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Machine Learning Applied to Optical Communication Systems
Zhaopeng Xu and Jinlong Wei *

Pengcheng Laboratory, Shenzhen 518055, China; xuzhp@pcl.ac.cn
* Correspondence: weijl01@pcl.ac.cn

1. Introduction
As the global demand for high-speed and high-capacity communication continues

to surge, driven by cloud computing, artificial intelligence, 5G, virtual reality, and the
Internet of Things (IoT), optical communication systems have emerged as the backbone
of modern digital infrastructure [1–5]. However, the increasing complexity, performance
requirements, and operational scale of these systems have begun to exceed the capabilities
of traditional analytical and rule-based design methods. In this context, machine learning
(ML) has become a transformative tool, enabling data-driven solutions that can adapt to
dynamic conditions, extract hidden patterns, and optimize performance across the optical
communication stack.

In long-haul coherent optical systems, where signal integrity is challenged by fiber
non-linearities and polarization effects over hundreds of kilometers, ML techniques such as
neural networks (NNs) and generative models have been deployed for non-linear compen-
sation, channel equalization, and signal reconstruction [6–9]. For instance, deep learning
models trained on simulated or real-world data can outperform conventional Volterra
filters or digital backpropagation, offering both improved accuracy and flexibility [10–13].
In short-reach and direct-detection systems, including intensity-modulated direct-detection
(IM/DD) links widely used in data centers, ML is increasingly used to counteract com-
bined linear and non-linear impairments [14–17]. For example, NNs and support vector
machines (SVMs) have been shown to enhance equalization, improve bit error rate (BER)
performance, and adapt to non-idealities in low-cost hardware implementations, such as
directly modulated lasers (DMLs), vertical cavity surface emitting lasers (VCSELs), and
silicon photonic transceivers [18–21]. Passive optical networks (PONs) and optical access
systems demand high bandwidth at a low cost, with minimal latency and high reliability.
Here, ML is also employed for intelligent receiver implementation [22–25], enabling better
system resilience and performance optimization.

Visible light communication (VLC) and optical wireless communication (OWC) are
emerging as complementary technologies for indoor environments and last-meter ac-
cess [26–28]. ML has proven particularly effective in these domains, supporting signal
demodulation, distortion compensation, and positioning through image-based or channel-
aware learning techniques. End-to-end learning using autoencoders and convolutional
neural networks (CNNs) has shown strong potential to optimize the optical-to-electrical
(O/E) conversion and enhance signal robustness [29–32]. In more advanced and non-
traditional systems, such as chaos-based secure communication and photonic reservoir
computing, ML enables reliable chaos recovery, signal decoding, and multi-channel syn-
chronization [33–36]. These systems benefit from the adaptability and high dimensionality
of learning-based methods, which can capture complex temporal and spectral features
beyond the reach of conventional models. Finally, optical network management has also

Photonics 2025, 12, 458 https://doi.org/10.3390/photonics12050458
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embraced ML in the form of AI-enhanced network orchestration, software-defined con-
trol, and optical performance monitoring [37–40]. These applications support real-time
optimization, fault localization, and predictive maintenance, aligning with the goals of
intelligent and autonomous network operation [41–44].

By covering this rich spectrum of systems and applications, the papers in this Special
Issue collectively demonstrate the vast potential of ML in shaping the next generation
of optical communication networks. From physical-layer enhancements to system-level
intelligence, ML is not only a tool for performance improvement, but also an enabler of
fundamentally new architectures and functionalities.

2. An Overview of the Published Articles
This Special Issue, “Machine Learning Applied to Optical Communication Systems”,

brings together a diverse collection of research contributions that highlight the synergy
between ML and a wide range of optical communication technologies. This Special Issue
collects 14 diverse contributions, including three comprehensive review papers and 11 orig-
inal research articles that exemplify the growing synergy between machine learning and
optical communication systems. The selected works span various system types, including
long-haul coherent transmission, short-reach interconnects, PONs, OWC, and chaos-based
secure transmission systems. Each type of system poses distinct challenges ranging from
non-linear impairments and chromatic dispersion to noise accumulation and hardware
limitations, and ML offers promising techniques to address them. Below is a brief overview
of each contribution.

For the research articles, in contribution 1, He et al. propose a modified regular per-
turbation (MRP) model enhanced with trainable parameters to improve the accuracy of
fiber transmission modeling under dispersion and non-linearity. This hybrid physical–ML
model effectively reduces fitting error, even under high launch power and dual-polarization
transmission scenarios. In contribution 2, Freitas and Pires present an NN-based framework
for the rapid estimation of capacity and cost in large-scale multi-fiber optical networks. The
model achieves high accuracy with significant computational efficiency, serving as a practi-
cal tool for real-time network design and planning. In contribution 3, Vu et al. introduce
DeepChaos+, a deep learning-based framework for chaos signal removal in wavelength
division multiplexing (WDM) systems. Their model enhances detection performance
while reducing the BER by about three orders of magnitude, offering a robust solution
for chaos-based secure communications. In contribution 4, Srinivasan et al. propose a
novel ML-driven equalization method using gradient-based optimization for VCSEL-based
transceivers. The technique improves signal integrity in thermally unstable environments,
a key need for data center and automotive interconnects. In contribution 5, Liem et al.
present an ML-enhanced resilience mechanism for NG-EPONs to support ultra-reliable
tactile Internet applications. The system utilizes ML for fault detection and software-
defined networking (SDN) for proactive recovery, achieving excellent performance in
reliability metrics. In contribution 6, Ji et al. apply attention-based CNNs to mitigate
angle-induced distortion in camera-based visible light positioning systems. Their model
significantly reduces the number of positioning errors, paving the way for practical and
precise indoor navigation. In contribution 7, Osahon et al. demonstrate that a multilayer
perceptron-based decision feedback equalizer (DFE) significantly outperforms the tradi-
tional methods in OWC links, particularly under high non-linear distortions. This paves
the way for higher data rates in safe, short-range optical wireless links. In contribution
8, Luna-Rivera et al. address the often-neglected role of optical-to-electrical conversion
in VLC systems. Using autoencoder architectures, they improve robustness and system
performance, offering insights into practical VLC design for 5G and IoT networks. In
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contribution 9, Hung et al. propose a Mach–Zehnder interferometer (MZI)-based optical
NN to regenerate the intensity-modulated signals distorted by the bandwidth limitations
of Silicon micro-ring modulators. Their photonic NN matches digital NN performance,
underscoring the promise of optical ML hardware for high-speed systems. In contribu-
tion 10, Zhong et al. present a photonic reservoir computing system using quantum dot
spin-VCSELs for coherent optical chaos-based secure communication. They achieve robust
demodulation of complex modulated signals, validating the potential of optical chaos
and reservoir computing. In contribution 11, Guo et al. tackle interference from auxiliary
management channels in PON systems using Gaussian mixture model (GMM)-based prob-
abilistic shaping. The joint optimization at transmitter and receiver significantly reduces
the bit error rates, improving system robustness.

For the review articles, in contribution 12, Xu et al. review NN-based equalizers
for IM/DD systems, addressing their ability to mitigate non-linear impairments while
highlighting the challenge of computational complexity. The paper offers a comparative
analysis of network types and proposes strategies for reducing model size and power
consumption, paving the way for practical deployments. In contribution 13, Shao et al.
survey ML applications in short-reach systems, focusing on digital signal processing (DSP),
monitoring, and control. A key contribution is their taxonomy of time series models,
offering a structured view of recent advances. The review also discusses the limitations in
the current methods and suggests directions for more efficient and scalable ML integration.
In contribution 14, Wu et al. provide an overview of the ML techniques in self-coherent
systems, emphasizing improvements in signal recovery and phase tracking. The paper
discusses how ML enhances self-coherent detection performance while reducing hardware
complexity, and outlines future trends in low-cost, ML-assisted self-coherent designs.

3. Conclusions
In summary, this Special Issue highlights the growing synergy between ML and optical

communication systems, showcasing advancements across different optical communication
applications. The eleven original research articles and three review papers collectively
demonstrate how ML techniques can effectively tackle system impairments, optimize
performance, and enable intelligent network management. These contributions underline
the increasing role of ML as a core technology in optical systems, while also pointing
toward key future challenges such as complexity reduction and real-time adaptability. ML
is no longer a peripheral or auxiliary tool for optical communication; it is becoming a
fundamental enabler of the next generation of optical systems. We hope that this Special
Issue serves not only as a record of current advancements, but also as a roadmap for
future exploration.

Acknowledgments: We would like to sincerely thank all the authors, reviewers, and editorial staff
who contributed to the success of this Special Issue. We hope that this collection of works will
inspire further research, foster new interdisciplinary collaborations, and accelerate the intelligent
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Abstract: In fiber optic communication systems, the dispersion and nonlinear interaction of optical
signals are critical to modeling fiber optic communication, and the regular perturbation (RP) model
is a simplified modeling method composed of parallel branches, which has obvious advantages
in deep learning backpropagation. In this paper, we propose a simplified single-mode fiber signal
transmission model based on the RP model, which significantly improves the fitting accuracy of
the model for dispersion and nonlinear interactions at the same complexity by adding trainable
parameters to the standard RP model. We explain in the paper that this improvement is applicable
to dual-polarization systems and still effective under the conditions of large launch power, without
dispersion management, and containing amplified spontaneous emission (ASE) noise. The model
uses the standard split-step Fourier method (SSFM) to generate labels and updates parameters
through gradient descent method. When transmitting a dual-polarization signal with a launch power
of 13 dBm, the modified regular perturbation (MRP) model proposed in the paper can reduce the
fitting errors by more than 75% compared to the standard RP model after transmitting through a
120 km standard single-mode fiber.

Keywords: nonlinear Schrödinger equation; regular perturbation model; fiber nonlinearity; learnable
parameters; single-span dual-polarization systems

1. Introduction

As the most widely used optical signal carrier, accurate modeling of standard single-
mode fibers is an indispensable step in constructing optical communication systems. The
existing digital signal processing methods are already able to effectively compensate the
linear distortion of signals in fiber optic transmission, such as attenuation, dispersion,
and polarization mode dispersion [1]. Therefore, nonlinear effects will become the main
challenge for large launch power and long-distance fiber optic signal transmission. Due
to the popularity of deep learning and end-to-end optimization methods, the accuracy
of the fiber nonlinearity modeling will largely determine the effectiveness of transceiver
compensation for nonlinearity [2–6].

The most widely used method for fiber optic modeling is the standard split-step
Fourier method (SSFM) and its improved methods [7–9]. It obtains the numerical solution
of the optical field by solving the nonlinear Schrödinger equation (NLSE) in several steps,
and each step achieves an approximate analytical solution of the optical signal by consid-
ering only dispersion or nonlinearity in a series of alternating short length fibers. SSFM
can achieve high accuracy in situations of high complexity and is a commonly used fiber
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modeling method in commercial software. However, due to the fact that the SSFM is a
serial method, there are difficulties in backpropagation and risks of gradient vanishing
and exploding when combined with deep learning-based transceivers [10,11]. The Gaus-
sian noise (GN) method is a simplified method based on describing nonlinear noise in
the frequency domain [12–15]. It directly adds nonlinear noise to the transmission signal
by treating it as additive Gaussian noise, while ignoring that the fundamental source of
nonlinear noise is the interaction between signals. Compared to the SSFM, although its
computational complexity is obviously decreased, the GN model is not effective under
conditions of low dispersion accumulation and large launch power [16] and is difficult
to combine with advanced equalization algorithms [10]. The RP model is another com-
monly used simplified fiber modeling method [17], which obtains the first-order nonlinear
solution of the nonlinear Schrödinger equation [18] through series matching to simplify
the SSFM. Although it sacrifices some accuracy, the RP model is a parallel method that
can improve the accuracy of the model by increasing the number of branches, making
up for the difficulty of backpropagation in the SSFM and facilitating parameter updates
in deep learning. In the past 20 years, multiple derivative algorithms have emerged for
the RP method to model various waveforms, nonlinear interferences (such as SPM, IXPM,
IFWM, XPM, FWM), and ASE noise interactions [19–25]. In a recent study, learnable
filters were introduced and combined with machine learning to achieve high accuracy.
This approach takes into account the nonlinear interactions of adjacent symbols, but the
complexity increases rapidly as the number of symbols considered expand [26]. The RP
model has also been applied in end-to-end learning [27] and fiber longitudinal power
distribution estimation [28]. Meanwhile, due to the fact that perturbations are additive
effects relative to signals, they are easily transformed into modeling and equalization, as
well as combined with deep learning equalization methods [29–33]. In addition, the RP
model can flexibly introduce high-order solutions to tackling the problem of insufficient
accuracy of the first-order perturbation models for large-power signal input [34], but this
will significantly increase the complexity of the algorithm. In response to this phenomenon,
researchers have proposed various simplification schemes, among which [35,36] reduce
the number of triplets required for fitting by quantifying perturbation parameters, while
other studies [23,37] convert the multiplication operation of signals into signals rotation,
reducing the number of multiplication required in the algorithm. Recent studies have
shown that the RP model can flexibly allocate the proportion of pre-equalization and
post-equalization at the transmitter and the receiver [38] or be applied to super-channel
systems [39]. Additionally, analyzing the capacity of wavelength division multiplexing
(WDM) using the RP model is also an interesting topic [40].

This paper proposes a modified RP algorithm that provides higher accuracy, more
accurate signal-to-noise ratio, and a larger launch power range without increasing the
complexity of traditional RP models. The low-complexity MRP model proposed in this
paper sets trainable parameters for the step size and nonlinear coefficients of each branch
of the RP model. Waveform-wise data generated by standard SSFM is used as labels,
and supervised learning is used to optimize each trainable parameter. The trained MRP
model can achieve high-precision simulation of fiber dispersion and nonlinear interactions,
reducing the fitting errors by more than 75% compared to the standard RP model after
transmitting through a 120 km standard single-mode fiber. In addition, this paper analyzed
the complexity of the MRP model and walked through different complexity, fiber length,
and launch power conditions to verify the robustness of the model. The results show that
the model has high accuracy and a wide range of applicability. In this paper, we only
considered the scenario of the single-span fiber optic transmission, but we emphasize that
the basic structure of this model will not change under multi-span systems. We will discuss
and demonstrate the detail of the performance of this model under multi-span systems in
our future research.
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2. MRP Models and Algorithm Description
2.1. Principle of MRP Method

When the polarization state of a bipolarized signal changes rapidly enough due to the
birefringence phenomenon of the fiber, the transmission of the bipolarized optical signal in
the fiber can be represented by a generalized Manakov expression of the NLSE [41,42]:

∂Ex,y

∂z
= −α

2
Ex,y −

β2

2
j
∂2Ex,y

∂t2 +
β3

6
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9

γ(
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∣∣2 +
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where Ex,y is the optical field of x or y polarization signal, β2 and β3 are second-order and
third-order dispersion coefficients, respectively, α is the fiber loss, γ= 2πn2/λAe f f is the
nonlinear parameter, and z is the fiber length.

Here, we use normalization to represent the optical field in fibers, using:

E(z, t) = U(z, t)e
−
∫ z

0

α(z′)
2

dz′
(2)

Then, we assume that the attenuation of the fiber is a constant α, and the inline
amplifier after each span of fiber completely compensates for the fiber link loss, i.e.,
α(z) = α

(
z−Lsp

⌊
z/Lsp

⌋)
. Where Lsp is the single span length of the optical fiber, ⌊·⌋ is the

remainder operator. Therefore, substitute Equation (2) into Equation (1), we update the
representation of the Manakov formula.
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Assuming that the solution of the equation is a non-singular problem, i.e., small
perturbations do not alter the properties of the equation solution, consider the solution in
the conventional perturbation form [18,43]:

U(z, t) = U(0)(z, t) + γU(1)(z, t) + γ2U(2)(z, t) + o(γ2) (4)

In order to avoid high computational complexity, we do not consider nonlinear pertur-
bation terms above second order. Instead, we substitute the first two terms on the right side
of Equation (4) into Equation (3) and use series matching to derive the differential equations
corresponding to the zeroth-order solution and the first-order solution, respectively:
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Using Fourier transform to obtain the frequency domain of differential equations, and
then using inverse Fourier transform to give the time domain forms of the zeroth-order
solution and the first-order solution:
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Here, F and F−1 represent Fourier transform and inverse Fourier transform, re-
spectively. On this basis, we assume z = L, where L is the total length of the fiber, and
approximate the definite integral in (8) by step. We derive the first-order perturbation
solution of NLSE as follows:

MRPL
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Here, Nstep represents the total number of terms converted from integration to sum-
mation, which is also the total number of branches of the RP model, δi is the additional step
size considered for each summation term, δi,e f f is the effective length of the optical fiber,
and f (l) is the attenuation term of the optical fiber. Note that on the basis of the RP model,
we have added a learnable parameter kn (n = 0~Nstep). Additionally, we have adjusted the
step size, δi, to become a learnable real parameter, and we refer to this improved model as
the MRP model. For kn, when n = 0, it corresponds to the zeroth-order equation solution,
so k0 is a learnable parameter of complex value. k0 can control the power ratio between
the linear and nonlinear parts in the MRP model. When n = 1~Nstep, it corresponds to the
solution of the first-order equation, where kn is a learnable parameter of complex value
that can control the magnitude of the nonlinear amplitude and phase shift in each branch.
Figure 1 shows the mathematical model of a single-span fiber optic communication system
considered in our work.
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For general RP models, taking δi = L/Nstep, kn = 1 + 0j (n = 0~Nstep). Therefore, readers 
can understand our intention to enhance the RP branches by incorporating the learnable 
flexible step size, learnable linear parameters, and learnable nonlinear parameters in the 
RP branches to improve the accuracy of the integration approximation of ordinary RP 
models. This method maintains the same computational complexity when the step size 
remains consistent. Its specific structure is shown in Figure 2. 

Figure 1. Conceptual diagram of the single-span fiber communication system.

For general RP models, taking δi = L/ Nstep, kn = 1 + 0j (n = 0~Nstep). Therefore, readers
can understand our intention to enhance the RP branches by incorporating the learnable
flexible step size, learnable linear parameters, and learnable nonlinear parameters in the RP
branches to improve the accuracy of the integration approximation of ordinary RP models.
This method maintains the same computational complexity when the step size remains
consistent. Its specific structure is shown in Figure 2.
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Figure 2. Conceptual diagram of MRP model structure and training method.

2.2. Complexity Analysis of the MRP Model

The main analytical steps of the derivation of the complexity of the model are reported
in Appendix A. The total computational complexity of the MRP model is:

N(real)
× (S) = 4S log2 S + 4S + Nstep[8S log2 S + 20S]

N(real)
+ (S) = 6S log2 S + 2S + Nstep[12S log2 S + 13S]

(10)

Assume that the sequence processed by the model consists of two sampling points per
symbol, we can calculate the computational complexity of each symbol corresponding to
different branch numbers and sequence lengths, S, according to Equation (10), as shown in
Figure 3.
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Figure 3. Complexity of MRP models under different conditions: (a) Nstep and (b) FFT length.

It is evident that the complexity of the MRP model is directly proportional to both the
number of branches and the length of the input sequence. It is worth noting that FFT is the
main source of algorithm complexity. For sequences with a length of S = 4096, the number
of multiplication and addition used by radix-2 FFT accounts for 84% and 61% of the total
number of multiplication and addition in the MRP model, respectively. In addition, we
remind readers that using the calculation method of base radix-4 FFT can further reduce the
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complexity of the algorithm. Under the same sequence length, S, radix-4 FFT can reduce the
number of multiplications to 3/4 as opposed to radix-2 FFT. In addition, when calculating
both x-polarization and y-polarization simultaneously, the results of mode squared can be
reused to reduce computational complexity.

2.3. Optimization and Training Procedure

In this part, we will mainly explain the optimization methods for various parameters
of the MRP model. We use supervised learning to update the learnable parameters in the
model. Our model processes both x-pol and y-pol optical signal data, so the model can be
simply expressed as:

[
Ux(z, t), Uy(z, t)

]
= MRP

[
Ux(0, t), Uy(0, t)

]
(11)

We use a randomly uniformly distributed signal of length, S0, which is filtered by a
pulse shaping filter and is upsampled to two samples per symbol to generate the input
sequence (i.e., sampling length of S = 2×S0). The label uses the SSFM to generate sequences
of the same length. The SSFM can be represented by:

SSFMδ

[
Ux,y(0, t))

]
= Ux,y(δ, t)

= F−1
[

ej( β2
2 ω2+

β3
6 ω3) δ

2 F
[

ej 8
9 γδe f f ·[−α f ( δ

2 )]{|Ux,y(
δ
2 ,t)|2+|Uy,x(

δ
2 ,t)|2}U(0)

x,y (
δ
2 , t)

]]

SSFML
[
Ux,y(0, t))

]
= Ux,y(L, t) = SSFMδ

[
SSFMδ . . . . . .

[
SSFMδ

[
Ux,y(0, t))

]]]
︸ ︷︷ ︸

iterate ×L/δ

(12)

The meanings of each symbol here are the same as those of the MRP model, with
the subscripts δ and L is the distance of optical signal transmission. The U(0)

x,y here is an
operator rather than a simple function, which will not cause ambiguity when defining the
MRP model, but special clarification is needed here. After generating labels, due to the
obvious power increment of the RP model and its derivative models, we use a simple mean
normalization to align the power of the model’s outputs and the labels.

Yx,y(L, sT) =

∣∣Ux,y(L, sT)
∣∣

mean(
∣∣Ux,y(L, sT)

∣∣) , s = 1, 2, · · · , S (13)

Here, Y is the MRP output sequence or the SSFM label and T is the sampling period.
To minimize the error between the labels and the outputs of the MRP model, we

update the learnable parameters in the model using the batch gradient descent method.
The loss function is defined as the mean squared error (MSE) loss:

L = min
δ,k

1
2B

[
S

∑
s=1

∣∣Ŷx −Yx
∣∣2 +

∣∣Ŷy −Yy
∣∣2
]

(14)

Here, B represents the amount of the data input to the model to calculate the gradient
at a time, i.e., batch size. In addition, we choose the Adam algorithm for parameter updates
to minimize the loss function, and the specific learning rate and batch size will be explained
in the next section.

Due to the form of the loss function, we do not include ASE noise in either the
generated labels or the training inputs, as the addition of ASE noise can affect the model’s
convergence, especially at lower launch power levels. However, in the comparison of
results in the next section, we compared the accuracy of the model in both cases without
and with ASE noise.

For learnable parameters, δ, representing step size distribution, we made a slight
modification on the basis of the RP model and used the step size of the logarithmic
distribution to δ. The results in [44,45] indicate that using a logarithmic step equalization
model for channel estimation has better accuracy, as it increases the step calculation density
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for the majority of power in the fiber optic channel, that is, the proportion of large-power
components in the total computational complexity. This has a certain effect on improving
the accuracy of channel modeling from integral form to summation form. The formula for
the logarithmic step distribution is expressed as follows:

δn = − 1
µα ln

(
1−nκ

1−(n−1)κ

)
, n = 1, 2, · · · , Nstep

κ = (1− e−2αL)/Nstep
(15)

Based on the results of [45], we take the initial value µ = 0.4, but this is not a strict
constraint. Adjusting the initial value of µ slightly does not have a significant impact on the
final convergence value of the loss function. Moreover, in the next section of result analysis,
the RP model used for comparison also adopts this distribution.

3. Results and Discussion

In this chapter, we will provide a detailed explanation of various hyperparameter
settings related to the model and reveal the performance of the MRP model in various
aspects. We will introduce the RP model and the SSFM model as comparison objects, and
their mathematical expressions have been detailed in Equations (9) and (12), respectively.

3.1. Fiber and DSP Setup

We consider a standard single-mode fiber with a span of L = 120 km, transmitting a
dual-polarized 50-GBaud signal. The wavelength of lasers is 1552.6 nm. Table 1 shows the
fiber’s parameters, which will be applied to all models mentioned in this chapter, including
SSFM, RP and MRP models. We intentionally chose a larger group velocity coefficient,
β2, to demonstrate that even when the symbol length affected by nonlinear inter-symbol
interference is longer, the model’s performance remains strong. We also note that using
other reasonable dispersion values does not significantly impact the improvement in model
performance. For the signal output by the model, we process the waveform-wise signal
through a standard DSP process to remove linear distortion in the fiber optic, its specific
structure is shown in Figure 4.

Table 1. Fiber parameters.

Nonlinear Parameter γ 1.2 W−1·km−1

Fiber attenuation α 0.2 dB·km−1

Second-order dispersion β2 −27.77× 10−27 s2·m−1

Third-order dispersion β3 17.68× 10−41 s3·m−1
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We quantify the accuracy of the model by evaluating and comparing the symbol-
wise data solved by the MRP model and the SSFM. Normalized root mean square error
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(RMSE) and error vector magnitude (EVM) are used here to evaluate the model, and their
definitions are as follows:

RMSE =

√√√√√1
2



E
{∣∣Rx − R̂x

∣∣2
}

E
{
|Rx|2

} +
E
{∣∣Ry − R̂y

∣∣2
}

E
{∣∣Ry

∣∣2
}


 (16)

EVM =
1
2




√√√√√
E
{∣∣R̂x − Tx

∣∣2
}

E
{
|Tx|2

} +

√√√√√
E
{∣∣R̂y − Ty

∣∣2
}

E
{∣∣Ty

∣∣2
}


 (17)

where R are the symbol-wise data passed through DSP at the receiving end, and T are the
initial data sent by the transmitting end. Due to the model being a stationary process, the
expectation, E, are transformed into a sum of the points in the sequence.

3.2. Training Setup

The training setup details are provided in Table 2. The initial data we use is the
16-QAM signal generated from uniformly distributed random numbers following Gray
mapping, and the length of both the input sequences and the label sequences is S = 8192.
Before entering the model, the signal is upsampled and filtered by a shaping filter with a
roll-off factor of 0.01. Due to the small amounts of trainable parameters, we can train the
model even when the amount of training data is limited. We use 512 different sequences
to generate labels and participate in training, with 87.5% of the sequences as the training
set and 12.5% as the test set to train and save the best model. And we tested the trained
model using a sequence with a length of 32,768. We believe that 1500 epochs are sufficient
to generate the optimal model, and in actual testing, the model is often accurate enough at
500 epochs. It is worth noting that when the launch power is low, we use a smaller initial
learning rate, α0. As the launch power increases, α0 should also be appropriately increased.

Table 2. Training parameters.

Parameter Initialization kn = 1 + 0j
δi = RHS of Equation (15)

Loss function MSE
Optimizer Adam

Learning Rate αepoch = α0× 0.9⌊
epoch

20 ⌋

Epoch number 1500
Batch size 8

3.3. The Discussion of the MRP Model

Firstly, we will analyze the impact of different branches numbers, Nstep, on the accuracy
of the model, which guides us to further validate the required step size standards and also
determines the computational complexity of the model. We fixed a large launch power
P0 = 13 dBm and traversed the performance of different Nstep at a fiber length of L = 120 km,
as shown in Figure 5. We note that, unless otherwise stated, the pulse shaping filter uses a
root raised cosine (RRC) filter with the roll-off factor of 0.01.

As shown in Figure 5, it can be observed that there is a limit to the fitting accuracy for
both the RP model and the MRP model. Increasing the number of branches beyond this
limit will not further improve system performance. Nstep directly affects the structure and
the complexity of the model; therefore, we chose Nstep = 10, 20, and 30 as the branches of
the MRP model and the RP model for comparison.
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Figure 5. RMSE (a) and EVM (b) of the MRP and RP models under different branch numbers.

Figures 6 and 7 show the constellation and waveform differences between the MRP
model and the RP model compared to the SSFM. It can be clearly observed that compared
to the RP model, the constellation points and the EVM of the MRP model are significantly
closer to the SSFM, especially for the outer ring constellation points. From the perspective
of waveforms, the MRP model outperforms the RP model at almost each sampling point.
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Figure 6. Constellation diagrams comparison between SSFM and (a) MRP or (b) RP models.
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Figure 7. Comparison of waveforms and MSE between SSFM and RP or MRP models.

Figure 8 shows the relationship between RMSE and launch power for RP and MRP
with different numbers of branches. Here, a 60-step SSFM is used as the standard quantity
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for calculating RMSE. It is obvious that the fitting error between the MRP model and SSFM
is smaller in the large launch power range than standard RP. Taking the results at 14 dBm
as an example, the RMSE of the 30-step RP model is 11.82%, while the RMSE of the 30-step
MRP model is only 2.77%, reducing the error by more than 75%, and the computational
complexity of the two models is completely the same. As we have already gone through
the standard DSP process and the same normalization process before calculating RMSE,
the error here is almost entirely composed of nonlinear differences. If factors such as phase
rotation are considered, the performance gap between the RP model and the MRP model
will further increase. In practical systems, both the signal and amplifier are not ideal. Due
to the presence of ASE noise and arbitrary waveform generator AWG sampling noise,
the signal at the transmitting end is modeled as the sum of ideal signal and Gaussian
noise. Nonlinear effects will occur between the noise and signal, resulting in the Gordon–
Mollenauer Effect [46]. To verify the accuracy of the model’s estimation of non-ideal
signals, we set the initial signal-to-noise ratio of the signal to 37 dB, and we consider
an additive Gaussian noise of a constant power of 0.01 mW before entering the fiber to
simulate sampling noise and ASE noise separately. Note that we use multiple independent
Gaussian noise sources to ensure that the sum of the noise remains Gaussian distributed.
Figure 9 shows the accuracy of the model in estimating the received signals’ EVM without
and with ASE noise. When the launch power is large, the MRP model is significantly better
than the RP model. In addition, we found that both the RP model and MRP model tend to
underestimate the EVM of the signal, and the underestimation degree of the MRP model
is significantly lighter than that of the RP model. At a launch power of 13 dBm with ASE
noise, the EVM difference between the 20-step MRP and SSFM is only 0.13%, which is much
lower than the 2.51% corresponding to the 20-step RP model. Moreover, this difference will
further expand with the increase in fiber launch power.

It is worth noting that the joint analysis of Figures 8 and 9 shows that as the launch
power increases, the growth trend of the EVM of the RP model slows down significantly,
while the MRP model can continue to maintain its approximation with the SSFM, but the
RMSE of both increases exponentially. We speculate that this result may be due to two
reasons: firstly, when the launch power is too large, the nonlinear power also increases
significantly, and a limited number of branches can no longer effectively adapt to nonlinear
damage. Secondly, as the launch power increases, the proportion of high-order nonlinear
interactions in the signal also increases, and the existing model structures are not effectively
adapted to this part of nonlinearity. Therefore, increasing the number of branches, Nstep,
has a limited effect on improving RMSE performance. We hope to address this issue in our
future work by adding branches with high-order nonlinearity.
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Figure 9. EVM of the MRP and RP models (a) w/o and (b) w/ ASE noise under a different number
of branches, Nstep (initial SNR = 37 dB, AWGN power = 0.01 mW).

To further analyze the performance of the model, we compared the results under
different distances and waveform conditions, as shown in Figures 10 and 11. Here, we
use a 2 km/step SSFM model as the training label and the object for calculating RMSE
and EVM. Consistent with expectations, the fitting accuracy of RMSE and EVM of MRP
model is obviously better than that of RP model. As the distance increases, the errors
between the RP model and MRP model with SSFM tend to stabilize, that is because the fiber
attenuation makes the contribution of the fiber beyond 80 km to the signals’ nonlinearity
nearly negligible. For filters with different roll-off factor, the RMSE and EVM of the
MRP model are also significantly better than those of the RP model. Figure 12 shows the
number of steps and corresponding computational complexity required to achieve the
same accuracy for MRP and SSFM when the training label is generated by 600-step SSFM.
The results indicate that the MRP model with 20 branches performs as well as 200-step
SSFM. Since the trainable parameters introduced by the MRP model do not increase the
computational complexity of the RP model. This means that, when achieving the same
degree of nonlinear fitting, the number of real multiplications and real additions required
by the MRP model are only 10.23% and 10.35% of those required by SSFM, respectively.
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Figure 10. (a) RMSE and (b) EVM of the MRP and RP models under different fiber lengths (launch
power = 13 dBm, MRP branches number Nstep = 20).
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Figure 11. (a) RMSE and (b) EVM of the MRP and RP models under different roll-off factors (fiber
length = 120 km, launch power = 13 dBm, branches number Nstep = 20).
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Figure 12. Computational complexity and ∆EVM of the SSFM and MRP or RP models (fiber
length = 120 km, launch power = 13 dBm, sequence length S = 8192).

4. Conclusions

In this paper, we propose a modified RP model by adding trainable parameters to the
standard RP model branches, using the SSFM to generate labels, and optimizing parameters
through traditional backpropagation. While maintaining the same complexity as the RP
model, the accuracy of the MRP model is greatly improved. When the input signal is a
dual-polarization signal with a launch power of 13 dBm, the fitting error of the RP model is
reduced by more than 75% after transmission through a 120 km standard single-mode fiber.
We have also noted that under all launch power conditions in our paper, the accuracy of the
MRP model is significantly higher than that of the RP model. In general, the paper validates
the MRP model’s performance under different launch powers, numbers of branches, fiber
lengths, and pulse shaping filters, all of which show significant performance improvements.
Furthermore, we point out that, compared to SSFM, the MRP model significantly reduces
complexity while achieving the same degree of nonlinear fitting.
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Appendix A

Here, we analyze the complexity of this model, assuming that the signal sampling
length is S =2×Ssymbol and the number of branches in the MRP model is Nstep. For the linear

part of MRP, i.e., the zeroth-order solution term, U(0)
x,y , the model needs to perform one fast

Fourier transform (FFT) and one inverse fast Fourier transform (IFFT) on the sequence in
order to perform dispersion operations without nonlinearity. For the dispersion operations
of S-point radix-2 FFT and sequence length, S, the required complex multiplication and
complex addition quantities are as follows:

N(complex)
×, f f t (S) = S

2 · log2 S , N(complex)
+, f f t (S) = S· log2 S

N(complex)
×,D (S) = S

(A1)

where N(complex)
×, f f t (S) and N(complex)

+, f f t (S), respectively, represent the number of complex mul-

tiplications and complex additions required for a fast Fourier transform. N(complex)
×,D (S)

represents the complex multiplication required to add dispersion to the signal. Therefore,
the complexity of the zeroth-order solution for a sequence of length, S, is 2×N(complex)

×, f f t (S) +

N(complex)
×,D (S) complex multiplication and 2×N(complex)

+, f f t (S) complex addition. Due to the
operation rules of complex numbers, one complex multiplication is equal to four real multi-
plication and two real addition, and one complex addition is equal to two real addition.
Therefore, the computational complexity of the zeroth-order solution is as follows:

N(0,real)
× (S) = 4S·(log2 S + 1) , N(0,real)

+ (S) = 6S· log2 S + 2S (A2)

The number 0 or 1 in the subscript above the letter N(0,real)
×, f f t here represents the order

of the solution. For the first-order nonlinear solutions, each branch requires two FFT opera-
tions, two IFFT operations, two dispersion operations, and one nonlinear operation. The
complexity of single FFT and dispersion operations is the same as Equation (A1), while non-
linear operations include 2×S complex multiplication and one complex modulo squared
operation. The complex modulo squared operation of dual polarization is equivalent to
four real multiplication and three real addition operations. Therefore, for the first-order
part of an MRP model with Nstep branches, the computational complexity is as follows:

N(1,real)
× (S) = Nstep·





4·


4N(complex)

×, f f t (S)
︸ ︷︷ ︸

f f t & i f f t

+ 2N(complex)
×,D (S)

︸ ︷︷ ︸
dispersion

+ 2S︸ ︷︷ ︸
nonlinear


+ 4S︸ ︷︷ ︸

modulus





= Nstep·[8S logs S + 20S]

N(1,real)
+ (S) = Nstep·





2·


4N(complex)

×, f f t (S)
︸ ︷︷ ︸

f f t & i f f t

+ 2N(complex)
×,D (S)

︸ ︷︷ ︸
dispersion

+ 2S︸ ︷︷ ︸
nonlinear




+2·


4N(complex)

+, f f t (S)
︸ ︷︷ ︸

f f t & i f f t


+ 3S︸ ︷︷ ︸

modulus

+ 2S︸ ︷︷ ︸
branch





= Nstep[12S log2 S + 13S]

(A3)
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where the last term 2S of N(1,real)
+ in Equation (A3) represents the addition operation

between the branches of the MRP model. In addition, the reason why there are only two
complex multiplication operations for nonlinear operations is that the nonlinear coefficients
can be calculated before signal transmission to directly multiply the signal and its modulus
square. Therefore, the total computational complexity of the MRP model is show as
Equation (13).
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Abstract: A possible solution to address the enormous increase in traffic demands faced by network
operators is to rely on multi-fiber optical backbone networks. These networks use multiple optical
fibers between adjacent nodes, and, when properly designed, they are capable of handling petabits of
data per second (Pbit/s). In this paper, an artificial neural network (ANN) model is investigated to
estimate both the capacity and cost of a multi-fiber optical network. Furthermore, a fiber assignment
algorithm is also proposed to complement the network design, enabling the generation of datasets
for training and testing of the developed ANN model. The model consists of three layers, including
one hidden layer with 50 hidden units. The results show that for a large network, such as one with
100 nodes, the model can estimate performance metrics with an average relative error of less than
0.4% for capacity and 4% for cost, while achieving a computation time nearly 800 times faster than
the heuristic approach used in network simulation. Additionally, the network capacity is around
5 Pbit/s.

Keywords: multi-fiber optical networks; artificial neural networks; machine learning; network
capacity and cost; fiber assignment

1. Introduction

In recent years, data traffic has increased significantly, a trend expected to continue due
to the growth of applications and services that require high bandwidth and generate large
amounts of data. Examples include video streaming services, cloud computing, machine-
to-machine applications, online gaming, and the adoption of emerging technologies like
5G and beyond and advanced artificial intelligence applications [1]. This evolving scenario
places special requirements on the backbones of network operators, which could experience
traffic flows between their nodes reaching tens of Tb/s in the medium term, and even up
to hundreds of Tb/s in the long term [1]. This situation presents a significant challenge for
the design of future optical networks, particularly their backbone segments.

Optical networks are communication infrastructures, owned by telecommunication
operators (telcos) or internet companies (e.g., Google, Microsoft, Meta), that utilize light
for transmission, processing, and routing information and rely on optical fibers as their
transmission medium. A fundamental technology in the field of optical networking is
Wavelength Division Multiplexing (WDM). WDM allows the simultaneous transmission
of multiple optical signals (also designated as optical channels) on the same optical fiber,
with each channel using a different wavelength. The number of optical channels that can
be transmitted over an optical fiber is limited to about 100 when using the traditional
C-band, restricting the maximum WDM transmission capacity to well below 100 Tb/s for
significant distances [2]. To greatly increase the number of optical channels to cope with
the enormous growth in bandwidth demand, one can rely on space division multiplexing
(SDM) techniques. This approach can be implemented using a multi-fiber (MF) solution,
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i.e., multiple standard single-mode fiber pairs per link instead of just one, as it is typical,
or, alternatively, advanced fibers such as multicore fibers or few-mode fibers, with both
solutions still operating in the C-band [2]. By relying on these solutions, it is feasible to
design petabit-class optical networks, which are networks capable of handling data at
speeds reaching or exceeding one petabit per second (Pb/s) [3].

For designing MF networks, it is crucial to define, in addition to the traditional routing
and wavelength assignment solutions, a strategy for allocating fibers to the network,
specifically, a fiber assignment strategy. In [4], two approaches were proposed to optimize
network capacity by adding extra fibers. In the first approach, fibers were added to links
supporting the maximum number of traffic demands, while in the second, fibers were
added to links exhibiting the highest number of adjacent demands. Furthermore, in [5], the
idea is to add extra fibers to links that are responsible for blocking traffic demands due to
spectrum exhaustion, with the goal of minimizing the number of fibers added.

Network capacity is a key performance metric in optical networks. This capacity
can be defined as the maximum amount of data that the entire network can handle per
unit of time, and it is closely related to the concept of channel capacity introduced by
Claude Shannon in 1948 [6]. The estimation of network capacity is a challenging task
because it depends not only on physical layer aspects related to optical fibers and other
optical devices but also on networking aspects such as physical and logical topology,
routing, as well as wavelength and modulation assignment. Consequently, it suffers
from the hurdle of long computation times, especially when dealing with large-scale
networks. Although the problem of predicting optical network capacity has been the
focus of many studies, (see [7–10]), to the best of the authors’ knowledge, none of the
published research has relied on machine learning (ML) techniques for this purpose, despite
these techniques being widely used in the context of optical networks to address other
problems [11–13]. The closest study is reported in [14], where a routing and wavelength
assignment (RWA) problem is treated using ML techniques by transforming it into a multi-
classification problem, which is then solved using logistic regression and deep neural
network techniques. However, the network capacity estimation problem, although also
involving RWA calculations, is more general than this. Furthermore, the complexity of the
problem for MF networks is even higher due to the necessity of using fiber assignment
techniques.

In this paper, we investigate the utilization of an ML solution, specifically an artificial
neural network (ANN) model [12], to estimate both the capacity and cost metrics of an
MF-based optical network capable of handling Pb/s of data, with the cost being defined as
the total length of optical fiber required in the network. The goal is to determine whether it
is possible to significantly speed up the computations of these two metrics in comparison
with heuristic methods, while still achieving accurate results.

To generate the large sets of synthetic data needed to train and test the model, we
used a tool previously developed by the authors [10]. This tool not only generates random
network topologies that aim to mimic real optical backbone networks but also performs
routing and fiber assignment operations on these networks using heuristics developed
specifically for this purpose, including the fiber assignment algorithm that is described in
this work, which is a crucial component of our methodology.

The rest of the paper is organized as follows: Section 2 reviews important aspects
of network modeling and random network generation and explains how both network
capacity and cost can be computed. It also describes the fiber assignment algorithm
proposed here for allocating fibers in MF networks. Section 3 details the ANN model
introduced in this work. Section 4 presents some simulation results and, finally, Section 5
summarizes and concludes the paper.
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2. Network Aspects and Dataset Generation
2.1. Network Modeling

In an abstract way, an optical network can be described as an undirected weighted
graph G(V, E), with V = {v1, . . . , vN } denoting a set of nodes and E = {e1, . . . , eK }
denoting a set of links, where N = |V| is the number of nodes and K = |E| is the number
of links. In transparent optical networks, all node functionalities take place in the opti-
cal domain, and the nodes are built using reconfigurable optical add–drop multiplexers
(ROADMs), which are responsible for switching optical channels between different fibers,
among other functions. Interconnection between these elements and client equipment is
achieved using transponders, which are devices responsible for mapping client signals
into optical channels. Meanwhile, an optical link represents a physical interconnection be-
tween two nodes, implemented using a pair of optical fibers, along with optical amplifiers
spaced appropriately to compensate for fiber losses. Note that in the case of MF networks,
multiple pairs of fibers are used instead. Furthermore, each optical fiber supports WDM
signals, meaning it carries a specific number of optical channels. Each link

(
vi, vj

)
∈ E is

characterized by three attributes: li,j, the link length in kilometers between the nodes vi
and vj; n fi,j, the number of optical fiber pairs in the link; and ui,j, the link capacity mea-
sured in terms of the number of optical channels denoted as Nch. In this work, we assume
that fiber transmission takes place in the extended C-band, which has a bandwidth of
4800 GHz, enabling the support of Nch,max = 75 channels, with a channel spacing of
64 GHz corresponding to a baud rate of 64 Gbaud.

In addition to N and K, other important parameters of the graph G are the node
degree δ(G), the network diameter d(G), and the algebraic connectivity a(G). δ(G) defines
the number of links connected to a given node, d(G) is the length of the longest shortest
path between any two nodes, and a(G) is the second smallest eigenvalue of the graph’s
Laplacian matrix [15].

In the context of ANNs, it is necessary to have very large datasets for training and
testing purposes. To achieve this, it is useful to be able to generate numerous network
topologies, which can be performed through random graphs designed to adequately
describe the characteristics of real-world optical networks. In [10], we described a tool that
we developed to generate random networks appropriate for describing optical backbone
networks. The tool is based on a modified Waxman model and can generate networks that
are resilient to single-link failures. In a simplified way, this model works by dividing a
two-dimensional (2D) square plane with area A = L2 (L is the side length of the plane) into
a set of regions. In these regions, N nodes are randomly placed, and then the nodes are
interconnected with links according to the Waxman probability, which is characterized by
the α and β parameters, both in the range [0, 1].

2.2. Routing, Fiber Assignment, Capacity, and Cost

Network capacity refers to the maximum amount of data that the network can theoret-
ically handle per unit of time, typically measured in bits per second (bit/s). This metric
depends on many network parameters, including the physical topology defined by the
graph G(V, E) and the logical topology, which describes the way how the information
flows between all the network nodes. The logical topology is defined by the traffic matrix
T = [ts,d], where each entry ts,d represents a traffic demand, or in other terms, the volume
of traffic flowing from a source node s to a destination node d, with s, d ∈ V. For each traffic
demand ts,d, it is necessary to find a path in the graph G(V, E), between node s and node
d. This is the role of the routing process. The routing process can be implemented using
rigorous mathematical techniques, such as integer linear programing (ILP), or heuristics, as
an alternative [16]. As ILPs become computationally infeasible for large-scale networks,
we have to rely on heuristics in this work, as the analysis of such networks is paramount.

When the number of channels Nch per fiber is limited, as in this work, the routing
process is known as constrained routing and can lead to traffic demand blocking whenever
no channels (wavelengths) are available on one or more links of the path. To overcome such
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a limitation, one can add more pairs of optical fibers per link as needed, as it is the case for
MF networks. This leads to a new process referred to as unconstrained routing plus fiber
assignment. This process can be implemented using the heuristics proposed in [10]. In a
simplified way, the heuristic method first computes the shortest paths between each pair of
nodes in G(V, E) using the Dijkstra algorithm, with distance as the metric. Traffic demands
between node pairs are then prioritized according to a specific sorting strategy and routed
along their designated paths. Each path is assigned a wavelength using a first-fit strategy,
thereby forming an optical channel. Finally, an optical fiber is allocated to each channel
using Algorithm 1, which is described below.

To generate the datasets required to train and test the ANN, we have applied the
referred heuristics to the randomly generated networks using the modified Waxman model
assuming a uniform traffic demand between all the network node pairs, which can be
defined as

ts,d =

{
1 s ̸= d
0 s = d

. (1)

Taking into account the traffic matrix T = [ts,d] of size N × N, and assuming that
ui,j = ∞, we can apply unconstrained routing to each network graph G(V, E) to compute
the list of established paths P = [πs,d], with the path πs,d having the length l(πs,d) = ∑i,j li,j.
Additionally, we compute the link wavelength matrix, W =

[
wi,j
]
, which is also a N × N

matrix, where wi,j is the list of all the wavelengths λk present in the link (i, j), i.e. ,wi,j = [λk].
As referred to before, fiber assignment is a central process in MF networks. To imple-
ment this process, we propose Algorithm 1, which allows us to obtain the fiber matrix
NF =

[
n fi,j

]
, representing the number of fibers per link, taking into account that the

maximum number of wavelengths per link is Nλ,max = Nch,max.

Algorithm 1: Fiber Assignment

Input: graph G(V, E), wavelength matrix W =
[
wi,j
]
, number of wavelengths Nλ,max.

Output: fiber matrix NF =
[
n fi,j

]
.

1: Initialize NF, with n fi,j = 0, ∀(i, j) ∈ E.
2: for each pair of nodes (i, j) in W do
3: if G has an edge (i, j) then
4: if there are no wavelengths used in (i, j), i.e., wi,j = 0 then
5: n fi,j ← 1 : At least one fiber is required
6: else

7:

normalized wavelengths ← wi,j mapped into the range 1 to Nλ,max
num_fibres←maximum number of wavelengths repetitions in normalized
wavelengths
n fi,j ← num_fibres

8: end if
9: else
10: n fi,j ← 0 : Case there is no edge (i,j)
11: end if
12: end for
13: return NF

Note that with the unconstrained routing, the number of wavelengths in each link
is not limited, so the value assigned to a given λk can be any natural number, in contrast
to constraint routing, where it is bounded by Nλ,max. In the algorithm, to determine the
number of fibers needed in each link, the maximum number of “repeated wavelengths” in
that link must be determined. A wavelength is considered a “repeated wavelength” when
its value modulo Nλ,max (where the modulo operation returns the remainder after division)
is equal to that of another wavelength also present in that link. For instance, if Nλ,max is
75, then wavelengths 1 and 76 are “repeated” because 76 modulo 75 equals 1. This implies
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that both wavelengths would occupy the same channel in a link, hence they are “repeated”.
This concept is crucial in determining the number of fibers needed for a link, ensuring that
each “repeated” wavelength has its own fiber. Finding the maximum count of “repeated
wavelengths” will ensure that there are enough fibers to accommodate all the wavelengths,
thus assuring that there are no channels with the same wavelength on the same fiber.

By knowing the length of the path πs,d, l(πs,d), it is possible to compute its maximum
capacity value, C(πs,d), also denoted as the Shannon capacity, measured in bits per second.
This calculation uses the optical reach values of the path (see Table 2 of [10]), where optical
reach is defined as the maximum length of the path for which a certain value of the capacity
can be achieved assuming a baud rate of 64 Gbaud. Furthermore, after obtaining the
capacity of all the established paths, one arrives at the network capacity, which is given by

Cnet = ∑
s,d

C(πs,d). (2)

Another important metric is the network’s cost. The overall cost of an optical net-
work is the sum of the costs of all nodes and links, with node costs primarily driven by
transponders and link costs by optical amplifiers. It is reasonable to assume that, in optical
backbone networks, link costs are the dominant contributors to the network costs. As
a result, these costs are predominantly determined by fiber length, since this parameter
defines the number of optical amplifiers required [17]. In this case, the network cost is
given by

Λnet = ∑
i,j

li,j × n fi,j. (3)

3. Neural Network Design

An artificial neural network is a network of units, also called neurons, which are
organized in multiple layers, including an input layer, a variable number of hidden layers,
and an output layer. These layers operate in a fully connected way, meaning that each
neuron of a given layer is connected to all the neurons of the next layer. Each neuron has a
variable weight per input, denoted as ωm,i, with m defining the neuron position in a layer
and i its input, which are summed together along with a bias term bm. The result of this
operation is then passed through an activation function to obtain the output of that neuron.
The activation function used in this study for the hidden layers is the ReLU (Rectified
Linear Unit) function, which is given by

g(x) = max(0, x) (4)

while for the output layer we have the linear activation function, that is,

g(x) = x. (5)

Note that both activation functions are commonly used in regression problems, such
as the one we are considering here [18].

The training of neural networks consists of determining the values for all Ω = [ωm,i]
matrices and bias vectors B = [bm] that minimize a given loss function with a given iterative
method (optimizer algorithm). For the training process, it is necessary to randomly generate
a large number of datasets using the procedures described previously. Each dataset includes
an array of inputs X = [x1, x2 . . . xn], called features, and an array of outputs Y = [y1, y2],
obtained by network simulation, called labels. The features include the number of nodes,
the number of links, the network diameter, the algebraic connectivity, and quantities such
as the maximum, minimum, average, and variance of both link length and node degree.
Furthermore, the labels include the network capacity y1 = Cnet, given by (2), and the
network cost y2 = Λnet, given by (3).

In the training process, each dataset is split into a training set (the data used to
determine the model’s parameters), a validation set (used to make an unbiased evaluation
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of the model’s performance during training), and a test set (used to assess the model’s
performance after the training is complete). Before the data are split into these three sets,
they need to be pre-processed and shuffled. Data pre-processing consists of preparing the
data to make them more suitable for the training process.

The loss function is used to measure the difference between the value predicted by the
ANN and the actual value obtained by simulation. In other words, it measures the error
associated with the model’s predictions. For regression problems, the mean squared error
(MSE) is commonly used as the loss function [18]. MSE can be expressed as follows:

MSE =
1
M ∑M

i=1(ŷi − yi)
2 (6)

where M is the number of data values being considered, ŷi are the estimated values, and yi
are the actual values.

The optimizer algorithm is the method that determines how the weight matrices and
bias vectors are updated during the training process. Common optimizers include the
Stochastic Gradient Descent (SGD) and the Adaptive Momentum Estimation (Adam), with
the former being used in this work. The updating of the network parameters requires the
computation of the gradient of the loss function, a task performed by the backpropagation
algorithm [19]. An important parameter related to the optimizer is the learning rate. This
parameter determines the magnitude of the updates applied to the weights and biases
during each iteration. Another important parameter is the batch size, which refers to the
size of subsets into which the training data are divided. The dropout regularization can
also be used to prevent overfitting, which occurs when a model learns the training data too
closely but fails to make accurate predictions on the testing data.

A key aspect of training an ANN is optimizing the hyperparameters. Hyperparame-
ters are the variables that configure how the model learns from the data. This includes the
number of hidden layers, the number of units in each hidden layer, the learning rate, the
batch size, and dropout regularization. During training, various hyperparameter combi-
nations are tested to achieve the best performance on the validation set. This operation is
called hyperparameter tuning.

In this work, the tuning operation is performed using the R2 score metric, which is
defined as

R2 = 1− ∑M
i=0(yi − ŷi)

2

∑M
i=0(yi − yi)

2 (7)

where yi is the actual value, ŷi is the predicted value, y is the mean of the actual values, and
M is the number of data values being considered. The R2 score will take values between 0
and 1, where a value of 1 indicates that the model fits the data perfectly and 0 that it does
not fit the data at all. That means that the closer the values are to 1, the better the model is
performing [20].

From the hyperparameter tuning process, the ANN’s structure was defined (see
Figure 1). The model that achieved the best performance on the validation set has one
hidden layer with 50 hidden units (m = 50), considering the number of features equal to
12 (n = 12). The learning rate was optimized to 0.1, the batch size was set to 64, and no
dropout regularization was needed.

This model structure and learning rate resulted in relatively high R2 scores: 0.9994 for
y1 and 0.9962 for y2. Additionally, it has a relatively low number of trained parameters (the
total number of weights and biases), with 752 parameters, which represents a good balance
between model complexity and performance. To build and optimize the ANN model, we
used the PyTorch 2.2 framework [21].
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Figure 1. Model of the ANN network with 1 hidden layer.

4. Simulation Results and Discussion

To train the ANN model, a set of 8480 networks was used. These networks were
generated with the tool described in [10] considering a 2D square plane with side lengths
varying from 1000 km to 5000 km in increments of 1000 km, the number of regions in the
plane set to 4, the number of nodes varying from 5 to 100, the number of links varying from
5 to 231, and an average node degree varying from 2 to around 5. The Waxman parameters
chosen were α = β = 0.4. Furthermore, the maximum number of channels per links was set
to Nch,max = 75.

Once the model is trained, the final step is to evaluate its performance through testing.
For this purpose, a dataset of 1440 random networks was generated under the same
conditions as those used to train the model. The network simulation took around 1 h
and 16 min for the entire dataset, while the prediction time for the ANN model was just
11 milliseconds.

The mean relative errors for this test dataset, as defined by (8), are as follows: 2.47% for
the network capacity (y1) and 5.29% for the total fiber cost (network cost) (y2) predictions.
Figure 2 shows the scatter plot of the relative errors against the number of nodes for both
outputs. Each blue dot represents the relative error (RE) for each individual network in the
set, given by

RE =
yi − ŷi

yi
(8)

with yi being the value determined from the simulation solution and ŷi the prediction made
with the ANN model.
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It was also shown that for the total network capacity (Figure 2a), 89.45% of the
examples have a relative error below 5%, and 96.67% of the examples have a relative error
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below 10%. In the case of the total fiber cost (Figure 2b), 87.02% of the examples have a
relative error below 10%, and 94.24% of the examples have a relative error below 15%. It
can be seen that the model tends to perform better on networks with a higher number of
nodes, while its performance is more irregular on networks with fewer nodes. A possible
explanation for this behavior is that smaller networks might exhibit more variability in
their features as well as in the relationships between features and labels, which makes it
more challenging for the model to learn stable patterns that are crucial for making accurate
predictions. This irregular performance of smaller-scale networks is particularly evident
for the label “network cost” when the number of nodes is 10 or fewer. On the other hand,
larger networks could be more homogeneous, exhibiting more uniform and consistent
patterns that the model can learn and predict more effectively.

In order to analyze how the ANN model behaves with testing datasets that have a
number of nodes outside the training range, we generated 3920 additional networks under
the same conditions as the previous sets, but with the number of nodes ranging from 5
to 200. Generating this set took 55 h and 31 min, while the ANN model predicted the
corresponding set in only 79 milliseconds. Figure 3 shows a scatter plot comparing the
relative errors as a function of the number of nodes for this set of networks. The plots in
Figure 3 show that the results are identical to those of Figure 2 when the number of nodes
ranges from 5 to 100. However, outside this range, the model’s performance becomes
unreliable, although it still performs quite well for up to about 115 nodes. The cause of
this irregular behavior differs from that observed in small-scale networks and is due to the
model being trained on a specific data range (number of nodes ranging from 5 to 100), and
extrapolating beyond this range can lead to less reliable predictions.
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The capability of a model to perform well in the presence of unseen data, which it
was not trained on, is known as Out-of-Distribution (OOD) generalization [22]. This is
a challenge that conventional supervised learning methods (such as ANNs) often find
difficult to handle effectively as these types of models fundamentally assume that the
training and test datasets originate from the same distribution. Note that addressing the
OOD generalization problem is an active area of research in the field of ML [22].

Table 1 compares the results predicted by the ANN model for the total network
capacity (ŷ1) and total fiber cost (ŷ2) with the corresponding results obtained by applying a
heuristic approach to different random networks, using the tool described in [10], as well
as Algorithm 1 for the fiber assignment task. These results show that the ANN models
tend to have a good performance in the generated networks within this range of nodes,
with the relative errors generally being low. Furthermore, the prediction times with the
ANN are always significantly faster than the computation times obtained with the network
simulation tool. For example, for a network with 100 nodes, the prediction time is about
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17.1 milliseconds, whereas the computation time is about 13.5 s. This means that the ANN
model is roughly 800 times faster than the heuristic approach, while achieving low relative
errors of about 0.4% for network capacity and about 4% for network cost.

Table 1. Accuracy of ANN prediction: y1: capacity; y2: cost.

N y1 [Tb/s] ŷ1 [Tb/s] RE (%) y2 [103

km]
ŷ2 [103

km]
RE (%)

10 48.0 45.4 5.44 24.47 24.08 1.59
20 303.2 317.9 4.86 14.71 14.00 4.85
30 708.0 705.2 0.39 27.05 26.62 1.57
40 803.0 820.1 2.13 122.27 123.21 0.77
50 1244.2 1214.4 2.40 231.63 257.36 11.1
60 1837.2 1937.3 5.45 267.02 247.97 7.14
70 3432.8 3393.9 1.13 128.44 131.79 2.61
80 3185.0 3197.8 0.40 626.00 597.00 4.63
90 5898.6 5864.0 0.59 189.51 194.54 2.66

100 5394.6 5376.5 0.34 718.09 690.02 3.91

Remarkably, the network capacity for a number of nodes greater than or equal to
50 nodes exceeds 1 Pb/s, reaching about 5 Pb/s for 100 nodes. However, this comes at the
cost of significantly increasing the required optical fiber length in the network, as this work
is based on the MF paradigm, where additional fibers are added whenever a link reaches
its maximum supported number of optical wavelengths.

A key point in the analysis is understanding how the ANN model performs on
real optical network topologies, despite being trained on synthetic data generated from
random networks. To address this point, Table 2 provides results for four real reference
networks: COST239 (N = 11, K = 26, l = 462.6 km) [23], DTAG (N = 14, K = 23, l =
236.5 km) [9], NSFNET (N = 14, K = 21, l = 1211.3 km) [23], and UBN (N = 24, K = 43,
l = 993.2 km) [23], with l being the average link length.

Table 2. Accuracy of DNN predictions in reference networks. y1: capacity; y2: cost.

Network y1 [Tb/s] ŷ1 [Tb/s] RE (%) y2 [103

km]
ŷ2 [103

km]
RE (%)

COST239 81.2 82.8 2.01 24.06 23.07 4.11
DTAG 147.4 145.9 1.01 10.88 10.95 0.69

NSFNET 98.0 104.1 6.18 45.39 38.63 14.87
UBN 272.8 269.9 1.10 85.42 101.42 18.73

The results show that the ANN model predicts both outputs with low relative errors
in the majority of cases and achieves computation times approximately 10 times faster than
the heuristic method. However, there are instances where higher relative errors have been
observed, with two cases exceeding a 10% relative error for the network cost: the NSFNET
and UBN cases. Interestingly, these two cases correspond to the networks with larger
average link lengths. An explanatory hypothesis for this behavior is that these networks
exhibit significant variability in their features, making it more difficult for the ANN model
to accurately capture the relationships between features and labels, a trend similar to the
one shown in Figure 2b for networks with fewer than 40 nodes.

5. Conclusions

In this paper, the problem of estimating the capacity and cost of multi-fiber optical
networks was addressed, using for this purpose an ANN model. These networks, by using
multiple fiber pairs per link, can achieve very high network capacities, even in the order of
petabits per second.
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To generate the datasets required to train and test the ANN, we applied an appropriate
heuristic that relies on a fiber assignment algorithm which was also proposed in the context
of this work.

The implemented model was an ANN with 12 inputs (parameters related to the
physical topology of the optical network), 2 outputs, and 1 hidden layer. The outputs
correspond to two metrics: the network capacity, measured in Tbit/s, and the network cost,
quantified by the total length of optical fiber deployed in the network, measured in km.

The ANN was trained with a number of nodes varying between 5 and 100, and it
was extensively tested within the same range. The results showed good performance
with a mean relative error of 2.47% and 5.29% for the first and second metric, respectively.
The ANN model also showed significantly faster performance compared to the heuristic
method, with the ANN predictions never taking more than a few tens of milliseconds,
while the network simulation could take up to tens of seconds to reach the results in larger
networks.

Remarkably, the network capacity for 50 or more nodes exceeds 1 Pb/s, reaching about
5 Pb/s for 100 nodes. However, this comes at the cost of a significant increase in the length
of the total optical fiber required in the network.
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Abstract: In long-haul WDM (wavelength division multiplexing) optical communication systems
utilizing the DP-16QAM modulation scheme, traditional methods for removing chaos have exhibited
poor performance, resulting in a high bit error rate of 10−2 between the original signal and the
removed chaos signal. To address this issue, we propose DeepChaos+, a machine learning-based
approach for chaos removal in WDM transmission systems. Our framework comprises two key
points: (1) DeepChaos+ automatically generates a dataset that accurately reflects the features of the
original signals in the communication system, which eliminates the need for time-consuming data
simulation, streamlining the process significantly; (2) it allows for the training of a lightweight model
that provides fast prediction times while maintaining high accuracy. This allows for both efficient
and reliable signal reconstruction. Through extensive experiments, we demonstrate that DeepChaos+
achieves accurate reconstruction of the original signal with a significantly reduced bit error rate
of approximately 10−5. Additionally, DeepChaos+ exhibits high efficiency in terms of processing
time, facilitating fast and reliable signal reconstruction. Our results underscore the effectiveness of
DeepChaos+ in removing chaos from WDM transmission systems. By enhancing the reliability and
efficiency of chaotic secure channels in optical fiber communication systems, DeepChaos+ holds the
potential to improve data transmission in high-speed networks.

