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Jitka Veldema, Teni Steingräber, Leon von Grönheim, Jana Wienecke, Rieke Regel, Thomas

Schack and Christoph Schütz
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Editorial

Bioengineering of the Motor System

Carlo Albino Frigo

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
carlo.frigo@polimi.it

About fifty years ago, which seems very recent, new technologies for motion analysis
were being developed, promising a more detailed and precise study of the human motor
system. These technologies allowed the measurement of biomechanical variables and
the quantification of phenomena that were previously difficult to assess through clinical
observation. In the 1980s, the challenge from a bioengineering perspective was to make
these systems as reliable and user-friendly as possible, enabling comprehensive movement
analysis across various settings, including clinical environments.

Over the years, extensive research has been conducted to validate these technologies
and develop application protocols, demonstrating their potential for research and clinical
investigations. Today, well-established technologies such as stereophotogrammetric sys-
tems, dynamometric platforms, surface electromyography, and portable metabolimeters
are commonly used in dedicated movement analysis laboratories. However, as technology
has evolved, new demands and opportunities have emerged.

One of the most significant developments has been the increasing need for a more
“ecological” approach to movement analysis, made possible by portable motion sensors.
Research in this area has been highly active, leading to the widespread use of wearable
systems based on miniaturized accelerometers, gyroscopes, and magnetometers, com-
monly known as Inertial Measurement Units (IMUs). Although IMUs have lower accuracy
compared to complex stereophotogrammetric systems, they offer key advantages such
as affordability, ease of use, and, most importantly, the ability to analyze individuals in
natural settings such as gyms, sports fields, and workplaces. Additionally, the integration
of these sensors into Virtual Reality systems has expanded their applications, enhancing
our understanding of motor control mechanisms.

Another major advancement has been the improvement of computational power,
which has facilitated the development of musculoskeletal modeling. Initially, these models
provided representations of bones, joints, muscles, and ligaments, simulating the body’s
degrees of freedom. The next step involved simulating movement by applying forces to
the model, solving what is known as the forward dynamics problem. Once considered an
unattainable challenge, this approach is now widely used by researchers to analyze the be-
havior of internal structures and assess the effects of modifying their mechanical properties.

These advances have led to a vast body of literature covering both technological
developments and applications in diverse fields such as motor rehabilitation, neurology,
orthopedics, sports science, ergonomics, and psychophysics. This Special Issue, “Bioengi-
neering of the Motor System”, was conceived to collect research that exemplifies current
interests in this field, and it has successfully fulfilled this objective.

An analysis of the twelve papers in this issue reveals that technological advancements
now focus on developing algorithms to exploit data from existing systems [1,2] and incorpo-
rating sensorized devices [3,4]. Other studies explore applications involving Virtual Reality
and exoskeletons [5–7]. Musculoskeletal modeling is represented in a study by [8] which

Bioengineering 2025, 12, 199 https://doi.org/10.3390/bioengineering12020199
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highlights its potential for understanding internal anatomical structures during movement.
Additional contributions focus on motor function recovery using electromyography [9],
electrical stimulation [10], and specialized algorithms for identifying muscle synergies [11].
Finally, an intriguing study on human behavior examines psychological aspects using a
motion capture system with a bioengineering approach [12].

These contributions illustrate how this Special Issue, entitled “Bioengineering of the
Motor System”, has successfully assembled research that represents the state of the art and
key areas of interest in this domain. Looking ahead, we can expect rapid advancements in
methodologies based on current and emerging technologies. These developments will likely
be directed toward clinical applications, significantly enhancing our understanding of the
human motor system and driving progress in both research and practical implementations.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Estimating human joint angles is a crucial task in motion analysis, gesture recognition,
and motion intention prediction. This paper presents a novel model-based approach for generating
reliable and accurate human joint angle estimation using a dual-branch network. The proposed
network leverages combined features derived from encoded sEMG signals and RGB-D image data.
To ensure the accuracy and reliability of the estimation algorithm, the proposed network employs a
convolutional autoencoder to generate a high-level compression of sEMG features aimed at motion
prediction. Considering the variability in the distribution of sEMG signals, the proposed network
introduces a vision-based joint regression network to maintain the stability of combined features.
Taking into account latency, occlusion, and shading issues with vision data acquisition, the feature
fusion network utilizes high-frequency sEMG features as weights for specific features extracted from
image data. The proposed method achieves effective human body joint angle estimation for motion
analysis and motion intention prediction by mitigating the effects of non-stationary sEMG signals.

Keywords: joint angle estimation; sEMG; RGB-D camera; dual-branch convolutional network

1. Introduction

Human–machine interaction (HMI) technology has consistently been a promising
domain in automation, healthcare, and other fields of human activities for decades. To
conduct a quantitative analysis of human motions and activities during HMI, human body
joint angles and positions are utilized as essential metrics. Human activities can be captured
and analyzed using wearable devices [1–4] and vision-based sensors [5].

In-depth analysis of human activity allows for joint angles to be extracted during
movements, providing key information for motion pattern detection, movement recog-
nition, and prediction. For example, Da Silva et al. [6] utilized an FBG sensing glove to
achieve continuous hand posture reconstruction through joint angles. Kim J. S. et al. [7]
enhanced the accuracy and applicability of fiber Bragg grating (FBG) sensors and proposed
a real-time tracking algorithm for hand joints. Although strain-based sensors can provide
low-latency data for posture, similar applications for larger body parts such as the knee
joint and elbow joint are less convenient. Joint axis and position identification has proven
effective for joint angle measurement using inertial measurement unit (IMU) sensors [8–10],
leading to improved accuracy and flexibility in higher-level applications such as gait analy-
sis [8] and activity recognition [11]. Signals captured by surface electromyographic (sEMG)
equipment are more sensitive to variations in muscle actions. Consequently, motion models
for primary human limbs, such as arms [12] and legs [13,14], yield less invariant results
across individuals. Furthermore, the time-advanced features of sEMG signals in human
motion provide opportunities for human motion prediction [15–18].

Compared to wearable devices, sensors such as optical cameras, laser-based cameras,
and electromagnetic field sensing devices offer greater flexibility. Gu et al. [19] used a single

Bioengineering 2024, 11, 1026. https://doi.org/10.3390/bioengineering11101026 https://www.mdpi.com/journal/bioengineering3
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RGB camera to conduct gait analysis via 2D joint angular information. More detailed 3D
joint features can be achieved using red green blue and depth (RGB-D) cameras, yielding
outstanding results [20,21]. Radar-based sensing and analysis have achieved promising
outcomes in human posture detection [22–24], but the relatively higher errors in joint loca-
tion estimation limit their precise application. As convolutional neural networks become
increasingly integrated with image processing technologies, predicting and generating
redundant data for joint estimation have become more feasible. Mehta et al. [25] presented
a novel approach for 3D motion sensing using a single RGB camera. This approach extends
to multi-individual analysis due to the wide sensing field of wear-less sensors. Wear-less
sensors have achieved excellent results in joint angle estimation and motion analysis, but
disadvantages such as occlusions and insufficient resolutions remain challenges that need
to be mitigated.

Attempts to use fused data for angle estimation have been made to improve the accuracy
of results and alleviate misrecognition caused by sensor limitations. Filter-based algorithms
function effectively with the classical combination of IMU and vision systems [26], while Bo
et al. [27] aided in rehabilitation using a combination of depth cameras and inertial sensors.
With network techniques, different types of sensing fusion methods offer more options for
pose estimation [28–30]. To address real-time online processing, synchronization of multiple
sensors is a critical issue. The hysteresis in capture timing and varying signal window
durations may cause cumulative regression. Data fusion plays a key role in training and
processing. Cippitelli et al. [31] achieved relatively precise synchronization of depth cameras
and IMUs through auxiliary communication nodes. Processing embedded data remains a
challenging issue in computer science, as multiple data sources are handled in both raw and
processed forms [32,33]. In human motion recognition applications, rapid information fusion
is required without losing detailed semantic-level features.

Achieving accurate human joint angle estimation necessitates addressing individ-
ual variations as a key challenge. These variations are caused by differences in physical
body structure, movement behaviors, sensor placements, environmental conditions, and
other factors. Optimal sensor utilization is an effective approach to improving robust-
ness and adaptability in these complex conditions. Vibrations in sEMG signals introduce
noise patterns, which can have significant effects during the processing stage. Wavelet
transform techniques on a timescale can mitigate this effect [33], but the loss of detailed
information may also decrease the accuracy of joint angle regression and motion pattern
recognition. Introducing vision-based sensors and processing techniques enhances data di-
versity, thereby strengthening stability across different scenarios. The speed of computation
is critical in human motion-related applications; tools like encoder–decoder [34,35] and fast
convolutional [36,37] operations can provide timely and effective feature extraction.

This paper aims to improve the accuracy and stability of human joint angle estima-
tion for applications in human motion analysis. The contributions of this work can be
summarized as follows:

1. Our work presents a novel dual-branch framework for human joint angle estimation
that leverages sEMG signals and RGB-D camera data. The multi-dimensional feature
extraction block offers a more comprehensive representation of the human joint model
across different scenarios.

2. This paper proposes an enhanced sEMG feature extraction method that utilizes multiple
channels and scales of sEMG signals through an online adaptive convolutional autoen-
coder structure, coupled with feature enhancement based on correlation principles.

3. We employ a feature extraction and fusion pipeline that combines sEMG signals and
RGB-D data, which has proven effective and efficient in convolutional networks by
leveraging multi-scale input and a sensitive data fusion block.

The structure of this paper is as follows. The design of human joint angle estimation
is presented in Section 2. The experimental verification of the framework in this paper is
described in Section 3. The discussion appears in Section 4 and conclusions are presented
in Section 5.
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2. Materials and Methods

2.1. Overview

The proposed dual-branch framework is briefly described in Figure 1. The processing
system mainly consists of three components: the sEMG signal processing branch, the depth
image processing branch, and the feature fusion and angle estimation module.

Figure 1. Global framework.

The surface EMG signal processing branch consists of two main operations: data
preprocessing and feature extraction. The preprocessing stage employs standard data
filtering techniques to mitigate distributional changes caused by the non-stationarity of
sEMG signals. A time-triggered windowing method synchronizes sEMG signals with the
lower-rate depth image data and provides multi-scale raw data channels to generate more
reliable feature vectors for the training process. An encoder–decoder framework with
shared weights provides a higher level of feature compression vectors for angle estimation.

Considering the lower data acquisition rate of the RGB-D camera compared to the
sEMG equipment, a synchronization trigger signal is created for each frame. Using 3D
information provided by the RGB-D camera, a CNN-based feature extraction block simul-
taneously captures spatial characteristics of 3D human joint positions.

To adapt to different dimensions and scales of the extracted features, the proposed
framework employs a feature fusion block through a series of feature concatenations. To
expedite and enhance the effectiveness of information acquisition, multiple down-sampling
and pooling layers are introduced. The final joint angle regression is performed using an
LSTM network.

2.2. sEMG Signal Processing
2.2.1. Preprocessing

The noise in sEMG signals can significantly affect the process of data acquisition and
feature extraction. Considering the baseline energy density spectrum of EMG signals,
band-pass filters are applied to eliminate noise and artifacts. Due to the potential loss of
information when standardizing the data sequence, no additional preprocessing is applied
to the raw data.

Typically, sEMG signals are segmented using a sliding window to obtain multiple
samples over different time intervals, but in our case, the sliding window may increase the
complexity of data asynchrony. Triggered by the acquisition of a depth image, a timestamp is
generated to create a series of fixed windows for sEMG signals, each containing a different

5
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length of sEMG signal. The varying window lengths provide different timescales of digitized
sEMG data, enhancing the diversity and redundancy of the sEMG signal information.

As shown in Figure 2, each frame captured by the RGB-D camera generates a time-
triggered event, and this timestamp automatically forms a base window for each sEMG
channel. The interval of the base window is fixed to 300 cycles of sEMG capturing periods.
To achieve different scales of sEMG signals, processing windows are refactorized to 3 scales,
and each signal scale ends precisely when the depth image is captured with a duration of
T, 2

3 T, and 1
3 T.

Figure 2. Windowing different scales.

2.2.2. Multi-Scale Feature Extraction Block

The convolutional neural network (CNN) in feature extraction of sEMG signals has
been verified as an efficient and robust method. Based on the CNN structure and the
capabilities of the autoencoder network, this paper proposes a novel feature extraction
block to handle multiple scales of digitized sEMG data, yielding more compressed and
reconstructive information. The reconstruction of the sEMG image can better adapt to
varying data distributions in raw sEMG data by utilizing reconstruction error. The encoder–
decoder network has proven effective in extracting higher-dimensional features. We
redesigned the network to be more sensitive to differently scaled windows of sEMG
data by using shared weight vectors. By updating shared weights, the extraction block
maintains both training efficiency and information sensitivity.

As shown in Figure 3, separate encoders and decoders are applied to each sEMG data
channel. The encoder and decoder have symmetric architectures with feature outputs,
although their corresponding parameters differ. The input of the encoder network is a serial
combination of different channels of sEMG signals, each representing a different source
of signal. Depending on the varying timescales of the sEMG data sequences, different
network parameters are applied. Using the horizontal and vertical indices of the sEMG
data, the discrete sEMG data are combined in the form of an image. The convolutional
layers of the encoder consist of single-kernel and multi-kernel components. The single-
kernel component compresses only the temporal information, while the multi-kernel
component applies 2D convolution to a mixture of temporal and spatial information. A
shuffle technique is applied between the single-kernel and multi-kernel components to
capture the interrelationships and interactional impacts between related muscle groups.

6
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Figure 3. Multi-scale processing and updating.

2.3. Vision-Based Feature Extraction

To estimate human body joint angles, the processing system should construct a skele-
ton model that represents human body posture using the appearance in the image. In this
paper, we use a human pose estimation method based on a convolutional neural network
(CNN) using depth images acquired from an RGB-D camera. Although depth images
exhibit less detailed information than optical images, the feature extraction block faces a
trade-off between spatial reliability and locational precision of image features. By eliminat-
ing background noise and lighting effects through 3D imaging techniques, a more accurate
silhouette of the human body can be extracted from the depth image. The idea is to employ
a series of small, lightweight networks to perform feature extraction for depth images. The
initial convolutional block uses small kernel sizes, with batch normalization and ReLU
applied after each convolutional layer. Several convolutional layers are combined to form a
residual block. We also implemented average pooling layers at the beginning, middle, and
end of the feature extraction block.

The aim of the depth image feature extraction block is to form a high-precision heatmap
of joint 3D locations. The feature vectors are then delivered to the data fusion block along
with multi-scale sEMG features.

2.4. Data Fusion and Angle Estimation

To obtain a reliable and stable outcome from the estimation network, attention must
be paid to both global and local information. Motivated by the architecture of the feature
pyramid, we designed a fusion network as shown in Figure 4. The input of the data

7
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fusion block is a concatenation of sEMG features and depth image features. Extracted
image features are copied to each scale of the sEMG feature vector. The combined data are
subjected to a series of down-sampling operations. After four iterations of the convolutional
layer with a stride of 2, the number of channels doubles each time. The convolutional
layer consists of three parts: a convolutional layer with a 3 × 3 kernel and padding of
1, batch normalization, and Leaky ReLU. To account for the loss of superficial semantic
information in the first four layers, three global average pooling layers are applied to the
outputs of the 1st, 4th, and 7th convolutional layers to generate the final fused feature map.
As multi-layered semantic information is formed by three feature vectors, concatenation is
applied to obtain the fused feature map of sEMG signals and depth images.

 

Figure 4. Feature fusion network.

To leverage the strong temporal correlation among joint angles, sEMG signals, and
visual signals, we fed the fused features into an LSTM network for joint angle prediction.
LSTM is well suited to capturing the dynamic characteristics of time-series data and can
more effectively handle multimodal temporal features. This approach improves the model’s
generalization ability and leads to enhanced performance.

