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heads the Centre for Computational and Mathematical Modelling, Analysis and Applications. His

research interests lie in mathematical and computational modeling and its applications. He is a Level

2 National Researcher of the National System of Researchers in Mexico and is an IEEE Senior Member.

Selene L. Cardenas-Maciel

Selene L. Cardenas-Maciel holds the degrees of Computer Systems Engineer and the MSc in

Computer Sciences from the Tijuana Institute of Technology (Instituto Tecnológico de Tijuana) in

2002 and 2005, respectively; the Doctor of Science degree from the Baja California’s Autonomous

University (Universidad Autónoma de Baja California) in 2015; and is Mathematician from the

Mexican Open and Distance University (Universidad Abierta y a Distancia de México) in 2015. She
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of Mexico (Tecnológico Nacional de México). Her research interests are in mathematical and

computational modeling and its applications. She is a Level 1 National Researcher of the National

System of Researchers in Mexico.

Jorge A. Lopez-Renteria
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1. Introduction

In this Editorial, we present “Advances in Dynamical Systems and Control”, a Special
Issue of Axioms. This Special Issue comprises 10 articles contributing frontier research in
the areas of dynamical systems and control, both in theoretical and application advances.
The study of dynamical systems and control is crucial for advancing engineering. It
encompasses a wide range of topics, including chaos and bifurcations, complex systems,
fractional difference and differential equations, fuzzy control and systems, linear and non-
linear control systems, mathematical education in science and engineering, matrix and
spectral analysis, modeling, stability and robust stability, as well as the stability of pseudo-
polynomials and quasi-polynomials. Therefore, this Special Issue aims to address issues
pertaining to the above fields through articles concerned with a variety of related topics.

2. Overview of the Published Papers

In contribution 1, entitled “Chaotic Steady States of the Reinartz Oscillator: Mathe-
matical Evidence and Experimental Confirmation”, the Reinartz sinusoidal oscillator is
analyzed to study its chaotic steady states and solve the chaos and hyperchaos localization.
The oscillator is considered in its conventional topology. The results show that a pair of pos-
itive Lyapunov exponents are sufficient to verify that physically reasonable circuit values
yield robust dynamical behavior. All the necessary fingerprints of structural stable chaos
are proven via the numerical results, and the dynamics are compared with the strange
attractor captured as oscilloscope screenshots.

In contribution 2, entitled “Fractal Fractional Derivative Models for Simulating Chem-
ical Degradation in a Bioreactor”, a three-equation differential mathematical model is
presented to describe the degradation of a phenol and p-cresol combination in a continually
agitated bioreactor. The authors conducted a stability analysis of the model’s equilibrium
points and used three alternative kernels to analyze the model with fractal–fractional
derivatives, exploring the effects of the fractal size and fractional order. They developed
highly efficient numerical techniques for the concentration of biomass, phenol, and p-cresol.
To complete the study, numerical simulations were used to illustrate the accuracy of the
suggested method.

In contribution 3, entitled “On Population Models with Delays and Dependence
on Past Values”, the authors present a study on methods for adding dependence onto
past values in population dynamics models. The studied methods include the following:
(i) populations at earlier time units, (ii) the use of non-local operators in the model descrip-

Axioms 2025, 14, 326 https://doi.org/10.3390/axioms140503261
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tions, and (iii) the introduction of exposed population groups. The authors conclude that
modeling assumptions should be clearly stated when using fractional derivatives.

In contribution 4, entitled “Simpson’s Variational Integrator for Systems with
Quadratic Lagrangians”, the authors proposed a variational symplectic integrator, which is
then compared with the Newmark’s variational integrator. The proposed scheme is im-
plicit, symplectic, and conditionally stable. The precision and convergence of the proposed
integrator are illustrated via simulations.

In contribution 5, entitled “The Existence of Li–Yorke Chaos in a Discrete-Time Gly-
colytic Oscillator Model”, the existence of chaos is proven by finding a snap-back repeller,
using Marotto’s theorem. The study was performed for an autonomous discrete-time
glycolytic oscillator model, which exhibits chaos in the Li-Yorke sense.

In contribution 6, entitled “Dynamical Behaviors of Stochastic SIS Epidemic Model
with Ornstein–Uhlenbeck Process”, for an incomplete inoculation stochastic SIS epidemic
model perturbed by the Ornstein–Uhlenbeck and Brownian motion, the existence of a
unique global solution is established and control conditions for extinction are derived. The
authors established sufficient conditions for the existence of stationary distribution via two
Lyapunov functions and the ergodicity of the Ornstein–Uhlenbeck process.

Contribution 7, entitled “Robust State Feedback Control with D-Admissible Assurance
for Uncertain Discrete Singular Systems”, addresses the state feedback control associated
with D-admissible assurance for discrete singular systems subjected to parameter uncer-
tainties in both the difference term and system matrices. A refined analysis criterion of
D-admissible assurance is reported, where the distinct form embraces multiple slack ma-
trices and reduces linear matrix inequality (LMI) constraints, which may be beneficial for
reducing conservatism in admissibility analysis.

In contribution 8, entitled “Parameters Determination via Fuzzy Inference Systems for
the Logistic Populations Growth Model”, the problem of determining parameters for the
logistic population growth model is addressed. Unlike traditional schemes, the proposed
approach incorporates ecosystem variables as inputs into a fuzzy inference system designed
to capture the inherent uncertainties of population dynamics. As the resulting model uses
fuzzy numbers as coefficients, it is represented by a fuzzy differential equation.

In contribution 9, entitled “Dynamics of a Fractional-Order Eco-Epidemiological
Model with Two Disease Strains in a Predator Population Incorporating Harvesting”, the
authors formulated and analyzed a fractional-order eco-epidemical model, which considers
two disease strains in a predator population. They examined the positivity, boundedness,
existence, and uniqueness of the solutions. In the model’s formulation, the population is
considered to comprise three groups: susceptible predators infected by the first disease,
predators infected by the second disease, and a prey population.

Contribution 10, entitled “Exponential Stability for a Degenerate/Singular Beam-Type
Equation in Non-Divergence Form”, presents a stability analysis for a degenerate/singular
beam equation in non-divergence form. The authors employed energy methods to derive
stability conditions for the problem under consideration.

Funding: This research was funded by Tecnologico Nacional de Mexico grants number 21808.25-P
and 22705.25-P. Nohe R. Cazarez-Castro, specially thanks to Universidad Michoacana de San Nicolas
de Hidalgo for the facilities granted to carry out a postdoctoral stay. The APC was funded by
MDPI-Axioms.

Conflicts of Interest: The authors declare no conflicts of interest.
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Article

Chaotic Steady States of the Reinartz Oscillator: Mathematical
Evidence and Experimental Confirmation

Jiri Petrzela

Department of Radio Electronics, Faculty of Electrical Engineering and Communications, Brno University of
Technology, Technicka 12, 616 00 Brno, Czech Republic; petrzela@vut.cz; Tel.: +420-541146561

Abstract: This paper contributes to the problem of chaos and hyperchaos localization in the funda-
mental structure of analog building blocks dedicated to single-tone harmonic signal generation. This
time, the known Reinartz sinusoidal oscillator is addressed, considering its conventional topology,
both via numerical analysis and experiments using a flow-equivalent lumped electronic circuit. It is
shown that physically reasonable values of circuit parameters can result in robust dynamical behavior
characterized by a pair of positive Lyapunov exponents. Mandatory numerical results prove that
discovered strange attractors exhibit all necessary fingerprints of structurally stable chaos. The new
“chaotic” parameters are closely related to the standard operation of the investigated analog functional
block. A few interestingly shaped, strange attractors have been captured as oscilloscope screenshots.

Keywords: Reinartz oscillator; generalized transistor; two-port admittance parameters; numerical
analysis; hyperchaos; chaos; strange attractors

MSC: 37M05

1. Introduction

Irregular behavior associated with analog electronic systems is caused by serious
problems that have been intensively studied by engineers and researchers in the last three
decades. From the viewpoint of typical properties, long-term unpredictability, broad-band
frequency spectrum, and dense strange attractors are the fundamental fingerprints of
chaos. Once upon a time, this kind of repeatable dynamical motion was misinterpreted as
phase noise, because similar apparent properties are observed in the time and frequency
domains. From the application point of view, chaotic tangles have been reported during the
analysis of seemingly linear analog and digital [1] frequency filters, phase-locked loops [2],
amplifiers working under different operational regimes [3], power converters [4], switched
capacitor circuits [5], modulators and demodulators, mixers, very simple multi-state static
memory cells [6], logic gates [7], random number generators [8], and many others. This
very short and surely incomplete list implies that both autonomous and driven dynamical
systems are subject to chaotic behavior; only the presence of at least one nonlinearity
is mandatory.

Since the practical designs of sinusoidal oscillators require a mechanism for amplitude
stabilization, these common building blocks should be treated as nonlinear. Therefore, the
existence of chaos within circuit models as well as practical realizations is not a surprise.
The chaotic motion is often excited by the unstable fixed points, i.e., generated strange orbits,
which are members of the so-called self-exited attractors. Because of the simultaneous acting
exponential divergency of state space neighboring orbits and the attractor boundedness
within a finite state space volume, the minimum number of working accumulation elements
is three, regardless of the combination of circuit elements. The famous Colpitts oscillator
probably represents the oldest topology where chaos has been confirmed, both numerically
and experimentally [9]. This kind of circuit modified to operate in the higher frequency

Axioms 2023, 12, 1101. https://doi.org/10.3390/axioms12121101 https://www.mdpi.com/journal/axioms4
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band is addressed in paper [10]. It is shown that the parasitic base-emitter capacitance of
a bipolar transistor should be a working accumulation element as well. The basic circuit
structure of Hartley oscillators and chaos evolution are discussed in the framework of
papers [11,12]. For nonlinear sinusoidal oscillators that have four accumulation elements,
both chaos and hyperchaos represent a possible time-domain solution, as mentioned in
work [13]. Also, RC feedback oscillators have been studied with respect to the generation
of robust chaotic waveforms. The existence of such steady states has been observed in
Wien bridge-based feedback [14], phase shift type of feedback loop [15], and atypical but
very simple feedback, as suggested in paper [16]. Interesting lumped chaotic oscillators
having one or two transistors and packs of surrounding passive components can be found
in research paper [17]. There, authors use a heuristic approach to develop many canonical
circuits with experimentally measurable, structurally stable, chaotic self-oscillations. It
is shown that the natural nonlinear features of used transistors can perform folding and
stretching of vector field quite easily.

This paper is organized as follows: The next section describes a path leading to a
mathematical model dedicated to numerical analysis, which is the content of the third
paper section. The fourth part brings experimental verification, i.e., the construction of
a flow-equivalent dynamical system based on the following two different but universal
methods. Commercially available active devices are used for the realization of both the
linear and nonlinear parts of the vector field. Captured oscilloscope screenshots prove that
the observed chaotic behavior is neither a numerical artifact nor a long transient.

2. Mathematical Model of Reinartz Oscillator

Figure 1a illustrates a circuit topology that is ready for harmonic signal generation,
namely, the well-known Reinartz oscillator. This circuit typically produces low-distortion
sinusoidal waveforms within a frequency band of about hundreds of kHz, typically up to
units of MHz. Of course, the topology can differ slightly for specific applications.

 
 

(a) (b) 

Figure 1. Reinartz sinusoidal oscillator: (a) practical configuration, and (b) simplified calculation
schematic. Numerical values of passive elements are not provided.

In fact, all resistors are used to set up a bias point of a bipolar transistor, while
capacitors C1, C2, and C3 serve for filtering, DC blocking, and temperature drift stabilization
of a bias point. Thus, an equivalent circuit for analysis in an operational frequency band
can be obtained by shorting the capacitors mentioned above, causing the removal of all
resistors. The hypothetical bias point of a generic bipolar transistor will be represented by
a conventional two-port network described using four frequency-independent admittance
parameters. The input and output admittances will be exclusively positive real numbers.
Moreover, we will consider odd-symmetrical cubic polynomial forward transconductance
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and zero backward transconductance. Investigated autonomous lumped electronic system
exploits inductively coupled emitter and collector windings to the main tank circuit formed
by passive components L3 and C. However, to avoid unwanted parasitic oscillations,
inductors L1 and L2 are not coupled to each other.

Of course, small signal models of bipolar transistors allow us to perform a linear
analysis, leading to symbolic formulas for oscillation frequency in the case that the electronic
system works just on the boundary of stability. Generally, the characteristic equation will
be a fourth-order polynomial with relatively complicated nonzero coefficients. However,
a straightforward analysis for a complex frequency jω combined with a few justified
simplifications leads to the formula for oscillation frequency fosc =

(
2π

√
L3C

)−1.
In linear dynamical systems, chaotic behavior is out of the question. Nevertheless,

a bipolar transistor is a nonlinear active element if a large signal must be processed. The
dynamical behavior of the circuit given in Figure 1b is uniquely determined by following
the set of first-order ordinary differential equations (ODEs)

d
dt v3 = − i3

C , d
dt i1 = 1

L1

[
M13 · i3 − i1

y22
− i1−i2

y11
+ 1

y22
y21

(
i1−i2
y11

)]
,

d
dt i2 = 1

L2

[
i1−i2
y11

+ M23 · i3
]
, d

dt i3 = 1
L3
(v3 + M13 · i1 + M23 · i2),

(1)

where four-dimensional state space is formed by the vector of state variables x = (v3, i1, i2, i3)T.
Note that voltage-controlled current-source y12(v) = 0 S and forward trans-conductance

y21(v) will be a scalar nonlinear function of the form

y21(v) = α · v3 + β · v, (2)

and symbols M13 and M23 represent the mutual inductances of three-wind loss-less trans-
formers described by three linear differential equations Z·I = V (symmetry of impedance
matrix Z along main diagonal indicates that the transformer is a reciprocal element)⎛⎝ L1

d
dt 0 −M13

d
dt

0 L2
d
dt −M23

d
dt

−M13
d
dt −M23

d
dt L3

d
dt

⎞⎠ ·
⎛⎝i1

i2
i3

⎞⎠ =

⎛⎝v1
v2
v3

⎞⎠. (3)

The shape of the cubic function (2) reflects the fact that the linear part of iC vs. vBE
transfer characteristic is limited on one side by the region where the transistor is closed,
and the other side is smoothly trimmed by the region of maximal output current.

The localization of fixed points associated with the dynamical system (1) in conjunction
with (2) is very important. Regardless of the values of the system parameters, the origin of
state space is always the only equilibrium. The search-for-chaos algorithm that allows us to
find chaos within the Reinartz oscillator is focused on the self-excited strange attractors. In
this case, the close neighborhood of origin will be unstable (saddle-spiral local geometry
�2⊕�2 is preferred) for all combinations of parameters. An absence of offset and quadratic
terms in formula (2) leads to the symmetry of a vector field with respect to the origin. Also,
forward trans-conductance y21(v) is of saturation type, meaning that α < 0 ˆ β > 0. This
kind of output–input characteristic of the active element de facto represents the linear
transformation of coordinates between a circuit-oriented model and a mathematical model.
In other words, the bias point of a bipolar transistor is initially centered within the linear
part of the iC = f (vBE) curve. Then, this point is shifted toward the origin of state space.
The dynamical system (1) together with (2) is invariant under full linear change of the
coordinates v3→–v3, i1→–i1, i2→–i2, and i3→–i3. Simultaneously, both M13 and M23 are
the subject of physical realization constraints and will not be larger than the value of 0.6 H.

Several recent papers, for example, [18–22], utilize a multi-objective fitness function
to find a robust chaotic motion within the lower-order deterministic dynamical systems.
The proposed methods are often general, such that both autonomous and driven systems
can be investigated. In our case, the same approach as proposed in [18] has been adopted,
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i.e., a three-step calculation toward weighted cost function. The first step covers a simple
check of the stability of the fixed point located at the origin. In this stage, all sets of
parameters leading to unwanted local geometry near the state space origin can be omitted
early, significantly saving time demands for optimization. The second test is a calculation of
attractor boundedness and dissipation of the flow. If passed, the full spectrum of Lyapunov
exponents (LE) is established, and the Kaplan–Yorke dimension of the state space attractor
is calculated. For chaos, the first LE needs to be positive, and the sum of all LEs must be
negative. For hyperchaos, there is a pair of two significantly positive Les, while the sum of
all LEs stands negative. Within each optimization step, the numerical values of all system
parameters (defined up to two decimal places) are known. Thus, corresponding eigenvalues
associated with a fixed point at the origin can be easily obtained, and an optimal time
step size for numerical calculations can be determined and updated accordingly; check
paper [23] for more details. Note that the calculations of individual cost functions are
independent; the sets of system parameters are exclusive input variables. Therefore, a
search-for-chaos routine is a good candidate for multi-core parallel processing.

Thanks to impedance and time scaling, working accumulation elements can be kept
in unity, i.e., L3 = 1 H and C = 1 F, such that the fundamental frequency component equals
159 mHz. The common operational regime deals with the ratio L1/L2→10. In an upcoming
analysis, we suppose unity inductances L1 = L2 = 1 H to unify the time constants associated
with individual differential equations. From the viewpoint of watched dynamical system
properties, the existence of long-term structurally stable strange attractors is conditioned
by the flow dissipation, that is

x ∈ φ(t) : div(F) = ∂
∂v3

F1 +
∂

∂i1
F2 +

∂
∂i2

F3 +
∂

∂i3
F4 =

1
L1·y3

11·y22

[
3 · α · (i21 + i22

)− 6 · α · i1 · i2 +y2
11(β − y22 − y11)

]− 1
L2·y11

,
(4)

where φ(t) represents a state orbit, F means a four-dimensional vector field, and Fk is the
right-hand side of k-th ODE. In both cases of investigated chaotic systems (will be revealed
below), this function stands negative (in average) for complete ranges of state variables
i1 and i2 of a fully evolved strange attractor. Another key property of the final dynamical
system is the existence of an unstable fixed point located at the origin. This requirement
means that the characteristic polynomial

λ4 + 2·y11+y22−β
y11·y22

λ3 +
y2

11·y2
22(1−M2

13−M2
23)+y11(y22−β)−y22(y22−β)

y2
11·y2

22
λ2+

y11(2−M2
13−M2

23)−β+y22+M2
23(β+y22)−M13·M23(2·y22−β)

y11·y22
λ +

y2
11+y11·y22−y2

22+β(y22−y11)

y2
11·y2

22
= 0,

(5)

has at least one root with positive real parts. Assume a limited case of zero coupling
between windings, i.e., M13 = 0 H and M23 = 0 H. Solving for the roots of polynomial (5)
gives us information about the oscillating solution of isolated L3C tanks and the stability of
the rest of the circuit, namely

λ1,2 = ±j, λ3,4 = ±
√
(β − y22) · (β − 5 · y22)

2 · y11 · y22
− 2 · y2

11 · y22 + y11 · y2
22 − β · y11 · y22

2 · y2
11 · y2

22
. (6)

The eigenvalues λ3,4 can be of any conceivable configuration depending on the rela-
tions between y11, y22, and β. This includes eigenvalues that are both real and negative, real
with opposite signs, real eigenvalues with positive parts, and complex conjugated numbers
with either positive or negative real parts. Obviously, both the input and output admittance
of transistors cannot be zero. Important bifurcation planes are given by β = y22 and β = 5·y22
since the third and fourth eigenvalues form a complex conjugated pair between these lines.
It is worth mentioning that each change in the vector field geometry near the state space
origin is followed by a dramatic change in the global system dynamics. During intensive
numerical analysis (especially using the searching for chaos routine), it finally turns out

7
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that at least one stable manifold associated with state space origin is needed for chaos
and/or hyperchaos evolution. Of course, the existence of unpredictable behavior in the
case of full repelor at the origin of state space is not definitely excluded, and it can be
considered a possible topic for future investigations.

In the upcoming section of this paper, the results originating from the application of
such a brute-force numerical search algorithm applied on basic AC-ready circuit topology of
a Reinartz oscillator are provided. Proposed optimization/search routine was implemented
in Matlab and can be adopted (with small adaptation changes) for any type of finite-
order dynamical system, including those with fractional-order derivations of some state
variable. However, the huge number of required numerical operations makes it usable
only if appropriate computing power is available. In the case of this work, a workstation
composed of i9-10900K (3.7 GHz) and 128 GB RAM was utilized.

3. Numerical Analysis and Results

A mathematical model dedicated to numerical analysis and optimization will be
considered dimensionless and expressed in the form of system (1) with nonlinear features
of transistor (2), and with {M13, M23, y11, y22, α, β} being a group of unknowns. Within the
optimization procedure, the value of each unknown is encoded into a binary expression;
the sought parameters can take non-extreme, physically reasonable discrete values only.
Two decimal places represent a smooth-enough resolution.

Two distinct sets of parameters that lead to the topologically similar, robust, and
chaotic behavior were discovered. Concretely, the first set (case I) is

M13 = 0.6H, M23 = 0.1H, y11 = 1S, y22 = 1S, α = −8A · V−3, β = 10S. (7)

while the second set (case II) is

M13 = 0.52H, M23 = 0.22H, y11 = 2S, y22 = 4S, α = −8A · V−3, β = 18S. (8)

Figure 2 shows both the geometrical shape of a chaotic attractor and the sensitivity
dependance on the tiny changes in the initial conditions. For each case mentioned above,
a group of 104 initial conditions was generated randomly around the state space origin
with a normal distribution and standard deviation 10–2 (red dots). Then, the final states
after short-term (tmax = 10 s, purple points), average-term (tmax = 50 s, green points), and
long-term (tmax = 100 s, blue points) evolution are stored and visualized. For all simulations,
the fourth-order Runge–Kutta integration method was utilized with a fixed time step of
100 μs.

Figure 3 contains interesting numerical results concerning the Reinartz oscillator, case I.
Firstly, plots showing the divergency of the vector field along a chaotic orbit can be found
there. A typical strange attractor (for β = 10 S and β = 11 S) is located within the state space
volume with very small positive values and a negative value close to zero. Figure 3 also
provides the distribution of dynamic energy along the trajectory associated with parameter
set (7). Note that all mutual inductances M13 and M23 for dynamical system case I and
II represent tight coupling between primary and secondary windings. For both cases
of chaotic systems, the origin is an unstable equilibrium point, as monitored frequently
during the search-for-chaos optimization procedure. For parameter set (7), zero equilibrium
exhibits a stable two-dimensional manifold, and the corresponding eigenvalues are

λ1 = 6.904, λ2 = 0.149, λ3,4 = −0.026 ± j0.985. (9)

In comparison with these results, parameter set (8) leads to the following eigenvalues:

λ1,2 = −0.089 ± j0.915, λ3,4 = 0.714 ± j0.285. (10)

Because of different vector field geometry near the 4D state space origin, self-excited
chaotic attractors discovered by searching routine can be marked as distinct types.

8
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Figure 2. Sensitivity analysis of chaotified Reinartz oscillator plotted in different state space plane
projections, case I: (a) v3 vs. i1, (b) v3 vs. i3, (c) i2 vs. i3, (d) i1 vs. i2, and (e) v3 vs. i2. For parameter
set case II: (f) v3 vs. i3 and (g) i1 vs. i2. Color representation of time evolution: initial states (red dots),
short-term (red), medium-term (purple), and long-term (blue).
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Figure 3. Snippets of numerical analysis of dynamical system case I. Divergence of the vector field
including color legend for the following: (a) β = 10 S and, (b) β = 11 S. Plane projections showing
dynamic energy distribution Ed over the state space plane fragments: (c) i1 vs. i3, (d) v3 vs. i3, and
(e) i1 vs. i2. Color legend: (f) numerical values for energy plots.
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Figure 4 provides a closer insight into how regions of chaos (of course, only a small
fragment is addressed) within a hyperspace of system parameters look. These are high-
resolution plots with a total number of calculated values of 50 × 50 = 2500 in each square.
Transitions between chaotic and hyperchaotic behavior do not follow conventional rules
such as changes in eigenvalues or the stability index of zero equilibrium; see paper [24] for
more details. Little can be known about these routes, only that they are rare and cannot be
described by a closed-form mathematical formula.

 

Figure 4. Fragments of rainbow-scaled contour plot of the largest LE as a two-dimensional function
of biasing point of bipolar transistor: (a) input vs. output admittance, (b) input admittance vs. linear
part of forward trans-admittance, (c) output admittance vs. linear part of forward trans-admittance.
Used resolution deals with uniform parameter step 10–3 for each plot.
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Figure 5 provides a continuation of numerical results, showing time-domain analysis
results for the Reinartz oscillator (1) coupled with a parameter set (7). The bifurcation
diagram reveals a sudden transition from periodic to chaotic motion and several narrow
periodic windows for continuous change in the parameter β from 9.5 S up to 10.9 S. This
bifurcation sequence ends up with an unbounded solution. For all numerical integrations,
the initial conditions were chosen as small disturbances (100 mV) of capacitor voltage.

 

Figure 5. Plane projections reflecting the state changes of parallel resonant tank vC vs. i3: (a) β = 9.5 S,
(b) β = 9.7 S, (c) β = 10 S, and (d) β = 10.9 S. Each plot has horizontal axis range vC ∈ (–8, 8) V and vertical
scale i3 ∈ (–8, 8) A. Subplot (e) provides half-return map calculated for plane vC = 0 V, captured for state
variable i3 and in range β ∈ (9.6, 10.9) S with step 1 mS. Subplot (f) represents visualization of vC and i3
in time domain; subplot (g) shows corresponding frequency spectrum. Three-dimensional projections
showing changes of attractors for magnetic coupling: (h) M13 = 0 H and M23 = 0 H, (i) M13 = 0.3 H and
M23 = 0 H, (j) M13 = 0.1 H and M23 = 0.1 H, (k) M13 = 0.5 H and M23 = 0.1 H.
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4. Design of Chaotic Oscillators and Experiments

Since fully analog circuit-aided solutions of ODE sets are free of numerical errors, a
truly chaotic steady state can be distinguished from a long chaotic transient or numerical
artifact. For further reading about the credibility aspects of research focused on chaotic
dynamical systems, papers [25,26] are recommended.

Modeling nonlinear dynamics using analog circuits is a well-established task, with
multiple correct solutions achieved by the following different approaches. The main goal is
to reach one-to-one correspondence between the behavior of the mathematical and circuit
models of the dynamical system. The complete framework on how to proceed is outlined
in the comprehensive review paper [27] for voltage-mode networks and in paper [28] for
current-mode operation regimes.

In the upcoming subsections, two universal methods dedicated to nonlinear circuit
synthesis of flow-equivalent, case I, chaotic Reinartz oscillator are given, including the
numerical values of all passive components. By considering the dynamical system (1) with
nonlinearity (2) and the discovered parameters (7), the normalized (with respect to time
and impedance) set of the ODE becomes

d
dt v1 = −v4, d

dt v2 = 0.6 · v4 − 2 · v2 + v3 − 8 · (v2 − v3) + 10 · (v2 − v3)
3, d

dt v3 = v2 − v3 + 0.1 · v4,
d
dt v4 = v1 + 0.6 · v2 + 0.1 · v3,

(11)

where x = (v1, v2, v3, v4)T is a new state vector composed of node voltages only. Parameters
α and β need to be separated because they will be considered the variables. The circuit
design of system case II is completely analogical; no changes in the circuit element’s inter-
connections are necessary. It is worth nothing that the Orcad Pspice circuit simulations lead
to the same results as real experimental observations captured by an oscilloscope. Hence,
these results are not provided.

4.1. Analog Multiplier-Based Design

For the generation of any type of attractors, continuous offset voltage applied to the
inputs of operational amplifier-based ideal integrators can be problematic simply because
of the output saturation. This event can also be caused by the intrinsic nonideal offset
voltage of an operational amplifier. In such cases, the classical approach, where the right-
hand side of each equation of system (1) represents a sum of the currents flowing through
a grounded capacitor, will probably be the better design approach. To minimize the final
number of active elements, the linear part of the vector field should be decomposed: in part
Ypassive, which contains grounded and passive resistors and in part Yactive where individual
entries are implemented using active transadmittance cells. Then, the final matrix equations
will be

d
dt
(
C1 C2 C3 C4

)T
=

(
Ypassive + Yactive

) · V + f(V), (12)

where V is a vector of the main node voltages and f comprises nonlinear functions. For the
dynamical system (11), the matrices and vectors mentioned above can be of the form

Ypassive =

⎛⎜⎜⎝
0 0 0 0
0 −9.6 1 0.6
0 1 −1.1 0.1
0 0.6 0.1 −0.7

⎞⎟⎟⎠, Yactive =

⎛⎜⎜⎝
0 0 0 −1
0 7.6 0 0
0 0 0.1 0
1 0 0 0.7

⎞⎟⎟⎠, f =

⎛⎜⎜⎝
0

−8 · (v2 − v3) + 10 · (v2 − v3)
3

0
0

⎞⎟⎟⎠. (13)

A corresponding chaotic oscillator is provided in Figure 6. There, resistors and
capacitors have fixed values derived from the basic time constants of integrators chosen
quite large, namely τ = Rnom·C = 104·10–8 = 100 μs. The corresponding sets of ODEs are

C1
d
dt v1 = − K2

R2
v4, C2

d
dt v2 =

(
K8
R12

− 1
R3

− 1
R5

− 1
R8

)
v2 +

1
R3

v3 +
1

R5
v

4
+ 1

R8
(v2 − v3)− K7

R11
(v2 − v3)

3,

C3
d
dt v3 = 1

R3
v2 +

(
K4
R7

− 1
R3

− 1
R4

)
v3 +

1
R4

v4, C4
d
dt v4 = K1

R1
v1 +

1
R5

v2 +
1

R4
v3 +

(
K3
R6

− 1
R4

− 1
R5

)
v4.

(14)
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Figure 6. Fully analog circuit realization of equivalent chaotic Reinartz oscillator, system case I; only
four-quadrant analog multipliers AD633 are used.

For derivation of these ODEs, an ideal transfer function of analog multipliers has
been used, i.e., VW = K·(VX1–VX2)·(VY1–VY2) + VZ, where K = 0.1 is an internally trimmed
constant. Obviously, entries of the admittance matrix Yactive can be changed via external
DC voltage; in our design case, we chose default 1 V for simplicity. The chaotic system
working in a lower frequency band is well suited for a breadboard realization. Resistors
R9 and R10 do not appear in (14) since these serve only to compensate for constant K6.
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Similarly, components R13 and R14 are dedicated to the compensation of constant K5.
To continuously trace some routing-to-chaos bifurcation scenarios, a nonlinear shape of
forward transconductance is supposed to be independently variable. System parameter β
can be changed via variable resistor R8, and resistor R11 directly adjusts the cubic term of
polynomial (2), parameter α. The actual value of R12 needs to be adjusted accordingly to
R8. Several examples of oscilloscope screenshots captured during experimental verification
of this novel chaotic oscillator are provided in Figure 7.

 

Figure 7. The chaotic Reinartz oscillator, system case I, constructed using analog multipliers only,
including a few examples of captured oscilloscope screenshots.

4.2. Integrator Block Schematic-Based Design

Obviously, a design concept based strictly on analog multiplies requires a total of
eight integrated circuits. As we will see, the total number of active elements is twofold
if compared to the design approach based on the integrator block schematic. A chaotic
oscillator equivalent to the same Reinartz oscillator was successfully implemented and
verified using four integrated circuits only (a pair of voltage feedback operational am-
plifiers TL084, two analog multipliers AD633). Because of the zero mean of generated
chaotic waveforms (full symmetry of the desired strange attractors), integrator-based circuit
synthesis is possible. The final circuit is shown in Figure 8. Its behavior is determined by
the following ODE:

C1
d
dt v1 = − v4

R6
, C2

d
dt v2 = − v2

R4
+ R11v3

R7R10
− v4

R5
+ R21

R22

(
v3

R17
− R11

R10
· v2

R16

)
− R21

R18

(
v3

R17
− R11

R10
· v2

R16

)3
,

C3
d
dt v3 = R14v2

R12R15
− v3

R13
− v4

R8
, C4

d
dt v4 = R2v1

R1R3
+ v2

R23
− v3

R9
.

(15)

Resistors R19 and R20 do not take part in this set of equations since these components
serve to annulate coefficient K1. Systems (15) and (11) are related via a simple linear
transformation of state space coordinates v1→–v1 and –v4→–v4. A few pieces of true
experimental verification of the designed chaotic oscillator are provided in Figures 9 and 10.
In the latter case, a sequence of limit cycles that is shortly interrupted by a chaotic attractor
is demonstrated for continuously increased values of parameter β.
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Figure 8. Fully analog circuit realization of equivalent chaotic Reinartz oscillator, system case I,
implementation based on integrator block schematic.
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Figure 9. The chaotic Reinartz oscillator, system case I, integrator block schematic design method,
with few measurement outputs.

 

Figure 10. The chaotic Reinartz oscillator, dynamical system case I, integrator block-based schematic
design method, and different limit cycles with captured intermittent chaos.
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5. Discussion

The main aim and importance of this work is to demonstrate the existence of robust,
non-predictable waveforms coming from a significantly simplified mathematical model
of a conventional LC oscillator. The investigated mathematical model includes only a
single scalar nonlinear function intrinsic to the bipolar transistor instead of dealing with
an enormously complicated large-signal global model of this three-terminal device. The
presented results can motivate other design engineers and mathematicians to follow this
research and extend it by including the following:

1. Findings from the area of non-integer order dynamics associated with individual
accumulation elements [29,30].

2. Discoveries from higher-order dynamics that originate in considering parasitic prop-
erties of transistors [31].

3. A description of circuit behavior under nonlinear magnetic coupling that is closer to
practical reality [32].

6. Conclusions

The simplified topology of the well-known Reinartz circuit can produce either chaotic
or weakly hyperchaotic self-oscillations, even under conditions of linear magnetic cou-
pling coefficients. Proof is demonstrated within this study on both a numerical and an
experimental basis. A bipolar transistor is modeled by two-port admittance parameters
with the assumption of neutralized backward signal transmission. The bias point of the
transistor is derived from a class A amplifier. Although biasing is hypothetical, parameter
sets that result in observed chaotic steady states represent physically reasonable quantities
(after suitable time and impedance rescaling) not far away from common numerical values.
In accordance with explicit model vs. circuit parameter comparison and visual observa-
tion, very good agreement between measurement results and theoretical assumptions has
been achieved.
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Abstract: A three-differential-equation mathematical model is presented for the degradation of
phenol and p-cresol combination in a bioreactor that is continually agitated. The stability analysis
of the model’s equilibrium points, as established by the study, is covered. Additionally, we used
three alternative kernels to analyze the model with the fractal–fractional derivatives, and we looked
into the effects of the fractal size and fractional order. We have developed highly efficient numerical
techniques for the concentration of biomass, phenol, and p-cresol. Lastly, numerical simulations are
used to illustrate the accuracy of the suggested method.
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1. Introduction

In a bioreactor, chemical degradation is the process by which certain chemicals or
compounds are broken down or changed by living things in the bioreactor’s controlled
environment. Bioreactors are widely used to support biological processes, including
fermentation, enzyme manufacturing, and wastewater treatment in various industries,
including pharmaceuticals, biotechnology, wastewater treatment, and food production.

Many scientific papers have presented the isolation and work of microbial species with
higher-degradation action and abilities to degrade chemical compounds [1]. Many isolated
bacteria have been investigated in [2]. The biodegradation of one or all chemical parts
hinges on the composition of the specific mixture and the utilized microorganisms [3–6].
Fractional calculus is an influential extension of the classical derivatives. Fractional
differential equations (FDEs) have recently been implemented in different fields. Many
authors have worked on these equations, such as the KdV equation [7], advection-dispersion
equation [8], telegraph equation [9], Schrodinger equation [10], heat equation [11], convection-
diffusion equation [12], Fokker Planck equation [13], and Lambert–Beer equation [14,15].
Some of the FDEs do not have exact solutions. Therefore, it is required to work on numerical
methods to solve the mentioned equations, such as solving nonlinear fractional diffusion
wave equations with the homotopy analysis technique [16], solving PDEs of fractal order
by Adomian decomposition method [17]. In [1], the authors have given a bioreactor model
but do not consider the bacteria’s death rate and general configuration of the reactor. We
have provided the bioreactor model with the fractal–fractional operators. The model with
fractal–fractional derivatives has never been analyzed so far. Our model includes the death
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rate of bacteria, which is important in the process’s environment. We also consider the
general configuration of the reactor, where our model includes a membrane and continuous
reactor. Additionally, we fractionalize the model and apply a novel numerical technique to
achieve the numerical simulations. In these simulations, we use different fractal dimensions
and fractional orders. For more details, see [18–30].

We organize our manuscript as follows. Problem formulation is performed in Section 2.
In Section 3, we discuss the model’s analysis in the classical case and present the equilibrium
and stability analysis. Next, we explore the analysis of the model with three different
kernels viz. the power-law kernel (Section 4), the exponential-decay kernel (Section 5),
and the Mittag–Leffler function (Section 6). Finally, in Section 7, we illustrate the numerical
simulations of the proposed models.

2. Preliminaries

The following definitions of fractional differentiation operator and fractal–fractional
integral operator with three different kernels are taken from [21] .

Definition 1. The fractional differentiation operator with the power-law-type kernel is described as:

FFP
c Dα,η

t f (t) =
1

1 − α

d
duη

∫ t

c
f (s)(t − s)−αds, 0 < α, η ≤ 1, (1)

where,
d f (s)
dsη = lim

t→s

f (t)− f (s)
tη − sη (2)

Definition 2. The fractional differentiation operator with the exponential-decay-type kernel is
described as:

FFE
c Dα,η

t f (t) =
M1(α)

1 − α

d
dtη

∫ t

c
f (s) exp

( −α

1 − α
(t − s)

)
ds, 0 < α, η ≤ 1. (3)

Definition 3. The fractional differentiation operator with the Mittag–Leffler-type kernel is described as:

FFM
c Dα,η

t f (t) =
AB(α)
1 − α

d
dtη

∫ t

c
f (s)Eα

( −α

1 − α
(t − s)α

)
ds, 0 < α, η ≤ 1, (4)

where AB(α) = 1 − α + α
Γ(α) .

Definition 4. The fractional integration operator with the power-law-type kernel is described as:

FFP
0 Iα,η

t f (t) =
η

Γ(α)

∫ t

0
(t − s)α−1sτ−1φ(s)ds. (5)

Definition 5. The fractional integration operator with the exponential-decay-type kernel is described as:

FFE
0 Iα,η

t f (t) =
αη

M1(α)

∫ t

0
sα−1 f (s)ds +

τ(1 − α)tτ−1

M1(α)
φ(t). (6)

Definition 6. The fractional integration operator with the Mittag–Leffler-type kernel is described as:

FFM
0 Iα,η

t f (t) =
αη

AB(α)

∫ t

0
sα−1 f (s)(t − s)α−1ds +

τ(1 − α)tτ−1

AB(α)
f (t). (7)

Here, we present the model to be investigated in this research. We present the model as:
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dSph

dt
= D

(
Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X, (8)

dScr

dt
= D(Scr0 − Scr)− kcr · μ

(
Sph, Scr

)
· X, (9)

dX
dt

= −DβX + μ
(

Sph, Scr

)
X, (10)

μ
(

Sph, Scr

)
=

μmax(ph)Sph

Ks(ph) + Sph +
S2

ph
ki(ph)

+ Icr/phScr

+
μmax(cr)Scr

Ks(cr) + Scr +
S2

cr
ki(cr)

+ Iph/crSph

, (11)

The model parameters and variables are detailed in [1]. The parameter β is presented
in the general configuration. When β = 1, we have continued the reactor. When β = 0, we
have a membrane reactor.

3. Analysis of the Model in Classical Sense

Now, we begin with analyzing the properties of the model in classical sense.
We consider the number of equilibrium solutions of the model ((8)–(10)). It is obvious

that the model has a branch of the washout given by

E0 =(Sph, Scr, X) =
(

Sph0, Scr0, 0
)

. (12)

We obtain the steady state solution of ((8)–(10)) by setting to zero the right side. From
the model ((8)–(10)), we have:

Scr =
Scr0kph + kcr(Sph − Sph0)

kph
,

X =
D
(

Sph0 − Sph

)
kph (β D)

.

(13)

f = (
−kcrμ(sph ,scr)X

μ(sph ,scr)X ) → F =

⎡⎢⎢⎣
∂μ(sph ,scr)(−kcr)X

∂(sph ,scr)X −kcrμ(sph, scr)

∂μ(sph ,scr)X
∂(sph ,scr)X μ(sph, scr)kcr(sph, scr)

⎤⎥⎥⎦

V = (−D(scr0−scr)
DβX ) → V =

⎡⎣ D 0

0 Dβ

⎤⎦ , V−1 =

⎡⎣ Dβ 0

0 D

⎤⎦

FV−1 =

⎡⎣ 0 −kcrμ(sph, scr)

0 μ(sph, scr)

⎤⎦⎡⎣ D 0

0 Dβ

⎤⎦ =

⎡⎣ 0 −βDkcrμ(sph, scr)

0 βDμ(sph, scr)

⎤⎦

det
[

FV−1 − λI2
]
= 0 ,

∣∣∣∣∣∣
−λ −βDkcrμ(sph, scr)

0 βDμ(sph, scr)− λ

∣∣∣∣∣∣ = 0

Thus, we obtain λ1 = 0, λ2 = βDμ(sph, scr) = R0.

Lemma 1. The steady state solution E0 is locally asymptotically stable when D > Dcr and is
unstable when D < Dcr, where

Dcr =
kicrkph(scr0kph − sph0kcr)−maxcr[

kicrkph(Kscrkph + scr0kph − sph0kcr) + (scrkph − sph0kcr)2
]

β
.
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Proof. We have
E0 = (sph, scr, x) = (sph0, scr0, 0)

J(E0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D − ∂μ(sph ,scr)

∂sph
kphx − ∂μ(sph ,scr)

∂sph
kphx −μ(sph, scr)kph

−kcr
∂μ(sph ,scr)

∂sph
x −D − ∂μ(sph ,scr)

∂sph
kcrx −μ(sph, scr)kcr

∂μ(sph ,scr)

∂sph
x − ∂μ(sph ,scr)

∂sph
x −Dβ + μ(sph, scr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

J(E0) =

⎡⎣ −D 0 −μ(sph0, scr0)kph
0 −D −μ(sph0, scr0)kcr
0 0 −Dβ + μ(sph0, scr0)

⎤⎦
where

μ(sph, scr) =
μmax(ph)sph

Ks(ph) + sph +
s2

ph
Ki(ph)

+ Icr/phscr

+
μmax(cr)sph

Ks(cr) + scr +
s2

cr
Ki(cr)

+ Iph/crsph

det[J(E0)− λI3] =

∣∣∣∣∣∣∣∣∣∣

−D − λ 0 −μ(sph, scr)kph

0 −D − λ −μ(sph, scr)kcr

0 0 μ(sph, scr)− Dβ − λ

∣∣∣∣∣∣∣∣∣∣
= 0

=(−D − λ)(−D − λ)(μ(sph, scr)− Dβ − λ) = 0

λ1 = −D, λ2 = −D, λ3 = −βD + μ(sph, scr)

and

μ(sph, scr) =
− maxphsph0(ksph + sph0 +

s2
ph0

Ki(ph)
+ Icr/phscr0)

−1

+− maxcrscr0(kscr + scr0 +
s2

cr0
Ki(ph)

+ Iph/crsph0)
−1

Dcr =
kicrkph(scr0kph − sph0kcr)−maxcr[

kicrkph(Kscrkph + scr0kph − sph0kcr) + (scrkph − sph0kcr)2
]

β

If D > Dcr, then λ3 < 0. Thus, all eigenvalues are negative. This shows that the steady
state solution E0 is locally asymptotically stable.

4. Analysis of the Model with the Power-Law Kernel

Here, we analyze the model with fractional differentiation operator using the power-
law kernel as:

FFP
0 Dα,η

t Sph = D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X. (14)

FFP
0 Dα,η

t Scr = D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X. (15)

FFP
0 Dα,η

t X = −DβX + μ
(

Sph, Scr

)
X. (16)
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We have the following relation between the classical and fractal derivative [21]:

Dη f (t) =
f ′(t)

ηtη−1 . (17)

A relation between the classical derivative and the fractal derivative gives

RL
0 Dα

t Sph = ηtη−1
(

D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X

)
. (18)

RL
0 Dα

t Scr = ηtη−1
(

D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X

)
. (19)

RL
0 Dα

t X = ηtη−1
(
−DβX + μ

(
Sph, Scr

)
X
)

. (20)

For simplicity, we define

A(t, Sph, Scr, X) = ηtη−1
(

D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X

)
. (21)

B(t, Sph, Scr, X) = ηtη−1
(

D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X

)
. (22)

C(t, Sph, Scr, X) = ηtη−1
(
−DβX + μ

(
Sph, Scr

)
X
)

. (23)

Then, we obtain

RL
0 Dα

t Sph = A(t, Sph, Scr, X). (24)
RL
0 Dα

t Scr = B(t, Sph, Scr, X). (25)
RL
0 Dα

t X = C(t, Sph, Scr, X). (26)

Applying the Riemann–Liouville integral yields:

Sph(t)− Sph(0) =
1

Γ(α)

∫ t

0
A(τ, Sph, Scr, X)(t − τ)α−1dτ. (27)

Scr(t)− Scr(0) =
1

Γ(α)

∫ t

0
B(τ, Sph, Scr, X)(t − τ)α−1dτ. (28)

X(t)− X(0) =
1

Γ(α)

∫ t

0
C(τ, Sph, Scr, X)(t − τ)α−1dτ. (29)

Discretizing the above equations at tn+1, we receive:

Sph(tn+1)− Sph(0) =
1

Γ(α)

∫ tn+1

0
A(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ. (30)

Scr(tn+1)− Scr(0) =
1

Γ(α)

∫ tn+1

0
B(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ. (31)

X(tn+1)− X(0) =
1

Γ(α)

∫ tn+1

0
C(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ. (32)

Sph(tn+1)− Sph(0) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

A(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ. (33)

Scr(tn+1)− Scr(0) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

B(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ. (34)

X(tn+1)− X(0) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

C(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ. (35)
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We use two-step Lagrange polynomial as:

pj(τ, Sph, Scr, X) =
τ − tj−1

tj − tj−1
A(tj, Sph, Scr, X)− τ − tj

tj − tj−1
A(tj−1, Sph, Scr, X). (36)

qj(τ, Sph, Scr, X) =
τ − tj−1

tj − tj−1
B(tj, Sph, Scr, X)− τ − tj

tj − tj−1
B(tj−1, Sph, Scr, X). (37)

sj(τ, Sph, Scr, X) =
τ − tj−1

tj − tj−1
C(tj, Sph, Scr, X)− τ − tj

tj − tj−1
C(tj−1, Sph, Scr, X). (38)

Then, we obtain

Sph(tn+1)− Sph(0) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

p(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

=
n

∑
j=0

[
hα A(tj, Sph, Scr, X)

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)

−(n − j)α(n − j + 2 + 2α))]

−
n

∑
j=0

[
hα A(tj−1, Sph, Scr, X)

Γ(α + 2)

(
(n + 1 − j)α+1

−(n − j)α(n − j + 1 + α))]

Scr(tn+1)− Scr(0) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

q(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

=
n

∑
j=0

[
hαB(tj, Sph, Scr, X)

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)

−(n − j)α(n − j + 2 + 2α))]

−
n

∑
j=0

[
hαB(tj−1, Sph, Scr, X)

Γ(α + 2)

(
(n + 1 − j)α+1

−(n − j)α(n − j + 1 + α))]

X(tn+1)− X(0) =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

s(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

=
n

∑
j=0

[
hαC(tj, Sph, Scr, X)

Γ(α + 2)
((n + 1 − j)α(n − j + 2 + α)

−(n − j)α(n − j + 2 + 2α))]

−
n

∑
j=0

[
hαC(tj−1, Sph, Scr, X)

Γ(α + 2)

(
(n + 1 − j)α+1

−(n − j)α(n − j + 1 + α))]

Thus, the numerical scheme for the model with power law kernel has been obtained.
We used this scheme and obtained Figures 1–4.
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Figure 1. Solutions of (14)–(16) for β = 1, fractal dimension 1, and α = 1, 0.9, 0.8, 0.7 with the
power-law kernel.
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Figure 2. Solutions of (14)–(16) for β = 1, fractal dimension 0.8, and α = 1, 0.9, 0.8, 0.7 with the
power-law kernel.
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Figure 3. Solutions of (14)–(16) for β = 0.5, fractal dimension 1, and α = 1, 0.9, 0.8, 0.7 with the
power-law kernel.
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Figure 4. Solutions of (14)–(16) for β = 0.5, fractal dimension 0.9, and α = 1, 0.9, 0.8, 0.7 with the
power-law kernel.
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5. Analysis of the Model with the Exponential-Decay Kernel

Next we analyze the model with using the exponential-decay kernel as:

FFE
0 Dα,η

t Sph = D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X. (39)

FFE
0 Dα,η

t Scr = D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X. (40)

FFE
0 Dα,η

t X = −DβX + μ
(

Sph, Scr

)
X. (41)

Using the relation between the classical derivative and the fractal derivative yields

CF
0 Dα

t Sph = ηtη−1
(

D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X

)
. (42)

CF
0 Dα

t Scr = ηtη−1
(

D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X

)
. (43)

CF
0 Dα

t X = ηtη−1
(
−DβX + μ

(
Sph, Scr

)
X
)

. (44)

For simplicity, we define

K(t, Sph, Scr, X) = ηtη−1
(

D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X

)
. (45)

L(t, Sph, Scr, X) = ηtη−1
(

D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X

)
. (46)

M(t, Sph, Scr, X) = ηtη−1
(
−DβX + μ

(
Sph, Scr

)
X
)

. (47)

Then, we obtain

CF
0 Dα

t Sph = K(t, Sph, Scr, X). (48)
CF
0 Dα

t Scr = L(t, Sph, Scr, X). (49)
CF
0 Dα

t X = M(t, Sph, Scr, X). (50)

Applying the CF integral yields [22]:

Sph(t)− Sph(0) =
1 − α

M(α)
K(t, Sph, Scr, X) +

α

M(α)

∫ t

0
K(τ, Sph, Scr, X)dτ.

Scr(t)− Scr(0) =
1 − α

M(α)
L(t, Sph, Scr, X) +

α

M(α)

∫ t

0
L(τ, Sph, Scr, X)dτ.

X(t)− X(0) =
1 − α

M(α)
M(t, Sph, Scr, X) +

α

M(α)

∫ t

0
M(τ, Sph, Scr, X)dτ.

Discretizing the above equations at tn+1 and tn, we receive:

Sn+1
ph = S0

ph +
1 − α

M(α)
K(tn, Sn

ph, Sn
cr, Xn)

+
α

M(α)

∫ tn+1

0
K(τ, Sph, Scr, X)dτ

Sn+1
cr = S0

cr +
1 − α

M(α)
L(tn, Sn

ph, Sn
cr, Xn)

+
α

M(α)

∫ tn+1

0
L(τ, Sph, Scr, X)dτ

Xn+1 = X0 +
1 − α

M(α)
M(tn, Sn

ph, Sn
cr, Xn)

+
α

M(α)

∫ tn+1

0
M(τ, Sph, Scr, X)dτ
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and

Sn
ph = S0

ph +
1 − α

M(α)
K(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

+
α

M(α)

∫ tn

0
K(τ, Sph, Scr, X)dτ

Sn
cr = S0

cr +
1 − α

M(α)
L(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

+
α

M(α)

∫ tn

0
L(τ, Sph, Scr, X)dτ

Xn = X0 +
1 − α

M(α)
M(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

+
α

M(α)

∫ tn

0
M(τ, Sph, Scr, X)dτ

Thus, we reach

Sn+1
ph = Sn

ph +
1 − α

M(α)

(
K(tn, Sn

ph, Sn
cr, Xn)− K(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

)
+

α

M(α)

∫ tn+1

tn
K(τ, Sph, Scr, X)dτ

Sn+1
cr = Sn

cr +
1 − α

M(α)

(
L(tn, Sn

ph, Sn
cr, Xn)− L(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

)
+

α

M(α)

∫ tn+1

tn
L(τ, Sph, Scr, X)dτ

Xn+1 = Xn +
1 − α

M(α)

(
M(tn, Sn

ph, Sn
cr, Xn)− M(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

)
+

α

M(α)

∫ tn+1

tn
M(τ, Sph, Scr, X)dτ

Using the two-step Lagrange polynomial yields, we receive:

Sn+1
ph = Sn

ph +
1 − α

M(α)

(
K(tn, Sn

ph, Sn
cr, Xn)− K(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

)
+

α

M(α)

(
3h
2

K(tn, Sn
ph, Sn

cr, Xn)− h
2

K(tn−1, Sn−1
ph , Sn−1

cr , Xn−1)

)
Sn+1

cr = Sn
cr +

1 − α

M(α)

(
L(tn, Sn

ph, Sn
cr, Xn)− L(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

)
+

α

M(α)

(
3h
2

L(tn, Sn
ph, Sn

cr, Xn)− h
2

L(tn−1, Sn−1
ph , Sn−1

cr , Xn−1)

)
Xn+1 = Xn +

1 − α

M(α)

(
M(tn, Sn

ph, Sn
cr, Xn)− M(tn−1, Sn−1

ph , Sn−1
cr , Xn−1)

)
+

α

M(α)

(
3h
2

M(tn, Sn
ph, Sn

cr, Xn)− h
2

M(tn−1, Sn−1
ph , Sn−1

cr , Xn−1)

)
Thus, the numerical scheme for the model with exponential decay kernel has been

obtained. We used this scheme and obtained Figures 5–8.
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Figure 5. Solutions of (39)–(41) for β = 1, fractal dimension 1, and α = 1, 0.9, 0.8, and 0.7 with
exponential decay kernel.
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Figure 6. Solutions of (39)–(41) for β = 1, fractal dimension 0.7, and α = 1, 0.9, 0.8, and 0.7 with
exponential decay kernel.
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Figure 7. Solutions of (39)–(41) for β = 0.8, fractal dimension 1, and α = 1, 0.9, 0.8, and 0.7 with
exponential decay kernel.
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Figure 8. Solutions of (39)–(41) for β = 0.8, fractal dimension 0.7, and α = 1, 0.9, 0.8, and 0.7 with
exponential decay kernel.
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6. Analysis of the Model with the Mittag–Leffler Kernel

Now, we analyze the model with fractional differentiation operator using the Mittag–
Leffler kernel as:

FFM
0 Dα,η

t Sph = D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X. (51)

FFM
0 Dα,η

t Scr = D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X. (52)

FFM
0 Dα,η

t X = −DβX + μ
(

Sph, Scr

)
X. (53)

Then, we obtain

AB
0 Dα

t Sph = ηtη−1
(

D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X

)
. (54)

AB
0 Dα

t Scr = ηtη−1
(

D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X

)
. (55)

AB
0 Dα

t X = ηtη−1
(
−DβX + μ

(
Sph, Scr

)
X
)

. (56)

For simplicity, we define

Y(t, Sph, Scr, X) = ηtη−1
(

D
(

Sph0 − Sph

)
− kph · μ

(
Sph, Scr

)
· X

)
. (57)

Z(t, Sph, Scr, X) = ηtη−1
(

D(Scr0 − Scr)− kcr · μ
(

Sph, Scr

)
· X

)
. (58)

T(t, Sph, Scr, X) = ηtη−1
(
−DβX + μ

(
Sph, Scr

)
X
)

. (59)

Then, we receive

AB
0 Dα

t Sph = Y(t, Sph, Scr, X). (60)
AB
0 Dα

t Scr = Z(t, Sph, Scr, X). (61)
AB
0 Dα

t X = T(t, Sph, Scr, X). (62)

Applying the AB integral gives:

Sph(t)− Sph(0) =
1 − α

AB(α)
Y(t, Sph, Scr, X) +

α

AB(α)Γ(α)

∫ t

0
(t − p)α−1Y(p, Sph, Scr, X)dp.