Keywords: wavelength division multiplexing; optical fiber communication; machine learning;
variational auto encoder; knowledge distillation

1. Introduction

In the field of communication, for several decades recently, the wavelength division
multiplexing (WDM) technique has been widely applied in optical transmission systems
for both high-speed backbone and access systems, up to 400 Gbps per wavelength, aiming
to utilize the huge bandwidth of optical fiber [1–4] in order to respond to the huge require-
ment of broadband services, e.g., broadband mobile access service, data mining, cloud
computing, augmented reality, and virtual reality experiments. To enhance the capacity
of communication channels, we can combine the WDM technique with several different
methods, such as spatial division multiplexing [5], multi-carrier [6], super-channel [7],
advanced multilevel modulation format [8], etc. This is due to the linear independence of
such mentioned formats from the wavelength. Lots of optical fiber WDM communication
systems use advanced modulation schemes such as quadrature amplitude modulation
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(QAM) [9,10] or phase shift keying (PSK) [11] techniques in combination with a dual po-
larization scheme to increase the significant spectral efficiency by mean of maximization
of wavelength bandwidth. For example, if an optical fiber transmission migrates from
the mono polarization-QPSK format to the dual polarization-QPSK format, the capacity
of the channel will double, while the bit error rate of the optical link will be negligibly
affected [11].

In high-security communication systems, such as military communication, banking
communication, and government communication systems [12], advanced and complicated
encryption systems have been used to encode communication bit streams, such as FPGA-
based hardware [13], RSA [14,15], DES [16], alternatively interleaved AES [16–18], etc.
However, these methods have some drawbacks, such as: (i) requiring complex electronic
circuits for encoding and decoding, which are costly; (ii) increasing information processing
delays; and (iii) being vulnerable to brute-force algorithms due to the development of
computer-supported algorithms [19,20]. Therefore, an economical approach increasingly
used in physical layer security is the use of chaotic techniques [21–23] due to the superior
characteristics of chaotic features, such as random pseudo-noise and spread spectrum [24].
On the other hand, chaos is also a deterministic phenomenon, so data can be decrypted if
the synchronization process can be controlled. Information data are mixed with chaotic
sequences through mechanisms such as scrambling, modulation, and encryption in order
to enhance security so that eavesdroppers cannot successfully detect the encrypted informa-
tion [17,25,26]. Nowadays, the chaos phenomenon is applied in various applications, such
as wireless and radio communication [27], free-space optical communication [25], short-
range chaotic optical communication [28,29], visible light communication (VLC) [30,31],
underwater communication [32–34], automatic control [35], sensors [36], etc. Some related
works have proposed utilizing the chaos effect arising from the dynamic properties of
semiconductor laser systems for high-intensity applications in intensity-modulated direct
detection (IM-DD) systems. However, generating chaotic laser beams with significant
amplitude variations for WDM IM-DD systems remains challenging [37,38]. In addition,
chaotic techniques have not been widely applied in fiber optic communication systems due
to the lack of research on the chaos phenomenon in wideband optical fiber communication
systems, such as WDM systems.

One of the most significant technological advancements in recent years is artificial in-
telligence (AI). In particular, deep learning (DL) models [39] have brought new dimensions
to many fields, such as human–machine interaction [40], robotics [41], natural language
processing [42,43], etc. Recently, deep learning models have been applied in the field of
information by effectively representing them through deep autoencoders for optical infor-
mation signals to reduce nonlinearity and nonlinear balance. Specifically, in chaotic optical
communication systems, the Informer model is utilized to improve the BER performance
quality of chaos shift keying (CSK) modulation communication systems due to a deep
understanding of the dynamic behaviors of chaos through data-driven analysis [44].

In this study, we introduce DeepChaos+, a novel framework designed to address
the chaos problem to enhance the performance of high-speed DP-16QAM optical fiber
communication systems. This framework tackles the chaos challenge in WDM systems,
which previously caused high bit error rates, by using deep learning models to reduce
the bit error rate to approximately 10−5. Furthermore, with the use of advanced machine
learning techniques, namely, data augmentation and knowledge distillation, reduction
in both training time and inference time is achieved. This offers a reliable and efficient
solution for enhancing the quality of optical fiber communications, which is critical for the
advancement of high-speed networks.

2. Background and Problem Setting
2.1. Long-Haul WDM Optical Communication System Using DP-16QAM Modulation Scheme

The conceptual diagram of the chaotic optical communication with two wavelength
multiplexed channels using DP-16QAM for each channel is exhibited and described in
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Figure 1. In this diagram, one channel is for chaotic optical communication (COC), and
another is for conventional fiber optic communication (CFOC). Each channel, defined by
the wavelength of its carrier wave, is coupled into the same optical fiber in DP-16QAM
data format [45,46]. The chaos cryptography technique encrypts some crucial information
at a given WDM channel λc. In this paper, the chaos sequence is created by a logistic map
using a retrieval rule as follows [17]:

zn+1 = 4zn(1− zn), (1)

where n = 1, 2, 3 . . . is a positive integer, and z0 = [0, 1] is a starting real number between 0
and 1. Therefore, it is easy to see that zn always satisfies 0 < zn < 1. The chaotic function
has a probability distribution density as follows:

p(z) =
1

π
√

z(1− z)
for 0 < z < 1. (2)

Figure 1. Conceptual Conceptional diagram of the COC and CFOC channels in the long-haul WDM
optical communication system using the DP− 16QAM modulation scheme.

In this proposed system, both the laser diode transmitter (LDT) and the laser diode
receiver (LDR) are constructed from a single-mode semiconductor laser with an external
reflector and the same configuration. Both the COC channel and the CFOC channel are
(de)multiplexed by means of a wavelength (de)multiplexer in the C-band of the third
telecom window. The transmitter laser (LDT) of the COC channel emits a chaotic carrier,
and an optical isolator (ISO) is used to ensure unidirectional transmission. The original
message is superimposed on a chaotic carrier by the chaos masking sequence (CMS).
As seen in Figure 1, the chaotic signal is implemented by simply adding the CMS signal to
the output of the conventional 16QAM modulated signal. On the receiver side, the chaotic
signal is decoded by simply subtracting the received COC signal and a CMS signal that is
synchronized to the form of the transmitter side.

Information propagating along the long-haul optical fiber link is greatly affected by
fiber loss, dispersion, and nonlinear effects. We place an erbium-doped fiber amplifier
(EDFA) for the fiber loss compensation and a dispersion compensating fiber (DCF) for the
dispersion compensation.

The EDFA amplifier has the gain coefficient G, determined by the formula G = αL.
Here, α is the fiber loss coefficient, L is the total length of the transmission link, and LDCF
is the length of the DCF fiber. On the receiver, the optical signal is de-multiplexed by
the wavelength de-multiplexer (DEMUX) and photodetector after propagating over a
long-haul section.
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The dynamic behaviors of a couple of transmitters and receivers that are set up in a
COC system can be described by well-known Lang–Kobayashi rate equations, with optical
feedback and injection terms [29,45] as follows:

dET,R(t)
dt

=
1
2
(1 + iψ)

[
G[NT,R(t)− N0]

1 + ε|ET,R(t)|2

]
ET,R(t),

+ kT,RET,R(t− τ) exp(−iωτ) + kirjEext(t),

(3)

where E and N correspond the slowly varying complex electric field amplitudes and the
carrier density in the laser cavity, respectively; T and R stand for transmitter and receiver;
ω is the angle frequency of the free operation laser; τ is the round-trip time; and Eest is
the transmission link. Then, the COC signal is decoded, and the DP-16QAM signal is also
demodulated to recover the baseband signals of the external electric field amplitude at
the input of the receiver. For the proposed COC and CFOC parallel transmission system,
we consider a two-channel WDM system (each subscript denotes the channel number).
The light propagation through the fiber is described in terms of the well-known nonlinear
Schrödinger (NLS) equation [46]:

dNT,R(t)
dt

=
IT,R

qV
− 1

τn
NT,R(t)

− G[NT,R(t)− N0]

1 + ε|ET,R(t)|2
|ET,R(t)|2.

(4)

Here, Ej and Ek are slowly varying complex electric field amplitudes of the j-th and
k-th channels; equally α is the fiber loss coefficient; β2 is the second-order dispersion
coefficient of optical fiber; and γ is the nonlinear coefficient. In this implementation, we use
non-zero dispersion shifted fiber (NZ-DSF) following the ITU-T G.655 recommendation,
and these typical parameters are determined as α = 0.2 dB/km, β2 = 5.1 ps2 · km−1/km,
and γ = 1.5 W−1 · km−1. Other hyperparameters are listed in Table 1.

Table 1. Hyperparameters for the DeepChaos+ framework include the VAE model, the student
model, and the Informer Aggregation model.

Hyperparameter Value

Learning rate for the VAE model 0.0003
Learning rate for the student model 0.001
Optimizer Adam [47]
Total epochs per update 8
Update time step 600
Mini-batch size 128
Aggregation model for VAE and student models Informer (Attention and Convolution)
Activation function for the VAE model ELU
VAE–student coefficient λ 0.6
Gradient norm 0.5

2.2. Problem Definition

In our objective to employ a deep learning-based approach for eliminating the chaos
introduced at the transmitter side from the received signal in a long-haul WDM optical
communication system utilizing the DP-16QAM modulation scheme, our main goal is
to minimize the bit error rate (BER) as a critical performance metric in communication
systems [48]. To achieve this, we aim to find a mapping function Fθ parameterized by
θ. The mapping function Fθ should be capable of removing the chaos from the received
signal, denoted as X †, and recovering the original signal, denoted as X . We define the set
of original signals in the system as X ∈ {0, 1}(1×d), where d represents the length of the
original sampled signals. The chaos adding function is denoted as I, such that X † = I(X ).
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The mapping function Fθ : X † → X̃ can be optimized by finding the optimal parameters
θ∗ for Fθ that minimize the expected BER, expressed as:

θ∗ := arg min
θ
B(X̃ ,X ). (5)

Here, B(X̃,X ) represents the BER between the reconstructed signal X̃ from the re-
ceived signal with added chaos (X †) and the original signal (X ). By optimizing the θ
parameters of the mapping function Fθ , we aim to train a model that can effectively
eliminate the chaos from the received signal. This deep learning-based approach offers
the advantage of faster noise removal compared to traditional methods. Additionally,
the trained model can generalize well to handle unseen signals with similar properties,
providing robust chaos elimination in a wide range of scenarios.

3. Related Work

Recently, the prominent advantages of deep neural networks as well as the advance-
ment of algorithms and deep learning models have become very attractive for viable
applications thanks to their ability to automatically learn feature representations from input
data without the need for human intervention. Deep neural networks and deep learning
models have been able to automatically extract important features from input signals effec-
tively, thereby improving the quality and accuracy of digital signal processing in fiber optic
information systems and chaotic-modulated optical information systems. For example,
the digital back-propagation through DNNs has been applied to eliminate the nonlinear
effect limit in order to enhance the quality of digital signal processing in amplified fiber
optic communication systems, as demonstrated by the work of Q. Fan et al. [49]. Similarly,
deep learning models have been effectively used to address the challenges of dispersion
and nonlinearity compensation in high-speed wavelength division multiplexing (WDM)
fiber optic communication systems employing multilevel modulation channels like 64QAM,
as demonstrated in [50–55]

For chaotic communication systems, recently, a multi-carrier chaos shift keying (DL-
IM-MCDCSK) system utilizing deep learning (DL) and index mapping (IM) techniques
to mitigate the information leakage risk associated with conventional MC-DCSK systems
has been proposed [56]. The proposed system operates without a reference signal and
utilizes a two-dimensional reshaping (TDR) index mapping structure to equalize the
chaotic signals in both frequency and time domains. The offline-trained DNN classifier can
significantly improve the bit error rate (BER) performance during information recovery
without requiring conventional maximum likelihood estimation (MLE). In addition, a chaos
synchronization that does not require hardware implementations [57] or reference chaotic
sequences [58] can be achieved via deep learning models to provide high-level physical
layer security for optical communications. For another actual implementation, very recently,
a high-speed chaotic receiver with up to 32 Gb/s messages hidden in a wideband chaotic
optical carrier has been experimentally demonstrated over a 20 km fiber link, showing a
significant simplification while still guaranteeing security [59]. These promising potentials
prove that both deep neural networks and deep learning models are effective and viable
performance quality enhancements for solving signal detection and signal processing
problems in chaotic secure communication systems as well as in high bit rate optical fiber
communication systems.

4. Our Solution: DeepChaos+

This section presents DeepChaos+, a framework designed to enhance the performance
of high-speed DP-16QAM optical fiber communication systems. We first provide an
overview of the framework and then introduce its end-to-end learning objective.
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4.1. Overview Process of DeepChaos+

Let us define E(X̃ ) as the set of incorrect predictions (error bits) made by the model
Fθ given the true label X (transmitted bits). In our system, we employ the bit error rate
(BER) metric, similar to the approach proposed by Dao et al. [60], defined as follows:

B(X̃ ,X ) =
|E(X̃ )|
|X | . (6)

Generating a large dataset X to train the model Fθ is time-consuming, and balancing
the training X train ∈ X and testing sets X test ∈ X\X train is challenging. Too much training
data may cause overfitting, while too little can lead to underfitting, both increasing the BER
B(X̃ ,X ).

DeepChaos+ (as depicted in Figure 2) combines a Variational Autoencoder (VAE)
Fθ and a lightweight Informer Network f studentω to optimize communication system
performance while using limited original signal data X train. The VAE is first trained on
X train to generate synthetic data X g, which is combined with X train to form an augmented
dataset D. This process continues iteratively, refining the VAE until it can minimize
the BER on X test. Optionally, chaos can be added to X g to better represent original
signal characteristics.

Figure 2. Overview of the DeepChaos+ framework. The framework introduces two key models:
the Variational Autoencoder (VAE) and the lightweight Informer Network. The VAE is trained to
generate interpolated data from the set X . The generated data are then combined with the dataset D
and used to iteratively retrain the VAE. The lightweight Informer Network, with fewer parameters
but functionality equivalent to the VAE’s decoder, is trained to predict a set X̃ that minimizes the
bit error rate B(X̃ ,X ). Knowledge Distillation is employed to ensure the Informer achieves similar
performance to the decoder while enabling faster inference time.

In parallel, the Informer Network f studentω is trained using the augmented dataset D,
with fewer parameters than the VAE’s decoder but with similar functionality. Knowledge
Distillation is used to transfer knowledge from the VAE to f studentω by training it to mimic
the output of the VAE’s decoder, enabling it to achieve comparable performance while
enabling faster inference.

4.2. End-to-End Learning Objective

Mathematically, we further decompose the Variational Autoencoder (VAE) model Fθ

into two models: the encoder denoted as Gψ and the decoder denoted asMφ. Formally,
we have:

Fθ = Gψ ◦Mφ, (7)

X train = Fθ(X train) =Mφ

(
Gψ(X train)

)
=Mφ(Z). (8)
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The encoder Gψ maps X train to a latent space Z , and the decoderMφ reconstructs
X train from Z . The VAE assumes a latent variable Z ∈ R1×v, with v as the latent space
dimension. This latent variable captures the features of the original signal and follows a
latent distribution pφ(Z). The complete generative process can be described by:

pφ(Z | X ) =
pφ(X | Z)pφ(Z)

pφ(X )
. (9)

To approximate the intractable posterior distribution pφ(Z | X ), the model Gpsi learns
a simpler distribution qψ(Z | X ). The objective is to have pφ(Z | X ) ≈ qψ(Z | X ), which is
achieved by minimizing the KL divergence DKL(qψ‖pφ). This is equivalent to maximizing
the evidence lower bound objective (ELBO):

LELBO = Eqψ

[
log pφ(X | Z)

]
−Eqψ

[
log

qψ(Z | X )

pφ(Z)

]
. (10)

The ELBO includes the expected reconstruction error log pφ(X | Z) learned by the
decoder model. The DeepChaos+ framework introduces a student model f student

ω trained
on augmented data D generated by the VAE (teacher model). The student model is trained
using a mean squared error (MSE) loss, defined as:

LMSE =
1
N

N

∑
i=1

∣∣∣X̃ (i) − X̂ (i)
ζ

∣∣∣
2

2
, (11)

where N is the number of samples in the dataset D. The overall objective function for
training the student model combines the ELBO loss and the MSE loss:

Ltotal = λLELBO + (1− λ).LMSE (12)

Here, λ is a hyperparameter that balances the trade-off between the ELBO and MSE
losses. By optimizing this combined loss function, DeepChaos+ effectively learns from the
synthetic data, enhancing the student model’s ability to predict the original signals. This
approach addresses the challenge of limited original signal data by generating synthetic
data that capture the essential features of the original signals, leading to more accurate
predictions by the student model.

5. Experiment

In this section, we present a comprehensive evaluation of the performance of our
proposed DeepChaos+ framework in removing chaos from simulated original signals in
long-haul WDM optical communication systems utilizing the DP-16QAM modulation
scheme. We conduct experiments under various settings to assess the effectiveness of
DeepChaos+. We begin by describing the experiment setup, which includes the selection
of hyperparameters, dataset description, and comparison methods. Hyperparameters such
as the learning rate, batch size, and network architecture are carefully chosen to ensure
the optimal performance of DeepChaos+. Additionally, we compare the performance of
DeepChaos+ with traditional methods to establish its superiority.

5.1. Experiment Setup

Our objective is to evaluate the bit error rate (BER), as defined in Equation (6), and the
time efficiency of DeepChaos+. Regarding BER, we aim to demonstrate that DeepChaos+
achieves competitive performance even with a limited amount of training data. To accom-
plish this, we divided the dataset X into different proportions for training and testing: 20%,
40%, 60%, and 80%. For the second term, we analyze the training time and inference time
of DeepChaos+ and compare it with other machine learning-based methods.
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Hardware Configuration. In order to run our framework efficiently, the following
hardware requirements should be met. A GPU is recommended for faster training and
inference, with a minimum of an NVIDIA GTX 1060 (6GB VRAM), though more powerful
options like the NVIDIA RTX 3090 or A100 are ideal for larger datasets. A minimum of 8GB
of RAM is required, but 16GB or more is recommended for on larger datasets. Additionally,
a multi-core CPU (quad-core or higher) is beneficial for data preprocessing and managing
overall system performance. Our experiments is run on a system equipped with Intel Core
i7 Processor, a NVIDIA GTX 4090i (24GB VRAM) and 64GB of RAM.

Comparison Methods And Metrics. We compare DeepChaos+ with several compar-
ison methods, including BiLSTM [61], Informer [62], GRU-D [63], and the chaos-solving
module proposed within the system. For convenience, we denote the chaos-solving mod-
ule in our system as TDiS. These machine learning-based methods were chosen as they
represent state-of-the-art approaches in the field of time series analysis and chaos-based
modeling. The comparison is based on two metrics: bit error rate and inference time
(in seconds).

Dataset. The dataset used in our experiment was collected by simulating the COC
(chaos on carrier) and CFOC (chaos frequency on carrier) channels in a long-haul WDM
(wavelength division multiplexing) optical communication system using the DP-16QAM
modulation scheme. We generated a sequence of 1,000,000 bits and passed them through
the communication system. At the transmitter side, the generated sequence was combined
with chaos, resulting in a chaotic-modulated signal. At the receiver side, the received
signal was subjected to noise removal, resulting in a de-noised signal. It is important to
note that this de-noised signal is used to evaluate the performance of the proposed TDiS
(chaos-solving module) method.

Hyperparameter Settings. The detailed hyperparameters used for training the model
are provided in Table 1. As mentioned earlier, we employ a Knowledge Distillation tech-
nique to reduce the model size while preserving accuracy for faster inference. The student
model, which is obtained through Knowledge Distillation, is partitioned into different sizes:
tiny, with a total of 240,712 parameters; small, with 461,283 parameters; medium, with
920,784 parameters; and large, with 1,911,365 parameters. These variations in model size
allow us to evaluate the trade-off between model complexity and performance, enabling us
to select the most suitable configuration based on our specific requirements. The learning
rates for the VAE (0.0003) and student (0.001) models ensure stable convergence, and the
Adam optimizer is selected for its adaptive learning rate benefits. A total of 8 epochs per
update and an update time step of 600 allow the model to learn effectively over time, while
the mini-batch size of 128 balances speed and memory efficiency. The aggregation model
uses the Informer, incorporating attention and convolution for capturing long-range de-
pendencies, and ELU is chosen as the activation function for the VAE to prevent vanishing
gradients. The VAE–student coefficient λ is set to 0.6 for optimal knowledge transfer, and a
gradient norm of 0.5 prevents gradient explosion during training.

5.2. Training Efficiency Analysis

In Figure 3 (left), it is evident that DeepChaos+ (medium size) achieves fast conver-
gence to a BER of approximately 2× 10−5 in X test. However, the other learning models,
such as GRU-D and BiLSTM, also exhibit fast convergence, but the only reach a BER of
around 2× 10−3. Despite utilizing 60% of the original signal set X and having larger
model sizes compared to DeepChaos+, they do not attain the same level of accuracy. This
highlights the superiority of DeepChaos+ in effectively capturing the underlying patterns
and optimizing the BER, even with a smaller proportion of training data. The key factor
behind this phenomenon is the ability of DeepChaos+ to generate additional data variants
that effectively represent the original data using only 60% of the original data. It selectively
learns from the best-performing generated data, resulting in the lowest BER for the X test

set. Over time, DeepChaos+ autonomously generates data that accurately capture the
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underlying features of the remaining 40% of the data, further enhancing its performance
and ultimately achieving the lowest BER among the three methods.

On the other hand, in Figure 3 (right), an interesting observation is made when
experimenting with different sizes of the student model for the remaining 40% subset. It
is noted that DeepChaos+ did not converge to 100% accuracy on the test set with the tiny
and small sizes. This suggests that these smaller-sized models would have a higher bit
error rate (BER). However, starting from the medium-sized model and above, DeepChaos+
achieved nearly 100% fit with a recorded BER of 2.3× 10−4. This observation emphasizes
the significance of model size in attaining higher accuracy. Larger-sized models, such as
medium and above, possess the ability to effectively capture and represent the underlying
dynamics of the data, leading to better convergence and lower BER. Additionally, it is worth
noting the training time (red line in the figure), which significantly increases with each
model size. In our experiments, the medium-sized student model proved to be the most
suitable choice, as it offered a balance between fast training time and achieving accuracy
comparable to the large-sized model.

Figure 3. The training performance of DeepChaos+ in the 60% dataset is shown in the left figure,
while the learning performance of the student model is depicted for different sizes in the right figure.
The red line in the right figure represents the training time, indicating that, as the size of the student
model increases, the training time also lengthens.

5.3. Inference Efficiency Analysis

We have implemented a prediction model using batch processing with a batch size of
128 data points at a time. This ensures that the model predicts 128 data points in parallel,
thereby increasing the prediction speed. It is important to note that setting the batch
size hyperparameter depends on the GPU configuration. Note that if we use a dataset
consisting of 20% of the original sampling signal for training, the remaining 80% of the
data points need to be predicted. The more data we use for training, the fewer test points
we have for prediction. The total time required for predicting the entire dataset can be
calculated by multiplying the batch size by the number of batches. Since the model predicts
128 data points simultaneously (due to the batch size of 128), the model only needs to
predict a certain number of batches. The overall prediction time of the model is then
divided by the total number of data points to obtain the average prediction time per data
point. By organizing and optimizing the prediction process in batches, we can leverage
parallel processing and enhance the prediction speed, especially when dealing with large
datasets [64].

Based on Table 2, we can analyze the effectiveness of DeepChaos+ compared to
other methods. Note that DeepChaos+tiny, DeepChaos+small , DeepChaos+medium, and
DeepChaos+large are referred to as student models in this context. Looking at the runtime
performance, both BiLSTM and GRU-D exhibit increasing runtime values as the percentage
of the original data increases. However, the DeepChaos+ models consistently show signifi-
cantly lower runtimes across different data percentages. Even the largest student model,
DeepChaos+large, has remarkably lower runtimes compared to BiLSTM and GRU-D. As the
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model size increases from tiny to small, medium, and large, the DeepChaos+ models have
slower execution times as the number of parameters increases.

Table 2. Comparing the inference time of DeepChaos+ with other state-of-the-art (SOTA) models
across different training set and testing set ratios of 20%, 40%, 60%, and 80% for training.

Model 20% 40% 60% 80% Each Data Point (Average)

BiLSTM 3.2984 s 2.4752 s 1.5684 s 0.6956 s 0.0054 s
GRU-D 5.6874 s 3.315 s 2.1064 s 1.1896 s 0.0092 s

DeepChaos+tiny 0.051 s 0.03388 s 0.02464 s 0.01248 s 0.00007 s
DeepChaos+small 0.102 s 0.06776 s 0.04928 s 0.02496 s 0.00016 s

DeepChaos+medium 0.153 s 0.10164 s 0.07392 s 0.03744 s 0.00025 s
DeepChaos+large 0.204 s 0.13552 s 0.09856 s 0.04992 s 0.00034 s

DeepChaos+ 2.5764 s 1.0248 s 0.5596 s 0.2804 s 0.0021 s

5.4. Quantitative Analysis

We compared the effectiveness of DeepChaos+ on test sets of 20%, 40%, 60%, and 80%,
as shown in Figure 4 (left). For all test sets, DeepChaos+ was able to generate data and learn
until achieving near 100% accuracy on the 40%, 60%, and 80% sets. However, on the 20%
set, the model only achieved about 84% accuracy due to the initial lack of data, which was
insufficient for effective inference and generation of samples. The remaining competing
methods showed significantly lower effectiveness, as they could not infer features like
DeepChaos+, especially on the 40% dataset, where DeepChaos+ achieved an accuracy of
nearly 95%. Methods like BiLSTM only reached around 67%, and GRU-D reached 72%.
The traditional approach also achieved accuracy similar to that of DeepChaos+ across all
four datasets. However, when it comes to BER (discussed in the following section), this
method yields a lower performance compared to DeepChaos+.

Regarding the BER of the test sets (Figure 4, right), we only show the results for the
60% and 80% sets since DeepChaos+ has not yet reached 100% accuracy on the other two
sets, resulting in higher BER. DeepChaos+ clearly has the best performance, as seen in the
60% set where its BER falls within the range of 2.3× 10−4. The remaining methods have
BER ranging from approximately 1.9× 10−3 to 3× 10−3. For the 80% set, DeepChaos+
demonstrates superior performance, with a BER of around 1.5× 10−4. This can be explained
by the fact that, as DeepChaos+ has more datasets, the interpolation for generating data
becomes more accurate. However, when reaching a certain threshold, the other methods
also start to generalize and narrow the gap slightly compared to DeepChaos+.

Figure 4. The figure on the left illustrates the performance of DeepChaos+ on the testing set of
training datasets of 20%, 40%, 60%, and 80%. The figure on the right displays the BER (bit error rate)
of DeepChaos compared to the other methods, particularly on the 60% and 80% datasets.

5.5. Discussion

While the experimental results presented effectively demonstrate the prowess of the
DeepChaos+ framework in reducing the bit error rate in WDM optical fiber communication
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systems, it is important to acknowledge the limitations associated with the use of simulated
datasets. The simulated environment, although carefully designed to mimic real-world
conditions, may not fully capture the inherent complexities of actual optical communica-
tion systems. To address this limitation, future research should focus on validating the
DeepChaos+ framework using actual experimental data obtained from real-world optical
communication systems. This approach will assess the robustness and generalizability of
our model under more complicated conditions. Additionally, incorporating real-world
data will provide deeper insights into the practical applications of DeepChaos+ for reliably
improving the performance of optical fiber communication systems, ensuring that the
proposed solutions can be effectively implemented in practical, large-scale deployments.

6. Conclusions

In this study, we addressed the challenge of removing chaos in long-haul WDM
optical communication systems utilizing the DP-16QAM modulation scheme. DeepChaos+
introduced two key components to enhance the performance of chaos removal. Through
extensive experiments, we demonstrated the effectiveness of DeepChaos+ in accurately
reconstructing the original signal with a significantly reduced bit error rate. The achieved
bit error rate of approximately 10−5 highlighted the superiority of DeepChaos+ compared
to traditional methods. Additionally, DeepChaos+ exhibited high efficiency in terms of
processing time, enabling fast signal reconstruction. By enhancing the reliability and
efficiency of chaotic secure channels in optical fiber communication systems, DeepChaos+
has the potential to significantly improve data transmission in high-speed networks.
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15. Çavuşoğlu, Ü.; Akgul, A.; Zengin, A.; Pehlivan, I. The design and implementation of hybrid RSA algorithm using a novel chaos

based RNG. Chaos Solitons Fractals 2017, 104, 655–667. [CrossRef]
16. Kun, Y.; Han, Z.; Zhaohui, L. An Improved AES Algorithm Based on Chaos. In Proceedings of the 2009 International Conference

on Multimedia Information Networking and Security, Hubei, China, 18–20 November 2009; Volume 2, pp. 326–329. [CrossRef]
17. Qiu, J.; Zhang, L.; Li, D.; Liu, X. High security chaotic multiple access scheme for visible light communication systems with

advanced encryption standard interleaving. Opt. Eng. 2016, 55, 066121. [CrossRef]
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Abstract: Vertical cavity surface-emitting laser (VCSEL)-based optical interconnects (OI) are crucial
for high-speed data transmission in data centers, supercomputers, and vehicles, yet their performance
is challenged by harsh and fluctuating thermal conditions. This paper addresses these challenges
by integrating an ordinary differential equation (ODE) solver within the VCSEL communication
chain, leveraging the adjoint method to enable effective gradient-based optimization of pre-equalizer
weights. We propose a machine learning (ML) approach to optimize feed-forward equalizer (FFE)
weights for VCSEL transceivers, which significantly enhances signal integrity by managing inter-
symbol interference (ISI) and reducing the symbol error rate (SER).

Keywords: machine learning; optical communications; VCSEL-based optical interconnects;
end-to-end learning

1. Introduction

Vertical cavity surface emitting laser (VCSEL)-based optical interconnects (OIs) serve
as the primary connectivity solution in data centers, supercomputers, and vehicles, offering
cost-effective and high-speed connections [1]. Given the harsh and dynamically changing
environments in which these systems operate, VCSELs demand adaptive and resilient
design strategies throughout the communication chain [2,3]. Among the many factors
that influence the performance and reliability of VCSELs, temperature poses a particular
challenge [4]. In short-range OIs, the optical links are positioned close to heat sources,
which are typically the processing units, leading to rapid and substantial temperature
variations. This scenario is common in data centers, where the compact and densely packed
nature of systems often results in significant heat buildup [1]. Such temperature changes
impact the operational characteristics of VCSELs in several ways, including increased
threshold current, shifts in the emission wavelength of the VCSEL due to changes in the
refractive index and the physical dimensions of the laser cavity, decreased output power
due to decreased carrier density, and increased non-radiative recombination within the
laser’s active region [5].

The inherent nonlinear transfer characteristics of VCSELs, especially under significant
temperature variations, necessitate sophisticated approaches to ensure optimal operation.
For example, maintaining robust 100 Gbps links in such fluctuating environments requires
implementing advanced equalization techniques [6]. Equalization can be implemented
in two forms: post-equalization at the receiver, and pre-equalization at the transmitter.
Pre-equalizers actively modify the signal before it encounters the distorting effects of the
transmission medium and VCSEL nonlinearities [7,8]. This proactive approach allows for
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the correction of impairments before they occur, making it more efficient than attempting
to reverse these effects at the receiver end. Moreover, pre-equalization helps to reduce the
complexity and computational load on the receiver, which is particularly advantageous in
high-speed applications where minimizing processing delays is crucial.

Equalizers have traditionally been designed based on mathematical models [9–11].
However, considerations of cost, energy efficiency, and temperature variations significantly
impact communication capacity. Modeling individual components is already highly chal-
lenging; even if a model is available, it tends to be complex, as these models often involve
the concatenation of numerous nonlinear, frequency-selective, and noisy submodels, which
in turn precludes the possibility of designing an optimal transmitter and the corresponding
optimal receiver.

machine learning (ML) provides an attractive alternative to traditional model-based
approaches to overcome the three challenges of modeling, design, and adaptivity [12]. Clas-
sical models of components serve as a foundation for constructing neural network (NN)
equivalents. In the context of optical communications, receiver-side algorithms encompass-
ing equalization, synchronization, data detection, and decoding can be learned by mimick-
ing conventional algorithms or utilizing deep neural networks (DNNs) from scratch [13–17].
Digital pre-equalization techniques have also gained popularity for enhancing performance
the optical communication links [7,8,18,19]. The real-time deployment of NN-based digital
equalizers hinges on computational complexity comparable to or lower than conventional
digital signal processing (DSP) solutions. For instance, NN-based digital predistortion was
designed using three convolutional layers in [20]. In the realm of pre-equalization methods
with a view to reducing the complexity, the feed-forward equalizer (FFE) stands out as a
prominent analog filter structure employed in transmitters. Operating as a finite impulse
response (FIR) filter, the FFE optimally shapes the pulse response, aiming to eliminate
inter-symbol interference (ISI) and reduce the link’s symbol error rate (SER) performance.

Notably, no work has yet attempted to optimize FFE weights using ML in the context of
VCSEL transceivers. Transmitter-side techniques such as pre-equalization introduce signifi-
cant challenges due to the need for a corresponding adaptive receiver that must participate
in the learning process [21]. One of the primary issues is learning the architecture on the
transmit side, which often involves backpropagation through a mathematical model of the
VCSEL. While differentiable models of VCSELs do exist, such as NN equivalents [6,20,22],
the requirements for high-speed operation and precise control necessitate a more compre-
hensive modeling approach. Accurate modeling of VCSELs involves capturing both the
small-signal and large-signal response, including thermal effects across varying tempera-
tures and with limited training samples. However, these comprehensive models, which
need to incorporate temperature dynamics explicitly, often lose their differentiability [23].
This complicates the application of standard ML approaches that require gradient calcula-
tions. This limitation presents an opportunity to explore novel representations of VCSELs
that are both comprehensive and compatible with back-propagation.

Our work includes the integration of an ordinary differential equation (ODE) solver
within the VCSEL-based OI chain framework [24,25]. This integration allows for simulating
the dynamic behavior of VCSELs using the rate equations and ensures the availability of
gradients at each step of the ODE. This gradient availability is essential for updating
pre-equalizer weights in gradient-based learning methods.

The contributions of the paper are as follows:

1. Integration of ODE-based ML for VCSEL Modeling: We utilize the adjoint
method [25,26] within an ML framework for backpropagation through the ODE
solver. This approach directly integrates the VCSEL model and its dynamics, avoid-
ing surrogate models and enabling optimization of transmitter components.

2. Optimization of FFE Weights for VCSEL Transceivers: Building on the ODE-based in-
tegration, we introduce an ML approach to optimize FFE weights for VCSEL transceivers.
This method effectively manages ISI and SER, leading to improved overall performance.
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The rest of this paper is organized as follows: Section 2 introduces the rate equations
of VCSEL and discusses the intrinsic small-signal modulation response; Section 3 provides
an overview of FFE; Section 4 describes the ML-based pipeline for training an FFE within
an OI system; Section 5 discusses the numerical results; and Section 6 concludes the paper.

2. Rate Equations of VCSEL

The ability of VCSELs to effectively respond to current changes at the data rate is
essential for ensuring dependable data transmission. To achieve this, a comprehensive
understanding of the VCSEL’s dynamic response is necessary. This dynamic response
is governed by a set of rate equations that account for the intricate interactions between
injected free carriers and photons within the cavity [27].

2.1. Parasitic Elements

Parasitic elements in VCSELs arise from their physical structure and manufacturing
processes. These include imperfections at material interfaces such as the p–n junction and
metallic contacts, which can lead to unwanted resistance. Parasitic capacitance formed
at the interfaces between semiconductor layers and around the active region affects how
quickly a VCSEL can respond to input signal changes, limiting the modulation speed.
To account for these effects, a simple parallel RC circuit model with resistance (Rj) and
capacitance (Cj) components is used in simulations, as shown in Figure 1. Here, Iin
represents the VCSEL driving current, I is the injection current without any parasitic
element, the transfer from Iin to I is the parasitic response, and the transfer from I to the
optical output is determined by the rate equations of the VCSEL.

Figure 1. Schematic of the RC circuit model used to simulate the parasitic effects in VCSEL;
Iin represents the VCSEL driving current, I is the injection current, and U is the device voltage.

2.2. Rate Equations

The laser’s operation is modeled through the single-mode laser rate equations derived
from a simplified VCSEL model [28], which provide a mathematical framework for under-
standing the interactions between carrier and photon dynamics within the laser cavity.

2.2.1. Carrier Dynamics Equation

The rate of change of carrier density N [m−3] within the laser’s active region is
modeled by the following equation [27,28]:

dN
dt

=
I

qV
− c

ngeff
gS− N

τn
. (1)

The rate of carrier injection I
qV is driven by the injection current I [A], where q is the

elementary charge and V [m3] is the active volume. The term c
ngeff

gS represents the stim-
ulated emission rate, where c denotes the speed of light in vacuum, ngeff is the effective
modal refractive index, g is the optical gain per unit length, and S is the photon density;
lastly, N

τn
accounts for the carrier recombination losses, with τn [s] as the carrier lifetime,

encompassing both radiative and non-radiative decay processes.

49



Photonics 2024, 11, 943

2.2.2. Photon Dynamics Equation

The photon density S [m−3] that captures the dynamics of photon population within
the laser cavity is provided by the following equation [27,28]:

dS
dt

= Γ
c

ngeff
gS + Γβ

N
τn
− S

τp
. (2)

The stimulated emission rate is reduced by the internal quantum efficiency Γ. The second
term Γβ N

τn
introduces the contribution of spontaneous emission to the overall photon

density, with β representing the spontaneous emission coupling factor. The photon losses
are modeled by the final term S

τp
, where τp [s] is the the photon lifetime. It is important to

note that we treat Γ, g, τn, and τp as temperature-dependent parameters.

2.2.3. Output Power Equation

The relationship between the output power Po [W] and photon density S is expressed
as [27,28]

Po = S ·V · hν · ηout

τpΓ
. (3)

The output power Po of the VCSEL is directly proportional to the photon density S, and is
calculated considering the active volume V and the energy per photon (hν). The efficiency
of the laser output ηout expressed relative to the wavelength λcav [m] quantifies the energy
conversion efficiency of the VCSEL, illustrating how the VCSEL converts electrical power
into optical power at a specific wavelength.

2.3. Self-Heating

To analyze self-heating effects, an additional set of differential equations is used to
monitor the internal temperature (T) of the VCSEL [23]:

τth
rth

dT
dt

= ggen − gdiss (4)

where ggen [W] represents the rate of heat generation, calculated as

ggen = U · Iin − Po, (5)

where U [V] is the device voltage, Iin is the driving current (see Figure 1), and gdiss [W]
denotes the rate of heat dissipation, provided by

gdiss =
1

rth
(T − Tamb). (6)

where τth denotes the thermal time constant, rth [K/W] is the thermal impedance, and Tamb
is the ambient temperature.

2.4. Dynamic Response of VCSEL

In this way, the rate equations establish a direct relationship between the excess carrier
density in the active region and the photon density within the cavity when the current
passes through the VCSEL. By perturbing these rate equations around a bias current
Ib using first-order Taylor expansion and measuring the differential output power, we
obtain the intrinsic small-signal modulation response, for which the two-pole transfer
function is [27]

Hint( f ) = ηd
hc

λ0q
· f 2

r

f 2
r − f 2 + jγ

f
2π

, (7)

where ηd is the differential quantum efficiency, h is the Planck constant, c is the speed of
light, λ0 is the lasing wavelength in vacuum, q is the elementary charge, fr is the resonance
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frequency, and γ is the damping factor. The small-signal modulation response is measured
by S21

S21 = 20 log10
| Hint( f )
| Hint(0)

, (8)

and is plotted in Figure 2 for increasing bias current Ib1 < Ib2 < Ib3 and two temperatures,
27 ◦C and 70 ◦C, showing the movement of fr and that the VCSEL reaches a critically
damped (flat) response at some current. The plot reveals shifts in resonance frequency and
a nonlinear reduction in bandwidth, significantly influencing the frequency response and
impacting data transmission capabilities. Pre-equalization at the transmitter, either analog
or digital, is crucial to address impairments from the limited bandwidth of VCSELs.

Figure 2. Simulated intrinsic VCSEL response (with parasitic effects neglected) for three representa-
tive bias currents (Ib1 < Ib2 < Ib3) and two temperatures (27 ◦C and 70 ◦C).

The rate equation is directly solved for the forward inference step using the ODE
solver torchdiffeq in PyTorch, generating the output power for input current sequences and
establishing the loss function [25]. This library not only facilitates the integration of rate
equations but also supplies gradients at each ODE solver step for the back-propagation step.
This capability is imperative for updating the transmitter FFE weights in the optimization
process described in the next section.

3. FFEs Overview

FFEs use an FIR filter to shape the pulse response and ideally eliminate all ISI. The
FFE consists of a series of weighted coefficients called taps. Each tap represents a particular
weight applied to a delayed version of the input signal. The number of taps determines
the complexity and effectiveness of the equalizer. The delay in an FFE refers to the time
difference between the input signal and its delayed versions that are fed into the taps. This
delay allows the FFE to capture and compensate for the effects of previous symbols on the
current symbol. The output of the FFE at time instant t is provided by

Ip(t) = Iin(t) +
K

∑
k=1

wk Iin(t− tk), (9)

where Iin(t) is the input current, wk are the tap weights determining the contribution of
each delayed input sample Iin(t− tk), and tk are the corresponding delays.

A model block diagram indicating the position of the FFE in a VCSEL-based OI is
shown in Figure 3. The FFE is placed after the digital-to-analog converter (DAC) but before
the VCSEL and its parasitic elements. The delay elements in FFEs can be implemented with
synchronously clocked flip-flops, transmission lines, or analog delay elements. Coefficient
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summing and scaling can be achieved with scaled switched current sources either before or
within the final driver stage.

PAM-4 
generation FFEDAC Driver

VCSEL

PD
TIAADCReceive 

DSP

Bits

Bits

Fiber

Figure 3. Model block diagram of a VCSEL-based OI system. DAC stands for digital-to-analog
converter, ADC stands for analog-to-digital converter, PD stands for photodetector, and TIA stands
for trans-impedance amplifier. The FFE weights are optimized in the paper.

However, FFEs have limitations, particularly in filtering out relaxation oscillations
under varying biasing and data conditions. Relaxation oscillations or rapid fluctuations in
laser output power, can degrade signal quality. Traditional FFE techniques may not fully
compensate for these effects due to fixed or inadequately adaptive filter settings [29,30]. To
overcome these limitations, we introduce an ML-based approach to dynamically optimize
the FFE coefficients wk. In this paper, we consider ideal driver/FFE electronics, as including
transmitter and receiver non-idealities is beyond the scope of the current paper. The
following section outlines the end-to-end pipeline for learning FFE weights within the
OI system.

4. Pipeline for Learning FFE Weights

The end-to-end ML-based pipeline of the OI system and transmission chain, including
the FFE, VCSEL, and the receiver, is shown in Figure 4. Detailed functionality from message
encoding to output estimation is provided in the subsequent subsections.

Figure 4. Model block diagram showing the placement of the FFE in the entire chain. Weights w1 to
wK are learned in the paper.

4.1. Encoding and Input Transformation

The process starts by encoding a message s ∈ {1, . . . , M} ,M, where M = 4. Each
message s is encoded into a one-hot vector x, where the s-th element is 1 and all other
elements are 0. The output of the one-hot layer, ranging from [0, 1], is scaled and shifted
to the dynamic input current range of [2, 12] mA. This ensures that the input remains
above the VCSEL threshold current across all ambient temperatures, preventing the AE
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from arbitrarily increasing the bias current, which would lead to self-heating in a real
system [28].

4.2. Signal Conversion and Transmission

After it is prepared, the input is sent to a DAC, converting the digital input into
an analog signal for the FFE and VCSEL. The FFE adjusts the signal to compensate for
potential distortions before it reaches the VCSEL. The fiber is modeled as a additive white
Gaussian noise (AWGN) channel. The system can adapt to include additional features
such as low-pass filtering and dispersion as well as intricate circuitry such as output driver
circuits, which are beyond the current work’s scope.

4.3. Output Processing and Estimation

At the receiving end, the photodiode output is processed through a fully-connected
neural network layer with softmax activation. This converts the received signals into a
probability vector q = [q1, . . . , qM]>, where the estimated message ŝ is determined by
selecting the highest probability from the softmax output, expressed as

ŝ = arg max
i

qi. (10)

4.4. Optimization and Loss Minimization

The network optimization focuses on minimizing the categorical cross-entropy loss
function, provided by

L =
M

∑
i=1

xi log(qi), (11)

where qi for i ∈ {1, 2, . . . , M} is a predicted value and xi is 1 for true classes and 0 otherwise.
This measures the disparity between the predicted and true probability distributions,
guiding the model towards accurate predictions by penalizing deviations from the true
class probabilities. The loss L can be related to an achievable information rate using
arguments from mismatched decoding [31].

4.5. Training FFE Weights with the Adjoint Method

The goal of the training is to find FFE weights wk for k = 1, . . . , K that optimize
performance in terms of the categorical loss function. A learning-based model is trained
by adjusting its parameters to minimize the difference between its predictions and actual
outcomes. Traditional backpropagation involves a backward pass through the network
to update these parameters based on the gradient of the loss, leading to challenges with
VCSEL components governed by differential equations. To address this, we propose using
the adjoint method [26] for training the pipeline. Derived from the framework of neural
ordinary differential equations (NODE) [25], this technique integrates ODEs as dynamically
learnable components within the network. The adjoint method calculates the adjoint state
during the backward pass, representing the gradient of the loss concerning the network
state at any given time. By solving the reverse-time ODE for the adjoint state, it is possible
to directly compute the gradients with respect to the differential equations governing
the VCSEL.

To ensure robust learning, the training process utilized a dataset of 2.5× 104 randomly
selected message symbols processed in batches of 50 symbols over 7500 epochs. Training
was conducted at an SNR of 18 dB and a temperature of 70 ◦C. Determining the number of
taps is a critical factor, and is contingent on the desired equalization performance. A greater
number of taps in the design enhances equalization performance, as it allows for fine-
tuning the FFE frequency response; in turn, this fine-tuning enables more precise shaping
of the system’s limited bandwidth, leading to significantly improved overall bandwidth
performance. The following section provides a detailed analysis of the numerical results
and examines potential future extensions.
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5. Numerical Results and Discussion

We performed different training for different FFE configurations ranging from two
taps to five taps. The delay was chosen in multiples of Ts, where Ts = 1/(15 ∗ Fs) and
Fs = 56 GBaud is the symbol rate, that is, n1 = 6Ts, n2 = 9Ts, n3 = 12Ts, n4 = 15Ts,
and n5 = 18Ts. During training, the FFE weights were optimized to minimize the error
between the transmitted and received symbols. The optimized weights for various tap
configurations are detailed in Table 1, reflecting the system’s adaptation to diverse signal
distortions encountered during the training phase.

The effectiveness of the optimized weights is demonstrated through eye diagrams in
Figures 5 and 6a–d. Each diagram represents a different tap setting on the FFE, demon-
strating how increasing the number of taps affects signal clarity. Figure 5 shows the eye
diagram without the FFE. A clear trend is observed in Figure 6a–d, where the signal clarity
improves as the number of taps increases. The average eye height increases from 0.6 mW
for two taps to about 1.2 mW for five taps. Similarly, the average eye width is about 8.33 ps
for two taps and 10.7 ps for five taps. The average jitter for two taps is 9.5 ps, while that
for five taps is 7.14 ps. The added taps enhance the complexity of the weights, allowing
for finer signal adjustments and reduced inter-symbol interference; however, as shown in
Figure 6d, the improvement with five taps is minimal compared to the FFE with four taps.

Table 1. Optimized weights w1 to w5 for different tap settings.

Taps w1 w2 w3 w4 w5
2 0 −0.3438 0 0.0285 0
3 0 −0.4329 −0.3564 0.4961 0
4 0 −0.3357 −0.1708 0.0421 0.1947
5 −0.0281 −0.2644 −0.1067 −0.0223 0.1516

Figure 5. Eye diagram illustrating the signal quality in the absence of FFE.

The improvement in clarity observed in the eye diagram is correlated with a reduction
in the SER. This relationship is illustrated in Figure 7, where higher SNRs lead to lower
SERs, highlighting the advantages of more advanced pre-equalization techniques. For
instance, using five learned taps provides a sensitivity gain of approximately 1 dB over
configurations with only two taps. This gain is notable at a low SER level of 10−4, indicating
a substantial enhancement in the system’s ability to accurately interpret the received
symbols. Increasing the number of taps enables more precise adjustments of the equalizer’s
response, translating to improved performance metrics, such as lower SER at higher SNRs.
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The proposed method trained at an SNR of 18 dB generalizes well across high SNR
conditions, but may require additional training at lower SNRs to combat increased noise.
To address SNR variability more robustly, a similar approach to the distance training
method discussed in [32] could be adopted; in this approach, during training the SNRs
are drawn from a Gaussian distribution with a mean of 18 dB and a certain standard
deviation. Similarly, VCSELs, being temperature-sensitive, demand adaptive models for
reliable performance across a wide operating range from −40 ◦C to +125 ◦C. Traditional
methods often involve retraining FFEs for different temperatures or fine-tuning via transfer
learning. Alternatively, a temperature-adaptive FFE that introduces temperature as an
input to the neural network could be explored in future to enable dynamic adaptation
without requiring retraining for each scenario. Similarly, to address nonlinearities such as
VCSEL relaxation oscillations and temperature-induced variations, nonlinear equalizers
based on other deep learning models could be trained to adapt to rapid shifts in operating
conditions. This approach would enhance the system’s robustness in extreme scenarios.
In future work, the benefits of this approach can be explored for different symbol rates
versus VCSEL bandwidths. Additionally, learning the delays along with the weights and
including transmitter and receiver non-idealities could further enhance the adaptability of
the system.

(a) With two taps: w2 and w4 (b) With three taps: w2, w3, and w4

(c) With four taps: w2, w3, w4, and w5 (d) With five taps: w2, w3, w4, w5, and w6

Figure 6. Eye diagrams for different optimized FFE tap configurations.
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Figure 7. SER vs. SNR for different numbers of FFE taps.

6. Conclusions

In conclusion, we have developed an end-to-end pipeline for optimizing FFE weights
within the OI system. By integrating the adjoint method with ODE solvers, we achieve
gradient-based optimization of the FFE weights. The results demonstrate significant
improvements in signal clarity and performance. Specifically, configurations with more
taps enhance signal integrity, with the five-tap setup providing a 1 dB sensitivity gain
over the two-tap setup and an SER of 10−4. These findings validate the effectiveness of
our approach and highlight the importance of the tap number in optimizing equalization
strategies.
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Abstract: To guarantee the reliability of Tactile Internet (TI) applications such as telesurgery, which
demand extremely high reliability and are experiencing rapid expansion, we propose a novel smart
resilience mechanism for Next-Generation Ethernet Passive Optical Networks (NG-EPONs). Our
architecture integrates Artificial Intelligence (AI) and Software-Defined Networking (SDN)-Enabled
Broadband Access (SEBA) platform to proactively enhance network reliability and performance.
By harnessing the AI’s capabilities, our system automatically detects and localizes fiber faults,
establishing backup communication links using Radio Frequency over Glass (RFoG) to prevent
service disruptions. This empowers NG-EPONs to maintain uninterrupted, high-quality network
service even in the face of unexpected failures, meeting the stringent Quality-of-Service (QoS)
requirements of critical TI applications. Our AI model, rigorously validated through 5-fold cross-
validation, boasts an average accuracy of 81.49%, with a precision of 84.33%, recall of 78.18%, and
F1-score of 81.00%, demonstrating its robust performance in fault detection and prediction. The AI
model triggers immediate corrective actions through the SDN controller. Simulation results confirm
the efficacy of our proposed mechanism in terms of delay, system throughputs and packet drop rate,
and bandwidth waste, ultimately ensuring the delivery of high-quality network services.

Keywords: TI; smart resilience; NG-EPON; AI; SDN; SEBA; VOLTHA; RFoG; system performance

1. Introduction

The need for digital technology has grown significantly since the COVID-19 pandemic.
On the other hand, the development of new technology such as the Internet of Things
(IoT), fifth-generation (5G) cellular networks and the boom in Artificial Intelligence (AI)
have created a new demand for network connectivity. Attention is now focused on the
next-generation near future applications of the Tactile Internet (TI) that need to support the
latency-sensitive human-to-machine/robot (H2M/R) applications such as Extended Reality
(XR), tele-surgery, industry automation, and intelligent transport systems [1]. Statista has
predicted that the number of connected devices will be more than 30.9 billion units by
2025 [2]. This means that there will be significant challenges to the network operators to
provide robust and guaranteed services to the users.

One of the future applications that will need ultra-low latency and robustness is the
TI. The TI has some similarities with and distinctions from the IoT or 5G. The 5G cellular
networks are focused more on improving Human-to-Human (H2H) communications,
whereas the IoT is dependent on Machine-to-Machine (M2M) communications to facilitate
industrial automation systems or machine-centric activities [3]. However, the TI requires a
human-centered design approach due to the inherent Human-in-the-Loop (HITL) nature
of H2M/R interaction, such as tele-surgery types of applications [4].
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In [5], they determined the QoS key performance indicator of the TI use cases. For
example, the tele-operation scenario should have a latency below 1–10 ms and a reliability of
99.999%. In terms of M2M applications, such as self-driving cars and industrial automation,
the required latency is 5–10 ms [6] and reliability is 99.999% (an average of less than 6 min
downtime per year) [7]. These indicators show that the underlying network not only
guarantees minimum latency but also ensures that the system is robust enough to have
minimum reliability requirements.

Currently, wired and wireless communications networks are rapidly evolving in terms
of their architecture and capabilities to challenge latency-sensitive H2M/R applications. In
wired networks, especially optical fiber, Passive Optical Networks (PONs) have continually
evolved over the years. PONs now offer bandwidth capacity and functionality, delivering
low-latency, high-bandwidth, and cost-efficient services to large numbers of users. More-
over, most urban areas near residential and industrial premises have now deployed optical
fiber [8].

Ethernet Passive Optical Network (EPON) technology is among the best PON tech-
nologies due to its lower cost, high bandwidth, and readiness to support efficient Quality-
of-Services (QoS). The current standard of EPON is the IEEE 802.3ca, which was approved
in 2020 as the next-generation EPON (NG-EPON), boosting the bandwidth of a single
channel by a factor of 5 to 25 Gbps [9]. Moreover, the NG-EPON can have higher data
rates by using channel bonding that can offer aggregated data rates of Nx25s Gbps. Con-
sequently, a fully operating NG-EPON may deliver up to 50 Gbps for both upstream and
downstream transmission [10]. Nevertheless, managing an NG-EPON that can handle the
strict QoS from residential or industrial users is challenging. Industrial users usually have
stringent QoS requirements, one of which is maintenance service [11]. This service includes
ensuring that the network is fault-tolerant against any fiber fault. Any fiber cut or loss can
significantly impact industrial systems, especially in terms of TI or H2M/R applications,
which can involve life-and-death situations.

In general, different types of anomalies can affect the performance of NG-EPON.
Some fiber failures can occur due to mechanical faults, optical faults, or electrical faults.
Since a single fiber link can connect to the residential, industrial, or enterprise networks,
carrying a mixture of data from personal to public or even 911 or TI data, any fiber failures
can have enormous impacts and need to be responded to immediately [12]. Moreover,
failure in optical network communication can be categorized as soft or minor failures and
severe failures. Severe failures lead to immediate service loss due to fiber cuts, bends, and
other problems. Minor failures can degrade the transmission quality due to signal overlap,
laser deflection, filter switching, noise, and other problems [13]. Therefore, the network
operators must ensure reliable data communication for high-speed Internet. Failures to
handle this can lead to significant financial and data loss for both network operators and
customers. At the same time, the network operators also need to reduce the operation and
maintenance expenses (OPEX).

According to the Federal Communication Commission (FCC), more than one-third of
fiber disruptions are caused by fiber-cable problems [14]. These issues can include failures
of connectors or power supplies, fiber breaks, macro bends, or even problems with Optical
Line Terminal (OLT) or Optical Network Unit (ONU) transceiver problems. Consequently,
a remote and automatic monitoring or diagnosing mechanism for the fiber links would be
very beneficial to reduce the mean time to repair (MTTR), increasing customer satisfaction.

The main contribution of this paper is as follows:

1. We propose a smart resilience mechanism architecture and operations in Next-Generation
Ethernet Passive Optical Network (NG-EPON).

2. We introduce a novel Resilience Dynamic Bandwidth Allocation (RDBA) mechanism,
ensuring the Quality-of-Services (QoS) of real-time and tactile internet applications.

3. We build a supervised AI model using Multi-Layer Perceptron (MLP) for detecting
any anomalies or faults in the branches.
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4. The extensive simulation results demonstrate that the resilience of AI-enhanced
anomaly and fault detection effectively manages delay for real-time and tactile inter-
net applications.

The remainder of this paper is organized as follows. Related work is presented in
Section 2. The SDN-Enabled Broadband Access (SEBA) architecture is discussed in Section 3.
Section 4 introduces the proposed smart resilience architecture. Section 5 presents the
performance evaluation. Finally, Section 6 concludes our work.

2. Related Work

The objective of fiber monitoring is to detect any anomalies in the optical layer by
analyzing the monitoring data. Several techniques are commonly used by engineers to
identify fiber faults in Optical Distribution Networks (ODNs). For instance, one study [14]
uses a Reference Reflector (RR) placed at the end of each fiber on the ODN and uses Optical
Time-Domain Reflectometry (OTDR) to detect, locate, and estimate the reflectance of the
connections and mechanical splices in the fiber links. Another approach uses binary-coded
Fiber Bragg Granting (FBG) [11]. The FBG binary codes serve as indicators between one
ONU to other ONUs by varying the wavelengths used by the FBGs to easily identify fault
branches [11]. Some early studies have also proposed embedded OTDR called miniaturized
OTDR integrated into the ONUs [15–18].

Furthermore, to consistently meet the Service Level Agreement (SLA), network opera-
tors need a mechanism to maintain service continuity even when there are fiber faults in
the ODN. In EPON, network operators usually use protection mechanisms such as trunk
protection or tree protection. Trunk protection primarily focuses on protecting the OLT and
feeder fiber. In contrast, tree protection covers the entire area but is very costly. Dedicated
protection might deliver more reliability for service continuity but cannot provide efficient
resource utilization [19]. Several studies have shown the use of ring topology to minimize
the cost of establishing redundant paths in traditional EPON while handling any fiber
cut or failures within the network [20–22]. Apart from all the various approaches such as
tree, trunk, star, ring, or bus protection mechanisms, some studies also used hybrid topolo-
gies that improve EPON network redundancy but increase the network complexity [23].
Moreover, some studies also use SDN capability and a bus protection line to enhance the
resilience of the existing EPON system [24].

Recently, Artificial Intelligence (AI) entities have been able to perform operations
analogous to human activities, such as learning and decision-making. AI-based techniques
are already changing and improving industries, including telecommunications networks.
These techniques range from performance monitoring and guaranteeing the transmission
to optical network control and management in both transport and access networks [25].
Current studies related to fiber monitoring already use the Machine Learning (ML) ap-
proach to detect any anomaly in the optical networks [12,14,26,27]. These studies have
shown that ML can detect and localize any fiber faults in the ODN. Although these studies
have already proposed AI monitoring mechanisms, to the best of our knowledge, no studies
have focused on integrated resilience that not only intelligently localizes any fiber faults in
the ODN but also automatically recovers the network using AI mechanisms. Moreover,
most studies only proposed the ML model without any simulation or experiment on the
working PON systems. Table 1 presents a table of related work contributions.

Table 1. Related work contributions.

References Contributions Approach Gap Addressed

[11]

Proposes Fiber Bragg
Grating (FBG) binary
codes for fault branch
identification

FBG binary coding,
wavelength variation

Lacks AI integration
and automatic fault
recovery
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Table 1. Cont.

References Contributions Approach Gap Addressed

[14]

Uses Reference Reflector
(RR) and Optical-Time-
Domain-Reflectometry
(OTDR) for fault
detection in ODN

OTDR detection,
reflectance estimation

Does not cover
AI-enabled resilience
mechanisms or
automatic fault
recovery

[15–18]

Embedded OTDR in
Optical Network Units
(ONUs) for monitoring
fiber faults

Miniaturized OTDR

Focuses on detection
but lacks resilience
and recovery
mechanisms

[19]
Trunk and tree protection
mechanisms in EPON
networks

Protection for OLT,
feeder fiber, and
entire area

High cost and
inefficient resource
utilization

[20–22]
Ring topology for
redundancy in EPON
networks

Cost-effective
redundant path
establishment

Lacks integration
with AI or dynamic
adaptation

[23]
Hybrid topologies to
improve EPON
redundancy

Mixed network
topologies

Increases network
complexity

[24]
SDN-based protection
lines to enhance EPON
resilience

SDN
Does not incorporate
AI for intelligent fault
recovery

[25]
AI-based techniques for
network control and
performance monitoring

Learning and
decision-making
processes for
networks

Does not include
real-time resilience
mechanisms for PON
systems

[12,14,26,27]
Machine Learning (ML)
techniques for fiber fault
detection in ODN

ML-based anomaly
detection

No focus on
automatic network
recovery

Proposed
Approach

AI-enabled unified
platform (SEBA) for
smart resilience in
NG-EPON

SEBA platform with
SDN, automation,
and AI-based fault
detection and
recovery

Fills the gap by
providing automatic
fault localization and
recovery, ensuring
service continuity

To realize this, our proposed architecture uses AI-enabled unified platforms to auto-
mate and adapt to changing circumstances and business needs. As Cisco’s 2024 Global
Networking Trends Report stated, in the next two years, network operators will use AI-
enabled unified platforms to automate and adapt to changing circumstances and business
needs [28]. SDN-Enabled Broadband Access (SEBA) is a unified cloud-native platform,
providing scalable and flexible network management. SEBA is based on Software-Defined-
Networking (SDN) principles, offering simpler, flexible, and easily customizable networks.
Moreover, SEBA promotes interoperability between OLTs and ONUs from different manu-
facturers. SEBA is open-source, giving operators unprecedented flexibility in customizing
SEBA for their access network, integrating it with the rest of their backend systems, imple-
menting only the features they require, adding application programming interfaces (APIs)
themselves, and not being bound by the timelines and prices of a traditional vendor [29].

Network Fault Detection and Localization

Commonly, to detect anomalies in the ODN, engineers are using OTDR, which is a
technique based on the Rayleigh backscattering [12]. The concept is like a radar, so the
OTDR will send a series of optical pulses into the ODN. Afterward, the backscattered
signals will be recorded as a function of time that can be translated to the position of the
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optical fiber components such as the splitter, ONUs, and end connectors. This information
is used for event analysis. Figure 1 illustrates the example of OTDR trace.
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Figure 1. Example of OTDR traces.

As shown in Figure 1, we can see that the initial drop at the beginning of the figure
represents the launch condition level of around 25 dB. Afterward, the downward-sloped
line indicates the attenuation of the fiber (feeder fiber). At the end of the linear attenuation,
a small peak signifies the splitter, connectors, ONUs, or other reflective events. The dense
scattering at the end marks the termination of the fiber.

