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Discounted Risk-Sensitive Optimal Control of Switching
Diffusions: Viscosity Solution and Numerical Approximation
Xianggang Lu and Lin Sun *

School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510006, China;
luxg@gdut.edu.cn
* Correspondence: yssl12@gdut.edu.cn

Abstract: This work considers the infinite horizon discounted risk-sensitive optimal control problem
for the switching diffusions with a compact control space and controlled through the drift; thus, the
the generator of the switching diffusions also depends on the controls. Note that the running cost of
interest can be unbounded, so a decent estimation on the value function is obtained, under suitable
conditions. To solve such a risk-sensitive optimal control problem, we adopt the viscosity solution
methods and propose a numerical approximation scheme. We can verify that the value function of
the optimal control problem solves the optimality equation as the unique viscosity solution. The
optimality equation is also called the Hamilton–Jacobi–Bellman (HJB) equation, which is a second-
order partial differential equation (PDE). Since, the explicit solutions to such PDEs are usually difficult
to obtain, the finite difference approximation scheme is derived to approximate the value function.
As a byproduct, the ε-optimal control of finite difference type is also obtained.

Keywords: risk-sensitive control; controlled switching diffusions; HJB equation

MSC: 93E20; 49L20; 49M25

1. Introduction

The past few decades have witnessed the emergence and development of optimal
control problems with risk-sensitive criteria. The reason why risk-sensitive criteria are often
desirable is that they can capture the effects of higher-order moments of the running costs
in addition to their expectations. To the best of our knowledge, refs. [1,2] are the earliest
works concerned with risk-sensitive optimal control problems. Since then, there has been a
lot of research on risk-sensitive optimal control problems. For the discrete time controlled
Markov chains, the risk-sensitive criteria have been studied in [3,4]; for the continuous
time Markov chains with risk-sensitive criteria see [5–8] and the reference therein; for
piecewise deterministic Markov decision processes see [9] and the reference therein; for the
controlled diffusions with risk-sensitive criteria, we refer the readers to [10–13]. Besides the
theoretical improvement, it has also has found applications in Q-learning [14], finance [15],
insurance [16], missile guidance [17], and many other applications.

As to controlled switching diffusion, it has been paid much attention in theory and
application in recent years. The state of such process consists of a continuous part and
a discrete part at the same time. Usually, the discrete part of the state is modelled by a
continuous time Markov chain with finite states. So much effort has been spent to learn
more about the properties of the processes, for instance [18,19] and the reference therein.
Much of the study originated from applications arising in manufacturing systems [20,21],
filtering [22], and financial engineering [23]. For more general theory on such hybrid
systems, we refer the readers to [24,25]. While [24] concerns the case when the generator
of the continuous time Markov chain is independent of the continuous part of the state,
and [25] studies the case when the generator of the continuous time Markov chain depends
on the continuous part of the state. Such models can be widely used in many practical
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applications. For example, [26] applies the switching diffusions to the ecosystems and let
the discrete part of the state represent the random environment. Within the framework of
financial applications, the discrete part of the state is usually used to capture the market
environment, say bull or bear, see [27].

However, to the best of our knowledge, there is little literature on controlled switching
diffusions with risk-sensitive criteria. The risk-sensitive optimal control problem to the
controlled switching diffusions is of interest and such an issue has not received so much
attention, which motivates us to consider such topics. In this work, we are going to
study the infinite horizon discounted risk-sensitive optimal control problem based on
the controlled switching diffusions. To be specific, we work on the process (X(t), α(t))
with X(t) being the continuous part of the state and α(t) being the discrete part, which is
governed by (1) and (2). Based on the controlled switching diffusion (X(t), α(t)) defined
above, we are going to minimize

J(θ, x, α, u(·)) = 1
θ

log
{

E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), u(t))dt

)]}
,

with θ ∈ (0, 1] being the risk factor and ρ > 0 being the discount factor. Define the value
function as follows,

V(θ, x, α) = inf
u(·)

J(θ, x, α, u(·)).

Our aim is to find the optimal control u∗(·) such that V(θ, x, α) = J(θ, x, α, u∗(·)). Since the
logarithm function is increasing, to simplify the calculation, we only need to minimize the
following functional

I(θ, x, α, u(·)) = E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), u(t))dt

)]
,

The corresponding value function is

W(θ, x, α) = inf
u(·)

I(θ, x, α, u(·)).

Similarly, if there exists a control u∗(·) such that W(θ, x, α) = I(θ, x, α, u∗(·)), we call it
optimal. It is easy to know that if u∗(·) such that W(θ, x, α) = I(θ, x, α, u∗(·)), then we can
also obtain V(θ, x, α) = J(θ, x, α, u∗(·)), and vice versa. Therefore, it is sufficient to work
on the optimization problem with exponential utility.

To solve such problem, similar to the risk neutral case, see [20,27], we should find
suitable characterizations to the value function W(θ, x, α) and the optimal control u∗(·).
Due to the dynamic program principle, such characterizations are usually given via the
associated optimality equation, or the HJB equation. Thus we formally derive the associated
HJB equation and rigorously prove that the value function W(θ, x, α) of the optimization
problem solves the associated HJB equation as the unique viscosity solution. We will see
that such equation is a second-order partial differential equation. The viscosity solution is
one of the commonly used weak solutions for this kind of equation; we recommend [27–29]
and the reference therein for readers who are not familiar with the concept of viscosity
solutions. In particular, the development of viscosity solutions is briefly introduced in
reference [28].

As is well known, explicit solutions to such HJB equations are usually difficult to
obtain, so we turn to study the numerical solutions. Finite difference approximation scheme
is a tool of commonly used. Moreover, associated with the viscosity solution method, we
can also give the convergence analysis to the finite difference approximation scheme. As a
byproduct, through the convergence analysis of the approximation scheme we can obtain
the ε-optimal control of finite difference type.

This work has the following contributions: (a) We propose a suitable condition to
give a decent estimation on the value function of concerned with unbounded running cost.
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Unlike in [10], we do not need the near-monotonicity condition as the structural assumption
on the running cost function. Further, compared with the assumptions adopted in [10],
under our assumption we can also drop the requirement that the coefficients of the systems
should be bounded. (b) We construct an appropriate truncation function to reduce the proof
of the global comparison theorem to the local case. To be specific, the difficulty of verifying
the uniqueness of viscosity solution is to prove the corresponding comparison theorem,
and the large obstacle of proving the corresponding comparison theorem is to construct
the corresponding truncation function. (c) We construct a finite difference approximation
scheme to approach the value function, and as a byproduct, we can obtain the existence of
ε-optimal control of finite difference type. This kind of idea can be extended to treat the
optimal control of controlled (switching) diffusions with other criteria.

The rest of the work is organized as follows: In Section 2, we introduce the mathemati-
cal background and arise the optimization problem. In Section 3, we derive the associated
HJB equation and show that the value function to the optimization problem solves the
associated HJB equation as the unique viscosity solution. In Section 4, we construct the
finite difference approximation scheme and give its convergence analysis, as a byproduct,
we also show the existence of ε-optimal control of finite difference type.

2. The Model

In this work, the underlying process (X(t), α(t)) is defined on the complete filtered
probability space (Ω,F , {Ft}t≥0, P) and governed by the following system,

dX(t) = b(X(t), α(t), u(t))dt + σ(X(t), α(t))dB(t), (X(0), α(0)) = (x, α), (1)

P(α(t + δ) = j|α(t) = i, X(s), α(s), s ≤ t) = qij(X(t), u(t))δ + o(δ), i 6= j, (2)

with δ > 0 arbitrarily small. (X(t), α(t)) ∈ Rr ×M, withM = {1, 2, · · · , m} be a finite
set. b(·, ·, ·) : Rr ×M×U→ Rr and σ(·, ·) : Rr ×M→ Rr×r are drift term and diffusion
term, respectively. Q(x, u) = (qij(x, u)) ∈ Rm×m is the generator of the process of Markov
regime switching. The control process {u(t)}t≥0 is taking value in U, which is a given
compact metric space. B(t) is a standard Brownian motion.

Remark 1. The probability space (Ω,F , {Ft}t≥0, P) mentioned above is constructed in the fol-
lowing way. Firstly, for fixed x ∈ Rr, define

p(t, x, y) = (2πt)−r/2 exp
{
−|x− y|2

2t

}
,

for y ∈ Rr, t > 0. If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, define a measure νt1,...,tk on Rrk by

νt1,...,tk (F1 × · · · × Fk)
=

∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk,

where Fi, i = 1, 2, · · · , k, are members of B(Rr), the Borel σ-field of Rr. Additionally, we use
the convention that p(0, x, y)dy = δx(y). Then by verifying that νt1,...,tk satisfies the consistent
properties and the Kolmogorov’s extension theorem (see [30] (p. 11, Theorem 2.1.5) and the reference
therein), there exists a probability space (ΩB,F B, PB) and a stochastic process {B(t)}t≥0 on ΩB

such that
PB(B(t1) ∈ F1, · · · , B(tk) ∈ Fk) = νt1,··· ,tk (F1 × · · · × Fk).

In fact, {B(t)}t≥0 is a standard Brownian motion.
Moreover, Let λ be the Lebesgue measure on (R+ ×R,B(R+ ×R)) such that λ(dt× dz) =

dt×m(dz), where m is the Lebesgue measure on R. For arbitrary A ∈ B(R+×R) and λ(A) < ∞,
let

pA(n) = e−λ(A) [λ(A)]n

n!
, n = 0, 1, 2, · · · .

3
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If λ(A) = ∞, then let
pA(∞) = 1.

It is easy to know that pA is a probability measure on Z̄+ = Z+ ∪ {∞}. Moreover, for each k ∈
Z+/{0}, Ai ∈ B(R+ ×R), and λ(Ai) < ∞, (i = 1, 2, · · · , k) and ij ∈ Z̄+, (j = 1, 2, · · · , k),
define the following finite dimensional distribution on (Z̄+)k

pA1,··· ,Ak (i1, · · · , ik) = Πk
n=1 pAn(in).

Then by verifying the above finite dimensional distribution admits several consistent properties, the
existence theorem of Poisson random measure (see in [31] [Chapter 11]) ensures that there exists a
probability space (Ωp,Fp, Pp) and a process of Poisson random measure p(dt, dz) defined on Ωp

with intensity dt×m(dz), where m(dz) denotes the Lebesgue measure on R, such that, for each
k ∈ Z+/{0}, Ai ∈ B(R+ ×R) and λ(Ai) < ∞, for i = 1, 2, · · · , k,

Pp(p(Aj) = ij, j = 1, 2, · · · , k) = pA1,··· ,Ak (i1, · · · , ik).

Then by letting (Ω,F , P) := (ΩB×Ωp,F B×Fp, PB× Pp) andFt = σ{B(s), p(E, F), (E, F) ∈
B([0, s))×B(R), 0 ≤ s ≤ t}, we have actually constructed the complete filtered probability space
(Ω,F , {Ft}t≥0, P). Throughout the work, we assume that the Poisson random measure p(dt, dz)
is independent of the Brownian motion B(·).

In order to get convenient compactness property, we introduce the notion of relaxed
control. Let Π = {π(t) ∈ P(U), t ≥ 0}, with P(U) being the space of all probability
measures defined on the control space U. In particular, u(t) is equivalent to δu(t), with δ
be the Dirac measure, for each t ≥ 0. To proceed, we also need the following definition of
admissible control.

Definition 1. We say that a relaxed control π ∈ Π is admissible if π(t) is Ft-adapted measurable
and the σ-fields Fπ

t and F B,p
[t,∞)

are independent, with Fπ
t = σ{π(s), s ≤ t} and F B,p

[t,∞)
=

σ{B(s)− B(t), p(E, F), E ∈ B([s, ∞)), F ∈ B(R), s ≥ t}.

Denote by ΠA the collecton of all admissible controls. Furthermore, if π(t) =
ϕ(X(t), α(t)) for a measurable function ϕ : Rr ×M → P(U), the admissible control
π = {π(t), t ≥ 0} is called a stationary Markov control. We use ΠRM to represent the
family of all stationary Markov controls. Moreover, we call u(·) or π(·) = δu(·) the non-
randomized stationary Markov control, if u(t) = φ(X(t), α(t))and φ : Rr ×M → U is
measurable for all t ≥ 0. Denote all such controls by ΠDM. Obviously, ΠDM ⊂ ΠRM ⊂
ΠA ⊂ Π.

In order to guarantee that the system (1) and (2) admits a unique solution, we need
the following assumption.

Assumption 1.

(i) Q(x, u) = (qij(x, u)) ∈ Rm×m with qij(x, u) ≥ 0(i 6= j), for all (x, u) ∈ Rr × U, and
∑m

j=1 qij(x, u) = 0 for all i ∈ M. Additionally, qij(x, u) is bounded continuous function for
all i, j ∈ M

(ii) The drift term b(·, ·, ·) and the diffusion term σ(·, ·) are continuous functions. Moreover, both
of them are Lipschitz continuous in their first component, uniformly for all α ∈ M and u ∈ U,
with Lipschitz constant k0 > 0.

(iii) The system is non-degenerate, i.e., σσT ≥ k1 I for suitable constant k1 > 0, where I ∈ Rr×r

represents the identity matrix.

Associated with the assumptions above, we can get the following conclusion.

4
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Theorem 1. Suppose that the Assumption 1 holds, then the system (1) and (2) admits an unique
strong solution (X(·), α(·)) for a given control π ∈ ΠRM, which is a Feller process and the
associated operator is given by

Lπ f (x, α) =
∫

U
Lu f (x, α)π(du|x, α), π ∈ ΠRM

where

Lu f (x, α) =
r

∑
l=1

bl(x, α, u)
∂ f (x, α)

∂xl
+

1
2

r

∑
l,k=1

alk(x, α)
∂2 f (x, α)

∂xl∂xk
+

m

∑
j=1

qαj(x, u) f (x, j), (3)

with a(x, α) = σ(x, α)σT(x, α) ∈ Rr×r and f ∈ C2,0(Rr ×M), which is the space consisting
of all real-valued functions, which are twice continuously differentiable with respect to x and
continuous with respect to α.

Proof 1. As well known, the Markov regime switching process α(·) can be represented by
the stochastic integral with respect to the forementioned Poisson random measure p(dt, dz)
as given is Remark 1. Then for π = {π(t), t ≥ 0} ∈ ΠRM, (1) and (2) have the following
equivalent form

dX(t) = b(X(t), α(t), π(t))dt + σ(X(t), α(t))dB(t),

dα(t) =
∫

R
h(X(t), α(t−), π(t), z)p(dt, dz), (4)

with initial state (X(0), α(0)) = (x, α). For more details, we refer the readers to [25,32],
[Chapter 2] and the reference therein. Thus the result follows by ([20] Theorem 2.1).

The Risk-Sensitive Criterion

Now, we are going to introduce the risk-sensitive criterion. For θ ∈ (0, 1] and ρ > 0,
define

J(θ, x, α, π) =
1
θ

log
{

E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]}
,

where c(x, α, π(·)) :=
∫
U c(x, α, u)π(du|x, α) for all control π ∈ ΠRM, θ is the risk-sensitive

parameter and ρ is the given discount factor. We are going to minimize J(θ, x, α, π) over
ΠRM. Let the value function be defined as follows,

V(θ, x, α) := inf
π∈ΠRM

J(θ, x, α, π).

The aim is to find a suitable control π∗ ∈ ΠRM such that V(θ, x, α) = J(θ, x, α, π∗), we call
such π∗ the optimal control. As mentioned in the introduction, to simplify the calculation,
we need to work with the following auxiliary functional

I(θ, x, α, π) = E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]
,

The corresponding value function is

W(θ, x, α) = inf
π∈ΠRM

I(θ, x, α, π).

Since the logarithm function is an increasing function, thus the optimal control to the
auxiliary problem is also optimal to the original risk-sensitive problem. Henceforth, we
only need to work with W(θ, x, α).

To proceed we need the following assumption to ensure that the value function W is
well defined, which means that it admits a certain property of boundness.

5
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Assumption 2. Suppose that the following conditions hold.

(i) The running cost function c(x, α, u) is continuous in (x, α, u), and supπ |c(x, α, π(·))| ≤
M0ω(x, α), for suitable M0 > 0, where ω : Rr ×M → R+ is a given positive function
and twice continuously differentiable in x ∈ Rr for each α ∈ M, and ω(x, α) ≥ 1, for all
(x, α) ∈ Rr ×M.

(ii) There have two constants A, Ã > 0 such that ρ > A > 0 and

Luω(x, α) +
1
2

r

∑
l,k=1

al,k(x, α)
∂ω(x, α)

∂xl

∂ω(x, α)

∂xk
≤ Aω(x, α) + Ã.

(iii) And assume that

E
{

exp
[

1
2

∫ ∞

0

(
e−As∂ω(X(s), α(s))σ(X(s), α(s))

)2
ds
]}

< ∞, (5)

with (∂ω(x, α)σ(x, α))k = ∑r
l=1

∂ω(x,α)
∂xl

σlk(x, α).

Henceforth, we denote ∂ω(x, α)σ(x, α) or its suitable variants ∂ω(X(s), α(s))σ(X(s), α(s))
by ∂ωσ, for simplicity.

Remark 2. Since the function ω can be unbounded, thus c(x, α, u) can also be unbounded. Unlike
in [10], we do not need the structural assumption on the running cost function, which is known as
near-monotonicity, and we also do not assume the cofficients of the diffusion to be bounded.

Under the assumption above, we can show that the value functions are well defined.
In fact, we can obtain the following conclusion.

Proposition 1. Under the Assumption 2, we have

W(θ, x, α) ≤ M1 exp{M2ω(x, α)},

with M1 = exp
{

M0

ρ− A

}
and M2 = 2 max

{
M0

ρ− A
,

M0 Ã
ρ(ρ− A)

}
.

Proof 2. Let f (t, x, α) = e−Atω(x, α), then by using the Itô’s formula we have

e−Atω(X(t), α(t))

= ω(x, α) +
∫ t

0
e−As[Luω(X(s), α(s))− Aω(X(s), α(s))]ds +

∫ t

0
e−As∂ω · σdB(s)

= ω(x, α) +
∫ t

0
e−As[Luω(X(s), α(s))− Aω(X(s), α(s))]ds +

1
2

∫ t

0

(
e−As∂ω · σ

)2
ds

+
∫ t

0
e−As∂ω · σdB(s)− 1

2

∫ t

0

(
e−As∂ω · σ

)2
ds

≤ ω(x, α) +
∫ t

0
e−As Ãds +

∫ t

0
e−As∂ω · σdB(s)− 1

2

∫ t

0

(
e−As∂ω · σ

)2
ds

(6)
Thus

ω(X(t), α(t)) ≤ eAtω(x, α) +
Ã
A
(eAt − 1) + eAtZt (7)

with

Zt =
∫ t

0
e−As∂ω · σdB(s)− 1

2

∫ t

0

(
e−As∂ω · σ

)2
ds (8)

6
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In addition, we have

E
{

exp
[

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

]}

≤ E
{

exp
[

θ
∫ ∞

0
e−ρt|c(X(t), α(t), π(·))|dt

]}

≤ E
{

exp
[∫ ∞

0
e−ρt M0ω(X(t), α(t))dt

]}
(by Assumption 2(i) and θ ≤ 1)

≤ E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtω(x, α) +

Ã
A
(eAt − 1)

)
dt
]}

×E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtZt

)
dt
]}

.

(9)

Furthermore, note that ρ > A, by direct calculation, we can derive that

E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtω(x, α) +

Ã
A
(eAt − 1)

)
dt
]}

=
M0

ρ− A
ω(x, α) +

M0 Ã
ρ(ρ− A)

≤ M2ω(x, α) (by ω(x, α) ≥ 1),

with M2 := 2 max
{

M0

ρ− A
,

M0 Ã
ρ(ρ− A)

}
.

Moreover, by letting ν(dt) := (ρ− A)e−(ρ−A)tdt, and noting that it is a probability
measure on [0, ∞), we can derive that

E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtZt

)
dt
]}

= E
{

exp
[∫ ∞

0

M0

ρ− A
Ztν(dt)

]}

≤ E
{∫ ∞

0
exp

[
M0

ρ− A
Zt

]
ν(dt)

}

=
∫ ∞

0
exp

[
M0

ρ− A

]
E[eZt ]ν(dt).

By the condition (5), we can derive that Zt is an exponential martingale and

E[eZt ] = E[eZ0 ] = 1.

Thus we have

E
{

exp
[∫ ∞

0
e−ρt M0

(
eAtZt

)
dt
]}

= exp
[

M0

ρ− A

]
=: M1.

Therefore, we can conclude that

W(θ, x, α) ≤ M1 exp{M2ω(x, α)},

for all θ ∈ (0, 1], with M1 = exp
[

M0

ρ− A

]
and M2 = 2 max

{
M0

ρ− A
,

M0 Ã
ρ(ρ− A)

}
. We are

done.

Let ω̃(x, α) = exp{M2ω(x, α)}. Now, we can introduce the ω̃-norm and the definition
of ω̃ bounded. A function ψ : (0, 1]×Rr ×M→ R, is called ω̃-bounded if

‖ψ‖ω̃ := sup
(θ,x,α)∈Rr×M

|ψ(θ, x, α)|
ω̃(x, α)

< ∞.

7
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Then, we can see that W is a member of Bω̃((0, 1] × Rr ×M), the collection of all ω̃-
bounded real valued functions defined on (0, 1]×Rr ×M, which is a Banach space. Thus,
the value function W is well defined. For simplicity, henceforth, let Q0 := (0, 1]×Rr ×M,
then Bω̃((0, 1]×Rr ×M) can be simply denoted by Bω̃(Q0).

To proceed, we need to illustrate that the set of models which satisfy Assumptions 1
and 2 is nonempty. We show this fact by giving a representative example.

Example 1. For simplicity, we consider the one-dimensional Ornstein–Uhlenbeck type process
with regime switching. Let (X(t), α(t)) ∈ R×M, withM = {1, 2}, and

dX(t) = (µ(α(t)) + u(t))X(t)dt + σ(α(t))dB(t) (10)

Q(x, u) =
(

q11(x, u) −q11(x, u)
−q22(x, u) q22(x, u)

)
(11)

with qii < 0, |qii| < ∞, i = 1, 2 and U = [0, U0], and consider the functional

I(θ, x, α, π(·)) = E
[

exp
(

θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]
,

with c(x, α, u) = x + α + u, and ρ > µM +U0, with σM = max{σ(1), σ(2)}, µM = max{µ(1),
µ(2)}.

It is obvious to know that Assumption 1 holds and by taking ω(x, α) = x + α + 1,
it is easy to verify that Assumption 2 (i) and (ii) also hold with A = µM + U0 < ρ,
Ã = max{|q11|, |q22|} and M0 = max{U0, 1}. Now it remains to verify that Assumption 2
(iii) also holds. In fact,

E
{

exp
[

1
2

∫ ∞

0

(
e−As∂ω(X(s), α(s))σ(X(s), α(s))

)2
ds
]}

= E
{

exp
[

1
2

∫ ∞

0
(e−2Asσ(α(s))2ds

]}

≤ exp
[

1
2

∫ ∞

0
e−2Asσ2

Mds
]

= exp

[
σ2

M
4A

]
< ∞.

Therefore, Assumption 2 (iii) has been verified.
To conclude this section, now we formally derive the HJB equation for W. For any

T > 0 and given Markov control π ∈ ΠRM, it is easy to know that

W(θ, x, α)
= inf

π∈ΠRM
I(θ, x, α, π)

= inf
π∈ΠRM

E
[

exp
(

θ
∫ T

0
e−ρtc(X(t), α(t), π(·))dt + θ

∫ ∞

T
e−ρtc(X(t), α(t), π(·))dt

)]

= inf
π∈ΠRM

E
{

exp
(

θ
∫ T

0
e−ρtc(X(t), α(t), π(·))dt

)

×E(X(T),α(T))

[
exp

(
θe−ρT

∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt

)]}
.

Thus, formally we have

W(θ, x, α) = inf
π∈ΠRM

E
{

exp
(

θ
∫ T

0
e−ρtc(X(t), α(t), π(·))dt

)
W(θe−ρT , X(T), α(T))

}
, (12)

8
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then by using Itô’s formula for exp
(

θ
∫ T

0 e−ρtc(X(t), α(t), π(·))dt
)

W(θe−ρT , X(T), α(T)),
and letting T approach 0, we obtain

−θρ
∂W(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)W(θ, x, α) + LuW(θ, x, α)} = 0. (13)

Remark 3. In fact, (12) is the direct consequence of the multiplicative dynamic programming
principle, whose proof can be find in [12] and the reference therein.

Later in this work, we will show that the value function W is the unique viscosity
solution to the associated HJB equation and construct a decent approximation scheme to
such equation. As a byproduct, we can also obtain the existence of the ε-optimal control of
finite difference type.

3. The Main Results
3.1. The Optimality Equation And Viscosity Property

One of the main result of this work is to verify that W is the unique viscosity solution
of the following optimality equation, also called the HJB equation:

−θρ
∂φ(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)φ(θ, x, α) + Luφ(θ, x, α)} = 0. (14)

Before giving the definition of viscosity solution, we introduce two notations, C(Q0) the set
of all continuous real-valued functions onQ0, and C1,2,0(Q0) the collection of all real-valued
functions on Q0, which are continuously differentiable, twice continuously differentiable
and continuous with respect to its corresponding components.

Definition 2.

(i) If w(θ, x, α) ∈ C(Q0)
⋂

Bω̃(Q0) such that

−θρ
∂ψ(θ0, x0, α0)

∂θ
+ inf

u∈U
{θc(θ0, x0, α0)ψ(θ0, x0, α0) + Luψ(θ0, x0, α0)} ≥ 0,

at every (θ0, x0, α0) ∈ Q0 which is a maximum of w− ψ, with w(θ0, x0, α0) = ψ(θ0, x0, α0),
whenever ψ(θ, x, α) ∈ C1,2,0(Q0) and limt→∞ ψ(θe−ρt, x, α) = 1, then we say that w is a
viscosity subsolution of (14) on Q0.

(ii) If w(θ, x, α) ∈ C(Q0)
⋂

Bω̃(Q0) such that

−θρ
∂ψ(θ0, x0, α0)

∂θ
+ inf

u∈U
{θc(θ0, x0, α0)ψ(θ0, x0, α0) + Luψ(θ0, x0, α0)} ≤ 0,

at every (θ0, x0, α0) ∈ Q0 which is a minimum of w− ψ, with w(θ0, x0, α0) = ψ(θ0, x0, α0),
whenever ψ(θ, x, α) ∈ C1,2,0(Q0) and limt→∞ ψ(θe−ρt, x, α) = 1, then we say that w is a
viscosity supsolution of (14) on Q0.

(iii) We say that w is a viscosity solution of (14) on Q0 if it is both a viscosity subsolution and a
viscosity supsolution of (14).

In order to show that W(θ, x, α) is the unique viscosity solution to the corresponding
HJB equation, we define the following operator on C(Q0)

⋂
Bω̃(Q0),

Ttφ(θ, x, α) = min
π∈ΠRM

Eπ
(x,α)

{
exp

(
θ
∫ t

0
e−ρsc(X(s), α(s), π(s))ds

)
φ(θe−ρt, X(t), α(t))

}
,

where Eπ
(x,α)[ f (X(t), α(t))] = E[ f (X(t), α(t))] for every bounded function f on Q0, with

Eπ
(x,α) be the expectation operator with respect to Pπ

(x,α), the probability law deduced by

9
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(X(t), α(t)), the process corresponding to control π and initial state (x, α). E is the expecta-
tion operator with respect to the given probability measure P.

To proceed, we first need to verify that the operator has the following properties. Set

H(θ, x, α, ψ, Dθψ, Dxψ, D2
xψ) = −θρ

∂ψ(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)ψ(θ, x, α) + Luψ(θ, x, α)}.

Lemma 1. If Assumptions 1 and 2 hold, then we have the following conclusions:

(i) T0φ(θ, x, α) = φ(θ, x, α), for all φ ∈ C(Q0)
⋂

Bω̃(Q0);
(ii) Ttφ(θ, x, α) ≤ Ttψ(θ, x, α), if φ ≤ ψ, with φ, ψ ∈ C(Q0)

⋂
Bω̃(Q0);

(iii) and for each ψ(θ, x, α) ∈ C1,2,0(Q0)
⋂

Bω̃(Q0), we have

lim
r↓0

1
r
(Trψ(θ, x, α)− ψ(θ, x, α)) = H(θ, x, α, ψ, Dθψ, Dxψ, D2

xψ).

Proof 3. The conclusions (i) and (ii) are obvious by the definition. Now, the verification of
conclusion (iii) remains. For fixed u ∈ U, let π(·) = δu(·), thus by definition, it is easy to
obtain that

1
r
(Trψ(θ, x, α)− ψ(θ, x, α))

≤ 1
r

{
Eu
(x,α)

[
exp

(
θ
∫ r

0
e−ρsc(X(s), α(s), u)ds

)
ψ(θe−ρr, X(r), α(r))

]
− ψ(θ, x, α)

}
.

Let f (r, X(r), α(r)) := exp
(
θ
∫ r

0 e−ρsc(X(s), α(s), u)ds
)
ψ(θe−ρr, X(r), α(r)), by Itô’s formula,

we have

E[ f (r, X(r), α(r))]− f (0, x, α)

= E
{ ∫ r

0

[
∂

∂s
f (s, X(s), α(s)) + Lu f (s, X(s), u)

]
ds
}

= E
{ ∫ r

0
exp

(
θ
∫ s

0
e−ρtc(X(t), α(t), u)dt

)[
θ(−ρ)e−ρs ∂

∂θ
ψ(θe−ρs, X(s), α(s))

+ψ(θe−ρs, X(s), α(s))θe−ρsc(X(s), α(s), u)

+Luψ(θe−ρs, X(s), α(s))
]

ds
}

.

Thus, we have

lim
r↓0

1
r
(Trψ(θ, x, α)− ψ(θ, x, α))

≤ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α).

Moreover, we have

lim
r↓0

1
r
(Trψ(θ, x, α)− ψ(θ, x, α))

≤ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + min

u∈U
{ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α)}.

On the other hand, let {rn} be a sequence of positive numbers, such that rn < rm for n > m
and limn→∞ rn = 0. Obviously, for given rn, we have a control πn(·) := πrn(·) ∈ ΠRM
such that

Trn ψ(θ, x, α) + (rn)
2

≥ E
{

exp
(

θ
∫ rn

0
e−ρsc(Xn(s), αn(s), πn(s))ds

)
ψ(θe−ρrn , Xn(rn), αn(rn))

}
,

10
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with (Xn(·), αn(·)), n ≥ 1 be the process corresponding to the control πn(·) and initial state
(x, α).

Let πn(0) ≡ δu for all n ≥ 1, with u arbitrarily taken from U and assume that {πn(·)}
convergents to π := π∞ ∈ ΠRM, with π∞(0) = δu. Then we can derive that

1
rn
(Trn ψ(θ, x, α)− ψ(θ, x, α))

≥ 1
rn

{
E
{

exp
(

θ
∫ rn

0
e−ρsc(Xn(s), αn(s), πn(s))ds

)
ψ(θe−ρrn , Xn(rn), αn(rn))

}

−ψ(θ, x, α)

}
− rn.

By Itô’s formula, we have

E
{

exp
(

θ
∫ rn

0
e−ρsc(Xn(s), αn(s), πn(s))ds

)
ψ(θe−ρrn , Xn(rn), αn(rn))

}
− ψ(θ, x, α)

= E
{ ∫ rn

0
exp

(
θ
∫ s

0
e−ρtc(Xn(t), αn(t), πn(t))dt

)[
θ(−ρ)e−ρs ∂

∂θ
ψ(θe−ρs, Xn(s), αn(s))

+ψ(θe−ρs, Xn(s), αn(s))θe−ρsc(Xn(s), αn(s), πn(s))

+Lπn ψ(θe−ρs, Xn(s), αn(s))
]

ds
}

.

Since ψ ∈ C1,2,0(Q0)
⋂

Bω̃(Q0), and the fact that rn > 0 small enough, there exists a
ξn ∈ [0, rn] such that

lim
n→∞

1
rn

E
{ ∫ rn

0
exp

(
θ
∫ s

0
e−ρtc(Xn(t), αn(t), πn(t))dt

)

[
θ(−ρ)e−ρs ∂

∂θ
ψ(θe−ρs, Xn(s), αn(s)) + ψ(θe−ρs, Xn(s), αn(s))θe−ρsc(Xn(s), αn(s), πn(s))

+Lπn ψ(θe−ρs, Xn(s), αn(s))
]

ds
}

= lim
n→∞

E
{

exp
(

θ
∫ ξn

0
e−ρtc(Xn(ξn), αn(ξn), πn(ξn))dt

)

[
θ(−ρ)e−ρξn

∂

∂θ
ψ(θe−ρξn , Xn(ξn), αn(ξn))

+ψ(θe−ρξn , Xn(ξn), αn(ξn))θe−ρξn c(Xn(ξn), αn(ξn), πn(ξn))

+Lπn ψ(θe−ρξn , Xn(ξn), αn(ξn))

]}

= θ(−ρ)
∂

∂θ
ψ(θ, x, α) + ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α).

So we have

lim
rn↓0

1
rn
(Trψ(θ, x, α)− ψ(θ, x, α))

≥ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α)

≥ θ(−ρ)
∂

∂θ
ψ(θ, x, α) + min

u∈U
{ψ(θ, x, α)θc(x, α, u) + Luψ(θ, x, α)}.

Thus, the result follows.

Now we can give one of the main results of this work.

Theorem 2. Under Assumptions 1 and 2, the value function W(θ, x, α) is the unique positive
viscosity solution of the HJB Equation (14).

11
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Proof 4. Firstly, we should show that the value function W is continuous in (θ, x, α). It
should be pointed out that the continuity of W with respect to α is in the topological
sense. Let

IM(θ, x, α, π) = E
[

exp
(

θ
∫ ∞

0
e−ρt(c(X(t), α(t), π(·)) ∧M)dt

)]
,

for given π(·) with c(x, α, u)∧M := min{c(x, α, u), M}. By the estimation in Proposition 1,
there is no doubt that limM→∞ IM(θ, x, α, π) = I(θ, x, α, π). By the Feller property of the
process (X(t), α(t)), it is obvious that IM(θ, x, α, π) is continuous in (θ, x, α) for given π.
Then, associated with the following inequality

|I(θ, x, α, π)− I(θ, y, α, π)|
≤ |I(θ, x, α, π)− IM(θ, x, α, π)|+ |IM(θ, x, α, π)− IM(θ, y, α, π)|+ |IM(θ, y, α, π)− I(θ, y, α, π)|,

we conclude that I(θ, x, α, π) is continuous in (θ, x, α), for given π. Then, it follows that
W(θ, x, α) is continuous in (θ, x, α).

Now, we can verify that W solves the HJB Equation (14) as a viscosity solution. Let
ψ ∈ C1,2,0(Q0) and limt→∞ ψ(θe−ρt, x, α) = 1. Denote by (θ0, x0, α0) the maximizer of
W − ψ, with W(θ0, x0, α0) = ψ(θ0, x0, α0). Then, ψ(θ, x, α) ≥ W(θ, x, α), and associated
with Lemma 1 and (12), we can derive that

Trψ(θ, x, α) ≥ TrW(θ, x, α) = W(θ, x, α).

Furthermore, we can obtain that

H(θ0, x0, α0, ψ, Dθψ, Dxψ, D2
xψ) = lim

r↓0
1
r
(Trψ(θ0, x0, α0)− ψ(θ0, x0, α0)) ≥ 0,

thus, W is the subsolution of the HJB Equation (14). Similarly, we can also verify that W is
also a supsolution of the HJB equation. Then we conclude that W is a viscosity solution of
the HJB equation.

As to the uniqueness, it is the direct consequence of the following comparison result.

3.2. Comparison Result

In order to prove the uniqueness, we need some more preparations as follows. Let
Qν

R = [ν, 1]× BR×M, where BR is the open ball in Rr with radius R and ν > 0 is arbitrarily
small. Suppose that w(θ, x, α) ∈ C1,2,0(Q0) is a classical solution of the HJB equation, i.e.,

−θρ
∂w(θ, x, α)

∂θ
+ inf

u∈U
{θc(x, α, u)w(θ, x, α) + Luw(θ, x, α)} = 0, (15)

Let ξR(θ, x) ∈ C1,2([ν, 1]× B̄R) the space of all real-valued functions defined on [ν, 1]× B̄R,
which are continuously differentiable with respect to θ and twice continuously differ-
entiable with respect to x. Further, we assume that ξR > 0, for all (θ, x) ∈ [ν, 1] × B̄R,
with ν arbitrarily small. Moreover, limR→∞ ξR(θ, x) = 1 for all (θ, x) ∈ [ν, 1] × BR and
limR→∞ ξR(θ, x) = 0 for all (θ, x) ∈ [ν, 1]× ∂BR. Set

ŵ(θ, x, α) = ξRw(θ, x, α), (θ, x, α) ∈ (0, 1]× B̄R ×M.

Let (Dθφ, Dxφ) = (φθ , φx1 , · · · , φxr ) and D2
xφ = (φxixj), i, j = 1, 2, · · · , r, with φ = ξR, w

or ŵ. Then, we can directly calculate that

ŵθ = ξR
θ w + ξRwθ , ŵxi = ξRwxi + ξR

xi
w,

and
ŵxixj = ξRwxixj + ξR

xi
wxj + ξR

xj
wxi + ξR

xixj
w.

12
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Multiplying the HJB Equation (15) by ξR(θ, x) we have

−θρξR(θ, x)
∂w(θ, x, α)

∂θ
+ inf

u∈U
{ξR(θ, x)[θc(x, α, u)w(θ, x, α) + Luw(θ, x, α)]} = 0. (16)

Note that
ξRwθ = ŵθ − wξR

θ , ξRwxi = ŵxi − wξR
xi

,

and
ξRwxixj = ŵxixj − wξR

xixj
− ξR

xi
wxj − ξR

xj
wxi

= ŵxixj − wξR
xixj
−

ξR
xi

ξR ŵxj −
ξR

xj

ξR ŵxi + 2w
ξR

xi
ξR

xj

ξR ,

we can derive that

−θρ
∂ŵ(θ, x, α)

∂θ
+ inf

u∈U
{θĉ(x, α, u)ŵ(θ, x, α) + L̂uŵ(θ, x, α)} = −θρξR

θ w, (17)

with

ĉ := c(x, α, u)− 1
ξR

(
r

∑
l=1

bl(x, α, u)ξR
xl
+

1
2

r

∑
l,k=1

alk(x, α)ξR
xl xk

)
,

and

L̂u :=
r

∑
l=1

b̂l(x, α, u)
∂

∂xl
+

1
2

r

∑
l,k=1

al,k(x, α)
∂2

∂xl∂xk
+

m

∑
j=1

qαj(x, u),

where

b̂l(x, α, u) := bl(x, α, u)− 1
ξR

r

∑
k=1

alk(x, α)ξR
xk

.

In order to show that the value function W is the unique viscosity solution of the HJB
Equation (14) inQ0, we only need to show the following comparison result. To proceed, let
φ(x, α) := W(1, x, α), (x, α) ∈ Rr ×M.

Theorem 3. Assume that Assumptions 1 and 2 hold. Let w, v ∈ C(Q0)
⋂

Bω̃(Q0) be the viscosity
subsolution and viscosity supsolution of the HJB Equation (14) in Q0, respectively. And suppose
that w > 0 and v > 0 for all (θ, x, α) ∈ Q0 with w(1, x, α) = v(1, x, α) = φ(x, α). Then, we have

sup
Q0

(w− v) = sup
Rr×M

(w(1, x, α)− v(1, x, α)).

Proof 5. Set

ζR(x) = exp
{

1
R

}
− exp

{
|x|2 − R2

}
, x ∈ B̄R.

Then it is easy to note that ζR ∈ C2(B̄R) and ζR > 0, for all x ∈ B̄R with ν arbitrarily small.
We can also verify that limR→∞ ζR(x) = 1, for all x ∈ BR and limR→∞ ζR(x) = 0, for all
x ∈ ∂BR. Denote

wR(θ, x, α) = ζR(x) exp
{
−K2θ

R

}
w(θ, x, α), K2 > 0.

Suppose that ψR(θ, x, α) ∈ C1,2,0(Qν
R)
⋂

Bω̃(Qν
R) and limt→∞ limR→∞ ψR(θe−ρt, x, α) = 1

for all (θ, x, α) ∈ QR, and wR−ψR has a maximum at (θ0, x0, α0) ∈ QR with wR(θ0, x0, α0) =

ψR(θ0, x0, α0). Let ψ(θ, x, α) = ψR(θ, x, α) exp
{

K2θ
R

}
/ζR. Thus it is easy to verify that

ψ(θ, x, α) ∈ C1,2,0(Qν
R)
⋂

Bω̃(Qν
R) and limt→∞ ψ(θe−ρt, x, α) = 1 for all (θ, x, α) ∈ QR, and

13
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w−ψ has a maximum at (θ0, x0, α0) ∈ QR with w(θ0, x0, α0) = ψ(θ0, x0, α0). Since w(θ, x, α)
is a viscosity subsolution of the HJB Equation (14), by definition we have

−θρ
∂ψ(θ0, x0, α0)

∂θ
+ inf

u∈U
{θc(θ0, x0, α0)ψ(θ0, x0, α0) + Luψ(θ0, x0, α0)} ≥ 0,

Note that ψR(θ, x, α) = ζR exp
{
−K2θ

R

}
ψ(θ, x, α), and the calculations preceding the theo-

rem, we can verify that

−θρ
∂ψR(θ0, x0, α0)

∂θ
+ inf

u∈U
{θĉ(θ0, x0, α0)ψ

R(θ0, x0, α0) + L̂uψR(θ0, x0, α0)}

≥ θρ exp
{
−K2θ

R

}
w(θ0, x0, α0)

K2

R
ζR ≥ 0.

Since the constant K2 > 0, we conclude that wR is the viscosity subsolution of the the
following modified HJB equation

−θρ
∂ψ(θ, x, α)

∂θ
+ inf

u∈U
{θĉ(θ, x, α)ψ(θ, x, α) + L̂uψ(θ, x, α)} = 0, (18)

on QR. Similarly, we can also verify that

vR = ζR exp
(

θ
K3

R

)
v(θ, x, α),

with given constant K3 > 0, is the viscosity supsolution of the modified HJB Equation (18)
on QR. Then, by Lemma A1, we obtain that

sup
Qν

R

(wR − vR) = sup
∂∗Qν

R

(wR − vR), (19)

with ∂∗Qν
R := ([ν, 1]× ∂BR) ∪ ({1} × BR). Note that wR, vR approach w, v uniformly on

bounded subsets of Q0 as R→ ∞, respectively. Moreover, since limR→∞ ζR(x) = 0, for all
x ∈ ∂BR, we have

lim
R→∞

sup
[ν,1]×∂BR

wR − vR ≤ lim
R→∞

M̃(‖w‖ω̃ + ‖v‖ω̃)ζ
R(x) = 0,

for a suitable constant M̃. Since ν > 0 can be arbitrarily small, the result follows by letting
R approaches to infinity in (19).

4. The Approximation Scheme

In order to solve the HJB equation numerically, we are going to introduce the finite
difference approximation scheme. For numerical purpose, we only need to work on the
case with the cutoff as follows,

IM(θ, x, α, π) = E
[

exp
(

θ
∫ ∞

0
e−ρt(c(X(t), α(t), π(·)) ∧M)dt

)]
,

for given π(·), and we can also define

WM(θ, x, α) = inf
π∈ΠRM

IM(θ, x, α, π).

14
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By the estimation in Proposition 1, we can conclude that WM → W, as M → ∞. This
means that it is enough to work with WM when constructing the approximation scheme.
To proceed, we set

∆−θ WM =
WM(θ, x, α)−WM(θ − h, x, α)

h
,

∆+
xi

WM =
WM(θ, x + δei, α)−WM(θ, x, α)

δ
,

∆−xi
WM =

WM(θ, x, α)−WM(θ, x− δei, α)

δ
,

∆2
xi

WM =
WM(θ, x + δei, α) + WM(θ, x− δei, α)− 2WM(θ, x, α)

δ2 ,

∆+
xixj

WM

=
2WM(θ, x, α) + WM(θ, x + δei + δej, α) + WM(θ, x− δei − δej, α)

2δ2

−WM(θ, x + δei, α) + WM(θ, x− δei, α) + WM(θ, x + δej, α) + WM(θ, x− δej, α)

2δ2 ,

∆−xixj
WM

= −2WM(θ, x, α) + WM(θ, x + δei + δej, α) + WM(θ, x− δei − δej, α)

2δ2

+
WM(θ, x + δei, α) + WM(θ, x− δei, α) + WM(θ, x + δej, α) + WM(θ, x− δej, α)

2δ2 ,

Replacing the derivatives by their corresponding finite difference quotients, and rearrang-
ing the terms we have the following approximation scheme

WM
h,δ(θ, x, α)

= inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
WM

h,δ(θ − h, x, α) +
r

∑
l=1

(
C+

l (h, δ, x, α, u)WM
h,δ(θ, x + δel , α)

+C−l (h, δ, x, α, u)WM
h,δ(θ, x− δel , α) +

1
2 ∑

k 6=l

|alk|
2δ2 WM

h,δ(θ, x + δel + δek, α)

+
1
2 ∑

k 6=l

|alk|
2δ2 WM

h,δ(θ, x− δel − δek, α)

)
+ ∑

j 6=α

qαj(x, u)WM
h,δ(θ, x, j)

]}
,

with
C(h, δ, x, α, u) :=

θρ

h
− θ(c(x, α, u) ∧M)− qαα

+
r

∑
l=1

( |bl(x, α, u)|
δ

+
|all(x, α)|

δ2 − ∑k 6=l |alk(x, α)|
2δ2

)
,

and

C+
l (h, δ, x, α, u) :=

b+l (x, α, u)
δ

+
all(x, α)

2δ2 − ∑k 6=l |alk(x, α)|
2δ2 ,

C−l (h, δ, x, α, u) :=
b−l (x, α, u)

δ
+

all(x, α)

2δ2 − ∑k 6=l |alk(x, α)|
2δ2 .

To proceed, we should first show that the above approximation scheme makes sense. To
show this, for given h, δ > 0, we need to verify that C(h, δ, x, α, u) 6= 0 for all (x, α, u). We
also need the following assumption.

15
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Assumption 3. Supposing that

all(x, α)−∑
k 6=l
|alk(x, α)| ≥ 0.

Then under Assumptions 1 and 3, we can derive that C(h, δ, x, α, u) 6= 0. In fact, by
Assumption 1 (i) and the fact that qαα < 0, we have M̃ > −qαα(x, u) > 0 for suitable
constant M̃ and all x and u. Additionally, by Assumption 3 we conclude that

r

∑
l=1

( |bl(x, α, u)|
δ

+
|all(x, α)|

δ2 − ∑k 6=l |alk(x, α)|
2δ2

)
> 0.

Moreover, if we choose that h = ρ
M+1 , then it is easy to have c(x, α, u) ∧ M < ρ

h =

M + 1, thus θρ
h − θ(c(x, α, u) ∧ M) > 0, for all x, α, u. Based on the statement above we

conclude that
C(h, δ, x, α, u) > 0.

Thus, the approximation scheme constructed above is well defined. Furthermore, we also
know that the value of h can be chosen such that h→ 0, as M→ ∞. Moreover, we can also
choose the value of δ such that δ→ 0 as M→ ∞. Then h, δ→ 0 is equivalent to M→ ∞.

Let

S(h, δ, θ, x, α, t, v)

= inf
u∈U

{
− C(h, δ, x, α, u)t +

[
θ

h
v(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)v(θ, x + δel , α)

+C−l (h, δ, x, α, u)v(θ, x− δel , α) +
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 v(θ, x + δel + δek, α)

+
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 v(θ, x− δel − δek, α)

)
+ ∑

j 6=α

qαj(x, u)v(θ, x, j)
]}

.

Then the approximation scheme can be rewritten as

S(h, δ, θ, x, α, WM
h,δ(θ, x, α), WM

h,δ) = 0.

Because of Assumption 3, it is easy to derive that the coefficients of v is positive. Thus, we
can easily verify that S(h, δ, θ, x, α, t, v) is monotone in v, i.e., for arbitrary t ∈ R, h, δ ∈ (0, 1),
(θ, x, α) ∈ Q0,

S(h, δ, θ, x, α, t, v) ≤ S(h, δ, θ, x, α, t, w),

with v ≤ w and v, w ∈ C(Q0)
⋂

Bω̃(Q0). In addition, we can also verify that S(h, δ, θ, x, α, t, v)
is consistent which means that

lim
ε→0,h↓0,δ↓0,ζ→θ,ξ→x

S(h, δ, θ, x, α, v(ζ, ξ, α) + ε, v + ε)

= H(θ, x, α, v(θ, x, α), Dθv(θ, x, α), Dxv(θ, x, α), D2
xv(θ, x, α))

Now we are going to verify the stability. LetOh,δ : (C(Q0)
⋂

Bω̃(Q0))
m → (C(Q0)

⋂
Bω̃(Q0))

m,
such that

Oh,δ(v(θ, x, 1), · · · , v(θ, x, m)) = (G1
h,δv(θ, x, 1), · · · ,Gm

h,δv(θ, x, m)),

16
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with

Gα
h,δv(θ, x, α)

= inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
v(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)v(θ, x + δel , α)

+C−l (h, δ, x, α, u)v(θ, x− δel , α) +
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 v(θ, x + δel + δek, α)

+
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 v(θ, x− δel − δek, α)

)
+ ∑

j 6=α

qαj(x, u)v(θ, x, j)
]}

.

If we claim that Oh,δ is a strict contraction mapping, the stability can be verified. Thus we
need to show that there exists a constant κ ∈ (0, 1) such that

‖Oh,δv−Oh,δw‖ ≤ κ‖v− w‖,

for all v, w ∈ C(Q0)
⋂

Bω̃(Q0). Note that

|Oh,δv−Oh,δw|2 ≤ |G1
h,δv(θ, x, 1)−G1

h,δw(θ, x, 1)|2 + · · ·+ |Gm
h,δv(θ, x, m)−Gm

h,δw(θ, x, m)|2,

and

Gα
h,δv(θ, x, α)− Gα

h,δw(θ, x, α)

= inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
v(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)v(θ, x + δel , α)

+C−l (h, δ, x, α, u)v(θ, x− δel , α) +
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 v(θ, x + δel + δek, α)

+
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 v(θ, x− δel − δek, α)

)
+ ∑

j 6=α

qαj(x, u)v(θ, x, j)
]}

− inf
u∈U

{
C(h, δ, x, α, u)−1

[
θ

h
w(θ − h, x, α) +

r

∑
l=1

(
C+

l (h, δ, x, α, u)w(θ, x + δel , α)

+C−l (h, δ, x, α, u)w(θ, x− δel , α) +
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 w(θ, x + δel + δek, α)

+
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 w(θ, x− δel − δek, α)

)
+ ∑

j 6=α

qαj(x, u)w(θ, x, j)
]}

,

thus
|Gα

h,δv(θ, x, α)− Gα
h,δw(θ, x, α)| ≤ max

u∈U
{Fh,δ(x, α, u)}‖v− w‖ω̃ω̃(x, α),

with

Fh,δ(x, α, u) =
θ
h + ∑r

l=1

(
C+

l (h, δ, x, α, u) + C−l (h, δ, x, α, u) + ∑r
k 6=l

|alk(x,α)|
2δ2

)

C(h, δ, x, α, u)
.

Since we can choose that h = ρ
M+1 , thus it is easy to know that

θ

h
<

θρ

h
− θ(c(x, α, u) ∧M),

for all (x, α, u). Furthermore, we can derive that

max
u∈U
{Fh,δ(x, α, u)} < 1.

Thus, let κ = maxu∈U{Fh,δ(u)} we have

‖Oh,δv−Oh,δw‖ω̃ ≤ κ‖v− w‖ω̃,
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for all v, w ∈ C(Q0) ∩ Bω̃(Q0). This means that Oh,δ is a strict contraction mapping. Then,
there is a unique fixed point to Oh,δ, by the Banach fixed point theorem. We denote it by
vh,δ. Moreover, we define

v∗(θ, x, α) = lim
(ζ,ξ)→(θ,x)

sup
h,δ↓0

vh,δ(ζ, ξ, α),

and
v∗(θ, x, α) = lim

(ζ,ξ)→(θ,x)
inf

h,δ↓0
vh,δ(ζ, ξ, α).

Note that h, δ → 0 is equivalent to M → ∞. If we can verify that v∗ and v∗ are sub-
and supersolutions of the HJB Equation (14), respectively, then the result that follows is
associated with the comparison result. In fact, as in [27], we can show that

H(θ0, x0, α0, ϕ(θ0, x0, α0), Dθ ϕ(θ0, x0, α0), Dx ϕ(θ0, x0, α0), D2
x ϕ(θ0, x0, α0)) ≥ 0,

for any test function ϕ ∈ C1,2,0(Q0) ∩ Bω̃(Q0) such that (θ0, x0, α0) is a strictly local maxi-
mum of v∗ − ϕ with v∗(θ0, x0, α0) = ϕ(θ0, x0, α0). Since the proofs are alike, we omit the
details. Based on the statement above, we can obtain the following conclusion.

Theorem 4. The solution vh,δ of the approximation scheme S converges to the unique viscosity
solution of the HJB Equation (14).

4.1. Existence of ε-Optimal Controls of Finite-Difference-Type

In this section, we will first introduce the definition of the so-said ε-optimal control
and talk about its existence. Let

HWh,δ
M
(θ, x, α, u)

:= C(h, δ, θ, x, α, u)−1
[

θ

h
Wh,δ

M (θ − h, x, α) +
r

∑
l=1

(
C+

l (h, δ, θ, x, α, u)Wh,δ
M (θ, x + δel , α)

+C−l (h, δ, θ, x, α, u)Wh,δ
M (θ, x− δel , α) +

1
2 ∑

k 6=l

|alk(x, α)|
2δ2 Wh,δ

M (θ, x + δel + δek, α)

+
1
2 ∑

k 6=l

|alk(x, α)|
2δ2 Wh,δ

M (θ, x− δel − δek, α)

)
+ ∑

j 6=α

qαj(x, u)Wh,δ
M (θ, x, j)

]
,

with Wh,δ
M such that S(h, δ, θ, x, α, Wh,δ

M (θ, x, α), Wh,δ
M ) = 0.

Definition 3. We call u∗h,δ(θ, x, α) the ε-optimal control, if there exists a pair of constants (hε, δε)
such that h ≤ hε, δ ≤ δε and

HWh,δ
M
(θ, x, α, u∗h,δ) = inf

u∈U

{
HWh,δ

M
(θ, x, α, u)

}
.

Now, we first illustrate why such controls are called ε-optimal controls. Note that
h, δ → 0 is equivalent to M → ∞ and u∗h,δ(θ, x, α) is corresponding to Wh,δ

M (θ, x, α). By
Theorem 4, we know that for arbitrary ε > 0, there exists a constant M0 > 0 such that for
all M > M0,

|Wh,δ
M −W| < ε.

Thus, it is understandable to say that u∗h,δ(θ, x, α) is the ε-optimal control.

Lemma 2. Under Assumptions 1–3, there always exist ε-optimal controls.
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Proof 6. If Assumptions 1–3 are all satisfied. Then it is easy to find that HWh,δ
M
(θ, x, α, u) is

continuous in u, for given (h, δ, θ, x, α). Note that we assume that U is compact. Thus it is
obvious that there exist a control u∗h,δ(θ, x, α), such that

HWh,δ
M
(θ, x, α, u∗h,δ) = inf

u∈U

{
HWh,δ

M
(θ, x, α, u)

}
.

Thus the result follows.

4.2. Numerical Simulation

In order to demonstrate our theoretical results, we will give a numerical simulation
example in this section. We consider the one-dimensional stochastic process with regime
switching given in Example 1. Let (X(t), α(t)) ∈ R×M, withM = 1, 2, and

dX(t) = (µ(α(t)) + u(t))X(t)dt + σ(α(t))dB(t), (20)

Q(x, u) =
(

q11(x, u) −q11(x, u)
−q22(x, u) q22(x, u)

)
, (21)

with qii < 0, |qii| < ∞, i = 1, 2 and U = [0, U0], consider the functional

I(θ, x, α, π(·))) = E[exp(θ
∫ ∞

0
e−ρtc(X(t), α(t), π(·))dt)], (22)

with c(x, α, u) = x + α + u, and ρ > µM + U0, with σM = max{σ(1), σ(2)}, µM =
max{µ(1), µ(2)}.

Previously, we have verified that the model in Example 1 satisfies the assumptions
proposed in this paper, so based on the approximation scheme in the previous section,
for the one-dimensional example mentioned above, we can obtain the following iterative
format of the value function with α, j = 1, 2 and α 6= j,

WM
h,δ(θ, x, α) = inf

u∈U
{C(h, δ, x, α, u)−1[

θ

h
WM

h,δ(θ − h, x, α) + C+
l (h, δ, x, α, u)WM

h,δ(θ, x + δ, α)

+ C−l (h, δ, x, α, u)WM
h,δ(θ, x− δ, α) + qαjWM

h,δ(θ, x, j)]},
(23)

with

C(h, δ, x, α, u) =
θρ

h
− θ(c(x, α, u) ∧M)− qαα +

|bl(x, α, u)|
δ

+
|all(x, α)|

δ2 , (24)

C+
l (h, δ, x, α, u) =

b+l (x, α, u)
δ

+
all(x, α)

2δ2 , (25)

C−l (h, δ, x, α, u) =
b−l (x, α, u)

δ
+

all(x, α)

2δ2 , (26)

and
bl(x, α, u) = (µ(α(t) + u(t))X(t), all(x, α) = σ(α(t)) (27)

b+l (x, α, u) = max{bl(x, α, u), 0}, b−l (x, α, u) = max{−bl(x, α, u), 0} (28)

Furthermore, we choose the appropriate parameters for this example as follows,
δ = 0.1, h=0.1, M = 5, µ(1) = −0.2, µ(2) = 0.2, σ(1) = −0.1, σ(2) = 0.1, ρ = 0.8,
u ∈ U = [0, U0] = [0, 0.5], thus the following condition ρ > µM + U0 holds. The interval of
θ is selected as [0, 1], and we set q11 = −u, q12 = u, q21 = 2u, q22 = −2u.
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According to the iterative format and parameter settings mentioned above, we conduct
the numerical experiments by using the Matlab software (latest version R2023b) to obtain
the following results:

In Figure 1, we can observe that the value function decreases with respect to X, and
increases with respect to θ, and it can also be observed that the value function at state 2 is
significantly larger than the value function at state 1.

Figure 1. Optimal value function W.

Figure 2 shows that the ε-optimal control µ remains almost constant with the change
of X, and the control in state 2 is larger than that in state 1.

Figure 2. ε-optimal control µ.

5. Discussion

This work considers the controlled switching diffusions with infinite horizon dis-
counted risk-sensitive criterion. The associated HJB equation has been derived. Since
the explicit solution to such an equation is not easy to obtain, we figure out a numerical
approximation scheme through the finite difference method. However, there is still an
open problem. As to the existence of optimal control, in the risk-neutral case [20,27], the
occupation measure method is usually used. By introducing the occupation measure
method, one can pose the risk-neutral optimal control problem as a convex optimization
problem. Moreover, as in [29] (Chapter 2, Section 5), except for the conditions similar to
Assumption 1, by supposing that the pair of functions, consisting of the coefficients of the
dynamic system and the running cost, maps the control space U into a convex set, one
can show the existence of the optimal control for the controlled diffusion model. Such a
technique can also be extended to deal with the risk-neutral optimal control problem within
the controlled switching diffusion model. However, it seems that such methods can not be
directly used to handle the risk-sensitive case. Thus, we need to find other ways to show the
existence of optimal control to the risk-sensitive optimal control problem to the controlled
switching model. Open problem: We guess that u∗h,δ(θ, x, α) is the approximation of the
optimal control when h, δ approach 0, under suitable conditions.
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Appendix A

To complete the proof of the comparison result in Theorem 3, we also need the
following result. Before going further we need to introduce the following notions. Such
notions are original from [28]. We modified them for our own purpose. Let Sr be the set of
all r× r symmetric matrices.

Definition A1. Let w ∈ C(Qν
R), with Qν

R as given in Theorem 3.

(i) The set of second-order superdifferentials of w at (θ, x) ∈ [ν, 1]× BR for each α is

D+(1,2)w(θ, x, α)

=

{
(q, p, A) ∈ R×Rr × Sr :

lim
(h,y)→0

sup
(θ+h,x+y)∈Qν

R

w(θ + h, x + y)− w(t, x)− qh− py− 1
2 Ay · y

|h|+ |y|2 ≤ 0
}

.

(ii) The set of second-order subdifferentials of w at (θ, x) ∈ [ν, 1]× BR for each α is

D−(1,2)w(θ, x, α)

=

{
(q, p, A) ∈ R×Rr × Sr :

lim
(h,y)→0

inf
(θ+h,x+y)∈Qν

R

w(θ + h, x + y)− w(t, x)− qh− py− 1
2 Ay · y

|h|+ |y|2 ≥ 0
}

.

We also need the closure of the set of second-order subdifferentials and supdiffer-
entials for the continuous functions. That is, for w ∈ C(Qν

R) and (θ, x) ∈ [ν, 1] × BR,
(q, p, A) ∈ cD±(1, 2)w(θ, x, α) if and only if there exist sequences (θn, xn) ∈ [ν, 1]× BR and
(qn, pn, An) ∈ D±(1,2)w(θn, xn, α)→ (q, p, A), with α fixed.

If we assume that w ∈ C1,2,0(Qν
R), (θ, x) ∈ [ν, 1]× BR and fixed α,

cD+(1,2)w(θ, x, α) =

{(
∂

∂θ
w(θ, x, α), Dxw(θ, x, α), D2

xw(θ, x, α) + B
)∣∣∣B ≥ 0

}
,

cD−(1,2)w(θ, x, α) =

{(
∂

∂θ
w(θ, x, α), Dxw(θ, x, α), D2

xw(θ, x, α)− B
)∣∣∣B ≥ 0

}

Now, also assume that w ∈ C1,2,0(Qν
R) is a classical solution of the HJB Equation (14) in

QR. Since for every semidefinite matrix B ≥ 0

tr[σσT(x, α)B] ≥ 0.
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Then the above characterization of the second order sub- and supdifferentials yields

−θρq + H(θ, x, α, p, A, w(θ, x, α)) ≥ 0, ∀(q, p, A) ∈ cD+(1,2)w(θ, x, α),

−θρq + H(θ, x, α, p, A, w(θ, x, α)) ≤ 0, ∀(q, p, A) ∈ cD−(1,2)w(θ, x, α),

with

H(θ, x, α, p, A, ψ(θ, x, α)) = inf
u∈U
{θc(x, α, u)ψ + bp +

1
2

tr(σσ′)A +
m

∑
j=1

qαj(x, u)ψ(θ, x, j)}.

Now we can give the comparison result in the local case.

Lemma A1. Let w ∈ C(Qν
R) be a viscosity subsolution of the HJB Equation (14) in QR, and

v ∈ C(Qν
R) be a viscosity supsolution of the HJB Equation (14) in QR, with Qν

R as given in
Theorem 3. Then

sup
Qν

R

(w− v) = sup
∂∗Qν

R

(w− v),

with ∂∗Qν
R := ([ν, 1]× ∂BR) ∪ ({1} × BR).

Proof A1. Suppose the contrary of the conclusion holds, i.e.,

sup
Qν

R

(w− v)− sup
∂∗Qν

R

(w− v) > 0.

And for β1, β2 > 0, consider the auxiliary function

Φ(θ, x, y, α) = w(θ, x, α)− v(θ, y, α)− β1|x− y|2 − β2(θ − 1),

for θ ∈ [ν, 1], x, y ∈ B̄R. Note that w, v are continuous onQν
R, We can verify that for fixed α and

any (θ, x) ∈ [ν, 1]× BR, if (q, p, A) ∈ cD+(1,2)w(θ, x, α) and ‖(θ, x, p, A, w(θ, x, α))‖ ≤ M,
for every M > 0, there exists a constant C = C(M) such that q ≤ C(M). Also, if (q, p, A) ∈
cD−(1,2)w(θ, x, α) and ‖(θ, x, p, A, w(θ, x, α))‖ ≤ M for every M > 0, there exists a constant
C = C(M) such that q ≥ −C(M). Moreover, since we suppose that supQν

R
(w − v) −

sup∂∗Qν
R
(w− v) > 0, we can derive that for each given α,

sup
[ν,1]×B̄R×B̄R

Φ(θ, x, y, α) > sup
∂([ν,1]×B̄R×B̄R)

Φ(θ, x, y, α),

when choosing suitable constants β1 and β2. For fixed α, let (θ̄, x̄, ȳ) be a local maximum of
Φ. Then, by the Crandall–Ishii maximum principle (see [28] (p. 216, Theorem 6.1) and [33]
(Theorem 8.3)), we can derive that there exist symmetric matrices A and B such that

(q, p, A) ∈ cD+(1,2)w(θ̄, x̄, α),

and
(q̂, p, A) ∈ cD−(1,2)v(θ̄, ȳ, α),

where p = 2β1(x̄− ȳ) and q− q̂ = ϕt(θ̄, x̄, ȳ) = β2, with ϕ(θ, x, y) = β1|x− y|2 + β2(θ− 1),
and

−6β1

[
I 0
0 I

]
≤
[

A 0
0 −B

]
≤ 6β1

[
I 0
0 I

]
. (A1)

Furthermore, the viscosity properties of w and v imply that

−θ̄ρq + H(θ̄, x̄, α, p, A) ≥ 0,
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and
−θ̄ρq̂ + H(θ̄, ȳ, α, p, B) ≤ 0.

Recall that q− q̂ = β2, and A, B satisfy (A1). Hence

β2 = q− q̂ ≤ 1
θ̄ρ

(
H(θ̄, x̄, α, p, A)− H(θ̄, ȳ, α, p, B)

)
.

If we claim that H(θ̄, ·, α, p, ·) is continuous with respect to x, then we have

H(θ̄, x̄, α, p, A)− H(θ̄, ȳ, α, p, B) ≤ ε,

for |x̄− ȳ| ≤ δ. Since ε can be arbitrary small, it contradicts with the fact that β2 > 0. Now
it remains to verify that H(θ̄, ·, α, p, ·) is continuous with respect to x. Note that

H(θ̄, x̄, α, p, A)− H(θ̄, ȳ, α, p, B)
≤ sup

u∈U
{θc(x̄, α, u)ψ(θ, x̄, α)− θc(ȳ, α, u)ψ(θ, ȳ, α)}

+ sup
u∈U
{(b(x̄, α, u)− b(ȳ, α, u))2β1(x̄− ȳ)}

+
1
2

sup
u∈U
{tr(σ(x̄, α)σT(x̄, α)A)− tr(σ(ȳ, α)σT(ȳ, α)B)}

+ sup
u∈U
{

m

∑
j=1

(qαj(x̄, u)ψ(θ, x̄, j)− qαj(ȳ, u)ψ(θ, ȳ, j))}.

Note that c, b, ψ, qαj are all continuous with respect to x. Therefore, we only need to
verify that

tr(σ(x̄, α)σT(x̄, α)A)− tr(σ(ȳ, α)σT(ȳ, α)B)

is also continuous with respect to x. In fact, set D(x̄) := σ(x̄, α) and D(ȳ) := σ(ȳ, α),
by (A1), we have

tr(σ(x̄, α)σT(x̄, α)A)− tr(σ(ȳ, α)σT(ȳ, α)B)
= tr(D(x̄)DT(x̄)A)− tr(D(ȳ)DT(ȳ)B)

= tr
([

D(x̄)DT(x̄) D(x̄)DT(ȳ)
D(ȳ)DT(x̄) D(ȳ)DT(ȳ)

][
A 0
0 −B

])

≤ 6β2tr
([

D(x̄)DT(x̄) D(x̄)DT(ȳ)
D(ȳ)DT(x̄) D(ȳ)DT(ȳ)

][
I −I
−I I

])

= 6β2‖D(x̄)− D(ȳ)‖2

= 6β2‖σ(x̄, α)− σ(ȳ, α)‖2

≤ C|x̄− ȳ|2.

Thus, the result follows.
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Abstract: In the information age, frequent information exchange has provided a breeding ground
for the spread of computer viruses. The significant losses caused by computer virus attacks have
long rung the alarm for information security. From academia to businesses, and even to government,
everyone remains highly vigilant about information security. Researchers have put forward various
approaches to combat computer viruses, involving innovative efforts in both the hardware and
software aspects, as well as theoretical innovation and practical exploration. This article is dedicated
to theoretical exploration, specifically investigating the stability of a computer virus model, known as
SLBRS, from the perspective of optimal control. Firstly, a control system is introduced with the aim of
minimizing the costs related to network detoxification and diminishing the percentage of computers
impacted by the virus. Secondly, we employ the Pontryagin maximum principle to analyze the
optimality of a control strategy for the proposed system. Thirdly, we validate the effectiveness of
our theoretical analysis through numerical simulation. In conclusion, both theoretical analysis and
numerical simulation reveal that the utilization of optimal control analysis to stabilize the SLBRS has
been demonstrated to be advantageous in restoring contaminated computer network environments.

Keywords: computer virus; SLBRS; optimal control; Pontryagin principle; simulation

MSC: 49J15; 93-10; 93C15

1. Introduction

In the information age, frequent information exchange has become an integral part
of our daily lives, greatly facilitating the transmission of computer viruses in the cyber
environment. The proliferation of network computer viruses has posed significant global
information security threats, leading to substantial losses in various sectors, including
finance, education, and energy.

From 1987 to 1988, F. Cohen and W. Murray discovered certain similarities between
computer viruses and biological infectious diseases [1,2]. Consequently, they suggested
applying the principles of infectious disease dynamics and qualitative and quantitative
analysis methods to study the patterns of computer virus transmission. Unfortunately, they
did not propose specific models for the spread of computer viruses at that time. It was not
until 1991 that J. O. Kephart and S. R. White adopted the recommendations of F. Cohen and
W. Murray [3]. Based on the similarity between computer viruses and biological viruses,
they introduced the SIS (susceptible–infected–susceptible) computer virus propagation
model for the first time, pioneering the application of biological virus propagation models
to the field of computer viruses. Since then, extensive research has been conducted on
computer viruses; a rough summary is provided in the Table 1 below.
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Table 1. Early computer virus transmission models.

Model Year Authors Character Reference

SIS 1991 Kephart, White Susceptible, infected computers
involved [3]

SIR 2001 Tian, Zheng Computers with permanent
immunity [4]

SIRS 2004 Chen, Carley Computers with temporary
immunity [5]

SEIR 2006 Yuan, Chen Computers in a dormant state [6]

SEIRS 2007 Mishra, Saini Computers with temporary
immunity or in dormant state [7]

SAIC 2008 Piqueira,
Vasconcelos

The infected computers exhibit
logarithmic growth [8]

SAIR 2009 Piqueira, Araujo Coexistence of multiple viruses [9]
SEIQRS 2010 Mishra, Jha Infected computers are isolated [10]

The computer virus models described above are based on a common assumption
borrowed from epidemiological virus modeling, where an infected computer that remains
in latency will not infect other computers. However, in the context of computer viruses, it
is a whole different story:

Difference 1: Upon infection, a computer typically gains the immediate capability to
propagate the infection.

Difference 2: Computers that have recovered may develop temporary immunity.
Considering the differences between computer viruses and biological viruses (Differences

1–2), Yang and Wen [11] and Yang, Zhang, and Li [12] proposed a mathematical model
with characteristics of computer viruses known as SLBRS. They categorize the computers
in the system into four groups, namely, S(t), L(t), B(t), and R(t):

S(t)—susceptible computers: computers not yet infected by the virus but suscepti-
ble to being infected by latent or outbreak computers, subsequently transitioning into
latent computers.

L(t)—latent computers: computers that have been infected by the virus but do not
exhibit apparent destructive behavior yet retain the potential to spread the infection.

B(t)—outbreak computers: computers that are infected by the virus, exhibiting ap-
parent destructive effects and having the potential to spread the infection.

R(t)—recovery computers: computers that have been cleared of the virus by third-
party security software or firewall products, possessing temporary immunity.

For the convenience of mathematical calculations, we assume that S(t), L(t), B(t), and
R(t) represent the proportions of susceptible, latent, outbreak, and recovered computers
in the network, respectively. Therefore, S(t), L(t), B(t), and R(t) satisfy the following
normalization condition:

S(t) + L(t) + B(t) + R(t) = 1.

The transition relationships among the different states S(t), L(t), B(t), and R(t) are
determined by the following assumptions:

Assumption 1: susceptible computers S(t) are infected with a virus at a certain rate
βS(L + B) and transform into latent computers L(t).

Assumption 2: latent computers L(t) transition into outbreak computers B(t) at an
outbreak rate α.

Assumption 3: outbreak computers B(t) are cured at an antivirus software recovery
rate γ1 and transform into recovery computers R(t).

Assumption 4: recovery computers R(t) lose immunity at a certain rate σ and trans-
form back into susceptible computers S(t).

Assumption 5: newly added computers are all susceptible computers S(t) with an
access rate p, and each state of computer has an exit rate µ.

26



Mathematics 2024, 12, 132

Based on the above assumptions (Assumptions 1–5), the state transition relationships
among computers in different states of SLBRS are illustrated in Figure 1:
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Figure 1. State transition diagram of SLBRS.

In reality, latent computers L(t) may recover due to users’ virus prevention and control
habits. Yang considered this factor in [13] and made the following additional assumption:

Assumption 6: latent computers L(t) are cured and transformed into recovery com-
puters R(t) at a certain rate γ2 due to third-party protective software or firewalls. Generally
speaking, the possibility of clearing the virus by reinstalling the system is lower than using
antivirus software, thus

γ2 < γ1.

Based on these assumptions (Assumptions 1–6), the state transition relationships
among computers in different states of SLBRS can be illustrated in Figure 2:
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Figure 2. State transition diagram of SLBRS with graded recovery rates.

In consideration of various virus prevention and control measures that can be taken
for outbreak computers B(t) in reality, the following assumption is further proposed:

Assumption 7: apart from using antivirus software, the virus can also be cleared by
reinstalling the system, thereby transitioning the infected computer B(t) into a susceptible
computer S(t) at a recovery rate of γ3. Obviously, due to the numerical advantage of out-
break computers over latent computers, the probability of latent computers transitioning to
the recovered state must be lower than the probability of outbreak computers transitioning
to the recovered state. Therefore, the following assumption is also reasonable:

γ3 < γ2 < γ1.

Under these assumptions (Assumptions 1–7), the state transition relationships of
SLBRS are illustrated as follows:

Figure 3 can be formulated as:




dS(t)
dt = p− βS(B + L) + γ3B + σR− µS,

dL(t)
dt = βS(B + L)− αL− γ2L− µL,

dB(t)
dt = αL− γ3B− µB− γ1B,

dR(t)
dt = γ2L− σR− µR + γ1B,

(1)
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Following the introduction of the SLBRS model and its variations (1) and (2) in [4–
13], the focus of analysis concerning them has primarily revolved around stability. This 
paper will delve further into studying the system’s behavior from an optimal control per-
spective, aiming to explore the mechanisms of computer virus transmission and preven-
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The fact is that the severity of computer virus attacks varies over time, and protective
measures should be flexible and adaptable in response. Therefore, it is more reasonable to
consider that recovery rates vary with time [14]. In this paper, as an example, the authors
take the recovery rate γ1 as a continuous function of time µ1(t), representing the frequency
of running antivirus software on outbreak computers at time t. Consequently, we propose
SLBRS with variable recovery rates as follows:

Figure 4 can be reformulated by:



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dt = p− βS(B + L) + γ3B + σR− µS,

dL(t)
dt = βS(B + L)− αL− γ2L− µL,

dB(t)
dt = αL− γ3B− µB− u1(t)B,

dR(t)
dt = γ2L− σR− µR + u1(t)B.