Scr(t)− Scr(0) =
1 − α

AB(α)
Z(t, Sph, Scr, X) +

α

AB(α)Γ(α)

∫ t

0
(t − p)α−1Z(p, Sph, Scr, X)dp.

X(t)− X(0) =
1 − α

AB(α)
T(t, Sph, Scr, X) +

α

AB(α)Γ(α)

∫ t

0
(t − p)α−1T(p, Sph, Scr, X)dp.

Discretizing the above equations at tn+1, we receive:
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Sn+1
ph = S0

ph +
1 − α

AB(α)
Y(tn+1, Sn

ph, Sn
cr, Xn)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1Y(p, Sph, Scr, X)dp

Sn+1
cr = S0

cr +
1 − α

AB(α)
Z(tn+1, Sn

ph, Sn
cr, Xn)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1Z(p, Sph, Scr, X)dp

Xn+1 = X0 +
1 − α

AB(α)
T(tn+1, Sn

ph, Sn
cr, Xn)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1T(p, Sph, Scr, X)dp

Then, we obtain

Sn+1
ph = S0

ph +
1 − α

AB(α)
Y(tn+1, Sn

ph, Sn
cr, Xn)

+
α

AB(α)

n

∑
i=0

[
hαY(ti, Sn

ph, Sn
cr, Xn)

Γ(α + 2)
((n + 1 − i)α(n − i + 2 + α)

−(n − i)α(n − i + 2 + 2α))]

− α

AB(α)

n

∑
i=0

[
hαY(ti−1, Sn−1

ph , Sn−1
cr , Xn−1)

Γ(α + 2)

(
(n + 1 − i)α+1

−(n − i)α(n − i + 1 + α))]

Sn+1
cr = S0

cr +
1 − α

AB(α)
Z(tn+1, Sn

ph, Sn
cr, Xn)

+
α

AB(α)

n

∑
i=0

[
hαZ(ti, Sn

ph, Sn
cr, Xn)

Γ(α + 2)
((n + 1 − i)α(n − i + 2 + α)

−(n − i)α(n − i + 2 + 2α))]

− α

AB(α)

n

∑
i=0

[
hαZ(ti−1, Sn−1

ph , Sn−1
cr , Xn−1)

Γ(α + 2)

(
(n + 1 − i)α+1

−(n − i)α(n − i + 1 + α))]

Xn+1 = X0 +
1 − α

AB(α)
T(tn+1, Sn

ph, Sn
cr, Xn)

+
α

AB(α)

n

∑
i=0

[
hαT(ti, Sn

ph, Sn
cr, Xn)

Γ(α + 2)
((n + 1 − i)α(n − i + 2 + α)

−(n − i)α(n − i + 2 + 2α))]

− α

AB(α)

n

∑
i=0

[
hαT(ti−1, Sn−1

ph , Sn−1
cr , Xn−1)

Γ(α + 2)

(
(n + 1 − i)α+1

−(n − i)α(n − i + 1 + α))].

Thus, the numerical scheme for the model with Mittag–Leffler kernel has been
obtained. We used this scheme and obtained Figures 9–12.
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Figure 9. Solutions of (54)–(56) for β = 1, fractal dimension 1, and α = 1, 0.9, 0.8, and 0.7 with
Mittag–Leffler kernel.
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Figure 10. Solutions of (39)–(41) for β = 1, fractal dimension 0.5, and α = 1, 0.9, 0.8, and 0.7 with
Mittag–Leffler kernel.
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Figure 11. Solutions of (39)–(41) for β = 0.5, fractal dimension 1, and α = 1, 0.9, 0.8, and 0.7 with
Mittag–Leffler kernel.
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Figure 12. Solutions of (39)–(41) for β = 0.5, fractal dimension 0.6, and α = 1, 0.9, 0.8, and 0.7 with
Mittag–Leffler kernel.

Remark 1. A valuable and huge benefit of fractional differentiation operator is that we can formulate
models better defining the systems with memory effects. It is known that the use of integro-
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differential kernels of a certain type in integro-differential equations leads us to the fractional
derivative operator [31]. The kernels with degree functions in integro-differential equations of the
Voltaire type [32], allow us to describe this memory effect [33,34].

Fractal–fractional operators with different memories are related to the non-local dynamical
systems’ different types of relaxation processes. Thus, models with fractional differentiation operators
are more effective and valuable.

7. Results and Discussions

In this section, we present numerical simulations for different fractional order and
fractal dimension values. We also add the classical derivative with the integer fractal
dimension equal to 1.

We chose fractal dimension as the integer and noninteger in the figures. We discuss
the results with the three kernels described in Sections 5–7. The figures α, β, and η are
between zero and one. In these simulations, β is the parameter given on the model, η
is the fractal dimension, and α is the fractional order. We see the effect of the fractional
order α under different kernels and values of the parameter β and the fractal dimension
η. Figures 1 and 2 show the numerical simulations for β = 1, the fractal dimensions η = 1
and η = 0.8, and for different fractional order α values with the power-law kernel. We also
show how this kernel behaves for β = 0.5 and the fractal dimension η = 1 and η = 0.9 in
Figures 3 and 4. We see that the convergence is faster for the case β = 1 than to the case
β = 0.5, as long as the fractal dimension is close to 1. The concentrations Sph(t) and Scr(t)
decrease as long as α decreases. In all the cases, the concentration X(t) decreases to 0.

The results for the exponential-decay kernel are shown for β = 1 in Figure 5 (with
fractal dimension η = 1) and Figure 6 (with fractal dimension η = 0.7). We demonstrate
the results for β = 0.8 and η = 1 (Figure 7) and η = 0.7 (Figure 8). Despite varying the
parameters β, α, and the fractal dimension, there are fewer differences in the concentrations
with respect to the results shown by the power-law kernel.

Finally, in Figures 9–12, we show the results for the Mittag–Leffler kernel. The numerical
simulations for β = 1 are shown in Figure 9 (η = 1) and Figure 10 (η = 0.5). We also see the
behavior of the solution for β = 0.5, η = 1 in Figure 11 and β = 0.5, η = 0.6 in Figure 12.

We have seen that the exponential-decay kernel is the one that converges faster to the
equilibrium, with the smaller difference among concentrations of the substances.

8. Conclusions

This work provides a mathematical model for breaking down a phenol and p-cresol
mixture in a bioreactor with continuous stirring. Three nonlinear ordinary differential
equations served as the foundation for the model. The equilibrium points of the model were
identified, and their stability was examined and shown. Additionally, we used the fractional
differentiation operator to examine the model and three distinct kernels to examine the
effects of the fractal dimension and fractional order. We developed very efficient numerical
algorithms for biomass, phenol, and p-cresol concentrations. To demonstrate the accuracy
of the suggested approach, we offered numerical simulations for different α and β values.
The right choice of model parameters would require validation with experimental data.
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Abstract: The current values of many populations depend on the past values of the population. In
many cases, this dependence is caused by the time certain processes take. This dependence on the
past can be introduced into mathematical models by adding delays. For example, the growth rate
of a population depends on the population τ time units ago, where τ is the maturation time. For
an epidemic, there is a time τ between the contact of an infected individual and a susceptible one,
and the time the susceptible individual actually becomes infected. This time τ is also a delay. So, the
number of infected individuals depends on the population at the time τ units ago. A second way of
introducing this dependence on past values is to use non-local operators in the description of the
model. Fractional derivatives have commonly been used to provide non-local effects. In population
growth models, it can also be done by introducing a new compartment, the immature population,
and in epidemic models, by introducing an additional exposed population. In this paper, we study
and compare these methods of adding dependence on past values. For models of processes that
involve delays, all three methods include dependence on past values, but fractional-order models do
not justify the form of the dependence. Simulations show that for the models studied, the fractional
differential equation method produces similar results to those obtained by explicitly incorporating
the delay, but only for specific values of the fractional derivative order, which is an extra parameter.
But in all three methods, the results are improved compared to using ordinary differential equations.

Keywords: population models; delays; fractional derivatives; exposed population models; dependence
on past values
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1. Introduction

Many biological processes depend on the population in past times. For a birth process,
the number of births depends on the mature population, that is, the population τ time units
ago, with τ the maturation time of the population. In an epidemic, after contact between a
susceptible individual and an infected one, it takes a certain time for the infection-causing
agent (virus, bacteria, etc.) to reproduce inside the body and make the individual sick. So,
the number of newly infected individuals depends on the number of contacts that occurred
at a certain time in the past. At the cell level, immune cells take time to become active and
eliminate the bacteria or debris. Of course, not all biological processes depend on the past.
For a population with a fixed death rate, the number of deceased individuals at the present
time depends only on the number of individuals at the present time. Mathematical models
based on ordinary differential equations (ODEs) do not consider the influence of the past.
But for models with processes depending on past values, incorporating this dependence
into the model equations will change the solutions for the better since the model will be
more realistic.

There are three widely used methods for introducing the dependence of a process
in the past. The first one is to use delay differential equations (DDEs). The second one
is to use fractional differential equations (FDEs). The third one is to introduce additional
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Axioms 2024, 13, 206

compartments in the model, where the individuals spend an average time before mov-
ing out of the compartment. Introducing delays is a straightforward way of adding the
dependence of the past to a biological process. Adding delays may change the dynam-
ics of the process [1–3]. Some possible changes are the introduction of oscillations, the
introduction of discontinuities in the time derivatives, the non-uniqueness of solutions,
and different stability regions. There is a vast amount of literature spanning many years
on epidemic or disease transmission models using delay differential equations (DDEs)
(see, for example, [1,4–8]). For epidemic models at the population level, the time between
a susceptible having contact with an infective and actually getting the disease (time of
infection) is the most commonly considered delay. But there are also other delays like
maturation times, the time it takes a vaccine to become effective, the time it takes an
infected individual to recover after getting the disease, etc. For a within-host infection,
delays include the time it takes the pathogen to replicate or reproduce and spread over
the affected organ, the time it takes the immune system to react, and the time it takes
cells to reproduce, among others. There are different types of delays. Discrete-constant
delays are used when each delay has the same value for the entire population. Distributed
or continuous delays are used when the delay varies according to a given distribution,
such as normal or gamma, around the mean value. In this paper, we will only consider
discrete delays. Fractional calculus started with a letter from L’Hôpital to Leibniz asking
about derivatives in non-integer order. There are several different definitions for fractional
derivatives and integrals, with the most common ones being the Riemann–Liouville and
the Caputo versions. There are many good papers and books about differential equations
using fractional derivatives (FDEs), such as [9–12]. In recent years, a vast number of papers
have used fractional derivatives in epidemic models, including many for specific epidemics
such as influenza, dengue, and COVID-19 [13–17]. The Caputo form is the most widely
used fractional derivative. It has the advantages that its derivative of a constant is zero
and for FDEs, the initial conditions are given in terms of the unknown and, if necessary,
integer-order derivatives at the initial point. Exact solutions of FDEs are hard to find. There
are several numerical methods [18–21]. Fractional derivatives are non-local operators that
involve the solution from the initial time until the current time. So, the solution at the
current time depends on the solution at all previous times, so FDEs incorporate memory.
ODEs neglect such effects. In addition, when fitting data, fractional models have more
degrees of freedom through the orders of the fractional derivatives compared to ODE
models. In fact, many papers that use fractional derivative models for epidemics justify
their use by demonstrating superior data fitting compared to ordinary differential equation
models. This has been done for different epidemics such as dengue, Ebola, and COVID-19
[14,22,23]. Discrete-time fractional differential equations have also been used [24–26] but
not as widely as continuous-time fractional differential equations. Possible reasons for
this are that popular methods become more popular and the widespread availability of
ready-to-use software for FDEs. A third way of introducing dependence on the past in
a population mathematical model is to add more compartments. For models including
birth processes, this can be achieved by adding an immature population, with individuals
staying in this compartment for an average time equal to the maturation period. Examples
involving insect populations can be found in [27,28]. In epidemic models, this can be
achieved by adding an exposed population [29–31]. The dependence of solutions on past
values is a topic of very high interest, especially in epidemics, with some recent references
being [32–36]. The main objective of this paper is to study how to introduce dependence
on past values into ordinary differential models of population growth and disease trans-
mission. This is discussed in Section 2. In Section 3, results and numerical simulations are
presented. Finally, in Section 4, a discussion of the results is presented.
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2. Materials and Methods

In this section, we present the addition of dependence on the past using delays,
fractional derivatives, and additional compartments to several compartmental models of
population growth, epidemics, and within-host infection propagation.

We start with very simple models and continue to more complicated ones. For all
examples, dependence on the past is added to the ODE model using three methods. The first
method is to introduce discrete delays. While this can be done in several ways, not all of
them make biological sense. The second method is to use non-local fractional derivatives
instead of time derivatives. The third method is to add more population compartments,
such as immature or exposed populations, and incorporate dependence on the past based
on the time individuals spend in these compartments. For the simplest model considered,
with one population and described by a linear differential equation, it is possible to calculate
exact solutions for the original ODE and all models based on the three methods. For the
delay differential equation models, the solution requires numerical approximation of the
solution of a transcendental equation. For the logistic model, there is an exact solution only
for the ODE, but stability can be found for all models. For the epidemic models, there are
no exact solutions, and the local asymptotic stability of the disease-free equilibrium can
be determined for all methods. But the expressions become more complicated with the
complexity of the model.

The pyramid flowchart depicted in Figure 1 illustrates the sequence of models used in
this paper. These models progress from linear, with one state given by the Malthus model,
to non-linear, with one state given by the logistic model, and finally, to non-linear epidemic
models with several states, each increasing in complexity. ODE refers to the corresponding
ordinary differential equations model, DDE refers to the delay differential equations model,
EXP refers to the model with immature or exposed populations, and FRAC refers to the
fractional differential equations model. E indicates that the model has an exact solution, S
indicates the local asymptotic stability of the steady states for the Malthus and logistic mod-
els, and of the disease-free equilibrium for the infection models. These results are shown
later in this section. In Section 3, the simulations show that all methods that incorporate
dependence on the past can produce similar results, except for the fractional derivative
equations models, where this holds true only for specific values of the fractional order.

Figure 1. Flow diagram for the sequence of models used, from simplest to most complex. ODE is
the ordinary differential equations model, DDE is the delay differential equations model, EXP is
the model with immature or exposed populations, and FRAC is the fractional differential equations
model. E indicates that the model has an exact solution, S indicates the local asymptotic stability
of the steady states for the Malthus and logistic models, and of the disease-free equilibrium for the
infection models.
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2.1. Population Growth Models

Many mathematical population models can be derived by starting with a discrete-time
population model [37,38]. All these models state that the current population is equal to the
population at the previous time plus its change during the time step. For example, for a
model considering only birth and death processes, the population at time t + Δt can be
given as the population at time t plus the new births minus the new deaths. The discrete-
time model is

N(t + Δt) = N(t) + ΔtbN(t)− ΔtμN(t),

where N(t) is the population at time t, b > 0 is the birth rate, and μ > 0 is the death rate.
By taking the limit as Δt tends to 0, we obtain the simplest continuous-time population
model known as the Malthus model

dN
dt

= (b − μ)N(t). (1)

For many populations, there is a delay τ > 0 due to the maturation time in the birth process.
But the number of deaths depends only on the current population. By adding a delay to
the discrete-time model, we obtain

N(t + Δt) = N(t) + ΔtbN(t − kΔt)− ΔtμN(t),

where the delay is τ = kΔt, with k being a positive integer. Again, taking the limit as Δt
tends to 0 and keeping kΔt constant, we obtain the delayed continuous-time model

dN
dt

= bN(t − τ)− μN(t) (2)

that takes into consideration the maturation time. The Malthus model and the delayed
Malthus model have only one equilibrium point, N(t) = 0. One issue with using the DDE
model is that it requires initial values on the history interval [t0 − τ, t0], where t0 is the
initial time.

Instead of having a single value, the maturation time may take values in an interval
[kiΔt, k f Δt], where 0 ≤ ki ≤ k f . The model is

N(t + Δt) = N(t) + Δtb
k f

∑
k=ki

G(t − kΔt)N(t − kΔt)− ΔtμN(t), (3)

where G(t − kΔt) is a weighting function with an average of one.
By taking the limit as Δt tends to 0 and keeping the terms kΔt constant, k = ki, . . . , k f ,

one obtains the distributed delay equation

dN
dt

=
∫ t

−∞
G(t − s)bN(t − s) ds − μN(t).

The function G is taken to have compact support and an average of 1. Usually, it has a
very small support. For a discrete delay, it is taken as a Dirac delta function. The birth
function bN can be replaced with another birth function or with a function F representing
other processes happening in the past. Also, the death term μN can be substituted with a
function H representing all the processes happening at the present time. A more general
integro-differential equation for the growth of one population can be written as

dN
dt

=
∫ t

−∞
G(t − s)F(N(t − s)) ds − H(N(t)). (4)

A discrete-time model that considers an immature population is
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N(t + Δt) = N(t) + ΔtσY(t)− ΔtμN(t)

Y(t + Δt) = Y(t) + bN(t)− ΔtμY(t)− ΔtσY(t),

where Y(t) is the immature or young population, all new births are immature, and σ = 1/τ
is the rate at which the immature population matures. Taking the limit as Δt tends to 0,
we obtain the ODE model that consists of a system of equations for the two age groups,
mature, N, and immature, Y [27,28],

dN
dt

= σY − μN

dY
dt

= bN − σY − μY.
(5)

A modification of Malthus’s continuous-time model using fractional derivatives is intro-
duced later in this subsection.

A second population growth model that adds intra-species competition for resources
is the logistic growth model given by

dN
dt

= rN(t)(1 − N(t)
K

), (6)

where N(t) is the population, r = b − μ is the growth rate, and K is the carrying capacity.
The maturation time delay can again be introduced into the birth term:

dN
dt

= bN(t − τ)− r
N(t)2

K
− μN(t). (7)

The competition and death terms depend on the current time t. One disadvantage of delay
differential equations is that they require initial conditions given on the interval [t0 − τ, t0],
where t0 is the initial time. This interval is usually called the history interval.

Following the approach used in the Malthus model, an alternative way of adding
dependence on the past is to introduce an immature population

dN
t

= σY − rN2/K − μN

dY
dt

= bN − rY2/K − σY − μY,
(8)

where r = b− μ and σ is 1 over the maturation time. We assume that there is no competition
between the adult and the immature populations, as is the case for insects, where the larvae
feed on different food than the adults. But there are several other ways of introducing the
immature population.

Before writing the model using FDEs, we introduce some definitions. The Caputo
fractional derivative, which is now the most commonly used fractional operator in mathe-
matical biology models, is obtained by modifying the definition of the Riemann–Liouville
fractional derivative to regularize the initial conditions, so they are stated only in terms of
ordinary derivatives [9,10]. In our definitions of Riemann–Liouville and Caputo fractional
derivatives, we consider that the initial time is t = 0. The Riemann–Liouville fractional
derivative is

R
0 Dα

t y(t) =
1

Γ(m − α)

dm

dtm

∫ t

0
(t − τ)−α−1+my(τ)dτ, m − 1 < α < m,

and the Caputo fractional derivative is

C
0 Dα

t y(t) =
1

Γ(m − α)

∫ t

0
(t − τ)−α−1+m dm

dτm y(τ)dτ, m − 1 < α < m, (9)
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where α is the order of the derivative. These two definitions are not equivalent to each
other. Their difference is expressed by

C
0 Dα

t y(t) = R
0 Dα

t y(t)−
m−1

∑
ν=0

rα
ν(t)y

(ν)(0), rα
ν(t) =

tν−α

Γ(ν + 1 − α)
.

The Caputo operator C
0 Dα

t has the advantage for differential equations with initial values in
that these initial values are given in terms of ordinary derivatives. The initial values for
Caputo differential equations are given as

C
0 Dα

t y(0) = bν, ν = 1, 2, . . .m,

with m − 1 < α ≤ m. In our examples, m = 1. From the definition of the Caputo derivative,
C
0 Dα

t y(t), it can be seen that it is a non-local operator over the interval (0, t) and that it does
not depend on values for t < 0. From the kernel of the integral, it is clear that it is weighted
toward the values of y(t) at time t. The replacement of the integer-order derivative with a
fractional-order one in population models is usually justified by stating that the population
has memory, that is, it depends on the past. But it is not stated how it takes into account
the actual dependence on the past and whether it is due to maturation or infection times,
or to other processes.

Another definition of the fractional derivative Dα
t y(t), the Grünwald–Letnikov def-

inition, is based on taking finite differences on equidistant time steps in [0, t]. Choose
the grid

0 = t0 < t1 < ... < t = tn+1 = (n + 1)Δt, tn+1 − tn = Δt,

and use the usual notation of finite differences,

1
Δtα

Δα
Δty(t) =

1
Δtα

(
y(tn+1)−

n+1

∑
ν=1

cα
νy(tn+1−ν)

)
,

where

cα
ν = (−1)ν−1

(
α

ν

)
.

Then, the Grünwald–Letnikov definition is [9,19]

Dα
t y(t) = lim

Δt→0

1
Δtα

Δα
Δty(t).

Take the limit α → 1 to obtain the explicit or implicit Euler method. Compared with
linear multistep methods for the approximation of the fractional derivative, the sum of
divided differences becomes longer and longer [9,19], so it is not usually used in practice.
But it is useful for comparing an approximation of a fractional differential equation to
that of an ODE. We apply the Grünwald–Letnikov definition to the following fractional
differential equation

C
0 Dα

t N(t) = f (N(t)), N(0) = N0 (0 < α < 1),

and let N(t) be the exact solution in the interval [0, T]. If Nk denotes the approximation
of the true solution N(tk), then the explicit or implicit Grünwald–Letnikov method on a
uniform grid is given by

Nn+1 −
n+1

∑
ν=1

cα
ν Nn+1−ν − rα

n+1N0 = Δtα f (Nn) or Δtα f (Nn+1).
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Here, rα
n+1 = (n+1)−α

Γ(1−α)
, with Γ the Gamma function. Taking n = 0, the equation for the first

step is
N1 − cα

1 N0 − rα
1 N0 = Δtα f (N0) or Δtα f (N1).

This equation does not agree with the first step of any standard finite approximation of
Equation (3). The Caputo derivative incorporates past values of the solution starting at
the initial time t = 0, but it also has terms that do not come from a standard discrete-
time conservation equation. The population Malthus growth model in terms of Caputo
fractional derivatives is

C
0 Dα

t N(t) = (b − μ)N(t). (10)

2.2. SIRS Models

A model commonly used for the propagation of many different diseases in a popu-
lation is the SIRS model with no demographics [37]. It consists of three compartments:
susceptibles (S(t)), infectives or infected (I(t)), and recovered (R(t)). A susceptible turns
into an infective with a given probability after contact with an infective. An infective
recovers with a rate γ. A recovered loses immunity at a rate ν and converts into a suscepti-
ble. The total population is assumed constant, S(t) + I(t) + R(t) = N, and the disease is
assumed to be short enough so that births and deaths need not be considered. The infec-
tion coefficient is denoted by β/N. All parameters are positive. The system of ordinary
differential equations (ODEs) describing the model is

dS
dt

= − β

N
SI + νR

dI
dt

=
β

N
SI − γI

dR
dt

= γI − νR.

(11)

Since the total population is constant, one equation can be eliminated using R(t) = N −
S(t)− I(t). The new system of equations is

dS
dt

= − β

N
SI + ν(N − S − I)

dI
dt

=
β

N
SI − γI.

This continuous-time model can also be derived from a discrete-time model [39,40].
There are several different methods of introducing delays in the infection into the

model. The first one, which we call SIRS Model 1 [41–43], is given by

dS
dt

= − β

N
S(t − τ)I(t − τ) + ν(N − S(t)− I(t))

dI
dt

=
β

N
S(t − τ)I(t − τ)− γI(t),

(12)

where the hypothesis is that an infective has contact with a susceptible and it takes time
τ for this susceptible to turn infective. Until that time, it is counted as a susceptible. The
second model is SIRS Model 2 [44], which is described by

dS
dt

= − β

N
S(t)I(t − τ) + ν(N − S(t)− I(t))

dI
dt

=
β

N
S(t)I(t − τ)− γI(t),

(13)

where the assumption is that after contact between a susceptible and an infective, time τ has
to pass before the susceptible turns into an infective and is able to infect another susceptible.
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So, there is a new infective after contact between the susceptible and an individual infected
a time ago equal to the delay.

The third model is SIRS Model 3, which is described by

dS
dt

= − β

N
S(t)I(t) + ν(N − S(t)− I(t))

dI
dt

=
β

N
S(t − τ)I(t − τ)− γI(t),

(14)

where after contact with an infective, the susceptible leaves the susceptible population but
takes time τ to be included in the infective population. It conserves the total population,
and the infection contact is between individuals at the same time. These three models can
all be derived from discrete-time models.

As shown in [45], temporary immunity can be included in the SIRS model. The authors
used a distributed delay, but by introducing the delay after exposure τ1, the delay due to
the minimum duration of the disease τ2, and the delay due to the minimum time with
immunity τ3, we obtain the model

dS
dt

= − β

N
S(t − τ1)I(t − τ1) + νR(t − τ3)

dI
dt

=
β

N
S(t − τ1)I(t − τ1)− γI(t − τ2)

dR
dt

= γI(t − τ2)− νR(t − τ3).

These are the equations for SIRS Model 1, but the equations for SIRS Models 2 and 3
are similar.

Models with delays introduced in different forms may have the same equilibrium
solutions but the actual time-dependent solutions will be different. There is also the
question of the influence of the initial conditions given in the history interval. For an
epidemic, they can always be given as the equilibrium solutions with no disease. That is,
the natural assumption that the epidemic starts at t = 0 can be used.

The SIRS fractional model is

C
0 Dα

t S(t) = − β

N
SI + νR

C
0 Dα

t I(t) =
β

N
SI − γI

C
0 Dα

t R(t) = γI − νR.

(15)

The same fractional order, α, was used for all three fractional derivatives. This is not
necessary but is usually done for fractional epidemic models [13,14,46]. Two examples
of papers using different orders are [22,47]. These fractional derivative models include
dependence on all population values between the initial and the current times, but, again
from looking at finite difference approximations, they do not arise from standard discrete-
time models. But simulations may produce good agreement with real data due to the extra
parameters, the fractional derivative orders.

A model that takes into account dependence on the past caused by the delay in
transmission by including an exposed population, E(t), is

dS
dt

= − β

N
SI + νR

dE
dt

=
β

N
SI − σE

dI
dt

= σE − γI

dR
dt

= γI − νR.

(16)

43



Axioms 2024, 13, 206

The additional parameter is σ = 1/τ. Models of this form are usually called SEIRS models,
and the dependence on the past comes from the average time an individual spends in the
exposed compartment.

2.3. Plant Virus with Vector Transmission Models

Humans, animals, and plants can all be affected by vector-transmitted viruses. The
processes involved are the same. For simplicity, we consider a model for cultivated plants,
for which it is reasonable to assume a constant plant population since farmers replace dead
plants. Two examples of virus-causing diseases in plants are the cassava virus [48] and the
cacao swollen shoot virus [49]. Again, we introduce the delay in different ways to see the
differences in the solutions. We consider a simple model with two populations of plants:
susceptible (healthy), S(t), and infective (already infected), I(t). Usually, plants do not
recover so we do not consider a recovered class. There are also two populations of vectors:
susceptible, X(t), and infective, Y(t). Vectors are only carriers and do not get the disease so
they do not recover. A susceptible plant becomes infected when an infected vector feeds on
it, and a susceptible vector becomes infected by feeding on an infected plant. This model is
a simplified version of the models presented, for example, in [43,50].

The assumptions of the model are as follows: all new plants and vectors are susceptible;
the total population of plants is a constant K; the infection terms between vectors and plants,
and vice versa, are of mass-action type; the viruses only kill plants; and neither plants nor
vectors recover from the disease.

The system of ODEs for the model is

dS
dt

= μ(K − S) + dI − βYS

dI
dt

= βYS − (d + μ)I

dX
dt

= Λ − β1 IX − mX

dY
dt

= β1 IX − mY.

(17)

The parameters of the model are taken from [43,50] and are all positive: K is the total
number of plants, β is the infection rate of plants due to infective vectors feeding on the
plant and infecting it, β1 is the infection rate of vectors due to feeding on an infected plant
and becoming infected, μ is the natural death rate of plants, d is the additional death rate
of plants due to the disease, m is the natural death rate of vectors, and Λ is the replenishing
rate of vectors (due to birth and/or migration).

In this virus transmission via a vector model, there are two delays. The first one is
the time it takes the virus to spread in the plant after infected contact. The second one is
the time it takes the virus to spread in the vector after becoming infected through feeding.
Since the virus usually stays around the feeding organs of the vector and does not replicate
inside it, this second delay is much smaller than the first. For simplicity, we consider only
the first delay.

Following the approach used in the SIRS model, we introduce the delay in the trans-
mission in two different ways. The first one uses the assumption that after contact with
an infective, a susceptible takes the delay time to become infective itself [42,43]. That is, a
newly exposed susceptible remains a susceptible until a time equal to the delay elapses
and only then does it become an infective. This is known as Model A1:
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dS
dt

= μ(K − S(t)) + dI(t)− βY(t − τ)S(t − τ)

dI
dt

= βY(t − τ)S(t − τ)− (d + μ)I(t)

dX
dt

= Λ − β1 I(t)X(t)− mX(t)

dY
dt

= β1 I(t)X(t)− mY(t).

(18)

The second model with infection delay uses the assumption that after a contagion,
the susceptible immediately stops being susceptible but it takes the delay time to become
infective. It takes into account the probability of the newly infected plant dying before
becoming infective using the term exp(−μτ), which is the average survival percentage in
the time period τ. This is known as Model A2:

dS
dt

= μ(K − S(t)) + dI(t)− βY(t)S(t)

dI
dt

= exp(−μτ)βY(t − τ)S(t − τ)− (d + μ)I(t)

dX
dt

= Λ − β1 I(t)X(t)− mX(t)

dY
dt

= β1 I(t)X(t)− mY(t).

(19)

Delay differential equations, while more realistic, have the drawback that it is neces-
sary to specify initial conditions over an interval instead of just at a point, as with ordinary
differential equations. These initial conditions may be unknown, and, if so, are usually
assumed to be constant. What is more, they are usually assumed to represent disease-free
values. A second drawback is that the analysis is much harder due to the infinite number
of eigenvalues [1,51].

A common alternative is to use fractional derivatives, which have their own advan-
tages and difficulties, as already mentioned for the population growth models and the SIRS
models. The DFE model is

C
0 Dα

t S(t) = μ(K − S(t)) + dI(t)− βY(t)S(t)
C
0 Dα

t I(t) = βY(t)S(t)− (d + μ)I(t)
C
0 Dα

t X(t) = Λ − β1 I(t)X(t)− mX(t)
C
0 Dα

t Y(t) = β1 I(t)X(t)− mY(t).

(20)

A third alternative for accounting for dependence on the past is to introduce another
compartment, the exposed population (E). After contact with an infective, a susceptible is
converted into an exposed or latent, one that cannot yet infect. The exposed turns into an
infective at a rate of ε = 1/τ. The model is

dS
dt

= μ(K − S(t)) + dI(t)− βY(t)S(t) + μE

dE
dt

= βY(t)S(t)− μE − εE

dI
dt

= εE − (d + μ)I(t)

dX
dt

= Λ − β1 I(t)X(t)− mX(t)

dY
dt

= β1 I(t)X(t)−−mY(t).

(21)
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Epidemic models with an exposed class are very common (for plant virus propagation, see,
for example, [30,52]). The advantages of using models with exposed populations are that
they are based on ODEs, so they only require the initial condition at the initial time, and,
as with all epidemic models based on ODEs, the local asymptotic stability at the beginning
of the epidemic can be determined using the next-generation matrix method [53,54]. But,
from a biological point of view, there is the complication that an individual only stays in
the exposed state for a time equal to the delay, whereas some individuals may stay in this
state for a much longer time.

2.4. Within-Host Virus Infection Models

A basic model of within-host virus infection considers three populations: susceptible
cells, infected cells, and virus particles (virions). Susceptible cells are recruited and die
naturally, and they can become infected through contact with a virus particle. Cells infected
with a virus burst and release a certain number of virions. These free virions can infect
healthy cells or die. More realistic models also include the elimination of infected cells
and virions by the effector cells of the immune system, as well as cell-to-cell transmission.
The equations for such models are [55–58]

dx
dt

= λ − μxx − βxv − βxyxy

dy
dt

= βxv + βxyxy − βeyye − μyy

dv
dt

= Bμyy − βxv − βevve − μvv

de
dt

= s + α1y − βyeye − βveve − μee.

(22)

Here, x, y, v, and e are the concentrations of susceptible cells, infected cells, virions, and ef-
fector cells, respectively. λ is the recruitment rate of new susceptible cells, μx is their
death rate, β is the infection rate, μy is the killing rate of infected cells by the virus, B
is the number of virions produced per infected cell, and μv is the death rate of virions.
Susceptible cells can be infected through direct contact with an infected cell at a rate βxy;
effector cells eliminate infected cells at a rate βey; free virus particles are introduced into
susceptible cells at a rate β; and effector cells are recruited at a constant rate s and are also
recruited depending on the number of infected cells y at a rate α1. In addition, as effector
cells eliminate infected cells and virus particles, they are also eliminated from the system
with rates βye and βve, respectively. Finally, effector cells die naturally at a rate μe. All
parameters are non-negative.

We add two delays to the model (22), τ1, which is the time it takes the virus to replicate
after invading a cell, and τ2, which is the time it takes the immune system to recruit an
effector cell after detecting an infected cell. The delay model is

dx
dt

= λ − μxx(t)− βx(t − τ1)v(t − τ1)− βxyx(t − τ1)y(t − τ1)

dy
dt

= βx(t − τ1)v(t − τ1) + βxyx(t − τ1)y(t − τ1)− βeyy(t)e(t)− μyy(t)

dv
dt

= Bμyy(t)− βxv − βevv(t)e(t)− μvv(t)

de
dt

= s + α1y(t − τ2)− βyey(t)e(t)− βvev(t)e(t)− μee(t).

(23)
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The fractional derivative system is

C
0 Dα

t x(t) = λ − μxx(t)− βx(t)v(t)− βxyx(t)y(t)
C
0 Dα

t y(t) = βx(t)v(t) + βxyx(t)y(t)− βeyy(t)e(t)− μyy(t)
C
0 Dα

t v(t) = Bμyy(t)− βxv − βevv(t)e(t)− μvv(t)
C
0 Dα

t e(t) = s + α1y(t)− βyey(t)e(t)− βvev(t)e(t)− μee(t).

(24)

And the model with an exposed cell population z is

dx
dt

= λ − muxx(t)− βx(t)v(t)− βxyx(t)y(t)

dz
dt

= βx(t)v(t) + βxyx(t)y(t)− μxz(t)− σz(t)

dy
dt

= σz(t)− βeyy(t)e(t)− μyy(t)

dv
dt

= Bμyy(t)− βx(t)v(t)− βevv(t)e(t)− μvv(t)

de
dt

= s + α1y(t)− βyey(t)e(t)− βvev(t)e(t)− μee(t),

(25)

where σ = 1/τ1 is the rate at which exposed cells become infective cells.
We used 5 different models for population growth and infection propagation, each

with its own set of hypotheses. Dependence on past values due to processes taking time
was added to all of them using three different methods. For all three, their solutions
approach the steady states at a slower rate than the one for the corresponding ODE model.
While the fractional differential equations models incorporate dependence on the past in a
different way, their simulations are similar if a value of α is chosen to make this happen.
This value of α depends on the particular model and the value of the delay.

3. Results

This section presents the results for the models introduced in Section 2, including the
numerical simulations. We show that the solutions using the different delay differential
models are similar to each other and to the models with immature or exposed populations.
We also show that even though the models given by FDEs do not have a dependence on
the past based on common modeling assumptions, the additional parameters given by the
order of the fractional derivatives enable the solutions to be similar to those obtained by
DDEs or by introducing additional delaying populations.

3.1. Population Growth Models

We start with the Malthus ODE model (1). It is used to present the results in a simple
form since it consists of only one population and one equation, and it is linear. The solution
is N(t) = N(0) exp((b − μ)t). It has no equilibrium points, but N(t) = 0 if N(0) = 0,
and N(t) is constant if b = μ. The solution tends to 0 for b − μ < 0 and to infinity for
b− μ > 0. The delayed Malthus model (2) has solutions of the form N(t) = exp(λt), with λ
a solution of the characteristic equation λ = b exp(−λτ)− μ. This transcendental equation
has no exact solutions, but λ > 0 if 1 ≥ exp(−λτ) ≥ μ/b. So, for b > μ, the solution also
tends to infinity as t tends to infinity and to 0 otherwise. Some delay differential equations
can be solved analytically using the method of steps, as described in [1,59]. For example,
for (2), taking x(t) = x0 constant for t ∈ [−τ, 0] gives x(t) = −b x0

m + x0(1 + b
m ) exp(−mt)

for t ∈ [0, τ], and so on. The solutions become complicated very fast. For the fractional
derivative model (10), an exact solution can also be calculated using fractional tools such
as Mathematica [60]. The solution is given by N(t) = Eα(rtα), where Eα(z) = ∑∞

k=0
zk

Γ(αk+1)
is the Mittag–Leffler function, Γ is the Gamma function, and r = b − μ is the growth rate.
Exact solutions of fractional differential equations, except for linear problems, are very
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few. In this example, from the definition of the Caputo derivative (9), if y(t) is of one sign,
C
0 Dα

t y(t) has the same sign. So, if b − μ > 0, the solution of the fractional equation increases
as t tends to infinity.

The Malthus model with an immature population is given in (5). The exact solution is
a long formula, but the eigenvalues are given by

ev1,2 =
−μ − σ ±√

σ(4b + σ)

2
, (26)

which implies that the solution will tend to infinity as t tends to infinity for σ(4b + σ) >
(2μ + σ)2. It can also be seen that by adding the two equations, the equation for the total
population is the same as the equation for the ODE Malthus model (1).

Numerical solutions were calculated for the four Malthus models. The ODEs and
DDEs were solved using the julia package DifferentialEqns.jl [61,62], and the FDEs were
solved using the package FdeSolver [63], which uses methods reviewed, for example,
in [21]. The same software was used for all the other models. Figure 2 shows the simulation
of the different Malthus models ((1), (2), (5), and (10)) for several values of the order α. The
parameter values used are b = 0.16 (1/day), μ = 0.01 (1/day), τ = 14 (day), N(0) = 0.5,
and σ = 1/τ (1/day), with Y[0] = 0 for (5). The values are not chosen for any specific
population. The delay model and the model with an immature population have solutions
that grow slower than the solution for the non-delay model. As can be seen, by changing
the value of α, the fractional solution looks approximately like the delayed solution. As α
decreases from 1, the solutions are more delayed. But there is no theoretical way to choose
the α without comparing it to either empirical data or other calculated solutions. The
fractional model involves memory (dependence on the past), but the memory does not
come from modeling a population growth term in a common way (see (4)). So, the good
agreement is due to the extra parameter in the FDE, α.

(a) (b)

Figure 2. Malthus models. (a) ODE, DDE, and immature population models. The legend “Both”
refers to the sum of the mature and immature populations for model (5). (b) Fractional models for
several values of α.

Next, we studied the logistic model, which consists of one equation but is now non-
linear. The ODE logistic model (6) adds intra-species competition to the Malthus model. It
has two steady solutions: N∗ = K, which is stable, and N∗ = 0, which is unstable, as can be
seen by checking the sign of the derivative dN

dt . A delay can be added to the death term (7).
It has the same steady states and stability as the ODE model. A fractional derivative model
obtained by replacing the time derivative with a fractional Caputo derivative model also
has the same steady states. It also has the same stability, as can be checked by looking
at the sign on the right-hand side. The steady solutions and their stability conditions for
the two-population logistic models (8) have long expressions. The numerical simulations
show similar behavior. The parameters used are b = 0.16 (1/day), r = 0.15 (1/day),
μ = 0.01 (1/day), K = 1 (individual), τ = 14 (day), N(0) = 0.5, and σ = 1/τ (1/day),
with Y(0) = 0. The graphs are shown in Figure 3. Again, it can be seen that as α decreases
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from 1, the FDE solution is more delayed and can be made similar to the delayed solution.
The α that gives the best agreement with the delay model depends on the value of the
delay. For this example, alpha is about 0.8. The model given by (6) is more realistic than
the one given by (1) since the non-linear competition term keeps the solution bounded.
Again, the fractional model produces similar solutions to the delay model provided that α
is adequately chosen.

(a) (b)

Figure 3. Logistic models. (a) ODE, DDE, and immature population models. The legend “Both”
refers to the sum of the mature and the young or immature populations for model (8). (b) Fractional
models for several values of α.

3.2. SIRS Models

The SIRS model is an epidemic model considering three populations: S(t), I(t), and
R(t), satisfying three non-linear equations. The ODE model (11) has two equilibrium
points: the disease-free equilibrium (DFE), S∗ = N, I∗ = 0, R∗ = 0, with N the to-
tal constant population, and the endemic one, S∗ = Nγ/ν, I∗ = (N − S∗)ν/(γ + ν),
R∗ = γI∗/ν [38,64]. The local asymptotic stability of the DFE can be determined by finding
the basic reproduction number R0, which is usually calculated using the next-generation
matrix method [53,54]. For R0 = β/γ < 1, the DFE equilibrium is locally asymptotically
stable. The three delay models, Equations (12)–(14), have the same equilibrium points
with the same stability, as determined by linearizing about the DFE and analyzing the
characteristic equation. The three models make biological sense. Their main difference
is when the newly infected stops being counted as susceptible. For some epidemics, the
first model may fit the data better than the others, but this may be due to factors not
included in the models. For the FDE model, the equilibrium points are the same as for the
ODE model. The stability can be analyzed by solving the linearized equation about the
DFE, but the expressions for the solutions are not easy to analyze [11,65]. For the SEIRS
model (16), the DFE is the same, but the endemic one is different due to the extra compart-
ment, E(t). The DFE is also locally asymptotically stable for R0 = β/γ < 1, also calculated
using the next-generation matrix method. Figures 4 and 5 show the simulations for SIRS
models (11)–(14) and (16), as well as (15), using various values of α. All the solutions for
the integer-order models tend to the same endemic equilibrium point, but the delay and ex-
posed models take more time. The solutions of the fractional models also tend to the same
equilibrium. Again, for the fractional model, it can be seen that decreasing α slows the solu-
tion and that there is a value of α that gives a good fit with the delay model solutions, but the
fit is not good for small time values. The best value for α is between 0.7 and 0.8. The param-
eter values used are N = 100 (individual), β = 1 (1/day), γ = 0.5 (1/day), ν = 0.4 (1/day),
τ = 5 (day), and σ = 1/τ (1/day). These parameters are not based on an actual infection.
The initial conditions are S(0) = 99, I(0) = 1, which were also used as the history for the
delay models, and E(0) = 0 is additionally used for the SEIRS model.
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(a) (b)

Figure 4. SIRS models, susceptibles. (a) ODE, DDE, and SEIRS models. (b) Fractional models for
several values of α.

(a) (b)

Figure 5. SIRS models, infectives. (a) ODE, DDE, and SEIRS models. (b) Fractional models for several
values of α.