2.5. Experimental Environments

Since no current public dataset contains simultaneously captured data of sEMG signals
and depth images of body movements, we created a custom dataset using sEMG signal
capture equipment and an RGB-D camera, with motion capture system markings. To
evaluate the performance of the proposed framework, we performed a horizontal analysis
between our method and state-of-the-art methods on our custom dataset to conduct the
following experiments and achieve corresponding results.

1. We compared single-modal sensor capture and processing of sEMG signals and RGB-
D camera data. By highlighting the disadvantages of a single-sensor system, we
demonstrated the improved accuracy of joint angle estimation using the combination
of sEMG signals and RGB-D camera data.
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2. Considering subject diversity, we performed cross-comparisons between different subjects
and analyzed the errors by accounting for scenario effects and human behavior effects.

3. Noting that ground obstacles may influence visual data capture, we introduced a series
of occlusions in our test of knee angle prediction.

4. We compared a series of state-of-the-art methods with ours using our dataset and
analyzed the performance from different perspectives.

Under laboratory experimental conditions, the hardware equipment used in this study
includes the following:

• Computer: Windows 10 64-bit (DELL, Beijing, China)and Ubuntu 18.04.6 LTS 64-bit
double operating system, carrying a CPU of Intel® Core™ i7-8700K with 16 GB RAM
and an Nvidia GEFORCE GTX 1660 Ti graphics processing card.

• RGB-D camera: Intel RealSense Depth Camera D435i with specifications of 1920 × 1080
colored resolution and 1280 × 720 depth resolution @30 fps, 69◦ horizontal and 42◦ vertical
field-of-view wide-angle lens.

• sEMG signal capture equipment: Delsys wearable sensors with analog output in range
of 11 mV and sampling rate of 1111 Hz. The average noise of overall channel is inferior
to 3 uV RMS @ 10–850 Hz.

• Motion capture equipment: VICON motion capture system with 1.3 MP resolution @
250 Hz. The capture system has 98.1◦ horizontal and 50.1◦ vertical field of view.

2.5.1. Participants

Motivated by the hand gesture dataset created by putEMG [38], we created a dataset
containing a total of 12 participants aged 24 to 32 years. The average height of our partici-
pants is 173.8 ± 6.2 cm, and the average weight is 72.5 ± 8.9 kg. None of the participants
had motor dysfunction. Participants were instructed to walk on a treadmill at a constant
speed of 4.5 km/h with a zero-degree incline. Each participant completed the procedure
eight times, ensuring that the movements of the hip, knee, and ankle joints were consistently
and accurately captured by the camera.

This study was conducted in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all participants.

2.5.2. Data Acquisition

The main goal of establishing the dataset is to obtain synchronized multi-channel
sEMG signals and RGB-D camera images, the dataset capture environment is illustrated
in Figure 5. Due to the low latency and high accuracy of the motion capture system,
we utilized the VICON motion capture system, as mentioned above, to establish ground
truth for human joint angles. Under laboratory conditions, we established the hardware
setup as follows. In this study, a total of nine sensors were used to monitor the lower limb
muscle groups. These muscles include the rectus femoris (RF), vastus medialis (VM), vastus
lateralis (VL), tibialis anterior (TA), soleus (SOL), semitendinosus (SEM), biceps femoris
(BF), medial gastrocnemius (MG), and lateral gastrocnemius (LG). The placement of the
sensors was approximate and adjusted through palpation and EMG recordings for different
subjects. The skin of each subject was cleaned with rubbing alcohol prior to electrode
placement to ensure optimal conditions.

A crucial aspect of data acquisition is the synchronization of the depth video stream
and the sEMG signal stream. The capture moment of each depth image can be used as a
time stamp to generate a synchronization signal. To achieve real-time performance in the
data acquisition system, threading techniques were implemented by creating parallel tasks
consisting of a system-level hard real-time timer, an image capture task, and a multi-channel
sEMG capture task. Maximizing the utilization of system RAM improves performance
by reducing latency between sEMG signals and image capture events through pipelined
procedures for storing data in RAM and writing data to the hard disk.

9
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Figure 5. Dataset capture environment.

3. Results

Through a single depth image containing the 3D locational information of each pixel,
we can relatively easily reconstruct the human body with 3D joint locations; however,
the consistency and stability of the regression output cannot be guaranteed. Vision data
processing allowed us to extract 19 human body joint 3D locations. The data were recorded
indoors with a single person at two different ranges. Considering the application scenario,
participants were recorded from different angles. As shown in Figure 6, the joints could be
accurately extracted when facing the depth camera and in the absence of occlusion. Despite
the accuracy of joint locations, different angles significantly affect the feature extraction
stage, leading to misrecognitions and altering the relationships between neighboring joints.
To estimate the prediction error with occlusions, we conducted predictions using blocked
inputs in our experimental series.

 

Figure 6. Depth camera-processed data: the upper row shows the correct recognition scenarios in
short (1.5 m) range and long range (3 m); the lower row shows the misrecognition scenarios.
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The joint angles were calculated from 3D locations. We used a convolutional neural
network on depth images [39] to calculate the knee angle during walking. Conversely, we
used a BP neural network [40] on sEMG signals to obtain knee angles. Using 10 sets of
unrelated data, we obtained three averaged curves of knee angle variation over time.

Figure 7 presents the predictions corresponding to different algorithms, with the gray
curve representing the standard knee joint angle results computed by VICON. The average
maximum prediction error for the sEMG-based methods is 2.72 ± 1.32◦, while for the visual
methods, it is 2.67 ± 0.69◦. The fusion of visual and EMG-based methods results in a lower
prediction error of 1.04 ± 0.52◦.

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 7. Knee angle, hip angle, and ankle angle prediction while walking on the treadmill based on
different methods, the yellow shaded area represents the variance of the estimation results: (a) sEMG-
based hip angle prediction; (b) vision-based hip angle prediction; (c) combined hip angle prediction;
(d) sEMG-based knee angle prediction; (e) vision-based knee angle prediction; (f) combined knee
angle prediction; (g) sEMG-based ankle angle prediction; (h) vision-based ankle angle prediction;
(i) combined ankle angle prediction.

Individual variations may cause significant differences in predictions; therefore, we
applied different datasets with varying distributions. During the stance phase, the sEMG-
based method achieved a prediction error of 4.42 ± 1.71◦, the vision-based method achieved
a prediction error of 1.71 ± 0.99◦, and the combined method achieved a prediction error of
1.17 ± 0.76◦. During the swing phase, the sEMG-based method achieved a prediction error
of 3.82 ± 1.63◦, the vision-based method achieved a prediction error of 2.89 ± 0.93◦, and
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the combined method achieved a prediction error of 1.26 ± 0.82◦. To assess the model’s
adaptability, we also validated the hip and ankle joints, and the results are presented in
Figure 8 and Table 1 below.

Figure 8. Knee angle predictions via different participants.

Table 1. Estimation errors in degrees for hip angle, knee angle, and ankle angle via different participants.

sEMG-Based Vision-Based Combined

Hip Stance phase 3.97 ± 1.35 2.15 ± 0.87 1.47 ± 0.63
Swing phase 3.64 ± 1.11 2.57 ± 0.86 1.89 ± 0.67

Knee
Stance phase 4.42 ± 1.71 1.71 ± 0.99 1.17 ± 0.76
Swing phase 3.82 ± 1.63 2.89 ± 0.93 1.26 ± 0.82

Ankle
Stance phase 4.21 ± 1.45 2.23 ± 0.89 1.52 ± 0.65
Swing phase 3.97 ± 1.18 2.98 ± 0.89 2.12 ± 0.55

By combining sEMG signals and vision signals, we achieved promising results with
partial blocks. To simulate obstacles on the ground that may cause loss of visual capture of
the ankles, we implemented blocks of four different heights.

Figure 9 presents knee angle predictions with four different blocks implemented at the
ankle. Without blocks, we achieved a prediction error of 1.04 ± 0.26◦, while with increasing
obstacle height, the mean errors rose from 1.31 degrees to 3.67 degrees, with variances
ranging from 0.79 degrees to 1.25 degrees.

Figure 9. Knee angle prediction with partial blocks.

Using deep belief networks [41] and long short-term memory [42,43], we calculated
the root mean square errors for each method. As shown in Table 2, our method achieves
significant improvements compared to baseline methods.
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Table 2. Comparisons of RMSE between different methods.

DBN [41] LSTM [42] LSTM [43] Ours

Hip 3.58 1.31–2.48 * 1.33 0.68
Knee 3.96 1.37–1.74 * 2.16 1.68
Ankle 2.45 1.31–1.56 * 1.73 0.73

* The results are calculated in three phases; we note the RMSE range in the table.

4. Discussion

In knee angle prediction, both surface electromyographic (sEMG) and visual methods
can achieve a certain level of accuracy. These results indicate an inherent correlation
between EMG, visual information, and joint angles. This implicit mapping relationship can
be constructed using an end-to-end approach.

Compared to visual methods, EMG-based methods show inferior performance in
both mean and variance. The average maximum prediction error for EMG-based methods
is 2.72 ± 1.32◦, while for visual methods, it is 2.67 ± 0.69◦. On the one hand, this is
because EMG signals are inherently related to motion, making their relationship less explicit
compared to direct visual observation. On the other hand, EMG signals are characterized
by high-amplitude noise, which can decrease algorithm performance due to interference.
The maximum error for EMG-based methods occurs during the stance phase of the lower
limb, where significant muscle vibrations increase EMG signal noise, leading to higher
prediction errors. In contrast, during the relatively stable swing phase, EMG-based methods
yield better results. For visual-based predictions, the maximum error occurs during the
swing phase due to continuous changes in multiple limbs and background variations,
impacting predictions and decreasing performance. Pure visual methods exhibit good
stability and strong result repeatability. The fusion of visual and EMG-based methods
effectively compensates for the shortcomings of both, leading to improved accuracy with a
maximum angle error of 1.04 ± 0.52◦.

In practical applications, data often have distributions different from our training
set. When the distributions of training and test data differ, prediction errors increase.
Particularly in EMG-based methods, individual differences significantly impact predictions,
as variations in EMG distribution due to individual differences lead to a rapid increase
in errors. Conversely, methods based on visual information are relatively less affected
by individual differences. Furthermore, relationships between sparse sEMG signals of
cooperative muscles can be extracted using multi-scale feature maps.

Similar phenomena were observed in further experiments on hip and ankle angle
predictions. However, we observed a slight increase in variation in ankle angle predictions,
which may be due to the flexibility of movement patterns. Our model is designed to
combine sEMG signal feature maps and vision features to address this issue, but the
insufficient resolution of the RGB-D camera introduces drifting of foot posture. The results
from ablation experiments show significant improvements using the combined method.

Ground obstacles can cause feature loss in visual capture, leading to prediction errors.
To test the robustness of our prediction model, we introduced occlusions in the knee angle
prediction scenario. Four categories of occlusions were introduced in this research, and as
the level of occlusion increased, the prediction error for EMG-based methods also increased
gradually. Notably, in occlusion category 1, which involves relatively low occlusion height,
the visual impact was minimal. Overall, prediction error with the highest level of occlusion
still shows better performance compared to the EMG-based method.

Compared to joint angle prediction methods based on sEMG signals using DBN and
LSTM, our method demonstrated more competitive results in our test cases as shown in
Table 2. By incorporating visual depth data, the spatial positioning of joints becomes more
precise. Higher-dimensional data sequences, such as depth image data, offer a more robust
representation of human skeletal postures. However, 3D imaging techniques typically
require more time for sensing and preprocessing, which leads to temporal sparsity in the
data sequence. In critical real-time HMI scenarios, the reaction and adjustment phases
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of the decision–reaction cycle are not as competitive due to the slower capture cadence
of 3D imaging data. For this reason, human exoskeleton control benefits from the use of
high-frequency sensors like sEMG and IMU, which provide faster and more frequent data.
By combining sEMG signals and depth image data to extract distinct physical features, we
developed a muscle–skeleton model that establishes a temporal–spatial link, enabling a
feature fusion pattern for more accurate movement prediction. By incorporating 3D visual
data as spatial markers and calibration references within the proposed framework, the
robustness and accuracy of lower limb joint angle predictions are significantly improved.

In future work, we plan to focus on the long-term stability of our proposed human
joint angle prediction method, ensuring that it remains robust and reliable over extended
periods and across various conditions. This will involve continuous refinement of the
algorithm to adapt to real-world challenges, such as signal drift and variations in sensor
data. Additionally, we aim to implement our method in exoskeleton systems, where
accurate joint angle estimation is critical for providing responsive and precise assistance to
users. By integrating our approach into exoskeletons, we hope to enhance their effectiveness
in applications such as rehabilitation and mobility support, ultimately contributing to
improved user outcomes.

5. Conclusions

In this paper, we propose a novel dual-branch network framework for estimating
human joint angles, leveraging the strengths of both sEMG signals and RGB-D camera
data. By integrating a convolutional autoencoder for high-level sEMG feature extraction
with a vision-based joint regression network, the proposed method addresses the chal-
lenges associated with non-stationary sEMG signals and the limitations of vision-based
approaches, such as latency and shading. The enhanced feature extraction and fusion
pipeline effectively combines multi-scale sEMG and RGB-D data, resulting in a reliable and
accurate estimation of human joint angles. The proposed framework not only advances
the field of motion analysis and gesture recognition but also demonstrates the potential for
more precise motion intention prediction by overcoming the inherent challenges of sEMG
signal variability and vision data acquisition.
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The following abbreviations are used in this manuscript:

HMI Human–machine interaction
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FBG Fiber Bragg grating
IMU Inertial measurement unit
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CNN Convolutional neural network
RGB-D Red green blue and depth
RAM Random-access memory
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Abstract: This single-blind randomized controlled trial investigated the effectiveness of surface
electromyography (sEMG)-triggered constraint-induced movement cycling therapy (CIMCT) in
improving balance, lower extremity strength, and activities of daily living in patients with chronic
stroke. The participants included patients with chronic stroke-induced hemiplegia who had been
diagnosed for more than 6 months, with a minimum score of 24 points on the Mini-Mental State
Examination and above level 3 on the Brunnstrom stages. The trial lasted 4 weeks and participants
were divided into a CIMCT group and a general cycling training (GCT) group. The CIMCT group
(n = 20) used an sEMG-triggered constrained-induced movement therapy device, whereas the GCT
group (n = 19) used a standard stationary bicycle. The primary outcome measures showed a significant
increase in muscle strength on the affected side in the CIMCT group, as assessed by a manual muscle
tester (p < 0.05), with a large effect size (d = 1.86), while no meaningful improvement was observed
in the GCT group. Both groups demonstrated significant improvements in dynamic balance, as
measured by the Timed Up and Go (TUG) test (p < 0.05), with the CIMCT group showing superior
results compared to the GCT group, reflected by a large effect size (d = 0.96). Additionally, both
groups showed significant improvements in balance as assessed by the Berg Balance Scale (BBS)
and the Functional Reach Test (FRT). The CIMCT group exhibited more pronounced improvements
than the GCT group, with large effect sizes of 0.83 for the BBS and 1.25 for the FRT. The secondary
outcome measures revealed significant improvements in activities of daily living in both groups,
as assessed by the modified Barthel index (MBI), with the CIMCT group achieving a substantial
improvement (p < 0.05), accompanied by a large effect size (d = 0.87). This study concludes that
sEMG-triggered CIMCT effectively improved muscle strength, postural balance, and activities of
daily living in patients with chronic stroke.

