0.50, 0.75] 18.12 17.83
P{θ(xi) > 0 | y, δ} ∈ (0.25, 0.50] 20.74 17.43
P{θ(xi) > 0 | y, δ} ∈ (0, 0.25] 0 0

D∗
i > 0.95 14.41 13.71

D∗
i > 0.80 38.65 40.89

3.7. Important Factors

To explore important factors or features driving the differences in treatment effect,
we proposed the use of BART to select important variables through identifying the most
frequently used variables in the model. In this way, we may identify those predictors which
have the most significant influence on the response. The number of trees was set as 50, and
the frequencies of variables used are presented in Figure 6. The median used frequency of
the sex variable was 20 and the 95% interval was [13,26]. The median used frequency of the
education level variable was 24 and the 95% interval was [16,34]. Therefore, the education
level variable is a more important predictor than the sex variable.

Figure 6. The importance of variables using BART.

4. Discussion

In this study, we estimated the effect of the APOE-ε4 gene on onset risk of AD at
the individual level. The individualized effects were qualified by constructing a credible
interval for every patient. In particular, in this way, the individualized effects for any patient
and their credible interval can be inferred, instead of those at the population level. This
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may help to better target those patients who are more significantly affected by APOE-ε4.
Furthermore, we can estimate the effects of APOE-ε4 at the population level, based on the
individualized effects. We inferred the effect of APOE-ε4 on AD using causal inference.
As such, assumptions for observational data were necessary, such as strong ignorability,
which may induce treatment selection bias in the observational data. Further, in order to
perform causal inference on observational data, the assumptions of overlap and no hidden
confounders had to be made.

According to the causal effects for all patients, the causal effect of APOE-ε4 on AD
was not statistically significant at the population level. However, we observed a sub-
population of patients presenting significant causal effects. Compared with the patients
without significant causal effects, this sub-population had a higher proportion of female
patients. Patients with low educational attainment level tended to present significant causal
effects. In terms of the race of patients, patients of race 2 and race 3 in the sub-population
accounted for higher proportions than in those without significant causal effects.

In the data analysis, we used BART to estimate the causal effects of APOE-ε4 on AD for
patients at the individual level. BART has been shown to be efficient and flexible, and has
better or comparable performance to non-Bayesian competitors such as Boosting, LASSO,
neural networks, and random forests [13]. BART has been shown to have good prediction
performance and performs well for causal inference in various scenarios. Furthermore, it is
necessary to quantify the outcome, especially in clinical research. In this context, Bayesian
methods can provide natural credible intervals for outcomes. Although it is based on the
potential outcome framework, our method may contribute to the identification of potential
factors associated to the outcome at the causal level, which may help to determine the front
node and directed path in the construction of the Bayesian network.

There are several metrics used for evaluation in this work. First, the prediction
accuracy and the quantified uncertainty of prediction results are the most important metrics
in clinical applications. In this line, we provided the estimate bias of the causal effect of
APOE-ε4 on AD and the 95% credible interval. As we handled right-censored data in this
work, the effect of the censoring rate on the accuracy and efficiency of inference can be
evaluated using Monte Carlo simulation techniques.

There were some limitations to our study; for example, there were no more than three
baseline variables. We only included three variables and two variables for time-to-event
data and binary outcome data, respectively. The inference for causal effects was limited
by the few variables, as they only provided limited information. When analyzing data
employing BART, as an MCMC technique, it can be computationally demanding; as such,
the method was computationally expensive and required a significant amount of time
for execution.
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Appendix A. Implementation

The AFT-BART Model is a non-parametric Bayesian AFT model which combines a
sum-of-trees model for the regression function and a DP mixture model for the residual
distribution. This method was implemented based on the AFTrees package of the R
software (version R-4.3.1).

To install and use the AFTrees package in R software, the development version of the
package can be obtained from the GitHub website.The package can be installed directly
from github, or downloaded and installed from the local files. For remote installation, the
following commands should be run:

install.packages("devtools")

library(devtools)

install_github("nchenderson/AFTrees")

First, we processed the data set and constructed the data frame for the model. The
data consisted of n independent measurements D = {Yi, δi, Wi, Xi}. We split the data set
into three folds and analyzed the data three times. Each time, two folds were used as the
training set and the remaining fold was used as the testing set.

library(caret)

library(AFTrees)

source("SurvivalProb-AD.R")

# loading data ...

set.seed(1)

data <- read.csv(’AD_Data.csv’)

censor_data <- data

n <- nrow(censor_data)

d <- 3

X <- cbind(censor_data$X.1, censor_data$X.2, censor_data$X.3)

# treatment indicators

W <- censor_data$G_i

Y <- censor_data$Y

status <- censor_data$delta

# prepare data

colnames(X) <- colnames(X, do.NULL = FALSE, prefix = "x")

AD_data <- data.frame(X, W = W, Y = Y, status = status)

n <- nrow(AD_data)

# data split

set.seed(10)

fold_idx <- createFolds(y = AD_data$W, k=3)

We split the data into training and testing sets, and used the Bayesian non-parametric
AFT Model to estimate the conditional average treatment effect by employing BART. In
BART, the number of trees was set as 200. In the MCMC iterations, we set 5000 iterations to
be treated as burn-in and 1000 as the number for posterior drawing. The implementation
details are as follows:

for(i in 1:3){

cat("\n NO.", i, "fold analysis ...\n")

train_data <- AD_data[-fold_idx[[i]], ]

est_data <- AD_data[fold_idx[[i]], ]

# IndivAFT ...

bart.tot <- IndivAFT(x.train = as.matrix(xtrain),

y.train = train_data$Y,

status = train_data$status,

Trt = xtrain$W,
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x.test = as.matrix(xtest),

ntree = 200,

ndpost = 1000,

nskip = 5000)

ite <- colMeans(bart.tot$Theta.test)

}

The posterior of individual treatment effects could then be obtained. The result was a
matrix with posterior drawn times rows and test case size columns. In order to obtain the
ITE posterior means, we averaged the output values in a column-wise manner.
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Abstract: The current literature includes limited information on the classification precision of Bayes
estimation for latent class analysis (BLCA). (1) Objectives: The present study compared BLCA with
the robust maximum likelihood (MLR) procedure, which is the default procedure with the Mplus 8.0
software. (2) Method: Markov chain Monte Carlo simulations were used to estimate two-, three-, and
four-class models measured by four binary observed indicators with samples of 1000, 750, 500, 250,
100, and 75 observations, respectively. With each sample, the number of replications was 500, and
entropy and average latent class probabilities for most likely latent class membership were recorded.
(3) Results: Bayes entropy values were more stable and ranged between 0.644 and 1. Bayes’ average
latent class probabilities ranged between 0.528 and 1. MLR entropy values ranged between 0.552
and 0.958. and MLR average latent class probabilities ranged between 0.539 and 0.993. With the
two-class model, BLCA outperformed MLR with all sample sizes. With the three-class model, BLCA
had higher classification precision with the 75-sample size, whereas MLR performed slightly better
with the 750- and 1000-sample sizes. With the 4-class model, BLCA underperformed MLR and had
an increased number of unsuccessful computations, particularly with smaller samples.

Keywords: Bayes estimation; BLCA; latent class analysis; structural equation modeling; latent
variable modeling; person-oriented analyses

MSC: 60E05; 62H05; 62E10; 62F10; 62F15; 62P05

1. Introduction

Bayesian analysis is a statistical approach that incorporates prior knowledge or beliefs
with observed data to make probabilistic inferences and update our knowledge. It is named
after the Reverend Thomas Bayes, an 18th-century British statistician, and theologian who
developed the foundational principles of this method [1].

In Bayesian analysis, the main focus is on estimating and updating the posterior
probability distribution of parameters of interest, given the observed data and any prior
information. This is done using Bayes’ theorem, which mathematically expresses the
relationship between the prior probability, likelihood, and posterior probability. The prior
probability represents our initial beliefs about the parameters, and the likelihood quantifies
the compatibility between the observed data and the parameter values. By combining these
elements, Bayesian analysis provides a coherent framework for inference [1,2].

One of the key advantages of Bayesian analysis is its ability to incorporate prior
knowledge. This is particularly useful when there is limited data available or when expert
opinions and historical information are valuable in making predictions or decisions. The
use of prior information allows for a more nuanced and flexible analysis, accommodating
subjective judgments and external evidence [3,4].

Bayesian analysis finds applications in a wide range of fields, including but not
limited to:
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(1) Medicine and Healthcare: Bayesian methods are employed in clinical trials, diagnostic
tests, epidemiology, and personalized medicine to quantify uncertainty and make
informed decisions.

(2) Finance and Economics: Bayesian analysis is used in risk assessment, portfolio
optimization, forecasting, and economic modeling to account for uncertainty and
update beliefs.

(3) Engineering: Bayesian techniques are applied in reliability analysis, optimization, and
decision-making under uncertainty in various engineering domains.

(4) Machine Learning and Artificial Intelligence: Bayesian inference is used in proba-
bilistic modeling, Bayesian networks, and Bayesian optimization to reason under
uncertainty and provide robust predictions.

(5) Environmental Science: Bayesian analysis is utilized in environmental modeling,
ecological studies, and climate change research to integrate diverse data sources and
quantify uncertainty in predictions [5].

In social and behavioral sciences, Bayesian data analysis has been more frequently
used since software packages popular among social scientists supported model fitting for
Bayesian models and Markov chain Monte Carlo simulations (MCMC). These develop-
ments are facilitated by the availability of tutorials, software programs, and introductory
textbooks on practical analytic skills [6,7].

1.1. Bayesian Latent Variable Modeling

Bayesian latent variable modeling refers to a class of statistical modeling techniques
that involve unobserved or latent variables. Latent variables are variables that are not
directly measured or observed but are inferred based on observed data. Bayesian meth-
ods are particularly well-suited for latent variable modeling because they allow for the
incorporation of prior beliefs and uncertainty in estimating the latent variables and their
relationships with the observed variables [1,8,9].

In Bayesian latent variable modeling, the goal is to estimate the values of the latent vari-
ables and their associated parameters, given the observed data and any prior knowledge.
This is typically done by specifying a probabilistic model that describes the relationships
between the latent variables and the observed variables. The model parameters are then
estimated using Bayesian inference, which involves updating the prior beliefs to obtain the
posterior distribution of the parameters given the observed data [9].

Bayesian latent variable modeling has wide-ranging applications in various fields,
including psychology, social sciences, econometrics, and machine learning. It allows
researchers to capture and analyze complex relationships, account for measurement errors,
handle missing data, and make predictions or inferences about the latent variables [10,11].

1.2. Bayesian Factor Analysis

In factor analysis, the Bayesian method is used to uncover latent variables or factors
that underlie a set of observed variables. It combines the principles of factor analysis,
which aims to identify common patterns or underlying dimensions in observed data, with
Bayesian inference, which allows for the incorporation of prior beliefs and uncertainty in
parameter estimation [8,10,12].

In Bayesian factor analysis, the goal is to estimate the factor loadings, which represent
the relationships between the latent factors and the observed variables, and the factor
scores, which indicate the values of the latent factors for each individual. The method
assumes that the observed variables are linearly related to the latent factors and that the
observed variables are influenced by both specific (unique) factors and common factors
shared across variables [12,13].

The Bayesian approach to factor analysis allows for the incorporation of prior informa-
tion about the factor loadings and the factor scores. It also provides posterior distributions
for the estimated parameters, which reflect both the observed data and the prior beliefs.
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This posterior distribution can be used to make inferences about the latent factors and their
relationships with the observed variables [12–14]

With factor models, Bayes estimation outperformed the mean- and variance-adjusted
weighted least squares procedure with ordinal data [15,16]. This method incorporates prior
information, thus increasing the accuracy of parameter estimates and reducing the number
of Heywood solutions [17–19].

1.3. Bayesian Latent Class Analysis

Bayesian latent class analysis (BLCA) is a statistical method used to identify unob-
served subgroups or latent classes within a population based on observed categorical
variables [20]. It combines the principles of latent class analysis (LCA), which seeks to
identify homogeneous subgroups within a population, with Bayesian inference techniques,
which allow for the incorporation of prior beliefs and uncertainty in parameter estima-
tion [12,20,21].

In BLCA, the goal is to estimate the latent class membership probabilities and the
conditional response probabilities for each observed categorical variable given the latent
class membership. The latent class membership probabilities indicate the likelihood of
each individual belonging to each latent class, while the conditional response probabilities
describe the probability of observing each response category for each variable within each
latent class [20].

The Bayesian approach to latent class analysis allows for the integration of prior in-
formation about the latent class membership probabilities and the conditional response
probabilities. It also provides posterior distributions for the estimated parameters, which
reflect both the observed data and the prior beliefs. This posterior distribution can be
used to make inferences about the latent classes and their relationships with the observed
categorical variables [20–23]. While several studies investigated the effectiveness of the
Bayesian method in factor analysis [17–19], few studies examined this estimation proce-
dure’s performance with latent class models.

Specifically, the classification precision of BLCA is an area that has received limited
research attention. Despite the growing popularity of Bayesian methods in other areas
of statistics, there has been a dearth of studies specifically examining the classification
precision of BLCA.

Compared to traditional frequentist approaches, BLCA offers several advantages,
such as the ability to incorporate prior information, handle missing data more effectively,
and provide uncertainty estimates through posterior distributions. However, the specific
performance of BLCA in terms of classification precision, as measured by metrics, such as
entropy and average latent class probabilities, remains relatively unexplored.

The lack of research in this area can be attributed to various factors. First, BLCA in-
volves complex modeling and estimation procedures, which require specialized knowledge
and computational resources. This complexity may have deterred researchers from explor-
ing the classification precision of BLCA in depth. Second, the focus of previous studies on
LCA has predominantly been on model selection, identifying the appropriate number of
latent classes, and examining the substantive interpretation of latent classes rather than
evaluating classification precision. As a result, the evaluation of classification precision has
often taken a backseat. Third, the availability of user-friendly software and computational
tools for BLCA has been relatively limited compared to frequentist counterparts. This
may have hindered researchers from conducting comprehensive studies on classification
precision using Bayesian approaches.

Given the potential advantages of BLCA and the importance of classification precision
in understanding latent class membership, there is a need for more research in this area.
Future studies could explore the performance of BLCA under various conditions, compare
it with frequentist approaches, and investigate the impact of different prior specifications
on classification precision. By addressing these gaps in the literature, researchers can gain a
deeper understanding of the strengths and limitations of BLCA in accurately classifying
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individuals into latent classes, ultimately enhancing the quality and applicability of latent
class analysis in various fields.

2. Theoretical Framework

Latent Class Analysis (LCA) is a statistical method used to identify unobserved
subgroups or latent classes within a population based on observed categorical variables [24].
It is a form of finite mixture modeling where the population is assumed to be composed of
distinct latent classes, and individuals are probabilistically assigned to these classes based
on their responses to the observed variables [21]. LCA is sometimes referred to as “mixture
modeling based clustering” [25], “mixture-likelihood approach to clustering” [26], or “finite
mixture modeling” [27,28]. In fact, “finite mixture modeling” is a more general term for
latent variable modeling where latent variables are categorical. The latent categories
represent a set of sub-populations of individuals, and individuals’ memberships to these
sub-populations are inferred based on patterns of variation in the data [26–29].

In LCA, the goal is to estimate the latent class membership probabilities and the
conditional response probabilities for each observed categorical variable given the latent
class membership. The latent class membership probabilities indicate the likelihood of
each individual belonging to each latent class, while the conditional response probabilities
describe the probability of observing each response category for each variable within each
latent class [30,31].

The estimation of LCA parameters can be done using maximum likelihood estimation
(MLE) or Bayesian methods. MLE involves finding the parameter values that maximize
the likelihood of the observed data, while Bayesian methods incorporate prior information
and uncertainty in the estimation process, typically using iterative techniques, such as the
Expectation-Maximization (EM) algorithm [31].

LCA has applications in various fields, including psychology, sociology, marketing,
and public health. It allows researchers to identify meaningful subgroups within a pop-
ulation, understand the relationships between variables, and examine the predictors or
consequences of latent class membership [21,27,31].

2.1. The LCA Model

A mixture model includes a measurement model and a structural model. LCA is
the measurement model, which consists of a set of observed variables, also referred to
as observed indicators, regressed on a latent categorical variable [21]. LCA explains the
relationships between a set of r observed indicators i and an underlying categorical variable
C [31–33].

Observed variables can be continuous, counts, ordered categorical, binary, or un-
ordered categorical variables [31–33]. When estimating a latent variable C with k latent
classes (C = k; k = 1, 2, . . . k), the “marginal item probability” for item ij = 1 can be expressed
as:

P(i, j = 1) = ∑K
k=1 P(C = k)P(ij = 1|C = k) (1)

Assuming that the assumption of local independence is met, the joint probability for
all observed variables can be expressed as:

P(i1, i2, . . . .., ir) = ∑K
k=1 P(C = k)P(C = k)P(C = k) . . . P(ir|C = k) (2)

The computation procedures used for estimating model parameters are based on the
type of variables used as observed indicators (Table 1).
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Table 1. Computation Procedures by Variable Type.

Variable Type Computation Procedure

Continuous Linear regression equations
Censored Censored-inflated normal regression
Count Poisson or zero-inflated Poison regression equations
Ordered categorical Logistic regression
Binary Logistic regression
Nominal Multinomial logistic regression

2.2. Estimation Procedures

LCA assigns individuals to latent classes using an iterative procedure. Researchers
can specify starting values or use automatic, random starts. This process is similar to
selecting seed values for the k-means clustering algorithm. Estimation iterates until the
exact solution results from multiple sets of starting values, at which point parameters are
considered most likely representative of a latent class [34].

Estimated model parameters include item means and variances by latent class. Results
also include, for each case, the probability of membership to each class. These probabilities
add up to one across latent classes and are referred to as “posterior probabilities” [31].
Latent class memberships result from a modal assignment, consisting of placing each
person in the latent class for which the probability of membership is the highest [35].

The robust maximum likelihood (MLR) estimation procedure uses “log-likelihood
functions derived from the probability density function underlying the latent class
model” [29]. The statistical software employed in the current study was Mplus. This
software allows users to use other estimation procedures, such as the Bayesian estimation,
which can be specified using the ESTIMATOR = BAYES option of the ANALYSIS command.
Although MLR corrects standard errors and test statistics, it would be reasonable to hy-
pothesize that other estimators, such as BAYES, may provide more accurate results with
small sample sizes, ordinal data, and non-normal continuous variables [36,37].

2.3. The Bayesian Approach

Traditionally, LCA models were estimated using the maximum likelihood proce-
dure using the expectation-maximization (EM) algorithm [38]. The new developments in
statistical software now allow researchers to employ estimation procedures that are compu-
tationally more complex and used to take an extended amount of time [15,39]. For instance,
Asparouhov and Muthen [40] developed an algorithm that permits the computation of a
correlation matrix using Bayesian estimation. Using this correlation matrix, the LCA model
can be estimated with more flexibility because the estimation procedure no longer requires
within-class indicators to be independent [40] and allows researchers to increase estimation
precision by taking into account prior information [15].

The Bayes estimation allows the use of both informative and non-informative pri-
ors. Informative priors are used when researchers have prior information about model
parameters based on theory, expert opinion, or previous research [6]. The Bayes theorem
for continuous parameters specifies that “the posterior is proportional to the prior times
the likelihood” [41]. This statement very clearly explains how the Bayes approach inverts
the likelihood function to estimate the probability p of a parameter θ given and observed
distribution of a variable y, as indicated in the following formula:

p(θ|y) ∝ p(y|θ) × p (θ). (3)

Bayes estimation also allows non-informative or diffuse priors when researchers do
not have sufficient information about the parameters of interest [6]. Nevertheless, as the
amount of information about parameters increases through repeated applications of the
data generation process, the precision of the posterior distributions continues to grow.
Eventually, it overwhelms the effect of the non-informative priors [41].
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Frequentist procedures such as ML estimate model parameters by deriving point
estimates that have asymptotic properties. ML estimation assumes that point estimates
have an asymptotic normal distribution and are consistent and efficient [36,42]. In contrast,
Bayesian inference focuses on estimating the model parameter’s posterior distribution
features, such as point estimates and posterior probability intervals. Summarizing pos-
terior distributions requires the calculation of expectations. Such computations become
very complex with high-dimensional problems which require multiple integrals. For this
reason, researchers rely on Monte Carlo integration to draw samples from the posterior
distributions and summarize the distribution formed by the extracted samples [6].

2.4. Bayesian LCA

One of the advantages of employing Bayesian estimation is using information from
prior distributions. This allows researchers to use prior knowledge to inform current
analyses. In the context of Bayesian LCA (BLCA), researchers could use prior information
regarding individuals’ response patterns to help increase estimation accuracy [43].

In the case of BLCA, two parameters are of special interest. The first one refers to the
proportion of observations in the C latent classes. The proportion of observations in the C
latent classes (πC) has a Dirichlet distribution, which can be notated as:

πC ~ D[d1,.., dC], (4)

where parameters d1 . . . dC determine the uniformity of the D distribution. When d1 . . .
dC have relatively equal values, the identified latent classes are similar in size and have
similar probabilities [43].

The second parameter of interest is the response probability (ρv,rv|C). The Bayesian
estimation calculates this parameter in two ways. The response probability can be calculated
as a probability as follows:

ρv,rv|C ~ D[d1,.., dC]. (5)

where D is the Dirichlet distribution with its parameters d1 . . . dC.
Furthermore, response probabilities can be calculated using a probit link function as

indicated below:
[probit]ρv,rv|C ~ N[μρ, σ2

ρ], (6)

where N is the Normal distribution with its mean μρ and variance σ2
ρ parameters. De-

pending on the software used for estimation, the variance parameter may be referred to as
precision [43].

The Bayesian approach can be used to increase estimation accuracy and allows for
more flexibility in the construction of LCA models [43]. The frequentist approach relies
on the assumption of independent observed indicators within each class and specifies
non-correlating indicators in the within-class correlation matrix. Nevertheless, this as-
sumption is rarely met with real data, particularly in social sciences, which may lead to
biased parameter estimates, increased classification errors, and poor model fits [43]. In
contrast, the Bayesian estimation relaxes this restriction and only assumes approximate
independence [40,43]. Asparouhov and Muthen describe near-zero correlations as hybrid
parameters, which are not quite fixed nor free parameters [20]. This flexibility of BLCA may
limit the degree of model misspecification which may occur when within-class correlations
are fixed to zero [40].

2.5. Label Switching

Label switching is a potential issue that may pose problems with models relying
on Markov Chain Monte Carlo (MCMC) procedures. Label switching occurs when the
order of classes arbitrarily changes across the MCMC chains [44,45]. Reordering may
occur because LCA models do not specify the order of classes. This change may affect the
estimated posterior and may lead to convergence issues. Label switching often occurs with
mixture models; therefore, it is critical to be aware of its causes and proposed solutions
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such as reparameterization techniques, relabeling algorithms, and label invariant loss
functions [46,47].

2.6. Classification Precision

With exploratory LCA, the researcher does not know a priori the number of classes of
the latent categorical variable. The selection of the optimal model often relies on criteria,
such as (a) the interpretability of the latent class solutions [35]; (b) measures of model fit (e.g.,
Bayesian Information Criteria [BIC], the sample-size adjusted BIC, the Akaike Information
Criteria, the Lo-Mendell-Rubin (LMR) likelihood ratio test, etc.); and (c) measures of
classification precision (e.g., entropy, average latent class probabilities, etc.).

Measures of classification precision help address the issue of class separation. The
interpretability of item loadings is a critical criterion in selecting the optimal latent class
model. This criterion is essential to ensure a strong theoretical and practical support for
the latent class solution. For instance, in the context of an educational psychology study,
one group of participants may have very low loadings on extrinsic motivation items and
very high loadings on intrinsic motivation items, whereas another group may have the
opposite characteristics. In such situations, latent class separation is clear. Nevertheless, as
the number of latent classes increases, the separation between groups may not be as clear.
For instance, a three-class model may yield another group with slightly above average
intrinsic motivation and slightly below average extrinsic motivation. In such situations,
the separation between groups is not as clear and using measures of fit and classification
precision is essential.

For every observation, LCA calculates the probability of membership to each one of
the classes specified in the LCA model. When membership probabilities are close to one for
one class and close to zero for all other groups, the model has a high level of classification
precision. Membership probabilities for the entire sample are summarized in a k × k table,
where k is the number of latent classes specified in the LCA model. The diagonal elements
of these tables represent the average probabilities of membership to the assigned class or
the proportions of correctly classified cases.

The average probability of membership in Latent Class Analysis (LCA) represents the
average likelihood of an individual belonging to each latent class based on their observed
categorical responses. It provides information about the strength of membership in each
latent class for each individual. The average probability of membership is computed
by taking the average of the individual posterior probabilities across all individuals and
classes. Hagenaars and McCutcheon [44] specified the formula for calculating the average
probability of membership in LCA is as follows:

P(k) = (1/N) × Σ P(k|i), (7)

where N represents the total number of individuals in the sample, P(k|i) represents the
posterior probability of belonging to class k given the observed responses for individual
i, and the summation is taken over all individuals in the sample. This formula computes
the average across all individuals for each latent class, providing a measure of the overall
probability of membership in each class. The specific formula for calculating the average
probability of membership may vary slightly depending on the software or algorithm
used for LCA estimation; therefore, it is always recommended to consult the software
documentation or specific references provided by the software developers for accurate
formulas and implementation details. Average probabilities of membership are considered
indices of classification certainty and should be close to one [35]. The off-diagonal elements
of the k × k table represent the proportions of misclassified cases and should be close to
zero [35]. For instance, in a well-fitting model with four latent classes may have the k × k
table represented in Table 2.
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Table 2. Average Latent Class Probabilities and Misclassification Probabilities for a Hypothetical
4 × 4 Latent Class Model.

Class 1 Class 2 Class 3 Class 4

Class 1 0.980 0.010 0.000 0.010
Class 2 0.030 0.961 0.000 0.009
Class 3 0.020 0.040 0.890 0.050
Class 4 0.020 0.049 0.010 0.921

Note: The diagonal elements are the average latent class probabilities and are marked in bold. The off-diagonal
elements represent the misclassification probabilities.

Another indicator of classification certainty is entropy. In LCA, entropy is a commonly
used measure to assess the quality of classification or the uncertainty in assigning indi-
viduals to latent classes. Entropy provides an indication of how well the latent classes
differentiate individuals based on their observed responses. It is an omnibus index of
classification certainty, which relies on the class posterior probabilities reported in the k × k
table. This index shows the degree to which the entire LCA model accurately predicts
individual class memberships [48], or the extent to which latent classes are distinct [49].
Higher entropy values indicate a better separation between classes, whereas lower entropy
values suggest a more ambiguous or overlapping classification. The formula for calculating
entropy in LCA is as follows:

Entropy = −Σ (P(k|i) × log(P(k|i))), (8)

where P(k|i) represents the posterior probability of belonging to class k given the observed
responses for individual i, and the summation is taken over all individuals in the sam-
ple [34]. This formula computes the entropy for each individual and class and sums the
contributions across all individuals. The negative sign is used to ensure that entropy values
are positive. Entropy values can range from zero to one, where values closer to one indicate
superior classification precision [29].

3. Objectives

Although MLR corrects standard errors and test statistics, based on related research,
the researcher hypothesized that Bayes estimation might provide more accurate results
with small sample sizes, ordinal data, and non-normal continuous variables [32,36]. The
proposed study aimed to examine and compare the classification precision of the MLR and
Bayes estimation methods, as measured by entropy and average latent class probabilities
for most likely latent class membership, with binary observed indicators and samples of
varying sizes, and models with different numbers of latent classes.

4. Simulation Study

Using a population with a known structure allows researchers to investigate the
performance of an estimation method under different conditions. In other words, re-
searchers can determine whether an estimation procedure can identify the underlying
latent class memberships.

The Monte Carlo technique is a mathematical procedure that uses multiple probability
simulation to estimate the outcome of uncertain events. This computational algorithm
predicts a set of outcomes using an estimated range of values instead of a given series
of fixed values. Therefore, this technique yields a model of plausible results by using a
specified probability distribution (e.g., Normal distribution, Uniform distribution, etc.)
of a variable with an uncertain outcome. Numerous sets of randomly generated values
that follow the specified distribution are used to repeatedly estimate likely outcomes. This
procedure consists of three steps:

1. Specify the predictive model including the independent and dependent variables.
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2. Specify the distribution of the independent variables (based on historical information
and theory.

3. Use multiple sets of randomly generated values following the specified distribution
to calculate a representative sample of results [50].

A Markov chain is a model that describes a series of likely events, where the probability
of one event depends on the probability of the antecedent event [51]. Markov chain Monte
Carlo (MCMC) procedures rely on computer simulations of Markov chains. Markov
chains are specified so that the posterior distribution of the inferred parameters is the
asymptotic distribution.

In applied statistics, MCMC simulations can be used for several purposes, including
(1) comparing statistics across samples given a set of realistic conditions, and (2) provide
random samples for posterior Bayesian distributions [52]. The present study used MCMC
simulations to compare Bayes and MLR classification precision under the same conditions.
Specifically, the researcher compared three LCA models (with 2, 3, and 4 latent classes)
measured by four binary observed indicators. The three LCA models were estimated
using the Bayes with non-informative priors and the MLR procedures using samples of
1000, 750, 500, 250, 100, and 75 observations (3 × 2 × 6) with 500 replications. Entropy
and average latent class probabilities were recorded and compared for each condition.
The researcher used the Mplus 8.0 statistical package to conduct all analyses. The code
for Monte Carlo simulations followed example 7.3 from the Mplus User’s Guide [37] for
generating a categorical latent variable with binary indicators. The example was modified
to vary the sample sizes, the estimation method, and the number of classes. A sample
code for the two-class model with Bayes estimation and a sample of 500 observations is
included below:

Title:
Example of LCA model with binary;
latent class indicators using automatic;
starting values with random starts;

Montecarlo:
NAMES = u1-u4;
generate = u1-u4(1);
categorical = u1-u4;
genclasses = c(2);
classes = c(2);
nobs = 500;
seed = 3454367;
nrep = 500;
save = resultsfile.dat;

Analysis:
type = mixture;
estimator bayes;

Model population:
%overall%
[c#1*1];
%c#1%
[u1$1*2 u2$1*2 u3$1*-2 u4$1*-2];
%c#2%
[u1$1*-2 u2$1*-2 u3$1*2 u4$1*2];

Model:
%overall%
[c#1*1];
%c#1%
[u1$1*2 u2$1*2 u3$1*-2 u4$1*-2];
%c#2%
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[u1$1*-2 u2$1*-2 u3$1*2 u4$1*2];
Output:

tech8 tech9;

5. Results

With the Bayes estimation method, entropy values relatively ranged between (a) 0.997
and 1 for the 2-class model, (b) 0.802 and 0.848 for the 3-class model, and (c) 0.644 and
0.818 for the 4-class model. The Bayes and MLR entropy values for the two-, three-, and
four-class models are represented in Figure 1, Figure 2, and Figure 3, respectively. Figure 4
illustrates all entropy values in relation to sample size, estimation method, and model size.

Figure 1. Bayes and MLR entropy values for the two-class model.

Figure 2. Bayes and MLR entropy values for the three-class model.
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Figure 3. Bayes and MLR entropy values for the four-class model.

Figure 4. Bayes and MLR entropy values in relation to sample size and model size.

Overall, average latent class probabilities for most likely latent class membership
ranged between 0.540 (4-class model) and 1 (2-class model) (Table 3). Figure 5 illustrates
all recorded average latent class probabilities for most likely latent class membership in
reference to sample size and the number of classes specified in the latent class model.
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Table 3. Indices of Classification Precision by Model and Sample Size.

LCA Model Estimator Sample Size

Average Latent Class Probabilities for Most Likely Latent
Class Membership

Class 1 Class 2 Class 3 Class 4

2 Class Model Bayes 1000 0.999 0.999
750 0.999 0.999
500 0.999 0.999
250 1.000 0.999
100 0.999 0.999
75 1.000 1.000

MLR 1000 0.974 0.982
750 0.974 0.981
500 0.975 0.978
250 0.993 0.987
100 0.984 0.967
75 0.987 0.968

3 Class Model Bayes 1000 0.941 0.938 0.987
750 0.939 0.939 0.989
500 0.940 0.939 0.993
250 0.935 0.943 0.995
100 0.916 0.948 0.993
75 0.910 0.948 0.993

MLR 1000 0.867 0.848 0.67
750 0.874 0.855 0.695
500 0.882 0.868 0.735
250 0.889 0.884 0.807
100 0.915 0.914 0.872
75 0.921 0.922 0.905

4 Class Model Bayes 1000 0.548 0.874 0.768 0.742
750 0.560 0.882 0.788 0.770
500 0.535 0.889 0.801 0.741
250 0.540 0.887 0.834 0.731
100 0.528 0.913 0.756 0.780
75 0.574 0.925 0.808 0.815

MLR 1000 0.821 0.756 0.599 0.539
750 0.832 0.77 0.621 0.570
500 0.845 0.793 0.664 0.616
250 0.866 0.823 0.752 0.707
100 0.891 0.881 0.855 0.835
75 0.911 0.901 0.887 0.868

With the smallest sample size (N = 75), Bayes estimation showed greater classification
precision for the 2-class and the 3-class models, but MLR outperformed Bayes with the 4-
class model. With the largest sample size (N = 1000), Bayes estimation had greater precision
with the 2-class model and was comparable to MLR for the 3-class and the 4-class models
(Table 2).

As the complexity of the model increased, the number of successful computations de-
creased for Bayes estimation, particularly for the 4-class model (Figures 6–8). Additionally,
the time required to estimate the 4-class model was significantly longer, particularly for
larger sample sizes.
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Figure 5. Bayes and MLR average latent class probabilities for the most likely latent class membership
in relation to sample size and model size.

Figure 6. Number of successful computations by sample size for the two-class model.
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Figure 7. Number of successful computations by sample size for the three-class model.

Figure 8. Number of successful computations by sample size for the four-class model.

6. Discussion and Conclusions

There is a noticeable gap in the existing research literature when it comes to studying
the classification precision of BLCA. Despite the growing popularity of Bayesian methods in
various fields, such as psychology, sociology, and marketing, there has been relatively lim-
ited attention given to the evaluation and comparison of classification accuracy specifically
within the context of BLCA.