(2)
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Following the introduction of the SLBRS model and its variations (1) and (2) in [4–13],
the focus of analysis concerning them has primarily revolved around stability. This paper
will delve further into studying the system’s behavior from an optimal control perspective,
aiming to explore the mechanisms of computer virus transmission and prevention. The
organization of the remaining sections is as follows:

In Section 2, we will utilize the Hurwitz criterion to explore the stability conditions of
both non-toxic and toxic equilibria of the SLBRS (1) and prove the stability of these two
types of equilibrium.

In Section 3, we will focus on establishing the fundamental theoretical results con-
cerning the optimal control of SLBRS. This will encompass the following key aspects: the
existence of an optimal control strategy, the necessary conditions for optimal control, and
the uniqueness of the optimal control system.

In Section 4, we will perform simulations to offer a numerical illustration of the
practical implications of the theoretical discussions.

In Section 5, we will discuss the advantages of optimal control analysis in this paper
and the necessity of multi-control input analysis.

In Section 6, we will conclude the paper by summarizing the progress made in the
study of SLBRS.

28



Mathematics 2024, 12, 132

2. The Stability of SLBRS

Before investigating the optimal control of SLBRS, let us first conduct a brief analysis
of its stability. For the sake of convenience, under the normalization condition

S(t) + L(t) + B(t) + R(t) = 1,

the system of Equation (1) is transformed into:





dL(t)
dt = β(1− L− B− R)(L + B)− αL− γ2L− µL,

dB(t)
dt = αL− γ1B− γ3B− µB,

dR(t)
dt = γ1B + γ2L− σR− µR,

(3)

2.1. Stability of the Non-Toxic Equilibrium

According to the definition of a non-toxic equilibrium, there are no infected computers
in the system. By (3), we deduced that L = 0, B = 0, and R = 0. Furthermore, utilizing the
normalization condition, we obtain the non-toxic equilibrium E0 = (1, 0, 0, 0). We define
the basic reproduction number as follows:

R0 =
[(α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα](σ+ µ)

{(α+ γ1 + γ2 + γ3 + σ+ 3µ− β)∗ [(α+ γ1 + γ2 + γ3 + 2µ− β)(σ+ µ) + (α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα]}

Theorem 1. For system (1), when R0 < 1, the non-toxic equilibrium E0 is locally asymptotically
stable; when R0 > 1, the non-toxic equilibrium E0 is unstable.

Proof of Theorem 1. The Hurwitz criterion is as follows: If the coefficients of characteristic
equation

D(s) = a0s3 + a1s2 + a2s + a1 = 0, a0 > 0.

of the Jacobian matrix of the linearized system are positive, and a1a2 − a0a3 > 0 then the
linearized system is asymptotic stable. First, we linearize (3) at E0. The Jacobian matrix of
functions of the right-hand side of (3) is:

J(E0)
=



β− 2βL− 2βB− βR− α− γ2 − µ β− 2βL− 2βB− βR −βL− βB
α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ



(E0)

=



β− α− γ2 − µ β 0
α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ


,

Then, the linearized equations of (3) at E0 are as follows:





dL(t)
dt = (β− α− γ2 − µ)L + βB,

dB(t)
dt = αL− (γ1 + γ3 + µ)B,

dR(t)
dt = γ2L + γ1B− (σ+ µ)R,

The characteristic equation of the Jacobian matrix J(E0)
is:

∣∣∣∣∣∣

λ− β+ α+ γ2 + µ −β 0
−α λ+ γ1 + γ3 + µ 0
−γ2 −γ1 λ+ σ+ µ

∣∣∣∣∣∣
= 0,

Expressed as a polynomial, it is:

p1(λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0,
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where
a0 = 1,

a1 = α+ γ1 + γ2 + γ3 + σ+ 3µ− β,

a2 = (α+ γ1 + γ2 + γ3 + 2µ− β)(σ+ µ) + (α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα,

a3 = [(α+ γ2 + µ− β)(γ1 + γ3 + µ)− βα](σ+ µ).
when R0 < 1, we have a1 > 0, a2 > 0, a3 > 0 and a1a2 − a0a3 > 0. By the Hurwitz
criterion, E0 is locally asymptotically stable.

The proof is finished. �

2.2. Stability of the Toxic Equilibrium

According to the definition of a toxic equilibrium, there exist infected computers in
the system. By (3), we deduced the toxic equilibrium

E1= (L ∗, B∗, R∗),

where

L∗ =
(γ1 + γ3 + µ)(σ+ µ)(µS∗ − p)

σγ2(γ1 + γ3 + µ) + α[(σ+ µ)γ3 + σγ1]− βS∗(γ1 + γ3 + α+ µ)(σ+ µ)
,

B∗ =
αL∗

(γ1 + γ3 + µ)
,

R∗ =
[αγ1 + (γ1 + γ3 + µ)γ2]L∗

(γ1 + γ3 + µ)(σ+ µ)
.

Furthermore, by (1), we obtain

S∗ =
(γ1 + γ3 + µ)(α+ γ2 + µ)

β(γ1 + γ3 + µ+ α)
.

We define the basic reproduction number as follows:

R1 =
βα(L∗+B∗)

[
L∗
B∗ (σ+µ)+γ1+

γ2L∗
B∗ +(σ+µ)

]

{[β(L∗+B∗+ S∗B∗
L∗ )+(γ1+γ3+σ+2µ)] ∗ [(β(L ∗+B∗+ S∗B∗

L∗ )+αL∗
B∗ )(σ+µ)+β(L∗+B∗)(αL∗

B∗ +γ2+α)]}

Theorem 2. For system (1), when R1 < 1, the toxic equilibrium E1 is locally asymptotically stable;
when R1 > 1, the toxic equilibrium is unstable.

Proof of Theorem 2. First, we linearize (3) at E1. Then, the Jacobian matrix linearized
system is

J(E0)
=



β− 2βL− 2βB− βR− α− γ2 − µ β− 2βL− 2βB− βR −βL− βB

α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ



(E1)

=



−β(L∗ + B∗ − S∗)− α− γ2 − µ −β(L∗ + B∗ − S∗) −β(L∗ + B∗)

α −γ1 − γ3 − µ 0
γ2 γ1 −σ− µ


,
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We simplify the characteristic equation |λE− J| = 0 to obtain

p2(λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0,

where
a0 = 1,

a1 = β(L∗ + B∗ +
S∗B∗
L∗

) + (γ1 + γ3 + σ+ 2µ),

a2 =

[
β

(
L∗+B∗ +

S∗B∗
L∗

)
+
αL∗
B∗

]
(σ+ µ) + β(L∗+B∗)

(
αL∗
B∗

+ γ2 + α

)
,

a3 = βα(L∗ + B∗)
[

L∗
B∗

(σ+ µ) + γ1 +
γ2L∗

B∗
+ (σ+ µ)

]
.

When R1 < 1,

R1 =
βα(L∗+B∗)

[
L∗
B∗ (σ+µ)+γ1+

γ2L∗
B∗ +(σ+µ)

]

{[β(L∗+B∗+ S∗B∗
L∗ )+(γ1+γ3+σ+2µ)] ∗ [(β(L ∗+B∗+ S∗B∗

L∗ )+αL∗
B∗ )(σ+µ)+β(L∗+B∗)(αL∗

B∗ +γ2+α)]}
= a3

a1·a2
< 1,

We have a1 > 0, a2 > 0, a3 > 0 and a1a2 − a0a3 > 0. By the Hurwitz criterion, E1 is
locally asymptotically stable.

The proof is finished. �

3. Optimal Control of SLBRS

In the past, significant emphasis has been placed on mathematically modeling com-
puter viruses and analyzing the stability of these models [3–13]. Comparatively, fewer
studies have delved into the control strategies of computer virus models, as is evident
in [14–17]. Nevertheless, these limited investigations have offered valuable insights to our
understanding of restoration strategies of virus containment networks.

The focal point of this paper is to investigate the optimal control problem of SLBRS,
aiming at diminishing the percentage of infected computers within a network and reducing
network maintenance expenses.

3.1. The Formulation of the Optimal Control Problem

Now, let us establish an optimal control model based on SLBRS. Firstly, in Section 1,
we transformed the constant recovery rate γ1 into a time-varying function u1(t). The state
transition relationships of S(t), L(t), B(t), and R(t) are illustrated in Figure 4, and the relevant
mathematical model can be found in (2). Secondly, we will select an appropriate control set.
Thirdly, we will choose a suitable objective function based on the intention of control.

Let us assume T is a predefined time. We stipulate the allowable control set as follows:

U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}

. (4)

Our goal is to reduce the prevalence of virus-infected computers within the network
while minimizing the system’s maintenance expenses. Therefore, the objective function
could be formulated as follows:

J(u1) =

T∫

0

[
B(t) +

εu2
1
(t)

2

]
dt, (5)

where ε is a positive constant.
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Thus, the optimal control problem can be formulated as:

min
u1∈U

J(u1)

Subject to the differential equations in (2).
In order to facilitate subsequent analysis of the problem and corresponding to the

objective function, we introduce the following Lagrangian function:

L(B, u1) = B(t) +
εu2

1(t)
2

and the following Hamiltonian function:

H(t) = L(B, u1) + λ1[p− βS(L + B) + γ3B + σR− µS]
+λ2[βS(L + B)− αL− γ2L− µL] + λ3[αL− γ3B
−µB− u1(t)B] + λ4[γ2L− σR− µR + u1(t)B].

(6)

3.2. Optimal Control Results and Their Proofs

In this section, we will establish the existence of an optimal control strategy, the
necessary conditions for the existence of optimal control, and the uniqueness of the optimal
control system. This will serve as the foundation for numerical simulations.

Theorem 3. An optimal control input, denoted as u∗1(t), exists for the control system (5) with the
given initial data:

S(0) = S0 ≥ 0, L(0) = L0 ≥ 0, B(0) = B0 ≥ 0, R(0) = R0 ≥ 0,

such that
minu1∈UJ(u1) = J(u∗1)

Proof of Theorem 3. According to [18], it is sufficient to verify the following four condi-
tions:

Condition 1. U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}
6= Φ;

Condition 2. U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}

is closed and con-
vex set;

Condition 3. The right-hand side of state equations




dS(t)
dt = p− βS(B + L) + γ3B + σR− µS,

dL(t)
dt = βS(B + L)− αL− γ2L− µL,

dB(t)
dt = αL− γ3B− µB− u1(t)B,

dR(t)
dt = γ2L− σR− µR + u1(t)B.

are restricted by linear functions in terms of S, L, B, R. We need only to show the con-
dition for the first equation (the second is similar). Indeed, by the normalization condition

S(t) + L(t) + B(t) + R(t) = 1

we have 0 ≤ B ≤ 1. Thus,

p− βS(B + L) + γ3B + σR− µS
≤ p− β(L + B) + γ3B + σR− µS
= p− βL + (γ3 − β)B + σR− µS.
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Condition 4. The Lagrangian function L(B, u1) exhibits concavity over the set U, and
there exists ρ > 1, η1 > 0, and η2 such that

L(B, u1) ≥ η1(|u|)ρ+ η2.

The proof is completed. �

Next, through the utilization of the Pontryagin maximum principle, we will derive
the essential condition for the optimal control input:

Theorem 4. For the given optimal control input u∗1(t) and the related states S∗, L∗, B∗, R∗ of
state Equation (2), there exist co-states λ1, λ2, λ3, and λ4 such that

dλ1

dt
= λ1[β(L + B) + µ]− λ2β(L + B), (7)

dλ2

dt
= λ1βS− λ2(βS− α− γ2 − µ)− λ3α− λ4γ2, (8)

dλ3

dt
= −1 + λ1(βS− γ3)− λ2βS + λ3[γ3 + µ+ u1(t)]− λ4u1(t), (9)

dλ4

dt
= −λ1σ+ λ4(σ+ µ), (10)

with the transversal conditions

λ1(T) = λ2(T) = λ3(T) = λ4(T) = 0. (11)

The optimal control is as follows:

u∗1(t) = max
{

min
{
λ3 − λ4

ε
B∗, 1

}
, 0
}

.

Proof of Theorem 4. We differentiate the Hamiltonian function (6), and we obtain the
following co-state system:

dλ1

dt
= −HS∗(t),

dλ2

dt
= −HL∗(t),

dλ3

dt
= −HB∗(t),

dλ4

dt
= −HR∗(t),

which implies (7)–(10).
We deduce from the optimal conditions

∂H
∂u1

∣∣∣∣u1(t)=u∗1(t)
= εu1(t)− λ3B + λ4B.

and the admissible condition

U =
{

u1(t) ∈ L2(0, T) : 0 ≤ u1(t) ≤ 1, 0 ≤ t ≤ T
}

that

u∗1(t) = max
{

min
{
λ3 − λ4

ε
B∗, 1

}
, 0
}

.
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By assembling the state equations of (2), co-state Equations (7)–(10), and the transversal
conditions of (11), we derive the optimal system as follows:





dS(t)
dt = p− βS(B + L) + γ3B + σR− µS,

dL(t)
dt = βS(B + L)− αL− γ2L− µL,

dB(t)
dt = αL− γ3B− µB− u1(t)B,

dR(t)
dt = γ2L− σR− µR + u1(t)B,

(12)

and




dλ1
dt = λ1[β(L + B) + µ]− λ2β(L + B),

dλ2
dt = λ1βS− λ2(βS− α− γ2 − µ)− λ3α− λ4γ2,

dλ3
dt = −1 + λ1(βS− γ3)− λ2βS + λ3[γ3 + µ+ u1(t)]− λ4u1(t),

dλ4
dt = −λ1σ+ λ4(σ+ µ),

(13)

with initial values
S0 ≥ 0, L0 ≥ 0, B0 ≥ 0, R0 ≥ 0 (14)

and the transversal conditions

λ1(T) = λ2(T) = λ3(T) = λ4(T) = 0. (15)

The proof is completed. �

Finally, we show the uniqueness of the optimal system (12)–(15):

Theorem 5. Given control time T, the solution of the optimal system (12)–(15) is unique.

Proof of Theorem 5. Assume that both (S, L, B, R; λ1, λ2, λ3, λ4) and (S, L, B, R; λ1, λ2,
λ3, λ4) are solutions of (12)–(15). Let

S = eλta, L = eλtb, B = eλtc, R = eλtd;

λ1 = e−λtw, λ2 = e−λtx, λ3 = e−λty, λ4 = e−λtz

and
S = eλta, L = eλtb, B = eλtc, R = eλtd;

λ1 = e−λtw, λ2 = e−λtx, λ3 = e−λty, λ4 = e−λtz,

where λ is a constant that will be determined later.
From (11), we obtain

u1(t) = max
{

min
{
(y− z)c

ε
, 1
}

, 0
}

,

u1(t) = max

{
min

{
(y− z)d

ε
, 1

}
, 0

}
.

From (12), we obtain

λeλta + eλta′ = p− βe2λta(b + c) + γ3eλtc + σeλtd− µeλta (16)

and
λeλta + eλta′ = p− βe2λta(b + c) + γ3eλtc + σeλtd− µeλta. (17)
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From (13), we obtain

w′ − λw = (w + x)βeλt(b + c) + wµ,

and
w′ − λw = (w + x)βeλt(b + c) + wµ,

From (16) and (17), we obtain

λ(a− a) + (a′ − a′) = −βeλt[a(b + c)− a(b + c)]
+γ3(γ− γ) + σ(d− d)− µ(a− a),

We then integrate from 0 to T, and we obtain

1
2 (a(T)− a(T))2 + λ

T∫
0
(a−a)2dt

= −β
T∫
0

eλt[a(b + c)− a(b + c)](a− a)dt + γ3

T∫
0
(γ− γ)(a− a)dt + σ

T∫
0
(d− d)(a− a)dt− µ

T∫
0
(a− a)2dt

= −β
T∫
0

eλt(ab− ab + ac− ac)(a− a)dt + γ3

T∫
0
(γ− γ)(a− a)dt

+ σ
T∫
0
(d− d)(a− a)dt− µ

T∫
0
(a− a)2dt

≤ C1eλt
T∫
0

[
(a− a)2 + (b− b)

2
+ (d− c)2

]
dt + C2

T∫
0
(a− a)2 + (b− b)

2
+ (c− c)2 + (d− d)

2

+ (w−w)2 + (x− x)2 + (y− y)2 + (z− z)2dt

where C1 and C2 are constants.
Similarly, we estimate the following:

1
2
(b− b)

2
(T),

1
2
(c− c)2(T),

1
2
(d− d)

2
(T).

Finally, we obtain

1
2 (a− a)2(T) + 1

2 (b− b)
2
(T) + 1

2 (c− c)2(T) + 1
2 (d− d)

2
(T) + 1

2 (w−w)2(0) + 1
2 (x− x)2(0) + 1

2 (y− y)2(0)

+ 1
2 (z− z)2(0) + λ

T∫
0

[
(a− a)2 + (b− b)

2
+ (c− c)2 + (d− d)

2
]
dt + λ

T∫
0

[
(x− x)2 + (y− y)2 + (z− z)2 + (w−w)2

]
dt

≤ (C3 + C3λt
4 )

T∫
0

[
(a− a)2 + (b− b)

2
+ (c− c)2 + (d− d)

2
]
dt + (C3 + C3λt

4 )
T∫
0

[
(w−w)2 + (x− x)2 + (y− y)2 + (z− z)2

]
dt.

Taking λ such that
λ > (C3 + C4e3λT)

and
T <

1
3λ

ln(
λ−C3

C4
)

then

(λ− (C3 + C4e3λT))
T∫
0

[
(a− a)2 + (b− b)

2
+ (c− d)

2
+ (d− d)

2
]
dt

+(λ− (C3 + C4e3λT))
T∫
0

[
(x− x)2 + (y− y)2 + (z− z)2 + (w−w)2

]
dt

≤ 0,

which implies that
a = a, b = b, c = c, d = d;

and
x = x, y = y, z = z, w = w.
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Thus,
S = S, L = L, B = B, R = R;

λ1 = λ1, λ2 = λ2, λ3 = λ3, λ4 = λ4.

The proof is completed. �

Remark 1. The benefit of employing Pontryagin’s maximum principle to prove Theorem 2 is that,
alongside completing the proof, it sets the stage for our subsequent numerical simulations. In fact,
the state equation, co-state equation, transversality condition, and initial values generated during
the proof process serve as the very foundation for our upcoming numerical simulations.

4. Numerical Simulation

In this section, we will conduct numerical simulations to examine the stability of (1)
and the controllability of (2) separately. To facilitate a comparative analysis, we will use
common initial values and parameter values for models (1) and (2) in the following section.

We take the initial value as follows:

S0 = 0.4, L0 = 0.3, B0 = 0.2, R0 = 0.1.

The parameter selection principle abides by the conditions specified in Theorems 1
and 2, ensuring that the basic reproduction number is less than 1. For detailed parameter
selection, refer to Table 2.

Table 2. Values of parameters.

Parameters Values Parameters Values

p 0.10 ε 2.00
α 0.60 β 0.90
γ2 0.10 γ1 0.15
σ 0.05 γ3 0.05
µ 0.10

4.1. Stability of SLBRS

Stability simulation is a relatively straightforward process. By utilizing the provided
parameters and initial values, we write a simple code employing ODE45 and execute it.
The outcomes of the simulation are illustrated in Figures 5 and 6.
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Figure 5 demonstrates that all the states S(t), L(t), B(t), and R(t) asymptotically stabilize
to the non-toxic equilibrium, in line with the conclusion of Theorem 1. Similarly, from
Figure 6, it is evident that all the states S(t), L(t), B(t), and R(t) asymptotically stabilize to
the toxic equilibrium, consistent with the conclusion of Theorem 2.

4.2. Controllability of SLBRS

The simulation of optimal control is quite complex. On one hand, there are many
equations that need to be solved (in fact, the optimal controllability simulation algorithm
involves solving the state equations, co-state equations, and control input equation). On the
other hand, for ensuring simulation accuracy, it is not only necessary to employ high-order
differences but also to utilize a combination of forward and backward differences.

For clarity, let us briefly outline the algorithm:
Step 1. Initialization: determine the time step, set iteration termination conditions,

and initialize the state, co-state, and control variables.
Step 2. Iteration Process: we solve the state equations using forward differences and

the co-state equations using backward differences.
Step 2.1. State Equation Solution: use fourth-order forward Runge-Kutta difference

to solve the state equation based on known control and initial value conditions.
Step 2.2. Co-state Equation Solution: employ fourth-order backward Runge-Kutta

difference, solving the co-state equation backward from the final time.
Step 2.3. Control Update: update control variables based on the results of the state

and co-state equations.
Step 2.4. Iterative Update: based on the updated control, repeat the solution of state

and co-state equations until the termination conditions are met.
Step 3. Simulation Results: obtain the optimal control strategy, state trajectory, and

other necessary numerical results.
The evolution trends of types S(t), L(t), B(t), and R(t) are presented in Figures 7–10.

The simulation results align well with the theoretical analysis results (Theorems 3–5).
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Figures 7 and 9 demonstrate that, under the effect of control, the proportion of un-
infected computers (S(t) and R(t)) gradually increases and stabilizes. This indicates the
restoration of the virus-contaminated network environment.

Figures 8 and 10 reveal that, under the influence of control, the proportion of infected
computers (L(t) and B(t)) gradually decreases and stabilizes. This, from another perspective,
reflects the ongoing restoration of the virus-infected network environment.

The evolution of control input is as follows.
The trend of the optimal control curve is consistent with reality (see Figure 11): Initially,

the computer virus attack intensity is high, and the level of protection is correspondingly
strong. However, as time passes, the intensity of the attack weakens, and the level of
protection decreases in parallel.
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Remark 2. We use the forward Runge-Kutta method to solve the state equations and the backward
Runge-Kutta method to solve the co-state equations, and the simulation results are superior to
simply using either forward or backward Runge-Kutta methods for solving them.

5. Discussion

At this point in the paper, let us address a few issues for discussion.
Firstly, is it necessary to introduce control to SLBRS?
To address this question, we directly compare the stable values of SLBRS with and

without control input (Equations (1) and (2)). Utilizing the same parameters and initial
states, we calculate the stable values of each state variable in (1) and (2) (see Table 3
for details).

Table 3. The comparison of Equations (1) and (2).

Model S* L* B*

Equation (1) 0.30 0.12 0.25
Equation (2) 0.36 0.11 0.17

Table 2 illustrates that toxicity-free nodes (S*, R*) increase, and toxic nodes (L*, B*)
decrease. This observation strongly suggests that optimal control is beneficial for the
restoration of a contaminated network.

Secondly, there are several issues regarding the selection of the optimal control input
function:

(1) What if the recovery rate (γ2 or γ3) is used as the control input? It is similar to γ1, so
we omit the details.

(2) What if more than one recovery rate is utilized in the control inputs? The fact is that
the more control inputs are employed, the greater the ability to control the system.
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Thirdly, there are questions regarding model improvement.
The selected model in this paper does not account for time-delay factors. However, in

reality, the transformation from latent to active computers and the recovery of virus-infected
computers both take a certain amount of time. Therefore, in future work, consideration
of time-delay factors can be introduced to establish an optimal computer virus control
model with time-delay factors. This is expected to yield results that are more practically
meaningful. Please refer to [15] for further details.

This paper employs optimal control theory to study the SLBRS model and has ob-
tained research conclusions that align with expectations. Introducing current popular
research directions such as stochastic control and adaptive control into the study of SLBRS
would undoubtedly open up new possibilities. For more details, please refer to the latest
literature [19–24].

6. Conclusions

In this paper, we have introduced the SLBRS computer virus model with triple recov-
ery rates. Subsequently, we have investigated its stability through both linearization and
optimal control. The primary findings are as follows.

Firstly, using the Hurwitz criterion, we have demonstrated the stability of both the non-
toxic equilibrium point and the toxic equilibrium point. Furthermore, we have validated
these findings through simulation.

Secondly, the existence and uniqueness of the optimal solution have been rigorously
established and confirmed through the application of the Pontryagin maximum principle.

Thirdly, for numerical simulations, we have employed an iterative algorithm. The re-
sults of these simulations illustrate that the optimal control strategy can effectively minimize
the outbreak of a virus in the network, all the while reducing network maintenance costs.
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Abstract: This paper focuses on the asymptotic behavior of nonautonomous neural networks with
delays. We establish criteria for analyzing the asymptotic behavior of nonautonomous recurrent
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obtained results.
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1. Introduction

Recently, neural networks (NNs) have garnered significant attention and have found
extensive applications across various domains, including image restoration [1], pattern
recognition [2] and associative memory [3]. In practical applications, time delays are
an unavoidable factor stemming from the finite switching speed of amplifiers. It’s well-
established that time delays can potentially induce oscillations and instability in systems.
Consequently, the asymptotic behavior of NNs with delays has been a focal point of
research for numerous authors.

The study of asymptotic behavior such as dissipativity [4–7] attracting sets [8], stabi-
lization [9–11] and stability offers potent tools for addressing the problem of controlling
dynamics systems. In the asymptotic behavior analysis, one powerful tool is Lyapunov
function or functional. Wang and Zhu [12] used a novel Lyapunov–Krasovskill functional
to consider the stability of discrete-time semi-Markov jump linear systems with time delay.
Fan et al. [13] using multiple Lyapunov-Krasovskii functionals to investigate the stability
of switched stochastic nonlinear systems. Xu et al. [14] used the improved Lyapunov Razu-
mikhin method to consider exponential stability of stochastic nonlinear delay systems. Zhu
and Zhu [15] constructed the Lyapunov-Krasovskii functional to the stability of stochastic
Highly Nonlinear Systems.

Especially, Cao and Zhou [16], Cao [17], Mohanmad and Gopalsamy [18], Sun et al. [19],
Zeng et al. [7], Zeng et al. [20], Zhang et al. [21], Zhang et al. [22], Zhao and Cao [23], Zheng
and Zhang [24], and Zhou and Zhang [25] used the Lypunov functional to investigate
the stability of delayed cellular NNs with constant coefficient, respectively. Jiang and
Cao [26], Jiang and Teng [27,28], Long et al. [29], Rehim et al. [30], Song and Zhao [6], Yu
et al. [31], Zhang et al. [32], Zhang et al. [33] investigated the stability of recurrent NNs
with variable coefficient by constructing Lyapunov function or functional, respectively.
Through the construction of Lyapunov functions or functionals, one can find some interest-
ing results. Nevertheless, constructing an appropriate Lyapunov function or functional can
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be a challenging task, particularly in the context of nonautonomous NNs with unbounded
delays [34].

On the other hand, Halanay inequalities can be also used to consider the asymptotic
behavior of NNs [5,29,34–38]. It should be noted that only [5,35,38] considered the un-
bounded coefficient functions, and unbounded delay functions. Hien et al. [35] considered
the generalized exponential stability of one-dimensional Halalay inequalities and gave
application to nonautonomous NNs. Later, Lu et al. [38] studied the global generalized
exponential stability of nonautonomous NNs by multi-dimensional generalized Halanay
inequalities which extended the results in [35]. However, when the coefficient functions
are constants and the delay functions are infinite the works in [35,38] do not work. Hien
et al. [5] considered the global dissipativity of nonautonomous NNs with delays. Howerer,
their delay functions are required to be proportional.

Inspired by the preceding discussion, in this paper, we propose some generalized
Halanay inequalities to investigate the asymptotic behaviour of neural networks with
unbounded variable coefficients and infinite delay, and our assumptions are less restrictive
than most of existing works. Our results not only enhance but also extend the results
initially presented in [5,35,38].

The structure of this paper unfolds as follows. Section 2 provides an introduction
to some preliminaries, definitions and model descriptions. Section 3 investigates the
asymptotic behavior of NNs with delays by means of constructing some generalized
Halanay inequalities. Section 4 offers some examples and simulations to exemplify the
practical utility of our theoretical results. Finally, this paper concludes in the Section 5.

Notations: let Nn = {1, 2, . . . , n} and AT denotes the transpose of matrix A. Rn

is the n-dimensional Euclidean space equipped with the norm ‖q‖ = max
i∈Nn
{|qi|} for

q = (q1, q2, . . . , qn)T ∈ Rn. For t0 ≥ 0, BC((−∞, t0],Rn) stands for the space of all bounded
and continuous functions ψ : (−∞, t0]→ Rn equipped with the norm ‖ψ‖∞ := sup

θ≤t0

‖ψ(θ)‖.

For any sets D and E, define D− E := {x|x ∈ D, x /∈ E}. b+ = max {0, b}.

2. Preliminaries and Model Description

This paper investigates the following NNs with delays




dqi(t)
dt = −αi(t)qi(t) +

n
∑

j=1
[βij(t) f j(qj(t)) + γij(t)gj(qj(t− τij(t)))] + hi(t), t ≥ t0,

qi(t) = ψi(t), t ∈ (−∞, t0], i ∈ Nn,
(1)

where qi(t) is the neuron state variable of the neural network, ψ(t) = (ψ1(t), . . . , ψn(t))
is the initial value, q(t, ψ) = (q1(t), . . . , qn(t))T ∈ BC((−∞, t0] denotes the solution (1)
with initial value ψ, sometimes we write q(t) for short. αi(t) stands for self-feedback
coefficient, βij(t) and γij(t) stand for neuron connect weight. τij(t) ≥ 0 represents the
transmission delay. hi(t) is the external bias, f j and gj stand for the activation functions. If
the initial value of qj(t) defined on [min

t≥t0
{t− τij(t)}, t0], define qj(t) = qj(min

t≥t0
{t− τij(t)})

for t < min
t≥t0
{t− τij(t)} , then (1) is clearly defined.

Now, we introduce four definitions of asymptotic behavior.

Definition 1 ([5]). A compact set Ω ⊂ Rn is called to be a global attracting set of (1), provided
lim sup

t→+∞
d(q(t, ψ), Ω) = 0, where d(q, Ω) := inf

x∈Ω
‖q − x‖ represents the distance between q

and Ω.

Definition 2 ([5]). A compact set Ω ⊂ Rn is called to be a global generalized exponential attracting
set of (1), provided there exists a ρ(ψ) ≥ 0 satisfies that

d(q(t, ψ), Ω) ≤ ρ(ψ)e−λ(t), t ≥ t0, (2)
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where λ(t) ≥ 0 is a nondecreasing function satisfies that lim
t→+∞

λ(t) = +∞.

Remark 1. Substituting λ(t) with λ(t− t0), λ ln(t− t0 + 1), and λ ln(ln(t− t0 + e)), (λ > 0),
respectively, results in Ω becoming a global exponential, polynomial as well as logarithmic attracting
set of system (1), correspondingly.

Definition 3 ([5]). System (1) is called to be globally dissipative, provided there is a bounded set
B ⊂ Rn satisfies that for any bounded set Ψ ⊂ Rn, there exists a time tB = tB(Ψ) satisfies that
for any initial value ψ ∈ Ψ, q(t) = q(t, ψ) ∈ B for t ≥ tB(Ψ). Then B is called an absorbing set
of (1).

Remark 2. If Ω is a global generalized exponential attracting set of (1), this implies (1) is globally
dissipative. For any bounded set Ψ ⊂ Rn, there exists an absorbing set of (1) such that Bε = {x ∈
Rn : d(x, Ω) ≤ ε}.

Definition 4 ([38]). System (1) is called to be globally generalized exponential stable, provided
for any two solutions q(1)(t) = (q(1)1 (t), . . . , q(1)n (t))T and q(2)(t) = (q(2)1 (t), . . . , q(2)n (t))T , each
having distinct initial values ψ(1), ψ(2) ∈ BC((−∞, t0],Rn), there exists a non-negative function
$(ψ(1) − ψ(2)) and a non-decreasing function λ(t) ≥ 0 with property lim

t→+∞
λ(t) = +∞ such that

|q(1)(t)− q(2)(t)| ≤ $(ψ(1) − ψ(2))e−λ(t), t ≥ t0,

where λ(t) represents the decay rate.

3. Main Results

In this section, the asymptotic behavior of (1) is discussed by means of generalized
Halanay inequalities.

Theorem 1. Let the following conditions hold

(C.1) For i, j ∈ Nn and t ≥ t0, αi(t) ≥ 0, βij(t), γij(t), hi(t) are all integrable functions.
(C.2) For j ∈ Nn and q1, q2 ∈ R, there exist constants Fj, Gj such that

| f j(q1)− f j(q2)| ≤ Fj|q1 − q2|, |gj(q1)− gj(q2)| ≤ Gj|q1 − q2|.

(C.3) For each i ∈ Nn, there exist positive constants η1, η2, . . . , ηn, (max{η1, η2, . . . , ηn} = 1)
and non-negative constants µi such that

ηiαi(t)−
n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj ≥ 0, t ≥ t0,

and

sup
{t|t≥t0}−D

{
n
∑

j=1
(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)|

ηiαi(t)−
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

}
:= µi,

where

D =

{
t|ηiαi(t)−

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj =
n

∑
j=1

(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)| = 0
}

,

n

∑
j=1

(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)| := µi(t).

44



Mathematics 2024, 12, 155

Then systems (1) is globally dissipative and max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
is an absorbing set of (1).

Remark 3. Conditions (C.1)–(C.3) imply the local Lipschitz condition and local linear growth
condition. So the existence and uniqueness of solution can be guaranteed.

Proof. Assume q(t) = (q1(t), . . . , qn(t))T is the solution of (1) with initial value ψ =
(ψ1, . . . , ψn)T . Let

z(t) = (z1(t), . . . , zn(t))T = (η−1
1 q1(t), . . . , η−1

n qn(t))T , (3)

then





dzi(t)
dt = −αi(t)zi(t) + η−1

i

n
∑

j=1
[βij(t) f j(qj(t)) + γij(t)gj(qj(t− τij(t)))] + η−1

i hi(t), t ≥ t0,

zi(t) = η−1
i ψi(t), t ∈ (−∞, t0].

(4)

For each i ∈ Nn and t ≥ t0, from (C.2), (3) and (4), we have

D+|zi(t)| ≤ −αi(t)|zi(t)|+ η−1
i

n

∑
j=1
|βij(t)|(Fjηj|zj(t)|+ | f j(0)|)

+ η−1
i

n

∑
j=1
|γij(t)|( sup

t−τij(t)≤s≤t
(Gjηj|zj(s)|+ |gj(0)|) + η−1

i |hi(t)|

= −αi(t)|zi(t)|+ η−1
i

n

∑
j=1
|βij(t)|Fjηj|zj(t)|+ η−1

i

n

∑
j=1
|γij(t)|Gjηj sup

t−τij(t)≤s≤t
|zj(s)|

+ η−1
i

[ n

∑
j=1

(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)|
]

, (5)

where D+ is the upper-right Dini derivative. Define M := max
k∈Nn

{
sup
t≤t0

|ψk(θ)|
ηk

, µk
}

. It is clear

that |zi(t)| ≤ M for t ≤ t0 and i ∈ Nn. Suppose there exist i1 ∈ Nn, ε1 > 0 and t1 > t0
such that |zi1(t1)| = M + ε1, and |zj(t)| ≤ M + ε1 for t ≤ t1 and j ∈ Nn. Then we get

D+|zi1(t)|
∣∣∣∣
t=t1

> 0. In contrast

D+|zi1(t)|
∣∣∣∣
t=t1

≤ −αi1(t1)|zi1(t1)|+ η−1
i1

n

∑
j=1
|βi1 j(t1)|Fjηj|zj(t1)|

+ η−1
i1

n

∑
j=1
|γi1 j(t1)|Gjηj sup

t1−τi1 j(t1)≤s≤t1

|zj(s)|+ η−1
i µi1(t1)

≤ −αi1(t1)(M + ε1) + η−1
i1

n

∑
j=1
|βi1 j(t1)|Fjηj(M + ε1) + η−1

i

n

∑
j=1
|γi1 j(t1)|Gjηj(M + ε1)

+ µi1

[
αi1(t1)− η−1

i

n

∑
j=1
|βi1 j(t1)|Fjηj − η−1

i

n

∑
j=1
|γi1 j(t1)|Gjηj

]

= −
[

αi1(t1)− η−1
i1

n

∑
j=1
|βi1 j(t1)|Fjηj − η−1

i

n

∑
j=1
|γi1 j(t1)|Gjηj

]
(M− µi1 + ε1) ≤ 0.

This signifies a contradiction, implying that
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|zi(t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
, t ≥ t0, i ∈ Nn.

So we get

|qi(t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
ηi, t ≥ t0, i ∈ Nn.

Then

‖q(t)‖ ≤ max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk
, µk

}
, t ≥ t0.

This completes the proof.

Remark 4. Condition (max{η1, η2, . . . , ηn} = 1) can be omitted, but in order to see our main
results clearly, so we reserve it.

Theorem 2. Assume (C.1)–(C.3) and the following conditions hold:

(C.4) For i, j ∈ Nn, there exist constants αi > 0 and α(t) such that

0 ≤ αiα(t) ≤ αi(t) for t ≥ t0, lim
t→+∞

∫ t

t0

α(s)ds→ +∞, sup
t≥t0

{ ∫ t

t−τij(t)
α∗(s)ds

}
:= τij < +∞,

where

α∗(t) :=
{

α(t), t ≥ t0,
0, t < t0.

(C.5) For i, j ∈ Nn,

sup
{t|t≥t0}−{t|αi(t)=|βij(t)|Fj=0}

{ |βij(t)|Fj

αi(t)

}
:= ρ

(1)
ij , sup

{t|t≥t0}−{t|αi(t)=|γij(t)|Gj=0}

{ |γij(t)|Gj

αi(t)

}
:= ρ

(2)
ij ,

and

−ηi +
n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij )ηj < 0,

where, η1, η2, . . . , ηn were introduced in Theorem 1.

Then we have the following assertions:

(1) For i ∈ Nn,

|qi(t)| ≤
[(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
−max

k∈Nn
{µk}

)

+

e−λ∗
∫ t

t0
α(s)ds

+ max
k∈Nn
{µk}

]
ηi, t ≥ t0.

where λ∗ represents the smallest solution to the following equations

λ

αi
+

n
∑

i=1
(ρ

(1)
ij + ρ

(2)
ij eλτij)ηj

ηi
− 1 = 0, i ∈ Nn.

(2) The set

Ω :=
{

u ∈ Rn : ‖u‖ ≤ max
k∈Nn
{µk}

}

is a global generalized exponential attracting set of (1).
(3) System (1) is globally dissipative.
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Proof. When max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
≤ max

k∈Nn
{µk}, the proof is deduce from Theorem (1). Now,

suppose max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
> max

k∈Nn
{µk} and define

Ki(λ) :=
λ

αi
+ η−1

i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλτij)ηj − 1, λ ∈ [0,+∞).

Note that, for each i ∈ Nn, Ki(λ) is continuous on [0,+∞), Ki(0) = η−1
i

n
∑

j=1
(ρ

(1)
ij + ρ

(2)
ij )ηj −

1 < 0,

K′i(λ) =
1
αi

+ η−1
i

n

∑
j=1

τijηjρ
(2)
ij eλτij > 0,

and lim
λ→+∞

Ki(λ) = +∞. So for i ∈ Nn, equation Ki(λ) = 0 has an unique solution

λi ∈ (0,+∞). Define λ∗ := min
k∈Nn
{λk}, then

λ∗

αi
+ η−1

i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλ∗τij)ηj − 1 ≤ 0, i ∈ Nn. (6)

Multiply both sides of (6) by αi(t), we get

λ∗αi(t)
αi

+ η−1
i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλ∗τij)ηjαi(t)− αi(t) ≤ 0, t ≥ t0, i ∈ Nn. (7)

From (C.4), (C.5) and (7), we have

η−1
i

n

∑
j=1

(ρ
(1)
ij + ρ

(2)
ij eλ∗τij)ηjαi(t)− αi(t) ≤ −λ∗α(t), t ≥ t0, i ∈ Nn (8)

and

η−1
i

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gje
λ∗τij)ηj − αi(t) ≤ −λ∗α(t), t ≥ t0, i ∈ Nn. (9)

For t ∈ R, define

v(t) :=
(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
−max

k∈Nn
{µk}

)
e−λ∗

∫ t
t0

α∗(s)ds
+ max

k∈Nn
{µk}. (10)

Then

(v(s)−max
k∈Nn
{µk}) = (v(t)−max

k∈Nn
{µk})eλ∗

∫ t
s α∗(u)du

≤ (v(t)−max
k∈Nn
{µk})e

λ∗
∫ t

t−τij(t)
α∗(u)du

, i, j ∈ Nn, s ∈ [t− τij(t), t].

Hence

sup
t−τij(t)≤s≤t

{v(s)−max
k∈Nn
{µk}} ≤ (v(t)−max

k∈Nn
{µk})e

λ∗
∫ t

t−τij(t)
α∗(u)du

, t ≥ t0, i, j ∈ Nn. (11)
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By (11) and the definition of τij, we get

sup
t−τij(t)≤s≤t

{v(s)−max
k∈Nn
{µk}} ≤ (v(t)−max

k∈Nn
{µk})eλ∗τij , t ≥ t0, i, j ∈ Nn. (12)

Thus, for t ≥ t0 and i ∈ Nn, from (C.3)–(C.5), (8)–(10) and (12), we get

dv(t)
dt

= −λ∗α(t)
(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
−max

k∈Nn
{µk}

)
e−λ∗

∫ t
t0

α∗(s)ds

= −λ∗α(t)(v(t)−max
k∈Nn
{µk})

≥ −
[

1− η−1
i

n

∑
j=1

(
ρ
(1)
ij + ρ

(2)
ij eλ∗τij

)
ηj

]
αi(t)(v(t)−max

k∈Nn
{µk})

≥ −αi(t)v(t) + η−1
i

n

∑
j=1

ρ
(1)
ij αi(t)ηjv(t) + η−1

i

n

∑
j=1

ρ
(2)
ij αi(t)(t)e

λ∗τij ηjv(t)

+

[
αi(t)− η−1

i

n

∑
j=1

(
|βij(t)|Fjηj + |γij(t)|Gjηj

)]
max
k∈Nn
{µk}

≥ −αi(t)v(t) + η−1
i

n

∑
j=1
|βij(t)|Fjηjv(t) + η−1

i

n

∑
j=1
|γij(t)|Gjηj sup

t−τij(t)≤s≤t
v(s) + η−1

i µi(t). (13)

At last, we show when max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
> max

k∈Nn
{µk}, |zi(t)| ≤ v(t) for t ≥ t0 and i ∈ Nn

by reduction to absurdity. Clearly, |zi(t)| ≤ v(t) for t ∈ (−∞, t0]. Suppose there exist
i2 ∈ Nn, ε2 > 0 and t2 > t0 such that |zi2(t2)| = v(t2) + ε2, and |zj(t)| ≤ v(t) + ε2 for

t ∈ (−∞, t2] and j ∈ Nn, then we get D+

(
|zi2(t)| −

dv(t)
dt

)∣∣∣∣
t=t2

> 0. In contrast, from (5)

and (13), we get

D+

(
|zi2(t)| −

dv(t)
dt

)∣∣∣∣
t=t2

≤ −αi2(t2)(|zi2(t2)| − v(t2)) + η−1
i2

n

∑
j=1
|βi2 j(t2)|Fjηj(|zj(t2)| − v(t2))

+ η−1
i2

n

∑
j=1
|γi2 j(t2)|Gjηj sup

t2−τi2 j(t2)≤s≤t2

(|zj(s)| − v(s))

= −
[

αi2(t2)− η−1
i2

n

∑
j=1
|βi2 j(t2)|Fjηj − η−1

i

n

∑
j=1
|γi2 j(t2)|Gjηj

]
ε2 ≤ 0.

This is a contradiction, the proof is completed. So for each i ∈ Nn, we get

|qi(t)| ≤
[(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
−max

k∈Nn
{µk}

)

+

e−λ∗
∫ t

t0
α(s)ds

+ max
k∈Nn
{µk}

]
ηi, t ≥ t0.

and

‖q(t)‖ ≤
(

max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
−max

k∈Nn
{µk}

)

+

e−λ∗
∫ t

t0
α(s)ds

+ max
k∈Nn
{µk}, t ≥ t0. (14)
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Now, we proof the assertion (2). Define

ρ

(
max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

})
:=





max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
−max

k∈Nn
{µk}, max

k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
≥ max

k∈Nn
{µk},

0, max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
< max

k∈Nn
{µk}.

By (14), we get

d(q(t), Ω) ≤ ρ

(
max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

})
e−λ∗

∫ t
t0

α(s)ds, t ≥ t0.

This means that Ω =

{
u ∈ Rn : ‖u‖ ≤ max

k∈Nn
{µk}

}
is the global generalized exponential

attracting set of (1). Now, we prove the assertion (3). Obvious, the ball B(0, max
k∈Nn
{µk}+

ε) :=
{

u ∈ Rn : ‖u‖ ≤ max
k∈Nn
{µk} + ε

}
is an absorbing set of (1) for any ε > 0. This

completes the proof.

Remark 5. Hien et al. [5] investigated the dissipativity of the specific instance of the system (1),
namely, the delay functions are proportional. Under condition (C.2) and the following conditions

(C.4′) For i, j ∈ Nn, there exist constants αi > 0 and α(t) such that

0 < αiα(t) ≤ αi(t) for t ≥ 0, lim
t→+∞

∫ t

0
α(s)ds→ +∞, sup

t≥0

{ ∫ t

qijt
α(s)ds

}
< +∞.

(C.5′) For i, j ∈ Nn, there exist constants β̂ij, γ̂ij and ĥi such that

|βij(t)|
αi(t)

≤ β̂ij,
|γij(t)|
αi(t)

≤ γ̂ij,
|hi(t)|
αi(t)

≤ ĥi, t ≥ t0.

and for each i ∈ Nn, there exist positive constants η1, η2, . . . , ηn, (max{η1, η2, . . . , ηn} = 1) such
that

−ηi +
n

∑
j=1

(Fj β̂ij + Gjγ̂ij)ηj < 0.

They got the following results

|qi(t)| ≤
[( ‖ψ‖∞

min{η1, . . . , ηn}
− γ̂

m̂

)

+

eλ∗
∫ t

t0
α(s)ds

+
γ̂

m̂

)]
ηi,

and the global generalized exponential attracting set is

Ω1 =

{
q ∈ Rn : ‖q‖ ≤ γ̂

m̂

}
,

where γ̂ = max
k∈Nn

{
ĥk +

n
∑

j=1
(b̂kj| f j(0)| + ĉkj|gj(0)|)

}
and m̂ = min

k∈Nn

{
ηk −

n
∑

j=1
(b̂kj| f j(0)| +

ĉkj|gj(0)|)ηj

}
.

We mention here that our conditions are less restrictive, i.e., αi(t) can be zero at some
time and the delay functions can be other types of delay functions. Besides our results also
improve the results in [5]. Especially when condtions (C.4′) and (C.5′) hold, obvious,
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max
k∈Nn

{ sup
t≤t0

|ψk(θ)|

ηk

}
≤ ‖ψ‖∞

min{η1, . . . , ηn}
,

and for each i ∈ Nn, we get

sup
{t|t≥t0}

{
n
∑

j=1
(|βij(t) f j(0)|+ |γij(t)gj(0)|) + |hi(t)|

ηiαi(t)−
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

}
= sup
{t|t≥t0}

{
n
∑

j=1

(
|βij(t) f j(0)|

αi(t)
+
|γij(t)gj(0)|

αi(t)

)
+ |hi(t)|

αi(t)

ηi −
n
∑

j=1

(
|βij(t)|Fj

αi(t)
+
|γij(t)|Gj

αi(t)

)
ηj

}

≤
ĥi +

n
∑

j=1
(β̂ij| f j(0)|+ γ̂ij|gj(0)|)

ηi −
n
∑

j=1
(b̂ij| f j(0)|+ γ̂ij|gj(0)|)ηj

≤ γ̂

m̂
.

So we have max
k∈Nn
{µk} ≤ γ̂

m̂ , this means that our estimate is sharper than [5]. The above

discussion shows that this paper improves and extends the results in [5].

Theorem 3. Let q(1)(t) = (q(1)1 (t), . . . , q(1)n (t))T and q(2)(t) = (q(2)1 (t), . . . , q(2)n (t))T denote
two solutions of (1) with distinct initial values ψ(1), ψ(2) ∈ BC((−∞, t0],Rn). Assume that
conditions (C.1), (C.2), and the following conditions are satisfied:

(C.6) For i ∈ Nn, there exist positive constants η1, η2, . . . , ηn, (max{η1, η2, . . . , ηn} = 1) such
that

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj ≤ ηiαi(t), t ∈ [t0,+∞),

and there exists T ≥ t0 such that

sup
{t|t≥T}−{t|ηiαi(t)=

n
∑

j=1
(|βij(t)|Fj+|γij(t)|Gj)ηj=0}

{
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

ηiαi(t)

}
:= ρ < 1.

(C.7) For i, j ∈ Nn, there exist constants αi > 0 and α(t) such that

0 ≤ αiα(t) ≤ αi(t) for t ≥ T, lim
t→+∞

∫ t

T
α(s)ds→ +∞, sup

t−τij(t)≥T

{ ∫ t

t−τij(t)
α(s)ds

}
:= τij < +∞.

Then,

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηi, t ∈ [t0, T],

and

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηie−λ∗

∫ t
T α(s)ds, t ≥ T.
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Proof. For each i ∈ Nn and t ∈ R, define li(t) :=
∣∣∣∣

q(1)i (t)−q(2)i (t)
ηi

∣∣∣∣. Then for each i ∈ Nn and

t ≥ t0, we get

D+li(t) ≤ −αi(t)li(t) + η−1
i

( n

∑
j=1
|βij(t)|Fjηjlj(t) +

n

∑
j=1
|γij(t)|Gjηj sup

t−τij(t)≤s≤t
lj(s)

)

≤ −αi(t)li(t) + η−1
i

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj)ηj sup
t−τij(t)≤s≤t

lj(s). (15)

Firstly, we prove

li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
, t ≥ t0, i ∈ Nn.

Obviously, li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
for t ≤ t0 and i ∈ Nn. Suppose there ex-

ist i3 ∈ Nn, ε3 > 0 and t3 > t0 such that li3(t3) = max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
+ ε3, and

lj(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
+ ε3 for t ∈ (−∞, t3] and j ∈ Nn, then D+li3(t)

∣∣∣∣
t=t3

> 0.

In contrast

D+li3(t)
∣∣∣∣
t=t3

≤ −αi3(t3)li3(t3) + η−1
i3

n

∑
j=1
|βi3 j(t3)| f jηjlj(t3) + η−1

i3

n

∑
j=1
|γi3 j(t3)|Gjηj sup

t3−τi3 j(t3)≤s≤t3

lj(s)

= −αi3(t3)

(
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ε3

)

+ η−1
i3

n

∑
j=1
|βi3 j(t3)|Fjηj

(
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ε3

)

+ η−1
i3

n

∑
j=1
|γi3 j(t3)|Gjηj

(
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ε3

)

= −
[

αi3(t3)− η−1
i3

n

∑
j=1

(|βi3 j(t3)|Fj + |γi3 j(t3)|Gj)ηj

](
max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
+ ε3

)
≤ 0,

This is a contradiction. Then we get li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)−ψ

(2)
k (θ)|

ηk

}
for t ≥ t0 and i ∈ Nn.

Construct the following inequalities:




D+li(t) ≤ −αi(t)li(t) + η−1
i

n
∑

j=1
|βij(t)|Fjηjlj(t) + η−1

i

n
∑

j=1
|γij(t)|Gjηj sup

t−τij(t)≤s≤t
lj(s), t ≥ T,

li(t) = li(t), t ∈ (−∞, T],

and define

Γi(λ) :=
λ

αi
+

n

∑
j=1

ρeλτij − 1.
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Similar to the proof of Theorem 2, one can find a λ > 0 such that

li(t) ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
T α(u)du, t ∈ [T,+∞).

then we have following estimates

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηi, t ∈ [t0, T],

and

|q(1)i (t)− q(2)i (t)| ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
ηie−λ∗

∫ t
T α(s)ds, t ≥ T.

This completes the proof.

Remark 6. Theorem 3 implies system (1) is globally generalized exponential stable. In fact that for
t ∈ [t0, T), from the nonnegativity of α(u), we get

‖q(1)(t)− q(2)(t)‖ ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)dueλ
∫ t

t0
α(u)du

= CT max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)du,

where CT = eλ∗
∫ T

t0
α(s)ds. For t ≥ T, we get

‖q(1)(t)− q(2)(t)‖ ≤ max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)dueλ
∫ T

t0
α(u)du

= CT max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)du.

So from the above, we get

‖q(1)(t)− q(2)(t)‖ ≤ CT max
k∈Nn

{ sup
t≤t0

|ψ(1)
k (θ)− ψ

(2)
k (θ)|

ηk

}
e−λ

∫ t
t0

α(u)du, t ≥ t0.

Then system (1) is globally generalized exponential stable.

Remark 7. Lu et al. [38] considered the globally generalized exponential stability of (1). Under
condition (C.2) and the following conditions

(C.1′) For each i, j ∈ Nn, αi(s) > 0, βij(s), γij(s) and Ii(s) are all continuous functions defined
on [t0,+∞).

(C.6′) For each i ∈ Nn,
n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj) ≤ αi(t), t ∈ [t0,+∞),
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and

lim sup
t→+∞

{
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)

αi(t)

}
< 1.

(C.7′) For i, j ∈ Nn, there exists a l ∈ Nn such that

lim
t→+∞

∫ t

0
αl(s)ds→ +∞, sup

t−τij(t)≥0

{ ∫ t

t−τij(t)
αl(s)ds

}
< +∞, and sup

t≥t0

{
αl(s)
αi(s)

}
< ∞.

Then, system (1) is globally generalized exponential stable. We mention here that if we choose
η1 = η2 = . . . = ηn = 1, then our condtions are similar to the conditions in [38], but less conserva-

tive, the results in [38] do not work if αi(t) = 0 at some time, or sup
t−τij(t)≥t0

{ ∫ t
t−τij(t)

αi(s)ds
}

=

+∞ for all i ∈ Nn. Besides, sup
t−τij(t)≥t0

{ ∫ t
t−τij(t)

αi(s)ds
}

= +∞ is quite restrictive. For instance,

when αi(t) = c > 0, and the delay functions are infinite, then the condition

sup
t−τij(t)≥t0

{ ∫ t
t−τij(t)

αi(s)ds
}

= +∞ is not satisfied. However, in such cases, we have the flexibil-

ity to select a suitable α(t) that aligns with our condtions. so this paper enhances and broadens the
results in [38].

4. Examples

This section gives four illustrative examples to demonstrate the practical applicability
of the theoretical results. To enhance the clarity of the obtained results, we employ a linear
representation instead of a nonlinear one.

Example 1. Consider the following NNs with proportional delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(0.5t))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (16)

where α1(t) = 6(t2 + 3t + 1), α2(t) = 4(t2 + 4t + 1), β11(t) = t2 + 4t + 1, β12(t) = 2(t2 +
2t+ 1), β21(t) = t2 + 6t+ 1, β22(t) = t2 + 5t+ 1, γ11(t) = 2(t2 + t+ 1), γ12(t) = t2 + 5t+ 1,
γ21(t) = t2 + 3t + 1, γ22(t) = t2 + 1, h1(t) = 60t, h2(t) = 60t, τ11(t) = τ21(t) = τ12(t) =
τ22(t) = 0.5t, f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1|, ψ(0) = (15, 15). It can be verified
that, F1 = F2 = G1 = G2 = 1. Obviously, η1 = η2 = 1, µ1 = 20 and µ2 = 20. we can find
conditions (C.1)–(C.3) are satisfied, from Theorem 1, we get

|q1(t)| ≤ 20, |q2(t)| ≤ 20, t ≥ 0.

Then system (16) is dissipative, while the ball B(0, 20) serves as both a globally attracting and an
absorbing set, as depicted in Figure 1.

Remark 8. All the coefficient and delay functions of Example (1) are unbounded.

Example 2. Consider the following NNs with proportional delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(0.5t))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (17)

where α1(t) = 8(t + 1), α2(t) = 6(t + 2), β11(t) = t + 1, β12(t) = 4(t + 1), β21(t) =
0.5(t + 2), β22(t) = t + 2, γ11(t) = t + 1, γ12(t) = 2(t + 1), γ21(t) = 0.25(t + 2), γ22(t) =
t + 2, h1(t) = 60(t + 1), h2(t) = 25(t + 2), τ11(t) = τ21(t) = τ12(t) = τ22(t) = 0.5t,
f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1| and ψ(1)(0) = (40, 20) and ψ(2)(0) = (10, 10).
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It can be verified that, F1 = F2 = G1 = G2 = 1, ρ
(1)
11 = 1

8 , ρ
(1)
12 = 1

2 , ρ
(1)
21 = 1

12 , ρ
(1)
22 = 1

6 ,

ρ
(2)
11 = 1

8 , ρ
(2)
12 = 1

4 , ρ
(2)
21 = 1

24 , ρ
(2)
22 = 1

6 .

Choose η1 = 1, η2 = 0.5 and α(t) = 1
t+1 , then sup

t≥0

{ ∫ t
0.5t

1
s+1 ds

}
= ln 2, α1 = 8 and

α2 = 6. One can find λ1 = λ2 = 1, and µ1 = µ2 = 20. Then conditions of (C.1)–(C.5) are
satisfied, for different initial values ψ(1) and ψ(2), from Theorem 2, we get

|q(1)1 (t)| ≤ 20
t + 1

+ 20, |q(1)2 (t)| ≤ 10
t + 1

+ 10,

|q(2)1 (t)| ≤ 20, |q(2)2 (t)| ≤ 10,

|q(1)1 (t)− q(2)1 (t)| = 30
t + 1

, |q(1)2 (t)− q(2)2 (t)| = 15
t + 1

,

which are shown in Figures 2–4, respectively.

Figure 1. q1(t) and q2(t) of Example 1.

Figure 2. q(1)1 (t) and q(1)2 (t) of Example 2 and their estimates.
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Figure 3. q(2)1 (t) and q(2)2 (t) of Example 2.

Figure 4. |q(1)1 (t)− q(2)1 (t)| and |q(1)2 (t)− q(2)2 (t)| of Example 2 and their estimates.

Remark 9. All the coefficient, activation and delay functions in Example 2 are unbounded, and
sup
t≥0

∫ t
0.5t αi(s)ds = +∞, for i = 1, 2, which means that the results in [22,26,27,32,33,35–38] can

not solve this case.

Example 3. Consider the following 2-dimensional NNs with time-varying delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(t− τij(t)))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (18)

where, α1(t) = 5(1− sin t), α2(t) = 7(1− sin t), β11(t) = 1− sin t, β12(t) = 5(1− sin t),
β21(t) = 0.4(1− sin t), β22(t) = 2(1− sin t), γ11(t) = (1− sin t)e−π−2, γ12(t) = 5(1−
sin t)e−π−2, γ21(t) = 0.4(1 − sin t)e−π−2, γ22(t) = (1 − sin t)e−π−2, h1(t) = 20(1 −
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sin t)(3− 2e−π−2), h2(t) = 12(1− sin t)(1− e−π−2), τ11(t) = τ21(t) = τ12(t) = τ22(t) =
π| cos t|, f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1|, ψ(1)(0) = (40, 8) and ψ(2)(0) = (1, 1).

It can be verified that, F1 = F2 = G1 = G2 = 1, ρ
(1)
11 = 1

5 , ρ
(1)
12 = 1, ρ

(1)
21 = 2

35 , ρ
(1)
22 = 2

7 ,

ρ
(2)
11 = 1

5eπ+2 , ρ
(2)
12 = 1

eπ+2 , ρ
(2)
21 = 2

35eπ+2 , ρ
(2)
22 = 1

7eπ+2 .

Choose η1 = 1, η2 = 0.2 and α(t) = 1− sin t, then sup
t≥0

∫ t
t−τij(t)

(
1− sin s

)∗
ds = π + 2,

α1 = 5 and α2 = 7. We can find λ1 = λ2 = 1, and µ1 = µ2 = 20. Then conditions (C.1)–(C.5)
are satisfied, for different initial values ψ(1) and ψ(2), from Theorem 2, we get

|q(1)1 (t)| ≤ 20e−t+1−cost + 20, |q(1)2 (t)| ≤ 4e−t+1−cost + 4,

|q(2)1 (t)| ≤ 20, |q(2)2 (t)| ≤ 4,

|q(1)1 (t)− q(2)1 (t)| = 39e−t+1−cost, |q(1)2 (t)− q(2)2 (t)| = 7.8e−t+1−cost,

which are shown by Figures 5–7, respectively.

Figure 5. q(1)1 (t) and q(1)2 (t) of Example 3 and their estimates.

Figure 6. q(2)1 (t) and q(2)2 (t) of Example 3.
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Figure 7. |q(1)1 (t)− q(2)1 (t)| and |q(1)2 (t)− q(2)2 (t)| of Example 3 and their estimates.

Remark 10. It is worth noting that αi(t) = 0, for t = π
2 + 2kπ, k ∈ N and i = 1, 2 as well as the

delay functions π| cos t| lack differentiability at points where t = kπ + π
2 for k ∈ N, which make

the results in [22,26,28,32,33,36,37] be invalid.

Example 4. Consider the following 2-dimensional NNs with proportional delays:

dqi(t)
dt

=− αi(t)qi(t) +
2

∑
j=1

[
βij(t) f j(qj(t)) + γij(t)gj(qj(t− τij(t)))

]
+ hi(t), i = 1, 2, t ∈ [0,+∞), (19)

where α1(t) = 8, α2(t) = 6, β11(t) = β12(t) = β21(t) = γ11(t) = γ12(t) = γ21(t) = 2
for t ∈ [0, 5), β11(t) = β12(t) = β21(t) = γ11(t) = γ12(t) = γ21(t) = 1 for t ≥ 5,
β12(t) = γ22(t) = 1 for t ∈ [0, 5), β12(t) = γ22(t) = 0.5 for t ≥ 10, h1(t) = 5, h2(t) = 6,
τ11(t) = τ21(t) = τ12(t) = τ22(t) =

√
t + 1, f1(q1) = f2(q1) = g1(q1) = g2(q1) = |q1|,

ψ(1)(t) = (40, 8) and ψ(2)(t) = (1, 1) for t ∈ [−1, 0].
It can be verified that, F1 = F2 = G1 = G2 = 1. Obviously, η1 = η2 = 1, then

n

∑
j=1

(|βij(t)|Fj + |γij(t)|Gj) ≤ αi(t), t ∈ [0,+∞),

and

sup
{t|t≥5}−{t|ηiαi(t)=

n
∑

j=1
(|βij(t)|Fj+|γij(t)|Gj)ηj=0}

{
n
∑

j=1
(|βij(t)|Fj + |γij(t)|Gj)ηj

ηiαi(t)

}
= 0.5 < 1.

Choose α(t) =
√

5
t , t ≥ 5, then α1 = 8, α2 = 6 and sup

t−
√

t+1≥5

{ ∫ t
t−
√

t+1

√
5
s

}
= 4
√

10− 10.

We can find λ∗ ≤ 0.245. Then conditions of (C.1), (C.2), (C.6) and (C.7) are satisfied, from
Theorem 3, we get the following estimate

‖q(1)(t)− q(2)(t)‖ ≤ e1(t) :=

{
20, t ∈ [0, 5],
20e−0.245(2

√
5t−10), t ∈ (5,+∞),

57



Mathematics 2024, 12, 155

which are illustrated by Figure 8.

Figure 8. q1(t) and q2(t) of Example 4 and their estimate.

Remark 11. We note that sup
t≥0

∫ t
t−
√

t+1 αi(s)ds = +∞, for i = 1, 2, which makes the results

in [38] be invalid.

5. Conclusions

In this paper, we obtained some criteria on dissipativity and globally generalized
exponential stability of a class of NNs with delays by constructing some generalized
Halanay inequalities. We mention here that our coefficient functions and delay functions
can be all unbounded, and our results improve and generalize some existing works [5,35,38].
At last, four numerical examples have shown the effectiveness of our main results.

Our method has its limitations, when the αi(t) is oscillation, such as αi(t) = 0.5 + sint,
our method is invalid in this case. The author will investigate this case in the future.
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Abstract: Due to the facts that epidemic-related parameters vary significantly in different stages of
infectious diseases and are relatively stable within the same stage, infectious disease models should
be switch-type models. However, research on switch-type infectious disease models is scarce due
to the complexity and intricate design of switching rules. This scarcity has motivated the writing
of this paper. By assuming that switching instants and impulse times occur at different moments,
this paper proposes switch rules suitable for impulse control and derives synchronization criteria for
reaction–diffusion switch-type infectious disease systems under impulse control. The effectiveness
of this method is validated through numerical simulations. It is important to mention that, based
on the information available to us, this paper is currently the sole study focusing on switch-type
reaction–diffusion models for infectious diseases.

Keywords: reaction–diffusion; Lyapunov–Krasovskii functional; switched epidemic systems; impulsive
control
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1. Introduction

As is well known, infectious diseases exhibit significant diffusion effects, and, thus,
reaction–diffusion epidemic models have been recently studied in the literature. Stability
analysis and synchronization control of infectious disease models have theoretical impli-
cations in practical epidemic management [1,2]. For instance, in reference [3], the author
explored the stability of the wavefront in a delayed monostable reaction–diffusion epidemic
system. The motivation behind the extensive focus on the dynamical stability of infectious
disease models is rooted in the inherent difficulty of completely eliminating such diseases.
Achieving stability in the interaction between susceptible and infected populations is a cru-
cial objective in the realm of infectious disease prevention and control [3–10]. Reference [4],
for example, conducted research on susceptible–infected–recovered dynamics, taking into
account the impact of the healthcare system. Their study considered a general incidence
rate function and recovery rate dependent on the number of hospital beds, establishing
the existence, uniqueness, and boundedness of the model. It extensively investigated all
possible steady-state solutions and their stability. In another case, reference [5] explored
an epidemic model incorporating an incubation period, newborns, and vaccination for
susceptible individuals. Their study demonstrated global stability through Lyapunov
functions. Reference [6] derived stability conditions for an infectious disease model with
delays by constructing appropriate Lyapunov functionals. Reference [7] delved into an SIR
epidemic model with nonlinear incidence and delay, discussing the local stability of equi-
librium states, both disease-free and endemic, through the analysis of the corresponding
characteristic equation. Moreover, synchronization control of infectious disease models
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holds theoretical significance in practical epidemic management [1,2,11–15]. Reference [11]
highlighted long-term spatiotemporal disease occurrence data indicating synchronization
in many frequently occurring epidemics, especially childhood infections, between suburbs.
The authors employed modeling techniques to elucidate the existence of synchronization
phenomena. Reference [12] proposed a synchronization-based method for identifying
parameters and estimating latent variables from real data in epidemic models. An adaptive
synchronization method, based on an observer approach, was suggested, utilizing effective
guiding parameters derived solely from real data. To validate identifiability and estima-
tion results, a numerical simulation of a tuberculosis model was conducted using actual
data from the central region of Cameroon. This study demonstrated that certain tools of
nonlinear system synchronization can aid in addressing parameter and state estimation
problems in the field of epidemiology. Reference [13] investigated synchronization be-
tween two identical susceptible–infected–recovered chaotic systems with fractional-order
time derivatives.

The inclusion of a specific incubation period in infectious diseases necessitates the
incorporation of models with delayed feedback in the mathematical modeling of these
diseases. However, research in this field is very rare, which has motivated the writing of this
article. Additionally, infectious diseases exhibit significant differences at different stages,
and switch systems provide a good representation of infectious disease models. However,
switch-type infectious disease models are seldom studied, providing another motivation for
this article. Therefore, this article aims to investigate reaction–diffusion delayed feedback
epidemic systems and intends to achieve synchronous control of infectious disease switch
models through the use of pulse control techniques.

This article introduces innovations in three aspects:

♦ For the first time, this article introduces synchronous control of switch-type infectious
disease models.

♦ For the first time, this article develops switching rules for infectious disease models.
♦ For the first time, this article successfully derives global exponential synchronization

criteria specifically for impulse reaction–diffusion infectious disease models.

2. System Description

Recently, reaction–diffusion epidemic models have been studied in the literature. For
instance, in the year 2020, reference [1] considered a reaction–diffusion epidemic model. In
the year 2022, the authors of reference [2] investigated a delayed impulse reaction–diffusion
epidemic model.





∂X(x, t)
∂t

= D∆X(x, t) + A(t)X(x, t) + β(t) f (t, X(x, t)), x ∈ Ω, t > t0, t 6= tk,

X(t+k , x)− X(t−k , x) = MkX(tk − υk, x), k ∈ N, x ∈ Ω,

∂X(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

(1)

where X(x, t) = (X1(x, t), X2(x, t), X3(x, t))T , and the function X1(x, t) is the fraction of the
susceptible population, X2(x, t) is the infected fraction, X3(x, t) is the recovered fraction,
and 0 < Xi < 1 for i = 1, 2, 3. In addition,

D =




d1 0 0
0 d2 0
0 0 d3


, A(t) =




0 0 0
0 −γ(t) 0
0 γ(t) 0


, f (t, X) =



−X1X2
X1X2

0


, (2)

Moreover, the disease transmission rate is denoted by β(t), and the recovery rate
is denoted by γ(t). Taking into account the practical situation of delayed feedback in
epidemic models, this paper considers the following delayed feedback epidemic model:

62



Mathematics 2024, 12, 447





∂X(x, t)
∂t

= Dσ∆X(x, t) + AσX(x, t) + βσ f (t, X(x, t)) + Kσ(X(x, t)− X(t− υ(t), x)), x ∈ Ω, t > t0, t 6= tk,

X(tk, x) = MkX(t−k , x), k ∈ N, x ∈ Ω,

X(x, t) = 0, x ∈ ∂Ω, t > 0,

(3)

where Kσ is a family of positive definite diagonal matrices, which represents the delayed
feedback parameters under the switching mode σ. Here, σ ∈ N , {1, 2, · · · , N}. tk
represents the moments of pulses, satisfying 0 < t1 < t2 < · · · < tk < tk+1 < · · · with
lim
k→∞

tk = +∞. Assume that Xi(t+k ) = lim
t→t+k

Xi(t) = Xi(tk), i = 1, 2, 3.

Dσ =




dσ1 0 0
0 dσ2 0
0 0 dσ3


, Aσ =




0 0 0
0 −γσ 0
0 γσ 0


, f (t, X) =



−X1X2
X1X2

0


. (4)

Here, βσ and γσ are positive scalars for σ ∈ N, and Dσ is the diffusion coefficient matrix.
System (3) is the drive system , and its response system can be considered as follows:





∂Y(x, t)
∂t

= Dσ∆Y(x, t) + AσY(x, t) + βσ f (t, Y(x, t)) + Kσ(Y(x, t)−Y(t− υ(t), x)), x ∈ Ω, t > t0, t 6= tk,

Y(tk, x) = MkY(t−k , x), k ∈ N, x ∈ Ω,

Y(x, t) = 0, x ∈ ∂Ω, t > 0,

(5)

Then, the error system is proposed as follows:




∂e(x, t)
∂t

= Dσ∆e(x, t) + Aσe(x, t) + βσF(t, e(x, t)) + Kσ(e(x, t)− e(t− υ(t), x)), x ∈ Ω, t > t0, t 6= tk,

e(tk, x) = Mke(t−k , x), k ∈ N, x ∈ Ω,

e(x, t) = 0, t > 0, x ∈ ∂Ω,

e(0, x) = ϕ(x), x ∈ Ω,

(6)

where e = X−Y, υ(t) is the time delay with υ(t) ∈ [−υ, 0] and υ > 0.

F(e(x, t)) = f (t, X(x, t))− f (t, Y(x, t)) =



−X1X2 + Y1Y2
X1X2 −Y1Y2

0


 (7)

Additionally, Dσ, Aσ, and f are defined in (4).
Obviously, −1 < ei < 1.

Definition 1. If the error system (6) is globally exponentially stable with a convergence rate of λ
2 ,

then we say that system (5) globally exponentially synchronizes to system (3) with a synchronization
rate of λ

2 .

Definition 2. To establish the switching rule F:

σ(t) = arg min ξTTσξ. (8)

(F1) Choose the initial mode σ(t) = i0, if ξ(t0) ∈ Γi0 .
(F2) For each t > t0, if σ(t−) = i and ξ ∈ Γi, keep σ(t) = i. On the other hand, if σ(t−) = i

but ξ 6∈ Γi, i.e., hitting a switching surface, choose the next mode by applying (8) and begin to
switch.
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Here, we assume that the switching moment and the impulse moment do not occur simultane-
ously and

Γi = {ξ ∈ R3, ξTTiξ < 0}, i = 1, 2, · · · , N, (9)

Tσ ,
λmax(Θσ)

λmin(P)
P− (ς− λ)P,

and

Θσ = −λ1(PDσ + DσP) + PAσ + AT
σ P + PKσ + KσP + 5βσE + PKσ + µeλυλmax(Kσ)P,

where µ > 1 is a scalar, E is an identity matrix, P is an undetermined positive definite symmetric
matrix, and λ1 is the smallest positive eigenvalue of the following eigenvalue problem:

{
−∆ϕ(x) =λϕ(x), x ∈ Ω ⊂ Rn,

ϕ(x) =0, x ∈ ∂Ω.

Remark 1. Firstly, from Figure 1, we can see that the pulse moment and the switching moment do
not occur simultaneously. That is, the state transition curve does not exhibit a pulse burst shape.
The dynamic indications caused by the pulse only show significant changes around the switching
points. Secondly, the idea of state-dependent switching can be briefly described in Figure 1. The
solutions initiate from different initial points within mode 1 (Ω1). Subsequently, upon reaching
the boundary of mode 1, where it intersects exclusively with mode 2 (Ω2), the system transitions to
mode 2, as illustrated by the blue curve in Figure 1. Similarly, when reaching the boundary of mode
1 that intersects exclusively with mode 3 (Ω3), the system switches to mode 3, represented by the
red curve in Figure 1. Lastly, upon reaching the boundary of mode 1, which intersects with both
mode 2 and mode 3, the system undergoes a switch to the mode determined by the minimum of law
(8), as depicted by the black curve in Figure 1.

Figure 1. Switching behavior under impulse.

Lemma 1 ([16]). Let x ∈ Rn, y ∈ Rn, and ε > 0. Then, we have

xTy + yTx 6 εxTx + ε−1yTy.

Lemma 2 ([17]). Suppose V ∈ v0 and several positive scalars p, c, k1, k2, ς, λ > 0, µ > 1, and
ς− λ > c, satisfying:

(i) a1‖x‖p 6 V(t, x) 6 a2‖x‖p, for any t ∈ R+ and x ∈ Rn;
(ii) D+V(t, ϕ(0)) 6 cV(t, ϕ(0)), t ∈ [tk−1, tk), k ∈ N, whenever qV(t, ϕ(0)) > V(t +

s, ϕ(s)) for s ∈ [−υ, 0], where q > µeλυ is a scalar;
(iii) V(tk, ϕ(0) + Ik(tk, ϕ)) 6 dkV(t−k , ϕ(0)), where 0 < dk−1 6 1,∀ k ∈ N, are scalars;
(iv) ς > 1

dk−1
and ln dk−1 < −(ς + λ)(tk − tk−1), k ∈ N.

Then, the null solution of the delayed differential equation with impulse





ẋ(t) = f (t, xt), t 6= tk, t > t0, k ∈ Z+;

∆x(tk) = Ik(tk, xtk
−)k ∈ Z+;

xt0 = ϕ.
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is globally exponentially stable with a convergent rate λ
p for any time delays υ ∈ (0, ∞).