OTDR traces are usually difficult to interpret even for experienced engineers due to
the noise that affects the signals. Analyzing these traces may be very challenging using
conventional methods, especially to distinguish subscribers unambiguously [30]. It can be
very time-consuming, since the engineer needs to remove the noise manually, which can
increase the MTTR and reduce the detection and localization accuracy. One of the strategies
to effectively manage and interpret the OTDR traces is for network operators to use baseline
measurements, saving the measurements when the network is functioning normally. In this
way, network operators create a reference point for future comparisons if faults occur in the
ODN. Moreover, maintaining and organizing a database of reference points for all OTDR
traces can help with quick retrieval and analysis during troubleshooting. Additionally,
network operators must ensure that the network engineers are well-trained in interpreting
OTDR traces and using the tools by conducting regular training sessions to stay updated.
All these combined techniques still depend on the network engineers.

Furthermore, before any fault occurs in the ODN, some anomalies can also appear in
the network condition. Network operators can use various visualization tools such as a Bit
Error Rate (BER) analyzer, Optical Time Domain Visualizer, and Optical Spectrum Analyzer.
These tools can show the performance of optical signal delivery. An eye diagram is used to
measure the signal quality. Ideally, an eye diagram would consist of two parallel lines with
instantaneous rise and fall times, making them virtually invisible. The eye diagram can
show vital parameters such as timing jitter and inter-symbol interference [31]. Combining
both OTDR trace analysis and the eye diagram can improve the early detection of faults in
the ODN.

Consequently, in this paper, we propose automatic detection and localization using an
ML algorithm by incorporating OTDR trace analysis data and eye diagram analyzer data.
By incorporating ML algorithms, we can improve the accuracy and efficiency of detecting
and localizing fiber faults. ML can process vast amounts of data, identifying patterns
and detecting anomalies much faster with greater precision than network engineers. By
leveraging ML, network operators can reduce their reliance on network engineers for fault
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detection and localization, leading to quicker resolutions and increased network reliability
(as illustrated in the proposed Smart Resilience Architecture in “Figure 4”).

3. SEBA Architecture

This section discusses the concept of SEBA architecture, shown in Figure 2, which
consists of Virtual OLT Hardware Abstraction (VOLTHA), a Network Edge Mediator
(NEM), and an SDN Controller.
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3.1. Virtual OLT Hardware Abstraction (VOLTHA)

In the central office, the white-box OLT will be used, incorporating Virtual OLT
Hardware Abstraction (VOLTHA), allowing the Virtual OLT (vOLT) to be managed by
the Software-Defined Networking (SDN) controller, i.e., Open Network Operating System
(ONOS). The vOLT can have NetConf, OpenFlow Agent, OLT Application Programming
Interface (API), and ONU Management and Control Interface (OMCI) stack-connected to
the ONOS SDN controller. VOLTHA hides PON-level details from the SDN controller and
abstracts each PON as a pseudo-Ethernet switch easily programmed by the SDN controller.

Figure 3 illustrates the operation architecture of VOLTHA. The process begins with
VOLTHA activating the OLT, which has Network-to-Network Interface (NNI) ports on one
side and PON ports on the other. Once activated, VOLTHA abstracts the OLT, including
the connected NNI port, which is connected to a logical switch within VOLTHA. VOLTHA
then informs ONOS of the existence of this logical switch. The ONUs are attached to the
OLT through its PON ports, and the User Network Interface (UNI) port at the ONU is also
added to the logical switch within VOLTHA. As an example, the Edgecore ASFvOLT16
White box OLT, which is used in industrial settings, supports [32]. Other vendors, such as
CIG, Tellabs, and Iskratel offer similar OLT solutions.

Photonics 2024, 11, x FOR PEER REVIEW 7 of 22 
 

 
Figure 3. VOLTHA operation architecture. 

3.2. Network Edge Mediator 
The Network Edge Mediator (NEM) acts as the mediation layer between the access 

system and the service provider’s back end, providing centralized management and or-
chestration capabilities. The NEM supports essential functionalities known as fault, con-
figuration, accounting, performance, and security (FCAPS): (1) Fault management: detect-
ing and resolving network faults; (2) Configuration: managing network element settings; 
(3) Accounting: collecting usage data for billing and auditing; (4) Performance: monitoring 
and analyzing network metrics to ensure service quality; and (5) Security: enforcing poli-
cies to protect network integrity. This ensures that the NEM facilitates seamless network 
control, configuration backup, and restoration [33]. 

4. Proposed Architecture 
This section discusses the proposed smart resilience architecture that not only can 

detect and localize fiber faults but also automatically establish connections while waiting 
for the engineer to fix the fiber faults in the ODN. In this architecture, we use the SEBA 
for Residential Services Central Office Rearchitected as Datacenter (R-CORD) platform 
concept, which sits in the middle and provides management and abstraction solutions, 
enabling the use of white box hardware. White box hardware reduces both Capital ex-
penditures (CAPEX) and Operation & Maintenance expenses (OPEX). In this way, we sep-
arate the software from the hardware, enhancing the agility that brings the best of the 
cloud Network Function Virtualization (NFV) and SDN together. The OLT and ONUs 
used in the proposed architecture are white box hardware, providing a highly flexible and 
cost-effective solution. The white box devices feature hardware platforms that can run 
third-party software, such as VOLTHA, which offers open programmability and interop-
erability.  

Figure 4 shows the smart resilience architecture in NG-EPON. In the north part, the 
OLT is connected to VOLTHA, an SDN controller such as the ONOS and NEM. These 
components incorporate one another using APIs and Remote Procedure Calls (gRPC) to 
provide seamless communication between VOLTHA, SDN controllers, and the NEM. As 
already mentioned, VOLTHA will activate the OLT and add to its logical switch. Moreo-
ver, the ONUs will also be added to the logical switch by VOLTHA. The SDN controllers 
provide centralized control and management for dynamic traffic steering, automatic fail-
over, and real-time network adjustment. The OTDR, located at the central office, detects 
and localizes fiber faults, while the BER analyzer at the business users’ side captures eye 
diagrams to detect anomalies. Furthermore, in the south part, the users are categorized 
into two different groups: business users and residential users. Usually, business users 

Figure 3. VOLTHA operation architecture.

64



Photonics 2024, 11, 903

3.2. Network Edge Mediator

The Network Edge Mediator (NEM) acts as the mediation layer between the ac-
cess system and the service provider’s back end, providing centralized management and
orchestration capabilities. The NEM supports essential functionalities known as fault,
configuration, accounting, performance, and security (FCAPS): (1) Fault management:
detecting and resolving network faults; (2) Configuration: managing network element
settings; (3) Accounting: collecting usage data for billing and auditing; (4) Performance:
monitoring and analyzing network metrics to ensure service quality; and (5) Security: en-
forcing policies to protect network integrity. This ensures that the NEM facilitates seamless
network control, configuration backup, and restoration [33].

4. Proposed Architecture

This section discusses the proposed smart resilience architecture that not only can
detect and localize fiber faults but also automatically establish connections while waiting
for the engineer to fix the fiber faults in the ODN. In this architecture, we use the SEBA for
Residential Services Central Office Rearchitected as Datacenter (R-CORD) platform concept,
which sits in the middle and provides management and abstraction solutions, enabling
the use of white box hardware. White box hardware reduces both Capital expenditures
(CAPEX) and Operation & Maintenance expenses (OPEX). In this way, we separate the
software from the hardware, enhancing the agility that brings the best of the cloud Network
Function Virtualization (NFV) and SDN together. The OLT and ONUs used in the proposed
architecture are white box hardware, providing a highly flexible and cost-effective solution.
The white box devices feature hardware platforms that can run third-party software, such
as VOLTHA, which offers open programmability and interoperability.

Figure 4 shows the smart resilience architecture in NG-EPON. In the north part, the
OLT is connected to VOLTHA, an SDN controller such as the ONOS and NEM. These
components incorporate one another using APIs and Remote Procedure Calls (gRPC) to
provide seamless communication between VOLTHA, SDN controllers, and the NEM. As
already mentioned, VOLTHA will activate the OLT and add to its logical switch. Moreover,
the ONUs will also be added to the logical switch by VOLTHA. The SDN controllers provide
centralized control and management for dynamic traffic steering, automatic failover, and
real-time network adjustment. The OTDR, located at the central office, detects and localizes
fiber faults, while the BER analyzer at the business users’ side captures eye diagrams to
detect anomalies. Furthermore, in the south part, the users are categorized into two different
groups: business users and residential users. Usually, business users have very strict
SLAs and requirements. Therefore, as shown in the figure, business users such as ONU1
and ONU2 have the resilience area (indicated by the red dashed circle) which will be
covered with the Radio Frequency over Glass (RFoG). The RFoG serves as a critical backup
mechanism for business users in the event of a fiber fault. The RFoG allows RF signals
to be transmitted over fiber optic cables, maintaining compatibility while providing the
benefits of fiber optics, such as higher bandwidth and lower latency. In the proposed
architecture, RFoG is activated as a secondary communication path when the primary fiber
link experiences a fault or anomaly. The failover process is handled automatically by the
ONU and the SDN controller, ensuring that the RFoG backup link is ready to carry traffic
when needed. This mechanism will maintain continuous service, minimize downtime, and
enhance overall network resilience.

In normal conditions, ONUs send/receive data using the primary optical path (λ1, λ2).
The SDN controller monitors the network performance such as Bit Error Rate (BER) and
OTDR trace analysis. Network operators oversee the network using a centralized platform,
i.e., the NEM, which provides dashboards, alerts, and reports for network operators. In our
proposed architecture, edge computing is realized in the NEM. This integration edge com-
puting is to receive incoming data in real-time, identify any potential issues, and perform
real-time analysis and alerts. Edge computing within the NEM can be implemented using
high-performance servers equipped with GPUs for accelerated AI processing. Typically,
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Kafka is used to stream the collected data (telemetry data) from the NEM to the edge
computing device. One study [34] has shown that a Kafka-based framework is highly
scalable and can support up to around 4000 messages per second with low CPU load and
achieve an end-to-end latency of about 50 ms. The AI model deployed at the edge can
detect anomalies in the network, predicting a variety of faults such as fiber cuts, partial
fiber degradation, fiber bending, and faulty splitters. When anomalies are detected, the
NEM communicates with the SDN controller to take corrective actions based on the AI
predictions, such as activating backup conditions.
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When faults or degradations occur in the ODN, including fiber cuts, fiber bending,
and faulty splitters, the AI model identifies these anomalies and initiates a backup-mode
plan. The OLT and ONU are notified via the NEM, and the OTDR is used to localize the
fault within the network of the branches. When the ONU activates the backup mode, the
RFoG becomes activated and ready to send the data to the nearest ONU (backup ONU)
within its coverage. Simultaneously, the SDN controller updates the network configuration
to handle the failover scenario. For instance, if partial fiber degradation is detected, the
SDN controller may initially attempt to reroute traffic within the primary path. In the event
of a complete fiber cut to ONU1, the ONU1 and SDN controller trigger the RFoG backup
mechanism, routing data through ONU2. This multi-layered approach ensures robustness
against various types of failures.

Since there is no direct connection link between the affected ONU and OLT, a mecha-
nism must be used so that the nearest ONU (backup ONU) can differentiate the incoming
data from the OLT and send it to the affected ONU via RFoG. Similarly, the OLT needs to
know that the data comes from the affected ONU. This can be achieved using data tagging
such as a virtual local area network (VLAN).

In the proposed architecture, the VLAN tag table is established in the OLT and ONUs.
This table can be changed over time and updated using the SDN controller, which dynami-
cally updates the VLAN tag table and configurations based on network changes and faults.
This ensures that the OLT and ONUs will map VLAN tags to their respective destinations.
Table 2 shows an example of the VLAN tag table.
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Table 2. VLAN Tag Example.

VLAN Tag Source/Destination Handling Instructions

100 Downstream to ONU1 Forward to ONU1 via RFoG
200 Downstream to ONU2 Process locally (ONU2 data)
101 Upstream from ONU1 Forward to OLT via RFoG

4.1. Intelligence Fault Detection and Localization with Intelligence Diagnosis

As mentioned before, this paper focuses on fault detection and localization through
OTDR trace analysis and the eye diagram evaluation. Figure 5 illustrates the comparison
between normal and fault conditions from these perspectives. Figure 5a shows a clear eye
opening, indicating minimal noise, jitter, and distortion. In contrast, Figure 5b depicts a
situation with anomalies. When there are anomalies in noise, jitter, or distortion, the eye
diagram shows that the eye opening is reduced vertically and horizontally, distorting the
eye shape, which indicates a very high level of noise, higher jitter, and potential issues
with the transmission channel. Figure 5c shows the power attenuation for different ONUs
located at different distances in a normal trace event, while Figure 5d highlights the scenario
where ONU1 experiences a fiber fault. The OTDR trace results for ONU1 show a loss, with
no peak detected, indicating the presence of a fault. Typically, both the OTDR trace analysis
and eye diagram are tested against a predefined mask. Any violation of these masks can
indicate potential fiber faults within the ODN.
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Consequently, in our proposed fault detection and localization approach, we use eye
diagrams to complement the OTDR in identifying subtle degradation in signal quality,
since OTDR alone only detects severe faults such as fiber cuts. The proposed ML model
uses this combination of eye diagram and OTDR data to enhance the accuracy of prediction
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and localization. This leads to improved accuracy and efficiency, especially in identifying
minor or soft faults that would not be captured by OTDR alone.

The proposed framework for fault detection and localization with intelligent diagnosis
is shown in Figure 6, following the study in [12]. There are five main stages to realize the
proposed framework, namely, (1) Data collection: The deployed ODN infrastructure is
periodically monitored using OTDR and BER Analyzer. The generated OTDR traces and
the eye diagram data are sent to the SDN controller; (2) Data processing: The collected data
is pre-processed to normalize and standardize the features to a similar scale; (3) Anomaly
detection: The processed data are compiled into a dataset, which is then used to train
and evaluate a machine learning model designed to detect anomalies in the network;
(4) Fiber fault diagnosis and localization ML model; (5) Mitigation and recovery from
fiber failures plan: The plan will be formulated to address and fix the detected faults.
Alerts are generated to notify engineers and customers of the issues. The SDN controller
facilitates dynamic management and control of the network based on the machine learning
model outputs.
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4.2. Simulation-Based Evaluation

To validate the proposed approach, the simulation-based evaluation setup was built
using OptiSystem 21.0 software. OptiSystem is an innovative, rapidly evolving, and
powerful software design tool that enables users to plan, test, and simulate almost every
type of optical link in the transmission layer of a broad spectrum of optical networks, from
LAN, SAN, and MAN to ultra-long-haul. It offers transmission layer optical communication
system design and planning from component to system level and visually presents analysis
and scenarios [35]. The setup comprises an OLT connected to the 8 ONUs with a passive
splitter. The distance between the OLT and ONUs ranges from 15 to 20 km, with a
feeder fiber length of 15 km and branch lengths varying from 2 km to 7 km. The optical
transmitter frequency is set to 1550 nm with a power of 7 dBm, using NRZ modulation. The
attenuation loss is 0.2 dB/km, and the splitter loss varies from 4 dB to 8 dB. Two scenarios
were simulated: normal and faulty scenarios. For the faulty scenarios, different anomalies
were introduced, including macro-bending, micro-bending, fiber cut, and bad splitter. The
simulation generated 709.054 samples. The data set was constructed, normalized, and
divided into a training (60%), a validation (20%), and a test set (20%) for fault and normal
scenario eye diagrams using OTDR traces, obtained from [12]. It is worth mentioning that
the eye diagrams were used for anomaly detection, while the OTDR was used to localize
the fault. A BER analyzer was placed at the end of each branch to capture the eye diagrams.
The dataset is balanced, with an approximately equal number of samples representing
normal and faulty conditions. To mimic anomalies (such as fiber bending, bad splitter)
and fiber faults, attenuators were placed at the 2 km, 3 km, 5 km, and 7 km branches,
respectively. The termination at the end of the 7 km branch was removed to simulate a fiber
fault. Figure 7 shows a simulation-based evaluation setup for generating faulty branch
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data using OptiSystem in the passive optical network. Furthermore, the normal samples
are derived from the simulation-based evaluation setup conducted without any attenuator.
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Figure 7. Simulation-based evaluation setup for generating faulty branch data using Optisystem.

4.3. Neural Network Architecture and Model Evaluation

We started by preprocessing the data, applying a standard scaler to normalize the
features, and guaranteeing that all features are on a similar scale to enhance the model’s
performance. We then implemented a Multi-Layer Perceptron (MLP) neural network due
to its simpler architecture, which requires less computational power compared with other
machine learning algorithms, making it ideal for high-speed network environments.

As shown in Figure 8, our MLP model has an input layer, followed by three hidden
layers. The input layer has two neurons (for time and amplitude/reflection) (indicated
by blue), while the hidden layers have 8, 16, and 8 neurons, (indicated by green, red, and
green), respectively. All layers use the ReLU activation function, except the output layer
(indicated by blue), which has a single neuron and uses the sigmoid activation function for
binary classification (e.g., fault or no-fault). In total, this model has 313 trainable parameters.
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To assess the model’s performance and robustness, we utilized stratified K-fold cross-
validation, where each fold maintains the same class distribution as the original dataset.
The training was conducted over 40 epochs with a batch size of 256, using 20% of the
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training data as a validation set to monitor for overfitting. Performance metrics such as
accuracy, precision, recall, and F1-score were calculated for each fold. After completing
all folds, we computed the average of these metrics to summarize the model’s overall
performance on unseen data. The model achieved an average accuracy of 0.8149, precision
of 0.8433, average recall of 0.7818, and average F1-score of 0.8100. These results indicate
that the model performs robustly in distinguishing between “Normal” and “Fault” classes.
The high average precision suggests effective minimization of false positives, meaning the
model reliably identifies true positives when making positive predictions. However, the
slightly lower recall indicates that some fault instances may be missed, resulting in false
negatives. The balanced average F1-score reflects a good trade-off between precision and
recall, making the model suitable for applications where both types of errors are of concern.

4.4. Resilience Dynamic Bandwidth Allocation

The Resilience Dynamic Bandwidth Allocation (RDBA) uses an offline scheduler
approach, where the OLT waits for report messages from all ONUs before performing
dynamic bandwidth allocation (DBA). In this way, the OLT will have a holistic view of all
ONU demands, ensuring fairness [36]. In the normal condition where no fault is detected,
the OLT will assign the bandwidth allocation to ONUs based on the following Formula (1):

Bavailable =
RN(Tmax − N·G)

N.512
(1)

where RN is the EPON line rate (in bits per second), Tmax is maximum cycle time (in
milliseconds), N is the total number of ONUs, G is the guard time, and 512 bits is the control
message length. The minimum guaranteed bandwidth (Bmin) of the ONU is calculated with
the following Formula (2):

Bmin =
Wmax . Wreport

Tmax
, (2)

where Wmax is the maximum timeslot of an ONU, Wreport is the reserved window size of
the report message (in bits). We limit each ONU timeslot to prevent upstream channel
monopolization by heavily loaded ONUs. However, the Wmax can also be set according to
the SLA.

When the proposed ML identifies faults or anomalies in the ODN by analyzing data
from OTDR traces and the BER analyzer, the NEM will inform the OLT using the SDN
controller to switch from normal DBA to RDBA. Once the RDBA is activated, the OLT
dynamically adjusts the bandwidth allocation to prioritize the backup ONU, ensuring it can
handle the data from both its traffic and the affected ONU (i.e., the faulty ONU). The backup
ONU receives additional bandwidth, scaled based on predefined factors, to maintain service
continuity for both ONUs. This process ensures minimal service disruption even during
fault conditions, as the RFoG link facilitates the rerouting of traffic from the affected ONU
to the backup ONU.

Figure 9 shows the pseudocode of the proposed RDBA. In the normal condition, the
OLT calculates the available bandwidth (Bavailable) and the guaranteed bandwidth (Bmin)
in each cycle. Under normal conditions in each cycle, the ONU gets the guaranteed
bandwidth. If the guaranteed bandwidth (Bmin) is greater than the reported bandwidth
from the queue, the granted bandwidth (GRANT_ONUi) is set to the queue’s requested
bandwidth. Otherwise, the granted bandwidth is set to the remaining Bmin. The remaining
Bmin is then updated by subtracting the granted bandwidth. In the restoration plan, when a
fault occurs, the OLT will adjust for the backup ONU. If the current ONU is a backup ONU,
the OLT sets the protection VLAN tag for the affected ONU. The Bmin is then calculated for
the backup ONU, but it will be multiplied by alpha (α). Here, α represents the additional
bandwidth allocated to the backup ONU to ensure it can handle the increased traffic, as the
affected ONU now routes all data through the backup ONU via RFoG. If the current ONU
is not a backup ONU, the normal condition function is applied. Moreover, to verify that

70



Photonics 2024, 11, 903

the total requested bandwidth from ONUs does not exceed Bavailable due to the addition of
variable α, the total_requested_bandwidth is calculated as follows (3):

∑
i∈activeONU

GRANT_ONUi + ∑
i∈backupONU

GRANT_ONUi. (3)
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5. Performance Evaluation

To validate the proposed model, we implemented the NG-EPON architecture using
the OPNET simulator. All key components and protocols of NG-EPON, such as dynamic
bandwidth allocation, cycle time, transmission capacity, guard time, etc., are fully modeled.
The proposed system model consists of 32 ONUs and one OLT. The downstream and
upstream channels between the OLT and ONU are configured to 1 Gbps. The distance
from the OLT to the ONUs is uniformly distributed over 10 to 20 km. To generate Assured-
Forwarding (AF), Best-Effort (BE), and Tactile-Internet (TI) traffic, we employ self-similarity
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and long-range dependence, generating highly bursty traffic with a Hurst parameter of
0.7 [17]. The packet size is uniformly distributed between 512 and 12,144 bits. The Expedited
Forwarding (EF) traffic is modeled using a T1 circuit-emulated line with a constant frame
rate (1 frame/125 µs) and a fixed packet size of 560 bits, which occupies approximately
14% of the total upstream bandwidth. The remaining traffic is distributed as 50% AF, 20%
BE, and 30% TI for scenario I, and 40% AF, 20% BE, and 40% TI for scenario II. To evaluate
the proposed mechanism, we construct different scenarios: (1) no-fault, (2) one fault, and
(3) three faults.

The focus of the simulation is to evaluate the system’s performance after faults are
detected. Fault scenarios with one fault and three faults were introduced, and the system’s
performance was measured in terms of key metrics, such as mean packet delay, system
throughput, packet drop rate, and bandwidth waste. These measurements help validate the
resilience of the architecture in ensuring performance guarantees, particularly in terms of
low-latency requirements for real-time traffic such as Tactile Internet (TI). While the optical
network’s physical characteristics (e.g., power levels, impairments) were not the focus of
this simulation, the system response to fault scenarios was crucial in demonstrating the
architecture’s ability to maintain service continuity and minimize disruption. To further
validate the system, we compared the performance of the proposed RDBA mechanism
against a traditional DBA approach, which does not incorporate fault-tolerant features. In
the baseline DBA approach, bandwidth is allocated without any resilience mechanisms to
manage fault scenarios. The simulation parameters are summarized in Table 3.

Table 3. Simulation parameters.

Parameters Value

Number of ONUs in the System 32
Upstream/downstream link capacity 1 Gbps
OLT-ONU distance (uniform) 10–20 km
Maximum transmission cycle time 1 ms
Guard time 1 µs
DBA computation time 10 µs
Control message length 0.512 µs
Number of Faults 1, 3 Faults
Traffic Proportion of Expedited Forwarding (EF) 14% of link capacity
Traffic Proportion of AF, BE, and TI Scenarios (50%:20%:30%)/(40%:20%:40%)

5.1. Mean Packet Delay

Figure 10 shows the mean packet delay of Expedited Forwarding (EF), Assured
Forwarding (AF), and Tactile Internet (TI) with different traffic proportions. Four scenarios
are depicted: Normal: delay of no faults in the network (blue line); 1Fault_Average: delay
with one fault in the network, which represents a single fault occurring in one branch of
the ODN; 3Fault_Average: delay with three faults in the network, representing multiple
faults distributed across different branches of the ODN; 1Fault_BackupNode: delay at a
specific backup node handling the affected ONU with one fault; and 3Fault_BackupNode:
delay at specific backup nodes handling the affected ONUs with three faults.

As seen in Figure 10a, the EF delay under normal conditions increases gradually
with the traffic load, showing an expected behavior where higher traffic leads to higher
delay. However, in the 1Fault_Average and 3Fault_Average scenarios, when the traffic
loads are below 70%, the delay remains close to the normal operation but increases more
significantly as the traffic load exceeds 70%. This highlights the compounded effect of
multiple faults on the network performance. The green lines (1Fault_BackupNode and
3Fault_BackupNode) show that the EF delay at specific backup nodes handling the affected
ONUs is slightly higher than the normal operation but much lower than the 1Fault_Average
line, demonstrating the effectiveness of the backup node in mitigating the impact of the
faults on the affected ONUs.
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Figure 10. Mean packet delay of EF, TI, AF and TI traffic.

In terms of TI delay, shown in Figure 10b, when there is one fault in the network, the
1Fault_BackupNode and 3Fault_BackupNode manage to stay close to the normal operation
levels, even at higher traffic loads. This again demonstrates the effectiveness of the backup
node in mitigating the impact of the fault, ensuring that TI delay remains well below 2 ms
up to 90% and slightly exceeds 2 ms at 100% load. In the 3Fault_BackupNode scenario,
the delay remains relatively low at moderate traffic loads but spikes dramatically beyond
80% load, reaching up to 5 ms at 100% load. This indicates that while backup nodes help
manage the delay better than without them, multiple faults still pose a significant challenge,
especially under high-traffic conditions.

Figure 10c,d illustrate the AF and BE delay, respectively. AF delay, much like EF, shows
a minimal increase with rising traffic loads in the normal scenario. BE traffic, typically given
the lowest priority, shows non-congested conditions under normal conditions. However,
as the traffic load increases, the limited available resources are allocated preferentially to
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higher-priority traffic; therefore, once the traffic load surpasses 70%, the resources available
for AF and especially BE packets become increasingly constrained. When faults are present,
resources are redistributed to maintain service levels for critical applications, exacerbating
delays for AF and BE traffic.

Consequently, the proposed RDBA mechanism successfully ensures that delays for
EF and TI packets remain below critical thresholds, i.e., below 2 ms [4,37], maintaining
high QoS for real-time and tactile internet applications. The results show that under
normal and fault conditions, the RDBA can keep the delays well managed. The RDBA
prioritizes higher-priority traffic, which can lead to increased delays for AF and BE packets
under fault conditions. The simulation results highlight the importance of having a robust
DBA mechanism that incorporates resilient AI-enhanced fault detection and recovery to
effectively manage delay, particularly for high-priority traffic such as EF and TI packets.

5.2. System Throughput

Figure 11 depicts the system throughput under normal and fault conditions. The
system throughput of the network demonstrates a consistent increase as the traffic load
rises, indicating the network’s robust capacity to handle escalating demands. This pattern
shows an efficient RDBA that successfully adapts to increasing traffic demands. Moreover,
in fault conditions (1Fault and 3Fault Averages), there is an observed increase in throughput
efficiency compared with normal conditions. This is because the overhead communication
required for inactive or faulty ONUs decreases, allowing more bandwidth to be allocated
to active connections, thus improving the overall efficiency of the NG-EPON systems.
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Figure 11. System throughput.

5.3. Packet Drop Rate

The packet drop rate shown in Figure 12 shows that the drop rates remain minimal
at up to 70% traffic load across all scenarios, indicating healthy network functionality
under moderate loads. However, as the load exceeds 80%, packet drop rates begin to
rise, especially under conditions of three faults. The packet losses occur predominantly
in AF and BE traffic categories, while EF and TI packets, given the highest priority in the
network, experience no packet drop. This differentiation in packet treatment highlights the
network’s strategic prioritization, ensuring that critical real-time applications dependent on
EF and TI traffic maintain uninterrupted service even as the system approaches or reaches
full capacity.
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5.4. Bandwidth Waste

Figure 13 showcases the trend of decreasing bandwidth waste as the traffic load
increases with various scenarios including normal conditions and faults. At lower traffic
loads, the bandwidth waste tends to be a surplus of allocated but unused bandwidth,
leading to higher waste. As the traffic load increases, the demand for bandwidth rises,
making the RDBA allocate nearly all available bandwidth to meet this demand, thereby
minimizing waste. Thus, the RDBA demonstrates a robust capability to optimize resource
management, particularly crucial when the network load reaches full capacity.
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The results from the comparison show that the RDBA mechanism outperforms the
baseline DBA, particularly under fault conditions. While the baseline DBA experiences
significant delays in high-priority traffic (EF and TI) during fault scenarios, the RDBA
mechanism mitigates these delays using backup nodes, ensuring that critical traffic main-
tains low-latency performance even when multiple faults are present. While the RDBA
performs better in handling faults and maintaining service continuity, it introduces some
complexity in terms of system management and leads to higher delays for low-priority
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traffic (AF and BE), particularly under high-load conditions. This trade-off highlights the
need for balancing fault tolerance and resource management in heavily loaded networks.

6. Conclusions

In this paper, we propose a Smart Resilience in an NG-EPON AI-Enhanced fault
tolerance system, trained on an NG-EPON topology to detect and localize faulty branch
anomalies. The topology used for simulations consists of 32 ONUs connected to a central
OLT, with fiber distances ranging from 10 to 20 km, representing a typical NG-EPON
deployment. Faulty branch anomalies are detected using a combination of OTDR trace
analysis at the central office and BER analysis at the ONUs, and the AI model identifies
faults within the network. The proposed architecture and RDBA mechanisms perform
effectively under different scenarios, including normal, one fault, and three faults. We
validated the performance of the proposed method using simulation-based evaluation data
derived from NG-EPON systems and the OPNET simulator. Our AI model is based on
a neural network with three hidden layers, trained using datasets generated from OTDR
traces and eye diagrams. Our simulations demonstrate that the proposed architecture
and mechanism can maintain the system’s performance even in the presence of faults. In
future work, we aim to enhance our AI model’s capability to operate in a more complex
and autonomous environment, improving its ability to adapt dynamically to real-world,
large-scale NG-EPON topologies. Furthermore, we will include a more detailed simulation-
based evaluation scenario to fully quantify the benefits and limitations of our model in
real-time fault scenarios.
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Abbreviations

5G Fifth-generation
AF Assured-Forwarding
AI Artificial Intelligence
API Application Programming Interface
BE Best-Effort
BER Bit Error Rate
CAPEX Capital expenditures
EF Expedited Forwarding
EPON Ethernet Passive Optical Network
FBG Fiber Bragg Granting
FCAPS fault, configuration, accounting, performance, and security
FCC Federal Communication Commission
gRPC Remote Procedure Calls
H2H Human-to-Human
H2M/R Human-to-Machine/Robot
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HITL Human-in-the-Loop
IoT Internet of Things
M2M Machine-to-Machine
ML Machine Learning
MLP Multi-Layer Perceptron
MTTR Mean Time to Repair
NEM Network Edge Mediator
NFV Network Function Virtualization
NG-EPONs Next-Generation Ethernet Passive Optical Networks
NNI Network-to-Network Interface
ODN Optical Distribution Networks
OLT Optical Line Terminal
OMCI ONU Management and Control Interface
ONOS Open Network Operating System
ONU Optical Network Unit
OPEX Operation and Maintenance Expenses
OTDR Optical Time-Domain Reflectometry
PON Passive Optical Networks
QoS Quality-of-Service
R-CORD Residential Services Central Office Rearchitected as Datacenter
RDBA Resilience Dynamic Bandwidth Allocation
RFoG Radio Frequency over Glass
RR Reference Reflector
SDN Software-Defined Networking
SEBA SDN-Enabled Broadband Access
SLA Service Level Agreement
TI Tactile Internet
UNI User Network Interface
VLAN Virtual Local Area Network
vOLT Virtual OLT
VOLTHA Virtual OLT Hardware Abstraction
XR Extended Reality
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Abstract: In recent years, visible light positioning (VLP) techniques have been gaining popularity in
research. Among them, the scheme of using a camera as a receiver provides a low-cost, high-precision
positioning capability and easy integration with existing multimedia devices and robots. However,
the pose changes of the receiver can lead to image distortion and light displacement, significantly
increasing positioning errors. Addressing these errors is crucial for enhancing the accuracy of
VLP. Most current solutions rely on gyroscopes or Inertial Measurement Units (IMUs) for error
optimization, but these approaches often add complexity and cost to the system. To overcome these
limitations, we propose a 3D positioning algorithm based on an attention mechanism convolutional
neural network (CNN) aimed at reducing the errors caused by angles. We designed experiments and
comparisons within a rotation angle range of ±15 degrees. The results demonstrate that the average
error for 2D positioning is within 5.74 cm and the height error is within 3.92 cm, and the average
error for 3D positioning is within 6.8 cm. Among the four groups of experiments for 3D positioning,
compared to the traditional algorithm, the improvements were 7.931 cm, 15.569 cm, 6.004 cm, and
16.506 cm. The experiments indicate that it can be applied to high-precision visible light positioning
for single-light imaging.

Keywords: CNN; VLC; VLP; OCC; indoor positioning; attention mechanism

1. Introduction

Over the years, positioning technology has played a crucial role in various fields such
as transportation, production, navigation, and daily life. In outdoor settings, wireless
signals can be transmitted in open spaces, a challenge often addressed using technologies
like the Global Positioning System (GPS). However, the performance of a GPS for indoors
is significantly degraded due to transmission hindrance. With indoor positioning widely
applied in spaces such as shopping malls, museums, warehouses, and parking lots, the
demand for low-cost, high-precision positioning technology has rapidly increased [1].
Currently, indoor positioning methods include Wireless Fidelity (Wi-Fi), Zigbee, Bluetooth,
Ultra-Wideband (UWB), Infrared (IR), ultrasound, and Radio-Frequency Identification
(RFID) [2]. With the widespread adoption of LED lighting in recent years and considering
factors such as infrastructure coverage, cost, positioning accuracy, information security,
and abundant spectrum resources, VLP has emerged as a research hotspot [3].

Visible light positioning systems require either multiple lights or a single light to be
realized. Work [4–9] proposed positioning algorithms based on multiple lights, inferring
position information by leveraging the geometric relationships or deformations between
lights to achieve indoor positioning. However, the multiple light positioning system is
demanding in terms of layout and lacks robustness and flexibility. Some of the works
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also discuss single-light positioning, but it does not guarantee high precision or requires
high-cost receiving devices. In [10,11], a positioning method based on a single LED with
a beacon was proposed, utilizing the fundamental principle of geometric relationships
among multiple lights for auxiliary positioning. Work [12,13] proposed a method using
binocular cameras and a single light to obtain the position, but it incurs high application
costs and loses the good adaptability of monocular camera applications. We proposed a
trilateral positioning method using a single rectangular light in previous work [14].

During positioning, the unavoidable random angles of the receiver can cause errors
in the results. In work [2,3,15–17], algorithms relying on a single light and gyroscopes or
IMU sensors for positioning were proposed. Work [16] proposed a single-light positioning
method using PD, camera, and gyroscope. It used a hybrid RSS/AOA-based algorithm to
achieve 3D positioning. In work [18], the gyroscope angle information is used to reconstruct
the image and reduce the positioning error caused by the change of camera pose. However,
it only tested for an angle of five. In practical application scenarios, the receiver often
encounters significant angles. In summary, most of the single-light positioning methods
rely heavily on sensors to handle the smaller angular changes at the receiver.

So, based on the above analysis, we propose a high-precision 3D positioning algorithm
based on single-light imaging. The main contributions of this study are as follows:

1. We use the multi-head attention mechanism (MHA) and residual convolutional neural
network (resnet50) to form a new model MHA-Resnet50, which effectively avoids
model overfitting and makes training more efficient.

2. The dependencies between image features and pose are automatically learned by the
model, and the predicted coordinates are regressed.

3. The reduced use of IMU sensors simplifies the algorithm and enhances the robustness
of the positioning system.

Accurate positioning at a ±15 angle is achieved with a low-resolution image of
1280 × 720. The results are better compared to the proposed methods of works [18,19].

The rest of this paper is organized as follows. Section 2 briefly describes the system
and analyzes the issues that need to be addressed. Section 3 introduces the proposed
MHA-Resnet50. Section 4 describes the experimental environment, and how the model
is trained. The positioning results of the model are also analyzed in comparison with the
original algorithm. Finally, Section 5 concludes the paper.

2. Visible Light Positioning System and Issue Analysis
2.1. System Overview

Figure 1 illustrates an indoor VLP system utilizing a single LED. The transmitter
consists of a rectangular LED and a signal modulator mounted on the ceiling parallel to
the floor. Each LED is assigned a unique ID associated with its actual spatial position, and
these correspondences are stored in a database. After modulation processing, the LED
repetitively transmits its ID. The receiver side is a camera connected to a computer for
capturing video frames. Through image frame processing, the LED ID can be decoded
and the corresponding LED world coordinates will be identified. At the same time, the
3D relative coordinate position of the camera with respect to the LED can be calculated by
MHA-Resnet50. The specific modeling method and prediction process of MHA-Resnet50
are illustrated in Section 3. Next, the spatial coordinate position of the camera can be
calculated by combining the world coordinates of the LED.
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Figure 1. Visible light positioning system.

2.2. Foundation

In order to conduct the analysis easily, in this paper, the complex nonlinear model
of the camera lens system is simplified to a simple pinhole camera model. As shown in
Figure 2, the relationship between the world coordinate system (Xw, Yw, Zw) and the pixel
coordinate system (u, v) can be expressed as (1):
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where Zc represents the Z coordinate of the camera in the world coordinate system,
(Xw, Yw, Zw) is its actual position in space, and u and v are the coordinates of the point
on the image. Focal length f and physical dimensions dx, dy of the pixels constitute the
intrinsic matrix that connects the pixel coordinate system to the camera coordinate sys-
tem [14,20]. Similarly, translation vector T and rotation matrix R constitute the extrinsic
matrix that connects the camera to the world coordinate system. R is given by (2).
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α, β, γ denote the pitch, roll, and azimuth.
The original positioning algorithm is implemented based on the imaging principles

shown in Figure 2. Its 3D positioning is explained below.
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Figure 3a is an image of visible light communication which contains much positional
information. The pixel coordinates (ucen,vcen) of the center of the light mass can be obtained
directly in the image. Its image coordinates (xcen,ycen) can be obtained by Equation (3).


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x
y
1


 =




1
dx 0 u0
0 1

dy v0

0 0 1


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−1


u
v
1


 (3)

Then, the length of dcen can be obtained by the calculation of Equation (4).

dcen =
√

x2
cen + y2

cen (4)

Figure 3. Original positioning principle; (a) is the principle of 2D positioning, (b) is the principle of
height calculation.

According to the image coordinates of the light, the pinch angle β in Figure 3a can be
calculated. After the length dcen and the angle β are known, the 2D coordinate of the light
relative to the camera is obtained utilizing the imaging relation in Figure 2.

Figure 3b illustrates a conventional method of height calculation. The four outer
vertices A(x1, y1, z1), B(x2, y2, z2), C(x3, y3, z3), and D(x4, y4, z4) of a rectangular light lie in
a plane with equal Z coordinates. The corresponding projected points of the four vertices
in the image are A1(x11, y11), B1(x12, y12), C1(x13, y13), and D1(x14, y14). According to the
monocular camera imaging geometry, the vertical distance H between the rectangular light
and the camera lens can be calculated using Equation (5):

H =
f d

max(di)
, (i = 1, 2, 3, 4) (5)

where di is the edge length of the rectangular light in the image. The camera deflection
angle causes the geometric projection of the rectangular light to deform, so the maximum
di is chosen to minimize the error.

From the above description, it is clear that 3D positioning functionality can be achieved
using a camera and a rectangular LED. In Section 4 of the experiment, we conducted a com-
parative analysis between this original algorithm and the proposed algorithm, providing a
comprehensive evaluation.
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2.3. Issue Analysis

The above positioning method is implemented under the ideal condition where the
receiver remains level with the light, as shown in Part 2 of Figure 4. The imaging position
at this point correctly reflects the relative positions of camera and light. However, when an
angular deflection of the receiver occurs, the imaging of the light in the image undergoes a
positional shift and deformation. This results in positioning errors, as shown in Figure 4,
Part 1 and Part 3. The receiver angle deviation can have an impact on the 2D position and
altitude calculation, which in turn leads to errors in 3D positioning. This is detailed and
analyzed below.

Figure 4. Light position information in the pixel matrix; 1 is left deflection, 2 is normal, 3 is down
deflection.

2.3.1. D Error

In order to analyze the specific effects, three scenarios are constructed in Figure 5.
The position of the LED in the camera coordinate system reflects the relative position with
respect to the camera. Therefore, analyzing the position error of the LED in the camera
coordinate system reflects the position error of the camera.

Figure 5. Coordinate change due to angle change; (a) is initial scene, (b,c) are after rotation.

Figure 5a shows that the initial coordinates of the LED in the camera coordinate sys-
tem are P(X, Y, Z) without any rotation around the Y-axis. The LED coordinates could be
various because of the camera’s rotation angle. Figure 5b,c shows two rotation scenarios
in different directions. From Figure 5b to Figure 5a, the coordinates of the camera coordi-
nate system of the LED are changed from P1(X1, Y1, Z1) to P(X, Y, Z). The mathematical
equation is expressed as follows.
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After the camera is rotated, the change in height between it and the LED is so slight
that it can be ignored. Therefore, the 2D coordinate error obtained before and after camera
rotation can be expressed as follows.

Eerror =
√
(X1 − X)2 + (Y1 −Y)2 (7)

2.3.2. Height Error

When the angle of the receiver is changed, both perspective transformations and affine
transformations result in the distortion of the light image. When projecting a rectangle
in three-dimensional space onto a two-dimensional image plane, the lengths, angles, and
coordinate positions of the edges change due to rotation and scaling.

Combining the 2D error with the height error, we can mathematically represent the
3D positioning error as (8).

Eerror =
√
(X1 − X)2 + (Y1 −Y)2 + (Z1 − Z) (8)

2.4. Solution Concept

Above, we describe the basic optical imaging positioning algorithm and the effect
of the angle on its results. The implementation of these original algorithms is based on
imaging principles, which only use the modulated LEDs as beacons for assisted positioning,
and do not really incorporate the characteristics of optical camera communication.

For this reason, we started with the signal frames and found properties that allow
for positioning. As shown in Figure 6b, we increase the brightness and exposure of the
original frame. It was found that the light signal stripes were still present outside the area
of the LED, just hard to distinguish with the naked eye. The light intensity of the stripes
in the picture is diffusely attenuated, with different attenuation characteristics at different
positions. The light intensity weakening in the picture is reflected in the gray value of the
reduction, based on the characteristics of the change in grayscale for positioning. As shown
in Figure 6c, we change the camera pose and the imaging areas in the signal frame, which
undergo deformation. Through the principles of perspective transformation and affine
transformation, it is known that different deformations represent different camera poses
and are regular.

Figure 6. Images of different parameters; (a) is the original image, (b) brightness up by 20, exposure
up by 5, (c) is rotated at an angle of 10.

Combining these findings, we consider fusing two features, light intensity and imaging
distortion, to achieve positioning that can cope with angular variations. These features are
difficult to extract using conventional image-processing algorithms and the workload is
enormous. For this reason, we consider extracting these features using a convolutional
neural network and propose the MHA-Resnet50 model.
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3. Advanced MHA-Resnet50 Model

As shown in Figure 7, the backbone network of the model is Resnet50, which incorpo-
rates a multi-head attention mechanism in the middle. The input to MHA-Resnet50 is the
signal frames from the camera at multiple angles and coordinates. After extracting features
by multilayer convolution, a regressor is used to predict the 3D coordinates of the camera.
Its implementation is described in detail below.

Figure 7. MHA-Resnet50 model structures.

Initially, signal frames with a resolution of 1280 × 720 are normalized, activated, and
subjected to max-pooling operations.

In STAGE 1, the model primarily extracts low-level features, with feature map sizes
large enough to capture rich spatial detail information.

In STAGE 2, the model reduces the spatial size of the feature maps while increasing
the number of channels. This enables the identification of more complex shape features in
the light signal regions of the frames.

In STAGE 3, the model further increases the number of channels and compresses the
spatial size of the feature maps.

After STAGE 3, the network has formed a rich set of abstract features. Introducing
the multiple attention mechanism in this stage can effectively highlight the light intensity
change features by assigning weights. It helps the model to better understand the key
information in the image.

In STAGE4, the feature maps are then subjected to a convolution operation. A global
average pooling process is then performed to reduce the number of model parameters. To
further enhance the generalization ability of the model and reduce the risk of overfitting,
we add the dropout module. It can randomly drop some features to reduce the model’s
dependence on specific features [21].

Next, the feature vectors are linearly processed by the FC layer and passed to the
regressor xgboost, which finally predicts the 3D coordinates.

3.1. Resnet 50 Model

ResNet50 is a classic convolutional neural network structure in the field of deep
learning belonging to the category of residual networks. ResNet50 introduces the residual
connection mechanism, which establishes direct connections between different layers.
This allows features learned in shallower layers to be passed directly to deeper layers.
Consequently, the gradient can still propagate efficiently even as the network becomes
deeper. Thus, the problem of vanishing gradient is avoided and the stable training of deep
neural networks is ensured.

3.2. Multi-Head Attention Mechanism

This part provides the motivation for using the multi-attention mechanism in the
RenNet50 backbone network through test results and details how the mechanism reduces
the risk of overfitting and improves the training efficiency.
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3.2.1. Motivation

As shown in Figure 8a, when ResNet50 is used to process signal frames to extract
features, its convolution operation uses a convolution kernel to slide over the image and
compute a weighted sum of the partial area to extract features. As the convolutional layers
are stacked layer by layer, high-level features are gradually extracted from the low-level
features. In Section 4.2.4, we used the ResNet50 model for training and extracted features
from the convolutional layer to draw feature maps and heat maps. The results show that
the model only extracts the deformation features of the imaging region and fails to extract
the change features of the light intensity. In order to extract both features simultaneously,
we use the attention mechanism.

Figure 8. Convolution; (a) is ResNet50, (b) is MHA-ResNet50.

Attentional mechanisms simulate the perceptions of cognitive functions that are
integral to humans. An important characteristic of perception is that humans do not
process all information immediately. Instead, we selectively focus on a portion of the
information when and where it is needed. Meanwhile, other perceptible information is
ignored [22]. This mechanism can help the neural network to process the input data more
efficiently. It can distribute different attentional weights between different positions or
different features. Consequently, it improves the model’s ability to perceive and understand
the input data and its representation [23].

As shown in Figure 6, a large number of light intensity features are not obvious without
manually adjusting the image parameters. Therefore, we need to assign higher weights to
light intensity features during feature extraction. Meanwhile, as shown in Figure 6b, the
feature area of the signal black and white stripes is large. If we want to fuse the deformation
features and the light intensity features of the stripes to jointly characterize the position
information, we need to extract these features at the same time and enhance the model’s
understanding of the dependency between the long-range features. For this purpose, we
use the multi-head attention mechanism. As shown in Figure 8b, the multi-head attention
mechanism uses multiple convolution kernels simultaneously to acquire features from
different positions of the image while performing convolution. It will adaptively assign
attentional weights based on the input features, and it can assign higher weights for features
with insignificant light intensity variations. In Section 4.2.4, we used the MHA-ResNet50
model for training and extracting features from the convolutional layer to draw feature
maps and heat maps. The results showed that a large number of light intensity features in
the signal frames were extracted.

3.2.2. Multi-Head Attention Principle

In this research, we use the 8-head attention mechanism, the principle of which is
shown in Figure 9.
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Figure 9. Multi-head attention principle.

The essence of a multi-head attention mechanism is indeed the combination of multi-
ple self-attention mechanisms. Each attention head independently computes self-attention,
capturing different features and contextual information within the input sequence. Through
concatenation and linear transformation, these information streams are integrated, thereby
enhancing the model’s expressive power and performance. In each self-attention mech-
anism, there exists a query matrix Q, a key matrix K, and a value matrix V. The specific
implementation of the self-attention mechanism is the Scaled Dot Product Attention (SDA).
Its input is a four-dimensional tensor X(N, C, H, W). X is linearly transformed to Q, K, and
V, respectively, by Equation (8):

Q = XWQ, K = XWK, V = XWV (9)

where WQ, WK, and WV are the weight matrices of queries, keys, and values with dimen-
sions C× dk, C× dk, and C× dv. Subsequently, the dot product between the query and
the key is computed and divided by a scaling factor

√
dk to prevent the value from being

too large.

A =
QKT
√

dk
(10)

The dot product results are normalized using softmax to obtain the attention weight
matrix.

S = so f tmax(A) (11)

The summation is weighted to obtain the expression for attention.

Attention = SV (12)

Then, the SDA is collapsed and expressed as follows.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (13)

The concept of the multi-head attention mechanism is to employ the different param-
eters WQ, WK, and WV to successively perform linear transformations on the matrices
Q, K, and V. The results of these linear transformations are then input into the SDA. The
computation result is denoted as headi, and its expression is given by the following.

headi = Attention(Qi, Ki, Vi), i = 1, . . . , h (14)
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The computed headi are concatenated into a matrix. It is transformed linearly with the
matrix Wo to convert the output of the multi-head attention into a four-dimensional tensor
Z. The mathematical representation is as in (17), where h is the number of heads.

Z = Mutilhead(Q, K, V) = Concat[head1; head2; . . . ; headh]Wo (15)

4. Experiment and Discussion
4.1. Laboratory Testbed

Our algorithm has been tested in an experimental environment. As shown in Figure 10a,
all experiments were conducted in an indoor enclosed area of 2.6 m × 2.6 m × 2.2 m. The
ground test area was 1 m × 1 m, divided equally into a 10 cm × 10 cm grid with a total of
121 test points. As shown in Figure 10b, to improve the efficiency of the test, we developed
the operator interface for the VLP test using Python. The interface allows for the real-time
intuitive monitoring of parameter changes during LED recognition and positioning.

Figure 10. Testbed; (a) is testbed, (b) is operator interface.

The transmitter device of the testbed consists of a rectangular LED and a signal
modulation module, and is mounted parallel to the ground above the center of the test
area. The signal modulation module consists of several off-the-shelf modules, specifically
expressed as follows: the microcontroller (MCU) compiles the binary modulation signal
into the digital-to-analog conversion module (DAC) after the DAC processing output
analog signal. This signal is then fed into the inverting input of the operational amplifier.
The MCU inputs a DC bias voltage to the DAC and then inputs the DC bias to the positive
phase input of the operational amplifier. The modulated signal and the DC bias are coupled
and amplified by the operational amplifier, ensuring that the signal voltage amplitude
reaches the operating voltage of the LED. An on-off keying (OOK) modulation scheme is
employed to generate control signals for modulating the LED. The detailed parameters of
the LED and the modules are shown in Table 1.

Table 1. Parameters of transmitter circuit.

Controller DAC Module Power/W Voltage/V Dimension/MM

ATmega328P-PU MCP4725 10 12 160 × 160

Boost Module Buck Module NMOSFET Operational Amplifier

LM2587 LM2596SDC TRFB4110 OPA551

The camera at the receiver was connected to the computer. Before conducting the test,
we calibrated the camera so that it could correctly identify the correct position of the LED
in the image. Its detailed parameters are shown in Table 2.
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Table 2. Parameters of camera.

Resolution Pixel Size Image Sensor Format F

1280 × 720 2.9 µm × 3.0 µm IMX335 JPG 2.2 mm

Shutter Brightness Contrast Gamma value Image gain

1/2.8CMOS 26 61 500 128

4.2. Model Training Results and Comparative Analysis
4.2.1. Model Parameter Setting

In this study, we built the basic software environment using Torch 2.0.1, Python 3.9,
Torch-vision 0.13, and Torch-audio 0.12. The model training was performed on an NVIDIA
RTX 4090 graphics processing unit. To ensure consistency and fairness in comparison, the
model training parameters were uniformly set. Specifically, we set the batch size to 32 and
employed the Adam optimizer for all model training processes. The initial learning rate
was set to 0.002. All experimental models underwent training for 200 epochs, during which
the probability p of the dropout module was set to 0.3.

In the data preprocessing stage, two image enhancement operations were used to
improve the performance and robustness of the model. First, a normalization operation
was used to normalize the image data to a range with a mean of [0.485, 0.456, 0.406] and a
standard deviation of [0.229, 0.224, 0.225]. This ensures that the data distribution is close to
zero mean and unit variance, thus accelerating the convergence of model training. Next,
we employed a color dithering operation to increase the diversity of the data. This was
achieved by randomly adjusting the brightness, contrast, saturation, and hue of the image.
These adjustments improve the model’s ability to adapt to different lighting conditions,
shooting environments, and color distributions. The combination of the two operations
can effectively enhance the feature representation of image data.

To evaluate the performance of the MHA-Resnet50 model and assess the magnitude
of positioning errors, we utilized the root mean square error (RMSE) as the loss function.
It provides a comprehensive measure of prediction error, and a reduction in RMSE can
improve the model’s prediction accuracy. In this study, its mathematical expression is given
as follows:

ERMSE =

√√√√ 1
N

N

∑
i=1

[(
xi

true − xi
pred

)2
+
(

yi
true − yi

pred

)2
+
(

zi
true − zi

pred

)2
]

(16)

where N is the number of samples per point, (xi
true, yi

true, zi
true) is the true coordinates of the

ith sample, and (xi
pred, yi

pred, zi
pred) is the predicted value of the model for the ith sample.

4.2.2. Data Acquisition

We fixed the LED at a height of 160 cm and 180 cm, respectively. The pitch angle α
of the camera was fixed to 0 and the roll angle β was set to −15, −10, −5, 0, 5, 10, 15 at
each height, respectively. Finally, a total of 14 sets of data were taken, each set of data had
121 collection points and each point captured 50 frames of images with a resolution of
1280 × 720. A database was created by recording the coordinate position of the images and
the information of the rotation angle. The label of the ith point is noted as Cα:

Cα = (xα,i, yα,i, zα,i) (17)

where i = 1, . . . , 121. In the model training process, the first 40 images of each point are
taken as the training set, totaling 67,760 images, and the last 10 images are taken as the
validation set, totaling 16,940 images.
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4.2.3. Training Results and Comparison

In this part, we analyze the loss curves of the MHA-Resnet50 and set up two sets of
tests to compare with multiple models.

In the first group of tests, we compared the MHA-Resnet50 model with widely
used convolutional neural network architectures including DenseNet121, MobileNetv2,
ResNet50, and ResNet101. Based on the RMSE curves in Figure 11a and the MSE and MAE
parameters in Table 3, we found that the proposed MHA-Resnet50 has a large advantage
over the other four models. The RMSE is reduced by about 14.478 cm, 14.318 cm, 13.559 cm,
and 14.855 cm, respectively. To explore the optimization effect of the multi-head atten-
tion mechanism, we incorporated the MHA attention mechanism into the four network
structures and conducted the second group of comparative tests.

Figure 11. RMSE comparison; (a) is the first group, (b) is the second group.

Table 3. Model training results of first group.

Model MSE RMSE MAE

DenseNet121 262.41043 16.199087 18.95478
MobileNetv2 257.25336 16.03912 18.806831

Resnet50 233.47543 15.279902 17.386572
Resnet101 274.74146 16.575327 19.563368

MHA-Resnet50 2.960944 1.7207394 0.24662831

The results of the second group of tests are in Figure 10b and Table 4. It can be found that,
after incorporating the attentional mechanism, the RMSE of the four models was reduced
by 13.696 cm, 12.49 cm, 13.559 cm, and 14.843 cm, respectively. This demonstrates that
the addition of the attention mechanism can improve the performance of different models.
Moreover, our proposed MHA-Resnet50 exhibits the best coordinate prediction performance.

Table 4. Model training results of second group.

Model MSE RMSE MAE FLOPs Params

MHA-DenseNet121 6.2677374 2.503545 1.1392384 2.90GFLOPs 6.96 M
MHA-MobileNetv2 12.592225 3.5485525 2.3558052 326.46MFLOPs 2.23 M

MHA-Resnet50 2.960944 1.7207394 0.24662831 4.13GFLOPs 23.52 M
MHA-Resnet101 3.032443 1.7413912 0.29298633 7.87GFLOPs 42.51 M

4.2.4. Comparison and Analysis of Feature

In this part, we further compare the advantages of using the multi-attention mecha-
nism and verify that MHA-Resnet50 is better than other well-established models.

As shown in Figure 12, we used the eight models trained above to process a frame
and plotted the feature map and heat map before and after using the multi-head attention
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mechanism, respectively. The feature map consists of the superposition of the features of
multiple channels in the convolutional layer of the model, which represents the various
features captured in the image. The heat map is a further interpretation of the feature
map, which visualizes the degree of attention paid by the model to the different regions of
the input image. In the feature map and heat map, the color changes from blue to red to
indicate that its feature value is gradually getting bigger.

Figure 12. Comparison of feature distributions, color indicates the feature value.

At first, the results of the models were compared before and after the addition of
the multi-head attention mechanism. The features of the four well-established models
were mostly focused on the imaging region of the LEDs before the addition of the multi-
head attention mechanism, and the features of light intensity changes were not extracted.
This indicates that the model only focuses on partial features. After the addition, the
feature distribution is more balanced. The model extracts a large number of light intensity
change features and the imaging region features are also still obvious. This verifies that the
multi-attention mechanism pays attention to all regions of the whole image during feature
extraction and assigns different weights.

MHA-DenseNet, MHA-MobileNet, and MHA-ResNet were compared after the addition
of the multi-attention mechanism. The feature map and heat map colors of MHA-DenseNet
and MHA-MobileNet are basically red. This indicates that, although the two models are able
to extract features, they have poor importance differentiation ability and can only extract
extensive features at a shallower level. The color distribution of MHA-ResNet is more balanced
and diverse, which indicates that it can capture both partial details and global features, and
the weights are assigned according to importance through the attention mechanism.

Finally, the feature map and heat map of the MHA-ResNet50 and MHA-ResNet101
models were compared. We found that the differences are not significant, and the per-
formance of the two models is close according to the training results in Table 4. For this,
we further compared the Floating Point Operations Per Second (FLOPs) and the Params,
as shown in Table 4. MHA-ResNet50 clearly has lower requirements on computational
resources and memory.

4.3. Comparative Analysis of Positioning Tests and Results

In this part, we design a test to evaluate the positioning performance of the model in
terms of 2D, height, and 3D.

4.3.1. 2D Positioning Test

In order to test the 2D positioning capability of the proposed algorithm, we compared
it with the original algorithm. The camera pitch angle α was fixed to 0 and the LED height
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was set to 160 cm. For the roll angle β, in addition to the seven angles used for model
training, we set six angles of 2.5, −2.5, 7.5, −7.5, 12.5, and −12.5 to test the generalization
ability of the model. Similarly, for each angle, 121 test points were taken uniformly in
a 1 m × 1 m area. At each point, coordinates were calculated using the original and
proposed algorithms, respectively. To minimize the impact of random errors, the results
were averaged over 10 consecutive frames for each point.

As shown in Figure 13, we depict the variation curves of the average positioning error of
the original and proposed algorithms in 13 sets of tests. When using the original algorithm,
the positioning error increases with the angle and the average error is 13.69 cm. In contrast,
when using the model for positioning, the error remains stable within the range of 0.82823 cm
to 5.73876 cm across all 13 sets. It was not affected by the increase in angle and the average
error was 2.185 cm. In addition, for the seven angles used for model training, the average
error was 1.114 cm. For the six angles not used for model training, the average error was 4.497
cm. Figure 14 compares the cumulative distribution function (CDF) of the positioning errors
of the two algorithms. Figure 15 shows the error distribution, which is relatively uniform. The
results show a significant improvement in the error of the modeling algorithm compared to the
original algorithm. Overall, the proposed algorithm exhibits a certain degree of generalization
capability and resistance to angle variations in 2D positioning.

Figure 13. Height 160 cm, average positioning error at different angles.

Figure 14. The CDF of 2D positioning errors for different angles; (a) 2.5◦, (b)−2.5◦, (c) 7.5◦, (d)−7.5◦,
(e) 12.5◦, (f) −12.5◦.

92



Photonics 2024, 11, 794

Figure 15. 2D positioning error distribution for different angles; (a) 2.5◦, (b) −2.5◦, (c) 7.5◦, (d) −7.5◦,
(e) 12.5◦, (f) −12.5◦.

4.3.2. Height Test

In order to test the capability of the model to predict heights, we similarly conducted
a comparison between the original and the proposed algorithm. The camera pitch angle α
was fixed at 0◦, and the LED heights were set to 160 cm and 170 cm, respectively. Notably,
images with a height of 170 cm were not used for model training. For each height, the
roll angle β was set to 0 and 12.5, resulting in a total of four sets of tests. Similarly, for
each angle, 121 test points were uniformly distributed within a 1 m × 1 m area. At each
point, the coordinates were calculated using both the original and the proposed algorithm.
To minimize the impact of random errors, the results were averaged over 10 consecutive
frames for each point.

Figure 16 shows the error comparison results of the four sets of tests. At a height
of 160 cm, as the angle increases from 0 to 12.5, the average error of the original algo-
rithm increases from 4.6 cm to 7.767 cm, while the proposed model algorithm maintains
average errors of 1.101 cm and 0.844 cm, respectively. At a height of 170 cm, as the angle
increases from 0 to 12.5, and the average error of the original algorithm increases from
9.385 cm to 13.439 cm, whereas the proposed model algorithm achieves average errors of
3.912 cm and 3.736 cm, respectively. According to the results, it can be observed that the
error of the original height computation algorithm increases with both the angle and the
height. However, with the proposed model algorithm, the error does not increase with
the angle. Since the data for the 170 cm height was not used for model training, the error
shows a slight increase. In summary, the proposed algorithm exhibits robustness against
angle variations and demonstrates a certain degree of model generalization capability in
height computation.
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Figure 16. Error comparison at different heights and angles; (a) 160 cm:0◦, (b) 160 cm:12.5◦,
(c) 170 cm:0◦, (d) 170 cm:12.5◦.

4.3.3. 3D Positioning Test

In this part, we tested and compared the 3D positioning capability of the model with
the same experimental environment settings as during the height test. The CDF of 3D
errors for the four sets of tests is shown in Figure 17.

Figure 17. The CDF of 3D positioning errors at different angles and heights; (a) 160 cm:0◦,
(b) 160 cm:12.5◦, (c) 170 cm:0◦, (d)170 cm:12.5◦.

Firstly, considering the test results at a height of 160 cm, as the angle changes from
0 degrees to 12.5 degrees. The 3D average error using the original algorithm increases
from 9.553 to 19.724 cm, while the 3D average error of the proposed modeling algorithm
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only increases from 1.622 cm to 4.155 cm. Since the image data with an angle of 12.5
are not involved in the model training, they are combined with the experimental results
of 2D positioning above. We can see that the positioning error of 4.155 cm is within a
reasonable range.

Looking again at the two sets of tests for the 170 cm height, we should note that we
did not use image data with a height of 170 cm and an angle of 12.5 for model training.
When the angle is changed from 0 degrees to 12.5, the 3D average error using the original
algorithm increases from 12.711 cm to 22.755 cm. While the proposed model algorithm’s
average error increases only slightly from 6.707 cm to 6.249 cm, the errors are reduced by
about 6.004 cm and 16.506 cm compared to the original algorithm, respectively. Since the
image data in these two sets of tests were not involved in the model training, the results
can correctly reflect the 3D positioning ability of the model. In summary, our proposed
modeling algorithm is resistant to angular changes and has some model generalization
ability when performing 3D positioning.

4.4. Discussion

As shown in Table 5, our proposed positioning method eliminates the reliance on IMU
when addressing positioning errors caused by camera pose variations. Additionally, we
used a medium to low-resolution camera and were able to maintain 3D positioning errors
within 7 cm. Compared with [2,3,18], although [2] has a high positioning accuracy, it is
poorly convincing with a test deflection angle of only five. In addition, our method only
uses the camera and has a lower system cost.