3.3. Plant Virus with Vector Transmission Models

The plant virus model introduces the transmission through a vector instead of through
direct contact. Now, the infection of the plant depends on the past since it takes time for
the virus to spread inside the plant. But the infection of the vector does not. It is a more
complicated model, and the objective is to see if the fractional models can still approximate
the results of a DDE model by varying the value of α. Two different ways of introducing the
delay were presented, (18) and (19). Only model (18) conserves the total plant population.
It can be argued that the way of introducing the delay in (19) is acceptable for a model
with a total population that is not constant, but it is clearly not a good choice for a constant
population model. This can also be seen in Figures 6–9. The plots on the left of the figures
correspond to the simulations using the models given by (17)–(19) and (21). The plots on
the right correspond to the simulation using (20) for different values of α. The parameters
used in the simulations were taken from [43,50]: K = 100 (plant), β = 0.01 (1/(vector
day)), β1 = 0.01 (1/(plant day)), μ = 0.1 (1/day), d = 0.1 (1/day), m = 0.2 (1/day),
and Λ = 10 (vector/day). These values are for illustration purposes only. All the models,
including the fractional ones, have solutions that tend to the same endemic equilibrium,
except for the model given by (19), which does not conserve the total plant population.
For the FDE models, as expected, the solutions change slower than for the ODE model,
and as α decreases from 1, they keep slowing. Assuming that the only dependence on the
past is due to the delay in the plant infection, the FDE models can produce similar time
trajectories. The value of α that gives the best agreement with the solutions from the delay
model is around 0.9.
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(a) (b)

Figure 6. Plant vector virus models, susceptible plants. (a) ODE, DDE, and exposed population
models. (b) Fractional models for several values of α.

(a) (b)

Figure 7. Plant vector virus models, infected plants. (a) ODE, DDE, and exposed population models.
(b) Fractional models for several values of α.

(a) (b)

Figure 8. Plant vector virus models, susceptible vectors. (a) ODE, DDE, and exposed population
models. (b) Fractional models for several values of α.

(a) (b)

Figure 9. Plant vector virus models, infected vectors. (a) ODE, DDE, and exposed population models.
(b) Fractional models for several values of α.
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3.4. Within-Host Virus Propagation Models

Finally, we consider a more complicated model in which the populations can inter-
act in several ways, and there are two terms of the equations for the susceptible and
infected cells that have a delay. There is also a second delay. The values of the parame-
ters used are Λ = 5 × 105 (cells/mL), μx = 0.003 (1/day), β = 4 × 10−10 (mL/(cells day)),
μy = 0.043 (1/day), μv = 0.7 (1/day), B = 5.58, βxy = β/3 (mL/(cells day)), μE = 0.5 (1/day),
α1 = 2.2 × 10−7 (1/day), βEy = 0.6 × 10−3 (mL/(cells day)), βyE = βEy (mL/(cells day)),
βEv = 4 × 10−10 (mL/(cells day)), βvE = βEv (mL/(cells day)), s = 30 (cells/(mL day)),
τ1 = 1 (day), and τ2 = 24 (day). These parameters are based on those in [55,56] for liver infec-
tion by the hepatitis B virus. The initial conditions are x(0) = Λ/μx, y(0) = 0, v(0) = 0.33,
and E(0) = s/μE. Figures 10–13 show the simulations for the above-mentioned values of
the parameters. The plots on the left of the figures correspond to the simulations using
(22), (23), and (25). For the values of the parameters given above, the solutions tend to a
chronic equilibrium state. The DFE is asymptotically unstable for the integer-order models,
as was also shown in [66]. The plots on the right correspond to the simulations using (24)
for different values of the order of the derivative α. As expected, for the number of infected
cells, for the fractional model, the rate of increase of the solutions increases as α increases
toward 1. The optimal value of α is between 0.9 and 1. Since the solutions increased very
slowly, the plots were truncated to clearly show the differences for a short time. Another
simulation was conducted with βxy = 0, resulting in no transmission from cell to cell.
In this case, the DFE is asymptotically stable, as illustrated in Figure 14.

(a) (b)

Figure 10. Virus within-host models, susceptible cells. (a) ODE, DDE, and exposed population
models. (b) Fractional models for several values of α.

(a) (b)

Figure 11. Virus within-host models, infected cells. (a) ODE, DDE, and exposed population models.
(b) Fractional models for several values of α.
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(a) (b)

Figure 12. Virus within-host models, virus particles. (a) ODE, DDE, and exposed population models.
(b) Fractional models for several values of α.

(a) (b)

Figure 13. Virus within-host models, effector cells. (a) ODE, DDE, and exposed population models.
(b) Fractional models for several values of α.

(a) (b)

Figure 14. Virus within-host models, infected cells, for βxy = 0. (a) ODE, DDE, and exposed
population models. (b) Fractional models for several values of α.

4. Discussion

Many populations depend on their values in the past. The number of births depends
on the population the maturation time ago. The number of newly infected depends on
the number of contacts between an infected and a susceptible the infection time ago.
Also, the immune system takes a certain time to react and start fighting an infection.
Mathematical models for processes involving values in the past should incorporate this
dependence and, therefore, produce solutions that are more realistic. Mathematical models
are simplifications of reality. This can be due to keeping the model tractable or to the lack
of information and data. ODE-based models assume that the population is homogeneously
distributed and so avoid having spatial dependence. Usually, infection rates are assumed
to be constant but they can vary with time, temperature, and the individual. There may
be saturation effects not modeled by mass-action kinetics. Recovered individuals turning
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into susceptibles may retain some immunity and may infect others. Processes that take
time should be modeled taking into account that time. As shown in Section 2, there are
different ways of introducing delays into an ODE model, but they need to be introduced
in a consistent manner. For example, model (19) does not conserve the total population
and, therefore, should not be used. The maturation time is not a single time but has some
variation. The same is true for the infection time. But usually, these variations are small, and
using a single value is a good approximation. But if they are not, then a distributed delay
model will be better. Also, there is the effect of population values on the history interval,
[t0 − τ, t0], where t0 is the initial time. But for epidemic or infection models, the values
of the populations in those intervals can be assumed to correspond to the DFE, which is
a reasonable assumption. There are many papers dealing with comparisons between a
variety of epidemic models with delays and real data for diseases like dengue or COVID-19.
A few examples can be found in [67–70]. Most show that the fit is good but do not compare
their results with those of other methods. An exception is [70], where the results from a
DDE model were compared with those from an ODE model.

A second way to introduce dependence on the past is to replace the time derivative
with a fractional one. From the definition, for example, of the Caputo derivative at time
t, it is a weighted average of the time derivatives at times from 0 to the current time t.
As shown in Section 2, FDEs do not come from discrete-time conservation models by taking
the limit as the time increment goes to zero. In models where the dependence on past times
comes from the delay in a given process, the FDEs do not have a form similar to constant or
distributed delay models. Furthermore, the effect of past times starts with the initial time
of modeling, as opposed to models formulated using DDEs, where the influence extends
over times t ∈ [t0 − τ, t0], with τ representing the delay. FDEs introduce memory, but
there lacks a justification for the specific form of this memory. For epidemic models, it is
true that susceptibles may remember previous infections, potentially leading to a different
infection process. But this does not justify the form of the memory in the FDE. It is also
true that many epidemic models based on FDEs fit data better than models based on ODEs,
but this may be due to the additional parameter α. If there are susceptibles who previously
had the infection and thus may react differently to a new infection due to their memory of
the previous infection, an alternative is to add a new susceptible compartment. This can
also be done for infectives and those who have recovered from previous infections. The
main arguments for using FDEs in epidemic models are that they include memory and that
they fit data better than models based on ODEs. This is true, but there is no justification
that the memory that the FDEs provide has anything to do with any biological, physical,
or chemical process with dependence on the past. Also, the value of the fractional order
(or orders) is chosen to better fit the data. Mechanistic models should give a modeling
reason or hypothesis on how to choose it. Statistical models, like linear regression, will
find the values of the involved parameters to better fit a data set. But mechanistic models
should do more than provide computational data that fit experimental data. Recently, there
has been an awareness that fractional differential equations should also include delays to
better model processes that have delays. This allows the fractional derivative to provide an
additional memory effect. Some references supporting this notion are [71–73].

A third common way to introduce that processes take time, thus introducing depen-
dence on the past, is to add new populations, immature populations for birth processes,
or exposed populations or cells to epidemic or infection models. This approach has the
advantage of being based on ODEs, and, for example, the next-generation matrix method
can be used to determine if there will be an epidemic. Also, it does not require initial
values for an interval prior to the initial value of t. But, just as a Malthus death model
dN
dt = −μN with μ > 0 can have individuals living for very long times, some exposed

individuals may stay in the compartment for a long time. Of course, this can happen with
a very small probability.

All the example models used have a dependence on past values based on the assump-
tion that the dependence is due to the time it takes processes like infection or maturation

54



Axioms 2024, 13, 206

to happen. Delay models, as well as exposed or immature models, explicitly include this
dependence. Fractional differential equation models have a dependence on past values, but
this dependence has a different form that is independent of the actual value of the delay or
delays. But fractional differential equation models offer the flexibility of more parameters,
specifically the fractional orders of the derivatives. By choosing these orders adequately,
these models can produce similar results to models that explicitly include the delays.

In conclusion, the terms added to an ODE model to take into account dependence on
past values need justification. The justification should be more than just saying there is
memory or achieving a better fit. The processes in mechanistic mathematical models need
to be based on realistic assumptions. For processes depending on past values due to a delay,
DDEs are good choices since there is flexibility in choosing the form of the delay, whether
constant or distributed. But models based on adding more populations and still relying on
ODEs are simpler to analyze. When using fractional derivatives, modeling assumptions
should also be clearly stated.

Future work will include models with stochastic delays, models with partial immunity,
and comparisons of the predicted results with real data.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code for the SIRS models presented can be accessed at https:
//drive.google.com/drive/folders/1qx7S4Wd1o3DaGloxmjD_wmr_NwGtjUhs?usp=sharing (ac-
cessed on 3 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ODE ordinary differential equation
DDE delay differential equation
FDE fractional differential equation
DFE disease-free equilibrium

References

1. Kuang, Y. Delay Differential Equations: With Applications in Population Dynamics; Academic Press: Cambridge, MA, USA, 1993.
2. Bellen, A.; Zennaro, M. Numerical Methods for Delay Differential Equations; Oxford University Press: Oxford, UK, 2013.
3. Wang, W. Modeling of Epidemics with Delays and Spatial Heterogeneity. In Dynamical Modeling and Analysis of Epidemics; World

Scientific: Singapore, 2009; pp. 201–272.
4. Cooke, K.L. Stability analysis for a vector disease model. Rocky Mt. J. Math. 1979, 9, 31–42. [CrossRef]
5. Ruan, S. Delay differential equations in single species dynamics. In Delay Differential Equations and Applications; Springer:

Dordrecht, The Netherlands, 2006; pp. 477–517.
6. McCluskey, C.C. Complete global stability for an SIR epidemic model with delay—Distributed or discrete. Nonlinear Anal. Real

World Appl. 2010, 11, 55–59. [CrossRef]
7. Avila-Vales, E.; Pérez, Á.G. Dynamics of a time-delayed SIR epidemic model with logistic growth and saturated treatment. Chaos

Solitons Fractals 2019, 127, 55–69. [CrossRef]
8. Kumar, A.; Goel, K.; Nilam. A deterministic time-delayed SIR epidemic model: Mathematical modeling and analysis. Theory

Biosci. 2020, 139, 67–76. [CrossRef] [PubMed]
9. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
10. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,

The Netherlands, 2006; Volume 204.
11. Li, C.; Zhang, F. A survey on the stability of fractional differential equations: Dedicated to Prof. YS Chen on the Occasion of his

80th Birthday. Eur. Phys. J. Spec. Top. 2011, 193, 27–47. [CrossRef]
12. Jin, B. Fractional Differential Equations; Springer: Cham, Switzerland, 2021.
13. González-Parra, G.; Arenas, A.J.; Chen-Charpentier, B.M. A fractional order epidemic model for the simulation of outbreaks of

influenza A (H1N1). Math. Methods Appl. Sci. 2014, 37, 2218–2226. [CrossRef]

55



Axioms 2024, 13, 206

14. Area, I.; Batarfi, H.; Losada, J.; Nieto, J.J.; Shammakh, W.; Torres, Á. On a fractional order Ebola epidemic model. Adv. Differ. Equ.
2015, 2015, 278. [CrossRef]

15. Hamdan, N.; Kilicman, A. A fractional order SIR epidemic model for dengue transmission. Chaos Solitons Fractals 2018, 114, 55–62.
[CrossRef]

16. Chatterjee, A.N.; Ahmad, B. A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos
Solitons Fractals 2021, 147, 110952. [CrossRef]

17. Chen, Y.; Liu, F.; Yu, Q.; Li, T. Review of fractional epidemic models. Appl. Math. Model. 2021, 97, 281–307. [CrossRef]
18. Petrás, I. Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab; IntechOpen: London, UK, 2011.
19. Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grünwald–Letnikov method for fractional differential equations. Comput. Math.

Appl. 2011, 62, 902–917. [CrossRef]
20. Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D. A review and evaluation of numerical tools for fractional calculus and fractional

order controls. Int. J. Control 2017, 90, 1165–1181. [CrossRef]
21. Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16.

[CrossRef]
22. Li, T.; Wang, Y.; Liu, F.; Turner, I. Novel parameter estimation techniques for a multi-term fractional dynamical epidemic model

of dengue fever. Numer. Algorithms 2019, 82, 1467–1495. [CrossRef]
23. Das, M.; Samanta, G.; De la Sen, M. A Fractional Ordered COVID-19 Model Incorporating Comorbidity and Vaccination.

Mathematics 2021, 9, 2806. [CrossRef]
24. Atici, F.; Eloe, P. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [CrossRef]
25. Cheng, J.F.; Chu, Y.M. Fractional difference equations with real variable. Abstr. Appl. Anal. 2012, 2012, 918529. [CrossRef]
26. Ferreira, R.A. Discrete Fractional Calculus and Fractional Difference Equations; Springer: Cham, Switzerland, 2022.
27. Esteva, L.; Yang, H.M. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique.

Math. Biosci. 2005, 198, 132–147. [CrossRef]
28. Anguelov, R.; Dumont, Y.; Lubuma, J. Mathematical modeling of sterile insect technology for control of anopheles mosquito.

Comput. Math. Appl. 2012, 64, 374–389. [CrossRef]
29. Li, M.Y.; Muldowney, J.S. Global stability for the SEIR model in epidemiology. Math. Biosci. 1995, 125, 155–164. [CrossRef]
30. Jeger, M.; Madden, L.; Van Den Bosch, F. Plant virus epidemiology: Applications and prospects for mathematical modeling and

analysis to improve understanding and disease control. Plant Dis. 2018, 102, 837–854. [CrossRef]
31. He, S.; Peng, Y.; Sun, K. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn. 2020, 101, 1667–1680. [CrossRef]
32. Agaba, G.O.; Soomiyol, M.C. Analysing the spread of COVID-19 using delay epidemic model with awareness. IOSR J. Math.

2020, 16, 52–59.
33. Babasola, O.; Kayode, O.; Peter, O.J.; Onwuegbuche, F.C.; Oguntolu, F.A. Time-delayed modelling of the COVID-19 dynamics

with a convex incidence rate. Inform. Med. Unlocked 2022, 35, 101124. [CrossRef]
34. Sepulveda, G.; Arenas, A.J.; González-Parra, G. Mathematical Modeling of COVID-19 dynamics under two vaccination doses

and delay effects. Mathematics 2023, 11, 369. [CrossRef]
35. Zhang, J. Pandemic Mathematical Models, Epidemiology, and Virus Origins. In Optimization-Based Molecular Dynamics Studies of

SARS-CoV-2 Molecular Structures: Research on COVID-19; Springer: Cham, Switzerland, 2023; pp. 897–908.
36. Dickson, S.; Padmasekaran, S.; Kumar, P. Fractional order mathematical model for B. 1.1. 529 SARS-Cov-2 Omicron variant with

quarantine and vaccination. Int. J. Dyn. Control 2023, 11, 2215–2231. [CrossRef]
37. Allen, L. An Introduction to Mathematical Biology; Pearson-Prentice Hall: Hoboken, NJ, USA, 2007.
38. Edelstein-Keshet, L. Mathematical Models in Biology; SIAM: Philadelphia, PA, USA 2005.
39. Castillo-Chavez, C.; Yakubu, A.A. Discrete-time SIS models with simple and complex population dynamics. IMA Vol. Math. Its

Appl. 2002, 125, 153–164.
40. Brauer, F.; Feng, Z.; Castillo-Chavez, C. Discrete epidemic models. Math. Biosci. Eng. 2009, 7, 1–15.
41. Cooke, K.L.; Yorke, J.A. Some equations modelling growth processes and gonorrhea epidemics. Math. Biosci. 1973, 16, 75–101.

[CrossRef]
42. Khan, Q.J.A.; Krishnan, E.V. An Epidemic Model with a Time Delay in Transmission. Appl. Math. 2003, 48, 193–203. [CrossRef]
43. Jackson, M.; Chen-Charpentier, B.M. Modeling plant virus propagation with delays. J. Comput. Appl. Math. 2017, 309, 611–621.

[CrossRef]
44. Liu, L. A delayed SIR model with general nonlinear incidence rate. Adv. Differ. Equ. 2015, 2015, 329. [CrossRef]
45. Hethcote, H.W. The Mathematics of Infectious Diseases. SIAM Rev. 2000, 42, 599–653. [CrossRef]
46. Al-Sulami, H.; El-Shahed, M.; Nieto, J.J.; Shammakh, W. On fractional order dengue epidemic model. Math. Probl. Eng. 2014,

2014, 456537. [CrossRef]
47. Sardar, T.; Rana, S.; Bhattacharya, S.; Al-Khaled, K.; Chattopadhyay, J. A generic model for a single strain mosquito-transmitted

disease with memory on the host and the vector. Math. Biosci. 2015, 263, 18–36. [CrossRef]
48. Legg, J.P.; Kumar, P.L.; Makeshkumar, T.; Tripathi, L.; Ferguson, M.; Kanju, E.; Ntawuruhunga, P.; Cuellar, W. Cassava virus

diseases: Biology, epidemiology, and management. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2015;
Volume 91, pp. 85–142.

56



Axioms 2024, 13, 206

49. Gyamera, E.A.; Domfeh, O.; Ameyaw, G.A. Cacao Swollen Shoot Viruses in Ghana. Plant Dis. 2023, 107, 1261–1278. [CrossRef]
[PubMed]

50. Shi, R.; Zhao, H.; Tang, S. Global dynamic analysis of a vector-borne plant disease model. Adv. Differ. Equ. 2014, 2014, 59.
[CrossRef]

51. Erneux, T. Applied Delay Differential Equations; Springer Science & Business Media: New York, NY, USA, 2009; Volume 3.
52. Anwar, N.; Naz, S.; Shoaib, M. Reliable numerical treatment with Adams and BDF methods for plant virus propagation model by

vector with impact of time lag and density. Front. Appl. Math. Stat. 2022, 8, 1001392. [CrossRef]
53. Diekmann, O.; Heesterbeek, J.; Roberts, M.G. The construction of next-generation matrices for compartmental epidemic models.

J. R. Soc. Interface 2010, 7, 873–885. [CrossRef] [PubMed]
54. Van den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2017, 2, 288–303. [CrossRef]

[PubMed]
55. Ciupe, S.M.; Ribeiro, R.M.; Nelson, P.W.; Dusheiko, G.; Perelson, A.S. The role of cells refractory to productive infection in acute

hepatitis B viral dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 5050–5055. [CrossRef]
56. Kim, H.Y.; Kwon, H.D.; Jang, T.S.; Lim, J.; Lee, H.S. Mathematical modeling of triphasic viral dynamics in patients with

HBeAg-positive chronic hepatitis B showing response to 24-week clevudine therapy. PLoS ONE 2012, 7, e50377. [CrossRef]
57. Pourbashash, H.; Pilyugin, S.S.; De Leenheer, P.; McCluskey, C. Global analysis of within host virus models with cell-to-cell viral

transmission. Discret. Contin. Dyn. Syst. Ser. B 2014, 19, 3341–3357. [CrossRef]
58. Zhang, S.; Li, F.; Xu, X. Dynamics and control strategy for a delayed viral infection model. J. Biol. Dyn. 2022, 16, 44–63. [CrossRef]
59. Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer: Singapore, 2021.
60. Wolfram Research, Inc. Mathematica; version 13.2; Wolfram: Champaign, IL, USA, 2022.
61. Rackauckas, C.; Nie, Q. DifferentialEquations.jl—A Performant and Feature-Rich Ecosystem for Solving Differential Equations

in Julia. J. Open Res. Softw. 2017, 5, 15. Available online: https://app.dimensions.aion2019/05/05 (accessed on 3 March 2024).
[CrossRef]

62. Widmann, D.; Rackauckas, C. DelayDiffEq: Generating Delay Differential Equation Solvers via Recursive Embedding of Ordinary
Differential Equation Solvers. arXiv 2022, arXiv:2208.12879.

63. Khalighi, M.; Benedetti, G.; Lahti, L. Fdesolver: A julia package for solving fractional differential equations. arXiv 2022,
arXiv:2212.12550.

64. Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics–I. 1927. Bull. Math. Biol. 1991,
53, 33–55. [PubMed]

65. Hattaf, K. On the Stability and Numerical Scheme of Fractional Differential Equations with Application to Biology. Computation
2022, 10, 97. [CrossRef]

66. Chen-Charpentier, B. A Model of Hepatitis B Viral Dynamics with Delays. AppliedMath 2024, 4, 182–196. [CrossRef]
67. Wu, C.; Wong, P.J. Dengue transmission: Mathematical model with discrete time delays and estimation of the reproduction

number. J. Biol. Dyn. 2019, 13, 1–25. [CrossRef] [PubMed]
68. Dell’Anna, L. Solvable delay model for epidemic spreading: The case of Covid-19 in Italy. Sci. Rep. 2020, 10, 15763. [CrossRef]

[PubMed]
69. Shayak, B.; Sharma, M.M.; Rand, R.H.; Singh, A.; Misra, A. A Delay differential equation model for the spread of COVID-19. Int.

J. Eng. Res. Appl. 2020, 10, 1–13.
70. Saade, M.; Ghosh, S.; Banerjee, M.; Volpert, V. An epidemic model with time delays determined by the infectivity and disease

durations. Math. Biosci. Eng. 2023, 20, 12864–12888. [CrossRef] [PubMed]
71. Rihan, F.; Al-Mdallal, Q.; AlSakaji, H.; Hashish, A. A fractional-order epidemic model with time-delay and nonlinear incidence

rate. Chaos Solitons Fractals 2019, 126, 97–105. [CrossRef]
72. Singh, H. Numerical simulation for fractional delay differential equations. Int. J. Dyn. Control 2021, 9, 463–474. [CrossRef]
73. Sun, D.; Liu, J.; Su, X.; Pei, G. Fractional differential equation modeling of the HBV infection with time delay and logistic

proliferation. Front. Public Health 2022, 10, 1036901. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

57



axioms

Article

Simpson’s Variational Integrator for Systems with
Quadratic Lagrangians

Juan Antonio Rojas-Quintero 1,2,*, François Dubois 3,4 and José Guadalupe Cabrera-Díaz 5

1 CONAHCYT, Tecnológico Nacional de México, I. T. Ensenada, Ensenada 22780, B.C., Mexico
2 IMT Atlantique, LS2N, UMR CNRS 6004, 44307 Nantes, France
3 Université Paris-Saclay, Laboratoire de Mathématiques d’Orsay, 91400 Orsay, France
4 Conservatoire National des Arts et Métiers, Structural Mechanics and Coupled Systems Laboratory,

75141 Paris, France
5 Tecnológico Nacional de México, I. T. Ensenada, Ensenada 22780, B.C., Mexico
* Correspondence: jarojas@conahcyt.mx

Abstract: This contribution proposes a variational symplectic integrator aimed at linear systems
issued from the least action principle. An internal quadratic finite-element interpolation of the state
is performed at each time step. Then, the action is approximated by Simpson’s quadrature formula.
The implemented scheme is implicit, symplectic, and conditionally stable. It is applied to the time
integration of systems with quadratic Lagrangians. The example of the linearized double pendulum
is treated. Our method is compared with Newmark’s variational integrator. The exact solution of
the linearized double pendulum example is used for benchmarking. Simulation results illustrate the
precision and convergence of the proposed integrator.
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1. Introduction

Simpson’s quadrature is the name that is generally given to a numerical approximation
of definite integrals that is exact for polynomials up to the third degree:

∫ 1

0
ψ(θ)dθ 
 1

6

(
ψ(0) + 4ψ

(
1
2

)
+ ψ(1)

)
. (1)

It is well known that this rule was found by Bonaventura Cavalieri (1598–1647),
known to James Gregory (1638–1675) [1], and even used by Johannes Kepler (1571–1630) to
approximate the volume of barrels [2]. However, Thomas Simpson (1710–1761) is usually
credited for this rule. As such, Formula (1) is also widely known as Simpson’s 1/3 rule.
It corresponds to a special case of Newton–Cotes’s formula [1] and coincides with the
classical fourth-order Runge–Kutta method [1,3].

Generally, numerical methods involving Simpson’s quadrature estimate a definite
integral by using quadratic polynomials to approximate the integrand on a sequence
of intervals. This general idea is at the foundation of numerous methods that can be
applied to solve engineering problems such as the low-thrust orbit transfer problem [4]
or the gait optimization of a bipedal walking robot [5]. Recently, much attention has been
brought to fractional calculus, for which solvers based on Simpson’s quadrature (adapted
to the fractional form) have been developed [6]. Some applications involve solving initial-
value problems of fractional differential systems [7] or the solution of fractional equations
affected by noisy signals [8]. Another recent application of Simpson’s quadrature involves
the solution of partial integro-differential equations [9].
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Our contribution is aimed at solving differential equations characterizing the motions
of mechanical systems. It is well known that the motions of a mechanical system are
the extremals of the variational principle of least action [10]. This principle is one of the
most general laws of theoretical physics and is foundational for characterizing a system’s
evolution in the form of differential equations. It is valid across disciplines such as classical
and quantum mechanics, cosmology, electromagnetism, optics, and relativity [10–14]. As
such, this variational principle is closely involved in the development of the finite-element
method [15], which is used for the space and time integration of differential equations [16].

Numerical schemes for dynamical systems issued from the principle of least action
are typically referred to as variational [17–20]. The general idea resides in performing
a discretization at the least action principle level. As a result, the evolution equations
deriving from this discretized principle characterize the system evolution, but are also
a numerical scheme. It is well known that such numerical methods are endowed with
interesting characteristics; one characteristic is the property of being symplectic [18–21].
One remarkable example of such methods is Newmark’s integrator [17,19], which is very
popular for solving problems in the dynamics of structures [22,23] and has recently been
geometrized to solve the motion equations of sliding rods [24] and soft robots [25].

A symplectic scheme based on Simpson’s rule has been proposed by the authors
in [26], for the linear and scalar case of the harmonic oscillator. The scheme uses a quadratic
finite-element interpolation. The method was adapted to the monodimensional non-linear
pendulum system in [27]. In this work, Simpson’s symplectic scheme is further studied as
an alternative to Newmark’s method. It is generalized to the case of multiple-degrees of
freedom systems characterized by quadratic Lagrangians. The obtained results confirm
the convergence rate previously observed in [26]. The new stability condition on the step
size is revealed to be similar to the one previously obtained in [26]. A simplecticity analysis
that applies to the multi-degree of freedom case, along with the expression of a related
conserved quadratic form, is provided in this contribution.

We begin our study by detailing Newmark’s classical scheme, deriving it from varia-
tional principles in Section 2. Then, Simpson’s alternative scheme is detailed and derived
from variational principles in Section 3. Section 4 analyzes the symplectic property of
Simpson’s scheme. A proof that applies to both Newmark’s and Simpson’s schemes is
provided. To compare both methods in a case study, a two-degree of freedom system is
presented. Therefore, the exact solution to the linearized double pendulum is provided
in Section 5. This exact solution serves for benchmarking purposes in our comparisons.
Section 6 presents and comments on the obtained numerical results. Simpson’s scheme’s
convergence is revealed to be of the fourth order. The manuscript ends with a brief discus-
sion and concluding remarks in Section 7.

2. Newmark’s Scheme

2.1. Discrete Action

Let us derive the classical, symplectic variational integrator based on Newmark’s
scheme [17,19,22,23]. The continuous action is defined as

Sc =
∫ T

0
L
(

dq(t)
dt

, q(t)
)

dt (2)

where L is the system Lagrangian. We focus on dynamical systems for which the La-
grangian can be expressed quadratically as

L =
1
2

q̇T Mq̇ − 1
2

qTKq, (3)

where M and K are symmetric, positive-definite n-dimensional matrices with constant
coefficients; q ∈ Rn.
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We can discretize Equation (2) by splitting the simulation interval [0, T] into N ele-
ments using a time step h = T/N. An approximation qj of q(tj) is calculated at each instance
tj = jh. The following action Sd represents the discrete version of Equation (2):

Sd =
N−1

∑
j=1

Ld
(
qj, qj+1

)
, (4)

where Ld(q�, qr) is the discrete form of the Lagrangian (3). Subscripts � and r stand for “left”
and “right” values, respectively. Let us consider a centered finite-difference approximation:

dq

dt

 qr − q�

h
,

and a midpoint quadrature:

∫ h

0
ϕ(q(t))dt 
 hϕ

(
q� + qr

2

)
.

The discrete Lagrangian becomes

Ld(q�, qr) =
h
2

[(
qr − q�

h

)T
M
(

qr − q�

h

)]
− h

2

[(
q� + qr

2

)T
K
(

q� + qr

2

)]
.

2.2. Discrete Euler–Lagrange Equations

The discrete action (4) being a sum, only two terms contain the variables qj:

Sd = · · ·+ Ld
(
qj−1, qj

)
+ Ld

(
qj, qj+1

)
+ · · · .

So, when the discrete action is stationary (δSd = 0 for arbitrary variations δqj of the
states qj), only two terms remain. Necessarily,

∂Ld
∂qr

(
qj−1, qj

)
+

∂Ld
∂q�

(
qj, qj+1

)
= 0. (5)

The generalized momenta pj ∈ Rn are defined, on the right, as

pj =
∂Ld
∂qr

(q�, qr). (6)

Therefore, the first term of Equation (5) is identified as pj, so applying Equation (6) in
Equation (5) leads to

pj = −∂Ld
∂q�

(
qj, qj+1

)
= M

(
qj+1 − qj

h

)
+

h
2

K
(

qj + qj+1

2

)
. (7)

Then, pj+1 is constructed following Equation (6):

pj+1 = M
(

qj+1 − qj

h

)
− h

2
K
(

qj + qj+1

2

)
. (8)

Using Equations (7) and (8), it can be established that

pj+1 − pj

h
= −K

(
qj + qj+1

2

)
;

pj + pj+1

2
= M

(
qj+1 − qj

h

)
. (9)

Equations (9) are consistent with dp
dt = −Kq and p = M dq

dt , respectively.
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2.3. Newmark’s Scheme

System (9) can then be arranged in linear form as

Anηj+1 = Bnηj, (10)

where η ∈ R2n, η = (p, q)T and

An =

(
In −Xn

In Yn

)
; Bn =

(−In −Xn

In −Yn

)
; Xn =

2
h

M; Yn =
h
2

K; (11)

In is the n-dimensional identity matrix.
Newmark’s symplectic scheme is obtained by matrix inversion of Equation (10). We

can establish that
ηj+1 = Φn ηj, Φn = A−1

n B, (12)

where matrices A and B are defined in Equation (11) above. It has been observed that this partic-
ular variant of Newmark’s method is unconditionally stable and second-order convergent [19].

3. Simpson’s Scheme

Newmark’s scheme, presented in Section 2, uses a midpoint quadrature for the numer-
ical integration of a regular function. This quadrature is exact only for polynomials up to
the first degree. A better precision is obtained with Simpson’s quadrature (1), which is exact
for polynomials up to the third degree. Notice how Formula (1) introduces a midpoint. This
midpoint will be regarded as an additional degree of freedom in our proposed integrator.

Let us now derive a symplectic scheme based on this integration rule. As with
Newmark’s scheme, the continuous action is defined by Equation (2) and the Lagrangian
has the structure of Equation (3).

3.1. Quadratic Finite-Element Interpolation

An internal interpolation can be performed at each time step, for t ∈ [0, h], using
quadratic finite elements [16,28]. We use the following compact basis functions for 0 � θ � 1:

ϕ0(θ) = (1 − θ)(1 − 2θ), ϕ1/2(θ) = 4θ(1 − θ), ϕ1(θ) = θ(2θ − 1). (13)

At t = hθ, the states q(t) ∈ P2 are approximated with the above basis functions as

q(t) = q�ϕ0(θ) + qm ϕ1/2(θ) + qr ϕ1(θ). (14)

Note that q(0) = q�, q
(

h
2

)
= qm and q(h) = qr; here, subscript m stands for “middle”.

This means that the finite-elements (13) are well adapted to the internal degree of
freedom at h/2. Then, by time differentiation,

dq

dt
=

1
h

(
q�

dϕ0

dθ
+ qm

dϕ1/2

dθ
+ qr

dϕ1

dθ

)
=

1
h
(q�(4θ − 3) + 4qm(1 − 2θ) + qr(4θ − 1))

= g�(1 − θ) + grθ

where derivatives g�, gr ∈ Rn are given by Gear’s scheme [29]. Gear’s scheme is used as
the differentiation approximation for q(t) ∈ P2 as
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g� =
dq

dt
(0) =

1
h
(−3q� + 4qm − qr),

gm =
dq

dt

(
h
2

)
=

g� + gr

2
=

qr − q�

h
,

gr =
dq

dt
(h) =

1
h
(q� − 4qm + 3qr),

(15)

where gm ∈ Rn. The above confirms that a first-order centered finite difference is recovered
by gm, which is the derivative at the middle of the discretization interval.

The interpolation is used within an interval of length h by splitting the range [0, T] into
N pieces, giving a fixed step size of h = T/N. At each discrete time instance tj = jh, we have

qj 
 q(tj), ∀ 0 � j � N;

qj+1/2 
 q
(

tj +
h
2

)
, ∀ 0 � j � N − 1.

Taking Equation (14), q(t) is a quadratic polynomial vector function within the interval
[tj, tj+1] with

t = tj + θh, q� = qj, qm = qj+1/2, qr = qj+1.

3.2. Discrete Lagrangian

Let us recall that the continuous action is defined by Equation (2) and that the La-
grangian is defined by Equation (3). In the present case, the discrete action sum Σd for a
motion t �→ q(t) between the initial time and a given final time T > 0 is discretized with N
regular intervals as

Σd =
N−1

∑
j=1

Lh

(
qj, qj+1/2, qj+1

)
, (16)

where Lh(q�, qm, qr) is the discrete form

Lh(q�, qm, qr) 

∫ h

0
Ldt,

of the Lagrangian (3). Using Simpson’s rule (1), the polynomial approximation (14) of the
states, and derivatives (15), the discrete Lagrangian of a linear system is expressed as

Lh(q�, qm, qr) =
h
2

[
1
6

gT
� Mg� +

2
3

gT
m Mgm +

1
6

gT
r Mgr

]
− h

2

[
1
6

qT
� Kq� +

2
3

qT
mKqm +

1
6

qT
r Kqr

]
.

3.3. Discrete Euler–Lagrange Equations

Recall that Simpson’s rule introduces an internal degree of freedom in the middle of
the interpolation interval. The discrete action (16) is a sum where only two terms contain
the variables qj and qj+1/2:

Σd = · · ·+ Lh

(
qj−1, qj−1/2, qj

)
+ Lh

(
qj, qj+1/2, qj+1

)
+ · · ·

Maupertuis’s stationary action principle [10] implies that δΣd = 0 for an arbitrary vari-
ation of the internal degree of freedom δqj+1/2 ∈ [tj, tj+1]. Considering Gear’s scheme (15),
we have

∂gi
�

∂qk
m

=
4
h

,
∂gi

m
∂qk

m
= 0,

∂gi
r

∂qk
m

= −4
h

, ∀i = k, 0 otherwise,

where gi is the i-th component of g and qk is the k-th component of q.
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When δΣd = 0, ∂Lh
∂qm

(
qj, qj+1/2, qj+1

)
= 0 by necessity. This conforms to the discrete

Euler–Lagrange equations at the middle of the interpolation interval:

4
3h

Mgj − 4
3h

Mgj+1 − 4
3

Kqj+1/2 = 0. (17)

However, gj − gj+1 = 1
h

(
−4qj + 8qj+1/2 − 4qj+1

)
, so Equation (17) becomes

M
(

4
qj − 2qj+1/2 + qj+1

h2

)
+ Kqj+1/2 = 0. (18)

This last equation is consistent with M d2q

dt2 + Kq = 0.
Additionally, for an arbitrary variation δqj, the Euler–Lagrange equations are given

by the necessary condition that

∂Ld
∂qr

(
qj−1, qj−1/2, qj

)
+

∂Ld
∂q�

(
qj, qj+1/2, qj+1

)
= 0. (19)

The generalized momenta pj are defined, on the right, as

pj =
∂Ld
∂qr

(q�, qm, qr). (20)

Therefore, the first term of Equation (19) is identified as pj, and it can established that

pj = −∂Ld
∂q�

(
qj, qj+1/2, qj+1

)
= − h

2

[
− 3

3h
Mgj − 4

3h
Mgj+1/2 +

1
3h

Mgj+1

]
+

h
6

Kqj

= − 1
6h

M
(

14qj − 16qj+1/2 + 2qj+1

)
+

h
6

Kqj,

(21)

because −3gj − 4gj+1/2 + gj+1 = 1
h

(
14qj − 16qj+1/2 + 2qj+1

)
. Equation (18) is then multi-

plied by h/3, and the result is added to Equation (21). This eliminates qj+1/2 from the first
term of the right-hand side:

pj = M
(

qj+1 − qj

h

)
− h

6
K
(
−2qj+1/2 − qj

)
. (22)

Then, pj+1 is calculated according to Equation (20)

pj+1 =
∂Ld
∂qr

(
qj, qj+1/2, qj+1

)
=

h
2

[
− 1

3h
Mgj +

4
3h

Mgj+1/2 +
3

3h
Mgj+1

]
− h

6
Kqj+1

=
1

6h
M
(

2qj − 16qj+1/2 + 14qj+1

)
− h

6
Kqj+1

(23)

because −gj + 4gj+1/2 + 3gj+1 = 1
h

(
2qj − 16qj+1/2 + 14qj+1

)
. Equation (18) is then multi-

plied by −h/3, and the result is added to Equation (23). This eliminates qj+1/2 from the first
term of the right-hand side:

pj+1 = M
(

qj+1 − qj

h

)
− h

6
K
(

2qj+1/2 + qj+1

)
. (24)
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Using Equations (22) and (24), we can establish that⎧⎪⎪⎪⎨⎪⎪⎪⎩
pj+1 − pj

h
= −K

(
1
6

qj +
2
3

qj+1/2 +
1
6

qj+1

)
pj + pj+1

2
=

(
M − h2

12
K
)(

qj+1 − qj

h

)
.

(25)

Equations (25) are consistent with dp
dt = −Kq and p = M dq

dt , respectively. Note that

the term h2

12 K in the second equation above vanishes as h → 0.

3.4. First Variant of Simpson’s Scheme

The system composed of Equations (18) and (25) can be rearranged as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L qj+1/2 − 1
2

qj+1 =
1
2

qj

pj+1 −
(

2
h

M − h
6

K
)

qj+1 = −pj −
(

2
h

M − h
6

K
)

qj

2h
3

Kqj+1/2 + pj+1 +
h
6

Kqj+1 = pj − h
6

Kqj

(26)

where

L =

(
In − h2

8
M−1K

)
.

System (26) can then be arranged in linear form:

Aσ

(
qj+1/2

ηj+1

)
= Bσ ηj+1, (27)

where η ∈ R2n, η = (p, q)T ;

A =

⎛⎜⎜⎝
L 0 − 1

2In

0 In −
(

2
h M − h

6 K
)

2h
3 K In

h
6 K

⎞⎟⎟⎠; B =

⎛⎜⎜⎝
0 1

2In

−In −
(

2
h M − h

6 K
)

In − h
6 K

⎞⎟⎟⎠. (28)

The first variant of Simpson’s scheme is obtained by matrix inversion of Equation (27).
We can establish that (

qj+1/2

ηj+1

)
= A−1

σ Bσ ηj, (29)

where matrices Aσ and Bσ are defined in Equation (28) above.

3.5. Second Variant of Simpson’s Scheme

Simpson’s scheme’s internal degree of freedom can be eliminated using the first
equation of System (26):

qj+1/2 =
1
2

L−1(qj+1 + qj
)
.

This equation approximates the middle point when h → 0, because then L → In.
Substituting this value into the third equation of System (26) leads to

pj+1 +
h
3

(
KL−1 +

1
2

K
)

qj+1 = pj − h
3

(
KL−1 +

1
2

K
)

qj,

and the second equation of System (26) remains unchanged. Therefore, the internal degree
of freedom is successfully eliminated so that, now,
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Asηj+1 = Bsηj (30)

where η ∈ R2n; η = (p, q)T ;

As =

(
In −Xs

In Ys

)
; Bs =

(−In −Xs

In −Ys

)
; Xs =

2
h

M − h
6

K ; Ys =
h
3

(
KL−1 +

1
2

K
)

. (31)

The second variant of Simpson’s symplectic scheme is obtained by matrix inversion of
Equation (30). We can establish that

ηj+1 = Φs ηj, Φs = A−1
s Bs, (32)

where matrices As and Bs are defined in Equation (31) above. Note that schemes (29) and (32)
are equivalent. However, this second variant eliminates the internal degree of freedom in the
middle of the interval.

The symplecticity of Simpson’s scheme (32) has not yet been proven. However, one
can appreciate the similarity with Newmark’s scheme by comparing Equation (11) and
Equation (31). The symplectic property of both schemes is analyzed in Section 4.

4. Symplecticity of Newmark’s and Simpson’s Schemes

The symplectic property of both Newmark’s scheme (12) and Simpson’s scheme (32)
is now analyzed.

4.1. Symplectic Property

A symplecticity proof is obtained by verifying that

ΦT
JΦ = J; J =

(
0 −In
In 0

)
. (33)

Φ corresponds to the scheme transformation matrix and characterizes a discrete time
evolution of the system. J is sometimes referred to as the canonical matrix for Hamiltonian
systems [30] and has the property that J−1 = JT = −J. When Equation (33) holds, it means
that Φ is an area-preserving transformation and that the scheme (12) is symplectic (see,
e.g., [18–20,31] for more details on this demonstration).

Proposition 1. An implicit scheme of the type

ηj+1 = A−1B ηj ; η = (p, q)T ,

is symplectic if

A =

(
In −X

In Y

)
, B =

(−In −X

In −Y

)
, (34)

are square, partitioned, invertible matrices and blocks X and Y are symmetric and positive-definite.

Proof of Proposition 1. Let us first make explicit the transformation A−1. Since A is square
and partitioned, its inversion is performed using auxiliary variables α and β. Let us
establish that

A
(

p

q

)
=

(
p − Xq

p + Yq

)
=

(
α
β

)
(35)

Subtracting both equations above gives

q = Z−1(β − α); Z = X + Y. (36)
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Since Z is the sum of two symmetric, positive-definite matrices, it is invertible.
Equation (36) is then substituted into the first equation of System (35):

p =
(
In − XZ−1

)
α + XZ−1β. (37)

Matrix A from Equation (34) is inverted in Equations (36) and (37) as:

A−1 =

(
In − XZ−1 XZ−1

−Z−1 Z−1

)
.

Then, it suffices to verify Equation (33) with Φ = A−1B. Thus,

ΦT
JΦ = BT A−T

JA−1B = BT

(−Z−T −(
In − Z−TXT)

Z−T −Z−TXT

)
A−1B

= BT

(
0 Z−1

−Z−1 0

)
B =

(
Z−1 Z−1

−YZ−1 XZ−1

)
B

=

(−Z−1 + Z−1 −Z−1(X + Y)

(Y + X)Z−1 YZ−1X − XZ−1Y

)

=

(
0 −In

In
(
X−1ZY−1)−1 − (

Y−1ZX−1)−1

)
=

(
0 −In

In 0

)
= J,

because X = XT , Y = YT , so Z−1 = Z−T .

4.2. Symplectic Property of Newmark’s Scheme

Proposition 2. Newmark’s scheme (12) is symplectic.

Proof of Proposition 2. In Newmark’s scheme’s formulation (12), matrices An and Bn from
Equation (11) are of the form of Equation (34), because Xn and Yn (11) are symmetric and
positive-definite. By Proposition 1, Newmark’s scheme is symplectic.

This confirms the classical result (e.g., [19]) on Newmark’s scheme’s symplecticity.

4.3. Symplectic Property of Simpson’s Scheme

To prove that Simpson’s scheme is symplectic, we first need to prove that As and Bs
have the structure of Equation (34). For this, blocks Xs and Ys are required to be symmetric
and positive-definite.

Proposition 3. Matrix Ys (31) is symmetric.

Proof of Proposition 3. Since M and K are symmetric, Ys is symmetric if and only if its
first term:

W = KL−1

is symmetric as well. W is symmetric if W−1 is symmetric. As

W−1 =

(
In − h2

8
M−1K

)
K−1 = K−1 − h2

8
M−1,

is symmetric, Ys is also symmetric.

For Ys to be positive-definite, the part KL−1 must be positive-definite. Since KL−1 is
symmetric by Proposition 3, a condition on the step size h is required.
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Let us introduce the smallest and largest eigenvalues of matrices M and K:

0 < μ‖ϕ‖2 � ϕT Mϕ � m‖ϕ‖2

0 < κ‖ϕ‖2 � ϕTKϕ � k‖ϕ‖2
(38)

where (μ, κ) are the smallest and (m, k) are the largest eigenvalues of matrices M and
K, respectively; ϕ �= 0 is an eigenvector. Taking M1/2 ϕ = ψ and then K1/2 ϕ = ψ,
Equation (38) becomes

1
m
‖ψ‖2 � ψT Mψ � 1

μ
‖ψ‖2

1
k
‖ψ‖2 � ψTKψ � 1

κ
‖ψ‖2,

and so,

ψT
(

LK−1
)

ψ �
(

1
k
− h2

8
1
μ

)
‖ψ‖2. (39)

The above expression is positive for

0 <
k
μ

h2 < 8. (40)

This inequality is a sufficient stability condition for Simpson’s scheme. Let us remark
that k/μ corresponds to the maximum eigenvalue of the dynamical matrix inverse M−1K and
is associated with the maximum characteristic eigenfrequency of the system (see [22]) by

k
μ
= ωmax

2.

The stability condition (40) can also be stated as

0 < ωmax h < 2
√

2.

This condition is similar to the stability condition characterizing the mono-dimensional
case for Simpson’s scheme [26].

Proposition 4. Matrix Ys from Equation (31) is positive-definite if 0 <
k
μ

h2 < 8.

Proof of Proposition 4. When the condition (40) is met, Equation (39) becomes

ψT
(

LK−1
)

ψ > 0, ∀ψ �= 0,

and LK−1 is positive-definite. Therefore, KL−1 is also positive-definite, and recalling
Proposition 3, it is symmetric. Consequently,

ψTYs ψ > 0, ∀ψ �= 0,

and Ys is positive-definite.

Now, only the positive-definiteness of block Xs from Equation (31) remains to
be proven.

Proposition 5. Matrix Xs from Equation (31) is positive-definite if 0 <
k
μ

h2 < 8.
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Proof of Proposition 5. From inequality (38),

ϕT Mϕ − h2

12
ϕTKϕ �

(
μ− h2

12
k
)
‖ϕ‖2,

and substituting the condition (40) for the first term of the right-hand side of the above inequality,

ϕT
(

M − h2

12
K
)

ϕ � μ

3
‖ϕ‖2 > 0, ∀ϕ �= 0.

Therefore, matrix Xs is positive-definite.

Proposition 6. Simpson’s scheme (32) is symplectic.

Proof of Proposition 6. For the second variant of Simpson’s scheme (32), matrices As and Bs
from Equation (31) are of the form of Equation (34), because Xs is symmetric and positive-definite
by Proposition 5 and Ys is symmetric and positive-definite by Propositions 3 and 4.

These results prove that the proposed Simpson’s scheme is symplectic.

4.4. Conservation of a Discrete Quadratic Form

Symplectic integrators usually do not preserve the energy quantity. This has been
summarized in [32] and outlined in [19]. The goal is to verify that Simpson’s scheme
preserves some quadratic form. It is required that some quadratic function φ(p, q) verifies

φ(pj+1, qj+1) = φ(pj, qj),

where (pj+1, qj+1) and (pj, qj) satisfy the dynamics of Simpson’s scheme, Equations (31) and (32).

Proposition 7. Given an implicit scheme of the type

ηj+1 = A−1B ηj ; η = (p, q)T , (41)

where

A =

(
In −X

In Y

)
, B =

(−In −X

In −Y

)
,

are square, partitioned, invertible matrices and blocks X and Y are symmetric and positive-definite,
there exists a quadratic form:

φ(p, q) =
1
2

pTξp +
1
2

qTζq, (42)

which is conserved if
ξ = (X + Y)−1; ζ = (X−1 + Y−1)−1.

Proof of Proposition 7. Let us expand Equation (41):

pj+1 − Xqj+1 = −pj − Xqj,

pj+1 + Xqj+1 = pj − Yqj.

The above can also be written as

pj+1 + pj = X
(
qj+1 − qj

)
pj+1 − pj = −Y

(
qj+1 + qj

)
.

Therefore, by multiplying ξ by the first equation above on the left and by the second
equation above on the right,
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(
pj+1 + pj

)T
ξ
(
pj+1 − pj

)
=

(
X
(
qj+1 − qj

))T
ξ(−Y)

(
qj+1 + qj

)
= −(

qj+1 − qj
)TXξY

(
qj+1 + qj

)
.

(43)

Since
(XξY)−1 = Y−1(X + Y)X−1 = X−1 + Y−1 = ζ−1

is symmetric and positive-definite, it is deduced that ζ = XξY is symmetric and positive-
definite. Following from Equation (43),

pj+1
Tξpj+1 + qj+1

Tζqj+1 = pj
Tξpj + qj

Tζqj,

and the property is proven since φ(pj+1, qj+1) = φ(pj, qj).

By Proposition 7 and Condition (40), Simpson’s scheme is conditionally stable.

5. Linear Double Pendulum Model and Exact Solution

This section presents a case study for subsequent numerical experiments.