3. Main Results

Theorem 1. System (5) globally exponentially asymptotically synchronizes with system (3), and
its synchronization rate is λ

2 , if the following conditions (a)–(c) are satisfied:
(a) There is a scalar m0 > 0 such that

0 < λmax(Mk) 6 m0 < 1, ∀ k = 1, 2, · · · (10)

(b) There exist scalars ς > 0 and λ > 0 such that

ς > 1
m2

0
(11)

and
ln m2

0 < −(ς + λ)(tk − tk−1), k ∈ N (12)

(c) There exist scalars αi > 0 with
N
∑

i=1
αi = 1 such that

Λ ,
N

∑
i=1

αi
λmax(Θi)

λmin(P)
P− (ς− λ)P < 0. (13)

Proof. Consider the following Lyapunov–Krasovskii functional,

V(t) =
∫

Ω
eT(x, t)Pe(x, t)dx. (14)

Let ‖e(t)‖2 =
∫

Ω eT(x, t)e(x, t)dx, where P is a positive definite symmetric matrix.
Then, there are k1, k2 > 0 such that

k1‖e(t)‖2 6 V(t) 6 k2‖e(t)‖2,

which satisfies condition (i) of Lemma 2.
Due to 0 < Xi < 1, 0 < Yi < 1, and (7), we can see this by using the differential along

the trajectory of system (6) that

D+V = 2
∫

Ω
eT(x, t)P

(
Dσ∆e(x, t) + Aσe(x, t) + βσF(t, e(x, t)) + Kσ(e(x, t)− e(t− υ(t), x))

)
dx

6
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP
)

e(x, t)dx + 2βσ

∫

Ω
eT(t)F(t, e(t))dx

− 2
∫

Ω
eT(t)PKσe(t− υ(t))dx

6
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP + 5βσE + PKσ

)
e(x, t)dx

+
∫

Ω
eT(t− υ(t))PKσe(t− υ(t))dx

6
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP + 5βσE + PKσ

)
e(x, t)dx

+
∫

Ω
eT(t− υ(t))PKσe(t− υ(t))dx

(15)

If there exists µ > 1 such that µeλυ
∫

Ω eT(x, t)Pe(x, t)dx >
∫

Ω eT(t − υ(t), x)Pe(t −
υ(t), x)dx, by (15), we can obtain that
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D+V 6
∫

Ω
eT(x, t)

(
− λ1(PDσ + DσP) + PAσ + AT

σ P + PKσ + KσP + 5βσE + PKσ + µeλυλmax(Kσ)P
)

e(x, t)dx

6
∫

Ω
eT(x, t)λmax(Θσ)e(x, t)dx 6 λmax(Θσ)

λmin(P)

∫

Ω
eT(x, t)Pe(x, t)dx =

λmax(Θσ)

λmin(P)
V(t)

(16)

Next, we will derive the following inequlity based on the switching rule F from (16).

D+V 6 (ς− λ)
∫

Ω
eT(x, t)Pe(x, t)dx. (17)

Firstly, we claim that
N⋃

i=1

Γi = R3 \ {0} (18)

Indeed, since there exist scalars αi > 0 with
N
∑

i=1
αi = 1 such that Λ ,

N
∑

i=1
αi

λmax(Θi)
λmin(P) P−

(ς − λ)P < 0. Hence, utilizing proof by contradiction, it is not difficult to deduce the
validity of equation (18). With the establishment of equation (18), we can now prove the
validity of (17).

In fact, according to the switching law F, when σ(t−) = i and e(x, t) ∈ Γi, we can
obtain, by the definition of Ti, that

0 > e(x, t)TTie(x, t) = e(x, t)T [
λmax(Θi)

λmin(P)
− (ς− λ)]e(x, t)T

D+V 6 λmax(Θi)

λmin(P)

∫

Ω
eT(x, t)Pe(x, t)dx 6 (ς− λ)

∫

Ω
eT(x, t)Pe(x, t)dx

Note that the above expression also holds when e(x, t) = 0. Therefore, overall, we
only need to consider the case where e(x, t) 6= 0.

When σ(t−) = i and e(x, t) 6∈ Γi, this means that the trajectory hits a switching surface.
Due to (18), the minimum law (8) deduces that there must exist a Γj such that e(x, t) ∈ Γj
and

0 > e(x, t)TTje(x, t) = e(x, t)T [
λmax(Θj)

λmin(P)
− (ς− λ)]e(x, t)T

D+V 6
λmax(Θj)

λmin(P)

∫

Ω
eT(x, t)Pe(x, t)dx 6 (ς− λ)

∫

Ω
eT(x, t)Pe(x, t)dx

To this end, we obtain D+V 6 (ς− λ)
∫

Ω eT(x, t)Pe(x, t)dx if µeλυV(t) > V(t− υ(t)),
i.e.,

µeλυ
∫

Ω
eT(x, t)Pe(x, t)dx >

∫

Ω
eT(t− υ(t), x)Pe(t− υ(t), x)dx

In other words, condition (ii) of Lemma 2 is satisfied.
Additionally,

V(tk) =
∫

Ω
eT(tk, x)Pe(tk, x)dx =

∫

Ω
eT(t−k , x)MT

k PMke(t−k , x)dx 6 m2
0V(t−k ),

which implies that condition (iii) of Lemma 2 holds.
Furthermore, based on the conditions of Theorem 1, condition (iv) of Lemma 2

is satisfied.
Therefore, according to Lemma 2, error system (6) is globally exponentially stable with

a convergence rate of λ
2 . In other words, system (5) is globally exponentially synchronized

with system (3), and its synchronization rate is λ
2 .
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Remark 2. Theorem 1 ingeniously addresses the challenges of synchronizing control that arise
from the interplay of reaction–diffusion processes, time delays, and impulsive control. Specifically,
it overcomes the mathematical difficulties induced by the diffusion term by employing Poincare
inequalities, designs an appropriate Lyapunov function, sets suitable pulse intervals and pulse
intensities, and, ultimately, achieves synchronization control through the utilization of the delayed-
impulse inequalities lemma.

Remark 3. The switching rule of Theorem 1 is different from the switching rule in reference [18].
Meanwhile, synchronization control results for epidemic models have been achieved using impulse
control. This is the first time that synchronization control has been obtained for a reaction–diffusion
epidemic model under a switching rule.

Discussion 1. In epidemic prevention and control, the impulse moment is artificially determined
and may not coincide with the switching moment. Therefore, this paper assumes that the impulse
moment and switching moment do not occur simultaneously, which is reasonable. However, if one
were to consider their simultaneous occurrence, the design of switching rules in this paper would
need further consideration and discussion. This poses an interesting question worth exploring in
more depth.

Discussion 2. Stochastic perturbations and stochastic models are widely employed in various
fields, including infectious disease models ([6,19,20]). Exploring how to control the dynamics of
infectious diseases through impulse control under stochastic perturbations is an intriguing question.

4. Numerical Example

Now, we verify the effectiveness of Theorem 1 via the following numerical example.

Example 1. Let Ω = [0, 1] × [0, 1] ⊂ R2. Then, λ1 = 2π2 = 19.7392 ([21], Remark 14).
In addition, set N = 3 and N = {1, 2, 3}. Then, σ ∈ {1, 2, 3}. Let β1 = 0.1, β2 = 0.15,
β3 = 0.2, and

D1 =




0.4 0 0
0 0.3 0
0 0 0.3


, A1 =




0 0 0
0 −0.1 0
0 0.1 0


, K1 =




0.15 0 0
0 0.13 0
0 0 0.13


,

D2 =




0.35 0 0
0 0.37 0
0 0 0.4


, A2 =




0 0 0
0 −0.15 0
0 0.15 0


, K2 =




0.2 0 0
0 0.15 0
0 0 0.18


,

D3 =




0.5 0 0
0 0.4 0
0 0 0.38


, A3 =




0 0 0
0 −0.2 0
0 0.2 0


, K3 =




0.19 0 0
0 0.23 0
0 0 0.23


.

Set P = E, µ = 1, υ = 1, andλ = 1. Then,

Θ1 =



−14.4336 0 0

0 −10.7458 0.1000
0 0.1000 −10.5458


, Θ2 =



−11.9238 0 0

0 −13.1634 0.1500
0 0.1500 −13.9577


,

Θ3 =



−17.5340 0 0

0 −13.9562 0.2000
0 0.2000 −12.7366




λmax(Θ1) = −10.5044, λmax(Θ2) = −11.9238, λmax(Θ3) = −12.7046

Θσ = −λ1(PDσ + DσP) + PAσ + AT
σ P + PKσ + KσP + 5βσE + PKσ + µeλυλmax(Kσ)P,
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Tσ ,
λmax(Θσ)

λmin(P)
P− (ς− λ)P,

Let

Mk =




0.9 0 0
0 0.89 0
0 0 0.88


, k = 1, 2, · · ·

Then
m0 = 0.9, m2

0 = 0.81,
1

m2
0
= 1.2346, ln m2

0 = −0.2107

Let ς = 1.3 > 1
m2

0
, tk − tk−1 ≡ 0.09. Then we obtain

0 < λmax(Mk) 6 m0 = 0.9 < 1, ∀ k = 1, 2, · · ·

ς = 1.3 >
1

m2
0

and
ln m2

0 = −0.2107 < −0.2070 = −(ς + λ)(tk − tk−1), k ∈ N

Finally, let αi =
1
3 > 0 with

3
∑

i=1
αi = 1. We can see it that

Λ =
3

∑
i=1

αi
λmax(Θi)

λmin(P)
P− (ς− λ)P < 0.

Thus far, all conditions of Theorem 1 have been satisfied. Therefore, according to Theorem 1,
error system (6) is globally exponentially stable with a convergence rate of 1

2 . In other words, system
(5) is globally exponentially asymptotically synchronized with system (3), and its synchronization
rate is 1

2 (see Figures 2–4).

Figure 2. Numerical result of X1 in (3) and Y1 in (5).
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Figure 3. Numerical result of X2 in (3) and Y2 in (5).

Figure 4. Numerical result of X3 in (3) and Y3 in (5).

Remark 4. Numerical simulation results indicate that, despite the relatively small impulse strength,
significant effectiveness in synchronizing control of the epidemic model can be achieved as long as
an appropriate pulse interval is set. This validates the effectiveness of Theorem 1.

Example 2. In Example 1, let

Mk =




0.5 0 0
0 0.5 0
0 0 0.49


, k = 1, 2, · · ·

Then
m0 = 0.5, m2

0 = 0.25,
1

m2
0
= 4, ln m2

0 = −1.3863

Let ς = 5, tk − tk−1 ≡ 0.2, and other data of Example 1 hold unchanged. Then, we obtain
λ = 1 and

0 < λmax(Mk) 6 m0 = 0.5 < 1, ∀ k = 1, 2, · · ·

ς = 5 > 4 =
1

m2
0
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and
ln m2

0 = −1.38637 < −1.2 = −(ς + λ)(tk − tk−1), k ∈ N

Finally, let αi =
1
3 > 0 with

3
∑

i=1
αi = 1. We can see it that

Λ =
3

∑
i=1

αi
λmax(Θi)

λmin(P)
P− (ς− λ)P < 0.

Thus far, all conditions of Theorem 1 have been satisfied. Therefore, according to Theorem 1,
error system (6) is globally exponentially stable with a convergence rate of 1

2 . In other words, system
(5) is globally exponentially asymptotically synchronized with system (3), and its synchronization
rate is 1

2 (see Figures 5–7).

Figure 5. Numerical result of X1 in (3) and Y1 in (5).

Figure 6. Numerical result of X2 in (3) and Y2 in (5).

70



Mathematics 2024, 12, 447

Figure 7. Numerical result of X3 in (3) and Y3 in (5).

Remark 5. The numerical results indicate that, despite the enlargement of the impulse interval, as
the impulse intensity increases, the convergence speed of synchronization still remains, which can
be listed as Table 1:

Table 1. Comparisons of Example 1 and Example 2.

Impulse Interval Impulse Frequency Impulse Intensity Intensity Degree Convergent Rate

Example 1 0.09 ↑ 0.9 ↓ 1/2

Example 2 0.2 ↓ 0.5 ↑ 1/2

5. Conclusions

Synchronized control flow epidemic models have significant theoretical guidance,
especially when there are substantial differences in the development stages of the epidemic.
For instance, in the recent COVID-19 pandemic, various parameters, such as the number
of infections and susceptible individuals, differ significantly across stages. The truth is
that parameters related to different stages have notable distinctions. Impulse control, in
essence, involves the momentary input intensity of artificial prevention measures and drug
deployment treatment in different stages. Synchronized control under impulse measures
allows for the gradual synchronization of heavily affected areas, where artificial measures
are input in batches, in response to the evolving and fluctuating nature of the epidemic.
This helps reduce the severity of the epidemic in heavily affected areas and gradually
synchronize them with regions where the situation is improving. The synchronized control
epidemic model offers significant theoretical guidance, especially when there are substan-
tial differences in the development stages of the epidemic. Therefore, this paper considers
a switching-type epidemic model. By establishing appropriate switching rules and utiliz-
ing impulse control techniques, global exponential synchronization criteria are obtained.
Numerical examples demonstrate the effectiveness of the proposed methods. It is worth
noting that this paper improves upon some existing methods in the literature and applies
them for the first time to epidemic models, providing insights for a future series of related
improvements.
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Abstract: This paper concerns an improved model-free adaptive fractional-order control with a
high-order pseudo-partial derivative for uncertain discrete-time nonlinear systems. Firstly, a new
equivalent model is obtained by employing the Grünwald–Letnikov (G-L) fractional-order difference
of the input in a compact-form dynamic linearization. Then, the pseudo-partial derivative (PPD) is
derived using a high-order estimation algorithm, which provides more PPD information than the
previous time. A discrete-time model-free adaptive fractional-order controller is proposed, which
utilizes more past input–output data information. The ultimate uniform boundedness of the tracking
errors are demonstrated through formal analysis. Finally, the simulation results demonstrate the
effectiveness of the proposed method.

Keywords: model-free adaptive control; fractional-order; pseudo-partial derivative; discrete-time system

MSC: 37M15

1. Introduction

Recently, the model-free adaptive control (MFAC) method has attracted extensive
attention; it does not need the specific dynamic characteristics of the control system,
only input and output data [1]. Thanks to its fewer identification parameters and fewer
calculations, as well as its wide range of applications, MFAC plays an important role in
many fields and applications [2].

Different from the existing stability analysis for discrete-time (stochastic) systems [3–5],
the main idea of MFAC is to use the concept of a pseudo-gradient to replace the general
discrete-time nonlinear system with a series of dynamic linear time-varying models. In
MFAC, the dynamic linear time-varying model has three main forms, namely, compact-
form dynamic linearization (CFDL) [6], partial-form dynamic linearization (PFDL) [7], and
full-form dynamic linearization (FFDL) [8]. In particular, by utilizing only input–output
data information, equivalent models can be derived by means of the concept of a pseudo-
partial derivative (PPD). Thus, the learning law can be established by treating the PPD as a
time-varying parameter [9,10].

Using a virtual equivalent dynamic linearization data model, the time-varying PPD
estimation algorithm was designed in [11], where the internal stability of the FFDL
linearization-based MFAC scheme was rigorously presented. In [12], a new type of MFAC
method based on an adaptive forgetting factor was proposed. In [13], by taking the affine
structure of the ultra-local model and the extended state observer (ESO), a local PFDL-based
ESO-MFAC was proposed to improve control performance. In order to make the MFAC
scheme have a better performance, a PID-like MFAC with discrete (ESO) sparked interest
in [14]. It is worth pointing out that the above-mentioned work did not consider high-order
PPD estimation.

High-order MFAC is an important branch of MFAC which uses more information to
further improve control performance. In [15], a high-order estimation algorithm was used
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to estimate the value of PPD. An improved high-order MFAC method was proposed in [16],
which not only considered more control knowledge than the previous time, but also used
more information from the previous time in the estimation algorithm.

Fractional-order control is popular in controlling nonlinear systems [17]. In [18], a
data driven model has been established and a discrete time fractional order reaching law
was studied. In [19], a fractional order data-driven model was proposed, which related
the first variation of the output signal with the fractional order variation of the input
one. A fractional data-driven model was presented in [20], where the instantaneous gain
from the fractional output variation to the input one was computed by means of a fuzzy
inference system.

These observations motivate our current study. The main contributions of this paper
can be summarized into two aspects: (1) both the error and its rate of change are introduced
in the control input criterion function, which incorporates a fractional-order operator. Three
weighting coefficients are executed to enhance the system capacity of track abrupt signals
and mitigate sudden external disturbance; (2) by using the high-order PPD estimation
scheme based on previous input and output data, a fractional-order MFAC with high order
estimation to enhance convergence is developed.

The rest of this paper is organized as follows: some preliminaries and the problem
formulation are presented in Section 2. The data-driven control algorithm is given in
Section 3. A theoretical analysis of the enhanced convergent condition is derived in
Section 4. Section 5 provides numerical simulations to illustrate the validity of the designed
method. Finally, some conclusions are drawn in Section 6.

2. System Description

In this paper, we consider the following uncertain discrete-time nonlinear system:

y(k + 1) = f (k, y(k), . . . , y(k− ny), u(k), . . . , u(k− nu)), (1)

where k ∈ {0, 1 · · · , T} indexes the discrete time and T is the terminal time instant. u(k) ∈
R is the control input at time instant k and y(k) ∈ R is the system output at time instant k.
ny, nu ∈ N are two unknown positive integers.

Definition 1 ([21]). The fractional discrete approximation of the G-L derivative for u(k) is de-
fined as

∆nu(k) =
1
hn

k

∑
v=0

(−1)v
(

n
v

)
u(k− v), (2)

where n ∈ R is the fractional order, R is the set of real numbers, h is set to 1 as a sampling time,
and k ∈ N is a number of samples for which the approximation of the derivative is calculated.

The fractional binomial term in (2) can be obtained from the following relation:

(
n
v

)
=

{
1 for v = 0

n(n−1)···(n−v+1)
v! for v > 0

(3)

The following assumptions are considered for the system (1).

Assumption 1. There exist positive constants uM and yM such that |∆nu(k)| ≤ uM and |y(k)| ≤
yM.

Assumption 2. For any k ∈ {0, 1, · · · , T} , the nonlinear function f (·, · · · , ·) satisfies the
Lipschitz condition, that is,

|∆y(k + 1)| ≤ l|∆nu(k)|, (4)

where ∆y(k + 1) = y(k + 1)− y(k), l is a Lipschitz constant.
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Remark 1. The above assumptions are rather standard, and they are taken for granted by several
schemes for the control of discrete-time systems. Assumption 1 gives a limit on the system input and
output change rate. From a practical point of view, Assumption 2 implies that the output variation
depends linearly on the input variation.

By virtue of the second assumption, the dynamic model of (1) can be expressed as

∆y(k + 1) = φ(k)∆nu(k), (5)

where φ(k) satisfies |φ(k)| ≤ l. φ(k) establishes a dynamic relationship between the
input and output data of the system. Therefore, the rapid identification of φ(k) becomes
particularly crucial. This issue will be addressed in the next section. In this paper, we
exclusively address the case of n ∈ (0, 1].

Remark 2. When n = 1, ∆un(k) degenerates to the conventional integer-order cases. φ(k) aligns
with the standard pseudo-partial derivative in CFDL. For n ∈ (0, 1), due to the short-memory
characteristics of a fractional-order operator [21], the controller compensates for more information
from the previous time; therefore, the robustness of the system’s equivalent model can be enhanced.
This contributes to a smoother execution of dynamic linearization, enabling a faster convergence of
the estimated φ̂(k) to the desired φ(k).

Assumption 3. For any k ∈ {0, 1 · · · , T}, the PPD satisfies ε ≤ φ(k) (or φ(k) ≤ −ε ), where ε
is a relatively small positive constant.

Remark 3. Most of the plants, in practice, can satisfy Assumption 3. Its practical meaning is
obvious, that is, the plant output should increase (or decrease) when the corresponding control input
increases.

3. Design of Model-Free Adaptive Fractional-Order Controller

The following improved calculation criteria are considered:

J(u(k)) =
[
eT(k + 1) ∆eT(k + 1)

]
Qe

[
e(k + 1)

∆e(k + 1)

]
+ λ

∣∣∆nu(k)
∣∣2, (6)

where
e(k + 1) = yd(k + 1)− y(k + 1)

and
∆e(k + 1) = e(k + 1)− e(k)

represent the tracking error and its rate of change, respectively. yd(k) is the desired
trajectory. Qe1 and Qe2 ∈ R are positive weight coefficients in Qe = diag{Qe1, Qe2}.
λ > 0 is a penalty factor, which is used in order to limit the control input variation.

Remark 4. In the input criterion function (6), the first term is the square of the output error. The
second term is the rate of change of the error at two adjacent moments. This is used to reduce the
impact of excessive changes in the criterion function calculation by the output data.

Substituting (5) into the criterion function (6), we can obtain

J(u(k)) = Qe1|yd(k + 1)− y(k)− φ(k)∆nu(k)|2 + Qe2|yd(k + 1)− y(k)− φ(k)∆nu(k)− e(k)|2

+ λ
∣∣∆nu(k)

∣∣2. (7)
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Through calculating, this yields

1
2

∂J(u(k))
∂u(k)

= −Qe1φ(k)(yd(k + 1)− y(k)− φ(k)∆nu(k))

− Qe2φ(k)(yd(k + 1)− y(k)− φ(k)∆nu(k)− e(k)) + λ∆nu(k). (8)

Using the optimal technique, one can have

∆nu(k) =
ρφ(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |√Qe1 + Qe2φ(k)|2 ,

where, as a step factor, ρ is designed to make the controller more universal [22].
Note that

∆nu(k) =
k

∑
v=1

(−1)v
(

n
v

)
u(k− v) + u(k). (9)

Thus, an improved model-free adaptive fractional-order controller (I-MFAFOC) can
be expressed by

u(k) =
ρφ(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |√Qe1 + Qe2φ(k)|2 −
k

∑
v=1

(−1)v
(

n
v

)
u(k− v). (10)

Remark 5. Unlike other high-order algorithms designed based on the control input [13,14,16], the
I-MFAFOC algorithm (10) uses yd(k + 1) to update the control input u(k). On the other hand,
compared to the algorithm in [16], the improved algorithm does not need to set the weight coefficients
for the previous control inputs u(k− v), v = 1, · · · , k.

Since φ(k) is unknown, the following universal criteria function with the estimated
parameter are defined:

J(φ(k)) = |∆y(k)− φ(k)∆nu(k− 1)|2 + µ
∣∣φ(k)− φ̂(k− 1)

∣∣2, (11)

where µ is the weight factor. φ̂(k) is the estimated value of φ(k). Equation (11) indicates
that the target-constrained input should be minimized, while the tracking error converges
to a minimum; this implies that φ̂(k) will converge to φ(k).

In this paper, for enhancing tracking performance, a high-order parameter estimation
algorithm for PPD (HOPPD) is proposed here by updating the criterion function (11)
as follows:

J(φ(k)) = |∆y(k)− φ(k)∆nu(k− 1)|2 + µ

∣∣∣∣∣φ(k)−
m

∑
j=1

αjφ̂(k− j)

∣∣∣∣∣

2

, (12)

where m ∈ N+ is the high-order degree and αj are weighting coefficients with ∑m
j=1 αj = 1.

Based on the derivation of (12), as below, and ∂J(φ(k))/∂φ(k) = 0, the estimation
algorithm is expressed by (13)

φ̂(k) =
∆nu(k− 1)∆y(k)

µ + |∆nu(k− 1)|2
+

µη

µ + |∆nu(k− 1)|2
m

∑
j=1

αjφ̂(k− j), (13)

where η is the step length to make the algorithm more flexible [22].
To ensure that the dynamic linearization model is always true, the following reset

algorithm is applied:

φ̂(k) = φ̂(1), if φ̂(k) ≤ ε or
∣∣∣∆nu(k− 1)

∣∣∣ ≤ ε. (14)
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



φ̂(k) = φ̂(k− 1) + η∆nu(k−1)
µ+|∆nu(k−1)|2 (∆y(k)− φ̂(k− 1)∆nu(k− 1)), 2 ≤ k < m

φ̂(k) = ∆nu(k−1)∆y(k)
µ+|∆nu(k−1)|2 +

µη

µ+|∆nu(k−1)|2 ∑m
j=1 αjφ̂(k− j), k ≥ m

(15)

u(k) =
ρφ̂(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |√Qe1 + Qe2φ̂(k)|2 −
k

∑
v=1

(−1)v
(

n
v

)
u(k− v). (16)

Therefore, the overall control strategy of the proposed high-order PPD-based im-
proved model-free adaptive fractional-order controller (HOPPD-I-MFAFOC) is delineated
in Equations (14)–(16). The controller diagram is depicted in Figure 1 with the following
two key points. (1) The PPD is derived using a high-order estimation algorithm. (2) The
fractional-order controller is used to provide a better performance.

Figure 1. Block diagram of the proposed HOPPD-I-MFAFOC.

In comparison with traditional MFAC, HOPPD-I-MFAFOC incorporates more histor-
ical input and output data, enriching the gain parameters by involving φ̂(k) due to the
inclusion of a fractional-order and high-order algorithm.

Remark 6. For practical realization, the number of samples taken into consideration has to be
reduced to the predefined number L ∈ {0, 1, · · · , N} and N < T in the experiment [23].

Remark 7. In the first instance, an initial value needs to be assigned to φ̂(1). Since the calculation
of φ̂(k) relies on the previous m instances, it can only be computed when k ≥ m. Therefore, the
high-order estimation algorithm (15) is applied for k ≥ m. However, in the case of 2 ≤ k < m,
where no previous instances are available, the original estimation algorithm in (16) is utilized.

Remark 8. The application of weighting coefficients αj in the high-order estimation algorithm (15)
is analogous to the use of a forgetting factor. Consequently, they can set α1 ≥ α2 ≥ · · · ≥ αm.

4. Convergence Analysis

The following theorem can be obtained.

Theorem 1. For system (1), if Assumptions 1 and 2 hold, then for k ∈ {0, 1, 2, · · · , T}, φ̂(k) is
bounded with η ∈ (0, 1].
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Proof. When 2 ≤ k < m, the original estimation algorithm in (15) can be rewritten as

φ̂(k) =
(

1− η
|∆nu(k− 1)|2

µ + |∆nu(k− 1)|2
)

φ̂(k− 1) + η
∆nu(k− 1)∆y(k)
µ + |∆nu(k− 1)|2 . (17)

From the assumptions of system (1), one has that

−∞ < η

(
∆nu(k− 1)∆y(k)
µ + |∆nu(k− 1)|2

)
< ∞, (18)

whenever |∆nu(k − 1)∆y(k)| < ∞ since 0 < µ < µ + |∆nu(k − 1)|2. Thus, using the
triangle inequality, we have

|∆nu(k− 1)∆y(k)| ≤ l|∆nu(k− 1)|2, (19)

consequently, according to Assumption 2, we have

∣∣∣∣
∆nu(k− 1)∆y(k)
µ + |∆nu(k− 1)|2

∣∣∣∣ ≤
l|∆nu(k− 1)|2

µ + |∆nu(k− 1)|2 ≤ la1 < ∞. (20)

It is worth noting that |∆nu(k−1)|2
µ+|∆nu(k−1)|2 is monotonically increasing and bounded about

|∆nu(k− 1)|. Set

a1 = sup
k∈[0,T]

{ |∆nu(k− 1)|2
µ + |∆nu(k− 1)|2

}
. (21)

Then, there is a relation that satisfies

0 ≤
∣∣∣∣1− η

|∆nu(k− 1)|2
µ + |∆nu(k− 1)|2

∣∣∣∣ ≤ 1− ηa2 < 1, (22)

where

a2 = inf
k∈[0,T]

{ |∆nu(k− 1)|2
µ + |∆nu(k− 1)|2

}
.

When k ≥ m, by taking the absolute value on both sides, we obtain from (15) that

|φ̂(k)| =

∣∣∣∣∣
∆nu(k− 1)2∆y(k)

µ + |∆nu(k− 1)|2
+

µη ∑m
j=1 αjφ̂(k− j)

µ + |∆nu(k− 1)|2

∣∣∣∣∣ ≤ la1 + |η|
∣∣∣∣∣1−

|∆nu(k− 1)|2
µ + |∆nu(k− 1)|2

∣∣∣∣∣

∣∣∣∣∣
m

∑
j=1

αjφ̂(k− j)

∣∣∣∣∣

≤ la1 + (η − η2a2)

∣∣∣∣∣
m

∑
j=1

αjφ̂(k− j)

∣∣∣∣∣, (23)

where (η− η2a2) ∈ (0, 1), since the boundedness of ∑m
j=1 αjφ̂(k− j) has been demonstrated

before. Therefore, φ̂(k) is uniformly ultimately bounded, as demonstrated in the above
proof. Given that φ(k) is bounded, it follows that φ̂(k) is bounded as well. Additionally,
the PPD estimation error φ̃(k) = φ̂(k)− φ(k) is also bounded. The proof is completed.

Theorem 2. For system (1) with the help of the HOPPD-I-MFAFOC scheme (15) and (16), if
Assumptions 1 and 2 are satisfied and

√
λ >

ερQe1

2
√

Qe1 + Qe2
,

then an error convergence rate 0 < M < 1 is introduced, ensuring that the tracking error e(k)
converges to zero as k→ ∞ with 0 < ρ ≤ 1.
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Proof. Using model (5), we have

|e(k + 1)| =
∣∣∆yd(k + 1)− φ̂(k)∆nu(k) + e(k)

∣∣. (24)

Substituting Equation (9) into the Equation (25), this yields

|e(k + 1)| = |∆yd(k + 1) + e(k)

− ρφ(k)φ̂(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))
λ + |√Qe1 + Qe2φ̂(k)|2 |

≤
∣∣∣∣(1−

ρQe1φ(k)φ̂(k)
λ + |√Qe1 + Qe2φ̂(k)|2 )e(k)

∣∣∣∣

≤
∣∣∣∣1−

ρQe1φ(k)φ̂(k)
λ + |√Qe1 + Qe2φ̂(k)|2

∣∣∣∣|e(k)|. (25)

From Assumption 2 and the reset algorithm (15), the inequality φ(k)φ̂(k) ≥ 0 is
obtained. Furthermore, one has that

[
√

λ±
√

Qe1 + Qe2φ̂(k)]2 = λ + (Qe1 + Qe2)[φ̂(k)]2 ± 2
√

λ(Qe1 + Qe2)φ̂(k) ≥ 0,

and consequently

2
√

λ(Qe1 + Qe2)|φ̂(k)| ≤ λ + (Qe1 + Qe2)[φ̂(k)]2.

Then,
∣∣∣∣1−

ρQe1φ(k)|φ̂(k)|
λ + |√Qe1 + Qe2φ̂(k)|2

∣∣∣∣|e(k)|

≤
∣∣∣∣∣1−

ρQe1φ(k)
2
√

λ(Qe1 + Qe2)

∣∣∣∣∣|e(k)|

≤ (1− εd)2|e(k− 1)| ≤ (1− εd)3|e(k− 2)|
≤ · · · ≤ (1− εd)k|e(1)|, (26)

where
d =

ρQe1

2
√

λmin(Qe1 + Qe2)

is a bounded constant. Therefore, there exists a constant

M = (1− εd) = sup
k∈[0,T]

{∣∣∣∣1−
ρQe1φ(k)|φ̂(k)|

λmin + |
√

Qe1 + Qe2φ̂(k)|2
∣∣∣∣
}

that represents the rate of error convergence. The proof is completed.

Theorem 3. For k ∈ {0, 1, 2, · · · , T}, u(k) and y(k) are bounded, indicating that the closed-loop
system is BIBO stable.
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Proof. The following equation is obtained from Equation (9):

∣∣∣∆nu(k)| =

∣∣∣∣
ρφ(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |√Qe1 + Qe2φ(k)|2
∣∣∣∣ (27)

≤
∣∣∣∣∣

ρQe1

2
√

λ(Qe1 + Qe2)

∣∣∣∣∣|e(k)|

≤ d|(e(k)|. (28)

Apply absolute values to both sides of Equation (2):

|∆nu(k)| =
∣∣∣∣∣

k

∑
v=0

(−1)v
(

n
v

)
u(k− v)

∣∣∣∣∣. (29)

Let

ψ(v) = (−1)v
(

n
v

)

be a function of v, where

−1 < {ψ(1), ψ(2), ψ(3), . . . , ψ(k)} < 0.

The following relation can be derived from (27) and (29):

|∆nu(k)| =
∣∣∣
[
ψ(0) ψ(1) ψ(2) · · · ψ(k− 1)

]>[u(k) u(k− 1) u(k− 2) · · · u(1)
]∣∣∣

≤d|(e(k)|.
(30)

Note that

|u(k)| =|ψ(0)u(k) + ψ(1)u(k− 1)− ψ(1)u(k− 1)|
≤|ψ(0)u(k) + ψ(1)u(k− 1)|+ |ψ(1)u(k− 1)|
≤|ψ(0)u(k) + ψ(1)u(k− 1) + ψ(2)u(k− 2)|
+|ψ(1)u(k− 1)|+ |ψ(2)u(k− 2)|
· · ·

≤|∆nu(k)|+ |ψ(1)u(k− 1)|+ |ψ(2)u(k− 2)|
+ · · ·+ |ψ(k− 1)u(1)|
≤d|(e(k)|+ |ψ(1)u(k− 1)|+ |ψ(2)u(k− 2)|
+ · · ·+ |ψ(k− 1)u(1)|
≤d|(e(k)|+ |ψ(1)||u(k− 1)|+ |ψ(2)||u(k− 2)|
+ · · ·+ |ψ(k− 1)||u(1)|

≤d|(e(k)|+
k−1

∑
p=1
|u(k− p)|,

(31)

where {|ψ(1)|, |ψ(2)|, · · · , |ψ(k)|} < 1. This sequence, through a recursive relation, ex-
presses |u(k)| as a function of the input and error at previous time steps. According to
Equation (31), the following sequence of inequalities is obtained at other times:





|u(k− 1)| ≤ d|(e(k− 1)|+ ∑k−1
p=2|u(k− p)|

|u(k− 2)| ≤ d|(e(k− 2)|+ ∑k−1
p=3|u(k− p)|

· · ·
|u(2)| ≤ d|(e(2)|+ |u(1)|.

(32)
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By combining the inequality sequences (31) and (32), (31) can be reformulated as follows:

|u(k)| ≤d|e(k)|+ d|e(k− 1)|+
k−1

∑
p=2
|u(k− p)|

· · ·
≤d|e(k)|+ d|e(k− 1)|+ · · ·+ d|e(1)|+ |u(1)|
≤d(Mk−1|e(1)|+ Mk−2|e(1)|+ · · ·+ M|e(1)|+ |u(1)|

<d
M

1−M
|e(1)|+ |u(1)|.

(33)

This implies that u(k) is bounded.The proof is completed.

5. Numerical Examples

In this section, to validate the effectiveness of the proposed method, two numerical
examples are presented.

Example 1. An unknown plant replaced by a differencing equation is represented as follows:

y(k + 1) = 0.3y(k) + 0.6y(k− 1) + 0.6 sin(πu(k)) + 0.3 sin(3πu(k)) + 0.1 sin(5πu(k)). (34)

The tracking trajectory is given as

yd(k) =

{
2, 0 ≤ k ≤ 150
4, 150 < k ≤ 300

. (35)

The controller parameters are λ = 0.1, ρ = 0.2, µ = 0.01, and η = 0.8. The predefined
number is fixed at L = 100. The fractional-order is set as n = 0.8. The high-order estimation
is configured with m = 3, and the weighting coefficients are α1 = 0.4, α2 = 0.4, and α3 = 0.2.
The high-order estimation algorithm commences at k = 4. The initial PPD is uniformly set as
φ̂(1) = 10 for all controllers. Moreover, the weighting coefficients is chosen as Qe = diag{1, 0.1}.

Figure 2 illustrates the tracking performance of each controller in response to the
given reference signal. Table 1 presents a comparison of the Sum Square Error (SSE) and
Sum Square Control (SSC) between fractional-order and tuned integer order. The results
indicate that the I-MFAFOC method shortens the response time and reduces SSE to a certain
extent, but requires an increased control effort. The HOPPD-MFAFOC method reduces
the overshoot of the tracking signal and decreases SSC to a certain extent, but increases
SSE. The HOPPD-I-MFAFOC method achieves a reduction in SSE and SSC, to a certain
extent, simultaneously. Moreover, all three fractional-order control methods mentioned
above significantly outperform the traditional MFAC method.
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Figure 2. Comparison of the ability of different controllers to handle abrupt reference signals [16,20].
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Table 1. A comparison of SSE and SSC among different controllers.

n CONTROLLER SSE SSC

n = 1.0 MFAC 55.4360 1.2655
n = 0.8 MFAFOC 30.1095 1.2634
n = 0.8 I-MFAFOC 29.8452 ↓ 1.2702 ↑
n = 0.8 HOPPD-MFAFOC 30.1924 ↑ 1.2514 ↓
n = 0.8 HOPPD-I-MFAFOC 29.9294 ↓ 1.2575 ↓

Example 2. To demonstrate the effectiveness of the proposed control method in tracking smooth
reference signals, a comparative experiment was conducted as follows. The system (36) contains
time-varying parameters and uncertain disturbance κ(k):

y(k + 1) = sin(y(k)) + u(k)[5 + cos(y(k)u(k))] + κ(k). (36)

Define the desired trajectory as

yd(k + 1) = 0.5 sin(k/20) + 0.5 sin(k/40). (37)

The HOPPD-I-MFAFOC method is applied to control the system (37) in simulation
experiments. The controller parameters are λ = 0.01, ρ = 0.9, µ = 0.01, and η = 0.8. The
predefined number is set to L = 100. A comparison between fractional-order and tuned
integer order with respect to SSE and SSC is presented in Table 2. The tracking performance
of each controller is shown in Figure 3.

Table 2. A comparison of SSE and SSC for different orders using HOPPD-I-MFAFOC.

FRACTIONAL-ORDER SSE SSC

0.1 1.3256 0.0313
0.3 1.2478 0.0369
0.5 1.3961 0.0448
0.7 1.8542 0.0612
1.0 4.8235 0.0582
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Figure 3. Comparison of different fractional orders when employing the HOPPD-I-MFAFOC method.

The fractional order is chosen as n = 0.3. The order of the high-order estimation
is specified as m = 3, with weighting coefficients α1 = 0.4, α2 = 0.4, andα3 = 0.2. The
high-order estimation algorithm commences at k = 4. The initial PPD is uniformly set as
φ̂(1) = 10 for all controllers, and the weight factor is defined as Qe = diag{1, 0.2}.

Figures 4 and 5 provide a trajectory tracking comparison among the MFAC, MFAFOC,
and HOPPD-I-MFAFOC methods for the ideal case. The MFAC parameters are set to
λ = 0.01, ρ = 0.5, µ = 0.01, and η = 0.5, demonstrating superior performance. Additionally,
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performance enhancements are evident when comparing SSE and SSC indices in Table 3.
The results indicate that HOPPD-I-MFAFOC exhibits a 19.46% reduction in SSE and a
13.18% reduction in SSC compared to MFAFOC in tracking the target signal.
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Figure 4. Trajectory tracking results for MFAC, MFAFOC, and HOPPD-I-MFAFOC [19,23].
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Figure 5. Comparison of the tracking error convergence among MFAC, MFAFOC, and HOPPD-I-
MFAFOC [19,23].

Table 3. A comparison of SSE and SSC with different control methods. (κ(k) = 0).

CONTROLLER SSE SSC

MFAC 5.1984 0.0759
MFAFOC [19] 1.5492 0.0425

HOPPD-I-MFAFOC 1.2478 ↓ 0.0369 ↓

Figures 6 and 7 demonstrate the robustness of the method, verified by introducing an
uncertain disturbance based on repeating the experiment described above. The experiment
illustrates the enhanced robustness of the new control method. Additionally, Table 4
provides a comparison between the MFAC, MFAFOC, and HOPPD-I-MFAFOC methods
in terms of SSC and SSE for the case with a disturbance. The results show that HOPPD-I-
MFAFOC exhibits a 26.43% reduction in SSE and a 9.71% reduction in SSC compared to
MFAFOC in tracking the target signal.

Table 4. A comparison of SSE and SSC with different control methods. (κ(k) 6= 0).

CONTROLLER SSE SSC

MFAC 5.8112 0.0951
MFAFOC [19] 1.8500 0.0546

HOPPD-I-MFAFOC 1.3611 ↓ 0.0493 ↓

83



Mathematics 2024, 12, 784

150 200 250 300 350 400

-1

-0.6

-0.2

0.2

0.6

1

yd
MFAC
MFAFOC
HOPPD-I-MFAFOC-0.9

-0.7

-0.5

κ(k)   

100500

Time index (k) 

200 210190 220 230

T
ra
ck
in
g

Figure 6. Tracking performance with disturbance κ(k) [19,23].

Figure 7. Tracking error convergence with disturbance κ(k) [19,23].

6. Conclusions

In this paper, based on the compact-form fractional order dynamic linearization, an
improved controller was applied to uncertain discrete-time nonlinear systems. Utilizing
the fractional-order short-memory characteristics enhances the tracking performance of
the output and the system’s disturbance rejection capability. Additionally, the introduction
of the tracking error rate of change and the incorporation of a high-order estimation
algorithm for PPD complement each other, further improving the controller’s performance.
Our future work may focus on improving the MFAILC protocol, enabling the use of the
fractional-order in the iterative axis and elsewhere in MFAC.
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Abstract: When integrating data from multiple sources, a common challenge is block-wise missing.
Most existing methods address this issue only in cross-sectional studies. In this paper, we propose
a method for variable selection when combining datasets from multiple sources in longitudinal
studies. To account for block-wise missing in covariates, we impute the missing values multiple
times based on combinations of samples from different missing pattern and predictors from different
data sources. We then use these imputed data to construct estimating equations, and aggregate the
information across subjects and sources with the generalized method of moments. We employ the
smoothly clipped absolute deviation penalty in variable selection and use the extended Bayesian
Information Criterion criteria for tuning parameter selection. We establish the asymptotic properties
of the proposed estimator, and demonstrate the superior performance of the proposed method
through numerical experiments. Furthermore, we apply the proposed method in the Alzheimer’s
Disease Neuroimaging Initiative study to identify sensitive early-stage biomarkers of Alzheimer’s
Disease, which is crucial for early disease detection and personalized treatment.

Keywords: multiple imputation; correlated data; data integration

MSC: 62H99

1. Introduction

Multi-sources data are now attracting more attention in scientific research. A practical
problem with multi-source data is block-wise missing. Our work is motivated by the exis-
tence of block-wise missingness in Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data when investigating the biomarkers that are associated with Alzheimer’s Disease (AD).
In the ADNI study, healthy elderly subjects, as well as subjects with normal cognition
(NC), mild cognitive impairment (MCI), or AD, were recruited to identify neuroimaging
measures, cognitive measures and biomarkers that can effectively and timely detect cog-
nitive and functional changes [1]. The ADNI data exhibit a block-wise missing structure
along with the long duration of the study, and the high cost of certain measurements, etc.
Besides the ADNI data, datasets with block-wise missing structure also exist across many
other fields including environmental science, sociology, and economics. For example, a
block-wise missing structure appears in human mortality data integrated from Italy and
Switzerland [2] and in credit data collected from various institutions (Lan and Jiang [3]; Li
et al. [4]).

Statistical analysis with missing covariates has been widely studied due to the preva-
lence of missing values in many datasets. Common methods for dealing with missing
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data include complete case analysis, maximum likelihood, inverse probability weighting,
and imputation. While complete case analysis is the easiest approach to implement, it has
several drawbacks, such as potential bias in certain cases and a significant loss of infor-
mation when the proportion of missingness is high. The maximum likelihood approach
(e.g., Sabbe et al. [5]; Bondarenko and Raghunathan [6]; Audigier et al. [7]; von Hippel
and Bartlett [8]) requires a specification on the distribution of variables, though this is
unknown and unverifiable in practice. Inverse probability weighting (e.g., Chen et al. [9];
Creemers et al. [10]; Zubizarreta [11]; Hughes et al. [12]) heavily relies on the information
from complete cases, which can be problematic when the fraction of completely observed
subject is small.

Two big challenges with the above ADNI data are the high proportion of missingness
and the large number of covariates, which make the complete case analysis and maximum
likelihood approach inefficient. In addition to these two challenges, weighted methods
cannot handle the problem in presence of multiple missing patterns. Compared to these
methods with notable limitations, imputation methods are more appropriate for the ADNI
data. Recently, multi-source data with block-wise missing, exemplified by the ADNI
data, have drawn extensively attention in statistically research. Ref. [13] developed a
classification framework, which was accomplished by three steps: feature selection, sample
selection, and matrix completion. Ref. [2] proposed a dimension reduction method called
generalized integrative principal component analysis (GIPCA). Under the assumption of
identical type of distribution in the exponential family within each data source, GIPCA
decomposed the overall effect into joint and individual effect across data sources. Ref. [14]
imputed the missing data using a factor structure model, which considered the correlation
between predictors and does not depend on missing mechanism. Ref. [15] developed
a multiple block-wise imputation (MBI) approach by constructing estimating functions
based on both complete and incomplete observation. Other related literature include those
of [4,16,17].

However, these methods are not applicable to longitudinal studies. Using these
methods on the ADNI data, they only select baseline measurement for each patient and
simply delete the following measurements. Thus, these methods are inefficient for the
ADNI data since they fail to take account of with-subject correlations. In this paper, we
aim to develop a method for variable selection when integrating longitudinal data from
multiple sources in the existing block-wise missing structure. We impute the block-wise
missing data multiple times by using the information from both subjects with complete
observation and subjects with missing values. We construct estimating equations based on
imputed data and incorporate working correlation matrices to account for within-cluster
correlation. With the generalized method of moment, we are capable of integrating data
from multiple sources and identifying the relevant variables by introducing a penalty term.

This paper is organized as follows. Section 2 describes the setup and formalize the
proposed method. In Section 3, we study the asymptotic properties of the proposed
estimator. In Section 4, we develop an algorithm to implement the proposed method,
followed by a simulation study conducted in Section 5 to evaluate the performance of
the proposed method. In Section 6, we apply the proposed method to the ADNI study.
Section 7 provides further discussions.

2. Methods
2.1. Setup

Suppose the dataset consists of n independent and identically distributed (i.i.d.) sam-
ples drawn from independent sources with disjoint covariates. Without loss of general-
ity, we assume that the data are already sorted by missing patterns, and the total num-
ber of missing patterns is K with nk samples in each pattern, where ∑K

k=1 nk = n and
k = 1, . . . , K. Within each missing pattern, all subjects have the same missing structure
and the covariates from any specific source are either fully observed or fully missing. Let
Yk,i = (Yk,i1, . . . , Yk,imi

)T be the response vector for the ith subject in the kth pattern with
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mi measurements. For ease of presentation, we assume that each sample has the same
number of measurements m. Furthermore, let Xk,i = (Xk,i1, . . . , Xk,ip) be the corresponding
covariate matrix for the ith subject in the kth pattern across all the measurements, where p is
the number of covariates. We assume the underlying population-level model is as follows:

E(Yk,i|Xk,i) = µ(Xk,iβ), k = 1, . . . , K,

where µ(·) is a known monotonic link function and β is a p-dimentional vector in the
parameter space. Let O(k) and M(k) denote the index of observed covariates and missing
covariates in the kth pattern, respectively. Define Ri = 1 if Xk,i is fully observed, otherwise
0. We assume the missing mechanism of Xk,i is missing completely at random [18].

Figure 1 is an example illustrated what block-wise missing data look like, which consist
of three sources with three missing patterns. Note that covariates in source 1 are completely
observed in all three patterns, while covariates in source 2 are only observed in pattern
1 and 2, and covariates in source 3 are only observed in pattern 1 and 3. A similar structure
also exists in the ADNI data. For example, variables in cerebrospinal fluid (CSF) are only
measured in a subsample since CSF collection were mainly performed in phase II. Although
complete cases analysis is feasible for ADNI data, it is inefficient especially the number of
subjects with complete observation is limited. Thus, it is essential to leverage information
from incomplete observation.

Figure 1. Example of block-wise missing data in longitudinal studies.

2.2. Proposed Method

One approach to utilizing incomplete data is by imputing missing values and perform-
ing statistical analysis based on the imputed dataset. Traditional methods impute missing
values using information solely from complete cases. However, in scenarios involving
block-wise missing data, the proportion of complete cases can be relatively small, resulting
in unstable imputed values. To further illustrate how to incorporate information from
subjects with partially observed values when imputing missing values, we continue to
use the example given in Figure 1. Let Xk,i(r) be the rth imputed covariate vector for the
ith subject from pattern k, r = 1, . . . , Rk. For instance, the missing values of X2,i, i.e., the
covariates of source 3 in pattern 2, can be imputed using the information of all sources in
pattern 1, which we denoted as X2,i(1). Additionally, these can also be imputed based on
the covariates in source 1 and source 3 for subjects from pattern 1 and pattern 3, which we
denoted as X2,i(2). Figure 2 illustrate how the above procedures work. When all the covari-
ates are observed, Xk,i(r) = Xk,i. Similarly, we can define µk,i(r)(β) as the corresponding
imputed conditional mean.

The intuition behind the proposed method stems from generalized estimating equa-
tions (GEE) and quadratic inference functions (QIF). Suppose Vk,i is the unknown true
covariance matrix of Yk,i. Ref. [19] proposed that Vk,i can be estimated by A1/2

k,i Rk,i(α)A1/2
k,i ,

where Ak,i is the diagonal matrix of the conditional variance of Yk,i and Rk,i is a working
correlation matrix that fully specified by a vector of parameter α. Ref. [20] proposed the
QIF using the fact that the inverse of the correlation matrix R−1

k,i can be approximated

88



Mathematics 2024, 12, 951

by ∑J
j=1 ak,j Mj, where M1, . . . , MJ are some basis matrices. For example, if we assume

the within-cluster correlation structure is exchangeable, R−1
k,i can be approximated by

a1M1 + a2M2, where M1 is the identity matrix and M2 is a matrix with elemtents in the
diagonal to be 0 and elements in the off-diagonal to be 1. The estimation of inverse of
correlation matrix using linear combination has been intensively studied by [21]. The
advantage of this linear approximation is that the parameter α can be treated as a nuisance
parameter, leading to some improvement in computational efficiency. Then, the estimating
function for the subject i in the kth pattern with the rth imputation is defined as:

g̃k,i(r)(β) =
J

∑
j=1

ak,j

{
∂µk,i(β)

∂βO(k)

}T

A−1/2
k,i Mj A

−1/2
k,i {Yk,i − µk,i(r)(β)}.

Figure 2. Two imputation approaches for missing covariates of source 3 in pattern 2. In the left figure,
samples from pattern 1 and covariates in source 1 and source 2 are used to train the model, which
is subsequently used to predict the missing covariates in pattern 2. Similarly, in the right figure,
samples from pattern 1 and pattern 3 and covariates in source 1 are used to train the model.

Here, we only take derivative with respect to βO(k) to enhance numerical stability. Re-
call that ak,j is a linear coefficient that used to approximate the inverse of correlation matrix,
and thus, it is the nuisance parameter. To avoid estimating these nuisance parameters, we
define the extended score vector:

gk,i(r)(β) =




{
∂µk,i(β)
∂βO(k)

}T
A−1/2

k,i M1 A−1/2
k,i {Yk,i − µk,i(r)(β)}

...{
∂µk,i(β)
∂βO(k)

}T
A−1/2

k,i MJ A−1/2
k,i {Yk,i − µk,i(r)(β)}




.

Similarly, we obtain extended score vectors for all imputed covariate vectors and
subjects. To integrate all score vectors, we aggregate the information by stacking them into
a long vector:

g(β) =




g1(β)
...

gK(β)


 =




1
n1

n1
∑

i=1
g1,i(β)

...
1

nK

nK
∑

i=1
gK,i(β)




,
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where gk,i(β) = (gT
k,i(1)(β), . . . , gT

k,i(Rk)
(β))T . Note that this might be an overdetermined

system because the number of equations can exceed the number of parameters. To overcome
this difficulty, we adopt generalized method of moment [22] and add a penalty term.
Therefore, the objective function becomes:

S(β) = g(β)TC(β)−1g(β) +
p

∑
j=1

pλn(|β j|), (1)

where:

C(β) = diag

{
1
n1

n1

∑
i=1

g1,i(β)gT
1,i(β), . . . ,

1
nK

nK

∑
i=1

gK,i(β)gT
K,i(β)

}

is a block-diagnoal matrix under the assumption of independence among samples from
different missing patterns and pλn(·) is an arbitrary, investigator’s chosen, penalty function
with a tuning parameter λ. Among many optional penalty functions, we adopt the non-
convex smoothly clipped absolute deviation (SCAD) penalty [23]:

pλn(|β|) = λ|β|I(|β| ≤ λ) +
2aλ|β| − β2 − λ2

2(a− 1)
I(λ < |β| ≤ aλ) +

λ2(a + 1)
2

I(aλ < |β|)

for some a > 2, which possess desirable oracle property.

3. Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed estimator. In
Section 3.1, we assume the sample size n is increasing while the number of parameters p is
fixed, and demonstrate that the proposed estimator is

√
n-consistent and asymptotically

normal. As sample size goes to infinity, the proposed method is capable of selecting out the
relevant variables with probability goes to 1. We also show that the proposed estimator is
asymptotically more efficient than single imputation method via incorporating information
of samples with missing values. In Section 3.2, we suppose both the sample size n and
the number of parameters p are increasing but n increases faster than p. We show that
the consistency and sparsity still hold with diverging p. Without loss of generality, we
assume β̂ can be partitioned into two parts, i.e., β̂ = (β̂T

A, β̂T
N )

T , where β̂A corresponds to
relevant variables with a non-zero true value, while β̂N consists of coefficients of irrelevant
variables with a zero true value. For any function g(β), we use ġ(β) to denote the first
derivative of g(·) evaluated at β. We use similar notation for its other order derivatives.

3.1. Fixed Number of Parameters

To establish the asymptotic properties of the proposed estimator in the setting of increasing
sample sizes and fixed number of parameter, we require the following regularity conditions:

C.1 E[Xk,j]
4 < ∞ and E[E[Xk,j(r)]]

4 < ∞, for any 1 ≤ k ≤ K, 1 ≤ j ≤ p, and 1 ≤ r, where
the inner expectation is with respect to the imputed values.

C.2 All the variance matrix Ak,i ≥ 0 and ‖Ak,i‖ < ∞, for any 1 ≤ k ≤ K and 1 ≤ i ≤ nk.
C.3 Let εk,i = A−1/2

k,i (Yk,i − µk,i(β0)). For any 1 ≤ k ≤ K and 1 ≤ i ≤ nk, E(εk,i) = 0 and
the fourth moment of εk,i exists.

C.4 ‖µk,i(β0)− µk,i(r)(β0)‖ = op(n−1/2
k ), for any 1 ≤ k ≤ K and 1 ≤ i ≤ nk.

C.5 The penalty function satisfied:

(a) lim infn→∞ infβ j→0+ p′λn
(β j)/λn > 0;

(b) maxj∈A{p′λn
(β0j)} = op(n−1/2);

(c) maxj∈A{p′′λn
(β0j)} = op(1).
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C.6
√

ng(β0)
d→ N(0, ΣΩ), where Σ = diag{Σ1, . . . , ΣK} and Ω = diag{Ω1, . . . , ΩK},

with Σk = cov(gk,i(β0)) and Ωk to be a diagonal matrix with nk dimension and each
element equals to limn→∞ n/nk.

C.1–C.3 are conditions that require the existence of the moment, which are easily
satisfied. C.4 requires the imputed conditional mean converges to the true conditional
mean in probability, which is satisfied as long as the imputed model is correctly speci-
fied and the missing mechanism is either missing completely at random. C.5 is a stan-
dard condition for SCAD penalty which is commonly used in variable selection method
(Gao et al. [24]; Cho and Qu [25]; Tian et al. [26]). More specifically, (a) ensures the property
of sparsity is satisfied, (b) and (c) ensure the property of consistency is satisfied, and (c)
also guarantees that the objective function (1) is dominated by the first term. C.6 is used to
establish the asymptotic normality of the proposed estimator.

Theorem 1. Under C.1–C.5, there exists a local minimizer β̂ of S(β) such that
‖β̂− β0‖ = Op(n−1/2).

Theorem 1 states the existence of a minimizer of the objective function and the min-
imizer will converge to the true coefficients at a rate of

√
n as the sample size increases.

Next, we demonstrate that this estimator possesses the sparsity property and the estimator
for the non-zero coefficient is asymptotically normal, as outlined in the following theorem.

Theorem 2. Under C.1–C.5, if λn → 0 and there exist a sequence such that λn
√

n/an → ∞
as n → ∞, where an = op(

√
n), then the proposed estimator β̂ = (β̂T

A, β̂T
N )

T satisfies the
following properties:

1. (Sparsity) P(β̂N = 0)→ 1;
2. (Asymptotic Normality) Let H = E

[
∂gT(β0)/∂βA

]
and V = (HΣ−1Ω−1HT)−1 and if

C.6 holds, then
√

n(β̂A − β0A)
d→ N(0, V).

The sparsity of the proposed estimator guarantees that the probability of selecting
the true model approaches 1. We also obtained in Theorem 2 the asymptotic normality
of β̂A, the estimator of coefficients for the relevant variables, which allows us to esti-
mate its variance if H and Σ are known. However, in practice, these are unknown to
us. We can obtain the empirical variance covariance matrix of β̂A by replacing H with
Ĥ(β̂) = ∂gT(β̂)/∂βA and replacing Σ with C(β̂), i.e., V̂ = (ĤC−1Ω−1ĤT)−1. Next, we
compare the empirical variance of the proposed estimator with the empirical variance of
the single imputation approach.

Theorem 3. If a single imputation is used based on complete cases and denotes the asymptotic co-
variance matrix of βA as Ṽ , then under the conditions of Theorem 2, Ṽ −V is positive semi-definite.

Theorem 3 claims that the proposed estimator is asymptotically more efficient than
the single imputation approach, as it incorporates information from incomplete cases
during imputation. The result of this Theorem is intuitive because the proposed method
incorporates more samples into the imputation process.

3.2. Diverging Number of Parameters

In this subsection, we consider the setting where sample size n and number of coef-
ficients p increase simultaneously. For certain properties to remain true, we require that
n increases faster than p. We replace the notation p by pn to indicate that the number of
parameters also increases. We make the following assumptions:
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D.1 For any i, j, k, Q̇k(β0) = op(p1/2
n n−1/2) and:

∥∥∥∥∥
∂2Qk(β0)

∂βi∂β j
− E

{
∂2Qk(β0)

∂βi∂β j

}∥∥∥∥∥ = Op(n−1/2).

D.2 There exist an open ball of β0 and there exist a constant M such that each entries of
...
Qk(β) is bounded by M, for any β in this open ball.

D.3 The penalty function satisfied:

(a) lim infn→∞ infβ j→0+ p′λn
(β j)/λn > 0;

(b) maxj∈A{p′λn
(β0j)} = op(p1/2

n n−1/2);

(c) maxj∈A{p′′λn
(β0j)} = op(p1/2

n ).

D.1 and D.2 are analogous to C.1–C.4. D.3 is the modification of C.5 for diverging
number of parameters.

Theorem 4. Under D.1–D.3, if pn = o(n1/4), there exists a local minimizer β̂ of S(β) such that
‖β̂− β0‖ = Op(p1/2

n n−1/2).

From the result of Theorem 4, we find that the consistency still holds for the proposed
estimator, even with a diverging number of parameters. Not surprisingly, the convergence
rate is no longer

√
n, but

√
n/pn. We also require that pn does not increase faster than n1/4

to ensure the model remains sparse. To be specific, the majority of the coefficients is zero.

Theorem 5. Under D.1–D.3, if pn = o(n1/4), λn → 0, and λn
√

n/pn → ∞ as n → ∞, then
with probability tending to 1, the estimator β̂ = (β̂T

A, β̂T
N )

T satisfies P(β̂N = 0)→ 1.

Theorem 5 states the sparsity of the proposed estimator with a diverging number of
parameters. This property guarantees that the proposed method can still select the true
model with a probability approaching 1, even when the number of parameters is diverging.

4. Implementation

Since directly minimizing the objective function is difficult, we incorporate an iterative
procedure inspired by the implementation in [27], where they combined the minoriza-
tion–maximization algorithm [28] with the Newton–Raphson algorithm. Given the current
estimate of β(t) and tuning parameter λn, the objective function S(β) can be locally approx-
imated by (except a constant term):

Q(β(t)) + Q̇(β(t))T(β− β(t)) +
1
2
(β− β(t))TQ̈(β(t))T(β− β(t)) +

1
2

βT Dλn(β(t))β, (2)

where:

Dλn(β(t)) = diag





p′λn
(|β(t)

1 |)
ε + |β(t)

1 |
, . . . ,

p′λn
(|β(t)

p |)
ε + |β(t)

p |





and ε is a sufficiently small number (e.g., ε = 10−6). Thus, the search for estimator minimiz-
ing the objective function is equivalent to find an estimator that minimize (2). Notice that
both Q̈(β(t)) and Q̈(β(t)) are unknown. Fortunately, from Lemma S2 in Supplementary
Materials, Q̇(β(t)) can be approximated by:

M(β(t)) = 2ġT(β(t))C(β(t))−1g(β(t)) (3)
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and Q̈(β(t)) can be approximated by:

F(β(t)) = 2ġT(β(t))C(β(t))−1ġ(β(t)). (4)

Plugging (3) and (4) into (2) and applying the Newton–Raphson algorithm, we obtain
the following formula to update β(t+1):

β(t+1) = β(t) −
[

F(β(t)) + Dλn(β(t))
]−1[

M(β(t)) + Dλn(β(t))β(t)
]
.

We repeat the above procedure until ‖β(t+1) − β(t)‖ is smaller than a pre-specified
threshold or reach a pre-specified maximum number of iteration.

It is known that the sampling covariance matrix C(β) may be singular in some
cases [29]. To overcome the difficulty in computing the inverse of C(β), we adopt the
Moore–Penrose generalized inverse, which exists and is unique for any matrix.

In the implementation of the proposed method, we select tuning parameter λn with
extended Bayesian Information Criterion (EBIC) criteria proposed by [30]:

EBICγ = n log(RSS/n) + d fλn{log(n) + 2γ log(p)}, 0 ≤ γ ≤ 1,

where d fλn is the number of parameters of the model with tuning parameter λn and
RSS = ∑K

k=1 RSSk is the residual sum of square of all the missing pattern with:

RSSk =
1

Rk

Rk

∑
r=1

nk

∑
i=1

m

∑
j=1

{
yk,ij − µk,ij(r)

}2
.

5. Simulation

In this section, we implement a simulation study to compare the performance of the
proposed method in variable selection against complete case analysis (CC) with SCAD
penalty, single imputation (SI) with SCAD penalty, and the penalized generalized estimat-
ing Equation (PGEE). We use the same data structure as shown in Figure 1, where we have
three missing patterns and three sources. The number of measurement is set to be three
throughout this section. We replicate the simulation 100 times and use false positive rate
(FPR) and false negative rate (FNR) to evaluate the performance of each method, which
reflect the proportion of covariates that are irrelevant but falsely selected and the proportion
of covariates that are relevant but fail to be selected, respectively. In the tuning parameter
selection procedure, the parameter γ was set to 0.5 in EBIC. At the end of the iterative
algorithm in Section 4, the estimated coefficient is considered as zero, if its absolute value
is smaller than 0.01.

In the first setting, we simulate a dataset with a small proportion of complete cases,
where n1 = 40, n2 = 120, n3 = 120, and the missing rate is around 87%. The data with
continuous outcome are generated from the model:

Yij = XT
ij β + εi,

where j = 1, . . . , 3, Xij = (xij,1, . . . , xij,30)
T is a vector consisting of 30 covariates, and

β = (1, 2, 0, . . . , 0, 1, 2, 0, . . . , 0, 1, 2, 0, . . . , 0)T . Here, each source consists of 10 covariates
with the first two covariates having non-zero coefficients. xij,1 is a time-fixed covariate
and we generate it from the standard normal distribution, whereas other covariates are
time-varying covariates and follow multivariate normal distribution with mean zero and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient 0.5.
We generate random error εi from the multivariate normal distribution with mean 0 and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient ρ.
We always assume the true within-cluster correlation structure is known and considered
ρ to be 0.3, 0.5, and 0.7 in each setting, which corresponded to mild, moderate, and
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strong within-cluster correlation. Let φi = 1/(1 + exp{1 + xi1,1 + · · · + xi1,10}). Then,
n1, n2, and n3 samples were sequentially drawn with probability proportional to the φi
and assigned to the pattern 1, pattern 2, and pattern 3, respectively. Obviously, subjects
with higher covariates value from source 1 at the baseline are more likely to be assigned
to pattern 1, followed by pattern 2 and then pattern 3. This data generating process
implies a MAR mechanism for the missing covariates. The results of Table 1 summarize
the performance of each method for three different ρ. All of these methods effectively
control the FNR. However, FPR of the proposed method is lower than the other three
methods. In other words, the proposed method is able to select most of relevant variables
while controlling the error of selecting irrelevant variables. In addition, we notice that
the proposed method is more capable of utilizing within-cluster correlation compared
with PGEE since the proposed method performs better as the within-cluster correlation
becomes stronger. This result demonstrates the superiority of the proposed method when
the percentage of complete cases is small in the block-missing data.

Table 1. Simulation scenario 1 with continuous outcomes: comparing the proposed method, complete
cases analysis, single imputation method, and PGEE in terms of false positive rate (FPR), false negative
rate (FNR), FPR + FNR, and computation time in seconds (n1 = 40, n2 = 100, n3 = 100, p1 = 10,
p2 = 10, p3 = 10).

Method FPR FNR FPR + FNR Time

ρ = 0.3

Proposed 0.083 <0.001 0.083 2.38
CC 0.204 <0.001 0.204 0.26
SI 0.118 0.002 0.120 1.22
PGEE 0.085 <0.001 0.085 0.62

ρ = 0.5

Proposed 0.093 0.007 0.100 2.42
CC 0.205 <0.001 0.205 0.27
SI 0.146 <0.001 0.146 1.29
PGEE 0.126 0.007 0.133 0.65

ρ = 0.7

Proposed 0.110 <0.001 0.110 2.50
CC 0.198 0.005 0.203 0.28
SI 0.141 <0.001 0.141 1.33
PGEE 0.132 0.017 0.149 0.67

In the second setting, we continue to investigate the proposed method’s performance
with a continuous outcome, but we proportionally increase the sample size in each missing
pattern to demonstrate the proposed method’s effectiveness in larger samples, where
n1 = 120, n2 = 300, n3 = 300. The results are described in Table 2. Unsurprisingly, the FPR
and FNR of all the methods decreased compared with the first setting. We observe that
the performance of the PGEE is very close to that of the single imputation method while
the proposed method has a much lower FPR. In the meanwhile, complete cases analysis is
still the worst option since the improvement is minor as the sample size increase, and even
negligible when the within-cluster correlation is strong. Therefore, the proposed method is
still able to maintain an appealing performance in the large sample size. The results from
this setting further verify the efficiency gain of the proposed method in incorporating more
information from the missing data compared to the single imputation.
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Table 2. Simulation scenario 2 with continuous outcomes: comparing the proposed method, complete
cases analysis, single imputation method, and PGEE in terms of false positive rate (FPR), false negative
rate (FNR), FPR + FNR, and computation time in seconds (n1 = 120, n2 = 300, n3 = 300, p1 = 10,
p2 = 10, p3 = 10).

Method FPR FNR FPR + FNR Time

ρ = 0.3

Proposed 0.003 <0.001 0.003 4.31
CC 0.101 <0.001 0.101 0.58
SI 0.018 <0.001 0.018 2.55
PGEE 0.010 <0.001 0.010 1.55

ρ = 0.5

Proposed 0.005 <0.001 0.005 4.37
CC 0.135 <0.001 0.135 0.61
SI 0.025 <0.001 0.025 2.55
PGEE 0.023 <0.001 0.023 1.52

Table 2. Cont.

Method FPR FNR FPR + FNR Time

ρ = 0.7

Proposed 0.015 <0.001 0.015 4.29
CC 0.190 <0.001 0.190 0.54
SI 0.049 <0.001 0.049 2.47
PGEE 0.078 <0.001 0.078 1.37

In the third setting, we consider a correlated binary outcome with n1 = 120, n2 = 300,
and n3 = 300. The data are generated from the model:

log
πij

1− πij
= XT

ij β + εi,

where j = 1, . . . , m, Xij = (xij,1, . . . , xij,15)
T is a vector consisting of 15 covariates, and

β = (1, 0, . . . , 0,−0.7, 0, . . . , 0, 0.5, 0, . . . , 0)T . Here, each source consists of five covariates,
with the first covariate in each having non-zero coefficients. xij,1 is a time-fixed covariate
and we generate it from the standard normal distribution, whereas other covariates are
time-varying covariates and follow multivariate normal distribution with mean zero and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient 0.5.
We generate random error εi from the multivariate normal distribution with mean 0 and
exchangeable covariance matrix with marginal variance 1 and correlation coefficient 0.3.
In this setting, φi = 1/(1 + exp{1 + xi1,11 + · · ·+ xi1,15}). The results are summarized in
Table 3. Although the PGEE outperforms other methods in terms of FPR, its performance
in FNR is poor. In contrast, the proposed method possesses a better balance between FPR
and FNR. We still observed a better performance of the proposed method.

Table 3. Simulation scenario 3 with binary outcomes: comparison of the proposed method, complete
cases analysis, single imputation method, and PGEE in terms of false positive rate (FPR), false
negative rate (FNR), FPR + FNR, and computation time in seconds (n1 = 120, n2 = 300, n3 = 300,
p1 = 5, p2 = 5, p3 = 5, ρ = 0.3).

Method FPR FNR FPR + FNR Time

Proposed 0.298 0.063 0.361 3.55
CC 0.334 0.218 0.552 0.32
SI 0.289 0.088 0.377 1.91
PGEE 0.071 0.537 0.608 0.74
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6. Application

We apply our proposed method to the ADNI study. This study was launched in 2003
and has undertaken three different phases so far: ADNI 1, ADNI GO/2, and ADNI 3,
which is designed to develop the effective treatment that can slow or stop the progression
of AD. Our goal is to identify sensitive biomarkers of AD in the early stage from three
data sources: magnetic resonance imaging (MRI), positron emission tomography (PET),
and cerebrospinal fluid (CSF). We choose the mini-mental state examination (MMSE)
[31] score as response variable, which has been widely used in the early diagnosis of
AD [32]. The MRI data were analyzed by UCSF, who performed cortical reconstruction and
volumetric segmentation with FreeSurfer. The processed MRI data primarly summarized
average cortical thickness, standard deviation in cortical thickness, the volumes of cortical
parcellations, the volumes of specific white matter parcellations, and the total surface
area of the cortex [33]. The PET data were processed by UCB and quantities variables
were obtained by standard uptake value ratio (SUVR) in amyloid florbetapir. The CSF
data were acquired by ADNI Biomarker Core and Laboratory Medicine and Center for
Neurodegenerative Diseases Research at UPENN. The block-wise missing emerged in
this data. Less than half of patients lacked MRI measurements, few patients missed PET
measurements, and only a small proportion of patients had CSF measurements. One of
the reasons for the block-wise missing data is that obtaining CSF measurements requires
more invasive procedures (such as lumbar puncture), which are refused by the majority
of patients. The goal of this analysis is to identify biomarkers that are highly predictive
of MMSE.

We only use the ADNI GO/2 dataset and consider measurements at baseline, month 24,
and month 48, since the majority of patients have records at these time points. We also
notice that there exist some low-quality data, such as those missed baseline measurement
or belonged to a missing pattern with few patients. For simplicity of analysis, we discard
these low-quality data, which leads us to a study cohort of 669 patients. Among them,
280 patients missed the measurement at month 24 and 487 patients missed the measure-
ments at month 48. There are 340 features in MRI data, 229 features in PET data, and 3
features in CSF data. These three datasets and MMSE data are joined by a unique identifier
“visit code” provided by the ADNI study. In total, we have three missing patterns. Table 4
describes the missing pattern of this dataset. The number of patients with fully observed
variables is 63, with a missing rate around 90.6%. From this extremely high proportion
of missing data, we will see how the proposed method can substantially improve the
prediction ability by incorporating the information of related samples with missing values.
To assess the predictive performance of the proposed method, data are randomly split into
a test data with a sample size 30 (roughly 5%) and the remaining data as training data,
where the test data are drawn from the data with fully observed variables (missing pattern
1). This random split process was replicated 30 times. A variable is marked as a potential
predictor of AD if its absolute coefficient value is greater than 0.01.

Table 5 summarizes the average number of biomarkers selected by each method, along
with the most frequently selected biomarkers. We also report the post-model-selection
p-value. Our method successfully identifies biomarkers that align with findings reported
in existing Alzheimer’s Disease research literature. In comparison to PGEE, the other three
methods consistently select amyloid-β as a biomarker of AD, whose accumulation in cells
is an early event of AD [34]. Phosphorylated tau, another widely accepted biomarker,
has been validated by multiple large-scale, multi-center studies [35]. Studies found that
neurons in AD patients are more likely to loss the superior temporal sulcus [36]. Two dis-
tinct normalization methods of summary measures for the standardized uptake value ratio
(SUVR) of the florbetapir tracer, in the composite reference region and the whole cerebellum
reference region, may potentially serving as AD biomarkers [37]. Besides these biomarkers,
the proposed method additionally identifies several well-established and potential biomark-
ers. The size of the region of interest (ROI) in the left and right hemisphere precuneus area
of the cortex, as well as cortical volume of left precuneus, summarize the health status of
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precuneus, which may be atrophy in the early stage of AD. The size and volume of the ROI
in the left and right inferior lateral ventricle reflect disease progression (Bartos et al. [38];
Song et al. [39]). White matter changes in cerebral or subcortical areas can appear in other
neurological conditions and normal aging, their connections with AD potentially make
them useful biomarkers for distinguishing AD from normality, especially when considered
along with other biomarkers in future investigations. While the surface area of the left
caudal middle frontal and the cortical volume of the right caudal anterior cingulate are
both associated with AD, more research is required to further explore these associations.

Table 4. Data composition and missing pattern for the subset of ADNI data; “O” denotes the observed
data and “-” denotes the missing data.

Missing Pattern MRI (340) PET (229) CSF (3) Number of Patients

1 O O O 63
2 O O - 384
3 - O - 222

Table 5. Comparision of the mean of the number of selected biomarkers (MNSB) whose absolute
value of coefficient is greater than 0.01 based on 30 replications in application to ADNI data. Time is
the computation time in seconds.

Method MNSB Top Selected Biomarkers Time

Proposed 16

ABETA, PTAU, ST30SV *, ST15SA
ST89SV, ST151SV, ST52CV *, ST73CV,

SUMMARYSUVR COMPOSITE REFNORM *,
SUMMARYSUVR WHOLECEREBNORM *,

CTX LH PRECUNEUS VOLUME,
CTX RH PRECUNEUS SUVR,

LEFT INF LAT VENT VOLUME,
RIGHT INF LAT VENT VOLUME,

CTX LH SUPERIORTEMPORAL SUVR *,
LEFT CEREBRAL WHITE MATTER VOLUME

1550

CC 3 ABETA, TAU *,
SUMMARYSUVR COMPOSITE REFNORM * 280

SI 9

ABETA *, TAU *, PTAU *, ST1SV, ST4SV *, ST52CV
SUMMARYSUVR COMPOSITE REFNORM,

SUMMARYSUVR WHOLECEREBNORM
CC MID ANTERIOR VOLUME

1216

PGEE 1 ST52TA * 18
* Post-model-selection p-value < 0.05.