Table 5. Comparison with traditional algorithms.

Require
LEDs

Angle
(◦) Resolution Receiver Type RMSE

(cm) Method System
Cost

1 (−5,5) 1280 × 960 Camera + IMU 2.67 [18] FFF
1 (−40,40) 2048 × 1536 Camera + IMU 10 [2] FFF
1 0 Unspecified Camera + IMU 11.2 [3] FFF
2 (−40,40) 4032 × 3024 Camera 7.9 [8] FF
1 (−15,15) 1280 × 720 Camera 6.2 Proposed FF

The number of stars in the table represents the level of power consumption, with
more stars indicating higher power consumption. Compared to [8], our advantage is in
the low resolution of the image and the use of only one light. Importantly, the proposed
algorithm relies on light intensity variations and the imaging deformation feature and still
has a greater potential to ensure highly accurate positioning when coping with greater
angular deviations.

5. Conclusions

In visible light positioning systems based on a camera and a single light, changes in
camera orientation significantly impact positioning accuracy. Currently, most solutions
employ IMU sensors for accuracy compensation. To address this issue, this paper proposes
an optimization algorithm based on a convolutional neural network with a multi-head
attention mechanism capable of predicting position coordinates when the camera under-
goes orientation changes. We design multiple sets of experiments to evaluate the ability of
the model to perform 2D positioning, height calculation, and 3D positioning in real time.
The experimental results demonstrate that, within an angular range of ±15 degrees, using
images with a resolution of 1280 × 720, the model achieves a 2D positioning error within
5.738 cm, height error within 3.912 cm, and 3D positioning error within 6.707 cm. Com-
pared to the original algorithm, the positioning accuracy has been significantly improved.
Importantly, this reduces the complexity and cost of the system. Although the maximum
angle in the experiments was set to 15 degrees, the algorithm predicts positions based
on the relationship between angles and image features. Therefore, it has the potential to
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handle larger angular deviations. In conclusion, the proposed method provides a reference
for the development of indoor positioning technology based on visible light.

In our future work, we will add more training data with light intensity interference
caused by varying lighting conditions and changes in LED characteristics to enhance the
model’s robustness. Additionally, we will explore using lower-resolution signal frames
to reduce the algorithm’s computational complexity and cost. Finally, we will test larger
camera pose variations to evaluate the method’s limits.
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Abstract: In this paper, we experimentally illustrate the effectiveness of neural networks (NNs) as non-
linear equalisers for multilevel pulse amplitude modulation (PAM-M) transmission over an optical
wireless communication (OWC) link. In our study, we compare the bit-error-rate (BER) performances
of two decision feedback equalisers (DFEs)—a multilayer-perceptron-based DFE (MLPDFE), which
is the NN equaliser, and a transversal DFE (TRDFE)—under two degrees of non-linear distortion
using an eye-safe 850 nm single-mode vertical-cavity surface-emitting laser (SM-VCSEL). Our results
consistently show that the MLPDFE delivers superior performance in comparison to the TRDFE,
particularly in scenarios involving high non-linear distortion and PAM constellations with eight
or more levels. At a forward error correction (FEC) threshold BER of 0.0038, we achieve bit rates
of ~28 Gbps, ~29 Gbps, ~22.5 Gbps, and ~5 Gbps using PAM schemes with 2, 4, 8, and 16 levels,
respectively, with the MLPDFE. Comparably, the TRDFE yields bit rates of ~28 Gbps and ~29 Gbps
with PAM-2 and PAM-4, respectively. Higher PAM levels with the TRDFE result in BERs greater
than 0.0038 for bit rates above 2 Gbps. These results highlight the effectiveness of the MLPDFE in
optimising the performance of SM-VCSEL-based OWC systems across different modulation schemes
and non-linear distortion levels.

Keywords: optical wireless communications; vertical-cavity surface-emitting lasers; multilevel pulse
amplitude modulation; digital equalisation; neural network; multilayer perceptron

1. Introduction

Optical wireless communication (OWC) stands as a pivotal technology that offers
substantial opportunities to meet the demanding requirements of 6G and beyond and can
serve as both access and cross-haul links; its versatile applications extend to device-to-
device (D2D) communications and the Internet-of-Things (IoT) [1]. Two prominent OWC
variants, visible light communication (VLC) and infrared OWC (IOWC), have showcased
remarkable bit rates exceeding 20 Gbps for one optical wavelength [2], with VLC achieving
up to 35 Gbps through wavelength division multiplexing (WDM) [3]. While VLC excels in
scenarios requiring illumination, IOWC presents enhanced versatility and is particularly
suitable for applications like LiFi uplinks and data centres. Integrating IOWCs with
high-speed fibre communication systems has become increasingly significant, offering
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terabits-per-second (Tbps) indoor wireless access and interfacing seamlessly with fibre-to-
the-home access networks [4]. Despite these advantages, the mobility of high-speed IOWC
systems is constrained due to the use of narrow-divergence transmitters and receivers
with narrow fields-of-view (FOVs). To address this limitation, implementing robust user
tracking, localisation mechanisms, and optical beam steering is essential for the practical
deployment of IOWC, thereby ensuring its effectiveness and widespread application [4,5].

Vertical-cavity surface-emitting lasers (VCSELs) stand out as important light sources
for intensity-modulated/direct-detection (IM/DD)-based OWC systems, primarily ow-
ing to their distinct advantages over other optical sources. Notably, VCSELs boast cost-
effectiveness in terms of fabrication and require lower electrical power consumption com-
pared to edge-emitting lasers [6]. Their superiority extends to offering higher modulation
bandwidths and superior emission coherence in comparison to light-emitting diodes (LEDs).
Leveraging their vertical emission and streamlined fabrication, VCSELs can be seamlessly
integrated into two-dimensional (2D) arrays, facilitating spatial diversity and enabling the
deployment of multiple-input–multiple-output (MIMO) systems [7]. The significance of
VCSELs is underscored by experimental endeavours in gigabit OWC, where individual
VCSEL sources operating at wavelengths of ∼650 nm [8,9], ∼850 nm [10], and 1310 nm [2]
have achieved bit rates of up to 25 Gbps using IM/DD. The pioneering fabrication of
VCSELs within the 850–980 nm band marks a significant milestone in optical communica-
tions, and their continued dominance in the market is attributed to the alignment of these
wavelengths with the high responsivity of cost-effective silicon photodetectors (PDs) [6].
However, the paramount consideration lies in ensuring the safety of the 850 nm system for
the human eye, especially for protecting the retina. To meet the stringent class-1 laser safety
requirements, compliance with the accessible emission limit (AEL) becomes imperative,
and this is ∼−1.10 dBm, as specified by the International Electrotechnical Commission
(IEC 60825-1) for a point source operating at 850 nm [11].

In the pursuit of optimising the information capacity of VCSEL-based OWC systems,
extensive research has been dedicated to exploring spectral-efficient modulation schemes.
Among these, multilevel pulse amplitude modulation (PAM-M) has emerged as a promi-
nent contender. PAM involves transmitting symbols through pulses in a signal waveform,
with the amplitudes of the pulses representing different symbols. A PAM transmission with
M distinct amplitudes or “levels” represents log2 M bits in each level, providing a robust
mechanism for conveying information. PAM is the preferred choice for many commercial
OWC systems due to its simplicity in handling real-valued symbols and its spectrum
efficiencies that are comparable to other advanced modulation schemes such as orthogonal
frequency division multiplexing (OFDM) [12]. However, PAM is not without challenges,
mainly when deployed in high-speed communication scenarios, as it is susceptible to
intersymbol interference (ISI) and system non-linearities [13]. Consequently, in numerous
optical communication systems, PAM is often accompanied by an equaliser, such as a
decision feedback equaliser (DFE) [13,14]. This strategic pairing ensures the mitigation of
potential issues, enhancing the reliability and performance of VCSEL-based OWC systems
employing PAM.

While DFEs effectively address ISI, non-linearity renders them inefficient, particularly
for higher modulation levels. Therefore, non-linear DFEs like the Volterra-series equaliser
and neural networks (NNs) are utilised to overcome ISI and non-linear effects. For instance,
ref. [15] demonstrated that recurrent NNs outperform conventional DFEs in non-linear
channels. Feedforward NNs, such as multilayer perceptrons (MLPs), radial basis functions
(RBFs), and long short-term memory (LSTM), have been tested on optical channels using
PAM-M [8,16,17]. Specifically, ref. [16] showed that MLP outperforms both conventional
DFEs and Volterra-series equalisers.

To the best of the authors’ knowledge, few experimental studies have reported using
850 nm VCSELs with PAM-M for OWC transmissions, especially with launched optical
powers below the AEL. The work outlined in [18] that uses 850 nm VCSELs reported a
bit rate of 25 Gbps, but this was with a 7 × 7 array with an optical power of ∼22 dBm.
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The study in [8] employed a deep LSTM NN for effective ISI compensation in VCSEL-based
OWC, achieving a data rate of 13.5 Gbps. However, the experimental work was limited to
PAM-2, and the NN used at least 100 neurons per layer.

This paper presents the first experimental evaluations of directly modulated eye-
safe single-mode VCSELs (SM-VCSELs) operating at 850 nm for high-speed OWC links.
The evaluation incorporates PAM-M and employs an NN equaliser conducted over a 2.5 m
OWC link. The SM-VCSEL is launched with a transmitted optical power of −1.47 dBm,
which is securely below the AEL of −1.10 dBm, ensuring its adherence to the class-1 laser
safety standards and thus complying with eye safety. Compared to multimode VCSELs
(MM-VCSELs), SM-VCSELs offer advantages such as narrower spectral widths and lower-
intensity noise [6]. We obtain a bit rate of about 29 Gbps at a link distance of 2.5 m
with PAM-4 modulation and an NN equaliser. The main contributions of this work are
summarised as follows:

1. We show the first use of NN equalisers in an eye-safe 850 nm SM-VCSEL-based OWC
that employs PAM-M schemes of up to 16 levels. The equalisers demonstrate superior
performance to the conventional DFEs, particularly for high-level PAM {8,16}, which
requires less bandwidth but suffers from higher device non-linearity. This is especially
beneficial in OWC links using photodiodes with larger detection areas that offer
higher power margins but lower bandwidths. While some studies have employed
NN equalisers for OWC with PAM up to eight levels [8,17,19,20], this paper is, to the
best of the authors’ knowledge, the first experimental work to achieve a multigigabit
OWC link with PAM-16 and NN equalisers by leveraging the SM-VCSELs’ high
signal-to-noise ratio (SNR).

2. Previous work on NN equalisation for VCSEL-based OWC employed multiple hidden
layers with over 100 neurons per layer. The NN equaliser for this study require less
computational complexity, utilising only one hidden layer with six neurons.

3. We highlight the non-linearity compensation capability of the NN equaliser by exam-
ining two modulation conditions for the VCSELs, with the first condition exhibiting
lower non-linearity than the second. Notably, NN equalisers perform better in the
second scenario. Additionally, for low-level PAM {2,4}, NN equalisers provide supe-
rior bit rate performance compared to DFEs with MM-VCSELs, despite MM-VCSELs
having higher non-linearity than SM-VCSELs.

This study parallels the experimental report in [21], where we achieved a bit rate of
38 Gbps using optimised OFDM with bit and power loading. However, the goal of this
work is to demonstrate the rates achievable using simple PAM modulation schemes and to
experimentally show the effectiveness of NNs in compensating for non-linearity and ISI.
While [21] aims to maximise the achievable bit rate through an optimised OFDM scheme,
this work focuses on the non-linear behaviour of VCSELs and explores possible mitigation
using an NN-based non-linear equaliser with multilevel PAM. Moreover, we employ lower
modulation amplitudes in this study, as PAM has a lower peak-to-average-power ratio
than OFDM.

2. Experiment Setup

Figure 1a depicts a photo of the VCSEL-based OWC system, showcasing its functional-
ity over a transmission distance of 2.5 m. The essential instruments and devices governing
the OWC system are highlighted in Table 1. Figure 1a is complemented by Figure 1b, which
illustrates a schematic diagram presenting the PAM generation and decoding process
employed within the IM/DD system. It begins with the offline generation of a random bit
sequence using MATLAB, which is subsequently mapped to PAM symbols through gray
coding. These PAM symbols undergo upsampling and processing via a non-return-to-zero
(NRZ) rectangular pulse-shaping filter. The resulting signal is then loaded to an arbitrary
waveform generator (AWG) for the creation of an analogue waveform, which, in turn,
drives the VCSEL directly through a bias tee (Tektronix PSPL5542, 50 GHz).
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Table 1. OWC system parameters.

Device/System Module Description Setup/Parameters

AWG Keysight M8195A BW = 23 GHz, SR = 60 GSa/s, 8-bit Res. DAC
Photodetector Newport 818-BB-45A BW = 9 GHz, ∅ 60 µm, ∼550 V/W Gain at 850 nm
Optics Lens Thorlabs ACL2520U ∅ 25 mm, Focal length = 20 mm
Oscilloscope Tektronix DPO71254C BW = 12.5 GHz, SR = 50 GSa/s, 8-bit Res. ADC

BW—Bandwidth, SR—Sampling Rate, and Res.—Resolution.

(a)

(b)

Figure 1. Illustration of experiment setup: (a) Photo of VCSEL-based OWC link. (b) Schematic for
multilevel PAM.

The VCSEL output undergoes collimation using an aspheric lens (Thorlabs ACL2520U).
At the receiver, the optical signal is collected through an aspheric lens and is focused onto
a PIN PD module (818-BB-45A). To facilitate optimal OWC link alignment and receiver
optical power adjustment, both the VCSEL and PD are mounted on 3D-axis stages (Thorlabs
NanoMax 300). The received signal is then captured by an oscilloscope. Then, standard
digital signal processing (DSP) techniques are employed, including synchronisation, digital
filtering, and equalisation. Finally, the transformed PAM symbols are de-mapped into the
received bitstream, facilitating the evaluation of the bit-error-rate (BER) performance.

The model that would best describe the output signal for the IM/DD OWC link
assuming that most of the system non-linearity comes from the VCSEL is defined as [22,23]:

y(t) = GpdGowc fL−I−V

(
(Vbias + s(t))⊗ hvcsel (t)

)
⊗ howc(t)⊗ hpd(t) + n(t), (1)

where Gpd and Gowc denote the gains from the photodetector and OWC link, respectively;
fL−I−V (.) denotes the non-linear transfer function that converts the input voltage signal
to the optical signal; Vbias denotes the bias voltage to drive the VCSEL, and s(t) denotes
the bipolar input voltage signal; hvcsel (t), howc(t) and hpd(t) denote the impulse responses
for the VCSEL, OWC link and photodetector, respectively; n(t) denotes the noise. This
memory-based model is particularly useful for high-speed OWC links with significant
system non-linearities.

2.1. Single-Mode and Multimode VCSELs Comparison

The SM-VCSEL is custom-designed and fabricated by Integrated Compound Semicon-
ductor (ICS) from a GaAs/AlGaAs-based epitaxial structure supplied by the Compound
Semiconductor Centre (CSC), whereas the MM-VCSEL is an off-the-shelf device (OPTEK
OPV310). Measurements characterising both devices, including light–current–voltage (L-I-
V) curves, magnitude responses and noise power spectral densities (PSDs), can be found
in [21]. The L-I-V curves show that the SM-VCSEL exhibits higher dynamic resistance and
emits lower optical power due to its smaller oxide aperture, which ensures single-mode
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emission. To maintain eye-safe conditions, we drive the SM-VCSEL at approximately
2.2 mA, resulting in an optical power of around 0.7 mW (−1.47 dBm). Similarly, the MM-
VCSEL is driven at about 5 mA to emit approximately 3 mW (4.7 dBm) of optical power.
This ensures comparable bandwidths between the two VCSELs for meaningful perfor-
mance comparisons. The measured −3 dB bandwidths of SM-VCSEL and MM-VCSEL are
approximately 6.2 GHz and 6.4 GHz, respectively.

We compare both VCSELs for the OWC link based on their measured noise power
spectral densities (PSDs) at a received optical power (ROP) of approximately −1.75 dBm.
The noise PSDs for the SM-VCSEL and MM-VCSEL average around −137 dB/Hz and
−129 dB/Hz, respectively. In comparison, the OWC system with a ROP of −1.75 dBm
has thermal and shot noises estimated at −146 dB/Hz and −151 dB/Hz, respectively.
Therefore, the primary noise source for the OWC link is the relative intensity noise (RIN)
from the VCSELs, as the noise PSDs from both VCSELs exceeds that of shot or thermal noise.

We focus more on the eye-safe SM-VCSEL for PAM-M since it has a lesser RIN
than the MM-VCSEL and offers a higher data rate for similar operating conditions [6,21].
To illustrate the performance of the equalisers for the SM-VCSEL, we consider two setups
with the SM-VCSEL-based OWC link as follows:

• Setup-I: amplitude of 0.5 Vpp corresponding to ∼70% modulation index at 100 MHz,
maximum ROP of −1.75 dBm;

• Setup-II: amplitude of 0.7 Vpp corresponding to ∼95% modulation index at 100 MHz,
maximum ROP of −3.08 dBm.

While Setup-II offers a higher SNR than Setup-I, it does so at the expense of higher
non-linearity. This is demonstrated in Figure 2, which illustrates the non-linearity of
the SM-VCSEL (with both setups) and the MM-VCSEL (with Setup-I) through their total
harmonic distortion (THD). The THD indicates the level of additional harmonics per fre-
quency, with higher THD signifying greater non-linear distortion from these harmonics [24].
The MM-VCSEL exhibits approximately 3.5 dB more THD than the SM-VCSEL with both
VCSELs at ∼70% modulation index. Moreover, the SM-VCSEL has about 2.2 dB more THD
when Setup-II is used instead of Setup-I.
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Figure 2. THD vs. frequency for the VCSELs.

2.2. NN Equalisation

In channel equalisation tasks, various NN architectures can be employed [25]. How-
ever, our work uses multilayer perceptrons (MLPs), as they are among the oldest and the
most common types of feedforward NNs, making them a good representation of other
NNs [26]. MLP is a collection of perceptrons organised into layers, as illustrated in Figure 3.
Each perceptron computes a linear combination of its inputs and incorporates an exter-
nally applied bias. The result of this combination is applied to an activation function [26].
The expression for the output of a perceptron is:
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y = favn

(
wbias +

m−1

∑
i=0

wixi

)
, (2)

where m denotes the number of inputs to the neuron, and favn(.) is the activation function
of the neuron; xi denotes the neuron inputs, wi denotes the weight for each input xi, and
wbias denotes the neuron bias.

Figure 3. Illustration of the NN-based decision feedback equaliser.

A three-layer architecture suffices for the MLP for equalisation due to the universal
approximation theorem [25,26]. This theorem asserts that for non-linear input–output map-
ping, if the activation function of neurons in the hidden layer is monotonically continuous,
bounded and non-constant, a finite number of neurons in the layer can approximate the
mapping effectively. The sigmoid function, which satisfies these conditions, is commonly
employed as the activation function for neurons in the hidden layer. It is defined in (3) as:

fsgm(x) =
2a1

1 + exp(−a2x)
− a1 = a1 tanh(a2x), (3)

where a1 and a2 are suitably chosen constants. In line with the study in [16], tan-sigmoid
(a1 = a2 = 1) is employed in this study as the activation function. The activation function
for the neuron in the output layer is the linear function ( flin(x) = x). The feedback inputs
can be sent to the MLP equaliser like with a conventional DFE, as illustrated in Figure 3.
This MLP-based DFE (MLPDFE) can be expressed as [26]:

z̃n =
Nhn

∑
c=1


wc tanh


wc,−1 +

N f t−1

∑
a=0

wc,ayn−a +
Nbt

∑
b=1

wc,b ẑn−b




+ w−1, (4)

where z̃n denotes the output of the MLPDFE; {yn, . . . , yn+1−N f t} is the unequalised input
sequence, and {ẑn−1, . . . , ẑn−Nbt} is the set of previously detected symbols; wa and wb are
the co-efficients of the feedforward and feedback tap weights, respectively; N f t and Nbt
denote the number of feedforward and feedback taps, respectively, for the DFE; Nhn is the
number of hidden-layer neurons; wc,a and wc,b are the synaptic weights for processing the
feedforward and feedback inputs, respectively, for a hidden-layer neuron (with index c); wc
denotes the weight used to process the neuron at the output layer; wc,−1 and w−1 denote
the biases of a hidden-layer neuron and the output-layer neuron, respectively.

Compared to the conventional DFE, the MLPDFE requires more computational com-
plexity and memory due to the additional hidden-layer neurons: each has a non-linear
function. Based on the analysis done in [27], the MLPDFE needs about Nhn times more real-
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valued multiplications than the conventional DFE. The performance of MLP is significantly
impacted by the number of neurons in the hidden layer. Too few hidden neurons mean less
computational complexity but could result in poor error performance. Conversely, an ex-
cessive number of neurons might lead to irregular error performance due to overfitting [25].
The back-propagation (BP) algorithm is popular for training the MLP equaliser. While there
are multiple variants of the BP algorithm, the Levenberg–Marquardt BP (LMBP) algorithm
is chosen in this study due to its superior convergence and better mean-square-error (MSE)
performance [26]. However, LMBP uses batch training, which requires more computing
memory than other BP algorithms that employ online training. The parameters for the
MLP equaliser are highlighted in Table 2. Increasing the equaliser parameters beyond those
in Table 2 offers negligible improvement at the cost of increased complexity.

Table 2. Equaliser parameters.

Parameter Symbol Value

Number of Forward Taps N f t 32
Number of Feedback Taps Nbt 8

Number of Hidden-Layer Neurons Nhn 6
Number of Training Symbols Ntr 4000

Number of Bits for BER Testing 106

3. Communication Performance and Analysis

To assess the effectiveness of the NN equaliser in handling PAM-M, this section
presents the BER results from the SM-VCSEL-based OWC experiment setups (Setup-I and
Setup-II) discussed in Section 2. The bit rates range from 2 Gbps to 40 Gbps in order to
explore multigigabit communication over the SM-VCSEL-based OWC link. For compar-
ison purposes, the link is evaluated (1) without equalisation (unequalised), (2) with the
transversal DFE (TRDFE), and (3) with the MLPDFE. The parameters for both the TRDFE
and the MLPDFE are summarised in Table 2.

The BER results are presented across various bit rates for the equalisers employing
PAM-2 and PAM-4 schemes for the SM-VCSEL and the MM-VCSEL in Figure 4. A BER
of ∼3.8× 10−3, which is the second-generation super forward error correction (S-FEC)
limit and has a 7% overhead and ∼6 dB coding gain [28], is used to estimate the system’s
bit rate performance. For PAM-2, the MLPDFE output layer uses the sigmoid activation
function due to its “binary” nature and superior performance compared to the linear
activation function [16]. However, the linear activation function is better for PAM at
four or more levels. Without equalisation at this FEC limit, the PAM-2 scheme with
the SM-VCSEL achieves bit rates of ∼8 Gbps and ∼9 Gbps for Setup-I and Setup-II,
respectively. Conversely, the bit rates achieved with PAM-4 are ∼5 Gbps and ∼4.5 Gbps
for Setup-I and Setup-II, respectively. A notable observation is that Setup-II demonstrates
superior performance with PAM-2, while Setup-II showcases better results with PAM-4.
This discrepancy arises due to PAM-2’s lower susceptibility to non-linearity than PAM-4,
leveraging the high SNR specifically achievable in Setup-II.

With PAM-2, the MLPDFE demonstrates a marginal BER performance improvement
compared to the TRDFE across all bit rates. Both equalisers significantly enhance the
OWC link, enabling bit rates of ∼23 Gbps and ∼28 Gbps at the 7% S-FEC limit for Setup-I
and Setup-II, respectively. With PAM-4, the MLPDFE and TRDFE exhibit similar BER
performances for bit rates exceeding 25 Gbps, achieving ∼27 Gbps and ∼29 Gbps at the
7% S-FEC limit for Setup-I and Setup-II, respectively. However, the MLPDFE notably
outperforms the TRDFE for bit rates below 25 Gbps, i.e., at low BER values. For instance,
at a BER of 10−6 with Setup-I, the MLPDFE achieves bit rates of∼11 Gbps, while the TRDFE
offers ∼6 Gbps. This is because non-linearity is the dominant performance-limiting factor
at lower bit rates, while SNR becomes the limiting factor at higher bit rates. Hence, this
result clearly demonstrates the effectiveness of the NN in compensating for non-linearity,
which is further evident at higher modulation levels. It is worth mentioning that both
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equalisers exhibit better performance with PAM-4 on Setup-I than in Setup-II at bit rates
below 25 Gbps. Specifically, the MLPDFE achieves∼7 Gbps and∼10 Gbps at a BER of 10−6

for Setup-I and Setup-II, respectively. Additionally, both equalisers showcase enhanced
performance with PAM-2 on Setup-II relative to Setup-I at lower bit rates, as the MLPDFE
attains ∼10 Gbps and ∼15 Gbps for Setup-I and Setup-II, respectively, at a BER of 10−6.
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Figure 4. BER vs. bit rate plots comparing the equalisers’ performance with PAM-2 and PAM-4
for: (a) SM-VCSEL with Setup-I, (b) SM-VCSEL with Setup-II, (c) MM-VCSEL with Setup-I, and
(d) MM-VCSEL with Setup-II.

As with SM-VCSEL, equalisation significantly improves the performance of MM-
VCSEL links. However, due to higher RIN from the MM-VCSEL, its achievable bit rates are
considerably lower than those of SM-VCSEL at the 7% S-FEC limit, such as 15 Gbps with
PAM-4 MLPDFE in Setup-I and ∼17.5 Gbps with PAM-2 MLPDFE with Setup-II. It is also
worth noting that, unlike the SM-VCSEL, the MLPDFE offers better bit rate performance
than TRDFE for PAM-2 from the MM-VCSEL because the MM-VCSEL has higher non-
linearity than the SM-VCSEL. Nonetheless, we will focus only on the SM-VCSEL in the
following sections due to its superior bit rate performance compared to the MM-VCSEL.

Figure 5 presents the BER results for bit rates with PAM-8 and PAM-16 using Setup-I
(Figure 5a) and Setup-II (Figure 5b). Significant BER challenges are evident across different
modulation schemes and setups without equalisation. Firstly, with PAM-8 modulation on
Setup-I, the BER surpasses 0.07 for bit rates starting from 2 Gbps and beyond. Similarly,
using PAM-16 on Setup-I exacerbates the situation, with the BER exceeding 0.15 for bit rates
of 2 Gbps and higher. Conversely, with Setup-II, employing PAM-8 modulation results in a
BER of∼0.02 at a bit rate of 2 Gbps, suggesting relatively improved performance compared
to Setup-I. However, with PAM-16 on Setup-II, the BER exceeds 0.09 for bit rates starting
from 2 Gbps. These results underscore the critical importance of effective equalisation
strategies in mitigating ISI and non-linearity for OWC links utilising PAM-8 and PAM-16.

The comparison between the TRDFE and the MLPDFE underscores the latter’s supe-
rior performance, particularly in Setup-II. With the TRDFE on Setup-I, the BER surpasses
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0.03 for bit rates of 2 Gbps and beyond with PAM-8, escalating to over 0.09 with PAM-16.
In contrast, Setup-II exhibits improved performance with the TRDFE but still encounters
BER issues exceeding 0.07 for bit rates beyond 2 Gbps with PAM-16. These results demon-
strate the ineffectiveness of the TRDFE to mitigate the ISI in the presence of non-linearity.
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Figure 5. BER vs. bit rate plots comparing the equalisers’ performance for the SM-VCSEL with
PAM-8 and PAM-16 for: (a) Setup-I and (b) Setup-II.

The MLPDFE, however, showcases remarkable improvements in both setups. In Setup-
I, it achieves an impressive bit rate of about 22.5 Gbps at the 7% S-FEC limit with PAM-8,
alongside a low BER of about 3.5× 10−4 at a bit rate of 3 Gbps with the same modulation
scheme. Similarly, in Setup-II, the MLPDFE achieves a substantial bit rate of about 17.5 Gbps
with PAM-8 at the 7% S-FEC limit, coupled with an exceptionally low BER of about 10−6

at a bit rate of 5 Gbps. These results signify the MLPDFE’s effectiveness in significantly
improving transmission rates and minimising errors, which is particularly notable in Setup-
II compared to the TRDFE, highlighting its superiority in optimising OWC systems with
high non-linearities.

To highlight the effectiveness of the NN equaliser, eye diagrams for the output of
each equaliser using PAM-8 and PAM-16 modulation schemes are presented in Figure 6.
These diagrams are computed by upsampling the received PAM symbols by eight and
filtering the result with a raised cosine filter with a 0.35 roll-off factor. The diagrams are
presented at 12 Gbps for PAM-8 and 6 Gbps for PAM-16 in Figures 6a and 6b, respectively.
Without equalisation, the PAM-8 and PAM-16 waveforms exhibit severe distortion due
to ISI and non-linearities, resulting in closed eye diagrams. Implementing the TRDFE
improves the situation by opening the eye diagrams; however, the levels remain unequally
spaced due to incomplete mitigation of system non-linearity.

(a) (b)

Figure 6. Captured output eye diagrams with equalisers for SM-VCSEL Setup-II: (a) 12 Gbps with
PAM-8. (b) 6 Gbps with PAM-16.

In contrast, the eye diagrams with the MLPDFE show more uniform spacing between
levels. This uniformity is attributed to the MLPDFE’s ability to compensate for the inherent
non-linearity in the system, resulting in improved eye diagram characteristics. This im-
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provement is also reflected in the BER plots in Figure 5, where the MLPDFE demonstrates
superior performance compared to the TRDFE.

The results achieved with Setup-II were obtained at an ROP of ∼−3.1 dBm. However,
misalignments and extensions in the OWC link can diminish the ROP, subsequently im-
pacting the SNR and bit rate. Hence, Figure 7 is presented to illustrate the bit rate attainable
at the 7% S-FEC limit for various ROPs ranging from −14 dBm to −3 dBm using PAM-2,
PAM-4, PAM-8, and PAM-16 modulation schemes with both the TRDFE and MLPDFE.
At lower bit rates and reduced ROPs, PAM-4 requires more power than PAM-2 to achieve
similar bit rates. For instance, with the TRDFE at a bit rate of 10 Gbps, PAM-2 and PAM-4
necessitate ROPs of ∼−13.2 dBm and ∼−11.0 dBm, respectively, indicating an ROP differ-
ence of 2.2 dB in favour of PAM-2. However, at a higher bit rate of 25 Gbps, PAM-2 and
PAM-4 demand ROPs of ∼−6.0 dBm and ∼−5.4 dBm, respectively, showcasing a reduced
ROP difference of 0.6 dB between the two modulation schemes. PAM-4 offers a higher bit
rate of ∼29 Gbps compared to PAM-2, which gives ∼28 Gbps at the high ROP of −3.1 dBm.
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Figure 7. Plots comparing the bit rates achieved at the 7% S-FEC limit against the received optical
power (ROP) with SM-VCSEL Setup-II. Solid and dashed lines denote the results from TRDFE and
MLPDFE, respectively.

When considering PAM-2, the TRDFE shows a slight advantage over the MLPDFE
at lower bit rates with reduced ROPs. However, as the bit rates increase with higher
ROPs, the MLPDFE demonstrates superior performance over the TRDFE. For example,
at a bit rate of 10 Gbps, the TRDFE and MLPDFE require ROPs of ∼−13.2 dBm and
∼−13.0 dBm, respectively, indicating a marginal ROP difference of 0.2 dB in favour of
the TRDFE. However, at a higher bit rate of 25 Gbps, the TRDFE and MLPDFE demand
ROPs of ∼−6.0 dBm and ∼−7.1 dBm, respectively, showcasing a notable ROP difference
of 1.1 dB in favour of the MLPDFE.

With PAM-4, the MLPDFE demonstrates superior ROP performance compared to the
TRDFE at lower bit rates with reduced ROPs. However, at higher bit rates with increased
ROPs, the MLPDFE shows ROP requirements similar to those of the TRDFE. For instance,
at a bit rate of 10 Gbps, the TRDFE and MLPDFE require ROPs of ∼−11.5 dBm and
∼−11.0 dBm, respectively, indicating a marginal ROP difference of 0.5 dB in favour of the
MLPDFE. However, at a higher bit rate of 25 Gbps, both the TRDFE and MLPDFE demand
an ROP of ∼−5.4 dBm, showcasing no ROP difference between the two equalisers.

However, increasing the modulation level to PAM-8 and PAM-16 does not improve the
bit rate performance due to the limited SNR available in the system [29]. Consequently, no
bit rates above 2 Gbps were achieved at the FEC limit with the TRDFE for these modulation
levels. In contrast, the MLPDFE enables bit rates beyond 6 Gbps at ROPs greater than
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−10 dBm with PAM-8. Notably, with PAM-16, the MLPDFE achieves a consistent bit
rate of ∼5 Gbps at ROPs ranging from −5 dBm to −3 dBm. Compared to PAM-8, which
experiences a significant drop in bit rates with a decreasing ROP, PAM-16 shows a milder
reduction. This is because PAM-16 requires lower bandwidth and thus experiences lesser
noise at lower ROPs for bit rates similar to that of PAM-8.

In conclusion, the MLPDFE outperforms the TRDFE when the link SNR exceeds a
certain threshold. This threshold is smaller with increasing PAM levels and higher system
non-linearity, as indicated by the bit rate results from the two setups (Setup-I and Setup-II)
using both VCSELs.

4. Conclusions

We have conducted experimental evaluations of an OWC system that uses an eye-
safe 850 nm SM-VCSEL for a 2.5 m link. The system employs PAM-M in conjunction
with an NN-based DFE, also known as the MLPDFE in this study. The SM-VCSEL offers
distinct advantages, including lower RIN and lesser non-linearity, allowing for higher
communication speeds compared to MM-VCSELs.

We compared the BER performances of the MLPDFE against that of the TRDFE for
the SM-VCSEL setup under conditions of strong and weak non-linear distortions. Our
results indicate that the NN-based equaliser consistently delivers superior performance
across most investigated scenarios, particularly in VCSEL-based OWC systems with high
non-linear distortion and PAM constellations of eight or more levels.

Specifically, the MLPDFE outperforms the TRDFE for PAM-4 modulation at lower
ROPs, whereas it excels with PAM-2 at higher ROPs. With the MLPDFE, we achieved
impressive bit rates of approximately 28 Gbps, 29 Gbps, 22.5 Gbps, and 5 Gbps using
multilevel PAM schemes of 2, 4, 8, and 16 levels, respectively, at the 7% second-generation
super FEC (S-FEC) limit. While higher modulation levels may not always offer the best bit
rate because of their dependence on the available SNR, these results underscore the efficacy
of the MLPDFE in optimising the performance of SM-VCSEL-based OWC systems across
various modulation schemes and non-linear distortion levels.
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Abstract: Visible Light Communication (VLC) is emerging as a promising technology to meet the
demands of fifth-generation (5G) networks and the Internet of Things (IoT). This study introduces
a novel RGB-LED-based VLC system design that leverages autoencoders, addressing the often
overlooked impact of optical-to-electrical (O/E) conversion efficiency. Unlike traditional methods,
our autoencoder-based system not only improves communication performance but also mitigates the
negative effects of O/E conversion. Through comprehensive simulations, we show that the proposed
autoencoder structure enhances system robustness, achieving superior performance compared to
traditional VLC systems. By quantitatively assessing the impact of O/E conversion—a critical
aspect previously overlooked in the literature—our work bridges a crucial gap in VLC research.
This contribution not only advances the understanding of VLC systems but also provides a strong
foundation for future enhancements in 5G and IoT connectivity.

Keywords: visible light communication (VLC); autoencoder (AE); photodetector (PD); color-shift
keying (CSK); optical wireless communication (OWC)

1. Introduction

The fifth-generation (5G) networks aim to revolutionize the Internet of Things (IoT)
with enhanced speed, connectivity, and capacity. A potential technology for this transfor-
mation is Optical Wireless Communication (OWC) [1], specifically Visible Light Communi-
cation (VLC), which utilizes ubiquitous light-emitting diodes (LEDs) for dual purposes:
illumination and high-speed data transmission [2]. Operating in the 400–800 THz spectrum,
VLC faces challenges in signal communication at these frequencies, particularly affecting
device performance at the transmitting and receiving ends.

In addressing VLC’s challenges within 5G networks, our research adopts an end-
to-end learning approach using neural networks to optimize transmitter and receiver
structures [3,4]. This innovative method aligns with the IEEE 802.15.7 standard, which
describes various modulation schemes, including CSK [5]. CSK, pivotal in our study,
modulates data through color changes in RGB LEDs, balancing data transmission with
illumination needs [6,7]. Performance in CSK-based VLC systems relies on maximiz-
ing the Euclidean distance between constellation symbols and maintaining desired color
tones [8–10]. The VLC standard includes two receiver detectors: photodetectors and image
sensors [11]. However, despite the breadth of studies on VLC [12–14], existing research
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overlooks hardware imperfections and component non-linearities, which are critical to
system performance. Addressing these elements is vital for practical system design.

Traditionally, communication system designs have been based on mathematical mod-
els and standard optimization techniques, which focus on individual components within
the system [15]. This methodology has made communication systems a complex and
well-established engineering field with numerous distinct areas of investigation [16–18].
However, optimizing these components as a whole often proves complex and computation-
ally demanding. Recently, machine learning, particularly deep learning, has emerged as a
solution, treating the system as an autoencoder (AE) model [19–21]. This novel approach
involves training the AE to optimize the structure of the transceiver for specific perfor-
mance goals. Notable studies in this domain include Lee et al.’s multi-color VLC AE with
dimming control [22], Pepe et al.’s heuristic machine learning algorithms for CSK signal
classification [23], and Zhang et al.’s AE for multi-color VLC, addressing chromaticity and
signal constraints [24]. The integration of deep learning into VLC systems is further ex-
plored in the works of Zou et al. [25], Ulkar et al. [26], and Shrivastava et al. [27], expanding
the application of these advanced technologies in communication systems.

Integration of VLC with IoT offers a wide range of applications and opportunities.
Although studies like those by Mitra et al. [28], Laakso et al. [29], and Lizarraga et al. [30]
have examined LEDs’ non-linear characteristics, research into the efficiency of electro-
optic conversions in VLC systems remains limited. Moreover, while the responsivity of
photodetectors can appear linear within certain operational ranges, it is subject to non-linear
behaviors outside these limits because of saturation at high light intensities and noise at
low intensities. Additionally, temperature changes and wavelength variations can further
complicate this relationship. These nuances underscore the need for careful consideration
in system design to maintain signal integrity and system reliability in VLC technologies.

When considering signal conversions in VLC systems, it is important to acknowledge
that the process is not simply linear. Non-linearities, spectral dependencies, and the po-
tential for signal distortion introduce complexities that demand sophisticated approaches
to optimize the system. These factors can result in degraded signal integrity, higher error
rates, and reduced system reliability, presenting significant challenges in the practical
implementation of VLC technologies. To tackle these challenges, we are investigating the
optical-to-electrical (O/E) conversion effects in CSK-based VLC systems by introducing a
novel autoencoder architecture. This architecture, which highlights photoelectric conver-
sion imperfections, is trained using stochastic gradient descent to optimize transmitter and
receiver functions in RGB-LED-based VLC systems. Our approach, evaluated through sym-
bol error rate (SER) analysis, demonstrates the potential to simplify connectivity between
IoT devices and wireless networks.

The primary motivation for employing AEs in our work is their ability to learn com-
plex, non-linear relationships directly from data without requiring explicit mathematical
modeling of the system’s non-linearities. This capability is particularly advantageous in
the context of O/E conversion in VLC systems. By training on a diverse dataset, AEs can
map the input to the output accurately, even in the presence of complex, non-linear distor-
tions, allowing for a more robust and adaptive system design. AEs provide an end-to-end
learning framework, optimizing the entire transceiver system simultaneously, which is
often more efficient and effective than optimizing individual components in isolation.

The main contributions of this paper are: (1) providing new insights into the often
overlooked aspect of O/E conversion in CSK-based VLC systems, addressing a gap in cur-
rent VLC research; (2) introducing a novel, data-driven autoencoder architecture designed
to optimize RGB-LED-based VLC systems, focusing on the nuances of O/E conversion;
(3) developing a CSK-focused VLC system equipped with a single-photodiode receiver to
reduce system complexity and energy consumption, thus enhancing IoT integration capa-
bilities; and (4) conducting a thorough SER analysis to quantitatively evaluate the impact
of O/E conversion on the system’s receiver performance, demonstrating the effectiveness
of our proposed solution in mitigating conversion-related performance degradation.
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2. Signal Conversions and System Design in VLC
2.1. Signal Conversions

In VLC systems, the process of transitioning signals between electrical and optical
domains presents a range of challenges that extends beyond just energy consumption.
It includes considerations such as performance, system complexity, and signal accuracy.
Converting electrical signals to optical signals is crucial for enabling data transmission,
impacting both energy efficiency and the system’s operational bandwidth and latency.
On the receiving end, transforming optical signals back to electrical signals using pho-
todetectors or image sensors is equally important. This step is essential for accurately
converting transmitted photon streams into electrical signals, directly affecting the overall
system performance.

The efficiency of the O/E conversion process, as quantified by the photodetector’s
responsivity, emerges as a crucial factor in determining the effectiveness of the VLC system.
Responsivity, defined as the photocurrent produced per milliwatt of optical power, is
mathematically expressed as

R =
Ip

P(λ)
≈ Q.E.

λ

1.24
(A/W), (1)

where Ip is the output photocurrent (in amperes) and P(λ) represents the radiant energy
(in watts). The relationship between responsivity and wavelength, particularly for standard
silicon photodiodes, is vital [31].

Recognizing and addressing these multifaceted challenges, our research aims to ad-
vance the design and implementation of an end-to-end learning VLC system. For simplicity
and without losing generality in demonstrating the functionality of our autoencoder strat-
egy, we focus exclusively on the O/E conversion processes at the receiver. This focus is
aimed at enhancing not only energy efficiency but also system performance and reliability.
However, this approach can be extended to include the conversion of electrical to optical
signals at the transmitter as well. In doing so, our goal is to bridge the gap between the
theoretical potential and the practical usability of VLC technologies, ensuring that our
solution is conceptually sound and viable for real-world applications.

2.2. CSK-Based System Design

The traditional VLC system, employing CSK modulation, is illustrated in Figure 1. We
focus on a direct point-to-point optical communication link, using an RGB LED to transmit
a signal vector, denoted as s, from a predefined set S = {s1, s2, · · · , sM}. This vector,
derived from the M different data symbols d in the setM = {1, 2, · · · , M}, is received and
processed through optical filtering to separate the RGB channels, followed by conversion
into electrical currents for each channel. The signal model for the received vector r ∈ R3×1

is given by
r = CHs + n, (2)

where H ∈R3×3 represents the VLC channel matrix, s ∈R3×1 transmitted signals, n ∈ R3×1

the noise vector, and C ∈ R3×3 the responsivity matrix.
Our study uses CSK modulation for its complexity and sophistication as a key tech-

nique in the VLC standard IEEE 802.15.7 [5]. CSK operates by transmitting log2(M) bits
per symbol, where M indicates the size of the constellation. This transmission is achieved
by varying the color intensities of an RGB LED. A crucial aspect of CSK is the design of
the constellation’s symbols, which requires a meticulous balance between brightness and
chromaticity to ensure efficient communication. The transmitted RGB optical power vector,
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denoted s =
[
Pr, Pg, Pb

]T , corresponds to a specific chromaticity coordinate (x, y). This
vector is calculated using the following equation, as referenced in [32]:



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
 =
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1 1 1
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


−1
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y
1

1−x−y
y


. (3)

In this equation, (xr, yr), (xg, yg), and (xb, yb) denote the chromaticity coordinates of red,
green, and blue light sources. The transmitted signal must meet two key lighting criteria:
adhering to a target color, typically white, verified via a chromaticity diagram to ensure that
CSK constellation symbols match this color benchmark, and maintaining within the RGB
LED’s dynamic range. The total optical power, the sum of the powers of the red (Pr), green
(Pg), and blue (Pb) LEDs, must not exceed the limit of the dynamic range, mathematically
Pr + Pg + Pb ≤ PT , where PT is the maximum allowable average power.

Figure 1. Traditional color space-based VLC system model.

In the exploration of VLC systems, particular attention is given to the receiver-side
O/E conversion process. This conversion is critical in the transformation of optical signals
into electrical signals, a process that is fundamentally influenced by the characteristics
of the photodetector used. The analysis begins with a conventional photodetector array
configuration, represented in Figure 1, which is standard in VLC systems. This configura-
tion, while effective, presents an inherent challenge in managing the non-linear response
characteristics induced by various factors such as quantum efficiency (Q.E.), wavelength
(λ), and ambient temperature. To provide a comprehensive understanding of these dynam-
ics, Figure 2 delves into the operational principles of a photodetector. It illustrates how
incident light is converted into an electrical signal, with the photodetector’s responsivity
(R) playing a central role. The figure further demonstrates the non-linear response of the
photodetector to temperature variations and wavelength changes, which can significantly
impact the system’s performance.

An alternative detection method employing a single photodetector array is also in-
troduced in Figure 3. This approach aims to simplify the system’s design, reducing both
complexity and cost and facilitating better integration with IoT technologies. However,
simplifying the design also accentuates the challenge of accurately managing the non-linear
O/E conversion process. Therefore, it prioritizes implementation efficiency, offering sub-
stantial advantages in deployment and integration with IoT technologies, with careful
consideration required for the conversion intricacies that could affect system performance.
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Figure 2. Photodetector response characteristics in VLC Systems: (a) schematically represents
the photodetector converting light power into an electrical current with the responsivity equation
highlighted to account for material properties; (b) displays the temperature dependence of quantum
efficiency (Q.E.), illustrating the percent change in responsivity per degree Celsius and the wavelength
dependence of responsivity under different bias voltages.

Figure 3. Single photodetector-based VLC color space-based VLC system model.

In terms of enhancing the performance of the symbol error probability, the maximum-
likelihood (ML) method is used with the photodetector array. The ML method aims to
minimize the Euclidean distance between the received signal vector r (as defined in (2)) and
all possible transmitted signals. The optimal function of the ML detector can be formulated
as follows:

d̂ = arg min
s∈S
‖r− CHs‖2

2, (4)

where d̂ represents the estimated value of d, which is mapped to one of the signal vectors
in the set S , and ‖·‖2 denotes the 2-norm.

An alternative to the photodetector array to detect RGB light signals is the use of a
single photodiode (SPD) [33]. This approach, illustrated in Figure 3, simplifies the receiver
design by using just one photodetector and omitting any optical filters. The fundamental
principle of the SPD is based on the wavelength-dependent responsivity of the photodiode.
This feature allows for the mapping of received optical signals to distinct scalar values, each
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corresponding to the wavelengths of the individual RGB LEDs. With the SPD configuration,
the received signal model, initially formulated in (2), is adapted to the following:

rs = 〈ρ, Hs〉+ n, (5)

where ρ = [R(λr), R(λg), R(λb)]
T represents the photodetector’s responsivity at the peak

wavelengths for the red, green, and blue components. The symbol 〈·〉 signifies the dot
product operation, and the photodetector output is a combination of the influence of the
channel matrix and a scalar representation of noise. Similarly to the approach in (4), the SPD
receiver determines the transmitted symbol by employing an optimal detection strategy.
This is expressed as follows.

d̂ = arg min
s∈S
|rs − 〈ρ, Hs〉|, (6)

where | · | indicates the absolute value. This method allows the SPD receiver to effectively
identify the transmitted symbol, optimizing detection in the VLC system.

3. CSK-Based VLC System Design Using Neural Networks

In this section, we delve into the design of our CSK-based VLC system, which uti-
lizes an innovative autoencoder-based approach. Initially, we detail the architecture of
our autoencoder model, focusing on its core components, including the crucial hidden
layers that play a vital role in the system’s learning and adaptation capabilities. We elab-
orate on the meticulous design of the training framework, which is tailored to optimize
the weights and biases within these layers, effectively minimizing the cost function for
enhanced performance.

3.1. Autoencoder Design

In our study, we conceptualize the VLC system within an autoencoder framework
consisting of three primary components: the encoder, the code, and the decoder. The trans-
mitter and receiver are represented as two separate parametric neural networks, envisioned,
respectively, as the encoder and decoder. These networks are jointly optimized to meet
specific performance criteria, with the Additive White Gaussian Noise (AWGN) channel
representing the code.

3.1.1. Hyperparameters

Our autoencoder’s efficiency is significantly influenced by the selection of optimal
hyperparameters. The key parameters that we fine-tuned during the optimization process
are detailed in Table 1.

Table 1. Optimized hyperparameters for autoencoder efficiency.

Encoding Dimension Set at N = 3, corresponding to the number of transmitting
LEDs in our CSK-based VLC system.

Hidden Layers Two layers were determined to best balance performance and
complexity.

Nodes in Hidden Layers Each layer has 4 nodes, except the final transmitter layer with
3 nodes, as established through iterative testing.

Activation Function
The encoder employs the Exponential Linear Unit (ELU),
and the decoder uses the Softmax function, suited for our
multi-class scenario.

Optimizer The Adam optimizer was chosen for its adaptive learning rate
capabilities.

Epochs Training iterations were consistently set to 10 for all combina-
tion of parameters.

Batch Size A mini-batch size of 100 ensured fast and efficient model
convergence.
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3.1.2. Cost Function

Our goal is to jointly optimize the transmitter and receiver network parameters. This
is achieved using the following cost function:

C = L1 + λL2. (7)

L1 is defined using the categorical cross-entropy metric to measure the discrepancy
between the input symbols and their predicted probabilities:

L1 = −
M

∑
m=1

dm log(pm), (8)

where dm is the true value for the m-th symbol, and pm is the predicted probability for
the m-th symbol. The categorical cross-entropy metric (L1) plays a pivotal role in the cost
function, not only measuring the accuracy discrepancy between input values and their
predicted counterparts but also implicitly favoring the maximization of the minimum
Euclidean distance between constellation symbols. Well-separated symbols naturally lead
to a lower cross-entropy value, which correlates with a more accurate and reliable system
performance. The integration of this metric thus subtly but effectively ensures that symbols
are sufficiently spaced in the constellation without necessitating an additional explicit term
in the loss function for the Euclidean distance.

The second term, L2, incorporates the chromaticity constraint for illumination, inte-
grating the RGB constraint in the CIE chromaticity diagram:

L2 =
2

(1 + e−|Tc−CCT|/1000)− 1
, (9)

where CCT represents the desired color temperature and Tc is the color temperature
resulting from the RGB lights produced by the transmitter. The computation of Tc is based
on McCamy’s approximation [34]:

Tc = 437n3 + 3601n2 + 6831n + 5517, (10)

where n = (x− 0.3320)/(0.1858− y), given the measured chromaticity coordinates (x, y).
Lastly, the parameter λ controls the relative contribution of the penalty term provided
in (9).

The balance within the cost function, as reflected in Equation (7), between the accuracy-
focused L1 and the chromaticity constraint L2, has been carefully calibrated to support
robust performance while maintaining compliance with illumination requirements.

3.2. Autoencoder Simulation Framework

In this section, we outline the simulation framework used to model the VLC system
using neural networks. The proposed simulation structure can be seen in Figure 4.

Figure 4. Proposed end-to-end VLC structure.
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3.2.1. Transmitter

The transmitter begins by mapping each training input symbol d(i) from the set D
and ranging from i = 1, 2, · · · , I to a one-hot vector e(i) in the set E . The set E comprises
distinct one-hot vectors, defined as:

E =

{
e(i) ∈ {0, 1}M :

M

∑
m=1

em(i) = 1
}

. (11)

This vector is then passed through L fully-connected hidden layers, each with M
neurons, except the last layer, which has N neurons. The output from the l-th layer, where
l ranges from 1 to L, is given by:

ht
l(i) = Φt

l
(
Wt

l x
t
l(i) + bt

l
)
, (12)

where Wt
l ∈ RM×M, xt

l(i) ∈ RM×1, and bt
l ∈ RM×1 represent the weights matrix, input

vector, and bias vector, respectively, with Φt
l(·) as the activation function. Notice that for

l = 1, xt
1(i) = e(i), and for l = L, Wt

L ∈ RN×N , xt
L(i) ∈ RN×1, and bt

L ∈ RN×1. The final
output from the transmitter, symbolizing the CSK constellation symbol for the i-th training
symbol, is normalized to uphold power constraints:

s(i) = ht
L(i) ◦ v, (13)

where ◦ denotes the Hadamard product, and v = [ν1, ν2, ν3]
T is the normalization vector

ensuring max(s(i)) = [1, 1, 1]T .

3.2.2. Channel

Our novel autoencoder architecture is initially analyzed using an AWGN channel for
simplicity and to gain basic insights before addressing more complex scenarios. This is
apt for VLC, where non-line of sight reflections are minimal, aligning with the AWGN
model’s characteristics.

In the stochastic channel layer of the model, the transmitted optical signal vector s(i) is
first multiplied by the identity matrix H = I ∈ Z3×3. We then introduce a noise vector n(i),
adhering to the normal distribution N (0, σ2I), to this product. Consequently, the output
from the channel layer for the i-th training symbol is formulated as:

r(i) = Cs(i) + n(i), (14)

with r(i) is ∈ RN×1. It is important to note that although the noise samples for each training
symbol are independent and identically distributed (i.i.d.), their specific statistics are not
discernible during the training phase. This consideration is crucial for accurately modeling
the stochastic nature of the channel within our autoencoder framework.

3.2.3. Receiver

The receiver’s primary function in our VLC system is to decode the channel output,
r(i), to accurately approximate the original transmitted symbol. This process begins with
the output being fed through a deterministic O / E conversion layer, which is subsequently
passed through the J hidden neural network layers. The output from each hidden layer, j,
where j ranges from 1 to J, is formulated as:

hr
j (i) = Φr

j

(
Wr

j x
r
j (i) + br

j

)
, (15)

in this expression, Wr
j ∈ RM×M, xr

j (i) ∈ RM×1, and br
j ∈ RM×1 represent the weight matrix,

input vector, and bias vector for each layer, respectively. Each layer utilizes the activation
function Φr

j (·). In particular, the first layer’s input is specifically xr
1(i) = r(i).
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Following the hidden layers, the output layer uses the softmax activation function to
calculate the probabilities corresponding to each predicted class. These probabilities are
determined by:

pm(i) =
ehr

J(i,m)

∑M
m=1 ehr

J(i,m)
, (16)

where hr
J(i, m) is the m-th element of the output layer. The final step in the decoding process

involves determining the estimated training symbol, d̂(i), by identifying the element with
the highest probability:

d̂(i) = arg max
m∈M

(
pm(i)

)
. (17)

4. System Configuration and Evaluation Criteria

Following the autoencoder design outlined in Section 3, this section elaborates on the
specific configurations of our VLC system for numerical evaluation. We detail the setup pro-
cesses, performance metrics, and computational complexity assessments involved, offering
a framework essential for understanding the numerical results discussed in Section 5.

4.1. Setup

Our approach is designed to develop an optimal CSK-based modulation set, achieved
by training the autoencoder parameters in a noise-free environment. In this approach,
the model acclimates to the modulation symbols derived from the training data without
the influence of noise factors. The crux of this method lies in maximizing the minimum
Euclidean distance among the modulation symbols. This is in contrast to noise-aware
models, which require a prior estimation of noise statistics and necessitate updates to the
modulation set upon any changes in these statistics. A key advantage of our noise-free
approach is the rapid training process that leads to optimal results. This efficiency is due to
the fact that the goal of maximizing Euclidean distance between modulation symbols is not
impacted by noise, making it a robust strategy regardless of noise conditions.

Table 2 presents the detailed structure of our proposed autoencoder for the VLC
network. The transmitter consists of a one-hot mapping layer, two hidden layers, and a
normalization layer, with the maximum transmitted optical power for each color channel
normalized to a value of one (as specified in Section 3.2.1). Conversely, the receiver
integrates two fully connected hidden layers, each containing M neurons. We employed
silicon photodiodes as optical detectors to investigate the nuances of the O/E conversion
response. The specifications of the light sources and optical receivers used in our VLC
system are listed in Table 3. Notably, the responsivity vector ρ is derived based on the
documented response in [31], with defined wavelengths of λb = 470 nm, λg = 530 nm and
λr = 645 nm.

Table 2. Autoencoder structure.

Block Layer Type Outputs Activation Function

Transmitter

One-Hot Mapping M NA
Hidden M None
Hidden N ELU

Normalization N NA

RGB Channel Noise N NA

Receiver

Input N None
Hidden M None
Hidden M Softmax

Arg. Max M NA
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Table 3. Electric and optical parameters.

Chromaticity PD Responsivity
Coordinates ρ (A/W)

Red (λr = 645 nm) (0.7006, 0.2993) 0.42
Green (λg = 530 nm) (0.1547, 0.8059) 0.32
Blue (λb = 470 nm) (0.1440, 0.0297) 0.22

CCT = 6500 K

CIE 1931 (x,y) (0.3127, 0.3290)

We assess the performance of the VLC system across four distinct scenarios:

1. CSK-VLC-AE (baseline): This scenario serves as a baseline, employing a maximum-
likelihood detector to identify data symbols in the RGB channels without considering
optical-to-electrical (O/E) conversion effects. This ideal case helps establish a perfor-
mance benchmark under optimal conditions.

2. CSK-VLC-AE with O/E: This scenario is similar to the baseline but includes the
impact of O/E conversion at the receiver, using the same ML detection method. This
comparison highlights the effects of O/E conversion on system performance.

3. CSK-VLC-AE with SPD: Here, we implement a system using a single-photodiode
(SPD) detector, which inherently includes O/E conversion. This setup is crucial for
understanding the performance trade-offs when employing a cost-effective, simplified
detector configuration.

4. CSK-VLC with O/E (traditional non-autoencoder system): This scenario compares
our autoencoder approach with a traditional VLC system using CSK modulation
and ML detection that includes O/E conversion. This comparison serves as a critical
benchmark to evaluate the advantages of integrating autoencoders into VLC systems.

The network model is trained with 6× 105 samples on 10 epochs, using a mini-batch
size of 100× N and Adam optimizer with a learning rate of ρ = 0.001. The effectiveness of
these schemes is tested using 4× 105 data symbols, analyzing the SER outcomes. During our
training phase, we used both the transmitter and receiver networks to evaluate the average
SER performance. For the testing phase, we analyzed 4× 105 data symbols to compare SER
across the three outlined schemes.

4.2. Performance Metrics

Evaluating the performance and complexity of our neural network-based VLC system
is crucial. This subsection details the metrics we have selected for this evaluation, enabling
a comprehensive comparison of the different schemes under study.

Symbol Error Rate: A key metric in assessing the efficiency of digital communication
systems is the SER in relation to the SNR. To estimate the SER, we conducted simulations
using the learned transmitter and receiver with a substantial number of symbols. We
calculate the SER by comparing the ratio of erroneously received symbols to the total
number of transmitted symbols, defined as:

SER =
number of symbols in error

total number of transmitted symbols
. (18)

Minimum Euclidean distance: Another critical metric is the minimum Euclidean
distance between symbols in a modulation scheme. This distance is indicative of a com-
munication system’s performance, with a larger Euclidean distance generally implying
better performance. To assess this, we evaluate the minimum Euclidean distance among
the signals received by our VLC receiver, calculated as:

dmin = min
m,k,m 6=k

‖sm − sk‖2
2, (19)
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where sm and sk are elements of the set S for m, k = 1, 2, · · · , M.

4.3. Processing Complexity

In assessing the efficiency of our proposed model, it is important to consider the
processing complexity of the autoencoder architecture. To this end, the computational
complexities of the individual layers are detailed in Table 4, offering a granular view of the
computational demands of the model. Our analysis includes a representative complexity
function for the entire architecture, formulated as c(N, M) = 3M2 + N2 + 2N + 5M + 4,
which simplifies to a complexity of O(M2 + N2). Moreover, the adoption of parallel
processing, a common practice in neural network operations, can significantly mitigate
these computational requirements.

Table 4. Number of mathematical operations in the end-to-end autoencoder model.

Layer (Output Multiplications Additions & Function
Dimensions) Divisions Exp (·)

Transmitter

Noise (N) - - -
One-Hot Mapping (M) - - -

Hidden (M) M ·M M + 1 -
Hidden (N) N · N N + 1 N

Normalization (N) - N -

RGB Chanel

Noise (N) - - -

Receiver

Noise (N) - - -
Input (N) - - -

Hidden (M) M ·M 2M + 1 -
Hidden (M) M ·M 2M + 1 M

Arg. Max (M) - - -

Comparing this to conventional systems, the autoencoder stands out for its balanced
computational profile. Traditional VLC systems often have fluctuating computational needs
based on their detection methods. For instance, optimal ML detectors with a photodetector
array can have a complexity of O(MN), while a single-photodiode detector simplifies this
to O(M).

5. Results

This section discusses the impact of O/E conversion on our CSK-modulated autoen-
coder VLC system. We initially trained the CSK-VLC-AE network to incorporate the
autoencoder’s explicit structure and the effects of O/E conversion. The learning curves of
the dataset indicated a rapid and effective acquisition of transmitter and receiver functions,
with a training accuracy that quickly reached and stabilized nearly 100% after the initial
epochs. The loss, combining the terms L1 and L2 of our methodology, showed rapid stabi-
lization, maintaining a consistent average in the later training stages. Specifically, after the
fifth epoch, the loss value leveled at around 0.42, indicating that the model had successfully
converged. The Adam optimizer was particularly effective in later learning stages, even
with suboptimal hyperparameters. Following a similar approach, we trained and tested
two other scenarios: CSK-VLC-AE without O/E and CSK-VLC-AE with SPD. Both yielded
results consistent with our initial network model.

Figure 5 illustrates the average SER performance in relation to SNR for the VLC
schemes evaluated. Incorporating O/E conversion at the receiver notably degrades SER
performance. Specifically, the CSK-VLC-AE scheme shows a performance drop of approxi-
mately 10 dB at an average SER of 10−3, and an additional 8 dB decrease is observed in
the CSK-VLC-AE with SPD scheme. To provide a benchmark, the results of a traditional
non-autoencoder VLC system, CSK-VLC with O/E, which incorporates O/E effects and
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utilizes a maximum-likelihood detector, are also presented (see Figure 1). Despite utilizing
well-established detection methods, this traditional VLC system is consistently outper-
formed by the CSK-VLC-AE schemes, particularly at SNRs above 12 dB and SERs below
2× 10−1. This highlights the autoencoder’s ability to enhance SER performance amidst
the challenges posed by O/E conversion. As noise levels increase, surpassing signal levels,
all schemes exhibit an uptick in error rates. However, the resilience of the CSK-VLC-AE
approaches underscores their potential advantages in practical VLC system applications.

0 5 10 15 20 25 30

SNR dB

10
-3

10
-2

10
-1

10
0

S
E

R

baseline

AE with O/E Conversion

SPD

Traditional

Figure 5. SER performance results of the CSK-based autoencoder VLC system according to the base-
line scheme, the cases with O/E conversion and SPD detection, and an additional curve representing
a traditional VLC system employing maximum-likelihood detection for comparison.