5.1. Lagrangian

Let us model the system depicted by Figure 1. It is a two-degree-of-freedom dynamical
system composed of two masses (m1, m2) linked together by two massless thin rigid rods
of respective fixed lengths (l1, l2). Each joint articulates the system with one rotational
degree of freedom. The masses’ coordinates are given by

(x1, y1) = (l1 sin q1,−l1 cos q1)

(x2, y2) = (l1 sin q1 + l2 sin q2,−l1 cos q1 − l2 cos q2),

and their velocities are obtained by time differentiation considering that qi = qi(t). The
system kinetic energy is then given by

T =
1
2

m1

(
ẋ1

2 + ẏ1
2
)
+

1
2

m2

(
ẋ2

2 + ẏ2
2
)

,

where an overdot indicates time differentiation. Potential energy is calculated as

V = −m1gl1 cos q1 − m2g(l1 cos q1 + l2 cos q2),

and finally, the system Lagrangian L = T − V can be explicated as

L =
1
2
(m1 + m2)l12q̇1

2 +
1
2

m2l22q̇2
2 + m2l1l2q̇1q̇2 cos(q1 − q2)

+ (m1 + m2)gl1 cos q1 + m2gl2 cos q2.
(44)

Small oscillations take place when qi(t) are small and around the stable equilibrium.
This equilibrium corresponds to the system’s resting position when it is aligned with the
vertical axis pointing downwards. Such motions can be described by linear equations.
In this situation, the Lagrangian (44) takes a simpler form provided that the following
approximations take place:

cos q1 ≈ 1 − q1
2

2
;

cos q2 ≈ 1 − q2
2

2
;

cos(q1 − q2) ≈ 1 − (q1 − q2)
2

2
.

(45)
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l1

l2

m1

m2

x

y

q1

q2

x1

y1

x2

y2

�g

Figure 1. Double pendulum system subject to the gravity action. The system is composed of two
masses (m1, m2) linked together by two massless thin rigid rods of respective fixed lengths (l1, l2).
Each joint articulates the system with one rotational degree of freedom. Masses are located by the
generalized coordinates q = (q1, q2).

Using Equation (45), the linear form LL of Lagrangian (44) becomes

LL =
1
2
(m1 + m2)l1

(
l1q̇1

2 + 2g − gq1
2
)
+

1
2

m2l2
(

l2q̇2
2 + 2l1q̇1q̇2 + 2g − gq2

2
)

, (46)

where the second term of the cos(q1 − q2) approximation in Equation (45) vanishes when
multiplying the product q̇1q̇2. Generalized momenta are defined as

pi =
∂LL
∂q̇i

.

According to the Lagrangian (46), we have

p1 = (m1 + m2)l12q̇1 + m2l1l2q̇2,

p2 = m2l2(l1q̇1 + l2q̇2).

Motion equations are then obtained by applying Euler–Lagrange equations d
dt

∂LL
∂q̇i

−
∂LL
∂qi

= 0:

(m1 + m2)l12q̈1 + m2l1l2q̈2 + (m1 + m2)gl1q1 = 0,

m2l1l2q̈1 + m2l22q̈2 + m2gl2q2 = 0.
(47)

5.2. Exact Solution

Equation (47) can also be established as a linear system of the form

Mq̈ + Kq = 0. (48)

where

M =

(
(m1 + m2)l12 m2l1l2

m2l1l2 m2l22

)
; q =

(
q1
q2

)
; K =

(
(m1 + m2)gl1 0

0 m2gl2

)
.
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The general solution of Equation (48) is of the form

q(t) = Re
([

x1
x2

]
· eiωt

)
,

where x1 and x2 are eigenvectors and ω denotes the oscillation frequency. Two characteristic
frequencies (ω1, ω2) are determined by the solution of the auxiliary equation det(K −
ω2M) = 0:

(m1 + m2)g2 − (m1 + m2)g(l1 + l2)ω2 + m1l1l2ω4 = 0.

Let us focus on the case where

l1 = l2 = l.

In this particular case, the oscillation frequencies are given by

ω1,2 = ω0

√(
1 + μr ±

√
μr(1 + μr)

)
, (49)

with a mass ratio μr = m2/m1 and frequency ω0 =
√

g/l.
Eigenvectors x1 and x2 are then obtained by solving (K − ωi

2M)xi = 0 for i = 1 and
i = 2:

m1l
[
(1 + μr)(g − ωi

2l) −ωi
2μrl

−ωi
2μrl μr(g − ωi

2μrl)

]
xi = 0.

Solving the above system gives

x1 =

[
1

−
√

1+μr
μr

]
, x2 =

[
1√
1+μr

μr

]
. (50)

Finally, using Equation (50), the general solution of Equation (48) (or Equation (47))
can be established as

q(t) = c1x1 cos(ω1t + ϕ1) + c2x2 cos(ω2t + ϕ2), (51)

where constants (c1, c2, ϕ1, ϕ2) are given by the chosen initial conditions on the positions
and velocities.

6. Simulation Results

We will now assess the precision and convergence of our proposed integrator, pre-
viously described in Section 3. It will be compared with Newmark’s symplectic scheme,
described in Section 2. Some results obtained with Runge–Kutta’s explicit fourth-order
integrator, described in [3] and labeled as “RK4” throughout the rest of the document, are
also given. Note that a thorough comparison with this classical integrator is beyond the
scope of our contribution. The results are provided for reference since RK4 is among the
most popular methods available. For benchmarking purposes, we applied these methods
to the solution of the linear double pendulum (depicted by Figure 1), which has an exact
solution described in the previous Section 5.

The results presented in this section are for a simulated motion of this linearized
double pendulum. The computations were carried out using Wolfram’s Mathematica
software (version 12.3) [33]. The figure plots were then created using exported data with
the pgfplots package from LATEX. Table 1 specifies the constants and initial conditions used
for all of our simulations. Using these values and following Equation (51) with null initial
phases (ϕ1, ϕ2), the exact solution that serves as the main reference in our comparisons is
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qex(t) =
π

12

⎛⎜⎝− cos(ω1 t) + cos(ω2 t)√
2

cos(ω1 t) + cos(ω2 t)

⎞⎟⎠,

where ω1 and ω2 are given by Equation (49).

Table 1. Constants and initial conditions used for numerical simulations.

Constants Initial Conditions

μr = 1 q(0) = (0, π/6)T rad
ω0 = 2π s−1 p(0) = (0, 0)T kg m2 s−1

Frequency ω0 is used to show the results in terms of an oscillation period t̄ such that

t̄ =
1

ω0
.

Therefore, both the total simulation duration T and step size h are given in terms of t̄.
It is to be noted that the presented results from Simpson’s scheme were obtained using the
second variant (see Section 3.5), hence the absence of the middle value at each interpolation
interval. However, both variants provided lead to the same result at each node.

6.1. Configuration Parameters and Generalized Momenta

We begin by comparing the configuration parameter solutions q obtained with the
proposed Simpson’s rule-based variational integrator, against those given by Newmark’s
method. The proposed integrator uses quadratic finite elements for interpolation and
Simpson’s rule (see Section 3). It is expected to be more precise than Newmark’s method,
which uses a centered finite difference and the midpoint integration rule (see Section 2).
Figure 2 shows the configuration parameters provided by each method, compared against
the exact solution, during one period t̄. Simpson’s integrator is already more precise than
Newmark’s scheme. Runge–Kutta’s solution is also close to the exact one, but not as much
as Simpson’s solution.
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12

− π
24
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π
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q 1
(t
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q 2
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)

Exact
RK4
Newmark
Simpson

Figure 2. Configuration parameters’, q, evolution for the linear double pendulum. Initial conditions
are specified in Table 1. The step size is fixed as h = 0.1 t̄. Simpson’s integrator tracks the exact
solution with more precision than Newmark’s method and Runge–Kutta’s integrator.
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Figures 2 and 3 show that Simpson’s integrator is more precise than both Newmark’s
and Runge–Kutta’s integrators on a short simulation (T = 1 t̄). However, Simpson’s
solutions correctly follow the exact ones for longer simulations on both the configuration
parameters and generalized momenta, as shown by Figure 4.

Newmark’s integrator precision can be increased by refining the step size. With
h = 0.01 t̄, the solutions improve, but still deviate from the exact solution after a couple of
periods. Simpson’s solutions correctly follow the exact solution for longer simulations.
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Figure 3. Configuration parameters’, q, evolution for the linear double pendulum during ten periods.
Initial conditions are specified in Table 1. The step size is fixed as h = 0.1 t̄. Simpson’s solutions
correctly follow the exact solution for longer simulations.

6.2. Phase Portraits

With a step size of h = 0.1 t̄, Newmark’s solutions’ deviations are particularly visible
when tracing the motion phase portrait. Figure 5 shows the exact phase portraits topped
by both Newmark’s and Simpson’s solutions. Notice how Simpson’s phase portrait clearly
follows the exact one throughout the motion. The total simulation time was limited to
T = 3 t̄ for visualization purposes.
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Figure 4. Generalized momenta’s, p, evolution for the linear double pendulum during ten periods.
Initial conditions are specified in Table 1. The step size is fixed as h = 0.1 t̄. Simpson’s solutions
correctly follow the exact solution for longer simulations.
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Figure 5. Phase portraits’ evolution for the linear double pendulum. Initial conditions are specified
in Table 1. The step size is fixed as h = 0.1 t̄, and three periods are shown (T = 3t̄). Simpson’s phase
portrait clearly follows the exact one.

6.3. Energy Conservation

The following function gives the system energy:

H(p, q) =
1
2

pT M−1p +
1
2

qTKq.
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It has been previously observed (e.g., [19]) that Newmark’s integrator exactly preserves
the system energy. This is not the case for our proposed integrator based on Simpson’s
rule and is characteristic of most symplectic methods [19,32]. In the case of Simpson’s
scheme, the second equation of System (25) introduces the small and vanishing quantity
− h2

12 K
(

qj+1−qj
h

)
into the discrete momentum equation. Consequently, one could assume

that the exact system energy may not be conserved, but a good energy behavior can be
expected, as outlined in [32].

Figure 6 shows that Simpson’s solutions lead to a non-conserved energy H(p, q).
Nevertheless, the maximum relative error with respect to the initial value is extremely
small even for h = 0.1 t̄, as the evaluated values are in the order of 10−3. Notice that the
energy error from Simpson’s solutions does not grow with time. Instead, it oscillates in a
bounded fashion. Note that the error drops by four orders of magnitude when dividing
the step size by ten (see Figure 6).
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Figure 6. As expected, the classical RK4 integrator does not preserve the system energy. Relative error
grows with simulation length. Newmark’s integrator exactly preserves the system energy. Simpson’s
integrator does not, but the relative error is extremely small. Notice that such an error does not grow
with time, but remains bounded. The relative error drops by four orders of magnitude when dividing
the step size by ten, showcasing the quality of the proposed integrator and its good energy behavior.

Proposition 7 shows that Simpson’s scheme preserves a quadratic form given by the
function φ(p, q) of Equation (42). Matrices ξs and ζs (where subscript s stands for Simpson)
are according to Proposition 7 as

ξs = (Xs + Ys)
−1 =

[
2
h

M +
h
3

KL−1
]−1

;

ζs =
(

Xs
−1 + Ys

−1
)−1

=

[(
2
h

M − h
6

K
)−1

+
3
h

(
KL−1 +

1
2

K
)−1

]−1

.

Figure 7 plots the absolute error on function φ(p, q) of Equation (42), by Simpson’s
scheme. The absolute error with respect to the initial value is minimal, in the order of 10−15,
and may come from accumulated rounding errors. Note that this absolute error magnitude
changes very little when refining the step size.
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Figure 7. Simpson’s scheme preserves the quadratic form φ(p, q) of Equation (42). The absolute
errors are minimal and may come from accumulated rounding errors.

6.4. Convergence

The error e(t) = q(t)− qex(t), and its convergence rate is measured following the
prescriptions found in [16]. The schemes’ precision was evaluated using an �∞ error
norm ‖e‖∞ = ‖q − qex‖∞ = supn |qn − qexn |. Several simulations were performed for
decreasing values of h between h = 0.1 t̄ and h = 0.001 t̄. The ‖e‖∞ norm was calculated
for each case. These errors are plotted in Figure 8, on the logarithmic scale.

Convergence rates are expressed as the power of the step size. These rates correspond
to the slope of the error logarithm, as a function of the logarithm of h (see Figure 8).
These trials confirmed previous analyses on Newmark’s method [17,19]: it is second-order
convergent. Unsurprisingly, Runge–Kutta’s integrator is fourth-order convergent. The
results also confirm the analysis performed in [26] on the convergence rate of Simpson’s
scheme: it is fourth-order convergent. This rate is two degrees higher than the order of the
chosen quadratic interpolation. This is known as superconvergence and is closely related
to the mesh uniformity [16].
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Figure 8. Integrators’ convergence. The ‖e‖∞ norm was calculated for several simulations. Each
simulation used a fixed step size, which was decreased from h = 0.1 t̄ to h = 0.001 t̄. The convergence
order corresponds to the slope of the error norm logarithm regression line. Runge–Kutta’s classical
integrator convergence is in h4, as expected (fourth-order). Newmark’s integrator convergence is in
the order of h2 (second-order). Simpson’s integrator convergence is in the order of h4 (fourth-order).
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An important question is if convergence rates hold with growing simulation lengths T.
Table 2 shows the convergence order evolution of Newmark’s and Simpson’s schemes
with a growing simulation length, using a step size of h = 0.1 t̄. It can be observed
that Newmark’s scheme’s convergence order decays to zero for a 1000-period simulation.
RK4’s convergence rate also degrades as the simulation duration increases, although not
as much as Newmark’s method. Simpson’s scheme preserves its convergence order for
higher simulation periods. Error norms ‖e‖∞ are shown explicitly. Simpson’s scheme
loses precision according to one order of magnitude, each time the simulation length is
multiplied by ten. Table 2 exposes a normal numerical behavior of the analyzed schemes
since errors accumulate over long simulations.

Table 2. Convergence order with respect to simulation length for motion simulations performed for
a linearized double pendulum (see Figure 1). The initial conditions are specified in Table 1. Error
norms ‖e‖∞ for momenta p and states q increase with simulation length T. Newmark’s scheme’s
convergence decays to zero as T increases. RK4’s convergence rate also decays with an increasing
simulation length. Simpson’s scheme preserves its convergence rate for higher simulation durations.

‖e‖∞ Error Norm Values

Simulation
Length T Number of Meshes 10 20 40

Convergence
Order

1 t̄

Newmark p 0.0751 0.0230 0.006 06 1.81
RK4 p 0.0139 0.000 800 0.000 054 0 4.01

Simpson p 0.000 640 0.000 041 6 0.000 002 57 3.98

Newmark q 0.342 0.0961 0.0251 1.88
RK4 q 0.0483 0.003 40 0.000 200 3.91

Simpson q 0.002 01 0.000 141 0.000 008 76 3.92

10 t̄

Number of meshes 100 200 400

Newmark p 0.273 0.206 0.782 0.90
RK4 p 0.0822 0.009 90 0.0137 1.29

Simpson p 0.007 20 0.000 433 0.000 026 8 4.03

Newmark q 0.694 0.657 0.244 0.75
RK4 q 0.284 0.0329 0.0157 2.09

Simpson q 0.0235 0.001 41 0.000 090 6 4.01

100 t̄

Number of meshes 1000 2000 4000

Newmark p 0.521 0.492 0.223 0.61
RK4 p 0.108 0.0786 0.006 40 2.03

Simpson p 0.0705 0.004 39 0.000 272 4.01

Newmark q 1.02 0.964 0.665 0.31
RK4 q 0.328 0.2650 0.0216 1.96

Simpson q 0.237 0.0147 0.000 914 4.01

1000 t̄

Number of meshes 10,000 20,000 40,000

Newmark p 0.545 0.551 0.548 0.00
RK4 p 0.326 0.119 0.0595 1.23

Simpson p 0.190 0.0438 0.002 74 3.06

Newmark q 1.02 1.03 1.03 0.01
RK4 q 0.581 0.397 0.200 0.77

Simpson q 0.638 0.147 0.009 22 3.06

7. Concluding Remarks and Perspectives

In this contribution, Newmark’s method has been recalled. It is a widely used integra-
tor in certain fields of the engineering sciences, and it is symplectic. This method has been
used for benchmarking purposes in our work, where an alternative variational integrator
based on Simpson’s integration rule has been proposed.
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Simpson’s numerical scheme presented applies to the case of multiple-degrees of free-
dom systems with quadratic Lagrangians. It has been formulated linearly with partitioned
matrices. The method proves to be symplectic, as demonstrated with a proof that applies
to both Newmark’s and Simpson’s scheme. A sufficient stability condition on the step size
was given, and it was also proven that the proposed method preserves a certain quadratic
form at each time step. Simpson’s scheme is, therefore, conditionally stable.

Numerical trials on a linearized double pendulum have confirmed that the method is fourth-
order accurate on both the states and generalized momenta. Numerical evaluations revealed
that this convergence order is preserved for long simulations. The proposed method succeeds in
predicting the evolution of dynamical systems characterized by quadratic Lagrangians.

An important extension of this work is the treatment of non-linear multi-degrees of
freedom systems. In such a configuration, the middle value of the internal interpolation
cannot be eliminated. This generalization should enable more applications of the proposed
method, relating to Hamiltonian systems. Therefore, this is a natural objective for future
developments and is currently under study. An important question relates to noise presence
in matrices M and K. How would this affect the symplectic integrator? This question is
relevant in the context of non-linear dynamical systems. It shall be the object of future
developments as well.

A particular subject of interest relating to differential equations is the role of discrete
symmetries. The analysis of discrete symmetries has many applications for finding solu-
tions to differential equations. They can simplify a numerical scheme, as advocated in [34].
A description of finding discrete symmetries of differential equations has been given in [35].
A discrete symmetry analysis could lead to an improved symplectic integrator and is a
future direction for our work.

An improved nonlinear Simpson’s variational integrator could find its application in
simulating complex non-linear mechanisms. Some application examples could involve a
system of synchronized pendulums [36]; the discrete optimal control of robotic systems [37];
the modal analysis of dynamical systems [38]; the motion analysis of multibody systems
evolving in fluid environments [39]; or the motion prediction of sliding rods [24] and soft
robots [25].
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Abstract: This paper investigates an autonomous discrete-time glycolytic oscillator model with a
unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of
the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back
repeller. The illustration of the results is presented by using numerical simulations.
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1. Introduction and Preliminaries

A first rigorous criterion for chaos in one-dimensional discrete dynamical systems,
named period three implies chaos, was established by Li and Yorke in their seminal paper [1].
The definition of chaos given in that paper was the first rigorous description of chaos. A
number of authors made attempts to extend this definition to multi-dimensional difference
equations. One of the most used extensions of the definition of chaos to multi-dimensional
cases was given by F. R. Marotto in [2–4], who observed that the crucial properties of chaos
are the following: the existence of an infinite number of periodic solutions of various mini-
mal periods; the existence of an uncountably infinite set of points which exhibit random
behavior; and the presence of a high sensitivity to initial conditions. Marotto extended
Li–Yorke’s notion of chaos from one-dimensional to multi-dimensional by introducing the
notion of a snap-back repeller in their famous theorem in 1978 [2]. Also, see [5]. How-
ever, the original result in [2] has an error, which was noticed by several mathematicians,
including P. Kloeden and Li [6,7]. The error was corrected by F. Marotto in [8], where he
redefined a snap-back repeller in 2005 [8]. In this paper’s preliminary, we will give the
corrected version of the definition for a snap-back repeller and then present Marotto’s
corrected theorem [3,8].

Here is Marotto’s definition for “snap-back repeller” and then their theorem from [2,8].

Definition 1 ([4]). Let Φ ∈ C1 in a neighborhood of a fixed point w of Φ. We say that w is a
snap-back repeller if the following conditions are met:
(i) All the eigenvalues of det JΦ(w) have a modulus greater than one (w is a repeller);
(ii) There exists a finite sequence w0, w1, . . . , wM such that wk+1 = Φ(wk), wM = w, and w0 �=

w, which belongs to a repelling neighborhood of w, and |det JΦ(wk)| �= 0 for 0 ≤ k ≤ M − 1.

Remark 1. It is clear that Definition 1 still implies that the sequence {wk}M
k=−∞, where wk+1 =

Φ(wk) for all k < M, satisfies wM = w and wk → w as k → −∞, making this set of points a
homoclinic orbit. Furthermore, since all wk for k ≤ 0 lie within the local unstable manifold of the
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map Φ at the fixed point w, where Φ is 1 − 1, and since det JΦ(wk) �= 0 for 1 ≤ k ≤ M, then
this homoclinic orbit is transversal in the sense that Φ is 1 − 1 in a neighborhood of each wk for all
k ≤ M. See [4].

Theorem 1 ([2]). If a map Φ possesses a snap-back repeller, then Φ is chaotic in the sense of
Li–Yorke. That is, the following exist:
1. A positive integer N, such that Φ has a point of period p, for each integer p ≥ N;
2. A “scrambled set” of Φ, i.e., an uncountable set W containing no periodic points of Φ, such that

(a) Φ(W) ⊂ W;
(b) lim sup

n→∞
‖Φn(u)− Φn(v)‖ > 0 for all u, v ∈ W, with u �= v;

(c) lim sup
n→∞

‖Φn(u)− Φn(v)‖ > 0 for all u ∈ W, with u �= v and periodic point v of Φ;

3. An uncountable subset W0 of W such that lim inf
n→∞

‖Φn(u)− Φn(v)‖ = 0, for every u, v ∈ W0.

In this paper, we investigate the existence of Li–Yorke chaos for the following system
of difference equations:

xn+1 = xn + h
(
α − βxn − xny2

n
)

yn+1 = yn + h
(

βxn + xny2
n − yn

) }
, (1)

where the parameters α and β are positive; 0 < h < 1 is the step size of the numerical
method in the process of transferring a continuous model into a discrete counterpart.
System (1) was obtained by the explicit Euler finite discretization of the following system
of differential equations [9]:

x′ = α − βx − xy2

y′ = βx + xy2 − y

}
, (2)

which was used as the model for glycolysis decomposition in [9]. In this model, glucose
decomposes in the presence of various enzymes, including ten steps in which five are
termed the preparatory phase, while the remaining five steps are called the pay-off phase.

In [9], the authors, using a non-standard finite discretization, obtained a different
discrete analogon of the glycolytic oscillator model (2). They investigated the Neimark–
Sacker bifurcation and hybrid control in their discrete model, but the local dynamics were
not studied in detail. The reason is probably that the local dynamics were quite complicated
and involved. See [10–12] for related results.

System (1) is a cubic polynomial system, which is well known to exhibit chaotic
behavior. The global dynamics of such a system can be quite complicated, as we have
shown in a series of papers [13,14]. An interesting problem is whether the local stability
of System (1) implies the global stability of such a system and, in general, if System (1)
is structurally stable. As we showed in [13,14] proving global stability requires different
techniques and it might be more difficult to prove than a complicated, chaotic behavior.
The case when the equilibrium of System (1) is a saddle point probably requires finding
the stable and unstable manifolds or sets and using them to obtain the dynamics of that
system (see [13]).

In this paper, we present the complete local dynamics of model (1) in Section 2. The
local stability dynamics indicate the regions where Li–Yorke chaos is possible. Then, we
prove the existence of Li–Yorke chaos in such a region by finding the snap-back repeller
using a similar technique to that in [15]. One should mention that Li–Yorke chaos is
common for many polynomial and rational systems of difference equations (see [16–18]),
with the simplest and oldest being Hénon’s map and system (see [4]). The techniques of
rigorous proofs of chaos in dimensions higher than one are often based on Theorem 1. The
other less rigorous techniques are based on calculations of Lyapunov exponents and the
fractal dimension. See [19–22] for many examples of chaotic two-dimensional systems.
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2. Local Stability Analysis

System (1) has a unique (positive) equilibrium point z =
(

α
β+α2 , α

)
. The investigation

of the nature of the local stability of equilibrium point z is based on the well-known result
of Theorem 2.12 in [19] or in [20–22].

The map T corresponding to System (1) is of the form

T
(

x
y

)
=

(
x + h

(
α − βx − xy2)

y + h(βx + xy2 − y)

)
,

and the Jacobian matrix of the map T is of the form

JT(x, y) =
( −hy2 − hβ + 1 −2hxy

h
(
y2 + β

)
2hxy − h + 1

)
, (3)

from which we obtain

trJT(x, y) = −hy2 + 2hxy − hβ − h + 2,

and
det JT(x, y) = −h(1 − h)y2 + 2hxy + (1 − h)(1 − hβ).

The corresponding characteristic equation has the form

ϕ(λ) = λ2 +
(

hy2 − 2hxy + hβ + h − 2
)

λ− h(1 − h)y2 + 2hxy+(1 − h)(1 − hβ) = 0, (4)

which in the equilibrium z =
(

α
β+α2 , α

)
becomes

ϕ(λ) = λ2 +
hβ2+β(2hα2+h−2)−α2(h−hα2+2)

α2+β
λ +

−hβ2(1−h)−(1−h)(2hα2−1)β+α2(hα2(h−1)+h+1)
α2+β

= 0.

Since ϕ(1) = h2(α2 + β
)
> 0, by applying Theorem 2.12 in [19], we obtain the following

result about the local dynamics of equilibrium point z:
Let 0 < h < 1 be fixed. Then,

ϕ(0) = 1 ⇐⇒ β = β0(α) =
−2α2(1 − h)− 1 +

√
1 + 8α2(1 − h)

2(1 − h)

and

ϕ(−1) = 0 ⇐⇒ β = β−1(α) =
1
h

⎛⎝1 − α2h +

√
4α2h2 + 2 − h

2 − h

⎞⎠,

where β0(α) and β−1(α) are continuous functions such that β0(α) > 0 for 0 < α <

α1 =
√

1
1−h and β−1(α) > 0 for 0 < α < α2 =

√
2(h+2)
(2−h)h . Note that α1 and α2 are the

abscissas of the intersection points of curves β = β0(α) and β = β−1(α) with the Oα-axis,
respectively, and β1 = 0 and β2 = 2

h are the abscissas of the intersection points of curves
β = β0(α) and β = β−1(α) with the Oβ-axis, in the (α, β)-plane. Let C0 and C−1 be the
graphs of the functions β = β0(α) and β = β−1(α) in the positive quadrant, respectively
(excluding the points on the axes). It is easy to see that C0 ∩ C−1 = ∅ if α1 ≤ α2 (i.e.,
0 < h ≤ 2

(√
2 − 1

)
) and C0 ∩ C−1 = {Γ} if α1 > α2 (i.e., 2

(√
2 − 1

)
< h < 1), where

Γ = (αΓ, βΓ) =

(√
2(2−h)

h2 ,
2(h2+4h−4)

h4

)
.
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Now, assume that ϕ(0) = 1, α < α1, and β = β0(α). Then, we have that detJT(z) = 1
and

(trJT(z))
2 − 4detJT(z) =

(
hβ2 + β

(
2hα2 + h − 2

)− α2(h − hα2 + 2
)

α2 + β

)2

− 4

=
h2(4α2(1 − h) + 1 − K

)(
4h2α2(1 − h) + (2 − h)2(1 − K)

)
(1 − h)2(1 − K)2 < 0,

where K =
√

1 + 8α2(1 − h). Namely,

4α2(1 − h) + 1 − K > 0 ⇐⇒
(

4α2(1 − h) + 1
)2

> 1 + 8α2(1 − h) ⇐⇒ 16α4(h − 1)2 > 0,

which is true for every h ∈ (0, 1). On the other hand,

4h2α2(1 − h) + (2 − h)2(1 − K) < 0 ⇐⇒ 16α2(1 − h)2
(

h4α2 − 2(2 − h)2
)
< 0. (5)

For α < α1 and h ≤ 2
(√

2 − 1
)

, inequality (5) is true because

h4α2 − 2(2 − h)2 < h4
(

1
1 − h

)
− 2(2 − h)2 =

(
h2 − 2h + 2

)(
h2 + 4h − 4

)
1 − h

≤ 0.

Also, for 2
(√

2 − 1
)
< h < 1 and α < αΓ, (5) is true because

h4α2 − 2(h − 2)2 < h4

(
2(2 − h)2

h4

)
− 2(h − 2)2 = 0.

By using Theorem 2.12 in [19], we see that ϕ(0) = 1 and (trJT(z)))
2 − 4detJT(z)) < 0 if

β = β0(α) and
0 < h ≤ 2

(√
2 − 1

)
, α < α1

or
2
(√

2 − 1
)
< h < 1, α < αΓ,

⎫⎪⎪⎬⎪⎪⎭
which means that λ1 and λ2 are conjugate complex, and |λ1| = |λ2| = 1.

We will now prove that

trJT(z) �= 0 and trJT(z) �= 2,

when ϕ(−1) = 0.
First, note that trJT = 2 if 2

(√
2 − 1

)
< h < 1, α = αΓ, and β = βΓ, where

ϕ(λ)|Γ = (λ + 1)2.

Also, if ϕ(−1) = 0, then β = β−1(α). It implies that

trJT(z) = 0 ⇐⇒ hβ2 + β
(
2hα2 + h − 2

)− α2(h − hα2 + 2
)

α2 + β
= 0

⇐⇒
√

4α2h2 + 2 − h
2 − h

=
−2h2α2 + h − 2

2 − h
< 0,

which is impossible.
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By Theorem 2.12 in [19], it means that λ1 = −1 and |λ2| �= 1 if β = β−1(α) and

0 < h < 2
(√

2 − 1
)

, 0 < α < α2

or
2
(√

2 − 1
)
< h < 1, α ∈ (0, α2), α �= αΓ.

Also, note that it can be easily verified that ϕ(0) > 1 is valid at all points below the curve
C0, and ϕ(0) < 1 is valid at all points above that curve. Likewise, in all points below the
curve C−1, ϕ(−1) > 0 is valid, and in all points above that curve, ϕ(−1) < 0 is valid.
See Figures 1–3.
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Figure 1. Parametric spaces of local dynamics in the (α, β)-plane for h = 0.5 < 2(
√

2 − 1),
C0 = {(α, β) : ϕ(0) = 1}, C−1 = {(α, β) : ϕ(−1) = 0}.
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Figure 2. Parametric spaces of local dynamics in the (α, β)-plane for h = 2(
√

2 − 1),
C0 = {(α, β) : ϕ(0) = 1}, C−1 = {(α, β) : ϕ(−1) = 0}.
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Figure 3. Parametric spaces of local dynamics in the (α, β)-plane for h = 0.9 > 2(
√

2 − 1),
C0 = {(α, β) : ϕ(0) = 1}, C−1 = {(α, β) : ϕ(−1) = 0}.

Denoting

L1 = {(α, β) : 0 < α < α1, β0(α) < β < β−1(α)},

L2 = {(α, β) : α1 ≤ α ≤ α2, 0 < β < β−1(α)},

L3 = {(α, β) : 0 < α < αΓ, β0(α) < β < β−1(α)},

R1 = {(α, β) : 0 < α < α1, 0 < β < β0(α)},

R2 = {(α, β) : 0 < α ≤ αΓ, 0 < β < β0(α)},

R3 = {(α, β) : αΓ < α < α2, 0 < β < β−1(α)},

S1 = {(α, β) : 0 < α ≤ α2, β > β−1(α)},

S2 = {(α, β) : α > α2, β > 0},

we have thus completed the proofs of the following two lemmas.

Lemma 1. If h ∈
(

0, 2
(√

2 − 1
))

, α1 =
√

1
1−h , and α2 =

√
2(h+2)
(2−h)h , then the unique equilib-

rium point z =
(

α
β+α2 , α

)
of System (1) is as follows:

1. Locally asymptotically stable if

0 < h < 2
(√

2 − 1
)

and (α, β) ∈ L1 ∪ L2

or
h = 2

(√
2 − 1

)
and (α, β) ∈ L1;

2. A repeller if (α, β) ∈ R1;
3. A saddle point if (α, β) ∈ S1 ∪ S2;
4. A non-hyperbolic with

(a) λ1 and λ2 being conjugated complex, and |λ1| = |λ2| = 1 if α ∈ (0, α1) and β = β0(α);
(b) λ1 = −1 and |λ2| �= 1 if α ∈ (0, α2) and β = β−1(α).

Lemma 2. If h ∈
(

2
(√

2 − 1
)

, 1
)

, α1 =
√

1
1−h , α2 =

√
2(h+2)
(2−h)h , αΓ =

√
2(2−h)

h2 , and βΓ =

2(h2+4h−4)
h4 , then the equilibrium point z =

(
α

β+α2 , α
)

of System (1) is as follows:

1. Locally asymptotically stable if (α, β) ∈ L3;
2. A repeller if (α, β) ∈ R2 ∪R3;
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3. A saddle point if (α, β) ∈ S1 ∪ S2;
4. A non-hyperbolic with

(a) λ1 and λ2 being conjugated complex, and |λ1| = |λ2| = 1 if α ∈ (0, αΓ) and β = β0(α);
(b) λ1 = −1 and |λ2| �= 1 if α ∈ (0, α2), α �= αΓ, and β = β−1(α);
(c) The characteristic polynomial of the form ϕ(λ) = (λ + 1)2 at the point Γ(αΓ, βΓ) =(√

2(2−h)
h2 ,

2(h2+4h−4)
h4

)
, so the eigenvalues are λ1,2 = −1.

See Figure 3.

3. Li–Yorke Chaos for h = 7
10 < 2

(√
2 − 1

)
In order to prove the existence of Li–Yorke chaos, we will consider the corresponding

eigenvalues with a modulus greater than one for h < 2
(√

2 − 1
)

and the set

R1 = {(α, β) : 0 < α < α1, 0 < β < β0(α)} =

{
(α, β) : α ∈

(
0,

1√
1 − h

)
, β ∈ (0, βh)

}
,

and

βh =
−2α2(1 − h)− 1 +

√
8α2(1 − h) + 1

2(1 − h)
. (6)

We prove that the positive equilibrium point z =
(

α
β+α2 , α

)
of System (1) is a snap-back

repeller. The next step is to determine a neighborhood Uz of z = (x, y) in which the norms
of eigenvalues exceed one for all (x, y) ∈ Uz. It means that we need to solve the following
system of inequalities, ϕ(1, x, y, β, h) > 0, ϕ(−1, x, y, β, h) > 0, and ϕ(0, x, y, β, h) > 1,
where

ϕ(λ, x, y, β, h) = λ2 +
(

hy2 − 2hxy + hβ + h − 2
)

λ − h(1 − h)y2 + 2hxy + (1 − h)(1 − hβ)

is the characteristic polynomial of (3), i.e., we will solve the following system of inequalities:

ϕ(1, x, y, β, h) = h2(y2 + β
)
> 0,

ϕ(−1, x, y, β, h) = −y2h(2 − h) + 4hxy + (2 − h)(2 − hβ) > 0,
ϕ(0, x, y, β, h)− 1 = h

[−(1 − h)y2 + 2xy + (hβ − β − 1)
]
> 0.

⎫⎬⎭ (7)

The first inequality in (7) is always satisfied. Curves C1 and C2, where

C1 = {(x, y) : ϕ(−1, x, y, β, h) = 0} and C2 = {(x, y) : ϕ(0, x, y, β, h)− 1 = 0}

are hyperbolas that intersect in the first quadrant at the point

P =

(
(h − 2)2

2h
√

4 − h2β
,

√
4 − h2β

h

)

for β < 4
h2 . The assumptions 0 < h < 2

(√
2 − 1

)
and 0 < α < 1√

1−h
imply that βh < 4

h2 .
Namely,

−2α2(1 − h)− 1 +
√

8α2(1 − h) + 1
2(1 − h)

<
4
h2

is equivalent to

4(h − 1)
[

h4(h − 1)α4 + h2(h2 + 8h − 8
)
α2 − 4(h − 2)2

]
h4 > 0
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which is satisfied if

h4(h − 1)α4 + h2
(

h2 + 8h − 8
)

α2 − 4(h − 2)2 < 0. (8)

Since 0 < h < 2
(√

2 − 1
)

, it follows that h2 + 8h − 8 < 0, so inequality (8) is true.
Notice that

ϕ(0, x, y, β, h)− 1 = 0 =⇒ x =
y2(1 − h) + (1 − h)β + 1

2y
,

and

ϕ(−1, x, y, β, h) = 0 =⇒ x =
(2 − h)

(
hy2 + hβ − 2

)
4hy

,

so a neighborhood Uz of z = (x, y), in which the norms of eigenvalues exceed one for all
(x, y) ∈ Uz, is determined with Uz = (Uz)1 ∪ (Uz)2, where

(Uz)1 =

{
(x, y) : x ∈

(
y2(1 − h) + (1 − h)β + 1

2y
,+∞

)
, y ∈

(
0,

√
4 − h2β

h

)}
, (9)

and

(Uz)2 =

{
(x, y) : x ∈

(
(2 − h)

(
hy2 + hβ − 2

)
4hy

,+∞

)
, y ∈

[√
4 − h2β

h
,+∞

)}
(10)

for h < 2
(√

2 − 1
)

.
In this way, we obtained the following result.

Lemma 3. Let 0 < h < 2
(√

2 − 1
)

, 0 < α < 1√
1−h

, and 0 < β < βh, where βh is given by
(6). Then, Uz = (Uz)1 ∪ (Uz)2, where (Uz)1,2 is defined by (9) and (10) is a repelling area of the
equilibrium point z .

To continue investigating the conditions under which the equilibrium point z will be
a snap-back repeller, we will take a fixed value of the parameter h, for example, h = 7

10 .

Now, if h = 7
10 , then α < 1√

1− 7
10

=
√

10
3 ≈ 1.8257 and β < β 7

10
= 1

3

√
5(12α2 + 5)−

α2 − 5
3 . A repelling area of the equilibrium point z is Uz = (Uz)1 ∪ (Uz)2, where

(Uz)1 =

{
(x, y) : x ∈

(
3y2 + 3β + 10

20y
,+∞

)
, y ∈

(
0,

√
400 − 49β

7

)}
,

(Uz)2 =

{
(x, y) : x ∈

(
91y2 + 91β − 260

280y
,+∞

)
, y ∈

[√
400 − 49β

7
,+∞

)}
.

To prove that the equilibrium point z = (x, y) is a snap-back repeller for M = 2, we need
to find points z0 = (x0, y0) ∈ Uz and z1 = (x1, y1) /∈ Uz such that

z1 = T(z0), z2 = T(z1) = T2(z0) = z and det JT(z1) �= 0.

By calculating the inverse iterations of the fixed point z twice, we are looking for the point
z0 = (x0, y0), x0 > 0, y0 > 0, as the solution of the following system:

x + 7
10
(
α − βx − xy2) = x1

y + 7
10
(

βx + xy2 − y
)
= y1

}
(11)

88



Axioms 2024, 13, 280

for z1 = (x1, y1) which is the solution of the system

x + 7
10
(
α − βx − xy2) = α

α2+β

y + 7
10
(

βx + xy2 − y
)
= α

⎫⎬⎭. (12)

The solutions of System (12) are

(z1)± =
(
(x1)±, (y1)±

)
,

where

(x1)± =
−5α ± 1

7 Q
10(α2 + β)

+
10α + 3α

(
α2 + β

)
10(α2 + β)

, (y1)± =
5α ∓ 1

7 Q
3(α2 + β)

,

and

Q =
√

7Q1 > 0, Q1 = −3α4(21β − 100) + α2
(

390β − 126β2 + 175
)
− 9β2(7β − 10).

By using β < β 7
10

, it is easy to see that Q1 > 0.

Now, we prove that det J
(
(z1)±

) �= 0 considering that

det J
(
(z1)+

)
=

Q
(−Q − 7α

(
3
(
α2 + β

)− 5
))

1050(α2 + β)
2 ,

det J
(
(z1)−

)
=

Q
(−Q + 7α

(
3
(
α2 + β

)− 5
))

1050(α2 + β)
2 .

Suppose that det J
(
(z1)±

)
= 0. Then,

det J
(
(z1)±

)
= 0 ⇐⇒ Q = ∓7α

(
3
(

α2 + β
)
− 5

)
.

If α
(
3
(
α2 + β

)− 5
)
= 0, we have a contradiction with Q > 0, such that det J

(
(z1)±

) �= 0.
However, if α

(
3
(
α2 + β

)− 5
)
> 0, since Q > 0, we have that

Q = 7α
(

3
(

α2 + β
)
− 5

)
⇐⇒ 21β2 + β

(
42α2 − 30

)
+ α2

(
21α2 − 170

)
= 0,

which for α2 < 10
3 has only one positive solution

β+ =
−(

21α2 − 15
)
+
√

15(196α2 + 15)
21

.

This implies that β+ /∈
(

0, β 7
10

)
, which is a contradiction. Therefore, it is true that

det J
(
(z1)±

) �= 0 if α
(
3
(
α2 + β

)− 5
)
> 0.

Similarly, we conclude that det J
(
(z1)±

) �= 0 if α
(
3
(
α2 + β

)− 5
)
< 0.

Now, note the following fact: for β < β 7
10

, we have

Q �= ∓7α
(

3
(

α2 + β
)
− 5

)
. (13)

In the next step, we will solve System (11) for z1 = (x1, y1) =
(
(x1)−, (y1)−

)
. From the

second equation in System (11), we obtain

x =
−3y + 10(y1)−

7(β + y2)
=

10Q + 350α − 63y
(

β + α2)
147(y2 + β)(α2 + β)

.
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This implies −3y + 10(y1)− > 0 ⇐⇒ y < 10
3 (y1)−, i.e., y <

50α+ 10
7 Q

9(α2+β)
. After substituting x

in the first equation of System (11), we obtain

−3y + 10(y1)−
7(β + y2)

+
7

10

(
α − β

(−3y + 10(y1)−
7(β + y2)

)
−
(−3y + 10(y1)−

7(β + y2)

)
y2
)
− (x1)− = 0.

Let

H(β, y) =
−3y + 10(y1)−

7(β + y2)
+

7
10

(
α −

(−3y + 10(y1)−
7(β + y2)

)
(β + y2

)
− (x1)−,

i.e.,

H(β, y) =
21y3 − 7

(
10(x1)− + 10(y1)− − 7α

)
y2 + 3(7β − 10)y + 100(y1)− − 7β

(
10(x1)− + 10(y1)− − 7α

)
70(y2 + β)

. (14)

By using the facts

(x1)− =
−5α − 1

7 Q
10(α2 + β)

+
10α + 3α

(
α2 + β

)
10(α2 + β)

, (y1)− =
5α + 1

7 Q
3(α2 + β)

,

and y = α, we obtain

H(β, y) = 0 ⇐⇒
(
100 − 49

(
α2 + β

))(
Q − 7α

(
3α2 + 3β − 5

))
1470(α2 + β)

2 = 0. (15)

Considering (13), Equation (15) is satisfied if 49
(
α2 + β

)
= 100, or, equivalently,

β =
100 − 49α2

49
.

It implies that 100 − 49α2 > 0, i.e., α < 10
7 ≈ 1.428 6. On the other hand,

β < β 7
10

⇐⇒ 100 − 49α2

49
<

1
3

√
5(12α2 + 5)− α2 − 5

3

which implies α >
√

3950
2401 ≈ 1.282 6. If α ∈

(√
3950
2401 , 10

7

)
, we denote

β∗ =
100 − 49α2

49
.

Now, from (14) we obtain

∂H(β, y)
∂y

=
21
(

β + y2)2
+ 30

(
y2 − β

)− 200y(y1)−
70(y2 + β)

2 .

By using the fact that (y1)− =
5α+ 1

7 Q
3(α2+β)

and y = α, we have that

∂H(β, α)

∂y
=

7
(
63β3 + 9

(
21α2 − 10

)
β2 + α2(63α4 + 90α2 + 189α2β − 1000

))− 200αQ

1470(α2 + β)
3 .

Let us show that ∂H(β∗ ,y)
∂y �= 0. Otherwise, if ∂H(β∗ ,y)

∂y = 0, then

2700 − 10 633α2 = 96 040α2Q2.
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Since α ∈
(√

3950
2401 , 10

7

)
, the left side of the past equality is negative, which is impossible. It

means that ∂H(β∗ ,y)
∂y �= 0 holds.

Therefore, under certain conditions on the parameters, we have that

1◦ β∗ = 100−49α2

49 ∈ (
0, 950

2401
)

for α ∈
(√

3950
2401 , 10

7

)
;

2◦ H(β∗, y) = 0;

3◦ H(β, y) is continuous for β < β∗ and y <
50α+ 10

7 Q
9(α2+β)

;

4◦ ∂H(β∗ ,y)
∂y �= 0.

By the Implicit Function Theorem, there exists a unique function y = y0(β) and δ > 0
such that

(i) y0(β∗) = y.
(ii) H(β, y0(β)) = 0 for β ∈ (β∗ − δ, β∗ + δ).
(iii) y = y0(β) is continuous in β ∈ (β∗ − δ, β∗ + δ).

Figure 4 shows the area of the parameters for which the equilibrium point is a repeller

and the set B =

{
(α, β) : α ∈

(√
3950
2401 , 10

7

)
, β = β∗

}
⊂ R1 in the (α, β)-plane.

1

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

Figure 4. The area of the parameters for which the equilibrium point is a repeller and the set B (red)
is shown (in the (α, β)-plane for h = 0.7).

Let M = 2 and z0 = (x0, y0) =

(
10Q+350α−63y0(α2+β)

147(β+y2
0)(α2+β)

, y0

)
for y0 <

50α+ 10
7 Q

9(α2+β)
. Then, z0

belongs to Uz̄ for a small enough β − β∗. Assume that ε > 0 is arbitrary and let

x∗ = max{x + ε, x0 + ε}.

Finally, let

U∗
z = (U1)

∗ ∪ (U2)
∗,

where

(U1)
∗ =

{
(x, y) : x ∈

(
3y2 + 3β + 10

20y
, x∗

)
, y ∈

(
y∗1,

√
400 − 49β

7

)}
,
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and

(U2)
∗ =

{
(x, y) : x ∈

(
91y2 + 91β − 260

280y
, x∗

)
, y ∈

[√
400 − 49β

7
, y∗2

)}
.

Also, y∗1 and y∗2 are the second coordinates of the intersection points of the line given by the
equation x = x∗ with the curves C2 and C1, respectively.

Theorem 2. Assume that h = 7
10 , α ∈

(√
3950
2401 , 10

7

)
and β∗ = 100−49α2

49 . Then, there exists β

near β∗ such that z = (x, y) =
(

α
α2+β

, α
)

is a snap-back repeller of System (1) and, consequently,
System (1) is chaotic in the sense of Li–Yorke.

4. Numerical Simulations

In many articles, the appearance of chaos is established by the existence of positive
Lyapunov coefficients (e.g., [15]). Although we proved the existence of chaos in the
previous section using the Marotto method, we will make several corresponding numerical
simulations by calculating the Lyapunov coefficients. Most of the experimentalists in
dynamical systems theory take the existence of positive Lyapunov coefficients as enough
evidence for the existence of chaos (see [23–26]). In that case, different software packages,
such as Dynamica in [19] or Chaos in [25,26], are used to justify the use of the word chaos.
Also, see the references in [23].

If α = 7
5 = 1.4, then

β∗ =
100 − 49

( 7
5
)2

49
=

99
1225

≈ 0.080816.

Let us choose β = 8
100 close to β∗ = 99

1225 . Now, Uz = (Uz)1 ∪ (Uz)2, where

(Uz)1 =

{
(x, y) : x ∈

(
75y2 + 256

500y
,+∞

)
, y ∈

(
0,

√
9902
35

)}
,

and

(Uz)2 =

{
(x, y) : x ∈

(
2275y2 − 6318

7000y
,+∞

)
, y ∈

[√
9902
35

,+∞

)}
.

See Figure 5a.
The solutions of System (12) are the equilibrium point and

(z1)± =
(
(x1)±, (y1)±

)
,

where

(
(x1)±, (y1)±

)
=

(
973
1275

±
√

7
√

24 003 649
17 850

,
175
153

∓
√

7
√

24 003 649
5355

)
.

The solution of System (11) for (x1, y1) =
(
(x1)−, (y1)−

)
which belongs to Uz is

(x0, y0) =
(
2.2013061560494975′, 1.400206800960196′

)
.

Therefore,

z0 = (x0, y0) = (2.2013061560494975‘, 1.400206800960196‘)
z1 = (x1, y1) = T(x0, y0) =

(
973
1275 −

√
7
√

24 003 649
17 850 , 175

153 +
√

7
√

24 003 649
5355

)
z = (x, y) = T(x1, y1) = T2(x0, y0) =

( 35
51 , 7

5
)
.

⎫⎪⎬⎪⎭ (16)
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The Jacobian matrix of T at the point z = (x, y) has an eigenvalue λ± = 0.60855 ∓ 0.91998i
with |λ±| = 1.103, at point (x0, y0) has eigenvalues λ1 = 2.5357 and λ2 = 1.6511, and at
point (x1, y1) has eigenvalues λ1 = −7.7491 and λ2 = 0.28397.

For ε = 0.5, we have that

x∗ = max{x + ε, x0 + ε} ≈ 2.7013.

Next, y∗1 ≈ 0.19158 and y∗2 ≈ 8.6334 are the second coordinates of the intersection points of
the line given by the equation x = 2.7013 with the curves C2 and C1, respectively. Then,

U∗
z = U1 ∪ U2,

where

U∗
1 =

{
(x, y) : x ∈

(
75y2 + 256

500y
, 2.7013

)
, y ∈

(
0.19158,

√
9902
35

)}
,

and

U∗
2 =

{
(x, y) : x ∈

(
2275y2 − 6318

7000y
, 2.7013

)
, y ∈

[√
9902
35

, 8.6334

)}
.

See Figure 5b.
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8

(b)

Figure 5. Repelling area Uz (a) and neighborhood U∗
z (b) of the snap-back repeller z (for α = 1.4,

β = 0.08, and h = 0.7).

Figure 6 represents the phase portrait with 30 iterations with repelling area Uz and
neighborhood U∗

z of the snap-back repeller z. Furthermore, Figure 6 shows the points
in (16).