7. Discussion

It is well known that variable selection is a challenge for model robustness, estimator
stableness and efficiency, as well as precise predictability. However, another non-negligible
issue when integrating longitudinal studies is missingness in the covariate, especially in
block-wise missing data. Specifically, with block-wise missing data, the percentage of
complete observations is relatively small while traditional statistical methods heavily rely
on information of complete cases. In this paper, we develop new methods to extend the
MBI approach in a longitudinal study under the setting of block-wise missing data. Under
certain regularity conditions, the desirable properties, consistency, sparsity, and asymptotic
normality still hold. In addition, the proposed method demonstrates superior efficiency
compared to the single imputation approach. It is worth noting that dropout missing data
are also very common in longitudinal studies, which typically cause bias in many cases. In
future work, it will be of great interest to develop methods to handle dropout missingness
and incorporate inverse probability weighting in the proposed method.

One limitation of this paper is that we assume a homogeneous missing pattern across
measurements within a single patient. Although this assumption may be restrictive in real
data analysis, it is not hard to fulfill in multi-source data.
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38. Bartos, A.; Gregus, D.; Ibrahim, I.; Tintěra, J. Brain volumes and their ratios in Alzheimer s disease on magnetic resonance
imaging segmented using Freesurfer 6.0. Psychiatry Res. Neuroimaging 2019, 287, 70–74. [CrossRef]

39. Song, M.; Jung, H.; Lee, S.; Kim, D.; Ahn, M. Diagnostic classification and biomarker identification of Alzheimer’s disease with
random forest algorithm. Brain Sci. 2021, 11, 453. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

99



mathematics

Article

Stochastic Intermittent Control with Uncertainty
Zhengqi Ma 1, Hongyin Jiang 2, Chun Li 1, Defei Zhang 1,*and Xiaoyou Liu 3

1 School of Mathematics and Statistic, Honghe University, Mengzi 661100, China
2 School of Mathematics and Statistic, Puer University, Puer 665000, China
3 School of Mathematics and Computing Sciences, Hunan University of Science and Technology,

Xiangtan 411201, China
* Correspondence: defeizhang@uoh.edu.cn

Abstract: In this article, we delve into the exponential stability of uncertainty systems characterized
by stochastic differential equations driven by G-Brownian motion, where coefficient uncertainty
exists. To stabilize the system when it is unstable, we consider incorporating a delayed stochastic
term. By employing linear matrix inequalities (LMI) and Lyapunov–Krasovskii functions, we derive
a sufficient condition for stabilization. Our findings demonstrate that an unstable system can be
stabilized with a control interval within (θ∗, 1). Some numerical examples are provided at the end to
validate the correctness of our theoretical results.
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1. Introduction

In the domain of stability analysis for diverse stochastic differential equations (SDEs),
substantial scholarly work has been undertaken [1–6]. These investigations primarily
concentrate on methodologies to stabilize inherently unstable systems by incorporating
randomness or implementing control strategies. Since Hasminskii’s seminal work [7],
which achieved stabilization of an unstable linear system using dual white noise, the fo-
cus on stabilizing and destabilizing stochastic systems has become a prominent area of
research. The foundational work of Mao, as highlighted in [8,9], laid the groundwork with
essential theorems for both the stabilization and destabilization of systems influenced by
Brownian motion (BM). Following these pivotal contributions, the domain has seen an
expansion through a wide range of significant investigations. These studies have delved
into aspects such as exponential stabilization, stochastic stabilization, and guaranteed
almost sure exponential stabilization, thereby broadening the scope of the field. Notably,
the implementation of stochastic feedback control and state feedback control in both hybrid
and stochastic systems, as discussed in [10], has provided insightful developments on how
nonlinear systems behave in terms of stabilization and destabilization when subjected to
stochastic effects. Notably, Mao et al. [11] have demonstrated mean square stability for
hybrid systems through delayed feedback control (DFC). With the increasing complexity of
industrial systems, hybrid stochastic systems have attracted considerable attention [12–18].

Intermittent control strategies are crucial for systems where continuous control is
impractical due to resource limitations or inherent system constraints. Key strategies
include sampled-data control, impulse control, event-triggered control, hybrid systems,
reset control, and model predictive control [19–24]. These approaches enable efficient
and effective control across various applications by balancing control performance with
practical limitations. For example, reference [25] explores the use of adaptive control
strategies to stabilize systems under parameter uncertainties.

Applications across fields, from ecological models to mechanical systems, demon-
strate the practical implications of parameter sensitivity. For example, slight variations in
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growth rate parameters can alter equilibrium point stability in ecological models, impacting
population dynamics. Similarly, in mechanical systems, small changes in the damping
coefficient critically affect oscillatory behavior. In real-world engineering, uncertainties
like measurement noise, aging components, wear, unmodeled dynamics, and linearization
errors challenge the accuracy of system models, affecting performance and stability [26].
To combat this, some studies have leveraged LMI and Lyapunov functions to define system
stability criteria [27,28].

Acknowledging the challenges that traditional Brownian Motion (BM) faces in cap-
turing the nuances of uncertainties in extreme scenarios, Peng [29,30] proposed the G-
Brownian Motion (G-BM) as a refined model to more precisely simulate these uncertainties.
Traditional BM models often assume normal distribution of noise, which may not accu-
rately reflect the complexities and irregularities encountered in real-world systems, such as
extreme financial risks, ecological changes, and nonlinear responses in engineering. The G-
BM, inspired by the heat equation, offers a more flexible framework that relaxes the normal
distribution assumption and accommodates a broader range of distribution forms through
the G-expectation framework. G-BM not only broadens the scope of probabilistic measures
but also equips researchers with robust tools for tackling G-martingale issues and exploring
G-stochastic integrals. Based on Peng’s groundwork, the stability of SDEs driven by G-BM
has been thoroughly explored, revealing extensive properties and theorems [31–35].

The consideration of parameter uncertainties in control design is crucial for the ro-
bustness of the proposed methods. Ignoring these uncertainties can lead to suboptimal or
even unstable control performance. By incorporating G-Brownian motion and parameter
uncertainties, this paper aims to bridge the gap between theoretical models and practical
applications, enhancing the robustness and applicability of the control methods. This study
utilizes the generalized Itô formula, alongside Lyapunov functions and linear matrix in-
equality methods, to introduce new stability criteria, aiming to fill the existing research void
by offering novel perspectives and methods for the stability analysis of stochastic systems

Consider the unstable systems:

dx(t) = A(t)x(t)dt. (1)

In this paper, we investigate stochastic intermittent control strategies based on G-
Brownian motion and parameter uncertainties. The incorporation of delay and intermittent
control strategies is based on the following reasons:

1. Common Phenomena in Real Systems: In many practical systems, delays and in-
termittent phenomena are unavoidable. For example, in communication networks,
signal transmission delays are inherent; in industrial control, intermittent control is
often necessary for energy saving and resource limitations.

2. Enhancing Control Efficiency: Intermittent control strategies can maintain system
stability while reducing the frequency of control inputs, thereby improving control
efficiency. Thus, we consider the following form of stochastic system:

dx(t) = [A(t)x(t) + u(x(t− τ))I(t)]dt + Bij(t)I(t)x(t− τ)d
〈
wi, wj〉

t
+Cj(t)I(t)x(t− τ)dwj

t,
(2)

where A(t), Bij(t), Cj(t), H, Y(t), Z, Zij, Zj ∈ RÑ×Ñ ; u(x(t− τ)) ∈ RÑ×1 is a control
function with delayed feedback; A(t) = A + ∆A(t), Bij(t) = Bij + ∆Bij(t), Cj(t) = Cj +

∆Cj(t), and [A(t), Bij(t), Cj(t)] = HY(t)[Z, Zij, Zj], and YT(t)Y(t) ≤ E, and E is
a unit matrix; I(t) represent an indicator function defined by the summation I(t) =

∑∞
k=0 I[kh,kh+θh)(t), where h > 0 denotes the control period, and θh > 0 specifies the

duration of control; wt stands for an Ñ-dimensional G-Brownian motion defined in the
G-expectation space.
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2. Noation and Preliminaries

The symbol T signifies the transpose of either a matrix or a vector, whereas tr() repre-
sents the trace of the given matrix. If matrix A is a positive definite denoted as A � 0, (re-
spectively, negative definite matrix is denoted as A ≺ 0). |x| denotes the Euclidean norm of
a vector x and ‖ξ‖ = sup|ξ(t) : −τ ≤ t ≤ 0|, ‖xnτ+T‖ = sup|x(t) : nτ + T ≤ t ≤ (n + 1)τ + T|.
LP
Ft
(Rn) is a set of Ft measurable random variables η, which are valued in Rn, and sat-

isfy the condition Ê|η| < ∞. λmax(A) denotes the largest eigenvalue of A. Where ∗
denotes the transpose of a matrix on its diagonal. For convenience, A(t)x(t) := f (x(t)),
Bij(t)x(t− τ)I(t) := gij(x(t− τ)), Cj(t)x(t− τ)I(t) := hj(x(t− τ)). Here, we employ the
Einstein summation convention:

Bij(t)I(t)x(t− τ)d
〈
wi, wi〉

t :=
Ñ
∑

i,j=1
Bij(t)I(t)x(t− τ)d

〈
wi, wi〉

t

Cj(t)I(t)x(t− τ)dwj
t :=

Ñ
∑

j=1
Cj(t)I(t)x(t− τ)dwj

t.

Definition 1 ([29]). Consider Ω as the collection of all continuous functions valued in Rn that
start from w0 = 0. This set is endowed with a metric defined by:

ρ(w1, w2) =
∞

∑
i=1

1
2i [(max

∣∣∣w1
t − w2

t

∣∣∣) ∧ 1].

Under this construction, (Ω, ρ) forms a metric space. We define H as a space compris-
ing real-valued functions that operate over Ω.

Definition 2 ([30]). A function Ê : H → R called sublinear expectation, if ∀X, Y ∈ H, C ∈ R, it
satisfies the following properties:

(1) Monotonicity: If X, Y ∈ H and X ≥ Y, then Ê(X) ≥ Ê(Y).
(2) Maintaining of constants: Ê(C) = C.
(3) Subadditivity: Ê(X + Y) ≤ Ê(X) + Ê(Y).
(4) Positive homogeneity: Ê(λX) = λÊ(X), λ > 0.

Definition 3 ([29]). (G-normal distributions) Let X = (X1, X2, · · ·XÑ) be an Ñ-dimensional
random vector in the sublinear expectation space (Ω, H, Ê), with X̃ independent of and identically
distributed to X. If the distributions of aX + bX̃ and

√
a2 + b2X remain identical for any a, b > 0,

then X is considered to follow a G-normal distribution, where G is a function defined in this space:
Sd(R)→ R.

G(A) = Ê[
1
2
〈AX, X〉], A ∈ Sd(R).

Here, Sd(R) signifies the set of symmetric matrices of size d× d. It is important to note
the existence of a compact and bounded subset Υ within Sd

+(R), fulfilling the condition:

G(A) =
1
2

sup
O∈Υ

tr[OA], A ∈ Sd(R).

Definition 4 ([30]). G-martingale is a stochastic process {Xt}t≥0 defined on a G-expectation space
that satisfies the following conditions:

(1) Adaptivity: For all t ≥ 0, Xt is Ft-measurable.
(2) G-martingale condition: For all 0 ≤ s ≤ t,

Ê[Xt|Fs] = Xs,

102



Mathematics 2024, 12, 1947

where Ê[·|Fs] denotes the conditional G-expectation given Fs.

Remark 1. Outlines the distinct properties of G. A, B are both symmetric matrices:

Property 1: The function satisfies G(A + B) ≤ G(A) + G(B).
Property 2: For any non-negative scalar λ, it holds that G(λA) = λG(A).
Property 3: Given two matrices where A ≺ B, then G(A) ≤ G(B) is guaranteed.

Definition 5. Define an operator L which is called a generalized G-Lyapunov function:

LV(y(t), t) = Vt(y(t), t) +
〈
Vy(y(t), t), A(t)y(t) + u(y(t))I(t)

〉

+ G(
〈
Vy(y(t), t), Bij(t)y(t) + Bji(t)y(t)

〉
+
〈
Vyy(y, t)Cj(t)y(t), Ci(t)y(t)

〉
),

where
〈
Vy(y(t), t), Bij(t)y(t) + Bji(t)y(t)

〉
+
〈
Vyy(y(t), t)Cj(t)y(t), Ci(t)y(t)

〉
is a symmetric

matrix in Sd(R), with the form
〈
Vy(y(t), t), Bij(t)y(t) + Bji(t)y(t)

〉
+
〈
Vyy(y(t), t)Cj(t)y(t), Ci(t)y(t)

〉
:=

[
〈
Vy(y(t), t), Bij(t)y(t) + Bji(t)y(t)

〉
+
〈
Vyy(y(t), t)Cj(t)y(t), Ci(t)y(t)

〉
]nij.

Lemma 1 ([32]). For p ≥ 0 and x(s) ∈ Mp
G([−τ, T], RÑ), we have

(1) Ê
(∣∣∣
∫ T
−τ x(s)d

〈
wi, wj〉

s

∣∣∣
)
≤ δ̄2Ê

(∫ T
−τ |x(s)|ds

)
.

(2) Ê
(∣∣∣
∫ T
−τ x(s)dwj

s

∣∣∣
2
)
= Ê

(∫ T
−τ |x(s)|

2d〈w〉s
)

.

(3) Ê
(∫ T
−τ |x(s)|

pds
)
≤
∫ T
−τ Ê|x(s)|pds.

Lemma 2 ([32]). For p ≥ 0, a ∈ [0, t] and x(s) ∈ Mp
G([−τ, T], RÑ), we have

Ê

(
sup

a≤b≤t

∣∣∣∣
∫ b

a
x(s)d

〈
wi, wj

〉
s

∣∣∣∣
p
)
≤ δ̄2p|t− a|PÊ

(∫ b

a
|x(s)|pds

)
.

Lemma 3 ([33]). For p ≥ 2, a ∈ [0, t] and x(s) ∈ Mp
G([−τ, T], RÑ), we have

Ê

(
sup

a≤b≤t

∣∣∣∣
∫ T

−τ
x(s)dwj

s

∣∣∣∣
p
)
≤ δ̄2p|t− a|pÊ

(∫ b

a
|x(s)|pds

)
.

Lemma 4 ([36]). (Schur complement) For known real matrices Ω1, Ω2, Ω3, where Ω1 = ΩT
1 ,

Ω2 = ΩT
2 , then the following conditions are equivalent to each other:

(1)
[

Ω1 Ω3
ΩT

3 Ω2

]
≺ 0.

(2) Ω1 � 0, Ω2 −ΩT
3 Ω−1

1 Ω3 ≺ 0.
(3) Ω2 � 0, Ω1 −ΩT

3 Ω−1
2 Ω3 ≺ 0.

Lemma 5 ([36]). For a symmetric matrix Σ, and real matrices M, N, we have upcoming matrix
inequality holds:

Σ + MYN + NTYT MT ≺ 0,

if and only if the upcoming matrix inequality is met:

Σ + εMMT + ε−1NT N ≺ 0,

where YTY ≤ E, and given scalar ε > 0.
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Assumption 1. Bij(t) = BT
ij(t), Ci(t) = Cj(t).

Assumption 2. There exist a constant β1, β2, β3, β4, β5 > 0, such that

(1) |A(t)y1(t)− A(t)y2(t)| ≤ β1|y1(t)− y2(t)|.
(2)

∣∣Bij(t)y1(t)− Bij(t)y2(t)
∣∣ ≤ β2|y1(t)− y2(t)|.

(3)
∣∣Cj(t)y1(t)− Cj(t)y2(t)

∣∣ ≤ β3|y1(t)− y2(t)|.
(4) uT(y(t))y(t) ≤ −β4|y(t)|2.
(5) |u(y1(t))− u(y2(t))| ≤ β5|y1(t)− y2(t)|.

Assumption 3. There are exists positive definite matrices Pij = PT
ij � 0, Qij = QT

ij � 0 and a
scalar ∀ε > 0, for i, j = 1, · · · , Ñ, satisfying the following linear matrix inequality:




BijPij + PijBT
ji + ε−1ZT

ij Zij + ZT
i Zi CiPij PijH

∗ −Pij PijH
∗ ∗ −εQij


 ≺ 0.

Remark 2. According to [34], Assumption 2 ensures the existence and uniqueness of solutions (2)
and (3). Assumptions 1 and 3 are crucial components of our work. They play a significant role in the
subsequent proofs and represent our novel contributions to the field. However, these Assumptions
also have their limitations. In Assumption 1, the system coefficients cannot always be presented in a
symmetric form. In Assumption 3, the existence of a positive definite matrix is also challenging.

3. Lemmas

To obtain the main conclusion, several lemmas were presented. First, let us consider
the following auxiliary G-SDE:

dy(t) = [A(t)y(t) + u(y(t))I(t)]dt + Bij(t)I(t)y(t)d
〈

wi, wi
〉

t
+ Cj(t)I(t)y(t)dwj

t, (3)

with initial value y0 ∈ Lp
Ft
(Rn).

Lemma 6. Under Assumptions 1 and 3, with θ ∈ (θ∗, 1], then (3) holds:
Ê|y(t; y0)|2 ≤ CÊ|y0|2e−ηt,

for t ≥ 0, where C > 0 and η = max
{

ηij
}
> 0. Here, the constant θ∗ = max

{
θ∗ij
}

, and the θ∗ij
are given by

θ∗ij =
2λmax(AT Pij) + ηijλmax(Pij)

2β4λmax(Pij)− min
1≤i,j≤Ñ

{
δij
} Ñ

∑
i,j=1

λmax(Λij)

.

Proof. The Lyapunov function for i, j = 1, · · · , Ñ are defined by

Vij(y(t), t) =
1
θ∗ij

yT(t)Pijy(t),

obviously, there exist constants C1, C2 > 0, such that

C1 |y(t)|2 ≤ Vij(y(t), t) ≤ C2|y(t)|2. (4)

We can choose constant ηij > 0, such that
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LVij(y(t), t) =
〈

2
θ∗ij

Pijy(t), A(t)y(t) + u(y(t))I(t)
〉

+ 1
θ∗ij

G(
〈
2Pijy(t), Bij(t)I(t)y(t) + Bji(t)I(t)y(t)

〉
+
〈
2PijCj(t)I(t)y(t), Ci(t)I(t)y(t)

〉
)

≤ 2
θ∗ij

yT(t)AT(t)Pijy(t) + 2
θ∗ij

uT(y(t))Pijy(t)I(t) + ηijVij(y(t), t)

+ 2
θ∗ij

G(yT(t)[(Bij(t) + Bji(t))Pij I(t) + CT
j (t)PijCi(t)I(t)]y(t)).

We define Λij = (Bij(t) + Bji(t))Pij + CT
j (t)PijCi(t). Consequently

yT(t)Λijy(t) = tr(yT(t)Λijy(t)) = tr(yT(t)[(Bij(t)Pij + PijBT
ji (t) + CT

i (t)Pn
ij Ci(t)]y(t)).

It is important to note that Bij(t)Pij + PijBT
ji (t) + CT

i (t)PijCi(t) ≺ 0. Applying Lemma 4,
this condition is equivalent to

(
Bij(t)Pij + PijBT

ji (t) Ci(t)Pij

∗ −Pij

)
≺ 0, (5)

utilizing Lemma 5, (5) corresponds to

Ξ1 + Ω1Y(t)Π1 + ΠT
1 YT(t)ΩT

1 ≺ 0, (6)

where Ξ1 =

(
BijPij + PijBT

ji CiPij

∗ −Pn
ij

)
, Ω1 =

(
PijH 0
∗ PijH

)
, Π1 =

(
Zij 0
Zi 0

)
. Thus,

it follows that (6) is tantamount to

Ξ1 + εΩ1ΩT
1 + ε−1ΠT

1 Π1 ≺ 0,

further equating to



BijPij + PijBT
ji + ε−1ZT

ij Zij + ZT
i Zi CiPij PijH

∗ −Pij PijH
∗ ∗ −εQij


 ≺ 0.

Following, based on the characteristics of the function G(·) and given that Λij ≺ 0, coupled
with the understanding that O(δij)

Ñ
i,j=1 is a positive definite matrix, it follows that

G(2[yT(t)Λijy(t)]Ñi,j=1) = sup
O∈Ψ

tr(O[yT(t)Λijy(t)]Ñi,j=1) ≤ min
1≤i,j≤Ñ

{
δij
} Ñ

∑
i,j=1

yT(t)Λijy(t) < 0.

So we have

LVij(y(t), t) ≤
{

2
θ∗ij

λmax(AT Pij)− 2
θ∗ij

β4λmax(Pij)I(t) +
ηij
θ∗ij

λmax(Pij)

}
|y(t)|2

+ 1
θ∗ij

min
1≤i,j≤Ñ

{
δij
} Ñ

∑
i,j=1

yT(t)Λijy(t)I(t),

for t ∈ [lh, (l + θ∗ij)h) and ξ1 ∈ [lh, lh + θ∗ijh)

∫ lh+θ∗ij
lh [LVij(y(s), s) + ηijVij(y(s), s)]ds ≤

{
2

θ∗ij
λmax(AT(Pij)− 2

θ∗ij
β4λmax(Pij)

+
ηij
θ∗ij

λmax(Pij) +
1

θ∗ij
min

1≤i,j≤Ñ

{
δij
} Ñ

∑
i,j=1

λmax(Λij)

}
θ∗ijh|y(ξ1)|2.

(7)
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Similarly, for t ∈ [(l + θ∗ij)h, (l + 1)h) and ξ2 ∈ [(l + θ∗ij)h, (l + 1)h)

∫ (l+1)h

lh+hθ∗ij
[LVij(y(s), s) + ηijVij(y(s), s)]ds ≤

{
2
θ∗ij

λmax(AT Pij) +
ηij

θ∗ij
λmax(Pij)

}
(1− θ∗ij)h|y(ξ2)|2, (8)

merge (7) and (8), yield

∫ (l+1)h
lh [LVij(y(s), n) + ηijVij(y(s), s)]ds ≤

{
2λmax(AT Pij)+ηijλmax(Pij)

θ∗ij
− 2β4λmax(Pij)

+ min
1≤i,j≤Ñ

{
δij
} Ñ

∑
i,j=1

λmax(Λij)




|y(ξ1)|2 ∨ |y(ξ2)|2h.

Applying the G-Itô formula, and take G-expectation

ÊeηijtVijy(t), t) = ÊVij(y0, t) + Ê
∫ (k+1)h

kh eηijs(LVij(y(s), s) + ηijVij(y(s), s))ds + ÊMt

+ Ê
∫ (k+1)h

kh eηijs
〈
Vijx(y(s), s), h(y(s), s)

〉
dwj

s

≤ EVij(y0, t) +
{

2λmax(AT Pij)+ηijλmax(Pij)

θ∗ij
− 2β4λmax(Pij)

+ min
1≤i,j≤Ñ

{
δij
} Ñ

∑
i,j=1

λmax(Λij)




|y(ξ1)|2 ∨ |y(ξ2)|2h,

where

Mt =
∫ (k+1)h

kh eηijs[
〈
Vijy(y(s), s), g(y(s))

〉
+ 1

2
〈
Vijyy(y(s), s)h(y(s)), h(y(s))

〉
]d
〈
wi, wj〉

s

−
∫ (k+1)h

kh eηijsG(
〈
Vijy(y(s)), g(y(s))

〉
+
〈
Vijyy(y(s), s)h(y(s), s), h(y(s))

〉
)ds,

note that
ÊMt ≤ 0.

Due to θ ∈ (θ∗, 1], leveraging the positive homogeneity characteristic of G, which yielded

ÊeηijtVij(y(t), t) ≤ Vij(y0, t).

Subsequently, as elucidated by (4)

Ê|y(t)|2 ≤ 1
C1

e−ηijtVij(y0, t),

thereby concluding the proof.

Remark 3. Based on the results of Lemma 6, the intermittent time θ is inversely proportional to
the gain term β4. To decrease the lower limit of the intermittent time, it is necessary to increase the
feedback gain. However, due to the consideration of random terms to stabilize the system, in practical
operation, besides increasing the feedback gain, system stability can also be enhanced by increasing
the disturbance of random terms δij. If the feedback gain cannot be further increased, the estimated
lower limit of the random disturbance term δij is as follows:

min
1≤i,j≤Ñ

{
δij
}
≥ 2λmax(AT Pij) + ηijλmax(Pij)− 2β4λmax(Pij)

−
Ñ
∑

i,j=1
λmax(Λij)

.
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Remark 4. This lemma primarily addresses the stability of the system under parameter uncertainty.
By introducing a Lyapunov function and applying the G-expectation theory, it demonstrates that
the system state remains stable even in the presence of uncertain parameters. This lemma lays
the foundation for analyzing the behavior of systems with uncertain parameters and provides
preliminary stability conditions for the main theorem.

Lemma 7. Under Assumptions 2 and ∀T > 0, then for [−τ, T]
sup

0≤t≤T+τ

Ê|x(t)|2 ≤ 2κ1Ê‖ξ‖2, (9)

Ê( sup
0≤u≤τ

|x(t + u)− x(t)|2) ≤ κ2Ê‖ξ‖2, (10)

where the constants κ1 and κ2 are given by

κ1 = e[1+β2
1+β2

5+δ̄2(β2
2+β2

3+1)](T+τ),

κ2 = 6τ2(β2
1 + β2

5 + δ̄4(β2
2 + 4β2

3))κ1.

Proof. To utilize the G-Itô formula on |x(t)|2, we proceed as follows:

|x(t)|2 = |x0|2 +
∫ t

0 2[uT(x(s− τ))x(s)I(t) + f T(x(s))x(s)]ds

+
∫ t

0 [2gT
ij(x(s− τ), n)x(s) + hT

j (x(s− τ))hi(x(s− τ))d
〈
wi, wj〉

s

+
∫ t

0 2hT
j (x(s− τ))x(s)dwj

s,

(11)

under Assumptions 2, (11) leads to the inference that

Ê|x(t)|2 ≤ |x0|2 +
∫ t

0 [Ê|x(s)|2 + β2
5Ê|x(s− τ)|2+β2

1Ê|x(s)|2]ds

+
∫ t

0 [δ̄2(β2
2Ê|x(s− τ)|2 + Ê|x(s)|2) + δ̄2β2

3Ê|x(s− τ)|2]ds,

upon reorganizing the right-hand side of the above equation, we obtain

Ê|x(t)|2 ≤ |x0|2 +
∫ t

0
[(1 + β2

1 + δ̄2)Ê|x(s)|2 + (β2
5 + δ̄2(β2

2 + β2
3))Ê|x(s− τ)|2]ds. (12)

Noting that ∫ t

0
Ê|x(s− τ)|2ds ≤ τÊ‖ξ‖2 +

∫ t

0
sup

0≤u≤s
Ê|x(u)|2ds, (13)

substitute (13) into (12) and merging them yields

sup
0≤u≤t

Ê|x(u)|2 ≤ [1 + β2
5 + δ̄2(β2

2 + β2
3)]Ê‖ξ‖2 + [1 + β2

5 + δ̄2(1 + β2
2 + β2

3)]
∫ t

0
sup

0≤u≤s
Ê|x(u)|2ds,

using Gronwall inequality yields (9).

Subsequently, employing the fundamental inequality |x + y + z|2 ≤ 3(x2 + y2 + z2)
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Ê( sup
0≤u≤τ

|x(t + u)− x(t)|2) ≤ Ê
∣∣∣
∫ t+τ

t ( f (x(s)) + u(x(s− τ))I(t))ds

+
∫ t+τ

t gij(x(s− τ))d
〈
wi, wj〉

s +
∫ t+τ

t hj(x(s− τ))dwj
s

∣∣∣
2

≤ 3Ê
∣∣∣
∫ t+τ

t ( f (x(s)) + u(x(s− τ))I(t))ds
∣∣∣
2

+ 3Ê
∣∣∣
∫ t+τ

t gij(x(s− τ))d
〈
wi, wj〉

s

∣∣∣
2
+ 3Ê

∣∣∣
∫ t+τ

t hj(x(s− τ))dwj
s

∣∣∣
2

≤ 3τβ2
1
∫ t+τ

t Ê|x(s)|2ds + (3τβ2
5 + 3τδ̄4(β2

2 + 4β2
3))
∫ t+τ

t Ê|x(s− τ)|2ds

≤ 3τ2β2
1 sup

0≤u≤T+τ

Ê|x(u)|2 + 3τ2(β2
5 + δ̄4(β2

2 + 4β2
3)) sup

0≤u≤T+τ

Ê|x(u)|2,

again using Gronwall inequality yields (10).

Remark 5. This lemma focuses on the relationship between delayed and non-delayed systems.
Specifically, it proves that even in the presence of system delays, the stability of the system can be
ensured through appropriate control strategies. The significance of this lemma lies in its extension
to more practical application scenarios, as delays are inevitable in many real-world systems.

Lemma 8. Under Assumptions 2 and ∀T > 0, then for [−τ, T]
Ê|x(t)− y(t)|2 ≤ κ3(T + τ)Ê‖ξ‖2,

where κ3 is given by

κ3 = (12β5 + 4β1 + 2β2
3 + 4β3)(6β5 + 2β1 + 6β2 + β2

3 + 6β3)κ2.

Proof. Applying the G-Itô formula, and take G-expectation

Ê|x(t)− y(t)|2 = 2Ê
∫ t

0 [(u(x(s− τ))− u(y(s)))T(x(s)− y(s))I(t)

+ ( f (x(s))− f (y(s)))T(x(s)− y(s))]ds

+ Ê
∫ t

0 [2(gij(x(s− τ))− gij(y(s)))
T(x(s)− y(s))

+ (hj(x(s− τ), n)− hj(y(s)))T(hj(x(s− τ))− hj(y(s))]d
〈
wi, wj〉

s

+ 2Ê
∫ t

0 (hj(x(s− τ))− hj(y(s)))
T(x(s)− y(s))dwj

s,

under Assumption 2, we have

Ê|x(t)− y(t)|2 ≤ 2Ê
∫ t

0 [β5|x(s− τ)− y(s)||x(s)− y(s)|+ β1|x(s)− y(s)|2]ds

+ Ê
∫ t

0 [2β2|x(s− τ)− y(s)||x(s)− y(s)|+ β3|x(s− τ)− y(s)|2]d
〈
wi, wj〉

s

+ 2β3Ê
∫ t

0 |x(s− τ)− y(s)||x(s)− y(s)|dwj
s.

By applying the Hölder inequality

Ê|x(t)− y(t)|2 ≤ 2Ê
∫ t

0 [β5(3|x(s)− y(s)|2 + |x(s)− x(s− τ)|2) + β1|x(s)− y(s)|2]ds

+ 2Ê
∫ t

0 [β2(6|x(s)− y(s)|2 + 2|x(s)− x(s− τ)|2)
+ β2

3(|x(s)− x(s− τ)|2 + |x(s)− y(s)|2)]ds

+ 2β3Ê
∫ t

0 (3|x(s)− y(s)|2 + |x(s)− x(s− τ)|2)ds

= (6β5 + 2β1 + 6β2 + β2
3 + 6β3)Ê

∫ t
0 |x(s)− y(s)|2ds

+ (2β5 + 2β1 + β2
3 + 2β3)Ê

∫ t
0 |x(s)− x(s− τ)|2ds.
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By virtue of Lemma 7 and Gronwall inequality, we can easily obtain

Ê|x(t)− y(t)|2 ≤ κ3(T + τ)Ê‖ξ‖2.

4. Main Results

Here is the proof of our main theorem, which is based on the aforementioned
three lemmas.

Theorem 1. Under Assumptions 1–3, choose a constant ς ∈ (0, 1) and T = 1
η log( 4C

ς ), τ∗ is the
unique solution of (14), choose τ ∈ [0, τ∗)

ς + 4κ3(T + τ) + 2κ2 = 1, (14)

then (2) have
Ê|x(t)|2 ≤ e−ηt.

Proof. Consider t ∈ (τ, 2τ + T), by Lemma 6 we can obtain

Ê|y(τ + T)|2 ≤ CÊ|y(τ)|2e−ηT ,

moreover
Ê|x(τ + T)|2 ≤ 2

(
Ê|y(τ + T)|2 + Ê|x(τ + T)− y(τ + T)|2

)
,

using Lemma 8

Ê|x(τ + T)|2 ≤ 2
(

Ce−ηT Ê|y(τ)|2 + κ3(T + τ)Ê‖ξ‖2
)
≤ 2

(
Ce−ηT + κ3(T + τ)

)
Ê‖ξ‖2. (15)

On the other hand, by Lemma 7, we have

Ê‖x(2τ + T)‖2 ≤ 2Ê|x(τ + T)|2 + 2Ê( sup
0≤u≤τ

|x(τ + T + u)− x(τ + T)|2)

≤ 2Ê|x(τ + T)|2 + 2κ2Ê‖ξ‖2,
(16)

together with (15) into (16), we have

Ê‖x(2τ + T)‖2 ≤
(

4Ce−ηT + 4κ3(T + τ) + 2κ2

)
Ê‖ξ‖2,

due to ς = 4Ce−ηT and τ ∈ (0, τ∗), we have

ς + 4κ3(T + τ) + 2κ2 < 1.

There certainly exists a suitable constant α, such that

ς + 4κ3(T + τ) + 2κ2 = e−α(T+τ),

obviously, we have
Ê‖x(2τ + T)‖2 ≤ e−α(T+τ)Ê‖ξ‖2,

based on the homogeneity of time and repeating the iteration, we obtain

Ê‖x(nτ + T)‖2 ≤ e−α(n−1)(T+τ)Ê‖ξ‖2. (17)

hence, for t ∈ (nτ + T, (n + 1)τ + T), combining (9) and (17)
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sup
nτ+T≤t≤(n+1)τ+T

Ê|x(t)|2 ≤ 2κ1Ê‖xnτ+T‖2 ≤ 2κ1e−α(n−1)(T+τ)Ê‖ξ‖2.

This proof is hereby completed.

Remark 6. The main theorem synthesizes the results of Lemmas 6–8, proving that the system
remains stable under G-Brownian motion and parameter uncertainty, even when delays and inter-
mittent control strategies are introduced. The main theorem relies on the stability conditions and
analytical methods provided by the preceding lemmas, detailing the behavior of the system under
these complex conditions and providing sufficient conditions for system stability.

5. Numerical Examples

Example 1. Now, we consider a two-dimensional numerical example. There are the given
parameter matrices:

A =

(
0.1 0.5
0.5 0.1

)
, B11 =

( −0.5 0
0 −0.5

)
, B12 =

(
0 0
0 0

)
, B21 =

(
0 0
0 0

)
, B22 =

( −0.5 0
0 −0.5

)

C1 =

(
0.1 0
0 0.1

)
, C2 =

(
0.1 0
0 0.1

)
, Z11 =

(
0.2 0
0 0.2

)
Z12 =

(
0 0
0 0

)
, Z22 =

(
0.2 0
0 0.2

)

Z1 =

(
2 0
0 2

)
, Z2 =

(
2 0
0 2

)
, H =

(
0.5 0
0 0.5

)
.

The values of the random term are given in the following matrix:

O =

{
Ψ =

(
δ11 δ12
δ12 δ22

)
: δ11 ∈ [5, 6], δ12 ∈ [2, 3], δ22 ∈ [5, 6]

}
.

For convenience, let τ = 0. The design of the control functions u(x(t)) are as follows:

u(x) =
( −0.4x1(t)
−0.4x2(t)

)
.

Through the MATLAB LMI toolbox, we have:

P11 =

(
0.345 0

0 0.345

)
, P22 =

(
0.505 0

0 0.505

)
, Q11 =

(
1.481 0

0 1.481

)
, Q22 =

(
1.744 0

0 1.744

)
.

It can be easily verified that A(t), u(x(t))I(t), Bij(t)x(t)I(t), Cij(t)x(t)I(t) satisfy Assump-
tion 1. From Lemma 6, we choose ηij = 1. After inserting these values into Lemma 6
and completing the calculations, we obtain θ∗ = 0.533 and opt for θ = 0.55. Further-
more, with C = 2.898 and choosing ς = 0.001, substituting the above into Theorem 1 and
performing the calculations yields T = 9.951.

Figures 1–3 both employ the Euler numerical method with ∆t = 0.01, and each selects
a variance within the specified range to simulate graphically. Figure 1 elucidates that
the system manifests instability when a smaller variance, denoted as δ2 = 0.1, is utilized.
Conversely, stability is attained when the variance is augmented to δ2 = 5. Figure 2
delineates the impact of the control interval θ on system stability. Specifically, the system
exhibits instability when θ = 0.1, a value that falls below the critical threshold. However,
stability is restored when the control interval is set to a value that exceeds this critical
threshold. These simulation figures substantiate the veracity of the theoretical proofs
previously articulated, demonstrating the nuanced dependency of system stability on the
parameters of variance and control interval.
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Figure 1. Intermittent Control and Dynamic Parameters.

Figure 2. Intermittent Control and Dynamic Parameters.

Example 2. Consider a two-dimensional system with delays:

A =

(
0.2 0.1
0.1 0.2

)
, B11 =

( −0.5 0
0 −0.5

)
, B12 =

(
0 0
0 0

)
, B21 =

(
0 0
0 0

)
, B22 =

( −0.5 0
0 −0.5

)

C1 =

(
0.1 0
0 0.1

)
, C2 =

(
0.1 0
0 0.1

)
, Z11 =

(
0.2 0
0 0.2

)
Z12 =

(
0 0
0 0

)
, Z22 =

(
0.2 0
0 0.2

)

Z1 =

(
2 0
0 2

)
, Z2 =

(
2 0
0 2

)
, H =

(
0.5 0
0 0.5

)
.
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The design of the control functions u(x(t− τ)) are as follows:

u(x) =
( −4x1(t− τ)
−4x2(t− τ)

)
.

The values of the random term are given in the following matrix:

O =

{
Ψ =

(
δ11 δ12
δ12 δ22

)
: δ11 ∈ [0.8, 1], δ12 ∈ [0.5, 0.8], δ22 ∈ [0.8, 1]

}
.
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Figure 3. Intermittent Control and Dynamic Parameters.

Through the MATLAB LMI toolbox, we have:

P11 =

(
1.82 0

0 1.82

)
, P22 =

(
1.82 0

0 1.82

)
, Q11 =

(
2.9 0
0 2.9

)
, Q22 =

(
2.9 0
0 2.9

)
,

after calculation, it is easy to obtain β1 = 0.31, β2 = 0.35, β3 = 0.14, β4 = 0.4,
β5 = 0.56, T = 0.9. Substituting the above values into Equation (14), we obtain τ = 0.0076.
The simulation in Figure 3 clearly shows that the system is stable when the delay τ < 0.0076.
When the delay τ > 0.0076, the system becomes unstable.

6. Conclusions

In this paper, we have investigated stochastic intermittent control strategies based on
G-Brownian motion and parameter uncertainties. The key contributions of our work can
be summarized as follows: We demonstrated that the system remains stable even under
parameter uncertainties by constructing appropriate Lyapunov functions and applying
G-expectation theory, addressing a significant challenge in practical applications where
parameters cannot always be precisely known. Additionally, we extended the analysis
to systems with delays and intermittent control strategies, proving that stability can still
be maintained, which is particularly relevant for real-world systems where delays and
resource constraints necessitate intermittent control. Future research can build on this work
by relaxing some of the assumptions made in this study, such as known system parameters
and linear control functions, to enhance the applicability of the methods. Furthermore, im-
plementing and validating the proposed methods in real-world systems, such as industrial
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processes or networked control systems, would provide valuable insights and confirm their
practical effectiveness. Lastly, investigating advanced control strategies, such as adaptive
and robust control, in the context of G-Brownian motion and intermittent control could
further improve system performance under uncertainty and resource constraints.
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Abstract: This paper is concerned with exponential synchronization for a class of coupled neural
networks with hybrid delays and stochastic distributed delayed impulses. First of all, based on
the average impulsive interval method, total probability formula and ergodic theory, several novel
impulsive Halanay differential inequalities are established. Two types of stochastic impulses, i.e.,
stochastic distributed delayed impulses with dependent property and Markov property have been
taken into account, respectively. Secondly, some criteria on exponential synchronization in the
mean square of a class of coupled neural networks with stochastic distributed delayed impulses are
acquired by combining the proposed lemmas and graph theory. The validity of the theoretical results
is demonstrated by several numerical simulation examples.

Keywords: coupled neural networks; stochastic distributed delayed impulses; synchronization;
Markov property
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1. Introduction

In recent years, the dynamical properties of neural networks (NNs) have been exten-
sively investigated due to NNs’ high-nonlinearity and good fault tolerance. Various kinds
of NNs including Hopfield NNs, Cohen-Grossber NNs, BAM NNs and inertial NNs have
been proposed and examined. Moreover, coupled neural networks (CNNs) can be regarded
as one kind of complicated NN composed of multiple interconnected nodes. In contrast to
NNs with single nodes, CNNs possess more elaborate and unforeseeable characteristics.
Recently, a considerable number of results with respect to the collective behavior of CNNs
have been reported [1–4].

Synchronization is an interesting and important class of collective behavior and depicts
that several systems adapt each other to a common trajectory that may be an equilibrium
point, periodic solution, or chaotic attractor. Since Pecora and Carroll [5] introduced the
synchronization of two identical chaotic systems, the synchronization issue has gained
considerable attention because it can describe many natural phenomena and has many
potential applications for image processing, secure communication, and neuronal synchro-
nization. For instance, the theta rhythm related to the behavior of animals is produced
by partial synchronization of neuronal activity in the hippocampal network, and an ex-
cessive synchronization of the neuronal activity over a wide area in the brain results
in the epileptic rhythm [6]. Currently, various approaches to synchronization of CNNs
have been developed including pinning control [7], adaptive control [8], event-triggered
control [9], sampling control [10], periodic intermittent control [11], sliding control [12],
impulsive control [13,14] and so on. Particularly, in [8], several criteria on exponential
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synchronization in the mean square and the almost sure sense for a class of neutral stochas-
tic CNNs have been provided by combining M-matrix theory and algebraic inequalities,
and adaptive controllers have been designed. In the real environment, it is desirable to
realize synchronization within a finite horizon. Consequently, finite-time and fixed-time
synchronization [15] of CNNs have been examined which exhibit strong robustness and
anti-interference capability.

In addition, some practical networks such as electronic networks and biological net-
works frequently encounter momentary disturbances and abrupt variations, which could
be characterized as impulses. Generally, impulses can be categorized into stabilizing im-
pulses, destabilizing impulses and hybrid impulses. Numerous achievements relevant to
the dynamic behaviors of CNNs with impulsive effects have been published. For instance,
asymptotic synchronization of CNNs with time delays and stabilizing impulses has been
studied by utilizing the stability theory for impulsive functional differential equations
in [16] while exponential synchronization issue of CNNs has been dealt with through
destabilizing impulses in [17]. By referring to [16–18], unified synchronization criteria in
an array of CNNs with hybrid impulses have been established, and several concepts on
average impulsive interval and average impulsive gain have been put forward in [19].
Furthermore, by using the improved Razumikhin approach, several criteria on pth moment
exponential stability of non-autonomous stochastic delayed systems with impulsive effects
have been derived in [20,21]. Actually, time delays also exist at the moment of the impulses
and affect the dynamic properties in some applicable systems including signal transmission
processing and biology systems. Numerous studies about stability and synchronization of
nonlinear systems with delayed impulses have been carried out [22–25]. In [22], by utilizing
the impulsive control theory and some comparison principles, various stability of nonlinear
systems with state-dependent impulses have been examined. In [25], in light of the average
impulsive delay–gain approach, exponential synchronization of CNNs with hybrid delayed
impulses has been analyzed. The aforementioned impulsive delays are constant delays or
time-varying delays, and one new class of distributed-delay-dependent impulses [26–31]
has also caught the researchers’ attention. In [28,29], several impulsive Halanay differential
inequalities have been presented and applied to the synchronization of network systems
with distributed delayed impulses. Furthermore, the mean square stability of stochastic
functional systems with distributed delayed impulses has been discussed based on the
stochastic analysis technique and average dwell time method in [30,31]. Due to the ex-
istence of stochastic disturbances at the impulsive moment, stochastic impulses [32–38]
have been introduced. In [34], under the circumstance that the impulse intensities were
supposed to be random, the exponential synchronization problem of the neural networks
(NNs) has been tackled, and the results have been further generalized to inertial network
systems with stochastic delayed impulses [35,36].

It can be seen that the existing achievements in [26–31] are related to the deterministic
distributed delayed impulses. Particularly, in [27], exponential synchronization of chaotic
NNs with distributed delayed impulses has been examined, and the theoretical work has
been extended to CNNs with time-varying delays of unknown bounded in [28]. However,
so far, the synchronization issue of CNNs with hybrid delays and stochastic distributed
delayed impulses has not been explored. Actually, when some factors such as hybrid
delays and stochastic distributed delayed impulses are taken into account simultaneously,
the approaches in [34–36] can not be directly applied to this case. How to overcome the
difficulties that these factors bring is full of challenges. Additionally, the parameter c is
limited to the condition 0 < c ≤ 1 in [34] and c = 1 in [35], and impulses can not have a
positive impact on the synchronization realization of coupled inertial NNs with hybrid
delays in [36]. Consequently, how to relax these constraints and reduce the conservativeness
of the existing work [34–36] is of great significance.

Inspired by the above discussions, we aim to explore the exponential synchronization
of a class of CNNs with hybrid delays and stochastic distributed delayed impulses. To begin
with, we propose two novel impulsive Halanay differential inequalities, where two types of
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stochastic impulses, i.e., stochastic distributed delayed impulses with dependent property
and Markov property have been considered, respectively. Furthermore, combining the
proposed lemmas and graph theory, some criteria on exponential synchronization in the
mean square of a class of CNNs with stochastic distributed delayed impulses are obtained.
The main contributions can be unfolded in three aspects.

(1) Different from the deterministic distributed delayed impulses in the literature [26–31],
in this paper, the intensities of distributed delayed impulses are supposed to be random.
Two types of stochastic impulses including stochastic distributed delayed impulses
with independent property and Markov property have been explored, respectively.

(2) Based on the average impulsive interval method, total probability formula and ergodic
theory, two novel impulsive Halanay differential inequalities are established, which
generalize the findings in the literature [34,35] since time-varying delays, distributed
delays and stochastic distributed delayed impulses are introduced simultaneously.
Parameter c can be arbitrarily chosen. In view of invariant distribution theory, the
stochastic impulses with Markov property are tackled.

(3) By utilizing the established inequalities and graph theory, some criteria for exponential
synchronization of CNNs with stochastic distributed delayed impulses are derived.
In [36], impulses can only be regarded as outer disturbances for coupled inertial NNs
with hybrid delays. Compared with the work [36], in this paper, impulses may also
be viewed as outer perturbations or stabilizing sources, and the case of stochastic
impulses with Markov property is also discussed.

The remainder of this paper is arranged as follows. In Section 2, some necessary
definitions and assumptions are given, and two novel impulsive Halanay differential
inequalities are established. In Section 3, a class of coupled neural networks with stochastic
distributed delayed impulses is presented and several criteria on exponential mean square
synchronization are derived. In Section 4, two numerical simulation examples are provided
to show the validity of the theoretical results. Conclusions are drawn in the last section.

Notations: Let R and R+ be the set of real numbers and the set of non-negative real
numbers, respectively. N+ stands for the set of positive integer numbers. C(R+,R) denotes
the set of continuous functions v : R+ → R. D+v(t) represents the upper right Dini
derivative of a function v(t). B = (bij)m×n denotes an m× n matrix, and BT denotes the
transpose of matrix B. λmax(B) denotes the maximal eigenvalue. For a random variable
β, E(β) and D(β) denote the mathematical expectation and the variance, respectively.
β ∼ U(a, b) and β ∼ E(c) indicate that β obeys the uniform distribution and the exponential
distribution, respectively. P(A) represents the probability of the random event A.

2. Preliminaries

In this section, we will propose some necessary definitions and assumptions. Mean-
while, based on the average impulsive interval method, total probability formula and
ergodic theory, two novel impulsive Halanay differential inequalities with hybrid delays
are given. Two types of stochastic impulses, i.e., stochastic distributed delayed impulses
with dependent property and Markov property have been taken into account, respectively.

Definition 1. Suppose that Θ = {t1, t2, · · · , tn} is the impulsive sequence and Ta is the average
impulsive interval. If Ta ∈ R+, N0 ∈ N+ satisfied

T − t
Ta
− N0 ≤ NΘ(T, t) ≤ T − t

Ta
+ N0, ∀T ≥ t ≥ 0, (1)

let NΘ(T, t) be the number of impulsive times and Θ be the impulsive sequence on the interval
[t, T].
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Assumption 1. Let {βk}k=1,2,... denote a sequence of independent and identically distributed
random variables satisfying 




Eβk =α > 0,

Dβk ≤γ2,

βk ≥0,

(2)

where γ is a determined non-negative constant.

Lemma 1. Let Θ = {t1, t2, · · · , tn} denote the impulsive sequence and Ta denote the average
impulsive interval. Suppose that Assumption 1 holds. Function v(t) ∈ C(R+,R), t ≥ t0(t 6= tk)
satisfies the following differential inequality with stochastic distributed delayed impulses





D+v(t) ≤− pv(t) + qv(t− σ1(t)) + r
∫ t

t−σ2

v(s)ds, t 6= tk,

v(tk) ≤βk

∫ t

t−ρk

v(s)ds, t = tk, k = 1, 2, · · · ,

v(t) =Φ(t), t ∈ [t0 − τ0, t0],

(3)

where v(tk) = v(t+k ), 0 ≤ ρk ≤ ρ, σ2 ≥ ρk, σ1(t) ≤ σ1, τ0 = max{σ1, σ2}, p ≥ 0,

q ≥ 0, r ≥ 0 and ‖Φt0‖τ0 = sup
−τ0≤s≤0

‖Φ(t0 + s)‖. Denote M1 = max
{

c−
σ1
Ta −N0 , 1

}
and

M2 = max
{

c−
σ2
Ta −N0 , 1

}
. If p > qM1 + rM2σ2 ≥ 0, then we have

Ev(t) ≤ M0‖Φt0‖τ0 e−
(

ε̄− ln λ
Ta

)
(t−t0), ∀t ≥ t0, (4)

where λ , min
{

αρieε̄ρi +
cρ2

i e2ε̄ρi γ2

(αρieε̄ρi−c)2 , αρieε̄ρi + c
}

, M0 , max{λ−N0 , λN0}, c 6= αρieε̄ρi and

ε̄ > 0 is the unique solution of Π(ε) = ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0.

Proof. Construct the following function

Π(ε) = ε− p + qM1eεσ1 + rM2
1
ε
(eεσ2 − 1). (5)

Noting that lim
ε→0+

Π(ε) = −p + qM1 + rM2σ2 < 0, lim
ε→+∞

Π(ε) > 0 and Π′(ε) > 0, there

exists a unique positive root ε̄ for equation Π(ε) = 0. Subsequently, we will claim that

v(t) ≤
(

k

∏
i=1

µi

)
‖Φt0‖τ0 e−ε̄(t−t0), t ∈ [tk, tk+1), k = 0, 1, 2, . . . , (6)

where µi , max{βiρieε̄ρi , c}, i = 1, 2, . . . , and c > 0. When t ∈ [t0 − τ, t0], obviously,
v(t) ≤ ‖Φt0‖τ . Let Γ > ‖Φt0‖τ0 . In order to show that assertion (5) holds, we need to
prove that

v(t) < Γ

(
k

∏
i=1

µi

)
e−ε̄(t−t0) = zk(t), ∀t ∈ [tk, tk+1), k = 0, 1, 2, . . . . (7)

When k = 0, since the system is not influenced by impulse, we need to show that

v(t) < Γe−ε̄(t−t0) , z0(t), ∀t ∈ [t0, t1). (8)

Assume that inequality (8) is not satisfied, there exists a t∗ ∈ [t0, t1) such that

v(t) < Γe−ε̄(t−t0), t ∈ [t0, t∗), v(t∗) = Γe−ε̄(t∗−t0); D+v(t∗) ≥ D+z0(t∗). (9)
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It follows from (9) that

D+v(t∗) ≤− pv(t∗) + qv(t∗ − σ1(t)) + r
∫ t∗

t∗−σ2

v(s)ds

<− pΓe−ε̄(t∗−t0) + qΓe−ε̄(t∗−σ1−t0) + r
∫ t∗

t∗−σ2

Γe−ε̄(s−t0)ds

<
[
− p + qM1eσ1 ε̄ +

r
ε̄
(eσ2 ε̄ − 1)M2

]
z0(t∗)

=D+z0(t∗),

(10)

which means that D+v(t∗) < D+z(t∗). It yields a contradiction with (9). Hence, inequality
(8) holds. Assume that inequality (7) holds for k ≤ m0 − 1, m0 ∈ N+, i.e.,

v(t) < zk(t), ∀t ∈ [tk, tk+1), k = 1, 2, . . . , m0 − 1. (11)

In what follows, we need to prove that inequality (7) is true for k = m0. Actually, when

t = tm0 , one has that v(tm0) < βm0

∫ tm0
t−ρm0

Γ

(
m0−1

∏
i=1

µi

)
e−ε̄(s−t0)ds ≤ Γβm0 eε̄ρm0 ρm0

(
m0−1

∏
i=1

µi

)

e−ε̄(tm0−t0) ≤ Γ

(
m0
∏
i=1

µi

)
e−ε̄(tm0−t0) ≤ zm0(tm0). If inequality (7) is incorrect for t ∈ (tm0 , tm0+1),

then there exists a t∗ ∈ (tm0 , tm0+1) such that

v(t) < zm0(t), t ∈ [tm0 , t∗), v(t∗) = zm0(t∗); D+v(t∗) ≥ D+zm0(t∗). (12)

For ∀t ∈ [t∗ − σ1, t∗), suppose t ∈ [tbt , tbt+1), where bt is related to t. It follows from
inequalities (11) and (12)

v(t) < zbt(t), ∀t ∈ [t∗ − σ1, t∗). (13)

Noting that µi ≥ c, we may know that

v(t) < zbt(t) =
1

µbt+1 . . . µm0

( m0

∏
i=1

µi
)
Γeε̄(t∗−t)e−ε̄(t∗−t0) ≤ eε̄(t∗−t)

cm0−bt
zm0(t∗), ∀t ∈ [t∗ − σ1, t∗). (14)

Let t∗ − σ1 ∈ [td0 , td0+1); we can find that bt ∈ [d0, m0]. According to Definition 1, we can
derive that

0 ≤ m0 − bt ≤ m0 − d0 = NΘ(t∗ − σ1, t∗) ≤
σ1

Ta
+ N0, ∀t ∈ [t∗ − σ1, t∗). (15)

When c ≤ 1, combining inequalities (14) and (15) yields

v(t) < c−
σ1
Ta −N0 eε̄(t∗−t)zm0(t∗), ∀t ∈ [t∗ − σ1, t∗). (16)

When c > 1, according to inequalities (14) and (15), we obtain that

v(t) < eε̄(t∗−t)zm0(t∗), ∀t ∈ [t∗ − σ1, t∗). (17)

Since zm0(t) is decreasing, it satisfies the following inequality

v(t∗ − σ1(t∗)) < max
{

c−
σ1
Ta −N0 , 1

}
eσ1 ε̄zm0(t∗) = M1eσ1 ε̄zm0(t∗). (18)

Similarly, when s ∈ [t∗ − σ2, t∗], we also have that

v(s) < max
{

c−
σ2
Ta −N0 , 1

}
eε̄(t∗−s)zm0(t∗). (19)
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It follows from inequality (18) and inequality (19) that

D+v(t∗) ≤− pv(t∗) + qv(t∗ − σ1(t∗)) + r
∫ t∗

t∗−σ2

v(s)ds

<− pzm0(t∗) + qM1eσ1 ε̄zm0(t∗) + r max
{

c−
σ2
Ta −N0 , 1

}
zm0(t∗)

∫ t∗

t∗−σ2

eε̄(t∗−s)ds

=
[
− p + qM1eε̄σ1 + rM2

1
ε̄
(eε̄σ2 − 1)

]
zm0(t∗)

=D+zm0(t∗),

(20)

which means that D+v(t∗) < D+z(t∗). It yields a contradiction with inequality (12). Hence,
inequality (7) is true when k = m0. Let Γ → ‖Φt0‖τ0 ; we can infer that inequality (6) is
satisfied. Since {βi} is an independent and identically distributed stochastic sequence,
δi = βiρieε̄ρi , (i = 1, 2, . . . ) is also an independent and identically distributed stochastic
sequence. Taking expectation on the both sides of inequality (6) gives that

Ev(t) ≤E

[(
k

∏
i=1

µi

)
‖Φt0‖τ0 e−ε̄(t−t0)

]

=

(
k

∏
i=1

Eµi

)
‖Φt0‖τ0 e−ε̄(t−t0), ∀t ≥ t0, t ∈ [tk, tk+1).

(21)

Subsequently, by estimating Eµi, we have that

Eµi = P(δi ≤ c)c + P(δi > c)E(δi|δi > c) ≤ P(δi ≤ c)c + E(δi) ≤ P(δi ≤ c)c + αρieε̄ρi . (22)

According to Assumption 1 Eβi = α 6= c, Dβi ≤ γ2, by employing the Chebyshev inequal-
ity, we find that

P(δi ≤ c) ≤min
{

ρ2
i e2ε̄ρi γ2

(αρieε̄ρi − c)2 , 1
}

. (23)

Hence, we have that

Eµi ≤min
{

αρieε̄ρi +
cρ2

i e2ε̄ρi γ2

(αρieε̄ρi − c)2 , αρieε̄ρi + c
}
, λ. (24)

It follows from inequalities (21) and (24) that

Ev(t) ≤λk‖Φt0‖τ0 e−ε̄(t−t0)

≤λ
t−t0

Ta max
{

λ−N0 , λN0
}
‖Φt0‖τ0 e−ε̄(t−t0)

≤M0‖Φt0‖τ0 e−
(

ε̄− ln λ
Ta

)
(t−t0), ∀t ≥ t0.

(25)

This completes the proof.

Assumption 2. Assume that the random impulsive intensity is satisfied:

H1. {ψ(tk)}k∈N+ is a discrete-time Markov chain and takes values from Ω , {1, 2, . . . , m}. Let
this Markov chain be irreducible and all states are positive recurrent. Denote that Ξ1 = (ξ1, ξ2, . . . , ξν)
is a unique invariant distribution of this Markov chain.
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H2. Let {β(i)}i∈Ω denote m kinds of different random variables independent each other and satisfy




Eβ(i) =αi > 0,

Dβ(i) ≤γ2
i ,

β(i) ≥0, i ∈ Ω,

(26)

where γi are determined non-negative constant.

H3. Let {βk}k=1,2,... denote a sequence of independent random variables. Furthermore, βk has the
same distribution with β(ψ(tk)).

Lemma 2. Let Θ = {t1, t2, · · · , tk} be the impulsive sequence and Ta be the average impulsive
interval. Suppose that Assumption 2 holds. Function v(t) ∈ C(R+,R), t ≥ t0(t 6= tk) satisfies
the following differential inequality with stochastic distributed delayed impulses





D+v(t) ≤− pv(t) + qv(t− σ1(t)) + r
∫ t

t−σ2

v(s)ds, t 6= tk,

v(tk) ≤βk

∫ t

t−ρk

v(s)ds, t = tk, k = 1, 2, · · · ,

v(t) =Φ(t), t ∈ [t0 − τ0, t0],

(27)

where v(tk) = v(t+k ), 0 ≤ ρk ≤ ρ, σ2 ≥ ρk, σ1(t) ≤ σ1, τ0 = max{σ1, σ2}, p ≥ 0, q ≥ 0, r ≥ 0

and ‖Φt0‖τ0 = sup
−τ0≤s≤0

‖Φ(t0 + s)‖. Denote M1 = max
{

c−
σ1
Ta −N0 , 1

}
and M2 = max

{
c−

σ2
Ta −N0 , 1

}
.

If p > qM1 + rM2σ2 ≥ 0; then, we have

Ev(t) ≤ M∗0‖Φt0‖τ0 e−
(

ε̄− ln(ζ+ε0)
Ta

)
(t−t0), ∀t ≥ t0, (28)

where M∗0 = max1≤k≤N̄

{(
κ

(ζ+ε0)

)k}
eN0| ln(ζ+ε0)|, ζ =

m
∑

i=1
ξiλi, λi , min

{
αiρeε̄ρ +

cρ2e2ε̄ργ2
i

(αiρeε̄ρ−c)2 ,

αiρeε̄ρ + c
}

> 0, κ = maxi∈Ω{λi}, c 6= αiρeε̄ρ, N̄ > 0, ε0 > 0 and ε̄ > 0 is the unique solution

of Π(ε) = ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0.

Proof. Let c > 0, µ(i) , max{β(i)ρeε̄ρ, c}, and µi , max{βiρeε̄ρ, c} ∈ {µ(1), µ(2), · · · ,
µ(m)}, i ∈ Ω. Similar to the proof of Lemma 1, we can derive that

Eµ(i) ≤ λi, i = 1, 2, . . . , m, (29)

and

v(t) ≤
(

k

∏
i=1

µi

)
‖Φt0‖τ0 e−ε̄(t−t0), ∀t ≥ t0, t ∈ [tk, tk+1) k = 0, 1, 2, . . . . (30)

Let Fk = σ(ψ(t1), ψ(t2), . . . , ψ(tk)). {Ft}t≥t0 denotes the filtration in the probability space
(Ω,F , P). Accordingly, we have that

Ev(t) = E
[[

Ev(t)
]
|Fk

]
≤ E

[
E
[ k

∏
i=1

µi
]
|Fk

]
‖Φt0‖τ0 e−ε̄(t−t0), t ∈ [tk, tk+1). (31)

On the other hand, we can obtain from Theorem 4.3.3 in [39] that

lim
k→∞

m

∑
j=1

P(ψ(tk) = i|ψ(t1) = j) = πi, (32)
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which means that

lim
k→∞

m

∑
i=1

P(ψ(tk) = i) = πi. (33)

By the total probability formula, we have that

Eµψ(tk)
=

m

∑
i=1

P(ψ(tk) = i)Eµ(i), (34)

Substituting Equation (33) to Equation (34) yields

lim
k→∞

Eµψ(tk)
=

m

∑
i=1

πiEµ(i) ≤
m

∑
i=1

πiλi = ζ. (35)

According to Equation (35), we can find one sufficient small positive constant ε0 and one
large enough positive constant N̄ such that

Eµψ(tk)
≤ ζ + ε0, k > N̄. (36)

Moreover, we may estimate that

E
[

E
[ k

∏
j=1

µj
]
|Fk

]
=E
[[ k

∏
j=1

Eµ(ψ(tj))
]
|Fk

]

=
m

∑
i1=1

m

∑
i2=1
· · ·

m

∑
ik=1

(( k

∏
j=1

Eµ(ij)
)

× P
(
(ψ(t1) = i1, ψ(t2) = i2, . . . , ψ(tk) = ik

))
,

(37)

where Eµ(ψ(tj)) = Eµ(ij), j ∈ {1, 2, · · · , k}, ij ∈ {1, 2, · · · , m}. If k > N̄, we have

m

∑
i1=1

m

∑
i2=1
· · ·

m

∑
ik=1

(( k

∏
j=1

Eµ(ij)
)
× P

(
(ψ(t1) = i1, ψ(t2) = i2, . . . , ψ(tk) = ik

))
≤ κN̄( k

∏̄
N+1

Eµ(ij)
)

≤ κN̄(ζ + ε0)
k−N̄ ,

(38)

where κ = maxi∈Ω{λi}. On the other hand, if k ≤ N̄, then we also acquire that

m

∑
i1=1

m

∑
i2=1
· · ·

m

∑
ik=1

(( k

∏
j=1

Eµ(ij)
)
× P

(
(ψ(t1) = i1, ψ(t2) = i2, . . . , ψ(tk)

)
≤ κk. (39)

Furthermore, according to Definition 1, we can find that

E
[

E
[ k

∏
j=1

µj
]
|Fk

]
≤ max

1≤k≤N̄

{( κ

(ζ + ε0)

)k}
(ζ + ε0)

k

≤ max
1≤k≤N̄

{( κ

(ζ + ε0)

)k}
eN0| ln(ζ+ε0)|e

ln(ζ+ε0)
Ta (t−t0).

(40)

It follows from inequalities (31) and (40) that

Ev(t) ≤ E
[

E
[ k

∏
i=1

µi
]
|Fk

]
‖Φt0‖τ0 e−ε̄(t−t0) ≤ M∗0‖Φt0‖τ0 e−

(
ε̄− ln(ζ+ε0)

Ta

)
(t−t0), ∀t ≥ t0, (41)

where M∗0 = max
1≤k≤N̄

{(
κ

(ζ+ε0)

)k}
eN0| ln(ζ+ε0)|.
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Remark 1. In the literature [26–31], dynamic properties of various nonlinear systems with dis-
tributed delayed impulses have been investigated. It is worth pointing out that the considered
distributed-delay-dependent impulses are deterministic, but in this paper, the intensities of dis-
tributed delayed impulses are supposed to be random. Two types of stochastic impulses including
stochastic distributed delayed impulses with independent property and Markov property have been
explored, respectively. Based on the average impulsive interval method, total probability formula and
ergodic theory, two novel impulsive Halanay differential inequalities are established, which general-
ize the findings in the literature [34,35] since time-varying delays, distributed delays and stochastic
distributed delayed impulses are introduced simultaneously. Parameter c can be arbitrarily chosen.
In view of invariant distribution theory, the stochastic impulses with Markov property is tackled.

3. Main Results

In this section, the exponential synchronization of coupled neural networks with
stochastic distributed delayed impulses is investigated. Some sufficient conditions are
attained based on the established lemmas and stochastic analysis technique.

Consider the following coupled neural networks model with hybrid delays and
stochastic distributed delayed impulses composed of N nodes described by





u̇i(t) = Dui(t) + Ag(ui(t)) + Bg(ui(t− σ1(t)) + C
∫ t

t−σ2

g(ui(s))ds

+ θ
N

∑
j=1

lijΓuj(t) + J(t), t ≥ 0, t 6= tk, k ∈ N+,

uj(t+k )− ui(t+k ) = ηk

∫ t

t−ρk

(uj(s)− ui(s))ds, k ∈ N+,

ui(t) = φi(t),−σ̄ ≤ t ≤ 0,

(42)

where ui(·) denotes the state vector of the ith neural network, and the initial value
φi(t) ∈ C([−σ̄, 0],Rn). g(·) ∈ Rn denotes the activation function. D, A, B, C ∈ Rn×n are
connection weights matrices. Γ is the inner coupling matrix which is positive definite.
Meanwhile, L = (lij)N×N denotes the outer coupling matrices, where lij ≥ 0, lij 6= 0, if and
only if there is a connection between nodes i and j(j 6= i), and lii = −∑N

j=1,j 6=i lij. θ repre-
sents the coupling strength, and J(t) is an external input vector. σ1(t) is the time-varying
delay, and ηk is the stochastic impulsive intensity at tk. In addition, the isolated node of the
coupled neural networks is given as





ṡ(t) =Ds(t) + Ag(s(t)) + Bg(s(t− σ1(t)) + C
∫ t

t−σ2

g(s(s))ds + J(t), t ≥ 0,

s(t) =φ(t),−σ̄ ≤ t ≤ 0.
(43)

Let error vector zi(t) = ui(t)− s(t). Subtracting Equation (43) from Equation (42) yields that




żi(t) = Dzi(t) + Aḡ(zi(t)) + Bḡ(zi(t− σ1(t)) + C
∫ t

t−σ2

ḡ(zi(s))ds

+ θ
N

∑
j=1

lijΓzj(t), t ≥ 0, t 6= tk, k ∈ N+

zj(t+k )− zi(t+k ) = ηk

∫ t

t−ρk

(zj(s)− zi(s))ds, k ∈ N+,

zi(t) = Φi(t),−σ̄ ≤ t ≤ 0,

(44)
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where ḡ(zi(t)) = g(ui(t)) − g(s(t)), ḡ(zi(t − σ1(t)) = g(ui(t − σ1(t)) − g(s(t − σ1(t)),
ḡ(zi(s)) = g(ui(s)) − g(s(s)) and Φi(t) = φi(t) − φ(t). By introducing the Kronecker
product, Equation (44) is turned into the following form





ż(t) = (IN ⊗ D)z(t) + (IN ⊗ A)Ḡ(z(t)) + (IN ⊗ B)Ḡ(z(t− σ1(t))

+ (IN ⊗ C)
∫ t

t−σ2

Ḡ(z(s))ds + θ(Γ⊗ L)z(t), t ≥ 0, t 6= tk,

zj(t+k )− zi(t+k ) = ηk

∫ t

t−ρk

(zj(s)− zi(s))ds, k ∈ N+

zi(t) = Φi(t),−σ̄ ≤ t ≤ 0,

(45)

where z(t) =
(
zT

1 (t), zT
2 (t), . . . , zT

N(t)
)T , Ḡ(z(t)) = (ḡT(z1(t)), ḡT(z2(t)), . . . , ḡT(zN(t)))T ,

Ḡ(z(t− σ1(t)) = (ḡT(z1(t− σ1(t)), ḡT(z2(t− σ1(t), . . . , ḡT(zN(t− σ1(t)))T and Ḡ(z(s)) =
(ḡ(z1(s)), ḡ(z2(s)), . . . , ḡ(zN(s))).

Assumption 3. Assume that outer coupling matrix L is a irreducible matrix.

Lemma 3 ([40]). Under Assumption 3, the left eigenvector corresponding to the zero eigenvalue
of matrix L is ξ = (ξ1, . . . , ξN)

T and ∑N
i=1 ξi = 1, ξi ≥ 0. Denote Ξ = diag{ξ1, . . . , ξN}. Then,

L̄ = ΞL + LTΞ is irreducible and symmetric, whose eigenvalues satisfy 0 = λ1(L̄) > λ2(L̄) ≥
. . . λN(L̄).

Assumption 4. For vector-valued function Ḡ(·) in Equation (45), there exists a matrix Q ∈ Rn×n

such that
Ḡ(u1)− Ḡ(u2)tT[Ḡ(u1)− Ḡ(u2)

]
≤ (u1 − u2)

TQQT(u1 − u2), (46)

where u1, u2 ∈ Rn.

Definition 2. If there are positive constants M̄ and ι such that

E‖zi(t)‖2 ≤ M̄e−ιt, ∀t ≥ 0, i = 1, 2, . . . , N, (47)

then system (42) is said to be globally exponentially synchronized in mean square.

Based on the above assumptions, by utilizing the proposed lemmas in Section 2, we
can derive the following criteria for exponential synchronization of CNNs with hybrid
delays and stochastic distributed delayed impulses.

Theorem 1. Let Assumptions 3 and 4 hold. ηk is the stochastic impulsive intensity with E(ηk) = ᾱ,
D(ηk) = γ̄2, E(η4

k ) = χ. Time delays σ1(t), σ2, ρk satisfy σ1(t) ≤ σ1, σ2 ≥ ρ ≥ ρk ≥ 0,
τ0 = max{σ1, σ2}. If the following conditions hold,

(i) p > qM1 + rM2σ2 ≥ 0, where W = Ξ− ξξT , b = − λ2(L̄)
λmax(W)

, p = −λmax

(
D + DT +

AAT + QQT + BBT + CCT − θbΓ
)

, q = λmax(QQT), r = σ2λmax(QQT),

M1 = max
{

c−
σ1
Ta −N0 , 1

}
and M2 = max

{
c−

σ2
Ta −N0 , 1

}
, c > 0.

(ii) ε̄− ln λ
Ta

> 0, where λ , min
{

αρieε̄ρi +
cρ2

i e2ε̄ρi γ2

(αρieε̄ρi−c)2 , αρieε̄ρi + c
}

, M0 , max{λ−N0 , λN0},
c 6= αρieε̄ρi , ρk(ᾱ

2 + γ̄2) = α, ρ2
k(χ− (ᾱ2 + γ̄2)2) = γ2 and ε̄ > 0 is the unique solution

of Π(ε) = ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0.

Then we have
E|z(t)|2 ≤ M0‖Φt0‖τ0 e−

(
ε̄− ln λ

Ta

)
t, ∀t ≥ 0, (48)

which means that system (42) can achieve exponential synchronization in mean square.
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Proof. Choose the Lyapunov function V(t) = zT(t)(W ⊗ In)z(t), where W = Ξ− ξξT , Ξ
and ξ are the same as Lemma 3. Since W = (wij)N×N is semi-positive definite and zero-row-
sum, function V(t) can be rewritten by V(t) = − 1

2 ∑N
i=1 ∑N

j=1,j 6=i wij(zi(t)− zj(t))T(zi(t)−
zj(t)). For t ∈ [tn−1, tn], n ∈ Z+, calculating the time-derivative of V along the trajectories
of the error system (45) yields that

D+V(t) =2zT(t)(W ⊗ In)ż(t)

=2zT(t)(W ⊗ In)

[
(IN ⊗ D)z(t) + (IN ⊗ A)Ḡ(z(t)) + (IN ⊗ B)Ḡ(z(t− σ1(t))

+ (IN ⊗ C)
∫ t

t−σ2

Ḡ(z(s))ds + θ(L⊗ Γ)z(t)

]

=2zT(t)(W ⊗ D)z(t) + 2zT(t)(W ⊗ A)Ḡ(z(t)) + 2zT(t)(W ⊗ B)Ḡ(z(t− σ1(t))

+ 2zT(t)(W ⊗ C)
∫ t

t−σ2

Ḡ(z(s))ds + 2θzT(t)((WL)⊗ Γ +
b
2

W ⊗ Γ)z(t)

− bθzT(t)(W ⊗ Γ)z(t),

(49)

where b = − λ2(L̄)
λmax(W)

and L̄ is same as Lemma 3. Then, we have that

2zT(t)(W ⊗ A)Ḡ(z(t)) =−
N

∑
i=1

N

∑
j=1,j 6=i

wij(zi(t)− zj(t))T A(Ḡ(zi(t))− Ḡ(zj(t)))

≤− 1
2

N

∑
i=1

N

∑
j=1,j 6=i

wij
[
(zi(t)− zj(t))T AAT(zi(t)− zj(t))

+ (zi(t)− zj(t))TQQT(zi(t)− zj(t))
]

=zT(t)(W ⊗ AAT)z(t) + zT(t)(W ⊗QQT)z(t).

(50)

Similarly, it follows that

2zT(t)(W ⊗ B)Ḡ(z(t− σ1(t)) ≤zT(t)(W ⊗ BBT)z(t)

+ zT(t− σ1(t))(W ⊗QQT)z(t− σ1(t)),
(51)

2zT(t)(W ⊗ C)
∫ t

t−σ2

Ḡ(z(s))ds ≤zT(t)(W ⊗ CCT)z(t)

+ σ2

∫ t

t−σ2

z(s)T(W ⊗QQT)z(s)ds.
(52)

Noting that L̄ = ΞL + LTΞ is irreducible and symmetric, by the Perron–Frobenius theorem,
we infer that the eigenvalues of L̄ satisfy

0 = λ1(L̄) > λ2(L̄) ≥ . . . λN(L̄). (53)

Furthermore, since matrix L̄ is symmetric, there exists a unitary matrix U such that L̄ = UΛUT,
where Λ = diag{0, λ2(L̄), . . . , λN(L̄)}, U = (U1, U2, . . . , UN) and U1 = ( 1√

N
, . . . , 1√

N
)T .