Keywords: bioengineering; postural balance; stroke; electromyography; muscle strength

1. Introduction

Stroke remains one of the leading causes of death and disability worldwide, with
over 12 million incident cases and 6.55 million deaths reported globally in 2019. Despite
advancements in treatment, the burden of stroke has increased significantly, particularly in
low- and middle-income countries [1]. Stroke imposes a significant financial burden on
healthcare systems globally. The cost of stroke care varies considerably across countries,
with the United States reporting the highest average per-patient annual cost at USD 59,900,
followed by Sweden at USD 52,725 and Spain at USD 41,950. The lifetime cost per patient
can also be substantial. For instance, in Australia, the lifetime cost per patient has been
estimated at USD 232,100 across all identified definitions of stroke [2]. Stroke often results
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in long-term disability and profoundly affects the lives of affected individuals [3]. Approxi-
mately 80–90% of stroke patients experience impaired mobility [4]. Although 75% of these
patients achieve independent gait within 3 months post-stroke, around 25% continue to
require assistance for gait [5]. The primary challenge lies in the impediment to smooth gait
due to limb paralysis on the affected side. Thus, enhancing gait capability is a critical goal
in stroke rehabilitation [6].

Patients with stroke typically exhibit an asymmetric gait, often adopting compensatory
movement patterns to counteract this [7]. Post-stroke gait is characterized by a shortened
stance phase and an elongated swing phase on the affected side. This gait abnormality is
primarily due to lower limb muscle weakness and impaired balance control. Spatiotemporal
gait asymmetry is closely associated with muscle weakness [8,9]. Moreover, balance
impairment exacerbates these gait issues, leading to decreased gait speed, reduced stride
length, and further spatiotemporal asymmetry [10,11].

Recent technological advancements, such as robot-assisted therapy [12,13], virtual
reality rehabilitation [14,15], and wearable assistive devices [16–18], have spurred various
studies aimed at enhancing gait rehabilitation in patients with stroke. These cutting-edge
technologies represent novel approaches that facilitate treatment and redefine the role
of therapists. When integrated into clinically effective treatments, the aforementioned
technologies can yield superior outcomes. One method garnering significant attention in
the upper-extremity rehabilitation of patients with stroke is constraint-induced movement
therapy (CIMT) [19]. This therapy involves restricting the use of the unaffected limb,
thereby necessitating the use of the affected limb [19]. Originally aimed at activating the
affected limb through enforced disuse of the unaffected side, CIMT has evolved to focus
on the active use of the affected limb through repetitive and detailed movement train-
ing [20]. Although primarily applied to the upper extremities, recent research has begun
to explore the application of the modality to the lower extremities. These include studies
that incorporate lower extremity orthoses, shoe insoles [21,22], and stationary bicycles [23].
Surface electromyography (sEMG) is a technique used to measure and analyze the electri-
cal signals of muscle activity through electrodes placed on the skin’s surface [24,25]. By
detecting and analyzing these electrical signals, which result from physiological changes in
the muscle fibers, sEMG can provide valuable insights into muscle function and its role
in movement [25]. A key application of EMG is in the use of electromyographic feedback
to encourage specific movements; for instance, a previous study utilized EMG feedback
to promote pedaling on the affected side in stroke patients, leading to improved muscle
activation and gait on the paralyzed side [23]. However, there is still a significant gap in un-
derstanding how targeted interventions like sEMG-triggered pedaling specifically enhance
muscle activation and promote functional recovery in the affected limbs of stroke patients.

In this study, we carefully selected and examined variables that are known to in-
fluence gait asymmetry, including muscle strength, static balance, and dynamic balance.
Our objective was to explore how the use of sEMG feedback to encourage pedaling on
the affected side could lead to improvements in these key areas, ultimately resulting in
enhanced gait symmetry. Furthermore, we investigated whether this intervention could
also improve daily living activities, offering a more comprehensive understanding of its
potential benefits in stroke rehabilitation. We aimed to determine if this approach could
indeed provide such advantages.

2. Materials and Methods

2.1. The Study Design

The study was structured as a single-blind randomized controlled trial spanning
4 weeks of intervention. The protocol, registered under the ClinicalTrials.gov identifier
NCT06367140, was approved by the Ethics Committee of Kyungdong University (1041455-
201706-HR-012-01) in accordance with the ethical standards outlined in the Declaration
of Helsinki. All procedures adhered to the guidelines and regulations. Written informed
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consent was obtained from all participants after they were briefed about the research prior
to the commencement.

2.2. Participants

This study included patients with stroke admitted to K Hospital in Seoul. The inclusion
criteria for the participants were as follows: patients with chronic stroke-induced hemiple-
gia diagnosed with stroke more than 6 months prior to the start of the trial, achieving a
minimum score of 24 points on the Mini-Mental State Examination [26], and demonstrating
motor recovery at or above level 3 according to the Brunnstrom stages [27].

The exclusion criteria encompassed individuals with neurological damage unrelated
to their stroke, orthopedic issues such as fractures or peripheral nervous system damage in
the lower limbs, visual or auditory impairments, those who had experienced more than
one stroke, and those with less than 80% participation rate in the study.

Prior to the commencement of the study, all participants were informed of its purpose
and procedures, and only those who voluntarily signed the consent form were included
in the study. The sample size for this study was determined based on the results of a
pilot study. Before conducting the main experiment, a pilot study was performed with
5 participants in each group, using the same methods as the main study. The effect size
was calculated to be 0.87 based on the Timed Up and Go (TUG) test, a dynamic balance
variable. G-power 3.1.9 software was employed to compare the two groups’ differences.
The significance level was set at 0.05, and the power of the test was 0.8 [28], resulting in a
required sample size of 18 participants per group. To account for a potential dropout rate
of 10%, the final sample size was increased to 20 participants per group.

2.3. Experimental Procedures

We recruited 58 stroke patients receiving treatment at the K Rehabilitation Hospital in
Seoul, and 40 patients who met the inclusion and exclusion criteria were selected. Before
participating in the experiment, a screening test was conducted to determine whether the
patients met the researchers’ eligibility criteria. A total of 18 people who did not meet the
inclusion criteria were excluded. After the pre-test, 20 participants were randomly allocated
to the CIMCT group and 20 to the general cycling training (GCT) groups. To minimize
selection bias, a computer program (random allocation software, version 1.0) was used [29],
and random allocation was performed such that sex, side of paralysis, cause of stroke,
disease duration, and cognitive ability were homogeneous. This task was carried out by
researchers not involved in the training and assessment. The CIMCT group performed
sEMG-triggered CIMCT for 50 min per session, five times a week for 4 weeks, and the GCT
group performed general cycling training for 50 min per session, five times a week for
4 weeks. The training was conducted in alignment with the inpatient treatment schedule,
which included two therapy sessions per day. Accordingly, training was administered
once in the morning or afternoon, depending on each participant’s schedule. Although the
exact timing varied between participants, the procedures were executed with consistent
time intervals between sessions to ensure uniformity across the study. As a pre-test, the
participants’ general characteristics, postural balance, lower limb strength, and activities of
daily living were examined.

Those who could not participate in the program because of changes in their medical
condition during the study were excluded from the final study. In the GCT group, 19 people
participated in the study as one patient was discharged.

Ultimately, 20 participants in the CIMCT group and 19 in the GCT group took the
same post-test as the pre-test and statistical analyses were performed on those who took
the post-test without excluding anyone. Figure 1 presents the study process.
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Figure 1. Flow chart.

2.4. Intervention

The sEMG-triggered CIMCT device used in this study represents a novel integration of
bioengineering principles into rehabilitation. The device, comprising a myoelectric sensing
unit, stationary bicycle, and control unit, uses four-channel sEMG sensors to capture muscle
activity signals. The signals were processed into packets using an Arduino Pro Mini 328
(Arduino Pro Mini 328, SparkFun Electronics, Niwot, CO, USA), and then transmitted to the
control unit via Bluetooth (Figure 2). These signals are transmitted via Bluetooth to a control
unit that visualizes the data, providing patients with real-time feedback and enabling
precise adjustments to therapy based on muscle activation. To minimize interference
during the sEMG-triggered CIMCT study, we conducted the data collection in a space free
from other electronic equipment. Additionally, to reduce interference caused by the sEMG
cables touching each other, mesh coverings were applied to the cables.

Figure 2. sEMG-triggered CIMCT system.
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The muscle activation signals were collected using four sEMG sensors (MyoWare Mus-
cle Sensor, SparkFun Electronics, Niwot, CO, USA), which have a high-input impedance
of 110 GΩ. The sEMG electrode patches (Ag/AgCl surface electrode H2223H, 3M, Maple-
wood, MN, USA) were placed on the rectus femoris, biceps femoris, tibialis anterior, and
gastrocnemius muscles. Each electrode was positioned according to the SENIAM project
recommendations as follows:

Rectus Femoris: The electrodes were placed at 50% of the distance along the line from
the anterior superior iliac spine to the superior part of the patella.

Biceps Femoris: The electrodes were placed at 50% of the distance along the line
between the ischial tuberosity and the lateral epicondyle of the tibia.

Tibialis Anterior: The electrodes were placed at 1/3 of the distance along the line from
the tip of the fibula to the tip of the medial malleolus.

Gastrocnemius: The electrodes were placed on the most prominent bulge of the muscle.
Although skin impedance was not directly measured, we minimized it by cleaning

the skin with alcohol wipes before electrode application. These precautions helped ensure
reliable sEMG signals and minimized any potential impact on the normalization process.

After applying the electrodes, participants pedaled a stationary bicycle (Motomed
Viva 2, RECK-Technik GmbH & Co, Betzenweiler, Germany) at a comfortable speed for
30 s while sEMG data were collected. The average muscle activity during this period was
calculated and used for normalization. A baseline threshold was defined as the average
value of the normalized muscle’s reference voluntary contraction (RVC) and was used to
control the increase in bicycle speed.

When participants reached their threshold, the bicycle’s speed increased by one step,
and if they did not reach the threshold within 5 s, the speed decreased by one step. The
amount of speed change per step followed the settings defined on the stationary bicycle.
At the start of the exercise, the initial threshold was set at 150%, but this could be adjusted
based on the therapist’s judgment.

For sEMG-triggered CIMCT, the participants started with a 10-min warm-up at a
comfortable speed, followed by therapist-guided acceleration and deceleration. The session
comprised three 10-min periods interspersed with 1-min rests and concluded with a 5-min
cool-down [30]. The therapist continuously monitored the participants for discomfort or
dizziness, allowing breaks or cessation at any time.

For GCT, a regular stationary bicycle without an sEMG-triggered device was used,
and the training time was the same as that for the CIMT cycling training. Moreover, the
training was performed under the supervision of a guardian or caregiver and consisted
of a 10-min warm-up, 30 min of main exercise, and 5 min of cool-down exercise. In the
general pedaling training group, patients who experienced dizziness or complained of
difficulty during the training were asked to take a break and train again. The participants
were instructed to stop at any time according to their will. The evaluators were blinded to
the intervention details of the participants.

2.5. Outcome Measurements

This study measured static balance using the GB300 postural measurement system
(Metitur Ltd., Jyvaskyla, Finland). This system comprises a movable triangular platform
and a scale that indicates the position of the feet. The GB300 system measures sway
in the standing posture, recording medial–lateral (M–L) and anterior–posterior (A–P)
movements. Sway is quantified by the velocity of movement and the area covered per
second, referred to as the velocity moment. This system is widely used for assessing balance
in various populations, including athletes, elderly individuals, stroke patients, and those
with hemiplegia. The sampling frequency was set at 50 Hz. Participants were instructed
to stand with their eyes open, facing forward, for 30 s while positioned on the device.
This procedure was repeated three times. Subsequently, participants performed the same
posture with their eyes closed and facing forward for an additional three measurements of
30 s each.
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The Timed Up and Go (TUG) test was used to assess balance ability in this study. In
the test, the participant sits in a chair with armrests, rises from the chair at the same time as
the word “start” is spoken, walks at their most stable and comfortable speed to a point 3 m
in front of them, and then returns to and sits down in the chair at which point the time is
recorded. It has a high intra-rater reliability (r = 0.99) and inter-rater reliability (r = 0.98) [31].
The raters performed three measurements using a stopwatch and recorded the average
value. The TUG test primarily assesses dynamic balance and mobility by measuring the
time taken to stand up, walk a short distance, turn, and sit down.

The Berg Balance Scale (BBS) is used to assess functional balance in a wide range of
participants, including older individuals at a high risk of falling and patients with acute
and chronic diseases. Moreover, BBS is a functional balance test method that considers
three aspects of functional balance: postural maintenance, postural control by manual
exercise, and response to external perturbations. The test consists of 14 items that are
common in daily activities, including getting up from a sitting position, standing without
holding on, sitting without leaning back, sitting from a standing position, moving between
chairs, standing with eyes closed, standing with feet together without holding on, reaching
forward with arms from a standing position, picking up objects from the floor, turning left
and right, spinning in place, alternating feet on a step stool, standing with one foot in front
of the other, and standing on one leg; all 14 items are scored on a 5-point scale ranging from
0 to 4, with high scores indicating improved performance. The perfect score on this scale
is 56, with a score below 45 indicating a risk of falling. This measure has high reliability
and internal validity for assessing balance ability, with intra- and inter-rater reliabilities of
r = 0.99 and r = 0.98, respectively [32]. The Berg Balance Scale (BBS) is a comprehensive
measure that assesses both static and dynamic balance through a series of tasks, including
sitting, standing, and transferring between positions.

The Functional Reach Test (FRT) assesses the limits of physical stability and measures
dynamic balance and flexibility while the participant performs a functional task. The FRT
measures the maximum distance a participant can extend their arm forward from a standing
position while maintaining fixed support. The distance was measured in centimeters using
a Laser Rangefinder (DLE50, BOSCH, Gerlingen, Germany). The results represent the
averages of three consecutive measurements. The reliability of this test was 0.89 [33]. The
Functional Reach Test (FRT) evaluates the limit of stability, specifically assessing how far
an individual can reach forward without losing balance.

A manual muscle tester (Model 01163, Lafayette, LA, USA, 2003) was used to evaluate
lower extremity muscle strength in this study. The knee extensors, knee flexors, dorsiflexors,
and plantar flexors, which are primarily responsible for the pedaling motion, were assessed.
Moreover, both sides were evaluated. Patients were seated on a fixed chair with a backrest.
The knee extensors were measured with a pressure plate placed on the anterior aspect of
the ankle, and the patient was instructed to extend the knee. The knee flexors were assessed
with a pressure plate placed on the heel of the patient in the prone position. Ankle motion
was gauged in a long sitting position with the knees extended. Dorsiflexors were measured
with a pressure plate positioned on the distal aspect of the dorsum of the foot and plantar
flexors were assessed on the distal aspect of the sole. The average of two measurements
after each exercise was recorded.

The modified Barthel index (MBI) developed by was used to measure the perfor-263
mance of daily living behaviors. The modified Barthel index (MBI) developed by was used
to measure the perfor-263 mance of daily living behaviors. The MBI consists of 10 items:
self-care, bathing, feeding, climbing stairs, dressing, bowel control, bladder control, gait,
and transferring. The scoring system ranged from 5 to 15, with a score of 100 if all items
could be performed completely independently. The inter-rater reliability was 0.93–0.98,
and the Cronbach’s alpha value was 0.84 [34].
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2.6. Statistical Analysis

Statistical analyses were performed using SPSS version 24 (IBM Corp., Armonk, NY,
USA). The data were tested for normality using the Shapiro–Wilk test, and the mean and
standard deviation were calculated. After the normality test, when the normal distribution
assumption was satisfied, the sociodemographic characteristics of the participants were
analyzed in real numbers, percentages, means, and standard deviations. The independent
sample t-test and chi-square test were used to test the homogeneity between groups. The
changes in the dependent variables before and after the intervention were analyzed using
paired t-tests. For instances where significant differences were observed, repeated measures
ANOVA was employed to compare the effects between the two groups and analyze the
interaction effects between group and time. In addition, to determine the effect before and
after training, the effect size of the training was investigated by dividing the difference
between before and after training by the average deviation. The effect size was classified
based on the minimal detectable change (MDC) of the measurements to complement related
statistical methods. The MDC was adjusted for samples from two different measurements
by multiplying the standard error of measurement (SEM) by 1.96, corresponding to a 95%
confidence interval, and further multiplying by the square root of 2. Furthermore, SEM
was estimated as the pooled standard deviation of the pre- and post-training assessments
multiplied by the square root of (1 − r), where r is the ICC. All statistical significance levels
(α) of the data were set at 0.05.