While LCA itself has been extensively studied and applied, much of the existing
research has focused on traditional frequentist estimation methods, such as maximum
likelihood estimation. BLCA offers unique advantages, such as the ability to incorporate
prior knowledge, handle missing data, and provide probabilistic inferences. However,
there is a lack of comprehensive empirical studies that directly investigate the classification
precision of BLCA and compare it to other estimation approaches.

The limited research in this area may be attributed to several factors. First, Bayesian
methods, including B LCA, often require advanced statistical knowledge and specialized
software, which may deter some researchers from exploring these techniques. Second,
there may be a perception that the computational complexity and longer execution times
associated with Bayesian estimation hinder the feasibility of large-scale studies. Addition-
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ally, the absence of standardized guidelines or benchmarks for assessing the classification
precision of BLCA further contributes to the scarcity of research in this domain.

As a result, more empirical studies are needed to address this gap in the literature. Such
studies could compare the classification accuracy of BLCA with other popular estimation
methods, evaluate its performance across different sample sizes and data characteristics,
and provide insights into the factors that may influence the precision of BLCA classifications.
These investigations would not only enhance our understanding of the strengths and
limitations of BLCA but also provide researchers and practitioners with valuable guidance
for selecting appropriate estimation methods in latent class analysis.

The primary objective of this study was to address this gap in the literature by in-
vestigating and comparing the accuracy of classification between two existing estimation
methods: MLR and Bayes. MLR is the default Mplus estimation procedure for categorical
variables. Despite its assumed benefits, the Bayes option, which is also available, is less
frequently used and needs to be specified in the Mplus code. The current study aimed to
determine whether using the default estimation settings, as most users do, may impact
LCA classification precision.

Evaluating the classification precision of Bayes and MLR was based on the measure-
ment of entropy and the average latent class probabilities for the most likely latent class
membership. The study used binary observed indicators and included samples of different
sizes and models with two–four latent classes.

Results suggest that for models with two latent classes, regardless of sample size, the
Bayes method consistently outperforms the MLR procedure. Specifically, Bayesian entropy
values ranged between 0.997 and 1, whereas MLR entropy values ranged between 0.855
and 0.958. Similarly, Bayesian average latent class probabilities for latent class memberships
ranged between 0.999 and 1, whereas and MLR average latent class probabilities ranged
between 0.974 and 0.993.

With three-class models, the Bayes method showed higher overall levels of classifi-
cation precision with the sample of 75 (Bayesian entropy = 0.811, Bayes average latent
class probabilities between 0.910 and 0.993; MLR entropy = 0.706, MLR average latent class
probabilities between 0.905 and 0.922) and 500 samples (Bayesian entropy = 0.843, Bayesian
average latent class probabilities between 0.940 and 0.993; MLR entropy = 0.602, MLR aver-
age latent class probabilities between 0.735 and 0.882). Nevertheless, the MLR procedure
had slightly higher overall levels of classification precision with the larger samples (n = 750
and n = 1000). With the 750-sample size, the MLR entropy value was 0.889, whereas the
Bayes entropy was 0.839; similarly, with the 1000-sample size, the MLR entropy was 0.874,
whereas the Bayes entropy was 0.848.

When the model included four classes, MLR outperformed Bayes estimation with
smaller samples (n = 100 and n = 75). With the 75-sample size, MLR entropy was 0.866, and
MLR average latent class probabilities ranged between 0.868 and 0.911, whereas the Bayes
entropy was only 0.664 and Bayes average latent class probabilities ranged between 0.574
and 0.925. Similarly, with the 100-sample size, MLR entropy was 0.860, and average latent
class probabilities ranged between 0.835 and 0.891, whereas Bayes entropy was 0.727, and
average latent class probabilities ranged between 0.528 and 0.913.

Although some researchers suggest that the Bayes method may be more effective with
smaller sample sizes [43], results from the current study showed that this was only true for
the smaller models, and classification precision varied mostly by model size than sample
size. Overall, Bayes estimation provided more stable results, whereas MLR showed greater
variations in average latent class probabilities for most likely latent class membership and
entropy estimates. Nevertheless, the Bayes estimation had a much smaller number of
successful computations than the four-class model. Furthermore, the Bayes estimation took
extended time (days) with the four-class model. These computational difficulties may pose
practical issues in using the Bayes procedure for applied research projects.

Based on these results, when working with binary observed indicators, researchers are
advised to avoid deferring to the default Mplus settings and select an appropriate estimation
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procedure based on both sample size and model size. Specifically, with smaller models,
users are advised to use the Bayes estimation, which seems to have greater classification
precision even with very small samples. In contrast, as the number of classes specified in
the LCA model increases, users can defer to MLR, particularly with smaller sample sizes.
In these conditions, the Bayes method does not seem to yield the same level of classification
precision as MLR and yields an increased number of unsuccessful computations.

In conclusion, the Bayesian procedure can benefit the classification precision of mix-
ture models when models have fewer classes. Additionally, non-reliance on the assumption
of independence may reduce estimation bias. Furthermore, the option to specify informa-
tive prior may increase estimation accuracy [43]. Nevertheless, Bayesian estimation may
encounter issues related to label switching [4], lead to unsuccessful computations, and take
extended time.

The essential contribution of this study is providing information on the classification
precision LCA models with binary indicators using the Bayes and MLR estimation methods.
Although some research in exploratory factor analysis indicates that this estimation method
is effective with small sample sizes and ordinal data [36], no research has assessed the
precision of Bayes estimation for latent class models. Furthermore, the current study
considered the complexity of the model by comparing models with different numbers of
latent classes.

Although this information is helpful to applied researchers, this study is only a first
step in comparing the effectiveness of the Bayes and MLR estimation procedures in latent
class modeling. Additional simulation studies are needed to investigate the effectiveness
of Bayes estimation compared to other estimators, such as maximum likelihood, and
under other conditions, such as different types of observed indicators (ordered categorical,
continuous, etc.), correctly specified versus miss-specified models, classes with varying
prevalence, and with informative versus non-informative priors. Furthermore, we also
encourage researchers to use BLCA with real data, particularly when estimating smaller
LCA models.
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Abstract: The underlying risk factors associated with the duration and termination of biological,
sociological, economic, or political processes often exhibit spatial clustering. However, existing
nonspatial survival models, including those that account for “immune” and “at-risk” subpopulations,
assume that these baseline risks are spatially independent, leading to inaccurate inferences in split-
population survival settings. In this paper, we develop a Bayesian spatial split-population survival
model that addresses these methodological challenges by accounting for spatial autocorrelation
among units in terms of their probability of becoming immune and their survival rates. Monte
Carlo experiments demonstrate that, unlike nonspatial models, this spatial model provides accurate
parameter estimates in the presence of spatial autocorrelation. Applying our spatial model to data
from published studies on authoritarian reversals and civil war recurrence reveals that accounting
for spatial autocorrelation in split-population models leads to new empirical insights, reflecting the
need to theoretically and statistically account for space and non-failure inflation in applied research.

Keywords: Bayesian inference; estimation in survival analysis and censored data; spatial autocorrelation;
split-population models; Monte Carlo; democratic survival; civil wars

MSC: 62F15; 62N02; 62H11; 91D25

1. Introduction

Originally used to study human survival rates following the onset of a disease or the
administration of medical treatment, parametric and semi-parametric tools for modeling
time-to-event data or “survival times” have been used to study innumerable biological,
industrial, psychological, social, and political phenomena. However, two common types of
heterogeneity in the data generation process (d.g.p.) of many time-to-event applications
violate the core assumptions of conventional survival models. The first is the presence of
non-failure cases resulting from “immunity” to a failure event or being “cured” from that
event due to some treatment. Cases that will never experience the event of interest violate
the assumption that all right-censored observations eventually experience the failure event
even if the failure is not observed. The frequent need to relax this assumption in applied
settings has given rise to a class of split-population (SP) survival models that first estimate
the probability of being immune or at risk of experiencing the event and subsequently
estimate the time until that event occurs, conditional upon not being immune to the event.
In other words, SP survival models do not assume that every observation will eventually
experience the event. “Instead, the model splits the population into two groups—one that
will experience the event and one that will not” [1] (p. 148). The probability of a case being
immune to the event is estimated in the first (split) stage as a binary process modeled with
a specified set of covariates, then the survival stage is modeled with a specified baseline
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function representing the time until those cases at risk of experiencing the event actually
do so, again conditional upon covariates.

These tools have been useful for modeling a wide range of phenomena, including
oncological studies of the survival of breast cancer patients [2] and melanoma relapse [3],
the occurrence of interstate war [4], susceptibility to and mortality from parasitic infection
among river salmon [5], and criminal recidivism [6]. SP survival models themselves have
been extended to incorporate independent and identically distributed (i.i.d.) frailties [7], to
account for random right-censoring [8], to address misclassified failures [9], and to account
for “triadic duration” independence [10]; however, existing formulations often ignore the
effects of spatial clustering among units, at least in the first stage [11].

The spatial clustering of common unobserved characteristics among units that may
affect their baseline risk of experiencing a failure event violates a second core assumption
of conventional survival models, namely, that units are conditionally independent. Such
spatial autocorrelation differs from spatial dependence in that it cannot be accounted for
with i.i.d. frailty terms or spatial lags [12,13]. Spatially weighted frailties have been appro-
priately incorporated into conventional survival models via Bayesian estimation [12,14–16].
However, existing spatial survival models cannot accommodate any heterogenous mixture
of immune and at-risk populations, nor have they included “covariates and spatial random
effects as regressors in the cure rate portion of the model, instead of just the log-relative
risk portion” [11] (p. 274).

In this article, we develop a parametric Bayesian spatial split-population (SP) survival
model that can incorporate time-varying covariates. Rather than adopting the frequentist
maximum likelihood estimation approach to finding parameter values, Bayesian estimation
more flexibly utilizes Bayes’ Rule to estimate parameters based on iterated updates to
pre-specified priors that define baseline expectations about the probability distribution of
the phenomenon of interest. This method is particularly useful for estimating parameters
in a split-population model, which can place high demands on the observed data.

Similar to a conventional split-population survival model, our approach consists of a
split-stage equation that estimates the probability of a unit being immune from a failure
event and a second-stage equation that estimates the survival probability conditioned upon
the subject being at risk of failure. In our spatial frailty model, however, each of the two
equations may include spatially autocorrelated frailties with a joint distribution that is inter-
pretable in a spatial context. This allows analysts to eschew the assumption that the frailties
themselves are i.i.d. The hierarchical model leverages the flexibility of Bayesian estimation
using a Markov Chain Monte Carlo (MCMC) sampling algorithm whereby the frailties
of “neighboring” units and any spatial autocorrelations among them are incorporated
into each equation via a conditionally autoregressive (CAR) prior. MCMC algorithms are
tools for estimating analytically complex probability densities by randomly and repeatedly
drawing samples from a distribution (Monte Carlo) such that each sample depends on the
prior one but not those before it (Markov Chain). Thus, unlike regular SP survival models,
the Bayesian spatial SP survival model can account for spatial autocorrelation in a unit’s
propensity for being at risk of experiencing an event as well as the time it takes for that
event to occur.

After presenting the Bayesian spatial SP survival model and describing the slice-
sampling algorithm used for estimation in a Bayesian framework, we illustrate its properties
through a series of Monte Carlo experiments. The results reveal that (i) the Bayesian spatial
SP model reliably retrieves its true parameter values regardless of the size of the immune
fraction or degree of spatial autocorrelation and that (ii) nonspatial models produce biased
parameter estimates if the true d.g.p. includes spatial clustering. We then apply the spatial
SP survival model to replication data from two prominent studies in political science. The
first is a previous application of a nonspatial split-population survival model used to study
whether democratic countries consolidate, survive, or revert to a dictatorship [17]. The
second is a conventional survival analysis of whether civil wars are more or less likely to
recur after terminating [18]. We discuss theoretical reasons to expect spatial clustering in
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each of these contexts, then demonstrate empirically that spatial clustering does indeed
exist in the replication data. Then, we show that applying our Bayesian spatial SP survival
model to these data significantly alters the previously reported results. In light of the
evidence of spatial autocorrelation in each application, the new results from our spatial
model indicate that faulty inferences can result from ignoring spatial heterogeneity when
modeling survival processes.

2. (Spatial) Split-Population Survival Model

2.1. Model Development

Supposing that i = {1, 2, . . . , N} are the units in the survival data, we define f (t) as
the probability density function and F(t) as the cumulative distribution function. Thus,
S(t) = 1 − F(t) is the survival distribution and h(t) = f (t)

S(t) is the hazard rate. The general
likelihood of the conventional survival model is proportional to

L =
N

∏
i=1

[ f (ti)]
C̃i [S(ti)]

1−C̃i , (1)

where C̃i = 1 are the units that fail and C̃i = 0) are the units that do not fail, and as such
are “right-censored.” Two subpopulations can potentially exist in the survival data that
researchers use for empirical analysis: an “at-risk” fraction of cases that can fail, and an
“immune” fraction of cases that will not fail, implying that units in this fraction do not
experience the event of interest [19–21]. These two subpopulations are accounted for in
split-population survival models (with or without unit-specific frailties) by estimating the
probability of a given unit being in the immune fraction and the influence of covariates on
the at-risk fraction’s hazard rate [19,22,23].

The split-population survival model for a duration t that splits the sample in the
manner described above is constructed as follows. First, we define αi = Pr(Yi = 1) as the
probability of units entering the immune fraction, which can be estimated via logit:

αi =
exp(Ziγ + Vi)

1 + exp(Ziγ + Vi)
(2)

where Zi are p2-dimensional covariates, γ is the corresponding parameter vector in Rp2 ,
and Vi ∼ N(0, σ2) are the nonspatial unit-specific frailties (random effects), which are
assumed to be independent and identically distributed (i.i.d.). The nonspatial i.i.d. unit-
specific frailties Vi in the model’s split-stage accounts for unobserved heterogeneity on αi
while being independent of other random effects. In the split-population model’s survival
stage, however, Wi ∼ N(0, σ2) denotes the nonspatial i.i.d. unit-specific frailties. As such,
these nonspatial frailties capture unobserved factors that potentially influence the units’
distinct risks of experiencing the event of interest. Hence, the proportional hazards of the
split-population survival model with nonspatial unit-specific i.i.d. frailties are

h(ti|Xiβ, Wi) = h0(ti)ωi exp(Xiβ) = h0(ti) exp(Xiβ + Wi), (3)

where h0(ti) is the baseline hazard (which can be Weibull, log-logistic, or log-normal
distributed), log ωi = Wi, Xi represents the p1-dimensional covariates, and β is the corre-
sponding parameter vector in Rp1 . As discussed below, while we use the Weibull distribu-
tion in the presented Monte Carlo experiments and applications, the experiments perform
similarly when using either of the other two parametric distributions.

Suppose that we need to incorporate time-varying covariates in our split population.
Let t0 be the unique “entry time” and let t be the “exit time” for each period. Suppose
that j is the beginning of the time period. Then, each unit i’s elapsed time from inception
until (i) j can be denoted as t0ij and (ii) the end of period j is tij. In this case, C̃ij = 0
implies that the observation can be censored, while C̃ij = 1 indicates that the observation
has failed at tij. The probability of survival until period j is now Si(t0) = 1 − F(t0), where
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F(t0) =
∫ t0

0 f (t0). In this case, both subpopulations contribute to the log-likelihood of the
split-population survival model with nonspatial i.i.d. frailties as follows: S(t0) = 1 − F(t0)
(where F(t0) =

∫ t0
0 f (u)du) is the probability of survival until j. Thus, the log-likelihood of

the split-population survival model with nonspatial i.i.d. frailties is proportional to

lnL =
N

∑
i=1

{
C̃ijln

[
(1 − αij)

f (tij|Xijβ, Wi)

S(t0ij|Xijβ, Wi)

]
+ (1 − C̃ij)ln

[
αi + (1 − αi)

S(tij|Xijβ, Wi)

S(t0ij|Xijβ, Wi)

]}
(4)

where αij =
exp(Zijγ +Vi)

1+exp(Zijγ +Vi)
is the split-stage equation; the model’s survival stage estimates

the effect of covariates Xij on the probability of survival conditional on each unit being
at-risk along with the baseline hazard. Here, Vi and Wi are the nonspatial i.i.d. unit-specific
frailties in the cure model’s split and survival stages, respectively. If Vi = Wi = 0, then
Equation (4) reduces to the log-likelihood of the nonspatial “pooled” split-population sur-
vival model (without unit-specific frailties) with time-varying covariates [22,24]. Suppose,
however, that unobserved unit-specific heterogeneity influences the units’ survival time or
probability of entering the immune fraction (or both). Unobserved heterogeneity of this
sort is addressed by incorporating the i.i.d. split-stage and survival-stage frailty terms (Vi
and Wi) into the split-population survival model. In a Bayesian framework, the following
exchangeable normal prior is employed to assess these frailties in each stage of the model:

Wi ∼ N(0, 1/τ) and Vi ∼ N(0, 1/τ) (5)

where τ is the precision parameter and each unit is specified as exchangeable to generate
the prior [11,12,25].

If researchers believe that the effect of each unit-specific frailty on the unit’s risk-
propensity or probability entering the immune fraction is independent of neighboring units’
frailty effects, then the nonspatial split-population survival model should be estimated
with i.i.d. unit-specific frailties. It is possible, however, for the frailties to exhibit spatial
heterogeneity, meaning that each unit’s propensity to be in the immune fraction as well as
its survival time is influenced by unobserved factors among its neighboring units. Spatial
weights can be assigned to the unit-specific frailties in the split-population survival’s split
and survival stage to model this spatial autocorrelation. These spatially weighted frailties
can then be incorporated via the conditionally autoregressive (CAR) approach previously
developed in [26].

In the Bayesian split-population survival model, the CAR prior accounts for spatial
autocorrelation in the frailties by allowing these frailities to be autocorrelated across, e.g.,
geographically adjacent units, where “adjacency” can be defined by the researcher based
on the context. More specifically, spatial data are often represented by a lattice, in which
the spatial surface is divided into a grid of units that, depending on the empirical context,
can be counties, districts, countries, or other areal units. The spatially weighted frailties are
then incorporated via the CAR prior by defining the relevant spatial relationship among
all geographically adjacent units in an adjacency matrix A, where each element is denoted
as aii′ .

Note that aii′ = 1 in A if units i and i′ are “neighbors”. If i and i′ are not neighbors,
then aii′ = 0. The assignment of spatial weights is incorporated into the CAR prior in order
to model spatially autocorrelated frailties between adjacent units. After doing this, the
frailties Vi and Wi are collected into the vectors V = {V1,. . . ,VN} and W = {W1,. . . ,WN},
respectively. This facilitates the use of separate CAR priors for V and W, which in turn
produces the following CAR model structure:

V|λ ∼ CAR(λ) and W|λ ∼ CAR(λ) (6)

where λ is the precision parameter [11,26]. The CAR(λ) prior for V and W has a joint
distribution, which is formally characterized in [14] and is described in our paper’s Supple-
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mentary Materials. The resulting conditional distributions of the spatial frailties for V and
W are

Vi|Vi′ �=i ∼ N(Vi, 1/(λmi)), Wi|Wi′ �=i ∼ N(Wi, 1/(λmi)), (7)

where: Wi = m−1
i ∑i′ adj i Wi′ ; Vi = m−1

i ∑i′ adj i Vi′ ; Wi and Vi are the averages of the
neighboring Wi′ �=i and Vi′ �=i, respectively, where i′ adj i denotes that i′ is adjacent to i given
the matrix A; and mi is the number of these adjacencies [25,27]. Using this CAR prior
approach, we can then define the log-likelihood of the spatial split-population survival

model by substituting V ={Vi} and W ={Wi} in Equation (4), where αij =
exp(Zijγ ,V)

1+exp(Zijγ ,V)

is the split-stage equation.
The log-likelihood of the pooled (“nonfrailty”), nonspatial i.i.d. frailty, and spatial

split-population survival models are compatible with any commonly employed parametric
survival distribution. For our empirical applications, we assume a Weibull distribution for
the baseline hazard, in which ρ denotes the shape parameter. The density, survival function,
and the hazard rate for the Weibull distribution are defined in our Supplementary Material.
We use the Geweke [28] convergence test and Heidelberger and Welch [29] stationarity
test in our empirical applications below to assess whether the obtained Markov chains
converge to their respective stationary distributions.

2.2. Markov Chain Monte Carlo Estimation

Following standard practice for Bayesian inference [30], we assign the Multivariate
Normal (MVN) prior to β = {β1, . . . , βp1} and γ = {γ1, . . . , γp2}, and the Gamma prior for
ρ with shape and scale parameters aρ and bρ for the Bayesian pooled (nonfrailty), nonspatial
(i.i.d.) frailty, and spatial split-population parametric (Weibull) survival models:

ρ ∼ Gamma(aρ, bρ), β ∼ MVNp1(μβ, Σβ), γ ∼ MVNp2(μγ, Σγ) (8)

Σβ ∼ IW(Sβ, νβ), Σγ ∼ IW(Sγ, νγ),

where aρ, bρ, Sβ, νβ, Sγ, and νγ are the hyperparameters in (8) and μβ and μγ are random
variables. Here, Σβ and Σγ are estimated in a Bayesian hierarchical framework using the
Inverse Wishart (IW) distribution when employing the MVN (weakly informative) prior.
For Bayesian MCMC estimation of the spatial split-population parametric (e.g., Weibull)
model, we additionally assign the hyperprior p(λ) to λ in light of the CAR prior approach.
Specifically, we assign the Gamma hyperprior λ ∼ Gamma(aλ, bλ) for λ [11,12]. We specify
the vague prior (aλ, bλ) = (0.001, 1/0.001) = (0.001, 1000), as for the case of for ρ. To
estimate the nonspatial frailty split-population survival model in this case, we assign the
normal prior for the model’s split and survival-stage frailties (Vi, Wi), and use the prior
described above for the model’s β, γ, and ρ parameters. To identify the nonspatial frailty
and spatial split-population model intercepts, we impose the constraint that the frailties
sum to zero, i.e., ∑i Vi = 0 and ∑i Wi = 0.

The joint posterior distribution of the Bayesian spatial split-population Weibull model
with time-varying covariates is

π(β, γ, ρ, W, V, λ, Σβ, Σγ|C, X, Z, t, t0, γ) ∝ L(β, γ, ρ, W, V|C, X, Z, t, t0)

π(W|λ)π(V|λ)π(β|μβ, Σβ)π(γ|μγ, Σγ)π(ρ)π(λ)π(Σβ)π(Σγ), (9)

where the likelihood L(β, γ, ρ, W, V|C, X, Z, t, t0) is from Equation (4) with frailties Vi col-
lected into V = {V1, . . . , VN} and Wi into W = {W1,. . . ,WN}; here, C represents the vector
of censored observations. The density, survival function, and hazard rate for this likelihood
are defined in the Supplementary Materials for the Weibull case; π(W|λ) and π(V|λ)
are defined via their respective conditional distributions in Equation (9), π(β|μβ, Σβ),
π(γ|μγ, Σγ), π(ρ), π(Σβ), and π(Σγ) are defined in Equation (8), and π(λ) is the Gamma
hyperprior for the spatial split-population parametric survival models. From (9), we can
formally state the joint posterior distribution of the time-varying nonspatial frailty split-
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population parametric (Weibull) model by incorporating the frailties Vi and Wi defined in
Equation (6) instead of W, V, and their respective CAR priors. The conditional posterior
distributions for β, γ, and ρ in the pooled (nonfrailty) parametric model with time-varying
covariates are

P(β |C, X, Z, t, t0, γ,ρ) ∝ P(C, X, Z, t, t0, β, γ,ρ)× P(β |Σβ),

P(γ |C, X, Z, t, t0, β ,ρ) ∝ P(C, X, Z, t, t0, β, γ,ρ)× P(γ |Σγ), (10)

P(ρ |C, X, Z, t, t0, β , γ) ∝ P(C, X, Z, t, t0, β, γ,ρ)× P(ρ |aρ, bρ),

where P(C, X, Z, t, t0, β, γ,ρ) is the likelihood obtained from Equation (4) after excluding the
frailty terms and P(β |Σβ), P(γ |Σγ), and P(ρ |aρ, bρ) are the priors defined in Equation (8).

The pooled (nonfrailty), nonspatial (i.i.d.) frailty, and spatial split-population survival
model using the Weibull distribution can be estimated using an MCMC algorithm for
Bayesian inference. To begin with, because closed form distributions for the posterior
distributions of β, γ, ρ, λ, W and V are not available for the spatial split-population survival
model, our MCMC method’s update scheme in this case incorporates Gibbs Sampling
(for estimating λ), the Metropolis–Hastings algorithm (for W and V given λ), and slice-
sampling [31] for updating β, γ, ρ. We use Gibbs sampling for λ, as it is easier to sample
from the conditional distribution (which is known) in this case and because the joint
distribution is not known explicitly. We employ the Metropolis–Hastings algorithm for
W and V given λ because it is difficult to sample from the conditional distribution for
W and V. Finally, we use slice-sampling for updating β, γ and ρ, as it requires little
tuning because the slice width adapts quickly to the distribution and sampler performance.
Furthermore, considering that slice-sampling draws from the posterior samples from
any prior distribution as long as these distributions have a reasonable value range of
parameters, this sampling algorithm provides researchers with flexibility in the choice
of prior distribution. This permits the use of informative, weakly informative, or non-
informative priors.

The MCMC algorithm described above proceeds as follows:

1. Choose a starting point β0, γ0, ρ0, λ0 and corresponding W0 = {W1, . . . , WN} and
V0 = {V1, . . . , VN}, then set k = 0.

2. Update Σβ ∼ π(Σβ|β), Σγ ∼ π(Σγ|γ), λ ∼ π(λ|W, V) using Gibbs sampling. The
closed form of the full conditional distributions for π(Σβ|β), π(Σγ|γ), π(λ|W, V) are
derived and defined in the Supplementary Materials.

3. Update β ∼ π(β|C, X, Z, t, W, V, γ, ρ, ¯β, Σβ), γ ∼ π(γ|C, X, Z, t, W, V, β, ρ, ¯γ, Σγ),
and ρ ∼ π(ρ|C, X, Z, t, W, V, β, γ, aρ, bρ) using the slice sampler with stepout and
shrinkage (Neal, 2003); see the Supplementary Materials for details on performing the
slice sampling operation in this step.

4. Update W ∼ π(W|C, X, Z, t, V, β, γ, ρ, λ) and V ∼ π(V|C, X, Z, t, W, β, γ, ρ, λ) via
Metropolis–Hastings.

5. Set k = k + 1, then return to Step 2 and repeat for K iterations.

The MCMC algorithm for estimation of the nonspatial frailty model is similar to
the steps delineated above, with the exception of the nonspatial i.i.d. frailties Vi and Wi
in this model being updated via Metropolis–Hastings with the proposal variance as the
conditional prior variance for these frailties. To estimate the pooled (nonfrailty) model, we
use the following MCMC algorithm, as closed forms for the posterior distributions of ρ, β,
and γ are not available:
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1. Choose the initial values of β, γ, and ρ, then set m = 0.
2. Update Σβ and Σγ via Metropolis–Hastings; see the Supplementary Material for the

closed form of the full conditional distributions for Σβ and Σγ.
3. Update β, γ, and ρ using the slice sampler with stepout and shrinkage, as described

in the Supplementary Materials.
4. Repeat Steps 2 and 3 until the chain converges.
5. After M iterations, summarize the parameter estimates using posterior samples.

3. Monte Carlo Simulations

We conducted three Monte Carlo (MC) experiments to compare the performance
of the nonspatial SP Weibull models with and without i.i.d. frailties to our spatial split-
population Weibull model. The design of our MC experiments and the results from these
experiments are presented in greater detail in the Supplementary Materials. We focus
on the Weibull case here, as the empirical applications below use the Weibull survival
distribution; however, our Monte Carlo simulation results hold for other parametric (e.g.,
log-logistic) distributions as well.

More specifically, our MC experiments simulate a split-population Weibull distributed
outcome variable that exhibits spatial autocorrelation across neighboring units in each
stage. For all experiments, we consider sample sizes of N = 100, 400, 1000, 1500, and 2000.
Note that N = 100 and N = 400 respectively correspond to a small and moderate sample
size, while N = 1000, 1500, and 2000 represent a relatively larger sample. For each model
in our MC experiments, we include one survival-stage covariate x1and two split-stage
covariates z1 and z2 = x1, as the same covariate may be included in both stages. We
incorporate information about the spatial relationship between units in our simulated data
via an adjacency matrix A. To generate A, we consider a hypothetical space with five areal
units (e.g., countries), with each unit having at least one adjacent “neighbor.” This spatial
relational information is then incorporated into the simulated data generation process,
which follows an SP Weibull distribution (see Supplementary Materials for details).

Next, recalling that the split-stage equation in the spatial split-population survival
model is provided by a binary response function that captures the effect of covariates Zi
and the associated parameter vector γ on the probability of units entering the immune
fraction (α), we have a case in which the more likely a greater share of units is to enter the
immune fraction, the higher the immune fraction level. Hence, for the MC experiments, we
set the true γ values that affect the immune fraction (via α)—calculated as the mean value
of the binary response function αi =

exp(Ziγ+Vi)
1+exp(Ziγ+Vi)

) for all i in our N-sample data—using
the pre-set true γ value and the randomly generated variables Zi (as well as the V spatial
frailties for the spatial d.g.p. This permits us to adjust the immune fraction level in a way
that is consistent with the model’s split-stage. Finally, for each experiment, we use 500
iterations in the MCMC, 100 burn-ins, and a thinning of 1, and assess the convergence of
the Markov chain via trace-plots and the Geweke convergence test.

Using these experimental conditions, we now turn to assessing our nonspatial and
spatial models of interest for three experiments. In the first MC experiment, we compare
the performance of our nonspatial and spatial split-population Weibull models when the
fraction of the immune subpopulation is fixed at 25% and the proportion of units that share
spatial frailties is held at 40%. The results from this MC experiment reveal that our spatial
split-population Weibull model outperforms both the nonspatial split-population Weibull
models in retrieving the true theoretical values of the split-stage (γ) and survival-stage (β)
covariates (Figure 1) along with the spatial frailties in both stages (Figure S1, Supplementary
Material) for small and moderate sample sizes as well as for the relatively larger sample
sizes listed above. Thus, the spatial split-population Weibull model should be favored over
the nonspatial split-population models even when a low number of observations have
spatially-dependent frailties in a split-population survival framework. The trace plots show
stability, and the models pass the Geweke convergence test.
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Figure 1. MC Experiment 1 β,γ densities for SP Weibull, NS Frailty Weibull, and Spatial SP Weibull
models for: (a) β̂0, N = 100, (b) β̂0, N = 400, (c) β̂0, N = 1000, (d) β̂0, N = 1500, (e) β̂0, N = 2000,
(f) β̂1, N = 100, (g) β̂1, N = 400, (h) β̂1, N = 1000, (i) β̂1, N = 1500, (j) β̂1, N = 2000, (k) γ̂0, N = 100,
(l) γ̂0, N = 400, (m) γ̂0, N = 1000, (n) γ̂0, N = 1500, (o) γ̂0, N = 2000, (p) γ̂1, N = 100, (q) γ̂1,
N = 400, (r) γ̂1, N = 1000, (s) γ̂1, N = 1500, (t) γ̂1, N = 2000, (u) γ̂2, N = 100, (v) γ̂2, N = 400,
(w) γ̂2, N = 1000, (x) γ̂2, N = 1500, (y) γ̂2, N = 2000.
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In the second MC experiment, we compare the nonspatial and spatial split-population
Weibull models’ performance when the immune fraction of the simulated split-population
Weibull-distributed outcome variable remains at 25% and the proportion of units that share
spatial frailties is 30%, 40%, 60%, and 80%. Results from Figure 2, which displays the mean
RMSEs for β̂ and γ̂ for N = 100, 400, 1000, 1500, and 2000, demonstrate that the spatial
split-population Weibull model substantially outperforms the nonspatial split-population
Weibull models at all levels of spatial autocorrelation; the mean RMSEs for the spatial SP
Weibull models are always negligible (close to 0) for all the sample sizes that are examined
in the experiment, while those of the two nonspatial SP Weibull models are critically high,
indicating a considerable level of bias. Moreover, the results show that the nonspatial
split-population Weibull models’ split and survival-stage covariates and nonspatial frailties
exhibit deteriorating coverage and lower efficiency at all levels of spatial autocorrelation.
By contrast, the spatial split-population Weibull model recovers the true theoretical values
of the split and survival-stage covariates and the spatial frailties in both stages of the
model with more accuracy, coverage, and efficiency. Therefore, for the various sample sizes
considered here, the spatial split-population Weibull model outperforms the nonspatial
models at all levels of spatial autocorrelation. Again, the trace plots show stability, and the
models pass the Geweke convergence test.

(a) (b)

Figure 2. MC Experiment 2 mean RMSE comparison between SP Weibull, NS Frailty SP Weibull,
and spatial SP Weibull models for (a) β̂ coefficients and (b) γ̂ coefficients with spatial dependence
changing from 30% to 80% of the data.

The third MC experiment applies the d.g.p. from Experiment 1, where the share of
units with spatially dependent frailties is held at 40% and the size of the immune fraction is
varied from 25% to 33%, 40%, 48%, and finally 60%. Figure 3a,b, which additionally shows
the mean RMSEs for β̂ and γ̂ with N = 100, 400, 1000, 1500, and 2000, reveals that the
split and survival stage results strongly favor the spatial split-population Weibull model
over the other two nonspatial split-population Weibull models for all the sample sizes
examine here and at all immune fraction levels; the mean RMSEs are close to 0, and are
negligible in the spatial SP Weibull models, while those for the two nonspatial SP Weibull
models are considerably higher. This indicates that the β̂ and γ̂ parameters are biased in
the latter models. Furthermore, the retrieved values of the spatial frailties from the spatial
split-population Weibull model rapidly converge to their true values with high coverage
probabilities. Thus, if the true d.g.p. is split-population Weibull in which the unit-specific
frailties exhibit spatial autocorrelation, then the spatial split-population Weibull should be
estimated when the size of the immune fraction is 25% or above for small, moderate, and
even relatively large sample sizes.
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(a) (b)

Figure 3. MC Experiment 3 mean RMSE comparison between SP Weibull, NS Frailty SP Weibull,
and spatial SP Weibull models for (a) β̂ coefficients and (b) γ̂ coefficients with the immune fraction
changing from 25% to 60% of the data.