Let y(t) = (yT
1 (t), yT

2 (t), . . . , yT
N(t))

T = (UT ⊗ In)z(t), which signifies z(t) = (U ⊗ In)y(t).
It also can be verified that WL + LTW = (Ξ − ξξT)L + LT(Ξ − ξξT) = ΞL − ξ(ξT L) +
LTΞ− (ξT L)Tξ = L̄. Hence, we can acquire that
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2θzT(t)((WL)⊗ Γ +
b
2

W ⊗ Γ))z(t) =θzT(t)((WL + LTW)⊗ Γ + b(W ⊗ Γ))z(t)

=θyT(t)(UT ⊗ In)((L̄⊗ Γ)(U ⊗ In)y(t)

+ θbyT(t)((UTWU)⊗ Γ)y(t)

≤θ
( N

∑
i=2

λi(L̄)yT
i (t)Γyi(t) + bλmax(W)

N

∑
i=2

yT
i (t)Γyi(t)

)

≤θ(λ2(L̄) + bλmax(W))
N

∑
i=2

yT
i (t)Γyi(t) = 0.

(54)

Substituting Equation (54) to Equation (49) yields that

D+V(t) ≤zT(t)(W ⊗ (D + DT + AAT + QQT + BBT + CCT − θbΓ)z(t)+

zT(t− σ1(t))(W ⊗QQT)z(t− σ1(t)) + σ2

∫ t

t−σ2

z(s)T(W ⊗QQT)z(s)ds

≤λmax(D + DT + AAT + QQT + BBT + CCT − θbΓ)V(t)

+ λmax(QQT)V(t− σ1(t)) + σ2λmax(QQT)
∫ t

t−σ2

V(s)ds

,− pV(t) + qV(t− σ1(t)) + r
∫ t

t−σ2

V(s)ds.

(55)

Since the outer coupling matrix L is an irreducible matrix, then there always exists a path
for any nodes j and i. In other words, there are s1, s2, . . . , sm such that ljsm ≥ 0, . . . , ls1i ≥ 0.
Hence, we can find that

zj(t+k )− zi(t+k ) =uj(t+k )− ui(t+k )

=
(
uj(t+k )− usm(t

+
k )
)
+
(
usm(t

+
k )− usm−1(t

+
k )
)
+ · · ·+

(
us1(t

+
k )− ui(t+k )

)

=ηk

∫ t

t−ρk

(uj(v)− usm(v) + usm(v)− usm−1(v) + · · ·+ us1(v)− ui(v))dv

=ηk

∫ t

t−ρk

(zj(s)− zi(s))ds.

(56)

According to Equation (56), one has that

V(t+k ) =−
1
2

N

∑
i=1

N

∑
j=1,j 6=i

wij(zi(t+k )− zj(t+k ))
T(zi(t+k )− zj(t+k ))

=− η2
k

2

N

∑
i=1

N

∑
j=1,j 6=i

wij

[ ∫ t

t−ρk

(zj(s)− zi(s))Tds
∫ t

t−ρk

(zj(s)− zi(s))ds
]

≤− η2
k ρk

2

N

∑
i=1

N

∑
j=1,j 6=i

wij

[ ∫ t

t−ρk

(zj(s)− zi(s))T(zj(s)− zi(s))ds
]

≤βk

∫ t

t−ρk

V(s)ds,

(57)

where βk = η2
k ρk. Noting that E(ηk) = ᾱ, D(ηk) = γ̄2, E(η4

k ) = χ, we can obtain that

E(βk) = E(η2
k ρk) = ρk(ᾱ

2 + γ̄2) = α, (58)

and
D(βk) = D(η2

k ρk) = ρ2
k(χ− (ᾱ2 + γ̄2)2) = γ2. (59)
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Combining conditions (i) and (ii), by Lemma 1, we immediately obtain the following assertion

EV(t) ≤ M0‖Φt0‖τ0 e−
(

ε̄− ln λ
Ta

)
t, ∀t ≥ 0, (60)

where λ , min
{

αρieε̄ρi +
cρ2

i e2ε̄ρi γ2

(αρieε̄ρi−c)2 , αρieε̄ρi + c
}

, M0 , max{λ−N0 , λN0}, c 6= αρieε̄ρi and

ε̄ > 0 is the unique solution of Π(ε) = ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0. According
to the construction of V(t), we can derive that

V(t) = zT(t)(W ⊗ In)z(t) =−
1
2

N

∑
i=1

N

∑
j=1,j 6=i

wij(zi(t)− zj(t))T(zi(t)− zj(t))

≥1
2

N

∑
i=1

N

∑
j=1,j 6=i

ξiξ j(zi(t)− zj(t))T(zi(t)− zj(t))

≥1
2

ξ1ξ2‖z1(t)− z2(t)‖2

(61)

which implies that ‖z1(t)− z2(t)‖2 ≤ 2
ξ1ξ2

V(t). Hence, we have

‖z1(t)‖2 ≤(‖z1(t)− z2(t)‖+ ‖z2(t)‖)2

≤2‖z1(t)− z2(t)‖2 + 2‖z2(t)‖2

≤ 4
ξ1ξ2

V(t) + 2‖z2(t)‖2.

(62)

Additionally, similar to the matrix decomposition procedures before inequality (54), we
can acquire that

V(t) = zT(t)(W ⊗ In)z(t) ≥ λ2(W)
N

∑
l=2

zT
l (t)zl(t) = λ2(W)

N

∑
l=2
‖zl(t)‖2, (63)

where 0 = λ1(W) < λ2(W) ≤ . . . λN(W) and λi(W), (i = 1, 2, · · · , N) denotes the eigen-
values of the matrix W. It implies that

‖zl(t)‖2 ≤ 1
λ2(W)

V(t), l = 2, 3, · · · , N. (64)

Combining Equations (62) and (64), we can obtain that

‖zl(t)‖2 ≤
( 4

ξ1ξ2
+

2
λ2(W)

)
V(t) , δV(t), l = 1, 2, 3, · · · , N, (65)

It follows from inequalities (60) and (65) that

E‖zl(t)‖2 ≤ M̄‖Φt0‖τ0 e−
(

ε̄− ln λ
Ta

)
t, ∀t ≥ 0, l = 1, . . . , N, (66)

where M̄ = δM0, δ =
( 4

ξ1ξ2
+ 2

λ2(W)

)
. Therefore, system (42) is mean square exponentially

synchronized.

Remark 2. In Theorem 1, it can be seen that parameter p contains coupling strength θ. When
coupling strength θ becomes larger, accordingly, parameter p also becomes larger. It is noted that
parameter p satisfies the equation Π(ε) = ε− p+ qM1eσ1ε + rM2

1
ε (e

σ2ε− 1) = 0. Consequently,
it can be inferred that the positive root ε̄ of the above equation will become larger when parameter
p becomes larger, which implies that convergent rate becomes larger and error trajectories will
converge to zero vector more quickly.
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Theorem 2. Let Assumptions 3 and 4 hold. The impulsive sequence {tk}, k ∈ Z+ satisfies Defini-
tion 1. Let ψ(t) be a Markov chain satisfying Assumption 2. {η(i)}i∈Ω denotes m kinds of different
independent random variables with E(η(i)) = µ(i) > 0, D(η(i)) = (ω(i))2 and E(η(i))4 = χ(i),
i ∈ Ω, and ηk has the same distributed with {η(ψ(k))}. Time delays σ1(t), σ2, ρk satisfy σ1(t) ≤ σ1,
σ2 ≥ ρ ≥ ρk ≥ 0, τ0 = max{σ1, σ2}. If the following conditions hold,

(i) p > qM1 + rM2σ2 ≥ 0, where W = Ξ − ξξT , b = − λ2(L̄)
λmax(W)

, p = −λmax

(
D + DT +

AAT + QQT + BBT + CCT − θbΓ
)

, q = λmax(QQT), r = σ2λmax(QQT),

M1 = max
{

c−
σ1
Ta −N0 , 1

}
and M2 = max

{
c−

σ2
Ta −N0 , 1

}
, c > 0;

(ii) ε̄ − ln(ζ+ε0)
Ta

> 0, where ζ =
m
∑

i=1
ξiλi, λi , min

{
αiρeε̄ρ +

cρ2e2ε̄ργ2
i

(αiρeε̄ρ−c)2 , αiρeε̄ρ + c
}

,

c 6= αiρeε̄ρ, ρ
[
(µ(i))2 + (ω(i))2] = αi, ρ2[χ(i) − ((µ(i))2 + (ω(i))2)2] = γ2

i , M∗0 = max1≤k≤N̄{(
κ

(ζ+ε0)

)k}
eN0| ln(ζ+ε0)|, N̄ > 0, ε0 is a sufficient small positive constant and ε̄ > 0 is the

unique solution of Π(ε) = ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0;
Then we have

E|z(t)|2 ≤ M∗0‖Φt0‖τ0 e−
(

ε̄− ln(ζ+ε0)
Ta

)
t, ∀t ≥ 0, (67)

which means that system (42) can achieve exponential synchronization in mean square.

Proof. Choose a Lyapunov function V(t) = zT(t)(W ⊗ In)z(t) the same as Theorem 1.
Similar to Theorem 1, by computing, we have that

D+V(t) ≤− pV(t) + qV(t− σ1(t)) + r
∫ t

t−σ2

V(s)ds, (68)

and

V(t+k ) ≤ρη2
k

∫ t

t−ρk

V(s)ds. (69)

Let βk = ρη2
k and β(i) = ρ(η(i))2, i ∈ Ω. Then, we can find that

E(β(i)) = E(ρ(η(i))2) = ρ
[
(µ(i))2 + (ω(i))2] = αi, (70)

and
D(β(i)) = D(ρ(η(i))2) = ρ2[χ(i) − ((µ(i))2 + (ω(i))2)2] = γ2

i . (71)

Combining conditions (i) and (ii), by Lemma 2, we immediately have the following assertion

EV(t) ≤ M∗0‖Φt0‖τ0 e−
(

ε̄− ln(ζ+ε0)
Ta

)
t, ∀t ≥ 0, (72)

where M∗0 = max1≤k≤N̄

{(
κ

(ζ+ε0)

)k}
eN0| ln(ζ+ε0)|, N̄ > 0, ζ =

m
∑

i=1
ξiλi, λi , min

{
αiρieε̄ρi +

cρ2
i e2ε̄ρi γ2

i
(αiρieε̄ρi−c)2 , αiρieε̄ρi + c

}
, c 6= αiρieε̄ρi and ε̄ > 0 is the unique solution of Π(ε) = ε− p +

qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0. It is easy to know that

‖zl(t)‖2 ≤
( 4

ξ1ξ2
+

2
λ2(W)

)
V(t) , δV(t), l = 2, 3, · · · , N, (73)

According to Equations (72) and (73), we can find that

E‖zl(t)‖2 ≤ M̄‖Φt0‖τ0 e−
(

ε̄− ln(ζ+ε0)
Ta

)
t, ∀t ≥ 0, l = 1, . . . , N, (74)

where M̄ = δM∗0 , δ =
( 4

ξ1ξ2
+ 2

λ2(W)

)
. Therefore, system (42) is mean square exponentially

synchronized.
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Remark 3. In [34], under the circumstance that the impulses intensities were supposed to be
random, the exponential synchronization problem of the NNs has been tackled, and the results
have been further generalized to inertial network systems with stochastic delays impulses [35,36].
Different from the findings in [34–36], by utilizing the proposed lemmas and graph theory, this
paper acquires some novel criteria on exponential synchronization of CNNs with hybrid delays and
stochastic distributed delayed impulses. In [36], impulses can only be regarded as outer disturbances
for coupled inertial NNs with hybrid delays. Compared with [36], in this paper, impulses may also
be viewed as outer perturbations or stabilizing sources, and the case of stochastic impulses with
Markov property is also discussed.

Remark 4. The Razumikhin approach is one significant and effective tool for analyzing dynamic
characteristics. Particularly, in [20,21], with the help of the improved Razumikhin method, several
criteria on p th moment exponential stability of non-autonomous stochastic delayed systems with
impulsive effects have been derived. It is noted that the impulsive sequences are deterministic
impulses in [20,21], and non-autonomous stochastic systems with stochastic delayed impulses have
not been examined by adopting the Razumikhin approach, which deserves further investigation.
On the other hand, in [37], input-to-state stability for switched stochastic nonlinear systems with
random impulses has been tackled. However, it is required that stochastic impulsive intensity ρk,kl
satisfy 1 < Eρk,kl

= ρi < +∞. In our paper, this restrictive condition is removed, and two types
of stochastic impulses, i.e., stochastic distributed delayed impulses with dependent property and
Markov property have been taken into account, respectively.

Remark 5. In [38], pth exponential stability of stochastic delayed semi-Markov jump systems
with stochastic mixed impulses has been investigated. A new impulsive differential inequality
with semi-Markov jump and stochastic mixed impulses has been established by virtue of stochastic
theory, which is further applied to a kind of stochastic delayed semi-Markov jump oscillator systems.
Compared with the work in [38], we consider the effects of hybrid delays and two types of stochastic
distributed delayed impulses. In the future, our findings can be extended to stochastic delayed
semi-Markov jump oscillator systems.

Remark 6. In [41], almost surely synchronization of directed CNNs via stochastic distributed
delayed impulsive control has been studied by adopting graph theory, the Chebyshev inequality,
the Borel–Cantelli Lemma and the stochastic Lyapunov functional method. It is noted that the
distributed impulsive control is imposed from the perspective of the spatial structure while the
distributed delayed impulses are considered here from the perspective of time delay. In this paper,
stochastic intensities are not restricted to obeying the Gaussian distribution, and two types of
stochastic impulses with independent property and Markov property have been explored.

Remark 7. Neuronal synchronization has appeared in real applications. For instance, the theta
rhythm related to the behavior of animals is produced by partial synchronization of neuronal activity
in the hippocampal network, and an excessive synchronization of the neuronal activity over a wide
area in the brain results in the epileptic rhythm [6]. On the other hand, the results of exponential
synchronization of CNNs in our paper can be further extended to coupled oscillators, multi-agent
systems, and coupled unmanned aerial vehicles (UAV) communicating with each other. In the
future, when random noise and stochastic impulses coexist, the dynamical properties of nonlinear
coupled systems are worthy of further exploration.

4. Examples

In this section, two numerical examples are provided to demonstrate the validity of
the proposed findings.
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Example 1. Consider the following coupled neural networks model with hybrid delays and stochas-
tic distributed delayed impulses





u̇i(t) = Dui(t) + Ag(ui(t)) + Bg(ui(t− σ1(t)) + C
∫ t

t−σ2

g(ui(s))ds

+ θ
N

∑
j=1

lijΓuj(t) + J(t), t ≥ 0, t 6= tk, k ∈ N+,

uj(t+k )− ui(t+k ) = ηk

∫ t

t−ρk

(uj(s)− ui(s))ds, k ∈ N+,

ui(t) = φi(t),−σ̄ ≤ t ≤ 0,

(75)

where ui = (ui1, ui2)
T , N = 5, σ1(t) = 0.6 cos(t) ≤ σ1 = 0.6, σ2 = 0.5, θ = 1.8, J(t) =

(0.4, 2.6)T , 0 ≤ ρk = 0.5 = ρ, g(ui(t)) = 0.8(tanh(ui1(t), tanh(ui2(t)))T , i = 1, . . . , N, and
the corresponding coefficient matrices and inner coupled matrix are selected below

D =

(−4.8 0
0 −5.2

)
, A =

(−1.7 −1.4
−1.6 1.12

)
, B =

( −1.7 −2.6
−2.54 1.1

)
,

C =

(
0.3 −0.17
0.35 0.35

)
, Γ =

(
1.2 0
0 2.4

)
,

and the outer coupling matrix is

L =




−4 2 0 0 2
0 −3 2 1 0
1 0 −5 0 4
2 0 1 −3 0
0 1 0 1 −2




.

ηk is the stochastic impulsive intensity at tk satisfying the uniform distribution U(0.6, 1.2). Figure 1
shows the stochastic impulsive sequence ηk with Ta = 0.5 and N0 = 1. Let c = 0.75. The impulsive
sequence is chosen as tk = 0.5k, k ∈ N+. Apparently, Ta = 0.5, N0 = 1. By calculation, we
can obtain that Q = diag{0.8, 0.8}, ᾱ = 0.9, γ̄2 = 0.03, χ = 0.8035, b = − λ2(L̄)

λmax(W)
= 3.6227,

p = −λmax

(
D + DT + AAT + QQT + BBT + CCT − θbΓ

)
= 1.5836, q = λmax(QQT) = 0.64,

r = σ2λmax(QQT) = 0.32, M1 = max
{

c−
σ1
Ta −N0 , 1

}
= 1.8831, M2 = max

{
c−

σ2
Ta −N0 , 1

}
=

1.7778, α = ρk(ᾱ
2 + γ̄2) = 0.42, and γ2 = ρ2

k [χ − (ᾱ2 + γ̄2)2] = 0.0244. Since p >
qM1 + rM2σ2 = 1.4896, we can find that ε̄ = 0.052 > 0 is the unique solution of equation

ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0. Furthermore, we can compute that λ = min
{

αρkeε̄ρk +

cρ2
k e2ε̄ρk γ2

(αρkeε̄ρk−c)2 , αρkeε̄ρk + c
}

= 0.2324. Noting that ε̄ − ln λ
Ta

= 1.3195, all the conditions in

Theorem 1 are satisfied, which signifies that system (75) can be exponentially synchronized in mean
square. Figure 2 shows the state trajectories of all nodes, and the error trajectories zi1, (i = 1, 2, 3, 4, 5)
and zi2, (i = 1, 2, 3, 4, 5) are shown in Figures 3 and 4, respectively. It can be seen from Figures 2–4
that the state trajectories of different nodes tend to be consistent.
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Figure 1. Stochastic impulsive sequence with ηk ∼ U(0.6, 1.2).
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Figure 2. State trajectories of all the nodes.
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Figure 3. Error trajectories zi1, (i = 1, 2, 3, 4, 5) of Example 1.
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Figure 4. Error trajectories zi2, (i = 1, 2, 3, 4, 5) of Example 1.
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Example 2. Consider the coupled neural network system (75) with ui = (ui1, ui2)
T , N = 5,

σ1(t) = 0.6 cos(t) ≤ σ1 = 0.6, σ2 = 0.5, θ = 1.8, J(t) = (1.2, 3.6)T , 0 ≤ ρk = 0.5 = ρ,
g(ui(t)) = 0.9(tanh(ui1(t), tanh(ui2(t)))T , i = 1, . . . , N. Meanwhile, the corresponding coeffi-
cient matrices and inner coupled matrix are selected below.

D =

(−3 0
0 −3.6

)
, A =

(
1.9 1.5
−1.6 1.2

)
, B =

(−1.9 1.2
−1.6 1.7

)

C =

(
0.3 −0.1
0.4 0.5

)
, Γ =

(
2.1 0
0 1.5

)
,

and the outer coupling matrix is

L =




−3 0 1 2 0
1 −2 1 0 0
0 0 −4 2 2
0 1 0 −3 2
1 1 0 0 −2




.

{η(i)}i∈Ω, Ω , {1, 2, 3} denotes three kinds of different independent random variables and satisfy
η(1) ∼ U(0.2, 0.8), η(2) ∼ U(1.2, 1.8), and η(3) ∼ E(1.6). Figures 5–7 show the stochastic
impulsive sequence {η(i)}i∈Ω, Ω , {1, 2, 3} with Ta = 0.5 and N0 = 1, respectively. A transition
probability matrix is

P =




0.2 0.5 0.3
0.4 0.3 0.3
0.3 0.6 0.1


,

and ξ1 = 0.3125, ξ2 = 0.4375, ξ3 = 0.25. Let c = 1. The impulsive sequence is chosen
as tk = 0.4k, k ∈ N+. Apparently, Ta = 0.4, N0 = 1. By calculation, we can obtain that
Q = diag{0.9, 0.9}, µ

(i)
1 = 0.5, (ω(i)

1 )2 = 0.03, χ
(i)
1 = 0.1091, µ

(i)
2 = 1.5, (ω(i)

2 )2 = 0.03,

χ
(i)
2 = 5.4691, µ

(i)
3 = 0.625, (ω

(i)
3 )2 = 0.3906, χ

(i)
3 = 15, b = − λ2(L̄)

λmax(W)
= 3.8514,

p = −λmax

(
D + DT + AAT + QQT + BBT + CCT − θbΓ

)
= 3.8202, q = λmax(QQT) =

0.81, r = σ2λmax(QQT) = 0.4050, M1 = max
{

c−
σ1
Ta −N0 , 1

}
= 1, M2 = max

{
c−

σ2
Ta −N0 , 1

}
=

1, α1 = ρ
[
(µ

(i)
1 )2 + (ω

(i)
1 )2] = 0.1400, and γ2

1 = ρ2[χ(i)
1 − ((µ

(i)
1 )2 + (ω

(i)
1 )2)2] = 0.0077,

α2 = ρ
[
(µ

(i)
2 )2 + (ω

(i)
2 )2] = 1.1400, and γ2

2 = ρ2[χ(i)
2 − ((µ

(i)
2 )2 + (ω

(i)
2 )2)2] = 0.0677,

α3 = ρ
[
(µ

(i)
3 )2 + (ω

(i)
3 )2] = 0.3906, and γ2

3 = ρ2[χ(i)
3 − ((µ

(i)
3 )2 + (ω

(i)
3 )2)2] = 3.5974. Since

p > qM1 + rM2σ2 = 1.0125, we can find that ε̄ = 1.5115 > 0 is the unique solution of equation

ε− p + qM1eσ1ε + rM2
1
ε (e

σ2ε − 1) = 0. Furthermore, we can compute that λ1 = min
{

α1ρeε̄ρ +

cρ2e2ε̄ργ2
1

(α1ρeε̄ρ−c)2 , α1ρeε̄ρ + c
}

= 0.1610, λ2 = min
{

α2ρeε̄ρ +
cρ2e2ε̄ργ2

2
(α2ρeε̄ρ−c)2 , α2ρeε̄ρ + c

}
= 2.2136,

λ3 = min
{

α3ρeε̄ρ +
cρ2e2ε̄ργ2

3
(α3ρeε̄ρ−c)2 , α3ρeε̄ρ + c

}
= 1.4216. ζ = 1.3742, ε0 = 0.1. Noting that

ε̄− ln(ζ+ε0)
Ta

= 0.5412, all the conditions in Theorem 1 are satisfied, which signifies that system
(75) can be exponentially synchronized in mean square. Figure 8 shows the state trajectories of
all nodes, and the error trajectories zi1, (i = 1, 2, 3, 4, 5) and zi2, (i = 1, 2, 3, 4, 5) are shown in
Figures 9 and 10, respectively. It can be seen from Figures 8–10 that the state trajectories of different
nodes tend to be consistent.
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Figure 5. Stochastic impulsive sequence with η(1) ∼ U(0.2, 0.8).
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Figure 6. Stochastic impulsive sequence with η(2) ∼ U(1.2, 1.8).
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Figure 7. Stochastic impulsive sequence with η(3) ∼ E(1.6).
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Figure 8. State trajectories of all the nodes.
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Figure 9. Error trajectories zi1, (i = 1, 2, 3, 4, 5) of Example 2.
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Figure 10. Error trajectories zi2, (i = 1, 2, 3, 4, 5) of Example 2.

Remark 8. In Examples 1 and 2, apart from stochastic distributed impulsive sequence, hybrid
delays and coupled strengthen have been considered and discussed simultaneously. Particularly,
when coupled strengthen θ become large, error trajectories will converge to zero vector more quickly.
In references [34–36], although stochastic impulses have been considered, hybrid delays, coupled
structure and stochastic distributed impulses have been ignored. Therefore, those theoretical results
in [34–36] can not be directly to Examples 1 and 2, and by utilizing Theorems 1 and 2, we can verified
that the exponential synchronization in mean square of CNNs is realized in Examples 1 and 2.

5. Conclusions

In this article, we have investigated the exponential synchronization of CNNs with
hybrid delays and stochastic distributed delayed impulses. Some new criteria on the
exponential synchronization in the mean square of CNNs are derived.

Firstly, two types of stochastic impulses, i.e., stochastic distributed delayed impulses
with dependent property and Markov property have been taken into account, respectively.
By utilizing the average impulsive interval method, total probability formula and ergodic
theory, two novel Halanay differential inequalities with stochastic distributed delay im-
pulses are established.

Secondly, based on the previous two novel impulsive Halanay differential inequalities,
some sufficient conditions are acquired to guarantee the mean square exponential synchro-
nization of CNNs.

Thirdly, the effectiveness of theoretical results is verified through two simulation exam-
ples, stochastic impulsive sequences, state trajectories of all the nodes and error trajectories
have been shown through a series of figures.

However, semi-Markov jump CNNs or discrete CNNs with stochastic delayed im-
pulses have not been investigated. Therefore, in the future, we can further explore the
mean square exponential synchronization of semi-Markov jump CNNs or discrete CNNs
with stochastic delayed impulses.
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Abstract: This paper studies the problem of adaptive fuzzy control based on command filtering for
a class of nonlinear systems characterized by an input dead zone, input saturation, and unknown
control direction. First, this paper proposes a novel equivalent transformation technique that sim-
plifies the design complexity of multiple input constraints by converting the input dead zone and
saturation nonlinearities into a unified functional form. Subsequently, a fuzzy logic system is utilized
to handle the unknown nonlinear functions, and the command-filtering method is employed to
address the issue of complexity explosion, while the Nussbaum function is utilized to resolve the
challenge of an unknown control direction. Based on Lyapunov stability, it is proven that the tracking
error converges to a small neighborhood around the origin, and all closed-loop signals are bounded.
Finally, a numerical simulation result and an actual simulation result of a pendulum are presented to
verify the feasibility and effectiveness of the proposed control strategy.

Keywords: unknown control direction; adaptive fuzzy control; dead zone and saturation; command filter
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1. Introduction

It is widely acknowledged that stability analysis and controller design for nonlinear
systems have been subjects of ongoing research and interest for several decades [1–3]. This
technology is often applied to robots [4], quadcopter UAVs [5], noise data classification [6],
aerospace systems [7], etc. Recently, the combination of backstepping methodology with
adaptive control techniques to address nonlinear systems has undergone significant de-
velopment and practical application. In earlier studies, nonlinear terms of the system
were often assumed to be known a priori or linearly parameterizable. However, for many
practical systems, this assumption is considered unrealistic. To solve this problem, neural
networks (NNs) and fuzzy logic systems (FLS) have been used to approximate unknown
system dynamics [8,9]. For example, [10] introduced an adaptive fuzzy controller grounded
in sliding mode control theory. In [11–13], the authors introduced several intelligent control
methodologies for nonlinear systems featuring pure feedback structures by amalgamating
neural networks or fuzzy logic systems with adaptive backstepping approaches.

However, the most common drawback of backstepping techniques is the complexity
explosion caused by repeatedly differentiating the virtual controller. To address this issue,
Ref. [14] proposed a dynamic surface control (DSC) scheme, which incorporated a first-
order filter dynamic surface at each stage of the backstepping control design process,
thereby obviating the need for calculating the derivatives of the virtual controller. Dynamic
filtering technology was introduced by [15] to investigate event-triggered tracking control
of a category of uncertain nonlinear systems. However, DSC technology failed to account
for the error introduced by the filter, consequently diminishing the control performance
of the system. Refs. [16–19] applied command-filtering technology to nonlinear systems
under different constraints, which not only solved the problem of complexity explosion
in the backstepping design process, but also established an error compensation system to
make up for the shortcomings of DSC technology.

Mathematics 2024, 12, 2167. https://doi.org/10.3390/math12142167 https://www.mdpi.com/journal/mathematics137
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Despite the success of command-filter adaptive control in nonlinear systems, the
presence of various constraints in practical engineering contexts, such as input dead zones,
input saturation, unknown control direction, etc., can influence the system’s stability. To
solve the dead-zone problem, some related results are provided in [20–22]. Ref. [20]
proposed an adaptive dead-zone inverse technology. Ref. [21] developed a corresponding
disturbance observer for estimation based on the unknown approximation error and
the impact of unknown dead zones and external disturbances. In [22], the system was
converted into n-step predictors, and an adaptive compensation term was introduced to
overcome the asymmetric dead zone existing in the system. Apart from the presence of
dead zone input, the presence of input saturation can also cause performance degradation
of nonlinear systems and signal delay or loss. The study of input saturated systems has
also been an important topic in recent years [23,24].

On the other hand, when researching adaptive control of nonlinear systems, it is
often necessary to know the control direction representing the direction of motion in
advance [25,26]. However, the direction of controlling gain is mostly unknown in practical
applications. The Nussbaum gain method is an effective tool for processing unknown
signals. Characterized by its values and integral oscillating infinitely between positive
and negative, the Nussbaum function allows the control system to adjust its strategy
automatically, despite uncertainty about the sign of the control gain, ensuring that the
system can stably achieve the desired state. Building upon this technology, numerous
control strategies have been formulated [27–30]. Ref. [27] introduced the Nussbaum
function to compensate for the impact of the unknown direction problem and designed an
adaptive tracking controller based on a command filter. For systems featuring multiple
unknown high-frequency gains, Ref. [28] introduced a novel command-filtered Nussbaum
design. A novel Nussbaum function was devised by [29] to address the tracking problem
encountered within a category ofstochastic strict feedback nonlinear systems. By using an
improved Nussbaum function, [30] extended previous research results to cover a broader
range of nonlinear systems, characterized by unknown variations in both the sign and
magnitude of the control gain over time. However, to the best of our knowledge, there is a
scarcity of papers that concurrently address nonlinear systems with input dead zones, input
saturation, and uncertain control directions. This scarcity partly motivated the research
presented in this paper.

Based on the previous discussion, the main contributions of this article, in contrast to
existing research outcomes, can be encapsulated as follows:

1. Compared with the nonlinear systems studied in [25,26], where the control direction
was known, this paper considers a broader situation in which the control direction is
unknown, and it designs adaptive fuzzy control using the Nussbaum function.

2. This paper proposes a novel transformation method to eliminate the impact of the
input dead zone and saturation on the system, and uses command-filtering technology
to solve the problem of complexity explosion in traditional backstepping design.

2. Preliminary Knowledge and Problem Statement
2.1. System Model

Consider the following nonlinear system





ẋi = fi(x̄i) + λigi(x̄i)xi+1, i = 1, . . . , n− 1,
ẋn = fn(x̄n) + λngn(x̄n)u,
y = x1,

(1)

where x = [x1, x2, . . . xn]T ∈ Rn represents the state vector with x̄i = [x1, x2, . . . xi]
T ∈ Ri,

and y ∈ R denotes the system output; λi = 1 (or −1) represents an unknown control
direction; gi(x̄i) are bounded continuous functions with 0 < h̄i ≤ gi(·) ≤ Θi, h̄i and Θi
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represent two constants; and fi(x̄i) signifies the unknown smooth function. The control
input u ∈ R is specified as

u(t) =





uh, v(t) > uh,
kh(v(t)−mh), mh ≤ v(t) < uh,
0, −ml < v(t) ≤ mh,
kl(v(t) + ml), −ul < v(t) ≤ −ml ,
−ul , v(t) < −ul ,

(2)

where v(t) is the input of the dead zone; uh and ul are positive parameters and represent
unknown saturation values; kh > 0, kl > 0, mh > 0, and ml > 0 are the unknown
zone parameters; and the dead-zone slopes in positive and negative region are same, i.e.,
kh = kl = k .

Assumption 1 ([22]). The dead-zone parameters of mh, ml , and k are bounded. This implies
that there are known parameters mh max, mh min, ml max, ml min, kmax, and kmin, such that
mh ∈ [mh min, mh max], ml ∈ [ml min, ml max], and k ∈ [kmin, kmax].

For the development of a robust control scheme, (2) is reformulated as follows:

u(t) = π
(
v(t)

)
v(t) + ϑ

(
v(t)

)
. (3)

Based on Assumption 1, one can conclude that ϑ
(
v(t)

)
is bounded, while satisfies∣∣ϑ

(
v(t)

)∣∣ ≤ Lp , where Lp represents the upper bound.

Assumption 2 ([25]). In this article, considering that the input signal v is limited in actual
situations, π

(
v(t)

)
satisfies the following inequality

0 < = ≤ min
{

uh
v(t)max

, k
}
≤ π

(
v(t)

)
≤ max{1, k}, (4)

2.2. Fuzzy Logic Systems

FLS consists of four primary components: the knowledge base, fuzzifier, fuzzy infer-
ence engine, and defuzzifier. The knowledge base houses a comprehensive set of fuzzy
if-then rules, which are defined as follows:

Rl : IF x1 is Pj
1, and x2 is Pj

2, and xn is Pj
n, then y is Qj,j = 1, 2, . . . ,℘, where

x = [x1, x2, . . . , xn]
T , and y are the FLSs input and system output, respectively; Pj

m, Qj

denote the fuzzy sets for x and y, respecitvley; an equivalent expression of FLS can be
obtained as

y(x) =
∑℘

j=1 ȳj ∏n
m=1 µ

Fj
m
(xm)

∑℘
j=1

[
∏n

m=1 µ
Fj

m
(xm)

] , (5)

with ȳj = maxy∈R µQj(y), where µ
Pj

m
(xm) and µQj(y) are the membership functions. De-

note W = [ȳ1, ȳ2, . . . , ȳ℘]T = [W1, W2, . . . , W℘]T and ψ(x) = [ψ1(x), ψ2(x), . . . , ψ℘(x)]T , the

membership functions, which are defined as ψj(x) =
∏n

m=1 µ
Fj
m
(xm)

∑℘
j=1

[
∏n

m=1 µ
Fj
m
(xm)

] . Consequently,

FLS can be succinctly described as follows

y(x) = WTψ(x). (6)
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Lemma 1 ([27]). The following inequality holds for any smooth function f (x) defined on the
compact set Ω if there is a sufficiently tiny positive scalar ε:

sup
x∈Ω

∣∣∣ f (x)−WTψ(x)
∣∣∣ ≤ ε. (7)

Definition 1 ([29]). The Nussbaum function N(ζ) : R→ R has the properties

lim
`→∞

sup
1
`

∫ `

0
N(ζ)dζ = +∞,

lim
`→−∞

inf
1
`

∫ `

0
N(ζ)dζ = −∞.

(8)

Lemma 2 ([29]). Consider ζ(t) and V(t) ≥ 0 are smooth functions on [0, t f ), and N(ζ(t)) is an
even smooth Nussbaum-type function. Suppose

V(t) ≤ e−Υ1t
∫ t

0

(
w
(

x̄(τ)
)

N
(
ζ(τ)

)
+ 1
)
ζ̇(τ)eΥ1τdτ + D, (9)

in which D > 0 and Υ1 > 0, and V(t), ζ(t) and
∫ t

0 w
(

x̄(τ)
)

N
(
ζ(τ)

)
ζ̇(τ)dτ remain bounded

on [0, t f ).

Lemma 3 ([25]). The command filter is defined as
{

ω̇i = vωi,2,
ω̇i,2 = −2ϕvωi,2 −v(ωi − αi−1),

(10)

where αi−1 and ωi represent the input and output of the command filter, respectively, ωi(0) = αi−1
and ωi,2(0) = 0, ϕ ∈ (0, 1], and v > 0.

Remark 1. The command-filtering approach is a control strategy that simplifies the design and
implementation of complex control systems. By incorporating a filter between the controller and
actuator, it smooths the control signals, preventing performance degradation due to overly complex
control strategies. This method effectively reduces system complexity and avoids “complexity
explosion” caused by high-frequency control updates and excessive regulation.

Assumption 3 ([26]). The reference signal xd and its first-order derivative ẋd are continuous
and bounded.

3. Controller Design and Stability Analysis
3.1. Controller Design

In this section, an adaptive command-filter controller is designed for the nonlin-
ear system (1) by integrating the Nussbaum function with the back-stepping technique.
Coordinate changes are introduced to facilitate controller design:

{
e1 = x1 − yd,
ei = xi −ωi, i = 1, . . . , n,

(11)

where ei represents the tracking error and ωi denotes the output of the filter.

Remark 2. It is noteworthy that the error induced by the command filter exacerbates the system
error. To address this drawback, a compensation signal, denoted as β, is introduced to mitigate the
adverse effects of the filter error ωi − αi−1 on the system.
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Design the compensation signal βi to eliminate the error caused by the command filter
as follows {

β̇i = −kiβi + giβi+1 + gi(ωi+1 − αi),
β̇n = −knβn,

(12)

where ki is a given positive constant and βi(0) = 0.
Subsequently, the compensated tracking error signals can be expressed as follows

ξi = ei − βi, i = 1, 2, . . . , n. (13)

Step 1: Taking the derivative of ξi as

ξ̇1 = ė1 − β̇1 = ẋ1 − ẏd − β̇1 = f1 + λ1g1x2 − ẏd − β̇1. (14)

The Lyapunov function is chosen as

V1 =
1
2

ξ2
1 +

1
2Γ1

θ̃2
1 , (15)

where Γ1 represents the positive parameter to be constructed, and in order to solve the
parameter estimation problem, the parameter estimation error is θ̃1 = θ1 − θ̂1, and the
constant is defined as θi = ‖Wi‖2.

Based on (11), (13), (14) and (15) the time derivative of V1 is shown as

V̇1 = ξ1ξ̇1 −
1
Γ1

θ̃1
˙̂θ1

= ξ1
(

f1 + λ1g1(ω2 + ξ2 + β2)− ẏd − β̇1
)
− 1

Γ1
θ̃1

˙̂θ1

= ξ1 f1 + λ1g1ξ1ω2 + λ1g1ξ1ξ2 + λ1g1ξ1β2 − ξ1ẏd − ξ1 β̇1 −
1
Γ1

θ̃1
˙̂θ1.

(16)

As function f1(x) is unknown, the direct design of the virtual control signal α1 is not
feasible. Thus, according to Lemma 1, for any given number ε1 > 0, there are

f1(B1) = WT
1 ψ1 + δ1(B1), ‖δ1(B1)‖ < ε1,

in which ‖δ1(B1)‖ denotes the estimation error.
By applying Young’s inequality, the following formula can be derived

ξ1 f1 ≤
ξ2

1θ1ST
1 S1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1, (17)

where a1 is a given positive scalar.
Consider a compensating signal β̇1 as

β̇1 = −k1β1 + g1β2 + g1(ω2 − α1). (18)

Next, after combining formulas (16)–(18), it can be easily obtained that

V̇1 ≤
ξ2

1θ1ST
1 S1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 + λ1g1ξ1ω2 + λ1g1ξ1ξ2 + λ1g1ξ1β2

+ k1ξ1β1 − g1ξ1β2 − g1ξ1ω2 + g1ξ1α1 −
1
Γ1

θ̃1
˙̂θ1 − ξ1ẏd

≤ ξ2
1θ1ST

1 S1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 + λ1g1ξ1ξ2 + k1ξ1β1 + g1ξ1α1 −

1
Γ1

θ̃1
˙̂θ1

+
(
λ1 − 1

)
g1ξ1

(
β2 + ω2

)
− ξ1ẏd.

(19)
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In this article, λ1 = 1(or − 1) represents the unknown control direction. Applying
Young’s inequality, one can obtain

(λ1 − 1)g1ξ1(β2 + ω2) = (λ1 − 1)g1ξ1(x2 − ξ2) = 0 ≤ 2g2
1ξ2

1 + x2
2 + ξ2

2, λ1 = 1,

(λ1 − 1)g1ξ1(β2 + ω2) = (λ1 − 1)g1ξ1(x2 − ξ2) ≤ 2g2
1ξ2

1 + x2
2 + ξ2

2, λ1 = −1,

λ1g1ξ1ξ2 ≤
1
2

g2
1ξ2

1 +
1
2

ξ2
2, λ1 = 1(or− 1).

(20)

Substituting (20) into (19) produces

V̇1 ≤
ξ2

1θ1ψT
1 ψ1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 +

5
2

g2
1ξ2

1 +
3
2

ξ2
2

+ k1ξ1β1 + g1ξ1α1 −
1
Γ1

θ̃1
˙̂θ1 + x2

2 − ξ1ẏd.

(21)

Next, the virtual control signal α1 and the Nussbaum-type gain ζ1 are developed
as follows 




α1 = N(ζ1)

(
ξ1 θ̂1ST

1 S1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
,

ζ̇1 = ξ1

(
ξ1 θ̂1ST

1 S1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
.

(22)

By amalgamating the aforementioned equation, (21) can be reformulated as

V̇1 ≤
ξ2

1θ1ψT
1 ψ1

2a2
1

+
1
2

a2
1 +

1
2

ξ2
1 +

1
2

ε2
1 +

5
2

g2
1ξ2

1 +
3
2

ξ2
2 + k1ξ1β1 + g1ξ1α1 −

1
Γ1

θ̃1
˙̂θ1 + x2

2 − ξ1ẏd

≤ −k1ξ2
1 + g1N(ζ1)ζ̇1 + ζ̇1 +

θ̃1

Γ1

(
Γ1ξ2

1ψT
1 ψ1

2a2
1

− ˙̂θ1

)
+

1
2

a2
1 +

1
2

ε2
1 +

3
2

ξ2
2 + x2

2.

(23)

Next, the adaptive law ˙̂θ1 is designed as ˙̂θ1 =
Γ1ξ2

1ψT
1 ψ1

2a2
1
− σ1θ̂1, and with the help of

Young’s inequality σ1 θ̃1 θ̂1
Γ1
≤ σ1θ2

1
2Γ1
− σ1 θ̃2

1
2Γ1

, one obtain

V̇1 ≤ −k1ξ2
1 + g1N(ζ1)ζ̇1 + ζ̇1 −

σ1θ̃2
1

2Γ1
+ N1, (24)

where N1 = 1
2 a2

1 +
1
2 ε2

1 +
3
2 ξ2

2 + x2
2 +

σ1θ2
1

2Γ1
.

Step i: (2 ≤ i ≤ n − 1): According to the differential rules, the following expression
is derived

ξ̇i = ėi − β̇i = ẋi − ω̇i − β̇i = fi + λigixi+1 − ω̇i − β̇i. (25)

Choose a Lyapunov function candidate function, as follows

Vi = Vi−1 +
1
2

ξ2
i +

1
2Γi

θ̃2
i . (26)

where θ̃i = θi − θ̂i.
By differentiating Vi, the following formula holds

V̇i = V̇i−1 + ξi ξ̇i −
1
Γi

θ̃i
˙̂θi

= V̇i−1 + ξi
(

fi + λigi(ωi+1 + ξi+1 + βi+1)− ω̇i − β̇i
)
− 1

Γi
θ̃i

˙̂θi

= V̇i−1 + ξi fi + λigiξiωi+1 + λigiξiξi+1 + λigiξiβi+1 − ξiω̇i − ξi β̇i −
1
Γi

θ̃i
˙̂θi.

(27)
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According to Lemma 1 again, for any given number εi > 0, there are

fi(Bi) = WT
i ψi + δi(Bi), ‖δi(Bi)‖ < εi,

in which ‖δi(Bi)‖ denotes the estimation error.
By applying Young’s inequality again, the following formula can be derived

ξi fi ≤
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i , (28)

where ai is a given positive scalar.
The compensation signal β̇i is designed to be

β̇i = −kiβi + giβi+1 + gi(ωi+1 − αi). (29)

Incorporating Equations (28) and (29) into (27), one can obtain

V̇i ≤V̇i−1 +
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i + λigiξiξi+1 + kiξiβi + giξiαi −

1
Γi

θ̃i
˙̂θi

+
[
λigiξiωi+1 + λigiξiβi+1 − giξiβi+1 − giξiωi+1

]
− ξiω̇i

≤V̇i−1 +
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i + λigiξiξi+1 + kiξiβi + giξiαi −

1
Γi

θ̃i
˙̂θi

+
(
λi − 1

)
giξi
(

βi+1 + ωi+1
)
− ξiω̇i.

(30)

Similar to (20), one can obtain

λigiξiξi+1 ≤
1
2

g2
i ξ2

i +
1
2

ξ2
i+1,

(λi − 1)giξi(βi+1 + ωi+1) ≤ 2g2
i ξ2

i + x2
i+1 + ξ2

i+1.
(31)

Then, (30) is rewritten as

V̇1 ≤V̇i−1 +
ξ2

i θiψ
T
i ψi

2a2
i

+
1
2

a2
i +

1
2

ξ2
i +

1
2

ε2
i +

5
2

g2
i ξ2

i +
3
2

ξ2
i+1

+ kiξiβi + giξiαi −
1
Γi

θ̃i
˙̂θi + x2

i+1 − ξiω̇i.

(32)

The virtual control signal α1 and the Nussbaum-type gain ζ1 are designed as




αi = N(ζi)

(
ξi θ̂iψ

T
i ψi

2a2
i

+ kiei +
1
2 ξi +

5
2 g2

i ξi − ω̇i

)
,

ζ̇i = ξi

(
ξi θ̂iψ

T
i ψi

2a2
i

+ kiei +
1
2 ξi +

5
2 g2

i ξi − ω̇i

)
.

(33)

Combining the above equation, (32) can be rewritten as

V̇i ≤ V̇i−1 − kiξ
2
i + gi N(ζi)ζ̇i + ζ̇i +

θ̃i
Γi

(
Γiξ

2
i ψT

i ψi

2a2
i
− ˙̂θi

)
+

1
2

a2
i +

1
2

ε2
i +

3
2

ξ2
i+1 + x2

i+1. (34)
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Next, the adaptive law ˙̂θi is designed as ˙̂θi =
Γiξ

2
i ψT

i ψi
2a2

i
− σi θ̂i, and with the help of

Young’s inequality σi θ̃i θ̂i
Γi
≤ σiθ

2
i

2Γi
− σi θ̃

2
i

2Γi
, one obtain

V̇i ≤V̇i−1 − kiξ
2
i + gi N(ζi)ζ̇i + ζ̇i −

σi θ̃
2
i

2Γi
+

1
2

a2
i +

1
2

ε2
i +

3
2

ξ2
i+1 + x2

i+1 +
σiθ

2
i

2Γi

≤−
i

∑
j=1

k jξ
2
j −

i

∑
j=1

1
2

σj θ̃
2
j

Γj
+

i

∑
j=1

gjN
(
ζ j
)
ζ̇ j +

i

∑
j=1

ζ̇ j

+
1
2

i

∑
j=1

(
a2

j + ε2
j + 3ξ2

j+1 +
σjθ

2
j

Γj

)
+

i

∑
j=1

xj+1
2.

(35)

Step n: Based on (1), (4), (11) and (13), one has

ξn = ėn − β̇n = ẋn − ω̇n − β̇n = fn + λngnu− ω̇n − β̇n

= fn + λngn[π
(
v
)
v + ϑ

(
v
)
]− ω̇n − β̇n.

(36)

Take a Lyapunov function Vn in the following form

Vn = Vn−1 +
1
2

ξ2
n +

1
2Γn

θ̃2
n, (37)

where θ̃n = θn − θ̂n.
Differentiating Vn, one can obtain

V̇n = V̇n−1 + ξn ξ̇n −
1

Γn
θ̃n

˙̂θn

= V̇n−1 + ξn
(

fn + λngn(π(v)v + ϑ(v))− ω̇n − β̇n
)
− 1

Γn
θ̃n

˙̂θn

= V̇n−1 + ξn fn + ξnλngnπ(v)v + ξnλngnϑ(v)− ξnω̇n − ξn β̇n −
1
Γ

θ̃n
˙̂θn.

(38)

Similarly, according to Lemma 1 and Young’s inequality, one can obtain

ξn fn ≤
ξ2

nθnψT
n ψn

2a2
n

+
1
2

a2
n +

1
2

ξ2
n +

1
2

ε2
n, (39)

where an is a given positive scalar.

λngnξnϑ(v) ≤ λn(
1
2

ξ2
n +

1
2
<2), (40)

where |ϑ(v)| < Lp, |gi| < Θi, and |gnϑ(v)| < <, with < = ΘnLp.
Then, the compensation signal ṙn is designed to be

β̇n = −knβn. (41)

Combined with the above formula, (38) is rewritten as

V̇n ≤V̇n−1 +
ξ2

nθnψT
n ψn

2a2
n

+
1
2

a2
n +

1
2

ξ2
n +

1
2

ε2
n + λngnξnπ(v)v

+ λn

(
1
2

ξ2
n +

1
2
<2

n

)
+ ξnknβn −

1
λn

θ̃n
˙̂θ − ξnω̇n.

(42)
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The virtual control signal v and the Nussbaum-type gain ζn are designed as




v = 1
=N(ζn)

(
ξn θ̂nψT

n ψn
2a2

n
+ knen + ξn − ω̇n

)
,

ζ̇n = ξn

(
ξn θ̂nψT

n ψn
2a2

n
+ knen + ξn − ω̇n

)
.

(43)

Combining the above equation, (42) can be rewritten as

V̇n ≤ V̇n−1 − knξ2
n + λngnN(ζn)ζ̇n + ζ̇n +

1
2
<2

n +
θ̃n

Γn

(
Γnξ2

nψT
n ψn

2a2
n

− ˙̂θn

)
+

1
2

a2
n +

1
2

ε2
n. (44)

Next, the adaptive law ˙̂θn is designed as ˙̂θn = Γnξ2
nψT

n ψn
2a2

n
− σn θ̂n, and with the help of

Young’s inequality σn θ̃n θ̂n
Γn
≤ σnθ2

n
2Γn
− σn θ̃2

n
2Γn

, one obtain

V̇n ≤V̇n−1 − knξ2
n + λngnN(ζn)ζ̇n + ζ̇n −

σn θ̃2
n

2Γn
+

1
2

a2
n +

1
2

ε2
n +

σnθ2
n

2Γn
+

1
2
<2

n

≤−
n

∑
j=1

k jξ
2
j −

n

∑
j=1

1
2

σj θ̃
2
j

Γj
+

n−1

∑
j=1

gjN
(
ζ j
)
ζ̇ j + λngnN(ζn)ζ̇n +

n

∑
j=1

ζ̇ j

+
1
2

n

∑
j=1

(
a2

j + ε2
j +

σjθ
2
j

Γj

)
+

n−1

∑
j=1

x2
j+1 +

3
2

n−1

∑
j=1

ξ2
j+1 +

1
2
<2

n.

(45)

3.2. Stability Analysis

Theorem 1. Consider the nonlinear system (1) under Assumptions 1–3, utilizing the error compen-
sation signals (18), (29), (41), virtual controllers (22) and (33), as well as the actual controller (43)
designed in this study, and combining the constructed parameter adaptive law along with the
provided signal xd, it is assured that all closed-loop signals remain bounded, and the tracking error
is driven to the vicinity of the origin.

Proof. Denote D =
{

2k jσj, ∀j = 1, . . . , n
}

, (45) can be rewritten as

V̇n ≤ −DVn + C +
n−1

∑
i=1

(gjN(ζ j) + 1)ζ̇ j + ζ̇n(λngnN(ζn) + 1), (46)

where C = 1
2 ∑n

j=1

(
a2

j + ε2
j +

σjθ
2
j

Γj

)
+ ∑n−1

j=1 x2
j+1 +

3
2 ∑n−1

j=1 ξ2
j+1 +

1
2<2

n.

Thus, multiplying (46) by eDt results in

d
dt

(
VneDt

)
≤ eDt

n−1

∑
j=1

(
gjN

(
ζ j
)
+ 1
)

ζ̇ j + eDt
(

λngnN(ζn) + 1
)

ζ̇n + eDtC. (47)

Integrating the above equation to the interval [0, t), one can obtain

Vn(t) ≤e−Dt
∫ t

0

n−1

∑
j=1

(
gjN

(
ζ j
)
+ 1
)
ζ̇ jeDτdτ + e−Dt

∫ t

0
(λngnN(ζn) + 1)ζ̇neDτdτ

+
C
D

+ e−DtVn(0)−
C
D

e−Dt.

(48)

According to Lemma 2, it can be inferred that Vn, ζn and
∫ t

0 (λngnN(ζn
)
+ 1)ζ̇ndτ are

bounded. Thus, ξn and θ̃n are bounded. In addition, similar to the previous derivation, it
can be derived that Vn−1, ζn−1, ξn−1 ,θ̃n−1 and Vi, ζi, ξi ,θ̃i are all bounded, which derive
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the boundedness of
∫ t

0 ∑n−1
i=1 (gjN(ζ j) + 1)ζ jeDτdτ and

∫ t
0 (λngnN(ζn) + 1)ζ̇neDτdτ. Thus,

the following formula holds

0 ≤ Vn ≤
[

Λ1 + Λ2 + Vn(0)−
C
D

]
e−Dt +

C
D

, (49)

where Λ1 represents
∫ t

0 ∑n−1
i=1 (gjN(ζ j)+ 1)ζ jeDτdτ, and Λ2 denotes

∫ t
0 (λngnN(ζn)+ 1)ζ̇neDτdτ.

According to (49), one can obtain

lim
t→∞

Vn(t) ≤
C
D

. (50)

Connecting Equations (37) and (49), the following equation is established

|ξn| ≤
√

2
[(

Λ1 + Λ2 + V(0)− C
D
)
e−Dt +

C
D

]
, (51)

which implies that

lim
t→∞
|ξn| ≤

√
2C
D

. (52)

this means ξn is bounded.
According to (13), it is evident that the boundedness of en correlates with βn. Ac-

cording to the results in [31], it can be obtained that βn is bounded. Then, the following
formula holds

lim
t→∞
|en| ≤ lim

t→∞
(|ξn|+ |βn|) ≤

√
2C
D

+ ∆, (53)

where ∆ represents a positive constant that satisfies
∣∣βn
∣∣ ≤ ∆.

This proves that en and ξn are bounded. Finally, all of the signals in (1) are all bounded.
This completes the proof.

Remark 3. Even though the control strategy presented in this paper shows an outstanding control
performance, it still has its limitations. For instance, the equivalent transformation technique
depends on precise system models and parameters; large errors in parameter estimation might
impact the control effectiveness. Furthermore, for extreme nonlinear effects, our method may need
further refinement or combination with other techniques.

Remark 4. Refs. [27–30] investigated nonlinear systems with unknown control directions. How-
ever, these studies did not account for the error induced by the filter or the effects of an input dead
zone and saturation. Unlike these studies, this paper employs command-filtering technology to
address the complexity explosion issue and proposes a transformation method to mitigate the impact
of an input dead zone and saturation on the system.

4. Simulation Results

This section provides two illustrative examples to demonstrate the feasibility of the
proposed approach.

Example 1. The following second-order nonlinear system are considered





ẋ1 = 0.1x1
2 + λ1g1(x̄1)x2

ẋ2 = 0.2x1x2 + x1 + λ2g2(x̄2)u
y = x1,

(54)
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where g1(x̄1) = 4, g2(x̄2) = 1, λ1 = −1 , λ2 = 1, and u is defined as

u =





5, v > 5
0.6
(
v− 0.6

)
, 0.6 < v < 5

0, −0.6 < v < 0.6
0.6
(
v + 0.6

)
, −5 < v < 0.6

−5, v < −5.

(55)

The virtual controller α1 is designed as




α1 = N(ζ1)

(
ξ1 θ̂1ψT

1 ψ1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
,

ζ̇1 = ξ1

(
ξ1 θ̂1ψT

1 ψ1
2a2

1
+ k1e1 +

1
2 ξ1 +

5
2 g2

1ξ1 − ẏd

)
.

(56)

The controller v is designed as




v = 1
=N(ζ2)

(
ξ2 θ̂2ψT

2 ψ2
2a2

2
+ k2e2 + ξ2 − ω̇2

)
,

ζ̇2 = ξ2

(
ξ2 θ̂2ψT

2 ψ2
2a2

2
+ k2e2 + ξ2 − ω̇2

)
,

(57)

where the initial state variables of the system are x1(0) = 0.2, x2(0) = −0.1, θ̂1(0) = 0.5,
θ̂1(0) = 0.2, and the desired trajectory yd = 0.5 sin(t). The design parameters are given as k1 = 2,
k2 = 1, = = 1, σ1 = 0.08, σ2 = 0.08, a1 = 2, a2 = 7, Γ1 = 0.3, Γ2 = 0.3, v = 50, and
ϕ = 1 and select N(ζ1) = ζ2

1 cos(ζ1) and N(ζ2) = ζ2
2 cos(ζ2) with ζ1(0) = 0 and ζ2(0) = 0.

In addition, to handle nonlinear terms, one might choose the following fuzzy membership function

µP1
m
= e−

(
x1+x0

j

)2

2 , µP2
m
= e−

(
x2+x0

j

)2

2 , xj
0 = 3, 2, 1, 0 ,−1,−2,−3, j = 1, . . . 7.

The simulation results are illustrated in Figures 1–6. The trajectories of the system
output y and the reference signal yd, using the control strategy proposed in this paper and
the control strategy with the same design parameters from reference [27], are shown in
Figure 1. According to Figure 1, we can see that the system output y can effectively track
the reference signal yd, and the control method proposed in this paper, which accounts
for input dead zones and saturation, achieves a higher tracking accuracy compared with
the control method proposed in reference [27]. Figures 2 and 3 show states x1 and x2 of
the system and the trajectories of the adaptive parameters θ̂1 and θ̂2, respectively. Figure 4
shows the evolution of signals u and v. Figures 5 and 6 describe the Nussbaum function
signals ζ1, ζ2, N(ζ1), and N(ζ2). Based on the above simulation results, it is evident that
the proposed scheme achieves an excellent tracking performance, and all of the signals
within the closed-loop system are bounded. This demonstrates the effectiveness of the
proposed control scheme.
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Figure 1. Trajectories of yd and y [27].

Figure 2. The trajectories of x1 and x2.

Figure 3. Adaptive parameters.

Figure 4. Trajectories of the control input.
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Figure 5. The trajectories of ζ1 and N(ζ1).

Figure 6. The trajectories of ζ2 and N(ζ2).

Example 2. Consider the pendulum model shown in Figure 7.

Figure 7. Pendulum.

Its equation of motion in the tangential direction can be written as

MLθ̈ + kLθ̇ + Mg sin θ = u, (58)

where M = 1 denotes the mass of the dot; θ is the angle subtended by the rod and the vertical
axis through the pivot point; k = 2 represents the friction coefficient; L = 1 is the length of the
rod; g = 9.8 represents the acceleration due to gravity; θ̇ and θ̈ are angular velocity and angular
acceleration, respectively.

Define x1 = θ(t) and x2 = θ̇(t). Then, the state equations are
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



ẋ1 = λ1g1(x̄1)x2

ẋ2 = −2x2 − 10 sin(x1) + λ2g2(x̄1)u
y = x1,

(59)

where λ1 = 1, λ2 = −1, g1(x̄1) = 1, g2(x̄1) = 1, and u is defined as

u =





20, v > 20
0.5
(
v− 0.5

)
, 0.5 < v < 20

0, −0.5 < v < 0.5
0.5
(
v + 0.5

)
, −20 < v < 0.5

−20, v < −20

(60)

The virtual controller, controller, desired signal, Nussbaunm functions, and fuzzy
membership function designs are similar to those in Example 1. The initial parameters
are chosen as x1(0) = 0.2, x2(0) = −0.1, θ̂1(0) = 0.3, and θ̂1(0) = 0.5, and the desired
trajectory is yd = 0.5 sin(t). The design parameters are k1 = 4, k2 = 3, = = 1, σ1 = 1,
σ2 = 1, a1 = 10, a2 = 10, Γ1 = 0.7, Γ2 = 0.7, v = 50, and ϕ = 1.

The simulation results are depicted in Figures 8–13. The above simulation results show
that the developed adaptive command-filtered fuzzy control scheme achieves a satisfactory
tracking performance, with all of the signals in the control system remaining bounded.

Figure 8. The trajectories of yd and y.

Figure 9. The trajectories of x1 and x2.
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Figure 10. Adaptive parameters.

Figure 11. The trajectories of the control input.

Figure 12. The trajectories of ζ1 and N(ζ1).

Figure 13. The trajectories of ζ2 and N(ζ2).
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5. Conclusions

This paper proposes a command-filtering adaptive fuzzy tracking control strategy
for nonlinear systems with unknown control directions, input dead zones, and saturation.
A novel approach is applied to analyze the effects of input dead zone and saturation.
By combining the fuzzy logic system and the command filter, an adaptive fuzzy logic
controller is constructed to ensure that the error signal converges to a bounded compact
set around the origin. The combination of the Nussbaum function and the backstepping
method solves the difficulty caused by the unknown system control direction. Based on
the adaptive tracking controller proposed in this article, the boundedness of all signals in
the closed-loop system is guaranteed.
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Abstract: This paper studies the dynamic behavior of a stochastic SEIRM model of COVID-19
with a standard incidence rate. The existence of global solutions for dynamic system models is
proven by integrating stochastic process theory and the concept of stopping times, together with the
contradiction method. Moreover, we construct appropriate Lyapunov functions to analyze system
stability and apply Dynkin’s formula and Fatou’s lemma to handle stopping times and expectations
of stochastic processes. Notably, the extinction study provides mathematical proof that under the
given system dynamics, the total population does not grow indefinitely but tends to stabilize over
time. The properties of the diffusion matrix are harnessed to guarantee the system’s stationary
distribution. Conclusively, numerical simulations confirm the model’s extinction outcomes.

Keywords: SEIRM; standard incidence rate; dynamic behavior; extinction; stationary distribution
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1. Introduction

The Wuhan outbreak occurred from December 2019 to February 2020, primarily in the
Huanan Seafood Market and its surrounding areas in Wuhan City, Hubei Province. The
epidemic has attracted global attention and concern, leading to thousands of infections
and deaths. Currently, the fight against the COVID-19 pandemic continues worldwide.
The transmission of the virus is mainly through respiratory droplets. That is, when an
infected person coughs, sneezes, or speaks, they produce droplets containing the virus,
which can remain suspended in the air and be inhaled by others. Although the scientific
community was racing to understand the epidemiological characteristics of COVID-19
to make a vaccine, because of the long and expensive manufacturing cycle, people could
not be vaccinated in time in the early stages of the epidemic. The Government adopted
various non-drug interventions, such as the wearing of masks, and the ban on gathering
and working from home, which unfortunately also had undesirable social consequences,
such as unemployment and economic decline. Classical epidemiological models of infec-
tious diseases include SIR (susceptibility, infection and removal) and SEIR (susceptibility,
exposure, infection and removal) models [1,2]. The adequate contact rate often takes two
forms, bilinear incidence rate βIS and standard incidence rate βIS

N . The bilinear incidence
rate takes into account the interaction between susceptible and infected individuals, better
reflecting the nonlinear characteristics of disease transmission [3–5]. Bilinear incidence rates
may not be applicable to all types of infectious diseases. The parameters of the standard
incidence rate are easier to estimate and interpret from actual data [6–10]. To analyze and
predict the dynamics of infectious diseases, especially those with high mortality rates, in
order to accurately simulate the transmission process of diseases with significant fatality
rates. This is particularly important for studying the spread of severe diseases such as
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COVID-19 and Ebola. We have adjusted the SEIR model to better align with real-world sce-
narios. This modification aims to enhance the model’s accuracy and applicability, thereby
providing a better reflection of the disease’s transmission dynamics as follows:





dS
dt = Λ− β1SI

N − β2SI
N ,

dE
dt = β1SI

N + β2SI
N − (ε + γ2)E,

dI
dt = εE− γ1 I − µI
dR
dt = γ1 I + γ2E− dR
dM
dt = µI

(1)

Table 1 illustrates the meaning of each parameter within the model. The parameters
in the mathematical model of the infectious disease model SEIR are always affected by
environmental noise [11–18]. The stochastic model can more accurately describe the
infectious disease and establish the distribution of the predicted results [19–21]:





dS =
[
Λ− β1SI

N − β2SI
N

]
dt + σ1SdB1(t),

dE =
[

β1SI
N + β2SI

N − εE− γ2E
]
dt + σ2EdB2(t),

dI = [εE− γ1 I − µI]dt + σ3 IdB3(t),
dR = [γ1 I + γ2E]dt + σ4RdB4(t),
dM = µIdt + σ5 IdB5(t),

(2)

where S represents susceptible individuals, referring to those who are healthy but suscepti-
ble to infection. E represents exposed individuals, indicating those who have been infected
but are not yet infectious. This typically denotes an incubation period during which an
individual has been infected but does not show symptoms and is unable to transmit the
virus to others. R represents removed or recovered individuals, indicating those who
have recovered from the infection and gained immunity, or have died due to the disease.
These individuals no longer participate in the transmission process. I represents infectious
individuals, denoting those who are already infectious and capable of transmitting the
pathogen to susceptible individuals. M represents mortality, referring to individuals who
have died due to the disease. β1 IS

N and β2 IS
N represent the infection rates through direct and

indirect contact transmission, respectively.
We began by introducing the essential foundational knowledge, followed by an ex-

ploration of the conditions for the existence of global positive solutions. Subsequently, we
analyzed the extinction behavior of populations. After that, we studied the steady-state dis-
tribution of the system. Finally, numerical simulations were used to validate the accuracy
of our theoretical analysis.

Table 1. Meaning of parameter.

Parameter Description

Λ Recruitment rate of the population
β1 Transmission rate due to social contact
β2 Transmission rate due to frontline contact

ε(ε−1) Infection rate (Incubation rate)
γ1(γ

−1
1 ) Recovery rate of infectious individuals (Recovery period)

γ2(γ
−1
2 ) Immune recovery rate (Natural immune recovery period)

2. Preliminary

To facilitate subsequent calculations, we often express β = β1 + β2. Consider the
stochastic differential equation

dX(t) = f (t, X(t))dt + g(t, X(t))dB(t).
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The function f (t; X(t)) in Rd on [t0, ∞] × Rd, whereas g(t, X(t)) constitutes a matrix of
dimensions d×m, B(t) represents an m-dimensional standard Brownian motion defined on
the complete probability space (Ω, Ft, (Ft)t≥0,P). The class C2,1([t0, ∞]×Rd;R+) includes
all positive valued functions V(t, x) that possess continuous second-order differentiability
in x and first-order differentiability in t. The Lyapunov operator is defined as:

LV = Vt(t, xt) + Vx f (t, xt) +
1
2

trace[g>(t, xt)Vxxg(t, xt)]. (3)

3. The Existence of Global Solutions

The significance of the existence of global positive solutions for COVID-19 models
is to ensure the reliability and accuracy of the results obtained by the models. If a model
does not have a global positive solution, then the model may have incorrect predictions
or biases that lead to problems in real-life decision-making. Therefore, in order to ensure
that the model can accurately predict the development trend of the COVID-19 epidemic, it
needs to prove that its global positive solution exists.

Theorem 1. For any initial value (S(0), E(0), R(0), I(0), M(0)) ∈ R5
+, if a unique solution to

system (2) exists, then the values of (S(t), E(t), R(t), I(t), M(t)) ∈ R5
+ with probability one.

Proof. Our proof method is inspired by Reference [1]. It is evident that the coefficients
specified in the equations are locally Lipschitz continuous. For any initial approximation
of the state variables (S(0), E(0), I(0), R(0), M(0)) ∈ R5

+, there is a unique local solution
on t ∈ [−∞, ρe], where ρe denotes the explosion time, which is the moment an explosion
occurs. To demonstrate that the solution is global, it suffices to show that ρe = ∞. Let
k0 > 0 be sufficiently large such that ξ(0) falls within the interval [ 1

k0
, k0]. For each integer

n > n0, we define the stopping time, a concept from probability theory that refers to a
random variable determining when a stochastic process is halted or concluded based on
specific conditions or events. This concept is frequently employed in the study of Markov
processes, where understanding when a process reaches a certain state or enters a particular
region is crucial:

τn = inf{t ∈ [0, ρe) : min{S(t), E(t), I(t), R(t), M(t)} /∈ (
1
n

, n)}

Clearly, ρn is increasing as n→ ∞, Let ρ∞ = limn→∞ ρn. If this statement is incorrect, there
exists a pair of constants T > 0 and ε ∈ (0, 1) such that

p{τ∞ ≤ T} > ε.

Consequently, there exists an integer n1 ≥ n0 such that

p{τn ≤ T} > ε.

Define a C2 function V: R5
+ → R+. When x− logx− 1 > 0, the function V is non-negative.

By applying Itô’s formula,

LV = (1− 1
S
)[Λ− βSI

N
] +

1
2

σ2
1

+(1− 1
E
)[

βSI
N
− εE(t)− γ2E] +

1
2

σ2
2

+(1− 1
I
)[εE(t)− γ1 I(t)− µI(t)] +

1
2

σ2
3
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+(1− 1
R
)[γ1 I(t) + γ2E(t)] +

1
2

σ2
4 + (1− 1

M
)µ +

1
2

σ2
5

≤Λ +
βSI
N

+ ε + γ2 + r1 + µ +
5

∑
i=1

1
2

σ2
i := K

EV(S(τ1 ∧ T), E(τ1 ∧ T), I(τ1 ∧ T), R(τ1 ∧ T), M(τ1 ∧ T))

≤V(S(0), E(0), I(0), R(0), M(0)) + k1E(τ1 ∧ T)

≤V(S(0), E(0), I(0), R(0), M(0)) + k1T.

Let Ωn = {τn ≤ T} for n ≥ n1, then we have P(Ωn) ≥ ε for ε ∈ (0, 1), we find that for
∀ω ∈ Ωn, S(τn, ω), E(τn, ω), I(τn, ω), R(τn, ω), M(τn, ω) equals either n or 1

n .

V(S(0), E(0), I(0), R(0), M(0)) = k1T

≥E[IΩn(S(τn, ω), E(τn, ω), I(τn, ω), R(τn, ω), M(τn, ω))]

≥ε[(S− log S + E− log E + I − log I + R− log R + M− log M− 6)

∧(−S + log S− E + log E− I + log I − R + log R−M + log M− 6)],

where IΩn is the indicator function of Ωl , when taking n→ ∞, we obtain

∞ >V(S(0), E(0), I(0), R(0), M(0)) + k1T = ∞,

there exists a contradiction. Hence, we have τ∞ = ∞. a.s. So P(τ∞ = ∞) = 1 is as required,
indicating that the system has a global positive solution.

4. Extinction

Research on the extinction of COVID-19 models has the following significance. Policy
decisions: Understanding the likelihood and timing of extinction can help governments
and health authorities develop appropriate policies and measures, including vaccination,
isolation measures and social restrictions, to better manage and control outbreaks. Re-
source allocation: Extinction models can assist decision-makers in the rational allocation
of resources, such as determining the need for vaccine supplies, medical equipment and
human resources, to ensure effective suppression of virus transmission and the provision
of appropriate medical services. By studying the likelihood of extinction, the long-term
risks of an outbreak to social, economic, and health systems can be assessed to help develop
targeted risk management and prevention measures. Public awareness: Understanding
the prospect of pandemic extinction can increase public awareness and understanding
of vaccination and protective behavior. The findings of extinction models can convey
important information to the public and promote cooperation and participation in society.
It should be noted that the study of epidemic extinction is a complex and dynamic process,
and the prediction results of the model may be affected by a variety of factors, and may not
be able to predict the extinction time with complete accuracy. Therefore, there is still a need
to take into account the full range of scientific evidence and expert advice to contain the
outbreak and protect public health.

Lemma 1. If the solution (S(t), E(t), I(t), R(t), M(t)) of system (2) with initial values (S(0),
E(0), I(0), R(0), M(0))∈ R5

+ exists, then the sum of S(t) + E(t) + I(t) + R(t) + M(t) < ∞ a.s.
Moreover,

lim
t→∞

S(t)
t

= 0, lim
t→∞

E(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, lim
t→∞

M(t)
t

= 0, a.s.

lim
t→∞

ln S(t)
t

= 0, lim
t→∞

ln E(t)
t

= 0, lim
t→∞

ln I(t)
t

= 0, lim
t→∞

ln R(t)
t

= 0, lim
t→∞

ln M(t)
t

= 0, a.s.
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and

lim
t→∞

∫ t
0 S(u)dB1(u)

t
= 0, lim

t→∞

∫ t
0 E(u)dB1(u)

t
= 0, lim

t→∞

∫ t
0 I(u)dB1(u)

t
= 0, (4)

lim
t→∞

∫ t
0 R(u)dB1(u)

t
= 0, lim

t→∞

∫ t
0 M(u)dB1(u)

t
= 0. (5)

Proof.

d(S + E + I + R + M)

= Λdt + σ1SdB1(t) + σ2EdB2(t) + σ3 IdB1(t) + σ4RdB1(t) + σ5MdB1(t).

From Theorem 3.9 in [22], we can obtain that

lim
t→∞

N(t) < ∞.

So, we can obtain the conclusion of Lemma 1.

Remark 1. The lemma guarantees that the total population (S+ E+ I + R+ M) remains bounded
over time for any non-negative initial values. This ensures that the model does not predict infinite
growth in the population size and suggests that there are mechanisms within the system that limit
the spread or recovery of individuals.

5. Stationary Distribution

Deterministic systems typically have one or more equilibrium points, of which the
endemic equilibrium point is the focus of research because it represents the stable state of
the disease in the population. By analyzing the stability of these equilibrium points (for
example, whether they attract nearby trajectories), the demise or persistence of the disease
can be inferred. Unlike deterministic systems, stochastic systems may not have an endemic
equilibrium. Therefore, the traditional method of studying disease persistence through
equilibrium stability is not applicable. Due to the lack of an endemic equilibrium point in a
stochastic system, we turn to the existence and uniqueness of the stationary distribution of
the system (2). A stationary distribution can be understood as the stable state of a system
after long periods of operation, but it occurs as a probability distribution rather than a fixed
point. If it can be shown that the random system has a unique stationary distribution, this
somehow indicates that the system achieves a long-term behavior pattern that can indirectly
indicate the persistence of the disease. To study the stationary distribution of random
systems (2), we refer to the classical results of Hasminskii [18]. Hasminskii’s work provided
mathematical tools for analyzing and determining the stationary distribution of Markov
processes. The process Y(t) is a normal, time-homogeneous Markov process in Rn

+ (the
space of non-negative real numbers), characterized by the stochastic differential equation:

dZ(t) = c(Z)dt +
k

∑
l

σldBl(t).

The diffusion matrix A(Z) is composed of elements aij(z), where each element aij(z) is
defined as:

aij(z) =
k

∑
l=1

σil(z)σl j(z).

Here, σil(z) and σl j(z) are the coefficients of the diffusion terms, which are dependent on
the state x. This process exhibits the Markov property, where the future state depends
exclusively on the present state and is independent of the past states. Furthermore, the
process is time-homogeneous, indicating that the probabilistic laws governing the evolution
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of the system remain unchanged over time. In essence, as time progresses, the system’s state
transitions according to fixed probabilistic rules that do not vary with time. This consistency
in the rules of state transitions allows for a clearer understanding and prediction of the
system’s behavior as it evolves over time.

The stationary distribution in stochastic infectious disease models can first help us
assess the risk of disease transmission; second it is important for us to develop long-term
prevention and control strategies, and finally compare the steady-state distribution with
actual epidemic data to evaluate the effectiveness of these measures.

Lemma 2. The process X(t) possesses a unique stationary distribution, denoted as m(·), under
certain conditions. These conditions are defined within a domain that has continuous boundaries.
Specifically, there exists an open set U and its closure Ū in Rd , where:

(1). In the vicinity of the open set U and its surroundings, the smallest eigenvalue of the matrix
H(t) is bounded.

(2). For any point x outside of U in Rd, the average time t required for a trajectory originating
from x to reach the set U is finite. Additionally, the supremum of this time over any compact
subset K ∈ Rn is also finite.

Furthermore, if there is an integrable function f (·) with respect to a measure π then for almost
all points z ∈ Rd, the long-term time average of f (Zz(t)) converges to the space average with
respect to the measure π. This can be expressed mathematically as:

P{ lim
t→∞

1
T

∫ T

0
f (Zz(t))dt =

∫

Rd
f (z)πdz} = 1.