3. Results

3.1. General Characteristics

The CIMCT and GCT groups were homogeneous in all general characteristics includ-
ing age, height, weight, stroke type, and paralyzed side (Table 1).

Table 1. General characteristics of the subjects.

n = 39

CIMCT GCT
χ2/t p

n = 20 n = 19

Age (year) 63.00 ± 6.96 65.00 ± 9.81 0.737 0.466
Height (cm) 162.15 ± 7.74 162.58 ± 8.69 0.163 0.871
Weight (kg) 58.89 ± 8.32 60.17 ± 8.69 0.470 0.641
BMI (point) 22.35 ± 2.32 22.66 ± 1.79 0.475 0.638

Duration of stroke
(month) 13.85 ± 6.09 17.00 ± 5.83 1.648 0.108

MMSE-K 25.80 ± 1.32 25.58 ± 1.02 0.583 0.563
MBI 53.41 ± 10.16 56.47 ± 10.11 0.944 0.351

Gender
(male/female) 9 / 11 10 / 9 0.634 0.227

Paretic side
(right/left) 9 / 11 13 / 6 0.140 2.174

Stroke type
(Infarction/hemorrhage) 13 / 7 12 / 7 0.905 0.014

Note. BMI = body mass index; MMSE-K = Mini-Mental State Examination-Korean; MBI = modified Barthel index.
Values are expressed as mean ± standard deviation.

3.2. Muscle Strength

The strength of the knee flexor, extensor, dorsiflexor, and plantar flexor muscles on
the affected side significantly increased after training in the CIMCT group (p < 0.05),
with Cohen’s d values indicating a large effect size (d > 0.80). However, no significant
differences were observed in the GCT group. The muscles on the healthy side demonstrated
no significant differences after training in either group (Tables 2 and 3).
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Table 2. The changes in muscle strength on the affected side.

n = 39

CIMCT GCT t/F p MDC Effect
Sizen = 20 n = 19 MDC%

RF-A
(n)

Pre 82.52 ± 35.98 98.50 ± 36.31 1.380 0.176
Post 92.10 ± 33.76 97.29 ± 34.29

Pre–Post 9.58 ± 7.49 −1.21 ± 3.19 33.643 † 0 4.64 1.86
t 5.724 * 1.658 48.43
p 0 0.116

BF-A
(n)

Pre 50.03 ± 19.15 53.14 ± 21.41 0.635 3.449
Post 55.86 ± 21.37 53.40 ± 22.95

Pre–Post 5.83 ± 6.44 0.27 ± 2.88 11.898 † 0.001 3.99 1.1
t 4.047 * 0.404 68.50
p 0.001 0.691

TA-A
(n)

Pre 59.17 ± 25.27 54.78 ± 21.11 0.588 0.56
Post 64.84 ± 22.22 54.80 ± 20.98

Pre–Post 5.67 ± 5.06 0.02 ± 3.54 16.180 † 0 3.13 1.29
t 5.015 * 0.023 55.27
p 0 0.982

Gastrocne
mius-A

(n)

Pre 92.84 ± 23.27 93.36 ± 21.26 0.073 0.942
Post 98.52 ± 23.92 93.87 ± 19.02

Pre–Post 5.67 ± 3.59 0.51 ± 4.25 16.891 † 0 2.23 1.32
t 7.065 * 0.519 39.23
p 0 0.61

Note. RF = rectus femoris muscle; BF = biceps femoris muscle; TA = tibialis anterior muscle; A = affected side;
and MDC = minimal detectable change. Values are expressed as mean ± standard deviation (SD). * p < 0.05.
† indicates that the p-value from the repeated measures ANOVA is less than 0.05.

Table 3. The changes in muscle strength on the non-affected side.

n = 39

CIMCT GCT t p
n = 20 n = 19

RF-NA
(n)

Pre 159.42 ± 42.33 156.58 ± 34.68 0.229 0.82
Post 161.68 ± 44.49 156.20 ± 35.24

Pre–Post 2.26 ± 5.37 −0.38 ± 5.50 1.521 0.137
t 1.884 0.305
p 0.075 0.764

BF-NA
(n)

Pre 102.07 ± 32.07 102.83 ± 28.73 0.078 0.938
Post 103.32 ± 32.12 103.07 ± 26.44

Pre–Post 1.25 ± 3.90 0.24 ± 5.56 0.655 0.516
t 1.431 0.192
p 0.169 0.85

TA-NA
(n)

Pre 151.10 ± 38.12 150.88 ± 33.62 0.019 0.985
Post 153.41 ± 32.25 151.89 ± 32.26

Pre–Post 2.31 ± 7.79 1.01 ± 4.77 0.625 0.536
t 1.327 0.927
p 0.2 0.367

Gastrocne
mius-NA

(n)

Pre 177.34 ± 30.15 173.17 ± 29.01 0.439 0.663
Post 176.82 ± 28.50 174.98 ± 27.76

Pre–Post −0.52 ± 7.29 1.81 ± 8.20 0.938 0.354
t 0.321 0.961
p 0.752 0.35

Note. RF = rectus femoris muscle; BF = biceps femoris muscle; TA = tibialis anterior muscle; and NA = non-affected
side. Values are expressed as mean ± standard deviation (SD).

3.3. Static Balance

Changes in static balance ability, medial and lateral sway velocity, anteroposterior sway
velocity, and moment velocity exhibited no significant differences after the intervention in
either group, regardless of whether the eyes were open or closed (Table 4).
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Table 4. The changes in static balance.

n = 39

CIMCT GCT
t p

n = 20 n = 19

EC

M-L
speed

(mm/s)

Pre 5.63 ± 2.19 5.41 ± 2.13 0.315 0.755
Post 5.25 ± 3.14 5.66 ± 2.64

Pre–Post 0.38 ± 3.11 −0.25 ± 4.16 0.539 0.593
t 0.546 0.264
p 0.591 0.795

A-P speed
(mm/s)

Pre 7.49 ± 2.87 7.23 ± 3.67 0.249 0.805
Post 6.88 ± 2.57 7.49 ± 2.80

Pre–Post 0.61 ± 3.12 −0.26 ± 3.83 0.775 0.443
t 0.867 0.296
p 0.397 0.771

Velocity
moment
(mm2/s)

Pre 6.50 ± 2.38 6.12 ± 2.55 0.489 0.628
Post 6.29 ± 2.06 5.95 ± 1.69

Pre–Post 0.22 ± 2.61 0.17 ± 2.19 0.061 0.952
t 0.369 0.336
p 0.716 0.741

EO

M-L
speed

(mm/s)

Pre 4.16 ± 1.41 4.51 ± 1.20 0.845 0.404
Post 4.32 ± 1.09 4.32 ± 1.12

Pre–Post −0.16 ± 1.19 0.19 ± 1.58 0.781 0.440
t 0.610 0.515
p 0.549 0.613

A-P speed
(mm/s)

Pre 5.75 ± 1.78 5.68 ± 0.91 0.160 0.874
Post 5.68 ± 0.91 5.39 ± 1.53

Pre–Post 0.30 ± 1.80 0.29 ± 1.69 0.017 0.987
t 0.745 0.753
p 0.465 0.462

Velocity
moment
(mm2/s)

Pre 4.89 ± 2.16 4.77 ± 2.14 0.174 0.863
Post 4.34 ± 1.11 4.32 ± 1.12

Pre–Post −1.27 ± 0.90 −0.66 ± 1.11 1.906 0.064
t 1.131 0.660
p 0.272 0.518

Note. M-L: Medial-Lateral; A-P: Anterior-Posterior; EO: Eyes Open; EC: Eyes Closed.

3.4. Dynamic Balance

For the TUG, BBS, and FRT, the CIMCT group demonstrated a significant reduction
after training (p < 0.05), and the GCT group also displayed a significant decrease after
training (p < 0.05). Additionally, Cohen’s d values for BBS and FRT indicated a large effect
size (d > 0.80). However, when comparing the differences between the groups by training
method, the CIMCT group exhibited a significantly greater improvement compared to the
GCT group (p < 0.05) (Table 5).

Table 5. The changes in dynamic balance.

n = 39

CIMCT GCT t/F p MDC Effect
Sizen = 20

n =
19

MDC%

TUG
(sec)

Pre 36.70 ± 4.89 35.50 ± 5.25 0.741 0.463
Post 31.82 ± 4.56 33.70 ± 4.51

Pre–Post −4.88 ± 3.06 −1.79 ± 3.38 8.926 † 0.005 1.89 −0.96
t 7.132 * 2.322 * 38.86
p 0 0.033

BBS
(point)

Pre 30.56 ± 7.88 29.00 ± 9.51 0.561 0.578
Post 35.05 ± 7.27 30.97 ± 9.12

Pre–Post 4.49 ± 2.94 1.97 ± 3.10 6.767 † 0.013 1.82 0.83
t 6.832 * 2.793 * 40.57
p 0 0.012

FRT
(cm)

Pre 14.45 ± 4.33 13.17 ± 4.08 0.945 0.351
Post 17.83 ± 4.30 13.79 ± 4.59

Pre–Post 3.38 ± 2.85 0.62 ± 1.20 15.299 † 0 1.76 1.25
t 5.315 * 2.254 * 52.15
p 0 0.038

Note. TUG = Timed Up and Go; BBS = Berg Balance Scale; FRT = Functional Reach Test. Values are expressed as
mean ± standard deviation (SD). * p < 0.05. † indicates that the p-value from the repeated measures ANOVA is
less than 0.05.
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3.5. Activities of Daily Living

For the MBI, both the CIMCT and GCT groups demonstrated a significant increase
after training (p < 0.05), with Cohen’s d values indicating a large effect size (d > 0.80).
However, when comparing the differences between the groups according to the training
method, the CIMCT group displayed a significantly greater improvement than the GCT
group (p < 0.05) (Table 6).

Table 6. The changes in activities of daily living.

n = 39

CIMCT GCT t/F p MDC Effect
Sizen = 20 n = 19 MDC%

MBI
(score)

Pre 53.41 ± 10.16 56.47 ± 10.11 0.944 0.351
Post 62.40 ± 14.77 58.34 ± 9.69

Pre–Post 8.99 ± 6.46 1.87 ± 9.69 19.831
† 0 4.01 0.87

t 6.224 * 3.058 * 44.53
p 0 0.007

Note. MBI = modified Barthel index. Values are expressed as mean ± standard deviation (SD). * p < 0.05.
† indicates that the p-value from the repeated measures ANOVA is less than 0.05.

4. Discussion

The present study investigates the effects of sEMG-triggered CIMCT, which focuses on
constraining the movement of the unaffected side while inducing voluntary contractions on
the affected side. The study also assesses muscle strength, postural balance, and activities
of daily living in patients with chronic stroke.

Prior to the current study, we conducted a pilot study to investigate the muscle activa-
tion patterns of the affected side during the pedaling exercise. Based on the results of the
pilot study, we developed an sEMG-triggered pedaling device that enabled pedaling exer-
cises with muscle signals from the affected side. Continual monitoring of the four muscles
and adjustment of their speed according to their activation provided feedback on muscle
actions to patients, which motivated their participation. This method actively engaged
the affected side, leading to improvements in gait function, which can be considered an
advanced form of CIMT. In previous studies, the use of sEMG-triggered CIMCT was shown
to improve spatiotemporal gait parameters and gait symmetry [23]. Building on these
findings, the current study investigated changes in variables influencing spatiotemporal
gait parameters and symmetry by evaluating muscle strength and balance as primary
outcome measures. This approach aimed to address the significant gap in understanding
how sEMG-triggered CIMCT contributes to enhancing spatiotemporal gait parameters and
symmetry. Additionally, the study examined whether improvements in these variables
could ultimately positively impact activities of daily living.

In the present study, training that induced voluntary contractions on the affected
side enhanced muscle strength and function. The main muscles involved in pedaling are
the knee extensors, knee flexors, dorsiflexors, and plantar flexors [35]. Before training, a
significant difference in muscle strength between the affected and unaffected sides was
noted, with approximately twice the strength in the upper leg and three times the strength
in the lower leg. The effect sizes were notably large for knee extensors (1.86), knee flexors
(0.98), dorsiflexors (1.29), and plantar flexors (1.16). These results satisfied the MDC
criterion for muscle strength changes on the affected side, indicating statistical significance.
The CIMCT group demonstrated significant improvements on the affected side and an
enhancement in symmetry ratios after the intervention.

The proposition is that sEMG-triggered pedaling training, built upon electromyo-
graphic biofeedback and constraint-induced movement therapy (CIMT) principles for the
lower extremities, induces improvements in muscle strength by engaging the motor cortex.
This is achieved through the focused use of the affected muscles, promoting activity in the
primary sensorimotor cortex (SMC) by leveraging neuroplastic mechanisms. The training
combines volitional activation of the impaired side with continuous somatosensory feed-
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back, which facilitates the reorganization of neural circuits. This process is more effective
when the pyramidal tract (PT) is intact, leading to sustained long-term improvements.
Even if the PT is compromised, consistent biofeedback training can still promote recovery
through compensatory activation, though the effects may be less stable [36].

Improvement in postural balance is a secondary effect of pedaling training in patients
with stroke. Lee [37] reported significant improvements in stability limits after 6 weeks
of pedaling training in patients with stroke. However, Kim et al. [38] demonstrated no
significant difference in BBS scores in patients with chronic stroke after pedaling training;
although, significant differences were observed in TUG and gait speed.

In this study, static and dynamic postural balance was also assessed. Static balance
and the ability to maintain posture demonstrated significant improvements in both groups;
however, no significant differences were observed between them. The intervention in
this study was more effective for dynamic balance than for static balance, as it induced
reciprocal movements of both feet by inducing muscle contractions in the affected lower
extremities. Dynamic balance was assessed using TUG, BBS, and FRT, and both groups
exhibited significant improvements, with the sEMG-triggered training group displaying
greater improvements than the general pedaling training group. The TUG time decreased
by 12.93%. As the TUG test involves gait, sitting, standing, and turning, the test is likely to
be related to improvements in gait. The BBS, which assesses the risk of falls, improved by
14.37%; however, the scores remained below 45, suggesting that the risk of falls was not
eliminated. The FRT, which evaluates the limits of stability, demonstrated an improvement
of 25.73%. Shen et al. [39] conducted a systematic review and meta-analysis on the effects
of pedaling training on mobility and quality of life in patients with stroke and reported
significant improvements in BBS, and [40] and Tang A, et al. [41] also reported increases in
BBS in groups that used electronic gait training.

The improvements in postural balance observed in this study are thought to have been
influenced by the improvement in muscle strength of the affected lower extremity. This, in
turn, impacts the symmetry of the lower extremities. This aligns with previous research
findings, suggesting that improvements in muscle tension, endurance, joint flexibility, and
symmetry of the lower extremities enhance balance capabilities [42,43].

Another secondary effect observed in this study was the change in activities of daily
living. Both groups demonstrated significant improvements in MBI scores, with the sEMG-
triggered training group exhibiting a significant improvement (16.53%). The results are
consistent with those of previous studies, indicating that task-oriented training [44] and
voluntary movements of the affected lower extremities enhance cerebral reorganization and
cortical restoration [45]. The aforementioned finding also aligns with research reporting a
high correlation between balance and activities of daily living [46].