We conducted three additional MC experiments that we do not report here in order
to save space; these are briefly presented in the Supplementary Materials (see Figure S2
and Tables S3 and S4) . Briefly, in one set of MC experiments (Experiment 4) we increased
both the immune fraction and the share of units with spatially dependent frailties. In
another experiment (Experiment 5), we re-evaluated our primary MC results using an
alternative prior. In the third set of MC experiments (Experiment 6), we compared our
model’s performance to a Bayesian spatial SP model that incorporates spatial frailties in
just the survival stage. For each of these additional experiments, we set sims = 100 and
evaluated model performance for a variety of different sample sizes. These additional MC
experiments revealed that, unlike the nonspatial models, both the retrieved values of the
split and survival-stage parameters and the spatial frailties from the spatial SP Weibull
model converge to their true values with high coverage probabilities when the true d.g.p.
is SP Weibull in which the unit-specific frailties exhibit spatial autocorrelation.

4. Empirical Applications

Our MC experiments suggest that if spatial autocorrelation exists in the true d.g.p.,
then failing to account for it leads to faulty inferences. In applied settings, this means
that if there are a priori theoretical reasons to suspect that the survival times and immune
fractions of interest are spatially clustered, where our spatial frailty approach is superior to
nonfrailty or i.i.d. frailty split-population models. Below, we apply our Bayesian spatial
split-population Weibull model to survival data from two published studies in Political
Science about (1) democratic regime survival [17] and (2) the duration of post-civil war
peace (i.e., before civil war recurs) [18]. In both cases, we discuss theoretical reasons and
empirical evidence suggesting that these processes exhibit spatial clustering, then compare
results from our Bayesian spatial frailty model to those of nonspatial specifications.

4.1. Democratic Consolidation and Survival

Comparative political scientists often conceptually distinguish between transitional
democracies, which can revert to authoritarian rule, and consolidated democracies, in which
the “democratic regime becomes sufficiently durable that democratic breakdown is no
longer likely” [32] (p. 743). Previous empirical analyses of democratic consolidation, which
typically employ discrete choice models, consistently find that wealth (measured by GDP
per capita) has a positive and highly significant effect on the probability of democratic
consolidation [32,33]. On the other hand, presidential systems (as opposed to parliamentary
systems) have a negative but weakly significant or insignificant impact on democratic
consolidation, while the association between past authoritarian institutions and democratic
consolidation is inconsistent [32,34]. Research on the survival of democratic regimes (which
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often uses conventional parametric survival models) usually finds that, unlike presidential
systems, economic growth and parliamentary systems help democracies to endure [35,36],
while democracies preceded by military rule revert to dictatorships more quickly [34,37].
The most consistent finding, however, is that GDP per capita has a strong positive influence
on survival of democracy, leading a number of scholars to infer that democratic survival
“increases monotonically with per capita income” and then endures indefinitely after GDP
per capita reaches approximately USD 6000 [38] (p. 165).

Although these insights are important, Ref. [17] emphasizes that by employing stan-
dard duration or discrete choice models these studies assume that all democracies face
the same baseline risk of reversal to authoritarianism. This assumption is unjustified, as
the population of democracies includes “at-risk” transitional democracies along with an
“immune fraction” of fully consolidated democracies for which the risk of authoritarian
reversal is negligible. Hence, the observed survival of democracy results from two separate
processes: “democracies that survive because they are consolidated and those democra-
cies that are not consolidated but survive because of some favorable circumstances” [17]
(p. 153). Considering these two subpopulations, Ref. [17] then re-examines extant findings
about democratic consolidation and survival by estimating via MLE parametric (Weibull)
nonspatial split-population survival models (with and without i.i.d. frailties) on a dataset
of democratic spells across 133 countries between 1789 and 2001. All right-censored ob-
servations in his data are either consolidated or transitional democracies that have not yet
reverted to authoritarian rule. Thus, the split-stage in his SP survival model estimates the
probability of democratic consolidation (62% of his cases are right-censored), while the
survival stage estimates the duration of democracy among cases that eventually experience
an authoritarian reversal. He incorporates seven covariates in both stages: GDP per capita,
GDP growth, Presidential and Parliamentary systems, and previous Military, Civilian, and
Monarchical dictatorships.

Briefly, [17] found that GDP per capita has a positive and statistically significant effect
on the probability of democratic consolidation in the split-stage, while presidential systems
and democracies preceded by military dictatorships are less likely to consolidate. Economic
growth helps “transitional” democracies to survive longer, though there is no statistically
significant relationship between GDP per capita and democratic survival among these
at-risk regimes. Most other covariates are statistically insignificant, though the insignificant
coefficient for presidential systems is notably positive in the survival stage.

Despite this important contribution to the extensive literature on the durability of
democracies, the nonspatial split-population survival models employed in the original
study assumed that neither the likelihood of democratic consolidation nor the prospects for
democratic survival exhibit spatial autocorrelation. This assumption may be untenable,
as democracies tend to cluster in space. Indeed, “since 1815, the probability that a ran-
domly chosen country will be a democracy is about 0.75 if the majority of its neighbors are
democracies, but only 0.14 if the majority of its neighbors are nondemocracies” [39] (p. 916).
Research in political science has found that geographical proximity to (consolidated) democ-
racies not only encourages democratic transition in authoritarian regimes, it increases the
odds of consolidation and survival of nascent democracies, as stable democracies create a
“regional production chain” of democratic institutions, practices, and norms that are con-
ducive to democracy [40] (p. 25; and see [32,39,41]). Thus, democratic clustering reinforces
democratic norms, making it costly for elites to engage in democratic backsliding [41]. In
this way, democratic neighborhood effects may have important latent influences on both
democratic reversal and democratic survival.

Although there are clear theoretical reasons to expect spatial autocorrelation in the
d.g.p. of democratic regime survival and consolidation, we can additionally use common
tools in spatial statistics to diagnose the extent of spatial clustering in each year of the data.
Specifically, we conduct two pre-estimation tests by calculating (1) the join count and (2) the
Global Moran’s I statistic for each cross-section of democracies in the data. The join count
is a measure of the extent to which the number of observed areal units that are adjacent and
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of the same category is greater than or less than what is expected if the spatial distribution of
those categories were random [42]. In general, in a setting with two discrete categories A
and B, the join count test statistic is

Z(AB) =
AB − E(AB)√

σ2
AB

, (11)

where AB and E(AB) are the observed and expected counts of adjacent units in categories
A and B, respectively, and σ2

AB = E
(

AB2) − E(AB)2. Positive statistics indicate spatial
dispersion (units of the same category are further from each other than expected by chance),
while negative statistics indicate positive spatial clustering (units of the same category are
more likely to be adjacent than what is expected by chance.

For this application, we construct a separate cross-sectional adjacency matrix with
elements aii′ for each year in the data, wherein proximate pairs of democratic countries
(within 800 km of each other) are assigned a weight of 1 (aii′ = 1). Our outcome of interest
for the join count analysis is whether a country is identified as being “at risk” of democratic
reversal in the original dataset.

In addition, we use the Global Moran’s I statistic to assess the number of years that
democratic regimes survive as a group of clusters in space. Global Moran’s I is an inferential
statistic that measures the direction and degree of spatial clustering in continuous data [43].
Positive statistics indicate positive spatial clustering of similar values of the continuous
variable of interest, while negative statistics indicate that dissimilar values are more likely
to be proximate than if they were distributed randomly in space. Using the same adjacency
matrix described above, we use the Global Moran’s I to evaluate whether democracies
that have survived for similar periods of time exhibit spatial heterogeneity (clustering
or dispersion).

We report the join count and Moran’s I tests in detail in the Appendix A (Figure A1)
provided at the end of the paper. Briefly, the results clearly indicate significant spatial
clustering in both the probability of democratic reversal and the survival rates of democ-
racies, particularly in the post-World War 2 period. Next, we replicate the above analysis
using our Bayesian spatial SP survival model in order to compare our results to the original
nonspatial models with and without i.i.d. frailties. Because the original analysis of these
data used maximum likelihood estimation, we used the same for the nonspatial frailty and
nonfrailty models in order to exactly replicate the previous results. Our spatial SP Weibull
model incorporates spatially-weighted frailties across neighboring democracies via the
adjacency matrix A. We construct a matrix A with elements aii′ such that aii′ = 1 for each
year if the capital of country i is less than 800 km from the capital of country i′ and aii′ = 0
if countries i and i′ are greater than 800 km from each other. Using geographic proximity as
the spatial relationship of interest is appropriate, as it allows the frailties to be correlated
with those of neighboring democracies rather than assuming spatial independence even
within the same regions. Considering our Bayesian MCMC estimation approach, we in-
corporate the spatial information in A by employing separate CAR priors for the frailty
terms vector V (split-stage) and W (survival-stage), which implies a CAR structure of V|λ
∼ CAR(λ) and W|λ ∼ CAR(λ). The spatial SP Weibull model is estimated based on the
sample from [17] using the MVN prior and our MCMC algorithm described earlier and
assigning the Gamma hyperprior for λ. Here, we use the hyperparameters a = 1, b = 1,
Sβ = Ip1, Sγ = Ip2, νβ = p1, νγ = p2. Recall that Σβ is the variance of the MVN prior of
the vector β for p1-dimensional survival stage covariates and that Σγ is the MVN’s prior
of the vector γ for p2-dimensional split-stage covariates. Hence, when we employ the
Inverse Wishart (IW) distribution to estimate both Σβ, in which νβ is the hyperparameter,
and Σγ, in which νγ is the hyperparameter, we adopt the values p1 for νβ and p2 for νγ.
Finally, λ ∼ Gamma(aλ, bλ) with a vague prior (aλ, bλ) = (0.001, 1/0.001). Our Bayesian
SP Weibull model results are based on a set of 50,000 iterations after 4000 burn-in scans and
thinning of 10.
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We begin our analysis of the split-stage results by examining choropleth maps (Figure 4a,b)
that illustrate the posterior means of the spatial frailties obtained from the spatial SP Weibull
model. The split-stage map (Figure 4a) reveals that there are distinct spatial bands in the
frailties, which range from −0.725 to 0.716 with a corresponding standard deviation of
0.31. The spatial patterns in the map suggest that there is strong spatial clustering in the
underlying factors linked to democratic consolidation, as states with a higher baseline risk
for democratic consolidation are in similar geographic neighborhoods, whereas those with
lower propensities are clustered in separate regions.

(a) (b)

Figure 4. Democratic survival application spatial frailty maps: (a) depicts the posterior mean
estimates of V (split−stage spatial frailties) and (b) depicts the posterior mean estimates of W

(survival−stage spatial frailties).

Figure 5 displays the results for each covariate from the replicated models and our
spatial frailty model. For the nonspatial models, the points represent coefficient estimates
and the bars represent 90% confidence intervals. For admittedly rough comparability
purposes, the dots in the figure represent posterior means for the spatial frailty models,
while the bars represent symmetric 90% credible intervals. Although these are certainly not
perfect comparisons, our goal here is simply to illustrate the applicability of our model and
the way in which accounting for spatial autocorrelation can affect inferences.

The dot-whisker plots in Figure 5 show that while Svolik’s results for GDP growth,
Monarchy, and Civilian are similar across the nonfrailty and nonspatial frailty SP Weibull
models, the differences in the split-stage results between these nonspatial models and
our spatial frailty model are more pronounced. For instance, the Presidential and Military
covariates are each negative and highly significant in the nonspatial SP Weibull models
with and without i.i.d. frailties. By contrast, the negative estimates for Presidential and
Military are each highly unreliable in the spatial SP Weibull model’s split-stage equation.
Thus, after we explicitly account for spatial autocorrelation in the split-stage of the SP
survival model, the relationship between each of the covariates noted above and the
probability of democratic consolidation is considerably attenuated. In nonspatial SP
Weibull models from [17], the Parliamentary dummy’s split-stage estimate is positive, albeit
insignificant. However, the estimate of Parliamentary in the spatial SP Weibull model’s
split-stage is negative (though not reliably so). Thus, the results from our spatial model
raises doubts about prior claims that parliamentary systems are strongly associated with
democratic consolidation.

Finally, we consider the split-stage parameter estimate for GDP per capita, which is
positive and statistically significant in the original nonspatial SP Weibull models with
and without i.i.d. frailties. In contrast, the split-stage estimate of GDP per capita is nega-
tive (though insignificant) in our spatial SP Weibull model. Hence, the widely accepted
positive association between higher per capita income and democratic consolidation is
neither consistent nor robust when accounting for spatial autocorrelation among neighbor-
ing democracies.

194



Mathematics 2023, 11, 1886

(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Democratic consolidation stage (γ̂) coefficient results from SP Weibull, NS Frailty SP
Weibull, and spatial SP Weibull models for the following covariates: (a) GDP/cap, (b) GDP growth,
(c) military government, (d) monarchy, (e) civilian government, (f) parliamentary government, and
(g) presidential government.

Turning to the survival stage results, we first consider the choropleth map in Figure 4b,
which illustrates posterior means of the spatial frailties obtained from the Spatial SP Weibull
model. The spatial frailty values vary from −0.95 to 0.859, with a corresponding standard
deviation of 0.313. These maps again reveal spatial clustering associated with democratic
regime survival; those democracies with greater underlying propensity for democratic
survival are located near countries with similar propensities, while those with a lower
propensity for democratic survival are located in disparate geographic areas.

The plots in Figure 6 reveal additional differences between the original nonspatial split-
population model results and the new results from the Bayesian spatial split-population
model. For instance, although the original study found that the survival stage estimate of
Monarchy is positive and highly significant in the nonspatial models, this relationship is
insignificant and negative in the spatial SP Weibull model. Hence, the association between
democracies that were previously ruled by a monarch and democratic durability is tenuous
after accounting for the influence of spatial autocorrelation on democratic survival. Next,
the original survival stage estimate for Military in both the nonspatial SP Weibull models is
negative (though insignificant). In the spatial SP Weibull model, Military is again negativ;
however, unlike the nonspatial models, in this case it is statistically reliable. This suggests
that not accounting for neighborhood democracies can lead researchers to underestimate
the relationship between democratic durability and democratic states that were preceded
by military rule. Finally, while [17] challenged the confidence of previous findings with
respect to the relationship between GDP per capita and democratic survival (e.g., [35,36]),
the influence of per capita income on democratic survival in our spatial SP Weibull model
is positive and statistically reliable, consistent with the previous literature. Taken together,
a re-examination of these data on democratic survival and consolidation using the spatial
SP survival model leads to new inferences about important political phenomena.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6. Democratic survival stage (β̂) coefficient results from SP Weibull, NS Frailty SP Weibull, and
Spatial SP Weibull models for the following covariates: (a) GDP/cap, (b) GDP growth, (c) mil-
itary government, (d) monarchy, (e) civilian government, (f) parliamentary government, and
(g) presidential government.

4.2. Post-Civil War Peace Duration

To further demonstrate the applicability of our framework, in this section we use
our spatial SP survival model to re-investigate previous findings that suggest information
transparency and other political freedoms can increase post-civil war peace survival [18].
The normative importance of consolidating peace after civil war has motivated a wide body
of research in Political Science on why certain civil wars recur and others do not. Much of
this literature has focused on the characteristics of the initial war and termination [44,45]
and the characteristics of the post-war environment, including the presence of third-party
or U.N. intervention [46–48]; ref. [18] contributes to this literature by arguing that increased
political accountability and civil liberties in the post-war period can augment the costs of
reneging on an agreement and allow governments to credibly commit to not resuming
violence. Her primary testable expectation is that “civil wars that are fought against
governments with limited accountability should be more likely to repeat themselves than
civil wars in countries with highly accountable governments” [18] (p. 1248). Estimating
conventional survival models using a sample of 77 post-civil war peace spells during
1945–2009, Ref. [18] finds support for her hypotheses in various measures of civil liberties,
democratic institutions, and rule of law; however, one of her primary variables of interest,
Press Freedom, does not reach standard frequentist levels of statistical significance.

The conventional survival models used in the aforementioned study, however, as-
sume that all wars recur at some point. A split-population survival model may be more
appropriate for studying post-war peace survival, as certain wars are at risk for recurring
while others are structurally distinct cases in which peace is “consolidated” or one side is
eliminated entirely, in which the same conflict cannot recur. Moreover, there are theoretical
and empirical reasons to believe that spatial autocorrelation may influence both the risk
of peace consolidation or of renewed war in these data. Previous research has shown that
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diffusion processes may lead to conflict contagion (e.g., [13,49,50]), while peace stability is re-
gionally clustered due to the clustering of observable and unobservable political attributes
(e.g., [39,51,52]). In the split stage, post-war countries might never return to violence if they
are surrounded by similarly peaceful countries that have demonstrated the institutional
capability and political interest to prevent the resurgence of violence in the region [49], or
if latent localized interests among elites or civilian populations to contain violence—for
instance, to prevent war recurrence in their own contiguous countries—are clustered in
space [53]. In the survival stage, stable institutions [51] or other latent geographic factors
that transcend the borders of a single state may influence the time that rebels take to remo-
bilize or that governments take to re-engage with dormant dissident movements. If any of
these unobserved factors are not randomly distributed in space, then failing to account for
this heterogeneity will lead to faulty inferences [13].

As in the previous application, we conducted Moran’s I and join count tests to evaluate
whether spatial autocorrelation exists between peace survival rates and countries that
experience a civil war and never experience another. The results (see Figure A2 in the
Appendix A) clearly indicate spatial clustering and dispersion, especially after 1960 and
prior to 1900. This pre-estimation empirical evidence suggests that spatial autocorrelation
should be taken into account when modeling the survival and consolidation of post-civil
war peace.

In our analysis of post-civil war peace, we use replication data from the aforementioned
study and specify an SP model with four covariates in the split-stage: Press Freedom; whether
the previous conflict ended in an outright Victory; percentage of Mountainous terrain; and
GDP/capita. In the survival stage, we include our main variable of interest, Press Freedom,
and control for GDP/capita, whether the previous conflict ended in a Peace Agreement, the
Intensity of the previous conflict, Ethnic Factionalization, the presence of UN Peacekeeping
forces, whether the previous conflict was over Territory, whether the country has some
Non-Contiguous territory that can be used to expedite rebel mobilization, and the percentage
of Mountainous terrain. We focus on Press Freedom because it closely captures information
transparency, which is an important mechanism of interest in the original theory, and
because the results for this variable were inconsistent with the other findings in the study.

To examine the effects of these covariates on both the probability of peace consolidation
and the survival of peace, we estimate a nonfrailty SP Weibull model and a spatial SP
Weibull model. Following the original analysis of these data, we estimate the nonfrailty
model using maximum likelihood. For the spatial model, we again define spatial proximity
as aii′ = 1 if the distance between the capitals of state i and i′ is less than 800 km and aii′ = 0
otherwise [54], though we found similar results when increasing these distances to 2000
and 2500 km. We allow the frailties between neighboring units to be spatially correlated
by employing separate CAR priors for the frailty vectors V and W, which implies a CAR
structure of V|λ ∼ CAR(λ) and W|λ ∼ CAR(λ). The spatial SP Weibull model is estimated
using the multivariate normal prior. For the slice-sampling (MCMC) algorithm, we specify
the hyperparameters as a = 1, b = 1, Sβ = Ip1, Sγ = Ip2, νβ = p1, and νγ = p2, and assign the
Gamma hyperprior λ ∼ Gamma(aλ, bλ) for λ with vague prior (aλ, bλ) = (0.001, 1/0.001).
We estimated the model with 50,000 iterations and 38,000 burn-ins. Every parameter passes
the Geweke [28] convergence test and Heidelberger and Welch [29] stationarity test.

Turning first to the choropleth maps of the spatial frailty values from the spatial SP
Weibull model in Figure 7a,b, the split-stage frailties (V) range from −1.19 to 1.49 with a
standard deviation of 0.5503, and the survival-stage frailties (W) range from −1.21 to 0.727
with a standard deviation of 0.4498. In both stages, there seem to be regional clusters of
frailty values.
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(a) (b)

Figure 7. Post−war peace duration application spatial frailty maps: (a) depicts the posterior mean
estimates of V (split−stage spatial frailties) and (b) depicts the posterior mean estimates of W

(survival−stage spatial frailties).

The β and γ results for both the nonspatial and spatial SP Weibull models are reported
in Figures 8 and 9. The dots and bars are interpreted in the same way as in the previous
application. Much like the original analysis, the nonspatial SP model reveals no clear
evidence that information transparency affects the survival of peace after conflict; the
coefficient estimates for Press Freedom are statistically insignificant in both stages. In fact,
the only (weakly) significant result in the split-stage of the nonspatial model is GDP/capita,
indicating limited evidence that increased economic prosperity can increase the probability
of a civil conflict never recurring. Mountains and previous Victory appear to have no
relationship with peace consolidation, contrary to extant findings (e.g., [44]). The survival
stage results of the nonspatial Weibull model reveal that conflicts over Territory and Ethnic
Factionalization are associated with longer post-conflict peace periods, while Non-Contiguous
territory and previous war Intensity are associated with shorter peace periods, at least
among countries at risk of recurrent conflict.

(a) (b)

(c) (d)

Figure 8. Peace consolidation (γ̂) coefficient results from SP Weibull and Spatial SP Weibull models
for the following covariates: (a) press freedom, (b) victory, (c) mountains, and (d) GDP/cap.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Peace survival stage (β̂) coefficient results from SP Weibull and Spatial SP Weibull models
for the following covariates: (a) press freedom, (b) GDP/cap, (c) peace agreement, (d) intensity,
(e) ethnic factionalization, (f) UN peacekeeping, (g) territory, (h) non-contiguous, and (i) mountains.

When we account for spatially autocorrelated frailties, however, we find remarkably
different results. First, although conflicts over Territory remain positively associated with
post-war peace survival, we cannot reliably conclude that Non-Contiguous territory, Inten-
sity, or Ethnic Factionalization have systematic relationships with peace in at-risk conflict
locations. In addition, we find that better economic opportunities are no longer reliably
associated with post-war peace consolidation, though they do have a reliable statistical rela-
tionship with the survival of peace in at-risk countries. This finding is important because it
suggests that while a stronger economy can make it more difficult for rebels to re-mobilize,
it is not a panacea for permanently exiting the “conflict trap,” as previous research has
suggested [55].

Finally, although Press Freedom appears to have no real relationship with post-war
peace survival among at-risk cases, it is positively and reliably associated with the consolida-
tion of peace after war. In other words, although a country having a higher level of press
freedom may not elongate a temporary peace when conflict is likely to recur, press freedom
is associated with a significant decrease in a country’s overall susceptibility to renewed
war. Although there remains considerable debate over whether democratization after a
conflict hinders or helps peace to endure (e.g., [56]), this evidence suggests that information
transparency and an independent media may lead to a far more durable, if not permanent,
period of domestic stability after a conflict ends.

5. Discussion and Conclusions

This has article developed a parametric spatial Split-Population Survival model that
accounts for both the probability that some observations are immune to an event of interest
and the tendency of underlying risk factors associated with political processes to cluster
in space. While the model builds upon previous work [11,12,57], it is unique in that it
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allows for spatially autocorrelated frailties in the split and survival stages. The model
incorporates time-varying covariates in both the split and survival stages. These features
allow researchers to explicitly model and statistically account for spatial heterogeneity
that may influence the probability of an observation becoming immune from an event as
well as the duration of a process among units considered “at-risk” in panel survival data.
Our innovation is distinct from extant works on spatial statistics that address different
types of spatial dependence in settings with continuous or binary dependent variables
or in conventional survival models [12,58,59], as it relaxes the assumption that all ob-
servations eventually experience the event of interest. Our MC experiments reveal that,
unlike nonspatial models, our spatial split-population survival model provides accurate
estimates when SP survival data exhibit spatial autocorrelation. Finally, we apply our
model to previously published data on widely studied phenomena in political science in
the contexts of democratic regime survival and the durability of post-civil war peace. After
accounting for the immune fraction and spatial autocorrelation in these applications, we
find evidence contrary to previous studies’ original findings, particularly in the first-stage
“cured” fraction equation.

Future work can build upon our model to devise estimation routines for survival
data with multinomial outcomes (e.g., competing risks), recurrent events, or variable time
trends; a particularly useful next step would be to apply this approach to a semi-parametric
setting [3,60]. Extant work on nonparametric solutions could benefit from this approach [61].
Although our contribution is significant in Bayesian survival modeling by allowing for
spatial frailties in the split stage rather than only in the survival stage (e.g., [11]), future
extension could increase the flexibility of our model by incorporating spatial frailties only in
the estimation of the immune fraction, while the survival stage includes only i.i.d. frailties
or no frailties. This could be useful in applied cases where a researcher believes that the
processes leading to immunity are spatially clustered while the survival probabilities of
those at risk of the event are not.

Of course, any Bayesian analysis can be sensitive to the choice of the prior distribution;
thus, applied researchers should take care to not limit themselves to the priors implemented
here depending on their topic of study. Future analytical work could continue to investigate
our model’s performance using alternative priors, such as the Gamma distribution [62].
Furthermore, further application of the model could benefit from the development of
goodness-of-fit tests for distributional assumptions in the data [63] and additional tools for
model specification [60].

Beyond the applications presented here, this Bayesian spatial split-population survival
model can be a useful tool for researchers interested in anything from success rates of
vaccines or other medical treatments, to customer analytics around the purchase of new
products, to coups d’état around the world. All of these phenomena and more tend
to involve some fraction of the population under investigation being probabilistically
immune from the event for some measurable reason(s) while being influenced by the
spatial clustering of unobserved yet meaningful factors.
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Abbreviations

The following abbreviations are used in this manuscript:

CAR Conditionally Autoregressive
CP Convergence Probabilities
d.g.p. Data Generation Process
i.i.d. Independent and Identically Distributed
IW Inverse Wishart
MC Monte Carlo
MCMC Markov Chain Monte Carlo
MCSE Monte Carlo Standard Error
MVN Multivariate Normal
NS Non-Spatial
NSF Non-Spatial Frailty
RMSE Root Mean Square Error
SP Split Population

Appendix A

To conduct the join count test and Moran’s I test for assessing spatial autocorrelation
among countries possibly ‘at risk’ of democratic reversal and the survival of democracy
in the sample from [17], we constructed a separate cross−sectional adjacency matrix with
elements aii′ for each year in the data, wherein proximate pairs of democratic countries
(within 800 km of each other) are assigned a weight of 1 (aii′ = 1). Our outcome of interest
for the join count analysis is whether a country is ‘at risk’ of democratic reversal in the data;
the outcome for the Moran’s I test is the number of years each democracy has survived.
Figure A1a plots the results of the join count tests, with the difference between the observed
and expected join counts displayed with 95% confidence intervals. The figure shows
significant spatial clustering of countries possibly at risk of democratic failure, particularly
during the twentieth century. Figure A1b reports the resulting Moran’s I statistics for each
year. Clearly, a large proportion of the sampling period, most notably between 1925–1945
and from 1952–2001, exhibits positive spatial clustering in democratic survival.

(a) (b)

Figure A1. Results from the two autocorrelation diagnostics for the democratic survival application:
(a) join count and (b) Moran’s I.
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As with the democratic regime survival application, we employed two tests, join count
analysis and Moran’s I, to evaluate the possibility of spatial autocorrelation in the split and
survival stages of the replication data on post−war peace survival. Figure A2a plots the
observed−expected join counts of “at risk” (non-censored) conflicts in the dataset from [18]
for each year along with their 90% confidence intervals. Negative values indicate clustering
(positive spatial autocorrelation) and positive values indicate spatial dispersion. The figure
depicts clear spatially correlated patterns of countries at risk of recurrent conflict, though
the direction of the autocorrelation varies over time. Figure A2b depicts the Moran’s I
values for spatial autocorrelation in post-war peace duration. Again, we observe significant
degrees of some variety of spatial autocorrelation in the majority of years between 1975
and 2010.

(a) (b)

Figure A2. Results from the two autocorrelation diagnostics for the post-war peace duration applica-
tion: (a) join count and (b) Moran’s I.
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Abstract: Continuous probability distributions can handle and express different data within the model-
ing process. Continuous probability distributions can be used in the disclosure and evaluation of risks
through a set of well-known basic risk indicators. In this work, a new compound continuous probability
extension of the reciprocal Rayleigh distribution is introduced for data modeling and risk analysis. Some
of its properties including are derived. The estimation of the parameters is carried out via different
techniques. Bayesian estimations are computed under gamma and normal prior. The performance and
assessment of all techniques are studied and assessed through Monte Carlo experiments of simulations
and two real-life datasets for applications. Two applications to real datasets are provided for comparing
the new model with other competitive models and to illustrate the importance of the proposed model
via the maximum likelihood technique. Numerical analysis for expected value, variance, skewness, and
kurtosis are given. Five key risk indicators are defined and analyzed under Bayesian and non-Bayesian
estimation. An extensive analytical study that investigated the capacity to reveal actuarial hazards
used a wide range of well-known models to examine actuarial disclosure models. Using actuarial data,
actuarial hazards were evaluated and rated.

Keywords: actuarial risks analysis; asymmetric actuarial data; insurance-claims; likelihood; value-at-risk;
reciprocal rayleigh
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1. Introduction

Actuarial science is a mathematical branch that deals with the financial consequences
of uncertain future events. It employs statistical and mathematical methods to evaluate and
manage risks in the finance and insurance industries. Actuaries use probability distributions
to model and measure the likelihood of different outcomes and determine the anticipated
future losses. Probability distribution is a function that describes the probability of different
outcomes for a random variable. Actuaries utilize various probability distributions, such
as Poisson, normal, exponential, and log-normal, to model diverse types of risks, including
morbidity, mortality, and property damage, based on the nature of the risk being modeled
and the data available for the modeling. Actuaries use probability distributions to compute
the expected future losses, which are used to set insurance premiums, design insurance
products, and assess investment strategies. Actuaries also use simulation techniques to test
their models and evaluate the financial results of insurance policies and investments under
various scenarios.
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The adequacy of probability-based distributions in describing risk exposure is a
common practice in the field of risk management. Typically, risk exposure statistics are
defined by one or a small group of numbers that are functions of a specific model, commonly
referred to as key risk indicators (KRIs) (Lane [1]; Klugman et al. [2]). These KRIs provide
actuaries and risk managers with valuable information about a company’s exposure to
specific types of risk. Several KRIs, including value-at-risk (VARK), tail-value-at-risk
(TVARK) or conditional tail expectation (CTE), conditional-value-at-risk (CVARK), tail
variance (TV), mean excess loss (MEL), and tail mean-variance (TMV), have been developed
and can be analyzed (Shrahili et al. [3]; Mohamed [4]). In particular, VARK is commonly
used to estimate the quantile distribution of aggregate losses. Actuaries and risk managers
focus on calculating the probability of a bad outcome, measured by the VARK indicator
at a specific probability or confidence level. This indicator is used to estimate the amount
of capital required to manage potential unfavorable events. The ability of an insurance
company to handle such situations is highly valued by actuaries, authorities, investors, and
rating agencies (Wirch [5]; Artzner [6]; Tasche [7]; Acerbi [8]; Landsman [9]; Furman and
Landsman [10]). In summary, probability-based distributions and KRIs are essential tools
for evaluating risk exposure in companies. The use of such indicators is widespread, and
the ability to manage risk effectively is highly valued in the field of risk management.

For the left-skewed insurance-claims data, this work suggests certain KRI variables,
such as VARK, TVARK, TV, MEL, and TMV, using a new model termed the exponenti-
ated generalized reciprocal Rayleigh Poisson (EGRRP) distribution. Statistical methods
frequently employed in actuarial risk analysis include:

I. Actuaries employ probability distributions to simulate the possibility of a variety
of events, including claims, fatalities, and policy cancellations. The Poisson distri-
bution, the exponential distribution, and the Weibull distribution are frequently
used distributions in actuarial science.

II. Modeling the time until a specific event, such as a death or policy cancellation,
is conducted using survival analysis. This method is employed to compute life
expectancy and assess the likelihood of survival for a specific time period.

III. Modeling with stochastic processes: stochastic modeling is used to simulate un-
predictable events such as insurance-claims and policy cancellations. This method
is employed to compute the variability of these estimations and to estimate the
expected value of upcoming claims.

IV. Loss distributions: Loss distributions are used to simulate how losses are dis-
tributed as a result of things such as claims and insurance cancellations. The
estimated value of potential losses is calculated using this method, and the risk
involved with such losses is also identified.

V. Actuaries employ statistical approaches, such as portfolio optimization and hedg-
ing strategies, to evaluate and manage financial risks.

The Reciprocal Rayleigh (RR), also known as the inverse Rayleigh distribution, is an
important probability distribution that is widely used in many fields, including reliability
engineering, signal processing, and wireless communications. The RR distribution is
a flexible distribution that can model a wide range of phenomena. It is a continuous
distribution with support on the positive real line, and it has two parameters that control
the location and scale of the distribution. The RR distribution can be used to model data
that are positively skewed and have long tails, which are common in many real-world
applications. The RR distribution is commonly used in reliability engineering to model
the lifetime of a system or component. In this context, the RR distribution is used to
model the time until failure, and it has been shown to provide a good fit to many types of
failure data. The RR distribution is used in signal processing to model the amplitude of a
random signal. In this context, the RR distribution is used to model the probability density
function of the envelope of a narrowband Gaussian noise signal, which is commonly used
in wireless communications. The RR distribution is used in statistical inference to model the
distribution of the inverse of a random variable. In this context, the RR distribution is used

206



Mathematics 2023, 11, 1593

to model the distribution of the ratio of two independent Rayleigh-distributed random
variables, which is commonly used in wireless communications and signal processing.

The RR distribution is used in reliability engineering to model the lifetime of a system
or component. In this context, the RR distribution is used to model the time until failure,
and it has been shown to provide a good fit to many types of failure data. The RR
distribution has also been used in finance to model the distribution of returns on investment
portfolios. In this context, the RR distribution can be used to model the distribution of
the inverse of returns, which can be useful in portfolio risk management. Overall, the
RR distribution has a wide range of applications in many fields, including reliability
engineering, wireless communications, signal processing, statistical inference, and finance.
Its flexibility, reliability modeling capabilities, and usefulness in modeling the distribution
of the inverse of a random variable make it a valuable tool for researchers and practitioners
in many different areas.