In Figures 6–8, the 4-CSK mapping constellations for the autoencoder-based schemes
are displayed in the CIE 1931 color space for the respective examined configurations.
The central wavelengths of RGB LEDs are indicated by circles, with the optimal color
coordinates for each constellation symbol shown as squares, and the average color tonality
is represented by a red cross, with an aim to reproduce the D65 color standard. Figure 6
represents the standard CSK-VLC-AE scheme, Figure 7 illustrates the CSK-VLC-AE scheme
with O/E conversion, and Figure 8 shows the CSK-VLC-AE scheme with SPD. All schemes
strive for D65 white tonality. Additionally, the MacAdam ellipse on the CIE 1931 xy
chromaticity diagram is included to emphasize colors that are indistinguishable from the
ellipse’s center to the average human eye.

Figure 6. Resulting optimal constellation symbols (N = 3) for scheme CSK-VLC-AE for M = 4 and
using D65 white tonality as target.
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Figure 7. Resulting optimal constellation symbols (N = 3) for scheme CSK-VLC-AE with O/E for
M = 4 and using D65 white tonality as target.

Figure 8. Resulting optimal constellation symbols (N = 3) for scheme CSK-VLC-AE with SPD for
M = 4 and using D65 white tonality as target color.

Table 5 details the constellation sets for each case study, focusing on the minimum
distance at the transmitter dtx

min for each scheme. Evaluating the minimum distance between
constellation symbols at the receiver drx

min reveals the effect of photoelectric conversion,
with drx

min decreasing significantly due to this impact. The SPD-structured system further
reduces this minimum Euclidean distance, as the transmitted RGB vector aligns with the
sensitivity response.

The Euclidean distance at the receiver plays a crucial role in error probability. Figure 9
contrasts the constellations at the receiver for the standard CSK-VLC-AE scheme with
those impacted by O/E conversion and SPD scenarios. The constellation points in the O/E
and SPD scenarios are noticeably closer due to photoelectric conversion, reducing their
effectiveness in minimizing error probability compared to the baseline configuration.
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Table 5. CSK constellations learned for M = 4 and CCT = 6500 K.

Method CSK Constellation Sets dtx
min drx

min

CSK-VLC-AE

{[0.1227, 0.0624, 0.2000]T ,
[0.0879, 0.3982, 1.0000]T ,
[1.0000, 0.5765, 0.1243]T ,
[0.8067, 1.0000, 0.8565]T}

0.8676 0.8676

CSK-VLC-AE with O/E
Conversion Loss

{[0.9998, 0.0905, 0.2493]T ,
[0.1512, 0.0912, 1.000]T ,
[1.0000, 1.0000, 0.1135]T ,
[0.1599, 0.9999, 0.6370]T}

0.9213 0.3265

CSK-VLC-AE with SPD

{[1.0000, 1.0000, 1.0000]T ,
[0.3588, 0.3479, 0.3478]T ,
[0.0195, 0.0210, 0.0219]T ,
[0.6644, 0.6626, 0.6448]T}

0.5297 0.2944
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Figure 9. Receiver constellations for standard CSK-VLC-AE (baseline) and the impact of O/E
conversion and SPD, showing reduced error minimization effectiveness.

6. Conclusions

In this study, we have applied the use of an autoencoder network for the design of a
CSK-based VLC system, meticulously incorporating the nuances of the O/E conversion at
the receiver. This end-to-end learning approach represents a notable shift from conventional
mathematical models, showcasing the potential to craft multi-colored VLC transceivers
leveraging sophisticated neural network algorithms. By optimizing constellation symbols
with a custom cost function that combines categorical cross-entropy with chromaticity
considerations, our methodology has yielded significant performance enhancements.

A critical insight from our research is the substantial influence of O/E conversion
efficiency on the minimum distance between constellation symbols, which in turn, cru-
cially affects SER performance. Specifically, our simulations show that including the O/E
conversion process leads to a performance degradation of approximately 10 dB at an
SER of 10−3. However, our proposed autoencoder design mitigates this degradation, im-
proving performance by 2 dB compared to a traditional CSK-VLC system without the
autoencoder. Furthermore, our findings underline the adaptability of an autoencoder
framework equipped with a single-photodiode receiver as an effective solution for creating
cost-efficient and energy-saving IoT deployments. Despite observed performance dips in
the single-photodiode receiver configuration due to altered constellation points, potential
remedies such as the augmentation of emission power present a viable countermeasure,
particularly in IoT networks where power limitations may be more flexible.
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By delving into the impacts of O/E conversion and introducing a learning-driven
design philosophy for VLC systems, our work furthers the integration of this technology
with IoT infrastructures. This research not only deepens the theoretical understanding of
VLC but also extends its practical reach, setting the stage for VLC technology to thrive in
diverse real-world applications. Additionally, utilizing autoencoders paves the way for
future research opportunities to investigate other processes that impact both the transmitter
and receiver. Although this study primarily focuses on the optical-to-electrical conversion
at the receiver, the framework developed can be expanded to address other overlooked
processes that influence the overall system performance and quality. Subsequent studies
will further confirm the effectiveness of autoencoders in optimizing VLC systems and
overcoming a wider range of challenges. Potential future applications for this technology
include smart homes and offices, healthcare facilities, public transportation systems, in-
dustrial automation, AR/VR applications, and retail environments. These applications
showcase the adaptability and extensive usability of our proposed VLC system design in
enhancing Internet of Things (IoT) connectivity and data transmission.
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Abstract: We propose and demonstrate a Mach–Zehnder Interferometer (MZI)-based optical neural
network (ONN) to classify and regenerate a four-level pulse-amplitude modulation (PAM4) signal
with high inter-symbol interference (ISI) generated experimentally by a silicon microing modulator
(SiMRM). The proposed ONN has a multiple MZI configuration achieving a transmission matrix that
resembles a fully connected (FC) layer in a neural network. The PAM4 signals at data rates from
160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally generated by a SiMRM.
As the SiMRM has a limited 3-dB modulation bandwidth of ~67 GHz, the generated PAM4 optical
signal suffers from severe ISI. The results show that soft-decision (SD) forward-error-correction (FEC)
requirement (i.e., bit error rate, BER < 2.4× 10−2) can be achieved at 200 Gbit/s transmission, and the
proposed ONN has nearly the same performance as an artificial neural network (ANN) implemented
using traditional computer simulation.

Keywords: silicon photonics (SiPh); silicon-on-insulator (SOI); pulse amplitude modulation (PAM);
silicon microring modulator (SiMRM); optical neural network (ONN)

1. Introduction

From streaming 4 K/8 K videos to accessing cloud-based Internet services, the need
for high-speed and reliable Internet connectivity is on the rise. To satisfy these band-
width demands, high-capacity optical transmission technologies are required. Recently,
800 Gbit/s systems were proposed utilizing eight lanes of 50 Gbaud four-level pulse ampli-
tude modulation (PAM4) (i.e., 8 × 100 Gbit/s/λ) or by utilizing four lanes of 100 Gbaud
PAM4 (i.e., 4 × 200 Gbit/s/λ) [1,2]. It was also reported that an aggregate data rate of
1.6 Tbit/s transceiver (TRx) was realized by utilizing eight lanes of 200 Gbit/s [3]. For
beyond 1 Tbit/s transmission [4], a single-lane data rate at or beyond 200 Gbit/s is required
with improved power and space efficiencies [5]. Nowadays, silicon photonics (SiPh) is
widely considered as one of the important optical integration technologies for the next
generation data center optical networks and optical interconnects [6–11]. SiPh devices con-
sume less power and produce less heat than conventional electronic circuits, offering great
advantages of energy-efficient bandwidth upgrade. In addition, SiPh is compatible with
the mature, complementary metal–oxide–semiconductor (CMOS) fabrication technologies,
which potentially allow integration of photonic and electronic devices at mass volume
cost effectively. Recently, different high-speed SiPh modulators have been reported [12].
Although SiPh-based modulators provide many merits, such as low power consump-
tion and a small footprint, there are still many challenges for data center interconnect
applications [13]. One is the limited electrical-to-optical (EO) bandwidth (i.e., 50~60 Gbaud)
and limited extinction ratio (ER) of the SiPh modulators. Hence, different digital signal pro-
cessing (DSP) techniques are employed to further enhance the data rates, such as Volterra
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equalization [14], feed-forward equalization (FFE), and decision feedback equalization
(DFE) [15], as well as machine learning approaches, including long short-term memory
neural network (LSTMNN) [16], recurrent neural network (RNN) [17], etc.

As discussed before, machine learning approaches have been successfully applied in
optical communications and networking [18,19]. Neuromorphics is an attempt to migrate
the elements in machine learning algorithms to a hardware platform [20]. This could lead to
much faster and more energy efficient data processing [21]. Thanks to the advancements in
photonics technologies, bringing together neuromorphics and photonics could offer a high-
bandwidth and low-power-consumption operation when compared with electronics [22].
An optical neural network (ONN) enables the running of machine learning algorithms
more efficiently [23]. Once an ONN is trained, its architecture could be passive, and the
computation using optical signals will be operated without the need of additional power
consumption. ONNs can be implemented using free-space optics, which can provide the
advantages of negligible crosstalk with lower losses [24]. Recently, many researchers have
explored ONNs using an integrated approach with programmable silicon interferometers
for matrix and vector multiplications [25,26]. This enables chip-scale parameter calculations
in neural networks. The basic component is the Mach–Zehnder Interferometer (MZI),
which is utilized to manipulate both power coupling ratio and phase. The multiple MZI
configuration can achieve a transmission matrix that resembles a fully connected layer in
a neural network. Besides the MZI-based ONN, microring-based ONN [27] and phase
change material-based ONN [28] are also promising.

In this work, we propose and demonstrate an ONN to regenerate the four-level pulse
amplitude modulation (PAM4) signal with high inter-symbol interference (ISI) generated
experimentally by a silicon microring modulator (SiMRM). The proposed ONN has a
multiple MZI configuration achieving a transmission matrix that resembles a fully con-
nected layer in a neural network. Here, the PAM4 signals at data rates from 160 Gbit/s to
240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally generated using a silicon
microring modulator (SiMRM) [29]. It is also worth mentioning that the PAM4 signal can
be generated by other schemes, such as injection-locked vertical-cavity surface-emitting
lasers (VCSELs) [30,31]. As the SiMRM has a 3-dB modulation bandwidth of ~67 GHz, the
expected PAM4 data rate is ~134 Gbit/s (i.e., 2 bit/symbol × 67 Gbaud). When the data
rate is operated at >200 Gbit/s, the generated PAM4 optical signal suffers from severe ISI.
After the utilization of the proposed MZI-based ONN, the result shows that soft-decision
(SD) forward-error-correction (FEC) requirement (i.e., bit error rate, BER < 2.4 × 10−2) can
be achieved at 200 Gbit/s transmission, and the proposed ONN has nearly the same perfor-
mance with the artificial neural network (ANN) implemented using computer software.

2. Theory of the MZI-Based ONN

The proposed ONN has a multiple MZI configuration achieving a transmission matrix
resembles a fully connected layer in a neural network. Figure 1 shows a typical 2 × 2 MZI,
which is composed of two 3-dB couplers, a phase shifter θ situated on the top arm inside
the MZI, and a phase shifter ϕ situated at the MZI output. The phase shifter θ controls the
MZI output power, while the phase shifter ϕ determines the phase of the MZI outputs. This
configuration permits adaptable rotation within the unitary matrix, thus contributing to its
versatility. Equation (1) shows the transformation matrix of MZI, where θ and ϕ represent
the internal and external phase shift values, respectively.

SMZI = jej( θ
2 )


ejϕsin

(
θ
2

)
ejϕcos

(
θ
2

)

cos
(

θ
2

)
−sin

(
θ
2

)

 (1)
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Figure 1. A typical 2 × 2 MZI used in the ONN. It consists of two 3-dB couplers, a phase shifter θ=,
and a phase shifter ϕ.

Figure 2 shows the architecture of the ONN utilized for the classification of ISI distorted
PAM4 signals. This MZI network architecture is known as Reck mesh architecture [32]. The
number of MZIs in a N × N Reck mesh is N(N−1)

2 , where N represents the number of input
ports and output ports. These MZIs are organized in (N − 1) rows, with the count of MZIs
in each row decreasing from (N − 1) to 1 from top to bottom. The first port is for receiving
the PAM4 data, while the second part is for optical pumping. This will be discussed in
detail in a later section.
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Figure 2. The architecture of MZI-based ONN in Reck mesh architecture.

The transformation matrix of each MZI in the mesh can be expanded to a N × N
dimensional Hilbert space. Take the 4 × 4 Reck mesh for example, the 4 × 4 dimensional
Hilbert space of each MZI is shown in Equations (2)–(4).

Dn =




SMZIn
0 0
0 0

0 0
0 0

1 0
0 1


 n = 1, 3, 6 (2)
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

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0
0
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0
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SMZIn


 n = 4 (4)

The SMZIn in the equations is the nth MZI transformation matrix as shown in Equation (1).
The entire Hilbert space of the network system is derived from the inner product of Dn.
Therefore, the entire Hilbert space in the Reck mesh can be written as Equation (5). Hence,
the input-output relationship of the MZI network can be expressed as Equation (6), where Y
represents the output optical field matrix, X is the input optical field matrix, and H denotes
the Hilbert space matrix. This operation is like the fully connected layer shown in Figure 3.

H = D6·D5·D4·D3·D2·D1 (5)
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Y = X·H (6)
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In a fully connected layer, each connection line from xi to yj can be written as
xi wi,j + bi,j, where wi,j and bi,j are the weight and bias value at connect line, respectively.
The relationship between xi and yj is illustrated in Equation (7). Using a matrix to express
this relationship, we can obtain Equation (8), where Y is output matrix, X is input matrix,
W is weight matrix, and b is the bias matrix. Comparing Equation (8) with Equation (6), it
can be observed that they are very similar.

yj = ∑i=n
i=1 xiwi,j + bi,j (7)

Y = X·W + b (8)

Therefore, we can use same way in a neural network like a back-propagation algorithm
to optimize H matrix value in the lower loss function value as shown in Equation (9),

Ht+1 = Ht − α·∇Ht L (9)

where α is the learning rate, ∇ is the gradient operator, L is the loss function value, and t is
the current epoch. Due to the unitary property inherent in linear transformation matrices,
the inverse matrix [SMZI]−1 of each MZI is equal to its conjugate transpose as Equation
(10)
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−1 = −je−j( θ
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(
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(
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2

)
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Hence, the decomposition of H is equivalent to the reverse arrangement of MZIs. This
leads to successive products culminating in the eventual formation of the identity matrix as
shown in Equation (11). Through the sequential multiplication of H by [Dn]−1 in a defined
order, the off-diagonal elements in both the upper and lower triangles of the matrix would
eventually become 0. Subsequently, Gaussian elimination can be applied to determine the
phase shift values ϕ and θ at each phase shifter.

H·[D1]−1·[D2]−1·[D3]−1·[D4]−1·[D5]−1·[D6]−1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (11)
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When the MZI-based ONN has been trained, it can be operated as a PAM4 signal
classifier as illustrated in Figure 4. It shows that after the trained MZI-based ONN, different
photodiodes (PDs) will be detected corresponding to different levels in the PAM4 input
data. However, this part is only the linear operation, and nonlinear activation is needed to
handle more complicated scenario.
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The nonlinear activation function plays a pivotal role in the functionality of a neural
network. In the ONN, one way to achieve nonlinear activation is use the structure shown
in Figure 5, which is known as the electro-optic nonlinear activation function [24]. As
illustrated in Figure 5, the electro-optic nonlinear activation function structure consists of
a directional coupler (DC), a PD, an electric amplifier, and a MZI. In the proposed work,
the electrical amplifier is implemented off chip. The DC splitter divides the light into two
paths. One pathway receives a fraction α of the input light power, which is then sent to
the PD for conversion into an electric signal. In contrast, the remaining fraction of the
input light power, which is 1 − α, is directed to the MZI after an appropriate time delay.
The PD output voltage will be amplified by the electric amplifier and combined with a
proper voltage Vb to input to the MZI phase shift. The operation of electro-optic nonlinear
activation function is illustrated in Equation (12), with the two internal components defined
in Equations (13) and (14).

f (z) = j
√

1− αe−j(
gϕ |z|2

2 +
ϕb
2 )· cos

(
gϕ|z|2

2
+

ϕb
2

)
z (12)

ϕb = π
Vb
Vπ

(13)

gϕ = π
αGR
Vπ

(14)

Above, z is the input light field, α is the DC split power ratio, Vπ is the voltage of the
MZI phase shift π, G is the gain of the electric amplifier, and R is the responsivity. Hence,
by controlling the Vb, we can conveniently modify Equation (13) to a different nonlinear
activation function. By connecting the electro-optic nonlinear activation function in series
after the MZI network mesh, a neural network with an activation function can be realized.
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3. Experimental Setup

Figure 6 illustrates the experimental setup to obtain the PAM4 optical signal. At the
transmitter (Tx) side, a 1550 nm wavelength distributed feedback (DFB) laser with an
output power of 6 dBm is launched into a silicon photonic (SiPh) chip with an SiMRM.
The SiMRM was fabricated by the multi-project wafer (MPW) scheme in CUMEC. The
electrical PAM4 signal is generated by an arbitrary waveform generator (AWG, Keysight
M8194A) with 45 GHz analog bandwidth. Subsequently, the signal is amplified by a 60 GHz
radio-frequency (RF) amplifier. The Tx digital signal processing (DSP) includes PAM4
symbol mapping, pre-distortion, upsampling, channel estimation, and pre-emphasis. The
pre-distortion and pre-emphasis serve to alleviate non-linear distortion and tackle issues
related to high-frequency roll-off, stemming from the limited bandwidth of the AWG. The
optical PAM4 signal is produced via a SiMRM with a bandwidth ~67 GHz and operated
at −3 V bias, measured by a lightwave component analyzer (LCA; Keysight N4373D). At
the receiver (Rx) side, the optical PAM4 signal is detected by a 70 GHz bandwidth PD
connected to a real-time oscilloscope (RTO, Keysight UXR0802A) with 80 GHz bandwidth
and 256 GSa/s sampling rate. To evaluate transmission performance related to different
received optical powers, a variable optical attenuator (VOA) is employed. The Rx DSP
invovles time synchronization for ensuring proper alignment of the received signal with
the transmitted signal, resampling to adjust the signal sampling rate to match with the
neural network, the proposed ONN processing, symbol demapping, and BER evaluation.
Inset of Figure 5 shows the photo of the SiMRM with diameter of ~10 µm. It was fabricated
on a silicon-on-insulator (SOI) platform with a staring wafer of 220 nm silicon layer and
2 µm buried oxide layer (BOX). The SiMRM has a loaded Q of ~3000.
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4. Result and Discussion

In this work, we use Neuroptica [33,34], which is a customized ONN simulator
programmed in Python to simulate the PAM4 signal classify by ONN processing. As
discussed above, Figure 2 shows the architecture of a Reck-based ONN to classify the
experimentally obtained PAM4 signal. We only use two ports for the classification of the
distorted PAM4 signal as indicated in Figure 2. The first port is for receiving the PAM4
data, while the second part is for optical pumping. In this work, the optical pumping is
needed to increase signal resolvability and provide additional optical power to amplify the
PAM4 data. Similar to the case of coherent detection, the pumping light can amplify the
optical signal like the local oscillator (LO) light. Here, we did not consider the additional
noise of pumping light in our simulation. However, the influence of additional noise from
pumping light on the system will be similar to that of a coherent transmission system.
To simulate the PD, a square law detection is implemented at the output ports. The
classification result depends on the maximum element in the output matrix. Therefore, the
target data should be processed by one-hot encode. To update the ONN parameters, cross-
entropy loss function is employed, and the optimizer is the Adam. In order to evaluate
the performance of proposed ONN, a fully connected ANN using traditional computer
simulation is also performed for comparison. This ANN has a four by four fully connected
layer with the ReLU activation function. As the ANN is used to compare with the proposed
ONN, it has the same number of neurons as the ONN. Hence, it will theoretically have
the same performance as the ONN. The dataset used is experimental data obtained from
our previous work in [29]. The received waveforms are adjusted by resampling so that
there is one sample per symbol. The data length of each transmission data rate experiment
is 217 bauds. We use 20% data for training and 80% for testing. In the proof-of-concept
demonstration illustrated in Figure 6, the input data are experimentally generated by a
bandwidth-limited SiMRM chip. This experimental ISI-distorted optical PAM4 signal will
be detected by a separated PD, and a RTO will store the electrical PAM4 signal as shown in
Figure 6. Hence, this stored electrical PAM4 signal can be used for the ONN simulation. In
the future ONN chip implementation, the ISI distorted optical PAM4 signal can be directly
launched into the ONN chip “RX signal” port as shown in Figure 2; hence, no additional
OE conversion by the PD is needed. In this case, four on-chip PDs on the ONN chip are
used as shown in Figure 2. The optical amplification can be realized by the pumping light
as discussed before; hence, VOA and EDFA may not be necessary. Figure 7 shows the
accuracy and loss curves for the proposed ONN. It is evident from the results that the ONN
exhibits convergence at approximately 100 epochs.
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Figure 7. The accuracy and loss curves for the proposed ONN.

Figure 8 illustrates the BER performance of PAM4 signals utilizing both the proposed
ONN and ANN. The ONN can recover and classify distorted PAM4 signals within the
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range of 160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud). The data rate achieving
the SD-FEC threshold (i.e., BER = 2.4 × 10−2) can be up to 200 Gbit/s.

Photonics 2024, 11, x FOR PEER REVIEW  8  of  13 
 

 

EDFA may not be necessary. Figure 7 shows  the accuracy and  loss curves  for the pro‐

posed ONN.  It  is  evident  from  the  results  that  the ONN  exhibits  convergence  at  ap‐

proximately 100 epochs. 

 

Figure 7. The accuracy and loss curves for the proposed ONN. 

Figure  8  illustrates  the BER performance of PAM4  signals utilizing both  the pro‐

posed ONN and ANN. The ONN can recover and classify distorted PAM4 signals within 

the range of 160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud). The data rate achiev‐

ing the SD‐FEC threshold (i.e., BER = 2.4 × 10−2) can be up to 200 Gbit/s. 

 

Figure 8. BER performances of ONN and ANN used  for classifying  the distorted PAM4 signal 

without the activation function. 

It is worth noting that the proposed ONN without an activation function is particu‐

larly sensitive to signal power variations. When the signal power is low, the accuracy of 

the model tends to decrease significantly. Figure 9 illustrates the accuracy and loss per‐

formance  of  different  normalized  input  signal  amplitudes.  For  better  understanding, 

here, the normalized signal amplitude represents the first level of the PAM4 signal, and 

the four levels in the PAM4 have the same separation. Taking the signal amplitude of 0.8 

as an example, the PAM4 values would be 0.8, 1.6, 2.4 and 3.2. We can observe from Fig‐

ure 9 that the accuracy and loss performance are poor when the normalized input signal 

amplitude  is  lower than 0.6. At the normalized  input signal of 0.1,  the model accuracy 

falls below 50%. According to our simulation results,  the ONN accuracy reduces when 

the signal amplitude is less than 0.4. This happens because when the signal amplitude is 

too low, the ASE noise from the EDFA and the thermal and shot noises from the PD be‐

come dominant,  causing  the ONN  to  fail  in  performing  classification  and  prediction. 

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

 Training accuracy
 Valdation accuracy
 Training loss
 Valdation loss

Epochs

A
cc

ur
ac

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 L
os

s

160 170 180 190 200 210 220 230 240

0.001

0.01

0.1

B
E

R

Datarate (Gbit/s)

 ONN
 ANN

SD-FEC

HD-FEC

Figure 8. BER performances of ONN and ANN used for classifying the distorted PAM4 signal
without the activation function.

It is worth noting that the proposed ONN without an activation function is particularly
sensitive to signal power variations. When the signal power is low, the accuracy of the
model tends to decrease significantly. Figure 9 illustrates the accuracy and loss performance
of different normalized input signal amplitudes. For better understanding, here, the
normalized signal amplitude represents the first level of the PAM4 signal, and the four
levels in the PAM4 have the same separation. Taking the signal amplitude of 0.8 as an
example, the PAM4 values would be 0.8, 1.6, 2.4 and 3.2. We can observe from Figure 9 that
the accuracy and loss performance are poor when the normalized input signal amplitude is
lower than 0.6. At the normalized input signal of 0.1, the model accuracy falls below 50%.
According to our simulation results, the ONN accuracy reduces when the signal amplitude
is less than 0.4. This happens because when the signal amplitude is too low, the ASE noise
from the EDFA and the thermal and shot noises from the PD become dominant, causing
the ONN to fail in performing classification and prediction. When the signal amplitude
is larger than 0.4, the ASE and PD noises will not be the dominating factors, and we can
observe that the ONN accuracy is ~1 when signal amplitude is between 0.6 and 1.0. To
solve this issue, the electro-optic nonlinear activation function discussed in Figure 5 above
is included into the ONN model. This enhances the capability of the ONN model to handle
nonlinear problems.
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Figure 9. Accuracy and loss performance of different normalized input signal amplitudes without
activation function.
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Figure 10 shows the modified ONN model with electro-optic nonlinear activation
functions. In this architecture, each output port of the first Reck mesh will be connected
to an electro-optic nonlinear activation function. The output of the electro-optic nonlinear
activation function will then be connected to the input port of the second Reck mesh, and
subsequently will be connected to a PD. Furthermore, the fusion of the activation function
and the fully connected layer can be considered as a two-layer fully connected ONN,
interconnected through activation functions
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Figure 10. Modified ONN model with electro-optic nonlinear activation functions. MZI: Mach–
Zehnder Interferometer; EO: electro-optic nonlinear activation function; PD: photodetector.

In the modified ONN, the parameters of the electro-optic nonlinear activation function
as optimized. The α is set to be 0.1, Vπ of the MZI phase shift is 5 V, the Vb is set to be
−5 V, G is set to be 20, and the responsivity R is set to be 1. Therefore, ϕb is set to be -π, and

gϕ is set to be 0.4π. Figure 11 shows the transmission coefficient (i.e., | f (z)|
2

|z|2 ) of the electro-

optic nonlinear activation function with normalized input field Z. We can observe that
the electro-optic nonlinear activation function defined exhibits similarities to the sigmoid
function but shifted towards the positive x-axis. In the simulation work here, the α = 0.1 is
used for reducing the loss for electro-optic nonlinear activation function. The electro-optic
nonlinear activation function will have different characteristics under different ϕb and gϕ.
Here, we found that the nonlinear activation function as illustrated in Figure 11 has a better
performance in our model. Therefore, ϕb is set to be −π, and gϕ is set to be 0.4π.
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Figure 11. Modified ONN model with electro-optic nonlinear activation functions.

Figure 12 illustrates the accuracy and loss performance of different normalized input
signal amplitudes with the electro-optic nonlinear activation function. Comparing the
results to the ONN model without an electro-optic nonlinear activation function shown in
Figure 10, the accuracy and loss performance in Figure 12 have been significantly improved,
particularly at low input signal powers. We can observe that even when the normalized
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input signal amplitude is as low as 0.1, the accuracy remains at an impressive value
of 99.7%.
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Figure 12. Accuracy and loss performance of different normalized input signal amplitudes with an
activation function.

Analyzing the BER performance of PAM4 signals involves using the modified ONN
with an electro-optic nonlinear activation function. It can be observed that the BER perfor-
mance of the modified ONN model with the electro-optic nonlinear activation function
is nearly the same as that without the activation function illustrated in Figure 8. The data
rate achieving the SD-FEC threshold (i.e., BER = 2.4 × 10−2) can be up to 200 Gbit/s. This
reveals that when the input signal power is high enough, no additional bit error will be
introduced for the ONN without the electro-optic nonlinear activation function. However,
the introduction of activation function increases the robustness of the proposed ONN. We
analyze the impact of the phase shift error on MZI ONN performance. To simulate the
phase error of phase shift, we introduce a random normal distribution N

(
0, σ2) and add it

to the final training results of the phase shift value for each phase shifter in the MZIs. Here,
σ is the standard deviation of the phase error. Therefore, the θ and ϕ in Equation (1) are
now written as θ̂ and ϕ̂ as shown in Equations (15) and (16).

θ̂ = θ + N
(

0, σ2
)

(15)

ϕ̂ = ϕ + N
(

0, σ2
)

(16)

Then, we analyze the impact of the phase error on the ONN. Figure 13 shows the BER
performance under various standard deviation phase errors at a data rate of 160 Gbit/s.
Here, each BER point is obtained by averaging 1000 BER calculations to ensure the random-
ness. By analyzing phase errors from 0◦ to 1.5◦, we can observe that the BER performance
remains within the SD-FEC threshold when the standard deviation of phase errors is up
to 1◦. In Figure 13, we also compare the BER performance of the ONN model with and
without electro-optic nonlinear activation function under different standard deviation
phase errors. Under 1◦ phase error, the ONN model with electro-optic nonlinear activation
function achieves a slightly lower Bit Error Rate (BER) compared to the standard devia-
tion phase errors. This shows the ONN model with the electro-optic nonlinear activation
function possesses a higher tolerance for phase errors, providing a more stable and reliable
performance under 1◦ of phase error.
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5. Conclusions

We proposed and demonstrated an ONN to regenerate PAM4 signal with high ISI
generated experimentally by a SiMRM. As the SiMRM has a 3-dB modulation bandwidth of
~67 GHz, the expected PAM4 data rate is ~134 Gbit/s (i.e., 2 bit/symbol× 67 Gbaud). When
the data rate is operated at >200 Gbit/s, the generated PAM4 optical signal suffers from
severe ISI. The proposed ONN has a multiple MZI configuration achieving a transmission
matrix that resembled a fully connected layer in a neural network. The PAM4 signals at
data rates from 160 Gbit/s to 240 Gbit/s (i.e., 80 GBaud to 120 GBaud) were experimentally
generated using a SiMRM with limited modulation bandwidth of ~67 GHz. The proposed
ONN is performed via Neuroptica, which is a customized ONN simulator programmed in
Python. Results showed that SD-FEC requirement (i.e., BER < 2.4 × 10−2) can be achieved
at 200 Gbit/s transmission, and the proposed ONN has nearly the same performance with
ANN implemented using traditional computer simulation. Moreover, we also discussed
the effect of electro-optic nonlinear activation function on the ONN model. By comparing
the ONN model with and without electro-optic nonlinear activation function in different
input signal amplitudes, it can be observed that the accuracy and loss can be significantly
improved at low input signal amplitudes. Even at the normalized input signal amplitude
of 0.1, the accuracy can still achieve 99.7%. Furthermore, we analyzed the impact of the
phase shift error of MZI to the ONN model. Both ONN model with and without electro-
optic nonlinear activation function can still achieve SD-FEC threshold under a 1◦ phase
shift error.
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Abstract: In this work, we present a novel four-channel coherent optical chaotic secure communi-
cation (COCSC) system, incorporating four simultaneous photonic reservoir computers in tandem
with four coherent demodulation units. We employ a quartet of photonic reservoirs that capture the
chaotic dynamics of four polarization components (PCs) emitted by a driving QD spin-VCSEL. These
reservoirs are realized utilizing four PCs of a corresponding reservoir QD spin-VCSEL. Through these
four concurrent photonic reservoir structures, we facilitate high-quality wideband-chaos synchro-
nization across four pairs of PCs. Leveraging wideband chaos synchronization, our COCSC system
boasts a substantial 4 × 100 GHz capacity. High-quality synchronization is pivotal for the precise
demasking or decoding of four distinct signal types, QPSK, 4QAM, 8QAM and 16QAM, which
are concealed within disparate chaotic PCs. After initial demodulation via correlation techniques
and subsequent refinement through a variety of digital signal processing methods, we successfully
reconstruct four unique baseband signals that conform to the QPSK, 4QAM, 8QAM and 16QAM
specifications. Careful examination of the eye diagrams, bit error rates, and temporal trajectories of
the coherently demodulated baseband signals indicates that each set of baseband signals is flawlessly
retrieved. This is underscored by the pronounced eye openings in the eye diagrams and a negligible
bit error rate for each channel of baseband signals. Our results suggest that delay-based optical
reservoir computing employing a QD spin-VCSEL is a potent approach for achieving multi-channel
coherent optical secure communication with optimal performance and enhanced security.

Keywords: quantum-dot (QD) spin-vertical-cavity surface-emitting laser; photonic reservoir computing;
chaotic synchronization; coherent optical chaos secure communication

1. Introduction

As is well known, there are several methods for optical communication multiplexing,
including wavelength division multiplexing (WDM), optical time division multiplexing
(OTDM), and polarization multiplexing (PM). Coherent optical communication based on
polarization-multiplexing was extensively studied in the 1980s due to the high sensitivity of
coherent receivers, which could enhance unrepeated transmission distance [1]. However, re-
lated research and development were interrupted in the 1990s due to the rapid advances in
high-capacity WDM systems. In 2005, the demonstration of digital carrier-phase estimation
in coherent receivers sparked renewed interest in coherent optical communications [2,3].
This was because the digital coherent receiver allowed for a variety of spectrally efficient
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modulation formats, such as M-ary phase-shift keying and quadrature-amplitude mod-
ulation (QAM), which rely upon stable carrier-phase estimation in the digital domain.
Additionally, linear transmission impairments, such as group-velocity dispersion (GVD)
and polarization-mode dispersion (PMD) of transmission fibers, can be addressed via digi-
tal signal processing (DSP). These advantages of the born-again coherent receiver afford
considerable potential for innovating existing optical communication systems. Recently,
100-Gb/s transmission systems, which employ QPSK modulation, polarization-division
multiplexing, and phase diversity homodyne detection assisted with high-speed DSP at a
symbol rate of 25 GBd, have been developed and introduced into commercial networks [4].
Worldwide efforts are now underway to develop coherent receivers that can handle a bit
rate of over 400 Gb/s per WDM channel.

In recent decades, there has been a growing focus on enhancing the security of fiber-
optic communication through the use of optical chaotic secure communications that employ
various devices [5]. As these methods have become increasingly capable of high-speed and
high-capacity data transmission, most of the current studies are focused on multi-channel
optical chaotic secure communications, including WDM, OTDM and PM chaotic secure
communications. Efforts in this area aim to develop secure communication systems that can
operate over multiple channels simultaneously, with the goal of improving both the speed
and security of fiber-optic communication. Several researchers have already demonstrated
successful implementations of WDM and OTDM chaotic secure communications. Further-
more, as digital signal processing (DSP) becomes increasingly integrated with coherent
optical communication, high-speed coherent optical transmission systems are poised to
play a more significant role in the global optical network infrastructure. The ongoing
evolution of fiber-optic communication promises significant enhancements in both capacity
and security. As a result, coherent optical chaotic secure communication (COCSC) has
generated considerable interest from researchers and industry experts who are working
to explore and develop this promising technology. However, it is worth noting that to
date, COCSC has not been widely reported and there are several new challenges in key
areas of the technology that will need to be addressed moving forward. These new chal-
lenges include the following: first, knowing how to realize multi-channel COCSCs with
high-speed and high-capacity, and second, knowing how to achieve high-quality chaotic
synchronization and coherent demodulation.

It is anticipated that quantum dot spin vertical-cavity surface-emitting lasers (QD-
Spin-VCSELs) can be employed to implement high-speed and high-capacity multi-channel
coherent optical chaotic secure communications (COCSCs). QD-Spin-VCSELs possess
femtosecond dynamic characteristics [6], temperature stability [7], lower lasing current [8],
ultra-large bandwidth [9], and independent control of output polarization [10–12], making
them well-suited for the realization of multi-channel COCSCs with high-speed and high-
capacity. Furthermore, these lasers can achieve ultrafast operation from both their ground
and excited states, presenting promising opportunities for ultrafast dual-wavelength laser
modules that emit ultrafast dynamics. Each beam of light emitted from the ground state
(GS) and excited state (ES) includes components with right circular polarization (RCP)
and left circular polarization (LCP). The utilization of ultrafast chaotic RCPs and LCPs
from the ground and excited states holds significant potential for realizing a four-channel
COCSC system with high speed and high capacity. However, one of the challenges in
such a COCSC system pertains to achieving high-quality chaotic synchronization and
coherent demodulation. Traditional chaotic synchronization methods, such as leading
synchronization and lagging synchronization, are limited by the symmetry between the
driving laser and the response laser, as well as the need for a perfect match of their
parameters. However, recently developed photon reservoir computing (RC) systems have
demonstrated promising performances in chaotic synchronization prediction and chaotic
signal separation. These RC systems are expected to alleviate the challenges faced in high-
speed COCSC. In particular, a QD spin-VCSEL can generate four polarization components
(PCs) from the GS and ES emissions. Four parallel RCs system are constructed by using the
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four PCs from its GS and ES emissions, where the spacing between two nonlinear nodes
is very short. These four parallel RCs are potentially applied to address the challenge of
high-quality chaos synchronizations.

Photon reservoir computing systems utilize the nonlinear dynamics of chaotic lasers
to process and predict information [13,14]. They consist of a chaotic laser, which acts as
a “reservoir” of nonlinear dynamics, and a readout layer that learns to map the reser-
voir dynamics to the desired output. This enables the system to capture and utilize the
complex dynamics of chaotic signals for various applications [15–17], including chaos
synchronization and prediction. The advantage of photon RC systems lies in their ability
to effectively handle the mismatch between the driving laser and the response laser, as well
as the variability in their parameters. By utilizing the reservoir dynamics, these systems
can adapt and learn from the input chaotic signals, allowing for robust synchronization
and separation even in the presence of imperfections and parameter mismatches. In the
context of high-speed COCSC, photon RC systems hold great potential for enhancing
the synchronization performance and enabling coherent demodulation in multi-channel
communication systems. By leveraging the capabilities of photon RC systems, it is expected
that the challenges associated with achieving high-quality chaotic synchronization and
coherent demodulation can be effectively addressed.

Recently, there have been several works proposing a delay-based photon RC system
based on electronically pumped spin-VCSELs [15,18]. This RC system utilizes the nonlinear
dynamical x polarization component (X-PC) and Y-PC from the VCSEL output to perform
two parallel reservoir computers, which are capable of predicting two independent optical
chaotic time-series simultaneously and their synchronizations. The output X-PC and Y-
PC from the electronically pumped spin-VCSEL can be interchanged continuously under
external perturbations and optical feedback, which can affect the predictive performance of
the two parallel RCs. Compared to an electrically-pumped VCSEL, a QD spin-VCSEL offers
flexible spin control of the lasing output and provides more control parameters [19,20]. This
enables better controllability for polarization switching and weakly correlated GS and ES
dynamics [21,22]. These advantages allow for the realization of four parallel RCs using the
four PCs from the GS and ES emissions of the QD-spin-VCSEL. Additionally, a QD-spin-
VCSEL can generate ultrafast chaotic dynamics when subjected to short feedback delays,
resulting in very short spacing between two virtual nodes with sufficient nodes. Therefore,
four RCs using the four PCs from the ground state and excited state emissions can effectively
handle four high-speed chaotic time-series in parallel and their synchronizations.

In this study, we introduce a unique four-channel COCSC system that uses four
concurrent photonic reservoir computers coupled with a coherent demodulation device.
Within this system, a QD-spin-VCSEL is employed as the driving laser, and a separate QD-
spin-VCSEL serves as the reservoir laser. We individually modulate four distinct encoded
messages (QPSK, 4QAM, 8QAM and 16QAM) to four PCs, originating from the GS and ES
emissions in the drive laser QD-spin-VCSEL. Additionally, we build four parallel photonic
reservoirs using four PCs, sourced from the GS and ES of the reservoir QD-spin-VCSEL,
maintaining a minimal distance between two non-linear nodes. By leveraging a concurrent
simulation of Matlab and VPI [23], these four photonic RCs help us overcome the obstacle
of chaos synchronization for four pairs of PCs generated by the drive and reservoir QD-
spin-VCSELs. We exhibit a four-channel COCSC with a 4 × 100 GHz capacity using chaos
synchronizations founded on these quartet parallel photonic reservoirs. Once the output
weights are trained within the nonlinear node states, the four parallel reservoirs can be
employed for synchronization and decryption. Further, we coherently demodulate four
channels of baseband signals (or bit sequence signals) hidden in modulation messages
through a polarization diversity digital coherent receiver (PDDCR) and a variety of DSP
methods. We examine the impact of the sampling period and the interval of the virtual
nodes on training errors. We approximate the effects of the injection and feedback strengths
on chaotic synchronizations. Conclusively, we evaluate the transmission performances of
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the four-channel baseband signals within this COCSC system, analyzing elements such as
bit error rates and eye diagrams.

2. Theoretical Framework and Simulation Experiment Setup

Figure 1 displays the fundamental block diagram of a quad-channel COCSC system,
built on four concurrent photonic reservoir computers. This intricate system is composed
of the transmitter module (TM), the reservoir computing module (RCM), and the coherent
demodulation module (CDM). Within the TM, the ground state of the QD-spin-VSEL
generates the chaotic X-PC and Y-PC, marked as GS-PCx and GS-PCy, respectively. Inter-
estingly, its excited state yields two additional photonic currents recognizable as ES-PCx
and ES-PCy. Each of the QPSK, 4QAM, 8QAM and 16QAM is IQ modulated with a group
of bit sequences (baseband signal). In this scheme, there are four distinct groups of bit
sequence signals, as depicted as b1–b4, individually. For the convenience of discussion,
the temporal dynamics of the QPSK, 4QAM, 8QAM and 16QAM are described by S1(t),
S2(t), S3(t) and S4(t), respectively. The QPSK, 4QAM, 8QAM and 16QAM are masked
within the chaotic GS-PCx, GS-PCy, ES-PCx and ES-PCy, respectively. These four channels
of chaotic masked signals are integrated into a single optical fiber utilizing a wavelength
division multiplexer (WDM Mux). In the RCM, after fiber transmission, the combined
signals are partitioned into four-channel chaotic masked signals via a wavelength division
demultiplexer (WDM DeMux). Each channel of chaotic masked signal is subsequently
bisected into dual beams. A singular beam of chaotic masked signal is introduced to a
photonic RC. Here, the predicted outputs from the RC1–RC4 are denoted as the GS-PC

′
x,

GS-PC
′
y, ES-PC

′
x and ES-PC

′
y, respectively. Once output weights are precisely trained within

the non-linear node states of each photonic RC, the GS-PCx, GS-PCy, ES-PCx and ES-PCy

can be perfectly synchronized with GS-PC
′
x, GS-PC

′
y, ES-PC

′
x and ES-PC

′
y correspondingly.

In this scenario, signal types QPSK, 4QAM, 8QAM and 16QAM can be demodulated by
applying synchronous subtraction between the chaotic masked signal and each RC’s pre-
dicted output. These demodulated messages, noted as S

′
1(t), S

′
2(t), S

′
3(t) and S

′
4(t), are then

channeled into their respective coherent demodulation units (CDUs with the subscripts
of 1–4). Post coherent demodulation and DSP, four sets of bit sequence signals are further
decoded. These reinstated signal bits are referred to as b

′1–b
′4, respectively.

Figure 1. Principle block diagram of four-channel coherent optical chaotic secure communication
based on four parallel photonic reservoir computers. Here, TM: transmitter module; RCM: reservoir
computing module; CDM: coherent demodulation module; CDU: coherent demodulation unit; b1–b4:
baseband signals (bit sequence signals); b

′1–b
′4: demodulation baseband signals; GS-PCx and GS-PCy:

X-PC and Y-PC from the ground state emission of the QD-spin-VCSEL, respectively; WDM Mux:
wavelength division multiplexer; WDM DeMux: wavelength division demultiplexer; and ES-PCx

and ES-PCy: X-PC and Y-PC from the excited state emission of the QD-spin-VCSEL, respectively.

Following the principal block diagram displayed in Figure 1, Figure 2a,b illustrate
the simulation experiment setup for a four-channel COCSC system. In this configuration,
the QD spin-VCSEL marked with subscript 1 functions as the driving laser, while the QD
spin-VCSEL designated by subscript 2 serves as the reserve laser. The CWs, labelled from
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1–8, represent the continuous wave lasers. Optical Isolators (ISs, with subscripts from 1–12)
are put into service to prevent optical feedback. The neutral density filters (NDFs, labelled
from 1–10) are employed to regulate light intensity. The QPSK transmitter (QPSKT), 4QAM
transmitter (4QAMT), 8QAM transmitter (8QAMT) and 16QAM transmitter (16QAMT)
generate QPSK, 4QAM, 8QAM and 16QAM signals, respectively. The fiber polarization
beam splitters (FPBS), carrying subscripts 1–6, are used to partition the light into two
distinct polarization components. Bidirectional ports (BPs, labelled 1–4) combine two bidi-
rectional ports into a singular bidirectional multiport of width 2. Lastly, photodiodes (PDs),
labeled from 1–12, are designated to convert light waves into corresponding current signals.

Figure 2. Simulation experiment setup of a four-channel COCSC system, founded on four parallel
reservoirs. Here, (a) Transmitter; (b) Chaos-synchronization prediction and demodulation using
reservoirs; (c) Coherent demodulation and DSP processing; PL: pumped light; PCL: polarization
controller; IS: isolator; FPBS: fiber-optic polarization splitter; QPSKT: QPSK transmitter; 4QAMT:
4QAM transmitter; 8QAMT: 8QAM transmitter; 16QAMT: 16QAM transmitter; NS: empty source;
BP: bidirectional ports; PC: power combiner; FPC: fiber polarization coupler; WDM Mux: wavelength
division multiplexer; WDM DeMux: wavelength division demultiplexer; CW: continuous wave laser;
NDF: the neutral density filter; PD: photodetector; AM: amplitude modulator; DL: delay line; FC:
fiber coupler; OL: output layer; CSM: co-simulation module; EA: Electrical amplifier; DM: discrete
module; SC: proportional operation circuit; Mask: masked signal; PDDCR: polarization-diversity
digital coherent receiver; DSP: digital signal processor; SF: submatrix finder; BEREM: bit error rate
estimation module; and NA: numerical analyzer.
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In Figure 2a,b , in the QPSKT, the QPSK modulation scheme utilizes a baseband signal
b1 for its in-phase (I) and quadrature (Q) components. Similarly, in the 4QAMT, for 4QAM
modulation, the I and Q components are modulated using the odd and even parts of the
signal b2. In the 8QAMT, for 8QAM modulation, the odd and even parts of the signal b3 are
used as the respective signals for the I and Q components. Lastly, for 16QAM modulation,
the I and Q components are modulated using the odd and even parts of the signal b4. In
these four modules (QPSKT, 4QAMT, 8QAMT and 16QAMT), QPSK, 4QAM, 8QAM and
16QAM signals are optically modulated using continuous wave lasers and then converted
into optical signals at the output ports of these modules. In the QD spin-VCSEL labeled
with subscript 1, the light emitted from its ground state (GS) is divided into two chaotic
polarization components (GS-PCx and GS-PCy) using the FPBS1, with their amplitudes
represented as EGx(t) and EGy(t), respectively. Likewise, the light emitted from its excited
state (ES) is separated into two chaotic polarization components (ES-PCx and ES-PCy) using
the FPBS2, and their amplitudes are indicated by EEx(t) and EEy(t), respectively. The QPSK
and 4QAM signals are concealed within the chaotic GS-PCx and GS-PCy using the power
combiners 1 and 2 (PC1 and PC2), respectively. These two chaotic hidden signals can
be described as (EGx(t) + S1(t)) and (EGy(t) + S2(t)), respectively, and are combined into
a single beam through the fiber polarization coupler 1 (FPC1). The 8QAM and 16QAM
signals are masked within the ES-PCx and ES-PCy using the PC3 and PC4, respectively.
These two chaotic masked signals are represented as (EEx(t) + S3(t)) and (EEy(t) + S4(t)),
respectively, and merged into a single beam via FPC2. The mixed light-waves from FPC1
and FPC2 are coupled into an optical fiber through the WDM Mux. After fiber transmission,
the multiplexed light-waves are split into two beams with different wavelengths via the
WDM DeMux. One beam of light from the WDM DeMux is divided into GS-PCx and GS-
PCy, which contain hidden messages, via the FPBS3. The GS-PCx, carrying the QPSK signal,
is further split into two parts using the fiber beam splitter 1 (FBS1). One part is injected
into input layer 1, and the other is converted into a current signal by the PD5. The GS-PCy
with 4QAM, ES-PCx with 8QAM and ES-PCy with 16QAM are processed similarly.

The input layers provide the connections to the reservoirs. Initially, in input lay-
ers 1 and 2, the GS-PCx, including QPSK and the GS-PCy with 4QAM, are transformed
into two distinct current signals via the PD1 and PD2, amplified using electric amplifiers
EA1 and EA2, and eventually sampled as separate input data series through the discrete
modules DM1 and DM2, respectively. These data series are designated as uGx(n−LGx)
and uGy(n−LGy). Moreover, the sampled time series of the QPSK, 4QAM, 8QAM and
16QAM are respectively described as I1(n), I2(n), I3(n) and I4(n), where I1(n) = |S1(n)|2,
I2(n) = |S2(n)|2, I3(n) = |S3(n)|2 and I4(n) = |S4(n)|2. As a result, uGx(n−LGx) =
(CGx(n−LGx) + I1(n−LGx)), uGy(n−LGy) = (CGy(n−LGy) + I2(n−LGy)), where CGx(n−LGx)
= |EGx(n − LGx)|2 and CGy(n−LGy) = |EGy(n − LGy)|2. The term n denotes the discrete
time index, while LGx and LGy signify the discrete channel delay lengths for GS-PCx and
GS-PCy, respectively. Input layers 3 and 4 process ES-PCx containing 8QAM and ES-PCy
carrying 16QAM in a similar manner, yielding respective input data as uEx(n−LEx) and
uEy(n−LEy). Here, uEx(n−LEx) equals (CEx(n−LEx) + I3(n−LEx)) and uEy(n−LEy) corre-
sponds to (CEy(n−LEy) + I4(n−LEy)), where CEx(n−LEx) = |EEx(n− LEx)|2 and CEy(n−LEy)
= |EEy(n− LEy)|2. LEx represents the discrete channel delay length for the ES-PCx and
LEy illustrates that of the ES-PCy. Importantly, CGx(n−LGx), CGy(n−LGy), CEx(n−LEx) and
CEy(n−LEy) are considered four distinct prediction targets. The sampled data, uGx(n−LGx)
and uEx(n−LEx), are multiplied by the mask signal, Maskx, while uGy(n−LGy) and uEy(n−
LEy) are multiplied by Masky. Both Maskx and Masky are chaotic signals, as illustrated
in [24]. Post scaling with a scaling factor γ through the scaling operation circuits (SC1–SC4),
the four input layers yield output signals denoted as SGx(n), SGy(n), SEx(n) and SEy(n),
respectively. These are respectively modulated with the optical-field phases of CW1–CW4.
The FPC3 first couples the modulated SGx(n) and SGy(n) into a single beam, which is then
injected into the ground state of the reservoir QD spin-VCSEL. Similarly, the FPC4 couples
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the modulated SEx(n) and SEy(n) into a single beam, which is subsequently injected into
the excited state of the reservoir QD spin-VCSEL.

Within the reservoir, the GS and ES of the QD spin-VCSEL are both influenced by
dual feedback mechanisms. The feedback loops for the GS are denoted by subscripts 1
and 2, while those for the ES are indicated by subscripts 3 and 4. Each loop employs a
NDF and a PCL to adjust the feedback intensity and polarization direction of the feedback
beam, respectively. The delay time established by the delay lines (DL1–DL4) is defined as τ.
In the output layers (OLs), the GS-PC

′
x and GS-PC

′
y emissions from the QD spin-VCSEL are

bifurcated using FPBS5. Similarly, the ES-PC
′
x and ES-PC

′
y emissions are split through FPBS6.

The intensity values of GS-PC
′
x, GS-PC

′
y, ES-PC

′
x and ES-PC

′
y are sampled at intervals of

θ and are considered as virtual nodes. Accordingly, the total number N of virtual nodes
along each delay line is determined by the ratio N = τ/θ. The states of the N virtual nodes
along the DL1–DL4 are weighted and linearly summed up. The combined weighted states
from the DL1 and DL2 are represented as y

′
Gx(n) and y

′
Gy(n), respectively, while those

from the DL3 and DL4 are signified as y
′
Ex(n) and y

′
Ey(n). In this setup, by calibrating

the output weights, y
′
Gx(n) and y

′
Gy(n) can achieve synchronization with CGx(n−LGx) and

CGy(n−LGy), respectively. Likewise, y
′
Ex(n) and y

′
Ey(n) can be attuned to synchronize

with CEx(n−LEx) and CEy(n−LEy). Under these synchronization conditions, the concealed
messages QPSK and 4QAM are decoded by the synchronous subtraction of y

′
Gx(n) from

CGx(n−LGx) and y
′
Gy(n) from CGy(n−LGy), with the retrieved messages designated as S

′
1(t)

and S
′
2(t), respectively. In a similar fashion, the messages 8QAM and 16QAM are decoded

by the synchronous subtraction of y
′
Ex(n) from CEx(n−LEx) and y

′
Ey(n) from CEy(n−LEy),

with their decoded equivalents presented as S
′
3(t) and S

′
4(t), correspondingly.

As illustrated in Figure 2c, the decoded messages, S
′
1(t), S

′
2(t), S

′
3(n) and S

′
4(n), are

initially modulated with the optical field phases of the CW5–CW8 using intensity modula-
tors (IM1–IM4) and then each injected into its corresponding coherent demodulation unit
(CDU). Each CDU comprises a polarization-diversity digital coherent receiver (PDDCR),
a submatrix finder (SF), a set of five digital signal processors (DSPs), and a bit error rate
estimation module (BEREM). The PDDCR, depicted in VPI [23], models an optical coherent
quadrature receiver that encompasses a local oscillator, optical hybrids, post-detection elec-
trical filters, and analog-to-digital converters. The SF is used to extract specified elements
of the input matrix. The DSPs with subscripts 1, 6, 11 and 16 address the compensation of
group velocity dispersion and nonlinear effects within the optical fiber, whereas the DSPs
labeled with subscripts 2, 7, 12 and 17 are designated to down-sample the in-phase and
quadrature signals to match the baud rate. The DSPs marked with subscripts 3, 8, 13 and
18 are dedicated to estimating and correcting frequency discrepancies between the received
optical signal and the local oscillator. The DSPs inscribed with subscripts 4, 9, 14 and 19
adjust and align the clock phase of both transmitter and receiver. The DSPs tagged with the
subscripts 5, 10, 15 and 20 are dedicated to estimating and correcting phase discrepancies
between the received optical signal and the local oscillator. The BEREMs labeled with
subscripts 1-4, as four-dimensional bit error rate modules, are capable of generating BERs
for the baseband signals and facilitating their demodulation. After processing through
the four CDUs, four sets of baseband signals (or bit streams) encapsulated within the
decoded modulation messages, S

′
1(t), S

′
2(t), S

′
3(t) and S

′
4(t) are effectively reconstructed.

These recovered bit streams are denoted as b
′1-b

′4, respectively.
Drawing on the spin-flip model (SFM) of vertical-cavity surface-emitting lasers (VC-

SELs) put forth by Miguel et al. [25], the interconnected rate equations characterizing
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the QD spin-VCSEL1 (which serves as the driving QD spin-VCSEL) are delineated as
follows [19,26]:

dn±D,WL

dt
=

hD,2

eNQD

[
η±(IE,th − IG,th) + IG,th

]
− γD,0n±D,WL(

hD,2 − n±D,ES

2hD,2
)

− γD,nn±D,WL ∓ γD,s(n+
D,WL − n−D,WL),

(1)

dn±D,ES

dt
=

1
4

γD,0n±D,WL(
hD,2 − n±D,ES

hD,2
)− γD,n(hD,2 + n±D,ES)− 2γD,nn±D,ES|E±D,ES|2

− γD,21(hD,2 + n±D,ES)(
hD,1 − n±D,GS

2hD,1
)∓ γD,s(n+

D,ES − n−D,ES),

(2)

dn±D,GS

dt
=γD,21(

hD,2 + n±D,ES

hD,2
)(hD,1 − n±D,GS)− γD,n(hD,1 + n±D,GS)

− 2γD,nn±D,GS|E±D,GS|2 ∓ γD,s(n+
D,GS − n−D,GS),

(3)

dE±D,GS

dt
=kD(n±D,GS − 1)(1 + iαD)E±D,GS − (γD,a + iγD,p)E∓D,GS +

√
βspξ±D,GS, (4)

dE±D,ES

dt
=kD(n±D,ES − 1)(1 + iαD)E±D,ES − (γD,a + iγD,p)E∓D,ES +

√
βspξ±D,ES. (5)

The interrelated rate equations governing the QD spin-VCSEL2 (the reservoir QD
spin-VCSEL) under the influence of optical feedback and optical injection are revised as
follows [19,26]:

dn±WL
dt

=
h2

eNQD

[
η±(IE,th − IG,th) + IG,th

]
− γ0n±WL(

h2 − n±ES
2h2

)− γnn±WL ∓ γs(n+
WL − n−WL), (6)

dn±ES
dt

=
1
4

γ0n±WL(
h2 − n±ES

h2
)− γn(h2 + n±ES)− γ21(h2 + n±ES)(

h1 − n±GS
2h1

)

− 2γnn±ES|E±ES|2 ∓ γs(n+
ES − n−ES),

(7)

dn±GS
dt

=γ21(
h2 + n±ES

h2
)(h1 − n±GS)− γn(h1 + n±GS)− 2γnn±GS|E±GS|2 ∓ γs(n+

GS − n−GS), (8)

dE±GS
dt

=k(n±GS − 1)(1 + iα)E±GS − (γa + iγp)E∓GS

− i∆ωGE±GS + kinjE
1,2
inj + k f E±GS(t− τ)e−iωG τ +

√
βspξ±GS,

(9)

dE±ES
dt

=k(n±ES − 1)(1 + iα)E±ES − (γa + iγp)E∓ES

− i∆ωEE±ES + kinjE
3,4
inj + k f E±ES(t− τ)e−iωEτ +

√
βspξ±ES.

(10)

In Equations (1)–(10), the subscript D designates the driving QD spin-VCSEL. The sym-
bols + and − represent the right circular polarization (RCP) and left circular polarization
(LCP) of the emitted light, respectively. The dynamic variables, indicated by nWL and
nGS(nES), signify the normalized carrier concentrations in the Wetting Layer (WL) and at
the ground (excited) state energy levels. Lasing is facilitated via the transitions from the
excited state or the ground state to the valence band (VB), generating right (E+

ES, E+
GS) and

left (E−ES, E−GS ) circularly polarized light at two distinct wavelengths. The carrier injection
thresholds for the excited and ground states are symbolized by IE,th and IG,th, respectively.
The remaining parameters for the aforementioned QD Spin-VCSELs are as follows: k and
kD are the photon decay rates; α and αD represent the linewidth enhancement factors;
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h1 and hD,1 are the normalized differential gain coefficients for the ground state transi-
tions; and h2 and hD,2 are those for the excited state transitions. γD,n and γn represent the
carrier recombination rates; γD,21 and γ21 denote the intradot relaxation rates at which
spin-polarized carriers relax from the excited state to the spin-up (down) ground state; γD,0
and γ0 are the rates of carrier capture from the WL into the excited state; γD,s and γs corre-
spond to the spin relaxation rates; γD,p and γp represent the birefringence rates; and γD,γ
and γγ are related to the dichroism rates. τ indicates the feedback time along any of the
delay lines (DL1–DL4) shown in Figure 2; ωG is the resonant frequency of the light emitted
from the ground state; and ωE is the resonant frequency of light emitted from the excited
state. ∆ωG represents the frequency detuning between CW1 (CW2) and the ground state
emission of the reservoir QD Spin-VCSEL; ∆ωE denotes the frequency detuning between
CW3 (CW4) and the excited state emission of the reservoir QD Spin-VCSEL. βsp is the rate
of spontaneous emission, also viewed as an indicator of noise strength. The terms ξ±D,GS,
ξ±D,ES, ξ±DS and ξ±ES embody independent Gaussian white noise sources with zero mean and
unit variance. k f is the feedback coupling strength; kinj stands for the strength of optical
injection. E1

inj and E2
inj are the slowly varying complex amplitudes of the CW1 and CW2,

which are converted to RCP and LCP by the PCL2 and PCL3; E3
inj and E4

inj are the injected

optical fields for the CW3 and CW4, likewise converted by the PCL4 and PCL5. E1
inj and

E2
inj account for the light fields E+

GS and E−GS, respectively, while E3
inj and E4

inj are charged
with generating the optical fields E+

ES and E−GS. The total pump strengths η = η+ + η−, η+

and η− are the pump intensities for the RCP and LCP components, respectively.
The left and right circular polarization components of the GS and ES emissions of the

driving QD Spin-VCSEL are replaced with the orthogonal linear components as follows:

ED,Gx=
E+

D,GS + E−D,GS√
2

, ED,Gy= −i
E+

D,GS − E−D,GS√
2

,

ED,Ex=
E+

D,ES + E−D,ES√
2

, ED,Ey= −i
E+

D,ES − E−D,ES√
2

.

(11)

The left and right circular polarization components of the GS and ES emissions of
the reservoir QD Spin-VCSEL are rewritten in terms of the orthogonal linear components
as follows:

EGx=
E+

GS + E−GS√
2

, EGy= −i
E+

GS − E−GS√
2

,

EEx=
E+

ES + E−ES√
2

, EEy= −i
E+

ES − E−ES√
2

.

(12)

In the QPSKT and m-QAMT (m equals 4, 8, 16) presented in Figure 2a, the QPSK and
m-QAM signals can be generated through the process of IQ modulation, where baseband
signals (b1–b4) modulate a continuous light source. Subsequently, these modulated signals
are combined via polarization beam combining techniques. The resulting QPSK and
m-QAM signals are characterized by

Sj(t) =
1
2

Ein,j(t)

[
Lk

∑
k=1

cos(ϕ
j
1k) + i

Lk

∑
k=1

cos(φj
2k)

]
, (13)

where the subscript j = 1 denotes QPSK. The subscripts j = 2, 3, 4 represent 4-QAM, 8-QAM,
and 16-QAM, respectively. When j = 1 and 2, Lk = 4. If j = 3, Lk = 8, while j = 4, Lk = 16.
The subscript k indicates the kth group of bits in the time sequence. In Equation (13),
the phases ϕ

j
1k and φ

j
2k are respectively written as follows:

ϕ
j
1k = arcsin

[
Re(IQj

k)
]
, φ

j
2k = arcsin

[
Im(IQj

k)
]
, (14)

where the terms IQ1
k–IQ4

k are respectively described as

148



Photonics 2024, 11, 309

IQ1
,k = cos

(
2π · n1

k
2m

)
+ i · sin

(
2π · n1

k
2m

)
, (15)

IQjn
x,k =

m/2
∑

l=1
2m/2−l

(
2 · I jn

(k−1)·m/2+l − 1
)
+ i ·

m/2
∑

l=1
2m/2−l

(
2 ·Qjn

(k−1)·m/2+l − 1
)

2m/2−1 , (16)

where the superscript jn = 2, 3, 4. The variables n1
k , I and Q can be expressed as follows:

n1
k = ∑l=1

m b1
(k−l)·m+l · 2l−1, I jn

` = bjn
2`−1 and Qjn

` = bjn
2`, where ` = 1, 2, · · · , N.

In Equations (9) and (10), the slowly varying amplitudes E1
inj–E4

inj of the complex
electric field can be described as [15]

E1
inj(t) =

√
SGx(t) · Id1, E2

inj(t) =
√

SGy(t) · Id2,

E3
inj(t) =

√
SEx(t) · Id3, E4

inj(t) =
√

SEy(t) · Id4,
(17)

where the light intensities Id1 = |E1
inj,0
|2, Id2 = |E2

inj,0
|2, Id3 = |E3

inj,0
|2 and Id4 = |E4

inj,0
|2.