This study demonstrated that sEMG-triggered CIMCT effectively enhances lower
limb muscle strength, postural balance, and activities of daily living in chronic stroke
patients. The biofeedback device played a crucial role in engaging patients actively and
improving motor function. Compared to previous studies, our research provides additional
evidence supporting the practicality and effectiveness of sEMG-triggered devices. However,
this study has certain limitations. Although the sample size was calculated, considering
the complex pathologies of patients with stroke, representing all stroke populations is
challenging. When cycling is used as an intervention, quantitatively comparing whether
all patients are trained at the same intensity and duration within a given time is difficult.
Additionally, the sustainability of the exercise effects could not be ascertained because
follow-up observations were not conducted after the intervention.

5. Conclusions

This study confirms the effectiveness of sEMG-triggered CIMCT in activating volun-
tary muscle contractions in the lower extremities during chronic stroke rehabilitation. The
findings suggest that sEMG-triggered CIMCT is a viable method for enhancing muscle
strength, postural balance, functional activities, and activities of daily living in clinical
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settings. This approach offers a promising option for rehabilitation practitioners aiming to
improve overall functional outcomes in stroke recovery. Future research should focus on
integrating bioengineering technologies into rehabilitation programs and exploring their
long-term benefits across different patient groups.
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A.R.; Marque, P. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding
framework. Eur. Stroke J. 2023, 8, 880–894. [CrossRef]

7. Olney, S.J.; Richards, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [CrossRef]
8. Hsu, A.-L.; Tang, P.-F.; Jan, M.-H. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after

mild to moderate stroke. Arch. Phys. Med. Rehabil. 2003, 84, 1185–1193. [CrossRef]
9. Gonzalez-Suarez, C.B.; Ogerio, C.G.V.; dela Cruz, A.R.; Roxas, E.A.; Fidel, B.C.; Fernandez, M.R.L.; Cruz, C. Motor impairment

and its influence in gait velocity and asymmetry in community ambulating hemiplegic individuals. Arch. Rehabil. Res. Clin.
Transl. 2021, 3, 100093. [CrossRef]

10. Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled
controls at matched speeds. Gait Posture 2005, 22, 51–56. [CrossRef]

11. Middleton, A.; Braun, C.H.; Lewek, M.D.; Fritz, S.L. Balance impairment limits ability to increase walking speed in individuals
with chronic stroke. Disabil. Rehabil. 2017, 39, 497–502. [CrossRef] [PubMed]

12. Xie, L.; Yoon, B.H.; Park, C.; You, J.S.H. Optimal Intervention Timing for Robotic-Assisted Gait Training in Hemiplegic Stroke.
Brain Sci. 2022, 12, 1058. [CrossRef] [PubMed]

13. Choi, W. Effects of Robot-Assisted Gait Training with Body Weight Support on Gait and Balance in Stroke Patients. Int. J. Environ.
Res. Public Health 2022, 19, 5814. [CrossRef] [PubMed]

14. Sana, V.; Ghous, M.; Kashif, M.; Albalwi, A.; Muneer, R.; Zia, M. Effects of vestibular rehabilitation therapy versus virtual reality
on balance, dizziness, and gait in patients with subacute stroke: A randomized controlled trial. Medicine 2023, 102, e33203.
[CrossRef]

15. Akinci, M.; Burak, M.; Yasar, E.; Kilic, R.T. The effects of Robot-assisted gait training and virtual reality on balance and gait in
stroke survivors: A randomized controlled trial. Gait Posture 2023, 103, 215–222. [CrossRef]

28



Bioengineering 2024, 11, 860

16. Xie, R.; Zhang, Y.; Jin, H.; Yang, F.; Feng, Y.; Pan, Y. Effects of soft robotic exoskeleton for gait training on clinical and biomechanical
gait outcomes in patients with sub-acute stroke: A randomized controlled pilot study. Front. Neurol. 2023, 14, 1296102. [CrossRef]

17. Gozzi, A. ReAble: A Wearable Robotic Locomotor Trainer for Post-Stroke Individuals; University of Illinois at Chicago: Chicago, IL,
USA, 2022.

18. Kim, J.; Jung, S.; Song, C. The effects of auditory feedback gait training using smart insole on stroke patients. Brain Sci. 2021, 11,
1377. [CrossRef]

19. Kaneko, T.; Maeda, M.; Yokoyama, H.; Kai, S.; Obuchi, K.; Takase, S.; Horimoto, T.; Shimada, R.; Moriya, T.; Ohmae, H.; et al.
Therapeutic effect of adjuvant therapy added to constraint-induced movement therapy in patients with subacute to chronic
stroke: A systematic review and meta-analysis. Disabil. Rehabil. 2023, 1–15. [CrossRef]

20. Hamzei, F.; Krüger, H.; Peters, M.; Ketels, G.; Blessin, J.; Ringer, T.; Liepert, J.; Taub, E. Shaping-Induced Movement Therapy for
lower extremity (SIMT)—A pilot study. Neurol. Und Rehabil. 2012, 18, 236–241.

21. Numata, K.; Murayama, T.; Takasugi, J.; Oga, M. Effect of modified constraint-induced movement therapy on lower extremity
hemiplegia due to a higher-motor area lesion. Brain Inj. 2008, 22, 898–904. [CrossRef]

22. Rodriguez, G.M.; Aruin, A.S. The effect of shoe wedges and lifts on symmetry of stance and weight bearing in hemiparetic
individuals. Arch. Phys. Med. Rehabil. 2002, 83, 478–482. [CrossRef] [PubMed]

23. Lee, K. EMG-Triggered Pedaling Training on Muscle Activation, Gait, and Motor Function for Stroke Patients. Brain Sci. 2022, 12,
76. [CrossRef] [PubMed]

24. Reaz, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and
applications. Biol. Proced. Online 2006, 8, 11–35. [CrossRef]

25. Konrad, P. A Practical Introduction to Kinesiological Electromyography; Noraxon, Inc.: Scottsdale, AZ, USA, 2005.
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Abstract: Action observation and motor imagery (AOMI) are commonly delivered through a laptop
screen. Immersive virtual reality (VR) may enhance the observer’s embodiment, a factor that may
boost AOMI effects. The study aimed to investigate the effects on manual dexterity of AOMI delivered
through immersive VR compared to AOMI administered through a laptop. To evaluate whether VR
can enhance the effects of AOMI, forty-five young volunteers were enrolled and randomly assigned
to the VR-AOMI group, who underwent AOMI through immersive VR, the AOMI group, who
underwent AOMI through a laptop screen, or the control group, who observed landscape video clips.
All participants underwent a 5-day treatment, consisting of 12 min per day. We investigated between
and within-group differences after treatments relative to functional manual dexterity tasks using the
Purdue Pegboard Test (PPT). This test included right hand (R), left hand (L), both hands (B), R + L + B,
and assembly tasks. Additionally, we analyzed kinematics parameters including total and sub-phase
duration, peak and mean velocity, and normalized jerk, during the Nine-Hole Peg Test to examine
whether changes in functional scores may also occur through specific kinematic patterns. Participants
were assessed at baseline (T0), after the first training session (T1), and at the end of training (T2). A
significant time by group interaction and time effects were found for PPT, where both VR-AOMI and
AOMI groups improved at the end of training. Larger PPT-L task improvements were found in the
VR-AOMI group (d: 0.84, CI95: 0.09–1.58) compared to the AOMI group from T0 to T1. Immersive
VR used for the delivery of AOMI speeded up hand dexterity improvements.

Keywords: action observation; motor imagery; virtual reality; manual dexterity

1. Introduction

Cognitive facilitations including action observation (AO) and motor imagery (MI)
have been recently adopted to promote motor learning in athletes or in subjects with motor
impairments [1,2].

AO entails the observation of motor tasks through video clips, which are delivered
using a laptop screen showing motor contents representing motor acts executed by age and
gender-matched subjects [1,3,4]. This stimulation recruits the mirror neuron system (MNS),
a frontoparietal network active both during the execution and observation of motor acts.
The MNS plays a key role in understanding actions performed by others [5] and is involved
in the building of motor memories related to the observed tasks [6]. The neural solicitation
driven by AO is dependent on the features of the observed stimuli, such as the observer
perspective or the transitive or intransitive nature of the action. For example, a first-person
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perspective induces higher MNS activation during the observation of upper limb transitive
actions, compared to a third-person perspective [7,8]. In addition, the impact of AO on
motor learning is larger when the observed actions are accompanied by action-related
sounds [9].

MI consists of a cognitive process in which subjects imagine themselves executing
motor tasks without performing them [10,11]. MI performed immediately after AO has
been reported to further enhance motor learning when compared to the execution of AO
alone [11]. The rationale behind this finding lies in the overlap between the neural substrates
of AO and MI, both of which share large territories over frontoparietal circuits [10]. In fact,
the association of AO and MI (AOMI) has been adopted to enhance the performance of
sport-related gestures [12]. Moreover, AOMI-related benefits have been demonstrated in
terms of motor re-learning in patients with motor impairments [13] when compared to the
administration of AO or MI alone.

When considering treatments integrating action observation (e.g., AOMI), an ad-
ditional resource is represented by virtual reality (VR), which is a computer-generated
simulation of a three-dimensional image or environment that users can interact with in
a seemingly real or physical manner. This interaction is facilitated through specialized
devices such as helmets with a screen inside or controllers fitted with sensors [14,15]. VR
technologies may be “immersive” when the subject is completely immersed in the virtual
environment and visual information change according to the movement of the user’s
head [16]. Immersive VR offers multiple advantages. On one hand, it leads to the illusion
of being in a virtual place and the first-person perspective generates the illusion that the
virtual body is the observer’s own [17]. The observed upper limbs are coherent with the
real limbs of the subject, enhancing the embodiment of the observer [18], the sense of
agency, the self-attribution of the virtual body [19,20], and the overall engagement during
the treatment [21]. On the other hand, neuroimaging studies have proven that action
observation presented in 3D evokes a greater sensorimotor response than 2D stimuli [22].
All these advantages induced clinical researchers to adopt immersive VR in the field of
motor rehabilitation, demonstrating its efficacy in favoring the upper limb recovery in
patients with neurological disorders [23,24]. In this scenario, previous studies have sug-
gested that implicit motor learning, defined as the acquisition of new motor skills without
the awareness of the learning process, may be enhanced when subjects are embodied in
immersive virtual environments and when they have a first-person perspective [25]. The
embodiment with the virtual body might increase AO effects, since the mirror mechanism
has been reported as modulated not only by the observed movement, but also by action
meaning and environmental, contextual, and emotional factors [26–28].

Few studies have described the link among AO, VR, and MI in terms of motor learning.
Choi [29] described higher motor imagery abilities following hand movements observed
in immersive VR. Moreover, the administration of AO through immersive VR to patients
in a subacute phase after a stroke has shown improvements in upper limb motor function
when compared to upper limb motor rehabilitation performed without VR [30]. It is worth
noting that the aforementioned cognitive approaches have been frequently associated
with exercises aimed at improving hand dexterity [31,32]. Manual dexterity consists of
the ability to execute coordinated hand and fingers movements and derives from the
integration of hand biomechanics with sensorimotor and cognitive processes [32]. When
considering hand function, improvements in manual dexterity after training represent
an index of enhanced motor control during hand and fingers movements [33]. However,
although literature data suggest the opportunity to enhance the embodiment through
the use of immersive VR systems, no studies have investigated the effect of an AOMI
training administered through immersive VR on manual dexterity when compared to a
conventional AOMI training.

Therefore, the aim of this study was to investigate the effects on manual dexterity of
AOMI delivered through immersive VR compared to conventional AOMI delivered via
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a laptop screen in healthy subjects. The study hypothesis was that immersive VR might
boost the effects of AOMI on motor learning in healthy subjects.

This modality of administration may increase motor resonance, since AOMI is modulated
by contextual and environmental factors associated with observed movement [26,28]. The
novelty of the study lies in leveraging the embodiment induced by action observation and
motor imagery delivered using immersive VR, alongside the first-person perspective, rather
than via a laptop screen to induce motor learning in terms of manual dexterity changes.

To measure the extent and changes in manual dexterity, we identified specific func-
tional tests that were administered both before and after a week of daily training. However,
motor learning may manifest as an improvement in a functional test, as well as a higher
velocity at which this improvement occurs [34]. For this reason, the functional battery was
administered also after the first training session. Additionally, we investigated the move-
ment kinematics during manual dexterity tasks to examine whether changes in functional
scores may also occur through specific kinematic patterns.

We provide an outline of the manuscript to guide readers through its content. In the
Background section, we highlight the rationale behind why VR may boost AOMI effects on
motor learning. Subsequently, in the Methods section, we describe the study design, the
sample included in the study, the different characteristics of treatment administered, and a
detailed description of the outcome measures chosen to assess manual dexterity. The Results
section presents the effects of different treatments, whose explanations, interpretations, and
implications are addressed in the Discussion and Conclusions.

2. Materials and Methods

2.1. Participants

The sample size was estimated based on previous reports about the Purdue Pegboard
Test ([35], see below). It was estimated that, considering an alpha error of 5%, a minimum of
15 participants would be required in each group to provide 80% power to detect a Cohen’s
d = 1.0 (large effect size) between VR-AOMI and AOMI groups at T2 [36].

Forty-five healthy subjects (15 females, 30 males; mean age 23.4 ± 2.68 years) were
enrolled, and their characteristics are reported in Table 1. Inclusion criteria were: (1) age
between 20 and 35 years, (2) right-handedness according to the Edinburgh Handedness
Inventory [37]. Conversely, the presence of upper limb sensorimotor disorders or recent
traumatic injuries, the usual performance of motor activities or sports involving remarkable
manual skills (e.g., playing instruments, juggling), a history of epilepsy seizures, and visual
impairments that cannot be corrected with lenses were used as exclusion criteria. All
participants signed a written informed consent and the study protocol was approved by
the Ethical Committee of the Humanitas Clinical and Research Center (approval number:
VR-AOT-GR-2019).

Table 1. Characteristics of study participants. Data are shown as mean ± standard deviation.

VR-AOMI Group AOMI Group CTRL Group p-Value
(n = 15) (n = 15) (n = 15)

Age (years) 24.06 ± 3.1 23.53 ± 3.24 22.53 ± 1.06 0.32
Weight (kg) 67.43 ± 10.82 66.06 ± 12.52 69.53 ± 8.71 0.67
Height (cm) 176.53 ± 6.76 172.6 ± 11.09 172.73 ± 6.96 0.39

Gender 11M/4F (27%F) 9M/6F (40%F) 10M/5F (33%F) 0.74
KVIQ 36.6 ± 7.22 40.87 ± 6.42 38.27 ± 8.13 0.35

VR-AOMI: action observation and motor imagery through immersive VR; AOMI: action observation and motor
imagery through laptop; CTRL: control; KVIQ: kinesthetic and visual imagery questionnaire; M: male; F: female.

2.2. Intervention

Action stimulus depicted a humanoid avatar playing a pianola with the left hand
from a first-person perspective (Figure 1). The action performed by the humanoid avatar
replicated the kinematics recorded from a healthy subject [38] by a motion capture system
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(Awinda, XSens, Enschede, The Netherlands) incorporating industrial gloves to track hand
and finger movements (Manus Prime II Xsens, Enschede, The Netherlands). Given the
immersive nature of the stimuli, VR-AOMI participants wearing the headset could explore
the surrounding space by moving head and gaze accordingly.

Figure 1. Study participant undergoing the VR-AOMI through the Oculus headset (VR-AOMI),
AOMI through a laptop screen (AOMI), and landscape observation through VR (CTRL).