The RR distribution can be used to model the distribution of losses in insurance-claims.
This is useful in estimating the risk of losses and setting premiums. It can also be used to
model the risk of many events in insurance, such as natural disasters or accidents. This can
help insurance companies to better understand and manage their risk exposure. Moreover,
the RR distribution can be used to model the behavior of policyholders in insurance, such as
the frequency and severity of claims. This can help insurance companies to design policies
that are better suited to their customers’ needs. Finally, the RR distribution can be used
in actuarial modeling to estimate the probability of future events based on historical data.
This is useful in predicting the likelihood of future claims and setting reserves. Overall, the
RR distribution has several applications in actuarial sciences and insurance. Its flexibility
and usefulness in modeling the distribution of losses and risk make it a valuable tool
for insurance companies and actuaries. The RR distribution, also known as the inverse
Rayleigh (IR) distribution, has several applications in actuarial sciences and insurance. The
RR distribution is considered as a distribution for a lifetime random variable (r.v.). The
probability density function (PDF) and cumulative distribution function (CDF) of the RR
model are given by

g(x) = g(x; θ) = 2θ2x−3exp[−(θ/x)2], (1)

and

G(x) = G(x; θ) = exp[−(θ/x)2], (2)

respectively, where θ > 0 is a scale parameter x > 0. The exponentiated-generalized-
Poisson (EGP) family of distributions is a new flexible compound family of distributions
that Aryal and Yousof [11] introduced and explored. The EGP family’s CDF and PDF are
provided by:

F(x; α, β) =
1

c(λ)

{
1 − exp

(
−λ
{

1 − [1 − G(x; θ)]α
}β
)}

, (3)

and

f (x; α, β) = αβλ
g(x; θ)[1 − G(x; θ)]α−1{1 − [1 − G(x; θ)]α

}β−1

c(λ)exp
(

λ
{

1 − [1 − G(x; θ)]α
}β
) , (4)

respectively, where α, β > 0, λ ∈ R−{0}, x > 0 and c(λ) = 1 − exp(−λ). For β = 1 we
have the exponentiated-G Poisson (EGP) class of distribution, and for α = 1 we have the
generalized Poisson (GP) class of distribution, both of which are embedded in EGP class.
Since (2) refers to the baseline CDF of the RR model and (3) refers to the baseline CDF of
the EGP family, then, substituting (2) in (3), we derive a new compound RR distribution
called EGRRP with CDF which can be expressed as

207



Mathematics 2023, 11, 1593

F(x;H) =
1

c(λ)

{
1 − exp

(
−λ
{

1 − [1 − Δθ(x)]α
}β
)}

, (5)

where H = (α, β, λ, θ), α, β, θ > 0, λ ∈ R−{0}, x > 0, and Δθ(x) = exp[−(θ/x)2]. The
corresponding PDF can be written as

f (x;H) = 2αβλθ2c−1
(λ)

x−3Δθ(x)
(
1 − [1 − Δθ(x)]α

)β−1

{1 − Δθ(x)}1−αexp
(

λ
{

1 − [1 − Δθ(x)]α
}β
) . (6)

Figure 1 illustrates that the PDF of the EGRRP model may exhibit various shapes,
such as right-skewed, left-skewed, and unimodal. On the other hand, Figure 2 shows
that the hazard rate function (HRF) of the EGRRP model may be decreasing and upside
down. Moreover, there are several notable extensions of the RR distribution, including
Voda [12], Mukerjee and Saran [13], Nadarajah and Kotz [14], Nadarajah and Gupta [15],
Barreto-Souza et al. [16], Krishna et al. [17], Mahmoud and Mandouh [18], Mead et al. [19],
Chakraborty et al. [20], and Cordeiro et al. [21], among others.

Figure 1. Graphs of the EGRRP PDF for selected parameter values.

Figure 2. Graphs of the EGRRP HRF for selected parameter values.

2. Properties and Numerical Analysis

Using the power series expansion of exp(x) the PDF in (6) can be expressed as

f (x;H) = 2αβθ2c−1
(λ)

x−3Δθ(x)

∞

∑
i=0

(−1)i
{

1 − [1 − Δθ(x)]α
}β(i+1)−1

i!λ−i−1{1 − Δθ(x)}−α+1 .
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Using (
1 − δ1

δ2

)δ4

=

∞

∑
δ3=0

(
− δ1

δ2

)δ3 Γ(1 + δ4)

(δ3)!Γ(1 + δ4 − δ3)
,

the last equation of f (x;H) can be expressed as

f (x;H) = ∑∞

k=0ξkgk·(x; θ)|k·=k+1, (7)

where

ξk =
αβ(−1)k

c(λ)k·

∞

∑
i,j=0

(−1)i+j

i!λ−i−1

(
β(i + 1)− 1

j

)(
α(j + 1)− 1

k

)
,

and gk·(x; θ) is the RR density with scale parameter θ
√

k·. By integrating (7), we obtain
another simple results of F(x) as F(x) = ∑∞

k=0 ξkGk·(x; θ) where Gk·(x; θ) is the CDF of
the RR distribution with scale parameter θ

√
k·. The rth ordinary moment of X is given by

μ′
r,X = E(Xr) =

∫ ∞
−∞ xr f (x)dx. Using (7), we obtain

μ′
r,X = Γ

(
1 − r

2

)
∑∞

k=0ξk

[
θ
√

k·
]r|2>r, (8)

where Γ(1 + η)|(η∈R+) = η! = ∏
η−1
w=0(η − w) and Γ(η) =

∫ ∞
0 xη−1exp(−x)dx. Setting r = 1

in (8), we have the mean of X as E(X) = μ′
1,X = θΓ

(
1
2

)
∑∞

k=0 ξk
√

k·. We can find the MGF,

say MX(t) = E
(
etX) by

MX(t) =
∞

∑
r=0

tr

r!
μ′

r = Γ
(

1 − r
2

) ∞

∑
k,r=0

tr

r!
ξk

[
θ
√

k·
]r|2>r.

The sth incomplete moments, say Is,X(t), is given by Is(t) =
∫ t
−∞ xs f (x)dx. Using (7),

we obtain

Is,X(t) =
∞

∑
k=0

ξk

[
θ
√

k·
]s

γ

(
1 − s

2
,
(

θ

t

)2
k·
)
|2>s, (9)

where

γ(η, q)|(η �=0,−1,−2,...) =
∫ q

0
tη−1exp(−t)dt =

∞

∑
k=0

qη+k (−1)k

k!(η + k)
,

and Γ(η, x)|(x>0) =
∫ ∞

q tη−1exp(−t)dt. The (s, r)th probability weighted moments (PWMs)

of X following the EGRRP model, say ρs,r,X, is formally defined by ρs,r,X = E
{

XsF(X)r}.
Using Equations (5) and (6), we can write f (x;H)F(x;H)r = ∑∞

k=0 wkgk·(x; θ) where

wk =
αβ

cr+1
(λ)

k·

∞

∑
w,i,j=0

(−1)w+i+j+k

i!λ−i−1(1 + w)−i

(
r
w

)(
β(i + 1)− 1

j

)(
α(1 + j)− 1

k

)
.
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Then, the (s, r)th PWM of X can be obtained and summarized as

ρs,r,X = Γ
(

1 − s
2

) ∞

∑
k=0

wk

[
θ
√

k·
]s|2>s.

The nth moment of the residual life, say τn,X(t) = E
[
(X − t)n |X>t

n=1,2,...

]
, uniquely

determine F(x). Therefore

τn,X(t) =
1

1 − F(t)∑
∞
k=0ξ∗k

[
θ
√

k·
]n

Γ

(
1 − n

2
,
(

θ

t

)2
k·
)
|2>n, (10)

where ξ∗k = ξk ∑n
r=0

(
n
r

)
(−t)n−r and Γ(η, x) = Γ(η) − γ(η, x). The nth moment of the

reversed residual life, say ωn(t) = E
[
(t − X)n |X≤t and t>0

n=1,2,...

]
. Therefore

ωn,X(t) =
1

F(t)

∞

∑
k=0

ξ∗∗k

[
θ
√

k·
]n

γ

(
1 − n

2
,
(

θ

t

)2
k·
)
|2>n.

where ξ∗∗k = ξk ∑n
r=0(−1)r

(
n
r

)
tn−r. Table 1 lists a few sub models from the EGRRP model.

A numerical investigation of the E(X), Variance (V(X)), skewness (Ske(X)), and kurtosis
(Ku(X)) is shown in Table 2. According to Table 2, the proposed model’s skewness can have
both positive and negative values. The proposed model’s kurtosis ranges from greater than
three to fewer than three.

Table 1. Some sub models from the EGRRP model.

N α β θ λ Reduced Model

1 1 EIRP
2 1 λ→0 EIR
3 1 1 EIRP
4 1 1 λ→0 EIR
5 1 GIRP
6 1 λ→0 GIR
7 1 1 GIRP
8 1 1 λ→0 GIR
9 1 1 IRP

10 1 1 λ→0 IR
11 1 1 1 IRP

Table 2. E(X), VARK(X), Ske(X), and Ku(X) of the EGRRP distribution.

α β λ θ E(X) VARK(X) Ske(X) Ku(X)

5 1.5 −1 3 2.570593 0.454841 −70.64223 1102.708
3 3.163345 1.331691 −29.92022 368.7397
3 1 1 0.5 0.39404 0.021403 165,229.7 −1,780,082

1.5 0.44028 0.023666 479,669.1 −5,491,216
2.5 0.50186 0.026875 1,835,150 −2,247,195
3.5 0.54450 0.029267 4,431,099 −5,641,370
5 0.59161 0.032095 11,249,343 −1,485,963
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Table 2. Cont.

α β λ θ E(X) VARK(X) Ske(X) Ku(X)

3 1.5 −30 1.5 2.988585 0.711030 −55.15369 840.369
−20 2.761101 0.634484 −52.04927 778.093
−10 2.395671 0.530971 −45.4008 648.572
−5 2.056147 0.458989 −37.0731 494.613
1 1.32084 0.21299 17,734.68 −202,978
2 1.214951 0.155364 258.9211 −3135.18
5 1.020418 0.054401 −69.3133 1288.51

3 2 1 0.5 0.474498 0.025416 102,1606 −12,162,466
1 0.948997 0.101664 127,669.8 −1,519,896
5 4.744983 2.541611 986.3462 −11,691.72
10 9.489967 10.16644 92.41038 −1049.147
20 18.97993 40.66578 −19.3316 281.174
30 28.4699 91.49799 −30.56492 414.910
50 47.44983 254.1611 −34.2731 459.057

100 94.89967 1016.644 −35.16704 469.699
200 189.7993 4066.578 −35.27878 471.030
500 474.4983 25,416.11 −35.29372 471.208

1000 948.9967 101,664.4 −35.29461 471.218

3. Actuarial Indicators for Risk Analysis and Management

A specific insurance policy or the insurance sector as a whole may be affected by
future occurrences, and risk analysis in insurance data refers to the process of assessing and
estimating the chance of such events. Identification, evaluation, and development of solu-
tions to control or mitigate potential risks are the objectives of risk analysis. To ascertain the
degree of risk associated with a certain policy or portfolio of policies, this procedure entails
gathering, evaluating, and interpreting data regarding a variety of elements, including
demographic data, insurance-claims history, and economic indicators. Insurance firms use
the findings of risk analysis to determine rates, make underwriting judgements, and create
loss mitigation plans. KRIs are an essential tool for risk management as they provide a
clear, quantifiable, and actionable measure of an organization’s key risks, allowing orga-
nizations to take proactive steps to manage these risks and avoid negative consequences.
The selection of KRIs is important and should be based on the specific risks faced by the
organization and its overall risk management strategy.

3.1. VARK Indicator

The VARK, a widely utilized financial term, is a measure of the maximum expected
loss that a portfolio or investment may incur over a given time period and is commonly
employed as a risk management tool by financial institutions to assess market risk. This
single-number indicator provides a concise summary of the potential loss of a portfolio or
investment. For example, a portfolio with a VARK of USD 1 million at a 95% confidence
level implies a 5% probability that the portfolio will experience a loss exceeding USD
1 million during the specified time frame. Risk exposure is an inevitable aspect of the
operations of insurance organizations, and actuaries have developed Various risk indicators
to statistically evaluate it. VARK is used to determine the most probable maximum amount
of capital that might be lost over a specified duration. However, a loss that is unbounded
or at least equal to the value of the portfolio is not necessarily informative. The risk profiles
of different portfolios with the same maximum loss can vary substantially. Therefore, the
VARK typically depends on the probability distribution of the loss random variable, which
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is influenced by the overall distribution of the risk factors that affect the portfolio. Then, for
EGRRP distributions, we can simply write

Pr(X > Q(X)) =

⎧⎪⎨⎪⎩
0.01|q=99%
0.05|q=95%
...

. (11)

The Q(X) = F−1(x;H) refers to the quantile of the EGRRP model. The VARK is a
practical instrument for risk management since it gives a clear and succinct assessment of
the potential loss of an investment or portfolio. It has drawbacks, too, as it simply offers
a point estimate of the probable loss and ignores tail risks or extreme events. Financial
organizations frequently combine VARK with other risk management tools such as stress
testing and scenario analysis to address these constraints.

3.2. TVARK Risk Indicator

The TVARK(X; q,H) at the 100q% confidence level, can be defined as the expected
losses given that the losses exceed the 100q% of the distribution of X. Then, the TVARK(X; q,H)
can be then calculated as

TVARK(X; q,H) = E(X|X >π(q)) =
1

1 − q

∫ +∞

π(q)
x fV(x;H)dx. (12)

Then, we have

TVARK(X; q,H) =
θ

1 − q ∑∞
k=0 ξ∗k

√
k· Γ

(
1
2

,
(

θ

t

)2
k·
)

, (13)

So, TVARK(X; q,H) can be calculated as average all the VARK(X; q,H) values over
the confidence level q. That means that the indicator of TVARK(X; q,H) gives us many
more information about the tail of the EGRRP distribution and its properties. Generally,
the TVARK(X; q,H) can also be written as

e(X; q,H) = TVARK(X; q,H)− VARK(X; q,H), (14)

where e(X; q,H) is the MEL function evaluated at the 100qth quantile.

3.3. The TV Indicator

The TV indicator (TV (X; q,H)) can be expressed as

TV(X; q,H) = E
(

X2|X >π(q)
)
− [TVARK(X; q,H)]2.

For the EGRRP model, the quantity E
(
X2|X >π(q)

)
is not exist; however, we dealt

with this amount using numerical techniques to find the closest possible value for it. It is
known that numerical techniques represent the best solution in many of the problems of
estimation and specialist modeling, where TVARK(X; q,H) is given in (13).

3.4. TMV Risk Indicator

The TMV risk indicator (TMV (X)) for the EGRRP model can then be derived as

TMV(X; q,H; π)|0 < π < 1 = TVARK(X; q,H) + πTV(X; q,H). (15)

Then, for any loss random variable, (TMVX; q,H; π) > TV(X; q,H), and for π = 1
the (TMVX; q,H; π) = TVARK(X; q,H). Some other common examples of KRSIs can be
mentioned such as:
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I. Indicators of the frequency and size of losses resulting from different risks, includ-
ing accidents, losses from fraud, or losses from natural catastrophes, are measured
by these KRSIs.

II. Volatility indicators: These KRSIs measure the level of volatility in various financial
markets, such as the stock market, currency market, or commodities market.

III. Credit risk indicators: These KRSIs measure the credit risk of various borrowers, such
as individuals or organizations, based on their credit history and financial information.

IV. Operational risk indicators: These KRSIs measure the level of operational risk
associated with various processes, such as supply chain disruptions, IT failures, or
human errors.

V. Market risk indicators: These KRSIs measure the level of market risk associated
with investments, such as stocks, bonds, or commodities.

4. Estimation

4.1. Classical Estimation
4.1.1. Maximum Likelihood Technique

For determining the maximum likelihood estimation (MLE) of H, we formulate the
log-likelihood function as follows

�(xi;H) = nlog2 + nlogα + nlogβ + nlogλ − nlog[1 − exp(−λ)] + n2logθ − 3
n

∑
i=1

logxi

−
n

∑
i=1

(θ/x)2 + (α − 1)
n

∑
i=1

log[1 − Δθ(xi)] + (β − 1)
n

∑
i=1

log
{

1 − [1 − Δθ(xi)]
α}− λ

n

∑
i=1

{
1 − [1 − Δθ(xi)]

α}β.

The components of the score vector components are easily derived and then solved.
To solve these equations, it is usually more convenient to use nonlinear optimization
techniques such as the quasi-Newton algorithm to numerically maximize �(xi;H). A
popular numerical optimization approach for maximizing functions is the quasi-Newton
algorithm. It is an iterative approach that computes the search direction at each iteration
using approximations of the Hessian matrix. The fundamental goal of the quasi-Newton
approach is to update a Hessian matrix approximation based on gradient data gathered
from evaluating the objective function at various locations. Using the updated Hessian
approximation, the technique determines a search direction at each iteration and moves
in that direction to find a new location to evaluate the objective function. The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm is the most used quasi-Newton algorithm. The
rank-two update formula used by the BFGS algorithm to update the Hessian approximation
is made to keep the approximation’s positive definiteness. When there are many variables
in an optimization issue, the BFGS algorithm is frequently used.

4.1.2. Bootstrapping Technique

The bootstrapping technique is a potent statistical technique, particularly useful
when dealing with small sample sizes. In traditional scenarios, assuming a normal or
t-distribution is not feasible when working with less than 40 samples. However, bootstrap
techniques are well-suited for sample sizes of less than 40 as they involve resampling and
do not make any assumptions about the data distribution. With the increasing availability
of computing resources, bootstrapping has gained popularity as a practical approach that
requires the use of a computer. The following section will illustrate how this technique
operates. This is due to the necessity of using a computer for bootstrapping to be useful. In
the section that follows, we will examine how these function. There are several different
types of bootstrapping techniques, including:

I. Non-parametric bootstrapping: In non-parametric bootstrapping, the statistic of
interest is calculated directly from the resampled data without making any assump-
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tions about the underlying probability distribution. This is the most commonly
used type of bootstrapping and can be used for a wide range of estimators.

II. Parametric bootstrapping: In parametric bootstrapping, the resampled data are
generated from a specific parametric distribution that is assumed to describe the data.
This can be useful when the underlying distribution is known or can be reasonably
assumed and can lead to more accurate estimates than non-parametric bootstrapping.

III. Bootstrap aggregating (bagging): In bagging, multiple copies of the original dataset
are created by resampling, and then a separate model is trained on each of these
new datasets. The final estimate is then obtained by averaging the estimates of
the individual models. Bagging is commonly used in machine learning and can
improve the accuracy and stability of models that are prone to overfitting.

IV. Cross-validation bootstrapping: In cross-validation bootstrapping, the original
dataset is divided into several subsets, and then a separate model is trained on each
subset while using the remaining data for validation. The final estimate is then
obtained by averaging the estimates of the individual models. Cross-validation
bootstrapping is commonly used in machine learning and can help to prevent
overfitting by reducing the variance of the estimate.

V. Bootstrapping has become a widely used technique for statistical inference and
estimation, and it has been applied to a wide range of fields, including finance,
engineering, social sciences, and natural sciences. Bootstrapping can be implemented
using various statistical software packages, including R, Python, MATLAB, and SAS.

4.1.3. Technique of Cramér–von Mises

The Cramér–von Mises estimation (CVME) technique of the parameters is based on
the theory of minimum distance estimation. The CVME of the parameters α, β, λ, and θ
are obtained by minimizing the following expression with respect to the parameters α, β,
λ, and θ, respectively, where

CVM(H) =
1

12n
+

n

∑
i=1

[
F(x)|xi:n

α,β,θ,λ − k(i, n)
]2

,

where k(i, n) = (2i − 1)/n and

CVM(H) =
1

12n
+

n

∑
i=1

{
c−1

(λ)

[
1 − exp

(
−λ
{

1 − [1 − Δθ(xi)]
α}β
)]

− k(i, n)
}2

.

Then, CVME of the parameters are obtained by solving the following non-linear equations

n

∑
i=1

ξα

(
xi|H
){

c−1
(λ)

[
1 − exp

(
−λ
{

1 − [1 − Δθ(xi)]
α}β
)]

− k(i, n)
}
= 0,

n

∑
i=1

ξβ

(
xi|H
){

c−1
(λ)

[
1 − exp

(
−λ
{

1 − [1 − Δθ(xi)]
α}β
)]

− k(i, n)
}
= 0,

n

∑
i=1

ξλ

(
xi|H
){

c−1
(λ)

[
1 − exp

(
−λ
{

1 − [1 − Δθ(xi)]
α}β
)]

− k(i, n)
}
= 0,

and
n

∑
i=1

ξθ

(
xi|H
){

c−1
(λ)

[
1 − exp

(
−λ
{

1 − [1 − Δθ(xi)]
α}β
)]

− k(i, n)
}
= 0,
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where ξα

(
xi|H
)
, ξβ(H), ξλ(H), and ξθ(H) are the values of the first derivatives of the CDF

of EGRRP distribution with respect to α, β, λ, θ, respectively.

4.2. Bayesian Estimation

In this part, we build estimators for the EGRRP distribution’s unknown parameters
using Bayesian techniques. The maximum likelihood estimator frequently fails to converge,
particularly in models with larger dimensions. In these situations, Bayesian approaches are
sought after. Bayesian approaches initially appear to be highly complicated because the
estimators entail unsolvable integrals. Here we assume the gamma priors of the parameters
(α, β, λ, θ) of the following forms

π1(α) ∼ Gamma(ξ1, d1), π2(β) ∼ Gamma(ξ2, d2),π3(θ) ∼ Gamma(ξ3, d3), π4(λ) ∼ Normal
(

ξ4, d2
4

)
,

where, Gamma (ξi, di)|(i=1,2,3) stands for gamma distribution with shape parameter ξi

and scale parameter di, and normal
(
ξ4, d2

4
)

stands for the normal distribution with shape
parameter ξ4 and d2

4.
The Gamma distribution is a conjugate prior for several common likelihood functions,

including the Poisson, exponential, and normal distributions. This means that if we choose
a Gamma prior, the resulting posterior distribution will also be a Gamma distribution. This
makes the Bayesian inference computationally efficient and enables us to obtain the poste-
rior distribution in closed form. The Gamma distribution is a distribution over positive
values only, which makes it a natural choice for modeling quantities that are inherently
positive, such as rates, counts, or durations. The Gamma distribution is a flexible distribu-
tion that can take on a wide range of shapes, including skewed, unimodal, and multimodal
shapes. This makes it a good choice for modeling a wide range of different data types.
The parameters of the Gamma distribution have clear and intuitive interpretations, which
makes it easy to incorporate prior knowledge into the model. For example, the shape
parameter of the Gamma distribution can be interpreted as the number of prior observa-
tions, and the scale parameter can be interpreted as the prior sum of the observations. The
Gamma distribution is relatively robust to deviations from the assumed model, which
makes it a good choice when the data are noisy or when there is uncertainty about the
model specification.

It is further assumed that the parameters are to be independently distributed. The
joint prior distribution is given by

π(α, β, λ, θ) =
dξ1

1
Γ(ξ1)

dξ2
2

Γ(ξ2)

dξ3
3

Γ(ξ3)
αξ1−1βξ2−1θξ3−1

(
2πd2

4

)− 1
2 e−(αd1+βd2+λd3)−[(λ−ξ4)

2/(2d2
4)].

The posterior distribution of the parameters is defined by π(α, β, λ, θ|x) ∝ likelihood
(α, β, λ, θ|x)× π(α, β, λ, θ). As a consequence, we recommend employing Markov chain
Monte Carlo (MCMC) methods, particularly the Gibbs sampler and the Metropolis Hastings
(MH) technique. We implemented a hybrid MCMC approach to draw samples from the joint
posterior of the parameters because it is not possible to collect the conditional posteriors
of the parameters in any basic structures. To implement the Gibbs algorithm, the full
conditional posteriors of α, λ, θ, and θ are given by

π(α, β, λ, θ) =
dξ1

1
Γ(ξ1)

dξ2
2

Γ(ξ2)

dξ3
3

Γ(ξ3)
αξ1−1βξ2−1θξ3−1d−1

4 (2π)−
1
2 e

−(αd1+βd2+λd3)− 1
2 (

λ−ξ4
d4

)
2

.

π1(α|β, λ, θ, x) ∝ αn+ξ1−1e−(αd1)

n

∏
i=1

Λi, π2(β|α, λ, θ, x) ∝ βn+ξ2−1e−(βd2)

n

∏
i=1

Λi,
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π3(θ|α, β, λ, x) ∝ θn+ξ3−1e−(θd3)

n

∏
i=1

Λi, π4(λ|α, β, λ, x) ∝ d−n
4 e

− 1
2 (

λ−ξ4
d4

)
2 n

∏
i=1

Λi,

where

Λi = x−3
i

Δθ(xi)

[c(λ)]{1 − Δθ(xi)}1−α

(
1 − [1 − Δθ(xi)]

α)β−1

exp[λ
(
1 − [1 − Δθ(xi)]

α)β
]
.

The simulation algorithm we followed is given by

1. Provide the initial values, say α(0), β(0), λ(0), and θ(0) where α(0) > 0, β(0) > 0, λ(0) ∈
R−{0} and θ(0) > 0 (the initial values are randomly determined by the selection of
the researcher, provided that it is within the specified range) then at ith stage;

2. Using MH algorithm, generate α(i) ∼ π1(α(i−1)|β(i−1), λ(i−1), θ(i−1));
3. Then, using the well-known algorithm MH, generate β(i) ∼ π2(β(i−1)|α(i), λ(i−1), θ(i−1));
4. Then, using the well-known algorithm MH, generate θ(i) ∼ π3(θ(i−1)|α(i), β(i), λ(i−1));
5. Then, using the well-known algorithm MH, generate λ(i) ∼ π3(λ(i−1)|α(i), β(i), θ(i));
6. Repeat steps 2–5, M = 100, 000 times to obtain the samples of size M from the

corresponding posteriors of interest.

Obtain the Bayesian estimates of α, β, λ and θ using the following formulae
ĥBayesian = 1

M−M0
∑M

j=1+M0
hj |h=α, β, λ and θ where M0(≈ 50, 000) is the burn-in period

of the generated Markov chains.

5. Simulations for Comparing Bayesian and Classical Approaches

Simulation studies are a crucial tool for assessing and contrasting various statistical
techniques, including traditional estimation techniques. In simulation studies, data are
generated based on a given model, and the efficacy of various estimating techniques is
evaluated using the generated data. We shall talk about the value of simulation studies for
contrasting traditional estimating techniques in this essay. Simulations are an important
tool for comparing Bayesian and classical estimation techniques because they allow us
to systematically evaluate the performance of different techniques under a wide range of
conditions. Simulations allow us to examine the performance of Bayesian and classical
techniques under different sample sizes, which can be particularly useful when the sample
size is small. By simulating data with different sample sizes, we can assess how well the
different techniques perform under conditions of low data availability. Simulations allow us
to evaluate the performance of Bayesian and classical techniques under different parameter
values, which can be important when the parameters of interest are not known a priori.
By simulating data with different parameter values, we can assess how well the different
techniques perform under conditions of parameter uncertainty. Simulations allow us to
evaluate the robustness of Bayesian and classical techniques to deviations from the assumed
model. By simulating data that deviate from the assumed model, we can assess how well
the different techniques perform under conditions of model misspecification. Simulations
allow us to compare the accuracy and precision of Bayesian and classical techniques under
different conditions. By simulating data with known parameter values, we can assess how
accurately and precisely the different techniques estimate the true parameters. Simulations
allow us to assess the computational efficiency of Bayesian and classical techniques under
different conditions. By simulating data with different sample sizes and parameter values,
we can assess how well the different techniques scale to larger and more complex datasets.

The mean squared error (MSE) is a performance indicator that is frequently used in
simulation studies to assess the precision of a statistical model or estimator. The average
of the squared discrepancies between the estimated values and the actual values of the
parameter being estimated is known as the MSE. In simulation research, MSE is chosen
over measures of dispersion and biases for a number of reasons. It is a thorough evaluation.
The MSE accounts for both the estimator’s bias and variability. Measurements of bias
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simply reflect the discrepancy between the estimator and the true value, while measures of
dispersion, such as variance or standard deviation, only record the estimator’s variability.
Because it takes into account both types of error, the MSE offers a more complete evaluation
of the estimator’s performance. It is simple to understand. The MSE is simple to read
because it uses the same units as the parameter being estimated.

A MCMC simulation study is conducted and performed in this section to assess
and compare the performance of the different estimators of the unknown parameters of
the EGRRP distribution. This performance is assessed using the average values (AVs) of
estimates and the MSEs. First, we generated 1000 samples of the EGRRP distribution,
where n = (20, 50, 100, 200) and choosing

α β λ θ
I 2 1.5 −1.5 1.2
II 0.6 2 1.5 0.5

The tables present the AVs and MSEs of various parameter estimators, namely MLEs,
Bootstrap, CVMEs, and Bayesian estimators. To evaluate the Bayesian estimators, the
MCMC technique is used with a flexible gamma prior under the SELF for all parameters,
except for parameter λ, which uses a normal prior. Hyperparameters are assumed to be
known and selected to have a prior mean equal to the initial value and a prior variance
of one. Results from Tables 3–6 demonstrate that all estimators exhibit consistency, as
evidenced by the decreasing MSEs as the sample size increases. Moreover, the Bayesian
estimators have lower MSEs than the other estimators, and in some cases, the MSEs of the
Bayesian and MLEs are very similar. The computations in this section were performed
using the Mathcad program, version 15.0.

Table 3. The results of the AVs and their corresponding MSEs (in parentheses) for n = 50.

Initials Bayesian MLE Bootstrap CVM

α = 2 1.97517 2.01461 2.04059 2.01152
(0.04134) (0.05516) (0.06786) (0.05536)

β = 1.5 1.53674 1.53098 1.50903 1.54462
(0.06150) (0.06659) (0.07169) (0.08980)

λ = −1.5 −1.26544 −1.52255 −1.45553 −1.54183
(0.27332) (0.27681) (0.34521) (0.29966)

θ = 1.2 1.20801 1.20402 1.19769 1.20571
(0.004192) (0.00425) (0.00475) (0.00508)

α = 0.6 0.58200 0.60577 0.61474 0.60646
(0.00444) (0.00697) (0.00968) (0.00595)

β = 2 1.95015 2.02998 1.97490 2.02591
(0.05002) (0.05832) (0.05927) (0.07796)

λ = 1.5 1.09199 1.51026 1.59306 1.52918
(0.36095) (0.38682) (0.54474) (0.31561)

θ = 0.5 0.49998 0.50463 0.49484 0.50403
(0.00140) (0.00161) (0.00166) (0.00238)

Table 4. The results of the AVs and their corresponding MSEs (in parentheses) for n = 100.

Initials Bayesian MLE Bootstrap CVM

α = 2 2.01445 2.01479 2.08685 2.00714
(0.01989) (0.02742) (0.03198) (0.02675)

β = 1.5 1.43578 1.50725 1.43233 1.51994
(0.03121) (0.03105) (0.02795) (0.04102)

λ = −1.5 −1.67548 −1.49394 −1.35285 −1.51710
(0.08359) (0.13440) (0.11286) (0.14247)
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Table 4. Cont.

Initials Bayesian MLE Bootstrap CVM

θ = 1.2 1.19235 1.19991 1.18056 1.20238
(0.00192) (0.00207) (0.00201) (0.00246)

α = 0.6 0.62188 0.60024 0.60884 0.60335
(0.00259) (0.00321) (0.00530) (0.00298)

β = 2 1.88655 2.02283 1.99553 2.01315
(0.02794) (0.02865) (0.03892) (0.03870)

λ = 1.5 1.72490 1.48553 1.52840 1.51536
(0.07370) (0.18452) (0.25946) (0.15856)

θ = 0.5 0.48597 0.50362 0.49892 0.50205
(0.00088) (0.00079) (0.00106) (0.00119)

Table 5. The results of the AVs and their corresponding MSEs (in parentheses) for n = 200.

Initials Bayesian MLE Bootstrap CVM

α = 2 1.95326 2.00543 2.08507 2.00823
(0.01153) (0.01489) (0.02350) (0.01327)

β = 1.5 1.50538 1.50683 1.42706 1.50400
(0.01469) (0.016659) (0.01938) (0.01954)

λ = −1.5 −1.33473 −1.502215 −1.33426 −1.49740
(0.04993) (0.07365) (0.09376) (0.06982)

θ = 1.2 1.19859 1.20070 1.17954 1.19973
(0.00112) (0.00113) (0.00146) (0.00121)

α = 0.6 0.60456 0.60010 0.60245 0.59973
(0.00128) (0.00169) (0.00165) (0.00141)

β = 2 2.02997 2.01185 2.00300 2.01313
(0.01397) (0.01465) (0.01382) (0.01806)

λ = 1.5 1.45423 1.49191 1.51023 1.49367
(0.05122) (0.09747) (0.09543) (0.07502)

θ = 0.5 0.50809 0.50188 0.50038 0.50219
(0.00041) (0.00041) (0.00038) (0.00056)

Table 6. The results of the AVs and their corresponding MSEs (in parentheses) for n = 500.