Now, assume that α = 0.6 /∈
(√

3950
2401 , 10

7

)
and β = 0.001 < β 7

10
= 0.24881. Then,

there exists M > 2 such that TM(z0) = z. In that case, if M = 17, the region U∗
z

is a circle.
Figure 7 represents a phase portrait with 30 iterations and the snap-back repeller z.

Here,

z1 = T(z0), z2 = T2(z0), . . . , z18 = T17(z0) = z,
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where

z0 = (1.7658, 0.52217), z1 = (1.84754, 0.494912), z2 = (1.94947, 0.46654),
z3 = (2.07108, 0.438351), z4 = (2.21106, 0.411529), z5 = (2.36739, 0.387125),
z6 = (2.53738, 0.366149), z7 = (2.71748, 0.349742), z8 = (2.9029, 0.339506),
z9 = (3.08665, 0.338104), z10 = (3.25749, 0.350585), z11 = (3.39495, 0.387721),
z12 = (3.45532, 0.475941), z13 = (3.32502, 0.693091), z14 = (2.62461, 1.32833),
z15 = (−0.198952, 3.64206), z16 = (2.0685,−0.754833), z = (1.66205, 0.6).

0

1

x=x*1

2

0 1 2 3 4
0

2

4

6

8

10

Figure 6. The snap-back repeller for α = 1.4, β = 0.08, and h = 0.7.

T

-1 0 1 2 3 4

-1

0

1

2

3

4

Figure 7. The snap-back repeller for α = 0.6, β = 0.001, and h = 0.7.

If we suppose that α = 0.6 and β = 0.12 < β 7
10

= 0.24881, then Figure 8a shows a
snap-back repeller with

z0 = (1.4605157298915394′, 1.424776880514991′),
z1 = (−0.31754936043512777′, 2.6254981544811646′),
z2 =

(
1.6613856774674765′,−0.7712855915582548′

)
z = (1.25, 0.6).
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Figure 8. The snap-back repeller for α = 0.6, β = 0.12, and h = 0.7.

The graph represents a phase portrait with 70 iterations. Figure 8b represents a phase
portrait with 11170 iterations (we obtained a chaotic attractor due to the accumulation
of rounding errors). In Figures 9a and 10a, the bifurcation diagrams are generated by
code Bif2D from [23], and in Figures 9b and 10b corresponding Lyapunov coefficients are
generated by the code in [24].
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Figure 9. (a) Bifurcation diagram for α = 0.60, β ∈ (0.10, 0.30), h = 0.7, z = (1.25, 0.6), and initial
point z0 = (1.4605157298915394, 1.424776880514991); (b) corresponding Lyapunov coefficients.
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Figure 10. (a) Bifurcation diagram for α = 0.60, β ∈ (0.10, 0.30), h = 0.7, z = (1.25, 0.6), and initial
point z0 = (1.40, 0.65); (b) corresponding Lyapunov coefficients.

5. Conclusions

We consider a chaotic dynamic of System (1), which is the Euler discretization of
System (2), which was used as the model for glycolysis decomposition in [9]. System
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(1) has a unique positive equilibrium, which locally can have any character depending
on the parameter region. That is, this unique equiibrium solution can be either locally
symptotically stable or repeller, saddle point, or non-hyperbolic. The global dynamics
of such a system can be quite complicated and could include the existence of an infinite
number of period-two solutions or equilibrium solutions, as we have shown in a series
of papers [13]. In this paper, we focus on the case when this equilibrium is a repeller and
prove that in this case there exists a region of parameters where System (1) exhibits chaos.
The quite challenging problem is whether the local stability of System (1) implies the global
stability of such a system and, in general, if System (1) is structurally stable. At this time,
we are leaving these problems for future research.
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13. Bektešević, J.; Kulenović, M.R.S.; Pilav, E. Global Dynamics of Cubic Second Order Difference Equation in the First Quadrant.

Adv. Differ. Equ. 2015, 176, 1–38. [CrossRef]
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19. Kulenović, M.R.S.; Merino, O. Discrete Dynamical Systems and Difference Equations with Mathematica; Chapman and Hall/CRC:
Boca Raton, FL, USA; London, UK, 2002. [CrossRef]

20. Elaydi, S. An Introduction to Difference Equations, 3rd ed.; Undergraduate Texts in Mathematics; Springer: New York, NY, USA,
2005. Available online: https://www.abebooks.co.uk/9780387230597/Introduction-Difference-Equations-Undergraduate-Texts-
0387230599/plp (accessed on 19 March 2024).

21. Elaydi, S. Discrete Chaos. With Applications in Science and Engineering, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007.
[CrossRef]

22. Alligood, K.T.; Sauer, T.D.; Yorke, J.A. Chaos. An Introduction to Dynamical Systems; Textbooks in Mathematical Sciences; Springer:
New York, NY, USA, 1997. [CrossRef]

23. Ufuktepe, Ü.; Kapçak, S. Applications of Discrete Dynamical Systems with Mathematica. Thesis, Izmir University of Eco-
nomics, Izmir, Türkiye, 2014; Volume 1909, pp. 207–216. Available online: http://hdl.handle.net/2433/223175 (accessed on
19 March 2024).

24. Sandri, M. Numerical Calculation of Lyapunov Exponents. Math. J. 1996, 6, 78–84. Available online: https://www.mathematica-
journal.com/issue/v6i3/article/sandri/contents/63sandri.pdf (accessed on 19 March 2024).

25. Korsch, H.J.; Jodl, H.-J. Chaos. A Program Collection for the PC, 2nd ed.; with 1 CD-ROM (Windows 95 and NT); Springer:
Berlin/Heidelberg, Germany, 1999.

26. Nusse, H.E.; Yorke, J.A. Dynamics: Numerical Explorations, 2nd ed.; Accompanying computer program Dynamics 2 coauthored by
Brian R. Hunt and Eric J. Kostelich; Applied Mathematical Sciences 101; Springer: New York, NY, USA, 1998.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

97



axioms

Article

Dynamical Behaviors of Stochastic SIS Epidemic Model with
Ornstein–Uhlenbeck Process

Huina Zhang, Jianguo Sun *, Peng Yu and Daqing Jiang

School of Science, China University of Petroleum (East China), Qingdao 266580, China;
20060050@upc.edu.cn (H.Z.); s19090062@s.upc.edu.cn (P.Y.); 20140012@upc.edu.cn (D.J.)
* Correspondence: sunjg616@upc.edu.cn

Abstract: Controlling infectious diseases has become an increasingly complex issue, and vaccination
has become a common preventive measure to reduce infection rates. It has been thought that
vaccination protects the population. However, there is no fully effective vaccine. This is based on
the fact that it has long been assumed that the immune system produces corresponding antibodies
after vaccination, but usually does not achieve the level of complete protection for undergoing
environmental fluctuations. In this paper, we investigate a stochastic SIS epidemic model with
incomplete inoculation, which is perturbed by the Ornstein–Uhlenbeck process and Brownian motion.
We determine the existence of a unique global solution for the stochastic SIS epidemic model and
derive control conditions for the extinction. By constructing two suitable Lyapunov functions and
using the ergodicity of the Ornstein–Uhlenbeck process, we establish sufficient conditions for the
existence of stationary distribution, which means the disease will prevail. Furthermore, we obtain
the exact expression of the probability density function near the pseudo-equilibrium point of the
stochastic model while addressing the four-dimensional Fokker–Planck equation under the same
conditions. Finally, we conduct several numerical simulations to validate the theoretical results.

Keywords: Ornstein–Uhlenbeck process; Brownian motion; stationary distribution; probability
density function

MSC: 60H10; 34D05

1. Introduction

It is widely acknowledged that mathematical models describing the dynamic behav-
iors of infectious diseases have played a crucial role in understanding various diseases
and their transmission mechanisms [1–6]. As early as 1927, Kermack and McKendrick
put forward the classic susceptibility–infection–susceptibility model and established the
corresponding threshold theory [1]. Since then, various ordinary differential equations have
been extended to analyze and control the spread of infectious diseases [3,7–9]. Controlling
infectious diseases has become an increasingly complex issue, and vaccination has become a
common preventive measure to reduce infection rates [10–12]. Routine vaccinations against
diseases such as measles, smallpox, and tuberculosis are now available in all countries.
So, over the past few decades, some basic epidemic models with vaccination strategies
have been studied. Safan and Rihan [13] considered the following SIS epidemic model with
incomplete protection from the vaccine as follows:⎧⎪⎨⎪⎩

Ṡ(t) = (1 − p)A + αI(t)− (μ + ϕ)S(t)− βS(t)I(t)

İ(t) = βS(t)I(t) + (1 − e)βV(t)I(t)− (μ + α + ε)I(t)

V̇(t) = pA + ϕS(t)− μV(t)− (1 − e)βV(t)I(t)

, (1)

where S(t) denotes the number of members who are susceptible to an infection, I(t) denotes
the number of infected individuals, and V(t) is the number of members who are immune

Axioms 2024, 13, 353. https://doi.org/10.3390/axioms13060353 https://www.mdpi.com/journal/axioms98
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to an infection as the result of vaccination. The definitions of the basic assumptions are as
in Table 1.

Table 1. The definitions of the parameters.

Parameter Definition

A an input of new members into the population
p a fraction of vaccinated newborns
μ the natural mortality rate
β transmission coefficient between compartments S(t) and I(t)
ϕ the proportional coefficient of vaccination for the susceptible
α recovery rate of I(t)
ε the disease-related death rate
e the rate of protection of the vaccine against infected individuals

From the definitions, we can find that e = 1 indicates that the vaccine is completely
effective in preventing infection, whereas e = 0 means that the vaccine is completely invalid.

Note that the basic regeneration number R0 = β[(1−p)μ+(1−e)(pμ+ϕ)]
(μ+ϕ)(μ+α+ε)

is the threshold
for determining the prevalence of the disease. When R0 < 1, the system has only disease-
free equilibrium point E0 = (S0, 0, V0) = ( (1−p)μ

μ+ϕ , 0, pμ+ϕ
μ+ϕ ), and it is globally asymptotically

stable in invariant set Γ , which means that the disease will be extinct. When R0 > 1,
E0 is unstable, and there is a globally asymptotically stable endemic equilibrium point
E∗ = (S∗, I∗, V∗), which means that the disease will persist.

Due to the unstable changes in effective contact factors during epidemic diseases,
the most common method to consider is introducing white noise. For a more detailed
explanation, readers can refer to [14–17]. Moreover, simulating random perturbations
from multiple perspectives is another important way. References [18–22] extensively
research Ornstein–Uhlenbeck processes driven by Brownian motion or fractional Brownian
motion. The Ornstein–Uhlenbeck process, with modifications, can stochastically model
interest rates, currency exchange rates, and commodity prices. According to the work
in [19], the stochastic mean-reverting process incorporates the effects of environmental
fluctuations into the parameters, which is a biologically meaningful method. Yang, Zhang,
and Jiang [20] analyzed the persistence and extinction of a stochastic food chain system
by incorporating the Ornstein–Uhlenbeck process. However, there is little information
available in the literature concerning the SIS epidemic model with the Ornstein–Uhlenbeck
process. Hence, in this paper, we consider the parameter β an Ornstein–Uhlenbeck process
affected by randomly varying environments. The Ornstein–Uhlenbeck process in system (1)
is as follows:

β̇(t) = θ(β − β(t)) + σḂ(t),

where β is the time-mean value of β(t), θ is the speed of reversion, σ is the intensity of
volatility, and B(t) is standard Brownian motion.

Integrating both sides of the above equation, we can obtain

β(t) = β̄ +
(

β0 − β̄
)
e−θt + σ

∫ t

0
e−θ(t−s)dB(t),

where β0 = β(0).
Then, we can obtain the expectation and variance in β(t),

E[β(t)] = β̄ +
(

β0 − β̄
)
e−θt Var[β(t)] =

σ2

2θ

(
1 − e−2θt

)
.

Motivated by the above works, in this paper, we propose the following stochastic SIS
epidemic model with the Ornstein–Uhlenbeck process:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ṡ(t) = (1 − p)A + αI(t)− (μ + ϕ)S(t)− βS(t)I(t)− m(t)S(t)I(t)

İ(t) = βS(t)I(t) + (1 − e)βV(t)I(t)− (μ + α + ε)I(t) + m(t)S(t)I(t) + (1 − e)m(t)V(t)I(t)

V̇(t) = pA + ϕS(t)− μV(t)− (1 − e)βV(t)I(t)− (1 − e)m(t)V(t)I(t)

ṁ(t) = −θm(t) + σḂ(t)

, (2)

where m(t) = β(t)− β.
The rest of this paper is arranged as follows. Section 2 presents the existence and

uniqueness analysis for system (2), as well as the asymptotic properties of the solution. In
Section 3, we discuss the conditions for predator extinction in system (2). Furthermore,
we aim to obtain the exact expression for the density function for a linearized system
corresponding to stochastic system (2) around the original point in Section 4. Finally, in
Section 5, we conduct several numerical simulations to validate the theoretical results.

2. Existence and Uniqueness of Global Positive Solution

Throughout this paper, let (Ω, F , {Ft}t≥0,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right-continuous and F0 contains

all P-null sets). Define Rd
+ = {x ∈ Rd : xi > 0 f or all 1 ≤ i ≤ d}, R

d
+ = {x ∈ Rd : xi ≥ 0

f or all 1 ≤ i ≤ d}. More basic, detailed knowledge of stochastic systems, readers can refer
to Mao [23].

To study the long-term dynamics of a stochastic population system, the existence and
uniqueness of the global solution to the model should be considered first. In this section,
we give the following conclusion, which is a fundamental condition for the follow-up
behavior study of stochastic systems.

Theorem 1. For any initial conditions (S(0), I(0), V(0), m(0)) ∈ R3
+ × R, when t ≥ 0, system

(2) has a unique global positive solution (S(t), I(t), V(t), m(t)) ∈ R3
+ × R.

Proof. Since the coefficients of system (2) are locally Lipsitz-continuous, there exists a unique
local solution (S(t), I(t), V(t)) on t ∈ (0, τ0). For any initial value (S(0), I(0), V(0)) ∈ R3

+, τ0
is an explosion moment. To prove that the local solution is global, we need only prove that
τ0 = ∞ a.s. Let us make n0 sufficiently large that every element of (S(0), I(0), V(0), m(0))
is in the interval

[
1

n0
, n0

]
, and for every integer n ≥ n0, we define the stop time

τn = inf
{

0 < t < τ0 | min{S(t), I(t), V(t)} ≤ 1
n

, or max{S(t), I(t), V(t)} ≥ n
}

.

In this paper, we assume that inf{∅} = ∞. Obviously, τn increases with n → ∞.
If τ∞ = limn→∞ τn, τ∞ ≤ τ0 a.s. If τ∞ = ∞ a.s. is true, then τ0 = ∞ a.s., which means for all
t ≥ 0, (S(t), I(t), V(t)) ∈ R3

+ a.s. is true.
If τ0 < ∞ a.s. is true, then there exist two constants, T ≥ 0 and ε ∈ (0, 1), such that

P{τ∞ ≤ T} > ε. So, there is an integer n1 ≥ n0, for all n ≥ n1, that satisfies

P{τn ≤ T} ≥ ε. (3)

We construct the Lyapunov function W0 : R3
+ × R → R+, as follows:

W0(S, I, V, m) = S − 1 − ln S + V − 1 − ln V + V − 1 − ln V +
m2

2
. (4)

According to the property μ− 1− ln μ ≥ 0 when μ > 0, we can obtain that W0(S, I, V, m)
is a non-negative C2-function.

When we apply Ito’s formula, we have

dW0(S, I, V, m) = £W0(S, I, V, m)dt + σmdt, (5)
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where

£W0(S, I, V, m) =(1 − 1
S
)[(1 − p)μ + αI − (μ + ϕ)S − βSI − mSI]

+ (1 − 1
I
)[βSI + (1 − e)βVI + mSI + (1 − e)mVI − (μ + α + ε)I]

+ (1 − 1
V
)[pμ + ϕS − μV − (1 − e)βVI − (1 − e)mVI]

− θm2 +
σ2

2

≤4μ + ϕ + α + ε + (2 − e)βK +
σ2

2
+ (4 − 2e)K|m| − θm2

≤4μ + ϕ + α + ε + (2 − e)βK +
σ2

2
+

(2 − e)2K2

θ
:= K,

(6)

and K is a constant. We can obtain dW0(S, I, V, m) = Kdt + σmdB(t).
Integrating from 0 to τn ∧ T and taking the expectation, we have

EW0(S(τn ∧ T), I(τn ∧ T), V(τn ∧ T), m(τn ∧ T))
≤ KE(τn ∧ T) + W0(S(0), I(0), V(0), m(0))

≤ KT + W0(S(0), I(0), V(0), m(0)).

(7)

Let Ωn = {τn ≤ T}, for n ≥ n1. By (3), P(Ωn) ≥ ε. Notice that for any ω ∈ Ωn, at least
one of S(τn ∧ T), I(τn ∧ T), V(τn ∧ T) is equal to 1

n or n. Therefore, W0(S(τn ∧ T), I(τn ∧ T),
V(τn ∧ T)) are not less than n − 1 − ln n or 1

n − 1 + ln n. So,

KT + W0(S(0), I(0), V(0), m(0)) ≥ E[IΩn(ω)W0(S(τn, ω), I(τn, ω), V(τn, ω), m(τn, ω))]

≥ ε

{
[n − 1 − ln n] ∧

[
1
n
− 1 + ln n

]}
,

(8)

where IΩn(·) is the indicative function of Ωn. n → ∞ leads to the contradiction

∞ = KT + W0(S(0), I(0), V(0), m(0)) < ∞.

Therefore, τ∞ a.s. This means that the SDE system (2) exists a unique global positive
solution.

3. Extinction of Stochastic System (2)

The states of symbiosis and extinction due to various disturbances in the environment
are the major research topics in the SIS epidemic model. In this section, we give the results
of extinction among predators in SIS epidemic system (2). Before giving the main result,
we first present the following Lemma [20]:

Lemma 1. There exists a bounded domain D ⊂ Ωd with a regular boundary ∂D such that
(A1): there is a positive number δ such that ∑d

i,j=1aij(x)ξiξ j ≥ δ|ξ|2, x ∈ D, ξ ∈ Rd.
(A2): there exists a non-negative C2-function V such that £V ≥ −1 for any x ∈ Ωd\D.
Then, the Markov process X(t) has a unique ergodic stationary distribution π(·), and

P
{

lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Ωd

f (x)π(dx) = 1
}

(9)

holds for all x ∈ Ωd, where f (·) is an integrable function with respect to the measure π.
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Theorem 2. Assuming R1 = R0 − (2+c1+c2−c2e−e)σ√
2θ(μ+α+ε)

> 1, then the solution (S(t), I(t), V(t),

m(t)) of system (2) has a stationary distribution π(·) with the initial value (S(0), I(0), V(0),
m(0)) ∈ Γ.

Proof. Obviously, system (2) does not satisfy assumption (A1) of Lemma 1. Hence, er-
godicity and uniqueness cannot be obtained. However, to prove Theorem 2, we need to
verify assumption (A2) of Lemma 1. We expect to construct a neighborhood Dε0 and a
non-negative C2-function W1(S, I, V, m) such that £W1 ≤ −1 for any (S, I, V, m) ∈ Γ\Dε0 .
We consider an appropriate Lyapunov function form,

W(S, I, V, m) = M(−lnI − c1S− c2V +
b
2

m2)− lnS− lnV +
m2

2
− ln(1 − S − I − V) (10)

where b, c1, c2, and M are all undetermined positive constants.
We can simply define that

V1 = −lnI − c1S − c2V +
b
2

m2,

V2 = −lnS,

V3 = −lnV,

V4 =
m2

2
,

V5 = −ln(1 − S − I − V).

Applying Ito’s formula to V1 and scaling it, we have

£V1 =− β̄S − (1 − e)V − mS − (1 − e)mV + μ + α + ε

− c1[(1 − p)μ + αI − (μ + ϕ)S − β̄SI − mSI]

− c2[pμ + ϕS − μV − (1 − e)β̄VI − (1 − e)mVI]− bθm2 +
b
2

σ2

≤[
c1(μ + ϕ)− c2 ϕ − β̄

]
S +

[
c2μ − (1 − e)β̄

]
V − c1(1 − p)μ − c2 pμ + μ + α + ε

+ (2 + c1 + c2 − c2e − e)|m| − bθm2 +
b
2

σ2 +
[
c1(β̄ − α) + c2(1 − e)β̄

]
I.

(11)

Let c1(μ + ϕ)− c2 ϕ − β = 0. We have

c1 =
β̄[μ + (1 − e)ϕ]

μ(μ + ϕ)
> 0,

c2 =
(1 − e)β̄

μ
> 0.

By (2 + c1 + c2 − c2e − e)|m| − bθm2 ≤ (2+c1+c2−c2e−e)2

4bθ , then

£V1 ≤ −(μ + α + ε)(R0 − 1) +
(2 + c1 + c2 − c2e − e)2

4bθ
+

b
2

σ2 +
[
c1(β̄ − α) + c2(1 − e)β̄

]
I. (12)

Taking b = 2+c1+c2−c2e−e
σ
√

2θ
, we can obtain

£V1 ≤ −(μ + α + ε)(R0 − 1) +
(2 + c1 + c2 − c2e − e)σ√

2θ
+
[
c1(β̄ − α) + c2(1 − e)β̄

]
I

= −(μ + α + ε)(R1 − 1) +
[
c1(β̄ − α) + c2(1 − e)β̄

]
I,

(13)

where R1 = R0 − (2+c1+c2−c2e−e)σ√
2θ(μ+α+ε)

.
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Applying Ito’s formula to V2, V3, V4, and V5 and scaling them, we have

£V2 = − (1 − p)μ
S

− αI
S

+ μ + ϕ + βI + mI

≤ − (1 − p)μ
S

+ μ + ϕ + βI + |m|.
(14)

£V3 = − pμ

V
− ϕS

V
+ μ + (1 − e)βI + (1 − e)mI

≤ − pμ

V
+ μ + (1 − e)βI + (1 − e)|m|.

(15)

£V4 = −θm2 +
σ2

2
, (16)

£V5 = − εI
1 − (S + I + V)

. (17)

Moreover, notice that W(S, I, V, m) is a continuous function, which satisfies that

lim
S+I+V→1

inf W(S, I, V, m) = +∞. (18)

Hence, there is a minimum Wmin of W(S, I, V, m).
We define a non-negative C2 function W1(S, I, V, m) : R3

+ × R → R by

W1(S, I, V, m) = W(S, I, V, m)− Wmin. (19)

Combining (13)–(17), it can be shown that

£W1 ≤− M(R1 − 1)(μ + α + ε) + 3μ + ϕ +
(2 − e)2

4θ
+

σ2

2

+ λI − (1 − p)μ
S

− pμ

V
− εI

1 − (S + I + V)
,

(20)

where λ = M[cβ−α + c2(1 − e)β] + (2 − e)β.

We set −M(R1 − 1)(μ + α + ε) + 3μ + ϕ + (2−e)2

4θ + σ2

2 = −2. Then,

M =
2 + 3μ + ϕ + (2−e)2

4θ + σ2

2
(R1 − 1)(μ + α + ε)

. (21)

In this way, we obtain

£W1 ≤ −2 + λI − (1 − p)μ
S

− pμ

V
− εI

1 − (S + I + V)
. (22)

Next, the corresponding compact subset is constructed as follows:

Dε =
{
(S, I, V, m) ∈ R3

+ × R|S ≥ ε, I ≥ ε, V ≥ ε, S + I + V ≤ 1 − ε2
}

, (23)

where ε is a sufficiently small positive constant.
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For convenience, we consider four subsets of R3
+ × R \Dε as follows:

D
c
1,ε =

{
(S, I, V, m) ∈ R3

+ × R|S < ε
}

,

D
c
2,ε =

{
(S, I, V, m) ∈ R3

+ × R|I < ε
}

,

D
c
3,ε =

{
(S, I, V, m) ∈ R3

+ × R|V < ε
}

,

D
c
4,ε =

{
(S, I, V, m) ∈ R3

+ × R|S + I + V > 1 − ε2, I > ε
}

.

In the following study, we will show that £W1 ≤ −1, for any (S, I, V, m) ∈ Dc
i,ε (i =

1, 2, 3, 4).
Case 1. If (S, I, V, m) ∈ Dc

1,ε, by (22), it can be derived that

£W1 < −2 − (1 − p)μ
ε

+ λ < −1. (24)

Case 2. If (S, I, V, m) ∈ Dc
2,ε, by (22), it can be derived that

£W1 < −2 + λε < −1. (25)

Case 3. If (S, I, V, m) ∈ Dc
3,ε, by (22), it can be derived that

£W1 < −2 − pμ

ε
+ λ < −1. (26)

Case 4. If (S, I, V, m) ∈ Dc
4,ε, by (22), it can be derived that

£W1 < −2 − ε

ε
+ λ < −1. (27)

It is worth noting that R3
+ × R\Dε =

⋃4
i=1 Dc

i,ε. Therefore, for any (S, I, V, m) ∈
R3
+ × R \Dε, it can be obtained equivalently that £W1 ≤ −1.

The states of symbiosis and extinction due to various disturbances are the two most
researched topics in the epidemic model. Furthermore, we give the extinction of SIS
epidemic system (2).

Theorem 3. For any initial value (S(0), I(0), V(0), m(0)) ∈ Γ, if R2 = R0 +
(2+c1+c2−c2e−e)σ√

πθ(μ+α+ε)
+

c1α
μ+α+ε < 1, the solution (S(t), I(t), V(t), m(t)) of system (2) satisfies

lim
t→∞

sup
ln I(t)

t
≤ (μ + α + ε)(R2 − 1) < 0 a.s. (28)

This implies that the epidemic of system (2) will become extinct with probability 1.

Proof. Applying Ito’s formula to ln I(t), we obtain

d(ln I + c1S + c2V) ≤ [(μ + α + ε)(R0 − 1) + c1α + (2 + c1 + c2 − c2e − e)|m|]dt (29)

Integrating the above formula from 0 to t on both sides, then

ln I(t) + c1S(t) + c2V(t) ≤
∫ t

0
[(μ + α + ε)(R0 − 1) + c1α + (2 + c1 + c2 − c2e − e)|m|]dr+

ln I(0) + c1S(0) + c2V(0),
(30)

Dividing by t on both sides of this inequality and taking the limit as t → ∞, we obtain
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lim
t→∞

ln I(t) + c1S(t) + c2V(t)
t

≤ (μ + α + ε)(R0 − 1) + c1α + lim
t→∞

∫ t
0 (2 + c1 + c2 − c2e − e)|m|dr

t
, (31)

and

lim
t→∞

ln I(t)
t

≤ (μ + α + ε)(R0 − 1) + c1α +
∫ +∞

−∞
(2 + c1 + c2 − c2e − e)|m|π(m)dm

= (μ + α + ε)(R0 − 1) + c1α +
(2 + c1 + c2 − c2e − e)σ√

πθ

= (μ + α + ε)(R2 − 1) < 0.

(32)

Consequently, it indicates that limt→∞ I(t) = 0 a.s. The disease will die out.

4. Probability Density Function of Stochastic System (2)

According to Theorem 2, it is obtained that the global solution (S(t), I(t), V(t), m(t))
of system (2) follows a stationary distribution π(·). This section is devoted to deriving an
explicit expression for the probability density function of the distribution π(·) when R1 > 1.
In fact, this result will provide a wide range of possibilities for the further development
of epidemiological dynamics. Before this, necessary transformations (equilibrium offset
transformation) for system (2) should be mentioned.

Theorem 4. If R0 > 1, a quasi-stable equilibrium point E∗ = (S∗, I∗, V∗, 0) is defined to satisfy
the following system of equations:⎧⎪⎨⎪⎩

(1 − p)μ + αI∗ − (μ + ϕ)S∗ − β̄S∗ I∗ = 0

β̄S∗ I∗ + (1 − e)β̄V∗ I∗ − (μ + α + ε)I∗ = 0

pμ + ϕS∗ − μV∗ − (1 − e)β̄V∗ I∗ = 0

, (33)

When R0 > 1, Equation (33) has a unique positive solution, and S∗ ∈ ( α
β

, S0), where

S0 = (1−p)μ
μ+ϕ .

Proof. We assume that βS0 > α, R0 > 1. Then,⎧⎨⎩
(μ + ϕ)(S0 − S) + (α − βS0)I = 0

eβS + (1 − e)β − (μ + α + ε) = (1 − e)β(1 +
ε

μ
)I

. (34)

By Equation (34), we have

eβ(S − S0) + (μ + α + ε)(R0 − 1) = (1 − e)β(1 +
ε

μ
)I. (35)

Substituting Equation (35) with Equation (33), we have

F(S) = (μ + ϕ)
(

S0 − S
)
+ (α − β̄S)

⎡⎣ e

(1 − e)
(

1 + ε
μ

)(S − S0
)
+

μ + α + ε

(1 − e)β̄
(

1 + ε
μ

) (R0 − 1)

⎤⎦ = 0, (36)

F
(

S0
)
=

(
α − β̄S0

) μ + α + ε

(1 − e)β̄
(

1 + ε
μ

) (R0 − 1) < 0. (37)
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Then, by F′′(S) = −2eβ̄

(1−e)
(

1+ ε
μ

) < 0, we know that Equation (30) has a unique solution.

Thus, S∗ ∈ ( α
β

, S0), I∗ = (μ+ϕ)(S∗−S0)

α−βS∗ .

To facilitate the study of the problem, we can make the following transformations. Let
x1 = m, x2 = S − S∗, x3 = I − I∗, x4 = N − N∗, where N = S + I + V.

Denote
X(t) = (x1(t), x2(t), x3(t), x3(t)T ,

A =

⎛⎜⎜⎝
−θ 0 0 0
−a21 −a22 −a23 0
a31 a32 −a33 a34
0 0 −a43 −a44

⎞⎟⎟⎠,

H =

⎛⎜⎜⎝
−σ 0 0 0
0 0 −0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

where a21 = S∗ I∗ > 0, a22 = μ + ϕ + (β)I∗ > 0, a23 = βS∗ − α > 0, a31 = μ+α+ε

β
I∗ > 0,

a32 = eβI∗ > 0, a33 = a34 = (1 − e)βI∗ > 0, a43 = ε > 0, a44 = μ > 0. Therefore, the
linearized form of system (2) at the quasi-stable equilibrium point is

dX(t) = AX(t)dt + HdB(t). (38)

The probability density function of the solution of Equation (38) satisfies the Fokker–
Planck equation and is in the form of Gaussian distribution

Φ(X) = C0e−
1
2 XT M0X . (39)

Here, C0 is the normalized constant and M0 a real symmetric matrix, which satisfies
the algebraic equation

M0H2M0 + AT M0 + M0 A = 0. (40)

If M0 is an invertible matrix, Equation (40) can be equivalent to

H2 + AΣ + ΣAT = 0, (41)

where Σ = M−1
0 .

Denote

A =

( −θ 0
Z Ã

)
,

|λI − Ã| = λ3 + p1λ2 + p2λ + p3,

where p1 = a22 + a33 + a44, p2 = a22a33 + a22a44 + a33a44 + a23a32 + a34a43, p3 = a22a33a44 +
a22a34a43 + a23a32a44. By p1 > 0, p2 > 0, p1 p2 − p3 > 0, it can be concluded that Ã is
positive definite and the quasi-stable equilibrium is locally asymptotically stable.

Here, we provide an important Lemma [16]:

Lemma 2. For any matrix where B =

⎛⎜⎜⎝
−b11 0 0 0
−b21 b22 −b23 0

0 b32 b33 b34
0 0 b43 b44

⎞⎟⎟⎠ and b32 �= 0, B can move

through at most two steps and B will be similar to a standard matrix.
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Step 1. Find a matrix G1 =

⎛⎜⎜⎝
1 0 0 0
0 b32b43 b43(b33 + b44) b2

44 + b34b43
0 0 b43 b44
0 0 0 0

⎞⎟⎟⎠ such that

B′ = G1BG−1
1 =

⎛⎜⎜⎝
−b11 0 0 0

b21b32b43 −q1 −q2 −q3
0 1 0 0
0 0 1 0

⎞⎟⎟⎠.

Step 2. Find a matrix G2 =

⎛⎜⎜⎝
b21b32b43 −q1 −q2 −q3

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ such that

B′′ = G2B′G−1
2 =

⎛⎜⎜⎝
−(θ + q1) −(θq1 + q2) −(θq2 + q3) −θq3

1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠
is a canonical matrix.

Theorem 5. For any initial value (m(0), S(0), I(0), N(0)) ∈ R × R3
+ and N(0) ≤ 1, if R1 > 1,

then the stationary distribution π(·) around (0, S∗, I∗, N∗) follows a unique normal probability
density function Φ(m, S, I, N), which is given by

Φ(m, S, I, N) = (2π)−
3
2 |Σ|− 1

2 e−
1
2 (m,S,I,N)Σ−1(m,S,I,N)T

, (42)

where Σ is a positive definite matrix, and the special form of Σ is given as follows:

Σ = (J4 J3 J2 J1)
−1Σ4[(J4 J3 J2 J1)

−1]T (43)

with

J1 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 − a31

a21
1 0

0 0 0 1

⎞⎟⎟⎠,

J2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0

0 0 − a′42
a′32

1

⎞⎟⎟⎟⎠,

J3 =

⎛⎜⎜⎝
1 0 0 0
0 a′32a′′43 a′′43(a′′33 + a′′44) (a′′44)

2 + a34a′′43
0 0 a′′43 a′′44
0 0 0 1

⎞⎟⎟⎠,

J4 =

⎛⎜⎜⎝
−a21a′32a′′43 −p1 −p2 −p3

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠,

Σ4 =
σ2

η

⎛⎜⎜⎝
A11 A14 − A12 A13 0 A13 0

0 −A13 0 A11
A13 0 −A11 0
0 A11 0 A13 − A11 A12,

⎞⎟⎟⎠,
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and a′22 = −a22 +
a23a31

a21
, a′32 = a32 +

a33a31
a21

+
a23a2

31
a2

21
− a22a31

a21
, a′33 = −a33 − a23a31

a21
, a′42 = a43a31

a21
,

a′′33 = −a′33 +
a34a′42

a′32
, a′′43 = −a43 − a′33a′42

a32
− a44a′42

a32
− a34(a′42)

2

(a′32)
2 , a′′44 = −a44 − a34a′42

a′32
, A11 = θ +

−p1, A12 = θp1 + p2, A13 = θp2 + p3, and A14 = θp3, η = 2(A2
11 A14 − A11A12 A13 + A2

13).

Proof. Let y4 = x4, y3 = b43x3 + b44x4, and y2 = y′3 = dy3 = b43dx3 + b44dx4 = b32b43x2 +
(b33b43 + b43b44)x3 + (b34b43 + b2

44)x4.
Denote

G1 =

⎛⎜⎜⎝
1 0 0 0
0 b32b43 b43(b33 + b44) b2

44 + b34b43
0 0 b43 b44
0 0 0 0

⎞⎟⎟⎠,

Then, we have dY = G1dX = G1BXdt = G1BG−1
1 Ydt.

That is,

dY = d

⎛⎜⎜⎝
y1
y2
y3
y4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−b11 0 0 0

b21b32b43 −q1 −q2 −q3
0 1 0 0
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

y1
y2
y3
y4

⎞⎟⎟⎠dt. (44)

Let z4 = y4, z3 = y′4 = z′4 = y3, z2 = y′3 = z′3 = y2, and z1 = y′2 = z′2 = b21b32b43y1 −
q1y2 − q2y3 − q3y4.

Denote

G2 =

⎛⎜⎜⎝
b21b32b43 −q1 −q2 −q3

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠,

Then, we have dZ = G2dY = G2B′Ydt = G2B′G−1
2 Zdt.

That is,

dZ = d

⎛⎜⎜⎝
z1
z2
z3
z4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−(θ + q1) −(θq1 + q2) −(θq2 + q3) −θq3

1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

z1
z2
z3
z4

⎞⎟⎟⎠dt. (45)

Now, let us solve the density function of Equation (38). Firstly, let A1 = J1 AJ−1
1 , where

J1 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 − a31

a21
1 0

0 0 0 1

⎞⎟⎟⎠,

Then,

A1 =

⎛⎜⎜⎝
−θ 0 0 0
−a21 a′22 −a23 0

0 a′32 a′33 a34
0 a′42 −a43 −a44

⎞⎟⎟⎠,

where a′22 = −a22 + a23a31
a21

, a′32 = a32 + a33a31
a21

+
a23a2

31
a2

21
− a22a31

a21
, a′33 = −a33 − a23a31

a21
,

and a′42 = a43a31
a21

.
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Secondly, let A2 = J2 A1 J−1
2 , where

J2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0

0 0 − a′42
a′32

1

⎞⎟⎟⎟⎠,

Then,

A2 =

⎛⎜⎜⎝
−θ 0 0 0
−a21 a′22 −a23 0

0 a′32 a′′33 a34
0 0 −a′′43 −a′′44

⎞⎟⎟⎠,

where a′′33 = −a′33 +
a34a′42

a′32
, a′′43 = −a43 − a′33a′42

a32
− a44a′42

a32
− a34(a′42)

2

(a′32)
2 , a′′44 = −a44 − a34a′42

a′32
.

Thirdly, by Lemma 2, let A3 = J3 A2 J−1
3 , where

J3 =

⎛⎜⎜⎝
1 0 0 0
0 a′32a′′43 a′′43(a′′33 + a′′44) (a′′44)

2 + a34a′′43
0 0 a′′43 a′′44
0 0 0 1

⎞⎟⎟⎠,

Then,

A3 =

⎛⎜⎜⎝
−θ 0 0 0

−a21a′32a′′43 −p1 −p2 −p3
0 1 0 0
0 0 1 0

⎞⎟⎟⎠.

Finally, by Lemma 2, let A4 = J4 A3 J−1
4 , where

J4 =

⎛⎜⎜⎝
−a21a′32a′′43 −p1 −p2 −p3

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠,

Then,

A4 =

⎛⎜⎜⎝
−(θ + p1) −(θp1 + p2) −(θp2 + p3) −θp3

1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠.

Let A11 = θ +−p1, A12 = θp1 + p2, A13 = θp2 + p3, and A14 = θp3. By Equation (41),
we can solve that

Σ4 =
σ2

η

⎛⎜⎜⎝
A11 A14 − A12 A13 0 A13 0

0 −A13 0 A11
A13 0 −A11 0
0 A11 0 A13 − A11 A12,

⎞⎟⎟⎠ (46)

where η = 2(A2
11 A14 − A11A12 A13 + A2

13). Obviously, matrix Σ4 is positive definite. Then,
Σ = (J4 J3 J2 J1)

−1Σ4[(J4 J3 J2 J1)
−1]T .

5. Examples and Numerical Simulations

In this section, we will introduce some examples and numerical simulations to demon-
strate the above theoretical results. By means of the higher-order method developed by
Milstein, the corresponding discretization equation of system (2) is obtained in the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(k + 1) =S(k) + Δt[(1 − p)μ + αI(k)− (μ + ϕ)S(k)− βS(k)I(k)− m(k)S(k)I(k)]

I(k + 1) =I(k) + Δt[βS(k)I(k) + (1 − e)βV(k)I(k)− (μ + α + ε)I(k) + m(k)S(k)I(k)

+ (1 − e)m(k)V(k)I(k)]

V(k + 1) =V(k) + Δt[pμ + ϕS(k)− μV(k)− (1 − e)βV(k)I(k)− (1 − e)m(k)V(k)I(k)]

m(k + 1) =m(k)− Δtθm(k) + σm(k)
√

Δtξk +
σ2m(k)

2
Δt(ξ2

k − 1)

(47)

where Δt is the time increment, and ξ is the Gaussian random variables which follow the
distribution N(0, 1), k = 1, 2, 3 . . . .

Example 1. In order to check the existence of a stationary distribution, we choose the values of the
system parameters as follows: (p, μ, α, ϕ, β, e, ε, θ) = (0.4, 0.2, 0.1, 0.1, 0.8, 0.8, 0.05, 0.5), and the
environmental noise intensities σ = 0.01. Then, R1 = 1.07 > 1, where R1 is defined in Theorem 2.
Therefore the conditions of Theorem 2 hold, and there is a stationary distribution π(·) of system (2)
in left hand column in Figure 1.

Figure 1. The left-hand column shows the simulation of compartments S(t), V(t), and I(t)
in deterministic system (1) and stochastic system (2) with parameters (p, μ, α, ϕ, β, e, ε, θ) =

(0.4, 0.2, 0.1, 0.1, 0.8, 0.8, 0.05, 0.5). The right-hand column shows the distribution of stochastic system
(2). When R1 > 1, the disease will persist for a long time.

Example 2. In order to check the existence of a stationary distribution, we choose the values of the
system parameters as follows: (p, μ, α, ϕ, β, e, ε, θ) = (0.4, 0.2, 0.1, 0.1, 0.1, 0.8, 0.05, 0.5), and the
environmental noise intensities σ = 0.01, in right hand column in Figure 1. Then, R2 = 0.4 < 1,
where R2 is defined in Theorem 3, in left hand column in Figure 2. Therefore, the conditions of
Theorem 3 hold, and the disease will be extinct in a long time, in right hand column in Figure 2.
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Figure 2. The left-hand column shows the simulation of compartments S(t), V(t), and I(t)
in deterministic system (1) and stochastic system (2) with parameters (p, μ, α, ϕ, β, e, ε, θ) =

(0.4, 0.2, 0.1, 0.1, 0.1, 0.8, 0.05, 0.5). The right-hand column shows the distribution of stochastic
system (2). When R2 < 1, the disease will be extinct in a long time.

6. Discussion and Conclusions

In this paper, we investigate the dynamic behavior of a stochastic SIS model with
imperfect vaccination, where the population is demographically static and growing with
an infection-induced mortality rate. We introduce the Ornstein–Uhlenbeck process to simu-
late random disturbances in the environment and obtain a more biologically meaningful
stochastic SIS epidemic model. To the best of our knowledge, few papers currently study
SIS epidemic models with Ornstein–Uhlenbeck processes.

In this paper, we investigate the dynamic effects of the Ornstein–Uhlenbeck pro-
cess on SIS epidemic models under standard incidence. We construct several different
and suitable Lyapunov functions to prove our conclusions. We obtain the existence and
uniqueness of the global solution to the SIS epidemic model (2). Furthermore, we establish
sharp sufficient criteria for the existence of stationary distribution and reveal the effects of
the Ornstein–Uhlenbeck process on the existence of stationary distribution. Specifically,
if R1 > 1 and the parameters β of the Ornstein–Uhlenbeck process meet certain conditions,
then system (2) exists with a stable distribution. Otherwise, if R2 < 1, the epidemic of
system (2) will become extinct with probability 1. The innovation of this paper is that we
obtain a mathematical analysis result of the density function of four-dimensional stochastic
model (2), which is quite challenging. Numerically, we simulate the effects of the intensities
of white noise on the stationary distribution and show that the degree of volatility will
increase. Additionally, it is worth noting that the same methods are used in the survival
analysis of the high-dimensional SIS epidemic model in our following research.

The numerical simulation example reveals that there exist periodic regimes in the
deterministic system and metastable periodic regimes in the corresponding stochastic
system, which is the subject of our future research. External interference will affect the
balance of the SIS epidemic model. Therefore, it will be of extraordinary significance to
minimize human interference and damage to the environment and organisms.
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Abstract: This study addresses the state feedback control associated with D-admissible assurance
for discrete singular systems subjected to parameter uncertainties in both the difference term and
system matrices. Firstly, a refined analysis criterion of D-admissible assurance is presented, where
the distinct form embraces multiple slack matrices and has lessened linear matrix inequalities (LMIs)
constraints, which may be beneficial for reducing the conservatism of admissibility analysis. In
consequence, by hiring the state feedback control, controller design issues with pole locations, which
directly dominate the system performance, are mainly treated. For all the presented criteria can be
formulated by the strict LMIs, they are thus suitably solved via current LMI solvers to conduct a state
feedback controller with specific poles’ locations of system’s performance requirements. Finally, two
numerical examples illustrate that the presented results are efficient and practicable.

Keywords: uncertain systems; discrete singular systems; D-admissibility; linear matrix inequality
(LMI)
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1. Introduction

Singular systems have become an extended form of the traditional state-space systems,
where, besides the dynamic behaviors, they can further integrate algebraic constraints into
the systems. They are more ingeniously applicable in miscellaneous systems, e.g., eco-
nomic model systems [1,2], circuit systems [3], chemical response processes [4], and power
systems [5]. However, the stability analysis and controller design issues of singular systems
are more intricate than traditional ones [6–8]. Since they usually embrace rank insufficient
derivative term matrices (or difference term matrices, for discrete system cases) in the mod-
els, besides the stability verification, we must ensure the regularity and impulse immunity
(or causality, for discrete system cases) simultaneously. Furthermore, the practical system
models need to accommodate parameter uncertainties of circumstance variation, compo-
nent aging, measuring inaccuracy, and so on. Thus, the robust admissible analysis and/or
robust control for singular systems were deeply investigated in the past (see, e.g., [9–15]
and the references therein). For practical implementation, digital signals are indispensable
in real-time control or monitoring systems. Using signal transformation, discrete difference
models with highly accurate forms could be attained [16]. Thus, many works have been
inspired to cope with discrete singular systems subjected to various uncertainties (see,
e.g., [17–19] and the references therein).

Moreover, when implementing a control system, stability is the minimum requirement
of the system’s behavior. The system’s performance is directly dominated by the pole
locations in the complex plane of a state-space system’s model [20–24]. Subsequently, the
D-admissible analysis and controller design issues for discrete singular systems have also
been discussed recently ([25–29] and the references therein). By examining past results,
they considered the difference term matrix of the discrete singular systems that needed to
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be fixed. Then, they could attain some explicit admissible analysis and controller design
criteria. However, for system modeling from a practical system, the parameter variations
usually have individually varying durations and can be meaningfully embraced by both
the derivative term (or difference term for discrete system cases) and system matrices with
structural uncertainties [15,30–34]. For discrete singular systems, the robust D-admissibility
issues with perturbation in both the difference term and the system’s matrices have been
previously investigated [33]. However, the proposed conditions involved a large number
of LMI constraints, which not only cause computing exertion but also may introduce
conservatism for the proposed criteria. In the work [35], the D-admissibility and controller
design issues were discussed for uncertain discrete singular systems with state delay.
However, the results are based on the augmented system’s approach, which makes it
challenging to tackle the uncertainties that exist in the difference term matrix. Concluding
the aforementioned exploration, it seems that relatively few results deal with the state
feedback control with D-admissible assurance for uncertain discrete singular systems
subjected to parametric perturbation in both the difference term and system matrices,
which inspired us to undertake this topic.

This study is devoted to the state feedback control with D-admissible assurance for
discrete singular systems subjected to uncertainties in both the difference term and system
matrices. Using matrix algebra and LMI techniques [36,37], we first present a distinct
D-admissibility criterion of the considered systems. The new form not only has less LMI
constraints but also involves some slack metrics, which may be beneficial for reducing the
conservatism of analysis criteria. By hiring the state feedback control, the controller design
issues associated with prescribed pole locations for the closed-loop singular system are
further treated. All of the presented conditions can be expressed in terms of the strict LMI
constraints, which can be easily evaluated by current LMI solvers [37] for the admissible
analysis or by systematically conducting state feedback control. Ultimately, two examples
illustrate the feasibility and applicability of the derived results. By comparing with the
previous results, the contributions of our work are summarized in the following points:

1. To the best of our knowledge, few works focus on the state feedback control with
D-admissible assurance for uncertain discrete singular systems subjected to parameter
uncertainties in both the difference term and system matrices. This work is mainly
devoted to the state feedback control with D-admissible issues for the considered
systems.

2. For all of the design criteria that can be derived in terms of the strict LMIs, a state feed-
back controller with prescribed performance requirements can be readily conducted
via current LMI tools.

The remaining information is outlined as follows. Section 2 introduces preliminary
results and definitions for discrete singular systems. The D-admissibility and the state
feedback control are mainly addressed in Section 3. Two numerical examples are involved
to illustrate the feasibility and effectiveness of the proposed results in Section 4. Finally, we
make some concluding remarks on this study in Section 5.

2. Preliminaries on Discrete Singular Systems

Consider an uncertain discrete singular model described by

Ẽx(k + 1) = (A + ΔA)x(k) + (B + ΔB)u(k), k > 0, (1)

where x(·) ∈ Rn and u(·) ∈ Rr are the state vector and the control input, respectively. The
uncertain difference term matrix Ẽ with rank(Ẽ) = m ≤ n can be denoted by a polytopic
form as

ΩE ≡
{

Ẽ : Ẽ =
qE

∑
i=1

eiEi, ei ≥ 0,
qE

∑
i=1

ei = 1

}
, (2)

114



Axioms 2024, 13, 634

where qE is the total number of the matrices’ vertices, Ei. The nominal system matrices A
and B have compatible dimensions and the uncertainties terms ΔA and ΔB are assumed to
be norm-bounded with constant matrices M, NA, NB, and matrix Λ, ΛTΛ ≤ I, satisfying[

ΔA ΔB
]
= MΛ

[
NA NB

]
. (3)

Remark 1. The considered descriptor system in (1) involves both the uncertainties in (2) and (3)
with distinct forms. They can be reasonably analyzed due to their inherited characteristics, including
uncertain parameters that exist in the difference term and system matrices [34].

Lemma 1 [38]. Denote a matrix Ω = ΩT, with compatible matrices M and N, such that

Ω + MΛN + NTΛT MT < 0

where Λ satisfies ΛΛT ≤ I, if and only if there exists a positive number α satisfying

Ω + αMMT + α−1NT N < 0.

To cope with the control issues of the discrete singular system (1), some definitions for
the nominal form, Ex(k + 1) = Ax(k), are given as follows.

Definition 1 [8,33,35].