Both VR-AOMI and AOMI participants were asked to carefully observe the action for
3 min, with an audio trace coherent with piano keys pressure. After the observation, they
had to imagine themselves performing the action (MI) for one minute, avoiding any active
movement. Observation and imagination were repeated three times (12 min in total) for
five consecutive days, maintaining constant the daytime of task administration. Finally,
participants of the CTRL group observed landscapes (free of any biological motor contents)
in immersive VR for the same amount of time as the AOMI groups.

2.3. Study Design, Randomization, and Enrollment

The study has a three-armed, single-blind, randomized, controlled design. Participants
were recruited by an independent researcher not involved in the subsequent stages of
the study and they were assigned to one of the three experimental groups according
to a random computer-generated list. The VR-AOMI group (15 subjects) underwent
AOMI through immersive presentation of the action stimuli, the AOMI group (15 subjects)
observed the same stimuli via a laptop screen, while the CTRL group (15 subjects) observed
landscape videos via the VR visor (Oculus II).

2.4. Functional and Kinematic Assessment

The kinesthetic and visual imagery questionnaire (KVIQ) was administered to partici-
pants at baseline to assess their motor imagery abilities [39].

The main outcome of the study pertained to the participants’ hand dexterity. For this
reason, all subjects underwent a functional and kinematic assessment at baseline (T0), after
the first training session (T1—day 1), and at the end of training (T2—day 5). The study
timeline is shown in Figure 2.

Figure 2. Study timeline.

34



Bioengineering 2024, 11, 398

The assessment procedures were conducted by a researcher unaware of group alloca-
tion at the Motion Analysis Lab of the Humanitas Clinical Institute, Milan, Italy.

The functional assessment consisted of the Purdue Pegboard Test (PPT), including
four subtests: PPT-R (right hand), PPT-L (left hand), PPT-B (both hands simultaneously),
and an assembly task. Participants had 30 s for each peg-insertion task and 60 s for the
assembly task [35].

The kinematic assessment included the Nine-hole peg test (NHPT) [40] and the finger
tapping test (FTT) [41]. During the NHPT, participants were seated on a height-adjustable
chair with the pegboard positioned on a table in front of them. They were asked to grasp the
pegs from a container one by one, place them into a nine-hole board, remove the pegs from
the board, and replace them in the container as quickly as possible [40]. Kinematic data
were recorded using an optoelectronic system (SMART-DX, BTS, Milan, Italy) equipped
with eight infrared cameras and 16 reflective markers, of which three were on the table
to define the global reference system and 13 were on anatomical landmarks. The system
calibration involved a 10 s static test with four additional markers on the NHPT board.

Markers trajectories were filtered using a fourth-order low-pass Butterworth filter (cut-off
4 Hz). Subsequently, we extracted the total and single-phase times (peg grasp, peg transfer,
peg in hole, hand return), normalized jerk, mean and peak velocity during peg transfer and
hand return phases [40]. Subjects performed two trials for both the right and the left sides,
and the shortest one in terms of total time of execution was considered for the analysis.

Kinematic assessment also included the finger tapping test (FTT), performed with
participants seated on a chair, forearms resting on a desk with elbows at 90 degrees flexion.
They performed a tapping sequence (thumb, index, middle, ring, and little finger) at
maximum speed for 15 s without visual feedback. Fingers were marked distally with
smaller reflective markers (6 mm diameter). Errors were recorded for incorrect sequence
movements. The total number of errors and the total number of movements considering all
the fingers were analyzed [41].

2.5. Statistical Analysis

After verifying the normality assumption through the Shapiro–Wilk test, a parametric
pipeline was adopted. Univariate ANOVA and chi-square test were used to investigate
between-group differences in terms of demographic characteristics and KVIQ at baseline.
A 3 × 3 mixed ANOVA with time as within-subjects and group as between-subjects factors
was used to evaluate differences in terms of manual dexterity assessed by functional test and
kinematic analysis between groups over time. Post-hoc analyses were Bonferroni-corrected
to reduce the false positive ratio. In addition, changes from baseline to post-treatment
(deltas) were calculated and the effect size (Cohen’s d), with its 95% confidence interval
(CI95), was also computed between deltas in the three groups and between each time point
in the same group and interpreted as small (0.2 < d < 0.5), medium (0.5 < d < 0.8), large
(0.8 < d < 1.3), and very large (d > 1.3). Analyses were conducted using SPSS Statistics 29.0
for iOS and the statistical level of significance was set to α = 0.05.

3. Results

None of the participants withdrew from the study and no between-group differences
were found in terms of baseline characteristics including age, weight, height, gender, and
KVIQ score, as shown in Table 1.

3.1. The Effects of AOMI Applied through VR on Manual Dexterity Assessed with the Purdue
Pegboard Test

A significant time by group interaction and time effect were found for PPT-R, PPT-L,
PPT-R + L + B, and PPT-Assembly tasks, while a time effect was found for PPT-Both.

The graphs in Figure 3 show the PPT scores obtained across the three groups, while
numeric values for within- and between-group comparisons of deltas are reported in
Tables 2 and 3, respectively.
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Figure 3. The scores obtained in Purdue Pegboard Test across the three groups are shown. Data are
presented as means (dots and triangles) and standard deviation (vertical bars).

Table 2. PPT scores in the VR-AOMI (A), AOMI (B), and CTRL (C) groups at T0, T1, and T2 are
expressed as mean ± standard deviation. Within-group comparisons between T1/T0 and T2/T0 are
expressed as Cohen’s d with 95% confidence interval (CI95).

(A)

VR-AOMI T0 T1 T2
d (CI95)
T1–T0

d (CI95)
T2–T0

R task 15.49 ± 1.57 16.60 ± 1.14 17.17 ± 1.57 1.03 (0.39, 1.65) 1.51 (0.75, 2.52)
L task 14.58 ± 1.03 16.06 ± 0.85 16.40 ± 0.99 2.37 (1.53, 3.36) 1.84 (0.99, 2.67)
B Task 12.04 ± 1.22 12.71 ± 1.09 13.35 ± 1.38 0.75 (0.16, 1.31) 1.79 (0.95,2.61)

R + L + B task 42.62 ± 2.94 45.42 ± 2.82 46.98 ± 3.80 1.75 (0.92, 2.56) 2.07 (1.15, 2.97)
Assembly task 40.86 ± 5.02 44.55 ± 4.94 46.86 ± 5.70 1.86 (0.99, 2.69) 2.73 (1.60, 3.85)

(B)

AOMI T0 T1 T2
d (CI95)
T1–T0

d (CI95)
T2–T0

R task 15.53 ± 1.33 16.51 ± 1.53 17.13 ± 1.67 0.98 (0.34,1.58) 1.51 (0.74, 2.42)
L task 14.49 ± 1.83 15.42 ± 1.55 16.22 ± 1.38 1.35 (0.63, 2.05) 1.70 (0.89, 2.50)
B Task 12.18 ± 1.37 12.77 ± 1.50 13.13 ± 1.41 0.84 (0.24, 1.42) 1.09 (0.43, 1.72)

R + L + B task 42.33 ± 3.94 44.29 ± 3.90 46.46 ± 3.56 1.38 (0.65, 2.08) 1.91 (1.03, 2.76)
Assembly task 43.86 ± 5.91 46.15 ± 5.58 48.40 ± 4.68 0.62 (0.06, 1.17) 1.11 (0.45, 1.75)

(C)

CTRL T0 T1 T2
d (CI95)
T1–T0

d (CI95)
T2–T0

R task 16.00 ± 1.58 16.10 ± 1.57 16.22 ± 2.00 0.1 (−0.41, 0.60) 0.22 (−0.30, 0.73)
L task 14.64 ± 1.81 15.02 ± 1.43 15.11 ± 1.92 0.52 (−0.3, 1.05) 0.50 (−0.04, 1.04)
B Task 12.11 ± 1.58 12.24 ± 1.40 12.80 ± 1.77 0.16 (−0.35, 0.67) 1.18 (0.54, 1.84)

R + L + B task 42.95 ± 4.73 43.15 ± 4.18 44.11 ± 5.42 0.09 (−0.42, 0.60) 0.72 (0.14, 1.28)
Assembly task 45.09 ± 5.77 46.78 ± 5.69 47.78 ± 6.53 0.90 (0.28, 1.49) 1.53 (0.76, 2.28)

Abbreviations. VR-AOMI: action observation through immersive virtual reality group; AOMI: action observation
group; CTRL: control group; d: Cohen’s d; CI95: confidence interval; R: right; L: left; B: both.
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Table 3. Comparisons of deltas among the VR-AOMI, AOMI, and CTRL groups for the Purdue
Pegboard Test. Data were expressed as Cohen’s d with 95% confidence interval (CI95). Significant
results are shown in bold text.

ΔT1–T0 Cohen’s d (CI95) ΔT2–T0 Cohen’s d (CI95)

VR-
AOMI/AOMI

VR-
AOMI/CTRL

AOMI/CTRL
VR-

AOMI/AOMI
VR-

AOMI/CTRL
AOMI/CTRL

R task
0.13

(−0.59–0.84)
0.90

(0.14–1.65)
0.81

(0.06–1.55)
0.08

(−0.63–0.80)
1.39

(0.58–2.19)
1.35

(0.54–2.13)

L task
0.84

(0.09–1.58)
1.64

(0.79–2.46)
0.79

(0.04–1.52)
0.09

(−0.63–0.80)
1.42

(0.60–2.21)
1.31

(0.50–2.09)

B Task
0.08

(−0.63–0.80)
0.62

(−0.12–1.35)
0.60

(−0.14–1.33)
0.44

(−0.29–1.16)
0.94

(0.18–1.69)
0.36

(−0.37–1.08)

R + L + B task
0.18

(−0.54–0.90)
1.38

(0.57–2.17)
1.16

(0.38–1.93)
0.09

(−0.62–0.81)
1.71

(0.85–2.54)
1.57

(0.73–2.38)

Assembly task
0.48

(−0.26–1.20)
1.03

(0.26–1.79)
0.21

(−0.51–0.92)
0.45

(−0.28–1.17)
1.67

(0.82–2.49)
0.59

(−0.15–1.32)

Abbreviations. VR-AOMI: action observation performed through immersive virtual reality group; AOMI: action
observation group; CTRL: control group; CI95: confidence interval; R: right; L: left; B: both.

Table 2 reports within-group differences expressed as Cohen’s d and CI95. Both VR-
AOMI and AOMI groups improved from T0 to T1 and further experienced enhanced
manual dexterity from T0 to T2 during PPT-R, PPT-L, PPT-Both, PPT-R + L + B, and PPT-
Assembly tasks. These results suggest a major effect driven by action observation regardless
of its visual display features. The CTRL group improved from T0 to T2 only for PPT-Both,
PPT-R + L + B, and PPT-Assembly tasks.

Table 3 reports between-group differences expressed as Cohen’s d and CI95. Differences
between VR-AOMI and AOMI groups in terms of deltas were exclusively found for PPT-L
at T1 in favor of VR-AOMI (p = 0.029, d: 0.84, CI95: 0.09–1.58), indicating that the use of
virtual reality speeded up the motor learning process, reaching a significant increase in
dexterity already after the first training session (Figure 4). In addition, between-group
differences in terms of deltas (T1–T0 and T2–T0) were detected in favor of both AOMI
groups compared to the CTRL group in all subtasks of PPT (Table 3).

Figure 4. Between-group differences for deltas from T0 to T1 and from T2 to T0 for the PPT-L task.
Boxes represent the range between the first and the third quartile, the middle horizontal line is the
mean value, and the ends of the vertical line, from top to bottom, are the maximum and minimum
values, respectively. Symbols show differences in terms of delta between the VR-AOMI and AOMI
groups from T0 to T1 (#) and between the VR-AOMI and AOMI groups with the CTRL group from
T0 to T1 and from T0 to T2 (*).
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3.2. The Effects of AOMI Applied through VR on Kinematic Assessment during the Nine-Hole Peg Test

Results for the NHPT with the left hand revealed a time effect for removing time
(p = 0.003), peak return velocity (p = 0.009), transfer time (p = 0.040), return time (p = 0.029),
and transfer velocity (p = 0.042) (Table S1).

Within-group post-hoc analyses revealed a decrease in removing time in the AOMI
group at T2 compared to T0 (MD: 0.93, p = 0.041, CI95: 0.03, 1.83), while the VR-AOMI
group revealed a decrease in transfer time at T2 when compared to T0 (MD: 0.38, p = 0.05,
CI95: 0.76). The CTRL group revealed a decrease in return time at T2 compared to T1
(MD: 0.31, p = 0.013, CI95: 0.05, 0.57). Both the AOMI (MD: −0.11, p = 0.04, CI95: −0.19,
0.03) and control groups (MD: −0.09, p = 0.012, CI95: −0.18, −0.02) achieved higher peak
velocity during the return phase at T2 compared to T1.

The NHPT performed with the right hand revealed a time effect for removing time
(p = 0.003) and a time by group interaction for total test (p = 0.025) and peg-in-hole times
(p = 0.043). Between-group post-hoc analyses revealed a lower peg-in-hole time in the CTRL
group compared to the AOMI group at T2 (MD: 0.76, p = 0.036, CI95: 0.04, 1.48). Finally,
both VR-AOMI (MD: 0.47, p = 0.027, CI95: 0.06, 0.89) and CTRL (MD: 0.46, p = 0.030, CI95:
0.05, 0.88) groups showed a decrease in terms of removing time from T0 to T2 (Table S2).

3.3. The Effects of AOMI Applied through VR on Kinematic Assessment during the Finger Tapping Test

A time effect was found in total errors in the FTT performed with the left hand
(p = 0.002). Post-hoc analyses revealed improvement in the AOMI group (p = 0.027) at
T2 compared to T0. A time effect was found also in total fingers movement (p < 0.001).
Post-hoc analyses revealed an improvement only in the AOMI group (p = 0.003) from T1 to
T0, while all the groups showed an improvement (p < 0.001) at T2 compared to T0. Only
the VR-AOMI group improved (p = 0.025) from T1 to T2. No improvements were found
during the FTT with the right hand.

4. Discussion

This was the first study aimed at investigating whether immersive VR boosts the
effects of AOMI. The main study finding was that AOMI delivered via immersive VR
speeded up improvements in manual dexterity in healthy subjects. In fact, although AOMI
groups showed similar manual dexterity abilities at the end of training, the VR-AOMI
group achieved significantly greater dexterity changes than the AOMI group after the first
training session. On the other hand, the AOMI group gradually improved manual dexterity
over the five training sessions. Finding the most effective strategies to fasten acquisition
of motor skills is fundamental for motor learning relative to both athletes and patients
undergoing motor rehabilitation, where one goal is reducing the recovery time of subjects
undergoing rehabilitation plannings.

Our study applied this approach to hand dexterity, since the effects of AOMI on
the upper limbs are the most investigated in the literature and are described as the most
promising in motor rehabilitation [13]. The choice to investigate healthy subjects derived
from the desire to avoid any discomfort in patients assigned to the VR-AOMI group, since
previous studies have described cybersickness as a potential side effect during the use
of immersive virtual reality systems [42]. However, few studies have reported minimal
cybersickness using a head-mounted display in healthy subjects and stroke patients during
upper limb exercises through fully immersive VR systems [43]. Finally, the choice to
associate AO and MI derives from literature data supporting the efficacy of AOMI in
promoting the learning of complex motor tasks when compared to the use of AO or MI
alone in healthy subjects [44].

The current study demonstrates that virtual reality speeded up motor learning in-
duced by AOMI, as reported by PPT—Left hand and assembly tasks results. Based on
these findings, immersive virtual reality may have enhanced embodiment and amplified
3D kinematics details of the motor task, boosting the acquisition of complex motor skills in
young healthy subjects [1]. Interestingly, the largest effect in both AOMI groups was found
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for left ‘trained’ hand, consistently with previous studies which have demonstrated that
motor learning is related to the characteristics of the observed movement [45]. Improve-
ments at the level of the right untrained hand may derive from an interlimb transfer effect
from the non-dominant to the dominant hand after a unilateral dexterity training [46].