Initials Bayesian MLE Bootstrap CVM

α = 2 1.95330 2.00201 2.04971 1.99759
(0.00520) (0.00555) (0.00827) (0.00487)

β = 1.5 1.48986 1.50247 1.45521 1.50826
(0.00489) (0.00629) (0.00784) (0.00750)

λ = −1.5 −1.44498 −1.50082 −1.40077 −1.51180
(0.02654) (0.02772) (0.03621) (0.02653)

θ = 1.2 1.20043 1.20025 1.18770 1.20158
(0.00042) (0.00043) (0.00057) (0.00046)

α = 0.6 0.58994 0.60066 0.57935 0.60102
(0.00052) (0.00062) (0.00105) (0.00056)

β = 2 1.99303 2.00223 2.06060 2.00119
(0.00509) (0.00531) (0.01004) (0.00716)

λ = 1.5 1.38815 1.50180 1.33988 1.50565
(0.02737) (0.03596) (0.06247) (0.02962)

θ = 0.5 0.49877 0.50033 0.50989 0.50016
(0.00015) (0.00015) (0.00027) (0.00022)
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6. Applications for Comparing Bayesian and Classical Estimations

Two real-life datasets for applications are introduced and analyzed to for some pur-
posed including comparing Bayesian and classical estimations. In these applications, we
recommend and consider the Cramér–von Mises (W∗), the Anderson–Darling (A∗) and the
Kolmogorov–Smirnov (KS) test statistic for comparing methods. The 1st dataset consists of
100 observations of breaking stress of carbon fibers (see Nichols and Padgett [22]). Table 7
gives the values of estimators of α, β,, and θ, the KS test statistics and its p-value, and W∗
and A∗ for all techniques using the 1st dataset. From Table 7 we conclude that the Bayesian
technique is the best technique with KS = 0.067, p-value = 0.766, W∗ = 0.066, and A∗ =
0.52. However, all other techniques performed well. For the 2nd dataset (see Smith and
Naylor [23]), these data were originally obtained by workers at the UK National Physical
Laboratory. Table 8 gives the values of estimators of α, β, λ, and θ, the KS test statistics
and its p-value, and W∗ and A∗ for all techniques using the 2nd dataset. From Table 8 we
conclude all other techniques performed well, and according to these results we cannot
select a technique as the best one.

Table 7. The estimated parameters, KS, p-values, W∗, and A∗ for all estimation techniques using the
1st dataset.

Technique α̂ β̂ λ̂ θ̂ KS p-Value W* A*

ML 2.714 4.804 −9.936 0.749 0.072 0.683 0.073 0.55
Bayesian 2.899 5.119 −7.038 0.843 0.067 0.766 0.066 0.52
Bootstrap 2.899 5.163 −7.088 0.844 0.070 0.717 0.066 0.52

CVM 2.660 6.705 −17.703 0.607 0.067 0.756 0.087 0.623

Table 8. The estimated parameters, KS, p-values, W∗, and A∗ for all estimation techniques using the
2nd dataset.

Technique α̂ β̂ λ̂ θ̂ KS p-Value W* A*

ML 3.206 5.73 −19.87 0.726 0.069 0.926 0.059 0.47
Bayesian 4.804 3.528 0.270 1.705 0.067 0.943 0.067 0.57
Bootstrap 4.780 3.602 0.235 1.710 0.08 0.798 0.067 0.56

CVM 2.954 15.506 1.755 1.107 0.078 0.84 0.058 0.43

7. Applications for Comparing Competitive Distributions

This section presents two real-life applications of demonstrating the EGRRP distribu-
tion using real datasets. We compare the results of the new EGRRP distribution with the
Weibull-inverse-Weibull (WIW), exponentiated-inverse-Weibull (EIW) (see Nadarajah and
Kotz [14]), Kumaraswamy-inverse-Weibull (KumIW) (see Mead and Abd-Eltawab [19]),
beta-inverse-Weibull (BIW) (Barreto-Souza et al. [16]), transmuted-inverse-Weibull (TIW)
(see Mahmoud and Mandouh [18]), gamma extended-inverse-Weibull (see GEIW) (Silva
et al. [24]), Marshall-Olkin-inverse-Weibull (MOIW) (see Krishna et al. [17]), and Reciprocal
Weibull (RW) distributions.

The unknown parameters of these PDFs are all positive real numbers, except for
the TIW distribution. To compare the distributions, we use various criteria such as the
maximized Log-Likelihood, AIC (Akaike Information Criterion), CAIC (Consistent Akaike
Information Criterion), BIC (Bayesian Information Criterion), and HQIC (Hannan–Quinn
Information Criterion). All computations are conducted using the R PROGRAM. Addition-
ally, the TTT graph is used to graphically verify whether the data can be fit to a specific
distribution or not, which is an important graphical approach (Aarset [25]). A straight
diagonal TTT graph indicates a constant HRF; a concave TTT graph indicates an increasing
(or decreasing) HRF; and a U-shaped (bathtub) TTT graph indicates a unimodal HRF, while
other shapes indicate otherwise. The TTT graphs for the two real datasets are presented in
Figure 3, where we conclude that the empirical HRFs of the two datasets are increasing.
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We contrast the EGRRP model with strong competitive distributions in Tables 9–12.
Table 9 gives −2�, AIC, BIC, HQIC, and CAIC for the 1st dataset. Table 10 lists MLEs and
their standard errors (in parentheses) for the 1st dataset. Table 11 gives −2�, AIC, BIC,
HQIC, and CAIC for the 2nd dataset. Table 12 lists MLEs and their standard errors (in
parentheses) for the 2nd dataset. Of all models fitted to the two real-life datasets, the EGRRP
model provides the best values for the AIC, BIC, HQIC, and CAIC statistics. So, it may
be picked as the best option. For the first set of data, Figure 4 shows graphs for estimated
CDFs, estimated PDFs, P-P graph, and the Kaplan–Meier graph. The graphs of estimated
CDFs estimated PDFs, P-P graph, and the Kaplan–Meier survival graph for the second
dataset are shown in Figure 5. These graphs suggest that for both datasets, the suggested
distribution provides a better match than other non-nested and nested distributions.

Table 9. −2�, AIC, BIC, HQIC, and CAIC for the 1st dataset.

Model Criteria

−2� AIC BIC HQIC CAIC

EGRRP 105.26 113.26 123.68 117.48 113.68
WIW 287.53 295.50 305.92 299.71 295.90
EIW 284.77 296.74 304.51 299.92 297.00

KumIW 286.13 298.22 308.50 302.35 298.50
BIW 304.12 312.10 322.60 316.40 313.60

GEIW 305.12 313.03 333.46 318.22 314.40
IW 345.33 348.30 354.50 352.40 349.44

TIW 346.55 353.55 359.36 354.61 352.74
MOIW 344.33 352.30 358.13 352.50 353.68

Table 10. MLEs and their standard errors (in parentheses) for the 1st dataset.

Model Estimates

EGRRP (α,β,λ,θ) 2.7144 4.8045 −9.9361 0.7499
(0.0784) (0.537) (0.996) (0.018)

WIW (α,β,a,b) 2.22313 0.3552 6.97213 4.91791
(11.409) (0.411) (113.83) (3.7562)

KumIW (α,β,a,b) 2.05562 0.4654 6.28153 224.188
(0.0716) (0.007) (0.0603) (0.1646)

BIW (α,β,a,b) 1.60973 0.4046 22.0143 29.7624
(2.4982) (0.108) (21.432) (17.488)

GEIW (α,β,a,b) 1.36962 0.4776 27.6452 17.4584
(2.0178) (0.133) (14.136) (14.823)

EIW (α,β,a) 69.1489 0.5019 145.328
(57.349) (0.086) (122.924)

TIW (α,β,a) 1.93156 1.7435 0.08195
(0.0975) (0.076) (0.1984)

MOIW (α,β,a) 2.30666 1.5796 0.5995
(0.4982) (0.1666) (0.3093)

IW (α,β) 1.87054 1.7779
(0.1126) (0.11346)
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Table 11. −2�, AIC, BIC, HQIC, and CAIC for the 2nd dataset.

Model Criteria

−2� AIC BIC HQIC CAIC

EGRRP 39.611 47.661 56.231 51.031 48.351
EGIWP 39.635 49.166 58.077 52.373 50.291
PBXIW 41.403 49.588 58.105 52.934 50.366

BIW 60.601 68.603 77.201 72.029 69.324
GEIW 61.605 69.603 78.101 72.991 70.333

IW 93.773 97.722 102.01 99.404 97.903
TIW 94.144 100.12 106.54 102.666 100.500

MOIW 95.722 101.78 108.28 104.299 102.132

Table 12. MLEs and their standard errors for the 2nd dataset.

Model Estimates

EGIWP (α,β,λ,θ) 3.206 5.73431 −19.8321 0.72639
(0.58) (9.22421) (26.6332) (0.32141)

PBXIW (λ,θ,α,β) 4.4921 19.9982 0.3833 0.5063
(1.7783) (9.2431) (0.1438) (0.1094)

BIW (α,β,a,b) 2.05181 0.6464 15.078 36.944
(0.9861) (0.1633) (12.061) (22.77)

GEIW (α,β,a,b) 1.66275 0.74213 32.1121 13.324
(0.9521) (0.1979) (17.393) (9.974)

TIW (α,β,a) 1.30629 2.7844 0.12982
(0.0334) (0.165) (0.2082)

MOIW (α,β,a) 1.54413 2.38767 0.48163
(0.226) (0.253) (0.2525)

IW (α,β) 1.26443 2.88873
(0.0592) (0.23476)

Figure 3. TTT plot for breaking stress of carbon fibers (left) and TTT plot for the strengths data of the
glass fibers (right).
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Figure 4. Estimated CDF (top left), estimated PDF (top right), P-P graph (bottom left), and Kaplan–
Meier survival (bottom right) for the 1st dataset.

Figure 5. Estimated CDF (top left), estimated PDF (top right), P-P graph (bottom left), and Kaplan–
Meier survival (bottom right) for the 2nd dataset.
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8. Risk Analysis for Insurance-Claims Data

In insurance data analysis, the temporal growth of claims over time for each relevant
exposure period is often presented in a triangle format. The exposure period can refer to
the year the insurance policy was purchased or the time frame in which the loss occurred. It
should be noted that the origin period need not be annual and can be monthly or quarterly.
The claim age or claim lag is the duration between the origin period and when the claim is
made. To identify consistent trends, division levels, or risks, data from various insurance
policies are often combined. In this study, we utilize a U.K. Motor Non-Comprehensive
account as an example of an insurance-claims payment triangle. For convenience, we set the
origin period between 2007 and 2013 (see Shrahili et al. [3]; Mohamed [4]). The claims data
are presented in an insurance-claims payment data frame in a standard database format,
with the first column listing the development year, the incremental payments, and the origin
year spanning from 2007 to 2013. It is crucial to note that a probability-based distribution
was initially used to analyze this insurance-claims data. The data are analyzed using
numerical and graphical techniques. The numerical approach involves fitting theoretical
distributions such as the normal, uniform, exponential, logistic, beta, lognormal, and
Weibull distributions. These distributions are then examined using graphical tools such as
the skewness-kurtosis graph (or the Cullen and Frey graph) (see Figure 6). Figure 6 shows
that our data are left-skewed and have a kurtosis of less than three.

Figure 6. Cullen-Frey graph for the actuarial claims data.

Different approaches are utilized to examine multiple aspects of the insurance-claims
data, which are presented in Figure 7. The NKDE method is implemented to analyze the
initial shape of the insurance-claims density, while the Q-Q graph is used to evaluate the
normality of the data. The TTT graph is employed to assess the initial shape of the empirical
HRF, and the “box graph” is utilized to identify explanatory variables.

Figure 7 displays the results of the various graphs. The initial density is demonstrated
to be an asymmetric function with a left tail in the top left graph. The bottom right graph
indicates that there are no extreme claims. The bottom left graph shows that the HRF for
models explaining the data should have a monotonically increasing trend. Scattergrams for
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the insurance-claims data are presented in Figure 8. The autocorrelation function (ACF)
and partial autocorrelation function (partial ACF) for the data are depicted in Figure 9.

To assess risk for the insurance-claims data, measures such as VARK, TVARK, TV, TMV,
and MEL are employed at various confidence levels, which are listed in Table 13. Table 14
gives the estimated parameters for the EGRRP under insurance-claims data. Table 15 lists
the results of the KRIs for the IR under insurance-claims data. Table 16 gives the estimated
parameters for the IR under insurance-claims data. The EGRRP and RR distributions are
compared using five measures, while the KRIs for the EGRRP and IR are listed in Tables 13
and 15, respectively. Table 14 provides the estimators and ranks for the EGRRP model
under the claims data for all estimation methods, while Table 16 lists the KRIs for the RR
distribution under the claims data for all estimation methods. The RR distribution is chosen
as the baseline distribution for comparison with the new EGRRP distribution. Based on
these tables, the following results can be highlighted:

1. For all risk assessment Bayesian and non-Bayesian techniques |q = 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, and 0.999:

VARK(X; q,H)|q=0.6 < VARK(X; q,H)|q=0.7 . . . < VARK(X; q,H)|q=0.999.

2. For all risk assessment Bayesian and non-Bayesian techniques |q = 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, and 0.999:

TVARK(X; q,H)|q=0.6 < TVARK(X; q,H)|q=0.7 . . . < TVARK(X; q,H)|q=0.999.

3. For most risk assessment techniques |q = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999:

TV(X; q,H)|q=0.6 < TV(X; q,H)|q=0.7 . . . < TV(X; q,H)|q=0.999.

4. For all risk assessment techniques |q = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999:

TMV(X; q,H)|q=0.6 < TMV(X; q,H)|q=0.7 . . . < TMV(X; q,H)|q=0.999.

5. For all risk assessment Bayesian and non-Bayesian techniques |q = 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, and 0.999:

MEL(X; q,H)|q=0.6 > MEL(X; q,H)|q=0.7 . . . > MEL(X; q,H)|q=0.999.

6. Under the EGRRP model and the MLE technique: The VARK(X; Ĥ) is a consis-
tently growing indicator which starts with 2602.272196|q=0.6 and terminates with
145,993.327739|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 7534.159674|q=0.6 and terminates with 65,808.922847|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

7. Under the RR distribution and the MLE technique: The VARK(X; q, Ĥ) is a consis-
tently growing indicator which starts with 1628.234966|q=0.6 and terminates with
36,791.27132|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 3547.122526|q=0.6 and terminates with 73,594.813549|q=0.999; the TV(X; q, Ĥ),
the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing indicators.

8. Under the EGRRP model and the bootstrapping technique: The VARK(X; q, Ĥ) is a
consistently growing indicator which starts with 2832.283001|q=0.6 and terminates with
123,576.386617|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 7560.430006|q=0.6 and terminates with 84,874.267755|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

9. Under the RR distribution and the OLSE technique: The VARK(X; q, Ĥ) is a consis-
tently growing indicator which starts with 1692.496862|q=0.6 and terminates with
38,243.320243|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
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starts with 3687.117754|q=0.6 and terminates with 76,499.395591|q=0.999. Addition-
ally, the TV (X; q, Ĥ), the TMV (X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously
reducing indicators.

10. Under the EGRRP model and the CVM technique: The VARK(X; q, Ĥ) is a consis-
tently growing indicator which starts with 2770.998013|q=0.6 and terminates with
123,130.65901|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 7453.230383|q=0.6 and terminates with 84,870.02498|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

11. Under the RR distribution and the CVM technique: The VARK(X; q, Ĥ) is a consis-
tently growing indicator which starts with 2635.229755|q=0.6 and terminates with
59545.123954|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 5740.868751|q=0.6 and terminates with 119,110.108205|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously
reducing indicators.

12. Under the EGRRP model and the Bayesian technique: The VARK(X; q, Ĥ) is a con-
sistently growing indicator which starts with 2463.713921 |q=0.6 and terminates with
129,788.635|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 6896.600374|q=0.6 and terminates with 28,585.213639|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

13. Under the RR distribution and the Bayesian technique: The VARK(X; q, Ĥ) is a con-
sistently growing indicator which starts with 1628.247409|q=0.6 and terminates with
36,791.552475|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which starts
with 3547.149632|q=0.6 and terminates with 73,595.375934|q=0.999; the TV(X; q, Ĥ), the
TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing indicators.

14. For the EGRRP model and its corresponding RR base line model, the Bayesian ap-
proach is recommended since it offers the most acceptable risk exposure analysis.

  

 

Figure 7. The NKDE graph (top left graph), the Q-Q graph (top right graph), the TTT graph (bottom

left graph), and the box graph (bottom right graph) for the claims data.
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Figure 8. The initial scattergram (left graph), the fitted scattergram (middle graph), and smoothed
scattergram (right graph).

Figure 9. The ACF (left graph), and the partial ACF (right graph) for the insurance-claims data.

Table 13. The results of the EGRRP under insurance-claims data.

q VARK(X;q,Ĥ) TVARK(X;q,Ĥ) TVq(X;q,Ĥ) TMVq(X;q,Ĥ) MEL(X;q,Ĥ)

MLE 0.6 2602.272196 7534.159674 121,153,998.83755 60,584,533.57845 4931.887478
0.7 3314.099309 9070.251654 152,485,547.01594 76,251,843.75962 5756.152345
0.8 4519.426502 11,679.71693 209,525,473.41096 104,774,416.4224 7160.290435
0.9 7368.466882 17,637.56762 338,212,668.58184 169,123,971.8585 10,269.10074

0.95 11,723.900439 26,230.44642 544,732,714.27725 272,392,587.5850 14,506.54598
0.99 33,355.286264 58,883.98974 1,269,594,815.6707 634,856,291.8251 25,528.70348
0.999 145,993.327739 65,808.92284 6,908,619,382.4808 3,454,375,500.163 −80,184.40489

Bayesian 0.6 2463.713921 6896.600374 86,857,109.259539 43,435,451.230144 4432.886453
0.7 3125.83370 8271.666098 108,234,173.14921 54,125,358.240703 5145.832398
0.8 4242.10144 10,594.482279 146,113,725.35165 73,067,457.158106 6352.380839
0.9 6863.70244 15,873.911604 235,935,854.18517 117,983,801.00419 9010.209163

0.95 10,841.7879 23,261.286766 361,466,587.16925 180,756,554.87139 12,419.49881
0.99 30,345.4697 49,970.512506 816,811,981.90482 408,455,961.46491 19,625.04280
0.999 129,788.635 28,585.213639 3,170,744,914.9386 1,585,401,042.6829 −101,203.422
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Table 13. Cont.

q VARK(X;q,Ĥ) TVARK(X;q,Ĥ) TVq(X;q,Ĥ) TMVq(X;q,Ĥ) MEL(X;q,Ĥ)

Bootstrap 0.6 2832.283001 7560.430006 93,823,029.752448 46,919,075.30623 4728.147005
0.7 3555.945318 9027.338287 116,455,425.56374 58,236,740.120162 5471.392969
0.8 4759.231239 11,489.206663 156,469,913.82581 78,246,446.119569 6729.975424
0.9 7529.018485 17,084.073298 249,678,104.66656 124,856,136.40658 9555.054813

0.95 11,636.63127 24,950.966796 374,329,321.09034 187,189,611.51196 13,314.33552
0.99 30,996.14226 55,050.720255 643,890,093.87870 322,000,097.65960 24,054.57799
0.999 123,576.3866 84,874.267755 1,367,037,379.7192 683,603,564.12738 −38,702.11886

CVM 0.6 2770.998013 7453.230383 92,883,930.94896 46,449,418.704863 4682.232369
0.7 3483.913233 8903.322882 115,420,157.1217 57,718,981.883749 5419.409649
0.8 4670.531885 11,346.47232 155,165,515.4901 77,594,104.217413 6675.940442
0.9 7406.183510 16,897.92006 248,097,708.6971 124,065,752.26862 9491.736551

0.95 11,470.78194 24,724.77277 372,360,756.4232 186,205,102.98440 13,253.990839
0.99 30,692.35944 54,850.39454 630,810,155.0580 315,459,927.92355 24,158.035102
0.999 123,130.6590 84,870.02498 1,379,680,759.512 689,925,249.78127 −38,260.63403

Table 14. The estimated parameters for the EGRRP under insurance-claims data.

Techniques α̂ β̂ θ̂ λ̂

MLE 0.78171 33.01598 79.08656 −3.78474
Bayesian 0.79412 33.01607 79.08662 −3.78437
Bootstrap 0.83451 60.04148 80.82928 −3.31509

CVM 0.83077 42.24841 100.49062 −3.05291

Table 15. The results of the KRIs for the IR under insurance-claims data.

q VARK(X;θ̂) TVARK(X;θ̂) TV(X;θ̂) TMV(X;θ̂) MEL(X;θ̂)

MLE 0.6 1628.234966 3547.122526 76,135,623.630709 38,071,358.93788 1918.887559
0.7 1948.574941 4136.781558 100,120,217.39896 50,064,245.48104 2188.206617
0.8 2463.549221 5114.338228 147,302,529.07972 73,656,378.87808 2650.789007
0.9 3585.208936 7297.644053 284,971,253.77263 142,492,924.5303 3712.435117

0.95 5,138.343308 10,364.98915 550,930,629.98247 275,475,679.9803 5226.645843
0.99 11,608.153078 23,255.23381 2,535,785,437.5515 1,267,915,974.009 11,647.08073
0.999 36,791.27132 73,594.81354 22,237,318,310.631 11,118,732,750.12 36,803.54223

Bayesian 0.6 1628.247409 3547.149632 91,723,332.2753950 45,865,213.287330 1918.902223
0.7 1948.589832 4136.813171 120,902,095.198909 60,455,184.412625 2188.223339
0.8 2463.568047 5114.377311 178,487,896.633266 89,249,062.693944 2650.809265
0.9 3585.236334 7297.699821 347,361,234.231741 173,687,914.81569 3712.463487

0.95 5138.382575 10,365.068359 675,631,280.252160 337,826,005.19443 5226.685784
0.99 11,608.241786 23,255.41153 3,159,263,800.17968 1,579,655,155.5013 11,647.16974
0.999 36,791.552475 73,595.375934 28,472,994,153.3060 14,236,570,672.028 36,803.82345

Bootstrap 0.6 1692.496862 3687.117754 98,832,130.6276450 49,419,752.431576 1994.620892
0.7 2025.479762 4300.048794 130,269,755.140288 65,139,177.618938 2274.569032
0.8 2560.778641 5316.186898 192,293,925.060678 96,152,278.717237 2755.408257
0.9 3726.707139 7585.661722 374,182,772.362154 187,098,971.84279 3858.954583

0.95 5341.139395 10,774.066441 727,822,354.386544 363,921,951.25971 5432.927046
0.99 12,066.294522 24,173.05307 3,402,703,365.70689 1,701,375,855.9065 12,106.758548
0.999 38,243.320243 76,499.395591 30,654,515,544.6792 15,327,334,271.735 38,256.075348

CVM 0.6 2635.229755 5740.868751 190,889,214.50589 95,450,348.121700 3105.638997
0.7 3153.686520 6695.206821 250,869,428.56578 125,441,409.48971 3541.520301
0.8 3987.150714 8277.341152 368,764,811.87516 184,390,683.27873 4290.190438
0.9 5802.509749 11,810.92971 712,295,720.90702 3,561,59671.38322 6008.419968

0.95 8316.192353 16,775.29873 1,374,796,679.7789 687,415,115.18820 8459.106384
0.99 18,787.30712 37,637.61690 6,300,638,164.1197 3,150,356,719.6767 18,850.309781
0.999 59,545.12395 119,110.1082 54,832,802,342.864 27,416,520,281.540 59,564.984251
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Table 16. The estimated parameters for the IR under insurance-claims data.

Techniques θ̂

MLE 1163.73317
Bayesian 1163.74207
Bootstrap 1209.66248

CVM 1883.45315

9. Conclusions

Probability-based distributions are used by actuaries to determine the expected values
of unexpected risk, which are then used to determine insurance premiums, create insurance
products, and assess investment plans. Actuaries also employ simulation tools to test their
algorithms and assess how different scenarios may affect the financial results of investments
and insurance policies. Probability-based distributions can be used to explain risk exposure,
often expressed as one or a few key risk indicators derived from a specific probability model.
These indicators provide valuable insights for actuaries and risk managers to understand
a company’s exposure to various types of risks, such as value-at-risk, tail-value-at-risk,
conditional value-at-risk, tail variance, mean excess loss, and tail mean-variance. Different
types of data can be analyzed using probability distributions in the modeling process. A
new extension of the Reciprocal Rayleigh distribution is introduced and analyzed, including
properties such as moments, incomplete moments, probability-weighted moments, moment
generating function, residual life, and reversed residual life functions. Parameter estimation
is performed through various techniques, including Bayesian estimators under gamma
and normal priors using the squared error loss function. The performance of all estimation
techniques is evaluated through Monte Carlo simulations and two real data applications.
These applications compare the new model with other competitive models and demonstrate
the importance of the proposed model via the maximum likelihood technique. Numerical
analysis for expected value, variance, skewness, and kurtosis is provided. An extensive
analytical study is conducted to evaluate and rate actuarial hazards using a wide range of
well-known models for actuarial disclosure. Actuarial data are used to reveal and assess
these hazards.

Based on risk analysis, the following results can be highlighted:

1. For all risk assessment Bayesian and non-Bayesian techniques |q = 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, and 0.999:

VARK(X; q,H)|q=0.6 < . . . < VARK(X; q,H)|q=0.999.

2. For all risk assessment Bayesian and non-Bayesian techniques |q = 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, and 0.999:

TVARK(X; q,H)|q=0.6 < . . . < TVARK(X; q,H)|q=0.999.

3. For most risk assessment techniques |q = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999:

TV(X; q,H)|q=0.6 < . . . < TV(X; q,H)|q=0.999.

4. For all risk assessment techniques |q = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999:

TMV(X; q,H)|q=0.6 > . . . > TMV(X; q,H)|q=0.999.

5. For all risk assessment Bayesian and non-Bayesian techniques |q = 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, and 0.999:

MEL(X; q,H)|q=0.6 > . . . > MEL(X; q,H)|q=0.999.
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6. Under the EGRRP model and the MLE technique: The VARK(X; Ĥ) is a consis-
tently growing indicator which starts with 2602.272196|q=0.6 and terminates with
145,993.327739|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 7534.159674|q=0.6 and terminates with 65,808.922847|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

7. Under the EGRRP model and the bootstrapping technique: The VARK(X; q, Ĥ) is a
consistently growing indicator which starts with 2832.283001|q=0.6 and terminates with
123,576.386617|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 7560.430006|q=0.6 and terminates with 84,874.267755|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

8. Under the EGRRP model and the CVM technique: The VARK(X; q, Ĥ) is a consis-
tently growing indicator which starts with 2770.998013|q=0.6 and terminates with
123,130.65901|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 7453.230383|q=0.6 and terminates with 84,870.02498|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

9. Under the EGRRP model and the Bayesian technique: The VARK(|q=0.6) is a consis-
tently growing indicator which starts with 2463.713921 |q=0.6 and terminates with
129,788.635|q=0.999; the TVARK(X; q, Ĥ) is a consistently growing indicator which
starts with 6896.600374|q=0.6 and terminates with 28,585.213639|q=0.999. However, the
TV(X; q, Ĥ), the TMV(X; q, Ĥ), and the MEL(X; q, Ĥ) are monotonously reducing.

10. For the EGRRP model and its corresponding RR base line model, the Bayesian ap-
proach is recommended since it offers the most acceptable risk exposure analysis.

11. For all q values and risk approaches, the EGRRP model outperforms the RR distri-
bution in terms of performance. Despite the probability distributions having the
same number of parameters, the new distribution performs the best when modeling
insurance-claims reimbursement data and calculating actuarial risk.
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Abstract: The quality characteristic(s) are assumed to follow the normal distribution in many control
chart constructions, although this assumption may not hold in some instances. This study proposes
the Bayesian-I and Bayesian-II Shewhart-type control charts for monitoring the Maxwell scale pa-
rameter in the phase II study. The posterior and predictive distributions are used to construct the
control limits for the proposed Bayesian-I and Bayesian-II Shewhart-type control charts, respectively.
Various performance indicators, including average run length, quadratic loss, relative average run
length, and performance comparison index, are utilized to evaluate the performance of the proposed
control charts. The Bayesian-I and Bayesian-II Shewhart-type control charts are compared to their
competitive CUSUMV, EWMAV and V control charts. Sensitivity analysis is also performed to study
the effect of hyperparameter values on the performance behavior of the proposed control charts.
Finally, real-life data is analyzed for the implementation of the proposed control charts.

Keywords: hyperparameters; Maxwell distribution; performance measures; posterior predictive
distribution; sensitivity analysis
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1. Introduction

The statistical process control (SPC) kit is a collection of instruments used to monitor
the variations in process parameters of the quality characteristic(s). Generally, these varia-
tions are categorized into the following two classes: natural (random) causes of variations
and special (attributable) causes of variations. The natural causes of variations are harmless
and acceptable to any stable process (IC state). On the contrary, the special causes of varia-
tions are harmful and create certain problems in the process (OOC state) that can deteriorate
the quality of the product. The proper diagnosis and identification of the special causes
of variations in the process parameters are essential for achieving high-quality products.
Control charts are a statistical tool in the SPC that analyzes and monitor the special causes
of variations in the process parameters to ensure the quality of products. The special cause
of variations is termed a shift in the process parameters. The most familiar control chart is
the classical Shewhart control chart developed by [1], also referred to as the memory-less
control chart.
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To monitor the shift of the process parameters efficiently, it is necessary to identify
the nature of the distribution for the quality characteristic and then monitor the process
parameter(s) shift via the control chart. The classical Shewhart-type control chart requires
the assumptions of normality and independence of observations for the quality character-
istic [2,3]. In literature, numerous authors designed the classical Shewhart-type control
charts to detect the shifts in process parameters, assuming that the quality characteristic(s)
follows the normal distribution. For instance, Al-Omari and Al-Nasser [4] proposed an
efficient control chart based on robust extreme ranked set sampling to detect the shift in the
process mean. Similarly, Al-Omari and Haq [5] suggested a double-rank set sampling-based
Shewhart-type control chart for monitoring the shift in the process mean. Moreover, Haq
and Al-Omari [6] designed an improved Shewhart-type control chart based on partially
ordered judgment subset sampling to diagnose changes in the process mean. Equally,
Shabbir and Awan [7] suggested the Shewhart-type control chart, which is based on the
difference-in-difference estimator and detects a moderate shift in the process mean in the
phase-II scenario.

The assumptions of normality for the quality characteristic may not be achieved in
practice [8]. Therefore, using the normal distribution for non-normal data may result
in a false alarm in process monitoring or may allow for the later detection of changes.
In the literature, several researchers suggested control charts for quality characteristic
which follows a skewed distribution. For example, Xie et al. [9] discussed the monitoring
of shifts in the location parameter of the lognormal process. Likewise, Al-Oraini and
Rahim [10] investigated the economic statistical design of X control chart when the (Gamma
(λ, 2) distribution is considered its failure model. Similarly, Nichols and Padgett [11]
offered the bootstrap control chart to monitor the percentiles of the Weibull distribution.
Correspondingly, Guo and Wang [12] monitored the shape parameter of the Weibull
distribution under type-II censored data. Moreover, Lio et al. [13] designed two parametric
bootstrap control charts for monitoring the Burr Type-X percentiles. More comprehensive
details about the control charts based on skewed distributions can be seen in the studies
of [14–20].

The Maxwell (or Maxwell–Boltzmann) distribution is a familiar positively skewed
distribution. The Maxwell distribution has a smoothly increasing hazard risk; therefore, it
is commonly used in life-testing experiments and reliability analysis where the assumption
of constant hazard risk, such as in exponential distribution, is not practical. The Maxwell
distribution is widely used in statistical machines, physics, chemistry, and life testing
experiment, but it is recently has been applied in the SPC techniques. For instance, Hos-
sain et al. [21] suggested a Shewhart-type control chart, called a V control chart when the
process variable follows Maxwell distribution. The design structure of the V control chart
used the statistic V, which is known as the maximum likelihood estimate for the scale pa-
rameter of Maxwell distribution. Similarly, Hossain et al. [22] proposed a V statistic-based
cumulative sum (CUSUM) control chart, also denoted as CUSUMV, to detect the changes
in the Maxwell process. Likewise, Hossain and Riaz [23] recommended the exponentially
weighted moving average (EWMA) control chart based on V denoted by EWMAV for moni-
toring the Maxwell distribution, and results show that EWMAV control chart outperformed
the existing CUSUMV and V control charts. Other control chart schemes based on Maxwell
distribution can be seen in the studies, such as [24–26].

The Bayesian approach is commonly used in designing control charts to enhance
process monitoring. For instance, Menzefricke [27] constructed the Bayesian control limits
to monitor the mean of normal distribution. Similarly, Demirhan and Hamurkaroglu [3]
suggested the Bayesian X control limits for exponentially distributed measurements. Like-
wise, Saghir [28] proposed the phase-I design scheme for the X control chart, which is based
on the posterior distribution. Additionally, Raubenheimer and van der Merwe [29] offered
the predictive distribution-based Bayesian c-control chart for monitoring nonconformities.
Furthermore, Kumar and Chakraborti [30] recommended the Bayesian Shewhart tr-control
chart for monitoring the time between events. Moreover, Riaz et al. [31] designed the
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Bayesian EWMA control chart with three loss functions to monitor the process mean shift.
Further related works can be seen in [32–37].

As mentioned above, the Bayesian approach can enhance the performance behavior of
conventional control charts to monitor the process parameters. Similarly, Hossain et al. [21]
implemented a Shewhart-type control chart for monitoring changes in the Maxwell scale
parameter. Inspired by the Bayesian approach with control charts, this study introduces the
two Bayesian Shewhart-type control charts for monitoring the Maxwell scale parameter,
called Bayesian-I and Bayesian-II Shewhart-type control charts in phase II case. The
Bayesian approach along the Shewhart-type control charts is expected to further enhance
the efficiency of the proposed control charts. The design structures of the Bayesian-I
and Bayesian-II Shewhart-type control charts are based on the probability control limits.
The Monte Carlo simulations are conducted, and the proposed Bayesian-I and Bayesian-
II Shewhart-type control charts are compared to the CUSUMV, EWMAV, and CUSUM
control charts. The comparisons indicate that the proposed Bayesian-I and Bayesian-II
Shewhart-type control charts outperform the CUSUMV, EWMAV, and V control charts.

The remainder of the paper is organized as follows: Section 2 presents the preliminaries.
Besides, Section 3 contains the structures of the proposed control charts for monitoring
the shifts in the Maxwell parameter. Furthermore, the simulation study is discussed in
Section 4. Moreover, Section 5 illustrates the results and performance comparison of the
proposed and existing control charts. Section 6 provides a real-life data analysis for the
practical implementation of the proposed and existing control charts. Finally, a summary,
conclusions, and recommendations are outlined in Section 7.

2. Preliminaries

This section is organized as follows. Section 2.1 describes the Maxwell distribution.
Section 2.2 presents the distribution of the maximum likelihood estimate (V) of for the
Maxwell scale parameter. The V control chart to monitor the changes in the Maxwell
scale parameter is provided in Section 2.3. Section 2.4 deals with the methodology of the
CUSUMV control chart for monitoring the Maxwell process scale shift. Finally, the EWMAV
control chart is described in Section 2.5.