The terms E1
inj,0

, E2
inj,0

, E3
inj,0

and E4
inj,0

are the amplitudes of the continuous-wave lasers
CW1–CW4, respectively. The masked input signals SGx(t), SGy(t), SEx(t) and SEy(t) can
be expressed as

SGx(t) = Maskx (t)× CGx(n− LGx)× γ, SGy(t) = Masky(t)× CGy(n− LGy)× γ,

SEx(t) = Maskx (t)× CEx(n− LEx)× γ, SEy(t) = Masky(t)× CEy(n− LEy)× γ,
(18)

where the masked signals Maskx(t) and Masky(t) are chaotic signals, as presented in [24]. γ
is a scaling factor. The discrete channel delay lengths LGx, LEx = τx/h, and LGy, LEy = τy/h,
where h is the step size, τx is the channel delay of the GS-PCx or ES-PCx, and τy is the
channel delay of the GS-PCy or ES-PCy.

In such a system presented in Figure 2, chaos synchronization between each pair
of PCs (i.e., GS-PCx and GS-PC

′
x, GS-PCy and GS-PC

′
y, ES-PCx and ES-PC

′
x, and ES-PCy

and ES-PC
′
y) plays a key role in in security and encrypted message recovery. In the

following, we use four parallel RCs to address chaos synchronization between each pair of
PCs. According to lag chaotic synchronization theory, the lag synchronization solution is
obtained as follows.

y
′
Gx
(n) = CGx(n− LGx), y

′
Gy
(n) = CGy(n− LGy),

y
′
Ex
(n) = CEx(n− LEx), y

′
Ey
(n) = CEy(n− LEy),

(19)

where the time-dependent outputs y
′
Gx, y

′
Gy, y

′
Ex and y

′
Ey are respectively regarded as linear

functions of the GS-PCx, GS-PCy, ES-PCx and ES-PCy such that

y′Gx(n) = WGx,1bout + WGx,2CGx(n− LGx) +
N

∑
i=1

WGx,i+2 IGx,i(n),

y′Gy(n) = WGy,1bout + WGy,2CGy(n− LGy) +
N

∑
i=1

WGy,i+2 IGy,i(n),

y′Ex(n) = WEx,1bout + WEx,2CEx(n− LEx) +
N

∑
i=1

WEx,i+2 IEx,i(n),

y′Ey(n) = WEy,1bout + WEy,2CEy(n− LEy) +
N

∑
i=1

WEy,i+2 IEy,i(n),

(20)

where WGx, WGy, WEx and WEy represent the output weight matrix; WGx,i, WGy,i, WEx,i and
WEy,i respectively represent the ith-element of WGx, WGy, WEx and WEy; IGx,i(n), IGy,i(n),
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IEx,i(n) and IEy,i(n) respectively represent the ith output state of the GS-PC
′
x, GS-PC

′
y,

ES-PC
′
x and ES-PC

′
y. Here, IGx,i(n) = |EGx (i)|2, IGy,i(n) = |EGy(i)|2, IEx,i(n) = |EEx (i)|2 and

IEy,i(n) = |EEy(i)|2. bout is a constant and equal to 1. Previous studies have shown that these
output weight matrices can be analytically given by [27]

WGx=YGxXTr
(

XGxXTr
Gx + µΠ

)−1
, WGy=YGyXTr

(
XGyXTr

Gy + µΠ
)−1

,

WEx=YExXTr
(

XExXTr
Ex + µΠ

)−1
, WEy=YEyXTr

(
XEyXTr

Ey + µΠ
)−1

,
(21)

where the superscript Tr represents the transpose of the matrix; Π is an identity matrix; µ
is utilized to avoid overfitting the ridge regression parameter, which is set to 10−6; XGx,
XGy, XEx and XEy all are matrices and their lth columns are [bout; CGx(l − LGx); IGx,i(l)],
[bout; CGy(l − LGy); IGy,i(l)], [bout; CEx(l − LEx); IEx,i(l)] and [bout; CEy(l − LEy); IEy,i(l)],
respectively; YGx and YEx both are matrices, and their lth columns are [CGx(l − LGx + 1)]
and [CEx(l − LEx + 1)], respectively; and YGy and YEy both are matrices, and their lth
columns are [CGy(l − LGy + 1)] and [CEy(l − LEy + 1)], respectively. According to the
complete lag synchronization theory (see Equations (19)) , we obtain

S
′
1(n) ≈ S1(n− LGx), S

′
2(n) ≈ S2(n− LGy),

S
′
3(n) ≈ S1(n− LEx), S

′
4(n) ≈ S2(n− LEy).

(22)

3. Results and Discussions

The parameter values for the driving quantum dot (QD) spin-vertical cavity surface-
emitting laser (VCSEL) are detailed in Table 1, while those for the reservoir QD spin-VCSEL
are outlined in Table 2. Our initial step is to model the power spectral density (PSD) profiles
and temporal samples stemming from the driving QD spin-VCSEL, employing concurrent
simulations within Matlab (version R2021a) and VPI (version 11.1) software environments.
Within Matlab, Equations (1)–(5) are executed via the fourth-order Runge–Kutta numer-
ical approach, adopting a time step (h) of 0.78 ps. The sampling periods for the four
distinct input data streams (uGx(n−LGx), uGy(n−LGy), uEx(n−LEx), uEy(n−LEy)) are de-
noted by T and are uniformly set at 10 ps. The constants LGx, LGy, LEx and LEy are all
given the value of 2.0513 × 104, which is based on τx, τy being 16 ns and h amounting to
0.78 ps. Concurrently, the dynamical output from the four parallel reservoirs, utilizing
the reservoir QD spin-VCSEL, is also modeled with the integration of Matlab and VPI,
where Equations (6)–(10) are solved through the fourth-order Runge–Kutta method with a
finer time step of 0.048 ps. Within the present framework, both the encoding rate of the
messages and the data processing speed of the reservoirs are influenced by the effective
bandwidths of the driving and reservoir VCSELs. Figure 3a–d depict the PSD distributions
of the GS-PCx and GS-PCy, as well as the ES-PCx and ES-PCy emitted by the driving QD
spin-VCSEL. According to the representations in Figure 3, the PSD distributions for these
PCs consistently demonstrate chaotic behavior. The effective 3 dB bandwidths for both
the GS-PCx and GS-PCy are calculated to be 180 GHz, whereas the ES-PCx and ES-PCy are
slightly higher at 200 GHz. Correspondingly, the effective 3 dB bandwidths for the GS-PC

′
x,

GS-PC
′
y, ES-PC

′
x and ES-PC

′
y of the reservoir system exhibit similar characteristics to those

of their driving system counterparts (GS-PCx, GS-PCy, ES-PCx and ES-PCy, respectively).
These outcomes suggest that our system is capable of achieving high-speed, four-channel
coherent optical chaotic secure communications.
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Table 1. Parameter values of the driving QD Spin-VCSEL.

The Parameter and Symbol Value The Parameter and Symbol Value

The photon decay rate κD 250 ns−1 The capture rate γD,0 400 ns−1

Linewidth enhancement factor αD 3 Intradot relaxation rate γD,21 50 ns−1

Total pump intensity η 4 Spin relaxation rate γD,s 10 ns−1

Dichroism γD,a 0 ns−1 Carrier recombination rate γD,n 1 ns−1

Birefringence γD,p 30 ns−1 Electron charge e 1.6 × 10−19 C
Quantum dot density NQD 1.5 × 1017 m−2 The gain coefficient hD,1 1.1995

Table 2. Parameter values of the reservoir QD Spin-VCSEL.

The Parameter and Symbol Value The Parameter and Symbol Value

The field decay rate κ 300 ns−1 Central frequency detuning ∆ωE −20 × 109 rad/s
Line-width enhancement factor α 3 The capture rate γ0 600 ns−1

Total pump intensity η 4 Intradot relaxation rate γ21 40 ns−1

Dichroism γa 0.1 ns−1 Spin relaxation rate γs 20 ns−1

Birefringence γp 20 ns−1 Carrier recombination rate γn 1 ns−1

Center frequency ωG 2 × 1014 rad/s Injection strength kinj 35 ns−1

Center frequency ωE 1014 rad/s Feedback strength k f 30 ns−1

Central frequency detuning ∆ωG 0 rad/s The gain coefficient h1 1.1665

Figure 3. Power spectral density (PSD) distributions of the four polarization components GS-PCx,
GS-PCy, ES-PCx and ES-PCy from the driving QD Spin-VCSEL output. Here, (a) the PSD of GS-PCx

(PSDGx); (b) the PSD of the GS-PCy (PSDGy); (c) the PSD of ES-PCx (PSDEx); and (d) the PSD of the
ES-PCy (PSDEy).

The chaotic GS-PC
′
x, GS-PC

′
y, ES-PC

′
x and ES-PC

′
y produced by the reservoir QD spin-

VCSEL, as four parallel reservoirs, are utilized to perform the predictions of the delayed
outputs GS-PCx, GS-PCy, ES-PCx and ES-PCy, respectively. We collect 5096 samples of these
delayed outputs at a sampling interval of 10 ps. After discarding the initial 1000 samples to
remove transients, we allocate 2048 samples for training each of the four reservoirs, and an
equivalent number of subsequent points for testing the corresponding reservoir. Moreover,
the prediction performance is bolstered by implementing chaotic mask signals derived
from two coupled semiconductor lasers, detailed in [24]. These mask signals are normalized
with standard deviations set to 1 and mean values calibrated to 0. Each reservoir’s virtual
node interval, denoted by θ, is fixed at 40 fs. Here, all rates for the QPSK, 4QAM, 8QAM
and 16QAM are 100 Gb/s. The input data sampling period T is maintained at 10 ps,
resulting in a data processing rate of 100 Gb/s. We establish the number of virtual nodes, N,
at 250, where N = τ/θ and τ = T. We maintain the scale factor γ, at a value of 1. To assess
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the predictions for the GS-PCx, GS-PCy, ES-PCx and ES-PCy made by these four parallel
reservoirs using the reservoir QD spin-VCSEL, we introduce the normalized mean square
error (NMSE) as a metric to compare the delayed predictive targets against their associated
reservoir outputs, which is given as follows:

NMSEjx =
1
L

L
∑

n=1
(y
′
jx(n)− Cjx(n− Ljx))

2

var(y′jx(n))
, (j = G, E)

NMSEjy =
1
L

L
∑

n=1
(y
′
jy(n)− Cjy(n− Ljy))

2

var(y′jy(n))
, (j = G, E)

(23)

where the subscripts Gx, Ex, Gy and Ey represent GS-PCx, ES-PCx, GS-PCy and ES-PCy,
respectively. LGx, LGy, LEx and LEy are the defined lengths of the testing data set for each
variable. L represents the total number of data points in the testing data set. The term “var”
denotes the variance of the data. When NMSEjx and NMSEjy are both 0, it means that the
outputs of the reservoirs (GS-PCx, GS-PCy, ES-PCx and ES-PCy) perfectly match with their
corresponding predicted targets (CGx(n−LGx), CGy(n−LGy), CEx(n−LEx) and CEy(n−LEy),
respectively) . On the other hand, if NMSEjx and NMSEjy both are 1, it means that the
reservoir outputs are completely different from the predicted targets. When NMSEjx and
NMSEjy are both less than 0.1, it indicates that each reservoir is able to accurately infer the
chaotic dynamics of its corresponding predicted target, which is the PC of the driving QD
Spin-VCSEL output.

To intuitively observe the ability to predict the chaotic dynamics of the GS-PCx, ES-PCx,
GS-PCy and ES-PCy in our system, Figure 4 presents their predictive results. In this figure,
T = 10 ps, θ = 40 fs, and N = 250. The samples of the delayed GS-PCx, GS-PCy, ES-PCx and
ES-PCy from the driving QD Spin-VCSEL output are denoted as CGx(n−LGx), CGy(n−LGy),
CEx(n−LEx) and CEy(n−LEy), respectively. The samples of the trained GS-PC

′
x, GS-PC

′
y, ES-

PC
′
x and ES-PC

′
y from the reservoir QD spin-VCSEL output are denoted as y

′
Gx(n), y

′
Gy(n),

y
′
Ex(n) and y

′
Ey(n), respectively. As observed from Figure 4, the chaotic trajectories of the

CGx(n−LGx), CGy(n−LGy), CEx(n−LEx) and CEy(n−LEy) are almost identical to those of
the y

′
Gx(n), y

′
Gy(n), y

′
Ex(n) and y

′
Ey(n), respectively. In Figure 5a, when T = 10 ps, θ = 40 fs,

and N = 250, the prediction errors (NMSEGx and NMSEGy) of the GS-PCx and GS-PCy are
0.0359 and 0.0375, respectively. The NMSEEx and NMSEEy for the ES-PCx and ES-PCy are
0.0995 and 0.0865, respectively. These indicate that the four parallel reservoirs based on
the reservoir QD spin-VCSEL can accurately predict the chaotic dynamics of the GS-PCx,
GS-PCy, ES-PCx and ES-PCy, respectively.

To comprehensively observe the prediction abilities of the four parallel reservoirs
on the chaotic dynamics of the delayed GS-PCx, GS-PCy, ES-PCx and ES-PCy, Figure 5a
illustrates the relationship between the prediction errors (NMSEGx, NMSEGy, NMSEEx
and NMSEEy) and the sampling period T when θ is 40 fs. As shown in Figure 5a, NMSEGx
and NMSEGy exhibit an almost linear decrease from 0.0362 to 0.0350 and from 0.0376
to 0.0366, respectively, as T increases from 2 ps to 128 ps. Similarly, the NMSEEx and
NMSEEy also reveal a linear decrease from 0.0998 to 0.0961 and from 0.0867 to 0.0836,
respectively. The reason why a longer sampling period T leads to reduced training error
might be explained as follows. In this work, θ = T/N is fixed at 40 fs, and a smaller N is
associated with a smaller T, resulting in a lower-dimensional state space. This situation
can make the training of the four parallel reservoirs based on the reservoir QD spin-VCSEL
become unstable and more difficult, consequently leading to a larger NMSE. Additionally,
when T is fixed at a certain value, the NMSEEx and NMSEEy are significantly larger
than NMSEGx and NMSEGy. This may be explained by the fact that ES-PCx and ES-PCy
have more complex chaotic dynamics than GS-PCx and GS-PCy, respectively, making the
predictions of ES-PCx and ES-PCy more challenging compared to those of GS-PCx and GS-
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PCy. Figure 5b shows the relationship between the prediction errors (NMSEGx, NMSEGy,
NMSEEx and NMSEEy) and the virtual node interval θ when T is fixed at 10 ps. From the
observations in Figure 5, it can be seen that as θ increases from 1 fs to 320 fs, the NMSEEx
and NMSEEy slowly increase from 0.0979 to 0.0998 and from 0.0853 to 0.0868, respectively.
Then, they gradually stabilize at 0.0998 and 0.0865. On the other hand, the NMSEGx and
NMSEGy remain nearly constant at 0.0363 and 0.0376, respectively. The results indicate
that when T = 10 ps, the choice of the virtual node interval θ has a slight impact on the
prediction accuracy for the GS-PCx and GS-PCy. However, for the ES-PCx and ES-PCy,
the prediction errors slightly increase with an increase in θ, suggesting a potential sensitivity
to the chosen θ.

Figure 4. Samples of four delayed polarization components emitted by the driving QD spin-VCSEL
(blue solid line) and the outputs of four parallel reservoir based on the reservoir QD Spin-VCSEL
(red dashed line). Here, (a) CGx(n−LGx) and y

′
Gx(n); (b) CGy(n−LGy) and y

′
Gy(n); (c) CEx(n−LEx)

and y
′
Ex(n); and (d) CEy(n−LEy) and y

′
Ey(n).

Figure 5. Dependence of the prediction errors (NMSEGx, NMSEGy, NMSEEx, and NMSEEy) on
the sampling period T and the virtual node interval θ. Here, (a) NMSEGx, NMSEGy, NMSEEx,
and NMSEEy via T, when θ = 40 fs. (b) NMSEGx, NMSEGy, NMSEEx, and NMSEEy via θ, while
T = 10 ps.

The results obtained from Figures 4 and 5 demonstrate that the four parallel reservoirs,
based on the reservoir QD spin-VCSEL, are capable of reproducing the chaotic dynamics
of the GS-PCx, GS-PCy, ES-PCx and ES-PCy emitted by the driving QD spin-VCSEL.
This indicates that the delayed GS-PCx, GS-PCy, ES-PCx and ES-PCy can successfully
synchronize with the GS-PC

′
x, GS-PC

′
y, ES-PC

′
x and ES-PC

′
y outputs by the reservoir QD
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spin-VCSEL, respectively. To further analyze the qualities of their chaos synchronizations,
the correlation coefficients are introduced and defined as follows.

ρjx =

〈[
Cjx(n− Ljx)−

〈
Cjx(n− Ljx)

〉][
y
′
jx(n)−

〈
y
′
jx(n)

〉]〉

〈[
Cjx(n− Ljx)−

〈
Cjx(n− Ljx)

〉]2〉1/2
〈[

y′jx(n)−
〈

y′jx(n)
〉]2
〉1/2 ,

ρjy =

〈[
Cjy(n− Ljy)−

〈
Cjy(n− Ljy)

〉][
y
′
jy(n)−

〈
y
′
jy(n)

〉]〉

〈[
Cjy(n− Ljy)−

〈
Cjy(n− Ljy)

〉]2〉1/2
〈[

y′jy(n)−
〈

y′jy(n)
〉]2
〉1/2 ,

(24)

where j = G, E (the same below). The symbol
〈〉

represents the time average. ρ ranges from
−1 to 1. With the bigger absolute value of ρ, the higher quality of synchronization can
be obtained. When ρ equals to ±1, the in-phase and anti-phase synchronous solutions in
this system exist.

In Figure 6, the correlations ρGx, ρGy, ρEx and ρEy are shown as a function of kinj and
k f . It can be observed that ρGx, ρGy, ρEx and ρEy exhibit minimal changes as kinj and k f

increase in the range of 0.1 ns−1 to 50 ns−1. Within these two parameter spaces, ρGx and
ρGy both range between 0.9849 and 0.9857, while ρEx and ρEy fluctuate between 0.949 and
0.96. This indicates that ρGx, ρGy, ρEx and ρEy possess strong robustness to variations in
kinj and k f , which are key parameters of the reservoir QD spin-VCSEL. Furthermore, as all
ρGx, ρGy, ρEx and ρEy are greater than 0.949, it can be concluded that the GS-PC

′
x, GS-PC

′
y,

ES-PC
′
x and ES-PC

′
y can effectively synchronize with the delayed GS-PCx, GS-PCy, ES-PCx

and ES-PCy, respectively. Notably, ρGx and ρGy are higher than ρEx and ρEy, respectively.
This is attributed to the fact that the NMSEGx and NMSEGy for the GS-PCx and GS-PCy
are lower compared to the NMSEGx and NMSEGy for the ES-PCx and ES-PCy, respectively.

Figure 6. Dependences of the correlation coefficients (ρGx, ρGy, ρEx, ρEy) on the parameters kinj and
k f when T = 10 ps and θ = 40 fs. Here, (a) ρGx, ρGy, ρEx, ρEy ∝ kinj; (b) ρGx, ρGy, ρEx, ρEy ∝ k f .

Here, by optimizing some key parameter values of the reservoir QD spin-VCSEL, ρGx,
ρGy, ρEx and ρEy are taken as 0.9856, 0.9851, 0.9495 and 0.9581, respectively. The optimized
parameters are as follows: T = 10 ps; θ = 40 fs; η = 4; k f = 30 ns−1; and kinj = 30 ns−1.
By performing high-quality chaos synchronization between each pair of PCs (i.e., GS-PCx

and GS-PC
′
x, GS-PCy and GS-PC

′
y, ES-PCx and ES-PC

′
x, and ES-PCy and ES-PC

′
y) using

the reservoir QD spin-VCSEL, one of the messages QPSK, 4QAM, 8QAM and 16QAM
can be decoded by synchronously dividing a reservoir-generated chaos and a delayed
chaos masked message. The temporal traces of the delayed encoding message (S1(n−LGx),
or QPSK), the delayed chaos masked message (UGx(n−LGx)), and the decoding message
(S
′
1(n)) are displayed in Figure 7(a1–a3). As observed from Figure 7(a1–a3), the tempo-

ral trajectory of S1(n−LGx) is very similar to that of (S
′
1(n)). Furthermore, UGx(n−LGx)

exhibits a chaotic state. Figure 7(a4–a6) present the temporal trajectories of S2(n−LGy)
(4QAM), UGy(n−LGy) and (S

′
2(n)). As seen from these figures, the temporal trajectory of

S2(n−LGy) is basically identical to that of (S
′
2(n)), while UGy(n−LGy) shows a chaotic state.

154



Photonics 2024, 11, 309

Moreover, as displayed in Figure 7a(7–a12), the temporal trajectories of S3(n−LEx) (8QAM)
and S4(n−LEy) (16QAM) are almost the same as those of (S

′
3(n)) and (S

′
4(n)), respectively.

UEx(n−LEx) and UEy(n−LEy) both exhibit a chaotic state. Moreover, as in Figure 8, we
present the eye-diagrams for these four decoded messages (S

′
1(n), S

′
2(n), S

′
3(n) and S

′
4(n)).

One sees from this figure that the “eyes” sizes of the eye-diagrams of these decoded mes-
sages are enough large, indicating that the decoded messages of the system have a relatively
large tolerance error for noise and jitter and have good quality. However, the superposition
of multiple decoded messages causes the signal line of each eye-diagram to become thicker
and appear fuzzy. The reason is that very small synchronization errors may be converted
into noise and superimposed on the signal line of the eye-diagram. These results indicate
that the encoding messages QPSK, 4QAM, 8QAM and 16QAM can be effectively masked
in a chaotic carrier and successfully recovered using reservoir computing.

Figure 7. Temporal trajectories of the delayed encoding messages, the delayed chaos masked
messages, and the decoding messages in the reservoir computing system. Here, (a1) the delayed
encoding message S1(n−LGx) via time step n; (a2) the delayed chaos masked message UGx(n−LGx)
via time step n; (a3) the decoding message S

′
1(n) via time step n; (a4) S2(n−LGy) via time step

n; (a5) UGy(n−LGy) via time step n; (a6) S
′
2(n) via time step n; (a7) S3(n−LEx) via time step n;

(a8) UEx(n−LEx) via time step n; (a9) S
′
3(n) via time step n; (a10) S4(n−LEy) via time step n; (a11)

UEy(n−LEy)via time step n; and (a12) S
′
4(n) via time step n.

The bit error rate (BER) is a commonly utilized metric to gauge the quality of data
transmission in optical chaos-based secure communication systems [15]. The BER is defined
as the ratio of the number of errored bits to the overall number of bits transmitted. Figure 9
showcases the dependences of the BERs for the decoded messages (S

′
1(t), S

′
2(t), S

′
3(t) and

S
′
4(t)) and their associated baseband signals (b

′
1, b

′
2, b

′
3 and b

′
4) on two key parameters (kinj

and k f ). As evidenced by Figure 9(a1,a2), the BERs for S
′
1(t), S

′
2(t), S

′
3(t) and S

′
4(t) exhibit

oscillatory behavior as kinj is adjusted within the range of 0.1 ns−1 to 50 ns−1. Their BER
values, respectively, fluctuate within the following ranges: from 1.02 × 10−2 to 1.22 × 10−2

for S
′
1(t), from 6.1 ×10−3 to 7.5 × 10−3 for S

′
2(t), from 3.4 × 10−3 to 6.1 × 10−3 for S

′
3(t), and

from 7.1 × 10−3 to 9.2 × 10−3 for S
′
4(t). Within this kinj range, all four decoded messages
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demonstrate minor oscillatory fluctuations in their BERs. The BERs cap at 1.5 × 10−2 for
S
′
1(t) and at 8.7 × 10−3 for S

′
2(t), while those for S

′
3(t) and S

′
4(t) do not surpass 3.4 × 10−2

and 9.5 × 10−3, respectively. Based on findings from earlier studies [28–30], a BER that
closes at or below 0.01 is indicative of potentially high-quality data transmission within an
optical chaos communication framework. As depicted in Figure 2c, when demodulated
through correlation and refined by various digital signal processing methods, four distinct
baseband signal sets (or bitstreams) encapsulated within the decoded messages S

′
1(t),

S
′
2(t), S

′
3(t) and S

′
4(t) are successfully reconstructed. Consequently, the BER ranges for

these retrieved baseband signals (b
′
1, b

′
2, b

′
3 and b

′
4) remain constant and effectively zero,

irrespective of kinj and k f variations. Figure 10 delves into the performance of the four
retrieved baseband signals by presenting their temporal trajectories and eye-diagrams
alongside those of the original baseband signals b1–b4. An inspection of Figure 10 reveals a
striking similarity between the temporal profiles of the original signals b1, b2, b3 and b4 and
their retrieved counterparts b

′
1, b

′
2, b

′
3 and b

′
4, respectively. The eye-diagrams corresponding

to the original and retrieved baseband signals also correspond closely, with b1, b2, b3 and b4,
showing a remarkable resemblance to b

′
1, b

′
2, b

′
3 and b

′
4. Notably, the eye openings in the eye-

diagrams for b
′
1, b

′
2, b

′
3 and b

′
4 are sufficiently large, which is an important indicator of signal

integrity. The insights gathered from Figures 9 and 10 strongly support the effectiveness
of our proposed coherent optical chaotic communication system in delivering secure and
high-quality data transmission.

Figure 8. Eye-diagrams of the decoded messages (S
′
1(n), S

′
2(n), S

′
3(n) and S

′
4(n)). Here, (a) the eye-diagram

of S
′
1(n); (b) the eye-diagram of S

′
2(n); (c) the eye-diagram of S

′
3(n); and (d) the eye-diagram of S

′
4(n).

Figure 9. The dependences of the BERs for the decoding messages (S
′
1(t), S

′
2(t), S

′
3(t) and S

′
4(t)) and their

corresponding baseband signals (b
′
1, b

′
2, b

′
3 and b

′
4) on two key parameters kinj and k f . Here, (a1) S

′
1(t),

S
′
2(t), b

′
1, b

′
2 via kinj; (a2) S

′
3(t), S

′
4(t), b

′
3, b

′
4 via kinj; (a3) S

′
1(t), S

′
2(t), b

′
1, b

′
2 via k f ; and (a4) S

′
3(t), S

′
4(t), b

′
3, b

′
4

via k f .
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Figure 10. Temporal trajectories and eye-diagrams of the original baseband signals b1–b4 and their
respectively retrieved baseband signals b

′
1–b

′
4. Here, (a1,a2) the temporal trajectories of the b1 and b

′
1,

respectively, and (b1,b2) their respectively eye-diagrams. (a3,a4) the temporal trajectories of the b2

and b
′
2, respectively, and (b3,b4) their corresponding eye-diagrams; (a5,a6) the temporal trajectories

of the b3 and b
′
3, respectively, and (b5,b6) their respectively eye-diagrams; and (a7,a8) the temporal

trajectories of the b4 and b
′
4, respectively, and (b7,b8) their corresponding eye-diagrams.

4. Conclusions

In conclusion, we introduce a novel four-channel coherent optical chaotic secure
communication (COCSC) system that integrates four simultaneous photonic reservoir
computers with a coherent demodulation apparatus. This system utilizes a QD-spin-
VCSEL as the driving laser, while an autonomous QD-spin-VCSEL acts as the reservoir
laser. Individually, the four encoded messages, QPSK, 4QAM, 8QAM and 16QAM are
modulated onto four distinct polarization components derived from the ground state (GS)
and excited state (ES) emissions in the drive QD-spin-VCSEL. Moreover, we construct four
concurrent photonic reservoirs using the polarization components originating from the
GS and ES of the reservoir QD-spin-VCSEL. Our system achieves a four-channel COCSC
system with a capacity of 4 × 100 GHz through chaos synchronization founded on these
four parallel photonic reservoirs. Within this arrangement, we ensure robust wideband
chaos synchronization between corresponding polarization components of the driving and
reservoir lasers. This precise synchronization allows for the accurate decoding of the four
distinct messages (QPSK, 4QAM, 8QAM and 16QAM), each masked within different chaotic
polarization components. The decoded messages are then demodulated via correlation
techniques and further processed using various digital signal processing methodologies,
successfully reconstructing the four separate baseband signals encapsulated within the
QPSK, 4QAM, 8QAM and 16QAM formats. Through detailed analysis with eye diagrams,
bit error rates, and temporal trajectories of the coherently demodulated baseband signals,
we observe that each baseband-signal set is impeccably recovered, evidenced by large eye
openings in the eye diagrams and a bit error rate that approaches zero for each baseband-
signal set. This innovative approach, which harnesses the power of reservoir computing
based on a QD spin-VCSEL, paves the way towards advancing multi-channel coherent
optical chaotic communications with enhanced security features.
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568, 212–215. [CrossRef]

10. Frougier, J.; Baili, G.; Alouini, M.; Sagnes, I.; Jaffrès, H.; Garnache, A.; Deranlot, C.; Dolfi, D.; George, J.M. Control of light
polarization using optically spin-injected vertical external cavity surface emitting lasers. Appl. Phys. Lett. 2013, 103, 252402.
[CrossRef]

11. Schires, K.; Seyab, R.A.; Hurtado, A.; Korpijärvi, V.M.; Guina, M.; Henning, I.D.; Adams, M.J. Optically-pumped dilute nitride
spin-VCSEL. Opt. Express 2012, 20, 3550–3555. [CrossRef] [PubMed]

12. Alharthi, S.S.; Orchard, J.; Clarke, E.; Henning, I.D.; Adams, M.J. 1300 nm optically pumped quantum dot spin vertical
external-cavity surface-emitting laser. Appl. Phys. Lett. 2015, 107, 151109. [CrossRef]

13. Rafayelyan, M.; Dong, J.; Tan, Y.; Krzakala, F.; Gigan, S. Large-scale optical reservoir computing for spatiotemporal chaotic
systems prediction. Phys. Rev. X 2020, 10, 041037. [CrossRef]

14. Kong, L.W.; Weng, Y.; Glaz, B.; Haile, M.; Lai, Y.C. Reservoir computing as digital twins for nonlinear dynamical systems. Chaos
Interdiscip. J. Nonlinear Sci. 2023, 33, 033111. [CrossRef]

15. Hou, Y.; Xia, G.; Yang, W.; Wang, D.; Jayaprasath, E.; Jiang, Z.; Hu, C.; Wu, Z. Prediction performance of reservoir computing
system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express 2018, 26, 10211–10219.
[CrossRef] [PubMed]

16. Amil, P.; Soriano, M.C.; Masoller, C. Machine learning algorithms for predicting the amplitude of chaotic laser pulses. Chaos
Interdiscip. J. Nonlinear Sci. 2019, 29, 113111. [CrossRef] [PubMed]

17. Bao, X.; Zhao, Q.; Yin, H.; Qin, J. Recognition of the optical packet header for two channels utilizing the parallel reservoir
computing based on a semiconductor ring laser. Mod. Phys. Lett. B 2018, 32, 1850150. [CrossRef]

18. Appeltant, L.; Soriano, M.C.; der Sande, G.V.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.; Fischer, I.
Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468. [CrossRef] [PubMed]

19. Adams, M.J.; Alexandropoulos, D. Analysis of Quantum-Dot Spin-VCSELs. IEEE Photonics J. 2012, 4, 1124–1132. [CrossRef]
20. Shen, Z.; Huang, Y.; Zhu, X.; Zhou, P.; Mu, P.; Li, N. Broad Tunable and High-Purity Photonic Microwave Generation Based on an

Optically Pumped QD Spin-VCSEL with Optical Feedback. Photonics 2023, 10, 326. [CrossRef]

158



Photonics 2024, 11, 309

21. Oestreich, M.; Hübner, J.; Hägele, D.; Bender, M.; Gerhardt, N.; Hofmann, M.; Rühle, W.W.; Kalt, H.; Hartmann, T.; Klar,
P.; et al. Spintronics: Spin electronics and optoelectronics in semiconductors. In Advances in Solid State Physics; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 173–186.

22. Zhong, D.; Xu, G.; Luo, W.; Xiao, Z. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response
VCSELs. Opt. Express 2017, 25, 21684–21704. [CrossRef]

23. VPIphotonics. VPIcomponentMaker Photonic Circuits User’s Manual. Available online: https://www.vpiphotonics.com/Tools/
PhotonicCircuits (accessed on 10 June 2023 ).

24. Nakayama, J.; Kanno, K.; Uchida, A. Laser dynamical reservoir computing with consistency: An approach of a chaos mask signal.
Opt. Express 2016, 24, 8679–8692. [CrossRef] [PubMed]

25. San Miguel, M.; Feng, Q.; Moloney, J.V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 1995,
52, 1728–1739. [CrossRef]

26. Georgiou, P.; Tselios, C.; Mourkioti, G.; Skokos, C.; Alexandropoulos, D. Effect of excited state lasing on the chaotic dynamics of
spin QD-VCSELs. Nonlinear Dyn. 2021, 106, 3637–3646. [CrossRef]

27. Guo, X.X.; Xiang, S.Y.; Zhang, Y.H.; Lin, L.; Wen, A.J.; Hao, Y. Four-channels reservoir computing based on polarization dynamics
in mutually coupled VCSELs system. Opt. Express 2019, 27, 23293–23306. [CrossRef] [PubMed]

28. Ke, J.; Yi, L.; Yang, Z.; Yang, Y.; Zhuge, Q.; Chen, Y.; Hu, W. 32 Gb/s chaotic optical communications by deep-learning-based
chaos synchronization. Opt. Lett. 2019, 44, 5776–5779. [CrossRef] [PubMed]

29. Huang, Y.; Zhou, P.; Li, N. High-speed secure key distribution based on chaos synchronization in optically pumped QD
spin-polarized VCSELs. Opt. Express 2021, 29, 19675–19689. [CrossRef]

30. Hou, T.T.; Yi, L.L.; Yang, X.L.; Ke, J.X.; Hu, Y.; Yang, Q.; Zhou, P.; Hu, W.S. Maximizing the security of chaotic optical
communications. Opt. Express 2016, 24, 23439–23449. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

159



photonics
hv

Article

Enhanced PON and AMCC Joint Transmission with
GMM-Based Probability Shaping Techniques
Haipeng Guo 1,2, Chuanchuan Yang 1,2,*, Zhangyuan Chen 1 and Hongbin Li 1

1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University,
Beijing 100871, China

2 Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China
* Correspondence: yangchuanchuan@pku.edu.cn

Abstract: In ITU-T standards, auxiliary management and control channels (AMCCs), as defined, fa-
cilitate the rapid deployment and efficient management of wavelength division multiplexing passive
optical network (WDM-PON) systems. The super-imposition of an AMCC introduces additional inter-
ference to a PON signal, resulting in the degradation of the performance of the overall transmission.
In prior research, we proposed employing a Gaussian mixture model (GMM) to fit a baseband-
modulated AMCC signal. Following the analysis of the interference model and the distribution
characteristics of received signal errors, we propose a combined optimization method for a transmitter
and receiver in this paper. This method, grounded in probabilistic shaping (PS) techniques, optimizes
the probability distribution of the transmitted signal based on the AMCC interference model, with
the objective of reducing the error rate in PON signal transmission. We have validated this approach
within a 50G-PON experimental system by utilizing PAM4 modulation. The experimental results
demonstrate the effectiveness of this method for mitigating the impact of baseband-modulated
AMCC, thereby reducing the error rate in PON signal transmission. The approach presented in this
paper can further minimize the performance degradation introduced by baseband-modulated AMCC
in WDM-PON systems, enhancing the efficiency of WDM-PON deployment.

Keywords: AMCC; WDM-PON; GMM; interference model; probabilistic shaping

1. Introduction

According to the latest whitepapers from mobile network operators [1,2], the current
demand for internet capacity has experienced explosive growth. In the next 3–5 years,
there will still be significant demand for mobile internet, as evidenced by the planned
upgrade from the fifth-generation (5G) mobile network architecture to the sixth-generation
(6G). This upgrade is expected to potentially increase network capacity by up to 100 times,
with end-to-end latency reduced to less than 1 millisecond. Optical communication stands
out as an excellent choice for high-speed communication networks, and wavelength divi-
sion multiplexing passive optical network (WDM-PON) is a particularly attractive optical
communication technology that is applicable in various scenarios, including 5G mobile
fronthaul (MFH) networks [3,4]. The deployment of WDM-PON in networks requires
an auxiliary management and control channel (AMCC) to achieve efficient network de-
ployment. This channel has been defined in the ITU-T G.989 series standards [5–7]. In
recent years, extensive research has been conducted on AMCC by various institutions. This
research encompasses modulation and transmission techniques, as well as methods to
enhance transmission performance [8–15]. Through these advancements, the transmission
speed of an AMCC has been elevated to the level of 20 Mbps under specific conditions.
Studies in the realm of system applications suggest that an AMCC can play a role in wave-
length management and control [16,17], with NTT conducting research on the application
of AMCCs in all optical networks [18]. However, as future networks demand higher ca-
pacity and lower transmission latency, it is necessary to increase the transmission speed
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of WDM-PON systems further. Research indicates that PON systems are currently in a
new upgrade cycle, and as early as 2020, ITU-T proposed initiating the development of
mobile-centric WDM-PON standards [19]. Studies on standardization progress suggest that
the introduction of forward error correction (FEC) coding will raise the line rate of PON sys-
tems to over 50 Gbps, providing widespread benefits for both regular and latency-sensitive
wireless applications [20]. In order to achieve the goal of enhancing PON transmission rates,
various methods can be considered, including increasing channel bandwidth, applying
simplified coherent techniques, and employing advanced modulation schemes, such as
four-level pulse amplitude modulation (PAM4). Consequently, the AMCC responsible for
operation administration and maintenance (OAM) data also requires new technologies
to support PON upgrades. Research indicates the feasibility of transmitting AMCCs in a
50 Gbps PAM4 network [21,22]. An AMCC can also be employed in simplified coherent
systems, as suggested in [23], which introduces a block-based digital signal processing
method used to extract AMCC signals in a 25 Gbps QPSK coherent communication system,
resulting in a power penalty reduction of 0.2 dB for 128 kbps AMCC signals. Compared to
on-off keying (OOK) signals, PAM4 signals carry double information per symbol, reducing
the link bandwidth requirements at the same bit rate but making them more susceptible
to interference. Thus, the signal attenuation caused by the overlay of AMCC on a PAM4
system is more severe than in an OOK system at the same rate. In order to achieve channel
management functions, high-speed AMCC signals need to be correctly demodulated, re-
quiring the maintenance of sufficient AMCC signal amplitude to meet the signal-to-noise
ratio (SNR) requirements. However, the larger the amplitude of the AMCC signal, the more
interference it introduces to the PON, making it challenging to meet the power penalty
requirements specified by the ITU standards [6,7]. In response to these challenges, in [24],
we proposed a modeling method for interference signals to assess mixed signals, and we
introduce a novel joint demodulation receiver structure capable of simultaneously demod-
ulating PON and AMCC signals while maintaining excellent demodulation performance.
In this article, we conduct an analysis of the distribution parameters of the received signal
using the AMCC interference model in a multi-level modulation PON system. Based on
this analysis, we propose an enhanced transmission system for PON-AMCC signals. This
improved method is grounded in probability shaping (PS) techniques and is optimized
using a Gaussian mixture model (GMM). By employing a GMM fitting method to acquire
signal distribution parameters, we scrutinize interference intensity and error symbol proba-
bilities at different positions in the channel. This adjustment aims to strategically position
more signals in areas with lower interference, thereby reducing the transmission error
rate and enhancing the overall system’s transmission performance. We further apply this
method to optimize the joint demodulation receiver proposed in [24]. The effectiveness
of this approach is validated in an experimental system with a 50G-PON with an AMCC
superimposed, demonstrating improved transmission performance compared to signals
transmitted with equal probability.

2. Interference Modeling and Error Symbol Analysis

The transmission of baseband AMCC signals in a multi-level modulation PON signal
system can be achieved using a distributed feedback laser (DFB) and a Mach-Zehnder
modulator (MZM) [22]; its basic structure is illustrated in Figure 1. The blue segment
represents electrical signals, while the green segment represents optical signals.

Figure 1. AMCC superimposition method.
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The PON signal is input through the RF port of the modulator, while the AMCC signal
is connected to the DC bias port. Under appropriate operating conditions, a superimposed
baseband AMCC can be achieved, resulting in the output signal being superimposed in the
form of Equation (1).

PO(t) =
G ∗ PI(t)

2

(
1 + cos

[
π

Vπ
[AP ∗ SPON(t) + VBAIS + AM ∗ SAMCC(t)]

])
+ n(t). (1)

In the equation, SPON(t) and SAMCC(t) are the values of the PON signal and AMCC
signal, respectively, and AP and AM represent the amplitude of the PON and AMCC signals,
respectively. The modulation index of AMCC can be expressed as AM/AP. The parameter
G is the insertion loss of MZM, with a value of less than 1, and Vπ is the half-wave voltage
of MZM. VBIAS indicates the DC bias voltage of the modulator, which determines the
operating conditions of the modulator. PI(t) donates the input optical signal power of
the modulator.

Through mathematical derivation, it can be inferred that the distortion caused by
AMCC varies for different values of the PON signal. The essential reason for this phe-
nomenon is that the relationship between the input and output signals of the MZM is a
cosine mapping rather than a linear mapping. This characteristic results in a significantly
lower distortion value for PON signals near the top and bottom of the cosine curve when
AMCC is superimposed when compared to signals near the middle of the curve. This
feature can be validated through the eye diagram of the signal. For example, Figure 2
illustrates an eye diagram of a PAM4-PON signal overlaid with OOK-AMCC. In the eye
diagram, it can be observed that the 4-level PON signal splits into eight levels. However, it
is evident that the splitting amplitudes of the signal levels at the top and bottom are much
smaller than those at the two middle levels. This observation aligns with the mathematical
analysis presented earlier in Equation (1).

Figure 2. An eye diagram of the transmitted signal after superimposing the AMCC signal.

With the increasing bandwidth of AMCC, traditional interference elimination methods
have limited effectiveness. After analyzing the interference characteristics of AMCC, a new
interference model based on GMM was proposed in [24]. By analyzing the interference
model, we understand that introducing an AMCC results in the splitting of each level
of the PAM4 signal into multiple levels. Consequently, the statistical characteristics of
the corresponding signals are more complex, impacting the demodulation of the signals
given by the receiver. In a joint demodulation receiver, the receiving end utilizes a GMM
fitting module to model the received signal and estimate the distribution parameters. For
an additive white Gaussian noise (AWGN) channel, the received signal conforms to a
Gaussian mixture model, which can be expressed as [25]

p(x) =
K

∑
k=1

ρk N(x|µk, σk), (2)
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where N(x|µk, σk) is called the k-th component in the mixture model, and ρk corresponds
to the weight of that component and satisfies

K

∑
k=1

ρk = 1 0 ≤ ρk ≤ 1. (3)

The µk and σk for each level reflect the channel’s impact on the signal at that position,
representing the SNR of the channel at that location. By evaluating the parameters of the
GMM for the received signal, we can assess the SNR for different levels. When the SNR
is high at a particular position, signals appearing at that position should exhibit good
transmission performance, characterized by a relatively low error rate. Conversely, when
the SNR is poor at a particular position, the signals appearing at that position should
exhibit a higher error rate. For instance, in a transmission system with a PAM4-PON
signal overlaid with OOK-AMCC, according to Equation (1), the received signal should
conform to a Gaussian mixture distribution with eight peaks. After fitting a GMM to
the received signal using Equation (2), the signal distribution might resemble the one
shown in Figure 3. From the figure, it can be observed that when the signal levels are
PAM4 level 2 and level 3, the received signal has a higher SNR. Accordingly, a received
signal that conforms to this model and has its level at positions 2 to 3 should exhibit better
transmission performance, with a lower error rate compared to signals at other positions.
Therefore, by transforming the transmitted signal to place more information at positions
with a higher SNR, it is possible to effectively reduce the error rate and enhance the overall
transmission performance of the system. In order to achieve this purpose, a feasible
method is to use probability-shaping techniques to adjust the distribution probability of
the transmitted signal.

Figure 3. Received signal GMM fitting result.

3. Enhanced Transmission System Utilizing GMM-Based Probability Shaping
Techniques
3.1. GMM-Based Probabilistic Shaping Techniques

Probabilistic Shaping (PS) is a technique utilized in digital communication systems
to improve information transmission performance over noisy channels. This approach
involves meticulous signal design, incorporating probabilistic considerations to mitigate
the impact of noise and interference. The core concept is to assign probabilities to dif-
ferent symbol outputs, prioritizing symbols with lower error rates for transmission. The
foundational implementation method of the PS techniques has been extensively discussed
in previous research, with constant composition distribution matching (CCDM) being a
common approach for PS [26,27]. In a PAM modulation system, each symbol represents a
specific amplitude level, and the probability distribution of symbol points is uniform in
traditional systems, meaning each symbol point has an equal probability of occurrence.
However, PS techniques optimize the probability distribution and reduce the probability
of occurrence for levels with inferior signal-to-noise ratios (SNRs) while elevating the
probability of levels with superior SNRs. Assuming that a PAM-L-modulated signal is
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generated from the level set S = {1, 2, . . . , L}, the probability density function (PDF) DS(x)
tends to align the signal distribution with a Maxwell-Boltzmann (M-B) distribution [28],

D(x) =
e−v|x|2

∑x′∈S e−v|x′ |2 , (4)

where v is a rate parameter utilized to control the kurtosis of MB distribution. Due to
the change in signal distribution, the value of v also undergoes a change, indicating
that the non-uniform probability distribution reduces the entropy of the transmitted sig-
nal. PS technology has been shown to improve transmission performance in optical
communication systems [29–32].

In the PON-AMCC system, we have re-modeled the signal, constructing it as a Gaus-
sian mixture model. In the GMM-based signal model, as described in Equation (2), each
PAM level has an associated parameter, σl , reflecting the noise level at the l-th PAM ampli-
tude. Through this parameter, we can assess the quality of the channel. Therefore, we can
directly use σl to adjust the transmitted signal, reducing the probability of higher levels of
σl occurring. For the l-th level in PAM-L, its PDF should satisfy

D(l) =
e−σ2

l |l|2

∑l′∈S e−σ2
l |l′ |2

, (5)

The noise level parameter σl can be extracted from the results of the GMM fitting. Addi-
tionally, D(l) needs to satisfy another condition:

L

∑
l=1

D(l) = 1, 0 ≤ D(l) ≤ 1, (6)

which means the total probability across all levels is equal to 1. With GMM-based PS
techniques, the system can be optimized by appropriately selecting the parameter σl of the
Gaussian distribution according to the channel conditions and transmission requirements.
A lower value σl increases the occurrence probability of more likely symbol points, thus
improving the system capacity. Conversely, a smaller σl value makes specific amplitude
levels more likely to be used, improving transmission reliability.

3.2. Enhanced Transmission Systems with Joint Transmitter-Receiver Optimization

After proposing a new AMCC interference model in [24], a joint demodulation receiver
based on this new interference model is also introduced. The GMM-based PS technique can
be used to optimize the transmitter and receiver together in this system, as illustrated in
Figure 4. At the transmitter, the module responsible for generating PAM signals is replaced
with a PS-PAM signal generation module. SPON(x) and SAMCC(x) are combined using
the method shown in Figure 1 through an MZM modulator to produce the transmitted
signal S(x). S(x) undergoes the channel treatment to become R(x) and enters the receiver.
The basic structure of the receiver is based on a GMM-HMM joint demodulation receiver,
consisting of a parameter estimation workflow and joint demodulation workflow. The
training sequence from R(x) enters the parameter estimation workflow. The parameter
estimation module first fits the signal model using the GMM method to obtain the model
parameters for the received signal. The probability distribution parameters of the signal
will be entered into the demodulation process as the P matrix mentioned in Equation (7) for
PON signal demodulation. The σ parameter in the GMM parameters is used to analyze the
channel, and according to the method mentioned in Equation (5), the amplitude distribution
of the PAM signal is calculated. The parameters obtained, D(l), are then passed to both
the HMM transition matrix estimation module in the receiver and the PS-PAM mapping
adjustment module in the transmitter. Initially, the transmitter still generated PON signals,
SPON(x), with an equiprobable distribution. After obtaining the new parameters, D(l), the
PS-PAM mapping adjustment module in the transmitter adjusts the PAM signal using the
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CCDM technique proposed in [26] to generate a new PON signal. After receiving the D(l)
parameters, the HMM transition matrix estimation module in the receiver calculates the
new transition matrix parameters, H, and inputs them into the joint demodulation process.
The joint demodulation of PON-AMCC signals using the HMM method can be defined by
the following formula [33,34]:

λ = (Π, H, P)

= ([πm]N∗1, [hmn]N∗N , [pm(x)]N∗1),
(7)

where π is the initial probability distribution, H is the state transition probability matrix,
and P is the observation probability matrix. In our interference model, the observation
probability distribution is obtained by the GMM fitting process; therefore, pm(x) in the P
matrix should be expressed as Equation (2). The transition matrix H can be described as

H = [hmn]N∗N , 1 ≤ m, n ≤ N. (8)

Figure 4. Joint optimization approach based on GMM-based probability shaping techniques.

Considering the randomness of the signals, the transition probabilities are the same
when m, n belongs to different groups. Meanwhile, the probability of occurrence for L
levels in a single group is equal. Thus, the jump probability for each level needs to be
further divided by L. On the other hand, when m and n belong to the same group, the
transition probabilities are also equal. Together with the restriction that ∑n hmn = 1, we
can obtain

hmn =





D(l)× 1
K
× RAMCC

RPON
, m 6≡ n (mod K)

D(l)× (1− RAMCC
RPON

× K− 1
K

), m ≡ n (mod K).
(9)

When the transmitter uses an equiprobable distribution of L-order PAM signals, the
coefficient D(l) can be represented as the constant 1/L. However, when the transmitted
signal undergoes the GMM-based PS method, the probabilities of occurrence for each level
are no longer equal. Consequently, the coefficients, D(l), in the transition parameters, hmn,
used in the HMM demodulation module of the joint demodulation receiver also need to
be adjusted accordingly. As mentioned above, these coefficients are updated to reflect the
actual probabilities of level occurrence, which are derived from the GMM fitting step of the
receiver and are consistent with the probability parameters used in the transmitter. After
updating the transition matrix, H, in the HMM module of the receiver, we proceed with
the joint demodulation process for PON and AMCC, where the PON Viterbi processing
uses the demodulation method described by Equation (7) to demodulate the received
signal, resulting in the output signal RPON(x). The transition parameters during the Viterbi
process are input into the AMCC post-processing module for demodulating the AMCC
signal RAMCC(x).

In practical transmission systems, the channel conditions may vary over time, and
using fixed parameters may not meet the requirements of all scenarios. The parameters
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for probability shaping at the transmitter can be obtained through the GMM fitting step
of the joint demodulation receiver. If we continuously feed back these parameters to the
transmitter in real time, the transmitter can adjust the probability shaping parameters based
on the current channel conditions. After adjusting the parameters of the transmitted signal,
the transmitter can notify the receiver through the AMCC to synchronize and update the
demodulation parameters.

4. Experimental Results and Discussion
4.1. Experimental System

In order to validate the signal adjustment method proposed in this article, we con-
structed an experimental platform, as illustrated in Figure 5. In this platform, we transmit-
ted a 50G-PON signal mixed with an AMCC. The received signals were subjected to offline
processing using the joint demodulation method at the receiver.

Figure 5. Experimental setup block diagram.

On the transmitter side, the shaped and bandwidth-limited electrical AMCC data are
sent to the DC bias port of the modulator via a signal generator (Rigol DG992; 250 MSps),
and a pre-generated 50 Gbps PAM4 PON signal is sent from an arbitrary waveform genera-
tor (AWG, Keysight M8195A, 65 GSps) to the RF port of the modulator. These two signals
are combined in a LiNbO3 intensity modulator (Ixblue MXAN-LN series). An electrical
amplifier (EA; Ixblue DR-AN-40-MO) is used in the RF port as a signal driver. The optical
power into the fiber is set to 5 dBm. The combined signal is transmitted over a 10 km stan-
dard single-mode fiber (SSMF). Simultaneously, a variable optical attenuator (VOA) was
employed to control the received optical power (ROP) at the receiver. This was carried out
to vary line attenuations to assess the system’s performance under different attenuations.
Link attenuation will not affect the signal distribution characteristics, and the received
signals are consistent with our proposed model under different link losses. At the receiver,
the optical signal is detected by the photodetector (Thorlabs DXM30BF), and the electrical
signal is connected to a real-time oscilloscope (Keysight UXR0334A, 33 GHz bandwidth).
The channel is sampled at 128 GSps to capture the information of the PON signal. The cap-
tured signal undergoes processing through the digital signal processing flow, as illustrated
in Figure 4, to derive the interference model and distribution parameters. These parameters
are essential for the joint demodulation process in the receiver. Simultaneously, they play a
pivotal role in tuning and optimizing the transmitted signals. This dual functionality aims
to improve the system’s overall transmission performance.

4.2. Distribution and Error Symbol

In order to validate the relationship between error symbols and signal distribution,
we first analyze the case of an equal probability distribution for the received signals in
the experimental system. When the AMCC modulation index in the experimental system
was set to 10% and the received signal power was −10 dBm, we performed a statistical
analysis of all demodulation errors in the received PON signals. The results of this analysis
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are shown in Figure 6, where the horizontal axis represents the PAM levels of the received
signals, and the vertical axis represents the number of error symbols corresponding to
each level.

Figure 6. Error symbol statistics of the receiver.

Due to the presence of the AMCC, the original PON signal, which was PAM4-
modulated, becomes a Gaussian mixture distribution with eight peaks at the receiver,
where every two peaks correspond to a PON signal with the same amplitude value. From
the graph, it is evident that the error rate for the PAM4 signal levels of −1 and +1 is signif-
icantly lower than for the PAM signal levels of −3 and +3. This observation aligns with
the signal-to-noise ratio relationship depicted in Figure 3 based on the Gaussian mixture
model. For this channel, we calculated the probability of the PON transmission signal as
[0.33, 0.17, 0.17, 0.33] using the proposed method. Because the symbol probability of PAM4
has been modified, resulting in a decrease in the entropy of the non-uniform signal, in
order to maintain the same effective bit rate for PON signals, we adjusted the signal rate
after using probability shaping. According to the probability distribution, we adjusted the
transmission rate of the PON signal to 26 GBaud while maintaining an effective data rate
of 50 Gbps.

4.3. System Performance

After optimizing the transmission signal using probability shaping techniques, we
performed tests on the transmission performance of PON signals. By using the new
method, Figure 7a illustrates the relationship curve between the bit error rate (BER) and
the ROP of the PON signal with the different modulation indices of the AMCC super-
imposed. The points in the figure represent the raw data obtained from the experiments,
while the curves are the result of fitting these data points. As the modulation index of
AMCC increases, the interference received by the PON also increases. Therefore, the
performance of the PON signal is best when there is no interference from AMCC. In the
ITU-T standard, it is mentioned that 50G-PON introduces FEC to meet higher transmission
requirements, including both Reed–Solomon (RS) and low-density parity-check (LDPC)
codes [20]. When RS coding is used, the PHY layer needs to meet a BER of 10−3 to
achieve error-free transmission by FEC, and this requirement can be reduced to 10−2 when
LDPC is used. Under this condition, error-free transmission can be realized by using
FEC if the proposed method can keep the BER of the PON signal below this threshold.
Therefore, we use 3.8× 10−3 (7% hard-decision forward error correction, HD-FEC), which
is the BER threshold required for RS coding, as a comparison criterion in the following
discussion. This is shown (black curve) in the figure. Compared to the BER curve of
the joint demodulation receiver under equal probability transmitted signals, as presented
in [24], the new method proposed in this article results in a reduction in the BER of the PON
signal. Additionally, there is a slight increase in the power budget within the 1 dB penalty
range. Simultaneously, under these conditions, the BER curve of the AMCC is shown in
Figure 7b. The greater modulation depth of the AMCC translates to stronger signal strength
and a higher corresponding signal-to-noise ratio (SNR), leading to improved performance.
A modulation depth of 5% represents the minimum for the AMCC, thus resulting in the
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poorest performance. All the modulation indices of the AMCC meet the BER threshold
requirements for HD-FEC, indicating that error-free transmission can be achieved.

Figure 7. PON and AMCC BER performance. (a) PON BER performance with 10 Mbps AMCC
interference, and (b) 10 Mbps AMCC BER performance.

The curves shown in Figure 8 were obtained under the conditions of an AMCC
signal rate of 10 Mbps and a modulation index of 10%. Similar to Figure 7, the points
in the figure represent the raw data obtained from the experiments, while the curves are
obtained through fitting. The blue curve represents the relationship between the BER
of the PON signal, demodulated by the joint demodulation receiver, and the ROP when
transmitting signals with an equal probability distribution. The red curve illustrates the
BER vs. ROP when the GMM-based PS technique proposed in this article is applied to
adjust the transmitted signals, with the transition matrix in the joint demodulation receiver
corrected. It can be observed that by employing the GMM-based PS technique for joint
transmitter-receiver optimization, the power range of the received PON signal can be
increased by nearly 1 dB at an error rate of 10−3.

Figure 8. PON BER performance comparison with 10 Mbps 10% AMCC interference.

5. Conclusions

In this paper, we propose a method to enhance PON signal transmission performance
through an analysis of the model of received signals in the PON-AMCC transmission
system and the distribution characteristics of transmission error symbols. Firstly, we
conduct GMM fitting regarding the received signals and analyze their distribution char-
acteristics. Subsequently, we analyze the relationship between the error symbols in the
received signals and the GMM distribution, which allows us to establish the objectives
for adjusting the probabilities of the transmitted signals. Following these objectives, we
employed probability-shaping techniques to modify the signal transmission probability.
Due to the changes in the transmitted signals within the joint demodulation receiver, it
is necessary to update the HMM transition matrix based on the modified transmission
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signal distribution characteristics. Finally, we conducted experiments using the proposed
method in a 50G-PON experimental system with PAM4 modulation. The experimental
results indicate that this method can reduce the error rate of PON signals at an equivalent
data rate. This method can further mitigate the impact of AMCCs on PON, thus facilitating
the efficient deployment of WDM-PON systems with AMCC. This approach also enables
dynamic optimization tailored to the changing channel conditions, facilitating the rapid
deployment of PON transmission systems in different channels.
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Abstract: Intensity-modulated direct-detection (IM/DD) optical systems are most widely employed
in short-reach optical interconnects due to their simple structure and cost-effectiveness. However,
IM/DD systems face mixed linear and nonlinear channel impairments, mainly induced by the
combination of square-law detection and chromatic dispersion, as well as the utilization of low-
cost non-ideal transceivers. To solve this issue, recent years have witnessed a growing trend of
introducing machine learning technologies such as neural networks (NNs) into IM/DD systems for
channel equalization. NNs usually present better system performance than traditional approaches,
and various types of NNs have been investigated. Despite the excellent system performance, the
associated high computational complexity is a major drawback that hinders the practical application
of NN-based equalizers. This paper focuses on the performance and complexity trade-off of NNs
employed in IM/DD systems, presenting a systematic review of the current status of NN-based
equalizers as well as a number of effective complexity reduction approaches. The future trends of
leveraging advanced NN in IM/DD links are also discussed.

Keywords: intensity-modulated direct-detection; neural network; training; equalization; computational
complexity

1. Introduction

With the exponential growth of Internet Protocol (IP) traffic, there is an ever-increasing
demand for capacity in data centers. According to International Data Corporation, global
data center traffic will reach 175 Zettabytes (ZB) per year by the end of 2025, up from
33 ZB per year in 2018. Inspired by this dramatic demand for capacity, data centers have
become a hot topic for both academia and industry, which drive the research on short-reach
optical fiber interconnects within the data centers [1–9]. Compared to coherent detection,
intensity-modulated direct-detection (IM/DD) optical links are ideal for such short-reach
applications due to their cost-effectiveness and simple structure [10–17]. However, the
intensity-only direct-detection, or the simple square-law detection of the optical field,
creates a nonlinear channel when combined with channel chromatic dispersion (CD).
Additionally, to maintain low costs, bandwidth-limited transceivers and inexpensive lasers,
such as directly modulated lasers (DMLs), are preferred, which present non-ideal frequency
responses and chirp impairments [18–22]. These mixed linear and nonlinear impairments
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can significantly degrade bit error rate (BER) performance and limit the system’s achievable
capacity. Therefore, effective nonlinear equalization techniques are crucial to ensure the
desired system BER.

Traditional digital signal processing (DSP) approaches such as decision feedback
equalization (DFE) and Volterra series-based equalization, are decades old. They have been
widely applied in IM/DD systems to deal with the nonlinear impairments [23–29]. In recent
years, advances in machine learning (ML) [30–39] have led to the introduction and growing
popularity of numerous ML algorithms in the field of optical fiber communication. These
algorithms have found applications across various aspects of optical communications, such
as optical performance monitoring [40–60] and channel equalization for different types of
optical systems [61–87]. For IM/DD channel equalization, ML algorithms, especially neural
networks (NNs), have been found superior to traditional approaches in terms of system
performance. Due to the introduction of different nonlinear activation functions and the
layered DSP design, NNs are extremely suitable to solve nonlinear problems. Among the
broad topic of applying ML in optical communications, this paper specifically focuses on
leveraging NN for nonlinear equalization in short-reach IM/DD systems. Different types
of NNs and their variants are presented targeting at improved system performance.

While introducing the cutting-edge NNs trying to explore better system performance,
it is also important to pay special attention to the computational complexity (CC) [88–90].
Complicated NN equalizers with increased CC can lead to higher latency and greater
power consumption in the receiver, which hinders their practical implementation. CC
is particularly relevant for NN-based equalization, where it impacts both the training
and equalization (inference) processes. The training process for NNs typically requires
a substantial number of training symbols and epochs. When the link scenario changes,
the performance of the previously trained NNs may degrade, necessitating retraining to
adapt to the new conditions, which is computationally inefficient. During the equalization
process, the computational load is significant as well, with the number of multiplications
per equalized symbol needing to be limited to a few tens to enable real-time DSP implemen-
tation [91–93]. Given these considerations, it is highly desirable to reduce CC in both NN
training and the equalization processes. We can make a trade-off between the performance
and CC of NN-based equalizers according to different link requirements.

In this paper, we provide a systematic review of the application of NN for equalization
in short-reach IM/DD optical links, taking both system performance and CC into account.
The remainder of this paper is organized as follows. Section 2 provides the introduction and
the mathematical model of typical IM/DD systems, discussing the benefits and bottlenecks.
Section 3 presents different performance-oriented advanced NN-based equalization struc-
tures, providing a comprehensive summary of existing works. Section 4 gives a detailed
overview of a number of techniques effectively addressing both training and equalization
CC of NN-based equalizers. Finally, Section 5 concludes this paper and discusses future
perspectives.

2. Short-Reach IM/DD Systems
2.1. IM/DD System Structure

This paper discusses the traditional double-sideband (DSB) IM/DD systems which
possess the simplest structure among various designs of optical transmission systems. A
general illustration of a typical IM/DD communication system as well as the associated DSP
processes are depicted in Figure 1. In this system, a laser serves as the light source, and the
transmitted electrical signal is directly modulated onto the optical intensity. Various types
of laser/modulator modules can be employed at the transmitter, including DML; a vertical-
cavity surface-emitting laser (VCSEL); an electro-absorption modulated laser (EML), which
consists of a laser combined with a separate electro-absorption modulator (EAM); a laser
combined with a Mach-Zehnder Modulator (MZM); and other advanced silicon photonic
modulators. Pulse amplitude modulation (PAM) formats with different levels are usually
adopted for intensity-only optical transmission, such as PAM-2, PAM-4, and PAM-8. At the
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transmitter DSP, the PAM signals are generated and passed through a root raised cosine
(RRC) filter for pulse shaping. The signals are sampled at a proper sampling rate before
being sent out for transmission. The choice of fiber can vary based on the transmitter
type. A single-mode fiber (SMF) is commonly used for most of the transmitters, while a
multi-mode fiber (MMF) is selected for systems utilizing a VCSEL-based transmitter.