1. The matrix pair (E, A) is asserted to be regular if det(zE − A) �= 0.
2. The matrix pair (E, A) is asserted to be causal if det(zE − A) �= 0 and deg[det(zE − A)] =

rank(E).
3. Let the characteristic polynomial of the nominal system Ex(k + 1) = Ax(k) be F(z) =

det(zE − A). The nominal system is asserted to be D-admissible, if it is regular, causal,
and all of the finite solutions of F(z) = 0 satisfy z ∈ D(a, r) = {z : |z − a| < r}, where
|a|+ r < 1. And, the nominal system is asserted to be admissible, if it is regular, causal, and
all of the finite solutions of F(z) = 0 satisfy z ∈ D(0, 1).

Some previous results are introduced below.

Lemma 2 [10]. The nominal system, Ex(k + 1) = Ax(k), is admissible if and only if there exist
two matrices, P > 0 and Q, satisfying

AT PA − ET PE + QST A + ATSQT < 0 (4)

where S ∈ Rn×(n−m) with ETS = 0 and rank(S) = n − m.

Lemma 3 [33]. The nominal system, Ex(k + 1) = Ax(k), is D-admissible if and only if there exist
two matrices, P > 0 and Q, satisfying

(A − aE)
r

T
P
(A − aE)

r
− ET PE + QST A + ATSQT < 0 (5)

where S ∈ Rn×(n−m) with ETS = 0 and rank(S) = n − m.

Deducing from the equivalent admissibility issues of the symmetric form of (E, A) [39],
we can replace (E, A) in Equation (5) by the transpose pair (ET , AT) and obtain a symmet-
ric manner as follows.
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Corollary 1. The nominal system, Ex(k + 1) = Ax(k), is D-admissible if and only if there exist
two matrices, P > 0 and Q, satisfying

(A − aE)
r

P
(A − aE)T

r
− EPET + QST AT + ASQT < 0 (6)

where S ∈ Rn×(n−m) with ES = 0 and rank(S) = n − m.

For the controller design issue, we present a distinct form by replacing the matrix S by
PS with the nonsingular matrix P.

Corollary 2. The nominal system, Ex(k + 1) = Ax(k), is D-admissible if and only if there exist
two matrices, P > 0 and Q, satisfying

(A − aE)
r

P
(A − aE)T

r
− EPET + QST PAT + APSQT < 0 (7)

where S ∈ Rn×(n−m) with EPS = 0 and rank(S) = n − m.

3. D-Admissibility and State Feedback Control

A refined robust admissible analysis criterion for the uncertain discrete singular
system (1) with (2) and (3) is derived as follows.

Theorem 1. The system (1) subjected to the uncertainties (2) and (3) with free input is D-admissible,
if there exist a set of matrices P > 0, Qi, i = 1, 2, . . . , qE, and scalars αij > 0, ∀i ≤ j, satisfying⎡⎣ASQi

T + QiST AT − EiPET
i + αii MMT (A − aEi)P QiST NT

A
P(A − aEi)

T −r2P PNT
A

NASQT
i NAP −αii I

⎤⎦ < 0, ∀i, (8)

⎡⎢⎣ AS(Qi + Qj)
T + (Qi + Qj)ST AT − EiPET

j − EjPET
i + αij MMT (2A − aEi − aEj)P (Qi + Qj)ST NT

A

P(2A − aEi − aEj)
T −2r2P 2PNT

A
NAS(Qi + Qj)

T 2NAP −αij I

⎤⎥⎦ < 0,

∀i < j,

(9)

where S ∈ Rn×(n−m) with EiS = 0, ∀i, and rank(S) = n − m.

Proof. Based on Corollary 1 associated with the Schur complement [36], Equation (6) can
be equivalent to [

ASQT + QST AT − EPET (A − aE)P
P(A − aE)T −r2P

]
< 0.

Assume that matrices P > 0 and Qi, i = 1, 2, . . . , qE, and scalars αij > 0, ∀i ≤ j satisfy
the inequalities (8) and (9). Based on Corollary 1 with the above equation for the system (1)
with uncertainties (2) and (3), and letting Q̃ ≡ ∑

i
eiQi, we can verify the D-admissibility by
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[
(A + ΔA)SQ̃T + Q̃ST(A + ΔA)T − ẼPẼT (A + ΔA − aẼ)P
P(A + ΔA − aẼ)

T −r2P

]

=

⎡⎢⎢⎢⎣
(A + ΔA)S

(
∑
i

eiQi

)T
+

(
∑
i

eiQi

)
ST(A + ΔA)T −

(
∑
i

eiEi

)
P
(

∑
i

eiEi

)T (
A + ΔA − a

(
∑
i

eiEi

))
P

P
(

A + ΔA − a
(

∑
i

eiEi

))T
−r2P

⎤⎥⎥⎥⎦
= ∑

i
e2

i

[
(A + ΔA)SQi

T + QiST(A + ΔA)T − EiPET
i (A + ΔA − αEi)P

P(A + ΔA − αEi)
T −r2P

]

+∑
i<j

eiej

[
(A + ΔA)S(Qi + Qj)

T + (Qi + Qj)ST(A + ΔA)T − EiPET
j − EjPET

i (2A + 2ΔA − aEi − aEj)P

P(2A + 2ΔA − aEi − aEj)
T −2r2P

]
< 0.

Substituting ΔA = MΛNA into the first terms of the above leads to[
(A + ΔA)SQi

T + QiST(A + ΔA)T − EiPET
i (A + ΔA − aEi)P

P(A + ΔA − aEi)
T −r2P

]

=

[
ASQi

T + QiST AT − EiPET
i (A − aEi)P

P(A − aEi)
T −r2P

]
+

[
ΔASQi

T + QiSTΔAT ΔAP
PΔAT 0

]
=

[
ASQi

T + QiST AT − EiPET
i (A − aEi)P

P(A − aEi)
T −r2P

]
+

[
M
0

]
Λ
[

NASQT
i NAP

]
+

[
QiST NT

A
PNT

A

]
ΛT[ MT 0

]
.

, ∀i

And according to Lemma 1, the above can be equivalent to

⇒
[

ASQi
T + QiST AT − EiPET

i (A − aEi)P
P(A − aEi)

T −r2P

]
+ αii

[
M
0

][
MT 0

]
+ α−1

ii

[
QiST NT

A
PNT

A

][
NASQT

i NAP
]

, ∀i

Thus, by the Schur complement, they lead to

⇒
⎡⎣ASQi

T + QiST AT − EiPET
i + αii MMT (A − aEi)P QiST NT

A
P(A − aEi)

T −r2P PNT
A

NASQT
i NAP −αii I

⎤⎦ , ∀i,

which are identical to (8).
Similarly, the second terms can be deduced to be

⇒

⎡⎢⎣ AS(Qi + Qj)
T + (Qi + Qj)ST AT − EiPET

j − EjPET
i + αij MMT (2A − aEi − aEj)P (Qi + Qj)ST NT

A

P(2A − aEi − aEj)
T −2r2P 2PNT

A
NAS(Qi + Qj)

T 2NAP −αij I

⎤⎥⎦
, ∀i < j,

which are identical to (9). Thus, if (8) and (9) are satisfied, we can conclude that the
considered system is D-admissible according to Corollary 1. �

By Theorem 1, we can simply verify the system with admissibility by letting a = 0
and r = 1, i.e., the D-admissibility with the unit circle D(0, 1), as follows.
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Corollary 3. The system (1) subjected to the uncertainties (2) and (3) with free input is admissible,
if there exist matrices P > 0 and Qi, i = 1, 2, . . . , qE, and scalars αij > 0, ∀i ≤ j, satisfying⎡⎣ASQi

T + QiST AT − EiPET
i + αii MMT AP QiST NT

A
PAT −P PNT

A
NASQT

i NAP −αii I

⎤⎦ < 0, ∀i, (10)

⎡⎢⎣AS(Qi + Qj)
T + (Qi + Qj)ST AT − EiPET

j − EjPET
i + αij MMT 2AP (Qi + Qj)ST NT

A
2PAT −2P 2PNT

A
NAS(Qi + Qj)

T 2NAP −αij I

⎤⎥⎦ < 0, ∀i < j, (11)

where S ∈ Rn×(n−m) with EiS = 0, ∀i, and rank(S) = n − m.

Remark 2. Comparing with the previous result [33], the LMIs’ constraint number is qA × (qE +
C2

qE
). Nevertheless, in Theorem 1, the new approach can achieve a compact set of LMIs

with (qE + C2
qE
) and involves multiple slack matrices Qi, i = 1, 2, . . . , qE. They both may

be useful to lessen conservatism of admissible analysis.

Subsequently, by introducing the state feedback control, i.e., the considered system
with u(k) = Kx(k) in (1), the control design conditions are further presented.

Theorem 2. The system (1) with u(k) = Kx(k) subjected to the uncertainties (2) and (3) is
D-admissible, if there exist matrices P > 0 and Qi, i = 1, 2, . . . , qE, X, and scalars αij > 0, ∀i ≤ j,
satisfying⎡⎢⎣ Φ1 (A − aEi)P + BX Qi(NAPS + NBXS)T

P(A − aEi)
T + XT BT −r2P PNT

A + XT NT
B

(NAPS + NBXS)QT
i NAP + NBX −αii I

⎤⎥⎦ < 0, ∀i, (12)

⎡⎢⎣ Φ2 (2A − aEi − aEj)P + 2BX (Qi + Qj)(NAPS + NBXS)T

P(2A − aEi − aEj)
T + 2XT BT −2r2P 2PNT

A + 2XT NT
B

(NAPS + NBXS)(Qi + Qj)
T 2NAP + 2NBX −αij I

⎤⎥⎦ < 0, ∀i < j, (13)

where

Φ1 = APSQi
T + QiST PAT + BXSQi

T + QiSTXT BT − EiPET
i + αii MMT

Φ2 = APS(Qi + Qj)
T + (Qi + Qj)ST PAT + BXS(Qi + Qj)

T + (Qi + Qj)STXT BT − EiPET
j − EjPET

i + αij MMT

where the matrix S ∈ Rn×(n−m) with EiPS = 0, ∀i, and rank(S) = n − m. Then, a state feedback
gain with a prescribed pole disk D(a, r) ⊂ D(0, 1) with the center at a and the radius r can be
determined by K = XP−1.

Proof. Deducing from Corollary 2 associated with the Schur complement, Equation (7) can
be equivalent to [

APSQT + QST PAT − EPET (A − aE)P
P(A − aE)T −r2P

]
< 0

Assume that matrices P > 0 and Qi, i = 1, 2, . . . , qE, X, and scalars αij > 0, ∀i ≤ j
satisfy the inequalities (12) and (13). Based on Corollary 2 associated with the above for
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the resulting uncertain closed-loop singular system (1) with u(t) = Kx(t), and letting
ÃC ≡ A + ΔA + BK + ΔBK, Q̃ ≡ ∑

i
eiQi, we can verify the D-admissibility of (1) by[

ÃCPSQ̃T + Q̃ST PÃT
C − ẼPẼT (ÃC − aẼ)P

P(ÃC − aẼ)
T −r2P

]

=

⎡⎢⎢⎢⎣
ÃCPS

(
∑
i

eiQi

)T
+

(
∑
i

eiQi

)
ST PÃT

C −
(

∑
i

eiEi

)
P
(

∑
i

eiEi

)T (
ÃC − a

(
∑
i

eiEi

))
P

P
(

ÃC − a
(

∑
i

eiEi

))T
−r2P

⎤⎥⎥⎥⎦
= ∑

i
e2

i

[
ÃCPSQi

T + QiST PÃT
C − EiPET

i (ÃC − aEi)P

P(ÃC − aEi)
T −r2P

]

+∑
i<j

eiej

[
ÃCPS(Qi + Qj)

T + (Qi + Qj)ST PÃT
C − EiPET

j − EjPET
i (2ÃC − aEi − aEj)P

P(2ÃC − aEi − aEj)
T −2r2P

]
< 0.

Denote X = KP. Substituting ÃC = A + ΔA + BK + ΔBK and
[
ΔA ΔB

]
=

MΛ
[

NA NB
]

into the first terms of the above leads to[
ÃCPSQi

T + QiST PÃT
C − EiPET

i (ÃC − aEi)P

P(ÃC − aEi)
T −r2P

]

=

[
APSQi

T + QiST AT + BKP + PKT BT − EiPET
i (A − aEi)P + BKP

P(A − aEi)
T + PKT BT −r2P

]
+

[
ΔAPSQi

T + QiST PΔAT + ΔBKPSQi
T + QiST PKTΔBT ΔAP + ΔBKP

PΔAT + PKTΔBT 0

]
=

[
APSQi

T + QiST AT + BX + XT BT − EiPET
i (A − aEi)P + BX

P(A − aEi)
T + XT BT −r2P

]
+

[
M
0

]
Λ
[

NAPSQT
i + NBXSQT

i NAP + NBX
]
+

[
QiST PNT

A + QiSTXT NT
B

PNT
A + XT NT

B

]
ΛT[ MT 0

]
, ∀i.

And, from Lemma 1, the above are equivalent to

⇒
[

APSQi
T + QiST AT + BX + XT BT − EiPET

i (A − aEi)P + BX
P(A − aEi)

T + XT BT −r2P

]
+αii

[
M
0

][
MT 0

]
+ α−1

ii

[
QiST PNT

A + QiSTXT NT
B

PNT
A + XT NT

B

][
NAPSQT

i + NBXSQT
i NAP + NBX

]
, ∀i.

Thus, by the Schur complement, they lead to

⇒

⎡⎢⎣ Φ1 (A − aEi)P + BX Qi(NAPS + NBXS)T

P(A − aEi)
T + XT BT −r2P PNT

A + XT NT
B

(NAPS + NBXS)QT
i NAP + NBX −αii I

⎤⎥⎦ , ∀i,

which are identical to (12).
Similarly, following the same line, the second terms can lead to

⇒

⎡⎢⎣ Φ2 (2A − aEi − aEj)P + 2BX (Qi + Qj)(NAPS + NBXS)T

P(2A − aEi − aEj)
T + 2XT BT −2r2P 2PNT

A + 2XT NT
B

(NAPS + NBXS)(Qi + Qj)
T 2NAP + 2NBX −αij I

⎤⎥⎦
, ∀i < j,
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which are identical to (13). Thus, if (12) and (13) are satisfied, the considered system with
u(k) = Kx(k) is ensured to be D-admissible according to Corollary 2. �

Based on Theorem 2, we can simplify to conduct a state feedback control for the
system (1) with admissible assurance by letting a = 0 and r = 1 in the following.

Corollary 4. The system (1) with u(k) = Kx(k) subjected to the uncertainties (2) and (3) is
admissible, if there exist matrices P > 0 and Qi, i = 1, 2, . . . , qE, X, and scalars αij > 0, ∀i ≤ j,
satisfying ⎡⎣ Φ1 AP + BX Qi(NAPS + NBXS)T

PAT + XT BT −P PNT
A + XT NT

B
(NAPS + NBXS)QT

i NAP + NBX −αii I

⎤⎦ < 0, ∀i, (14)

⎡⎢⎣ Φ2 2AP + 2BX (Qi + Qj)(NAPS + NBXS)T

2PAT + 2XT BT −2P 2PNT
A + 2XT NT

B
(NAPS + NBXS)(Qi + Qj)

T 2NAP + 2NBX −αij I

⎤⎥⎦ < 0, ∀i < j, (15)

where

Φ1 = APSQi
T + QiST PAT + BXSQi

T + QiSTXT BT − EiPET
i + αii MMT

Φ2 = APS(Qi + Qj)
T + (Qi + Qj)ST PAT + BXS(Qi + Qj)

T + (Qi + Qj)STXT BT − EiPET
j − EjPET

i + αij MMT

where the matrix S ∈ Rn×(n−m) with EiPS = 0, ∀i, and rank(S) = n − m. Then, a state feedback
gain with admissible assurance can be determined by K = XP−1.

From the proposed design criteria in Theorem 2 and Corollary 4, we summarize the
design steps as follows.

Design procedure:

Step 1: Based on the descriptor system (1) with (2) and (3), denote a set of Ei by (2), and M,
NA, and NB by (3).

Step 2: Denote a matrix S which is of full-column rank and satisfies EiPS = 0, ∀i.
Step 3: Initially denote Qi with a compatible dimension.
Step 4: Construct, respectively, LMI constraint sets by (12) and (13) with D-admissible

assurance or (14) and (15) with admissible assurance.
Step 5: Evaluate the constructed LMIs from the LMI tool [37] for existing solutions P > 0, X

and scalars αij > 0.
Step 6: If the LMIs are feasible, a satisfying control gain can be evaluated by K = XP−1;

otherwise, no satisfying control gain can be obtained. End the design procedure.

4. Illustrative Examples

Two numerical examples are introduced to verify the effectiveness and applicability
as follows.

Example 1. A discrete singular system subjected to parametric perturbation is represented as⎛⎝⎡⎣2 1 + w1 0
0 1 + w2 0
0 0 0

⎤⎦⎞⎠x(k + 1) =

⎛⎝⎡⎣0.5 0.4 0.6
0.2 −0.5 0
0.4 −0.2 0.4

⎤⎦+ w3

⎡⎣ 0 0 0
0 0 0

0.47 0 0.36

⎤⎦⎞⎠x(k),

where |w1| ≤ 0.52, |w2| ≤ 0.19, and |w3| ≤ 1.
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Since the considered singular system involves the uncertain difference term matrix Ẽ,
some existing works [17,18,39] with a constant E are not applicable. Moreover, based on
the previous work in [33], we first denote the matrices’ vertices for the difference term and
system’s matrices as

E1 =

⎡⎣2 1.52 0
0 1.19 0
0 0 0

⎤⎦, E2 =

⎡⎣2 0.48 0
0 1.19 0
0 0 0

⎤⎦,

E3 =

⎡⎣2 1.52 0
0 0.81 0
0 0 0

⎤⎦, E4 =

⎡⎣2 0.48 0
0 0.81 0
0 0 0

⎤⎦,

with qE = 4 and

A1 =

⎡⎣ 0.5 0.4 0.6
0.2 −0.5 0
0.87 −0.2 0.76

⎤⎦, A2 =

⎡⎣ 0.5 0.4 0.6
0.2 −0.5 0

−0.07 −0.2 0.04

⎤⎦,

with qA = 2. According to Theorem 3.1 in [33], we can form qA × (qE + C2
qE
) = 20 LMIs

for analyzing the admissibility of the considered system. However, when we evaluated
them using the LMI solver [37], it showed infeasibility and we could not conclude the
admissibility for this system. Furthermore, when evaluating the regarding system from the
proposed approach in [19], the LMI solver also showed infeasibility.

However, in this work, the uncertain term of a system matrix can be alternatively
described as ΔA = MΛNA with M =

[
0 0 1

]T and Na =
[
0.47 0 0.36

]
. Based on

Corollary 3 with a denoted matrix S =
[
0 0 1

]T , E1S = E2S = 0, the admissible
analyzing conditions for this system can be formed by the LMI constraints with the number
(qE + C2

qE
) = 10 from (10) and (11). By evaluating the LMI, we can obtain satisfying feasible

solutions such as

P =

⎡⎣ 154.8676 −1.0631 −125.8808
−1.0631 20.7002 −0.1751
−125.8808 −0.1751 145.8124

⎤⎦× 10−2 > 0,Q1 =

⎡⎣ 111.1610
−2.9668
−60.6450

⎤⎦× 10−2,

Q2 =

⎡⎣ 106.5411
−8.5998
−62.0371

⎤⎦× 10−2,Q3 =

⎡⎣ 83.2633
−7.8827
−45.4755

⎤⎦× 10−2,Q4 =

⎡⎣ 110.5696
−9.5869
−64.3897

⎤⎦× 10−2,

min
i≤j

αij = α33 = 0.2 > 0.

According to Corollary 3, we thus conclude that the regarded system with uncertainties
is robustly admissible.

For verification, we denote the initial condition x(0) = [20 −10 −25]T and the un-
certainties terms as ω1 = 0.52 sin kπ, ω2 = 0.19 cos 2kπ, and ω3 = sin 4kπ. The regarded
system, subjected to the given uncertainties, is then simulated. By observing Figure 1, it is
evident that the state behaviors x(k) have convergent trajectories with all the allowable uncer-
tainties.

Example 2. A third-order singular system with parametric perturbation is described by⎡⎣ 1 0 0
1 + w1 2 0

0 0 0

⎤⎦x(k + 1) =

⎛⎝⎡⎣ 1 0.8 −1
−1.2 1.5 2
0.6 0.4 1

⎤⎦+ w2

⎡⎣0 0 0
0 1 1
0 0 0

⎤⎦⎞⎠x(k) +

⎛⎝⎡⎣1
1
0

⎤⎦+ w3

⎡⎣0
1
0

⎤⎦⎞⎠u(k),

where the perturbed uncertainties are assumed to fulfill |w1| ≤ 1, 0 ≤ w2 ≤ 0.6, and 0 ≤ w3 ≤ 1.

121



Axioms 2024, 13, 634

The vertices of matrices Ẽ in (2) for the considered system can be denoted as

E1 =

⎡⎣1 0 0
2 2 0
0 0 0

⎤⎦, E2 =

⎡⎣1 0 0
0 2 0
0 0 0

⎤⎦.

The uncertain system matrices can be described by
[
ΔA ΔB

]
= MΛ

[
NA NB

]
with

M =
[
0 1 0

]T , Na =
[
0 0.6 0.6

]
, and Nb = 1. By primary evaluation, the nominal

unforced system is originally unstable, i.e., the poles of the system with free input are
not within D(0, 1). When letting x(0) = [−3 7 −1]T , the system with free input is
firstly simulated, and the state behaviors are drawn in Figure 2. By observation, the state
responses of the system with free input are divergent. Thus, we need to conduct a proper
control law for compensation. However, the previous work [19] cannot be applied to design
a practicable controller with respect to D-admissible assurance.

 
Figure 1. State responses of the considered system in Example 1.

By the design criteria of Theorem 2, we can conduct a state feedback controller with
D-admissible assurance of a prescribed pole disk D(0.2, 0.6). Thus, based on Equations
(12) and (13), we correspondingly formulate three LMI constraints and denote

S =

⎡⎣0
0
1

⎤⎦,Q1 = Q2 = −10 ×
⎡⎣1

1
1

⎤⎦, P =

[
P1 0
0 P3

]
,
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with P1 ∈ R2×2, P3 ∈ R1×1 satisfying EiPS = 0, ∀i. Using the LMI solver for evaluation, a
set of feasible solutions can be attained by

P =

⎡⎣ 3.3813 −15.1082 0
−15.1082 109.5238 0
0 0 2.0432

⎤⎦× 104 > 0,

X =
[

6.7012 −48.1456 3.4029
]× 104,

α11 = 1.3965 × 106,
α12 = 2.5093 × 106,
α22 = 1.4135 × 106.

Thus, a satisfying state feedback gain with the pole region D(0.2, 0.6) can be deter-
mined by

K = XP−1 =
[
4.6076 −43.3235 166.5498

]× 10−2.

When given the same initial condition x(0) = [−3 7 −1]T , the compensated system
with the state feedback controller is simulated once again. Furthermore, the state behaviors
x(k) and the control input u(k) are depicted in Figures 3 and 4, respectively. From Figure 3,
all the state responses have well-convergent trajectories. Thus, the considered system with
the state feedback gain is ensured to be D-admissible, where the closed-loop system can
meet the prescribed performance requirement with the pole region D(0.2, 0.6).

Remark 3. Using the proposed design scheme in Theorem 2 and Corollary 4, we can conduct a
conventional state feedback controller with D-admissible assurance or admissible assurance for the
considered discrete singular system subjected to the uncertainties, which has the advantages of easy
implementation and low cost. The given numerical examples have illustrated the feasibility and
superiority of the developed methods. For nonlinear systems, we can perform the linearization by
the given operating point and then can approximate to a linear form with uncertainties around
the operating point. However, in the case of multiple operating points, we can incorporate the
proposed results with existing intelligent control methods, such as fuzzy control systems [40,41],
for further study.

Figure 2. State responses of the open-loop system.
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Figure 3. State responses with D-admissible assurance of the closed-loop system.

 
Figure 4. Control input trajectory.

5. Conclusions

In this work, we have dealt with state feedback control with D-admissible assurance
for discrete singular systems subjected to the uncertain difference term and system matrices.
Firstly, based on LMI techniques and matrix algebra manipulation, a refined D-admissible
analysis criterion could be presented. The extended result has compact LMI constraints
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and involves multiple slack matrices, which help to lessen the conservatism for admissible
analysis. By introducing the state feedback control, we then focused on state feedback
control with D-admissible assurance for the closed-loop system. Since the proposed
design criteria can be formulated in terms of the strict LMIs, they are readily evaluated
by current LMI tools to construct a state feedback controller with the prescribed system’s
performance. Finally, two illustrative examples demonstrate the feasibility and applicability
of the derived results. In the future, we will incorporate the proposed design scheme with
existing intelligent control to cope with real physical systems, nonlinear systems, and/or
time-delay systems.
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Abstract: This study addresses the fuzzy parameters (coefficient) determination for the
logistic population growth model, proposing a novel methodology based on fuzzy logic
concepts. Population dynamics are often modeled using differential equations whose
parameters represent critical ecological information, where the parameters determination is
a problem itself. Unlike those approaches, the proposed methodology leverages ecosystem
variables as inputs to a fuzzy inference system, which then generates fuzzy coefficients
that better capture the inherent uncertainties in population dynamics. The approach was
tested on a case study involving marine fish populations, where the fuzzy coefficients for
growth rate and carrying capacity were calculated and integrated into the logistic model.
The results illustrate that the fuzzy model with the proposed coefficients provide a robust
framework for modeling population growth, preserving the increasing trajectory of the
population under different scenarios. This method allows for the incorporation of expert
knowledge and linguistic variables into the model, offering a more flexible and accurate
representation of real-world ecosystems. The study concludes that this methodology
significantly enhances the model’s applicability and predictive power, particularly in
situations where precise data are not available.

Keywords: fuzzy differential equations; verhulst model; fuzzy coefficients; population
dynamics; expert knowledge
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1. Introduction

Mathematical modeling plays a crucial role in understanding various natural phenomena.
One of the well-established areas within mathematical modeling is population growth dynamics,
where models help to predict and analyze the behavior of populations over time [1]. Among
the most notable models in this field is the Verhulst logistic model, which describes population
growth by considering both exponential growth and the limitations imposed by environmental
factors. The Verhulst equation has been widely applied to real-world problems, providing valu-
able insights into ecological systems and population dynamics [2,3]. This model is particularly
useful when studying populations constrained by resources, as it introduces the concept of
carrying capacity, which is the maximum population size that an environment can sustain [4–6].
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The main tool to model these kind of phenomena are the differential equations (DEs).
Nevertheless, in many practical scenarios, the parameters that define these differential
equations, such as growth rate and carrying capacity, are not precisely known due to data
variability or measurement uncertainties. To address this issue, fuzzy differential equations
(FDEs) have been introduced, offering a robust mathematical framework for handling
uncertainty in initial conditions and model parameters. The FDEs have been successfully
applied to various fields, extending classical differential equations into the fuzzy domain,
where uncertainties are represented by fuzzy numbers [7–9].

An extension of the Verhulst logistic model into the fuzzy domain, known as the fuzzy
Verhulst model, allows for more realistic representations of populations where parameters,
like growth rate and carrying capacity, are not fixed but vary within certain bounds [10].
This approach captures the inherent uncertainties in ecological systems, where factors such
as resource availability or environmental conditions fluctuate over time [11]. The fuzzy
Verhulst model thus provides a more flexible tool for population modeling especially when
precise data are unavailable.

Parameter estimation in both classical and FDEs is a critical task, as the accuracy of
the model heavily depends on the proper determination of these coefficients [12–15]. In
the classical framework, statistical or numerical methods are often employed to estimate
parameters based on historical data [16]. However, when dealing with fuzzy models,
parameter estimation becomes more complex due to the uncertainty in both the data and
the model structure itself. Several approaches, including fuzzy regression techniques, have
been developed to estimate parameters in FDEs, such as the fuzzy least absolute regression
model, which incorporates probabilistic linguistic term sets for handling fat-tailed or outlier-
prone data [17], and the Intuitionistic Fuzzy Logistic Regression model, which deals with
imprecise parameters due to vagueness and hesitation in datasets [18]. In [19], the authors
introduce a fuzzy autoregression model to predict wind speed and direction. The model
uses fuzzy numbers for regression coefficients, which effectively manage the inherent
variability and uncertainty in wind patterns. These accurate predictions can enhance power
system reliability by optimizing wind power integration into the grid.

As seen, most of the solution techniques for DEs in the domain of real numbers can be
adapted and used in the study of the FDE. The calculation of coefficients for DE models can
be divided into two main classes: (1) techniques using historical data and (2) techniques
without using data. Numerical–statistical methods or evolutionary methods belong to the
first class, and coefficients proposed by the expert are representative of the second.

As part of the fuzzy mathematics and systems theory, let us consider the concept of a
fuzzy inference system (FIS), first introduced by Zadeh [20,21], that allows dealing with
situations where the information is vague or imprecise and allows considering experts’
knowledge for the design of causal experts systems. A lot of theory has been developed
around this type of system, as well as a large number of applications, some of which are
related to control [22–33], forescasting [34–38], and classification [39–43], to name a few.
These characteristics of the FIS are used to design the coefficients for the FDEs.

The motivation for this research stems from the need to develop an alternative method
for estimating the coefficients of the fuzzy Verhulst model, specifically considering fuzzy
coefficients, without relying on traditional datasets. The proposed approach leverages
an FIS closely related to the phenomenon under study. By utilizing linguistic variables
within the FIS and performing arithmetic operations, the model’s coefficients are calculated
based entirely on expert knowledge. This methodology provides a robust alternative
to numerical or statistical methods, which typically require large volumes of data and
extensive processing time. Instead, it offers a practical solution that effectively models
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complex systems governed by well-defined rules, integrating fuzzy coefficients without
requiring extensive data processing.

Therefore, the problem statement is centered on the estimation of fuzzy coefficients
in the Verhulst model, which traditionally relies on large datasets and statistical methods.
However, in scenarios where data are limited or unavailable, these traditional methods
become impractical. Additionally, adapting fuzzy techniques to handle fuzzy coefficients
without relying on data remains a significant challenge. This study addresses this issue by
developing an approach based on an FIS that leverages expert knowledge to calculate the
model’s coefficients, thereby eliminating the need for historical data.

The remainder of this paper is organized as follows: Section 2 is about the prelimi-
naries; in Section 3, the materials and methods for the determination of fuzzy coefficients
are presented; in Section 4, the results are shown; Section 5 presents the discussion; and in
Section 6, the conclusions are stated.

2. Preliminaries

In this section, the main preliminaries are presented for the development of the rest of
the article.

2.1. Necessary Knowledge About Fuzzy Inference Systems

Consider the following definitions:

Definition 1 ([20]). A fuzzy set A is a tuple of two elements defined as A = {(x, μA(x))|x ∈ R,
μA(x) ∈ [0, 1]}, where μA(x) is the membership function of the fuzzy set A.

So, the membership function is defined as

Definition 2 ([20]). Given X any set. The membership function μA of a non-empty fuzzy set A
is a function μA : X → [0, 1]. The function μA is interpreted as the degree of membership of each
element x to the fuzzy set A for each x ∈ X.

The α − cut operation is very useful because it allows writing some fuzzy sets in
intervals, and in this way, it is easier to execute arithmetic operations [44]. The α − cut
operation of a fuzzy set A denoted by [A]α is defined as

Definition 3 ([20]). Let μ : R → [0, 1], the membership function of a fuzzy set over R, the α − cut
or α − level is defined as the set [A]α = {x ∈ R : μA(x) ≥ α} for each 0 < α ≤ 1.

In the context of fuzzy systems, the inaccurate or uncertain information can be repre-
sented as a linguistic variable (LV). An LV is characterized by a tuple (N, T, M, U), in which
N is the name of the variable; T is the set of linguistic labels (each label is represented by
a fuzzy set); M is the set of semantic rules that assign each label its meaning; and U is a
universe of discourse (finite or infinite set).

Linguistic variables are important concepts in fuzzy logic, these variables are part of
the FIS, and the FIS is a well-studied and applied form of knowledge representation.

The LVs are constituted by linguistic labels that allow the association of linguistic
meaning to subintervals in the domain of each variable. A variable can have one or more
linguistic labels; mathematically, these are represented through membership functions and
consequently by fuzzy sets.

An FIS in general is a multivalued function where the inputs correspond to outputs
and the function that makes this relationship is based on rules [45].
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Specifically, the FIS has an inference engine that is responsible for performing the
operations that relate to the inputs and outputs. Within this inference machine, there are
three main modules (see Figure 1).

Fuzzification Inference Defuzzification

Figure 1. Structure of an FIS.

Fuzzification is the process of converting crisp, precise inputs into degrees of member-
ship for fuzzy sets. The goal here is to map input values into fuzzy sets, where each fuzzy
set represents a linguistic variable, for example, low, medium or high.

The inference engine processes the fuzzified inputs and applies fuzzy logic rules to
produce fuzzy outputs. These rules are typically in the form of IF–THEN statements and
operate on the fuzzified input data.

Defuzzification is the process of converting the fuzzy output obtained from the infer-
ence module into a crisp, actionable value. This step translates fuzzy conclusions into a
real-world decision or action so that the output of this module is the output of the FIS itself.

There are several types of FIS, the more known are Takagi–Sugeno [46], Tsukamoto [47]
and Mamdani [48]. A Mamdani-type fuzzy inference system (MFIS) is represented as a
4-tuple M = (I, R, O, f ) where the following apply:

• I is the set of linguistic variables of the inputs;
• R set of rules that relate the inputs to outputs;
• O set of linguistic variables of the outputs;
• f is a defuzzification method.

The relationship between the input and output linguistic variables is made through
IF–THEN rules. These rules have the following form:

Ri : IF x1 is Mp1, x2 is Mp2, . . . , xn is Mpk, THEN y1 is Nl1, y2 is Nl2, . . . , ym is Nlj, (1)

where R1, R2, . . . , Ri ∈ R represents the rules; x1, x2, . . . , xn ∈ I are the linguistic variables
of the inputs; Mp1, Mp2, . . . , Mpk are the labels of the input variables; y1, y2, . . . , ym ∈ O are
the output variables and Nl1, Nl2, . . . , Nlj are their respective linguistic labels [49].

There are various defuzzification methods. The most used are the center of area,
bisector of area, last of maximum, first of maximum, middle of maximum and weighted
average [50].

2.2. Foundations on Fuzzy Differential Equations

In this section, definitions to generalize the concept of derivatives and elements to
solve FDEs are presented. The definition of a fuzzy number is presented to move toward
the derivative definition.

Definition 4 ([51]). Let μ be the membership function of a fuzzy set. It is said that μ is a fuzzy
number if μ : R → [0, 1] and satisfies the following conditions:

(i) μ is normal; i.e., there exists al least one x∗ ∈ R such that μ(x∗) = 1;
(ii) [μ]α is closed ∀α ∈ (0, 1]; and
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(iii) [μ]0 is bounded.

One way to obtain better representations and be able to operate fuzzy numbers
arithmetically is through interval algebra. Therefore, a fuzzy number can be represented as
an interval in the following way:

Definition 5 ([52]). Given μ(x) with x ∈ R as the membership function of a fuzzy number, then
there exist continuous functions μL(α) and μR(α) called, respectively, the left membership function
and right membership function, such that

μ(x) = [μL(α), μR(α)], ∀α ∈ [0, 1] (2)

with μL(α) ≤ μR(α).

For arithmetic intervals, it is possible to define the basic operations, where subindexes
L and R represent the extreme left and right of the interval, respectively.

Definition 6 ([44,53]). Given [SL, SR] and [TL, TR] arithmetic intervals, λ ∈ R (a scalar number),
the following operations are defined:

(i) Addition:
[SL, SR] + [TL, TR] = [SL + TL, SR + TR].

(ii) Subtraction:
[SL, SR]− [TL, TR] = [SL − TL, SR − TR].

(iii) Reciprocal:
if 0 /∈ [SL, SR] then [SL, SR]

−1 = [1/SL, 1/SR];
if 0 ∈ [SL, SR] then [SL, SR]

−1 is undefined.
(iv) Multiplication:

[SL, SR] · [TL, TR] = [UL, UR],
where:
UL = min{SL · TL, SL · TR, SR · TL, SR · TR},
UR = max{SL · TL, SL · TR, SR · TL, SR · TR}.

(v) Division:
[SL, SR]/[TL, TR] = [SL, SR] · [TL, TR]

−1.
(vi) Multiplication by a scalar:

λ[SL, SR] = [λSL, λSR].

The definition of differentiability in the fuzzy sense was first introduced by [54] as

Definition 7 ([54]). Let u, v ∈ FR (fuzzy number on reals). If there exists w ∈ FR such that
u = v ⊕ w, then w is called the H-difference of u and v, and it is denoted by u � v.

Observe that � means the H-difference in this context, and ⊕ is the opposite of this.
Fuzzy differentiability is based in terms of limits, similar to classical derivative, and it is
defined as

Definition 8 ([54]). Let F : T → FR and t0 ∈ T ⊆ R. The function F is said to be differentiable
on t0 if
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(I) There exists an element Ḟ(t0) ∈ FR such that for all h > 0 sufficiently close to zero, there
exist F(t0 + h)� F(t0), F(t0)� F(t0 − h) and limits

lim
h→0+

F(t0 + h)� F(t0)

h
= lim

h→0+

F(t0)� F(t0 − h)
h

are equal to Ḟ(t0), or
(II) There exists an element Ḟ(t0) ∈ FR such that for all h < 0 sufficiently close to zero, there

exist F(t0 + h)� F(t0), F(t0)� F(t0 − h) and limits

lim
h→0−

F(t0 + h)� F(t0)

h
= lim

h→0−
F(t0)� F(t0 − h)

h

are equal to Ḟ(t0).

It should be noted that if F is differentiable in the first form (I), then it is not
differentiable in the second form (II), and vice versa, which is summarized in the
following theorem:

Theorem 1 ([51]). Let F : T → FR, and [F(t)]α = [Fα
L (t), Fα

R(t)], for each α ∈ [0, 1]. Then

(i) If F is differentiable from Form-I, then Fα
L (t) and Fα

R(t) are differentiable functions and

[Ḟ(t)]α = [(Ḟα
L (t)), (Ḟα

R(t))], (3)

or
(ii) If F is differentiable from Form-II then Fα

L (t) y Fα
R(t) are differentiable functions and

[Ḟ(t)]α = [(Ḟα
R(t)), (Ḟα

L (t))] (4)

where L and R are subindexes that represent the left and right extremes in interval algebra,
respectively. The superindex α represents the function expressed in the α-cut.

The previous theorem constitutes a tool that allows writing the FDE in terms of
standard equations in real numbers using the interval arithmetic. The way for doing this is
through the equality of intervals, which can be seen in

Definition 9 ([45]). Two intervals [SL, SR] and [TL, TR] are said to be equal if and only if SL = TL

and SR = TR.

Another definition that is important to resolve the FDE is the initial
value problem:

Definition 10 ([55]). Let us consider the first-order linear fuzzy differential equation ˙̃x = f̃ (x̃),
where f̃ (x̃) is a fuzzy function of x̃, and ˙̃x is the H-derivative of x̃; if an initial value x̃(0) = x̃0 is
given, then this is a fuzzy initial value problem (FIVP).

2.3. Verhulst Logistic Model Expressed as Fuzzy Differential Equation

We assume the basic law of growth expressed as the form ẋ = x f (x), where x ∈ R and
f (x) is some function [56,57]. If this function is sufficiently smooth, it can be represented
with an approximation of f (x) through the expansion of the Taylor series around x = 0:

f (x) ≈ f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 + . . . +
f n(0)

n!
xn, (5)
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where n ∈ N [58–60]. Note that if in the Taylor series, only the constant term is kept, then
from ẋ = x f (x) = x( f (0)) = rx is obtained exactly the equation ẋ = rx, where r = f (0),
and it is known as the growth rate. This equation means that the population growth is
proportional to the r coefficient; this is named the Malthus equation [61–63]. If two terms
of the Taylor series expasion are kept, then the equation ẋ = x f (x) = x( f (0) + f ′(0)x) =
rx
(

1 − x
C

)
is obtained, which is the logistic equation, where f (0) and f ′(0) are connected

to r and C, respectively, and the parameter C is the carrying capacity.
With this aim in mind, the classic Verhulst logistic model within the real domain has

been discussed. But there are several ways to represent this model or any other as an FDE.
In this work, all the coefficients of the model are considered as fuzzy numbers such that
the model can be seen as

˙̃x = r̃x̃
(

1̃ − x̃
C̃

)
, (6)

where x̃, r̃, C̃ ∈ FR and the fuzzy numbers are represented with a tilde above.
On the other hand, when Theorem 1 is applied, it can be represented (6) with interval

algebra as

[ẋL, ẋR] = [rL, rR][xL, xR]

(
[1, 1]− [xL, xR]

[CL, CR]

)
. (7)

The subindex L and R represent the extremes of the left and right intervals, respectively [64].

3. Determination of Fuzzy Coefficients

For solving the problem stated, the following methodology is defined.
Let an FIS describe population dynamics, then the FIS makes up the input for the

methodology. For this, the FIS can be taken from one previously built. Then, using the
linguistic variables of the inputs, it is necessary to propose the modeling functions to
calculate the coefficients r̃ and C̃ in (6). So, this section will also show the structure for the
modeling functions. The diagram in Figure 2 represents the methodology to build r̃ and C̃
coefficients. For better understanding, the diagram was divided into stages.

FIS

Selection of linguistic variables

Classification of linguistic variables

Propose modeling 
function for 

Evaluate 
function for 

Propose modeling 
function for 

Evaluate function 
for 

Input

Step 1

Step 2

Step 3

Step 4

Outputs

Figure 2. Methodology through modeling functions.
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In the input stage, it is necessary to have an FIS related to the model whose coefficients
will be calculated. Therefore, the FIS must be made up of linguistic variables corresponding
to the case study.

Considering the input, as step 1, it is established that the selection process consists of
the following. From the linguistic variables in the FIS, the expert has to choose which of
these variables are relevant for the construction of the coefficients. The relevance criterion
can be based on modeling in real numbers or on the expert knowledge. The selected
variables will be denoted as set E.

Step 2 consists of classifying the variables from step 1 into two subsets according
to the expert knowledge about which variables could be important in the design of a
specific coefficient. Therefore, each subset contains the linguistic variables to design each
coefficient. These subsets will be denoted as Ei, where Ei∈{r,c} is the subset of linguistic
variables corresponding to each coefficient as a result of this step.

In step 3, the modeling functions are designed by the expert from the sets obtained in
step 2. For this, a structure of modeling functions for calculating r̃ and C̃ is proposed as

r̃ = f̃r(Er) (8)

and
C̃ = f̃c(Ec), (9)

where f̃r and f̃c are fuzzy functions that the expert must propose depending on the nature
of the problem under study. These functions receive Ei as a parameter, where Ei is the set
of linguistic variables determined in step 2 of the methodology.

As step 4, the modeling functions are evaluated with Ei from the previous step.
Finally, numerical values for the coefficients are obtained in the output stage. The

methodology presented for determining fuzzy coefficients offers significant advantages,
particularly in handling the inherent uncertainties of ecological data. Traditional methods
often rely on precise data, which can be difficult to obtain or may not accurately reflect
the variability found in real-world scenarios. In contrast, our approach leverages expert
knowledge through an FIS, enabling the integration of linguistic variables directly related
to the phenomenon under study. This not only enhances the flexibility and robustness of
the logistic growth model but also introduces a novel way of addressing data imprecision
in population dynamics. By proposing fuzzy coefficients, it provides a framework that
better captures the complexities and uncertainties of real ecosystems, thus improving the
model’s applicability and predictive power in diverse environmental contexts.

An example will be presented in the next section.

4. Experimental Results

This case study will show how to determine the fuzzy coefficients for the logistic model
using the methodology above described. For this, it will be using an FIS, and the model to cal-
culate its coefficients is (6). This FIS is taken from [65], and it estimates the intrinsic extinction
vulnerabilities of marine fishes to fishing. The FIS’s linguistic variables are used to design the
functions f̃r and f̃c and therefore calculate the coefficients r̃ and C̃, respectively. Finally, the
coefficients will be incorporated into (6), and this will be solved using an initial condition.

4.1. FIS That Estimates Vulnerabilities of Marine Fishes

In their study, the authors of [65] aimed to address the timely identification of vul-
nerable species for conservation efforts, despite incomplete information on most species
that makes it challenging to establish an index of extinction vulnerability. To overcome

134



Axioms 2025, 14, 36

this challenge, the authors developed a fuzzy inference system that assesses the intrinsic
vulnerability of marine fishes. This system considers the fish’s life history and ecological
traits, which contribute to their susceptibility to fishing. The maximum rate of population
growth and strength of density dependence are important factors in assessing intrinsic
vulnerability. Using life history and ecological characteristics as “rules-of-thumb”, the
authors identified certain relationships commons for all species, and using that knowledge,
the fuzzy system was developed.

The FIS developed in [65] is of the Mamdani type. This has eight inputs and one
output, which are presented in Figures 3–11, where Figures 3–10 corresponds to the input
variables and Figure 11 corresponds to the output variable. The defuzzification method
used is the weighted average [66]. The rules are shown in Table 1, and they are grouped
according to the linguistic variable in the antecedent.

To construct the main linguistic variables that form the FIS, the article used as a refer-
ence is based on the biological and ecological characteristics of marine species, which are
crucial for determining their intrinsic vulnerability to fishing. These characteristics include
the maximum population growth rate, longevity, age at sexual maturity, and fecundity,
among other parameters. These variables are combined using fuzzy set theory, which
allows for the management of the inherent uncertainty in biological and ecological knowl-
edge, as well as the challenges in strictly classifying species parameters. Fuzzy membership
functions are employed to assign degrees of membership to different categories, such as
low, medium or high, among others.

This figure illustrates the fuzzy membership functions for categorizing fish age at first
maturity into four levels: Low (Lw), Medium (M), High (H), and Very High (VH). The
X-axis represents the age at first maturity in years, while the Y-axis shows the membership
degree from 0 to 1. Each color line corresponds to a category, demonstrating the gradual
transitions and overlaps typical of fuzzy logic, which enables more nuanced classifications
compared to binary categorization.

Figure 3. Fuzzy membership functions for fish age at first maturity (Tm).
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Depicted here are the fuzzy membership functions categorizing fish fecundity into
three levels: Very Low (VLw), Low (Lw), and Not Low (NLw). On the X-axis, fecundity is
quantified by the number of eggs, and the Y-axis represents the membership degree from 0
to 1. Each color represents a specific fecundity level, showcasing the utility of fuzzy logic
for managing overlapping categories.

Figure 4. Fuzzy membership functions for fish fecundity (F).

Illustrating the classification of fish geographic ranges, the graph uses fuzzy member-
ship functions to sort ranges into Very Restricted (VR), Restricted (R), and Not Restricted
(NR). The X-axis displays geographic range values in square kilometers, while the Y-axis
assesses the membership degree, ranging from 0 to 1.

Figure 5. Fuzzy membership functions for geographic range of fish species (R).
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The graph delineates fuzzy membership functions that categorize the maximum length
of fish into Small (S), Medium (M), Large (L), and Very Large (VL). The X-axis measures the
maximum length in centimeters, and the Y-axis plots the membership degree from 0 to 1.

Figure 6. Fuzzy membership functions for maximum length of fish (Lmax).

This graph categorizes the maximum age of fish using fuzzy membership functions
across four classifications: Low (Lw), Medium (M), High (H), and Very High (VH). The X-
axis presents the maximum age in years, and the Y-axis indicates the degree of membership,
which is scaled from 0 to 1.

Figure 7. Fuzzy membership functions for maximum age of fish (Tmax).
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Portrayed in this graph are the fuzzy membership functions that segment natural
mortality rates in fish into four categories: Very Low (VLw), Low (Lw), Medium (M), and
High (H). The X-axis details the natural mortality rates per year, and the Y-axis reflects the
membership degree from 0 to 1.

Figure 8. Fuzzy membership functions for natural mortality rates in fish (M).

This graph elucidates the fuzzy membership functions applied to evaluate the spatial
behavior strength of fish, which are segmented into four categories: Low (Lw), Medium
(M), High (H), and Very High (VH). The X-axis represents the spatial behavior strength
score, scaling from 0 to 100, while the Y-axis depicts the degree of membership, ranging
from 0 to 1.

Figure 9. Fuzzy membership functions for spatial behavior strength in fish (B).
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This chart illustrates the fuzzy membership functions used to categorize the von
Bertalanffy growth factor (VBGFk) of fish, defining four levels: Very Low (VLw), Low (Lw),
Medium (M), and High (H). The X-axis measures VBGFk values, while the Y-axis quantifies
membership degrees from 0 to 1.

Figure 10. Fuzzy membership functions for the natural growth (K).

This graph presents the fuzzy membership functions that classify the intrinsic vul-
nerability of fish into four categories: Low, Moderate, High, and Very High. The X-axis
depicts the intrinsic vulnerability score, ranging from 0 to 100, while the Y-axis represents
the degree of membership from 0 to 1, as usual.

Figure 11. Fuzzy membership functions for intrinsic vulnerability (V).
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Table 1. Heuristic rules defined in the fuzzy system to assign relative vulnerabilities to fishes.