2.1. Maxwell Distribution

Suppose that X is a random variable having the Maxwell distribution with scale
parameter σ2, then its probability density function (PDF) and cumulative distribution
function (CDF) are respectively given as follows:

f
(

X
∣∣∣σ2
)

=
√

2/πσ−3X2e−X2/(2σ2); X, σ2 > 0, (1)

F
(

X
∣∣∣σ2
)

=
√

2/πγ
(

3/2, X2/
(

2σ2
))

, (2)

The π = 3.1429 is constant,
∫ u

0 ua−1e−λudu = λ−1γ(a, λu), and γ(a, λu) is an incom-
plete gamma function, whereas a > 0 and λ > 0 are constants.

2.2. Distribution of Statistic V

Hossain et al. [21] used a sample of size n, which is randomly taken from
Equation (1), to derive the maximum likelihood estimate for the scale parameter of the
Maxwell distribution, which is given as follows:

σ̂2 = (3n)−1 ∑n
j = 1 X2

j , (3)

and called it statistic V, that is V = (3n)−1 ∑n
i = 1 X2

j . Hossain et al. [22] showed that the

transformations T = X2/
(
2σ2) and U = 3nV/

(
2σ2) follow gamma distribution, that is,

T = X2/
(
2σ2) ∼ G(3/2, 1) and U = 3nV/

(
2σ2) ∼ G(3n/2, 1), respectively. Similarly,
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Hossain et al. [23] defined the distribution of statistic V represented by the PDF, and it is
given as follows:

g
(

V
∣∣∣σ2
)

=

[
3n/
(
2σ2)]3n/2

Γ(3n/2)
V(3n/2)−1e−3nV/(2σ2); V, σ2 > 0. (4)

The statistic V has the mean and variance, respectively given as follows:

E(V) = σ2 and Var(V) = 2σ4/(3n),

Likewise, the αth quantile function of V is given as; Vα =
[
2σ2/(3n)

]
F−1(α), where

F−1(·) the inverse CDF of G(3n/2, 1). It is important to note that, here the basic objective
is the monitoring of σ2. If δ represents the shift in σ2 then for IC and OOC situations, the
following hypothesis can be formulated, respectively, as follows:

H0 : σ2 = σ2
0 ; or δ = 1 (the process is IC),

H1 : σ2 = σ2
1 = δσ2

0 ; δ > 0 but δ �= 1 (the process is OOC),

2.3. V Control Chart

Hossain et al. [21] suggested a V statistic-based Shewhart-type control chart, named
as V control chart for monitoring changes in the Maxwell scale parameter. They derived
LPLV, CLV, and UPLV for the V control chart in the case of known and unknown σ2. The
basic design structure for the probability control limits of V control chart can be presented
as follows:

LPLV : Vα/2 = L1σ2

CLV : V0.5 = L2σ2

UPLV : V1−(α/2) = L3σ2

⎫⎬⎭, (5)

where L1 =
[ 2

3n
]
F−1( α

2
)
, L2 =

[ 2
3n
]
F−1(0.5), and L3 =

[ 2
3n
]
F−1(1 − α

2
)
. The coefficients

L1, L2, and L3 are the quantiles of G(3n/2, 1) multiplied by some constants.
Practically, the parameter σ2 may be known then the probability control limits are

defined as follows:
LPLV = L1σ2

0
CLV = L2σ2

0
UPLV = L3σ2

0

⎫⎬⎭. (6)

However, if σ2 is unknown, then σ2 can be estimated using the statistic V. So, in this
case, the probability control limits for the V control chart are defined as follows:

LPLV = L1V
CLV = L2V

UPLV = L3V

⎫⎬⎭, (7)

where V represents the average of the estimated Vi computed at each of the samples over
time i.

The ARL is one of the measures that evaluate the performance of the control charts.
Mathematically, the ARL can be defined as given below as follows:

ARL =
1

pV
, (8)

where pV . is the power of the test, that is, the probability of rejecting the null hypothesis
(H0) when an alternative hypothesis (H1) is true. For the V control chart, the power of the
test is defined as follows:

pV = P(V < LPLV |H1) + P(V > UPLV |H1).
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It further can be expressed as follows:

pV = P

(
V <

(
2σ2

0
3n

)
F−1(α/2)

∣∣∣∣∣δ �= 1

)
+ P

(
V >

(
2σ2

0
3n

)
F−1(1 − α/2)

∣∣∣∣∣δ �= 1

)
.

Finally, the power of the test is given as follows:

pV = 1 +
[

Γ
(

3n
2

)]−1
γ

(
3n
2

, δ−1F−1(α/2)
)
−
[

Γ
(

3n
2

)]−1
γ

(
3n
2

, δ−1F−1(1 –α/2)
)

. (9)

In Equation (9) if there is no shift (i.e., δ = 1) in the process, then, in this case, the power
is equal to the false alarm rate α.

2.4. CUSUMV Control Chart

Hossain et al. [22] presented the design of the CUSUMV control chart for monitoring
the process scale parameter shift. They designed the plotting statistic of the CUSUMV
control chart, defined below as follows:

C+
i = max

(
0, Vi − k + C+

i−1

)
C−

i = min
(

0, Vi − k + C−
i−1

)⎫⎬⎭, (10)

where C+
0 = C−

0 = 0 are starting values and the k is referred to as the slack value that

is defined as k = − ln(δ)
σ−2

1 −σ−2
0

. For a one-sided upper CUSUMV control chart, the process

is considered to be OOC if the charting statistic exceeds then the threshold, h (i.e., control
limit), that is, C+

i > h.

2.5. EWMAV Control Chart

Recently, Hossain and Riaz [23] proposed the EWMA control chart that monitors the
Maxwell scale parameter shift, which is denoted by the notation by EWMAV. The charting
statistic for the EWMAV control chart is represented by Zi, which is based on Vi, and can be
given as follows:

Zi = λVi + (1 − λ)Zi−1, (11)

where Z0 is initial value set as; Z0 = σ2
0 , and λ is the smoothing constant. The mean of

the statistic Zi is σ2
0 , while its variance is σ4

0
3n

{
λ

2−λ

(
1 − (1 − λ)2i

)}
. The lower control limit

(LCLE), center line (CLE), and the upper control limit (UCLE) for the EWMAV control chart
are given as follows:

LCLE = K1σ2
0

CLE = σ2
0

UCLE = K2σ2
0

⎫⎬⎭. (12)

where K1 = 1 − LE

√
2λ

3n(2−λ)

{
1 − (1 − λ)2i

}
and K2 = 1 + LE

√
2λ

3n(2−λ)

{
1 − (1 − λ)2i

}
.

For a very large value of i, K1 and K2 are reduced to 1 − LE

√
2λ

3n(2−λ)
, and 1 + LE

√
2λ

3n(2−λ)
,

respectively. If σ2
0 is unknown then it can be estimated by V, hence Equation (12) can be

rewritten, in this case, given as follows:

LCLE = K1V
CLE = V
UCLE = K2V

⎫⎬⎭. (13)

The EWMAV control chart provides the OOC signal if Zi falls outside the upper or
lower control limits.
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3. Proposed Bayesian Shewhart-Type Control Charts

This section presents the schemes of the Bayesian-I and Bayesian-II Shewhart-type
control charts for monitoring the Maxwell scale parameter shift. The proposed Bayesian-
I Shewhart-type control chart is formulated using the posterior distribution, while the
Bayesian-II Shewhart-type control chart is designed using the predictive distribution. The
details are given in the following subsections.

3.1. Proposed Bayesian-I Shewhart-Type Control Chart

This subsection consists of constructing the posterior distribution for σ2 given V using
the conjugate prior. This posterior distribution is used to find the probability control limits
for the Bayesian-I Shewhart-type control chart. The following theorems may be useful in
this regard.

Theorem 1. Given the prior distribution of σ2 is inverted gamma (IG), that is, IG (a, b),

g
(

σ2
∣∣∣a, b
)

=
ba

Γ(a)

(
σ2
)−(a+1)

e−b/σ2
; σ2, a, b > 0. (14)

The posterior distribution of σ2 given V is IG (3n/2 + a, b +3nV/2), that is,

g
(

σ2
∣∣∣V) =

(b + 3nV/2)3n/2+a

Γ(3n/2 + a)

(
σ2
)−(3n/2+a+1)

e−(b+3nV/2)/σ2
; σ2 > 0.

Proof of Theorem 1. By definition, the posterior distribution of σ2 given V is defined
as follows:

g
(

σ2
∣∣∣V) =

g
(
σ2
∣∣a, b
)

g
(
σ2)∫ ∞

0 g(σ2|a, b)g(σ2)dσ2
. (15)

From Equations (4), (14), and (15) the posterior distribution of σ2 given V that can be
specified as follows:

g
(

σ2
∣∣∣V) =

(b + 3nV/2)3n/2+a

Γ(3n/2 + a)

(
σ2
)−(3n/2+a+1)

e−(b+3nV/2)/σ2
; σ2 > 0, (16)

which means that σ2
∣∣V ∼ IG(3n/2 + a, b + 3nV/2). �

Result 1. If a = 1 and a = 0 then the prior distribution of σ2 becomes an improper prior
known as the uniform prior, that is, as follows:

g
(

σ2
)

∝ 1; σ2 > 0.

The posterior distribution in this case is as follows:

g
(

σ2
∣∣∣V) =

(3nV/2)3n/2+1

Γ(3n/2 + 1)

(
σ2
)−(3n/2+2)

e−3nV/(2σ2); σ2 > 0,

which implies that σ2
∣∣V ∼ IG(3n/2 + 1, 3nV/2).

Result 2. If a = 0 and b = 0 then the prior distribution σ2 becomes an improper prior referred
to as Jeffreys prior, that is, as follows:

g
(

σ2
)

∝
1
σ2 ; σ2 > 0.
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The posterior distribution in this case is the following:

g
(

σ2
∣∣∣V) =

(3nV/2)3n/2

Γ(3n/2)

(
σ2
)−(3n/2+1)

e−3nV/(2σ2); σ2 > 0,

which suggests that σ2
∣∣V ∼ IG(3n/2, 3nV/2).

Theorem 2. Given the posterior distribution of σ2 given V is IG (3n/2 + a, b + 3nV/2), that is

g
(
σ2|V

)
=

(b + 3nV/2)3n/2+a

Γ(3n/2 + a)

(
σ2
)−(3n/2+a+1)

e−(b+3nV/2)/σ2
; σ2 > 0.

the transformation θ = b+3nV/2
σ2 given V has the PDF of a gamma distribution having shape

parameter 3n/2 + a and scale parameter 1, that is,

g(θ|V) =
1

Γ(3n/2 + a)
θ3n/2+a−1e−θ ; θ > 0. (17)

Proof of Theorem 2. For the PDF σ2 given V in Equation (16), since θ = b+3nV/2
σ2 ⇒

σ2 = b+3nV/2
θ then the Jacobian of transformation, J

(
σ2 → θ

)
= b+3nV/2

θ2 . Hence using
the relation, g(θ|V) = g

(
σ2
∣∣V)|J| the PDF of θ given V is written by the following:

g(θ|V) =
1

Γ(3n/2 + a)
θ3n/2+a−1e−θ ; θ > 0,

which indicates that θ|V ∼ G(3n/2 + a, 1). �

The probability control limits for the proposed Bayesian-I Shewhart-type control chart
can be developed from Equation (16). The lower probability limit (LPL1), central line
(CL1), and upper probability limit (UPL1), at the desired false alarm rate α, based on the
posterior distribution, can be given as follows:

P
(
σ2 ≤ LPL1

∣∣V) = α/2
P
(
σ2 ≤ CL1

∣∣V) = 0.5
P
(
σ2 ≤ UPL1

∣∣V) = 1 − α/2

⎫⎬⎭. (18)

where CL1 is defined as the median of the posterior distribution. Under the transformation
defined by Theorem 2, using the quantiles of the G(3n/2 + a, 1), the probability control
limits LPL1, CL1, and UPL1 can be designed as follows:

LPL1 = (b + 3nV/2)A1
CL1 = (b + 3nV/2)A2
UPL1 = (b + 3nV/2)A3

⎫⎬⎭, (19)

where A1 = 1/H−1(1 − α/2), A2 = 1/H−1(0.5), A3 = 1/H−1(α/2) and H−1(·) the
inverse CDF of G(3n/2 + a, 1). Table 1 contains the different values of A1, A2, and A3 at
various n, α with α = 8.5, 70. Let p1 be the power of the test then in the case of the proposed
Bayesian-I Shewhart-type control chart, it can be defined as follows:

p1 = P
(

σ2 < LPL1

∣∣∣V, δ �= 1
)
+ P
(

σ2 > UPL1

∣∣∣V, δ �= 1
)

,
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which can be solved to the following:

p1 = 1 +
[

Γ
(

3n
2

+ a
)]−1

γ

(
1

A1
,
(b + 3nV/2)

δσ2
0

∣∣∣∣∣δ �= 1

)
−
[

Γ
(

3n
2

+ a
)]−1

γ

(
1

A3
,
(b + 3nV/2)

δσ2
0

∣∣∣∣∣δ �= 1

)

Table 1. A1, A2, and A3 values for different n and a = 8.5, 70.

a n

False Alarm Rate α

0.005 0.0027 0.002

A1 A2 A3 A1 A2 A3 A1 A2 A3

1 0.04725 0.10345 0.29759 0.04510 0.10345 0.32434 0.04414 0.10345 0.33790
2 0.04290 0.08955 0.23675 0.04105 0.08955 0.25601 0.04022 0.08955 0.26571

8.5 3 0.03935 0.07895 0.19505 0.03773 0.07895 0.20963 0.03701 0.07895 0.21692
4 0.03639 0.07059 0.16494 0.03495 0.07059 0.17639 0.03431 0.07059 0.18209
5 0.03387 0.06383 0.14232 0.03259 0.06383 0.15156 0.03201 0.06383 0.15615

1 0.01025 0.01405 0.01998 0.01005 0.01405 0.02050 0.00995 0.01405 0.02075
2 0.01007 0.01376 0.01949 0.00987 0.01376 0.02000 0.00978 0.01376 0.02024

70 3 0.00990 0.01348 0.01903 0.00970 0.01348 0.01951 0.00961 0.01348 0.01974
4 0.00973 0.01322 0.01858 0.00954 0.01322 0.01905 0.00945 0.01322 0.01928
5 0.00957 0.01296 0.01816 0.00938 0.01296 0.01861 0.00930 0.01296 0.01883

Consequently, the OOC ARL, that is ARL1. of the Bayesian-I Shewhart-type control
chart is given as follows:

ARL1 =
1

1 +
[
Γ
( 3n

2 + a
)]−1

γ

(
1

A1
, (b+3nV/2)

δσ2
0

∣∣∣∣δ �= 1
)
− [Γ( 3n

2 + a
)]−1

γ

(
1

A3
, (b+3nV/2)

δσ2
0

∣∣∣∣δ �= 1
) (20)

3.2. Proposed Bayesian-II Shewhart-Type Control Chart

Let X f be the future observation of random sample X = (X1, X2, . . . , Xn) taken
from the Maxwell distribution then the predictive distribution of X f given V is defined by
Equation (24). Assuming that LPL2, CL2, and UPL2 are the probability control limits for
the Bayesian-II Shewhart-type control chart to monitor the process scale parameter shift,
then the LPL2, CL2, and UPL2 can be defined as follows:

P
[

X f ≤ LPL2

∣∣∣V] = α/2

P
[

X f ≤ CL2

∣∣∣V] = 0.5

P
[

X f ≤ UPL2

∣∣∣V] = 1 − α/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (21)

where CL2 is regarded as a median of the posterior predictive distribution. To derive
the probability control limits, that is, LPL2, CL2, and UPL2 for the proposed Bayesian-II
Shewhart-type control chart, the following theorems may help here.

Theorem 3. Given the posterior distribution of σ2 given V is IG (3n/2 + a, b + 3nV/2), that is,

g
(

σ2|V
)

=
(b + 3nV/2)3n/2+a

Γ(3n/2 + a)

(
σ2
)−(3n/2+a+1)

e−(b+3nV/2)/σ2
; σ2 > 0

the predictive distribution of a future random variable X f given V is expressed as follows:

g
(

X f |V
)

=
(b + 3nV/2)3n/2+a

B(3n/2 + a, 3/2)

X2
f(

b + 3nV/2 + X2
f /2
)3n/2+a+3/2 ; X f > 0
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Proof of Theorem 3. The predictive distribution of X f given V is defined as follows:

g
(

X f

∣∣∣V) =
∫ ∞

0
f
(

X f

∣∣∣σ2
)

g
(

σ2
∣∣∣V)dσ2. (22)

From Equation (1), f
(

X f

∣∣∣σ2
)

is the PDF of Maxwell distribution, which can be written
as follows:

f
(

X f

∣∣∣σ2
)

=
√

2/πσ−3X2
f e−X2

f /2σ2
; X f , σ2 > 0. (23)

Equations (16) and (22) provide the predictive PDF of X f given V, which can be written
as follows:

g
(

X f

∣∣∣V) =
(b + 3nV/2)3n/2+a

B(3n/2 + a, 3/2)

X2
f(

b + 3nV/2 + X2
f /2
)3n/2+a+3/2 ; X f > 0, (24)

where B(p, q) = Γ(p)Γ(q)
Γ(p+q) is a Beta function. �

Theorem 4. Given the posterior predictive distribution X f given V, that is

g
(

X f |V
)

=
(b + 3nV/2)3n/2+a
√

2B(3n/2 + a, 3/2)

X2
f(

b + 3nV/2 + X2
f /2
)3n/2+a+3/2 ; X f > 0,

the transformation Wf = (b+3nV/2)(
b+3nV/2+X2

f /2
) given V has the PDF of a Beta (3n/2 + a, 3/2) distribution.

Proof of Theorem 4. In the PDF of Xf given V in Equation (24), since Wf = (b+3nV/2)(
b+3nV/2+X2

f /2
) ⇒

Xf =

√
2(b + 3nV/2)

(
W−1

f − 1
)

then the Jacobian of transformation, J
(

Xf → Wf

)
=√

(b + 3nV/2)/2W−3/2
f

(
1−Wf

)−1/2
. Hence, using the expression, g

(
Wf

∣∣∣V) = f
(

Xf

∣∣∣V)|J|
the PDF of Wf given V is expressed by the following:

g
(

Wf

∣∣∣V) =
1

B(3n/2 + a, 3/2)
W3n/2+a−1

f

(
1 − Wf

)1/2
; 0 < Wf < 1. (25)

�

Theorem 4 shows that Wf follows the beta distribution with parameters 3n/2 + a
and 3/2. and the probability control limits LPL2, CL2 and UPL2 may be expressed in
terms of the quantiles of the beta distribution having parameters 3n/2 + a and 3/2. Thus
Equations (22) and (25) provide the solution for Equation (21), which can be presented as
given as follows:

LPL2 = (b + 3nV/2)B1
CL2 = (b + 3nV/2)B2
UPL2 = (b + 3nV/2)B3

⎫⎬⎭, (26)

where B1 =
[

1
B1−α(3n/2+a,3/2) − 1

]
, B2 =

[
1

B0.5(3n/2+a,3/2) − 1
]

and

B3 =
[

1
Bα/2(3n/2+a,3/2) − 1

]
and Bp(β1, β2) represents the 100p-quantiles of the beta dis-

tribution having parameters β1 and β2. Table 2 contains the different values of B1, B2,
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and B3 for a specified n, α and a. If p2 denotes the power of the test for the Bayesian-II
Shewhart-type control chart, then it can be given as follows:

p2 = P
(

X f < LPL2

∣∣∣δ �= 1
)
+ P
(

X f > UPL2

∣∣∣δ �= 1
)

,

that can be solved to

p2 = 1 + GBeta

(
2

2 + (b + 3nV/2)B2
1

; β1, β2

∣∣∣∣∣δ �= 1

)
− GBeta

(
2

2 + (b + 3nV/2)B2
3

; β1, β2

∣∣∣∣∣δ �= 1

)

where GBeta(·; β1, β2) is the CDF of the beta distribution having parameters β1 = 3n/2+ a
and β2 = 3/2. Consequently, the ARL1 for the Bayesian-II Shewhart-type control chart is
given by the following:

ARL1 =
1

1 + GBeta

(
2

2+(b+3nV/2)B2
1
; β1, β2

∣∣∣∣δ �= 1
)
− GBeta

(
2

2+(b+3nV/2)B2
3
; β1, β2

∣∣∣∣δ �= 1
) (27)

Table 2. B1, B2, and B3 values for different n and a = 25.5, 36.9.

a n

False Alarm Rate α

0.005 0.0027 0.0027

B1 B2 B3 B1 B2 B3 B1 B2 B3

1 0.00082 0.04423 0.29951 0.00054 0.04423 0.33103 0.00045 0.04423 0.34661
2 0.00078 0.04188 0.28191 0.00052 0.04188 0.31137 0.00042 0.04188 0.32592

25.5 3 0.00074 0.03977 0.26626 0.00049 0.03977 0.29391 0.00040 0.03977 0.30754
4 0.00071 0.03786 0.25225 0.00047 0.03786 0.27829 0.00038 0.03786 0.29112
5 0.00067 0.03612 0.23963 0.00045 0.03612 0.26424 0.00036 0.03612 0.27636

1 0.00058 0.03102 0.20310 0.00038 0.03102 0.22362 0.00031 0.03102 0.23371
2 0.00056 0.02984 0.19483 0.00037 0.02984 0.21445 0.00030 0.02984 0.22408

36.9 3 0.00054 0.02876 0.18721 0.00036 0.02876 0.20599 0.00029 0.02876 0.21522
4 0.00052 0.02774 0.18016 0.00034 0.02774 0.19818 0.00028 0.02774 0.20702
5 0.00050 0.02680 0.17362 0.00033 0.02680 0.19093 0.00027 0.02680 0.19943

4. Proposed Bayesian Shewhart-Type Control Charts

This section discusses the performance evaluation performance measures utilized to
investigate the performance behavior of the proposed Bayesian-I and Bayesian-II Shewhart
charts. Sections 4.1 and 4.2 defines the simulation study and average run length. In the
same line, Section 4.3 defines the overall performance indicators. Section 4.3 discusses the
Monte Carlo simulations. The sensitivity analysis is discussed in Section 4.4.

4.1. Simulation Study

The numerical results are obtained through the Monte Carlo simulation method by
using R software. The sample is generated from the specified distribution, and then
construct control limits and plotting statistics. The average run length properties are
obtained under the assumptions of various parameters and different values of shifts such
as 1, 1.25, 1.50, 1.72, 2, 2.25, 2.50, 3, 6. Moreover, different sets of hyperparameters are
considered for the sensitivity analysis of the proposed control charts.

4.2. Average Run-Length

The average run length (ARL) is the familiar run-length characteristic that evaluates
the performance behavior of the control charts. The ARL can be considered as the average
number of sample points plotted on the control chart until the control chart indicates an
OOC signal, where sample points are referred to as run-length (RL). The IC ARL (ARL0)
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and the OOC ARL (ARL1) are the two types of ARL It is emphasized that if the operates in
the IC state, then the ARL0 should be larger to prevent frequent false alarms; but, for OOC
states, the ARL1 should be smaller to identify the process change as soon as possible. To
enhance the efficiency of the control chart, it is important to attain a smaller ARL1 for the
control chart with predetermined ARL0 at a desired level.

4.3. Overall Performance Measure

Although the ARL is the best-known measure to assess the performance behavior of
the control charts at a single defined shift; however, there are alternative measures that can
be used to assess the overall detection ability of a control chart. Extra quadratic loss (EQL),
relative average run length (RARL), and performance comparison index (PCI) are among
these measures. A control chart with smaller EQL, RARL, and PCI values is regarded to be
superior. More detail about these performance measures is provided as follows

4.3.1. Extra Quadratic Loss

The EQL is the weighted ARL over the whole shift domain (δmin, δmax), where the
square of the shift δ is used as a weight. The EQL mathematically can be defined as follows:

EQL =
1

δmax − δmin

∫ δmax

δmin

δ2 ARL(δ)dδ

where δmin is the minimum shift, δmax is the maximum shift, and ARL(δ) is the ARL of a
specific control chart at a shift δ.

4.3.2. Relative Average Run Length

The RARL is the ratio of the ARL of a certain control chart (i.e., ARL(δ) to the benchmark
control chart (i.e., (ARLbmk(δ))). Mathematically the RARL can be defined as follows:

RARL =
1

δmax − δmin

∫ δmax

δmin

ARL(δ)
ARLbmk(δ)

dδ

A benchmark control chart is one, which has minimal EQL, or it can be regarded as
some of the existing standard control charts.

4.3.3. Performance Comparison Index

The PCI is defined as the ratio between the EQL of the control chart to the EQL of the
benchmark control chart. The PCI, mathematically, can be specified as follows:

PCI =
EQL

EQLbmk

The PCI = 1 for the benchmark control chart and the remaining control charts have
PCI > 1.

4.4. Sensitivity Analysis of Hyperparameters

The Bayesian process monitoring largely depends on the form of the prior distri-
bution. The informative and non-informative prior have a different impact on the con-
trol chart performance. In this study, the informative (conjugate) prior is considered
for the Maxwell parameter σ2, which is assumed to be inverted gamma with hyper-
parameters a and b (i.e., IG(a, b)). The sensitivity analysis of hyperparameter values
is performed to study the impact of an increase or decrease in hyperparameter val-
ues on the performance behavior of the Bayesian-I and Bayesian-II Shewhart-type con-
trol charts. Different pairs of hyperparameter values are chosen for this purpose, such
as (a, b) = (0, 0), (1, 0), (8.5, 0.005), (25.5, 0.005), (25.5, 1.5), (40.9, 0.005), (70, 0.2), (2.5,
0.005), and (110, 0.005). The impact of various hyperparameter choices on the performance
behavior of the proposed control chart is discussed as follows:
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1. The Bayesian-I and Bayesian-II Shewhart-type control charts are very sensitive to
hyperparameter values. A slight change in hyperparameters significantly affects the
ARL performance. For example, for n = 2 and δ = 1.5, the ARL for the proposed
Bayesian-I Shewhart-type control chart is 211.94, if (a, b) = (0, 0) and when (a, b) = (1,
0) then ARL is 183.01 (see Table 3). Similarly, for the same n = 2, δ = 1.5 the ARL for
the proposed Bayesian-II Shewhart-type control chart is 221.54, if (a, b) = (0, 0) and
when (a, b) = (1, 0) then ARL is 187.48 (see Table 4);

2. The detection ability of the proposed Bayesian-I and Bayesian-II Shewhart-type control
chart improves when a gets larger and b becomes smaller at the same time. For
example, for n = 2 and δ = 1.5, the ARL for the proposed Bayesian-I Shewhart-type
control chart is 34.00, if (a, b) = (25.5, 1.5), whereas when (a, b) = (40.9, 0.005) then
ARL is reduced to 18.35 (see Table 3). Similarly, the ARL for the proposed Bayesian-II
Shewhart-type control chart with n = 2, δ = 1.5, is 51.064 when (a, b) = (25.5, 1.5), while
for (a, b) = (40.9, 0.005) the ARL for the proposed Bayesian-II Shewhart-type control
chart is 1.01 (see Table 4);

3. The constants A1, A2 and A3 reduce as a increases. For instance, when n = 2 and
α = 0.0027, then A1 = 0.04105, A2 = 0.08955, and A3 = 0.25601 if a = 8.5 and a = 25.2
then A1 = 0.02114, A2 = 0.03539, and A3 = 0.06592 (see Table 1);

4. Similarly, the values of B1, B2, and B3 decrease as a gets larger. For example, if n = 2,
α = 0.0027, then B1 = 0.00127, B2 = 0.10600, and B3 = 0.94696. Likewise, when a = 8.5
and 25.5 then B1 = 0.00052, B2 = 0.04188, and B3 = 0.31137 (see Table 2).

Table 3. Run length profile of the Bayesian-I Shewhart-type control chart with different sample sizes
and hyperparameter values at α = 0.0027 with ARL ≈ 370.

δ

1 1.25 1.5 1.75 2 2.25 2.5 3 6

n a = 0, b = 0

2 369.75 265.15 211.94 159.73 134.96 116.21 94.10 82.09 33.00
5 369.83 203.85 116.15 79.44 57.77 47.03 34.10 23.62 6.02
9 371.53 129.99 86.30 42.92 27.24 16.46 12.50 8.19 1.85

a = 1, b = 0

2 369.66 242.51 183.01 128.38 104.10 86.52 66.71 56.43 18.95
5 371.08 193.86 105.37 69.96 49.72 39.90 28.35 19.23 4.71
9 369.83 123.53 80.64 39.11 24.48 14.61 11.04 7.19 1.68

a = 8.5, b = 0.005

2 371.52 148.09 83.00 40.85 27.46 19.67 12.51 9.49 2.23
5 371.50 138.00 56.49 31.72 19.98 14.92 9.69 6.08 1.59
9 370.10 89.93 52.45 21.74 12.57 7.06 5.24 3.39 1.12

a = 25.5, b = 0.005

2 371.67 81.95 27.57 10.80 6.40 4.30 2.65 2.06 1.02
5 370.91 73.92 23.10 10.77 6.20 4.15 2.86 1.89 1.02
9 371.99 53.46 22.33 9.00 4.89 2.75 2.11 1.51 1.00

a = 25.5, b = 1.5

2 370.02 95.26 40.00 15.24 9.22 6.21 3.77 2.85 1.09
5 371.57 85.36 29.71 14.53 8.45 6.08 3.86 2.47 1.06
9 371.41 62.31 28.18 11.53 6.33 3.51 2.64 1.82 1.01

a = 40.9, b = 0.005

2 370.74 60.70 18.35 5.86 3.62 2.39 1.60 1.34 1.00
5 371.11 52.85 14.37 6.36 3.46 2.64 1.80 1.32 1.00
9 369.03 38.98 13.61 5.62 3.08 1.83 1.48 1.18 0.99
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Table 3. Cont.

δ

a = 70, b = 0.2

2 369.21 29.36 8.58 2.65 1.70 1.32 1.09 1.03 1.00
5 370.48 37.24 7.01 3.05 1.86 1.47 1.17 1.04 1.00
9 370.33 23.42 6.90 2.91 1.73 1.22 1.10 1.02 1.00

a = 110, b = 0.005

2 369.44 23.78 3.78 1.86 1.25 1.11 1.05 1.00 1.00
5 373.26 16.07 3.47 1.79 1.18 1.06 1.02 1.00 1.00
9 369.37 14.12 3.25 1.76 1.22 1.04 1.01 1.00 1.00

Table 4. Run length profile of the Bayesian-II Shewhart-type control chart with different sample sizes
and hyperparameter values at α = 0.0027 with ARL ≈ 370.

δ

1 1.25 1.5 1.75 2 2.25 2.5 3 6

n a = 0, b = 0

2 371.04 274.85 221.54 181.87 144.91 136.23 95.18 68.31 28.53
5 371.26 146.33 98.83 47.75 36.48 24.90 12.97 8.69 1.13
9 369.99 50.36 29.14 9.99 5.95 2.11 1.50 1.00 1.00

a = 1, b = 0

2 370.76 249.31 187.48 144.49 107.06 98.71 61.61 39.84 12.78
5 370.90 129.66 83.37 36.70 27.13 17.70 8.53 15.48 1.00
9 369.45 43.67 24.32 7.78 4.49 1.56 1.15 1.00 1.00

a = 8.5, b = 0.005

2 371.35 123.94 56.46 27.82 12.38 10.02 3.03 1.16 1.00
5 371.14 54.01 24.50 5.58 3.35 1.73 1.00 1.00 1.00
9 369.50 15.65 6.65 1.45 1.00 1.00 1.00 1.00 1.00

a = 25.5, b = 0.005

2 369.37 25.72 4.04 1.12 1.00 1.00 1.00 1.00 1.00
5 370.41 7.94 1.97 1.00 1.00 1.00 1.00 1.00 1.00
9 370.91 1.90 1.01 1.00 1.00 1.00 1.00 1.00 1.00

a = 25.5, b = 1.5

2 369.39 119.39 51.06 23.12 9.05 7.06 1.72 1.00 1.00
5 369.09 45.86 18.92 3.44 1.93 1.11 1.00 1.00 1.00
9 369.81 11.45 4.37 1.06 1.00 1.00 1.00 1.00 1.00

a = 40.9, b = 0.005

2 369.58 6.77 1.01 1.00 1.00 1.00 1.00 1.00 1.00
5 371.59 1.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 371.50 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a = 70, b = 0.2

2 371.36 1.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 370.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 370.31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

a = 2.5, b = 0.005

2 371.87 222.32 153.44 109.32 73.91 66.50 35.97 20.36 4.70
5 370.23 109.67 65.89 25.48 18.00 11.05 4.81 2.93 1.00
9 369.50 35.76 18.87 5.47 3.04 1.13 1.00 1.00 1.00
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5. Performance Comparison and Illustration of Results

This section reports the finding and performance comparison of the Bayesian-I and
Bayesian-II Shewhart-type control charts against the existing counterparts. Section 5.1
represents the comparison of the Bayesian-I and Bayesian-II Shewhart-type control charts
with the CUSUMV control chart. Similarly, the Bayesian-I and Bayesian-II Shewhart-type
control charts are compared with the EWMAV control chart in Section 5.2. Likewise,
Section 5.1 offers the performance comparison of the Bayesian-I and Bayesian-II Shewhart-
type control charts with the V control chart. Finally, Section 5.4 addresses the main outcomes
of the study.