Photonics 2024, 11, x FOR PEER REVIEW 3 of 24 
 

 

laser (EML), which consists of a laser combined with a separate electro-absorption modu-
lator (EAM); a laser combined with a Mach-Zehnder Modulator (MZM); and other ad-
vanced silicon photonic modulators. Pulse amplitude modulation (PAM) formats with 
different levels are usually adopted for intensity-only optical transmission, such as PAM-
2, PAM-4, and PAM-8. At the transmitter DSP, the PAM signals are generated and passed 
through a root raised cosine (RRC) filter for pulse shaping. The signals are sampled at a 
proper sampling rate before being sent out for transmission. The choice of fiber can vary 
based on the transmitter type. A single-mode fiber (SMF) is commonly used for most of 
the transmitters, while a multi-mode fiber (MMF) is selected for systems utilizing a 
VCSEL-based transmitter. 

 
Figure 1. A typical structure of IM/DD systems with transceiver DSP procedures. 

At the receiver, as shown in Figure 1, only a single-ended photo-detector (PD) is em-
ployed to convert the optical signal into electrical power. Unlike coherent detection, which 
could preserve both amplitude and phase of the signal, the simple square-law direct-de-
tection can only preserve the amplitude information, and that is why PAM is usually em-
ployed for IM/DD systems. The received electrical signal is further processed by a series 
of commonly employed DSP procedures such as resampling, synchronization, and 
matched filtering. The signals are then fed into the NN-based equalization module for 
nonlinearity mitigation. Finally, hard-decision is performed and the system BER is calcu-
lated. 

2.2. IM/DD System Model 
Most IM/DD systems face intrinsic nonlinearity problem when performing square-

law detection over signals affected by a dispersive channel [94]. When the IM/DD system 
is not operated at zero-dispersion wavelength, the CD effects is not negligible. The fre-
quency response of CD can be expressed by 

2
2

1
2( )

β ω
ω =

j L
H e , (1) 

where 2β  is the group velocity dispersion coefficient, L  denotes the fiber length, and 
ω  denotes the signal angular frequency. Assuming an ideal transmitter is employed, af-
ter intensity-modulation, the output optical power of the transmitter laser, denoted by 

( )TxP t , is given by 

( )0( ) ( )η= +Tx TxP t S S t , (2) 

where ( )TxS t   represents the transmitted electrical signal, 0S   denotes the bias current, 
and η  denotes the modulation coefficient. If we omit the phase impact, the optical field 
of the transmitter laser, denoted by ( )TxE t , can be written as 
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At the receiver, as shown in Figure 1, only a single-ended photo-detector (PD) is
employed to convert the optical signal into electrical power. Unlike coherent detection,
which could preserve both amplitude and phase of the signal, the simple square-law direct-
detection can only preserve the amplitude information, and that is why PAM is usually
employed for IM/DD systems. The received electrical signal is further processed by a series
of commonly employed DSP procedures such as resampling, synchronization, and matched
filtering. The signals are then fed into the NN-based equalization module for nonlinearity
mitigation. Finally, hard-decision is performed and the system BER is calculated.

2.2. IM/DD System Model

Most IM/DD systems face intrinsic nonlinearity problem when performing square-law
detection over signals affected by a dispersive channel [94]. When the IM/DD system is
not operated at zero-dispersion wavelength, the CD effects is not negligible. The frequency
response of CD can be expressed by

H(ω) = ej 1
2 β2ω2L, (1)

where β2 is the group velocity dispersion coefficient, L denotes the fiber length, and ω
denotes the signal angular frequency. Assuming an ideal transmitter is employed, after
intensity-modulation, the output optical power of the transmitter laser, denoted by PTx(t),
is given by

PTx(t) = η(S0 + STx(t)), (2)

where STx(t) represents the transmitted electrical signal, S0 denotes the bias current, and
η denotes the modulation coefficient. If we omit the phase impact, the optical field of the
transmitter laser, denoted by ETx(t), can be written as

ETx(t) =
√

PTx(t) =
√

η(S0 + STx(t)) =
√

ηS0

√
1 +

STx(t)
S0

. (3)

Note that the bias current S0 normally needs to be large enough to make the signal
located at the linear modulation range of lasers. As such, we can perform Taylor series
expansion over ETx(t), and ETx(t) can be rewritten as

ETx(t) =
√

ηS0

(
1 +

∞

∑
n=1

cn

(
STx(t)

S0

)n
)

, (4)
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where the Taylor expansion coefficients are calculated by

cn =
(−1)n−1(2n)!

22n(n!)2(2n− 1)
. (5)

After transmission through the optical fiber channel, the received optical field, denoted
by ERx(t), is modeled by the convolution of the transmitted optical field ETx(t) and the CD
response in time domain denoted by h(t), which is shown as

ERx(t) = ETx(t)⊗ h(t)

=
√

ηS0

(
1 +

∞
∑

n=1
cn

(
STx(t)

S0

)n)
⊗ hR(t) + j

√
ηS0

(
1 +

∞
∑

n=1
cn

(
STx(t)

S0

)n)
⊗ hI(t)

, (6)

where hR(t) and hI(t) represents the real and imaginary part of h(t), and ⊗ represents the
convolution operation. Equation (6) can be simplified by calculating 1⊗ hR(t) and 1⊗ hI(t)
based on Equation (1), where the simplified version is written by

ERx(t) =
√

ηS0

(
1 +

∞

∑
n=1

cn

(
STx(t)

P0

)n
⊗ hR(t)

)
+ j
√

ηS0

∞

∑
n=1

cn

(
STx(t)

P0

)n
⊗ hI(t). (7)

The received square-law detected electrical signal, denoted by SRx(t), is shown as

SRx(t) = R|ERx(t)|2, (8)

where R represents the responsivity of the PD. With simple mathematical derivation, SRx(t)
can be expanded and written as (note that c1 = 1

2 )

SRx(t) = RηS0 + RηSTx(t)⊗ hR(t) + 2RηS0
∞
∑

n=2
cn

(
STx(t)

S0

)n
⊗ hR(t)+

RηS0

[(
∞
∑

n=1
cn

(
STx(t)

S0

)n
⊗ hR(t)

)2

+

(
∞
∑

n=1
cn

(
STx(t)

S0

)n
⊗ hI(t)

)2
] . (9)

As shown in Equation (9), the received signal SRx(t) is separated into four parts. The
first term denotes the direct current, which is constant and can be easily removed. The
second term is a linear convolution of the transmitted signal STx(t) and the real part of
time-domain CD response hR(t). This is known as the power fading effect, where the
IM/DD signals suffer from destructive frequencies especially when the data rate and fiber
length increase. The third term is the convolution of the high order signal term with the real
part of time-domain CD response hR(t), while the fourth term shows the signal-to-signal
beating interference (SSBI). The first two terms are linear, while the last two terms show
nonlinear impacts. Even in the ideal case, we find that IM/DD channel is intrinsically
nonlinear. In practical applications, the laser, modulator, and PD can introduce more
severe nonlinear impairments. The mixed linear and nonlinear impairments significantly
degrade system performance, which necessitate advanced equalization methods such as
powerful NNs.

3. Performance-Oriented NN-Based Equalizers
3.1. FNN-Based Equalizer

The NN-based equalizers for IM/DD links are first investigated targeting at improved
system BER performance. As the simplest form of NN, feedforward NNs (FNNs) are
widely employed for equalization in IM/DD systems [95–106]. A typical two-layer FNN
equalization structure is depicted in Figure 2. Assuming n[0] inputs and n[1] hidden neurons
are employed for the FNN, the DSP process is operated by

y = f [2]
(

W[2] f [1](W[1]x + b[1]) + b[2]
)

, (10)
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where x ∈ Rn[0]
and y represents the inputs and output of FNN, W[1] ∈ Rn[1]×n[0]

/b[1] ∈
Rn[1]

/ f [1] and W[2] ∈ Rn[2]×n[1]
/b[2]/ f [2] denotes the weights/biases/activation functions

of the hidden and the output layer. The NN is operated in a sliding-window manner, which
predicts the received symbol sequentially. Different NN parameters can be selected and
optimized to yield different system performance.
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The first application introducing FNN into IM/DD systems is observed in [95], where a
simple two-layer FNN is deployed to infer simultaneously the linear and non-linear channel
response. The NN has four outputs, each corresponding to one level of the PAM-4 signal
and the entire NN function as a classifier. With the help of the FNN, a 168-Gb/s PAM-4
signal is successfully transmitted over 1.5-km SMF, achieving up to 10 times BER reduction
over conventional FFE. In [96], FNN is implemented to attain a 64-Gb/s PAM4 4-km MMF
link employing 850-nm VCSEL. FNN outperforms 3rd order Volterra series in their VCSEL-
based IM/DD setup. Recorded high 256-Gb/s·km data-rate distance product is achieved
supported by FNN-based equalization. In [97], FNN is used for nonlinear equalization in
IM/DD passive optical network (PON) scenarios. With the aid of FNN, 50-Gb/s PAM4
IM/DD PON transmission via 20 km SMF is realized using 10-GHz class optical devices,
where the end-to-end 3-dB bandwidth is only 3.6 GHz. FNN shows its superiority over
conventional approaches, and shows its effectiveness in resolving bandwidth problems.
In [98], a DML-based IM/DD link is shown using FNN at the receiver. A 20-Gb/s 18-km
O-band PAM4 transmission is realized, where the FNN nonlinear equalizer is found to
increase the channel capacity and drastically reduce the impact of nonlinear penalties.
In [99], the authors extend their [98] and increase the data rate to 54 Gb/s. Different
modulation formats are used, where the FNN-based equalizers work well for all the cases.
FNN is adopted in wavelength division multiplexing (WDM) IM/DD links in [100], where
4 × 50-Gb/s PAM4 signal is transmitted over 80-km SMF. In this work, a dispersion
compensation fiber (DCF) is used to pre-compensate the CD impacts. FNN shows about
2 dB power sensitivity improvement over conventional nonlinear DSP methods.

The demonstration of FNN in IM/DD systems has not gone away in years. More
recently, FNN is applied in 137-Gb/s PAM4 link using 25-GHz class 850-nm optical de-
vices [101]. The signal is transmitted over an in-house fabricated 40 cm optical backplane.
The 112-Gbps 100-m VCSEL-MMF optical interconnects are demonstrated in [102], and
the FNN achieve more than one order of magnitude BER improvement compared with
Volterra series in such system. Similar as [97], a 50-Gb/s 20-km link is shown in [103] using
bandwidth-limited transceivers. Under bandwidth constraints, the FNN-based equalizer
again presents superior performance. IM/DD link using the simple OOK modulation
format is shown in [104], where a 50-Gb/s OOK signal is transmitted over 30-km SMF.
The FNN is also successfully demonstrated in real-time field-programmable gate arrays
(FPGAs) in this work. The IM/DD link data rate is increased to as high as 160 Gb/s in [105],
employing a GeSi EAM. The highest single-wavelength PAM4 data rate is achieved based
on a single EAM, supported by FNN-based nonlinear mitigation. A more generalizable
FNN-based equalizer is shown in [106], where a 56-Gb/s PAM4 signal is transmitted over
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20/30/40-km SMFs using the proposed FNN. All the above works prove that FNN is
effective in mitigating the channel impairments of short-reach IM/DD systems.

3.2. CNN-Based Equalizer

Following the introduction of FNN, more powerful NNs are employed for equalization
in IM/DD systems. Convolutional NNs (CNNs) are employed to explore deeper into the
system performance in [107–111]. CNN is a regularized type of FNN that learns feature
engineering by filter optimization with the help of convolutional and pooling layers, which
are widely used for image classification tasks. The schematic of a CNN-based equalizer
is illustrated in Figure 3. Considering only one-dimension data (which is the case of
signal processing for channel equalization), assuming the input, filter, and output of the
convolutional layer are represented by x, f, and y, the convolution operation is expressed
as

yi =
L

∑
k=1

xi+k−1 fk, (11)

where L denotes the filter length. The pooling operation reduces the number of data by
combining the outputs of neuron clusters at one layer into a single neuron in the next
layer. Max pooling and average pooling are the most commonly used, which take either
the maximum or the average value of each local cluster of neurons in the feature map.
A typical CNN consists of many stacks of convolutional and pooling layers, where each
stack represents one feature of the input data. The features are collected and fed into fully
connected layers same as the FNN to give the final outputs.
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CNN is applied for equalization in a 112-Gb/s 40-km PAM4 optical link using EML
in [107]. The CNN has one input layer, three convolutional layers, two fully connected
layers, and one output layer for classification of PAM signals. It has been shown that the
performance of the proposed CNN model outperforms Volterra series and FNN equaliz-
ers. In [108–110], the same group use different types of CNN for equalization in different
IM/DD systems. The system is varied in modulation formats (PAM-4, PAM-8, PAM-16),
transmission bands (C-band, O-band), data rates (56 Gb/s, 100 Gb/s) and system band-
width (10-G class, 20-G class). The CNN is changed with different number of convolutional
layers and the number of neurons in each layer. All the different demonstrations show
strong equalization ability of CNN. A temporal CNN (TCNN) is proposed in [111], which
introduce dilated convolutions and residual connections onto the traditional CNN. Better
system performance is observed compared with traditional CNN equalization architecture,
and the proposed scheme enables as far as 100-km SMF IM/DD transmission of a 56-Gb/s
PAM4 signal.

3.3. RNN-Based Equalizer

Although CNN presents better performance, it also requires much larger network
structures, which is deemed too complex for real-time application. The investigation on
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CNN-based equalization seems to have disappeared in recent years, and researchers focus
more on recurrent NN (RNN)-based equalization [112–124]. Four types of RNNs are found
in IM/DD applications, which are auto-regressive RNN (AR-RNN), layer-recurrent NN
(L-RNN), long short-term memory (LSTM) and gate recurrent unit (GRU) networks. These
RNNs are built on top of the traditional FNN.

The schematic of a two-layer AR-RNN-based equalizer is shown in Figure 4. On top
of the FNN, a few output delays are sent back to the hidden layer and serve as new inputs.
Assuming the number of output delays used in the feedback loop is denoted by k, and the
output delays and the associated weights are represented by yd and Wd ∈ Rn[1]×k, the DSP
process is given by

y = f [2]
(

W[2] f [1]
([

W[1], Wd
][

xT , yT
d

]T
+ b[1]

)
+ b[2]

)
. (12)Photonics 2024, 11, x FOR PEER REVIEW 8 of 24 
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In terms of the equalization process, the operation of using past predicted output
symbols as additional inputs provides more information when predicting the current
output symbol. As such, better performance can normally be achieved with the help of this
information. AR-RNN is first used for equalization in IM/DD systems in [112]. The 50-Gb/s
PAM-2 and 100-Gb/s PAM-4 signals are transmitted over 20-km SMF, where the receiver
adopt AR-RNN with seven feedbacks to read the historical decision results. In [113,114],
the AR-RNN is implemented using FPGAs in a parallel manner, and a 100-Gb/s IM/DD
PON system is demonstrated. It is shown that the AR-RNN can beat FNN equalizers
with the same input/output size and the number of training parameters, achieving better
receiver sensitivity performance.

The structure of L-RNN is depicted in Figure 5. Different from AR-RNN, which uses
output feedbacks, L-RNN collects the delays from the outputs of hidden neurons and sends
them back to the hidden layer again for data processing. Assuming the number of rounds
of hidden layer delays used in the feedback loop is denoted by k, and the hidden layer
delays and the associated weights are represented by hd and Wh ∈ Rn[1]×kn[1]

, the DSP
process of L-RNN is given by

y = f [2]
(

W[2] f [1]
([

W[1], Wh
][

xT , hT
d

]T
+ b[1]

)
+ b[2]

)
. (13)

Similar to AR-RNN, additional useful information about former predictions is also
provided in L-RNN when predicting the current symbol. An L-RNN-based equalizer
is proposed for equalization in a VCSEL-MMF optical interconnect in [115]. It has been
shown that L-RNN is more powerful than ANN in dealing with sequential signals, and
has the potential of reaching much lower BER with similar complexity. In [116], the
authors extend their work in [115] by employing hidden feature extraction before sequence
training. The input features are first extracted using principal component analysis or other
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dimensionality reduction approaches before sending into the L-RNN equalizer. Aided by
the feature-enhanced L-RNN, single-lane 288-Gb/s PAM-8 signal transmission over 100-m
MMF is realized with BER well below the 20% SD-FEC threshold.
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The architecture of LSTM and GRU networks are given in Figure 6. Compared
with traditional FNN, an LSTM/GRU layer is added, where inside contains a number
of LSTM/GRU cells. Both LSTM and GRU address the vanishing gradient problem in
traditional RNNs by introducing gating mechanisms that allow them to capture long-term
dependencies more effectively. The detailed complicated LSTM/GRU cell structure will not
be discussed in this paper. Interested readers can refer to [117–124] for more information.
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LSTM is used for equalization in both classification and regression manners in [117].
Both cases work well for a 50-Gb/s 100-km PAM4 optical system. In [118,119], a 160-Gb/s
1-km PAM4 link is conducted using a silicon-microring-modulator (Si-MRM) and an LSTM-
based equalizer. Two LSTM layers and two fully connected layers are employed. The
nonlinearity induced by the modulator is effectively mitigated by the proposed powerful
equalizer. In [120], the authors extend their work in [118,119] with updated experimental
configuration. The LSTM now supports 270-Gb/s PAM-8 signal to transmit 1-km SMF using
the Si-MRM, which greatly increases the achievable data rate. LSTMs are also employed
in [121,122] to achieve 200+ Gb/s per single lane. Note that non-zero dispersion-shifted
fiber (NZDSF) is used to reduce the impact of CD. In addition to LSTM, the performance
of GRU is also tested in [122], where it achieves slightly higher BER than LSTM. More
works on GRU-based equalization can be found in [123,124], where the GRU is proposed
to resolve the patterning effect of the semiconductor optical amplifiers (SOAs) applied in
IM/DD systems. The input power dynamic range of SOA can be greatly extended with the
help of the GRU-based equalization.
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3.4. Cascade NN-Based Equalizer

The introduction of different recurrent structures of RNN significantly improves the
system performance. However, the training and equalization complexity also increase,
especially for the LSTM and GRU ones. Another variant of FNN is the cascade NN, which
is computationally friendly. The structure of cascade FNN is shown in Figure 7. On top of
the traditional FNN, cascade connections are included, which connect the input and every
previous layer to the following layers. For a two-layer cascade FNN, the input layer is
simply connected to the output layer. Assuming the cascaded weights and are represented
by Wc ∈ Rn[0]+k, the equalization process of cascade FNN is given by

y = f [2]
([

W[2], Wc
][(

f [1]
(

W[1]x + b[1]
))T

, xT
]T

+ b[2]
)

. (14)Photonics 2024, 11, x FOR PEER REVIEW 10 of 24 
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Figure 7. Schematic of a two-layer cascade FNN-based equalizer.

The cascade connections produce a pure linear path for direct mapping of the inputs
to the output. This enables an efficient joint linear and nonlinear effect estimation and
results in better system performance when used for equalization. Both cascade FNN and
cascade RNN are proposed in [125,126]. A 100-Gb/s 15-km PAM4 link is built using a
band-limited DML, where the cascade structure help improves the receiver sensitivity by 1
dB compared with NNs without cascade connections. It is also demonstrated that cascade
NN-based equalizers have a much faster training speed. A more recent work is found
in [127], where the cascade structure is shown as “skip connections”. The experimental
setup is similar as used in [123,124], where the NN performs well with skip connections.
The effect of simplified training is also verified in this work.

3.5. Other Types of NN-Based Equalizers

In addition to the above-mentioned NNs, there are also many different type of NN-
based equalizers demonstrated in IM/DD systems. Radial basis function NN (RBF-NN) is
shown in [128] in a 4 × 50-Gb 80-km PAM-4 IM/DD link. The RBF-NN employs Gaussian
activation function in the hidden layer, and achieves better network stability and fitting
ability compared with traditional Volterra series or FNN. There are many discussions on
the application of spiking NN (SNN) in IM/DD systems recently, as shown in [129–133].
In addition to neuronal and synaptic state used in traditional NNs, SNNs incorporate
the concept of time into their operating model. The SNN-based equalizers have been
implemented in application-specific integrated circuits (ASICs), and have been verified
in both simulation and experiments. Interested readers can refer to [129–133] for more
details about SNN-based equalization in IM/DD systems. The different types of NN-based
equalizers and IM/DD links are summarized and shown in Table 1.
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Table 1. Different types of NN-based equalization for various short-reach IM/DD links.

NN Type Ref. Modulation Data Rate Fiber Length Tx Type Wavelength

FNN

[95] PAM4 168 Gb/s 1.5 km SMF MZM (35 GHz) ~1550 nm
[96] PAM4 64 Gb/s 4 km MMF VCSEL (25 GHz) ~850 nm
[97] PAM4 50 Gb/s 20 km SMF MZM (10 GHz) ~1550 nm
[98] PAM4 20 Gb/s 18 km SMF DML (10 GHz) ~1310 nm
[99] PAM2/PAM4/PAM8 54 Gb/s 25 km SMF DML (10 GHz) ~1550 nm
[100] PAM4 4 × 50 Gb/s 80 km SMF DML (20 GHz) ~1550 nm
[101] PAM4 137 Gb/s 40 cm MMF MZM (25 GHz) ~850 nm
[102] PAM4 112 Gb/s 100 m MMF VCSEL (NA) ~850 nm
[103] PAM4 50 Gb/s 20 km SMF DML (10 GHz) ~1310 nm
[104] PAM2 50 Gb/s 30 km SMF MZM (35 GHz) ~1310 nm

[105] PAM4 160 Gb/s 2 km SMF GeSi EAM (30
GHz) ~1550 nm

[106] PAM4 56 Gb/s 20/30/40 km
SMF MZM (40 GHz) ~1550 nm

CNN

[107] PAM4 112 Gb/s 40 km SMF EML (25 GHz) ~1310 nm
[108] PAM4 56 Gb/s 25 km SMF DML (10 GHz) ~1310 nm

[109,110] PAM8/PAM16 100 Gb/s 25 km SMF DML (20 GHz) ~1310/1550 nm
[111] PAM4 56 Gb/s 100 km SMF MZM (40 GHz) ~1550 nm

RNN

[112] PAM2/PAM4 60/100 Gb/s 20 km SMF MZM (40 GHz) ~1550 nm
[113,114] PAM4 100 Gb/s 20 km SMF MZM (NA) ~1310 nm

[115] PAM4 56 Gb/s 100 m MMF VCSEL (18 GHz) ~850 nm
[116] PAM8 288 Gb/s 100 m MMF VCSEL (23 GHz) ~850 nm
[117] PAM4 50 Gb/s 100 km SMF DML (18 GHz) ~1550 nm

[118,119] PAM4 160 Gb/s 1 km SMF Si MRM (47 GHz) ~1550 nm
[120] PAM8 270 Gb/s 1 km SMF Si MRM (55 GHz) ~1550 nm

[121,122] PAM4 212 Gb/s 1 km NZDSF EML (40 GHz) ~1550 nm
[123,124] PAM4 100 Gb/s 5.4 km SMF MZM (NA) ~1550 nm

Cascade
NN

[125,126] PAM4 50/100 Gb/s 25/15 km SMF DML (16 GHz) ~1550 nm
[127] PAM4 100 Gb/s 4.8 km SMF MZM (33 GHz) ~1550 nm

RBF-NN [128] PAM4 4 × 50 Gb/s 80 km SMF DML (18 GHz) ~1550 nm

SNN
[129,130] PAM4 224 Gb/s 4 km SMF NA ~1270 nm
[131,132] PAM4 100 Gb/s 2 km SMF NA ~1310 nm

[133] PAM4 200 Gb/s 5 km SMF NA ~1270 nm

Besides the direct utilization of NN for equalization, NNs are often combined with
sequence decoders to achieve better system performance. Maximum likelihood sequence
estimation (MLSE) based on NN is proposed in [134], where the NN is used to estimate the
nonlinear channel responses and to calculate the metrics for the Viterbi algorithm. Similarly,
an NN-BCJR equalization scheme is proposed in [135], where an NN-based nonlinear
channel emulator is adopted to calculate the transition metric in the BCJR algorithm.
In [136,137], duobinary training strategy is proposed. The NN equalizer is first trained
targeting at the duobinary form of the signal, and MLSE is followed to recover the enforced
ISI. This approach is particularly effective in addressing the bandwidth limitations problems
in IM/DD systems. In [138], the NN equalizer is trained targeting at adaptive duobinary
form of the signal. The optimal partial-response parameter is learned through NN training,
where the system performance can be further improved compared with equalization with
conventional partial-response target.

3.6. Performance and Complexity Comparison of FNN-, L-RNN-, Cascade FNN-, and
AR-RNN-Based Equalizers

An IM/DD experiment is conducted to verify the performance and complexity of
above-mentioned NN-based equalizers. Here we only show the results of four types, i.e.,
FNN-, L-RNN-, cascade FNN-, and AR-RNN-based equalizers, since other types such as
CNN- or LSTM/GRU-based ones are considered much more complex, which makes them
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difficult to be applied in real-time applications. Interested readers can refer to [95–133] for
more details on the performance of different types of NN-based equalizers. The IM/DD
experiment is based on a DML with a 3-dB bandwidth around 16 GHz, where a 50-Gb/s
PAM4 signal is generated and transmitted over 25-km SMF [125,126]. A variable optical
attenuator (VOA) is applied at the receiver to tune the received optical power (ROP). The
NNs only have two layers, where tanh activation function is selected for the hidden layer
and linear activation function is used for the output layer. The NNs are used in a regression
manner which means that only one output is adopted. A total of 20,000 random PAM4
symbols are used for training the NNs, while an additional 1.2 million PAM4 symbols are
collected for NN-based nonlinear equalization and BER calculation.

We first show the best system performance of each NN-based equalizers, where the
complexity constraint is omitted. As many as 15 inputs and nine hidden neurons are
selected, which can guarantee that the NNs achieve their best performance. The BER-ROP
curves of different NN-based equalizers are shown in Figure 8a. We use the form (the
number of inputs, the number of hidden neurons) to represent the size of the different NNs,
as shown in the figure. It can be observed that the performance of NNs follows the order of
AR-RNN, cascade FNN (denoted by C-FNN in the figure), L-RNN, and FNN. Compared
with traditional FNN, the three FNN variants all improve the system performance. The
receiver sensitivity is improved by approximately 2/1/0.5 dB by AR-RNN/cascade FNN/L-
RNN. Figure 8b illustrates the number of multiplications (denoted by Nmul) of all the NNs
adopted in Figure 8a. Considering the same number of inputs and hidden neurons, L-RNN
is obviously more complicated than the other employed NNs. Cascade FNN and AR-RNN,
however, show limited additional complexity compared with traditional FNN.
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To mitigate this overestimation problem, several approaches can be adopted. First is 
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Figure 9a depicts the system BER performance of the NN-based equalizers under the
complexity constraint, where the Nmul of all the NNs are all kept below 100, shown in
Figure 9b. The number of inputs and hidden neurons of the different types of NNs are
carefully chosen to achieve the best system performance with only a few tens of multiplica-
tions involved to recover one symbol, showing the potential for real-time implementation.
When the Nmul of NNs are lower than 100, L-RNN becomes the worst equalizer since its
size is affected most by the complexity constraint. Cascade FNN and AR-RNN, however,
still present superior BER performance over FNN, increasing the receiver sensitivity by
about 1.5 and 2 dB, respectively.
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3.7. Possible Pitfalls When Applying NN-Based Equalizers

One thing we need to pay special attention to when using NNs is the so-called possible
pitfalls or overestimation traps [139–143]. It has been observed that NNs are capable of
learning the operational logic of pseudo-random bit sequences (PRBSs). This ability may
lead to an overestimation of the NNs’ performance, as the performance improvements
might stem from predicting the sequence patterns rather than from mitigating channel
impairments. Such overestimation is not limited to PRBS but can also occur with other data
types that follow specific patterns, including short repeated sequences.

To mitigate this overestimation problem, several approaches can be adopted. First is
employing pure random data, i.e., true random numbers generated through unpredictable
physical processes, to ensure that each transmitted symbol is independent. This method
prevents NNs from learning any underlying patterns. Second is using different mixtures
of PRBSs with varying orders to train the NNs. This can also prevent the recognition of
consistent patterns across the combined sequences. Lastly, ensuring that the number of
NN inputs does not exceed the PRBS order can naturally address the issue. For PRBS
transmission, the NNs require at least as many inputs as the PRBS order to fully grasp the
PRBS operational logic. In the context of equalization in small-scale optical transmission
systems such as IM/DD links, where only a limited number of NN inputs are needed for
equalization, one viable strategy is to use sufficiently long PRBSs.

4. Computationally Efficient NN-Based Equalizers

The NNs indeed greatly exploit the performance of IM/DD system. However, it is
also obvious that the CC is largely increased, which makes NN receivers less practicable for
real-time implementation. Much progress has been made on resolving the complexity issue
when applying NN for IM/DD equalization. This section will review all the techniques,
focusing on both NN training and equalization.

4.1. Transfer Learning

The training process of NN-based equalizers is usually time-consuming, which in-
volves many iterations of forward- and backward-propagation calculations. When there
are many optical links needed for equalization, the training of different NN-based equal-
izers becomes a big problem. Transfer learning is proposed to speed up the NN training
process [144]. Transfer learning is a machine learning strategy that involves repurposing a
model designed for one task to serve as the foundation for a different, but related, task. This
method capitalizes on the insights gained from the initial task and applies them to a new
challenge. It is especially advantageous when the new task has a limited amount of labeled
data, as it enables the model to utilize the extensive data and computational resources
already invested in training the original model. Transfer learning has been introduced into
optical communications for optical performance monitoring [145–147], and for equalization
of coherent or single-sideband (SSB) signals [148–151]. It is first introduced for equalization
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in IM/DD systems in [152,153], where the flow diagram is given in Figure 10. For NN
training of the target IM/DD system, we can leverage the NN trained from different source
IM/DD systems and use transfer learning. Since the source NN-based equalizers preserve
channel information that are related to the target system, they can serve as a better starting
point for NN training in the target system, instead of training purely from scratch. Transfer
learning-aided fast equalization is demonstrated for both FNN and RNN-based equalizers
in a 50-Gb/s 20-km PAM-4 target IM/DD system [152,153]. The target system equalization
is accelerated by adopting NNs from a number of source systems with different data rates
and fiber lengths. The 60-Gb/s 15-km source system is found closest to the target one,
where significant reduction of 90%/87.5% in training epochs and 62.5%/53.8% in training
symbols are achieved. The study also reveals that FNNs can be smoothly transferred to
RNNs for equalization in the target system, whereas the reverse adaptation is not practical.
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In addition to FNN- and RNN-based equalizers, transfer learning can be smoothly
applied for CNN-based equalization in IM/DD systems, as shown in [154]. Similar
to [152,153], source systems with varying data rates and fiber lengths are employed, and
transfer learning again shows its effectiveness in reducing the number of training epochs
and the size of the training dataset. The iterative pruning technique is introduced into the
transfer learning-aided equalization for IM/DD links in [155,156], where the convergence
speed can be further enhanced during TL between the source and target links. By fine-
tuning the pruning parameters, an optimal balance between performance stability and
complexity can be attained. Transfer learning is set to be pivotal in the advancement of
optical-switched data center networks, where the dynamic reconfiguration of optical
link parameters is crucial. Utilizing transferred NN receivers, new optical interconnects
can be rapidly deployed.

4.2. Pruning

When the optical links are fixed and do not change dynamically, the training complex-
ity of NNs can be omitted since the well-trained equalizer can be stably used without the
need for retraining. The equalization complexity becomes the primary concerns. Pruning
is one possible technique to reduce the size and equalization complexity of an NN by
removing less important weights. As shown in Figure 11, after pruning, a sparse NN
structure is presented compared with its fully connected counterpart. This process helps
in making the model more efficient, often leading to faster inference times and reduced
computational resources, without significantly compromising the model’s performance.
Pruning can also enhance generalization by preventing overfitting and is particularly useful
for deploying models on resource-constrained devices. The pruning techniques have been
applied in Volterra-series-based equalization [157–160] for IM/DD systems, as well as in
NN-based equalization for coherent [161] and SSB signals [162]. Pruning of NN-based
equalizers in IM/DD systems is found in [98,163–167].
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The pruning process include the importance assessment of all the weights in the NN-
based equalizer. This is commonly performed by setting a threshold, where the weights
with absolute values lower than the threshold are considered insignificant and can be
pruned. In [98], the traditional pruning method is applied in a DML-based IM/DD link.
It has been demonstrated that the BER curves of the pruned NN are close to that of the
unpruned NN, showing the ability of pruning in reducing receiver complexity without
degrading much of the system performance. In [163], an iterative pruning algorithm is
proposed for NN-based equalization in VCSEL-based IM/DD links. Compared with tradi-
tional one-shot pruning, which prunes the NN only one time, the iterative pruning method
prunes the NN many times. The NN can be fine-tuned accordingly, which leads to a better
complexity reduction efficiency. Ref. [164] presents the real-time pruned NN in FPGAs for
VCSEL-based optical interconnects. The included hardware resources are minimized by
pruning, showing the potential of applying NN receivers in practical applications. In [165],
pruning is applied in a different cascade RNN-based equalization structure in a DML-based
IM/DD link. It is shown that the receiver complexity is largely decreased, despite the
utilization of NN structures. The importance of cascade and recurrent connections are also
verified in the pruning process. In [166,167], adaptive L2-regularization is introduced to
facilitate pruning in EML-based optical interconnects. A two-step training scheme is pro-
posed, where the first step involves using L2-regularization during training to encourage
sparsity in weight representations, and the second step applies the traditional pruning
mechanism to remove the insignificant weights. The proposed L2-regularization-aided
pruning approach shows better performance compared with conventional direct pruning.

4.3. Multi-Task Learning

Multi-task learning is also an efficient technique to address the equalization complex-
ity issue. Multi-task learning is a machine learning approach where a model is trained
simultaneously on multiple related tasks, leveraging shared representations to improve
performance on each task. By learning commonalities and differences among tasks, the
model can lead to improved accuracy and efficiency. Considering the equalization tasks in
optical transmission systems, multi-task learning is referred to as multi-symbol prediction,
shown in Figure 12, where multiple symbols are recovered simultaneously rather than
processed sequentially, one at a time. By dealing with multiple symbol using only one NN,
a better utilization of weights and biases can be realized. The information provided by
the weights and biases in the traditional single-output NN to recover the current symbol
can still be useful for predicting the following symbols. Part of the NN parameters can be
shared to enable a more efficient equalization structure.
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NNs with multi-outputs are adopted in IM/DD links in [104,113,114,124,168], where
the main purpose is to enable high throughputs. By increasing the number of NN out-
puts, parallel computing can be realized. At the same FPGA clock frequency, higher
throughputs can be achieved while the number of employed FPGAs remains the same. For
the complexity reduction purpose, multi-symbol IM/DD equalization is first proposed
in [169,170], where FNN-, cascade NN-, and RNN-based multi-symbol equalizations are
demonstrated. All the cases reduce the number of multiplications for one symbol recovery
to about a few tens, which indicates the potential real-time implementation of NNs with
multi-output selections. The work also finds that there exist an optimal number of NN
outputs that reduce the computational complexity most. The multi-symbol equalization
idea is then introduced into LSTM and GRU-based IM/DD equalization in [121,122], as
well as reservoir computing-based equalization [171,172], where similar conclusions about
complexity reduction are given. The multi-symbol equalization scheme can even be com-
bined with pruning techniques to jointly reduce the receiver complexity [173]. Recent
hardware demonstrations of multi-output NN-based equalizers further indicates their
effectiveness in reducing the equalization complexity [174,175], where the chip areas are
considerably saved.

4.4. Quantization

Another approach to relax the equalization complexity requirement of NN is quantiza-
tion. NN quantization is a method that reduces the computational and memory demands of
an NN by changing its parameters and activations from high-precision (e.g., 32-bit floating-
point) to lower-precision formats (e.g., 8-bit integers). A quantized NN-based equalizer is
shown in Figure 13, where bit shifters and quantizers are adopted between each layer. The
quantization approach shrinks the model size and speeds up inference, enhancing efficiency
for hardware deployment. Although quantization can lead to some loss of accuracy, careful
tuning helps preserve the performance while significantly lowering computational costs
and power usage. A few works [176–179] have already demonstrated the computationally
efficient quantized NN-based equalization in coherent optical transmission systems.

For equalization in short-reach IM/DD scenarios, fixed-precision quantization of NNs
is employed in [114,168], targeting FPGA implementation NN receivers. Both works quan-
tize the floating-point (32-bit)-based NNs to integer-based ones, where only a few bits are
used to represent each weight and bias. Negligible BER penalty is observed when reducing
the quantized bits, which suggests the floating-point-based NNs are actually redundant
in precisions. By reducing the number of bits, the floating-point calculations all change
to integers, and the memory needed for NN parameter storage is drastically decreased.
In [180,181], a mixed-precision quantization method is proposed for IM/DD equalization
to further decrease the number of quantized bits compared with the fixed-precision coun-
terpart. A straightforward input neuron partitioning approach is applied to determine the
high- and low-precision weights. The proposed mixed-precision quantization is verified in
both traditional FNN and advanced cascade RNN scenarios. In [182], joint mixed-precision
quantization and pruning is proposed to squeeze out more bits in the NN-based equalizer.
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The connections of NN are either directly eliminated or represented by a suitable number of
quantization bits through weight clustering, creating a hybrid compressed sparse network
structure that computes much faster and consumes less hardware resources. The system
performance can still be upheld using the pruned mixed-precision-quantized NN receivers.
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5. Conclusions and Future Perspectives

This paper presents a comprehensive overview of the current status of applying NNs
for equalization in short-reach IM/DD optical links, considering both system performance
and complexity. Traditional FNN and a series of advanced NNs are adopted to effectively
mitigate the linear and nonlinear impairments in IM/DD channels. Transfer learning,
pruning, multi-task learning, and quantization approaches are introduced to make the
NN-based equalizer more computationally efficient, considering both the training and
equalization phases.

Future directions of NN-based equalization in short-reach IM/DD systems still focus
on improving the performance and reducing the complexity. One key area of interest
is the continuous exploration of more advanced and powerful NN-based equalizers to
enhance system performance. One thing we need to mention is that the works present in
this paper mainly consider only post-equalization for simplicity. Joint optimizations of
both pre- and post-NN-based equalization, or the so-called end-to-end learning structures,
may be viable solutions to further improve BER. Considering different short-reach links,
it is also important to develop approaches to improve the ability of generalization for
NN-based equalizers. Another area of interest lies in the development of more efficient
and intelligent approaches for complexity reduction. Algorithms that enable faster NN
training and equalization are vital for realizing real-time receiver implementations. More-
over, the NN-based equalizers shown in this paper are all used as black boxes, relying
purely on data-driven methods. It is also important to incorporate physical interpretations
into the equalization model and develop physics-informed NN receivers for short-reach
IM/DD applications.
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Abstract: Recently, extensive research has been conducted to explore the utilization of machine
learning (ML) algorithms in various direct-detected and (self)-coherent short-reach communication
applications. These applications encompass a wide range of tasks, including bandwidth request
prediction, signal quality monitoring, fault detection, traffic prediction, and digital signal processing
(DSP)-based equalization. As a versatile approach, ML demonstrates the ability to address stochastic
phenomena in optical systems networks where deterministic methods may fall short. However,
when it comes to DSP equalization algorithms such as feed-forward/decision-feedback equalizers
(FFEs/DFEs) and Volterra-based nonlinear equalizers, their performance improvements are often
marginal, and their complexity is prohibitively high, especially in cost-sensitive short-reach commu-
nications scenarios such as passive optical networks (PONs). Time-series ML models offer distinct
advantages over frequency-domain models in specific contexts. They excel in capturing temporal
dependencies, handling irregular or nonlinear patterns effectively, and accommodating variable time
intervals. Within this survey, we outline the application of ML techniques in short-reach communica-
tions, specifically emphasizing their utilization in high-bandwidth demanding PONs. We introduce a
novel taxonomy for time-series methods employed in ML signal processing, providing a structured
classification framework. Our taxonomy categorizes current time-series methods into four distinct
groups: traditional methods, Fourier convolution-based methods, transformer-based models, and
time-series convolutional networks. Finally, we highlight prospective research directions within
this rapidly evolving field and outline specific solutions to mitigate the complexity associated with
hardware implementations. We aim to pave the way for more practical and efficient deployment of
ML approaches in short-reach optical communication systems by addressing complexity concerns.

Keywords: machine learning; optical communications; passive optical network; equalization; optical
performance monitoring; modulation format identification; bit-error ratio; optical signal-to-noise
ratio; nonlinearities

1. Introduction

Short-reach optical transmission systems have gained substantial attraction owing
to their remarkable attributes of high bandwidth and low latency [1]. In the evolving
landscape of communication technologies, short-reach optical communication has emerged
as an essential domain, driven by the increasing demand for high-speed data transfer
in applications such as inter-data centers [2], access/local area networks, and industrial
automation [3]. This increasing demand requires efficient, low-latency communication
systems tailored to short-reach scenarios, typically up to 100 km. While long-haul, optical
communication has been immersive in data transmission, its applicability encounters
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challenges when adapting to the constraints of shorter distances. This is mainly due
to physical and technical limitations that prevent its seamless integration into existing
networking environments characterized by the need for energy-efficient and cost-effective
data transmission over limited distances. Passive optical networks (PONs) utilize passive
optical splitters and combiners, which are less expensive than the active components
required in traditional point-to-point fiber networks. This makes PONs a cost-effective
fiber-optic solution.

Since PONs rely on passive optical splitters, they inherently introduce power losses,
limiting the overall power budget and the number of users that can be supported on a
single PON. In addition, effects caused by the fiber, such as chromatic dispersion (CD)
and nonlinearity can limit the PON-reach [4], especially when intensity-modulated and
direct-detected (IMDD) high baud-rate signals are considered [5].

Ongoing research endeavors are dedicated to advancing optical detection schemes to
overcome these limitations and increase the signal bit rate in both short-reach and long-haul
optical communication networks [6]. For instance, the regeneration of coherent optical
systems in the last decade has been a major breakthrough, as they have gone beyond just
using intensity-only modulation [7]. Coherent systems employ external modulators to em-
ploy complex baseband signals to the optical field. The optical coherent receiver, equipped
with phase diversity, linearly recovers signals and compensates for fiber impairments
through digital signal processing (DSP) [8]. Coherent technology enables the transmission
of advanced modulation formats and polarization multiplexing to increase the signal bit
rate significantly. Additionally, coherent optical systems enable dense wavelength division
multiplexing (DWDM) and super-channels, which push long-distance optical networks
into the multi-terabit per second capacity range [9].

Except for traditional homodyne-coherent technology, coherent communication strate-
gies include diverse techniques, such as phase detection through heterodyne detection.
While this approach has its merits [10], a notably favored incoherent approach such as
IMDD is practically preferred due to its inherent simplicity and cost-effectiveness in short-
reach communications [11,12].

In contrast to coherent transmission, IMDD operates by encoding information into
the intensity of the optical signal, with the modulation signal being real-valued and posi-
tive [12]. The implementation of IMDD eliminates the need for complex optical components
and local oscillators, reducing hardware complexity. Additionally, IMDD systems are less
susceptible to phase noise and polarization-related issues, making them robust and prac-
tical for scenarios where cost efficiency and simplicity are paramount [12]. Furthermore,
practical considerations like operation and safety can limit the highest and average val-
ues of the modulated signal in IMDD systems. These restrictions give IMDD systems
specific characteristics in how they function [13]. Various models, such as the Poisson
channel, square-root Gaussian channel, and Gaussian channel with input-dependent noise,
among others, exist to rapidly assess and characterize IMDD systems [14–16]. In contrast
to conventional methodologies that depend on analog components and processing [17],
IMDD can potentially integrate machine learning (ML) algorithms at the receiver DSP if
required [18], providing a flexible and adaptable solution for enhancing the transmission
performance. According to [19], the combination of ML and DSP techniques allows IMDD
systems to dynamically adapt and optimize signal parameters. This addresses impairments
and variations in real time without needing complex hardware adjustments. This approach
represents a significant benefit, as it not only reduces the costs associated with complex
hardware setups in short-reach systems, but also highlights the effectiveness of intelligent
signal processing [18,20,21].

In this survey, we examine the significant progress made in short-distance optical com-
munications research over the past decade. First, we summarize several key research areas
(Section 2). Afterwards, we focus on the equalization problem, introducing benchmark DSP
methods (Section 3) and ML algorithms (Section 4). Then, we categorize recent sequence
models in the ML field (Section 5), dividing them into convolution-based, transformer-
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based, and Fourier-based neural networks. We explore the advantages, disadvantages,
and complexities of each method in addressing the equalization problem. In the final sec-
tion, we provide an overview of the model compression field, outlining two approaches to
compress models. We see these approaches as potential solutions for addressing hardware
complexity concerns.

The primary contribution of this survey is to summarize the existing research on ML
implementations for short-reach optical communications across a range of applications.
Specifically, our contributions are the following:

1. We review existing deep learning (DL) models, providing a comprehensive under-
standing of their principles, characteristics, and hypothesis classes. This facilitates an
in-depth exploration for researchers seeking supervised neural-network-based ML
models suitable for their specific applications.

2. We highlight the features and complexities of these models, elucidating recent devel-
opments in the field of DL. This information is valuable for researchers interested in
delving deeper into research and staying abreast of current advancements.

3. We discuss the current limitations and research gaps in the ongoing development
of DL, addressing the challenges posed by these factors in real-world applications.
Furthermore, we provide constructive insights regarding the selection of models and
potential future directions.

4. Given the challenge of high hardware complexity, we introduce model compression
as a potential solution from the DL field. We present existing works that employ this
approach within the optical communication field, aiming to inspire more researchers
to pursue research in this domain.

2. Applications in Short-Reach Systems

After systematically organizing recent literature in the past few years, we have cat-
egorized ML-based research for short-reach optical systems into four classes based on
application tasks: Bandwidth Request and Prediction, Subcarrier Allocation, Equalization,
and Fault Detection. We clarify the physical and mathematical aspects of their respective
tasks, enumerate several recent works, and provide a summary of current advancements.

Bandwidth Request and Prediction: It aims to leverage network information to pre-
dict future bandwidth availability and enable its utilization by related applications. In math-
ematical terms, the real-time bandwidth forecast at a specific time (t) involves estimating
the available bandwidth that will be accessible in the immediate future (t + τ) [22]. One
proposed method, known as predictive-dynamic bandwidth allocation (P-DBA), utilizes
this concept to predict high-priority traffic during waiting periods, resulting in reduced
latency and packet loss rates within a Gigabit PON (GPON) [22]. Another approach demon-
strated in [23] leverages the k-nearest neighbor algorithm to predict additional bandwidth
requirements for each optical network unit (ONU) in a PON. This adaptive learning-based
approach dynamically adjusts the k value based on real-time traffic conditions, showcasing
the adaptability of ML in optimizing bandwidth allocation [23]. Artificial neural networks
(ANNs) have also shown promise in achieving flexible bandwidth allocations across various
application scenarios, particularly emphasizing low-latency objectives [24,25]. For example,
feed-forward-based ANNs, explored in [26], are utilized to predict packet arrivals in time-
division multiple access (TDMA) ONUs, effectively reducing additional DBA processing
delays [26]. Furthermore, Xgboost [27] is employed to predict bandwidth requests for
ONUs in Ethernet PON (EPON), optimizing bandwidth utilization across polling periods.
This study introduced a dynamic wavelength and bandwidth assignment scheme for time
and WDM (TWDM) PONs, incorporating regression techniques for efficient resource allo-
cation [28]. Recent studies show that ML approaches are versatile in addressing challenges
related to predicting and managing bandwidth needs. This paves the way for develop-
ing more adaptive and efficient short-reach optical communication systems in the near
future [22–26,28].
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Subcarrier Allocation: The optimization of bandwidth allocation for enhanced spec-
tral efficiency has led to increased interest in subcarrier allocation for PONs. This approach
involves mathematically formulating the allocation problem as an integer linear program-
ming (ILP) task, which includes tasks such as optimizing wavelength configurations,
assigning subcarriers to transmitters, and minimizing lost traffic and energy costs. To ad-
dress this challenge, deep reinforcement learning has emerged as a promising technique
that enables dynamic subcarrier sharing among ONUs, facilitating efficient DBA. At the
medium access control (MAC) layer, the dynamic subcarrier allocation (DSA) algorithm
schedules ONU upstream transmissions by considering instantaneous bandwidth require-
ments and existing traffic conditions [29]. This showcases the adaptability of ML in resource
scheduling. Several studies focus on algorithm-level cost reduction and two-dimensional
resource scheduling for orthogonal frequency-division multiplexing (OFDM)-PONs in-
cluding [29–31]. These DSA algorithms address challenges related to latency, throughput,
and energy efficiency, highlighting the versatility of ML in enhancing subcarrier allocation
strategies [32]. Moreover, the integration of traffic prediction technology and fair-aware
DSA algorithms, as proposed in [32,33], further enhances the performance of subcarrier
allocation in short-reach optical communication systems. These advancements improve
the efficiency and adaptability of subcarrier allocation by applying ML methodologies [34].

Power Budget Limitations: The electric power budgeting issue is about predicting
future energy consumption using historical data on power usage and related environmental
factors like weather, user behavior, and equipment efficiency. The goal is to forecast
power consumption for upcoming time periods. However, the development of large-scale,
systematic ML models for this task is limited by the lack of publicly available datasets.
Recent research has provided a basic process for constructing the necessary data and has
also presented baseline ML models as a starting point. Specifically, the data construction
process involves compiling and organizing relevant datasets, including time-series power
consumption data, weather information, occupancy patterns, and equipment performance
metrics. This standardized data can then be used to develop and test ML models for power
consumption forecasting. For instance, the recent work in [35] has introduced baseline ML
models that demonstrate the feasibility of using these techniques to predict future power
consumption, despite the constraints posed by the scarcity of publicly accessible datasets.

Equalization: The objective of this task is to minimize fiber-induced distortions by
employing post-processing techniques that compensate for linear effects, such as CD.
Mathematically, the equalizer optimizes the function f (x) to ensure that the equalized
output sequence y closely approximates the input signal. Performance evaluation primarily
relies on the bit-error ratio (BER). In PON systems, using shallow-based DL models for
post-equalizers has shown potential in addressing nonlinear distortions for both IMDD and
coherent signals. This is especially useful in scenarios with modulator nonlinearities or high-
launched optical power to meet tight power budgets [7]. As the fiber-induced nonlinear
effects are increasing in the latter case, in single-channel coherent PONs, this results in
self-phase modulation (SPM). In multi-channel PONs, the increased nonlinear effects
result in cross-phase modulation (XPM) and four-wave mixing (FWM). In IMDD PONs,
low-complexity artificial neural network (ANN)-based equalizers have demonstrated
performance comparable to Volterra-based equalizers in pulse amplitude modulation with
four levels (PAM4) systems [36]. While post-equalization techniques have proven effective,
the computational complexity at the ONU receiver is a challenge. To address this, strategies
for centralized pre-equalization at the transmitter side have been proposed. Examples
include memory polynomial-based pre-equalizers [36] and trained neural-network-based
pre-equalizers [37]. These methods enhance equalization effectiveness while keeping the
ONU receiver simple.

Fault Detection: Short-reach optical communication systems, including PONs, are
susceptible to failures such as fiber cuts, equipment failures, power outages, natural disas-
ters, and ONU transceiver malfunctions [38]. Service disruptions can result in significant
financial losses for service providers. Identifying faulty ONUs presents challenges, espe-
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cially when nearly equidistant branch terminations lead to overlapping reflections, making
it difficult to pinpoint the exact defective branch [38]. Conventional monitoring approaches
become less reliable as PON systems grow in complexity. Recent advancements in ML-
enabled proactive fault monitoring offer promising solutions to ensure stable network
operation. ML-based fault prediction algorithms utilize past network fault data to discover
underlying patterns and similarities. By doing so, these algorithms enhance the detection
of optical network problems and facilitate proactive repairs, thereby preventing potential
issues from occurring. Several research papers propose using ML algorithms for monitor-
ing management in optical networks. Notably, technologies like random forest and ANN
algorithms have been employed to continuously monitor the BER, predict network compo-
nent failures, and assess fault severity [39]. Wang et al. [40] introduced a hybrid approach
combining double exponential smoothing and support vector machines for equipment fail-
ure prediction in software-defined metropolitan area networks. Bayesian-network-based
models have also been developed for diagnosing PON faults [40].

3. DSP for Signal Equalization in Communication Systems

In this section, we provide an overview of conventional signal equalization tech-
niques, ranging from basic zero-forcing equalization to more advanced approaches such as
feed-forward equalizers (FFEs), decision-feedback equalizers (DFEs), Viterbi and Volterra
equalizers, and adaptive equalizers. We discuss the advantages and limitations of these
techniques, comparing the performance of ML models. Table 1 provides the complexity
analysis for each method.

Zero Forcing: It is a linear equalizer (LE) derived by minimizing inter-symbol interfer-
ence (ISI). A study in [41] has established the analytical foundation for optimal zero-forcing
and minimum mean-squared error (MSE) equalization in channels with additive white
noise and specified frequency response. The study demonstrates that an optimal LE can be
implemented as a cascade of filters, with taps spaced at symbol intervals. However, when
the channel effect exhibits deep frequency response “valleys”, equalization will yield poor
performance due to noise enhancement.

Feed-Forward Equalizer: The FFE [42] mitigates ISI in communication channels by
processing the received signal forwardly without feedback. Its simplicity makes it suitable
for systems where feedback is unstable or challenging for implementation.

Decision-Feedback Equalizer: Due to the noise enhancement, the DFE is designed to
reduce ISI by subtracting already-known symbols. In this way, ISI from already detected
symbols is eliminated. Adaptation of the forward and feedback filters of DFEs follow
the same pattern as for LEs [43]. The disadvantage is that it could potentially lead to
accumulated errors from feeding back incorrect detection decisions

Viterbi Equalizer: The Viterbi equalizer seeks to estimate the most likely sequence
of transmitted symbols, given the received sequence. By constructing a trellis diagram
where nodes represent possible transmitted symbols and transitions denote potential
channel transitions, the Viterbi algorithm dynamically optimizes path metrics to identify
the most probable sequence. This process involves state transition probabilities and precise
calculations to mitigate the impact of channel impairments. Mathematically, the Viterbi
equalizer applies the Viterbi algorithm, which belongs to the dynamic programming
algorithm for finding the most likely sequence of hidden states in a hidden Markov model.
The time complexity of the Viterbi equalizer is determined by the Viterbi algorithm, which
depends on the length of the input sequence and the number of states, making it O(T · N2),
where T denotes the length of the sequence and N refers to the number of hidden states [44].

Volterra Equalizer: This is a nonlinear equalizer used in optical communication sys-
tems to compensate for nonlinear distortions introduced by the fiber channel [45]. In PAM4
systems, severe ISI can be introduced due to the imperfect bandwidth of optical and elec-
trical components. The main bandwidth bottleneck in IMDD systems comes from the
transmitter side, as the achievable bandwidth of receiver-side devices is typically twice as
high as the bandwidth of transmitter-side devices. In such scenarios, the Volterra equalizer
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can be effectively employed to address both a potential nonlinearity from the transmitter
and the bandwidth limitations of the optical components. The higher-order Volterra ker-
nels can model the frequency-dependent distortion and nonlinear effects caused by the
limited transmitter bandwidth and nonlinear devices, such as Mach-Zehnder modulators.
The Volterra equalizer is based on the Volterra series expansion, which allows for the model-
ing of nonlinear systems. The key idea is to use a set of nonlinear filters, known as Volterra
kernels, to capture the nonlinear characteristics of the channel. The structure of a Volterra
equalizer consists of multiple stages, each representing a different order of nonlinearity.
The first stage corresponds to the linear equalizer, which performs initial equalization
to address linear distortions. Subsequent stages of the Volterra equalizer capture and
compensate for higher-order nonlinear distortions. These stages involve nonlinear filters
that take multiple past symbols as inputs and produce outputs based on their interaction.
The number of stages and the complexity of the Volterra equalizer depend on the specific
system requirements and the level of nonlinear distortions present. The coefficients of the
Volterra kernels are typically adapted or optimized using algorithms such as the least mean
squares (LMS) or recursive least squares (RLS) algorithms. These algorithms iteratively
adjust the coefficients based on the error between the equalized signal and the desired
signal, aiming to minimize the distortion and improve the overall system performance.

Adaptive Filtering: Adaptive filtering [46] is used in communication systems where
channel characteristics vary over time. The mathematical interpretation involves using
an adaptive algorithm that iteratively modifies the filter parameters to minimize the error
signal between the desired output and the actual output, enabling the filter to adapt to
changing input conditions. The actual convergence time and the total time complexity over
multiple iterations depend on the convergence behavior of the specific algorithm and its
sensitivity to the input data. Assuming t taps, the total time complexity for updating all
coefficients is O(t). FFEs and DFEs are regarded as adaptive filtering versions designed
explicitly for short-reach communications.

Table 1. Complexity analysis for DFE, FFE, LE, Adaptive Filtering, and Viterbi algorithms. t refers to
the number of the taps. N in Viterbi denotes the number of the hidden states.

Models DFE FFE LE Adaptive Filtering Viterbi

Train O(t) O(t) O(t) O(t) O(t · N2)

Inference O(t) O(t) O(t) O(t) O(t · N2)

4. Traditional Sequential ML Methods

With the increasing demand for higher data transmission rates and the limitations of
traditional prediction methods reaching their practical limits in terms of accuracy, the need
for algorithms with high precision, reliability, and low complexity has become urgent.
In this section, we introduce new DL-based models to address this challenge. We overview
relevant research studies, providing a chronological exploration of key sequential models,
namely, recurrent neural networks (RNN), long short-term memory (LSTM), gated recur-
rent unit (GRU), and convolutional neural networks (CNN). The key architectural parts of
DL models are explained, with clear examples showing how they work, how they are used,
and how complex they are.

In 2018, Karanov et al. [47] introduced an end-to-end deep neural network system for
optical communications, encompassing the entire chain of a transmitter, receiver, and chan-
nel model. This research showed that transceiver optimization can be achieved in a
complete, end-to-end way. Owing to the sequential structure of communication systems,
sequential models, including LSTM networks [48], RNNs [49], and GRUs [50] have been
extensively employed. They are considered as baseline algorithms in order to generate
more advanced and efficient algorithms.

RNN: Originally designed for machine translation in natural language processing,
this model is based on the Markov assumption about the hidden state and output sequence:
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the output sequence depends only on the current potential state ht. The potential state
depends on the previous moment’s latent ht−1 and input variables xt−1 rather than on the
historical data x(t−1,...,0), h(t−1,...,0). Renowned for their adaptability in handling variable-
length sequences and preserving state information across elements, these models find
valuable applications in diverse communication fields [3]. In recent work, they have shown
promising results in equalization compared to benchmark methods based on Volterra and
Viterbi equalizers in two-dimensional eight-level PAM (2D-PAM8) links [51].

Despite its great equalization performance, this model suffers from exploding gra-
dient issues caused by the direct gradient flow of multiple layers [52]. In such networks,
the backpropagation of the gradient is performed by accumulating the gradient matrix.
This can cause the gradient to grow exponentially if the eigenvalues of the gradient matrix
are greater than 1, making the training process very difficult to converge. Conversely, when
the eigenvalues of the gradient matrix are less than 1, the gradient will decrease over time
until it vanishes completely, causing the parameters to stop updating [53].

LSTM: The LSTM architecture can assist in overcoming this issue by extending the
hidden state to a cell state, which is built using a gating mechanism. This mechanism
has input, forget, and output gates that help control the flow of information [54]. LSTM
models have additional internal states beyond just the hidden state. This allows them
to learn a weight matrix that can better preserve useful information in the hidden state.
The input gate decides what new information from the current input to be stored in the
cell state. The forget gate decides what memories from the previous cell state to keep
or discard. The output gate controls what information gets passed to the next cell state.
This gating mechanism provides the ability to effectively hold onto relevant details from
long sequences while filtering out irrelevant information. This makes it easier to learn
dependencies between distant parts of the input. As a result, LSTMs have been widely used
in short-range communication tasks that require capturing complex long-term relationships
in the data [55].

GRU: This architecture simplifies the gating mechanism used in LSTM models. It
has an update gate and a reset gate, instead of the three gates in LSTM [56]. The up-
date gate determines what relevant information to retain from the previous state and
the current input. The reset gate controls what data to discard. It is useful in scenarios
where the temporal dependencies and relationships between adjacent symbols in a se-
quence are important. For example, in short-range communication systems, GRUs can
help mitigate signal distortions caused by CD and nonlinearities [57]. Recent research in
120 Gb/s coherent 64-quadrature amplitude-modulated optical systems for transmission
at 375 km has shown that using a bi-directional GRU as a nonlinear equalizer can help
improve the quality factor (Q-factor) beyond the 8.52 dB limit (8.52 dB estimated from
Q = 20 log10(

√
2erfc−1(2BER))) [58], typically required for hard-decision forward error

correction (HD-FEC).
CNN: CNNs are not technically considered sequential models. However, they are

widely used across many different domains. This is because of its important advantages,
such as high parameter efficiency, weight-sharing mechanism, and plug-and-play char-
acteristics [59]. CNNs use a convolutional kernel to scan the input signal in a specific
dimension, capturing temporal features that are important for the task at hand. This
convolutional layer is typically followed by a pooling layer and a nonlinear activation
function. The pooling layer reduces redundancy, while the activation function introduces
nonlinearity. The convolutional kernel is designed to extract features that closely match the
input signal. Afterwards, backpropagation is used to optimize the weights of the network.
This allows the CNN to learn and enhance the features that are most relevant for the target
task. The weights in the network’s weight matrix are updated through backpropagation to
amplify the important features needed for effective performance on the given ML problem.
Furthermore, it has been observed that using multiple layers of small convolutional kernels
is often more efficient than using large kernels. This approach, known as the inception
architecture, was first introduced in the GoogleNet model [60]. Two commonly used blocks
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in CNN are the inception module and the inception reduction module, which extract
temporal dependencies of different scales by employing a concatenation of 1× 1, 3× 3,
and 5× 5 convolutional kernels. In addition, It also uses a special type of convolutional
kernel with a size of 1× 1. This 1× 1 convolution serves a unique purpose: it helps to
reduce the number of feature map channels or dimensions. It is commonly used between
two regular convolution layers or at the output layer of the network.

Summary: In this section, we have introduced the most common building blocks
used in ML models for short-reach optical communication systems. These fundamental
components are still widely used in current approaches. To summarize the complexity
of the models discussed earlier, we have provided a table (Table 2) that outlines the
complexity analysis for each of the models. In this complexity analysis, we have focused
solely on the computation required per batched sample, without considering the choice
of hyperparameters like the number of epochs or batch size. This provides a compact
overview of the computational demands of each model on a per-sample basis.