Rule Conditions Consequences

1 IF Maximum length is very large THEN Vulnerability is very high
2 IF Maximum length is large THEN Vulnerability is high
3 IF Maximum length is medium THEN Vulnerability is moderate
4 IF Maximum length is small THEN Vulnerability is low

5 IF Age at first maturity is very high THEN Vulnerability is very high
6 IF Age at first maturity is high THEN Vulnerability is high
7 IF Age at first maturity is medium THEN Vulnerability is moderate
8 IF Age at first maturity is low THEN Vulnerability is low

9 IF Maximum age is very high THEN Vulnerability is very high
10 IF Maximum age is high THEN Vulnerability is high
11 IF Maximum age is medium THEN Vulnerability is moderate
12 IF Maximum age is low THEN Vulnerability is low

IF VBGF K is very low OR
13 IF Natural mortality is very low THEN Vulnerability is very high

IF VBGF K is low OR
14 IF Natural mortality is low THEN Vulnerability is high

IF VBGF K is medium OR
15 IF Natural mortality is medium THEN Vulnerability is medium

IF VBGF K is high OR
16 IF Natural mortality is high THEN Vulnerability is low

17 IF Geographic range is restricted THEN Vulnerability is high
18 IF Geographic range is very restricted THEN Vulnerability is very high

19 IF Fecundity is low THEN Vulnerability is high
20 IF Fecundity is very low THEN Vulnerability is very high

21 IF Spatial behaviour strength is low THEN Vulnerability is low
22 IF Spatial behaviour strength is moderate THEN Vulnerability is moderate
23 IF Spatial behaviour strength is high THEN Vulnerability is high
24 IF Spatial behaviour strength is very high THEN Vulnerability is very high

25 IF Spatial behaviour is related to feeding aggregation THEN Vulnerability resulted from spatial behaviour decreases
26 IF Spatial behaviour is related to spawning aggregation THEN Vulnerability resulted from spatial behaviour increases

4.2. Proposal of Coefficients r̃ and C̃

The FIS presented in Section 4.1 will be the input for the methodology described in
Section 3.

In step 1, the set of linguistic variables considered important to calculate the coefficients
of the model under study is selected. The linguistic variables in

E = {Lmax, Tm, K, M, Tmax, R, F}, (10)

where Lmax means maximum length (for a fish); Tm is the age at first maturity, K is the VBGF
parameter (growth of fish [67]), M is the natural mortality rate, Tmax is the maximum age,
R is the geographic range and F is the fecundity; all of them are features of a certain fish
population, and these can be used in the calculation of the coefficients for the growth model.

Then, in step 2, the variables from the set E are classified as

Er = {Tm, K, M, Tmax, F} (11)

and
Ec = {Lmax, R}. (12)

Note that in (11), the age at first maturity (Tm), natural growth (K), the natural mortality
rate (M), the maximum age (Tmax), and fecundity (F) are variables that directly influence r,
which is similar to biological modeling rules on real numbers. In (12), variables such as
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Lmax means the maximum length of a fish’s body and R represents the geographic range;
these are linked to the coefficient C.

Step 3 consists of designing the modeling functions (8) and (9); therefore, f̃r is proposed
as the addition of natural growth, fecundity and the reciprocal of age at first maturity
because those variables contribute to population growth; and the natural mortality rate
and the reciprocal of maximum age are subtracted because they negatively influence the
growth. The reciprocal expression for T̃m and T̃max is due to unit measure; observe, the
before variables are in year and the others are in year−1. From this logic,

r̃ = f̃r(Er) = K̃ + F̃ +
1

T̃m
− M̃ − 1

T̃max
(13)

is designed.
Similarly to the real model, C̃ represents the carrying capacity in the ecosystem. Then,

C̃ = f̃c(Ec) =
R̃

( L̃max
100,000 )

2
(14)

is explained as follows. The denominator expresses the square space required for a fish,
where the constant 100,000 is a conversion factor between units of measurement. The idea
is to know how many fishes can live in a certain region, and for this, it is necessary to
divide R̃ between the space required for each fish. In this way, the ecosystem capacity
is calculated.

As step 4 of the methodology, to evaluate (13) and (14) and obtain the outputs, a
combination of linguistic labels is taken for the linguistic variables selected in (10). Table 2
presents the linguistic label together with the respective linguistic variable, and also the
numeric value in interval form is shown. This combination of linguistic labels is chosen
because it yields a low vulnerability value when it is evaluated in the FIS.

It is important to mention that each linguistic label is a fuzzy number, and these
are used to obtain r̃ and C̃. When (13) and (14) are evaluated, then [50.25 300.60] and
[1.63 326,530,612.24] are obtained, respectively, for r̃ and C̃ expressed as intervals.

Table 2. Linguistic labels for evaluate (13) and (14).

Linguistic Variables Linguistic Labels Values

Lmax (Maximum length) S (Small) [0 50]
Tm (Age at first maturity) Lw (Low) [0 3]
K (von Bertalanffy growth parameter) H (High) [0.5 1.4]
M (Natural mortality rate) H (High) [0.38 0.8]
Tmax (Maximum age) Lw (Low) [0 5]
R (Geographic range) NR (Not Restricted) [4000 8000]
F (Fecundity) NLw (Not Low) [50 300]

4.3. Solutions for the Fuzzy Verhulst Logistic Model

To solve (7), it is necessary to consider an FIVP. Consider that the initial condition is
[9,000,000 9,100,000], where X represents the number of fishes at a given time. Figure 12
shows the trajectories of the Form-I and Form-II solutions, XL and XR represent the ex-
tremes of the arithmetic interval corresponding to the solutions, and the green area is the
uncertainty or membership value in the solutions.

All the calculations and solutions of the equation were programmed in a MatLab®

script (R2019a). Matlab’s ode45 numerical method is used to solve the model expressed as
an FIVP.
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The experimental results demonstrate the effectiveness of the proposed fuzzy coeffi-
cients in the logistic population growth model. The fuzzy model maintained stable and
accurate growth trajectories, even under varying scenarios, highlighting its robustness in
handling data uncertainties. Unlike traditional methods, this approach integrates expert
knowledge without requiring extensive historical data, making it particularly useful in
fields with limited or imprecise data. This shows that incorporating fuzzy logic enhances
the model’s applicability and predictive power in complex environments.

Figure 12. Form-I solution (left) and Form-II solution (right) for (7).

5. Discussion

We used linguistic variables to evaluate the modeling functions. If, for example,
the kernels are taken as representatives to evaluate numerically the FIS presented in
Section 4.1, then we only need the value for the input corresponding to spatial behavior
strength, because it was not used in the methodology. Even so, evaluating the FIS for the
mentioned values and with all values on spatial behavior strength, the result of the intrinsic
vulnerability index is in the range between 15.29 and 47.61; this means that the result is a
low intrinsic vulnerability index. On the other hand, it can be appreciated that the solution
curves for the model are increasing; here, an inversely proportional relationship can be
established, given that when there is a low vulnerability, a population increase occurs.

6. Conclusions

In this work, a methodology for the construction of coefficients of Verhulst models
expressed in differential equations was presented. The methodology was tested to calculate
the fuzzy coefficients that represents the growth rate and the carrying capacity in the
Verhulst model. The resolution of the Verhulst model that used the calculated coefficients
and initial condition both defined as fuzzy numbers yielded a family of solutions that
preserve the trajectories of increasing for the Form-I and Form-II solutions. It can be seen
that there is an inverse relationship between the solutions and vulnerability with low
vulnerability corresponding to a high growth.

The results obtained show that the proposed methodology to build coefficients,
based on expert knowledge represented through fuzzy systems, could help to incorporate
smoothly and easily the uncertainties and inaccuracies present in the parameters of the
Verhulst model because the methodology is based on linguistic variables proposed by an
expert that it is related to the nature of the model.
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In comparison to existing models and methods for determining fuzzy coefficients,
such as fuzzy regression techniques or evolutionary algorithms, the method applied in
this study leverages a pre-existing FIS to calculate coefficients without relying extensively
on large datasets. Traditional methods, such as statistical or evolutionary approaches,
often require significant amounts of historical data, which can be limiting in ecological
applications. In contrast, this study integrates the FIS from previous research, allowing
for a flexible and adaptable calculation of fuzzy coefficients based on expert knowledge.
While traditional methods are effective in certain contexts, the use of a pre-established FIS
provides an efficient alternative for handling uncertainty and vagueness, particularly when
precise data are not available.

This study offers valuable insights into the modeling of population dynamics using
fuzzy logic, particularly in scenarios where precise data are unavailable or uncertainty is
inherent. The methodology introduced for determining fuzzy coefficients in the logistic
population growth model can be extended to a wide range of biomathematical applications,
such as modeling species interactions, epidemiological models, and ecological sustainability
assessments. By incorporating expert knowledge through FIS, this approach enhances the
flexibility and realism of traditional population models, making it particularly useful in
fields like conservation biology, ecological forecasting, and resource management, where
accurate predictions are critical but data are often incomplete or imprecise.

Future work could explore the application of this methodology to other mathematical
models in population dynamics, such as predator–prey models, age-structured popula-
tion models, or spatial models that consider habitat fragmentation. Expanding beyond
population dynamics, this approach could also be applied to fields like automatic control
systems, where uncertainty plays a significant role in system behavior. By incorporating
fuzzy logic into control theory models, such as in the regulation of biological processes or
environmental systems, the robustness and adaptability of control mechanisms could be
improved. Additionally, integrating this methodology with real-world case studies from
both ecological and engineering fields could further validate its effectiveness and extend
its utility across diverse scientific and industrial applications.
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Abbreviations

The following abbreviations are used in this manuscript:
Lw Low
M Medium
H High
VH Very High
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NLw Not Low
VR Very Restricted
R Restricted
NR Not Restricted
S Small
VL Very Large
VLw Very Low
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Abstract: In this paper, a fractional-order eco-epidemiological model with two disease
strains in the predator population incorporating harvesting is formulated and analyzed.
The model assumes that the population is divided into a prey population, a susceptible
predator population, a predator population infected by the first disease, and a predator pop-
ulation infected by the second disease. A mathematical analysis and numerical simulations
are performed to explain the dynamics and properties of the proposed fractional-order
eco-epidemiological model. The positivity, boundedness, existence, and uniqueness of the
solutions are examined. The basic reproduction number and some sufficient conditions for
the existence of four equilibrium points are obtained. In addition, some sufficient conditions
are proposed to ensure the local and global asymptotic stability of the equilibrium points.
Theoretical results are illustrated through numerical simulations, which also highlight the
effect of the fractional order.

Keywords: eco-epidemiological model; local stability; global stability; numerical simulations

MSC: 92D25; 26A33; 34D23

1. Introduction

The relationship between predators and their prey is a fundamental topic in math-
ematical ecology due to its widespread occurrence and ecological significance [1]. The
interactions between prey and predators were studied for the first time by the famous
mathematicians Lotka and Volterra [2]. After that, many predator–prey models have been
established and studied by mathematicians and ecologists, for example [3–7].

Investigating the spread of infections within populations is a crucial area of math-
ematical biology, offering insights into predicting the impacts of such infections [8–10].
An eco-epidemiological model studies the dynamics of predator–prey interactions in the
context of infectious diseases, which may affect either the prey population only [11,12],
the predator population only [13–15], or both simultaneously [16,17].

Fractional-order differential equations are a generalized form of classical ordinary
differential equations, extending their order to non-integer values [18]. Fractional-order
models offer advantages over integer-order models, including memory effects and hered-
itary dynamics, which better capture complex system behaviors [19]. Models based on
fractional-order differential equations may offer a more accurate representation of complex
systems and elucidate the interactions between prey and predator species, particularly in

Axioms 2025, 14, 53 https://doi.org/10.3390/axioms14010053
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the context of infectious diseases affecting the predator population [20]. Fractional-order
derivatives have found widespread application across various scientific and engineering
disciplines [21]. For a more comprehensive understanding of fractional-order differential
equations, one can refer to [22–28] and the references contained therein. These references
explore the application of the fractional order in ecological, epidemiological, and biological–
economic models, emphasizing the analysis of stability, bifurcation, and memory effects to
understand complex dynamic systems.

In this paper, a fractional-order eco-epidemiological model incorporating two disease
strains within the predator population and the effects of harvesting is proposed and studied.
The population is assumed to consist of prey, susceptible predators, predators infected by
the first disease, and predators infected by the second disease. For instance, the black-footed
ferret relies exclusively on Prairie dogs as its primary food source. This black-footed ferret
population can be infected by the Sylvatic plague and the Canine distemper virus [29]. The
positivity, boundedness, existence, and uniqueness of the solutions for the fractional-order
model are examined. Additionally, the basic reproduction number is derived, along with
sufficient conditions for the existence of four equilibrium points. The main contribution of
this paper is establishing sufficient conditions to guarantee the local and global asymptotic
stability of the equilibrium points in the proposed model. The theoretical findings are
further illustrated through numerical simulations.

The structure of this paper is as follows. In the next section, the model formulation,
positivity, boundedness, existence, and uniqueness are proposed. In Sections 3, the equilib-
rium points, basic reproduction number, local stability, and global stability of the proposed
fractional-order model are investigated. Section 4 presents numerical simulations to illus-
trate the theoretical results obtained. Finally, the conclusions are provided in Section 5.

2. Model Formulation

Following [30], the eco-epidemiological model incorporating two disease strains
affecting the predator population can be described as follows.

dx
dt

= r̂
(

1 − x
k̂

)
x − âxy, x(0) = x0,

dy
dt

= êâxy − λ̂yz − β̂yw + γ̂z + ϕ̂w − m̂y, y(0) = y0,

dz
dt

= λ̂yz − γ̂z − d̂z + θ̂w, z(0) = z0,

dw
dt

= β̂yw − ϕ̂w − ν̂w − θ̂w, w(0) = w0.

(1)

The model (1) categorizes the populations into four classes: the prey population x(t),
the susceptible predator population y(t), the predator population infected with the first
disease z(t), and the predator population infected with the second disease w(t). It is
assumed that disease transmission occurs within the predator populations, while the
susceptible predators feed on the prey. All parameters in model (1) are non-negative for
t ≥ 0 and are detailed in Table 1.

This paper seeks to investigate the dynamic properties of a generalization of the eco-
epidemiological model described in (1) through the introduction of the Caputo fractional
derivative of order q (cDq) and prey harvesting (Ĥ) as follows.
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cDqx(t) = r̂
(

1 − x
k̂

)
x − âxy − Ĥx, x(0) = x0,

cDqy(t) = êâxy − λ̂yz − β̂yw + γ̂z + ϕ̂w − m̂y, y(0) = y0,
cDqz(t) = λ̂yz − γ̂z − d̂z + θ̂w, z(0) = z0,

cDqw(t) = β̂yw − ϕ̂w − ν̂w − θ̂w, w(0) = w0,

(2)

Table 1. Parameter descriptions.

Symbol Description

r̂ Intrinsic growth rate of prey
k̂ Prey carrying capacity
â Predation rate of susceptible predator
Ĥ Prey harvesting
ê susceptible predator conversion efficiency
λ̂ Transmission coefficient of the first disease in predator
β̂ Transmission coefficient of the second disease in predator
m̂ Natural mortality rate of susceptible predator
γ̂ First disease recovery rate
ϕ̂ Second disease recovery rate
d̂ Natural plus first disease mortality rate
ν̂ Natural plus second disease mortality rate
θ̂ Mutation factor of diseases.

For q ∈ (0, 1), the Caputo fractional derivative cDq is employed [18]. In model (2),
the right-hand-side terms have a dimension of (time)−1, while the left-hand-side terms
have a dimension of (time)−q. To ensure dimensional consistency, model (2) is reformulated
as follows:

cDqx(t) = r̂q
(

1 − x
k̂

)
x − âqxy − Ĥqx, x(0) = x0,

cDqy(t) = êâqxy − λ̂qyz − β̂qyw + γ̂qz + ϕ̂qw − m̂qy, y(0) = y0,
cDqz(t) = λ̂qyz − γ̂qz − d̂qz + θ̂qw, z(0) = z0,

cDqw(t) = β̂qyw − ϕ̂qw − ν̂qw − θ̂qw, w(0) = w0.

(3)

For simplicity, model (3) is redefined using new parameter representations [31]:

r̂q = r, k̂ = k, âq = a, Ĥq = H, ê = e, λ̂q = λ, β̂q = β, γ̂q = γ, ϕ̂q = ϕ, m̂q = m, d̂q = d,

θ̂q = θ, ν̂q = ν.

Then, the model (3) can be reformulated as follows:

cDqx(t) = r
(

1 − x
k

)
x − axy − Hx, x(0) = x0,

cDqy(t) = eaxy − λyz − βyw + γz + ϕw − my, y(0) = y0,
cDqz(t) = λyz − γz − dz + θw, z(0) = z0,

cDqw(t) = βyw − ϕw − νw − θw, w(0) = w0,

(4)

It is to be noted that the integer-order model (1) given in [30] cannot be sustained at a
stable coexistence equilibrium level. However, the fractional-order model (4) proposed
in this paper can be sustained at the stable coexistence equilibrium level. To the best of
our knowledge, no prior studies have explored the dynamics of a fractional-order eco-
epidemiological model with two disease strains in the predator population that incorporates
harvesting (4).
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2.1. Positivity and Boundedness

This subsection investigates the positivity and boundedness of the solutions for the
fractional-order eco-epidemiological model (4). The positivity of the solution of model (4)
with positive initial conditions is now investigated. Following model (4), one has

cDqx(t)|x=0 = 0,
cDqy(t)|y=0 = γz + ϕw ≥ 0,
cDqz(t)|z=0 = θw ≥ 0,

cDqw(t)|w=0 = 0.

Furthermore, the model satisfies the Lipschitz condition, as established in Theorem 2.
Based on the positivity property, Theorem 5 and Theorem 6 of [32], the solutions of the
fractional-order model (4) remain non-negative for t ≥ 0.

The boundedness of the solutions for model (4) is established in the following theorem:

Theorem 1. All the solutions of model (4) starting in R4
+ are uniformly bounded.

Proof. Let φ(t) = x(t) + y(t) + z(t) + w(t); then,

cDqφ(t) = cDqx(t) + cDqy(t) + cDqz(t) + cDqw(t)

= r
(

1 − x
k

)
x + (e − 1)axy − Hx − my − dz − ν w

≤ r
(

1 − x
k

)
x − Hx − my − dz − ν w

≤ − rx2

k
+ rx − σ(x + y + z + w),

where σ = min{H, m, d, ν}; thus,

cDqφ(t) + σφ(t) ≤ − rx2

k
+ rx

≤ − r
k

(
x − k

2

)2
+

rk
4

≤ rk
4

.

By using the Lemma 9 in [33], then,

0 ≤ φ(t) ≤ φ(0)Eq(−σtq) +
rk
4

tqEq,q+1(−σtq),

Here, Eq denotes the Mittag–Leffler function. Using Lemma 5 and Corollary 6 from [33], it
is derived that

0 ≤ φ(t) ≤ rk
4σ

, as t → ∞.

As a result, all solutions of model (4) with initial conditions in R4
+ are uniformly bounded

within the region S, where

S =

{
(x, y, z, w) ∈ R4

+ : φ(t) ≤ rk
4σ

+ ε, ε > 0
}

. (5)
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2.2. Existence and Uniqueness

The existence and uniqueness of solutions for the fractional-order model (4) within
the region M × (0, T], where where

M =
{
(x, y, z, w) ∈ R

4 : max(|x|, |y|, |z|, |w|) ≤ h
}

,

are investigated as follows:

Theorem 2. For each X0 = (x0, y0, z0, w0) ∈ M, there exists a unique solution X(t) ∈ M of
model (4) with the initial condition X0, which is defined for all t ≥ 0.

Proof. Consider a mapping L(X) = (L1(X), L2(X), L3(X), L4(X)), where

L1(X) = r
(

1 − x
k

)
x − axy − Hx,

L2(X) = eaxy − λyz − βyw + γz + ϕw − my,

L3(X) = λyz − ηz + θw,

L4(X) = βyw − ξw,

(6)

For any X, X̄ ∈ M, it follows from (6) that

‖L(X)− L(X̄)‖ =|L1(X)− L1(X̄)|+ |L2(X)− L2(X̄)|+ |L3(X)− L3(X̄)|+ |L4(X)− L4(X̄)|

=

∣∣∣∣r(1 − x
k

)
x − axy − Hx − r

(
1 − x̄

k

)
x̄ + ax̄ȳ + Hx̄

∣∣∣∣
+ |eaxy − λyz − βyw + γz + ϕw − my − eax̄ȳ + λȳz̄ + βȳw̄ − γz̄ − ϕw̄ + mȳ|
+ |λyz − ηz + θw − λȳz̄ + ηz̄ − θw̄|+ |βyw − ξw − βȳw̄ + ξw̄|

≤r|x − x̄|+ r
k |x − x̄||x + x̄|+ a(1 + e)|xy − x̄y + x̄y − x̄ȳ|

+ H|x − x̄|+ 2λ|yz − ȳz + ȳz − ȳz̄|
+ 2β|yw − ȳw + ȳw − ȳw̄|+ γ|z − z̄|+ ϕ|w − w̄|
+ m|y − ȳ|+ η|z − z̄|+ θ|w − w̄|+ ξ|w − w̄|

≤r|x − x̄|+ 2rh
k |x − x̄|+ a(1 + e)h|x − x̄|

+ a(1 + e)h|y − ȳ|+ H|x − x̄|+ 2λh|y − ȳ|+ 2λh|z − z̄|
+ 2βh|y − ȳ|+ 2βh|w − w̄|+ γ|z − z̄|+ ϕ|w − w̄|
+ m|y − ȳ|+ η|z − z̄|+ θ|w − w̄|+ ξ|w − w̄|

≤
(

r +
2rh
k

+ a(1 + e)h + H
)
|x − x̄|

+ (a(1 + e)h + 2λh + 2βh + m)|y − ȳ|
+ (2λh + γ + η)|z − z̄|
+ (2βh + ϕ + θ + ξ)|w − w̄|

≤U‖X − X̄‖,

where

U = max
{

r +
2rh
k

+ a(1 + e)h + H, a(1 + e)h + 2λh + 2βh + m, 2λh + γ + η, 2βh + ϕ + θ + ξ

}
.

Thus, L(X) satisfies the Lipschitz condition, proving the existence and uniqueness of solutions for
model (4) under the given initial conditions.
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3. Model Analysis

This section investigates the equilibrium points, basic reproduction number, local
stability, and global stability of the fractional-order eco-epidemiological model (4).

3.1. Equilibrium Points

This subsection and the next will utilize the basic reproduction number (�0) of
model (4) to determine the existence and stability of its equilibrium points. The basic
reproduction number (�0) can be obtained by using the next-generation method [34]. One
can rewrite the fractional-order model (4) as follows

cDqw(t) = βyw − ξw,
cDqz(t) = λyz − ηz + θw,
cDqy(t) = eaxy − λyz − βyw + γz + ϕw − my,

cDqx(t) = r
(

1 − x
k

)
x − axy − Hx,

(7)

where ξ = ϕ + ν + θ and η = γ + d. The model (7) can subsequently be expressed
as follows:

DqX(t) = f (X)− v(X),

where

f (X) =

⎡⎢⎢⎢⎣
f1

f2

f3

f4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
β yw
λ yz
eaxy

0

⎤⎥⎥⎥⎦, v(X) =

⎡⎢⎢⎢⎣
v1

v2

v3

v4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ξ w

ηz − θ w
λyz + βyw − γz − ϕw + my
−r

(
1 − x

k
)

x + axy + Hx

⎤⎥⎥⎥⎦.

The matrices F(X) and V(X) are defined as

F(X) =

⎡⎢⎢⎢⎢⎢⎣
∂ f1
∂w

∂ f1
∂z

∂ f1
∂y

∂ f1
∂x

∂ f2
∂w

∂ f2
∂z

∂ f2
∂y

∂ f2
∂x

∂ f3
∂w

∂ f3
∂z

∂ f3
∂y

∂ f3
∂x

∂ f4
∂w

∂ f4
∂z

∂ f4
∂y

∂ f4
∂x

⎤⎥⎥⎥⎥⎥⎦, V(X) =

⎡⎢⎢⎢⎢⎣
∂v1
∂w

∂v1
∂z

∂v1
∂y

∂v1
∂x

∂v2
∂w

∂v2
∂z

∂v2
∂y

∂v2
∂x

∂v3
∂w

∂v3
∂z

∂v3
∂y

∂v3
∂x

∂v4
∂w

∂v4
∂z

∂v4
∂y

∂v4
∂x

⎤⎥⎥⎥⎥⎦.

Thus,

F(X) =

⎡⎢⎢⎢⎣
βy 0 βw 0
0 λy λz 0
0 0 aex aey
0 0 0 0

⎤⎥⎥⎥⎦,

V(X) =

⎡⎢⎢⎢⎣
ξ 0 0 0
−θ η 0 0

βy − ϕ λy − γ βw + λz + m 0
0 0 ax r

( 2x
k − 1

)
+ ay + H

⎤⎥⎥⎥⎦.

To obtain the eigenvalues of F · V−1, at equilibrium point E1

(
k(r−H)

r , 0, 0, 0
)

, the equation

∣∣∣F · V−1 − μI
∣∣∣ = 0,

can be solved. Based on Theorem 2 in [34], the basic reproduction number of Model 2 is
given as �0 = ae(r−H)k

rm . Additionally, the threshold parameters will be utilized to establish
the conditions for the existence and stability of the equilibrium points of model (4):
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�2 =
β(ae(r − H)k − rm)

ea2kξ
, �22 =

λ(ae(r − H)k − rm)

ea2kη
, �3 =

βη

ξλ
.

It is to be noted that the basic reproduction number (�0) and the threshold parameters (�2

and �22) depend on the prey harvesting (H). This means that the prey harvesting (H) has
a crucial effect on the existence and stability conditions of equilibrium points of model (4).

The fractional-order eco-epidemiological model (4) has four equilibrium points:

1. E0 = (0, 0, 0, 0), which always exists.

2. E1 =
(

k
r (r − H), 0, 0, 0

)
, which exists if r > H.

3. E2 = (x2, y2, 0, 0) where

x2 =
m
ae

, y2 =
ae(r − H)k − rm

ea2k
=

rm
ea2k

(�0 − 1).

Therefore, E2 exists if �0 > 1.
4. E3 = (x3, y3, z3, 0) where

x3 =
k(r − H)

r
− aηk

rλ
= x1 − aηk

rλ
, y3 =

η

λ
, z3 =

(�22 − 1)eka2η2

r(η − γ)λ2 .

Then, E3 exists if x1 > aηk
rλ and �22 > 1.

5. E4 = (x4, y4, z4, w4) where

x4 =
k(β(r − H)− aξ)

rβ
, y4 =

ξ

β
, z4 =

ea2kξ2(�2 − 1)
C1

, w4 =
ea2kλξ3

βC1
(�2 − 1)(�3 − 1),

where C1 = rβ(λξ(θ + ϕ − ξ) + β(ξη − γθ − ηϕ)). Therefore E4 exists if β > aξ
r−H ,

�2 > 1, �3 > 1 and C1 > 0.

3.2. Local Stability Analysis

In the following, the asymptotic stability of equilibrium points of model (4) is studied.
The Jacobian matrix (J(x, y, z, w)) of model (4) is as follows:

J(x, y, z, w) =

⎛⎜⎜⎜⎝
r − 2rx

k − ay − H −ax 0 0
aey aex − λz − βw − m γ − λy ϕ − βy
0 λz λy − η θ

0 βw 0 βy − ξ

⎞⎟⎟⎟⎠. (8)

The stability analysis of the equilibrium point E0 is not considered, as this state signifies
the extinction of all populations. The E0 is unstable.

Lemma 1. If �0 < 1, then E1 is locally asymptotically stable.

Proof. The J(E1) is

J(E1) =

⎛⎜⎜⎜⎝
H − r a(H−r)k

r 0 0
0 (�0 − 1)m γ ϕ

0 0 −η θ

0 0 0 −ξ

⎞⎟⎟⎟⎠. (9)

The eigenvalues of J(E1) are μ1 = H − r, μ2 = (�0 − 1)m, μ3 = −ξ and μ4 = −η. Thus
|arg(μ1,3,4)| = π > qπ

2 . If �0 < 1, then |arg(μ2)| = π > qπ
2 for all q ∈ (0, 1). As

demonstrated in [35,36], the proof is thus complete.
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Lemma 2. If y2 < min
{

ξ
β , η

λ

}
, then E2 is locally asymptotically stable.

Proof. The J(E2) is

J(E2) =

⎛⎜⎜⎜⎝
− rx2

k −ax2 0 0
aey2 0 γ − λy2 ϕ − βy2

0 0 λy2 − η θ

0 0 0 βy2 − ξ

⎞⎟⎟⎟⎠. (10)

The eigenvalues of J(E2) are μ1 = βy2 − ξ, μ2 = λy2 − η, and μ3,4 are the solutions of:

μ2 + rx2
k μ + ea2x2y2 = 0, (11)

since rx2
k > 0 and ea2x2y2 > 0, the eigenvalues of Equation (11), exhibit negative real parts.

If y2 < min
{

ξ
β , η

λ

}
, then |arg(μ1,2)| = π > qπ

2 for all q ∈ (0, 1). As demonstrated in [35,36],
the proof is thus complete.

Lemma 3. If γ
λ < y3 < ξ

β , then E3 is locally asymptotically stable.

Proof. The J(E3) is

J(E3) =

⎛⎜⎜⎜⎝
− rx3

k −ax3 0 0
aey3 − γz3

y3
γ − λy3 ϕ − β y3

0 λz3 0 θ

0 0 0 βy3 − ξ

⎞⎟⎟⎟⎠.

The eigenvalues of J(E3) are μ1 = βy3 − ξ, while the other three eigenvalues μ2,3,4 are the
solutions of

μ3 + B1μ2 + B2μ + B3 = 0, (12)

where

B1 =
rx3

k
+

γz3

y3
,

B2 =

(
rγz3

ky3
+ ea2y3

)
x3 + λ(λy3 − γ)z3,

B3 = 1
k (rλ(λy3 − γ)x3z3).

It is obvious that B1 > 0, B2 > 0, B3 > 0 and B1B2 > B3 as long as λy3 > γ. By applying the
Routh–Hurwitz criterion, it is established that all solutions of Equation (12) have negative
real parts. Consequently, the equilibrium point E3 is locally asymptotically stable when
γ
λ < y3 < ξ

β .

The stability of the equilibrium point E4 is now investigated. The J(E4) is

J(E4) =

⎛⎜⎜⎜⎝
− rx4

k −ax4 0 0
aey4 − γz4+ϕw4

y4
γ − λy4 ϕ − β y4

0 λz4 − θw4
z4

θ

0 βw4 0 0

⎞⎟⎟⎟⎠.

The eigenvalues of J(E4) are the solutions of

μ4 + A1μ3 + A2μ2 + A3μ + A4 = 0, (13)
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where

A1 =
rx4

k
+

C2

y4
+

θw4

z4
,

A2 =
θ(kC2 + rx4y4)w4

ky4z4
+

rC2x4

ky4
+ ea2x4y4 − λC3z4 − βC4w4,

A3 =
1

ky4z4
(rθC2w4x4 + y4(kθw4(ea2x4y4 − βC4w4)− βw4(kθC3 + rC4x4)z4 − rλC3x4z2

4)),

A4 = − rβθ(C3z4 + C4w4)x4w4

kz4
,

C2 = γz4 + ϕw4, C3 = γ − λy4, C4 = ϕ − βy4.

The conditions for stability at E4 can be derived using the proposition outlined in [37].

3.3. Global Stability Analysis

The global asymptotic stability of all four equilibrium points of the fractional-order
model (4) is investigated as follows.

Theorem 3. The equilibrium point E1 is globally asymptotically stable if ak(r−H)
rm < 1.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = x − x1 − x1 ln
(

x
x1

)
+ y + z + w.

By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38],

cDqV ≤(x − x1)
(

r − rx
k
− ay − H

)
+ eaxy − my − dz − ν w

≤(x − x1)
( rx1

k
− rx

k
− ay

)
+ eaxy − my − dz − ν w

≤− r
k (x − x1)

2 + a(e − 1)xy + (ax1 − m)y − dz − νw.

Thus, cDqV ≤ 0 if ax1
m < 1 which is equivalent to ak(r−H)

rm < 1. By applying Lemma 4.6
in [39], the equilibrium point E1 is proven to be globally asymptotically stable.

Theorem 4. The equilibrium point E2 is globally asymptotically stable if rλk < 4σγ.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = C5

(
x − x2 − x2 ln

(
x
x2

))
+ y − y2 − y2 ln

(
y
y2

)
+ z + w.

By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38].
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cDqV ≤C5(x − x2)
(

r − rx
k
− ay − H

)
+ (y − y2)(aex − λz − m) +

(
y − y2

y

)
(γz − βyw + ϕw)

+ λyz − γz − dz + θw + βyw − ϕw − νw − θ w

≤− r C5
k (x − x2)

2 − a C5(x − x2)(y − y2)

+ ae(x − x2)(y − y2) + y2

(
λ − γ

y

)
z

+

(
− ϕy2

y
+ βy2 − ν

)
w − dz

≤− rC5
k (x − x2)

2 + a(e − C5)(x − x2)(y − y2)

+ y2

(
λ − γ

ymax

)
z.

Suppose C5 = e. Thus, cDq ≤ 0 when λ < γ
ymax

which is equivalent to rλk < 4σγ. Hence,
the proof is established.

Theorem 5. The equilibrium point E3 is globally asymptotically stable if aex3 < λz3 + m,
λ < γ

ymax
+ d

y3
, βy3 < ν, and my3 + γz3 + dz3 < aex3y3.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = e
(

x − x3 − x3 ln
(

x
x3

))
+ y − y3 − y3 ln

(
y
y3

)
+ z − z3 − z3 ln

(
z
z3

)
+ w.

By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38],

cDqV ≤e(x − x3)
(

r − rx
k
− ay − H

)
+

(
1 − y3

y

)
(aexy − λyz − βyw + γz + ϕw − my)

+
(

1 − z3

z

)
(λyz − γz − dz + θw) + βyw − ϕw − νw − θ w

≤− re
k (x − x3)

2 + (aex3 − λz3 − m)y + d(z3 − z)

+

(
λy3 − γy3

y

)
z + (βy3 − ν)w + (my3 + γz3 − aex3y3)

≤− re
k (x − x3)

2 + (aex3 − λz3 − m)y

+

(
λy3 − γy3

ymax
− d

)
z + (βy3 − ν)w + (my3 + γz3 + dz3 − aex3y3).

Thus, cDq ≤ 0 when aex3 < λz3 + m, λ < γ
ymax

+ d
y3

, βy3 < ν, and my3 + γz3 + dz3 <

aex3y3. Consequently, the theorem is proven.

Theorem 6. The equilibrium point E4 is globally asymptotically stable if aex4 < λz4 + βw4 + m,
λ < γ

ymax
+ d

y4
, βy4 < ϕy4

ymax
+ θz4

zmax
+ ν, and my4 + γz4 + ξw4 + dz4 < aex4y4.

Proof. A suitable positive definite Lyapunov function is considered as follows:

V = e
(

x − x4 − x4 ln
(

x
x4

))
+ y − y4 − y4 ln

(
y
y4

)
+ z − z4 − z4 ln

(
z
z4

)
+ w − w4 − w4 ln

(
w
w4

)
.
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By calculating the q-order derivative of V throughout the solution of (4) and applying
Lemma 3.1 in [38],

cDqV ≤e(x − x4)
(

r − rx
k
− ay − H

)
+

(
1 − y4

y

)
(aexy − λyz − βyw + γz + ϕw − my)

+
(

1 − z4

z

)
(λyz − γz − dz + θw) + (w − w4)(βy − ϕ − ν − θ)

≤− re
k (x − x4)

2 + (aex4 − λz4 − βw4 − m)y

+

(
λy4 − γy4

y

)
z +

(
βy4 − ν − ϕy4

y
− θz4

z

)
w

+ (my4 + γz4 + ξw4 − aex4y4) + d(z4 − z)

≤− re
k (x − x4)

2 + (aex4 − λz4 − βw4 − m)y

+

(
λy4 − γy4

ymax
− d

)
z +

(
βy4 − ν − ϕy4

ymax
− θz4

zmax

)
w

+ (my4 + γz4 + ξw4 + dz4 − aex4y4).

Thus, cDqV(x, y, z) ≤ 0, when aex4 < λz4 + βw4 + m, λ < γ
ymax

+ d
y4

, βy4 < ϕy4
ymax

+ θz4
zmax

+ ν

and my4 + γz4 + ξw4 + dz4 < aex4y4. By applying Lemma 4.6 in [39], the equilibrium
point E4 is proven to be globally asymptotically stable.

4. Numerical Simulations

This section presents numerical simulations performed using the numerical method
described in [40,41]. The numerical simulations are conducted to illustrate the theoretical
findings regarding the fractional order (q) and stability of model (4). The parameter values
used in the simulations are detailed in Table 2, and most of them are given in [30].

Table 2. Parameter values for model (4).

Case r m e a k γ ϕ β λ d ν H θ Figures

1 1 0.5 0.07 0.02 100 0.9 0.3 0.2 0.4 0.25 0.4 0.01 0.01 Figure 1
2 1 0.5 0.7 0.5 1000 0.25 0.47 0.6 0.48 0.39 0.33 0.35 0.1 Figure 2
3 1 0.05 0.7 0.2 5000 0.9 0.3 0.2 0.4 0.25 0.4 0.01 0.01 Figure 3
4 1 0.05 0.6 0.5 1000 0.25 0.3 0.6 0.48 0.39 0.33 0.1 0.1 Figure 4

In case 1 of Table 2, the fractional-order model (4) shows the equilibrium point
E1 = (99, 0, 0, 0), where all populations are healthy, and no infections exist. In this case,
�0 = 0.2772 < 1, which indicates that E1 is locally asymptotically stable. This coincides
with Lemma 1 and is indicated in Figure 1. Figure 1 demonstrates that the populations
remain stable across various values of the fractional order (q), with the solutions reaching
the equilibrium point E1 = (99, 0, 0, 0).

In case 2 of Table 2, the fractional-order model (4) shows the equilibrium point
E2 = (1.428, 1.297, 0, 0). In this case, y2 = 1.29714 < min

{
ξ
β = 1.5, η

λ = 1.3
}

, which means
that E2 is locally asymptotically stable. This coincides with the result of Lemma 2 and is
shown in Figure 2. It can be observed from Figure 2 that the oscillation of fractional-order
model (4) decreases with decreasing the value of the fractional order (q). Figure 2 illustrates
that the populations maintain stability for various values of the fractional order (q ∈ (0, 1)),
with the solutions reaching the equilibrium point E2 = (1.428, 1.297, 0, 0).
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Figure 1. The local asymptotic stability of E1 for various values of the fractional order (q).

Figure 2. The local asymptotic stability of E2 for various values of the fractional order (q).

In case 3 of Table 2, the fractional-order model (4) shows the equilibrium point
E3 = (2075, 2.875, 3340.175, 0). In this case, γ

λ = 2.25 < y3 = 2.875 < ξ
β = 3.55, which

indicates that E3 is locally asymptotically stable. This coincides with the result of Lemma 3
and is indicated in Figure 3. In order to verify the Routh–Hurwitz criteria of Lemma 3, one
has B1 = 1046.04 > 0, B2 = 934.987 > 0, B3 = 138.617 > 0 and B1B2 − B3 = 977891 > 0.
Therefore, the fractional-order model (4) exhibits local asymptotic stability around E3,
as demonstrated in Figure 3. Figure 3 shows that the populations remain stable for different
values of fractional order (q ∈ (0, 1)), with the solutions reaching the equilibrium point
E3 = (2075, 2.875, 3340.175, 0).

In case 4 of Table 2 the fractional-order model (4) shows the coexistence equilibrium
point E4 = (291.667, 1.217, 185.104, 103.658), where all the populations in the ecosystem
coexist: the prey (x), susceptible predator (y), predator infected by the first disease (z),
and predator infected by the second disease (w) reach constant levels over time. In this
case, the E4 is locally asymptotically stable as shown in Figure 4. This means that the
two infectious diseases will persist in the predator population. Figure 4 indicates that the
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populations remain stable for different values of fractional order (q ∈ (0, 1)), with the
solutions reaching the equilibrium point E4 = (291.667, 1.217, 185.104, 103.658). It is to
be noted that the integer-order model (1) given in [30] cannot be sustained at a stable
coexistence equilibrium level. However, the newly proposed fractional-order model (4)
can be sustained at the stable coexistence equilibrium level as illustrated in Figure 4 and
coincides with Theorem 6. Therefore, the fractional order has a stabilization effect.

Figure 3. The local asymptotic stability of E3 for various values of the fractional order (q).

Figure 4. The local asymptotic stability of E4 for various values of the fractional order (q).

Figure 5 shows the 3D plot of the basic reproduction number �0 when the predation
rate of susceptible predator (a) and prey harvesting (H) varies. It is observed that as the
predation rate of susceptible predator (a) increases, �0 will increase and cross the threshold
�0 = 1, thus leading to the outbreak of the diseases. Moreover, when the prey harvesting
(H) increases, �0 will increase. Therefore, one can control the reproduction �0 by reducing
the predation rate of susceptible predator (a) and prey harvesting (H).
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Figure 5. The 3D plot of the basic reproduction number �0 when the predation rate of susceptible
predator (a) and prey harvesting (H) varies.

5. Conclusions

This paper proposed and analyzed a fractional-order eco-epidemiological model in-
corporating two disease strains in the predator population and harvesting. The model
categorizes the populations into four groups: prey (x), susceptible predators (y), preda-
tors infected by the first disease (z), and predators infected by the second disease (w).
The proposed model (4) has been analyzed to investigate its dynamical behavior. The
model’s dynamics, including positivity, boundedness, and the existence and uniqueness of
solutions, have been studied. The proposed eco-epidemiological model exhibits four non-
negative equilibrium points, and the threshold parameters have been utilized to determine
equilibrium existence and stability conditions. Furthermore, sufficient conditions for the
locally asymptotic stability of the four equilibrium points have been derived. The global
properties of the equilibrium points E1, E2, E3 and E4 have been investigated by construct-
ing suitable Lyapunov functions. Numerical simulations have been performed to illustrate
the theoretical findings, demonstrating the influence of the fractional order (q) on the
stability of the equilibrium points. It has been shown that the populations remain stable
for different values of fractional order (q ∈ (0, 1)), though the solutions reach the obtained
equilibrium points. It has been observed that the integer-order model (1) given in [30]
cannot be sustained at a stable coexistence equilibrium level. However, it has been shown
that the fractional-order model (4) can be sustained at the stable coexistence equilibrium
level. Therefore, the fractional order has a stabilization effect. Future research will explore
the inclusion of time delays in the system and analyze their potential effect.
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Abstract: The paper deals with the stability of a degenerate/singular beam equation in
non-divergence form. In particular, we assume that the degeneracy and the singularity
are at the same boundary point and we impose clamped conditions where the degeneracy
occurs and dissipative conditions at the other endpoint. Using the energy method, we
provide some conditions to obtain the stability for the considered problem.
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1. Introduction

This paper is devoted to studying the stability of a beam-type degenerate equation
with a small singular perturbation through a linear boundary feedback. To be more precise,
we consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt(t, x) + ayxxxx(t, x)− λ

d
y(t, x) = 0, (t, x) ∈ (0,+∞)× (0, 1),

y(t, 0) = 0, yx(t, 0) = 0, t > 0,

βy(t, 1)− yxxx(t, 1) + yt(t, 1) = 0, t > 0,

γyx(t, 1) + yxx(t, 1) + ytx(t, 1) = 0, t > 0,

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1),

(1)

where β and γ are non-negative constants and the function a is such that a(0) = 0 and
a(x) > 0 for all x ∈ (0, 1]. In particular, for the function a, we consider two types of
degeneracy according to the following definitions:

Definition 1. The function g: [0, 1] → R is weakly degenerate, (WD) for short, at 0 if
g ∈ C0[0, 1] ∩ C1(0, 1] is such that g(0) = 0, g > 0 on (0, 1], and if

sup
x∈(0,1]

x|g′(x)|
g(x)

:= Kg, (2)

then Kg ∈ (0, 1).

Definition 2. The function g: [0, 1] → R is strongly degenerate, (SD) for short, at 0 if g ∈ C1[0, 1]
is such that g(0) = 0, g > 0 on (0, 1] and in (2) we have Kg ∈ [1, 2).
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Roughly speaking, when g(x) ∼ xK, it is (WD) if K ∈ (0, 1) and (SD) if K ∈ [1, 2).
Problems similar to (1) are considered in several papers (see, for example, [1–7]). In

particular, in [3,5], the following Euler–Bernoulli beam equation is considered:

mytt(t, x) + EIyxxxx(t, x) = 0, x ∈ (0, 1), t > 0, (3)

with clamped conditions at the left end

y(t, 0) = 0, yx(t, 0) = 0, (4)

and with dissipative conditions at the right end⎧⎨⎩−EIyxxx(t, 1) + μ1yt(t, 1) = 0, μ1 ≥ 0,

EIyxx(t, 1) + μ2ytx(t, 1) = 0, μ2 ≥ 0.
(5)

Here, y is the vertical displacement, yt is the velocity, yx is the rotation, ytx is the angular
velocity, m is the mass density per unit length, EI is the flexural rigidity coefficient, −EIyxx

is the bending moment, and −EIyxxx is the shear. In particular, the boundary conditions (5)
mean that the shear is proportional to the velocity and the bending moment is negatively
proportional to the angular moment. Observe that if we consider β = γ = 0 in (1), then
we have boundary conditions analogous to those in (5). Thus, the dissipative conditions
at 1 are not surprising. We remark that the conditions β, γ ≥ 0 are necessary to study the
well-posedness of the problem and to prove equivalence among all the norms introduced
in this paper and that are crucial to obtain the stability result.

The qualitative behavior of (3)–(5) is studied in [4], where it is proved that if μ2
1 > 0 and

μ2
2 ≥ 0, the energy E(t) of the vibration of the beam decays exponentially in a uniform way

E(t) ≤ ke−μtE(0) (6)

for some k, μ > 0.
Observe that in all the references above, the equation is non-degenerate; however,

there are some papers where the equation is degenerate in the sense that a degenerate
damping appears in the equation of (3) (see, for example, [8–10]). The first paper where the
equation is degenerate in the sense that the fourth-order operator degenerates in a point as
in (1) is [11]. However, to the best of our knowledge, [12] is the first paper where the stability
for (1) with λ = 0 is considered. On the other hand, for a degenerate wave-equation, we
refer to [13] (see also the arxiv version of 2015) for a problem in divergence form and to [14]
for a problem in non-divergence form.

A position-dependent restoring force is introduced using the modified Euler–Bernoulli
equation that includes a coefficient-dependent drift term. High stiffness, concentrated
forces, or material discontinuities can be modeled by the term λ

d(x)y, which produces a
single behavior at x = 0, suggesting a highly localized effect. Additionally, it denotes
pre-stress or non-homogeneous stiffness, which applies to beams on uneven elastic founda-
tions. Furthermore, if d(x) is a distance function, the term affects tension in pre-stressed
structures by acting like an inverse square law, similar to electrostatic or gravitational po-
tentials. Additionally, the equation resembles singular potential quantum wave equations,
which cause localized resonance effects in structural dynamics. All things considered,
this formulation captures strong localized effects, pre-stress changes, and non-uniform
limitations that are pertinent to practical physics and engineering (see [15]).

As far as we know, for beam-type equations simultaneously admitting degeneracy
and singularity, only controllability problems have been faced (see the recent paper [16]),
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while nothing has been undertaken for stability. For this reason, in this paper, we focus on
such a problem, proving that (1) permits boundary stabilization, provided that the singular
term has a small coefficient (see Theorem 2 below). Hence, we may regard this result as
a natural continuation of [12] and a perturbation of the related one in [16]. Clearly, the

presence of the singular term
y
d

introduces several difficulties with respect to [12], which
let us treat only the case of a function d with weak degeneracy, according to the definition
above. For a stability result for a degenerate/singular wave equation, we refer to [17].

Strategy method. In order to prove (6) for (1), we use a multiplier method. In particular,
after defining the energy associated with the problem, we prove an estimate on it using a
multiplier method (see Proposition 6). Obviously, the presence of a degenerate fourth-order
operator brings more difficulties with respect to the ones for the second-order case. These
difficulties are related to some new terms that we have to face; for example, we have to
estimate from above

∫ T
s y2(t, 1)dt +

∫ T
s y2

x(t, 1)dt for every 0 < s < T using the energy
associated with the original problem. This is carried out in Proposition 7 thanks to a suitable
fourth-order variational problem (see Proposition 3). Thanks to the estimates proved in
Propositions 6 and 7 and using a result given in [18], we prove the main result of the paper,
i.e. Theorem 2.

This paper is organized as follows: In Section 2, we give the functional setting and
some preliminary results that we will use in the rest of the paper, together with the existence
of solutions. In Section 3, we introduce the energy associated with a solution for the problem
and we show that it decays exponentially as time diverges. In particular, we prove that
if λ is small and a, d are not too degenerate (in the sense of Definitions 1 or 2), the energy
satisfies (6), as in [4] for the non-degenerate and non-singular case. The last section is
devoted to the conclusions and to some open problems.

2. Preliminary Results and Well-Posedness

In this section, we introduce the functional setting needed to treat (1). However, here,
our assumptions are more general than those required to obtain the stability result in the
next section.

We start by assuming a very modest requirement.

Hypothesis 1. The functions a, d ∈ C0[0, 1] are such that

1. a(0) = d(0) = 0, a, d > 0 on (0, 1],
2. there are Ka, Kd ∈ (0, 2) such that the functions

x �−→ xKa

a(x)
(7)

and

x �−→ xKd

d(x)
(8)

are non-decreasing in a right neighborhood of x = 0.