5.1. Proposed versus CUSUMV Control Chart

The proposed Bayesian-I and Bayesian-II Shewhart-type control charts are compared
against the CUSUMV control chart at ARL0 = 370, and the results show that the proposed
control charts outperformed the CUSUMV control chart. For example, at n = 2 and δ = 1.25, 1.5,
the ARL values for the proposed Bayesian-II Shewhart-type control chart (a = 25.5, b = 0.005)
are 25.72, 9.74, while for the CUSUMV control chart, the ARL values are; 33.93, 18.71 (see
Table 3 vs. Table 5). Along with the ARL values for the proposed Bayesian-I Shewhart-type
control chart a = 70, b = 0.2 are 29.36, 23.59 (see Table 4). This indicates that the proposed
Bayesian-I and Bayesian-II Shewhart-type control charts perform better against the CUSUMV
control chart in monitoring the shift in the Maxwell scale parameter. Correspondingly, in
overall performance comparison, the proposed Bayesian-I and Bayesian-II Shewhart-type
control charts also demonstrate superior performance than the CUSUMV control chart, as
their EQL, PCI, and RARL values are smaller than that of CUSUMV control chart. For instance,
for n = 2, the EQL, PCI, and RARL values for the proposed Bayesian-I (a = 110, b = 0.005) and
Bayesian-II (a = 25.5, b = 0.005) Shewhart-type control charts are, respectively, given as; 26.79,
1.00, 1.05, and 26.75, 1.00, 1.00, whereas, for the CUSUMV control the EQL, PCI, and RARL
values chart are provided as; 57.97, 2.17, 4.10 (see, Table 6).

Table 5. ARL values of CUSUMV, EWMAV and V control charts.

CUSUMV EWMAV V

n δ ARL ARL ARL

1 369.8 370.19 372.02
1.25 33.93 63.02 116.26
1.5 16.1 20.63 39.64

2
1.75 10.88 9.52 18.67

2 8.19 5.71 10.84
2.25 6.39 3.95 7.08

3 4.36 2.13 3.33
6 2.13 1.14 1.37

1 373.98 371.90 374.69
1.25 18.25 32.03 69.04
1.5 9.15 8.22 17.55

5
1.75 6.06 3.65 7.36

2 4.58 2.17 4.19
2.25 3.82 1.62 2.75

3 2.51 1.21 1.51
6 1.32 1.01 1.02

1 371.61 371.40 369.29
1.25 12.65 18.28 42.4
1.5 5.98 4.13 8.97

9
1.75 4.11 1.94 3.76

2 3.09 1.35 2.21
2.25 2.64 1.13 1.60

3 1.82 1.01 1.11
6 1.04 1.00 1.00
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Table 6. Overall performance comparison of the Bayesian-I and Bayesian-II Shewhart-type control
charts versus the CUSUMV and V control charts.

n CUSUMV
EWMAV
(λ = 0.75)

V Bayesian-I
(a = 110, b = 0.005)

Bayesian-II
(a = 25.5, b = 0.005)

EQL 57.97 40.60 57.49 26.79 26.75
2 PCI 2.17 1.52 2.15 1.00 1.00

RRL 4.10 2.65 4.49 1.05 1.00

EQL 38.31 29.53 36.20 26.20 25.14
5 PCI 1.52 1.17 1.44 1.04 1.00

RARl 2.62 1.65 2.63 1.14 1.00

EQL 30.91 26.53 29.93 25.92 24.57
9 PCI 1.26 1.08 1.22 1.05 1.00

RARL 2.27 1.67 2.76 1.49 1.00

5.2. Proposed versus EWMAV Control Chart

The proposed Bayesian-I and Bayesian-II Shewhart-type control charts reveal an edge
in performance over the EWMAV control chart. In detail, at n = 2 and δ = 1.25, the
Bayesian-I (a = 110, b = 0.005) Shewhart-type control chart provides ARL value of 23.78,
while the Bayesian-II (a = 25.5, b = 0.005) Shewhart-type control chart bears ARL value
of 25.72 and the EWMAV control chart delivers the ARL value of 32.03 (see Tables 2 and 3 vs.
Table 5). Similarly, the proposed Bayesian-I and Bayesian-II Shewhart-type control charts
also yield superior overall performance than the EWMAV control chart as the proposed
Bayesian-I and Bayesian-II Shewhart-type control charts have minimum EQL, PCI, and
RARL values than EWMAV control chart (see Table 6). For example, with n = 5, the
Bayesian-I (a = 110, b = 0.005) Shewhart-type control chart has EQL, PCI, and RARL values
of 26.20, 1.04, and 1.14, the Bayesian-II (a = 25.5, b = 0.005) Shewhart-type control charts
address the EQL, PCI, and RARL values of 25.14, 1.00, and 1.00, whereas, for the EWMAV
control chart generates the EQL, PCI, and RARL values of 29.53, 1.17, and 1.65 (see Table 6).

5.3. Proposed versus V Control Chart

The proposed Bayesian-I and Bayesian-II Shewhart-type control charts achieve better
shift detection ability than the V control chart. For instance, at ARL0 = 370, n = 5,
and δ = 1.25, 1.5, the ARL1 values for the proposed Bayesian-I Shewhart-type control
chart (a = 70, b = 0.2) are 37.24, 7.01, whereas the ARL values for the V control chart are
69.04 and 17.55 (see Table 4 vs. Table 5). This indicates the superiority of the Bayesian-I
Shewhart-type control chart over V control chart. Similarly, when n = 5, and δ = 1.25, 1.5,
the proposed Bayesian-II Shewhart-type control chart (a = 25.5, b = 0.005) ARL values
are 7.94, 1.97, which are smaller than V control chart. Likewise, for n = 9, the proposed
Bayesian-I (a = 110, b = 0.005) and Bayesian-II (a = 25.5, b = 0.005) Shewhart-type control
charts have smaller EQL, PCI, and RARL values (i.e., 25.92, 1.05, 1.49, and 25.57, 1.00, and
1.00) than the EQL, PCI, and RARL values of the V control chart (i.e., 26.53, 1.08, and 1.67);
therefore, the proposed Bayesian-I and Bayesian-II Shewhart-type control charts have better
overall performance relative to the V control chart (see Table 6).

5.4. Main Finding of the Study

Some important findings about the proposed Bayesian-I and Bayesian-II Shewhart-
type control charts are given as follows:

1. The Bayesian-I and Bayesian-II Shewhart-type control charts are very sensitive to
hyperparameter values. A slight change in hyperparameter values significantly affects
the performance of the proposed Bayesian-I and Bayesian-II Shewhart-type control
charts in terms of the ARL measure (see, Tables 3 and 4);
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2. The detection ability of the proposed Bayesian-I and Bayesian-II Shewhart-type control
charts improves when the hyperparameter a grows larger and b becomes smaller (see,
Tables 3 and 4);

3. The proposed Bayesian-I and Bayesian-II Shewhart-type control charts have improved
ARL performance than the CUSUMV, EWMAV and V control charts, particularly when
hyperparameters a and b increase (see, Table 5);

4. The Bayesian-II Shewhart-type control chart has enhanced detection ability than the
Bayesian-I Shewhart-type control chart (see, Table 3 vs. Table 4).

6. Real Data Analysis

A boring machine is a tool used for making a wide hole in a fixed workpiece. These
machines make use of a single steel cutting edge, carbide or diamond, or a small grinding
wheel to make the hole cleaner, more accurate, and more specific. Boring machines with
multiple spindles are typically used in a manufacturing plant where production is on a large
scale. This study uses a real dataset by Hossain et al. [21] that addressed the failure rate of
the vertical boring machine. This data set was also considered by Majumdar [38] to review
the optimum maintenance approach for the vertical boring machine. Subsequently, Krishna
and Malik [39] conducted a detailed statistical investigation to evaluate the distributions,
which best fit this data set. They examined models such as exponential, gamma, Maxwell,
lognormal, Weibull, and estimated the parameters of these models with the maximum
likelihood method. In addition, various information criteria such as Akaike, second-order,
Bayesian, and the Kolmogorov–Smirnov test have shown that the Maxwell distribution
is the best fitted to this data set. Additionally, Hossain et al. [21] used the Kolmogorov–
Smirnov test and showed that the data set followed the Maxwell distribution (p-value
0.4775) with σ = 1777.86. Hossain et al. [21] also verified that no larger change occurs
for this data set. The failure time data for a vertical boring machine are specified as
follows: 2802, 2937, 2136, 4359, 4020, 1781, 2816, 2655, 3886, 2296, 3158, 3695, 4155, 3811,
2380, 376, 2172, 3705, 2848, 4339, 2076, 2672, 3632, 1976, 1700, 1596, 1701, 3575, 3802, 4351,
4291, and 808.

Hossain et al. [22] first divided this data set into eight groups each of size four, and esti-
mated σ2 by using Equation (3), that is, V = 3.160782. They specified the various features of
the CUSUMV control chart as; n = 4, σ0 = 1777.86, h 13,400,000, and k 3,313,881. Using these
constants, they simulated 22 OOC samples with an upward change of δ = 1.2. So, there are
a total of 30 samples, out of which 8 are IC, and the rest of 22 samples are OOC (see Table 7).
Following the rationale of Hossain et al. [22], in this study the EWMAV, V, Bayesian-I, and
Bayesian-II Shewhart-type control charts are constructed. At α = 0.002, n = 4, L2 = 0.94503,
and L3 = 2.67246, the probability control limits LPLV = 619,197 , CLV = 3.160782, and
UPLV = 8.446242 of the V control chart are obtained. Similarly, with λ = 0.25 and LE = 3.26,
the EWMAV fixed limits are constructed, i.e., LCLE = 1,570,819, CLE = 3,160,786 and
UCLE = 4,750,753. Likewise, the probability control limits LPL1 = 747,595, CL1 = 1,597,923
and UPL1 = 4,404,396 for the proposed Bayesian-I Shewhart-type control chart using
α = 0.0027, n = 4 , a = 8.5, b = 0.005, A1 = 0.01956, A2 = 0.03199, and A3 = 0.05763 are
determined. Moreover, the LPL2 = 6518, CL2 = 526,155 and UPL2 = 3,758,399 present the
probability control limits of the proposed Bayesian-II Shewhart-type control chart, which is
based on α = 0.0027, n = 4, a = 36.9, b = 0.005, B1 = 0.00034, B2 = 0.02774, and B3 = 0.19818.
The CUSUMV, EWMAV, V, Bayesian-I, and Bayesian-II Shewhart-type control charts are
constructed using the aforementioned information. Figure 1 demonstrates the graphical
properties of these control charts.

The proposed Bayesian-I and Bayesian-II Shewhart-type control charts are more
sensitive than the CUSUMV, EWMAV, and V control charts, as the comparison reveals
that the proposed Bayesian-I and Bayesian-II Shewhart-type control charts detect 6 and
11 OOC signals, respectively, and the CUSUMV control chart identifies 2 OOC points,
while the EWMAV and V control charts fail to diagnose the OOC signal. Similarly, the
proposed Bayesian-I and Bayesian-II Shewhart-type control charts detect the OOC points
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at sample numbers 9 and 8, respectively, while the CUSUMV control chart diagnoses the
first OOC signal at sample number 29. This indicates that the proposed Bayesian-I and
Bayesian-II Shewhart-type control charts are more efficient than the CUSUMV, EWMAV
and V control charts.

Figure 1. CUSUMV, EWMAV, V Bayesian-I, and Bayesian-II Shewhart-type control charts with a
vertical boring machine failure data.
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Table 7. Charting statistics for various control charts.

Sample
Number

Vi Ci
+ Zi

Sample
Number

Vi Ci
+ Zi

1 3,336,713 22,832 3,204,768 16 4,354,789 8,273,484 3,746,652
2 2,859,270 0 3,118,393 17 2,805,902 7,765,506 3,511,464
3 3,666,550 352,669 3,255,433 18 4,588,520 9,040,146 3,780,728
4 3,132,794 171,582 3,224,773 19 4,829,929 10,556,194 4,043,029
5 3,781,886 639,588 3,364,051 20 3,910,538 11,152,851 4,009,906
6 2,378,780 0 3,117,733 21 2,841,708 10,680,678 3,717,856
7 1,759,270 0 2,778,118 22 2,566,451 9,933,248 3,430,005
8 4,370,996 1,057,115 3,176,337 23 4,267,153 10,886,521 3,639,292
9 4,503,843 2,247,078 3,508,214 24 4,202,461 11,775,101 3,780,084
10 4,761,577 6,504,774 3,821,554 25 3,406,360 11,867,580 3,686,653
11 2,893,367 6,084,261 3,589,508 26 3,459,810 12,013,509 3,629,942
12 2,931,706 5,702,087 3,425,057 27 3,723,778 12,423,407 3,653,401
13 3,068,791 5,456,997 3,335,991 28 3,430,499 12,540,025 3,597,676
14 2,934,246 5,077,362 3,235,554 29 4,419,754 13,645,899 3,803,195
15 4,469,095 6,232,576 3,543,940 30 3,378,578 13,710,596 3,697,041

7. Summary, Conclusions, and Recommendation

This study is performed to propose two Bayesian Shewhart-type control charts, which
are based on the probability control limits, to monitor the familiar Maxwell distribution.
These control charts are called the Bayesian-I and Bayesian-II Shewhart-type control charts.
The design structures for the proposed Bayesian-I and Bayesian-II Shewhart-type control
charts are obtained using the posterior and posterior predictive distributions, respectively.
These distributions are constructed under the assumption of conjugate prior for the scale
parameter of Maxwell distribution, which is assumed to be an inverted gamma distribution
with hyperparameters a and b. The performance of the suggested Bayesian-I and Bayesian-
II Shewhart-type control charts is evaluated by computing the important performance
evaluation measures such as ARL, EQL, RARL, and PCI. A comparative study is carried
out among the proposed Bayesian-I and Bayesian-II Shewhart-type control charts, and
some existing competitors are more sensitive than the CUSUMV, EWMAV and V control
charts. The sensitivity analysis is performed to study the effect of increasing and decreasing
hyperparameter values on the performance behavior of the proposed Bayesian-I and
Bayesian-II Shewhart-type control charts. The results derived from this study have shown
that the proposed Bayesian-I and Bayesian-II Shewhart-type control charts perform well
in the monitoring of the Maxwell scale parameter. A real-life data application is also
provided for the practical implementation of the proposed Bayesian-I and Bayesian-II
Shewhart-type control charts. Finally, it is recommended that the concept of the Bayesian-
I and Bayesian-II Shewhart-type control charts can be extended to other distributions,
where the manufacturing processes need to diagnose the small and large changes in the
process parameters.
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Abstract: A piecewise function can sometimes provide the best fit to a time series. The breaks in
this function are called change points, which represent the point at which the statistical properties
of the model change. Often, the exact placement of the change points is unknown, so an efficient
algorithm is required to combat the combinatorial explosion in the number of potential solutions to
the multiple change point problem. Bayesian solutions to the multiple change point problem can
provide uncertainty estimates on both the number and location of change points in a dataset, but
there has not yet been a systematic study to determine how the choice of hyperparameters or the
presence of autocorrelation affects the inference made by the model. Here, we propose Bayesian
model averaging as a way to address the uncertainty in the choice of hyperparameters and show how
this approach highlights the most probable solution to the problem. Autocorrelation is addressed
through a pre-whitening technique, which is shown to eliminate spurious change points that emerge
due to a red noise process. However, pre-whitening a dataset tends to make true change points harder
to detect. After an extensive simulation study, the model is applied to two climate applications: the
Pacific Decadal Oscillation and a global surface temperature anomalies dataset.

Keywords: change point analysis; prior distribution; model averaging; autocorrelation; PDO;
temperature anomalies

MSC: 62F15; 62J05; 62P12

1. Introduction

1.1. What Is a Change Point?

A change point is defined as the point at which the statistical properties of a model
change. For example, suppose that a constant model, Y = μ + ε, is used to model the
mean signal in a system. Here, a change to either the mean or the variance at any point in
the time series indicates the existence of a change point. If a linear (e.g., trend) model is
more appropriate, i.e., Y = β0 + β1t + ε, then a change in the slope (β1), intercept (β0), or
variance of the error terms (ε) would indicate a change point in the data.

The problem is simple if the locations of the change points are known. In this case,
a separate model can be fit to each section of the data. However, the problem quickly
becomes intractable if the locations of the change points are unknown. For example, there

are
(

250
5

)
= 7,817,031,000 possible ways to place 5 change points among these 250 obser-

vations, and this is by no means a large dataset. Thus, our goal is to create an efficient
change point model that can accurately determine the unknown location of change points
in a dataset.

Change point analysis has been used in a variety of different settings. In finance,
locating change points in a portfolio can help companies understand how their decisions
affect their revenue and profit [1]. Change point models have also been used to study Bitcoin
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returns [2], stock market returns [3,4], and average annual wage growth [5]. In health care,
change point models have been used to look at fMRI data [6], EEG signals [7], and visits to
the emergency department [8]. Climate applications include the study of glacial records [9],
precipitation data [10,11], and global temperature data [12]. Additional applications include
social network analysis [13], speech processing [14], and bio-informatics [15,16], to name
a few. Of further note are the summative works of [17,18], which provide a number of
examples across a variety of fields.

1.2. Overview of Existing Approaches

Page published the first article concerning change points in 1954 [19]. This paper was
motivated by a quality control problem in manufacturing and outlined a test for a single
change point from a common parametric distribution. Now, the literature on change point
models is vast. Broadly, change point detection algorithms can be classified as either batch
(retrospectively analyze the data) or sequential (analyze the data as it comes in), and each
category can be further categorized as either frequentist or Bayesian. In what follows, we
give a brief overview of a few algorithms in each category to help place our model in an
appropriate context.

Cumulative sum (CUSUM) statistics and likelihood ratio tests are two frequentist
approaches to detecting change points. The CUSUM approach, introduced by [20], monitors
either the mean or variance of the residuals and signals a change point if this cumulative
sum begins to “drift” (see also [18,21]). A random set of residual errors would have a
cumulative sum centered at zero, whereas a string of positive or negative residuals might
indicate a break in the underlying model. For a likelihood ratio test (e.g., [22–24]), the null
hypothesis of no change point is tested against the alternative hypothesis of a change point
at each data point. Note that if the pre- and post-change parameters are assumed to be
known, the CUSUM statistic becomes a sequential likelihood ratio test.

A popular approach to the multiple change point problem is binary segmentation,
first introduced by [25]. Binary segmentation begins by searching the entire dataset (using
any available method) for a single change point. If one is found, the data are split in
two at the change point location and the process is repeated on each of the two smaller
segments until no further change points are detected. This greedy algorithm is fast, but is
not guaranteed to find the globally optimal solution, working best when the change points
are well separated and the segment means are distinct [26]. Modern adaptations include
circular binary segmentation [27], which pins the two ends of the dataset together to form
a circle and introduces change points two at a time (i.e., two cuts in the circle), and wild
binary segmentation [28], which considers a localized (rather than global) CUSUM statistic
on random subsegments of the time series to identify change points.

Unlike binary segmentation, segment neighborhood algorithms (e.g., [9,29,30]) and the
pruned exact linear time (PELT) algorithm [31] are guaranteed to find the global optimum
solution to the multiple change point problem. Segment neighborhood algorithms use
dynamic programming to recursively add change points to the time series, with the goal
of minimizing a cost function such as squared error. PELT seeks to minimize an arbitrary
cost function, plus a penalty function that helps to guard against overfitting, by recursively
calculating the minimum cost at time s in terms of the minimal cost at time t, with t < s. If
the number of change points increases linearly with the size of the dataset, the algorithm
achieves linear complexity by removing calculations that are not relevant to finding the
global minimum.

Bayesian approaches to the multiple change point problem have the advantage of
being able to quantify the uncertainty in both the number and location of change points.
MCMC approaches (e.g., [32–34]) are dominant on the Bayesian side, where the idea is often
to make a proposal that changes the location of one change point (either adding, deleting,
or moving its location) and then “accept” that proposal based on whether or not it produces
a better fit to the data. As with all MCMC algorithms, convergence issues can exist due to
strong correlations in the target distributions [35,36]. Dynamic programming (e.g., [35,37])
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can instead be used to sample directly from the posterior distribution, avoiding issues
with convergence.

Sequential Bayesian change point algorithms such as Bayesian Online Change Point
Detection (BOCPD) [38] and particle filters (e.g., [39,40]) work by specifying a probability
distribution over the length of each segment. BOCPD uses a recursive message passing
algorithm to determine the probability distribution of the current “run length” given
the observed data, a predictive model (e.g., i.i.d. Gaussian), and a hazard function (the
probability of a change point at a given run length). For particle filters, each weighted
“particle” represents one possible state of the system (in terms of the number and location
of change points), so the number of particles grows exponentially with the length of the
dataset. Resampling the particles at each step keeps those which are most probable and
can be used to limit the computational burden [3], but this process introduces small errors
which compound over time because particles that are removed cannot be brought back [36].
Alternately, Bayesian dynamic linear models (BDLM), also known as state-space models,
are probabilistic models with time varying coefficients, which can include terms to model
trends, seasonality, covariates, and autoregressive components to capture various features
of a time series [41,42]. Broadly, BDLM use a learning process to sequentially revise the
state of a priori knowledge as new data become available. In particular, a one-step-ahead
prior distribution for the next state is updated after observing the data to create a posterior
distribution at time t, and then the process is propagated forward in time. Changes to the
(hidden) state of the system represent a change point in the system.

Readers looking for more information on change point analysis are directed to the
summative works [17,18], which discuss a number of change point models using examples
across a variety of fields. The changepoint.info website also maintains an extensive list of
publications and software related to change point models.

In Section 2, we describe the Bayesian change point model of [37] which provides
the methodological foundation for this study. While previous studies have considered
variations of this original algorithm, compared the error and detection rates to other
change point models, and offered suggestions on how to set the hyperparameters of the
model (e.g., [43,44]), there has not been a systematic study to determine how the choice
of parameters for the prior distribution can affect the inference made by the model. In
addition, it is not known for certain how autocorrelation will affect the output of the
model. Thus, Section 2 ends with an in-depth discussion of these two shortcomings of
the Bayesian change point model. In Section 3, we discuss a pre-whitening technique to
address autocorrelation and a model averaging technique to address parameter uncertainty.
In both cases, an extensive simulation study is presented, first to show how the algorithm
performs both in the presence of autocorrelation and after pre-whitening, and then to show
how model averaging highlights the most probable solutions to the multiple change point
problem. Section 4 presents a novel analysis of two climate datasets using these techniques.
Discussion and conclusions are given in Section 5.

2. Materials and Methods

2.1. Description of the Bayesian Model

The Bayesian change point model described in this section assumes that the parameters
of the model for any two segments of the data are independent (i.e., a product partition
model [32]) and incorporates dynamic programming recursions to piece together the
different subsets of the dataset in a computationally efficient way. Once complete, the
model returns both the posterior distribution on the number and location of change points
in the time series (which gives us probabilistic bounds on their location) and estimates of
the parameters of the model between any two change points.

For each subset of the data, we assume a linear relationship between the response
variable, Y, and a set of m known explanatory variables, X1, X2, . . . , Xm. Thus, our model
takes the form:

Y = β0 + β1X1 + · · ·+ βmXm + ε,
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where βi represents the regression coefficient corresponding to the ith explanatory variable,
Xi. The explanatory variables are functions of time for a time series and can include
terms that are constant, linear, periodic, etc. In addition, the random error terms, ε, are
assumed to be independent normally distributed random variables with mean 0 and
variance σ2. For change point analysis, this model will be separately fit to each substring
of the data separated by the change points, which implies that each substring has the
same set of explanatory variables but its own set of regression coefficients. Here, we focus
on the simplest versions of this model, i.e., the constant (Y = β0 + ε) and linear models
(Y = β0 + β1X1 + ε), but note that the ideas presented below can easily be applied to the
more general case.

Suppose that a time series contains k change points, c1, c2, . . . , ck, defined as the
location where the parameters of the model change. Generally, the value of k is unknown,
and must be inferred from the data, along with the locations of the change points. In this
setting, the parameters of our model are the regression parameters, so a change point
can represent a change in the mean (the constant term, β0), trend (β1, . . . , βm), or even
the variance of the data (the magnitude of the random error, ε). Since the goal is to fit a
piecewise regression model to the dataset, each segment of the data will have a unique set
of regression parameters.

Bayes’ rule tells us:

P(A|B) = P(B|A)P(A)

P(B)

Define:

• P
(

β, σ2
∣∣Y, M

)
to be the posterior distribution of the regression parameters, β, and the

error variance, σ2, given the data, Y, and the model, M (e.g., constant, linear, etc.);
• P

(
Y
∣∣β, σ2, M

)
as the likelihood of the data given the regression parameters and

the model;
• P

(
β, σ2

∣∣M) as the prior distribution of the regression parameters, given the model;
• P(Y|M) as the normalization constant, or the probability of the data given the model,

so that Bayes’ rule can be rewritten as:

posterior =
likelihood ∗ prior

normalization constant
→ P

(
β, σ2

∣∣∣Y, M
)
=

P
(
Y
∣∣β, σ2, M

)
P
(

β, σ2
∣∣M)

P(Y|M)

In many applications, the quantity of interest is the posterior distribution and the
normalization constant represents a nuisance quantity that is computationally difficult
to evaluate. However, in our case, the normalization constant is exactly the quantity
that we need for the first step of the Bayesian change point algorithm. Specifically, we
aim to calculate the probability of the data for each possible substring given the model,
after marginalizing out the parameters of the model. These calculations represent the
building blocks that the algorithm pieces together in order to identify the “best” possible
locations of change points. Assuming the error terms, ε, are i.i.d. ~N(0, σ2) and a conjugate
prior distribution is used for both β (multi-variate normal) and σ2 (scaled-inverse χ2), the
normalization constant is relatively easy to evaluate as:

P(Y|M) =
P
(
Y
∣∣β, σ2, M

)
P
(

β, σ2
∣∣M)

P(β, σ2|Y, M)

Dynamic programming works by taking a complex problem (i.e., the multiple change
point problem) and breaking it down into a series of simpler problems, the smallest of
which (i.e., the placement of a single change point) can easily be solved. Consider a jigsaw
puzzle. After dumping out the pieces, you begin by turning all of the pieces over so that
the picture is facing upwards. Next, find two pieces that fit together, then add a third,
and a fourth, etc., until you manage to complete the entire puzzle. The idea is the same
here. After defining a general model for the data (i.e., linear, sinusoidal, etc.), the first
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step to solving the multiple change point problem (i.e., the completed jigsaw puzzle) is to
determine the parameters of the model which best fit each section of the data (i.e., turn the
pieces over). Change points are then identified one at a time (i.e., place two segments of the
data together, then add a third, etc.) until we have a complete model for our dataset.

The Bayesian change point algorithm has three steps.

1. Calculating the Probability Density of the Data P(Yi,j|M):

The quantity P(Yi:j) = P(Yi:j|M) is calculated for all possible substrings of the data, Yi:j,
with 1 ≤ i < j ≤ N, where N is the number of observations in the dataset. Each calculated
probability is then stored in an N × N matrix where the row index represents the starting
point and the column index represents the ending point of the substring. Note that the
exact form of this calculation depends on the nature of the underlying predictive model.
The dependence on the model, M, is hereafter suppressed.

2. Forward Recursion (Dynamic Programming):

Using the probabilistic calculations from Step 1 as building blocks, we recursively
piece together these segments, adding one change point at a time until the complete dataset
has been modeled. Define Pk

(
Y1:j
)

to be the probability that the first j data points contain k
change points. Then, for k ∈ {1, 2, . . . , kmax} :

Pk
(
Y1:j
)
= ∑

v<j
Pk−1(Y1:v)P

(
Yv+1:j

)
for j = (k + 1):N, where P0(Y1:v) = P(Y1:v) is calculated in Step 1 of the algorithm. Here,
our values are stored in a kmax × N matrix, where the row index represents the number of
change points.

3. Stochastic Backtrace via Bayes’ Rule:

Two additional prior distributions need to be specified in order to have a fully defined
model. Specifically, we assume a uniform prior on the number of change points (i.e.,
P(K = k) = 1/kmax) and that all solutions with exactly k change points are equally likely,
i.e., P(c1, . . . , ck|K = k) = 1/Nk , where Nk is the number of possible solutions containing
k change points. Note that if there are no restrictions on the distance between two change

points, then Nk =

(
N
k

)
. This combinatorial prior accounts for the growing number

of potential solutions as the number of change points increases. Taken together, our
normalization constant becomes:

P(Y1:N) =
kmax

∑
k=0

∑
c1...ck

Pk(Y1:N) ∗ P(K = k, c1 . . . ck),

with Pk(Y1:N) calculated in Step 2. The parameters of interest can now be sampled directly
from their respective posterior distributions. In particular, we can use Bayes’ rule to:

3.1. Sample a number of change points, k:

P(k|Y1:N) =
Pk(Y1:N)P(K = k, c1 . . . ck)

P(Y1:N)

3.2. Iteratively sample the locations of these k change points, c1, . . . , ck:

P(ck−1|ck) =
Pk−1
(
Y1:ck−1

)
P
(
Yck−1:ck

)
∑v<ck

Pk−1(Y1:v)P
(
Yv+1:ck

)
3.3 Sample the regression parameters for the interval between adjacent change

points ck and ck+1:
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Note that Step 3 must be repeated a large number of times to obtain an accurate repre-
sentation of the joint posterior distribution of the number and location of change points, as
well as the parameters of the regression model. See [37] for full implementation details.

2.2. Shortcomings of the Existing Model
2.2.1. Correlated Errors

Consistent with the majority of the literature on change point analysis, the Bayesian
change point model described above assumes the error terms to be a white noise process.
However, time series often exhibit “memory” at time scales longer than the measurement
frequency [45]. A model runs the risk of flagging spurious change points if this internal
variability is neglected, as positive autocorrelation can create a similar pattern to that of
a shift in the mean or long-term trend [46–48]. Specifically, autocorrelated time series
can exhibit intervals where the time series remains above or below its mean value for an
extended period of time, which can be interpreted by a change point model that assumes
independent data points as the time series having different “regimes” [47]. In summary,
the algorithm can misinterpret internal variability as a change in the forced signal if
autocorrelation is ignored [12].

One way to model the memory of a system is through a first-order autoregressive
(AR(1)) process (e.g., [49]), where the memory of a system geometrically decays to zero over
time. From here, model selection can be used to determine the most appropriate structure
(e.g., [50]) or an information criterion can be used to distinguish between autocorrelation
and true change points (e.g., [51]) for a regression model containing both a trend and an
AR(1) component. An alternate approach is to pre-whiten the time series (e.g., [47,48,52,53])
before performing change point analysis. In Section 3.1, we look at how pre-whitening
the data affects the Bayesian change point algorithm’s ability to detect change points in
simulated datasets.

2.2.2. Choosing Values for the Hyperparameters of the Model

Each of the calculations described in Section 2.1 is conditional on the model. The
algorithm itself is general enough to handle nearly any type of model, but several modeling
decisions must be made before data analysis can begin. In particular, a researcher needs to
decide on:

• Structure of the Model: Examples include constant, linear, periodic, autoregressive, etc.
Here, we use a linear function to model the data and assume that the error terms are
i.i.d. ~N(0, σ2), so the likelihood function given this model follows a multivariate
normal distribution.

• Prior Distribution for Model Parameters: The prior distribution encodes any prior in-
formation available about the parameters of interest. Here, we choose conjugate
prior distributions for both the regression parameters, β and σ2, mainly to obtain
a closed form expression for P(Y|M), the probability of the data given the model
(calculated for every possible substring of the data in Step 1 of the algorithm). Here,
P
(
σ2
∣∣M) ∼ Scaled Inverse χ2(v0, σ2

0
)

and P
(

β
∣∣σ2, M) ∼ N

(
0, σ2/k0

)
, where k0 is

a vector of the same length as β.
• Prior Distribution on the Location of Change Points: Here, we assume a non-informative

prior on the number of change points, k, and their distribution in time (i.e., all change
point solutions with exactly k change points are equally likely). Note that algorithms
which base their inference on the “run length” (e.g., BOCPD [38] and particle filters
(e.g., [39,40]) often encode their beliefs about the expected distance between change
points with a geometric prior.

Five hyperparameters need to be set before starting the analysis:

• k0 is a scale parameter that relates the variance of the regression parameters to the
error variance, σ2. In general, the value of k0 can differ for each regression parameter,
βi, or be constant across all parameters. The practical effect is to act as a “penalty”
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against adding change points, where a smaller value of k0 allows for larger values
of the regression parameters (relative to the error variance), but also gives a larger
penalty on introducing a change point. Allowing for large values of the regression
parameters is especially important for the constant term in a long time series, as its
value can differ significantly from zero. In Section 3.2, we consider different values of
k0 for the constant and trend terms in our model.

• v0 and σ2
0 act as pseudo-data for estimating the value of the residual variance, v0, and

pseudo-data points of variance σ2
0 . For example, setting v0 equal to 1 and σ2

0 equal to
the variance of the data implies that we have one prior observation of the residual
error whose magnitude is equal to the variance of the data.

• dmin represents the minimum distance between two consecutive change points. This
hyperparameter can be set to any reasonable value for the problem of interest and
normally does not affect the inference other than to prevent two change points from
appearing in close proximity to one another. We recommend that dmin be at least twice
as large as the number of regression parameters that need to be estimated.

• kmax represents the maximum number of allowed change points in the time series. The
value of kmax should be at least as large as the expected maximum number of change
points, but need not be any larger than n/dmin, where n is the number of observations
in the dataset.

• One additional quantity that needs to be set by the researcher is the number of solutions
sampled from the joint posterior distribution on the number and location of change
points, as well as the parameters of the regression model fit between any two change
points. Larger values of this parameter allow for a more accurate representation of the
joint posterior distribution, and therefore a more accurate estimate of each quantity.

The choice of parameters for the prior distributions can have a significant impact on
the overall inference. In this case, changing the values of k0, v0, and σ2

0 can impact the
number of change points that are detected, but not on their distribution within the dataset.
In other words, changing the values of the prior parameters does not create a bias in the
inferred location of a change point. Exploring how the values of these parameters affect the
inference is the focus of Section 3.2.

3. Simulation Studies

3.1. Correcting for Autocorrelation

Autocorrelation in a times series can easily be misinterpreted as a change point by
models which assume that the data are independent, including the Bayesian change point
algorithm described in Section 2. Here, we use the pre-whitening technique described
by [47] to try and mitigate the effect of autocorrelation. The idea is to remove the first-order
autocorrelation using a bias-corrected estimate of the first-order autocorrelation:

y′
t = yt − ρ̂cyt−1

x′
t = xt − ρ̂cxt−1

for t = 2, 3, . . . , n, where n represents the length of the time series, xt and yt represent
the raw variables, x′

t and y′
t represent the pre-whitened variables at time t, and ρ̂c is the

bias-corrected estimate of the first-order correlation. Rodionov [47] notes that the situation
becomes “complicated” if the time series contains both regime shifts and autocorrelation,
as using all available data can lead to a misleading estimate of the value of ρ (since the
first-order correlation used in pre-whitening is unknown and may also change over time).