Table 2. Complexity of DNN, GRU, LSTM, RNN, and CNN. t refers to the number of taps. ns, no, nh,
and d denote input, output, hidden neuron, and depth of the DNN, respectively.

Models DNN GRU LSTM RNN CNN

Train O(d− 1)n2) O((3n2
h + 6nh)ns) O(4n2

h + 7nh)ns O(n2
hns) O(no)

Inference O(d− 1)n2) O((3n2
h + 6nh)ns) O(4n2

h + 7nh)ns O(n2
hns) O(no)

5. Advanced Sequential ML Methods

In Section 4, we introduced traditional sequential models, such as RNN, LSTM, GRU,
and CNN. The key question we aim to answer in this section is how to effectively incorpo-
rate the unique characteristics of time-series data into the modeling process and leverage
the temporal convolution model to mitigate channel distortion. Compared to other DL
models like transformers and Fourier-based neural networks, convolutional models exhibit
better generalization performance. Convolutional models are also more robust to changes
in their parameter values when applied to new datasets, unlike the other models that
require careful parameter initialization and hyperparameter tuning when used on new
data [61].

This section starts with channel modeling, encompassing four distinct noise models.
We derive the characteristics and capabilities required for the algorithm based on these
models. Subsequently, we provide a detailed exposition of the architectures and funda-
mental assumptions underlying three models: Frequency-Calibrated Sampled-Interaction
Neural Network (FC-SCINet) [62], Light Time-Series (LightTS) [63], and DLinear [64].

5.1. Distortion Model

The main limiting factor for the equalization task in a short-reach/PON system is
ISI as a result of CD, sampling error (jitter), frequency shift (chirp), and Kerr-induced
nonlinearity [47]. In this section, we will focus on the effects of CD, jitter, and chirp, as these
are the dominant distortion mechanisms in short-reach PAM-based systems. The impact
of Kerr-nonlinearities is limited in single-channel PONs due to the relatively short fiber
lengths and low optical powers involved.

CD in an optical communication system is caused by different phase velocities with
respect to frequency. It fundamentally constitutes a linear transformation, and its mathe-
matical representation involves a differential equation that considers spatial position and
time, which can be presented as

∂A
∂z

= −j
β2

2
∂2 A
∂t2 (1)
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where A denotes the amplitude of the complex signal; t denotes time; z is the spatial
position along the fiber, where the pulse pattern propagates [47]; and β2 is the dispersion
coefficient. Following the Fourier transformation, we have

D(z, w) = exp(j
β2

2
ω2z) (2)

w is the angular frequency. In the time domain, it is primarily manifested by significant
attenuation in the high-frequency components and rapidly changing components.

Jitter is caused by fluctuations in sampling time. It presents itself as signal distortion,
exhibiting a comparable impact to superimposed interference signals that adhere to the
Gaussian distribution. Timing jitter can be described as

y∗(t) = y(t)
+∞

∑
n=−∞

δ(t− n ∗ tA − τ)

= y(n ∗ tA + τ)

(3)

where τ is the timing sampling error, where the correctly sampled value is y(n ∗ tA). This
sampling error can be quantitively estimated as follows:

|y(n ∗ tA + τ)− y(n ∗ tA)| ≤ M1|τ| (4)

where M1 is the first moment of the band-limited spectrum of Fourier transformation of
original signal Y( f ), can be simply written as:

|∂y(t)
∂t
| ≤

fg

∑
− fg

|2π f ||Y( f )| = M1 (5)

Jitter refers to high-frequency fluctuations in the amplitude of a signal. This high-frequency
perturbation can have a significant impact on neural networks that rely on low-frequency
signals.

In conclusion, the error can be estimated as |y(tn)− y(nτa)| ≤ M1|tn − nτa| = M1|τn|.
The error |en| is bounded by M1 · |τn| for a given n. The value of en depends solely
on τn. Assuming that the timing error τn follows a statistical nature with E{τn} = 0
and E{τ2

n} = σ2
τ , it follows that the amplitude errors en are statistically independent.

Consequently, the error variance is then given by E{e2
n} ≤ M2

1σ2
τ . For more details, please

refer to [65].
Chirp is a signal whose frequency varies with time. Mathematically, it can be described

as follows,
s(t) = a(t) · exp[j(ω0 · t + θ(t))] (6)

The frequency spectrum of this waveform is obtained as

S(ω) =
∫ ∞

−∞
a(t) · exp[j(ω0t + θ(t))] · exp(−jωt) dt (7)

Simplifying further:

S(ω) =
∫ ∞

−∞
a(t) · exp[j{(ω0 −ω)t + θ(t)}] dt (8)

In summary, all types of effects encountered in equalization issues, except for jitter, involve
concurrent alterations in both the time and frequency domains. It is noteworthy that such
changes are not statistically independent. Consequently, no single effect can be eliminated
through straightforward nonlinear operations in a single domain.
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5.2. Temporal Convolution Neural Network

DL-based equalizers fundamentally capture domain-specific nonlinear disturbances by
employing linear transformations and nonlinear activation functions. Within the temporal
CNN, the core modules comprise interval, continuous, and interaction sampling modules,
alongside convolutional neurons and linear layers, as depicted in Figure 1. Each of these
modules offers practical flexibility for hardware implementation, due to their computational
efficiency. Subsequently, we delve into three of the most efficient convolution-based
sampling networks.

Figure 1. The overview of all sampling modules in temporal convolution networks is modified
from [62,63], namely, interval sampling and continuous sampling in LightTS [63], and interactive
sampling in [61,62].

FC-SCINet: This novel approach introduces an improved series decomposition tech-
nique as a spectrum correction module. In conjunction with the interaction sampling
module, it has proven to be a robust tool for mitigating CD and addressing various real-
world channel effects [62].

Decomp: In the case of FC-SCINet, it utilizes a moving averaging filter with kernel size
w1 to extract low-frequency signals from the input. Additionally, high-frequency signals
are obtained by calculating the residuals between the original and low-frequency signals.
The final output signal is generated through a weighted linear combination of these two
components, which is x̂ defined as Equation (9).

x̂ = WT
s xs + WT

f x f (9)

The complexity of this module is O(k), where k is the size of the kernel and is independent
of the input sequence length.

However, as demonstrated in the empirical study in [62], the performance of FC-
SCINet in mitigating CD remains strong. Moreover, the plug-and-play nature, low com-
plexity, and interpretability of FC-SCINet make it highly flexible for seamless integration
with various other algorithms. The DLinear architecture is another impressively low-
complexity yet high-performance design.

SCIBlock: The SCIBlock, is a key component of FC-SCINet, because it can iteratively
decompose a signal into sub-sequences at various scales while incorporating nonlinear
transformations between adjacent layers. In contrast, the decomp block is restricted to
enhancing fixed signal components and is limited to a single scale. From a mathematical
perspective, the SCIBlock applies a hierarchical structure by systematically downsampling
the input sequence into even-positioned and odd-positioned samples, denoted as xeven
and xodd. Following the convolutional layer, the sub-sequences in adjacent layers are itera-
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tively multiplied together utilizing exponential and multiplication operations, as shown in
Equations (10) and (11).

xs
even = xeven � exp(ψ(xodd)), xs

odd = xodd � exp(φ(xeven)) (10)

x′odd = xs
even + exp(η(xs

odd)) x′even = xs
odd − exp(ρ(xs

even)) (11)

Here, � represents an element-wise product, and ψ, φ, η, and ρ are independent 1D con-
volutional layers. The intermediate outputs can be presented as xs

even, xs
odd, x′even, and x′odd.

Upon completion of the processing, the resulting sub-sequences are then reassembled
and aligned back to their original positions within the original signal. Ultimately, all the
sub-series are concatenated based on their original index in the raw sequence, as illus-
trated in Figure 1. To sum up, FC-SCINet is a framework capable of efficiently learning
local-dependent patterns. Its distinctive feature lies in performing interactive learning on
sub-sequences with odd-even positions after odd-even sampling, allowing for a larger
receptive field under the premise of using the same convolutional kernel.

DLinear: As previously mentioned in FC-SCINet, while the concatenation of the
decomp module may not offer optimal equalization, it has exhibited great performance in
real-world datasets. Therefore, we will provide a brief introduction to this module: It first
decomposes a raw data input into a low xs and high-frequency xf signal. xs is extracted
by a moving average kernel. It is equivalent to filtering the signal using a sinc function
in the frequency domain. These two components are added in a linear combination form,
expressed by Ws, W f . The operation above is presented in Equation (12).

xs = AvgPool(x) xf = x− xs x′ = Wsx + W f xf (12)

By iterative decomposition with different kernel sizes, DLinear can be extended to a deeper
network. The complexity is O(kns), where k is the number of the layer, and ns is the length
of the model input. To simplify the complexity, the weight matrix W could be replaced by
the convolutional kernel.

LightTS: Both FC-SCINet and DLinear utilize only convolution and different sampling
modules to capture the local and global dependencies. The LightTS architecture, detailed
in [63], employs a multi-layer perceptron (MLP) structure to enhance predictive abilities.

Sampling: In contrast to SCIBlock, which samples the raw sequence using odd and even
indices, LightTS introduces two generic sampling strategies: Interval Sampling and Contin-
uous Sampling, as shown in Figure 1. Interval sampling partitions time-series data into
non-overlapping sub-sequences based on fixed time intervals, as shown in Figure 1. This
approach helps identify periodic patterns or regularities within the data while minimizing
information loss. On the other hand, continuous sampling divides sequences into corre-
sponding sub-sequences, extracting data points continuously throughout the time series
and preserving temporal continuity. This sampling method enables the capture of patterns
within the period, ensuring a more comprehensive representation of the underlying dynam-
ics. The subsequent section presents an MLP-based architecture to extract useful features
from both the downsampled sub-sequences and continuously sampled sub-sequences.

Information Exchange Block (IEBlock): The IEBlock serves as the central module in
LightTS, designed to effectively process the 2D matrix resulting from continuous sampling
and interval sampling. This block comprises three essential components: (1) temporal
projection, which identifies temporal features following continuous sampling; (2) channel
projection, which captures inter-channel information following interval sampling; and
(3) the exchange block, which integrates the information from the outputs mentioned
above, facilitating information fusion. All of them utilize MLP as the nonlinear behavior
learning module. The design of LightTS is notably concise, employing only two sampling
modules and an MLP. On certain datasets, it surpasses the performance of FC-SCINet [64].

Compared to the models mentioned earlier, the FC-SCINet model requires less struc-
tural adaptation and pre-processing when applied in practical PON applications. The FC-
SCINet has been successful in recent PON-related work [62]. Different from LSTM, which

205



Photonics 2024, 11, 613

offers the advantage of ensuring information flow strictly from past to future, temporal
CNN goes beyond this by modeling the global dependency between input and output,
while also leveraging stacked causal convolution layers. Additionally, the FC-SCINet intro-
duces interaction modeling, enabling the explicit capture of interactions between elements
within a sequence, making it a more advanced alternative to LSTM. In addition to these
benefits, CNNs and SCINet offer several advantages over LSTM:

• CNNs can identify patterns regardless of their position within the input sequence. This
property makes them well-suited for tasks where the position or timing of relevant
features is not fixed, providing greater flexibility compared to LSTM.

• CNNs excel at capturing local patterns and extracting relevant features from the input
sequence. This ability is particularly useful for tasks that require identifying and
recognizing specific patterns or motifs within the data.

• Both CNNs and SCINet architectures typically have fewer parameters compared to
LSTM models. This reduced parameter count can make training and inference more
efficient, especially when working with limited computational resources or when
dealing with large datasets.

Recent Progress: CNNs play a crucial role in current time-series prediction research
and applications. This is due to their high parameter efficiency, model stability, and strong
theoretical foundation (Multiscale Decomposition). The complexity of these convolutional
networks mostly depends on the number of layers and the size of the convolutional
kernels. Nowadays, more advanced designs like dilated convolution and inception are
often combined with other modules to create complex DL models, but they are rarely used
on their own. Even so, temporal CNNs still have a distinct advantage in terms of the
performance-to-complexity ratio. They are also straightforward to implement in hardware.

5.3. Transformer-Based Network

Attention: The scaled dot-product attention mechanism is the key component aiming
to aggregate information across different parts of the input sequence. Each input vector is
transformed into three distinct vectors: Queries (Q), Keys (K), and Values (V). The process
involves calculating the dot products of the queries with all keys, scaling them by the
square root of the dimension, and applying a softmax function to obtain weights on the
values [66].

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (13)

The resulting matrix of outputs is obtained through a weighted sum of the values,
where the weights are determined by the softmax-processed dot products of queries and
keys. This attention module allows the model to focus on relevant parts of the input
sequence, capturing local dependencies during the training process. A residual connection
is applied around the two sub-layers, followed by layer normalization to maintain the
information flow.

Transformers use multiple attention heads to look at the input sequence from different
perspectives. This allows the model to simultaneously learn and consider various views
of the input data. Equations (14) and (15) represent the functionality of the multi-head
attention step. headi represents the single attention head. The final result of the multi-head
attention is concatenating all the attention heads.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (14)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (15)

While the standard (“vanilla”) transformer model has shown great performance on
time-series data, the computational complexity of its attention mechanism makes it strug-
gle to handle long sequences effectively. To overcome this limitation, researchers have

206



Photonics 2024, 11, 613

developed various attention mechanism variants. An example is the locality-sensitive
gashing (LSH) attention mechanism, which was introduced as part of the Reformer archi-
tecture [67]. The LSH attention mechanism utilizes specialized hash functions to transform
queries and keys, thereby facilitating the categorization of similar items into shared hash
buckets. Through sorting tokens based on their hash codes, items with similarities are
grouped together, enabling the aggregation of relevant information. To enable parallel
processing, the sorted sequence is divided into chunks. Subsequently, attention mecha-
nisms are selectively applied to these chunks and their neighboring segments, allowing
for focused examination of localized portions. The LSH attention mechanism uses hash
coding to greatly improve the computational efficiency of the transformer compared to
the original version. This helps address the challenge of processing long sequences by
reducing complexity without sacrificing performance.

Decoder: The decoder consists of several stacked sub-decoders. The ground truth
follows a process similar to that of the encoder, being transformed into Query Q, Key
K, and Value V representations. The attention weights are calculated by comparing the
Queries Q from the decoder with every value V in the encoder. This process is repeated in
parallel across N sub-decoders, resulting in a final attention matrix. The attention matrix
then undergoes a softmax operation, yielding probabilities for each value. In addition to the
two sub-layers in each encoder layer, the decoder introduces a third sub-layer, performing
multi-head attention over the encoder stack’s output.

During the decoding process, the model is auto-regressive, using the previously
generated outputs as additional input to generate the next output. Residual connections
and layer normalization are used around each sub-layer. The self-attention sub-layer is
modified to prevent positions from attending to future positions. This, along with the offset
output embedding, ensures that the predictions for a position only depend on the known
outputs at earlier positions in the sequence.

Attention Variants: The purpose of the attention layer is to identify connections and
dependencies among the various input embeddings. This allows the model to evaluate the
importance of each element in relation to the others. The attention mechanism explicitly
computes the relationships between different elements in the sequence, providing insights
into how information flows through the model. However, except for the computational
complexity issue, the mechanism in the vanilla transformer [66] needs to be improved in
terms of processing inter-dependencies and periodicity of signal data. The Autoformer
model [68] introduces a new type of encoder that replaces the original encoder. This
new encoder applies series decomposition and autocorrelation to detect dependencies
between different parts of the input sequence, and then combines the representations of
the sub-series. The series decomposition component divides the original signal into two
distinct parts: the seasonal component, which captures short-term patterns, and the trend
component, which captures long-term behavior. This partitioning allows for identifying
and representing both the short-term and long-term characteristics present in the time-series
data. Additionally, the auto-correlation mechanism utilizes the fast Fourier transform (FFT)
to compute correlations between the time series and its delayed version, providing insights
into how the series relates to its past values at different time lags. The combination of series
decomposition and autocorrelation effectively captures and represents the underlying trend
and seasonality in the time-series data.

Recent Progress: In this section, we provide a comprehensive overview of the vanilla
transformer and its architecture, particularly within the domain of time series and traffic
prediction. Over the years, substantial improvements have been made to enhance the
transformer for accurate time-series prediction. Notably, advancements have been achieved
in reducing computational complexity while improving the effectiveness of the attention
mechanism [69,70]. However, recent research has introduced compact models based on
multi-scale transformation [71], which surprisingly outperforms benchmark-designed
models. This new development has sparked an important debate on the fundamental
structure of sequence models. In the following sections, we summarize and explore this
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particular model in depth, providing insights into its implications. For the latest work,
please refer to Table 3.

Table 3. Benchmark models.

Models Efficient Techniques Literature

Transformer

Attention

Sparsity inductive
bias

Ref. [69] LogTrans leverages convolutional self-attention for
improved accuracy with O(L(log L)2) lower memory costs.

Low-rank property Ref. [70] Informer selects dominant queries based on queries and
key similarities.

Learned rotate
attention (LRA)

Ref. [72] Quatformer introduces learnable period and phase
information to depict intricate periodical patterns.

Hierarchical
pyramidal attention

Ref. [73] Pyraformer proposed one hierarchial attention
mechanism with a binary tree following the path with linear time
and memory complexity

Frequency attention Ref. [74] FEDformer: proposed the attention operation with
Fourier transform and wavelet transform.

Correlation attention
Ref. [68] Autoformer: the Auto-Correlation mechanism to capture
sub-series similarity based on auto-correlation and seires
decomposition

Cross-dimension
dependency

Ref. [75] Crossformer utilizes multiple attention matrices to
capture cross-dimension dependency

Architecture

triangular patch
attention

Ref. [76] Triformer features a triangular, variable-specific patch
attention with a lightweight and linear complexity

Multi-scale
framework

Ref. [71] Scaleformer iteratively refines a forecasted time series at
multiple scales with shared weights

Positional rncoding

Vallina Position Ref. [66] cos and sin functions with a sampling rate-relevant
period.

Relative positional
encoding

Ref. [77] Introduces an embedding layer that learns embedding
vectors for each position index.

Model-based learned Ref. [69] LogSparse utilize one LSTM to learn relative position
between series tokens

Fourier-NN
Time Domain

Series Decomposition Ref. [64] DLinear performs one linear series decomposition with
multiple layers

Frequency Attention Ref. [78] TimesNet proposes the attention mechanism related to
the amplitude of the signal

Frequency Domain Frequency MLP Ref. [79] FreqMLP performs MLP in frequency domain by
leveraging the global view and energy compaction characteristic

TConv-NN

Sampling

Continous Refs. [63,78] both utilize continous sampling to split original signal
into windowed subseries similar to short time transformation

Interval Ref. [63] Interval sampling with fixed step to extract periodic
feature

Even-
Odd/Multiscale

Ref. [62] proposes one iterative multiscale framework where even
and odd series are interacted between layers

Frequency Continous
Ref. [64] leverages series decomposition module in a iterative
manner to decompose signal in frequency domain with sinc
function.

Negative sampling
Ref. [80] custom loss function is employed in an unsupervised
manner, wherein distant or non-stationary subseries maximize the
loss, while similar subseries minimize the loss.

Feature module

MLP
Ref. [63] applies an MLP-based structure to both interval sampling
and continuous sampling for extracting trend and detail
information.

Dilated convolutions Ref. [81] leverages stacked dilated casual convolutions to handle
spatial-temporal graph data with long-range temporal sequences
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5.4. Fourier Convolution Neural Network

In the previous section, we introduced models based on convolutional kernels and
subsampling as fundamental modules. Their core principle involves decomposing signals
into different scales in the time domain and subsequently applying nonlinear transforma-
tions to learn salient features. However, for the majority of real-world signals, transforming
them into the Fourier domain is often more efficient. This efficiency is attributed to the
following factors: (1) The majority of real-world signals are bandpass or lowpass, and in the
Fourier domain, their dynamic range decreases from n to exp(−n); (2) The Fourier trans-
formation is a bijective (one-to-one) transformation, which ensures energy conservation
and controllable error in both the forward and inverse transformations; (3) The computa-
tional complexity of existing (fast) Fourier transform algorithms, after improvements, is
O(nlog(n)), making it convenient for hardware implementation.

In this section, we introduce TimesNet [78], which utilizes a frequency-attention
mechanism, and FreTS [79], which explicitly performs non-linear transformations in the
frequency domain. For extensive models please refer to Table 3. The fundamental concept
of TimesNet involves transforming the initial signal into k distinct 2D tensors instead of
directly processing the original sequence. This approach empowers the model to effectively
capture both intra-periodic and inter-periodic variations within these fixed windows.
A variant of this model has been recently reported in [82].

TimesNet: An attention mechanism based on spectral amplitude is employed to
determine the significance of signal segments at various frequencies. Simultaneously, across
different temporal resolution scales, a shared convolution module is utilized to reconstruct
nonlinear distortions introduced by the channel. It does not explicitly perform nonlinear
transformations in the frequency domain; instead, it combines reconstructed signals at
different window lengths through a linear combination. The FConvNet primarily comprises
four key blocks: Component Detection, Alignment, ConvNet, and Reconstruction.

Component Detection: The identification of the k most crucial frequencies is based
on the amplitude of the Fourier coefficients. Then, using only the selected components
within the k frequency range, the signal is sampled using a continuous sampling method,
and these sub-series are arranged into a two-dimensional tensor.

Alignment: The aligned sub-series are then fed into a convolution-based module, specif-
ically an Inception network, to mitigate distortion caused by channel effects. The Fourier
coefficients pass through a softmax function to generate attention weights, which are then
multiplied by the output of each convolution module to produce the final output.

Fourier Attention: The Fourier transformation is a global operation, meaning that any
changes in the signal’s amplitude will cause periodic oscillations throughout the entire
signal. Significant variations in the amplitude of the primary components lead to substantial
fluctuations. TimesNet leverages this characteristic by using the Fourier spectrum of the
nonlinearly transformed signal to determine the attention value for each component.

Reconstruction: Finally, employing a residual form, we obtain the reconstructed in-
dividual sub-components multiplied by their respective attention values, denoted as y′,
and add them to the input signal x to yield y.

FreTS: Time-domain-based processing is limited by information bottlenecks, as the
local characteristics vary. FreTS explicitly uses frequency-domain features in its model
architecture to directly mitigate distortion without manipulating the time-domain. FreTS is
essentially an MLP-based network that is able to effectively learn patterns of time-series
data in the frequency domain. As presented in [79], FreTS consists of two learners: a
Frequency Channel Learner and a Frequency Temporal Learner. In the equalization prob-
lem, there is no actual channel dimension, but rather a stack of independent experiments.
Therefore, FreTS only introduces a frequency-domain MLP.

Frequency MLP: The frequency temporal learner aims to capture temporal patterns
in the frequency domain. Specifically, for a complex number input H ∈ Cm×d, the MLP
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aims to optimize the weight matrixW ∈ Cd×d and bias B ∈ Cd so that the final output
Y ∈ Cm×d could approximately reconstruct the ground truth.

Y` = σ(Y`−1W` + B`) (16)

Y0 = H (17)

The MLP in the frequency domain is equivalent to global convolutions in the time domain
as detailed in [79]. An increasing number of studies have demonstrated the feasibility
of DL models operating in the frequency domain. Simultaneously, the corresponding
computational complexity of frequency-domain processing has decreased from O(n) to
O(nlogn) due to the reduction in the signal’s dynamic range. However, the advantages
and disadvantages of networks in both the frequency and time domains remain inade-
quately explored. Due to space limitations, we offer a detailed categorization, along with
corresponding references and keywords, in Table 3 for researchers with specific interests.

6. Model Compression

In recent years, the proliferation of large-scale ML models has significantly advanced
state-of-the-art technology across various domains, ranging from natural language process-
ing to computer vision. The surge in model complexity, often characterized by sophisticated
architectures and many parameters, has driven the need for efficient hardware implementa-
tions to harness their full potential. The advent of single graphics processing units (GPUs)
as a critical computational resource has been pivotal, offering a parallelized architecture
suitable for accelerating the training and inference processes [83]. The significance of
deploying large ML models on a single GPU lies in optimizing computational efficiency
and reducing latency. Single GPU implementations facilitate parallel processing, enabling
the simultaneous execution of multiple tasks and handling extensive model parameters.
This enhances the speed of model training and facilitates real-time inference, a critical
requirement in applications such as autonomous systems and edge computing. How-
ever, the hardware implementation of large ML models on a single GPU is challenging.
The complexity of these models often exceeds the computational capacity and memory
constraints of a single GPU, necessitating innovative solutions for efficient utilization [84].
Techniques such as model pruning, quantization, vector quantization, and knowledge
distillation have emerged as strategies to mitigate these challenges, ensuring that even
formidable models can be accommodated within the limitations of a single GPU without
compromising performance. The authors in [84] examine how to use a single GPU effec-
tively for implementing large ML models. They discuss methods that balance complexity
and computational efficiency to maximize hardware utilization [84].

In addition, conducting a comprehensive performance-versus-complexity analysis is
necessary to evaluate the suitability of various ANNs in short-reach optical communication
systems. DL models, including CNNs, RNNs, and LSTMs, find applications in critical
tasks such as equalization, fault detection, subcarrier allocation, nonlinearity compensation,
and bandwidth request and allocation. The complexity of these models is a significant
factor affecting their feasibility. For instance, CNNs may introduce convolutional and
pooling layers, increasing model complexity. Similarly, RNNs and LSTMs, designed for se-
quential data, introduce recurrent connections that enhance their ability to capture temporal
dependencies and contribute to increased complexity [85]. Analyzing the neural network
architectures in detail, including their depth, the number of parameters, and computational
demands, is crucial for understanding the trade-offs between performance and complexity.
DL models often exhibit enhanced capabilities in capturing complex patterns and relation-
ships in optical communication data. Still, their complexity may pose challenges regarding
training time, computational resources, and practical implementation [86]. A thorough
examination of these complexities is essential for identifying optimal models, such as
choosing between a CNN for image-based tasks or an LSTM for sequential data, that bal-
ance high performance and manageable complexity, facilitating their efficient integration
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into short-reach optical communication systems [85]. Four prominent types, namely, the
feed-forward neural network (FFNN), the radial basis function neural network (RBF-NNs),
the auto-regressive RNN (AR-RNN), and the layer-RNN (L-RNN), offer distinct trade-
offs in complexity and performance. Among nonlinear neural-network-based equalizers
with equivalent numbers of inputs and hidden neurons, FFNN-based equalizers have the
lowest computational complexity; however, AR-RNN demonstrates superior transmission
performance in 50 Gb/s PAM4 systems [87].

Distillation model: Knowledge distillation, a model compression technique, transfers
knowledge from complex, large-scale models or groups to more compact, feasible models
suitable for real-world applications. Pioneered by Bucilua et al. in 2006 [88], knowledge dis-
tillation primarily operates on neural network architectures characterized by multifaceted
structures comprising multiple layers and parameters. Knowledge distillation has been
recently considered an important technique for practical DL applications such as speech
recognition, image recognition, and natural language processing [89]. Deploying large deep
neural network models can be especially challenging for edge devices, which are limited in
memory and computational power. To address this challenge, an innovative model com-
pression method was developed in [89], allowing transferring knowledge from larger, more
complex models to train smaller, more efficient models without significant performance
loss. This process, where a smaller model learns from a larger one, was formalized into
the “Knowledge Distillation” framework by Hinton et al. [90]. This framework has become
crucial for deploying the essential knowledge from sophisticated, large-scale models on
computationally constrained edge devices.

Optimizing DL models through knowledge distillation shows great potential for
advancing short-range optical communication systems. RNNs have been particularly
effective at addressing nonlinear distortions [57,85]. However, the feedback loop inherent
in RNN structures makes it difficult to parallelize them, preventing their use in low-
complexity hardware designed for high-speed processing in optical networks [91]. Using
knowledge distillation is a promising approach to enable parallelization of RNNs [85,92].
This application of knowledge distillation is set to revolutionize the implementation of
RNNs, ensuring compatibility with low-complexity hardware and meeting the stringent
processing requirements of high-speed optical networks [93].

Beyond just RNNs, knowledge distillation can be applied to many different ML
models important for optical communications, such as CNNs, LSTMs, FFNNs, RBF-NNs,
AR-RNNs, and L-RNNs [92]. These models each have their own challenges regarding
complexity, adaptability, and real-time implementation. For example, using knowledge
distillation in LSTMs for optical communication systems, can reduce model complexity
without losing the ability to handle time-dependent patterns [92].

Another promising application of knowledge distillation is when facing challenges
with limited time-series data. As “big data” impacts various fields, the scarcity of target
events or high data acquisition costs can hinder ML in certain scenarios. A proposed
method uses “privileged information” from partial time-series data during training to
enhance long-term predictions for small datasets. Applied to optical communications, this
distillation approach offers a solution to data constraints, demonstrating effectiveness on
both synthetic and real-world data [94].

Vector quantization: Vector quantization (VQ) is a model compression technique
targeting large-scale ML models. VQ represents complex data with a small set of prototype
vectors, significantly cutting the computational load during inference. This makes VQ
useful for applications that require balanced model efficiency and performance, such as
when resources are limited. The VQ process involves partitioning the input space into
regions, each with a representative prototype vector. During encoding, input vectors are
assigned to the nearest prototype, quantizing the data. In the decoding or reconstruction
phase, these prototype vectors are used to rebuild the original data.

The effectiveness of VQ relies on carefully selecting and updating the prototype vec-
tors. The goal is to optimize the prototypes so they can effectively capture the essential
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information in the dataset [95]. By clustering and quantizing input vectors into a repre-
sentative codebook, VQ enables encoding information in a more compact form. This is
particularly beneficial in scenarios with limited data availability or high computational
demands [96]. For example, VQ can be useful when applying knowledge distillation to
RNNs. RNNs face challenges with parallelization due to their feedback loop structure.
Using VQ in the distillation process for RNNs can help address the parallelization issue.
VQ can represent the essential information from the RNN using a smaller set of prototype
vectors [87,97,98]. This compression not only aids in overcoming hardware complexity but
also contributes to faster processing in high-speed optical networks.

VQ uses an iterative process to improve the prototype vectors and enhance their ability
to represent the data. Commonly, algorithms like k-means clustering are used for this.
The prototypes are adjusted to minimize the difference between the original data and the
quantized representation. This iterative refinement allows VQ to adapt to the patterns
and structures in the data. This optimizes the compression capabilities of VQ while still
preserving the critical information needed for training tasks [95].

Finally, VQ can be beneficial in optimizing other DL models, such as CNNs or LSTMs,
by efficiently capturing essential features with a minimal set of representative vectors [99].
Exploring the use of VQ together with these models provides a promising way to improve
the performance and scalability of ML applications in short-reach optical communica-
tion systems.

7. Conclusions

In this survey, we have undertaken a comprehensive examination of powerful machine
learning models that exhibit the potential to achieve robust equalization in cost-sensitive
short-reach optical systems, with a particular focus on PONs. Our objective has been to
explore these models’ capacity to operate efficiently and deliver effective computational
performance. For the first time, we have classified the current models into three distinct
types and conducted an extensive analysis of their core concepts, highlighting their dif-
ferences, similarities, and the underlying insights they provide. Additionally, we have
presented a simplified complexity analysis considering various input sizes. In the final
stages of our survey, we have also investigated the potential of machine learning solutions
in addressing the challenges associated with hardware implementation and complexity. We
firmly believe that this survey will serve as a valuable resource, inspiring future research
endeavors to develop efficient models explicitly tailored for short-reach and PON systems.
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Abstract: Driven by emerging technologies such as the Internet of Things, 4K/8K video applications,
virtual reality, and the metaverse, global internet protocol traffic has experienced an explosive growth
in recent years. The surge in traffic imposes higher requirements for the data rate, spectral efficiency,
cost, and power consumption of optical transceivers in short-reach optical networks, including
data-center interconnects, passive optical networks, and 5G front-haul networks. Recently, a number
of self-coherent detection (SCD) systems have been proposed and gained considerable attention due
to their spectral efficiency and low cost. Compared with coherent detection, the narrow-linewidth
and high-stable local oscillator can be saved at the receiver, significantly reducing the hardware
complexity and cost of optical modules. At the same time, machine learning (ML) algorithms have
demonstrated a remarkable performance in various types of optical communication applications,
including channel equalization, constellation optimization, and optical performance monitoring. ML
can also find its place in SCD systems in these scenarios. In this paper, we provide a comprehensive
review of the recent progress in SCD systems designed for high-speed optical short- to medium-reach
transmission links. We discuss the diverse applications and the future perspectives of ML for these
SCD systems.

Keywords: optical fiber communication; self-coherent detection; machine learning; short-reach
transmission

1. Introduction

With the advent of the 6G era, the Internet of Things, and the metaverse, there has
been an explosive growth in data traffic in recent years, which poses higher requirements
for current optical interconnects in terms of capacity and reliability. Coherent detection
transceivers were introduced in 2006, which have been widely utilized in optical communi-
cation systems spanning thousands of kilometers, such as transoceanic, transcontinental,
and metropolitan networks. In a coherent system, a local oscillator (LO) laser is employed
to linearly map the received optical field into the electrical domain. Linear mapping allows
for the obtainment of the amplitude, phase, and polarization information of the optical
signal and for compensation against a number of transmission impairments, including
fiber chromatic dispersion (CD), nonlinearity, random polarization rotation, and polar-
ization mode dispersion using advanced digital signal processing (DSP) techniques [1–9].
Consequently, coherent detection enables large-capacity and high-spectral-efficiency (SE)
long-haul optical communications.
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On the other hand, short-to-medium distance optical networks mainly encompass data-
center interconnects, passive optical networks, mobile front-haul, and industrial internet.
These networks typically involve a great number of optical connections, making cost
sensitivity a crucial factor for the deployed optical devices [10]. However, the utilization
of LO in coherent detection necessitates temperature control circuits at the receiver to
align with the frequency of the laser at the transmitter. This significantly increases the
manufacturing cost of optical devices and hinders the deployment of coherent transceivers
in cost-sensitive and large-scale short-to-medium distance optical links [11]. Furthermore,
since the LO and the transmitter laser are different, phase noise and frequency offset
estimation need to be performed in DSP, leading to the increased power consumption of
the DSP chips. In contrast, direct detection systems have a natural structural advantage
over coherent detection systems as they do not require a narrow-linewidth and high-stable
LO at the receiver. This eliminates the need for complicated temperature control circuits,
frequency offset estimation, and carrier phase recovery [11]. As a result, the manufacturing
cost of direct detection transceivers is lower, making them promising for short-to-medium
distance optical networks over the past decade.

The intensity modulation and direct detection (IMDD) scheme, as a classic direct
detection system, encodes information directly onto the optical intensity. At the receiver,
the optical intensity is converted into photocurrents through square-law detection using a
single photodetector (PD), achieving the mapping from the optical domain to the electrical
domain. While the IM-DD system is simple and practical, its transmission performance is
limited by power fading caused by fiber CD [12]. The frequency-selective fading limits its
applications for high data rates or long-distance transmission [12].

To address the issue of power fading, researchers have proposed to use vestigial
sideband (VSB) modulation systems. One approach is to utilize an optical filter to eliminate
one of the sidebands of the real-valued double-sideband (DSB) signal [13], reducing the
influence of the fiber CD. While VSB modulation enhances the system’s resistance to
CD, it also introduces nonlinear impairments due to the presence of an incompletely
suppressed sideband. As a result, single-sideband (SSB) modulation systems without
vestigial components have been developed as an alternative [14–17], which can be achieved
using IQ modulators or optical frequency shifters. To further improve the electrical SE
and transmission capacity beyond the SSB systems, single-polarization phase retrieval
(PR) receiver [18–21], carrier-assisted differential detection (CADD) receiver [10,22,23], and
asymmetric self-coherent detection (ASCD) receiver [24] have been proposed to achieve
linear detection of complex-valued DSB signals, effectively doubling the electrical SE with
respect to SSB and IM-DD systems. Additionally, polarization-division-multiplexing can
double the capacity and SE of single-polarization direct detection systems. However, the
random birefringence of the fiber leads to polarization rotation, resulting in polarization
fading [25–30] in direct detection systems with a co-propagating optical carrier. In order
to deal with this effect, Stokes-vector receiver (SVR) [25] and Jones-space field recovery
(JSFR) [30] schemes have been proposed. SVR performs polarization rotation in Stokes
space, allowing for up to three-dimensional real-valued modulation. The JSFR scheme,
however, first recovers the optical field and then performs polarization rotation in Jones
space, enabling four-dimensional modulation including the amplitude and phase of two
polarizations [30]. The above-mentioned schemes in which the optical carrier and the
signal are transmitted together, allowing for phase- or polarization-diversity, are commonly
known as self-coherent detection (SCD) systems. SCD systems recover the optical field
in the receiver DSP, allowing compensation for the CD similar to coherent detection. The
power fading effect induced by the traditional IMDD channel will no longer be a problem
in SCD systems.

Although SCD has numerous advantages, there are still several issues in SCD sys-
tems that need to be addressed, such as signal-to-signal beating interference (SSBI) and
optical field reconstruction. In the past decade, machine learning (ML) technology has
rapidly advanced, and its applications have spread across various fields, including image
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recognition [31], natural language processing [32], medical diagnosis [33], and optical fiber
communications [34–78]. ML techniques often achieve a higher accuracy or lower complex-
ity compared to traditional approaches in many scenarios. In optical fiber communications,
ML has been extensively studied and has shown a promising performance in optical
performance monitoring [34,35], modulation format recognition [36,37], channel equaliza-
tion [38–72], and constellation shaping [73,74]. In this paper, we provide a comprehensive
overview of the application of ML techniques in SCD communication systems, with a
particular focus on their applications in nonlinear impairment compensation, IQ imbalance
correction, PR, polarization demultiplexing, and optical signal processing. In Chapter 2,
we provide a brief introduction to the principles and challenges of various self-coherent
systems. In Chapter 3, we provide extensive applications, as well as a detailed analysis of
the performance of ML techniques in SCD systems. Finally, in Chapter 4, we summarize
the findings and provide an outlook on the future development of ML technology in SCD
systems. All the abbreviations used in this paper are listed in Appendix A.

2. SCD Systems
2.1. VSB System

To mitigate the impact of CD-induced power fading impairment, a VSB system is
proposed, employing a simple receiver configuration as depicted in Figure 1a. This receiver
setup requires only a single PD and an analog-to-digital converter (ADC). The modulated
optical spectrum of the VSB signal is shown in Figure 1b. The most commonly-used method
in VSB systems is to employ an optical filter to remove unwanted spectral components in
the optical domain. By selectively filtering out specific frequency components, the spectral
shape of the VSB signal can be modified [13], allowing for effective suppression of the
vestigial sideband. In addition to optical filters, VSB modulation can also be achieved
through dual-drive Mach–Zehnder modulators (MZMs) and radio frequency delays. In
the VSB system, the dominant impairment originates from the unfiltered residual spectral
components, which can be expressed as in [21]:

E(t) = C + Ss(t) + Sr(t) (1)

|E(t)|2 = |C|2 + C∗(Ss(t) + Sr(t)) + C(Ss(t) + Sr(t))
∗ + |Ss(t) + Sr(t)|2 (2)

where C, Ss(t), and Sr(t) denote the co-propagating optical carrier, the desired SSB signal,
and the residual sideband signal, respectively. The superscript * denotes conjugate oper-
ation. After square-law detection as shown in Equation (2), the mirror image of residual
components can cause nonlinear distortion to the signal, which can be compensated for by
using nonlinear equalizers such as neural networks (NNs).

Figure 1. (a) Receiver structure for VSB and SSB systems. (b) Optical spectrum of a VSB signal.
(c) Optical spectrum of an SSB signal.

2.2. SSB System

To suppress the residual signal Sr(t) and nonlinear impairment, an SSB system is
proposed based on the Hilbert transformation and IQ electrical-to-optical modulator [14,15].
The Hilbert transformation enables us to remove the unwanted sideband, generating a
complex-valued electrical signal which drives the IQ modulator to convert into an optical
signal, as shown in Figure 1c. The receiver structure of the SSB system is the same as the
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VSB system. After optical-to-electronic conversion, the dominant distortion is called SSBI,
denoted by |Ss(t)|2. For the SSB system, the received signal can be expressed as in [21]:

|E(t)|2 = |C|2 + C∗Ss(t) + CSs(t)
∗ + |Ss(t)|2 (3)

Fortunately, for the SSB signal, the impact of SSBI can be mitigated by employing
phase recovery algorithms based on the minimum phase condition [79–81] or deep learning
techniques. These methods help in recovering the phase information lost in optical-to-
electronic conversion and enable the compensation of CD in the DSP, avoiding the impact
of power fading.

2.3. PR Receiver

Although the resistance to CD is improved in VSB and SSB systems, the electrical
SE of these systems is the same as the IM-DD system, defined as the achieved date rate
divided by the electrical bandwidth of the receiver. To increase the SE, a PR receiver [18–21]
is proposed to detect a complex-valued DSB signal, as shown in Figure 2a. The PR receiver
consists of two PDs and one dispersive element, as shown in Figure 2b. The two detected
photocurrents i1(t) and i2(t) are expressed as [82]

i1(t) = |C + Sd(t)|2, i2(t) = |(C + Sd(t))⊗ hD(t)|2, (4)

where Sd(t) and hD(t) are the DSB signal and the transfer function of the dispersive element.
Using a fully-connected convolutional NN (CNN), or other nonlinear equalization algo-
rithms, the optical field could be reconstructed in the receiver DSP [83,84]. Note that the PR
receivers also enable to recover the phase of optical SSB signal, which will be introduced in
Section 3.3.

Figure 2. (a) Optical spectrum of a complex-valued DSB signal. (b) Phase retrieval receiver. D is the
dispersive element. (c) Receiver of the CADD scheme.

2.4. CADD

Another kind of receiver used to detect a complex-valued DSB signal is the CADD
receiver [10]. The receiver structure is shown in Figure 2c, consisting of one optical hybrid,
one PD, and two balanced photodetectors (BPDs), which is more complex than the PR
receiver. However, it can achieve a higher modulation bandwidth and electrical SE than
the PR receiver. In the receiver DSP, certain SSBI iterative cancellation algorithms and deep
NNs are also used for optical field reconstruction [10,85]. With the help of ML techniques,
the channel parameters such as the optical delay values and the carrier-to-signal power
ratio (CSPR) can be optimized accurately to achieve a better system performance than the
SSBI iterative cancellation algorithm.

2.5. SVR

The direct detection system has been pursuing polarization division multiplexing
because it can double its capacity and SE. However, for the optical field where the signal
and carrier are transmitted together, the optical signal suffers from polarization fading after
passing through a polarization beam splitter (PBS). Polarization fading can result in the
failure of optical field recovery on random X- or Y-polarization, making it hard to achieve
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polarization demultiplexing using multi-input multi-output (MIMO) equalization. Thus,
the famous SVR [25] was proposed to combat polarization fading in Stokes space. The
receiver structure is shown in Figure 3a, where three received Stokes vectors S1, S2, and
S3 are used to address the polarization rotation. The transmitted Stokes vectors could be
recovered using S1, S2, and S3 and a de-rotation matrix. Thus, the polarization diversity of
the DD system is successfully accomplished.

Figure 3. (a) Stokes-vector receiver. PBS: polarization beam splitter; BPD: balanced photodetectors.
(b) Receiver structure of JSFR scheme. GR: generalized receiver, which could be a PD, PR receiver,
CADD receiver, or ASCD receiver.

2.6. JSFR

Although the polarization fading issue is solved, at most three modulation dimensions
are supported in the real-valued three-dimensional Stokes space. Great efforts are made to
exploit the fourth modulation dimension, but these fail to compensate for CD. More recently,
the JSFR scheme was proposed to realize polarization diversity for a direct detection system
with a co-propagating optical carrier, as shown in Figure 3b. It utilizes the optical coupler
to mix the two polarizations to eliminate the impact of the polarization fading effect.
The generalized receiver (GR) in this scheme can be implemented using one PD, PR
receiver, CADD, and ASCD, according to different modulation formats. Using JSFR, the
amplitudes and phases of both X- and Y-polarizations can be recovered, which provides
the potential of realizing high-SE and large-capacity optical interconnects for short-reach
optical networks. For these polarization-diverse SCD systems, ML can be used to handle the
coupling between the polarization modes, namely polarization tracking and polarization
mode demultiplexing [82,85].

3. ML Techniques in SCD System

In this section, we will introduce the applications of ML techniques in SCD systems in-
cluding nonlinearity compensation [86,87], IQ imbalance correction [88], PR in SSB [89–91],
optical field recovery in PR receiver [83,84] and CADD schemes [82,92], and polarization
tracking and demultiplexing in JSFR schemes [85]. In addition, the transfer learning [93–95]
technique has been employed to realize fast remodeling in SSB system, which could be
scalable to other DD systems. Finally, we briefly introduce the photonics neuromorphic
computing [96] used in SCD systems to extract the phase information and demodulate the
quadrature amplitude modulation (QAM) formats.

3.1. Nonlinear Compensation
3.1.1. Fiber Nonlinearity

In optical communication, the electrical field evolution of light in a single-mode fiber
can be described by the well-known nonlinear Schrödinger equation (NLSE) [1], which
takes the following form:

∂A
∂z

+
iβ2

2
∂2 A
∂t2 = −α

2
A + iγ|A|2 A, (5)

where z, α, β2, and γ are, respectively, the propagation distance, the loss coefficient, the
group-velocity dispersion (or second-order dispersion) coefficient, and the fiber nonlinear
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Kerr coefficient. The NLSE is a nonlinear partial differential equation that does not have
an analytical solution, and the nonlinear parameter γ describes the effects of self-phase
modulation and cross-phase modulation. In the case of SCD systems, the transmitted
optical field has a strong optical carrier, making it more susceptible to fiber nonlinear
impairments. It is widely known that NNs have powerful nonlinear fitting capabilities.
Therefore, researchers have proposed the use of NNs to compensate for fiber nonlinearity,
including various types of NNs such as artificial neural networks (ANNs) [86], long
short-term memory networks (LSTMs) [87], and others, showing a better performance
compared to traditional digital back-propagation and perturbation algorithms. LSTMs
are a specific type of recurrent NN (RNN) model designed to mitigate the vanishing
gradient problem commonly encountered in traditional RNNs. LSTMs have proven to
be effective tools for mitigating transmission impairments, including both linear and
nonlinear distortions, making them valuable for various applications in signal processing
and communication systems. In [87], a linear network-assisted LSTM is proposed to
mitigate the fiber nonlinearity in the wavelength-division-multiplexing (WDM) SSB system.
Figure 4 depicts the architecture of a linear network-assisted LSTM.

Figure 4. Conceptual illustration of a linear network-assisted LSTM.

The output ŷ can be expressed as [87]:

ŷ = WLX + WNLBi− LSTM(XNL) + bNL, (6)

where X, XNL, WL, WNL, Bi-LSTM, and bNL are, respectively, the linear input vector,
nonlinear vector, the weight matrix for the fully-connected layer of the linear module, the
weight matrix for the nonlinear module, the one-layer Bi-LSTM network operations, and
the bias vector of the nonlinear modules. Compared to conventional Bi-LSTM, the linear
network-assisted LSTM achieves a significant improvement in terms of the Q-factor while
also significantly reducing computation complexity.

3.1.2. Device Nonlinearity

Apart from the fiber nonlinearity, another nonlinear impairment comes from the
electro-optic modulation. When the dual-drive MZM or IQ modulator is used for complex-
valued QAM formats, the modulation nonlinearity will be enhanced with an increase in
the peak-to-peak voltage. Figure 5a shows the bias point of the MZM and the modulation
nonlinearity induced by the function of sin(·). Additionally, other device nonlinearity such
as the responsibility curve of PD also deteriorates the system performance. In scenarios
involving multiple nonlinear impairments, traditional methods face challenges in accurately
estimating the channel parameters and compensating for the mixed nonlinear effects.
However, ML demonstrates its excellent capability for parameter optimization in such
complex channels. In [86], a sparsely connected ANN is proposed to address the fiber
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nonlinearity and modulation nonlinearity. The principle of ANN pruning is shown in
Figure 5b. A weight threshold is set, and connections with weights below this threshold
are pruned, thereby reducing the complexity of the NN. The pruned sparsely connected
ANN is shown in Figure 5c. By implementing this method, the number of connections in
the ANN is reduced by an order of magnitude, while maintaining the bit-error-rate (BER)
performance without significant degradation.

Figure 5. (a) Transfer function of MZM. (b) Principle for ANN pruning. (c) Sparsely connected ANN.

3.1.3. SSBI Cancellation

Unlike coherent detection, the direct detection system does not utilize LO and BPD to
cancel the common-mode component inside the photocurrent, known as SSBI. Therefore,
for direct detection systems, SSBI generated by the PD becomes the primary impairment
limiting the system’s transmission capacity. As observed from the fourth term in Equation (3),
SSBI takes the form of a quadratic term of the original signal. The spectra of the signal
and its SSBI are depicted in Figure 6a, illustrating that the bandwidth of SSBI is twice
that of the original signal in the electrical domain. Consequently, SSBI distorts the signal,
degrading system performance. Certain methods have been proposed to handle SSBI in
direct detection systems such as the Volterra nonlinear equalization and SSBI iterative
mitigation methods. Additionally, ML methods such as NNs can also play a significant
role in SSBI cancellation. Compared to traditional algorithms, an NN-based equalizer
offers tremendous improvements in SSBI elimination, improving the performance of the
transmission system. In [81], a soft-combined ANN was proposed and its structure is
shown in Figure 6b. The output of the soft-combined ANN is an average of the outputs
of all of the ANNs. The results reveal that the soft-combined ANN exhibits a superior
performance compared to a single ANN in compensating for both linear and nonlinear
SSBI impairments in the signal. Remarkably, this improved performance is achieved while
maintaining the same symbol length of the required training sequence.

Figure 6. (a) Electrical spectra of a typical direct detection signal and its SSBI. (b) Structure of a
soft-combined ANN.

3.2. IQ Imbalance Correction

For complex QAM modulation, IQ imbalance and crosstalk can lead to an incorrect
signal decision resulting in a degraded BER performance. Therefore, in classical DSP steps,
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IQ orthogonalization algorithms are commonly used for compensation. In optical commu-
nication systems where both nonlinear impairments and IQ imbalance exist, the traditional
DSP algorithms used for compensation can be replaced by a MIMO-ANN. The joint com-
pensation approach, which addresses both types of impairments simultaneously, generally
yields superior results compared to using separate compensation for each impairment
individually. In [88], a MIMO-ANN is proposed to compensate for the fiber nonlinearity,
SSBI, and IQ imbalance simultaneously. Figure 7 displays its structure, consisting of two
ANNs. The in-phase and quadrature components, XI and XQ, and their delay copies are fed
into these two ANNs. YI and YQ are the outputs of the MIMO-ANN. In order to minimize
the cost function, the back-propagation algorithm is employed to update the weights and
biases of layers. After the training processes, the optimized ANNs are used to equalize
the received data. The experimental results confirm the outstanding performance of the
MIMO-ANN scheme in mitigating interference between two orthogonal signals.

Figure 7. Block diagram of the MIMO-ANN.

3.3. PR and Optical Field Recovery

In a DD system, the phase information of the optical signal is lost during envelope
detection by the PD while the intensity information is retained in the photocurrent. To
recover the phase information, the Kramers–Kronig (KK) receiver algorithm was proposed
for DD in 2016 [79], which relies on the minimum phase condition. If the SSB signal satisfies
the minimum phase condition, the phase can be extracted from the intensity informa-
tion using a Hilbert transformation. To successfully apply the KK receiver algorithm, a
high CSPR is required. However, achieving a high CSPR comes with certain challenges.
It introduces an additional sensitivity penalty and increases the impact of nonlinear fiber
propagation effects. These factors need to be carefully considered when implementing the
KK receiver algorithm in DD systems. To alleviate the CSPR requirement, a supervised
learning CNN model was proposed in [89,90] to emulate the KK algorithm for the PR
task. The architecture of the NN model is illustrated in Figure 8a. The input of the NN
is the received photocurrent, namely |E(t)|2 in Equation (2). The down-sampling blocks,
labeled as Di (i = 1, 2, 3), consist of a convolutional layer followed by the Rectified Linear Unit
(ReLU) activation function. The up-sampling blocks, labeled as Ui (i = 1, 2, 3), incorporate a
combination of convolutional layers, transposed convolutional layers, and ReLU activation
functions. In this NN model, the target outputs are selected as the in-phase and quadrature
components, rather than the amplitude and phase. Through simulations, it has been demon-
strated that the ML-based PR scheme accurately reconstructs the phase of a modulation
phase signal even at weak carrier power levels. This ML-based approach relaxes the CSPR
requirement and improves the receiver sensitivity compared to the original KK algorithm.
Overall, the proposed NN model provides a promising solution for PR, leveraging the
power of deep learning techniques to enhance the performance of SCD systems.
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Figure 8. (a) Temporal CNN architecture with a detailed view of the down-sampling (D) and up-
sampling (U) blocks. Conv/TConv 1D: 1D convolutional/transposed convolutional layer. (b) NN
architecture for phase retrieval receiver.

In addition to constructing SSB signals that do not satisfy the minimum phase condi-
tion, PR receivers and their corresponding algorithms can be utilized to restore the phase
of the optical field. It can be applied to phase recovery of SSB signals or complex-valued
DSB signals. Gerchberg–Saxton algorithm is most commonly employed for PR [18–21],
but it requires multiple iterations to converge. For SSB signals, the received two optical
photocurrents (i1(t) and i2(t)) can be fed as inputs to an NN [91], as shown in Figure 8b. This
NN consists of eight convolutional blocks aimed at down-sampling and up-sampling. The
outputs of the NN are the real and imaginary parts of the optical field. By implementing this
NN to achieve PR, the required dispersion value of the dispersive element is significantly
decreased and the computational complexity is also reduced by 30%. Most importantly,
the SSB signal no longer requires a strong optical carrier to satisfy the minimum phase
condition. With the same Erbium-doped fiber amplifier launch power, it is possible to
increase the number of WDM channels and reduce nonlinear fiber impairments, which
potentially provides a larger capacity.

On the other hand, the optical and electrical SE could be improved if the PR receiver is
utilized to detect the complex-valued DSB optical signal. The deep-learning-enabled direct
detection scheme [83,84] was proposed to recover the optical field at a low CSPR, which is
shown in Figure 9. Similarly, the inputs are two samples of photocurrents. The NN based
on deep residual learning blocks consists of two convolutional layers and several residual
modules. Its output is the desired phase information of the optical field. Residual learning
is a technique that introduces shortcut connections into the traditional CNN structure,
providing benefits in terms of training speed and network performance. The deep residual
network architecture is built around stacked residual blocks, with each block consisting of
two convolutional layers and a shortcut connection. The shortcut connections enable the
direct propagation of information from one layer to another, bypassing intermediate layers.
The integration of shortcut connections and stacked residual blocks improves the training
efficiency and enables the effective learning of deep CNN models. This architecture has
been proven highly effective in various computer vision tasks, enabling the construction
of deeper networks without the issues of vanishing or exploding gradients. In [83], the
residual learning technique is applied to accurately recover the transmitted signal in the
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presence of a large SSBI under the low CSPR condition. Compared with the conventional
SSBI cancellation scheme, the deep-learning-enabled DD receiver shows a significant
reduction of 8 dB in the optimum CSPR when detecting a complex-valued DSB signal.

Figure 9. Time-domain data channels in the deep CNN.

3.4. Polarization Demultiplexing

For polarization-multiplexed optical communication systems, random birefringence
in optical fibers can lead to random coupling between polarization modes. Therefore, at
the receiver end, DSP algorithms are required to accomplish polarization demultiplexing.
Additionally, the coupling of polarization states varies over time, necessitating algorithms
with the ability to track polarization changes. In the phase- and polarization-diverse JSFR
scheme, a MIMO-NN was proposed [81,85] to simultaneously achieve linear optical field
recovery, polarization demultiplexing, and non-linear SSBI mitigation. The receiver struc-
ture, along with the MIMO-NN, is depicted in Figure 10. The MIMO-NN consists of four
layers and takes the six digital waveforms as inputs. It first extracts the in-phase and
quadrature components of the dual-polarization optical field. Then, the MIMO-NN per-
forms polarization mode demultiplexing by utilizing the inverse matrix of the polarization
rotation unitary matrix. This integrated scheme enables the reconstruction of the optical
field, the demultiplexing of the polarization modes, and the mitigation of nonlinear SSBI
effects. By harnessing the capabilities of the MIMO-NN, the receiver achieves the detection
of four-dimensional modulated signals, encompassing the amplitudes and phases of both
polarizations. This advanced technique significantly enhances the SE of the DD system,
approaching the performance levels of coherent detection systems.

Figure 10. Receiver of the JSFR scheme concatenated with a four-layer NN used for polarization
demultiplexing. PBS: polarization beam splitter; OC: 3 × 3 optical coupler; D: dispersive element;
PD: photodetector.

3.5. Fast Remodeling

Transfer learning (TL) refers to the process of leveraging knowledge and experience
gained from previous tasks to improve performance on new target tasks. In TL, the
source task and the target task may not be consistent, meaning that they may differ
in terms of data distribution, input/output spaces, or even objectives. In optical fiber
communications, to reduce the number of training symbols and epochs, TL has been
introduced and proven to enable fast remodeling [93,94], nonlinear equalization, and
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optical signal-to-noise ratio estimation [95]. In [93], a TL-assisted ANN was proposed for
a multi-channel nonlinearity mitigation scheme in an SSB system. In the case of multi-
channel transmission where multiple channels co-propagate in the same fiber, there exists a
correlation of nonlinear distortion. This means that the nonlinear effects introduced by one
channel can impact the other channels. Understanding and accounting for this correlation is
crucial in designing and optimizing multi-channel transmission systems. By considering the
correlation of nonlinear distortion, more accurate modeling and compensation techniques
can be developed to mitigate the impact of nonlinearities and improve the overall system
performance.

The principle of TL-ANN for multiple channels is shown in Figure 11. At the initial
stage, an ANN is trained using labeled training data that have been collected. Once the
initial training is complete, the prior distribution of parameters from the trained source
model is transferred to accelerate the remodeling process. This parameter transfer avoids
the need for re-initialization in the retraining method. By leveraging the learned knowledge
from the source model, the remodeling process can be accelerated and potentially achieve a
better performance. Subsequently, a few samples are used to train the parameters of the TL-
ANN so that it can converge and accurately compensate for the impairments in the current
channel. The experimental results show that the required training epochs can be reduced by
80% without BER performance degradation, saving considerable computational complexity.

Figure 11. Schematic diagram of TL-assisted nonlinear compensation in a multichannel scheme.

3.6. Optical Signal Processing

Photonic NNs, also known as optical NNs, are a class of NNs that utilize the principles
of photonics to perform signal processing in the optical domain. Instead of relying on
traditional electronic components, these networks employ optical elements for computation
and communication. One specific implementation of photonic NNs is photonic reservoir
computing (RC), which is an ML framework that utilizes a fixed, random dynamical
system called the reservoir to process data. In the case of a photonic RC, the reservoir
is implemented using photonic components and principles. In [96], a recurrent optical
spectrum slicing (ROSS) neuromorphic accelerator was proposed to realize an SCD receiver.
This network aimed to extract phase information and demodulate QAM formats while
simultaneously mitigating CD. The structure of the neuromorphic receiver based on ROSS
is illustrated in Figure 12.
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Figure 12. The neuromorphic receiver based on ROSS concatenated with a light RNN. SOA: semicon-
ductor optical amplifier; TIA: transimpedance amplifier; ADC: analog-to-digital converter. Three
recurrent nodes comprised from an MZDI in a loop equipped with a variable optical attenuator,
phase shifters, and optical delays.

At the receiver side, a semiconductor optical amplifier compensates for the transmis-
sion and insertion losses of the integrated chip. The structure includes three recurrent
nodes, each consisting of a Mach–Zehnder delay interferometer (MZDI) in a loop equipped
with variable optical attenuators, phase shifters, and optical delays. PDs follow these nodes
and are then connected to transimpedance amplifiers and ADCs. The subsequent DSP
includes a light-based RNN for each quadrature. This configuration enables the extrac-
tion of phase information, demodulation of QAM formats, and effective mitigation of CD
using the photonic components and principles employed in the ROSS structure. The pho-
tonic RC contributes to reducing the power consumption associated with high-bandwidth
PDs/ADCs and heavy digital equalization algorithms.

4. Conclusions

This paper introduced the challenges and advancements in SCD systems and reviewed
the application of ML techniques in addressing these challenges. The utilization of ML
algorithms has exhibited promising results in compensating for various impairments such
as fiber nonlinearity, IQ imbalance, SSBI, PR, polarization demultiplexing, and fast channel
remodeling. CNNs, LSTMs, sparsely connected ANNs, and MIMO-NNs have been suc-
cessfully employed to achieve accurate nonlinear impairment compensation and efficient
signal processing. Furthermore, transfer learning has been utilized to reduce training time
and improve modeling in multi-channel scenarios, while the residual learning method
combined with a CNN has been proven effective for optical field recovery. Additionally,
the emergence of photonic NNs, such as photonic reservoir computing, harnesses the
advantages of photonics for information processing in SCD systems. The integration of
ML techniques into SCD systems has resulted in significant enhancements in modulation
dimensions, SE, transmission performance, and capacity. Integrating machine learning
into direct detection systems may also raise costs due to specialized hardware needs for
efficient computation. The actual impact varies with the technology advancements and
performance benefits gained. However, further research is necessary to optimize ML mod-
els, explore novel network architectures, and address practical implementation challenges
to fully leverage the potential of ML in SCD systems. In the context of SCD systems,
machine-learning techniques are increasingly favored for tasks such as optical field recov-
ery or phase retrieval: tasks that traditional nonlinear equalization algorithms struggle
to achieve. Regarding challenges linked to applying ML in SCD systems, these involve
concerns about computational complexity and hardware requirements, especially for ASIC
chips. Consequently, it is essential to focus future endeavors on exploring and resolving
the intricacies of ML algorithms to facilitate their practical implementation.

In summary, the combination of SCD systems and ML techniques holds tremendous
promise for enabling high-capacity, cost-effective, and reliable optical communication
networks in the 6G era and beyond. The advancements in ML algorithms offer new avenues
for overcoming the challenges and improving the overall performance of SCD systems.
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Appendix A

Table A1. This table gives the abbreviations and their definitions used in the paper.

Abbreviation Definition Abbreviation Definition

LO Local oscillator CD Chromatic dispersion

DSP Digital signal processing IM-DD Intensity modulation and
direct detection

SE Spectral efficiency PD Photodetector
VSB Vestigial sideband DSB Double-sideband
PR Phase retrieval SSB Single-sideband

CADD Carrier-assisted differential
detection ASCD Asymmetric self-coherent

detection
SVR Stokes-vector receiver JSFR Jones-space field recovery

SCD Self-coherent detection SSBI Signal-to-signal
beating interference

ML Machine learning ADC Analog-to-digital converter
MZM Mach–Zehnder modulator NN Neural network

CNN Convolutional neural
network BPD Balanced photodetector

CSPR Carrier-to-signal power ratio PBS Polarization beam splitter
MIMO Multi-input multi-output GR Generalized receiver

QAM Quadrature amplitude
modulation NLSE Nonlinear Schrödinger

equation

ANN Artificial neural network LSTM Long short-term
memory network

RNN Recurrent neural network WDM Wavelength-division-
multiplexing

BER Bit-error-rate KK Kramers–Kronig
ReLU Rectified Linear Unit TL Transfer learning

RC Reservoir computing ROSS Recurrent optical
spectrum slicing

MZDI Mach–Zehnder delay
interferometer
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