This statement outlines the conditions necessary for a system to exhibit ergodic behavior,
indicating that the system’s long-term dynamics can be characterized by a single invariant
measure. Let Rs

0 = δβ2ε
A1 A2 A3

, where A1 = (σ + 1
2 σ2

1 ), A2 = ε + γ + σ + 1
2 σ2

2 , A3 = r1(1 +

u2) + µ + σ + 1
2 σ2

3 .

Theorem 2. When Rs
0 > 1, the solution (S(t), E(t), R(t), I(t), M(t)) to system (2) is ergodic

and is a stationary division π(·).

Proof. Let V1 = S + E + R + I + M− ln S− ln E− ln I

LV1 = Λ− σ(S + E + R + I + M)− c1
Λ
S
+

c1βI
N

+
1
2

c1σ2
1 + c1σ− c1

β2SI
EN

+ c2(ε + γ + σ) +
1
2

c2σ2
2

− c3
εE
I
+ r1 + c1(σ +

1
2

σ2
1 ) + c2(ε + γ + σ +

1
2

σ2
1 )

+ c3[r1(1 + u2) + µ + σ +
1
2

σ2
3 ] + Λ

= −σ(S + E + R + I + M)− c1
Λ
S
− c3

εE
I
− c1

β2SI
EN

+
c1βI

N
+ c1(σ +

1
2

σ2
1 ) + c2(ε + γ + σ +

1
2

σ2
1 )

+ c3[r1 + µ + σ +
1
2

σ2
3 ] + Λ

≤ −4(σN × c1
Λ
S
× c1

β2SI
EN

× c3
εE
I
)

1
4

+ c1(β1(1− u1) + β2 + σ +
1
2

σ2
1 ) + c2(ε + γ + σ +

1
2

σ2
1 )

+ c3[r1(1 + u2) + µ + σ +
1
2

σ2
3 ] + Λ.
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Let

Λ = c1(β1(1− u1) + β2 + σ +
1
2

σ2
1 ) = c2(ε + γ + σ +

1
2

σ2
1 )

= c3[r1(1 + u2) + µ + σ +
1
2

σ2
3 ].

LV1 ≤ −4
[

σβ2εΛ4

m1m2m3

]
+ 4Λ ≤ −4Λ[(Rs

0)
1
4 − 1],

where m1 = c1(β1(1− u1) + β2 + σ + 1
2 σ2

1 ), m2 = c2(ε+ γ+ σ + 1
2 σ2

1 ), m3 = c3[r1(1+ u2) +

µ + σ + 1
2 σ2

3 .

V2 = c4(S + I + E + R + M− c1 ln S− c2 ln E− c3 ln I)

− ln S− ln R− ln M + S + E + I + R + M

= (c4 + 1)(S + I + E + R + M)− (c1c4 + 1) ln E

− c2c4 ln E− c3c4 ln I − ln R− ln M.

where fixed c4 > 0 will be computed later. Proving this is easy.

lim inf
(S,E,R,I,M)∈R6

+\Uk k→∞
V2(S + E + R + I + M) = +∞, (6)

where Uk = ( 1
k , k)( 1

k , k)( 1
k , k). To prove that V(S, E, R, I, M) has a unique minimum value

V(S(0), E(0), R(0), I(0), M(0)), we need to consider the partial derivative of V(S, E, R, I, M)
and the Hesse matrix. The partial derivative given is as follows:

∂V2

∂S
= 1 + c4 −

1 + c1c4

S
,

∂V2

∂E
= 1 + c4 −

1 + c2c4

E
,

∂V2

∂R
= 1 + c4 −

1 + c3c4

I
,

∂V2

∂I
= 1 + c4 −

1
R

,

∂V2

∂M
= 1 + c4 −

1
M

.

From these partial derivatives, we can see that the function V2 stagnates at point V0 =
(S(0), E(0), R(0), I(0), M(0)), since this is the point where all partial derivatives are zero.
Then, the Hesse matrix of V2 at (S(0), E(0), R(0), I(0), M(0)) is

B =




1+c1c4
S2(0) + 0 0 0 0

0 c2c4
E2(0) 0 0 0

0 0 c3c4
R2(0) 0 0

0 0 0 1
I2(0) 0

0 0 0 0 1
M2(0)




.

Since the Hesse matrix B is positively definite at (S(0), E(0), R(0), I(0), M(0)), we can
conclude that V2 has a unique minimum value (S(0), E(0), R(0), I(0), M(0)) at that point.
Define the set

D =

{
ε1 < S <

1
ε6

, ε2 < E <
1
ε7

, ε3 < R <
1
ε8

, ε4 < I <
1
ε9

, ε5 < M <
1

ε10

}
.
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According to Ito′s

LV = c4c6 + c1β(1− u1) + c1β2 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1(1 + u2)−
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σN,

where c6 = 4Λ[(Rs
0)

1
4 − 1] > 0.

Case 1. V ∈ D1 = {(S, E, R, I, M) ∈ R5
+, 0 < S ≤ ε1}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )−

Λ
ε1

.

For arbitrarily small ε1 such that LV < 0 for every (S, E, R, I, M) ∈ D1.
Case 2. V ∈ D2 = {(S, E, R, I, M) ∈ R5

+, 0 < E ≤ ε1, S > ε2}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )−

Λ
ε1

.

Case 3. V ∈ D3 = {(S, E, R, I, M) ∈ R5
+, 0 < R ≤ ε3, E > ε2}, we obtain

LV ≤ c4c6 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )−

γ2ε2

ε3
.

ε3 is much less than ε2 and ε3 is arbitrarily small, which guarantees that the operator is less
than 0.
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Case 4. V ∈ D4 = {(S, E, R, I, M) ∈ R5
+, 0 < I ≤ ε4, R > ε3}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )−

ε4

ε3
r1.

ε3 is much less than ε4 and ε3 is arbitrarily small, which guarantees that the operator is less
than 0.
Case 5 V ∈ D5 = {(S, E, R, I, M) ∈ R5

+, 0 < M ≤ ε5, R > ε4}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σε4.

Case 6 V ∈ D6 = {(S, E, R, I, M) ∈ R5
+, S > ε6}, we obtain

LV = c4c6 −
Λ
S
+

β1(1− u1)I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1(1 + u2)−
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β(1− u1) + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σε6.
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Case 7 V ∈ D7 = {(S, E, R, I, M) ∈ R5
+, E > ε7}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σε7.

Case 8 V ∈ D8 = {(S, E, R, I, M) ∈ R5
+, I > ε8}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σε8.

Case 9 V ∈ D9 = {(S, E, R, I, M) ∈ R5
+, R > ε9}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σε9.
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Case 10 V ∈ D10 = {(S, E, R, I, M) ∈ R5
+, M > ε10}, we obtain

LV = c4c6 −
Λ
S
+

β1 I
N

+
β2 I
N

+ σ +
σ2

1
2
− β2SI

EN
+ ε + γ2 + σ +

1
2

σ2
2

− I
R

r1 −
γ2E

R
+ σ +

1
2

σ2
4

− I
M

µ + σ +
1
2

σ2
5 + Λ− σN +

β1 I
N

≤ c4c6 + c1β + c1β2 + 2
β1 I
N

+
β2 I
N

+ ε + γ2

+ 3σ +
1
2
(σ2

1 + σ2
2 + σ2

4 + σ2
5 )− σε10.

There is a W,

LV(S, E, R, I, M) ≤ −W < 0,

Suppose (S(0), E(0), R(0), I(0), M(0)) = x0 ∈ R5
+\D is the initial state, representing the

starting point of the system. The symbol τx is defined as the time for the path from x to the
set D, i.e., τx is the stopping time of some random process of the system.

τn = inf{t : |X(t)| = n}.

This means that τn is the magnitude of the vector X(t) (as a function of time t) equal to the
first time of n.

τ(n)(t) = min{τx, t, τn}.

By applying Dynkin’s formula, we obtain

EV(S(τn(t)), E(τn(t)), I(τn(t)), R(τn(t)), M(τn(t)))−V(x)

= E
∫ τ(n)(t)

0
LVdu

≤ E
∫ τ(n)(t)

0
−Wdu

= −WEτ(n)(t).

Then,

Eτ(n)(t) ≤ E(x)
W

.

P{τe = ∞} = 1, which means that the probability that the event will never happen is 1,
or that the event will almost certainly not happen. In other words, system (2) is regular.
As time and sequence grow, the stop time τ(n)(t) will almost certainly converge to some
specific value τx.

According to Fatou’s lemma, we obtain the following inequality for the expected value
of the stopping time τ(n)(t)

Eτ(n)(t) ≤ V(x)
W

< ∞.
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Furthermore, it is stated that for a compact subset K of R5
+, the supremum of the expected

stopping time over all x in K is finite:

sup
x∈K

Eτx < ∞,

this means that regardless of which point x within the compact set K we consider, the
expected stopping time remains finite. The proof of these statements is claimed to be direct,
utilizing result (ii) from Lemma 3. Therefore, given the diffusion matrix of system (2)

B =




σ2
1 S2 0 0 0 0
0 σ2

2 E2 0 0 0
0 0 σ2

3 I2 0 0
0 0 0 σ2

4 R2 0
0 0 0 0 σ2

5 M2




.

Take M as the minimum value on the main diagonal of the matrix.
5

∑
i,j=1

aij(S, E, R, I, M)ξiξ j =
5

∑
i,j=1

ξ2x2
i ζ2

i ≥ M | ξ |2 .

where ξ = (ζ1, ζ2, ζ3, ζ4, ζ5) ∈ R5
+, x1 = S, x2 = E, x3 = R, x4 = I, x5 = M. The text

further implies that this inequality is a consequence of Lemma 5, which ensures that the
diffusion model (2) is ergodic and has a unique stationary distribution. Ergodicity means
that the system’s statistical properties are the same over time and do not depend on the
initial conditions. A stationary distribution is a stable probability distribution that the
system converges to over time.

6. An Example

Based on the transmission characteristics of the disease and the research objectives,
initially estimate the parameters in the model or set a reasonable initial range. Col-
lect relevant infectious disease outbreak data, and we use the Markov Chain Monte
Carlo simulation as utilized in reference [23] to estimate the model parameters using
the Wuhan outbreak data. Next, we give the extinction of the system. The initial value
(S0, E0, R0, I0, M0) = (95503, 638, 129, 709, 11), β1 = 2.5, γ1 = 14, Λ = 0.0234, σ1 = 0.735,
σ2 = 0.022, σ3 = 0.001, σ4 = 0.001, σ5 = 0.001. The Figures 1–5 represent the simulation
of progression of the number of individuals who are classified as susceptible, exposed,
infectious, recovered, and deceased, plotted against the number of days.

Figure 1. The susceptible go to extinction.
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Figure 2. The exposed go to extinction.

Figure 3. The infectious go to extinction.

Figure 4. The recovered go to extinction.

Figure 5. The deceased go to extinction.
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Remark 2. Under the current parameter settings, the disease cannot sustain transmission within
the population and will eventually disappear. This may be due to a relatively high recovery rate or a
relatively low infection rate, resulting in a transmission rate insufficient to maintain the disease’s
spread among people. The birth rate being relatively low may help reduce the number of new
susceptible individuals, thereby slowing the transmission of the disease.

Remark 3. The first perturbation coefficient being relatively high might imply that the conversion
of susceptible individuals to infected individuals occurs rapidly; however, due to the configuration of
other parameters, this does not lead to sustained transmission of the disease. This information is
significant for understanding and controlling the spread of infectious diseases.

Remark 4. It provides a mathematical proof that, given system dynamics, the total population does
not grow indefinitely, but rather tends to stabilize over time. Although a disease control strategy
is proposed in literature [12,13], this analysis of stability is not achieved by analyzing the ratio of
each state in the system and the limit of the natural logarithm over time. Such stability analysis is
crucial for understanding and predicting disease transmission and designing control strategies.

7. Conclusions

This study provides a mathematical foundation and theoretical support for under-
standing and predicting the transmission dynamics of COVID-19. It proves the existence
of global solutions for the stochastic SEIRM COVID-19 model with a standard incidence
rate. System stability is analyzed by constructing Lyapunov functions and employing
relevant mathematical tools. The properties of the diffusion matrix are utilized to ensure
the steady-state distribution of the system. The potential limitations of the model and the
scope for future work have been discussed in more detail:

Understand that you need to reorganize the language for the following content [24–28]:

a. Discuss whether the model assumes a uniform mixing of populations or fails to
consider factors such as spatial distribution and varying contact rates among different
demographic groups.

b. If the model assumes constant parameters, this may be a limitation because real-world
scenarios often involve time-varying parameters due to interventions or behavioral
changes.

c. Evaluate the model’s capacity to predict long-term outcomes in dynamic environ-
ments.

d. Pandemics can be influenced by external factors such as policy changes, vaccine
distribution, or the emergence of new variants.

e. Consider unreported cases as potential limitations of the model. Additionally, propose
that future research could build on this work by integrating methods to estimate and
account for unreported cases.
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Abstract: This article explores the finite-time control problem associated with a specific category
of non-homogeneous hidden semi-Markov jump systems. Firstly, a hidden semi-Markov model is
designed to characterize the asynchronous interactions that occur between the true system mode and
the controller mode, and emission probabilities are used to establish relationships between system
models and controller modes. Secondly, a novel piecewise homogeneous method is introduced to
tackle the non-homogeneous issue by taking into account the time-dependent transition rates for the
jump rules between different modes of the system. Thirdly, an asynchronous controller is developed
by applying Lyapunov theory along with criteria for stochastic finite-time boundedness, ensuring the
specified H∞ performance level is maintained. Finally, the effectiveness of this method is verified
through two simulation examples.

Keywords: non-homogeneous hidden semi-Markov jump systems; stochastic finite-time
boundedness; emission probabilities
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1. Introduction

The Markov process (MP) is commonly utilized to analyze system state transitions in
various fields such as finance, power systems, and robotics. Due to its ability to capture
dynamic behavior, Markov jump systems (MJSs) have been extensively researched in recent
years [1–5]. In continuous-time systems, the transition rates between different modes of an
MP are influenced solely by the current mode in which the system resides. The dwell time
(DT) follows an exponential distribution. In real systems, the DT distribution often follows
different patterns, and new methods need to be explored to solve this problem. Unlike
a traditional MP, semi-Markov processes (SMPs) consider historical data, and the DT is
not constrained by an exponential distribution. As a result, researchers and practitioners
may find semi-Markov jump systems (SMJSs) to be more suitable for modeling a variety of
systems where the exponential assumption does not hold, thus enhancing their applicability
in complex scenarios [6–12]. Regarding the stability analysis and synthesis of semi-Markov
jump systems, Ref. [13] focused on the issues of stochastic stability and stabilization
regarding a particular category of continuous-time semi-Markovian jump systems that
feature mode transition-dependent sojourn time distributions. In [14], the author discussed
the problem of H∞ observer-based control for a class of continuous-time semi-Markovian
jump systems with more detailed observational information.

A significant limitation in the majority of current research is the assumption that
transition rates (TRs) are constant over time. This perspective overlooks the dynamic nature
of many practical engineering applications. For instance, in contexts such as manufacturing

Mathematics 2024, 12, 3036. https://doi.org/10.3390/math12193036 https://www.mdpi.com/journal/mathematics169



Mathematics 2024, 12, 3036

systems and voltage conversion circuitry, the conditions and factors affecting TRs frequently
change, rendering the assumption of time invariance unrealistic. Therefore, it is important
to consider non-homogeneous semi-Markov jump systems (NHSMJSs) in these scenarios.
Ref. [15] proposed an SMP framework that is affected by deterministic high-order switching
signals, and the Markov renewal process is non-homogeneous. The stabilization problem
of a class of stochastic NHSMJSs is studied in [16]. To date, there is limited research on
NHSMJSs, making it a fruitful area for exploration. This lack of existing literature is a key
driving factor behind the current study.

On the other hand, the above research is based on the synchronization of the system
mode and the controller mode. In fact, the asynchronous problem of SMJSs has attracted
widespread attention from researchers. Given the potential misalignment of variables and
modes between the filter and plant in real network environments, a double asynchronous
phenomenon may occur. For this reason, Ref. [17] proposed a new fault detection filter
which specifically targets fault detection in fuzzy SMJSs. Ref. [18] explored the issue of
asynchronous control in two-dimensional SMJSs within the Roesser model. The interval
type-2 fuzzy model was investigated in [19], which developed an asynchronous sliding
mode control mechanism to achieve a quasi-sliding mode, effectively addressing the
challenges posed by parameter uncertainties for nonlinear semi-Markov jump models.
Hidden semi-Markov jump systems (HSMJSs) have emerged as a research area with the
potential to overcome the limitations of the assumption that the system mode is consistent
with the controller [20–24]. The hidden semi-Markov process (HSMP) can be understood as
a parameter process characterized by two variables. The stochastic process, referred to as
the SMP, is time-homogeneous and remains undisclosed to the controller, making it hidden.
The observed modes within the underlying process are determined from the emission
probabilities of the actual and observed system modes, which aids in the identification of
hidden system modes. While there has been significant research on stability analysis and
controller synthesis for HSMJSs, certain areas within this field have not been fully explored,
leaving open questions that have inspired our current investigation.

Building upon this foundation, the examination of stability and control mechanisms for
non-homogeneous hidden semi-Markov jump systems is undertaken. Ref. [25] addresses
the analysis of stability for a class of discrete-time non-homogeneous hidden semi-Markov
jump systems that operate with limited information regarding the sojourn time probability
density functions. Ref. [26] explores the non-fragile asynchronous control challenge within
discrete-time non-homogeneous hidden semi-Markov Lur’e systems, which face uncer-
tainties related to the system mode and gain. However, the aforementioned studies are
primarily based on discrete-time scenarios. To the best of the author’s knowledge, the sta-
bility analysis of continuous-time non-homogeneous hidden semi-Markov jump systems
remains unexplored. This gap in the literature serves as one of the primary motivations for
this article.

Meanwhile, in numerous engineering applications, the performance during a transi-
tion phase of a system is evaluated within a restricted operational time frame, contrasting
with the analysis of stability over an endless duration. The goal of finite-time stability is
to guarantee that, within a specified time frame, the system’s trajectories do not surpass
a certain physical limit. Up to this point, significant interest has been directed towards
finite-time stability [12,27,28].

This study examines the design challenges associated with asynchronous H∞ con-
trollers for non-homogeneous HSMJSs within a finite-time framework. The main contribu-
tions of this research can be outlined as follows:

(i) A hidden semi-Markov model is proposed to describe the asynchronous behavior
observed between the mode of the actual system and that of the controller.

(ii) A novel piecewise homogeneous approach is suggested for addressing the non-
homogeneous phenomenon by taking into account the time-dependent transition rates of
the jump rules across different system modes.
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(iii) An asynchronous controller is designed using Lyapunov theory to generate finite
stochastic criteria with the prescribed H∞ performance level.

Table 1 lists the notations used in this article.

Table 1. Common notations in this paper.

Notations Meanings

Rn n-dimensional Euclidean space
‖ · ‖ Euclidean norm

U > 0 U is a positive-definite symmetric matrix
UT the transpose of U

U−1 the inverse of U
λmax{U}, λmin{U} maximum and minimum eigenvalues of U

He{U} U + UT

E(·) the mathematical expectation
∗ the elision for symmetry matrix
M1 1,2, . . . M1
M2 1,2, . . . M2
N 1,2, . . . N

2. Materials and Methods

We consider a class of non-homogeneous HMJSs described by
{

ẋ(t) = Art x(t) + Brt u(t) + Crt ω(t),
z(t) = Drt x(t)

(1)

where x(t) ∈ Rn represents the state vector of the system, u(t) ∈ Rm represents the
control input, z(t) ∈ Rp represents the measured output, and ω(t) ∈ Rq represents
the external disturbance belonging to L2[0, ∞), ∀t ≥ 0. rt represents a continuous-time
non-homogeneous semi-Markov process that assumes values within the setM1. The time-
dependent TRs are indicated as follows:

Pr{rt+∆ = j | rt = i} =
{

πθt
ij (δ)∆ + o(∆) , j 6= i,

1 + πθt
ii (δ)∆ + o(∆) , j = i.

(2)

with ∆ > 0, where δ means sojourn time, and lim
∆→0

o(∆)/∆ = 0, πθt
ij (δ) > 0 (i, j ∈ M1, j 6= i)

is the transition rate between the i mode at time t and the j mode at time t + ∆, which satisfies

πθt
ii (δ) = − ∑

j∈M1\{i}
πθt

ij (δ), ∀i ∈ M1.

In this context, the variable θt represents a piecewise constant switching signal that assumes
values from the set N , and it determines the pattern of the transition probability matrix at
each moment. For every potential value of the variable rt = i, with θt = p, the TRs, π

p
ij, are

formulated as a function of the high-level switching signal, θt = p.
This formulation underscores the fact that the TRs exhibit temporal variability. Addi-

tionally, when organized sequentially, the matrix representing the TRs is introduced as

Πp(δ) =




π
p
11(δ) π

p
12(δ) · · ·πp

1m(δ)
π

p
21(δ) π

p
22(δ) · · ·πp

2m(δ)
...

...
...

π
p
m1(δ) π

p
m2(δ) · · ·π

p
mm(δ)




Due to asynchronous phenomenon, we cannot assume that the controller has precise
access to modal system information. This study aimed to discover the hidden controller
modes by utilizing an observed mode analysis approach. Figure 1 can provide a clearer
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depiction of the HSMP. {rt, t ≥ 0} stands for the hidden system mode, and the observed
mode {σt, t ≥ 0} assumes values from the setM2. A range of observed modes can be
emitted by each hidden system mode. The emission probability matrix is

Pr{σt = m | rt = i} = ρim, ∀i ∈ M1, m ∈ M2, (3)

with ρim ∈ [0, 1] and ∑m∈M2
ρim = 1.

σt = 2σt = 1
Observer Modes

Emission Probability

Hidden Modes

rt = 1 rt = 2 rt = 3

Figure 1. An example of a hidden semi-Markov process.

In this paper, for rt = i, θt = p, and σt = m, the parameter matrices Ai, Bi, Ci,
and Di possess suitable dimensions. We consider the following three-variable-dependent
asynchronous controller for non-homogeneous HSMJSs (1):

u(t) = Ki,m,px(t), (4)

where Ki,m,p means the feedback control gain matrix. The combination of (1) and (4) gives
rise to an expression for non-homogeneous HSMJS as follows:

{
ẋ(t) = (Ai + BiKi,m,p)x(t) + Ciω(t),
z(t) = Dix(t).

(5)

Remark 1. In practical application systems, the modal information acquired by the controller
is often inaccurate, meaning that the true system model remains concealed from the controller.
To address this issue, the variable σt is proposed to denote the mode of the controller, with the
relationship between rt and σt illustrated by Equation (3).

Remark 2. In actual systems, it is unrealistic to obtain the transition probability at each moment
in real time. Therefore, it is difficult to study semi-Markov jump systems with time-varying transi-
tion probabilities, which also increases the difficulty of deriving the stability theory. Fortunately,
in control practice, this type of system can usually be divided into a limited number of continuous
homogeneous systems, hence the piecewise homogeneous system proposed in this article.

Before we continue, here are the definitions, given below.

Assumption 1 ([27]). Given the time interval [0, T] and the constant d ≥ 0, the unknown
external disturbance ω(t) satisfies the following conditions:

∫ T

0
ωT(t)ω(t)dt 6 d2. (6)

Definition 1 ([29]). HSMJSs (5) are stochastically finite-time-bounded (SFTB) within a time
interval [0, T] concerning (d, T, R, c1, c2) if the following conditions hold:

{ ∫ T
0 ωT(t)ω(t)dt 6 d2,

xT(0)Rx(0) 6 c1 ⇒ E
{

xT(t)Rx(t) < c2
}

, ∀t ∈ {0, T}. (7)

where c1 and c2 are positive scalars with c2 > c1, and R > 0 is a weighting matrix.
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Definition 2 ([29]). Given a scalar γ ≥ 0, if there is an asynchronous controller (4) under zero
initial conditions such that all i ∈ M1, m ∈ M2, and p ∈ N , the HSMJS (5) is SFTB and satisfies
the following:

∫ T

0
zT(t)z(t)dt < γ2

∫ T

0
ωT(t)ω(t)dt. (8)

We say that the controller (4) satisfies the H∞ performance index γ.

3. Results

Theorem 1. For a given scalar α > 0, the closed-loop non-homogeneous HSMJS (5) is SFTB and
satisfies the H∞ performance index γ concerning (d, T, R, c1, c2) if there exist symmetric matrices
Pi,p > 0, such that the following conditions hold for every value of i ∈ M1, m ∈ M2, and p ∈ N :

eαTc1λ2 + γ2d2 − c2λ1 < 0 (9)

Ω =




Ξ11 Ξ12 Ξ13
∗ Ξ22 0
∗ ∗ Ξ33


 < 0 (10)

with

λ1 = λmin
{

R−
1
2 Pi,pR−

1
2
}

, λ2 = λmax
{

R−
1
2 Pi,pR−

1
2
}

,

Ξ11 = He[Pi,p(Ai + ∑
m∈M2

ρimBiKi,m,p)] + ∑
j∈M1

π
p
ijPj,p − αPi,p

Ξ12 = Pi,pCi, Ξ13 = DT
i ,

Ξ22 = −γ2e−αT , Ξ33 = −I,

π
p
ij = E[πp

ij(δ)] =
∫ ∞

0
πij(δ)dF p

i (δ),

where F p
i (δ) represents the probability density function of DT with respect to δ.

Proof of Theorem 1. A stochastic Lyapunov functional candidate is chosen as follows:

V(x(t)) = xTPi,px(t). (11)

Define L as a weak infinity operator, and for α > 0, the auxiliary function is defined as
follows:

J(t) = E{LV(x(t))− αV(x(t))− γ2e−αTωT(t)ω(t) + zT(t)z(t)}. (12)

By carrying out this calculation, we obtain

J(t) = E{LV(x(t))− αV(x(t))− γ2e−αTωT(t)ω(t) + zT(t)z(t)}
= E{xT(t)( ∑

j∈M1

π
p
ijPj,p)x(t) + 2[xT(t)Pi,p Aix(t)

+ xT(t)( ∑
m∈M2

ρimPi,pBiKi,m,p)x(t) + ωT(t)Pi,pCiω(t)]

− αV(x(t))− γ2e−αTωT(t)ω(t) + zT(t)z(t)}. (13)

Thus, the following inequality can be obtained:

J(t) ≤ ηT(t)Ωη(t) (14)
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where η(t) = [x(t) ω(t)]T. From condition (10), we obtain

J(t) < 0. (15)

According to (15), the equivalent inequality is obtained:

LV(x(t))− αV(x(t))− γ2e−αTωT(t)ω(t) + zT(t)z(t) < 0. (16)

Then, taking the expectation of (16), it follows that

E{Le−αtV(x(t))} < γ2e−α(t+T)E
{

ωT(t)ω(t)
}

. (17)

Integrating (17) over t(t ∈ (0, T]) yields

e−αtE{V(x(t))} < E{V(x(0))}+ γ2E
{ ∫ T

0
e−α(τ+T)ωT(τ)ω(τ)dτ

}
. (18)

Multiplying (18) by eαt yields

E{V(x(t))} < eαtE{V(x(0))}+ γ2d2 < eαTλ2c1 + γ2d2.

Since

E{V(x(t))} ≥ λ1E{xT(t)Rx(t)},

We can obviously obtain

E{xT(t)Rx(t)} < eαTλ2c1 + γ2d2

λ1
.

From (9), it follows that

E{V(x(t))} < eαTλ2c1 + γ2d2

λ1
< c2.

Therefore, according to Definition 1, the closed-loop system (5) is SFTB. If we multiply (16)
by eαt and calculate the mathematical expectation, we obtain

E{L[e−αtV(x(t))]} < E{e−αt[γ2e−αTωT(t)ω(t)− zT(t)z(t)]}. (19)

Integrating (19) over t(t ∈ (0, t]) under zero initial conditions, we obtain

E
{ ∫ T

0
e−α`[zT(`)z(`)− γ2e−αTωT(`)ω(`)]d`

}
< 0.

Thus, for all t(t ∈ (0, T]), it follows that

E
{ ∫ T

0
zT(t)z(t)dt

}
< e−αTE

{ ∫ T

0
γ2ωT(t)ω(t)dt

}
< γ2E

{ ∫ T

0
ωT(t)ω(t)

}
.

Returning to Definition 2, the closed-loop system (5) is SFTB and satisfies the H∞ perfor-
mance index γ. This completes the proof.

The following theorem we solve for the three-variable-dependent asynchronous con-
troller.
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Theorem 2. For a given scalar α > 0, the closed-loop non-homogeneous HSMJS (5) is SFTB and
satisfies the H∞ performance index γ concerning (d, T, R, c1, c2) if there exist symmetric matrices
Pi,p > 0 such that the following conditions hold for every value of i ∈ M1, m ∈ M2, and p ∈ N :

[
(γ2d2 − c2λ1)e−αT √

c1
∗ −λ2

]
< 0 (20)

Ω̃ =




Ξ̃11 Ξ̃12 Ξ̃13
∗ Ξ22 0
∗ ∗ Ξ33


 < 0, (21)

with

λ̃1 = λmin
{

R−
1
2 Xi,pR−

1
2
}

, λ̃2 = λmax
{

R−
1
2 Xi,pR−

1
2
}

,

Ξ̃11 = He[AiXi,p + ∑
m∈M2

ρimBi Ni,m,p] + ∑
j∈M1

π
p
ijX

T
i,pPj,pXi,p − αXi,p,

Ξ̃12 = Ci, Ξ̃13 = XT
i,pDT

i .

The other parameters are consistent with Theorem 1. Then, the three-variable-dependent controller’s
gain matrices are given as Ki,m,p = Nm,pX−1

i,p .

Proof of Theorem 2. Define

Xi,p = P−1
i,p , Ni,m,p = Ki,m,pXm,p,

diag{Xi,p; I; I}, and its transposition; then, (10) is equivalent to (21), and, obviously, (9) is
equivalent to (20). Proof completed.

Remark 3. In contrast to the asynchronous controllers commonly found in the existing literature,
the asynchronous controller presented in this paper is defined by three variables. This approach
leverages the characteristics of the system state more effectively, thereby significantly reducing
conservatism.

4. Illustrative Example

Example 1. Consider a non-homogeneous hidden semi-Markov jump system with two subsystems:

[
A1 A2

]
=

[ −1 2 −2 −3
−3 −2 4 −1

]
,

B1 = B2 = R =

[
1 0
0 1

]
,

[
C1 C2

]
=

[
0.001 −0.001
−0.001 −0.001

]
,
[

D1 D2
]
=

[
0.2 0.2
0.4 0.1

]
,

The transition rate matrix Πp(δ) is described by

Π1(δ) =

[ −3(δ)2 3(δ)2

4(δ)3 −4(δ)3

]
, Π2(δ) =

[ −4(δ)3 4(δ)3

3(δ)2 −3(δ)2

]
.

The semi-Markov chain dwell time for each mode is assumed to follow a Weibull distribution. F p
i (δ)

refers to the probability density functions of DT with respect to δ, where dF 1
1 (δ) = 3(δ)2e−(δ)

3
dδ,

dF 1
2 (δ) = 4(δ)3e−(δ)

4
dδ, dF 2

2 (δ) = 3(δ)2e−(δ)
3
dδ, and dF 2

1 (δ) = 4(δ)3e−(δ)
4
dδ. Further,

the mathematical expectation can be calculated:
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[π̄ij]
1 =

[ −2.7082 2.7082
3.6763 −3.6763

]
, [π̄ij]

2 =

[ −3.6763 3.6763
2.7082 −2.7082

]
.

Case I: Asynchronous case: we define the emission probability matrix.

[ρim] =

[
0.5 0.5
0.2 0.8

]
.

By choosing α = 1, γ = 0.1, c1 = 0.4, c2 = 20, T = 4, d = 2, x0 = [1,−1]T, and
ω(t) = e−2tsin(0.5t) and solving Theorem 2, we obtain the three-variable-dependent asynchronous
feedback control gain matrix:

[
K111 K121

]
=

[
0.2312 1.0238 0.2216 1.0135
−4.8556 −12.6636 −4.8641 −12.6847

]
,

[
K211 K221

]
=

[
0.2227 1.0148 0.2323 1.0252
−4.8704 −12.7001 −4.8619 −12.6791

]
,

[
K112 K122

]
=

[ −2.4428 −1.1474 −2.4407 −1.1465
1.1370 1.1520 1.1371 1.1521

]
,

[
K212 K221

]
=

[ −9.7750 −4.5913 −9.7755 −4.5916
4.5435 4.6040 4.5435 4.6040

]
.

The trajectories of the state response are shown in Figure 2. It can be clearly seen from
Figure 3 that the evolution of xT(t)Rx(t) tends to zero in finite time, and the designed
asynchronous controllers can make non-homogeneous HSMJSs (5) become SFTB. Figure 4
and Figure 5 show the system mode and controller mode, which both have two modes.
Figure 6 shows a possible evolution of the switching signal θt.

Case II: Synchronous case: we define the emission probability matrix.

[ρim] =

[
1.0 0.0
0.0 1.0

]
.

The other parameters are the same as in case I.
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Figure 2. State response of closed-loop system.
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Figure 3. The evolution of xT(t)Rx(t) .
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Figure 4. The system mode rt.
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Figure 5. The controller mode σt.
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Figure 6. Value of θt .

The trajectories of the state response are shown in Figure 7. It can be clearly seen from
Figure 8 that the evolution of xT(t)Rx(t) tends to zero in finite time, and the designed
synchronous controllers can make non-homogeneous HSMJSs (5) become SFTB. These
figures fully demonstrate the effectiveness of the method presented in this paper.
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Figure 7. State response of closed-loop system.

Figure 8. The evolution of xT(t)Rx(t) .

Remark 4. From case I and case II, it can be seen that, differing from the existing literature [30,31],
the method adopted in this paper can not only deal with the stochastic finite-time boundedness
problem in the case of an asynchronous controller and system mode but also with the stochastic
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finite-time boundedness problem in the case of a synchronous controller and system mode, so the
method in this paper has wider practicability and generality.

Example 2. Next, we consider a single-link robot arm system from [28], which can be expressed as

ψ̈(t) = −Mrt gL
Jrt

sin(ψ(t))− W
Jrt

ψ̇(t) +
1
Jrt

u(t),

in which ψ(t), ψ̇(t), and ψ̈(t) separately stand for the angle, angular velocity, and angular
acceleration, Jrt represents the moment of inertia, Mrt and L are the total mass and the length of the
arm, respectively, g denotes the gravitational acceleration, and W is the coefficient of viscous friction.
The robot runs under different payloads that obey the SMP {rt, t ≥ 0} inM1, and {σt, t ≥ 0} in
M2 is the asynchronous controller mode. Define x(t) = [xT

1 (t) xT
2 (t)]

T, where x1(t) = ψ(t) and
x2(t) = ψ̇(t). Thus, when rt = i, one has the linearized system

ẋ(t) =

[
0 1

−MigL
Ji

−W
Ji

]
x(t) +

[
0
1
Ji

]
u(t).

For every single-link robot arm, let J1 = 0.15, J2 = 0.25, M1 = 0.5, M2 = 1, L = 0.5, W = 2,
g = 9.81, x0 = [2,−1]T, and ω(t) = sin(t). The other parameters are the same as in Example 1
Case I. Solving Theorem 2, we obtain the three-variable-dependent asynchronous feedback control
gain matrix:

[
K111 K121

]
=
[

1.7565 0.5955 1.7306 0.5424
]
,

[
K211 K221

]
=
[

2.6850 0.7930 0.6636 0.1921
]
,

[
K112 K122

]
=
[

1.7636 0.5599 1.7808 0.5968
]
,

[
K212 K221

]
=
[

2.4764 0.6709 0.6141 0.1638
]
.

The trajectories of the state response are shown in Figure 9. It can be clearly seen from Figure 10 that
the evolution of xT(t)Rx(t) tends to zero in finite time, and the designed asynchronous controllers
can make non-homogeneous HSMJSs (5) become SFTB.
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Figure 9. State response of closed-loop system.
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Figure 10. The evolution of xT(t)Rx(t).

5. Conclusions

This article explores the finite-time control problem associated with a specific category
of non-homogeneous hidden semi-Markov jump systems. A novel piecewise homogeneous
strategy is presented to adequately address the challenges posed by the non-homogeneous
nature of the system. Furthermore, based on Lyapunov theory, the closed-loop non-
homogeneous HSMJSs can be stochastically finite-time-bounded and satisfy the H∞ per-
formance. To demonstrate the practical applicability and effectiveness of the proposed
method, two simulation examples were employed. The issue of cyber attacks targeting
network control systems has emerged as a significant concern this year, prompting us to
investigate it further in our upcoming research. This study will investigate the finite-time
stability of non-homogeneous hidden semi-Markov jump systems within the context of
complex cyber attack environments.
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Abstract: In this paper, we consider propagation direction (which can be used to predict which
species will occupy the habitat or win the competition eventually) of a bistable wave for a three-
species time-periodic lattice competition system with bistable nonlinearity, aiming to address an
open problem. As a first step, by transforming the competition system to a cooperative one, we study
the asymptotic behavior for the bistable wave profile and then prove the uniqueness of the bistable
wave speed. Secondly, we utilize comparison principle and build up two couples of upper and lower
solutions to judge the sign of the bistable wave speed which partially provides the answer to the
open problem. As an application, we reduce the time-periodic system to a space–time homogeneous
system, we obtain the corresponding criteria and carry out numerical simulations to illustrate the
availability of our results. Moreover, an interesting phenomenon we have found is that the two weak
competitors can wipe out the strong competitor under some circumstances.
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1. Introduction

This paper is devoted to the propagation direction, which is determined by the sign of
wave speed, of traveling wave solutions (TWSs) for the following bistable lattice system





u′j(t) = d1(t)D2[uj](t) + uj(t)(r1(t)− a11(t)uj(t)− a12(t)vj(t)),

v′j(t) = d2(t)D2[vj](t) + vj(t)(r2(t)− b11(t)vj(t)− b12(t)uj(t)− b13(t)wj(t)),

w′j(t) = d3(t)D2[wj](t) + wj(t)(r3(t)− c11(t)wj(t)− c12(t)vj(t)), j ∈ Z, t > 0.

(1)

In model (1) and in the sense of biology, one can interpret uj(t), vj(t) and wj(t) as the
population densities of three species at position j and time t, respectively, di(t) as the
diffusivity coefficient and ri(t) as the growth rate of the species. Here, the coefficients
a1i(t), c1i(t), i = 1, 2 and dk(t), b1k(t), k = 1, 2, 3 are assumed to be positive T-periodic
functions with T being a positive number. Biologically speaking, a1i(t), b1k(t), c1i(t) are the
intra-specific competitive coefficients as i = k = 1, while i = 2 or k = 2, 3, they represent
the inter-specific competitive coefficients. The term D2[sj](t) appearing in (1) is the second-
order central difference and is defined as D2[sj](t) := s(t, j + 1) + s(t, j− 1)− 2s(t, j) for
s = u, v, w. Evidently, system (1) is a competitive system and models such a relationship
between three species: v competes with u and w for common resources, while there is no
competition between u and w. The biological interpretation is that species u and w have
different preferences for food resources, while species v has the same food preferences as u
and w.
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As we all know, nature is a constantly changing and relatively stable system, in which
competition for survival between species is a common phenomenon. Therefore, to study
the dynamic behavior between different species, it is necessary to study the phenomenon
of competition between species and establish a reasonable model. The Lotka–Volterra
competitive diffusion system is one of the classical biological models to describe inter-
and intra-specific interactions. When the environment is assumed to be homogenous, the
general form of the three-species Lotka–Volterra competition diffusion model in the above
biological context is as follows:





ut = d1uxx + r1u(1− u− a1v),

vt = d2vxx + r2v(1− v− a2u− a3w),

wt = d3wxx + r3w(1− w− a4v), t ∈ R+, x ∈ R,

(2)

where dk, rk, k = 1, 2, 3 and al , l = 1, 2, 3, 4 are positive constants. As a matter of fact,
system (2) can be regarded as an extension of the classic two-species Lotka–Volterra system
which has been studied extensively in past decades; see, for example, [1–7] and references
therein. Due to the benefit from the classic Lotka–Volterra system in the application of
ecology, more and more works have also been devoted to system (2). For instance, we
refer the readers to [8,9] for the selection mechanism of minimum wave speed in the
monostable model; [10] for the stability of monotone traveling wave solutions; ref. [11]
for the exact traveling wave solutions of (2) with nontrivial three components; ref. [12]
for the uniqueness of traveling wavefronts; and ref. [13,14] for the sign of wave speed
in the bistable model. Related to the present paper, we particularly mention that Guo
et al. [13] studied two different cases for system (2): (1) the case where two species are
weakly competitive and one species is strongly competitive, and (2) the case where all three
species are very strong competitors. They obtained some new observations in contrast
with the two-species Lotka–Volterra model. In addition to system (2), we further refer
the readers to [15–19] for a discrete three-species competition system; refs. [20,21] for
a three-component competition system with nonlocal dispersal; and refs. [22,23] for a
competitive–cooperative Lotka–Volterra system of three species.

In their recent paper, besides model (2), Guo et al. [13] also proposed a discrete version
of (2), as follows:





u′j(t) = d1D2[uj](t) + r1[uj(1− uj − b2vj)](t),

v′j(t) = d2D2[vj](t) + r2[vj(1− b1uj − vj − b3wj)](t),

w′j(t) = d3D2[wj](t) + r3[wj(1− b2vj − wj)](t), t ∈ R+, j ∈ Z,

(3)

where the parameters dk, rk and bk, k = 1, 2, 3 are positive numbers and can be interpreted
as the ones in system (2). In (3), although the sign of wave speed of (2) has been addressed
for certain special cases, it is still largely left open for the discrete case (3). One of the reasons
is that their method used on system (2) relies on the integration of the corresponding wave
profile system, so it seems that such a method cannot be applied to system (3) directly due
to the central difference involved in (3). Another reason might be that the combination of
patchy environments and periodicity can make the corresponding analysis more difficult. In
this paper, we try to make some progress in this direction and this is our main motivation.
Our strategy is to use the upper/lower solution method to investigate the sign of the
bistable wave speed of (1). As a matter of fact, this method has been proved to be valid in
this subject for several diffusion systems; see, for instance, [4,6,9,24].

In recent years, an increasing number of scholars are attracted to traveling wave
solutions that have advantages in describing the development, migration and invasion of
biological populations. In particular, the sign of wave speed of traveling wave solutions can
be used to explain the outcome of competition between different species, which makes it a
meaningful topic. In this paper, we will study the propagation direction of traveling wave
solutions for (1) which is a lattice competition system. To the best of our knowledge, the
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research of lattice dynamical systems, which are more in line with nature, originated from
Bunimovich and Sinai [25] in 1988. After that, lattice dynamical models have widely been
used in biological issues; see, for example, [6,26–30]. Generally speaking, these models are
more effective in the case of species living in patchy environments.

Evidently, the corresponding space-homogenous ordinary differential system of (1) is
as follows:





u′(t) = u(t)[r1(t)− a11(t)u(t)− a12(t)v(t)],

v′(t) = v(t)[r2(t)− b11(t)v(t)− b12(t)u(t)− b13(t)w(t)],

w′(t) = w(t)[r3(t)− c11(t)w(t)− c12(t)v(t)], t ∈ R+.

(4)

It is easy to see that system (4) at least has three nonnegative T-periodic solutions, which
are the equilibrium points of (1). We denote them by e0 := (0, 0, 0), e1 := (0, q(t), 0),
e2 := (p(t), 0, r(t)), respectively, in which p(t), q(t), r(t) can be expressed as

p(t) =
p0e

∫ t
0 r1(s)ds

p0
∫ t

0 a11(s)e
∫ s

0 r1(θ)dθds + 1
, p0 =

e
∫ T

0 r1(s)ds − 1
∫ T

0 a11(s)e
∫ s

0 r1(θ)dθds
,

q(t) =
q0e

∫ t
0 r2(s)ds

q0
∫ t

0 b11(s)e
∫ s

0 r2(θ)dθds + 1
, q0 =

e
∫ T

0 r2(s)ds − 1
∫ T

0 b11(s)e
∫ s

0 r2(θ)dθds
,

r(t) =
r0e

∫ t
0 r3(s)ds

r0
∫ t

0 c11(s)e
∫ s

0 r3(θ)dθds + 1
, r0 =

e
∫ T

0 r3(s)ds − 1
∫ T

0 c11(s)e
∫ s

0 r3(θ)dθds
.

It is straightforward to check that p(t), q(t) and r(t) are T-periodic functions and satisfy
p(t + T) = p(t), q(t + T) = q(t) and r(t + T) = r(t) for all t ∈ R+.

Since our main focus is on bistable waves of (1), we have to make the following
assumption throughout this paper:

(A)
∫ T

0 r1(t)dt <
∫ T

0 a12(t)q(t)dt,
∫ T

0 r2(t)dt <
∫ T

0 b12(t)p(t)+ b13(t)r(t)dt and
∫ T

0 r3(t)dt <∫ T
0 c12(t)q(t)dt,

so that e1 and e2 are linearly stable equilibrium points.
As mentioned above, we are concerned with the periodic traveling wave of system (1),

which bears the form of



uj(t)
vj(t)
wj(t)


 =




U(t, j + ct)
V(t, j + ct)
W(t, j + ct)


 =:




U(t, z)
V(t, z)
W(t, z)


, z = j + ct, (5)

satisfying



U(t + T, z)
V(t + T, z)
W(t + T, z)


 =




U(t, z)
V(t, z)
W(t, z)


,

and is subject to the boundary conditions

(U, V, W)(t,−∞) = (0, 0, 0), (U, V, W)(t,+∞) = (1, 1, 1), (6)

where c is the wave speed. The limits in (6) hold uniformly in t ∈ R+.
After a substitution of (5), (1) can be rewritten as a wave profile system




Ut + cUz = d1(t)D2[U](t, z) + U(r1(t)− a11(t)U − a12(t)V),

Vt + cVz = d2(t)D2[V](t, z) + V(r2(t)− b11(t)V − b12(t)U − b13(t)W),

Wt + cWz = d3(t)D2[W](t, z) + W(r3(t)− c11(t)W − c12(t)V),

(7)
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where D2[S](t, z) = S(t, z + 1) + S(t, z − 1) − 2S(t, z) for S = U, V, W. Via the follow-
ing changes

Φ(t, z) =
p(t)−U(t, z)

p(t)
, Ψ(t, z) =

V(t, z)
q(t)

, Θ(t, z) =
r(t)−W(t, z)

r(t)
,

system (7) can be converted into a cooperative system





d1(t)D2[Φ](t, z)− cΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ] = Φt,

d2(t)D2[Ψ](t, z)− cΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1−Φ)− b13(t)r(t)(1−Θ)] = Ψt,

d3(t)D2[Θ](t, z)− cΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ] = Θt,

(8)

with periodic conditions and boundary conditions (6) becoming
{
(Φ, Ψ, Θ)(t, z) = (Φ, Ψ, Θ)(t + T, z),

(Φ, Ψ, Θ)(t,−∞) = (0, 0, 0), (Φ, Ψ, Θ)(t,+∞) = (1, 1, 1).

For the sake of convenience, we shall call the first equation of (8) Φ-equation, the second
equation Ψ-equation and the last one Θ-equation throughout this paper. Note that the
existence of a bistable periodic traveling wave solution of (1) can be proved by following
the ideas in [16,31], or by the abstract theory established in [32].

The remainder of this paper is organized as follows. In Section 2, we investigate the
asymptotic behaviors of Φ(t, z), Ψ(t, z) and Θ(t, z) as the co-moving coordinate z tends to
infinity, upon which the uniqueness of bistable wave speed is considered. In Section 3,
we derive two crucial theorems concerning the determination of the sign of the bistable
wave speed by employing the comparison principle. We construct suitable upper/lower
solutions to obtain explicit conditions in Section 4, and the results of numerical simulation
are shown in Section 5.

2. Uniqueness of Bistable Wave-Speed

To facilitate the forthcoming calculation and statement, we define some mathematical
notations as follows:

f (t) :=
1
T

∫ T

0
f (t)dt, ∆1(t) := b11(t)q(t)− b12(t)p(t)− b13(t)r(t),

∆2(t) := a11(t)p(t)− a12(t)q(t), ∆3(t) := c11(t)r(t)− c12(t)q(t),

Γ1(t, µ) := d1(t)(eµ + e−µ − 2)− cµ− a11(t)p(t),

Γ2(t, µ) := d3(t)(eµ + e−µ − 2)− cµ− c11(t)r(t),

Γ3(t, µ) := d2(t)(eµ + e−µ − 2) + cµ− b11(t)q(t).

To investigate the asymptotic behavior of the bistable wave profile, we denote the
unique positive solutions of the following equations

d2(t)(eµ + e−µ − 2)− cµ + ∆1(t) = 0,

d1(t)(eµ + e−µ − 2)− cµ− a11(t)p(t) = 0,

d3(t)(eµ + e−µ − 2)− cµ− c11(t)r(t) = 0,

by µ1(c), µ2(c), µ3(c), respectively. Moreover, by a simple analysis, it is not hard to find
that µ1(c), µ2(c) and µ3(c) are increasing functions in c. Meanwhile, we denote µ4(c), µ5(c)
and µ6(c), respectively, by the unique positive roots of the following equations

d1(t)(eµ + e−µ − 2) + cµ + ∆2(t) = 0,

d3(t)(eµ + e−µ − 2) + cµ + ∆3(t) = 0,

d2(t)(eµ + e−µ − 2) + cµ− b11(t)q(t) = 0.
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Here, µ4(c), µ5(c), µ6(c) are decreasing functions in c.
Based on the above notations, we are already to give the following lemma.

Lemma 1. As z→ −∞, the wave profile (Φ, Ψ, Θ)(t, z) behaves like



Φ(t, z)
Ψ(t, z)
Θ(t, z)


 ∼ A1




φ∗01(t)
ψ01(t)
θ∗01(t)


eµ1z + A2




φ01(t)
0
0


eµ2z + A3




0
0

θ01(t)


eµ3z, (9)

where µ1 6= µ2 6= µ3 and it holds uniformly in t ∈ R+. As z→ ∞, the wave profile (Φ, Ψ, Θ)(t, z)
behaves like



Φ(t, z)
Ψ(t, z)
Θ(t, z)


 ∼




1
1
1


− B1




φ11(t)
ψ∗11(t)

0


e−µ4z − B2




0
ψ∗∗11 (t)
θ11(t)


e−µ5z − B3




0
ψ11(t)

0


e−µ6z, (10)

where µ4 6= µ5 6= µ6 and it holds uniformly in t ∈ R+. In the above formulas, Ai, Bi, i = 1, 2, 3
are nonnegative numbers. The functions ψ01(t), φ01(t), θ01(t), φ∗01(t), θ∗01(t) are defined as (14),
(18), (19), (21) and (22), respectively; and φ11(t), θ11(t), ψ11(t), ψ∗11(t), ψ∗∗11 (t) are defined as (25),
(26), (29), (30) and (31), respectively.

Proof. Firstly, we are concerned about the situation of z→ −∞. It is clear that the linear
system of (8) around the equilibrium (0, 0, 0) can be represented by





d1(t)D2[Φ̂](t, z)− cΦ̂z + a12(t)q(t)Ψ̂− a11(t)p(t)Φ̂− Φ̂t = 0,

d2(t)D2[Ψ̂](t, z)− cΨ̂z + [b11(t)q(t)− b12(t)p(t)− b13(t)r(t)]Ψ̂− Ψ̂t = 0,

d3(t)D2[Θ̂](t, z)− cΘ̂z + c12(t)q(t)Ψ̂− c11(t)r(t)Θ̂− Θ̂t = 0.

(11)

Substituting Ψ̂ = ψ01(t)eµz into the second equation of (11), we can obtain the correspond-
ing characteristic equation

d2(t)(eµ + e−µ − 2)− cµ + ∆1(t)−
ψ′01(t)
ψ01(t)

= 0, (12)

where ψ01(t) > 0 is a T-periodic function. Integrating both sides of Equation (12) from 0 to
T gives

d2(t)(eµ + e−µ − 2)− cµ + ∆1(t) = 0. (13)

Noticing
∫ T

0 r2(t)dt =
∫ T

0 b11(t)q(t)dt, and recalling assumption (A), it can be obtained
that ∆1(t) < 0. Thereby, Equation (13) has a unique positive root µ1 := µ1(c). By putting
µ = µ1 into (12), ψ01(t) then can be calculated as

ψ01(t) = ψ01 exp

( ∫ t

0

(
d2(s)(eµ1 + e−µ1 − 2)− cµ1 + ∆1(s)

)
ds

)
, (14)

with ψ01(0) = ψ01 > 0. Thus, the asymptotic behavior of Ψ(t, z) as z → −∞ can be
expressed as

Ψ(t, z) ∼ A1ψ01(t)eµ1z. (15)

Using the same approach, ignoring a12(t)q(t)Ψ̂ and c12(t)q(t)Ψ̂, it is clear that the linear
equations for Φ̂ and Θ̂ of (11), respectively, are as follows

{
d1(t)D2[Φ̂](t, z)− cΦ̂z − a11(t)p(t)Φ̂− Φ̂t = 0,

d3(t)D2[Θ̂](t, z)− cΘ̂z − c11(t)r(t)Θ̂− Θ̂t = 0.
(16)
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Setting Φ̂ = φ01(t)eµz and Θ̂ = θ01(t)eµz, (16) can be simplified as




d1(t)(eµ + e−µ − 2)− cµ− a11(t)p(t)− φ′01(t)
φ01(t)

= 0,

d3(t)(eµ + e−µ − 2)− cµ− c11(t)r(t)−
θ′01(t)
θ01(t)

= 0.
(17)

Likewise, we can obtain

φ01(t) = φ01 exp
( ∫ t

0
Γ1(s, µ2)ds

)
, (18)

θ01(t) = θ01 exp
( ∫ t

0
Γ2(s, µ3)ds

)
. (19)

In the first and third equation of (11), if the terms containing Ψ̂ are not considered, the
asymptotic behaviors of Φ̂ and Θ̂ when z → −∞ can be expressed as A2φ01(t)eµ2z and
A3θ01(t)eµ3z. Next, we consider (11). Replacing Ψ̂ with A1ψ01(t)eµ1z, we obtain

{
d1(t)D2[Φ̂](t, z)− cΦ̂z − a11(t)p(t)Φ̂− Φ̂t = −A1a12(t)q(t)ψ01(t)eµ1z,

d3(t)D2[Θ̂](t, z)− cΘ̂z − c11(t)r(t)Θ̂− Θ̂t = −A1c12(t)r(t)ψ01(t)eµ1z.

A simple calculation yields
{

Φ(t, z) ∼ A1φ∗01(t)e
µ1z + A2φ01(t)eµ2z,

Θ(t, z) ∼ A1θ∗01(t)e
µ1z + A3θ01(t)eµ3z.

(20)

Here,

φ∗01(t) = exp
( ∫ t

0
Γ1(s, µ1)ds

)
·
[ ∫ t

0
a12(s)q(s)ψ01(s) exp

(
−
∫ s

0
Γ1(τ, µ1)dτ

)
ds + φ∗01(0)

]
, (21)

θ∗01(t) = exp
( ∫ t

0
Γ2(s, µ1)ds

)
·
[ ∫ t

0
c12(s)r(s)ψ01(s) exp

(
−
∫ s

0
Γ2(τ, µ1)dτ

)
ds + θ∗01(0)

]
, (22)

with

φ∗01(0) =

∫ T
0 a12(s)q(s)ψ01(s) exp

(
−
∫ s

0 Γ1(τ, µ1)dτ

)
ds

exp
(
−
∫ T

0 Γ1(s, µ1)ds
)
− 1

,

θ∗01(0) =

∫ T
0 c12(s)r(s)ψ01(s) exp

(
−
∫ s

0 Γ2(τ, µ1)dτ

)
ds

exp
(
−
∫ T

0 Γ2(s, µ1)ds
)
− 1

.

By making use of the method of successive approximation (see, e.g., [33]), we conclude
that (15) and (20) lead to (9).

Next, we intend to consider the asymptotic behavior of (Φ, Ψ, Θ)(t, z) as z→ ∞. The
linear system of (8) around the equilibrium (1, 1, 1) can be expressed as follows





d1(t)D2[Φ̂](t, z)− cΦ̂z + [a11(t)p(t)− a12(t)q(t)]Φ̂− Φ̂t = 0,

d2(t)D2[Ψ̂](t, z)− cΨ̂z − b11(t)q(t)Ψ̂ + b12(t)p(t)Φ̂ + b13(t)r(t)Θ̂− Ψ̂t = 0,

d3(t)D2[Θ̂](t, z)− cΘ̂z + [c11(t)r(t)− c12(t)q(t)]Θ̂− Θ̂t = 0.

(23)
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In a similar way, the characteristic equations of the first and last equations of (23) are
given by 




d1(t)(e−µ + eµ − 2) + cµ + ∆2(t)−
φ′11(t)
φ11(t)

= 0,

d3(t)(e−µ + eµ − 2) + cµ + ∆3(t)−
θ′11(t)
θ11(t)

= 0,
(24)

where φ11(t) > 0, θ11(t) > 0 are T-periodic functions. From (24), we can solve that

φ11(t) = φ11 exp

( ∫ t

0

(
d1(s)(eµ4 − e−µ4 − 2) + cµ4 + ∆2(s)

)
ds

)
, (25)

θ11(t) = θ11 exp

( ∫ t

0

(
d3(s)(eµ5 − e−µ5 − 2) + cµ5 + ∆3(s)

)
ds

)
, (26)

with φ11 := φ11(0) > 0, θ11 := θ11(0) > 0. The asymptotic behaviors of Φ(t, z) and Θ(t, z)
as z→ ∞ are given by {

Φ(t, z) ∼ 1− B1φ11(t)e−µ4z,

Θ(t, z) ∼ 1− B2θ11(t)e−µ5z.
(27)

Following a similar argument for (20), we can obtain

Ψ(t, z) ∼ 1− B1ψ∗11(t)e
−µ4z − B2ψ∗∗11 (t)e

−µ5z − B3ψ11(t)e−µ6z, as z→ ∞. (28)

Here,

ψ11(t) = ψ11(0) exp
( ∫ t

0
Γ3(s, µ6)ds

)
, (29)

ψ∗11(t) = exp
( ∫ t

0
Γ3(s, µ4)ds

)
·
[ ∫ t

0
b12(s)p(s)φ11(s) exp

(
−
∫ s

0
Γ3(τ, µ4)dτ

)
ds + ψ∗11(0)

]
, (30)

ψ∗∗11 (t) = exp
( ∫ t

0
Γ3(s, µ5)ds

)
·
[ ∫ t

0
b13(s)r(s)θ11(s) exp

(
−
∫ s

0
Γ3(τ, µ5)dτ

)
ds + ψ∗∗11 (0)

]
, (31)

with

ψ∗11(0) =

∫ T
0 b12(s)p(s)φ11(s) exp

(
−
∫ s

0 Γ3(τ, µ4)dτ

)
ds

exp
(
−
∫ T

0 Γ3(s, µ4)ds
)
− 1

,

ψ∗∗11 (0) =

∫ T
0 b13(s)r(s)θ11(s) exp

(
−
∫ s

0 Γ3(τ, µ5)dτ

)
ds

exp
(
−
∫ T

0 Γ3(s, µ5)ds
)
− 1

.

Again, by the method of successive approximation, we can infer (10) from (27) and (28).
The proof is thus complete.

Remark 1. We make some explanations for the symbol “∼” appearing in (9) and (10). Let us
take the first element, namely Φ(t, z), in (9) as an example. In the case of µ2 < µ1 < µ3 or
µ2 < µ3 < µ1, we mean Φ(t, z) = A2φ01(t)eµ2z + o(eµ2z) uniformly in t ∈ R+ where the
symbol o comes from the classic asymptotic definition.

The uniqueness of the wave speed of the bistable wave solutions of (8) is presented in
the following theorem. Instead of using the global stability of traveling wave front to prove
the uniqueness, we employ the idea from [3].

190



Mathematics 2024, 12, 3304

Theorem 1. Suppose that (8) has two bistable traveling wave solutions (c1, Φ1(t, z), Ψ1(t, z),
Θ1(t, z)) with z = x + c1t and (c2, Φ2(t, z), Ψ2(t, z), Θ2(t.z)) with z = x + c2t, then c1 = c2.

Proof. To prove the theorem, we use a contradiction argument. Suppose that c2 > c1.
Combining the monotonicity of µi(c), i = 1, 2, 3, 4, 5, 6 and asymptotic behavior established
in Lemma 1, we know that there exists a suitable positive constant z0 (might be sufficiently
large) such that

(Φ2, Ψ2, Θ2)(t, z− z0) < (Φ1, Ψ1, Θ1)(t, z), (t, z) ∈ R+ ×R.

Specifically, when t = 0, the initial data satisfy

(Φ2, Ψ2, Θ2)(0, j− z0) < (Φ1, Ψ1, Θ1)(0, j), j ∈ Z.

By the comparison principle, we have

(Φ2, Ψ2, Θ2)(t, j + c2t− z0) ≤ (Φ1, Ψ1, Θ1)(t, j + c1t).

In particular, there holds

Ψ2(t, j + c2t− z0) ≤ Ψ1(t, j + c1t).

Setting z̄ = j + c1t so that Ψ1(t, z̄) = 1
3 , we obtain

1
3
= Ψ1(t, z̄) ≥ Ψ2(t, z̄ + (c2 − c1)t− z0)→ 1, as t→ ∞,

and a contradiction then follows, thus c2 ≤ c1. By a similar manner, it yields c2 ≥ c1. In
summary, c1 = c2. The proof is complete.

3. The Determination of the Sign of Bistable Wave Speed

In this section, we aim at establishing two results so that the sign of bistable wave
speed can be determined by comparison. To this end, we first make the following change

ũj(t) = 1− uj(t)
p(t)

, ṽj(t) =
vj(t)
q(t)

, w̃j(t) = 1− wj(t)
r(t)

, t ∈ R+, j ∈ Z,

such that system (1) can be rewritten as




ũ′j(t) = d1(t)D2[ũj](t) + f (ũj(t), ṽj(t), w̃j(t)),

ṽ′j(t) = d2(t)D2[ṽj](t) + g(ũj(t), ṽj(t), w̃j(t)),

w̃′j(t) = d3(t)D2[w̃j](t) + h(ũj(t), ṽj(t), w̃j(t)), t ∈ R+, j ∈ Z,

(32)

where

f (ũj(t), ṽj(t), w̃j(t)) : = (1− ũj(t))[a12(t)q(t)ṽj(t)− a11(t)p(t)ũj(t)],

g(ũj(t), ṽj(t), w̃j(t)) : = ṽj(t)[b11(t)q(t)(1− ṽj(t))− b12(t)p(t)(1− ũj(t))

− b13(t)r(t)(1− w̃j(t))],

h(ũj(t), ṽj(t), w̃j(t)) : = (1− w̃j(t))[c12(t)q(t)ṽj(t)− c11(t)r(t)w̃j(t)].

To proceed, we investigate two eigen-problems of the ODE system of (32) around
(0, 0, 0) and (1, 1, 1). Denote λ0, λ1 by the eigenvalues of the following systems, respectively,

191



Mathematics 2024, 12, 3304





dφ

dt
− a12(t)q(t)ψ(t) + a11(t)p(t)φ(t) = λφ(t),

dψ

dt
− [b11(t)q(t)− b12(t)p(t)− b13(t)r(t)]ψ(t) = λψ(t),

dθ

dt
− c12(t)q(t)ψ(t) + c11(t)r(t)θ(t) = λθ(t),

φ(t + T) = φ(t), ψ(t + T) = ψ(t), θ(t + T) = θ(t),

and 



dφ

dt
− [a11(t)p(t)− a12(t)q(t)]φ(t) = λφ(t),

dψ

dt
+ b11(t)q(t)ψ(t)− b12(t)p(t)φ(t)− b13(t)r(t)θ(t) = λψ(t),

dθ

dt
− [c11(t)r(t)− c12(t)q(t)]θ(t) = λθ(t),

φ(t + T) = φ(t), ψ(t + T) = ψ(t), θ(t + T) = θ(t).

Let (φ0(t), ψ0(t), θ0(t)) and (φ1(t), ψ1(t), θ1(t)) be the eigenfunctions corresponding to λ0
and λ1, respectively. It is easy to calculate that





φ0(t) = (a0(t) + φ0(0)) exp
(

λ0t−
∫ t

0
a11(s)p(s)ds

)
,

ψ0(t) = exp
( ∫ t

0
(b11(s)q(s)− b12(s)p(s)− b13(s)r(s))ds + λ0t

)
,

θ0(t) = (b0(t) + θ0(0)) exp
(

λ0t−
∫ t

0
c11(s)r(s)ds

)
,

where

λ0 = −∆1(t), ψ0(0) = 1,

φ0(0) =

∫ T
0 a12(t)q(t)ψ0(t) exp(

∫ t
0 a11(τ)p(τ)dτ)− λ0t)dt

exp
( ∫ T

0 a11(t)q(t)dt− λ0T
)
− 1

,

θ0(0) =

∫ T
0 c12(t)q(t)ψ0(t) exp(

∫ t
0 c11(τ)r(τ)dτ)− λ0t)dt

exp
( ∫ T

0 c11(t)r(t)dt− λ0T
)
− 1

,

a0(t) =
∫ t

0
a12(s)q(s)ψ0(s) exp

( ∫ s

0
a11(τ)p(τ)dτ − λ0s

)
ds,

b0(t) =
∫ t

0
c12(s)q(s)ψ0(s) exp

( ∫ s

0
c11(τ)r(τ)dτ − λ0s

)
ds,

and 



φ1(t) = exp
( ∫ t

0
(a11(s)p(s)− a12(s)q(s))ds + λ1t

)
,

ψ1(t) = (c1(t) + ψ1(0)) exp
(

λ1t−
∫ t

0
b11(s)q(s)ds

)
,

θ1(t) = exp
( ∫ t

0
(c11(s)r(s)− c12(s)q(s))ds + λ1t

)
,
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where

λ1 = −∆2(t) = −∆3(t), φ0(0) = θ0(0) = 1,

ψ1(0) =

∫ T
0 (b12(t)p(t)φ1(t) + b13(t)r(t)θ1(t)) exp(

∫ t
0 b11(s)q(s)ds− λ1t)dt

exp
( ∫ T

0 b11(t)q(t)dt− λ1T
)
− 1

,

c1(t) =
∫ t

0
(b12(s)p(s)φ1(s) + b13(s)r(s)θ1(s)) exp

( ∫ s

0
b11(τ)q(τ)dτ − λ1s

)
ds.

Next, to construct a pair of crucial upper and lower solutions, we define the transition
functions as follows

p1(t, x) = ζ(x)φ1(t) + (1− ζ(x))φ0(t),

p2(t, x) = ζ(x)ψ1(t) + (1− ζ(x))ψ0(t),

p3(t, x) = ζ(x)θ1(t) + (1− ζ(x))θ0(t),

where ζ(x) is a smooth function with ζ(x) = 0 for x ≤ −2 and ζ(x) = 1 for x ≥ 2.
In order to discuss the sign of bistable wave speed, we give the following two lemmas.

Lemma 2. For any ξ± ∈ R, there exist positive numbers β, σ, δ such that (u+
j , v+j , w+

j )(t) and
(u−j , v−j , w−j )(t) defined as





u±j (t) = Φ(t, j + ct + ξ± ± σδ(1− e−βt))± δp1(t, j + ct + ξ± ± σδ(1− e−βt))e−βt,

v±j (t) = Ψ(t, j + ct + ξ± ± σδ(1− e−βt))± δp2(t, j + ct + ξ± ± σδ(1− e−βt))e−βt,

w±j (t) = Θ(t, j + ct + ξ± ± σδ(1− e−βt))± δp3(t, j + ct + ξ± ± σδ(1− e−βt))e−βt,
(33)

form a generalized upper/lower solution of the system (32).

Proof. The proof is similar to the ideas in Lemma 3.1 in article [34]. Thus, we omit it for
simplicity here.

Noting that the nonlinear terms in (8) are quasi-monotone, then an application of
contracting mapping theorem arguments (see [35]) ensures that the following lemma holds.

Lemma 3. Suppose that the initial data (ũj(0), ṽj(0), w̃j(0)) satisfy

0 < ũj(0) < 1, 0 < ṽj(0) < 1, 0 < w̃j(0) < 1,

and
u−j (0) ≤ ũj(0) ≤ u+

j (0), v−j (0) ≤ ṽj(0) ≤ v+j (0), w−j (0) ≤ w̃j(0) ≤ w+
j (0),

then the solution (ũj(t), ṽj(t), w̃j(t)) of (32) fulfills

u−j (t) ≤ ũj(t) ≤ u+
j (t), v−j (t) ≤ ṽj(t) ≤ v+j (t), w−j (t) ≤ w̃j(t) ≤ w+

j (t)

for all t ∈ R+, j ∈ Z.

Next, we use the comparison principle based on the above two lemmas to establish
the two crucial theorems.

Theorem 2. Assume that (8) has a nonnegative non-decreasing upper solution (Φ(t, z), Ψ(t, z),
Θ(t, z)) with speed c < 0 and Φ(t, z), Ψ(t, z) and Θ(t, z) are T-periodic functions relative to
t, satisfying

(Φ, Ψ, Θ)(t,−∞) < (1, 1, 1), (Φ, Ψ, Θ)(t, ∞) ≥ (1, 1, 1), (34)
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then
c ≤ c < 0.

Proof. For contradiction, we assume that c > c on the contrary and choose the initial
datum (ũj(0), ṽj(0), w̃j(0)) of (32) which is continuous, nondecreasing and satisfies

ũj(0) = ṽj(0) = w̃j(0) = 0, for j ≤ −J,

and
ũj(0) = ṽj(0) = w̃j(0) = 1− η, for j ≥ J,

for a sufficiently large positive integer J and a small enough number η > 0. This, together
with (34), enables us to further suppose that

ũj(0) ≤ Φ(0, j), ṽj(0) ≤ Ψ(0, j), w̃j(0) ≤ Θ(0, j), for j ∈ Z.

Then, by the comparison principle, we have

ũj(t) ≤ Φ(t, z) = Φ(t, j + ct), ṽj(t) ≤ Ψ(t, z) = Ψ(t, j + ct), w̃j(t) ≤ Θ(t, z) = Θ(t, j + ct) (35)

for all (t, j) ∈ R+ ×Z. On the other hand, by Lemma 3, we particularly have that

ũj(t) ≥ Φ(t, j + ct + ξ− − σδ(1− e−βt))− δp1(t, j + ct + ξ− − σδ(1− e−βt))e−βt. (36)

Again, in view of (34), we know that there exists a number z0 = j+ ct such that Φ(t, z0) < 1.
Combining (35) and (36), we can derive

1 > Φ(t, z0) ≥ Φ(t, z0 + (c− c)t + ξ− − σδ(1− e−βt))− δp1(t, j + ct + ξ− − σδ(1− e−βt))e−βt → 1,

as t→ ∞, which gives a contradiction. Hence, c ≤ c < 0. The proof is complete.

Theorem 3. Suppose that (8) has a nonnegative non-decreasing lower solution (Φ(t, z), Ψ(t, z),
Θ(t, z)) with speed c > 0 and Φ(t, z), Ψ(t, z) and Θ(t, z) are T-periodic functions relative to
t, satisfying

(Φ, Ψ, Θ)(t,−∞) = (0, 0, 0) < (Φ, Ψ, Θ)(t, ∞) ≤ (1, 1, 1), (37)

then
c ≥ c > 0.

Proof. The proof is similar to that of Theorem 2. By choosing proper initial data (depending
on (37)) and assume c < c for contradiction, we can obtain

Φ(t, j + ct) ≤ Φ(t, j + ct + ξ+ + σδ(1− e−βt)) + δp1(t, j + ct + ξ+ + σδ(1− e−βt))e−βt.

On the plane z = z1 := j + ct, we set Φ(t, z1) =
1
3 . Hence,

1
3
= Φ(t, z1) ≤ Φ(t, z1 + (c− c)t + ξ+ + σδ(1− e−βt)) + δp1(t, j + ct + ξ+ + σδ(1− e−βt))e−βt → 0,

as t→ ∞. Thus, we reach a contradiction. In short, c ≥ c > 0. The proof is complete.

4. Sign of Bistable Wave Speed with Specific Conditions

Although Theorems 2 and 3 provide two criteria about how to predict the sign of
bistable wave speed, the explicit condition expressed by the model-parameter is not pre-
sented. This part aims to gain some of such conditions via constructing explicit upper and
lower solutions which seems to be nontrivial in contrast with the classic constructions,
namely, the joint of a constant function and an exponential function.
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Theorem 4. The speed c of the bistable traveling wave solution of (8) is negative, if there exist
constants k1, k2 such that

−2d2(t)τ10 + d2(t)τ2
10χ10 + b12(t)q(t)k1 + b13(t)r(t)k2 ≤ 0, (38)

and

1 <
a12(t)q(t)

a11(t)p(t) + ∆1(t) + [d2(t)− d1(t)]τ10
< k1 < min

t∈[0,T]

{
d1(t)τ10(2− τ10χ10)

[d1(t)− d2(t)]τ10 − ∆1(t)

}
, (39)

1 <
c12(t)q(t)

c11(t)r(t) + ∆1(t) + [d2(t)− d3(t)]τ10
< k2 < min

t∈[0,T]

{
d3(t)τ10(2− τ10χ10)

[d3(t)− d2(t)]τ10 − ∆1(t)

}
, (40)

where
τ10 = eµ1(0) + e−µ1(0) − 2, χ10 =

1
τ10 + 4 + 2

√
τ10 + 4

.

Proof. To make the sign of the bistable wave speed negative, by Theorem 2, we only need
to construct an upper solution to (8). Let

Ψ(t, z) =
ψ01(t)

ψ01(t) + e−µ1(−ε)z
,

and redefine Φ(t, z), Θ(t, z), which are continuous functions, as follows

Φ(t, z) = min{1, k1Ψ(t, z)} =
{

k1Ψ(t, z), z ≤ z1(t),

1, z > z1(t),
(41)

Θ(t, z) = min{1, k2Ψ(t, z)} =
{

k2Ψ(t, z), z ≤ z2(t),

1, z > z2(t).

Here, 0 < ε � 1. For any fixed t ∈ R+, z1(t) and z2(t) are uniquely determined by
k1Ψ(t, z1(t)) = 1 and k2Ψ(t, z2(t)) = 1, respectively. Without loss of generality, we may as-
sume that k1 > k2, which implies that z1(t) < z2(t), t ∈ R+, according to the monotonicity
of Ψ(t, z) in z.

To proceed, we note that D2[Ψ] can be reduced to

D2[Ψ] = τ1Ψ(1−Ψ)(1− 2Ψ) + τ2
1 Ψ2

(1−Ψ)H1(t, z), (42)

where

τ1 = eµ1(−ε) + e−µ1(−ε) − 2, H1(t, z) =
e−µ1(−ε)z/ψ01(t)(1− e−µ1(−ε)z/ψ01(t))

(1 + e−µ1(−ε)(z+1)/ψ01(t))(1 + e−µ1(−ε)(z−1)/ψ01(t))
.

It is easy to check that H1(t, z) ≤ χ1 with

χ1 =
1

τ1 + 4 + 2
√

τ1 + 4
.