Nevertheless, a certain heterogeneity in terms of the PPT-Assembly task was found
at baseline, where the control group revealed higher mean score than the AOMI groups.
However, this heterogeneity may be attributed to higher variability in terms of assembly
task performance compared to unimanual tasks during PPT execution in healthy sub-
jects [35]. The opportunity to speed up the effects of AOMI through its association with VR
may depend on a greater sense of embodiment, since the motor learning process has been
shown to increase when embodiment with the observed movements is higher [15]. In fact,
resonance of MNS does not depend only on observed actions, since previous studies have
suggested that environment and context factors also modulate corticospinal excitability
during AO [26,28]. Particularly, the inferior frontal gyrus and the ventral premotor cortex
revealed a significant signal increase when the context suggested the intention associated
with hands actions [26]. Familiarity with and expertise of the observed action has also been
shown to increase the MNS resonance [47], and the embodiment induced by immersive VR
may increase the perception of familiarity with the observed action [48].

Moreover, stereoscopic 3D stimuli may provide a greater number of kinematic details
than bidimensional visual stimuli, allowing for a precise assessment and understanding of
the observed actions [22,49]. Finally, it is worth noting that the sense of embodiment has
been also described as influenced by the person-related perspective, since an egocentric
perspective has been demonstrated to trigger the illusion of body ownership and self-
attribution of the virtual body [50]. Overall, VR-AO delivered in the first-person-perspective
may also be considered as a multisensory stimulation which exploits the simultaneous
use of different sensory inputs to enhance motor learning processes [51,52]. In particular,
immersive VR systems allow for the integration of realistic scenarios engaging the patient’s
sensorimotor system and promoting the feeling of being into the virtual environment [53].
In this scenario, the current study findings induce us to consider AO, MI, and VR as
mutually beneficial. In fact, immersive VR might enhance motor imagery performance,
providing a rich immersive and illusive experience especially in first-person perspective
virtual scenarios [29,54].

The current study found improvements after AO treatments in PPT, while differences
in the 9HPT and finger tapping test were not detected with respect to AO or CTRL groups.
PPT has been previously described as more sensitive than the nine-hole peg test in detecting
changes in manual dexterity, especially in healthy subjects [55]. Little improvements in
the finger tapping test and bimanual tasks were found in the control group, probably as a
result of a learning effect caused by the repetition of the test three times in one week [56].

Although VR seems to speed up improvements in manual dexterity specifically in the
left observed hand, changes at the end of the treatment period were the same for immersive
and non-immersive AOMI. However, confirmation of this result in clinical practice would
have an interesting relevance, mostly in the rehabilitation field, where faster functional
recovery is a goal of rehabilitation [57].

5. Conclusions

In conclusion, the results of the study suggest that AOMI delivered through immersive
VR speeded up hand dexterity improvements. The study has some limitations. First, a
single exercise was delivered during the treatment period and improvements may have
been greater with a progression of exercise difficulty within the treatment period. This
limitation derived from the fact that exercises recorded in virtual reality were specifically
designed for the rehabilitation of post-stroke patients in a subacute phase. Thus, the
authors chose the most challenging task for a healthy young subject. Furthermore, visually
induced motion sickness was not explored, which has been described as a possible side
effect of VR immersion, with symptoms including nausea, disorientation, and oculomotor
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discomfort [38]. However, no dropouts were reported either in the landscape or the VR-
AOMI groups. Finally, the study was unbalanced in terms of gender and age according
to the inclusion criteria, as the number of males was twice that of females, and the mean
age was lower with respect to the mean age computed from the specified inclusion criteria.
However, the proportion of males and females in the VR-AOMI, AOMI, and CTRL groups,
as well as the mean age in all three groups, did not show statistically significant differences.

Further studies are needed to confirm the current findings in clinical practice and
explore the opportunity to reduce the recovery time in subjects undergoing rehabilita-
tion programs.
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//www.mdpi.com/article/10.3390/bioengineering11040398/s1, Table S1: Comparison between VR-
AOMI, AOMI and Control groups at T0, T1 and T2 for kinematic indexes during Nine-Hole Peg Test
performed with the left hand. Data are shown as mean and standard deviation. Significant results are
shown in bold text.; Table S2: Comparison between VR-AOMI, AOMI and Control groups at T0 and
T2 for kinematic indexes during Nine-Hole Peg Test (NHPT) performed with right hand. Data are
shown as mean and standard deviation. Significant results are shown in bold text.
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Nomenclature

VR Virtual reality
AOMI Action observation and motor imagery
CTRL Control
MNS Mirror Neuron System
KVIQ Kinesthetic and Visual Imagery Questionnaire
NHPT Nine Hole Peg Test
PPT Purdue Pegboard Test
FTT Finger Tapping Test
T0 Baseline assessment
T1 Assessment after the first treatment
T2 Assessment at the end of the treatment period
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Abstract: The impairment of walking balance function seriously affects human health and will lead to
a significantly increased risk of falling. It is important to assess and improve the walking balance of
humans. However, existing evaluation methods for human walking balance are relatively subjective,
and the selected metrics lack effectiveness and comprehensiveness. We present a method to construct
a comprehensive evaluation index of human walking balance. We used it to generate personal
and general indexes. We first pre-selected some preliminary metrics of walking balance based on
theoretical analysis. Seven healthy subjects walked with exoskeleton interference on a treadmill
at 1.25 m/s while their ground reaction force information and kinematic data were recorded. One
subject with Charcot–Marie–Tooth walked at multiple speeds without the exoskeleton while the same
data were collected. Then, we picked a number of effective evaluation metrics based on statistical
analysis. We finally constructed the Walking Balance Index (WBI) by combining multiple metrics
using principal component analysis. The WBI can distinguish walking balance among different
subjects and gait conditions, which verifies the effectiveness of our method in evaluating human
walking balance. This method can be used to evaluate and further improve the walking balance of
humans in subsequent simulations and experiments.

Keywords: walking balance; statistical analysis; principal component analysis; ankle exoskeleton

1. Introduction

Walking balance has always been a concern in the field of medical rehabilitation.
Impaired walking balance function seriously affects human health, especially for patients
and the elderly with mobility difficulties. The human body can use fast and powerful
muscle contraction and relaxation to move joints quickly to maintain posture and balance.
The strength of muscles is critical for providing the power to regulate balance [1]. Decreased
muscle strength, slowed muscle response, and limited range of motion of joints all result
in the ineffective implementation of balance strategies, which affects human locomotion
ability [2], disturbs the stability of posture [3], and eventually leads to frequent falls [4].
Falling can easily lead to a variety of health problems, such as fracture, joint deformity,
dislocation, and soft tissue injury [5]. Therefore, the walking balance of humans, especially
those with limited mobility, is a matter of concern. It is crucial to provide assistance for
them and improve their walking balance. We first need to evaluate the state of human
walking balance and aim to optimize it in future works.

The evaluation methods for balance are usually grouped into clinical tests, scaling
methods, and quantitative measurements by instruments. Clinical tests, such as the
Romberg Test [6,7], are easy to apply but inaccurate and subjective. These methods are
only suitable for the preliminary screening of patients with suspected balance problems [8].
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Scaling methods include the Berg Balance Scale [9], Tinetti Test [10], and so on. Compared
to clinical tests, scaling methods are quantified by levels and are relatively more accurate.
However, the scaling methods still have a certain subjectivity [11,12]. The determination of
grading boundaries depends on the personal judgment of evaluators [13,14]. Quantitative
measurement methods, such as the pressure plate method [15], have the advantage of
being able to accurately measure the state of balance. Existing quantitative measurement
methods select metrics only based on the intuition and experience of professionals and
cover fewer metrics.

Researchers have used a lot of metrics to evaluate balance. The commonly selected
metrics are the human body’s center of mass (COM) [4,16,17] and the trajectory of the
center of pressure (COP) [18–20]. When the human is standing still, the body’s stability can
be evaluated by the position of the COM [16]. Whether an additional step is required to
avoid a fall can also be obtained by analyzing the position and the velocity of the COM [21].
In static balance, measuring the swing trajectory of the COP with a force plate has become
a standard for evaluating static balance ability [18,22]. Additionally, it has shown that the
distance and velocity between the anterior and lateral displacements of the COP contribute
to explaining the walking balance [19,20]. Acceleration information from human body can
also be used to assess human walking balance [23,24]. The Lyapunov index of the COP’s
speed and the trunk acceleration of the elderly who are prone to falling are significantly
higher than those of normal people [24]. Experts put forward the stability criterion of the
Zero Moment Point (ZMP), which provides an effective solution for the balanced judgment
of human walking [25]. The relative position between the centroidal moment pivot (CMP)
and ZMP can supplement information about the rotational dynamics of the human body.
In this study, we considered the COP and ZMP as the same points [26] so we replaced
the position of the ZMP with the position of the COP. In addition, the margin of stability
(MOS) contains information on position and velocity which can describe changes in human
motion [21,27]. However, a single metric is not effective or comprehensive as it does not
consider or reflect all factors influencing balance during human locomotion. It is necessary
to combine multiple metrics and establish a comprehensive quantitative index to evaluate
the walking balance of different individuals under different walking conditions.

The purpose of this study was to present a method to construct an evaluation index of
human walking balance that (1) comprehensively selects more preliminary metrics related
to walking balance in theory, (2) reduces human factors through being driven by pure data,
and (3) can quantify and evaluate human walking balance in a way that can distinguish
between different individuals under different walking conditions. We collected gait data
from eight subjects, seven healthy subjects and one Charcot–Marie–Tooth (CMT) patient.
The main clinical symptoms for patients with CMT, like muscle weakness and atrophy,
seriously affect their walking balance. Then, we used our method to generate personal and
general indexes. We verified the effectiveness of this method in evaluating human walking
balance and analyzed the main influencing metrics of balance during human walking. This
study is expected to provide guidance for future research on walking balance evaluation,
explore the potential factors that influence human walking balance, and further improve
the walking balance function for the required population in the future.

2. Methods

We pre-selected a list of preliminary metrics for human walking balance through
theoretical analysis. Then, we recruited eight subjects, seven healthy subjects and one
subject with CMT. We conducted walking experiments with exoskeleton interference to
collect data for the selected metrics from the seven healthy subjects. We also collected the
same data from the CMT subject at multiple speeds. We further picked subsets of these
metrics that significantly deviated between different gait conditions through statistical
analysis. We eventually constructed a comprehensive quantitative evaluation index of
walking balance by combining multiple metrics using principal component analysis (PCA).
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We computed and analyzed the results of our method to verify its effectiveness in evaluating
human walking balance.

2.1. Experimental Platform

We used a gait experimental platform to collect data on the preliminary metrics
of human walking balance (Figure 1). The experimental platform consisted of a force-
measuring treadmill, an optical motion capture system, and an ankle exoskeleton system.
The ankle exoskeleton system was driven by an off-board actuation system with a Bowden
cable and controlled by a real-time control (DS1202, dSPACE, Paderborn, GmbH) system.

PC

Motor Bowden Cable

Driver

Controller

Ankle Exoskeleton

Treadmill

Camera Lenses

Reflective Markers

Figure 1. Gait experimental platform. The gait experimental platform included a control system,
an actuation system, transmissions, a motion capture system, and an ankle exoskeleton.

2.1.1. Treadmill

We used the gait analysis treadmill (Bertec, Columbus, OH, USA) in this study.
The treadmill can measure forces and moments in three directions of an orthogonal co-
ordinate system. Some related balance metrics, such as the positions of the COP, can be
calculated by measuring the real-time ground reaction forces and moments.

2.1.2. Motion Capture System

We used an optical motion capture system (Oqus 700+, Qualisys, Sweden) with ten
high-speed camera lenses at a sampling rate of 100 Hz to accurately catch the motion of
subjects with reflective markers. The basic motion data of subjects, such as the velocities
and accelerations of limbs, can be calculated through analysis software.

2.1.3. Ankle Exoskeleton System

We used the ankle exoskeleton to apply ankle interference torques and to obtain
relatively unbalanced gait data. The ankle exoskeleton is mainly composed of three compo-
nents: a calf frame, a foot frame, and a forefoot frame. The interference torque is transmitted
through a Bowden cable and applied at the ankle joint. The concrete structure of the ankle
exoskeleton can be found in the previous article [28].

The ankle exoskeleton uses several sensors to measure human–robot interactions.
A magnetic encoder (PQY 18, ACCNT, Dongguan, China) was fixed on the lateral shaft
of the exoskeleton to measure ankle joint angles. A load cell (DYMH-106, DAYSENSOR,
Bengbu, China) was seated at the ankle lever to measure Bowden cable force. A footswitch
(KW12, Risym, Shenzhen, China) was installed on the heel of the shoe to detect heel strike
during gait cycles.
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2.1.4. Control and Actuation System

The control and actuation system were mounted on a shelf next to the treadmill. We
used the real-time control system (DS1202, dSPACE, Paderborn, Germany) to sample data
from sensors at 5000 Hz and drive the actuation system at 500 Hz. The actuation system was
composed of an AC servo motor, a 5:1 planetary gear, and a motor driver (BSM90N-175AA,
GBSM90-MRP120-5, and MF180-04AN-16A, ABB, Zurich, Switzerland).

2.2. Pre-Selection of Preliminary Metrics

In accordance with previous studies, we pre-selected the following 14 balance metrics
related to human walking balance:

Group A, the positions and velocities of the COP:
(1) COPx, the position of the COP on the sagittal axis;
(2) VCOPx , the velocity of the COP on the sagittal axis;
(3) COPy, the position of the COP on the coronal axis;
(4) VCOPy , the velocity of the COP on the coronal axis.
Group B, the accelerations of the COM:
(5) ACOMx , the acceleration of the COM on the sagittal axis;
(6) ACOMy , the acceleration of the COM on the coronal axis;
(7) ACOMz , the acceleration of the COM on the vertical axis;
(8) ACOM, the resultant acceleration of the COM.
Group C, the positions of the COM:
(9) COMx, the position of the COM on the sagittal axis;
(10) COMy, the position of the COM on the coronal axis;
(11) COMz, the position of the COM on the vertical axis.
Group D, other metrics:
(12) COP_CMP, the distance between the CMP and COP;
(13) MOS, the MOS of the trunk;
(14) AANG, the angular acceleration of the trunk.
The real-time positions of the COP can be calculated by the ground reaction forces and

moments as follows:

COPx =
−h · Fground,x − Mground,y

Fground,z
(1)

COPy =
h · Fground,y − Mground,x

Fground,z
(2)

where Fground,x, Fground,y, and Fground,z are the components of the ground reaction forces
along the three coordinate axes, respectively. Mground,x and Mground,y are the ground
reaction moments in the sagittal and coronal plane, and h is the height difference between
the belt and the x–y plane of the treadmill coordinate system.