A potential solution to this problem is to estimate the value of ρ using randomly se-
lected subsegments of the dataset. If we set the size of these randomly selected subsegments
appropriately, then the majority of them will not contain any change points. Rodionov [47]
suggests that if change points occur at regular intervals of l years, then subsamples of size
m should be selected so that m is less than or equal to (l + 1)/3. From here, ρ̂ is chosen as
the median of the first-order autocorrelation calculated from each subsegment of size m
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(denoted p̂). However, conventional estimators of ρ (e.g., OLS, maximum likelihood) are
known to yield biased estimates of ρ for short subsamples of size m [54], so we can use a
bias-corrected estimate of the first-order autocorrelation developed by [55]:

ρ̂c =
(m − 1) p̂ + 1

(m − 4)

We first aim to show that autocorrelation causes the Bayesian change point algorithm to
detect change points when none actually exist and that the Bayesian change point algorithm
can recover its predictive ability by pre-whitening the time series. Here, we consider a
constant model with no change points (Y = 1 + ε). Simulation of a linear model with no
change points (Y = 4+ 0.05X + ε) is included in the Appendix A. A total of 1000 datasets of
length n = 200 were generated with an auto-regressive signal of level ρ = 0.1, 0.2, 0.3, . . . , 0.9
using the R function arima.sim(), for a total of 10,000 simulations. For this simulation, m is
chosen to be 20, k0 = 0.01, v0 = 1, σ2

0 = var(Y), dmin = 5, and kmax = 20. Since the goal of this
simulation is to see how autocorrelation affects the inference, optimizing these parameters
is not critical. The Bayesian change point model calculates the posterior distribution of
the number of change points for each dataset, so we use this distribution to determine the
expected number of change points in the dataset and then average this quantity across all
1000 simulations. Table 1 gives the average number of detected change points for each
value of ρ before and after pre-whitening, along with the number of datasets where the
algorithm correctly identified zero change points. For smaller values of ρ, there appears to
be little loss in the algorithm’s predictive ability, but the quality of the inference quickly
deteriorates as ρ increases (Table 1). It is also clear from these data that pre-whitening can
help to eliminate spurious change points that arise from autocorrelation.

Table 1. Autocorrelation in a Constant Model. A total of 1000 datasets were generated for each value
of the autocorrelation parameter, ρ. The average number of change points detected by the Bayesian
change point model before and after pre-whitening is indicated for each value of ρ in addition to the
number of datasets (out of 1000) where the algorithm correctly identified zero change points (i.e., the
number of datasets where the expected number of change points < 0.5). Note that a value of ρ = 0
corresponds to white noise.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
at

a
w

it
h

A
ut

oc
or

re
la

ti
on

Estimated
ρ̂c N/A 0.101 0.212 0.320 0.425 0.521 0.632 0.729 0.823 0.920

Change
Points

Detected
0.002 0.002 0.014 0.027 0.147 0.522 2.052 5.291 8.106 9.150

# Correct 1000 1000 992 986 921 769 411 86 3 0

Pr
e-

W
hi

te
ne

d Change
Points

Detected
N/A 0.002 0.004 0.002 0.006 0.004 0.007 0.005 0.022 0.080

# Correct N/A 999 998 1000 997 999 997 998 990 955

While pre-whitening can be used to help eliminate false positive change points, it also
reduces the magnitude of the change between consecutive regimes, making it harder to
detect true change points [47]. Our next simulation generates datasets of length n = 200
with a trend whose value changes by a random amount at randomly generated change
points, according to the following process:

• The locations of the change points are selected as uniform random variables,
c1 ∼ Uni f (60, 70), c2 ∼ Uni f (95, 100), and c3 ∼ Uni f (150, 160), creating four
segments of varying length.

• The intercept for the model is selected β0 ∼ Uni f (−3, 3) and the trend for the first
segment is selected β1 ∼ N

(
0.2, 0.052), negated with probability 0.5.
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• To avoid overly obvious change point locations, the function is made piecewise con-
tinuous. The change in trend from the first to the second line segment is selected
N(0.75, 0.12), from the second to the third line segment N(0.6, 0.052), and from the
third to the fourth segment N(0.5, 0.0252). Each change in trend is negated with proba-
bility 0.5. Notice that by decreasing the potential magnitude of the change, successive
change points become more difficult to detect.

• An auto-regressive signal of level ρ = 0.1, 0.2, 0.3, . . . , 0.9 is generated using the R
function arima.sim() and added to each dataset.

Figure 1 shows three versions of a representative dataset generated by this process:
one with white noise, one with an autoregressive component using ρ = 0.8, and one after
pre-whitening. This process ensures that each simulated dataset has a different set of
change points and a different set of regression coefficients, making some of the change
points more or less difficult to detect. Note that the data generation process is similar to a
more extensive simulation study conducted by [44], which gives examples of the types of
data generated and compares the speed and accuracy of detecting change points for several
different change point models.

                      (a)                           (b)                           (c)

Figure 1. Detecting Change Points in the Presence of Autocorrelation. (a) A simulated dataset with
3 change points that contains only white noise. (b) Autocorrelation is added to (a) using ρ = 0.8.
(c) The data in (b) after pre-whitening. The inferred location of change points is indicated below
each figure, while their exact location is indicated by dotted vertical lines. Pre-whitening helps to
eliminate spurious change points, but the location of the true change points becomes more difficult to
correctly infer.

For each simulated dataset, we sample 500 sets of change points from the joint posterior
distribution. To determine whether or not the Bayesian change point algorithm is successful
in detecting change points after pre-whitening, define:

• Position Uncertainty: Amount of uncertainty allowed in the location of a detected
change point while still considering it “accurate.” For example, if the position un-
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certainty is 1, then we count the number of solutions sampled from the posterior
distribution that detected a change point within 1 point of its true location.

• Barrier Rate: A barrier rate of B% means that if B% of the 500 simulated sets of change
points contain a change point within the “position uncertainty” range, then we are
considered to have successfully detected this change point.

• Noise Level: Refers to the residual variance, σ2.

Two metrics will be used to measure the success of the algorithm:

• True Positive Rate: Proportion of the true change point locations that are detected.
• Perfection Rate: The proportion of datasets where the algorithm has successfully

detected all three change points.

It is important to note that when the noise is large relative to the signal, the algorithm
can be quite uncertain about the exact placement of a change point. As a result, if the
algorithm knows that a change point should exist, but is uncertain about its location, it may
appear to miss that change point when using relatively stringent detection criteria. In other
words, changing either the position uncertainty or the barrier rate can impact the number
of change points detected in a given simulation. However, since the goal of this simulation
is to observe how autocorrelation can impact inference, the relative change in the true
positive rate and the perfection rate is much more important than their absolute values.

For this simulation, m is chosen to be 20, k0 = (0.01, 0.01), v0 = 1, σ2
0 = 1, dmin = 5, and

kmax = 20. Our position uncertainty is set to 7 and the barrier rate is set to 75%, with a noise
level of 1. As before, we use the posterior distribution of the number of change points
for each dataset to determine the expected number of change points in each dataset and
then average this quantity across all 1000 simulations. Table 2 gives the average number
of detected change points for each value of ρ before and after pre-whitening, along with
values for the metrics described above, which help indicate the accuracy of detection.

Table 2. Autocorrelation in a Change Point Model with Linear Trend. A total of 1000 datasets
containing a linear trend with 3 change points were generated for each value of the autocorrelation
parameter, ρ. The average number of change points detected by the Bayesian change point model
before and after pre-whitening is indicated for each value of ρ in addition to the true positive and
perfection rate. Note that a value of ρ = 0 corresponds to white noise.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Estimated ρ̂c N/A 0.110 0.201 0.289 0.381 0.463 0.547 0.624 0.701 0.754

W
it

h
A

ut
oc

or
re

la
ti

on Number
Detected 2.997 2.999 3.002 3.013 3.053 3.141 3.291 3.701 4.273 5.090

True Positive
Rate 0.972 0.965 0.956 0.945 0.937 0.894 0.838 0.779 0.681 0.596

Perfection Rate 0.922 0.901 0.876 0.843 0.829 0.718 0.590 0.463 0.336 0.235

A
ft

er
Pr

e-
W

hi
te

ni
ng Number

Detected N/A 2.996 2.995 2.993 2.991 2.976 2.929 2.855 2.709 2.556

True Positive
Rate N/A 0.962 0.949 0.927 0.892 0.795 0.667 0.536 0.354 0.284

Perfection Rate N/A 0.897 0.856 0.799 0.725 0.520 0.341 0.187 0.076 0.044

Figure 1 helps to illustrate several patterns that emerged from the simulation. First,
change points are fairly easy to detect in the presence of white noise (Figure 1a). Since
the magnitude of the change in trend is less than the amount of noise in the system, the
Bayesian change point algorithm may have some uncertainty in the exact location of the
change point (visualized by the mound-shaped density function centered at the location of
each change point), but clearly identifies three regions where a change point exists. In this
case, missing a change point is generally the result of stringent detection criteria, which
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requires the posterior distribution to be highly concentrated around the true location of the
change point.

Second, values of ρ < 0.5 generally do not have a large impact on the inference made
by the Bayesian change point algorithm, as we maintain a relatively high true positive
rate and perfection rate. For values of ρ ≥ 0.5, the number of change points detected by
the algorithm increases (similar to the previous simulation study), but the true positive
rate and perfection rate decrease. This indicates the emergence of spurious change points
and/or greater uncertainty in the location of true change points, to the point where the
posterior probability falls below the barrier rate (Figure 1b). The region from data points
1 to 69 (the location of the first change point) is a great example of how autocorrelation
can create a pattern that looks like a change in the long-term trend [26,46,47]. Here, the
data should appear as a downward sloping function, but we instead see an upward trend
bracketed by regions of steep decline (Figure 1b). The upward feature in the middle of an
otherwise downward signal introduces a pair of spurious change points into the model.
Moreover, the pattern appears to be repeated just before the true location of the first change
point so that, visually, the upward component of the signal now appears to begin before it
actually should. Thus, while the Bayesian change point model will not receive credit for
detecting a “true positive”, it does appear to correctly identify the start of the upward trend
in this dataset. This is exactly what [47] meant when he said that inferring change points is
“complicated” in the presence of autocorrelation.

Finally, pre-whitening the data helps to eliminate the spurious change points, evi-
denced by the number of detected change points returning back down to the true value
of three (Figure 1c). However, it also degrades our ability to detect changes in the trend
due to the interdependence between the values of the autoregressive and slope parameters.
Specifically, we now have much greater uncertainty in the location of change points and the
potential for posterior distributions to be centered at the wrong spot (Figure 1c). As a result,
there is not enough posterior mass to cross the barrier rate, so our true positive rate and
perfection rate remain relatively low. A more lenient definition of “detection” (e.g., larger
position uncertainty or lower barrier rate) can help account for the greater uncertainty, but
would not be able to address the posterior distribution of a change point being centered at
the wrong spot due to the phenomenon noted at the beginning of the dataset in Figure 1b.

3.2. Hyperparameters for the Bayesian Change Point Model

Bayesian methods are, in general, subjective, and the model described in Section 2
is no exception. Subjectivity arises through the researcher’s choice of a prior distribution
for the model, and their ability to use these distributions to code in prior information or
beliefs about the parameters of interest. Our model assumes a conjugate prior distribution
for both the error variance, σ2, and the set of regression parameters, β, primarily so that the
calculation required for Step 1 of the algorithm has a closed form solution. Specifically, we
assume σ2 ∼ Scaled − Inverse χ2(v0, σ2

0
)

and β
∣∣ σ2 ∼ N

(
0, σ2

k0

)
.

One benefit of using conjugate prior distributions is that the parameters of these
distributions are easily interpretable as prior observations. Generally, we set the parameters
of our prior distribution to be as non-informative as possible. This allows the information
contained in the data to dominate the inference. In this vein, a sensible choice for the
Scaled − Inverse χ2 distribution might be v0 = 1 and σ2

0 = var(Y), which implies that we
have one prior observation of the residual variance whose value equals the variance of
the dataset. The hyperparameter, k0, relates the variance of the regression parameters
to the residual variance. Different values of k0 can be used for the slope and intercept
parameters of the model, so k0 can be thought of as a vector: k0 = (k1, k2). We want to
allow the regression parameters to be larger than the error variance, so k0 is generally
chosen as a decimal value between 0 and 1. It is especially important that k1 is a small
value, as the intercept for the model may differ significantly from zero. A reasonable choice
is k0 = (0.01, 0.01). This gives us four hyperparameters to choose. Unfortunately, the
inference made by the Bayesian change point model is sensitive to the choice of these
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hyperparameters, which is a common feature of Bayesian analysis. The “best” choice for
the values of k0, v0, and σ2

0 remains an open question.
Figure 2 gives examples of “good” and “bad” choices for the prior parameters using a

simulated dataset generated according to the process outlined in Section 3.1. Notice that
when a poor choice for the parameter values is made, the model can infer either too few or
too many change points, while a “good” set of parameters allows for a proper inference. It
is easy to see what makes a “good” and “bad” choice of parameters on a simulated dataset
where the locations of the change points are known, but much harder when the goal is to
infer the unknown location of change points on a real dataset. Fortunately, our study shows
that the “good” parameters also tend to produce the most probable solutions, so we can use
Bayesian Model Averaging (BMA) to marginalize out the choice of the hyperparameters
and arrive at the best overall solution [56].

Figure 2. “Good” and “Bad” Parameter Choices. A representative dataset using the data generation
process described in Section 3.1 is analyzed using different sets of values for the hyperparameters.
Dotted vertical lines indicate the actual location of the change points. The left panel uses a set of
parameters that produces a posterior distribution which infers too few change points while the right

panel uses a set of parameters that produces a posterior distribution that infers too many change
points. The middle panel correctly identifies the correct number of change points.

Define θ to be the parameters of interest and suppose that we have a set of possible
models under consideration, M1, . . . , Mm. BMA is defined as:

P(θ | Y) =
m

∑
i=1

P(θ|Y, Mi)P(Mi|Y)

In words, the posterior distribution of the parameters of interest is a weighted average
of the posterior distribution of the parameters for each model, weighted by the likelihood
of each model. This means that more probable models will have a stronger impact on the
posterior distribution of the parameters of interest.

In this scenario, each model is defined by the chosen values of the hyperparameters
k0 = (k1, k2), v0, and σ2

0 . Therefore, we can equate the term “model” with a set of hyperpa-
rameters. The parameters of interest, θ, are the number and locations of the change points,
along with the parameters of the regression model in each region of the data. Thus, our
sampling procedure (Step 3 of the Bayesian change point algorithm), along with the use of
conjugate prior distributions, makes the quantity P(θ|Y, Mi) easy to evaluate. Since each
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model is determined by its set of parameters, the term P(Mi|Y) tells us how good a specific
set of hyperparameters is and can be obtained through one final application of Bayes’ rule:

P(Mi|Y) = P(Y|Mi)P(Mi)

∑m
j=1 P

(
Y
∣∣Mj
)

P
(

Mj
)

Note that P(Y|Mi), the probability of the data given the model after marginalizing out
the parameters of the model and the location of the change points, is calculated as part of
Step 3 of the Bayesian change point algorithm. A priori, if we assume that all models (i.e.,
all sets of values for the hyperparameters) are equally likely, this expression reduces to:

P(Mi|Y) = P(Y|Mi)

∑m
j=1 P

(
Y
∣∣Mj
)

In the simulations that follow, we vary the values of k0 = (k1, k2), v0, and σ2
0 to

determine the posterior distribution of each model and then combine this information with
that model’s distribution of change point locations to obtain the “model averaged” solution.
The process is conceptually simple, but computationally intensive.

3.2.1. Changing the Values of k1 and k2

For this analysis, we generated a dataset according to the process outlined in Section 3.1
(Figure 3), assuming ρ = 0.25 and a noise level of 1. Values of v0 and σ2

0 are both fixed at 1
(i.e., one prior observation for the variance equal to 1). Here, we are interested in studying
values of k1 and k2 between 10−4 and 10−1, so we choose 16 equally spaced values for each
parameter on the log10 scale. Figure 3 displays how the log probability of the data changes
as we vary the values of k1 and k2 and the posterior distribution of change point locations
for three sets of values of k1 and k2 (labeled A, B, and C). As the value of k1 increases from
0.0001 to 0.1 (moving from point A to B to C), the log probability of the data decreases,
while changing the value of k2 from 0.001 to 0.1 (compare points A and B) does not have
a significant impact on the log probability of the data. For this particular dataset, a small
value of k1 is necessary because it allows the intercept of the model to be significantly larger
than the residual variance. Forcing the intercept to take on a small value also introduces a
number of spurious change points, as we limit the set of potential regression parameters in
each interval. Notice that points A and B have a relatively similar log probability, and show
only subtle differences in their distribution of change point locations, whereas point C has
a much lower log probability and a significantly different distribution of change points.

3.2.2. Changing the Values of v0 and σ2
0

We again generated a dataset according to the process outlined in Section 3.1 (Figure 4),
assuming ρ = 0.25 and a noise level of 1. For this analysis, values of k1 and k2 are fixed
at 0.001. Here, we study how values of v0 and σ2

0 affect the inference, so we choose
v0 = 1, 2, 4, 8, 16, and 32, and values of σ2

0 = 0.1, 0.5, 1, 2, 5, 10, 20, and 50. The calculation
required for Step 1 of the Bayesian change point algorithm calculates a quantity analogous
to a posterior sum or squares, which is the sum of the prior variability, v0σ2

0 , the variability
of the regression parameters, and the residual sum of squares. When a change point is
introduced into the model, this term appears twice (once for each region of the data), so a
larger value of the product v0σ2

0 creates a barrier against additional change points. As we
move from points A to B to C in Figure 4, this product increases, resulting in a posterior
distribution with fewer detected change points. The locations of the change points are not
altered, only our confidence in their existence. In addition, the value of v0 does not affect the
log probability of a model if we choose values of σ2

0 similar to the actual residual variance
(e.g., 0.5, 1, and 2), which is consistent with their interpretation as prior observations of the
residual variance. On the other hand, choosing larger values of v0 will quickly decrease the
log probability of the model if the chosen value of σ2

0 is inconsistent with the data. As a
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result, we always recommend choosing v0 = 1, so that our prior distribution on the error
variance has a minimal impact on the posterior inference.

Figure 3. How k1 and k2 Affect the Posterior Distribution. The top left displays a dataset generated
according to the process described in Section 3.1, along with the location of each change point,
indicated as a dotted vertical line. The log probability of the data, i.e., P(Mi|Y) , is shown on the
right for various combinations of v0 and σ2

0 . Three sets of hyperparameters, labeled A, B, and C, are
selected and their posterior distribution of the location of change points is shown in the bottom left,
along with the posterior distribution for the BMA solution, which weights each solution according to
its probability.

3.2.3. Applying BMA

Figures 3 and 4 show that the models of lower probability (i.e., those with a “bad”
choice of values for the hyperparameters) often do not have the correct number of change
points, inferring either too few or too many change points. Fortunately, BMA lets us keep
all the benefits of a Bayesian solution to the multiple change point problem, in particular
the uncertainty bounds on the number and locations of change points, while also helping
to prevent a “bad” choice of hyperparameters. Here, the models weighted most heavily are
those with the highest probability, which also tend to infer the correct number of change
points. Figures 3 and 4 show the BMA solution to each simulation, which looks most
similar to point A in each figure, the most probable of the three models shown for each
simulation. This nicely illustrates how BMA can help to eliminate the effects of a “bad”
choice of values for the hyperparameters.
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Figure 4. How v0 and σ2
0 Affect the Posterior Distribution. The top left displays a dataset generated

according to the process described in Section 3.1, along with the location of each change point,
indicated as a dotted vertical line. The log probability of the data, i.e., P(Mi|Y) , is shown on the
right for various combinations of v0 and σ2

0 . Three sets of hyperparameters, labeled A, B, and C, are
selected and their posterior distribution of the location of change points is shown in the bottom left,
along with the posterior distribution for the BMA solution, which weights each solution according to
its probability.

4. Applications to Climate Data

4.1. Pacific Decadal Oscillation a Change in Mean

Pacific Decadal Oscillation (PDO) was first identified in the late 1990s [57] and de-
scribes sea surface temperature anomalies over the northeastern Pacific Ocean. Similar to
El Niño/Southern Oscillation (ENSO), PDO oscillates between two states (positive and
negative) that are correlated with by widespread variations in the Pacific Basin and North
American climate [58]. The positive phase is characterized by cooler sea surface tempera-
tures north of Hawaii and warmer than normal sea surface temperatures along the western
coast of North America. The reverse is true in a negative phase. However, unlike ENSO,
PDO is an aggregation of several independent processes rather than just a single climate
phenomenon and the positive/negative phases can last for 20–30 years [59]. Researchers
also believe that PDO can intensify or diminish the impacts of ENSO depending on whether
or not they are in the same phase. If both ENSO and the PDO are in the same phase, then the
impacts of El Niño/La Nina may be magnified. Conversely, if they are out of phase, then
the effects may offset each other resulting in a milder ENSO event [60]. More information
about PDO can be found in [61].

The PDO dataset can be downloaded from the National Centers for Environmental
Information website (https://www.ncei.noaa.gov/access/monitoring/pdo/, accessed 15
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August 2022). Annual means from 1854 to 2021 were calculated from monthly values for
each year (Figure 5). This dataset has been previously analyzed for change points by other
researchers (e.g., [12,47,57,62]), so it represents an interesting application of the approach
described in this paper. Here, our goal is to fit a piecewise constant model to the PDO
where the change points represent transitions between the positive and negative phases
of PDO.

Figure 5. Change Points in PDO. The top panel shows the annual PDO values, while the bottom

panel shows a pre-whitened version of this dataset. The horizontal dotted line at 0 is for reference to
help identify positive and negative phases of the PDO. The Bayesian change point algorithm did not
detect any change points in this dataset.

The autocorrelation function (R function acf()) shows that the residuals in the PDO
are correlated, so we begin our analysis with the pre-whitening technique described in
Section 3.1 to help eliminate change points due to autocorrelation rather than a change in
the phase of the PDO. For our analysis, we set the value of m to be 8, since the positive and
negative PDO phases are expected to last 20–30 years (l was chosen as 25). Following the
procedure outlined in Section 3.1, we calculate p̂ = 0.155, and the bias-corrected estimate
of the first-order autocorrelation as p̂c = 0.53 (consistent with 0.46 in [47], who studied a
shorter time series), which is near the point at which false positive change points become a
regular part of the inference (Table 1). At this point, the autocorrelation function shows no
significant correlation in the residuals, so we can continue with change point analysis.

After pre-whitening, we set v0 = 1, and then allowed potential values of k1 and σ2
0 to

be the same as in Section 3.2. BMA was then used to accumulate these models to produce
a single inference on the number and location of change points in the PDO data. The
Bayesian change point algorithm does not detect any change points in the PDO. This result
is surprising considering all the discussion of positive (e.g., 1925 to 1947 and 1976 to 1999)
and negative phases (e.g., 1946 to 1976) of the PDO (see for example [57]), but consistent
with the results of [12], who also identified a constant mean plus AR(1) model as the best
fitting model for the PDO. This is not to say that positive and negative phases of the PDO
do not exist—just that their magnitude and/or duration are not substantial enough to
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warrant the placement of a change point by either the Bayesian change point model or
PELT [12].

Note that if we had instead analyzed the monthly rather than mean annual PDO values,
the autocorrelation is much higher (ρ = 0.855). An autocorrelation this high will induce
a large number of spurious change points if the model does not have an autoregressive
component (Table 1). After pre-whitening the monthly PDO data, the Bayesian change
point algorithm did not detect any change points (results not shown).

4.2. Global Surface Temperature Anomalies—A Change in Trend

The Earth’s temperature has risen by an average of 0.14◦ Fahrenheit (0.08◦ Celsius)
per decade since 1880, but the rate of warming has not been consistent over time. In fact,
the rate of warming since 1981 is 0.32 ◦F (0.18 ◦C), more than twice the long-term average.
This past year was the sixth-warmest on record (0.84 ◦C above the 20th century average),
and the years 2013–2021 are nine of the ten warmest years on record [63,64]. Since the rate
of warming fluctuates over time, a change point model with a linear trend seems most
appropriate to model global surface temperature data.

Although surface temperature data are collected at stations across the globe, absolute
temperature measurements can be difficult to take in certain geographic locations. Thus,
temperature anomalies, or the departure from a reference value, are used instead and
allow for a more effective and reliable comparison between different geographic locations.
A global surface temperature anomalies dataset attempts to combine this temperature
information into a measure of global surface temperatures. Several groups have created
global surface temperature anomalies datasets, all with slightly different assumptions. One
such time series is the HadCRUT5 dataset produced by the Met Office Hadley Centre [65],
which begins in 1850 and has a reference period of 1961–1990. The data can be downloaded
from https://www.metoffice.gov.uk/hadobs/hadcrut5/. Two others are MLOST, NOAA’s
Merged Land Ocean Global Surface Temperature Analysis Dataset (NOAA) [66], avail-
able at (https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/
anomalies, accessed 15 August 2022), which starts in 1880 and has a reference period of
1901–2000, and GISTEMP, NASA’s Goddard Institute for Space Studies Surface Tempera-
ture Analysis ([67], available at https://data.giss.nasa.gov/gistemp/, accessed 15 August
2022), which starts in 1880 and has a reference period of 1951–1980. The University Corpo-
ration for Atmospheric Research website (https://climatedataguide.ucar.edu/, accessed
15 August 2022) contains additional information on these and several related datasets.

As with the PDO data, the autocorrelation function was used to initially check for
correlated residuals and then to verify that the pre-whitening technique was effective. For
this analysis, we expect up to 4 change points across the 140-year record, so we set the value
of m to be 12. Following the procedure outlined in Section 3.1, we calculate p̂ = 0.154, and
the bias-corrected estimate of the first-order autocorrelation as p̂c = 0.336, which is small
enough so as to not have a major impact on the inference (Table 2). Nevertheless, we pre-
whitened the data to help eliminate any change points that may arise due to autocorrelation.
As with the PDO data, we set v0 = 1, and then allowed the values of k1 and k2 to vary as in
Section 3.2. Since the variance of the temperature anomaly datasets is so small (<0.1 after
pre-whitening), we chose potential values for σ2

0 = 0.05, 0.1, 0.5, 1, 2, 5, 10, and 20. BMA
was then used to accumulate these models to produce a single inference on the number
and location of change points in the three temperature anomaly datasets.

The Bayesian change point model with BMA detected only a single change point
in the MLOST and GISTEMP datasets, and two change points in the HadCRUT5 data
(Figure 6). This result is somewhat surprising and includes fewer change points than
previous analyses (e.g., [68]). However, the authors note that these datasets are continually
revised and updated. Repeating the analysis of [68] on the revised datasets using the same
parameter values now produces an inference with fewer change points, so in that sense,
the results are consistent with previous studies on the same dataset.
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Figure 6. Change Points in the Temperature Anomaly Data. The top row displays the HadCRUT5,
MLOST, and GISTEMP datasets, along with the model fitted by using BMA together with the Bayesian
change point model. The bottom row displays the BMA posterior distribution for the locations of
change points in each dataset. HadCRUT5 has two change points detected by the model, while
MLOST and GISTEMP have a bimodal distribution for a single change point.

5. Discussion

This paper addresses two open questions related to the Bayesian change point model
of [37], namely, how autocorrelation and the choice of values for the hyperparameters
can affect the inference. When a change point model is used to analyze real data, the
“true” number of change points is generally unknown. As a result, it is hard to know
whether a model is giving accurate and precise results. To see how our model performs in
difference scenarios, simulated data were generated which varied the number and location
of change points, the regression coefficients in each section of the data, the variance of
the residual error, and the magnitude of autocorrelation. Any change that reduces the
signal-to-noise ratio of the dataset (e.g., larger values of ρ or σ2, subtle changes in the
regression parameters, etc.) makes change points harder to detect, and thus has an impact
on the accuracy of the model. Specifically, a smaller signal-to-noise ratio manifests itself
in the posterior distribution as greater uncertainty in the location of a change point or a
complete lack of detection by the algorithm.

Autocorrelation is often present in real data, yet [37] assumes that the error terms are
independent, mean 0, normally distributed random variables. Simulations show that the
inference made by the Bayesian change point model is not strongly affected by low levels
of first-order autocorrelation (ρ < 0.5, see Tables 1 and A1)—the algorithm is still able to
detect the correct number of change points in the data. However, when the first-order
autocorrelation is larger, it can create a similar pattern to that of a change in the mean or
long-term trend (46–48), which can shift the inferred location of true change points (if the
autocorrelation makes the pattern appear to start earlier or later than it actually does) and
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introduce spurious change points. To counter the effect of serial correlation, we pre-whiten
the data using the Cochrane–Orcutt method with a bias-corrected estimate of the first-order
autocorrelation. Results show that pre-whitening the data eliminates the spurious change
points introduced by the autocorrelation. However, pre-whitening the data reduces the
magnitude of the shift between adjacent segments, making true change points harder to
detect. This is partially offset by a reduction in the variance, but not completely [47]. Both
of our applications (PDO and global surface temperature anomalies) exhibit only first-order
autocorrelation, so we did not study how the pre-whitening approach would fare on data
with higher-order autocorrelation.

As with any Bayesian analysis, the inference can be sensitive to the choice of the prior
distribution. In this case, we use conjugate priors for both the regression parameters and
the error variance, so the subjectivity comes in through the values of the hyperparameters
for these two distributions. As seen in Figures 3 and 4, changing the values of the hyperpa-
rameters generally affects the inferred number of change points, but not their location. In
other words, we can think of the changing values of the hyperparameters as creating more
or less stringent criteria for the algorithm to “detect” a change point. A “bad” choice of
values for the hyperparameters can produce an inference with too few or too many inferred
change points (Figure 2). To avoid this problem, we propose a BMA technique to weight
each model’s inference by the posterior probability of that model, so that “good” parameter
choices (as defined by the posterior probability of the model) carry more weight than “bad”
parameter choices. The result is an inference that takes into account multiple different
potential sets of hyperparameters.

BMA partially eliminates the problem of the model being sensitive to the values of
the hyperparameters. The problem is only partially eliminated because BMA is being
conducted using only a finite set of potential values for the hyperparameters rather than
considering all possible values. A Monte Carlo approach would fix this issue but at an
increased computational cost. Since models (defined by the set of values of the hyperpa-
rameters) of similar probability tend to produce a similar inference (see the similarity of
change point solutions for points A and B in Figure 3), and the model itself is not especially
sensitive to small changes in parameters values, we did not feel that this increased compu-
tational burden would significantly improve our BMA solutions. The interested researcher
could also try placing a non-uniform prior over the set of values for the hyperparameters if
they believe certain values to be more likely than others.

A major limitation of the Bayesian change point model discussed in this paper is its
run time, which can make BMA over a large parameter space prohibitive. Computational
complexity is a common challenge for Bayesian methods, so this limitation is not unique to
our model. However, we find inference produced by the Bayesian change point algorithm
to be reliable and believe that the reduced subjectivity afforded by BMA to be an important
step towards letting the data dictate which model is “best”. Future research should focus
on analyzing the impact that the range of parameter values has on the inference and on
further reducing the compute time so that this approach can be applied to longer and more
complex datasets.
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Appendix A. Correcting for Autocorrelation in the Presence of a Linear Trend Model

A second study was conducted to analyze how autocorrelation affects the Bayesian
change point algorithm’s ability to detect change points when none actually exist. Here,
we consider a linear model with no change points (Y = 4 + 0.05X + ε). An auto-regressive
signal of level ρ = 0.1, 0.2, 0.3, . . . , 0.9 is then generated using the R function arima.sim()
and added to each dataset (a total of 10,000 simulations for each of the two models). The
value of m is chosen to be 20, k0 = (0.01, 0.01), v0 = 1, σ2

0 = 1, dmin = 5, and kmax = 20. Since
the goal of this simulation is to see how autocorrelation affects the inference, optimizing
these parameters is not critical. The Bayesian change point model calculates the posterior
distribution of the number of change points for each dataset, which can be used to determine
the expected number of change points in the dataset. Table A1 gives the average number
of detected change points across the 1000 simulated datasets for each value of ρ before
and after pre-whitening, along with the number of datasets where the algorithm correctly
identified zero change points. As with Table 1, it is clear from these data that pre-whitening
can help to eliminate spurious change points that arise from autocorrelation.

Table A1. Autocorrelation in a Linear Trend Model. A total of 1000 datasets were generated for
each value of the autocorrelation parameter, ρ, for a model that includes a linear trend. The average
number of change points detected by the Bayesian change point model before and after pre-whitening
is indicated for each value of ρ, along with the number of datasets (out of 1000) where the algorithm
correctly identified zero change points (i.e., the number of datasets where the expected number of
change points <0.5). Note that a value of ρ = 0 corresponds to white noise.

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
at

a
w

it
h

A
ut

oc
or

re
la

ti
on

Estimated
ρ̂c N/A 0.039 0.139 0.229 0.321 0.419 0.501 0.591 0.666 0.732

Change
Points

Detected
<10−3 <10−3 <10−3 <10−3 0.003 0.013 0.087 0.472 1.861 3.577

# Correct 1000 1000 1000 1000 998 990 928 700 203 18

Pr
e-

W
hi

te
ne

d Change
Points

Detected
N/A <10−3 <10−3 <10−3 <10−3 <10−3 0.002 0.015 0.080 0.450

# Correct N/A 1000 1000 1000 1000 1000 998 989 940 693

For the linear trend model (Table A1), we estimate the value of the autoregressive
parameter on the residuals of the model after accounting for the linear trend. The fact
that we underestimate the value of the autocorrelation should not be surprising. Both [69]
and [70] discuss the difficulty of jointly estimating the trend and autoregressive parameters
of a model as they are highly interdependent. Note that if we estimated the value of ρ
based on the entire dataset rather than short subsegments of the data, then the estimated
value of ρ is much closer to the true value of ρ (results not shown). However, this approach
is problematic in the presence of the change points.
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