We first concentrate on the Ψ-equation. Substituting

Ψz = µ1Ψ(1−Ψ), Ψt =
ψ′01(t)
ψ01(t)

Ψ(1−Ψ)

and (42) into the Ψ-equation, we have
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d2(t)D2[Ψ](t, z) + εΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1−Φ)− b13(t)r(t)(1−Θ)]−Ψt

≤ Ψ(1−Ψ)

{
d2(t)τ1 + εµ1 + ∆1(t)−

ψ′01(t)
ψ01(t)

+ Ψ
(
− 2d2(t)τ1 + d2(t)τ2

1 χ1 + Y(t, z)
)}

≤ Ψ2
(1−Ψ)

{
−2d2(t)τ1 + d2(t)τ2

1 χ1 + Y(t, z)
}

,

where

Y(t, z) =
b12(t)p(t)(Φ−Ψ) + b13(t)r(t)(Θ−Ψ)

Ψ(1−Ψ)
.

Next, we have to discuss the maximum of Y(t, z) in the following cases.

(1) When z > z2(t), it is easy to realize that Φ(t, z) = 1, Θ(t, z) = 1, 1
k2
≤ Ψ(t, z) ≤ 1.

Then,

Y(t, z) =
b12(t)p(t) + b13(t)r(t)

Ψ
≤ k2

(
b12(t)p(t) + b13(t)r(t)

)
. (43)

(2) When z ≤ z1(t), it follows that Φ(t, z) = k1Ψ(t, z) and Θ(t, z) = k2Ψ(t, z). From (41),
we can infer that Ψ ≤ 1

k1
. Therefore, Y(t, z) can be rewritten as

Y(t, z) =
b12(t)p(t)(k1 − 1) + b13(t)r(t)(k2 − 1)

1−Ψ
≤ b12(t)p(t)(k1 − 1) + b13(t)r(t)(k2 − 1)

1− 1
k1

. (44)

(3) When z1(t) < z ≤ z2(t), we have Φ(t, z) = 1 and Θ(t, z) = k2Ψ(t, z). Then,

Y(t, z) =
b12(t)p(t)

Ψ
+

b13(t)r(t)(k2 − 1)
1−Ψ

.

It is easy to check that 1
k1
≤ Ψ ≤ 1

k2
, which results in

Y(t, z) ≤ b12(t)q(t)k1 + b13(t)r(t)k2. (45)

By comparing (43) and (44) with (45), we find the maximum among them is b12(t)q(t)k1
+b13(t)r(t)k2. Thus, by assumption (38), we have

−2d2(t)τ1 + d2(t)τ2
1 χ1 + Y(t, z) ≤ −2d2(t)τ1 + d2(t)τ2

1 χ1 + b12(t)q(t)k1 + b13(t)r(t)k2 ≤ 0. (46)

Next, we consider the Φ-equation. There are four subcases that need to be discussed.

(i) When z ≥ z1(t) + 1, we obtain Φ(t, z) = 1 and hence

d1(t)D2[Φ](t, z) + εΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]−Φt = 0.

(ii) When z1(t) < z < z1(t) + 1, we notice that Φ(t, z− 1) = k1Ψ(t, z− 1), Φ(t, z + 1) =
Φ(t, z) = 1. Therefore, the Φ-equation can be evaluated by

d1(t)D2[Φ](t, z) + εΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]−Φt = d1(t)[k1Ψ(t, z− 1)− 1] ≤ 0,

using k1Ψ(t, z− 1) ≤ 1.
(iii) The case z1(t)− 1 < z ≤ z1(t) can be discussed together with the last case.
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(iv) When z ≤ z1(t)− 1, it follows from (41) that Φ(t, z) = k1Ψ(t, z). Thus,

d1(t)D2[Φ](t, z) + εΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]−Φt

≤ k1Ψ
{
(1−Ψ)

[
τ1(1− 2Ψ)d1(t) + τ2

1 χ1Ψd1(t) + εµ1 −
ψ′01(t)
ψ01(t)

]

+ (1− k1Ψ)

[
a12(t)q(t)

k1
− a11(t)p(t)

]}

≤ k1ΨF1(Ψ),

where

F1(Ψ) := (1−Ψ)

[
τ1(1− 2Ψ)d1(t) + τ2

1 χ1Ψd1(t) + εµ1 −
ψ′01(t)
ψ01(t)

]

+ (1− k1Ψ)

[
a12(t)q(t)

k1
− a11(t)p(t)

]
.

It is obvious that F′′1 (Ψ) = 2d1(t)τ1(2− τ1χ1) ≥ 0 (using τ1χ1 < 1), where the derivative is
with respect to the variable Ψ. Therefore, F1(Ψ) is concave for Ψ ∈ [0, 1

k1
]. It can be easily

calculated that

F1(0) = d1(t)τ1 + εµ1 −
ψ′01(t)
ψ01(t)

+
a12(t)q(t)

k1
− a11(t)p(t)

= [d1(t)− d2(t)]τ1 − ∆1(t) +
a12(t)q(t)

k1
− a11(t)p(t),

(47)

F1(
1
k1
) = (1− 1

k1
)

[
d1(t)τ1 +

1
k1
(τ2

1 χ1 − 2τ1)d1(t) + εµ1 −
ψ′01(t)
ψ01(t)

]
.

For the purpose of proving F1(Ψ) < 0 for Ψ ∈ [0, 1
k1
], we only need to check that F1(0) < 0

and F1(
1
k1
) < 0, which are ensured by (39) as ε→ 0+. To sum up cases (i)–(iv), we have

d1(t)D2[Φ](t, z) + εΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]−Φt ≤ 0.

By a similar manner, we can infer from (40) that

d3(t)D2[Θ](t, z) + εΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ]−Θt ≤ 0.

As such, it is proved that (Φ, Ψ, Θ)(t, z) is an upper solution of (8). By Theorem 2, the proof
is complete.

Theorem 5. The speed c of the bistable traveling wave solution of (8) satisfies c ≥ ε > 0
provided that

max{Π1(t), Π2(t)} < min
t∈[0,T]

{
1− d2(t)(2τ20 + τ2

20)

b11(t)q(t)

}
. (48)

where

Π1(t) :=
a11(t)p(t) + [d1(t) + d1(t)τ20 + d2(t)]τ20 + ∆1(t)

a12(t)q(t)
,

Π2(t) :=
c11(t)r(t) + [d3(t) + d3(t)τ20 + d2(t)]τ20 + ∆1(t)

c12(t)q(t)
,

and
τ20 = eµ1(0) + e−µ1(0) − 2.
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Proof. We intend to construct a lower solution to show that the wave speed c is posi-
tive. Define

Ψ(t, z) =
kψ01(t)

ψ01(t) + e−µ1(ε)z
, Φ(t, z) = Θ(t, z) =

Ψ(t, z)
k

with 0 < ε� 1 and k satisfying

max{Π1(t), Π2(t)} < k < min
t∈[0,T]

{
1− d2(t)(2τ2 + τ2

2 )

b11(t)q(t)

}
. (49)

By a similar computation with (42), we obtain

D2[Ψ] = τ2Ψ(1− Ψ
k
)(1− 2Ψ

k
) + τ2

2
Ψ2

k
(1− Ψ

k
)H2(t, z)

with

τ2 = eµ1(ε) + e−µ1(ε) − 2, H2(t, z) =
e−µ1(ε)z/ψ01(t)(1− e−µ1(ε)z/ψ01(t))

(1 + e−µ1(ε)(z+1)/ψ01(t))(1 + e−µ1(ε)(z−1)/ψ01(t))
.

On account of the lower bound of H2(t, z) being −1, we have

d2(t)D2[Ψ](t, z)− εΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1−Φ)− b13(t)r(t)(1−Θ)]−Ψt

≥ Ψ2

k
(1− Ψ

k
)

{
−2d2(t)τ2 − d2(t)τ2

2 + b11(t)q(t)(1− k)
}

.

Thanks to (49), we obtain

d2(t)D2[Ψ](t, z)− εΨz + Ψ[b11(t)q(t)(1−Ψ)− b12(t)p(t)(1−Φ)− b13(t)r(t)(1−Θ)]−Ψt ≥ 0.

As for the Φ-equation and Θ-equation, we have the following estimation:

d1(t)D2[Φ](t, z)− εΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]−Φt

≥ Φ(1−Φ)

{
−d1(t)τ2 − d1(t)τ2

2 − d2(t)τ2 − ∆1(t) + a12(t)q(t)k− a11(t)p(t)
}

,

and

d3(t)D2[Θ](t, z)− εΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ]−Θt

≥ Θ(1−Θ)

{
−d3(t)τ2 − d3(t)τ2

2 − d2(t)τ2 − ∆1(t) + c12(t)q(t)k− c11(t)r(t)
}

,

in which assumption (49) is used. Let ε→ 0+; we can derive that

d1(t)D2[Φ](t, z)− εΦz + (1−Φ)[a12(t)q(t)Ψ− a11(t)p(t)Φ]−Φt ≥ 0,

and
d3(t)D2[Θ](t, z)− εΘz + (1−Θ)[c12(t)q(t)Ψ− c11(t)r(t)Θ]−Θt ≥ 0.

Thus, we proved that (Φ, Ψ, Θ)(t, z) is a lower solution of (8). By Theorem 3, the proof
is complete.

198



Mathematics 2024, 12, 3304

As applications of Theorems 4 and 5, we want to partially provide the answer to the
open problem proposed in [13], associated to the following constant coefficient system
of (1) 




u′j(t) = d1D2[uj](t) + uj(t)(r1 − a11uj(t)− a12vj(t)),

v′j(t) = d2D2[vj](t) + vj(t)(r2 − b11vj(t)− b12uj(t)− b13wj(t)),

w′j(t) = d3D2[wj](t) + wj(t)(r3 − c11wj(t)− c12vj(t)), j ∈ Z, t > 0.

(50)

More precisely, in [13], it was stated that nothing is known about the sign of wave speed
in the discrete lattice dynamical system (50). For system (50), the equilibrium points and
bistable condition (A) become, respectively,

e0 := (0, 0, 0), e1 := (0,
r2

b11
, 0), e2 := (

r1

a11
, 0,

r3

c11
),

and
b11r1 < a12r2, a11c11r2 < b12c11r1 + a11b13r3, b11r3 < c12r2. (51)

Applying Theorems 4 and 5 to (50), we have the following two corollaries:

Corollary 1. The speed c of the bistable traveling wave solution of (50) is negative, if there exist
positive constants k1, k2 such that

−2d2τ10 + d2τ2
10χ10 + b12

r2

b11
k1 + b13

r3

c11
k2 ≤ 0, (52)

and

1 <
a12

r2
b11

r1 + r2 − b12r1
a11
− b13r3

c11
+ (d2 − d1)τ10

<
d1τ10(2− τ10χ10)

(d1 − d2)τ10 − r2 +
b12r1
a11

+ b13r3
c11

, (53)

1 <
c12

r2
b11

r3 + r2 − b12r1
a11
− b13r3

c11
+ (d2 − d3)τ10

<
d3τ10(2− τ10χ10)

(d3 − d2)τ10 − r2 +
b12r1
a11

+ b13r3
c11

. (54)

Corollary 2. The speed c of the bistable traveling wave solution of (50) is positive provided that

max
{ r1 + [d1 + d1τ20 + d2]τ20 + r2 − b12r1

a11
− b13r3

c11

a12
r2
b11

,

r3 + [d3 + d3τ20 + d2]τ20 + r2 − b12r1
a11
− b13r3

c11

c12
r2
b11

}

< min
t∈[0,T]

{
1− d2(2τ20 + τ2

20)

r2

}
.

(55)

We can learn from Corollaries 1 and 2 that almost all of the parameters appearing in (50)
should be taken into account in the determination of bistable wave speed sign. Hence, one
can analyze the effect of different coefficients on this determination. For instance, if one of
the diffusivity coefficients di, i = 1, 2, 3 is sufficiently small, then one of conditions (52), (53)
and (54) would no longer be valid. While we fixed d1 and d3 and let d3 be sufficiently large,
condition (55) is not true.

5. Numerical Simulation

We can derive that the bistable wave speed is negative in Theorem 4, which implies
that the bistable wave speed propagates to the right and u and w will win the competition.
On the contrary, Theorem 5 ensures that the bistable wave speed is positive, which means
that the bistable wave speed propagates to the left and v will win the competition.
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In order to illustrate our theoretical results from Corollaries 1 and 2, we choose the
initial data in the form of

uj(0) =

{
0, 1 ≤ j ≤ Nj,

1, Nj + 1 ≤ j ≤ NL,

vj(0) =

{
1, 1 ≤ j ≤ Nj,

0, Nj + 1 ≤ j ≤ NL,

wj(0) =

{
0, 1 ≤ j ≤ Nj,

1, Nj + 1 ≤ j ≤ NL,

with the boundary conditions





u1(t)− u2(t) = uNL(t)− uNL−1(t) = 0,

v1(t)− v2(t) = vNL(t)− vNL−1(t) = 0,

w1(t)− w2(t) = wNL(t)− wNL−1(t) = 0,

where Nj and NL are two integers. In what follows, we will set x ∈ [−100, 100] and
t ∈ [0, 60], and the step we take here is ∆x = 1 and ∆t = 0.05. All of the following
simulation of the CPU time is about one second.

In (50), we choose

a11 = b11 = c11 = 1, a12 = 1.2, b12 = 0.8, b13 = 0.7,

c12 = 1.2, d1 = 1, d2 = 2, d3 = 1.3, r1 = r2 = r3 = 1.
(56)

From this, we can compute τ10 = 0.250, χ10 = 0.119. It is easy to see that the set of such
chosen parameters make (51)–(54) valid. As a result, one may accept the bistable wave
speed to be negative. This fact is exactly verified by the numerical results; see Figure 1.

Figure 1. The simulation of (50) for the setting of (56).
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In (50), we choose

a11 = b11 = c11 = 1, a12 = 10, b12 = 1.2, b13 = 1.2,

c12 = 8, d1 = 1, d2 = 0.5, d3 = 1.2, r1 = r2 = r3 = 1.
(57)

For the above set of parameters, one can derive that τ20 = 2.800. Meanwhile, they fulfill (51)
and (55), so the bistable wave speed would be positive according to Corollary 2. This is
demonstrated in Figure 2.

Figure 2. The simulation of (50) for the setting of (57).

We all know that the competitive ability of a strong species will be greater than that of
a weak species, indicating that the strong species can wipe out the weak one. However,
when more than two species are involved, the outcome may not be that simple. Indeed,
Theorem 3.4 in Guo [13] proves that it is possible for two weak species to outcompete a
strong species in model (2) under certain conditions. Naturally, we wonder whether the
same phenomenon can be observed in model (50). To this end, we choose

a11 = b11 = c11 = 1, a12 = c12 = 1.1, b12 = b13 = 0.9,

r1 = r2 = r3 = 1, d1 = d2 = d3 = 1.
(58)

Figure 3 tells us that such a phenomenon still exists.
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Figure 3. The simulation of (50) for the setting of (58).

6. Conclusions

We investigate a time-periodic lattice system modeling the evolution of three com-
peting species in the case that one of the species competes with the other two species for
common resources, while there is no competition between these other two species. The
focus of the paper is the determination of the sign of bistable traveling wave solution, for
which it is a challenging task to find the corresponding sufficient and necessary condition.
Noting that the system is monotone, we apply the upper/lower solution method and the
comparison principle to successfully establish several sufficient conditions so that one can
confirm that the sigh is positive or negative. The results that we obtained here reveal how
the periodic fluctuation caused by the season or other factors can have an impact on the
competitive outcome for the three species. In particular, we addressed an open problem
arose by Guo [13] since the integral method used for a continuous system there cannot be
used for a discrete system. To confirm the validity of our results, a numerical simulation
was also carried out.

Author Contributions: Investigation, C.P.; writing—review and editing, J.Z.; supervision, H.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by CSC, the Scientific Research Fund of the Hunan
Provincial Education Department (grant 23A0342) and the Graduate Research Innovation Project of
the Hunan Provincial Education Department (grant CX20240820).

Data Availability Statement: The codes generated during the current study are available from the
corresponding author on reasonable request.

Acknowledgments: The first and third authors would like to express their appreciations to C. Ou for
his help and guidance, and their gratitude to the Memorial University of Newfoundland for its kind
service, since most of the current paper was finished during the period of their overseas study.

Conflicts of Interest: The authors declare no conflicts of interest.

202



Mathematics 2024, 12, 3304

References
1. Alhasanat, A.; Ou, C. Minimal-speed selection of traveling waves to the Lotka-Volterra competition model. J. Differ. Equ. 2019,

266, 7357–7378. [CrossRef]
2. Guo, J.-S.; Lin, Y.-C. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Comm. Pure Appl. Anal.

2013, 12, 2083–2090. [CrossRef]
3. Ma, M.; Yue, J.; Huang, Z.; Ou, C. Propagation dynamics of bistable traveling wave to a time-periodic Lotka-Volterra competition

model arising in strong competition model: Effect of seasonality. J. Dyn. Differ. Equ. 2022, 35, 1745–1767. [CrossRef]
4. Ma, M.; Yue, J.; Ou, C. Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion

equations. Proc. Math. Phys. Eng. Sci. 2019, 475, 20180898. [CrossRef]
5. Ma, M.; Zhang, Q.; Yue, J.; Ou, C. Bistable wave speed of the Lotka-Volterra competition model. J. Biol. Dyn. 2020, 14, 608–620.

[CrossRef]
6. Wang, H.; Ou, C. Propagation direction of the traveling wave for the Lotka-Volterra competitive lattice system. J. Dyn. Differ.

Equ. 2021, 33, 1153–1174. [CrossRef]
7. Zhang, G.-B.; Zhao, X.-Q. Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal

dispersal. Calc. Var. Partial Differ. Equ. 2020, 33, 1–34. [CrossRef]
8. Guo, J.-S.; Wang, Y.; Wu, C.-H.; Wu, C.-C. The minimal speed of traveling wave solutions for a diffusive three species competition

system. Taiwanese J. Math. 2015, 19, 1805–1829. [CrossRef]
9. Pan, C.; Wang, H.; Ou, C. Invasive speed for a competition-diffusion system with three Species. Discrete Contin. Dyn. Syst. B

2022, 27, 3515–3532. [CrossRef]
10. Chang, C.-H. The stability of traveling wave solutions for a diffusive competition system of three species. J. Math. Anal. Appl.

2018, 459, 564–576. [CrossRef]
11. Chen, C.-C.; Hung, L.-C.; Mimura, M.; Ueyama, D. Exact travelling wave solutions of three-species competition–diffusion

systems. Discrete Contin. Dyn. Syst. B 2012, 17, 2653–2669. [CrossRef]
12. Meng, Y.-L.; Zhang, W.-G. Properties of traveling wave fronts for three species Lotka-Volterra system. Qual. Theory Dyn. Syst.

2020, 19, 1–28. [CrossRef]
13. Guo, J.-S.; Nakamura, K.I.; Ogiwara, T.; Wu, C.-H. The sign of traveling wave speed in bistable dynamics. Discrete Contin. Dyn.

Syst. 2020, 40, 3451–3466. [CrossRef]
14. Zheng, J.-P. The wave speed signs for bistable traveling wave solutions in three species competition-diffusion systems. Appl.

Math. Mech. 2021, 42, 1296–1305.
15. Gao, P.; Wu, S.-H. Qualitative properties of traveling wavefronts for a three-component lattice dynamical system with delay.

Electron. J. Differ. Equ. 2019, 34, 1–19.
16. Guo, J.-S.; Wu, C.-C. The existence of traveling wave solutions for a bistable three-component lattice dynamical system. J. Differ.

Equ. 2016, 260, 1445–1455. [CrossRef]
17. Guo, J.-S.; Nakamura, K.-I.; Ogiwara, T.; Wu, C.-C. Stability and uniqueness of traveling waves for a discrete bistable 3-species

competition system. J. Math. Anal. Appl. 2019, 472, 1534–1550. [CrossRef]
18. Su, T.; Zhang, G.-B. Stability of traveling wavefronts for a three-component Lotka-Volterra competition system on a lattice.

Electron. J. Differ. Equ. 2018, 57, 1–16.
19. Wu, H.-C. A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical

systems. J. Dyn. Differ. Equ. 2016, 28, 317–338. [CrossRef]
20. Dong, F.-D.; Wang, W.-T.; Wang, J.-B. Asymptotic behavior of traveling waves for a three-component system with nonlocal

dispersal and its application. Discrete Contin. Dyn. Syst. 2017, 37, 2150058. [CrossRef]
21. He, J.; Zhang, G.-B. The minimal speed of traveling wavefronts for a three-component competition system with nonlocal

dispersal. Int. J. Biomath. 2021, 14, 2150058. [CrossRef]
22. Hung, L.-C. Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species. Nonlinear Anal. Real

World Appl. 2011, 12, 3691–3700. [CrossRef]
23. Ma, Z.-H.; Wu, X.; Rong, Y. Nonlinear stability of traveling wavefronts for competitive-cooperative Lotka-Volterra systems of

three species. Appl. Math. Comput. 2017, 315, 331–346. [CrossRef]
24. Ma, M.; Huang, Z.; Ou, C. Speed of the traveling wave for the bistable Lotka-Volterra competition Model. Nonlinearity 2019, 32,

C3143–C3162. [CrossRef]
25. Bunimovich, L.A.; Sinai, Y.G. Spacetime chaos in coupled map lattices. Nonlinearity 1988, 1, 491. [CrossRef]
26. Chow, S.N. Lattice dynamical systems. In Dynamical Systems; Lecture Notes in Mathematics; Macki, J.W., Zecca, P., Eds.; Springer:

Berlin, Germany, 2003; Volume 1822, pp. 1–102.
27. Fife, P.C. Mathematical Aspects of Reacting and Diffusing Systems; Lecture Notes in Biomathematics; Springer: Berlin, Germany,

1979; Volume 28.
28. Guo, J.-S.; Wu, C.-H. Wave propagation for a two-component lattice dynamical system arising in strong competition models.

J. Differ. Equ. 2011, 250, 3504–3533. [CrossRef]
29. Vukusic, P.; Sambles, J.R. Photonic structures in biology. Nature 2003, 424, 852–855. [CrossRef]
30. Wang, H.; Pan, C. Spreading speed of a lattice time-periodic Lotka-Volterra competition system with bistable nonlinearity. Appl.

Anal. 2022, 102, 4757–4778. [CrossRef]

203



Mathematics 2024, 12, 3304

31. Chen, X.; Guo, J.-S.; Wu, C.-C. Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal. 2008,
189, 189–236. [CrossRef]

32. Fang, J.; Zhao, X.-Q. Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 2011, 17, 2243–2288.
[CrossRef]

33. Ma, M.; Ou, C. Asymptotic analysis of the perturbed Poisson-Boltzmann equation on un bounded domains. Asymptot. Anal.
2015, 91, 125–146.

34. Bao, X.; Wang, Z.-C. Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition
system. J. Differ. Equ. 2013, 255, 2402–2435. [CrossRef]

35. Thieme, H.R. Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of
populations. J. Reine Ang. Math. 1979, 306, 94–121.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

204



mathematics

Article

Attack-Dependent Adaptive Event-Triggered Security Fuzzy
Control for Nonlinear Networked Cascade Control Systems
Under Deception Attacks
Xi-Ming Liu, Xiao-Heng Chang * and Li-Wei Hou

School of Control Science and Engineering, Bohai University, Jinzhou 121013, China;
2022008006@qymail.bhu.edu.cn (X.-M.L.)
* Correspondence: changxiaoheng@wust.edu.cn

Abstract: This article investigates the issue of H∞ security output feedback control for a nonlinear
networked cascade control system with deception attacks. First, to further reduce the amount of
communication data, reasonably schedule network resources, and alleviate the impact of multi-
channel deception attacks, an attack-dependent adaptive event-triggered mechanism is introduced
into the primary network channel, and its adaptive triggered threshold can be adjusted according to
the random attack probability. Secondly, the output dynamic quantization of the secondary network
channel is considered. Then, a novel security cascade output feedback controller design framework
based on the Takagi–Sugeno (T-S) fuzzy networked cascade control system under deception attacks
is established. In addition, by introducing the Lyapunov–Krasovskii stability theory, the design
conditions of the controller are given. Finally, the effectiveness and superiority of the proposed
design strategies are verified by two simulation examples of power plant boiler–turbine system and
power plant boiler power generation control system.
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1. Introduction

Since the cascade control strategy was proposed [1], it has become an effective means
to optimize the control system performance. Especially in the presence of external distur-
bances, the performance improvement effect is remarkable. The cascade control systems
are composed of two subsystems in series, which are divided into the primary loop and the
secondary loop. Since the secondary loop has a faster response speed than the primary loop,
the secondary loop can effectively suppress the system disturbance, and the primary loop
is responsible for adjusting the steady-state performance of the system [2]. It is precisely
because the cascade control system has the advantages of reducing the disturbance of
the secondary loop and improving the control quality, that the cascade control strategy
is widely used in many industrial production process controls such as heat exchange
systems [3] and cyber-physical systems [4].

In recent years, networked control systems (NCSs) have been widely used in intelli-
gent transportation, intelligent manufacturing, and daily life due to their advantages of low
cost, space saving, and easy maintenance [5–7]. Compared with the cascade control systems
that do not transmit signal through the network, the networked cascade control systems
(NCCSs) of signals transmission through the network combine the advantages of cascade
control systems and NCSs. Based on this, many studies related to NCCSs have been pub-
lished; for example, in [8], a passivity-based H∞ controller design method for NCCSs was
proposed and verified by a boiler–turbine system. The issue of H∞ control for NCCSs with
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uncertain time-delay was considered in [9]. However, the open network environment may
lead to many important data being eavesdropped or maliciously attacked, which will lead
to unreliable or unavailable communication data, and even serious security incidents [10].
Therefore, the problem of security controller design for NCCSs in practical engineering
applications has attracted the attention of many scholars, and some results have been
published. For example, in [11], a novel design method of networked cascade controller
based on event-triggered control was proposed under stochastic nonlinear constraints and
actuator faults. Considering the denial-of-service (DoS) attacks and the possible saturation
problem of the actuator, the event-triggered controller of the NCCS was investigated in [12].
By proposing a switching method, the H∞ stabilization problem of event-triggered NCCSs
under DoS attacks was proposed in [13].

However, in the cascade security control strategy studied above, only the threat of
DoS attacks to the system was concerned. Unlike the purpose of DoS attacks to block
data transmission by occupying network bandwidth, deception attacks mainly achieve the
purpose of attack by destroying the integrity and availability of transmitted data. At the
same time, it is more covert and sensitive than DoS attacks. After the transmitted data are
tampered with by the attacker, it is difficult for the data receiver to detect [14]. Furthermore,
deception attacks can also be subdivided into: (1) false data injection attacks [15–17]; that
is, the attacker knows the system state information, and (2) replay attacks [18]; that is,
the attacker is unknown to the system state information. In addition, it is worth noting
that stealth attacks can also be regarded as a kind of covert false data injection attacks with
better concealment [19].

In this article, we focus on the study of random deception attacks in which the attacker
knows the system state information in advance, such as [20], considering the influence
of primary loop random deception attacks and actuator saturation, and the H∞ control
problem of NCCSs based on hybrid drive mechanism was studied. However, most of the
existing literature only focuses on the threat of deception attacks on a single channel, and the
research on deception attacks on any multi-channel is not sufficient [21,22], especially the
security control problem of NCCSs under the threat of multi-channel deception attacks.
Malicious adversaries that launch deception attacks on any multi-channel will seriously
damage the integrity of the data transmitted by the main loop and the secondary loop of the
NCCSs, thus affecting the adjustment of the entire NCCSs and affecting the performance
and stability of the NCCSs. Therefore, the security cascade control strategy under the threat
of arbitrary multi-channel deception attacks deserves further study.

In addition, we review the existing cascade control strategies based on event-triggered
mechanism (ETM) under the influence of network attacks [8,13,14,20]. The design of event-
triggered conditions or triggered thresholds only considers system-related information
and ignores the impact of network attack sequences on event-triggered results. How to
design the attacks-dependent adaptive ETM (ADAETM), obtain more stringent triggered
conditions, and enhance the non-vulnerability of the triggered mechanism is a proposition
worth exploring. On the other hand, the secondary network channel of the NCCSs also
needs attention due to the transmission delay, packet disorder, and other threats caused by
bandwidth constraints. Therefore, it is necessary to dynamically quantify the transmission
signal of the secondary network channel. In recent years, many results on the controller
and filter design of NCCSs under the joint framework of event-triggered and quantizer
strategies have been published [23–27]. This inspires us to further explore the joint design
method of ADAETM and dynamic quantization for NCCSs.

As an effective modeling method for nonlinear systems, the T-S fuzzy model is based
on the principle of fuzzy logic. By setting appropriate membership functions (MFs), a series
of local subsystems were smoothly connected to approximate the nonlinear systems [28].
Due to the advantages of the T-S fuzzy model, the related research results based on T-S
fuzzy systems are remarkable, especially the control synthesis and filter design of nonlinear
NCCSs in recent years [27,29–33]. For instance, the security fuzzy controller design problem
of nonlinear NCCSs based on event-triggered and quantization strategy was studied in
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the network attacks environment [27]. The reachable set control problem for the T-S fuzzy
singular Markov jump system was studied in [31]. Considering the DC microgrid system
based on T-S fuzzy model, the security fuzzy control strategy under the influence of time-
constrained DoS attacks was given in [32]. Moreover, considering the unmeasurable or
unavailable state variables in NCCs, the output feedback control strategy is more reasonable
than the state feedback control strategy and closer to the practical application background.
The excellent results of NCSs output feedback have been reported in [34–37]. For example,
in [34], the quantized output feedback security tracking controller design problem was
studied, and a novel design framework was given. Considering the problem of time delay
and packet loss, ref. [36] designed a output feedback controller under finite-time stability
for NCCS. However, it is found that the output feedback control problem of nonlinear
NCCS based on the T-S fuzzy model has not been solved in the existing literature, which
inspires this work.

On the basis of the above existing research works, we will consider the design of fuzzy
security cascade output feedback controller (SCOFC) based on ADAETM for the nonlinear
NCCSs under the multi-channel deception attacks and secondary-loop signal dynamic
quantization. The contributions of the proposed design strategy are as follows:

1. Different from the results of single-channel deception attacks in [20,27], this article
focuses on the multi-channel deception attacks from the primary sensor to the primary
controller communication link and from the secondary controller to the actuator
communication link.

2. A novel ADAETM is proposed. Its adaptive law can flexibly adjust the adaptive
triggered threshold by random deception attacks probability, which further alleviates
the impact of deception attacks on the NCCS.

3. Compared with [8,9,11–13,20,26,27], the signal dynamic quantization of the secondary
loop channel is considered for the first time. The data transmission amount of the
secondary network channel is reduced, and the network channel burden is further
reduced.

4. A novel SCOFC design strategy is proposed under the framework of ADAETM,
dynamic quantization, and deception attacks. Based on this framework, the theoretical
results of the developed security fuzzy controller are expressed by linear matrix
inequalities (LMIs), and the mean square asymptotically stable with H∞ performance
is ensured for the resulting system.

The structure of the follow-up research content of this article is as follows. The problem
formulation of SCOFC is given in Section 2. In Section 3, the novel SCOFC design strategy
and design results are given by LMIs. In Section 4, two simulation examples of power
plant boiler–turbine system (PPBTS) and power plant boiler power generation control
system (PPBPGCS) are shown the effectiveness of the proposed design strategy. The main
conclusion of the article is concluded in Section 5.

Notations: Let Rn and Rm×n represent the n-dimensional Euclidean space and the
m × n real matrices sets, respectively. The matrices N T and N−1 denote the matrix N
transposition and inverse, respectively. diag{·} stands for the block-diagonal matrix
and In, 0n represent the n columns identity matrices and zero matrices with appropriate
dimensions, respectively. LetHe{N} denotes N +N T , and l2[0, ∞) stands for the square-
integrable function space. The symbol i ∈ 〈r〉means that i = 1, 2, 3, . . . , r.

2. Problem Formulation

This article is concerned with security control for nonlinear NCCSs. As shown in
Figure 1, the nonlinear NCCS is described by the T-S fuzzy model, which is mainly com-
posed of primary and secondary systems in series. The primary loop consists of pri-
mary plant–Plant1, primary sensor–Sensor1, primary controller–Controller1, and actuator.
The secondary loop consists of secondary plant–Plant2, secondary sensor–Sensor2, sec-
ondary controller–Controller2, and actuator.
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Figure 1. Framework of an NCCS under deception attacks.

Combining the advantages of NCCSs and traditional cascade control systems, the def-
inition of NCCSs is mainly reflected in the sensor–controller, and the data between the
controller and actuator are transmitted through the wireless network. Considering the
characteristics of the NCCS, a dynamic quantizer is introduced in the secondary loop,
and an ADAETM is introduced in the primary loop. At the same time, the risk of deception
attacks from primary sensor–Sensor1 to primary controller–Controller1 and from secondary
sensor–Sensor2 to actuator is considered.

2.1. System Description

In the nonlinear NCCS, the discrete-time T-S fuzzy primary system–Plant1 is described
as follows:

Plant1 Rule i: IF d1(x1
k) is D i

1, . . . , and dp(x1
k) is D i

p, THEN





x1
k+1 = A1ix1

k + B1iz2
k

z1
k = C1ix1

k + D1iωk

y1
k = E1ix1

k

(1)

where D i
l (i ∈ 〈r〉, l ∈ 〈p〉) denotes the fuzzy sets, dl(x1

k) is premise variable and d(x1
k) =

[d1(x1
k) . . . dp(x1

k)]; x1
k ∈ Rnx1 , z1

k ∈ Rnz1 , y1
k ∈ Rny1 and z2

k ∈ Rnz2 denote the state vector,
measured output, regulated output of Plant1, and the measurement output of Plant2,
respectively; ωk ∈ Rnω belongs to l2[0, ∞) and represents the exogenous disturbances. A1i,
B1i, C1i, D1i, and E1i are the known system matrices of the appropriate dimensions.

By using a standard fuzzy inference approach, the fuzzy primary system (1) is inferred
as follows: 




x1
k+1 =

r
∑

i=1
g1

i (d(x1
k))[A1ix1

k + B1iz2
k ]

z1
k =

r
∑

i=1
g1

i (d(x1
k))[C1ix1

k + D1iωk]

y1
k =

r
∑

i=1
g1

i (d(x1
k))E1ix1

k

(2)

where g1
i (d(x1

k)) are the normalized MFs satisfying that g1
i (d(x1

k)) =
wi(x1

k )

∑r
i=1 wi(x1

k )
≥ 0,

∑r
i=1 g1

i (d(x1
k)) = 1 with wi(x1

k) = ∏
q
l=1 D i

l (dl(x1
k)) which denotes the MFs of the primary

system with premise variable dl(x1
k).
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In addition, the introduction of event-triggered strategy in the network channel will
lead to the problem of asynchronous signal transmission. And the asynchrony and mis-
match of premise variables of the fuzzy primary controller–Controller1 are considered.

Controller1 Rule j: IF d1(x̄1
k) is E

j
1 , . . . , and dp(x̄1

k) is E
j
p, THEN

u1
k = K1jȳ1

k (3)

where K1j are the Controller1 gains, ȳ1
k is the final input of the Controller1 after event-

triggered and deception attacks, and u1
k ∈ Rnu1 denote control input of Plant1. E

j
l (j ∈ 〈r〉,

l ∈ 〈p〉) denotes the fuzzy sets, dl(x̄1
k) is premise variable, and d(x̄1

k) = [d1(x̄1
k) . . . dp(x̄1

k)].
By using single-point fuzzification, product reasoning, and the central weighted

average defuzzification method, the output form of the fuzzy Controller1 is as follows:

u1
k =

r
∑

j=1
g1

j (d(x̄1
k))K1jȳ1

k (4)

where g1
j (d(x̄1

k)) are the normalized MFs satisfying that g1
j (d(x̄1

k)) =
wj(x̄1

k )

∑r
j=1 wj(x̄1

k )
≥ 0,

∑r
j=1 g1

j (d(x̄1
k)) = 1 with wj(x̄1

k) = ∏
p
l=1 E

j
l (dl(x̄1

k)) which denotes the MFs of the Controller1

with premise variable dl(x̄1
k).

Based on the reconstruction strategy in [22], the asynchronous problem of MFs caused
by event-triggered strategy was effectively solved. Suppose the minimum values of
g1

j (d(x1
k)) > 0 and g1

j (d(x̄1
k)) > 0, the relationship between g1

j (d(x1
k)) and g1

j (d(x̄1
k)) is

interpreted as

|g1
j (d(x̄1

k))− g1
j (d(x1

k))| ≤ Λj

where g1
j (d(x̄1

k)) = $jg1
j (d(x1

k)), Λj are some positive constants, $j = $j(d(x1
k), d(x̄1

k)) is a

parameter related with g1
j (d(x1

k)), and g1
j (d(x̄1

k)).
Based on the conditions mentioned above, one obtains

$
j
= 1− Λj

g1
j (d(x1

k))
≤ $j ≤ 1 +

Λj

g1
j (d(x1

k))
= $̄j (5)

where $
j

and $̄j denote the known lower bound and upper bound of $j, which yields that

$
j

$̄j
, min{$i}

max{$j}
≤ $i

$j
≤ max{$i}

min{$j}
,

$̄j

$
j

.

Setting $min = min{$
j
} and $max = max{$̄j} for i, j ∈ 〈r〉, one has

ϑ1 , $min

$max
≤ $i

$j
≤ $max

$min
, ϑ2. (6)

In the nonlinear NCCS, the discrete-time T-S fuzzy secondary system–Plant2 is de-
scribed as follows:

Plant2 Rule q: IF f1(x2
k) is F

q
1 , . . . , and fp(x2

k) is F
q
p , THEN





x2
k+1 = A2qx2

k + B2qū2
k + B3qωk

z2
k = C2qx2

k + D2qωk

y2
k = E2qx2

k

(7)
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where F
q
l (q ∈ 〈r〉, l ∈ 〈p〉) denotes the fuzzy sets, fl(x2

k) are fuzzy premise variables
and f (x2

k) = [ f1(x2
k) . . . fp(x2

k)]; x2
k ∈ Rnx2 and ū2

k ∈ Rnu2 denote the state vector and the
final control input of Plant2, respectively; The remaining parameters are defined with
reference to Plant1. A2q, B2q, B3q, C2q, D2q, and E2q are the known system matrices of the
appropriate dimensions.

Then, based on fuzzy inference approach, the secondary system–Plant2 (7) is inferred
as follows: 




x2
k+1 =

r
∑

q=1
g2

q( f (x2
k))[A2qx2

k + B2qū2
k + B3qωk]

z2
k =

r
∑

q=1
g2

q( f (x2
k))[C2qx2

k + D2qωk]

y2
k =

r
∑

q=1
g2

q( f (x2
k))E2qx2

k

(8)

where g2
q( f (x2

k)) are the normalized MFs satisfying that g2
q( f (x2

k)) =
wq(x2

k )

∑r
q=1 wq(x2

k )
≥ 0,

∑r
q=1 g2

q( f (x2
k)) = 1 with wq(x2

k) = ∏
p
l=1 F

q
l ( fl(x2

k)) denotes the MFs of the system with
premise variable fl(x2

k).
The model of secondary controller–Controller2 considering quantization in network

channel is given as follows:

u2
k = K2ȳ2

k + u1
k (9)

where K2 is the Controller2 gain and ȳ2
k is the quantized system measurement output.

2.2. Dynamic Quantizer

In this article, consider the following form of dynamic quantizer:

qµ(νk) = µkq
(

νk
µk

)
, µk > 0 (10)

where µk is the dynamic parameter and suppose that the dynamic quantizer (10) satisfies
the following constraints:

‖q(νk)− νk‖ ≤ ∆, if ‖νk‖ ≤ M (11a)

‖q(νk)‖ > M− ∆, if ‖νk‖ > M (11b)

where M > 0 and ∆ > 0 represent the quantization range and quantization error bound of
dynamic quantizer, respectively.

Then, the quantized measurement output signal of Plant2 is in the following form:

ȳ2
k = qµ(y2

k) = µkq
(

y2
k

µk

)
= hµ

k + y2
k (12)

where qµ(∗) is a dynamic quantizer defined by (10), and hµ
k = µk(q(

y2
k

µk
)− y2

k
µk
). The mea-

surement output signal quantization process and parameter update of dynamic quantizer
are shown in Algorithm 1.

Remark 1. Due to the introduction of network in cascade control systems, it is necessary to consider
the network phenomenon of each loop. Different from the existing literature [8,9,11–13,20,26,27],
this article considers the signal quantization problem of the secondary loop for the first time.
In addition, in order to balance the number of packets and quantization error in the network signal,
based on the method proposed in [34], the quantization error term can be well processed.
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Algorithm 1 Calculation of µk and ȳ2
k in dynamic quantizer

Input: ∆, M, and h̄
Output: µk, hµ

k and ȳ2
k

Step 1: At the sampling instant k, the dynamic quantizer receives y2
k .

if ‖y2
k/µk‖ ≤ M then
‖q(y2

k/µk)− (y2
k/µk)‖ ≤ ∆

else
‖q(y2

k/µk)‖ > M− ∆
end if
Step 2: Update dynamic parameter µk and quantization data ȳ2

k .
µk = (h̄/M)‖y2

k‖, hµ
k = [(h̄∆)/M] sin(y2

k), ȳ2
k = hµ

k + y2
k

Step 3: Let k = k + 1 and go to Step 1.
return µk, hµ

k and ȳ2
k .

The dynamic quantizer parameter µk and quantization data ȳ2
k are obtained.

2.3. Multi-Channel Deception Attacks

The deception attacks in the NCCSs mainly inject the wrong data into the commu-
nication channel intermittently, and replace the real data at the same time, which affect
the stability and performance of the systems. Therefore, the security problem of NCCSs
interfered by multi-channel deception attacks cannot be ignored.

Considering the characteristics of the deception attacks signals f1k ∈ Rny1 and f2k ∈ Rnu2 ,
which assumes that the following constraints are satisfied:

‖f1k‖2 ≤ ‖F1ŷ1
k‖2, ‖f2k‖2 ≤ ‖F2u2

k‖2 (13)

where F1 and F2 are constant matrices denoting the upper bound of the error data function
with nonlinear characteristics. Bernoulli variables α1k and α2k are used to describe the
probabilistic characteristics of deception attacks, satisfying

E{αιk} = ᾱι, E{(αιk − ᾱι)
2} = ρ2

ι , ι ∈ 〈2〉.

Then, the signals ȳ1
k and ū2

k transmitted to the communication network after being
deception attacks are expressed as follows:

ȳ1
k = α1kf

1
k + (1− α1k)ŷ1

k

ū2
k = α2kf

2
k + (1− α2k)u2

k . (14)

Remark 2. Different from [20,27], this article also considers the impact of deception attacks
between the primary loop Sensor1 to Controller1 network channel and Controller2 to actuator
network channel. Compared with [20,27], the controller design method proposed in this article
under multi-channel deception attacks is closer to the actual situation and more meaningful.

Remark 3. It is worth noting that the success of network attacks is random, which is determined
by the built-in hardware and software protection in the device, the data transmitted based on the
network protocol, and the network conditions with random fluctuation characteristics; that is,
network congestion, network load, and so on [17,20]. Therefore, this article discusses random
multi-channel deception attacks, and assumes that the deception attacks occur in the primary loop
Sensor1 to Controller1 network channel and Controller2 to actuator network channel. At the same
time, the way deception attacks destroy data integrity is to completely replace real data with false
data attack signals [15] (refer to (14)).

Remark 4. It should be further pointed out that the attack signal of the network attacks is generated
by the attacker’s strategy formulation of the attack object, so the network attacks may be difficult to
detect or undetectable, and the attack signal may be associated with the systems state data, output
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data, control data, and other information [14]. Referring to the description of the attack signal
in [20], the two deception attack signals considered in this article are modeled as nonlinear functions
related to the output data of Plant1 and the control signal of Controller2, respectively, and satisfy
the constraints in (13).

2.4. Attacks-Dependent Adaptive Event-Triggered Mechanism

In order to alleviate the impact of deception attacks on the triggered effect and system
performance, the following form of ADAETM is given:

ks+1 = inf
k

{
k > ks|eT

skΩesk > δky1T
ks

Ωy1
ks

}
(15)

where esk = y1
ks
− y1

k , y1
k is the current sampled measurement output and y1

ks
is the latest

measurement output signal that satisfies the triggered condition, Ω > 0 is the event-
triggered weighting matrix to be designed, and δk is an adaptive parameter and satisfies
the following adaptive law:

δk = δ1 − δ2
2ᾱ1

π
atan(ε1‖y1

ks
‖ε2) + δ3 exp(−ε3‖Ω

1
2 esk‖ε4)

where atan(∗) is the inverse-tangent function. ε1, ε2, ε3, and ε4 are the event-triggered
threshold adjustment positive parameters. δ1, δ2, and δ3 are known constant thresholds.
Then, the ADAETM operating mechanism is shown in Algorithm 2.

Remark 5. Considering the influence of deception attacks, attack probability ᾱ1 is introduced
to design the random adaptive law δk. It is obvious that the expression δ2

2ᾱ1
π atan(ε1‖y1

ks
‖ε2) is

always greater than 0. When the attack intensity increases, that is, the attack probability ᾱ1 becomes
larger, then the term −δ2

2ᾱ1
π atan(ε1‖y1

ks
‖ε2) makes the adaptive law δk smaller, the triggered

condition is easier to meet, so that more sampling data are transmitted to compensate for the
impact of the deception attacks. On the other hand, when the communication channel data are
transmitted normally, the δk will degrade into δ1 + δ3 exp(−ε3‖Ω

1
2 esk‖ε4); thus, δk will relatively

increase. Such changes can make the triggered condition more stringent, help to further reduce the
triggered data, and improve resource utilization. The detailed operation process can be understood
by Algorithm 2.

Consider the network induced delay ηks satisfying ηks ∈ [0, ηM), where ηM is a positive
integer. Based on the analysis process in [29], define the following:

ŷ1
k = yks , k ∈ [ks + ηks , ks+1 + ηks+1 − 1]. (16)

Then, the introduced time-varying delay variable τk and output data error esk are
expressed as

τk =





k− ks, k ∈ S0

k− ks − `, k ∈ S`

k− ks − ¯̀ , k ∈ S ¯̀

(17)

esk =





0, k ∈ S0

y1
ks
− y1

ks+`, k ∈ S`

y1
ks
− y1

ks+ ¯̀ , k ∈ S ¯̀

(18)

where S0 = [ks + ηks , ks + ηM + 1], S` = [ks + ηM + `, ks + ηM + `+ 1], S ¯̀ = [ks + ηM +
¯̀ , ks+1 + ηks+1 − 1], ` = 1, 2, . . . , ¯̀ − 1.

Then, the range of τk is as follows:

0 < ηks ≤ τk ≤ 1 + ηM = τ̄ (19)
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where τ̄ is a constant, which is the upper bound of event-triggered data transmission delay.
Then, the signal ŷ1

k transmitted to the Controller1 can be obtained as

ŷ1
k = yk−τk

+ esk. (20)

Algorithm 2 Calculation of δk and (k, y1
k) in ADAETM

Input: Ω, ᾱ1, δ1, δ2, δ3, ε1, ε2, ε3, and ε4. Initial set k0 = 0, y1
k0

= 0, k = 1, s = 0.
Output: δk and (k, y1

k).
Step 1: At the sampling instant k, the network channel receives y1

k .
if attack probability ᾱ1 = 0 then

the term −δ2
2ᾱ1
π atan(ε1‖y1

ks
‖ε2) = 0, δ1 + δ3 exp(−ε3‖Ω

1
2 esk‖ε4)⇒ δk ↑

else if attack probability ᾱ1 ↑ then
the term δ2

2ᾱ1
π atan(ε1‖y1

ks
‖ε2) ↑⇒ δk ↓

else
the term δ2

2ᾱ1
π atan(ε1‖y1

ks
‖ε2) ↓⇒ δk ↑

end if
Step 2: Update attacks dependent adaptive law δk and data packet
if eT

skΩesk > δky1T
ks

Ωy1
ks

then
the buffer stores the data packet (k, y1

k) with k0 = k, y1
k0

= y1
k , releases the data packet

to the communication channel
else

the data packet is not transmission
end if
Step 3: Let k = k + 1 and go to Step 1.
return ks, y1

ks
, and δk.

The attacks-dependent adaptive law δk and latest output data packet (k, y1
k) are obtained.

2.5. System Formulation

By combining (2), (4), (8), (9), (12), (14), (20), and defining g1
i = g1

i (d(x1
k)), g1

j =

g1
j (d(x̄1

k)), g2
q = g2

q( f (x2
k)), it can yield a new model for NCCSs as follows:

x1
k+1 =

r
∑

i=1

r
∑

j=1
g1

i g2
q [A1ix1

k + B1iC2qx2
k + B1iD2qωk]

x2
k+1 =

r
∑

i=1

r
∑

j=1

r
∑

q=1
g1

i g1
j g2

q [(A2q + (1− α2k)B2qK2E2q)x2
k

+ (1− α1k)(1− α2k)B2qK1jE1ix1
k−τk

+ (1− α1k)(1− α2k)B2qK1jesk

+ (1− α2k)α1kB2qK1jf
1
k + α2kB2qf

2
k

+ (1− α2k)B2qK2hµ
k + B3qωk]

z1
k =

r
∑

i=1
g1

i [C1ix1(k) + D1iωk]. (21)

The nonlinear NCCS is considered in this article, and under the influence of multi-
channel deception attacks, the ADAETM and dynamic quantizer are introduced, so that
the designed SCOFC satisfies the following objectives:

1. The system (21) is mean square asymptotically stable in the absence of external
disturbances, i.e., ωk = 0;

2. Under zero initial conditions, for all ωk 6= 0, there exists a positive scalar γ > 0, such
that the following condition holds: ∑∞

k=0 z1T
k z1

k ≤ γ2 ∑∞
k=0 ωT

k ωk.
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3. Main Results

In this section, the design conditions that guarantee the mean square asymptotically
stable and H∞ performance of the system (21) are given. Then, the design results of the
security fuzzy controller gains under event-triggered and dynamic quantization strategy
are given.

Theorem 1. For given scalars ᾱ1 > 0, ᾱ2 > 0, δ1 > 0, δ2 > 0, δ3 > 0, ∆ > 0, M > 0, τ > 0,
τ̄ > 0, and ϑ > 0 ( ∈ 〈2〉), the system (21) is mean square asymptotically stable and satisfies the
predetermined H∞ performance index γ if there exist positive definite symmetric matrices P1, P2,
Q1, Q2, Q3, R1, R2, Ω, and slack matrix R3 with appropriate dimensions, such that the following
inequalities hold for i < j:

[
R2 ∗
R3 R2

]
> 0 (22)

[
Π11

i ∗
Π21

iiq Π22

]
< 0 (23)




Π11
i + ϑΠ11

j ∗ ∗
Π21

ijq Π22 ∗√
ϑ2Π21

jiq 0 Π22


 < 0, i, j, q ∈ 〈r〉 (24)

where

Π11
i =

[
Π1

i ∗
Π3

i Π2

]
, Π1

i = diag{−Π1, Π̄1
i , − P2}

Π̄1
i =




Q2 −Q1 − R2 ∗ ∗
R2 − R3 −Π3i ∗
R1 + R3 R2 − R3 −Π4




Π1 = P1 + R1 −Q1 −Q3, Π4 = Q2 + Q3 + R1 + R2

Π3i = 2R1 −He{R3} − δET
1iΩE1i, δ = δ1 + δ2 + δ3

Π3
i = [Π3T

1i 0 0 0 0]T , Π3
1i = [02 δΩE1i 02]

Π2 = diag
{
(δ− 1)Ω, − M2

∆2 I, − ᾱ1, − ᾱ2, − γ2 I
}

Π21T
ijq = [Π211T

ijq , Π212T
ijq , Π213T

ijq ], Π211
ijq = [Σ3

ijq Σ4
ijq]

Σ3
ijq = E1[Σ31T

i Σ32T
q Σ33T

i Σ34T
ijq Σ35T

ij ]T

Σ4
ijq = E1[Σ41T

i 0 Σ43T Σ44T
j Σ45T

j ]T

Π212
ijq = E2[Σ5T

iq Σ6T
iq Σ6T

iq ]T , Π213
ijq = E3[Σ7

ijq Σ8
ijq]

Σ31
i = [C1i 04], Σ32

q = [04 E2q], Σ33
i = [02 F1E1i 02]

Σ34
ijq = [02~α1F2K1jE1i 0 F2K2E2q]

Σ35
ij = [02 − K1jE1i 02], Σ41

i = [04 D1i], Σ43 = [F1 04]

Σ44
j = [~α1F2K1j 0 ᾱ1F2K1j 02], Σ45

j = [−K1j 0 K1j 02]

Σ5
iq = [A1i 03 B1iC2q 04 B1iD2q]

Σ6
iq = [A1i − I 03 B1iC2q 04 B1iD2q]

Σ7
ijq =




02 ~α1~α2B1
ijq 0 ~α2B2

q ~α1~α2B3
jq

02 −~α2B1
ijq 0 0 −~α2B3

jq
02 −~α1B1

ijq 0 −B2
q −~α1B3

jq
02 B1

ijq 0 −B2
q B3

jq



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Σ8
ijq =




~α2B2qK2 ~α2ᾱ1B3
jq ᾱ2B2q B3q

0 ~α2B3
jq 0 0

−B2qK2 −ᾱ1B3
jq B2q 0

−B2qK2 −B3
jq B2q 0




Π22 = diag{Π1
22, Π2

22, Π3
22},~αι = 1− ᾱι

Π1
22 = diag{−I, − I, − I, − I, − I}

Π2
22 = diag{−P−1

1 , − R−1
1 , − R−1

2 }
Π3

22 = diag{−P−1
2 , − P−1

2 , − P−1
2 , − P−1

2 }
B1

ijq = B2qK1jE1i, B2
q = B2qK2E2q, B3

jq = B2qK1j

E1 = diag{I, h̄,
√

ᾱ1,
√

ᾱ2,
√

ᾱ2ρ1}
E2 = diag{I, τ̄ I, τ I}, E3 = diag{I, ρ1 I, ρ2 I, ρ1ρ2 I}.

Proof. Consider the discrete-time piecewise Lyapunov–Krasovskii functional in the fol-
lowing form:

Vk = V1k + V2k + V3k (25)

where

V1k = x1T
k P1x1

k + x2T
k P2x2

k

V2k =
k−1
∑

v=k−τ
x1T

v Q1x1
v +

k−τ−1
∑

v=k−τ̄
x1T

v Q2x1
v +

k−1
∑

v=k−τ̄
x1T

v Q3x1
v

V3k = τ̄
−1
∑

l=−τ̄

k−1
∑

v=k+l
$1T

v R1$1
v + τ

−τ−1
∑

l=−τ̄

k−1
∑

v=k+l
$1T

v R2$1
v

$1
k = x1

k+1 − x1
k , τ = τ̄ − τ.

Then, defining ∆Vk = Vk+1 − Vk, the piecewise Lyapunov–Krasovskii functional
difference equation under the mathematical expectation can be obtained as

E{∆V1k} =
r
∑

i=1

r
∑

j=1

r
∑

q=1
g1

i g1
j g2

q

{
x1T

k+1P1x1
k+1 − x1T

k P1x1
k +E{x2T

k+1P2x2
k+1} − x2T

k P2x2
k

}

E{∆V2k} = x1T
k (Q1 + Q3)x1

k + x1T
k−τ(Q2 −Q1)x1

k−τ − x1T
k−τ̄(Q2 + Q3)x1

k−τ̄

E{∆V3k} =
r
∑

i=1

r
∑

j=1

r
∑

q=1
g1

i g1
j g2

q

{
$1T

k (τ̄2R1 + τ2R2)$
1
k − τ̄

k−1
∑

v=k−τ̄
$1T

v R1$1
v

− τ
k−τ−1

∑
v=k−τ̄

$1T
v R2$1

v

}
. (26)

According to (21) and (26), one has

E{x2T
k+1P2x2

k+1} =
r
∑

i=1

r
∑

j=1

r
∑

q=1
g1

i g1
j g2

q
{
AT P2A+ ρ2

1BT P2B + ρ2
2CT P2C + ρ2

1ρ2
2DT P2D

}
(27)

where

A = A2qx2
k +~α2B2qK2E2qx2

k +~α1~α2B2qK1jE1ix1
k−τk

+~α1~α2B2qK1jesk +~α2ᾱ1B2qK1jf
1
k

+ ᾱ2B2qf
2
k +~α2B2qK2hµ

k + B3qωk

B = −~α2B2qK1jE1ix1
k−τk
−~α2B2qK1jesk +~α2B2qK1jf

1
k

C = −B2qK2E2qx2
k −~α1(B2qK1jE1ix1

k−τk
+ B2qK1jesk)− ᾱ1B2qK1jf

1
k − B2qf

2
k − B2qK2hµ

k
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D = −B2qK2E2qx2
k + B2qK1jE1ix1

k−τk
+ B2qK1j(esk − f1k) + B2qf

2
k − B2qK2hµ

k

~α1= 1− ᾱ1, ~α2 = 1− ᾱ2.

Considering τ ≤ τk ≤ τ̄, one has

− τ̄
k−1

∑
v=k−τ̄

$1T
v R1$1

v − τ
k−τ−1

∑
v=k−τ̄

$1T
v R2$1

v

≤ −[x1
k − x1

k−τ̄ ]
T R1[x1

k − x1
k−τ̄ ]− θ13T

k

[
R2 ∗
R3 R2

]
θ13

k (28)

where θ13
k = [x1T

k−τ − x1T
k−τk

x1T
k−τk
− x1T

k−τ̄ ]
T .

Without loss of generality, the dynamic parameters for the dynamic quantizer con-
sidered in this article are defined as µk = h̄

M |y2
k | with h̄ ≥ 1. Then, as in [35], according

to the definition of the dynamic quantizer given in (11) and the homogeneity property of
Euclidean norm, it can be obtained that

hµT
k hµ

k ≤
h̄2∆2

M2 y2T
k y2

k . (29)

Considering the constraint of nonlinear deception attack signals f1k and f2k , we obtain

ᾱ1(y1
k−τk

+ esk)
TFT

1 F1(y1
k−τk

+ esk)− ᾱ1f
1T
k f1k ≥ 0

ᾱ2(K2ȳ2
k + u1

k)
TFT

2 F2(K2ȳ2
k + u1

k)− ᾱ2f
2T
k f2k ≥ 0. (30)

Based on the event-triggered condition (15), one has

eT
skΩesk ≤ δk(y1

k−τk
+ esk)

TΩ(y1
k−τk

+ esk). (31)

Combining (26)–(31), by defining ζk = [x1T
k x1T

k−τ x1T
k−τk

x1T
k−τ̄ x2T

k eT
sk f

1T
k f2T

k hµT
k ωT

k ]
T ,

we can deduce that

E{∆Vk}+ z1T
k z1

k − γ2ωT
k ωk

≤
r
∑

i,j,q=1
g1

i g1
j g2

q$jζ
T
k (Π

11
ijq + Π21T

ijq Π−1
22 Π21

ijq)ζk

=
r
∑

i,q=1
$2

i (g1
i )

2g2
qζT(k)(Π11

iiq + Π21T
iiq Π−1

22 Π21
iiq)ζk

=
r
∑

i,q=1

r
∑
i<j

g1
i g1

j g2
q$jζ

T
k

(
Π11

ijq +
$i
$j

Π11
ijq + Π21T

ijq Π−1
22 Π21

ijq +
$i
$j

Π21T
jiq Π−1

22 Π21
jiq

)
ζk. (32)

Then, it is obtained from conditions (23) and (24) that

Π11
iiq + Π21T

iiq Π−1
22 Π21

iiq < 0

Π11
ijq + ϑΠ11

jiq + Π21T
ijq Π−1

22 Π21
ijq + ϑΠ21T

jiq Π−1
22 Π21

jiq < 0,  ∈ 〈2〉.

Due to (ϑ2 − [$i/$j])Π21T
jiq Π−1

22 Π21
jiq > 0, we have

Π11
ijq +

$i
$j

Π11
jiq + Π21T

ijq Π−1
22 Π21

ijq +
$i
$j

Π21T
jiq Π−1

22 Π21
jiq < 0.

Then, the following result can be obtained:

E{∆Vk}+ z1T
k z1

k − γ2ωT
k ωk < 0. (33)
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The sum of the two sides of the inequality (33) from k = 0 to k = ∞ can have

E{V∞ −V0}+
∞

∑
k=0
{z1T

k z1
k − γ2ωT

k ωk} < 0. (34)

Considering the fact that V∞ > 0 and V0 = 0, the following conclusions can be
obtained:

∞

∑
k=0

z1T
k z1

k − γ2
∞

∑
k=0

ωT
k ωk < 0 (35)

which implies the system is mean square asymptotically stable without disturbance and
satisfies the H∞ performance index γ. The proof is completed.

Remark 6. Through the proof of Theorem 1, the sufficient conditions that the system satisfies
H∞ performance and mean square asymptotic stability are obtained. Specifically, this article
considers the impact of event-triggered, dynamic quantization, and deception attacks on the system.
To reduce the conservatism of the design results, the artificial time delay caused by event-triggered
control is introduced, and the performance and stability of the system are analyzed by constructing
the Lyapunov–Krasovskii functional. In the mean square sense, the inequality (22) and integral
inequality (28) are used to reduce the inevitable time-delay summation term, and the inequality
constraints (29)–(31) is introduced in a targeted manner. The preliminary inequality result is
obtained in (32). Furthermore, the related design conditions of MFs are considered. Due to
the introduction of ETM, the asynchronous phenomenon of MFs are inevitable. Through the
method in [12] and Schur complement lemma, the final sufficient design conditions (23) and (24)
are obtained.

Remark 7. It should be noted that, if the assumptions of cascade controller gain, dynamic quantizer
parameters, and event-triggered weight matrix are removed, there will be some nonlinear terms and
coupling terms in inequality conditions (23) and (24). This makes the inequality difficult to solve.
In Theorem 2, this difficulty can be solved by some variable substitutions, basic inequalities, and
matrix decoupling techniques.

Theorem 2. For given ᾱ1 > 0, ᾱ2 > 0, δ1 > 0, δ2 > 0, δ3 > 0, ∆ > 0, M > 0, τ > 0, τ̄ > 0,
and ϑ > 0 ( ∈ 〈2〉), the system (21) is mean square asymptotically stable and satisfies the H∞
performance index γ if there exist positive definite symmetric matrices P1, P2, Q1, Q2, Q3, R1, R2,
Ω, and slack matrix R3 with appropriate dimensions, such that (22) and the following inequalities
hold for i < j:

[
~Π1

iiq ∗
~Π21

iiq
~Π3

i

]
< 0 (36)




~Π
ϑ

ijq ∗ ∗
~Π21

ijq
~Π3

i ∗√
ϑ2~Π31

jiq 0 ~Π3
j


 < 0, i, j, q ∈ 〈r〉 (37)

where

~Π1
i =

[
Π11

iiq ∗
Π̂21

iiq Π̂22

]
, ~Π21

iiq = ς~Π2
iq + ~Π3

iiq

~Π
ϑ

ijq =




Π11
i + ϑΠ11

j ∗ ∗
Π̂21

ijq Π̂22 ∗√
ϑ2Π̂21

jiq 0 Π̂22


, ~Π21

ijq = ς~Π4
iq + ~Π5

ijq

~Π31
jiq = ς~Π6

jq + ~Π7
jiq, Π̂22 = diag{Π1

22, Π̂2
22, Π̂3

22}
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Π̂2
22 = diag{−P1, − 2εP1 + ε2R1, − 2εP1 + ε2R2}

Π̂3
22 = diag{−P2, − P2, − P2, − P2}

in which Π̂21
iiq(Π̂

21
ijq) is obtained from Π21

iiq(Π
21
ijq) by substituting P2B2qK1jE1i, P2B2qK1j, P2B2qK2E2q,

P2B2qK2, P1F2K1jE1i, P1K1jE1i, and P2F2K2E2q with B2q J1jE1i, B2q J1j, B2q J2E2q, B2q J2,F2 J1jE1i,
J1jE1i, and F2 J2E2q, and

~Π2
iq = [~Π21

i
~Π22

iq ], ~Π
3
iiq = [~Π31

iiq
~Π32

i ], ~Π4
iq = [~Π21

i
~Π22

iq 0]

~Π5
ijq = [~Π31

ijq
~Π32

j 0], ~Π6
jq = [~Π21

j 0 ~Π22
jq ], ~Π

7
jiq = [~Π31

jiq 0 ~Π32
j ]

~Π3
i = He{−ςNi}, ~Π3

j = He{−ςNj}
Nj = diag{N1j, N2, N1j, N2, N1j}.

In addition, the gains of Controller1 and Controller2 are given as follows:

K1j = N−1
1j J1j, K2 = N−1

2 J2. (38)

Proof. Perform congruence transformation to (23) by diag{I10,P}withP = diag{I5, P1, P1,
P1, P2, P2, P2, P2}, the inequality (23)–(25) can be rewritten as

[
Π11

i ∗
Π̃21

iiq Π̂22

]
< 0 (39)




Π11
i + ϑΠ11

j ∗ ∗
Π̃21

ijq Π̂22 ∗√
ϑ2Π̃21

jiq 0 Π̂22


 < 0 (40)

where Π̃21T
ijq = P [Π211T

ijq Π212T
ijq Π213T

ijq Π214T
ijq ].

Defining J1j = N1jK1j, J2 = N2K2. Then, the condition (39), (40) can be reexpressed as

~Π1
iiq +He{~Π2T

iq N−1
i

~Π3
iiq} <0 (41)

~Π
ϑ

ijq +He{~Π4T
iq N−1

i
~Π5

ijq +
√

ϑ2~Π6T
jq N

−1
j
~Π7

jiq} <0 (42)

the definitions of ~Π2
iq, ~Π3

iiq, ~Π4
iq, ~Π5

ijq, ~Π6
jq, ~Π7

jiq, and Nj are shown in Theorem 2, and

~Π21
j = [~Υ1T

j
~Υ2T ~Υ1T

j 0 ~Υ3T
j ]T

~Π22
jq = [~Υ4T

jq
~Υ5T

q ~Υ4T
jq

~Υ6T
q ~Υ7T

jq ]
T

~Υ1
j = [013~α1N̂1j − N̂3j 03], ~Υ2

j = [013 N̂2 0 03]

~Υ3
j = [013~α1N̂1j N̂3j 03]

~Υ4
jq = [~α1~α2N̂5jq −~α2N̂6jq −~α1N̂7jq~α1N̂8jq]

~Υ5
q = [~α1N̂4q 0 − N̂4q − N̂4q]

~Υ6
q = [~α2N̂4q 0 − N̂4q − N̂4q]

~Υ7
jq = [~α2ᾱ1N̂5jq~α2N̂6jq − ᾱ1N̂7jq − N̂8jq]

~Π31
ijq =

[
~Υ8

ij
~Υ9

q

0 0

]
, ~Π32

j =

[
0 0

~Υ10
j 0

]
, ~Υ8

ij =

[
02 J1jE1i
02 0

]

~Υ9
q = diag{0, J2E2q}, ~Υ10

j = diag{J1j, J2, J1j}
N̂1j =

√
ᾱ2(F2 −F2N1j)

T , N̂2 =
√

ᾱ2(F2 −F2N2)
T
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N̂3j =
√

ᾱ2ρ1(I − N1j)
T , N̂4q = (P2B2q − B2qN2)

T

N̂5jq = (P2B2q − B2qN1j)
T , N̂6jq = ρ1N̂5jq

N̂7jq = ρ2N̂5jq, N̂8jq = ρ1ρ2N̂5jq.

It is easy to know that (41), (42) can hold if the conditions (36), (37) are satisfied by
applying Lemma 2 in [34]. The proof is completed.

Remark 8. Through the proof of Theorem 2, the sufficient conditions for solving the cascade
controller gain, quantizer parameter, and ADAETM weighting matrix are obtained. In the proof
process, the nonlinear terms and coupling terms that affect the inequality solution are eliminated
by congruence transformation, basic inequality transformation, and matrix decoupling technology,
such as P2B2qK1jE1i, P2B2qK1j, P2B2qK2E2q, and so on. Then, the solution of LMIs is a convex
optimization problem. Many existing optimization methods and numerical tools, such as the
YALMIP toolbox in MATLAB, can be used to solve convex optimization problems. Based on
Theorem 2 and the existing solving tools, the design results can be more easily obtained by off-line
execution. The detailed solution process is given by Algorithm 3.

Remark 9. The computational complexity C = N 3L of the LMIs in Theorem 2 is determined by
the number of decision variables N and the dimension L of the LMIs. Based on Theorem 2, we have
N = 3nx1 × (nx1 + 1) + 1

2 nx2(nx2 + 1) + 1
2 ny1(ny1 + 1) + nx1 × nx1 + nu1 × (ny1 + nu1) +

nu2 × (ny2 nu2) + 1 and L = 2nx1 + 1
2 r2(r + 1)(7nx1 + 5nx2 + 4ny1 + ny2 + nω + 5nu1 +

3nu2) + 1
2 r2(r + 1)(10nx1 + 4nx2 + 4ny1 + ny2 + nω + 8nu1 + 5nu2).

Algorithm 3 Solve the control gains, quantizer parameter, and ADAETM weighting matrix

Input: parameter matrices A1i, B1i, C1i, D1i, E1i, A2q, B2q, B3q, C2q, D2q, E2q, and parameter
scalars δ1, δ2, δ3, ᾱ1, ᾱ2, ∆, M, τ̄, τ, γ, ϑ1, and ϑ2.

Output: K1j, K2, h̄, and Ω.
YALMIP toolbox in MATLAB is used to solve LMIs (22), (36)–(37).
if sum(checkset(LMIs)<0)=size(checkset(LMIs),1) then

go to Input adjust given parameters.
else

solve J1j, J2, N−1
1j , N−1

2 , h̄, and Ω with LMIs (22), (36)–(37) and substitute them into

K1j = N−1
1j J1j, K2 = N−1

2 J2.
end if
The gains K1j, K2, quantizer parameter h̄, and ADAETM weighting matrix Ω are obtained.

4. Simulation Results
4.1. Design Example with PPBTS

By constructing the NCCS shown in Figure 2, the problem of excessive temperature
deviation during the operation of the power PPBTS will be solved. Sensor1 measures
the steam temperature value of the secondary superheater. After the ADAETM and the
influence of the deception attacks, the measurement data are fed back to Controller1.
Controller1 compares the measured data with the expected data, and then the output signal
of Controller1 is transmitted to Controller2 as the expected data. Controller2 compares
the expected data with the quantized steam temperature measurement data at the Desu-
perheater end, and transmits the control output signal to the Desuperheater spray valve.
The Desuperheater spray valve will be attacked during the adjustment of the Desuper-
heater. Through the proposed controller design strategy, we can ensure the stability and
controllability of the steam temperature in the PPBTS under the network environment
where the whole system is threatened by deception attacks.
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Figure 2. Structure diagram of an NCCS for a nonlinear PPBTS.

The discrete nonlinear networked PPBTS [9] parameters considered in the article are
given as follows:

A11 =

[
0.6887 −0.0093
0.8356 0.9951

]
, B11 =

[
0.8356
0.4437

]
, D11 = 0.1

A12 =

[
0.6908 −0.0093
0.4182 0.9975

]
, B12 =

[
0.8364
0.2219

]
, D12 = 0.1

C11 = C12 = E11 = E12 =
[
0 0.0111

]

A21 =



−0.0342 −0.4364 −0.0342
0.3425 0.6849 −0.0254
0.2542 0.8762 0.9899


, B21 =




0.3425
0.2542
0.1008




A22 =



−0.0572 −0.5285 −0.1676
0.3352 0.6468 −0.1262
0.2525 0.8654 0.9497


, B22 =




0.3352
0.2525
0.1005




B31 =



−0.0104
0.0483
0.0851


, B32 =



−0.0185
0.0453
0.0844


, D21 = D22 = 0.2

C21 = C22 =
[
0 0 0.1

]
, E21 = E22 =

[
0 0 0.2

]
.

Moreover, the MFs are chosen by d1(x1
k) =

1−sin2(x11
k )

2 , d2(x1
k) = 1− d1(x1

k), f1(x2
k) =

1−0.5 sin2(x21
k )

2 , and f2(x2
k) = 1− f1(x2

k). The initial states of the Plant1 and Plant2 are given
as x1

0 = [−0.5 1.0]T , x2
0 = [0.2 − 0.1 − 0.3]T and the external disturbance is given as follows:

ωk = 0.5e−0.05ksin(0.5k), 12 < k ≤ 45; otherwise, ωk = 0.
Selecting f1k = 0.005 tanh(ŷ1

k), f
2
k = 0.005 tanh(u2

k), γ = 0.5, τ = θ = 1.0, τ̄ = θ̄ = 4,
ᾱ1 = ᾱ2 = 0.3, δ1 = 0.05, δ2 = 0.02, δ3 = 0.03, ε1 = ε3 = 1, ε2 = ε4 = 0.5, ∆ = 0.001,
M = 1, and ϑ1 = 0.75 < ϑ2 = 1.25. By the design results in Theorem 2, the quantization
parameter, security fuzzy controller gains, and the ADAETM weighting matrix are obtained
as h̄ = 27.2294, K11 = 0.0069, K12 = 0.0026, K2 = −0.5940, and Ω = 3.2766× 108. The
state responses of Plant1 and Plant2 are shown in Figure 3. The change trajectory of control
signals u1

k and ū2
k are demonstrated on the left in Figure 4. The release instants, the release

intervals, and the adaptive law δk are shown on the right in Figure 4.
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Figure 3. (Left). The response of system state x1
k ; (Right). The response of system state x2

k .
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Figure 4. (Left). The control input u1
k and ū2

k with ᾱ1 = 0.3; (Right). The release instants and the
release intervals and the adaptive law δk with ᾱ1 = 0.3.

In addition, to further illustrate the impact of the attack probability ᾱ1 on packet
transmission rate adjustment and system performance, Figures 5 and 6, and Table 1 give
the analysis results under different attack probability ᾱ1. By the design results in Theorem
2, the quantization parameter, security fuzzy controller gains, and the ADAETM weighting
matrix are obtained as follows: h̄ = 27.3840, K11 = 0.0098, K12 = 0.0038, K2 = −0.3536,
Ω = 2.2361× 108 with ᾱ1 = 0.5. h̄ = 48.2277, K11 = 0.0158, K12 = 0.0092, K2 = −0.3027,
Ω = 2.2917× 108 with ᾱ1 = 0.7.
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Figure 5. (Left). The control input u1
k and ū2

k with ᾱ1 = 0.5; (Right). The release instants and the
release intervals and the adaptive law δk with ᾱ1 = 0.5.
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Figure 6. (Left). The control input u1
k and ū2

k with ᾱ1 = 0.7; (Right). The release instants and the
release intervals and the adaptive law δk with ᾱ1 = 0.7.

Based on the above calculation results under different attack probability ᾱ1, Figure 5
on the left and Figure 6 on the left show that the trajectory changes of the control input
converge to 0 under ᾱ1 = 0.5 and ᾱ1 = 0.7, respectively, and the release instants, and the
release intervals, the adaptive law δk are shown on the right in Figure 5 and Figure 6,
respectively, which indicates the effectiveness of the designed security cascade controller
for multi-channel deception attacks. Moreover, to further verify the superiority of the
proposed ADAETM, it is compared with the triggered mechanism in [27], and the system
performance γ under different attack probability ᾱ1 is calculated. Through the transmission
number (TN) and transmission rate Re/k in Figure 5 on the right and Figure 6 on the right,
and Table 1, it can be seen that the ADAETM designed in this article has great advantages.
With the increase in attack probability, the number of triggers will also increase, and the
system performance index γ will decrease, which explains the rationality of the design
of ADAETM to a certain extent. In addition, to further strengthen the demonstration of
the superiority of the proposed control design, quantitative performance index analysis
under different attack probabilities, such as system convergence time, network channel
bandwidth utilization, and optimal H∞ performance index, is presented in Table 2. It can
be seen that the increase in attack probability will affect the convergence time of the system
and the number of triggered packets to a certain extent, but the design strategy proposed
in this article can balance the relationship between attack probability and the number of
triggered packets, and maintain the optimal H∞ performance index.