It is clear that, if Hypothesis 1 holds, then

lim
x→0

xγ

a(x)
= 0, (9)

for all γ > Ka, and

lim
x→0

xγ

d(x)
= 0, (10)
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for all γ > Kd.
Let us state that if a is (WD) or (SD), then (2) implies that (7) holds on the whole

domain (0, 1] analogously for d.
In order to treat (1), let us introduce the following Hilbert spaces with the related inner

products and norms given by the following:

L2
1
a
(0, 1) :=

{
u ∈ L2(0, 1)

∣∣∣ ‖u‖ 1
a
< ∞

}
,

〈u, v〉 1
a

:=
∫ 1

0
uv

1
a

dx, ‖u‖2
1
a
=

∫ 1

0

u2

a
dx,

for all u, v ∈ L2
1
a
(0, 1);

Hi
1
a
(0, 1) := L2

1
a
(0, 1) ∩ Hi(0, 1), i = 1, 2,

〈u, v〉i, 1
a

:= 〈u, v〉 1
a
+

i

∑
k=1

∫ 1

0
u(k)(x)v(k)(x)dx

and

‖u‖2
Hi

1
a
(0,1) := ‖u‖2

1
a
+

i

∑
k=1

∥∥∥u(k)
∥∥∥2

L2(0,1)
,

∀ u, v ∈ Hi
1
a
(0, 1), i = 1, 2. In addition to the previous ones, we introduce the following

important Hilbert spaces:

H1
1
a ,0
(0, 1) :=

{
u ∈ H1

1
a
(0, 1) : u(0) = 0

}
and

H2
1
a ,0
(0, 1) :=

{
u ∈ H1

1
a ,0
(0, 1) ∩ H2(0, 1) : u′(0) = 0

}
,

with the previous inner products 〈·, ·〉i, 1
a

and norms ‖ · ‖Hi
1
a
(0,1), i = 1, 2. Now, consider the

scalar product

〈u, v〉i,◦ :=
∫ 1

0
u(i)(x)v(i)(x)dx

for all u, v ∈ Hi
1
a
(0, 1), which induces the norm

‖u‖i,◦ := ‖u(i)‖L2(0,1), ∀ u ∈ Hi
1
a
(0, 1),

i = 1, 2. Observe that, if a is continuous, a(0) = 0 and (7) is satisfied, then the norms
‖ · ‖Hi

1
a
(0,1), ‖ · ‖i and ‖ · ‖i,◦ are equivalent in Hi

1
a ,0
(0, 1). Here,

‖u‖2
i := ‖u‖2

1
a
+ ‖u(i)‖2

L2(0,1), ∀ u ∈ Hi
1
a ,0
(0, 1),

i = 1, 2 (see, e.g., [11]). Clearly, if i = 1, the previous equivalence is obviously satisfied.
Indeed, ‖ · ‖H1

1
a
(0,1) and ‖ · ‖1 coincide and, for ([19], Proposition 2.6), one proves that there

is C > 0 such that ∫ 1

0

u2

a
dx ≤ C

∫ 1

0
(u′)2dx, (11)

for all u ∈ H1
1
a ,0
(0, 1). Let

CHP be the best constant of (11). (12)
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Now, assume i = 2 and fix u ∈ H2
1
a ,0
(0, 1). Proceeding as for i = 1 and applying the

classical Hardy’s inequality to z := u′ (observing that z ∈ H1
1
a ,0
(0, 1)), we have

∫ 1

0
(u′)2dx ≤

∫ 1

0

z2

x2 dx ≤ 4
∫ 1

0
(z′)2dx = 4

∫ 1

0
(u′′)2dx = 4‖u‖2

2,◦.

Hence, ‖ · ‖H2
1
a
(0,1) and ‖ · ‖2 are equivalent in H2

1
a ,0
(0, 1) (actually, they are equivalent in

H2
1
a
(0, 1), see, e.g., [11]). Moreover, by the previous inequality,

∫ 1

0

u2

a
dx ≤ CHP

∫ 1

0
(u′)2dx ≤ 4CHP‖u‖2

2,◦ (13)

and the thesis follows. In particular, ‖u‖2
1 ≤ (CHP + 1)‖u‖2

1,◦ for all u ∈ H1
1
a ,0
(0, 1) and

‖u‖2
2 ≤ (4CHP + 1)‖u‖2

2,◦ (14)

for all u ∈ H2
1
a ,0
(0, 1) (see ([12], Proposition 2.1)).

As in ([16], Proposition 2.3), one can prove the next result

Proposition 1. Assume Hypothesis 1 and take Ka, Kd such that Ka + Kd ≤ 2. If u ∈ H2
1
a ,0
(0, 1),

then for
u√
ad

∈ L2(0, 1), there is a positive constant C > 0 such that

∫ 1

0

u2(x)
a(x)d(x)

dx ≤ C
∫ 1

0
(u′′(x))2dx. (15)

Let
C̃HP be the best constant of (15). (16)

As in ([20], Chapter V), we assume the next hypothesis:

Hypothesis 2. The constant λ ∈ R is such that λ �= 0 and

λ <
1

C̃HP
. (17)

Observe that the case λ = 0 is already considered in [12]. Thus, it is not restrictive to
assume λ �= 0.

Moreover, if λ ∈
(

0, 1
C̃HP

)
, we can take ε ∈ (0, 1) such that

λ =
1 − ε

C̃HP
> 0. (18)

Hence, as a consequence of Proposition 1, one has the next estimate (see ([16], Proposition 2.4)).

Proposition 2. Assume Hypothesis 1 and λ ∈
(

0, 1
C̃HP

)
. If u ∈ H2

1
a ,0
(0, 1), then

∫ 1

0
(u′′(x))2dx − λ

∫ 1

0

u2(x)
a(x)d(x)

dx ≥ ε
∫ 1

0
(u′′(x))2dx.
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Under Hypotheses 1 and 2, one can consider in H2
1
a ,0
(0, 1) also the product

〈u, v〉2,∼ := 〈u, v〉2,◦ − λ
∫ 1

0

uv
ad

dx,

which induces the norm

‖u‖2
2,∼ = ‖u‖2

2,◦ − λ
∫ 1

0

u2

ad
dx.

By Propositions 1 and 2, one can prove the following equivalence:

Corollary 1. Assume Hypotheses 1 and 2 and Ka + Kd ≤ 2. Then, the norms ‖ · ‖H2
1
a
(0,1), ‖ · ‖2,

‖ · ‖2,◦, and ‖ · ‖2,∼ are equivalent in H2
1
a
(0, 1).

In order to study the well-posedness of (1), we introduce the operator A: D(A) ⊂
L2

1
a
(0, 1) → L2

1
a
(0, 1) by Au := au′′′′, for all u ∈ D(A) :=

{
u ∈ H2

1
a ,0
(0, 1) : au′′′′ ∈ L2

1
a
(0, 1)

}
,

where the next Gauss–Green formula holds∫ 1

0
u′′′′vdx = u′′′(1)v(1)− u′′(1)v′(1) +

∫ 1

0
u′′v′′dx (19)

for all (u, v) ∈ D(A)× H2
1
a ,0
(0, 1) (see [12]). Moreover, consider

Aλu := Au − λ

d
u, ∀ u ∈ D(Aλ),

where
D(Aλ) :=

{
u ∈ H2

1
a ,0
(0, 1)

∣∣ Aλu ∈ L2
1
a
(0, 1)

}
. (20)

Observe that if u ∈ H2
1
a ,0
(0, 1) and Ka + 2Kd ≤ 2, one proves that u

d ∈ L2
1
a
(0, 1); hence,

u ∈ D(Aλ) if and only if u ∈ D(A), i.e., D(Aλ) = D(A) (for more details, we refer to [16]).
For this reason, in the following, we assume the next assumption:

Hypothesis 3. Assume Hypothesis 1 and Ka + 2Kd ≤ 2.

Under this assumption, it is clear that d cannot be (SD). On the other hand, a can be
(SD), but in this case, Kd has to be very small.

Finally, to prove the well-posedness of (1), we need to introduce the last Hilbert space
H0 := H2

1
a ,0
(0, 1)× L2

1
a
(0, 1), with inner product and norm given by

〈(u, v), (ũ, ṽ)〉H0 := 〈u, ũ〉2,◦ + 〈v, ṽ〉 1
a
+ βu(1)ũ(1) + γu′(1)ũ′(1)

and
‖(u, v)‖2

H0
:= ‖u′′‖2

L2(0,1) + ‖v‖2
1
a
+ βu2(1) + γ(u′(1))2

for every (u, v), (ũ, ṽ) ∈ H0, where β, γ ≥ 0, and the matrix operator A : D(A) ⊂ H0 →
H0 given by

A :=

(
0 Id

−Aλ 0

)
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with domain

D(A) := {(u, v) ∈ D(A)× H2
1
a ,0
(0, 1) : βu(1)− u′′′(1) + v(1) = 0,

γu′(1) + u′′(1) + v′(1) = 0}.

Thanks to (19), one can prove the next theorem that contains the main properties of the
operator (A, D(A)). Since the proof is similar to the one of [21] or [22], we omit it.

Theorem 1. Assume a (WD) or (SD). Then, the operator (A, D(A)) is non-positive with a dense
domain and generates a contraction semigroup (S(t))t≥0.

Thanks to the previous theorem, one has the next result, which can be proved as in
([16], Theorem 2.7).

Theorem 2. Hypotheses 2 and 3 hold. If (y0, y1) ∈ H2
1
a ,0
(0, 1)× L2

1
a
(0, 1), then there is a unique

mild solution
y ∈ C1

(
[0,+∞); L2

1
a
(0, 1)

)
∩ C

(
[0,+∞); H2

1
a ,0
(0, 1)

)
of (1), which depends continuously on the initial data. In addition, if (y0, y1) ∈ D(A1), then the
solution y is classical in the sense that

y ∈ C2
(
[0,+∞); L2

1
a
(0, 1)

)
∩ C1

(
[0,+∞); H2

1
a ,0
(0, 1)

)
∩ C([0,+∞); D(A))

and the equation of (1) holds for all t ≥ 0.

Remark 1. Due to the reversibility in time of the equation, solutions exist with the same regularity
for t < 0. We will use this fact in the proof of the controllability result by considering a backward
problem whose final time data will be transformed in initial data: this is the reason for the notation
of the initial data in problem (1).

The last important result of this section is given by the next proposition. Let us
start with

Hypothesis 4. Assume a (WD) or (SD), d (WD) with Ka + 2Kd ≤ 2, λ �= 0 with λ < 1
C̃HP

and
β, γ ≥ 0.

Proposition 3. Assume Hypothesis 4 and define

|||z|||2 :=
∫ 1

0
(z′′)2dx − λ

∫ 1

0

z2

ad
dx + βz2(1) + γ(z′(1))2

for all z ∈ H2
1
a ,0
(0, 1). Then, the norms ||| · ||| and || · ||2,◦ are equivalent in H2

1
a ,0
(0, 1). Moreover,

for every ρ, μ ∈ R, the variational problem

∫ 1

0
z′′ϕ′′dx − λ

∫ 1

0

zϕ

ad
+ βz(1)ϕ(1) + γz′(1)ϕ′(1) = ρϕ(1) + μϕ′(1), ∀ ϕ ∈ H2

1
a ,0
(0, 1),

admits a unique solution z ∈ H2
1
a ,0
(0, 1), which satisfies the estimates

‖z‖2
1
a
≤ 4CHP

Cε
(|ρ|+ |μ|)2, and |||z|||2 ≤ (|ρ|+ |μ|)2, (21)
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where

Cε :=

⎧⎨⎩1, λ < 0,

ε, λ > 0.
(22)

In addition, z ∈ D(Aλ) and solves ⎧⎪⎪⎨⎪⎪⎩
Aλz = 0,

βz(1)− z′′′(1) = ρ,

γz′(1) + z′′(1) = μ.

(23)

Proof. As a first step, observe that for all z ∈ H2
1
a ,0
(0, 1), one has

|z′(x)| =
∣∣∣∣∫ x

0
z′′(t)dt

∣∣∣∣ ≤ ‖z′′‖L2(0,1) = ‖z‖2,◦, (24)

and

|z(x)| =
∣∣∣∣∫ x

0
z′(t)dt

∣∣∣∣ = ∣∣∣∣∫ x

0

∫ t

0
z′′(τ)dτ dt

∣∣∣∣ ≤ ‖z′′‖L2(0,1) = ‖z‖2,◦ (25)

for all x ∈ [0, 1]. Thus, ||| · ||| and ‖ · ‖2,◦ are equivalent. Indeed, for all z ∈ H2
1
a ,0
(0, 1), if

λ < 0, one proves immediately that

‖z‖2
2,◦ = ‖z′′‖2

L2(0,1) ≤ |||z|||2. (26)

If λ ∈
(

0,
1

C̃HP

)
, by Proposition 2, one has

∫ 1

0
(z′′(x))2dx − λ

∫ 1

0

z2(x)
a(x)d(x)

dx ≥ ε
∫ 1

0
(z′′(x))2dx. (27)

for all z ∈ H2
1
a ,0
(0, 1), and so

‖z‖2
2,◦ ≤

1
ε
|||z|||2, (28)

for all z ∈ H2
1
a ,0
(0, 1). In conclusion, we have

‖z‖2
2,◦ ≤

1
Cε

|||z|||2. (29)

Now, we prove that there is C > 0 such that

|||z|||2 ≤ C‖z‖2
2,◦,

for all z ∈ H2
1
a ,0
(0, 1). Clearly, (25) and (24) imply βz2(1) ≤ β‖z‖2

2,◦ and γ(z′(1))2 ≤ γ‖z‖2
2,◦,

respectively; hence, if λ > 0, one proves immediately that |||z|||2 ≤ (1 + β + γ)‖z‖2
2,◦; if

λ < 0, by (15), then
|||z|||2 ≤ (1 − λC̃HP + β + γ)‖z‖2

2,◦.

In any case, the claim holds.
Now, consider the bilinear and symmetric form Λ : H2

1
a ,0
(0, 1) × H2

1
a ,0
(0, 1) → R

such that

Λ(z, ϕ) :=
∫ 1

0
z′′ϕ′′dx − λ

∫ 1

0

zϕ

ad
dx + βz(1)ϕ(1) + γz′(1)ϕ′(1).
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As in [22] or in [17], one can easily prove that Λ is coercive and continuous. Now, consider
the linear functional

L(ϕ) := ρϕ(1) + μϕ′(1),

with ϕ ∈ H2
1
a ,0
(0, 1) and ρ, μ ∈ R. Clearly, L is continuous and linear. Thus, by the

Lax-Milgram Theorem, there is a unique solution z ∈ H2
1
a ,0
(0, 1) of

Λ(z, ϕ) = L(ϕ) (30)

for all ϕ ∈ H2
1
a ,0
(0, 1). In particular,

|||z|||2 = Λ(z, z) =
∫ 1

0
(z′′)2dx − λ

∫ 1

0

z2

ad
dx + βz2(1) + γ(z′(1))2 = ρz(1) + μz′(1). (31)

Concerning the other estimates, by (24)–(26) and (31), we have |||z|||2 = ρz(1) + μz′(1) ≤
(|ρ|+ |μ|)|||z|||; thus,

|||z||| ≤ |ρ|+ |μ|. (32)

Moreover, by the equivalence of the norms in H2
1
a ,0
(0, 1), Proposition 2, and (13), one has

|||z|||2 = ‖z‖2
2,◦ − λ

∫ 1

0

z2

ad
dx + βz2(1) + γ(z′(1))2 ≥ Cε‖z‖2

2,◦ ≥
Cε

4CHP
‖z‖2

1
a
,

where Cε is as in (22). Thus, by (32), ‖z‖2
1
a
≤ 4CHP

Cε
|||z|||2 ≤ 4CHP

Cε
(|ρ|+ |μ|)2.

Now, we will prove that z belongs to D(A) and solves (23). To this end, con-
sider (30) again; clearly, it holds for every ϕ ∈ C∞

c (0, 1), so that
∫ 1

0 z′′ϕ′′dx − λ
∫ 1

0
zϕ
ad dx =

0 for all ϕ ∈ C∞
c (0, 1). Thus, z′′′′ = λ

zϕ
ad a.e. in (0, 1) (see, e.g., ([23], Lemma 1.2.1)) and so

az′′′′ − λ
zϕ
d = 0 a.e. in (0, 1), in particular Aλz = 0 ∈ L2

1
a
(0, 1); this implies that z ∈ D(A).

Now, coming back to (30) and using (19) and the fact that Aλz = 0, we have

∫ 1

0
z′′ϕ′′dx − λ

∫ 1

0

zϕ

ad
dx + βz(1)ϕ(1) + γz′(1)ϕ′(1) = ρϕ(1) + μϕ′(1)

⇐⇒ −z′′′(1)ϕ(1) + (z′′ϕ′)(1) + βz(1)ϕ(1) + γ(z′ϕ′)(1) = ρϕ(1) + μϕ′(1)

for all ϕ ∈ H2
1
a ,0
(0, 1). Thus, −z′′′(1) + βz(1) = ρ and γz′(1) + z′′(1) = μ, that is, z

solves (23).

3. Energy Estimates and Exponential Stability

In this section, we prove the main result of this paper. In particular, proving some
estimates of the energy associated with (1), we obtain the exponential stability.

To begin with, we give the next definition:

Definition 3. For a mild solution y of (1), we define its energy as the continuous function

Ey(t) :=
1
2

∫ 1

0

(
y2

t (t, x)
a(x)

+ y2
xx(t, x)− λ

ad
y2(t, x)

)
dx +

β

2
y2(t, 1) +

γ

2
y2

x(t, 1), ∀ t ≥ 0. (33)

Recalling that β, γ ≥ 0, one proves that if y is a mild solution and if β, γ �= 0, then

y2(t, 1) ≤ 2
β

Ey(t) and y2
x(t, 1) ≤ 2

γ
Ey(t);
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on the other hand, thanks to Equations (24)–(26), for all β ≥ 0 and γ ≥ 0,

y2(t, 1) ≤ 2
Cε

Ey(t) and y2
x(t, 1) ≤ 2

Cε
Ey(t),

where Cε is as in (22). Thus, we have

y2(t, 1) ≤ CβEy(t) and y2
x(t, 1) ≤ CγEy(t), (34)

where Cβ :=

⎧⎪⎨⎪⎩2 min
{

1
Cε

,
1
β

}
, β �= 0,

2
Cε

, β = 0
and Cγ :=

⎧⎪⎨⎪⎩2 min
{

1
Cε

,
1
γ

}
, γ �= 0,

2
Cε

, γ = 0.

Observe that if β > 1, being 1
β < 1 and 1

Cε
≥ 1 (recall that ε ∈ (0, 1)), min

{
1

Cε
, 1

β

}
= 1

β .
Analogously for γ.

As in ([21], Thoerem 3.1), it is possible to prove that the energy is a non-increasing function.

Theorem 1. Assume Hypothesis 4 and let y be a classical solution of (1). Then, the energy is
non-increasing. In particular,

dEy(t)
dt

= −y2
t (t, 1)− y2

tx(t, 1), ∀ t ≥ 0.

Actually, one can prove that the previous monotonicity result also holds under weaker
assumptions on the functions a and d.

Proposition 4. Assume Hypothesis 4. For the fixed T > 0, if y is a classical solution of (1), then

0 = 2
∫ 1

0

[
yt

x
a

yx

]t=T

t=s
dx − 1

a(1)

∫ T

s
y2

t (t, 1)dt +
∫

Qs

y2
t

a

(
1 − xa′

a

)
dx dt

− λ

a(1)d(1)

∫ T

0
y2(t, 1)dt + 3

∫
Qs

y2
xxdx dt + 2β

∫ T

s
yx(t, 1)y(t, 1)dt

+ 2
∫ T

s
yx(t, 1)yt(t, 1)dt + 2γ

∫ T

s
y2

x(t, 1)dt + 2
∫ T

s
yx(t, 1)ytx(t, 1)dt

−
∫ T

s
y2

xx(t, 1)dt + λ
∫

Qs

(
1 − xa′

a
− xd′

d

)
y2

ad
dxdt,

(35)

for every 0 < s < T. Here, Qs := (s, T)× (0, 1).

Proof. Since some computations are similar to the ones of ([21], Proposition 4.7), we sketch

them. Fix s ∈ (0, T). Multiplying the equation in (1) by
xyx

a
and integrating over Qs,

we have
0 =

∫
Qs

ytt
xyx

a
dx dt +

∫
Qs

ayxxxx
xyx

a
dx dt − λ

∫
Qs

xyyx

ad
dxdt. (36)

As in [21], one proves that∫
Qs

ytt
xyx

a
dx dt +

∫
Qs

ayxxxx
xyx

a
dx dt

=
∫ 1

0

[
yt

xyx

a

]t=T

t=s
dx − 1

2a(1)

∫ T

s
y2

t (t, 1)dt +
1
2

∫
Qs

y2
t

a

(
1 − xa′

a

)
dx dt

+
3
2

∫
Qs

y2
xxdxdt + β

∫ T

s
yx(t, 1)y(t, 1)dt +

∫ T

s
yx(t, 1)yt(t, 1)dt

+ γ
∫ T

s
y2

x(t, 1)dt +
∫ T

s
yx(t, 1)ytx(t, 1)dt − 1

2

∫ T

s
y2

xx(t, 1)dt.
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Hence, it remains to compute −λ
∫

Qs

xyyx
ad dxdt. As in [17], one proves

−λ
∫

Qs

xyyx

ad
dxdt = −λ

2

∫ T

s

[
xy2

ad

]x=1

x=0
dt +

λ

2

∫
Qs

(
ad − x(a′d + ad′)

(ad)2

)
y2dxdt

= −λ

2

∫ T

s

[
xy2

ad

]x=1

x=0
dt +

λ

2

∫
Qs

(
1 − xa′

a
− xd′

d

)
y2

ad
dxdt.

By ([17], Lemma 1)

λ
∫ T

0

[
y2 x

ad

]x=1

x=0
=

λ

a(1)d(1)

∫ T

0
y2(t, 1)dt

and the thesis follows.

As a consequence of the previous equality, we have the next relation:

Proposition 5. Assume Hypothesis 4 and fix T > 0. If y is a classical solution of (1), then for
every 0 < s < T, we have

∫
Qs

y2
t

a

(Ka

2
+ 1 − xa′

a

)
dx dt +

∫
Qs

y2
xx

(
3 − Ka

2

)
dx dt

+ λ
∫

Qs

(
1 − xa′

a
− xd′

d
+

Ka

2

)
y2

ad
dxdt = (B.T.),

(37)

where

(B.T.) =
Ka

2

∫ 1

0

[yyt

a

]t=T

t=s
dx − 2

∫ 1

0

[
yt

x
a

yx

]t=T

t=s
dx +

Kaβ

2

∫ T

s
y2(t, 1)dt

+
Ka

2

∫ T

s
y(t, 1)yt(t, 1)dt + γ

(Ka

2
− 2

) ∫ T

s
y2

x(t, 1)dt

+
(Ka

2
− 2

) ∫ T

s
yx(t, 1)ytx(t, 1)dt +

∫ T

s

y2
t (t, 1)
a(1)

dt − 2β
∫ T

s
yx(t, 1)y(t, 1)dt

− 2
∫ T

s
yx(t, 1)yt(t, 1)dt +

∫ T

s
y2

xx(t, 1)dt +
λ

a(1)d(1)

∫ T

s
y2(t, 1)dt.

Proof. Let y be a classical solution of (1) and fix s ∈ (0, T). Multiplying the equation in (1)

by
y
a

, integrating by parts over Qs, and using (19), we obtain

0 =
∫ 1

0

[
yt

y
a

]t=T

t=s
dx −

∫
Qs

y2
t

a
dx dt +

∫ T

s
(yyxxx)(t, 1)dt

−
∫ T

s
(yxyxx)(t, 1)dt +

∫
Qs

y2
xxdx dt − λ

∫
Qs

y2

ad
dxdt.

(38)

Obviously, all the previous integrals make sense, and by multiplying (38) by
Ka

2
, one has

0 =
Ka

2

∫
Qs

(
−y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt +

Ka

2

∫ 1

0

[
yt

y
a

]t=T

t=s
dx

+
Ka

2

∫ T

s
y(t, 1)yxxx(t, 1)dt − Ka

2

∫ T

s
yx(t, 1)yxx(t, 1)dt.

(39)

By summing (35) and (39) and using the boundary conditions at 1, we obtain the thesis.

An immediate consequence of (37) is the next result. However, to prove it, we assume
an additional hypothesis on functions a and d.
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Hypothesis 5. Assume a (WD) or (SD), d (WD) with Ka + 2Kd < 2, λ �= 0 with λ < 1
C̃HP

and
β, γ ≥ 0.

Observe that this hypothesis is more restrictive than Hypothesis 4; indeed, in
Hypothesis 5, we exclude the case Ka + 2Kd = 2. In fact, as we can see already from
the next result, the condition Ka + 2Kd < 2 is important for the technique used in the fol-
lowing proposition:

Proposition 6. Assume Hypothesis 5, fix T > 0 and let y be a classical solution of (1). Then, for
every 0 < s < T and for all ε0 ∈ (0, 2 − Ka − 2Kd), one proves

ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt ≤

(
4ϑ + � +

Cγ

2

(
2 − Ka

2

))
Ey(s)

+

(
Ka

4
+ β +

Kaβ

2
+

λ

a(1)d(1)

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt,

if λ > 0, and

ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt ≤

(
4ϑ + � +

Cγ

2

(
2 − Ka

2

))
Ey(s)

+

(
Ka

4
+ β +

Kaβ

2

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt

− 4λC̃HP

(
1 +

3
2

Ka + Kd

) ∫ T

s
Ey(t)dt,

if λ < 0.

Here, ϑ := max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
and � := max

{
2,

Ka

4
+ 1 +

1
a(1)

}
.

Proof. By assumption, we can take ε0 ∈ (0, 2 − Ka − 2Kd); thus,

1 − xa′

a
+

Ka

2
>

ε0

2
,

3 − Ka

2
>

ε0

2

1 − xa′

a
− xd′

d
+

Ka

2
≥ ε0

2
.

(40)

Now, we distinguish between the cases λ > 0 and λ < 0.
Case λ > 0.

In this case, the distributed terms in (37) can be estimated from below in the follow-
ing way:∫

Qs

y2
t

a

(Ka

2
+ 1 − xa′

a

)
dx dt +

∫
Qs

y2
xx

(
3 − Ka

2

)
dx dt + λ

∫
Qs

(
1 − xa′

a
− xd′

d
+

Ka

2

)
y2

ad
dxdt

≥ ε0

2

∫
Qs

(
y2

t
a
+ y2

xx + λ
y2

ad

)
dx dt ≥ ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt.

(41)

Now, we estimate the boundary terms in (37) from above. First of all, consider the

integral
∫ 1

0

(
−2yt

x
a

yx +
Ka

2
yyt

a

)
(τ, x)dx for all τ ∈ [s, T]. Using the fact that

x2

a(x)
≤ 1

a(1)
,

together with the classical Hardy inequality (12) and proceeding as in ([12], Proposition 3.3),
one proves
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∫ 1

0

(
−2yt

x
a

yx +
Ka

2
yyt

a

)
(τ, x)dx ≤

≤ 4
a(1)

∫ 1

0
y2

xx(τ, x)dx +

(
1 +

Ka

4

)∫ 1

0

y2
t

a
(τ, x)dx + KaCHP

∫ 1

0
y2

xx(τ, x)dx.

Hence, by Proposition 2,

∫ 1

0

(
−2yt

x
a

yx +
Ka

2
yyt

a

)
(τ, x)dx

≤
(

4
a(1)

+ KaCHP

) ∫ 1

0
y2

xx(τ, x)dx +

(
1 +

Ka

4

)∫ 1

0

y2
t

a
(τ, x)dx

≤ 1
ε

(
4

a(1)
+ KaCHP

)(∫ 1

0
y2

xx(τ, x)dx − λ
∫ 1

0

y2

ad
(τ, x)dx

)
+

(
1 +

Ka

4

)∫ 1

0

y2
t

a
(τ, x)dx

≤ 2 max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
Ey(τ),

for all τ ∈ [s, T]. Hence, since the energy is non-increasing,

∫ 1

0

[
−2yt

x
a

yx +
Ka

2
yyt

a

]t=T

t=s
dx ≤ 4 max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
Ey(s). (42)

Now, based on (34) and the fact that Ka < 2, we have

γ

(
Ka

2
− 2

)∫ T

s
y2

x(t, 1)dt +

(
Ka

2
− 2

)∫ T

s
yx(t, 1)ytx(t, 1)dt

≤
(

Ka

2
− 2

)
1
2

∫ T

2
(yx(t, 1)2)tdt =

(
Ka

2
− 2

)
1
2
(y2

x(T, 1)− y2
x(s, 1))

≤
(

2 − Ka

2

)
1
2

y2
x(s, 1) ≤

(
2 − Ka

2

)
Cγ

2
Ey(s).

(43)

Obviously,

Ka

2

∫ T

s
y(t, 1)yt(t, 1)dt ≤ Ka

4

∫ T

s
y2(t, 1)dt +

Ka

4

∫ T

s
y2

t (t, 1)dt, (44)

−β
∫ T

s 2yx(t, 1)y(t, 1)dt ≤ β
∫ T

s 2|yx(t, 1)y(t, 1)|dt ≤ β
∫ T

s y2
x(t, 1)dt + β

∫ T
s y2(t, 1)dt (45)

and

−
∫ T

s
2yx(t, 1)yt(t, 1)dt ≤

∫ T

s
2|yx(t, 1)yt(t, 1)|dt ≤

∫ T

s
y2

x(t, 1)dt +
∫ T

s
y2

t (t, 1)dt. (46)

Furthermore, recalling that γyx(t, 1) + yxx(t, 1) + ytx(t, 1) = 0,

∫ T

s
y2

xx(t, 1)dt ≤ 2γ2
∫ T

s
y2

x(t, 1)dt + 2
∫ T

s
y2

tx(t, 1)dt. (47)

Hence, by (37), (41)–(47) and Theorem 1, we have
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ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt ≤ 4 max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
Ey(s)

+

(
2 − Ka

2

)
Cγ

2
Ey(s) +

(
Ka

4
+ 1 +

1
a(1)

)∫ T

s
y2

t (t, 1)dt + 2
∫ T

s
y2

tx(t, 1)dt

+

(
Ka

4
+ β +

Kaβ

2
+

λ

a(1)d(1)

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt

≤ 4 max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
Ey(s) +

(
2 − Ka

2

)
Cγ

2
Ey(s)

+ max

{
2,

Ka

4
+ 1 +

1
a(1)

}∫ T

s
− d

dt
Ey(t)dt

+

(
Ka

4
+ β +

Kaβ

2
+

λ

a(1)d(1)

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt

≤ 4 max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
Ey(s) +

(
2 − Ka

2

)
Cγ

2
Ey(s)

+ max

{
2,

Ka

4
+ 1 +

1
a(1)

}
Ey(s)

+

(
Ka

4
+ β +

Kaβ

2
+

λ

a(1)d(1)

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt.

Hence,

ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt ≤

(
4ϑ + � +

(
2 − Ka

2

)
Cγ

2

)
Ey(s)

+

(
Ka

4
+ β +

Kaβ

2
+

λ

a(1)d(1)

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt

and the thesis follows.
Case λ < 0. In this case, based on the definition of energy and (15), one proves

∫
Qs

y2

ad
dxdt ≤ C̃HP

∫
Qs

y2
xx(t, x)dxdt ≤ 2C̃HP

∫ T

s
Ey(t)dt;

hence,

−λ
∫

Qs

y2

ad
dxdt ≤ −2λC̃HP

∫ T

s
Ey(t)dt. (48)

Moreover, by (37) and (40), one has

ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt ≤

∫
Qs

y2
t

a

(Ka

2
+ 1 − xa′

a

)
dx dt +

∫
Qs

y2
xx

(
3 − Ka

2

)
dx dt

− λ
∫

Qs

(
1 − xa′

a
− xd′

d
+

Ka

2

)
y2

ad
dxdt

= (B.T.)− 2λ
∫

Qs

(
1 − xa′

a
− xd′

d
+

Ka

2

)
y2

ad
dxdt,

(49)

where (B.T.) is the boundary terms in (37). Now, by (48),

−2λ
∫

Qs

(
1 − xa′

a
− xd′

d
+

Ka

2

)
y2

ad
dxdt ≤ −4λC̃HP

(
1 +

3
2

Ka + Kd + M
) ∫ T

s
Ey(t)dt.
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Proceeding as for the case λ > 0 and using the fact that λ
a(1)d(1) < 0, one can estimate the

boundary terms in the following way:

(B.T.) ≤ 4 max

{
1
ε

(
4

a(1)
+ KaCHP

)
, 1 +

Ka

4

}
Ey(s)

+

{
max

{
2,

Ka

4
+ 1 +

1
a(1)

}
+

(
2 − Ka

2

)
Cγ

2

}
Ey(s)

+

(
Ka

4
+ β +

Kaβ

2

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt.

Hence,
ε0

2

∫
Qs

(
y2

t
a
+ y2

xx − λ
y2

ad

)
dx dt ≤

(
4ϑ + �

(
2 − Ka

2

)
Cγ

2

)
Ey(s)

+

(
Ka

4
+ β +

Kaβ

2

)∫ T

s
y2(t, 1)dt + (β + 1 + 2γ2)

∫ T

s
y2

x(t, 1)dt

− 4λC̃HP

(
1 +

3
2

Ka + Kd

) ∫ T

s
Ey(t)dt

and the thesis follows.

In the next proposition, we will find an estimate from above for
∫ T

s
y2(t, 1)dt +∫ T

s
y2

x(t, 1)dt. To this end, set

C̃β :=

⎧⎨⎩ 1
β , β �= 0, for all considered λ,
1

Cε
, β = 0, for all considered λ,

C̃γ :=

⎧⎨⎩ 1
γ , γ �= 0, for all considered λ,
1

Cε
, γ = 0, for all considered λ,

and
ν :=

1
C̃β + C̃γ

. (50)

Proposition 7. Assume Hypothesis 5 and fix T > 0. If y is a classical solution of (1), then for
every 0 < s < T and for every δ ∈ (0, ν), we have

∫ T

s
y2(t, 1)dt +

∫ T

s
y2

x(t, 1)dt ≤ δ

Cδ

∫ T

s
Ey(t)dt

+
1

Cδ

[
2

Cε

(
1 + 2CHP

(
Cβ + Cγ

))
+

1
δ

(
4CHP

Cε
+

1
2

)]
Ey(s),

where
Cδ := 1 − δ(C̃β + C̃γ).

Proof. Set ρ = y(t, 1), μ = yx(t, 1), where t ∈ [s, T], and let z = z(t, ·) ∈ H2
1
a ,0
(0, 1) be the

unique solution of

∫ 1

0
zxx ϕ′′dx − λ

∫ 1

0

zϕ

ad
dx + βz(t, 1)ϕ(1) + γz′(t, 1)ϕ′(1) = ρϕ(1) + μϕ′(1),

for all ϕ ∈ H2
1
a ,0
(0, 1). By Proposition 3, z(t, ·) ∈ D(Aλ) for all t and solves
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⎧⎪⎪⎨⎪⎪⎩
Aλz = 0,

βz(t, 1)− zxxx(t, 1) = ρ,

γzx(t, 1) + zxx(t, 1) = μ.

(51)

By (21), we also have

‖z(t)‖2
L2

1
a
(0,1) ≤

8CHP
Cε

(y2(t, 1) + y2
x(t, 1)) and |||z(t)|||2 ≤ 2(y2(t, 1) + y2

x(t, 1)), (52)

where Cε is defined in (22). Moreover, if β �= 0 and γ �= 0, then by Proposition 2 if λ > 0,
one proves

z2(t, 1) ≤ 1
β
|||z|||2 ≤ 2

β
(y2(t, 1) + y2

x(t, 1))

and
z2

x(t, 1) ≤ 1
γ
|||z|||2 ≤ 2

γ
(y2(t, 1) + y2

x(t, 1)).

On the other hand, if β = 0 and γ = 0, then by (24), (25) and (29), it results in
z2(t, 1), z2

x(t, 1) ≤ ‖z‖2
2,◦ ≤ 1

Cε
|||z|||2 ≤ 1

Cε
(|ρ| + |μ|)2 ≤ 2

Cε
(y2(t, 1) + y2

x(t, 1)). In every
case, for all considered λ, we have

z2(t, 1) ≤ 2C̃β(y2(t, 1) + y2
x(t, 1)), (53)

and
z2

x(t, 1) ≤ 2C̃γ(y2(t, 1) + y2
x(t, 1)). (54)

Finally, observe that for all considered λ and all t > 0, we have

1
2

∫ 1

0

(
1
a

y2
t (t, x) + y2

xx(t, x)
)

dx ≤ 1
Cε

Ey(t). (55)

Indeed, consider, first of all, λ < 0, then

1
2

∫ 1

0

(
1
a

y2
t (t, x) + y2

xx(t, x)
)

dx ≤ Ey(t).

If λ ∈
(

0,
1

C̃HP

)
and ε ∈ (0, 1) is as in (18), we obtain (27), which implies that

2Ey(t) ≥ ε
∫ 1

0
y2

xx(t, x)dx +
∫ 1

0

y2
t (t, x)
a(x)

dx + βy2(t, 1) + γy2
x(t, 1)

≥ ε

(∫ 1

0
y2

xx(t, x)dx +
∫ 1

0

y2
t (t, x)
a(x)

dx
)
+ βy2(t, 1) + γy2

x(t, 1);

in particular,
1
2

∫ 1

0

(
1
a

y2
t (t, x) + y2

xx(t, x)
)

dx ≤ 1
ε

Ey(t),

for all t ≥ 0.
Now, multiplying the equation in (1) by

z
a

and integrating over Qs, we have

0 =
∫

Qs
ytt

z
a

dx dt +
∫

Qs
zyxxxxdx dt − λ

∫
Qs

y
ad

zdxdt

=
∫ 1

0

[
yt

z
a

]t=T

t=s
dx −

∫
Qs

ytzt

a
dx dt +

∫ T

s
z(t, 1)yxxx(t, 1)dt −

∫ T

s
zx(t, 1)yxx(t, 1)dt

+
∫

Qs
zxxyxxdx dt − λ

∫
Qs

y
ad

zdxdt.

(56)
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Hence, (56) reads

∫ 1

0

[
yt

z
a

]t=T

t=s
dx −

∫
Qs

ytzt

a
dx dt − λ

∫
Qs

y
ad

zdxdt

= −
∫ T

s
z(t, 1)yxxx(t, 1)dt +

∫ T

s
zx(t, 1)yxx(t, 1)dt −

∫
Qs

zxxyxxdx dt.
(57)

On the other hand, multiplying the equation in (51) by
y
a

and integrating over Qs, we

have
∫

Qs
zxxxxy dx dt = 0. By (19), we obtain

∫
Qs

zxxyxxdx dt = − ∫ T
s zxxx(t, 1)y(t, 1)dt +∫ T

s yx(t, 1)zxx(t, 1)dt. Substituting in (57), using the fact that zxxx(t, 1) = βz(t, 1) − ρ,
zxx(t, 1) = −γzx(t, 1) + μ, ρ = y(t, 1), μ = yx(t, 1) and proceeding as in [12], we have

∫ 1

0

[
yt

z
a

]t=T

t=s
dx −

∫
Qs

ytzt

a
dx dt − λ

∫
Qs

y
ad

zdxdt

= −
∫ T

s
z(t, 1)yxxx(t, 1)dt +

∫ T

s
zx(t, 1)yxx(t, 1)dt +

∫ T

s
y(t, 1)[βz(t, 1)− ρ]dt

−
∫ T

s
yx(t, 1)[−γzx(t, 1) + μ]dt

=
∫ T

s
z(t, 1)[βy(t, 1)− yxxx(t, 1)]dt

+
∫ T

s
zx(t, 1)[yxx(t, 1) + γyx(t, 1)]dt −

∫ T

s
y2(t, 1)dt −

∫ T

s
y2

x(t, 1)dt.

Then,∫ T

s
y2(t, 1)dt +

∫ T

s
y2

x(t, 1)dt = −
∫ T

s
(ytz)(t, 1)dt −

∫ T

s
(zxytx)(t, 1)dt

−
∫ 1

0

[
yt

z
a

]t=T

t=s
dx +

∫
Qs

ytzt

a
dx dt + λ

∫
Qs

y
ad

zdxdt.
(58)

Thus, in order to estimate
∫ T

s y2(t, 1)dt +
∫ T

s y2
x(t, 1)dt, we have to consider the four terms

in the previous equality.
So, by (21), (34), and Theorem 1, we have, for all τ ∈ [s, T],

∫ 1

0

∣∣∣ytz
a
(τ, x)

∣∣∣dx ≤ 1
2

∫ 1

0

y2
t (τ, x)
a(x)

dx +
1
2

∫ 1

0

z2(τ, x)
a(x)

dx

≤ 1
2

∫ 1

0

y2
t (τ, x)
a(x)

dx +
2CHP

Cε

(
y2(τ, 1) + y2

x(τ, 1)
)

≤ 1
Cε

Ey(τ) +
2CHP

Cε

(
Cβ + Cγ

)
Ey(τ)

≤ (
1 + 2CHP

(
Cβ + Cγ

)) 1
Cε

Ey(s).

By Theorem 1, we have

∣∣∣∫ 1

0

[ytz
a

]t=T

t=s
dx

∣∣∣ ≤ 2
(
1 + 2CHP

(
Cβ + Cγ

)) 1
Cε

Ey(s). (59)

Moreover, for any δ > 0, we have

∫ T

s
|(ytz)(t, 1)|dt ≤ 1

2δ

∫ T

s
y2

t (t, 1)dt +
δ

2

∫ T

s
z2(t, 1)dt

≤ 1
2δ

∫ T

s
y2

t (t, 1)dt + δC̃β

∫ T

s
(y2 + y2

x)(t, 1)dt,
(60)
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by (53). In a similar way, using (54), it is possible to find the next estimate∫ T

s
|(zxytx)(t, 1)|dt ≤ 1

2δ

∫ T

s
y2

tx(t, 1)dt + δC̃γ

∫ T

s
(y2 + y2

x)(t, 1)dt. (61)

Therefore, by summing (60) and (61) and applying Theorem 1, we obtain∫ T

s
|(ytz)(t, 1)|dt +

∫ T

s
|(zxytx)(t, 1)|dt

≤ 1
2δ

∫ T

s
− d

dt
Ey(t)dt + δ

(
C̃β + C̃γ

)∫ T

s
(y2 + y2

x)(t, 1)dt

≤ Ey(s)
2δ

+ δ

(
C̃β + C̃γ

)∫ T

s
(y2 + y2

x)(t, 1)dt.

(62)

Finally, we estimate the integral
∫

Qs

∣∣∣ytzt

a

∣∣∣dx dt. To this end, consider again the problem

(23) and differentiate with respect to t. Thus,⎧⎪⎪⎨⎪⎪⎩
a(zt)xxxx − λ

zt

d
= 0,

βzt(t, 1)− (zt)xxx(t, 1) = yt(t, 1),

γ(zt)x(t, 1) + (zt)xx(t, 1) = (yx)t(t, 1).

Clearly, zt satisfies (52), in particular

‖zt(t)‖2
L2

1
a
(0,1)≤

8CHP
Cε

(y2
t (t, 1) + y2

tx(t, 1))

and
|||zt(t)|||2 ≤ 2(yt(

2t, 1)|+ y2
tx(t, 1)).

Thus, by (55) and the previous estiamte, for δ > 0, we find∫
Qs

∣∣∣ytzt

a

∣∣∣dx dt ≤ δ

2

∫
Qs

y2
t

a
dx dt +

1
2δ

∫
Qs

z2
t
a

dx dt

≤ δ
∫ T

s
Ey(t)dt +

4CHP
δCε

∫ T

s
(y2

t (t, 1) + y2
tx(t, 1))dt

= δ
∫ T

s
Ey(t)dt +

4CHP
δCε

∫ T

s
− d

dt
Ey(t)dt

≤ δ
∫ T

s
Ey(t)dt +

4CHP
δCε

Ey(s).

(63)

Coming back to (58) and using (59), (62), and (63), we find∫ T

s
(y2 + y2

x)(t, 1)dt ≤ 2
(

1
Cε

+
2CHP

Cε

(
Cβ + Cγ

))
Ey(s) +

Ey(s)
2δ

+ δ

(
C̃β + C̃γ

)∫ T

s
(y2 + y2

x)(t, 1)dt

+ δ
∫ T

s
Ey(t)dt +

4CHP
δCε

Ey(s).

Hence, for every δ ∈ (0, ν),

Cδ

∫ T

s
(y2(t, 1) + y2

x(t, 1))dt ≤ 2
(

1
Cε

+
2C̃HP

Cε

(
Cβ + Cγ

))
Ey(s)

+ δ
∫ T

s
Ey(t)dt +

1
δ

(
4CHP

Cε
+

1
2

)
Ey(s),
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and the thesis follows.

As a consequence of Propositions 6 and 7, we can formulate the main result of the
paper, whose proof is based on ([18], Theorem 8.1).

Set

C1 :=
1

Cδ

[
2

Cε

(
1 + 2CHP

(
Cβ + Cγ

))
+

1
δ

(
4CHP

Cε
+

1
2

)]
,

C2 :=

(
4ϑ + � +

Cγ

2

(
2 − Ka

2

))
,

C3 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Ka β

2 + Ka
4 + β + ε0

β
2 + λ

a(1)d(1)

)
, λ > 0,(

Ka
4 + β + Ka β

2 + ε0
β
2

)
, λ < 0,

and
C4 :=

(
β + 1 + 2γ2 + ε0

γ

2

)
.

Theorem 2. Assume Hypothesis 5, fix T > 0 and if λ < 0, then λ ∈
(

−ε0
4C̃HP(1+ 3

2 Ka+Kd)
, 0
)

. Let

y be a mild solution for (1). Then, for all t > 0 and for all δ ∈ (0, min{ν, μ})

Ey(t) ≤ Ey(0)e1− t
M , (64)

where

μ :=

⎧⎨⎩
ε0Cδ

max{C3,C4} , λ > 0,
ε0+4λC̃HP(1+ 3

2 Ka+Kd)
max{C3,C4}+(ε0+4λC̃HP(1+ 3

2 Ka+Kd))(C̃β+C̃γ)
, λ < 0

and

M :=

⎧⎨⎩
Cδ(C2+max{C3,C4}C1)

ε0Cδ−δ max{C3,C4} , λ > 0,
Cδ(C2+max{C3,C4}C1)

Cδ(ε0+4λCHP(1+ 3
2 Ka+Kd))−δ max{C3,C4} , λ < 0.

Here, ν is defined as in (50).

Proof. As a first step, consider y a classical solution of (1) and λ > 0. Take δ ∈(
0, min

{
ν,

ε0Cδ

max{C3, C4}
})

. Then, based on the definition of Ey and Propositions 6 and 7,

we have

ε0

∫ T

s
Ey(t)dt =

ε0

2

∫
Qs

(
y2

t (t, x)
a(x)

+ y2
xx(t, x)− λ

ad
y2(t, x)

)
dxdt

+ ε0
β

2

∫ T

s
y2(t, 1)dt + ε0

γ

2

∫ T

s
y2

x(t, 1)dt

≤ C2Ey(s) + C3

∫ T

s
y2(t, 1)dt + C4

∫ T

s
y2

x(t, 1)dt

≤ C2Ey(s) + max{C3, C4}
(∫ T

s
y2(t, 1) + y2

x(t, 1)
)

dt

≤ C2Ey(s) + max{C3, C4} δ

Cδ

∫ T

s
Ey(t)dt + max{C3, C4}C1Ey(s).
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This implies

[
ε0 − max{C3, C4} δ

Cδ

] ∫ T
s Ey(t)dt ≤ (C2 + max{C3, C4}C1)Ey(s). Hence,

we can apply ([18], Theorem 8.1) with M := Cδ(C2+max{C3,C4}C1)
ε0Cδ−δ max{C3,C4} and (64) holds.

Now, consider λ < 0. By Propositions 6 and 7, we have

ε0

∫ T

s
Ey(t)dt =

ε0

2

∫
Qs

(
y2

t (t, x)
a(x)

+ y2
xx(t, x)− λ

ad
y2(t, x)

)
dxdt

+ ε0
β

2

∫ T

s
y2(t, 1)dt + ε0

γ

2

∫ T

s
y2

x(t, 1)dt

≤ C2Ey(s) + max{C3, C4}
(∫ T

s
y2(t, 1)dt +

∫ T

s
y2

x(t, 1)dt
)

− 4λC̃HP

(
1 +

3
2

Ka + Kd

) ∫ T

s
Ey(t)dt

≤ (C2 + max{C3, C4}C1)Ey(s) + max{C3, C4} δ

Cδ

∫ T

s
Ey(t)dt

− 4λC̃HP

(
1 +

3
2

Ka + Kd

) ∫ T

s
Ey(t)dt.

Hence, (
ε0 + 4λC̃HP

(
1 +

3
2

Ka + Kd

)
− max{C3, C4} δ

Cδ

) ∫ T

s
Ey(t)dt

≤ (C2 + max{C3, C4}C1)Ey(s).

Recalling that Cδ := 1 − δ(C̃β + C̃γ), where δ < μ, one proves that

ε0 + 4λC̃HP

(
1 +

3
2

Ka + Kd

)
− max{C3, C4} δ

Cδ
> 0.

Hence, again by ([18], Theorem 8.1) with M := Cδ(C2+max{C3,C4}C1)

Cδ(ε0+4λCHP(1+ 3
2 Ka+Kd))−δ max{C3,C4} ,

(64) holds.
If y is the mild solution for the problem, we can proceed as in [22], obtaining the the-

sis.

4. Conclusions and a Open Problems

In this paper, we study the exponential stability of the energy related to (1). In
particular, in Theorem 2, we show that

If λ is small and a, d are not too degenerate, then
the energy of the solution to (1) converges exponentially to 0 as time diverges.

This result leads to some open problems. The first one is to prove the stability if
Ka + 2Kd ≥ 2. As we have seen, the condition Ka + 2Kd < 2 is crucial in Proposition 6
and the condition Ka + 2Kd ≤ 2 is important for finding that the two domains D(A) and
D(Aλ) coincide. On the other hand, Ka + Kd ≤ 2 is crucial to obtain the estimate given in
Proposition 1.

Another important open problem is to prove the stability of (1), when λ ≤
−ε0

4C̃HP(1+ 3
2 Ka+Kd)

.
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