Table 1. Data transmission with different ETMs in Example with PPBTS.

Different ETMs TN Re/k γ

Triggered mechanism in [27] 47 31.3% 0.1056

ᾱ1 = 0.3, δ1 = 0.07, δ2 = 0.05, δ3 = 0.03 20 13.3% 0.1064

ᾱ1 = 0.5, δ1 = 0.07, δ2 = 0.05, δ3 = 0.03 22 14.7% 0.1058

ᾱ1 = 0.7, δ1 = 0.07, δ2 = 0.05, δ3 = 0.03 24 16.0% 0.1056

Table 2. Quantitative performance index with different attack probabilities in Example with PPBTS.

Different Attack Probability System Stability Time Re/k γ

ᾱ1 = 0.3, ᾱ2 = 0.3 133/52 17.3% 0.1073

ᾱ1 = 0.5, ᾱ2 = 0.5 140/55 18.6% 0.1069

ᾱ1 = 0.7, ᾱ2 = 0.7 145/57 19.3% 0.1067

222



Mathematics 2024, 12, 3385

4.2. Comparison Example with PPBPGCS

In order to further verify the superiority of the derived results of Theorem 2, a non-
linear PPBPGCS based on fuzzy model is given. The structure of the NCCS is shown in
Figure 7. In the main control loop, Sensor1 is used to measure the output power supply
voltage of the power control system. After the influence of ADAETM and deception attacks,
the measurement data are fed back to Controller1 and compared with the expected data.
The output signal of Controller1 is transmitted to Controller2 as the expected data. In the
secondary control loop, Controller2 compares the boiler liquid level data, valve parameters
measured by the quantized Sensor2 with the expected data, and transmits the control
output signal to the valve that controls the inlet to control the main steam temperature.
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Network

Network Deception 

Attacks
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Controller2

Controller1

Power 

Control System

Steam

Water 

Pump

Water 
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Electric Power 
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Water 
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Control 

Valve

Control 

Valve

Boiler

Figure 7. Structure diagram of an NCCS for a nonlinear PPBPGCS.

Suppose that the discrete nonlinear networked PPBPGCS parameters considered in
this article are as follows:

A11 =

[
0.3443 −0.1768
0.6398 0.8966

]
, B11 =

[
0.6398
0.3743

]

A12 =

[
0.3304 −0.2078
0.6343 0.8779

]
, B12 =

[
0.6343
0.3278

]

C11 = C12 =
[
0 0.45

]
, D11 = D12 = 0.1

E11 = E12 =
[
0 0.45

]

A21 =




−0.1474 −0.6879 −0.1888 −0.0165
0.0106 −0.0835 −0.5780 −0.1157
0.0741 0.4579 0.6853 −0.0662
0.0424 0.3300 0.8977 0.9781




A22 =




−0.1465 −0.6812 −0.1733 −0.0144
0.0109 −0.0809 −0.5684 −0.0981
0.0741 0.4586 0.6885 −0.0561
0.0424 0.3301 0.8985 0.9814




B21 =
[
0.0106 0.0741 0.0424 0.0140

]T

B22 =
[
0.0109 0.0741 0.0424 0.0140

]T

B31 =
[
−0.1073 0.0532 0.0372 0.0141

]T

B32 =
[
−0.1070 0.0533 0.0372 0.0141

]T
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C21 = C22 =
[
0 0 0 1

]
, D21 = D22 = 0.1

E21 = E22 =
[
0 0 0 1

]
.

Moreover, the MFs are chosen by d1(x1
k) = cos2(x12

k ), d2(x1
k) = 1− d1(x1

k), f1(x2
k) =

exp(−(x24
k )2

3 ), and f2(x2
k) = 1 − f1(x2

k). The initial states of the Plant1 and Plant2 are
given as x1

0 = [1 1]T , x2
0 = [1 1 1 1]T and the external disturbance is given as follows:

ωk = 10e−0.01k sink, 0 < k ≤ 15; Otherwise, ωk = 0.
Selecting f1k = 0.1 tanh(ŷ1

k), f2k = 0.1 tanh(u2
k), γ = 1, τ = θ = 1, τ̄ = θ̄ = 4,

ᾱ1 = ᾱ2 = 0.7, δ1 = 0.6, δ2 = 0.4, δ3 = 0.1, ε1 = ε3 = 1, ε2 = ε4 = 0.5, ∆ = 0.1,
M = 10, and ϑ1 = 0.75 < ϑ2 = 1.25. By the design results in Theorem 2, the quantization
parameter, security fuzzy controller gains, and the ADAETM weighting matrix are obtained
as h̄ = 109.0809, K11 = 0.0025, K12 = 0.0014, K2 = 0.5201, and Ω = 7.1494× 105.

The state responses of Plant1 and Plant2 are shown in Figure 8. The change trajectory
in the control signals u1

k and ū2
k are demonstrated on the left in Figure 9. The release instants,

the release intervals, and the adaptive law δk are shown on the right in Figure 9.
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Figure 8. (Left). The response of system state x1
k ; (Right). The response of system state x2
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Figure 9. (Left). The control input u1
k and ū2

k with ᾱ1 = 0.7; (Right). The release instants and the
release intervals and the adaptive law δk with ᾱ1 = 0.7.

In addition, to further illustrate the impact of the attack probability ᾱ1 on packet
transmission rate adjustment and system performance, Figures 10 and 11, and Table 2
give the analysis results under different attack probability ᾱ1. By the design results in
Theorem 2, the quantization parameter, security fuzzy controller gains, and the ADAETM
weighting matrix are obtained as follows: h̄ = 114.1739, K11 = 0.0022, K12 = 0.0012,
K2 = 0.5048, Ω = 7.4453× 105 with ᾱ1 = 0.6. h̄ = 121.9136, K11 = 0.0024, K12 = 0.0013,
K2 = 0.4041, Ω = 1.1506× 106 with ᾱ1 = 0.8.

Based on the above calculation results under different attack probability ᾱ1, the left
in Figures 10 and 11 are show the trajectory changes of the control input converge to
0 under ᾱ1 = 0.6 and ᾱ1 = 0.8, respectively, which indicates the effectiveness of the
designed security cascade controller for multi-channel deception attacks. Similar to the
analysis of Example with PPBTS, the data in Figures 10 and 11, and Table 3 also show
the effectiveness of the designed security cascade controller design algorithm against
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multi-channel deception attacks. Similar to the analysis results in Section 4.1, Table 4 also
gives quantitative performance analysis under different attack probabilities, which further
verifies the superiority of the control design.
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Figure 10. (Left). The control input u1
k and ū2

k with ᾱ1 = 0.6; (Right). The release instants and the
release intervals and the adaptive law δk with ᾱ1 = 0.6.
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Figure 11. (Left). The control input u1
k and ū2

k with ᾱ1 = 0.8; (Right). The release instants and the
release intervals and the adaptive law δk with ᾱ1 = 0.8.

Table 3. Data transmission with different ETMs in Example with PPBPGCS.

Different ETMs TN Re/k γ

Triggered mechanism in [27] 37 37.0% 0.4608

ᾱ1 = 0.6, δ1 = 0.6, δ2 = 0.4, δ3 = 0.1 15 15.0% 0.4593

ᾱ1 = 0.7, δ1 = 0.6, δ2 = 0.4, δ3 = 0.1 17 17.0% 0.4575

ᾱ1 = 0.8, δ1 = 0.6, δ2 = 0.4, δ3 = 0.1 19 19.0% 0.4483

Table 4. Quantitative performance index with different attack probability in Example with PPBPGCS.

Different Attack Probability System Stability Time Re/k γ

ᾱ1 = 0.6, ᾱ2 = 0.6 55/47 29.0% 0.4671

ᾱ1 = 0.7, ᾱ2 = 0.7 57/48 31.0% 0.4603

ᾱ1 = 0.8, ᾱ2 = 0.8 60/50 35.0% 0.4533
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5. Conclusions

This article mainly explores the SCOFC design problem of nonlinear NCCSs based on
ADAETM and dynamic quantization under multi-channel deception attacks interference.
The adaptive function of ADAETM can flexibly adjust the triggered threshold according
to the state of deception attacks, and further alleviate the impact of deception attacks on
system performance and stability. By using Lyapunov–Krasovskii stability theory, matrix
decoupling lemma, and relaxation matrix technique, sufficient conditions for the mean
square asymptotically stable and prescribed performance of the system are obtained. The
criteria for the joint design of event-triggered weight matrix, dynamic quantizer parameters
and controller are given in terms of a set of LMIs. Finally, the proposed SCOFC design
strategy is verified by simulation of PPBTS and PPBPGCS.

The ADAETM proposed in this article is designed under the assumption that the
attack probability is known in advance. Such assumptions inevitably make the design
results have certain limitations. In an open network environment, complex, hybrid, and
multiple attacks caused by various types of network attacks and a variety of network attack
combinations often occur. Therefore, based on the existing work and literature, the future
research focus of the security controller design and attack signal observer design problem
of NCCSs under multi-channel complex attacks is considered. In addition, the controller
design problem of NCCSs affected by internal time-varying delays and other network-
induced factors is also a common problem in practical industrial engineering, which also
stimulates future research work.
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Abstract: The trust region method is an effective method for solving unconstrained optimization
problems. Incorrectly updating the rules of the trust region radius will increase the number of
iterations and affect the calculation efficiency. In order to obtain an effective radius for the trust
region, an adaptive radius updating criterion is proposed based on the gradient of the current iteration
point and the eigenvalue of the Hessian matrix which avoids calculating the inverse of the Hessian
matrix during radius updating. This approach reduces the computation time and enhances the
algorithm’s performance. On this basis, we apply adaptive radius and non-monotonic techniques to
the trust region algorithm and propose an improved non-monotonic adaptive trust region algorithm.
Under proper assumptions, the convergence of the algorithm is analyzed. Numerical experiments
confirm that the suggested algorithm is effective.
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1. Introduction

Consider the following unconstrained optimization problem:

min h(x), x ∈ Rn, (1)

where h : Rn → R is twice continuously differentiable. There are two types of optimization
problems: confined optimization and unconstrained optimization. Constrained optimiza-
tion problems are typically addressed by being converted into unconstrained optimization
problems. Unconstrained optimization problems can be solved using various techniques,
including the conjugate gradient approach [1,2], the trust region method [3,4], and the
Newton method [5,6]. The conjugate gradient method requires that the coefficient matrix is
not only symmetric but also positive definite, which may not be applicable in the case of
matrices with non-positive definite coefficients [7]. The Newton method needs to calculate
the inverse of the Hessian matrix, and selection of the initial points is difficult in practice [8].
The trust region algorithm has strong convergence and robustness, and it has become one
of the effective methods for solving unconstrained optimization problems [9,10].

Many practical application problems which arise in applied mathematics, economics,
and engineering can be translated into Equation (1) to be solved [11]. As one of the effective
algorithms for solving unconstrained optimization problems, the trust region has many ap-
plications in real life. For example, it can be extended to deal with constrained optimization
problems, variational inequality problems, and nonlinear complementary problems [12]. Of
course, the trust region algorithm can also be extended to reinforcement learning [13] and
support vector machines [14] in machine learning, the electrical impedance tomography
problem [15], and solving the inverse problem related to seismic spectrum analysis of Pn
waves [16] as well as combined with the epitaxial implicit method [17]. Therefore, it is
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necessary to propose a trust region algorithm which can effectively solve unconstrained
optimization problems.

The underlying principle of trust region (TR) methods is that a trial step tk is obtained
at each iterate point xk by solving the following subproblem:

min vk(t) =gT
k t +

1
2

tT Bkt,

s.t.‖t‖ ≤ ∆k,
(2)

where ‖ · ‖ is the Euclidean norm, gk = ∇h(xk), Bk ≈ ∇2h(xk), and ∆k is the TR radius [18].
Next, the TR ratio rk is used to compute the agreement between the predicted and actual
reductions. It has the definition

rk =
Aretk
Pretk

=
h(xk)− h(xk + tk)

vk(0)−vk(tk)
,

where the predicted reduction Pretk and the actual reduction Aretk are given by

Aretk = h(xk)− h(xk + tk),

Pretk = vk(0)−vk(tk).

The iteration form of the TR is described below:

xk+1 =

{
xk + tk, if rk ≥ µ,
xk, otherwise.

If rk ≥ µ for a specified 0 < µ < 1, then the trial step tk is approved, and xk+1 = xk + tk.
The TR radius is adjusted correctly in this instance. In contrast, the tk is rejected, and the
current point is held constant for the following iteration if rk < µ. The TR radius is
suitably decreased in this instance. This procedure is continued until the convergence
requirements hold.

In the traditional TR algorithm, it is essential to select the appropriate initial value
and update criteria for the TR radius. If the initial radius or radius updating criteria are
not selected correctly, then the number of iterations of the trust region algorithm will
be increased. Based on this, Sartenaer [19] proposed a criterion that can automatically
determine the initial radius which uses gradient information (i.e., 40 = ‖g0‖). Later,
Lin et al. [20] proposed a better criterion for selecting the initial radius, which is set to be
40 = γ‖g0‖, where γ > 0 is an adjustable constant.

It can be noted that when the sequence {xk} generated by the traditional TR algorithm
converges to the approximate best point x∗, the TR ratio rk may converge to one. Therefore,
according to the iterative steps of the algorithm, once k is big enough ,4k may be larger
than the normal number. Moreover, the information of gk and Bk generated at the current
iteration point xk is not used to revise the radius4k, which greatly increases the number of
subproblems (Equation (2)) to be solved, thus reducing the calculation rate of the algorithm.
To avoid the above problems, Zhang [21] proposed some variations of the adaptive TR
method based on the following updated formula:

4k =
q`‖gk‖

bk
,

in which bk = min{‖Bk‖, 1}, 0 < q < 1 is a constant and ` ∈ N. Subsequently, Zhang et al. [22]
proposed an adaptive radius formula containing gk and Bk as follows:

4k = q`‖gk‖‖B̂k
−1‖,
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with ` and q as defined above and B̂k = Bk + iI for some nonnegative integer i and the
Hessian approximation Bk as a positive definite matrix. To avoid calculating B̂k

−1 at each
iteration point xk, Shi and Wang [23] proposed

4k = q`
‖gk‖3

gT
k B̂kgk

,

with `, q, and B̂k as defined above. To avoid counting B̂k, Sheng et al. [24] proposed
a variant:

4k = q`
‖tk−1‖
‖yk−1‖

‖gk‖,

where yk−1 = gk− gk−1, 0 < q < 1, and ` ∈ N. Recently, Wang et al. [25] employed the new
radius updating criterion4k = υk‖gk‖γ, where γ ∈ (0, 1) is a constant and the updating of
υk depends on the value of the ratio rk. Building an adaptive TR radius which can speed
up the solving of subproblems is vital since the TR algorithm heavily relies on the choice
for the TR radius.

Each iteration in the monotone trust region method requires objective function hk
to have a certain reduction. However, it can be seen from some numerical experimental
results that the monotonicity of forced hk may significantly reduce the convergence rate,
especially for the objective functions with highly eccentric level curves [26–28]. Therefore,
allowing function values to increase to some extent while maintaining global convergence
is advantageous. Non-monotonic methods are characterized by the fact that they do
not enforce strict monotonicity of the value of the objective function over successive
iterations. It has been shown that using non-monotonic techniques can improve the
likelihood of finding global optimal values and the rate of convergence of the algorithm [26,
29]. Therefore, many researchers combined non-monotonic techniques with trust regions to
form a new method for solving optimization problems [28,30–33]. Chamberlain et al. [34]
proposed watchdog technology, which belongs to a non-monotonic line search technology.
Next, Grippo et al. [26] extended Newton’s method with another non-monotonic line search
methodology and used it to solve unconstrained optimization problems. The idea of this
non-monotonic line search technique is that for a given 0 < ζ < 1, one should select the
step length αk such that the following conditions are true:

h(xk + αktk) ≤ hl(k) + ζαkgT
k tk,

where non-monotonic technology hl(k) is defined as

hl(k) = h(xl(k)) = max
0≤j≤p(k)

{hk−j}, (3)

where 0 ≤ p(k) ≤ min{p(k − 1) + 1, M} and M are positive integers. However, some
numerical experiment results indicate that there are still certain issues with Grippo’s
non-monotonic method [35]. For instance, the current function value cannot be fully
used. Moreover, the traditional non-monotonic technique is highly dependent on the
selection of parameter M, and thus the numerical results of the algorithm may vary greatly
with different selections of M values. To address these shortcomings of non-monotonic
techniques, Zhang and Hager [29] proposed another non-monotonic technique as follows:

Ck =

{
h0, k = 0,
νk−1Qk−1Ck−1+hk

Qk
, k ≥ 1,

and

Qk =

{
1, k = 0,
νk−1Qk−1 + 1, k ≥ 1,
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where νk−1 ∈ [νmin, νmax], νmin ∈ [0, 1), and νmax ∈ [νmin, 1). Because the non-monotonic
technique Ck needs to update νk−1 and Qk in each iteration, which affects the computation
rate, Ahookhosh and Amini [35] combined hk and hl(k) in a convex manner to form another
efficient non-monotonic technique Rk:

Rk = ϑkhl(k) + (1− ϑk)hk, (4)

where ϑk−1 ∈ [ϑmin, ϑmax], ϑmin ∈ [0, 1). Compared with hl(k), Rk has the following ad-
vantages. It can not only make full use of the current objective function value but also
retain the current optimal operation value to a certain extent. Finally, better convergence
can be achieved by selecting different parameters. Since the non-monotonic algorithm
does not require the objective function to be strictly monotonic during continuous itera-
tion, application of the non-monotonic technique to the trust region algorithm can increase
both the likelihood of finding the global optimal solution and the algorithm’s computation
rate [30,36,37].

Because the convergence rate of the trust region algorithm depends on the renewal
of the trust region radius, this paper aims to construct a new formula for the trust region
radius. Combined with the non-monotonic technique, a new non-monotonic adaptive trust
region algorithm is proposed to solve unconstrained optimization problems.

In this paper, in order to fully utilize the gradient and Hessian matrix of the current
iteration points, we propose an improved adaptive radius updating criterion. In the
improved adaptive radius-updating formula, the upper bound of the eigenvalue of matrix
Bk is solved instead of the inverse of matrix Bk.

The rest of this article is organized as follows. In Section 2, we present a new adap-
tive trust region radius and propose a non-monotonic adaptive trust region algorithm.
In Section 3, we demonstrate this algorithm’s global convergence. In Section 4, numerical
experiments are carried out, and the new method’s effectiveness is demonstrated by the
numerical results. Finally, we conclude the paper in Section 5 with a few closing thoughts.

2. The New Algorithm

In this section, an adaptive radius-updating formula is proposed. The improved
adaptive radius updating criterion is described in detail below.

At the iterate point xk, we set λki to be the ith eigenvalue of the Hessian matrix Bk.
According to the Geršgorin circle theory [12,38], we obtain

λki ≤
n

∑
j=1
|bij| , λ̄ki, (i ∈ N∗) (5)

where λ̄ki can be thought of as an upper bound on the ith eigenvalue of Bk and the element
bij is the one which is placed at the ith row and jth column in matrix Bk.

Let

λk =
n

∑
i=1

ωiλ̄
−1
ki , (6)

where ωi > 0 and
n
∑

i=1
ωi = 1.

Based on this, the new adaptive trust region radius proposed in this paper is as follows:

∆k+1 = ck+1‖gk+1‖λk+1, (7)
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where

ck+1 =





t1ck, r̃k < µ1,
ck, µ1 ≤ r̃k < µ2,
t2ck, r̃k ≥ µ2,

(8)

and 0 < t1 < 1 < t2. Obviously, we adjust the size of ck+1 using the trust region ratio r̃k,
which can better use the information of the function to adjust the radius of the trust region
so as to effectively decrease the number of solutions for Equation (2).

The adaptive radius updating criterion proposed in this paper not only makes full use
of the first- and second-order information of the objective function but also avoids solving
the inverse matrix Bk. Based on the non-monotonic technique and the new adaptive trust
region radius (Equation (7)), we propose an improved non-monotonic adaptive trust region
algorithm (NATR). In our algorithm, the non-monotone technique is defined by Rk, where
Rk is given by Equation (4) and the ratio of the trust region r̃k is determined by

r̃k =
Rk − h(xk + tk)

vk(0)−vk(tk)
, (9)

where tk is the trial step to be calculated by Equation (2).
The procedure of NATR is described by Algorithm 1 .

Algorithm 1 An improved non-monotonic adaptive trust region algorithm (NATR).

Step 0. (Initialization) Start with x0 ∈ Rn and the symmetric matrix B0 ∈ Rn×n. The constants
0 ≤ ϑmin ≤ ϑmax ≤ 1, ϑk ∈ [ϑmin, ϑmax], 0 < t1 < 1 < t2, 0 < µ1 < µ2 < 1, ε > 0, θ > 0, ∆max > 0,
c0 > 0, ω > 0, and ∆0 > 0 are also given. Set k = 0.
Step 1. If ‖gk‖ ≤ ε, then stop.
Step 2. Solve the subproblems of Equation (2) to find the trial step tk.
Step 3. Compute Rk and r̃k. If r̃k < µ1, then go to Step 2. If r̃k ≥ µ1, then set xk+1 = xk + tk,
and go to Step 4.
Step 4. Compute λk+1. If λk+1 ≤ ω or λk+1 ≥ 1

ω , then set λk+1 = θ; Update ∆ = ck+1‖gk+1‖λk+1,
where ck+1 is given by Equation (8), and set ∆k+1 = min{∆, ∆max}.
Step 5. Update Bk by using a modified quasi-Newton formula. Set k = k + 1, and go to Step 1.

From Step 4 of the NATR algorithm, it can be seen that sequence {λk} is bounded; in
other words, we have

0 < min{ω, θ} ≤ λk ≤ max{ 1
ω

, θ} (10)

for any k ∈ N.

Remark 1. It can be noted that in this paper, the non-monotone adaptive trust region algorithm
uses the gradient and Bk matrix eigenvalues when the radius ∆k is updated. Compared with [30,39]
and [22], the radius in this paper avoids solving B−1

k and makes full use of the ratio of the trust
region r̃k in each iteration to automatically adjust the radius ∆k, which can make better use of the
information of the current iteration point of the objective function.

Throughout this paper, we consider the following assumptions in order to analyze the
convergence of the new algorithm:

H1: The level set L̃(x0) = {x ∈ Rn|h(x) ≤ h(x0)} is a bounded closed set.
H2: There exist constants MB > 0, Mg > 0, and MG > 0 such that ‖Bk‖ ≤ MB,

‖gk‖ ≤ Mg, and ‖∇2h(x)‖ ≤ MG.
H3: Suppose that there is a constant c̄ > 0 such that ∀k ∈ N, and ck ≤ c̄ is true.

233



Mathematics 2024, 12, 3398

Remark 2. Similar to [10], for a solution tk to the subproblem in Equation (2), we have

Pretk = vk(0)−vk(tk) ≥ δ‖gk‖min{∆k,
‖gk‖
‖Bk‖

}, δ ∈ (0, 1). (11)

3. Convergence Analysis

In order to analyze the convergence properties of Algorithm 1, we also need to present
the following lemmas:

Lemma 1. Based on H1 and H2, suppose that tk is the solution to Equation (2). Then, we have

h(xk)− h(xk + tk)− [vk(0)−vk(tk)] ≤ o(‖tk‖2).

Proof. See [31] for the proof of Lemma 1.

Lemma 2. Assume that the NATR algorithm produced the sequence {xk}. Then, the sequence
{hl(k)} is a decreasing sequence.

Proof. See the proof of Lemma 4 in [35].

Lemma 3. Suppose that the sequence {xk} is generated by the NATR algorithm. Then, we have

hk ≤ Rk, (12)

and
xk ∈ L̃(x0),

for each k ∈ N.

Proof. From Equaitons (3) and (4), we have

hk = ϑkhk + (1− ϑk)hk ≤ ϑkhl(k) + (1− ϑk)hk = Rk.

Hence, Equation (12) holds. Now let us prove by induction that xk ∈ L̃(x0) for each k ∈ N.
Obviously, the result holds for k = 0. We demonstrate that xk+1 ∈ L̃(x0), assuming that
xk ∈ L̃(x0). Based on Lemma 2, we have

hk+1 ≤ hl(k+1) ≤ hl(k) ≤ h0,

i.e., xk+1 ∈ L̃(x0). This completes the proof.

Lemma 4. Assume that the NATR algorithm produced the sequence {xk} and ‖gk‖ ≥ ε > 0.
Then, ∀k ∈ N, ∃$ ∈ N such that xk+$+1 is a successful iteration (i.e., r̃k+$ ≥ µ1).

Proof. Assume that there exists an integer constant k such that the point xk+$+1 is not a
successful point for any $. Hence, we have that r̃k+$+1 < µ1 for any constant $ = 0, 1, 2, · · · .
From H2 and Remark 1, we obtain

vk+$(0)−vk+$(dk+$) ≥ δ‖gk+$‖min{∆k+$,
‖gk+$‖
‖Bk+$‖

}

≥ δε min{∆k+$,
ε

MB
}.

(13)

Thus, from Lemma 1 and Equation (13), we have
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|
h(xk+$)− h(xk+$ + tk+$)

vk+$(0)−vk+$(tk+$)
− 1 | =|

h(xk+$)− h(xk+$ + tk+$)− [vk+$(0)−vk+$(tk+$)]

vk+$(0)−vk+$(tk+$)
|

≤
o(‖tk+$‖2)

δε min{∆k+$, ε
MB
} .

(14)

When $→ ∞, we have ‖tk+$‖2 → 0, and subsequently

lim
$→∞

h(xk+$)− h(xk+$ + tk+$)

vk+$(0)−vk+$(tk+$)
= 1. (15)

From Lemma 3 and Equation (15), we obtain

r̃k+$ =
Rk+$ − h(xk+$ + tk+$)

vk+$(0)−vk+$(tk+$)

≥
h(xk+$)− h(xk+$ + tk+$)

vk+$(0)−vk+$(tk+$)

≥ µ2.

(16)

Therefore, when $ is sufficiently large, r̃k+$ ≥ µ2 > µ1. This contradicts the assump-
tion that

r̃k+$ < µ1,

and thus the hypothesis is not valid.

Lemma 5. Assuming that H3 is true, then there exists a constant c1 > 0 such that tk satisfies:

‖tk‖ ≤ c1‖gk‖.

Proof. From H3 and Equations (7) and (10), we obtain

∆k ≤ c̄‖gk‖max{ 1
ω

, θ},

and subsequently, through ‖tk‖ ≤ ∆k we have

‖tk‖ ≤ c̄‖gk‖max{ 1
ω

, θ}.

Set c1 = c̄ max{ 1
ω , θ}. Then, we have

‖tk‖ ≤ c1‖gk‖. (17)

Lemma 6. Assume that H1 and H2 are true and the sequence {xk} is generated by the NATR
algorithm. Then, we have

lim
k→∞

hl(k) = lim
k→∞

h(xk). (18)

Proof. See Lemma 7 in [35].

Lemma 7. Assume that the sequence {xk} is generated by the NATR algorithm. Then, we have

lim
k→∞

Rk = lim
k→∞

h(xk). (19)
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Proof. Using Equations (3) and (4) and Lemma 3, we obtain

hk ≤ Rk = ϑkhl(k) + (1− ϑk)hk ≤ ϑkhl(k) + (1− ϑk)hl(k) = hl(k).

According to Lemma 6, we obtain

lim
k→∞

Rk = lim
k→∞

h(xk).

Theorem 1. (Global Convergence) Assume that H1, H2, and H3 are true, and the sequence {xk}
is generated by the NATR algorithm. Then, we have

lim
k→∞

inf ‖gk‖ = 0. (20)

Proof. By contradiction, we assume that there exists a constant ε > 0 such that

‖gk‖ ≥ ε, (21)

for any integer k.
When k is sufficiently large, with Equation (9), Lemma 3, and Lemma 4, we have

Rk − h(xk + tk) ≥ µ1Pretk. (22)

Using Equations (11) and (22), we obtain

hk+1 = h(xk + tk) ≤ Rk − µ1Pretk ≤ Rk − µ1δ‖gk‖min{∆k,
‖gk‖
‖Bk‖

}. (23)

From H2, Equation (23), Lemma 3, and the definition of Rk, it follows that

hk+1 ≤ Rk+1 = ϑk+1hl(k+1) + (1− ϑk+1)hk+1

≤ ϑk+1hl(k) + (1− ϑk+1)[Rk − µ1δ‖gk‖min{∆k,
‖gk‖
‖Bk‖

}]

≤ ϑk+1hl(k) + (1− ϑk+1)[hl(k) − µ1δ‖gk‖min{∆k,
‖gk‖
‖Bk‖

}]

= ϑk+1hl(k) + (1− ϑk+1)hl(k) − (1− ϑk+1)µ1δ‖gk‖min{∆k,
‖gk‖
‖Bk‖

}

= hl(k) − (1− ϑk+1)µ1δ‖gk‖min{∆k,
‖gk‖
‖Bk‖

}

≤ hl(k) − (1− ϑk+1)µ1δε min{∆k,
ε

MB
}.

(24)

This implies that

hl(k) − hk+1 ≥ (1− ϑk+1)µ1δε min{∆k,
ε

MB
}. (25)

Based on Equation (25) and Lemma 6, we write

lim
k→∞

min{∆k,
ε

MB
} = 0, (26)

and subsequently, lim
k→∞

∆k = 0; in other words, we have

lim
k→∞

∆k = lim
k→∞

ck‖gk‖λk = 0. (27)
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If r̃k ≥ µ2—that is, xk+1 is a successful iteration point—then there exists a constant
c+ > 0 such that

ck ≥ c+,

for sufficiently large k values. This information and Equation (10) suggest that

∆k = ck‖gk‖λk ≥ ε min{ω, θ}ck. (28)

With Equations (27) and (28), we can deduce that

lim
k→∞

ck = 0,

which contradicts the assumption that ck ≥ c+ > 0.
Hence, the proof is completed.

Remark 3. It can be seen in Theorem 1 that the NATR algorithm has global convergence; that is,
the algorithm is feasible theoretically.

4. Preliminary Numerical Experiments

In this section, we test and compare the NATR algorithm with the traditional trust
region algorithm in [8] (TTR) and the non-monotonic trust region algorithm proposed
by Ahookhoosh et al. in [35] (NTR). All unconstrained optimization test problems were
selected from [40], and all of the numerical experiments were carried out in the Matlab
2018 environment.

In all algorithms, we set ∆0 = 2, B0 = I, µ1 = 0.25, µ2 = 0.75, t1 = 0.5, t2 = 1.5,
c0 = 1, M = 5, ω = 10−6, ∆max = 200, and ε = 10−6. If λk+1 ≤ ω, then we set θ = ω, or

if λk+1 ≥ 1
ω , then we set θ = 1

ω . Moreover, we set ϑk =

{
ϑ0
2 , k = 1,
ϑk−1+ϑk−2

2 , k ≥ 2,
ϑ0 = 0.85 [35].

The matrix Bk is updated by the BFGS formula in [41], as follows:

Bk+1 =





Bk +
ykyT

k
yT

k sk
− BksksT

k Bk
sT

k Bksk
, sT

k yk > 0,

Bk, sT
k yk ≤ 0,

where yk = gk+1 − gk and sk = xk+1 − xk. Furthermore, we declare that an algorithm will
fail if it has more than 10,000 iterations. All of the algorithms are stopped when ‖gk‖ ≤ 10−6.

In Table 1, the name of the test function is denoted as “function”, the dimension of the
test function is denoted as “n”, the number of iterations of the algorithm is denoted as “k”,
and the time used by the algorithm to solve the test function is denoted as “Cpu” (in seconds).
If the algorithm is iterated more than 10,000 times, then it fails and is marked with “F”.

According to the numerical results in Table 1, we can find that when the NATR algorithm
was applied to solve these unconstrained optimization problems, it required fewer iterations
than the TTR and NTR methods. Especially for the perturbed quadratic diagonal function
and diagonal 2 function, our NATR algorithm could solve the problem in fewer iterations.
However, the iteration times of the NTR algorithm and TTR algorithm both exceeded 10,000,
which means that they could not effectively solve these problems. For the POWER function
(CUTE), the CPU time required by the NATR algorithm was only 1/30 and 1/3 of that needed
by the NTR and TTR methods, respectively. This is because neither the NTR nor TTR method
can correctly adjust the radius of the confidence region, while the radius of the trust region of
the NATR algorithm is automatically adjusted according to the gradient of the current iteration
point and the eigenvalue of the Hessian matrix, thus reducing the number of iterations and
reducing the calculation cost. For most test functions, the three algorithms ended up with
the same function value results. For some functions, such as the POWER function (CUTE),
the NATR algorithm not only had fewer iterations and fewer iterations, but the function value
was also smaller.
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For higher-dimension problems, such as the 3000 dimensional test functions of the
HIMMELBG function and QUARTC function (CUTE) and the 5000 dimensional test func-
tions of the perturbed quadratic diagonal function, the NATR algorithm could solve them
effectively, but the TTR algorithm failed to solve them. This shows that the NATR algorithm
has a certain effect when solving higher-dimension problems.

Overall, our new algorithm was effective for most test problems and took fewer itera-
tions, as demonstrated by these numerical findings for both high- and low-dimensional
test issues. In general, we can infer that the NATR algorithm is more efficient than the tra-
ditional trust region (TTR) algorithm and the non-monotonic trust region (NTR) algorithm
in terms of the number of iterations and running time. Therefore, the NATR algorithm can
effectively solve unconstrained optimization problems.

5. Conclusions

In this paper, based on the current iteration point gradient gk and the eigenvalues of the
Hessian matrix Bk, we proposed a new improved adaptive radius updating criterion which
reduces the effort and computation time and improves the performance of an algorithm.
Then, we proposed an improved non-monotonic adaptive trust region (NATR) algorithm
by combining the adaptive radius updating criterion with the non-monotonic technique.
Under certain common assumptions, the global convergence of the NATR algorithm was
demonstrated. Finally, in the same environment, the test function was used to conduct
numerical experiments on the three algorithms. The numerical experiments show that the
NATR algorithm can effectively solve unconstrained problems, and for some test functions,
the iteration time and iteration times of the NATR algorithm were less than those of the
NTR algorithm and TTR algorithm, demonstrating an effective algorithm.

In the NATR algorithm, when the trust region ratio did not meet the requirements,
the subproblem was recalculated to find the test step dk which met the conditions. In the
future, we will consider combining the trust region algorithm with the line search method
to avoid double-computation subproblems. Secondly, the application of the non-monotonic
trust region method will be studied further, such as by applying it to nonlinear fractional-
order multi-agent systems [42] and cooperative control for linear delta operator sys-
tems [43].
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Abstract: This paper investigated the tracking problem of mixed H∞ and L2 − L∞ adaptive fault-
tolerant control (FTC) for continuous-time interval type-2 fuzzy systems (IT2FSs). For the membership
function mismatch and uncertainty between the modules of the nonlinear system, the IT2 fuzzy model
is applied to linearly approximate it. The observer can sensitively estimate the system state, and
the adaptive fault estimation functions can estimate adaptively the fault signals, which enables the
designed adaptive FTC scheme to ensure the asymptotic stability of the closed-loop control system
and achieve the desired mixed H∞ and L2 − L∞ tracking performance. The designed adaptive
control law can achieve the purpose of dynamic compensation for faults and disturbances, and
the introduced lemmas further reduce the design conservatism by adjusting the slack parameters
and matrices. Finally, a mass-spring-damping system is used to illustrate the effectiveness of the
designed method.

Keywords: interval type-2 fuzzy systems (IT2FSs); adaptive fault-tolerant control; mixed H∞ and
L2 − L∞ performance; tracking control

MSC: 93C40

1. Introduction

As the automatic control systems tend to be large scale, randomized and complicated,
the probability of faults caused by the long-term operation of system components or
improper human operation is increasing greatly. Therefore, how to quickly detect a fault
and repair it, or design a fault tolerance scheme to make the practical system able to tolerate
a certain degree and type of fault, to achieve the purpose of fault tolerance control, has
always been a hot research spot in the control field [1]. Among these, model-based fault
detection makes full use of the deep knowledge inside the system and determines whether
the fault occurs by residual error [2]. Then, to ensure the automatic control system is stable
and reduce the impact of faults on the system performance, some targeted FTC strategies
are studied [3–10]. Considering that active FTC relies too much on the fault detection
module, it is easy to cause delay when reconstructing a controller according to detection
results, which affects system performance [4–6]. Passive FTC is widely used because of its
simple design, easy implementation and good real-time performance [7–10]. However, due
to its conservative design and low tolerance to unknown faults, adaptive FTC can adjust its
own characteristic feedback control system in real time and intelligently according to the
specific fault affecting the system so that the system can work in the optimal state according
to some set standards [11–19]. For example, ref. [13] proposed a kind of robust adaptive
FTC circuit design and converted to analog control circuit implementation. The adaptive
FTC strategy for an actuator fault in [12,18] has a good fault-tolerant effect. For unexpected
fault situations in multi-agent systems, ref. [15] designed an compensation protocol and
H∞ resilient control scheme to adaptively achieve optimal control results. By designing
the tracking controller, the adaptive optimal tracking problem with the FTC method of a
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multi-agent system and active FTC tracking problem with input constraint are embodied
in [19,20], respectively. However, there are few achievements on adaptive FTC for IT2
nonlinear systems with sensor and actuator faults.

Tracking control is used to achieve the purpose of tracking the desired trajectory or
path through the control system [19–25]. At present, attitude tracking in aerospace [22],
trajectory tracking in robotics [23] and path tracking in the field of automatic driving [24,25]
have a wide range of applications. Therefore, in these real-environmental applications,
when the sensor or actuator failure occurs, the tracking control effect will be greatly reduced
and the system may even be unstable or collapse. The adaptive fault-tolerant tracking
control can realize the tracking control under the fault condition, and the control signal
can be adjusted adaptively to achieve a better tracking effect. In order to achieve a better
tracking effect, we generally define some quantitative indicators to describe the system
performance and give their characterization and calculation methods. Examples include
peak-to-peak, energy-to-energy (H∞), energy-to-peak (L2 − L∞ [26,27]), and so on. Among
them, H∞ can ensure the robust stability of the system, and L2 − L∞ is suitable for the
scenario where the energy of the external interference signal is bounded and the peak
value of the practical system output signal is bounded. These two kinds of performance
indicators have their own application background, so if the tracking controller is designed
to meet the performance requirements at the same time, it will have a wider application
prospect [28,29]. For a memory neural networks system, there exist state estimation
problems caused by delay and bounded perturbation. Based on the protocol, ref. [28]
proposed a finite horizon mixed performance estimation method. Ref. [29] studied the
hybrid control problem of measuring outliers in observer-based IT2FSs. But at present,
there exist few such achievements, especially on the fuzzy system of fault-tolerant control,
which is the original intention of this paper.

Note that system nonlinearity is inevitable in practical engineering in addition to other
forms of nonlinear description ([30,31]). The T–S fuzzy model [32], as an effective tool, can
approximate nonlinear systems through some local linear time-invariant systems, thus
introducing traditional linear system theory into the study of nonlinear systems [33]. How-
ever, the type-1 T–S fuzzy model only has a good effect on dealing with system nonlinearity;
if the membership function in the T–S fuzzy model contains uncertain information [9], the
type-1 fuzzy model will be overwhelmed.

Based on this, the IT2 fuzzy model proposed in [34] effectively solves the above
problems by defining upper and lower bound membership functions. Inspired by this,
many interesting and meaningful research results have appeared successively, enriching
the relevant achievements of fuzzy control and fuzzy filtering [9,25,35–40]. For example,
by establishing the IT2 fuzzy model, ref. [25] effectively approximated the tire dynamic
nonlinearity and speed variation in the path tracking control system and studied the path
tracking control problem of autonomous ground vehicles under handover trigger and
sensor attack. Ref. [36] studied the sampling exponential stability and nonlinear control
of IT2 fuzzy systems. Based on event-driven faults, ref. [37] discussed the FD problem
for IT2 fuzzy systems. Ref. [38] proposed an event-based control method for IT2FSs with
fading channels. Ref. [39] studied a multistep model predictive control problem for IT2FSs
subject to event-triggered faults. In this kind of research, FTC is indispensable in the study
of fault handling, especially the membership function mismatch caused by many modules
in adaptive FTC. In an IT2 fuzzy system, refs. [9,40] obtained appropriate FTC schemes
for finite-time dynamic event-triggered and adaptive sliding mode control, respectively.
However, the research content of other FTC problems of IT2 fuzzy systems is relatively
small, which is the driving force of this paper.

Driven by the above considerations, this paper studies the tracking problem of mixed
H∞ and L2− L∞ adaptive FTC for continuous-time IT2FSs. Fully considering the mismatch
and uncertainty of the membership function between systems, the faults estimate functions
in observer and adaptive law in the controller, ensuring stricter system stability and
performance requirements. The main innovations are summarized:

243



Mathematics 2024, 12, 3682

• Considering the membership function mismatch and uncertainty of each part in the
practical system, the proposed design scheme is aimed at the tracking problem of a
mixedH∞ and L2 − L∞ adaptive FTC for continuous-time IT2FSs.

• Compared with the general adaptive FTC scheme in [11,13], the adaptive control
function is improved in this paper, which is simultaneously tolerant of the sensor
and the actuator faults. Based on the adaptive signal, the dynamic parameters in
the disturbance compensation term can be dynamically adjusted to achieve a better
FTC effect.

• MixedH∞ and L2 − L∞ performance is considered in the design of the fuzzy tracking
controller and observer to meet a wider range of practical requirements. Based on
the matrix inequality transformation technique in the lemmas, the designed algo-
rithm reduces conservatism by introducing suitable slack variables and matrices in
the theorem.

The rest of this paper is organized as follows. The problem statement and preliminary
is formulated in Section 2. The main results about adaptive FTC system performance
analysis and the design control strategy are presented in Sections 3 and 4, respectively.
In Section 5, a mass-spring-damping system is used to illustrate the effectiveness of the
designed method. Finally, Section 6 summarizes this paper.

2. Problem Statement and Preliminarie

In the real-environment application, due to the membership function mismatch and
uncertainty between the modules of the fuzzy system, as well as the possible sensor and
actuator faults in the system, this paper uses the IT2FSs to model the system, observer and
controller. Moreover, in order to realize tracking control, a reference system is introduced.

2.1. Continuous-Time IT2FSs

In this section, similar to [9,37], the continuous-time IT2FSs with m fuzzy rules are
expressed as

Rule i: If φ1(x(t)) isMi
1, · · · , and φı(x(t)) isMi

ı, then

ẋ(t) = Aix(t) + Biu f (t) + Eiw(t) + Fi fa(t)

y(t) = Cix(t) + Gi fs(t)
(1)

where Mi
α is an IT2 fuzzy set of the i-th fuzzy rule with the function φα(x(t)) where

i = 1, 2, · · · , m and α = 1, 2, · · · , ı. m and ı are the positive integers; x(t) ∈ Rnx , u f (t) ∈
Rnu , y(t) ∈ Rny are the state variable, the control input after the system faults, and the
measurement output, respectively. w(t) ∈ Rnw is the external disturbance signal in L2[0, ∞).
fa(t) ∈ Rn f and fs(t) ∈ Rn f are the stuck fault signals from the actuator and sensor,
respectively; The matrices Ai, Bi, Ei, Fi, Ci, Gi are known proper dimensional matrices.

The firing strength of the i-th fuzzy rule satisfies

α̃ = [αi, αi]

where

αi =
ı

∏
α=1

εMi
α
(φα), εMi

α
(φα) ∈ [0, 1]

αi =
ı

∏
α=1

εMi
α
(φα), εMi

α
(φα) ∈ [0, 1]

εMi
α
(φα) ≤ εMi

α
(φα), αi ≤ αi
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with εMi
α
(φα) and αi representing the lower grade and function of membership, εMi

α
(φα)

and αi representing the upper grade and function of membership, respectively. The global
dynamic fuzzy model can be described as

ẋ(t) =
m

∑
i=1

gi[Aix(t) + Biu f (t) + Eiw(t) + Fi fa(t)]

y(t) =
m

∑
i=1

gi[Cix(t) + Gi fs(t)]
(2)

where gi = p
i
αi + piαi,

m
∑

i=1
gi = 1, while the nonlinear functions have 0 ≤ p

i
≤ pi ≤ 1 and

satisfy p
i
+ pi = 1.

In addition to the additive bounded faults existing in the system, the system may also
have partially degenerate multiplicative faults expressed as

ς f (t) = dςς(t) (3)

where dς ∈ (0, 1] with ς = y, u are the fault parameters of a partially degenerate incident.
For brevity, α̃, αi, αi, εMi

α
(φα), εMi

α
(φα), p

i
, pi, and gi are used to stand for α̃(x(t)),

αi(x(t)), αi(x(t)), εMi
α
(φα(x(t))), εMi

α
(φα(x(t))), p

i
(x(t)), pi(x(t)), and gi(x(t)) in the IT2

fuzzy system. By the same token, the following symbols ϑ̃, ϑl , ϑl , υHl
ϑ
(ψϑ), υHl

ϑ
(ψϑ), sl , rl ,

rl , β̃, β
j
, βj, εN j

β

(ϕβ), εN j
β

(ϕβ), hj, q
j
, and qj are also abbreviations in the IT2 fuzzy observer

and controller.

2.2. Reference Model

To reflect the control effect under the fault condition and to realize the tracking control,
the following reference system is adopted in this paper

ẋr(t) = Arxr(t) + Brir(t)

yr(t) = Crxr(t)
(4)

where xr(t) ∈ Rnr , yr(t) ∈ Rny , and ir(t) ∈ Rni are the state, the reference output and
reference input of the reference model, respectively. To verify the tracking effect of the
controller, Ar is designed as a Hurwitz matrix. Moreover, Br and Cr are known proper
dimensional matrices.

2.3. IT2 Fuzzy Observer

Considering the practical engineering, the observer is nonlinear and does not match the
membership function of other parts in the system. Similar to [9], to design the appropriate
adaptive controller, the sensor/actuator fault values and system state are necessary to be
estimated, so an IT2 fuzzy observer in the following form is designed as

Rule l: If ψ1(x̂(t)) isHl
1, · · · , and ψ`(x̂(t)) isHl

`, then

˙̂x(t) =
m

∑
i=1

m

∑
l=1

gisl [Ai x̂(t) + Biu f (t) + Eiw(t)

+ Fi f̂a(t) + Llr(t)]

ŷ(t) =
m

∑
i=1

gi[Ci x̂(t) + Gi f̂s(t)]

(5)

where Hl
ϑ is an IT2 fuzzy set of the l-th fuzzy rule with the function ψϑ(x̂(t)) where

l = 1, 2, · · · , m and ϑ = 1, 2, · · · , `. m and ` are the positive integers; x̂(t) ∈ Rnx , ŷ(t) ∈ Rny ,
and r(t) ∈ Rny are the state, the output, and the residual vector estimated by the IT2 fuzzy

245



Mathematics 2024, 12, 3682

observer, respectively. Ll is the designed observer gain matrix. In a similar way, the firing
strength of the l-th rule satisfies

ϑ̃ = [ϑl , ϑl ]

where

ϑl =
`

∏
ϑ=1

υHl
ϑ
(ψϑ), υHl

ϑ
(ψϑ) ∈ [0, 1]

ϑl =
`

∏
ϑ=1

υHl
ϑ
(ψϑ), υHl

ϑ
(ψϑ) ∈ [0, 1]

υHl
ϑ
(ψϑ) ≤ υHl

ϑ
(ψϑ), ϑl ≤ ϑl

where υHl
ϑ
(ψϑ) and ϑl are the lower grade and function of membership, and υHl

ϑ
(ψϑ) and ϑl

are the upper grade and function of membership, respectively; sl =
rl ϑl+rl ϑl

m
∑

j=1
(rl ϑl+rlϑl)

,
m
∑

l=1
sl = 1,

rl ∈ [0, 1] and rl ∈ [0, 1] are the nonlinear functions and satisfy rl + rl = 1.
Moreover, the adaptive fault information estimation functions are

˙̂fs(t) = s‖ξT(t)PL‖
˙̂fa(t) = a‖ζ(t)‖

(6)

where ζ(t) = ξT(t)PB and r(t) = y f (t)− ŷ(t), while the estimated values of state and fault
information are represented by x̂(t), f̂s(t), and f̂a(t), respectively. s, a are any positive constants.

2.4. IT2 Fuzzy Adaptive Tracking Controller

Based on this, an observer-based adaptive tracking controller can be proposed.
Rule j: If ϕ1(x̂(t)) is N j

1 , · · · , and ϕ(x̂(t)) is N j
 , then

u(t) =
o

∑
j=1

hj[Kjŷ(t) + Krjyr(t) + Ka(t)] (7)

where N j
β is an IT2 fuzzy set of the j-th fuzzy rule with the function ϕβ(x̂(t)) where

j = 1, 2, · · · , o and β = 1, 2, · · · , . m and  are the positive integers; Ka(t) is the adaptive
control function. Kj and Krj are the controller gain matrices. In a similar way, the firing
strength of the j-th rule satisfies

β̃ = [β
j
, βj]

where

β
j
=



∏
β=1

εN j
β

(ϕβ), εN j
β

(ϕβ) ∈ [0, 1]

βj =


∏
β=1

εN j
β

(ϕβ), εN j
β

(ϕβ) ∈ [0, 1]

εN j
β

(ϕβ) ≤ εN j
β

(ϕβ), β
j
≤ βj

where εN j
β

(ϕβ) and β
j

are the lower grade and function of membership, while εN j
β

(ϕβ)

and βj are the upper grade and function of membership, respectively; hj =
q

j
β

j
+qj βj

m
∑

j=1
(q

j
β

j
+qj βj)

,

o
∑

j=1
hj = 1, q

j
∈ [0, 1] and qj ∈ [0, 1] are the nonlinear functions and satisfy q

j
+ qj = 1.
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The adaptive control function is defined as

Ka(t) = −ζT(t)
a(t)

‖ζ(t)‖2dmin

where
dmin = min{min{dy}, min{du}}

a(t) = ‖ξT(t)PL‖ f̂s(t) + ‖ζ(t)‖ f̂a(t) + ‖ζ(t)‖ρ(t)
∫ t

t0

‖ξ(τ)‖dτ.

There has ρ(t) ≥ 0 in the compensation term ρ(t)
∫ t

t0
‖ξ(τ)‖dτ to achieve the compensation

effect to the system fault and disturbance.

Assumption 1. Similar to [13], sensor/actuator faults and disturbances can be expressed in the
relevant segmented bounded functions, and it can be assumed that there exist matrices Ēi, F̄i, Ḡi
and unknown constants v̄1, v̄2 such that the following inequality conditions were established

‖v1(t)‖ = ‖Ēiw(t) + F̄i fa(t)‖ ≤ ‖ξ(t)‖α + v̄1

‖v2(t)‖ = ‖Ḡi fs(t)‖ ≤ v̄2

where Ei = Bi Ēi, Fi = Bi F̄i and Gi = CiḠi.

Remark 1. Different from other papers ([11,13]), the adaptive control strategy for the faults from
the sensor and actuator is considered in the adaptive function, and in the compensation part of
external disturbance and faults, the parameter

ρ(t) =
{

ρ when ξ(t) 6= 0
0 when ξ(t) = 0

with a large enough constant ρ, which will be changed according to the compensation situation.
When the influence of faults and disturbances on the IT2FSs ends, the compensation can be quickly
compensated, and the compensation item is 0 after the influence ends. In this way, better control can
be achieved.

2.5. Adaptive FTC System

Based on the above description and definition, the constructed augmented closed-loop
adaptive FTC system (in Figure 1) gives

ξ̇(t) =
m

∑
i=1

m

∑
l=1

o

∑
j=1

gislhj[(A+ duBK)ξ(t) + Eses(t)

+ Eaea(t) + duBKa(t) + Bv1(t) + Lv2(t)

+ Brir(t)]

ey(t) =
m

∑
i=1

gi[Cξ(t) + Gies(t)]

(8)
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where

A =




Ai − d̄yLlCi −dyLlCi 0
−d̄yLlCi Ai − dyLlCi 0

0 0 Ar


,B =




Bi
0
0




C =
[
Ci 0 −Cr

]
,K =

[
KjCi 0 KrjCr

]
, d̄y = 1− dy

L =




duBiKjCi − d̄yLlCi
−d̄yLlCi

0


, Es =




duBiKjGi − LlGi
−LlGi

0




Ea =




0
Fi
0


,Br =




0
0
Br


, ξ(t) =




x̂(t)
ex(t)
xr(t)




with ey(t) = ŷ(t) − yr(t), ex(t) = x̂(t) − x(t), es(t) = f̂s(t) − fs(t), and ea(t) = f̂a(t) −
fa(t).

Plant
Sensor Partially

Degenerate Fault

IT2 Fuzzy

Observer

IT2 Adaptive

Controller

( )w t
( )y t

( )sf t

( )af t

( )ye t( )fy t

( )ry t

( )u t ( )rx t

( )fu t

ˆ( )x t

-

Actuator Partially

Degenerate Fault

Reference

Model

( )ri t

Figure 1. Framework of closed-loop adaptive FTC system.

Definition 1 ([29]). The adaptive FTC system (8) is said to be asymptotically stable when w̄(t) = 0,
and it has the mixed H∞ and L2 − L∞ performances if under the zero initial condition, with the
existed matrices Ξ1 ≤ 0, Ξ2 > 0, Ξ3 ≥ 0, the following inequality holds

∫ ta

0
J(t)dt ≥ sup

0≤t≤ta

{eT
y (t)Ξ3ey(t)} (9)

with J(t) = eT
y (t)Ξ1ey(t) + w̄T(t)Ξ2w̄(t). With the different selection of matrices, system (8) has

different performance:

(1) The adaptive FTC system (8) has theH∞ performance if Ξ1 = −I, Ξ2 = γ2 I, Ξ3 = 0.
(2) The adaptive FTC system (8) has the L2 − L∞ performance if Ξ1 = 0, Ξ2 = γ2 I, Ξ3 = I.

Lemma 1 ([41]). For the real matrices T0, T1, T2 and T3 with the proper dimensions and scalar β,
the inequality T0 +TT

3 T1T3 < 0 holds if there exists the following situation

[
T0 ∗

T2T3 −He{βT2}+ β2T1

]
< 0.

Lemma 2 ([33]). For the real matrices X1, X2, and real symmetric matrix X0 with the proper
dimension and scalar ℘, the inequality X0 + He{X1X2} < 0 holds if there exists matrix S satisfying

[
X0 ∗

℘XT
1 + SX2 −He{℘S}

]
< 0.
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3. Adaptive FTC System Performance Analysis

In the following, the sufficient conditions of asymptotic stability with the mixedH∞
and L2 − L∞ performances for the adaptive FTC system (8) are provided.

Theorem 1. Consider the adaptive FTC system (8). If there exist matrices P > 0 and Ψ = ΨT

with the given performance index γ and parameters ηi such that the inequalities hold with
i = 1, 2, · · · , m; l = 1, 2, · · · , m; j = 1, 2, · · · , o

Λil j −Ψ < 0 (10)

ηiΛili − ηiΨ + Ψ < 0 (11)

ηjΛil j + ηiΛjli − ηjΨ− ηiΨ + 2Ψ < 0 (12)

m

∑
i=1

giΓ ≤ 0 (13)

where

Λil j =

[
Λ1 + CTC ∗
Λ2 + GT

1 C Λ3 + GT
1 G1

]

Γ =

[CTC − P ∗
GT

2 C −diag{s−1 I, a−1 I}+ GT
2 G2

]

Λ1 = (A+ duBK)T P + P(A+ duBK)
ΛT

2 =
[
PEs PEa PBr

]
,G2 =

[
Gi 0

]

Λ3 = −diag{γ2 I, γ2 I, γ2 I},G1 =
[
Gi 0 0

]
.

Then, the fuzzy observer (5) and controller (7) can ensure the adaptive FTC system (8) is asymptoti-
cally stable and meets the mixedH∞ and L2 − L∞ performances.

Proof. Consider a Lyapunov function as

V(t) = ξT(t)Pξ(t) + s−1e2
s (t) + a−1e2

a(t). (14)
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Then, since fs(t) and fa(t) are the stuck faults, i.e., there has ḟs(t) = ḟa(t) = 0. The
difference equation of V(t) can be obtained

V̇(t) = ξ̇T(t)Pξ(t) + ξT(t)Pξ̇(t) + 2s−1es(t)ės(t)

+ 2a−1ea(t)ėa(t)

= ξT(t)[(A+ duBK)T P + P(A+ duBK)]ξ(t)
+ 2ξT(t)PEses(t) + 2ξT(t)PEaea(t) + 2ξT(t)PBv1(t)

+ 2ξT(t)PLv2(t) + 2ξT(t)PBrir(t)

+ 2duζ(t)Ka(t) + 2s−1es(t)ės(t) + 2a−1ea(t)ėa(t)

= ξT(t)[(A+ duBK)T P + P(A+ duBK)]ξ(t)
+ 2ξT(t)PEses(t) + 2ξT(t)PEaea(t) + 2ξT(t)PBv1(t)

+ 2ξT(t)PLv2(t) + 2ξT(t)PBrir(t)

+ 2s−1es(t)ės(t) + 2a−1ea(t)ėa(t)

− 2duζ(t)ζT(t)
a(t)

‖ζ(t)‖2dmin

≤ ξT(t)[(A+ duBK)T P + P(A+ duBK)]ξ(t)
+ 2ξT(t)PEses(t) + 2ξT(t)PEaea(t) + 2ξT(t)PBv1(t)

+ 2ξT(t)PLv2(t) + 2ξT(t)PBrir(t)

+ 2s−1es(t)ės(t) + 2a−1ea(t)ėa(t)− 2‖ξT(t)PL‖ f̂s(t)

− 2‖ζ(t)‖ f̂a(t)− 2‖ζ(t)‖ρ(t)
∫ t

t0

‖ξ(τ)‖dτ.

(15)

By recalling the conditions in Assumption 1, (15) is reduced as

V̇(t) ≤ ξT(t)[(A+ duBK)T P + P(A+ duBK)]ξ(t)
+ 2ξT(t)PEses(t) + 2ξT(t)PEaea(t) + 2ξT(t)PBrir(t)

+ 2s−1es(t)ės(t) + 2a−1ea(t)ėa(t)− 2‖ξT(t)PL‖ f̂s(t)

− 2‖ζ(t)‖ f̂a(t)− 2‖ζ(t)‖ρ(t)
∫ t

t0

‖ξ(τ)‖dτ

+ 2‖ζ(t)‖‖ξ(t)‖α + 2‖ζ(t)‖v̄1 + 2‖ξT(t)PL‖v̄2.

(16)

Similar to [13], the following inequality will hold

‖ζT(t)‖v̄1 ≤ ‖ζT(t)‖ fa(t)

‖ξT(t)PL‖v̄2 ≤ ‖ξT(t)PL‖ fs(t).
(17)

The nonlinear function ρ(t)
∫ t

t0
‖ξ(τ)‖dτ is obviously a monotonically increasing func-

tion of the augmented vector ξ(t). Therefore, when ξ(t) > 0 holds, if the parameter ρ is
large enough, and if the parameter α ≤ 2 exists, one obtains

‖ξ(t)‖α ≤ ρ(t)
∫ t

t0

‖ξ(τ)‖dτ. (18)

Then, combining (6), (17), and (18), the inequality (16) is reduced as

V̇(t) ≤ ξT(t)[(A+ duBK)T P + P(A+ duBK)]ξ(t)
+ 2ξT(t)PEses(t) + 2ξT(t)PEaea(t) + 2ξT(t)PBrir(t).

(19)
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Similar to [9], by introducing ξ̄(t) =
[
ξT(t) w̄T(t)

]T with w̄(t) =
[
eT

s (t) eT
a (t) iT

r (t)
]T

and the slack matrix Ψ = ΨT, based on the membership function information and its charac-

ters, there exists
m
∑

i=1

m
∑

l=1

o
∑

j=1
gisl × (sj − hj)Ψ =

m
∑

i=1

m
∑

l=1
(

o
∑

j=1
sj −

o
∑

j=1
hj)Ψ =

m
∑

i=1

m
∑

l=1
(1− 1)Ψ = 0.

One has
m

∑
i=1

m

∑
l=1

o

∑
j=1

gislhj ξ̄
T(t)Λil j ξ̄(t)

+
m

∑
i=1

m

∑
l=1

o

∑
j=1

gisl × (sj − hj)Ψ

≤
m

∑
i=1

m

∑
l=1

gigi(x̂(t))sl ξ̄
T(t)(ηiΛili − ηiΨ + Ψ)ξ̄(t)

+
m

∑
i=1

m

∑
l=1

o

∑
j=1

gisl(hj − ηigj)ξ̄(t)(Λil j −Ψ)ξ̄T(t)

+
m

∑
i=1

m

∑
l=1

∑
i<j

gislhj × ξ̄T(t)(ηjΛil j + ηiΛjli − ηjΨ

− ηiΨ + 2Ψ)ξ̄(t).

(20)

Furthermore, using congruence properties in (10)–(12) yields

V̇(t)− J(t) < 0. (21)

If the given matrices Ξ1 = −I, Ξ2 = γ2 I, the above inequality is reduced to

V̇(t) + eT
y (t)ey(t)− γ2w̄T(t)w̄(t) < 0. (22)

When external input variable w̄(t) = 0, with the situation of eT
y (t)ey(t) > 0, that

means V̇(t) < 0, so the adaptive FTC system (8) is asymptotically stable.
When external input variable w̄(t) 6= 0, under zero initial conditions, integral from 0

to ta at both ends of the inequality (22), one obtains

∫ ta

0
J(τ)dτ > V(ta)−V(0) = V(ta) (23)

with the condition V(ta) ≥ 0 and Ξ3 = 0, theH∞ performance condition
∫ ta

0 eT
y (t)ey(t)dτ <

γ2
∫ ta

0 w̄T(t)w̄(t)dτ is obtained.
In addition, using congruence properties with Ξ1 = 0, Ξ2 = γ2 I, Ξ4 = I, and

ξ̂(t) =
[
ξT(t) eT

s (t) eT
a (t)

]T to inequality (13) yields

eT
y (t)ey(t)− [ξT(t)Pξ(t) + s−1eT

s (t)es(t)

+ a−1eT
a (t)ea(t)]

= eT
y (t)ey(t)−V(t) ≤ 0.

(24)

Furthermore, with the situation 0 ≤ t ≤ ta, one has

eT
y (ta)ey(ta)−V(ta) ≤ 0. (25)

By combining inequality (23), we can obtain the result

sup
0≤t≤ta

{eT
y (t)ey(t)} ≤ γ2

∫ ta

0
w̄T(t)w̄(t)dτ

which implies that the system (8) satisfies L2− L∞ performance. The proof is completed.
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4. Fuzzy Observer and Controller Design

The nonlinear coupling terms in Theorem 1 mean that the unknown observer and
controller gain matrices cannot be solved directly, so they need to be designed and obtained
through the following theorem obtained by some lemmas.

Theorem 2. Consider the adaptive FTC system (8). For given performance index γ, positive
parameters β1, β2, ℘, ηi, partial degradation failure coefficients dy, du, if there exist matrices
P1 > 0, P2 > 0, L̄l , K̄j, K̄rj, S, T1

2, T2
2, and Ψ̄ = Ψ̄T such that the inequalities hold with

i = 1, 2, · · · , m; l = 1, 2, · · · , m; j = 1, 2, · · · , o

Λ̂il j − Ψ̄ < 0 (26)

ηiΛ̂ili − ηiΨ̄ + Ψ̄ < 0 (27)

ηjΛ̂il j + ηiΛ̂jli − ηjΨ̄− ηiΨ̄ + 2Ψ̄ < 0 (28)

m

∑
i=1

giΓ̄ ≤ 0 (29)

where

Λ̂il j =

[
X̄0 ∗

℘X̄T
1 + SX̄2 −He{℘S}

]
, X̂0 =

[
X̄01 ∗
X̄02 Λ3

]

X̄0 =

[
X̂0 ∗

T1
2T1

3 −He{β1T1
2}+ β2

1 I

]

X̄01 =




X̄1 ∗ ∗
X̄2 X̄3 ∗

CT
r K̄T

rjB
T
i 0 He{P2 Ar}




X̄1 = He{P1 Ai − d̄y L̄lCi + BiK̄jCi}
X̄2 = −d̄y L̄lCi − dyCT

i L̄T
l , X̄3 = He{P1 Ai − dy L̄lCi}

X̄2 = S−T[duBT
i PT

1 − ST BT
i 06

]
,S = ST

X̄1 =
[
K̄jCi 0 K̄rjCr K̄jGi 03

]T ,T1
3 =

[
C G1

]

X̄02 =




GT
i K̄T

j BT
i − GT

i L̄T
l −GT

i L̄T
l 0

0 FT
i P1 0

0 0 BT
r P2




Γ̄ =

[
T2

0 ∗
T2

2T2
3 −He{β2T2

2}+ β2
2 I

]

T2
0 = −diag{P1, P1, P2, s−1 I, a−1 I},T2

3 =
[
C G2

]
.

Then, the fuzzy observer (5) and controller (7) can ensure the adaptive FTC system (8) is asymptoti-
cally stable and has the mixedH∞ and L2 − L∞ performances. Accordingly, the gains of a fuzzy
tracking controller and observer are obtained as follows

Ll = P−1
1 L̄l , Kj = S−1K̄j, Krj = S−1K̄rj. (30)
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Proof. By choosing the matrix P = diag{P1, P1, P2} to the (10)–(13) and defining the fol-
lowing matrices

T1
0 =

[
Λ̄1 ∗
Λ̄2 Λ3

]
,T1

1 = T2
1 = I

Λ̄1 =




X1 ∗ ∗
X2 X3 ∗

duCT
r KT

rjB
T
i PT

1 0 He{P2 Ar}




X1 = He{P1 Ai − d̄yP1LlCi + duP1BiKjCi}
X2 = −d̄yP1LlCi − dyCT

i LT
l PT

1 , X3 = He{P1 Ai − dyP1LlCi}

Λ̄2 =




duGT
i KT

j BT
i PT

1 − GT
i LT

l PT
1 −GT

i LT
l PT

1 0
0 FT

i PT
1 0

0 0 BT
r PT

2


.

Recalling the matrices T1
2, T1

3, T2
0, T2

2, T2
3 and introducing the scalars β1, β2. By using

Lemma 1 to (10)–(13), the condition (29) is obtained and there is
[

T1
0 ∗

T1
2T1

3 −He{β1T1
2}+ β2

1 I

]
< 0. (31)

Furthermore, recalling the matrices X2, S and defining the matrices

X0 =



[

Λ̂1 ∗
Λ̂2 Λ3

]
∗

T1
2T1

3 −He{β1T1
2}+ β2

1 I




Λ̂1 =




X̂1 ∗ ∗
X2 X3 ∗

CT
r KT

rjS
T BT

i 0 He{P2 Ar}




X̂1 = He{P1 Ai − d̄yP1LlCi + BiSKjCi}

Λ̂2 =




GT
i KT

j ST BT
i − GT

i LT
l PT

1 −GT
i LT

l PT
1 0

0 FT
i PT

1 0
0 0 BT

r PT
2




X1 = (S
[
KjCi 0 KrjCr KjGi 03

]
)T .

Then, by using the Lemma 2 to (31), by defining the matrices L̄l = P1Ll , K̄j = SKj,
K̄rj = SKrj, so that the feasibility conditions (26)–(29) are obtained. The proof is completed.

Remark 2. In actual engineering, due to different models, environmental changes, human factors,
aging and other reasons, if the same membership function is used to model the system modules
(observer and controller) and the nonlinear system, an accurate fuzzy model cannot be established.
However, IT2 fuzzy modeling is designed to model each module separately with the upper and
lower membership degree and membership function, and the method in [9] is adopted. The slack
matrix and membership function properties are introduced to obtain (20), which further describes
the mismatching and uncertainty of membership functions between system modules.

5. Simulations

A mass-spring-damping system [35,39] is selected to demonstrate the effectiveness of
the designed method. According to Newton’s law,

mẍ + Ff + Fs = u (32)
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where Ff = c̄ẋ, Fs = k̄(1 + ā2x2)x, m, and u are the friction force, hardening spring force,
mass, and control input, respectively, and c̄ > 0 and k̄ and ā are constants. Then, (32) is
rewritten as

mẍ + c̄ẋ + k̄x + k̄ā2x3 = u (33)

where x is the displacement of mass from the reference point. Defending
x(t) =

[
xT

1 (t) xT
2 (t)

]T
=
[
xT ẋT]T and b̄(t) = (−k̄ − k̄ā2x2

1(t))/m, assume x1(t) ∈
[−1, 1], m = 2 kg, c̄ = 6 N ·m/s, ā = 0.5 m−1, and k̄ ∈ [5, 8], so that b̄(t) ∈ [b̄min, b̄max] =
[−2,−1].

Then, the IT2 T–S fuzzy system matrices are

A1,2 =

[
0 1

b̄(t) − c̄
m

]
, B1 = B2 =

[
0
1
m

]
.

Based on the property of membership function α1 + α2 = 1, there has b̄(t) = α1b̄min +

α2b̄max with α1 = b̄max−b̄(t)
b̄max−b̄min

and α2 = b̄(t)−b̄min
b̄max−b̄min

. Then, with the parameter k̄, the homologous
upper and lower membership functions are

α1 = α1, α2 = α2, k̄ = 5

α1 = α1, α2 = α2, k̄ = 8.

Define the nonlinear weighting functions p
1
= r1 = q

1
= sin2(x1(t)), p1 = r1 =

q1 = 1− sin2(x1(t)), p
2
= r2 = q

2
= cos2(x1(t)), p2 = r2 = q2 = 1− cos2(x1(t)). The

membership functions of the observer and controller are selected as ϑ1 = β
1
= e−x̂2

1(t)/0.5,

ϑ1 = β1 = e−x̂2
1(t), ϑ2 = β

2
= 1− e−x̂2

1(t), ϑ2 = β2 = 1− e−x̂2
1(t)/0.5.

The corresponding matrices are

A1 =

[
0 1
−2 −3

]
, A2 =

[
0 1
−1 −3

]

B1 = B2 =

[
0

0.5

]
, E1 = E2 =

[−0.2
−0.1

]
, F1 = F2 =

[−0.5
−0.3

]

C1 = C2 =
[
0.1 0.2

]
, G1 = G2 = 0.3.

Assume that the disturbance w(t) = 0.5e−0.3t sin(0.2t); then, the corresponding math-
ematical expression of sensor fault and actuator fault are

fs(t) =





0.5, 100 ≤ t ≤ 150,
0.2, 200 ≤ t ≤ 250,
0, else.

fa(t) =





0.5, 130 ≤ t ≤ 170,
0.3, 230 ≤ t ≤ 250,
0, else.

Moreover, the matrices in the reference system are

Ar =

[
0.1 1.6
−0.3 −1

]
, Br =

[
0.2
−0.2

]

Cr =
[
−0.5 0.8

]
.

with the reference input

ir(t) =





−0.2, t ≤ 150,
0.2 cos(0.2t), 150 ≤ t ≤ 350,

0, else.
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Set the parameters η1 = 0.4, η2 = 0.7; then, the observer and controller gain matrices
are obtained as

L1 =
[
0.2597 −1.0683

]T

L2 =
[
−0.1621 0.6746

]T

K1 = −0.4141, K2 = 0.5073

Kr1 = 0.0104, Kr2 = −0.0383.

The system and observer initial values are selected as x(0) = x̂(0) = [ 0 0 ]T .
Figure 2 shows the observer’s estimation of the system states, indicating that the ob-
server has good estimation performance. In Figure 3, a comparison is added with the
method proposed in reference [13]. Initially, the system output with faults y f (t) can
be quickly achieved under the action of disturbance compensation. Next, when the
fault occurs, the tracking effect is better than the method in [13], and the reference
output yr(t) can be tracked as soon as the fault ends. Figures 3 and 4 illustrate the
tracking effect of the system output on the reference output. It can be seen that the
system can still achieve the tracking effect even under the influence of external dis-
turbances and faults. Figure 5 represents the control signals that vary with the faults

and external inputs. The ratio history curves of
√

sup
0≤t≤ta

{eT
y (t)ey(t)}/

∫ ta
0 w̄T(τ)w̄(τ)dτ

and
√∫ ta

0 eT
y (τ)ey(τ)dτ/

∫ ta
0 w̄T(τ)w̄(τ)dτ (i.e., the trajectories of L2 − L∞ andH∞ perfor-

mance) are shown in Figures 6 and 7, which means, under the influence of disturbance w(t)
and faults ( fs(t) and fa(t)), the ratio curve can quickly tends to stabilize, and the maximum
value 0.0166 of L2 − L∞ performance and 0.0480 of H∞ performance are lower than the
performance index γ = 1. To sum up, these simulation results demonstrate that the FTC
method is effective and can ensure asymptotic stability and desired mixedH∞ and L2− L∞
performances for the system (8).
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0.1
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-0.05

0

Figure 2. System states x(t) and observer states x̂(t).
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Figure 3. System output with faults y f (t) and reference output yr(t).
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Figure 4. System tracking error ey(t).
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Figure 5. Adaptive control signal u(t).
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Figure 6. The trajectory of L2 − L∞ performance.
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Figure 7. The trajectory ofH∞ performance.

In order to further verify the tracking effect of the system, the reference input is
changed to ir(t) = 0.2 sin(0.3t). Compared with the results without the adaptive sensor
fault compensation term in [13], we can see from Figure 8 that the system output con-
taining faults has a good tracking effect following the reference output, which shows the
effectiveness of the consequence.

Comparative Explanations: Compared with the design schemes of adaptive FTC for
actuator faults in [11,13] and overcompensation for external disturbances, that is, com-
pensation item

∫ t
t0
‖ξ(τ)‖dτ will always exist after the disturbance and fault disappear.

Therefore, this paper designs an adaptive compensation scalar ρ(t) based on this, which
avoids channel congestion caused by too much data and saves communication resources
under the condition of limited bandwidth. Moreover, a more practical application scenario
of FTC is considered. The fault cases under consideration include not only partial degen-
erate faults of multiplicative type but also stuck fault of additive type. Both the observer
and controller of the joint design meet the mixedH∞ and L2 − L∞ performances, and the
conservative design is reduced by introducing appropriate Lemmas 1 and 2.

257



Mathematics 2024, 12, 3682

0 50 100 150 200 250 300 350 400 450 500

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 8. System output with faults y f (t) and reference output yr(t).

6. Conclusions

In this paper, the tracking problem of mixed H∞ and L2 − L∞ adaptive FTC for
continuous-time IT2FSs is studied. The IT2 fuzzy model was used to figure out the problem
of mismatch and uncertainty of membership functions between system modules, while the
fuzzy observer and adaptive fault estimation functions were used to estimate the system
state and fault signals, in order for the adaptive tracking controller to realize the tracking
control of the reference output under disturbance and fault conditions. Both the jointly
designed observer and controller can satisfy the mixed H∞ and L2 − L∞ performances
while ensuring the asymptotic stability of the system. In addition, the designed adaptive
control law can achieve the purpose of dynamic compensation for disturbances and faults,
and the conservatism of the observer and controller was further reduced by the slack
parameters in the lemmas. Finally, a mass-spring-damping system effectively validated
the design method. Our future work will improve the adaptive control algorithm on this
basis or adopt an active fault tolerance scheme to further improve the FTC capability of
the system.
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