The velocities of the COP can be obtained by:

VCOPx =
d
dt

COPx, VCOPy =
d
dt

COPy (3)

The position of the human body’s COM can be expressed by:

COM =
n

∑
i=1

mi · comi
M

(4)

where comi and mi, respectively, represent the centroid position and mass of the ith segment
of the human body, M represents the total mass of the human body, and n is the number of
human body segments.
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The accelerations of the COM can be obtained by:

ACOMx =
d2

dt2 COMx, ACOMy =
d2

dt2 COMy, ACOMz =
d2

dt2 COMz, (5)

ACOM =
√

A2
COMx

+ A2
COMy

+ A2
COMz

(6)

The position of the CMP can be calculated from ground reaction forces and the position
of the COM as follows:

CMPx = COMx −
Fground,x

Fground,z
· COMZ (7)

CMPy = COMy −
Fground,y

Fground,z
· COMZ (8)

The MOS proposed by Terry et al. [27] was adopted in this study. The MOS can be
expressed as:

MOS =

∣∣∣∣(COP +
VCOP

ω0
)− (COM +

VCOM
ω0

)

∣∣∣∣ (9)

ω0 =

√
g
l

(10)

where g is the acceleration of gravity, and l is the height of the COM.
We also selected three time domain characteristics as the gait features for each metric

above: root mean square (RMS), variance (Var), and range (Range). The RMS has a non-
negative feature which is often used to characterize the effective value of the data. Var
characterizes the degree of dispersion of the data distribution. Range reflects the range of
the data, emphasizing the extreme values. The three selected time domain characteristics
show different aspects of the collected data. Therefore, 14 balance metrics were selected,
and three time domain characteristics were selected for each balance metric. A total of
42 preliminary metrics were selected in this study.

2.3. Experimental Protocol

Seven healthy subjects (five males and two females; age = 23.3 ± 1.0 years; body
mass = 67.9 ± 12.4 kg; height = 175.4 ± 6.5 cm) participated in this study. We also recruited
one male subject with CMT (age = 14 years; body mass = 35.3 kg; height = 160 cm) to
verify the feasibility of our method for the patient (Table 1). The study was conducted
according to the Helsinki Declaration and approved by the ethical committee of Nankai
University (reference number: NKUIRB2021054). All subjects provided written informed
consent before completing the protocol. All methods used in this study were performed in
accordance with the relevant guidelines and regulations.

We designed and conducted walking experiments with exoskeleton interference
based on the experimental platform to collect the preliminary metric data for the healthy
subjects in relatively balanced and unbalanced gait conditions. The human ankle plays
a vital role in balance, propulsion, and locomotion in a wide range of environments
encountered. Two important mechanisms for balance control are the stepping strategy
and the lateral ankle strategy. The ankle strategy is faster than the stepping strategy [29].
The timing, magnitude, and speed of torque produced by the ankle joint all affect walking
balance [30–32]. Therefore, we used the ankle exoskeleton to apply ankle interference
torque, affecting walking balance.
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Table 1. Subjects of experiments.

Subject
Height Weight Peak Torque

(cm) (kg) (N·m)

1 172 53 22
2 170 58 22
3 173 65 22
4 188 90 40
5 175 72 17
6 170 75 15
7 180 62 20
8 160 35.3 -

To create external interference for subjects during their walking, we first defined four
interference torque profiles, sinusoidal interference torque (SIN), constant interference
torque (CON), random interference torque (RAN), and mixed interference torque (MIX).
The first three profiles are shown in Figure 2. SIN consisted of two positive continuous
sinusoids which started at heel strike and ended before toe off. The SIN had two peak
values that were given at the ankle joint mainly during the mid-stance and terminal stance
phase. The CON was similar to a step signal whose maximum torque remained the same.
We used two cubic splines to form the rise and fall phase of the CON. The RAN was
generated by random combinations of sine and cosine signals. Its curves changed each
stride, and peak values were applied to the ankle joint at any time during the stance phase.
The MIX was a combination of the first three interference torque profiles whose order was
SIN–CON–RAN–SIN–CON–RAN, and the duration of each application of interference
torque was the same. We used two parameters to limit the generation of torque profiles:
peak torque and applied time. Peak torque refers to the maximum allowable torque that the
subjects could bear. The peak torque of each subject is shown in Table 1. Applied time refers
to the time when the interference torque was applied to subjects from the first heel strike
to the ground. For safety reasons, we only applied ankle interference in the supporting
phase (0–60% of a gait cycle) during walking. The interference torque was tracked using a
combination of proportional–derivative control and an iterative learning algorithm [33,34].
The effectiveness of this torque control method has been demonstrated in the previously
published literature. The torque controller can be found in previous articles [35,36].
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Figure 2. Three ankle interference torque profiles. These torques were applied only in the support
phase (0–60% of a gait cycle) for safety. (A) Sinusoidal interference torque. It consisted of two
continuous sinusoids. (B) Constant interference torque. Its maximum torque remained the same.
(C) Random interference torque. The torque profile was generated randomly.

The walking experiments with exoskeleton interference for healthy subjects were
divided into two parts: zero torque (ZT), where subjects walked with the exoskeleton
but no torque applied, and ankle interference torque, where subjects walked with the
exoskeleton applying the interference torque. The seven healthy subjects walked on the
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treadmill at 1.25 m/s and wore the right ankle exoskeleton. The first healthy subject walked
under a 30 s ZT condition followed by a 6 min MIX condition with a 2 min break in between.
The other six healthy subjects first performed under a ZT condition for 30 s and then a SIN
condition for 2 min, a CON condition for 2 min, a RAN condition for 2 min, and, finally, a
MIX condition for 6 min with a 2 min rest between each condition. The CMT subject walked
without the ankle exoskeleton, which was called normal walking (NW), on the treadmill
at multiple speeds, which he could accept. We collected his gait data for 30 s at 0.45 m/s,
0.55 m/s, and 0.65 m/s. After a period of rest, a second round of experiments was carried
out in reverse order, and the gait data were collected again. For each subject, 38 reflective
markers (six on each foot, eight on each calf and thigh, three on the pelvis, one on the chest,
and three on each arm) were affixed to the whole body during all experiments. We collected
the motion capture data and treadmill data during all the experiments. The collected
experimental data were used in the construction and validation of the comprehensive index
for human walking balance.

2.4. Construction of Walking Balance Index

We processed the experimental data from the eight subjects and obtained the data
for the selected metrics. We picked subsets of these metrics using statistical analysis and
constructed the index by combining multiple metrics using PCA. The data processing
was conducted using OpenSim 4.1 [37,38] and MATLAB (MathWorks, Natick, MA, USA).
The statistical analysis and PCA were conducted using MATLAB.

2.4.1. Data Processing

We synchronized and collected the three-dimensional ground reaction forces and
moments (1000 Hz) data and motion capture (100 Hz) data of the eight subjects using the
real-time controller. We pre-processed the experimental data with low-pass filters and
scaled the musculoskeletal model with the height and weight of the subjects. We performed
inverse kinematics using the Rajagopal2015 model in OpenSim [39]. We then calculated
the 14 aforementioned balance metrics using the positions of marks and the masses of
the human body segments. We segmented the metric data according to the gait cycles.
For each metric in each gait cycle, we calculated all three time domain characteristics and
summarized them into three data sets. We finally obtained the data sets of the 42 selected
preliminary metrics under each gait condition.

2.4.2. Statistical Analysis

Some of these metrics may be ineffective and even interfere with the evaluation
of walking balance. It was necessary to further distinguish the effective metrics with
evaluation ability from the preliminary metrics using statistical analysis.

From the data processing, we obtained data sets for the 42 selected preliminary metrics
under each gait condition. For each subject, we used the significance tests to test all the
preliminary metrics data with exoskeleton interference (SIN, CON, RAN, and MIX) and
the preliminary metrics data without exoskeleton interference (ZT) in pairs.

We first used the Lilliefors test to test the normality of these data and the Bartlett test
to test their homogeneity of variance. According to the results of normality and variance
homogeneity tests, we chose the t-test for the data conforming to the normality and variance
homogeneity tests, the corrected t-test for the data conforming to the normality but not
homogeneity of variance, and the rank-sum test for the other data. All the above were
two-sided tests. Considering the sample size (42 metrics per stride), the significance level
was set at α = 0.01. We finally picked subsets of the preliminary metrics that significantly
deviated between different gait conditions.

2.4.3. Principal Component Analysis

There are always some correlations between the effective metrics we picked above so
these needed to be further extracted.
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The principle of PCA is to recombine original variables into a new set of unrelated
comprehensive variables. This method can transform high-dimensional problems into
low-dimensional problems to reduce the correlations. The new variables formed by a
linear combination of the initial variables are the principal components. These principal
components are independent of each other and largely resistant to man-made interference.
The principal component coefficients and eigenvalues are also generated only based on
data. Therefore, we used PCA to reduce the correlations among these effective metrics and
constructed the final index.

We first standardized and decentralized the data of the effective metrics picked above.
For subjects with different heights and weights, the values of distance metrics were different
in the relatively consistent gait conditions. The units and orders of magnitude of these
metrics were also different. Therefore, all the distance metrics were scaled according to the
height and weight of each subject, and all the metrics needed to be dimensionless. We used
the Kaiser–Meyer–Olkin test to test whether these effective metrics were correlated and
could be analyzed by PCA.

We then calculated the covariance matrix of the metric data and calculated the principal
component coefficients and eigenvalues of the covariance matrix through PCA. The princi-
pal component coefficients were used to compose principal components, and the eigenval-
ues were used to calculate the weights of the principal components. We used the principal
components whose cumulative contribution rate exceeded 85% to replace the original met-
rics and constructed the comprehensive quantitative index, which we called the Walking
Balance Index (WBI). The WBI can be expressed as follows:

yi =
m

∑
j=1

wijxj (11)

WBI =
n

∑
i=1

λi√
∑n

j=1 λ2
i

yi (12)

where xj and wij are the jth effective metric and the coefficient of xj in principal component
i, and m is the number of effective metrics after statistical analysis. yi and λi are the ith
principal component and the eigenvalue of yi, and n is the number of principal components
that we used.

2.5. Validation

We collected gait data from the seven healthy subjects under five gait conditions: ZT,
SIN, CON, RAN, and MIX. We also collected gait data from the CMT subject at three speeds.
Each combination of these data with and without exoskeleton interference can be used to
construct the index. All experimental data can be used as validation data and to calculate
the value of the WBI.

We mainly used the gait data of the seven healthy subjects obtained under ZT and
MIX conditions to construct the personal indexes and compute their values. We also used
the gait data of one healthy subject obtained under ZT and MIX conditions to construct the
general index, and we used the data of six healthy subjects obtained under multiple gait
conditions as validation data to compute the values of the general index. The data of the
CMT subject were used to compute the value of the WBI constructed from subject1’s gait
data obtained under ZT and MIX conditions. In addition, we also used the data of the CMT
subject and subject1 to construct the index and compared the potential correlations and
differences in the balance metrics between the CMT patient and healthy individuals.

Meanwhile, we obtained four gait combinations by combining the condition without
interference (ZT) and four conditions with interference (SIN, CON, RAN, MIX) in pairs for
the healthy subjects. We constructed and calculated the WBI using all combinations so as
to further explore the possible disadvantages of this method, the main factors affecting the
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walking balance of humans, and the consistencies and differences of strategies for adjusting
walking balance for different individuals.

3. Results

Figure 3 shows the results of the preliminary metrics for the CMT patient (subject8)
under the NW condition and healthy subject2 under ZT and MIX conditions. Compared to
under the ZT condition, there were significant differences in these metrics under the NW
condition for subject8, but there were fewer differences in them under the MIX conditions
for subject2. The fluctuation range of the CMT patient was much larger than that of the
healthy subject.
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Figure 3. The changes in the preliminary metrics. (A) The changes in the positions and velocities
of the COP. (B) The changes in the accelerations of the COM in three directions and the resultant
acceleration. (C) The changes in the positions of the COM. (D) The changes in the relative position
between the COP and CMP, MOS, and trunk angular acceleration. The blue curves show the changes
for subject2 under the ZT condition. The red curves show the changes for subject2 under the MIX
condition. The purple curves show the changes for subject8 with CMT under the NW condition.
The shadow areas show the fluctuation range of different gait cycles.

The results of the personal indexes for the seven healthy subjects under ZT and MIX
conditions are shown in Figure 4. Compared to under the ZT condition, the values of their
personal indexes under MIX conditions are bigger and have a wider range of fluctuations.
The results of the constructed indexes under two gait combinations for subject2 are shown
in Figure 5. The values of the WBI under the two combinations are too similar to be
distinguished (Figure 5A). The means and standard deviations of the indexes under the
ZT condition are still smaller than those under CON and RAN conditions (Figure 5B). The
general index constructed from one of the healthy subjects under ZT and MIX conditions
was used to calculate the means and standard deviations for the six healthy subjects under
multiple gait conditions (Figure 6). The mean of the general index for each subject under
the ZT condition was lower than that under other conditions.
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Figure 4. The values of personal WBI for seven healthy subjects. The blue curves are the WBI of each
stride under the ZT condition. The red curves and areas are the mean and fluctuation range of the
WBI under the MIX condition.
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Table 2 shows the results of the statistical analysis for subject1 under ZT and MIX condi-
tions. A total of 25 effective metrics were picked from 42 preliminary metrics. They showed
significant differences under the two different gait conditions. There was no significant dif-
ference in the information for COPx, COP_CMP, or ACOMx (p > 0.01, Table 2). There were
significant differences in the characteristics from the three time domains, COPy, VCOP, ACOMy ,
ACOMz , and COMz (p < 0.01, Table 2). Other balance metrics showed significant differences
in partial time domain characteristics. Table 3 shows the number of times that the metrics
showed significant differences under four gait combinations for the six healthy subjects.

Table 2. Statistical analysis for subject1.

Time Domain Features

p-Value

Preliminary Metrics

COPx COPy VCOPx VCOPy MOS AANG COP_CMP

Var 0.664 0.000 * 0.002 * 0.000 * 0.000 * 0.002 * 0.081
RMS 0.727 0.000 * 0.006 * 0.000 * 0.041 0.079 0.039

Range 0.144 0.000 * 0.001 * 0.000 * 0.000 * 0.000 * 0.012

COMx COMy COMz ACOMx ACOMy ACOMz ACOM

Var 0.756 0.020 0.000 * 0.107 0.000 * 0.000 * 0.070
RMS 0.001 * 0.011 0.000 * 0.105 0.000 * 0.000 * 0.000 *

Range 0.988 0.004 * 0.000 * 0.058 0.002 * 0.000 * 0.075

* statistically significant difference between ZT and MIX conditions.

Table 3. The number of times that the metrics showed significant differences under four gait
combinations* for six subjects.

Time Domain Features
Preliminary Metrics

COPx COPy VCOPx VCOPy COP_ CMP

Var 4/4/3/2/4/4 ** 4/4/4/4/0/4 4/3/2/4/4/2 4/4/4/4/0/4 3/4/2/2/4/1
RMS 0/0/0/0/0/0 0/0/1/1/3/0 4/3/2/4/4/2 4/4/4/4/0/4 0/1/0/1/4/0

Range 4/4/2/2/4/4 4/4/4/4/1/4 4/4/1/4/4/2 4/4/4/4/0/4 2/4/0/2/4/2

COMx COMy COMz MOS AANG

Var 4/4/1/3/4/1 0/4/1/1/0/4 2/4/4/4/4/4 4/4/4/3/2/2 4/3/2/3/4/4
RMS 4/1/1/2/1/1 3/4/1/0/2/0 2/4/4/4/4/4 4/4/0/4/3/0 3/4/2/3/4/4

Range 4/3/1/3/4/2 1/4/1/1/0/4 2/4/4/4/4/4 4/4/4/4/4/2 3/4/2/3/4/4

ACOMx ACOMy ACOMz ACOM

Var 4/0/1/3/3/3 0/4/4/4/4/0 3/0/1/4/4/4 1/2/1/4/4/4
RMS 4/0/1/3/3/3 0/4/4/4/4/0 3/0/1/4/4/4 3/0/0/4/4/4

Range 4/1/2/4/4/3 0/4/4/4/0/2 2/0/0/4/4/4 2/3/1/4/4/2

* All six subjects completed testing under the zero torque gait condition and four interference torque gait conditions.
Four gait combinations were obtained by combining the zero torque condition without interference and four
conditions with interference. ** Each element of the table represents the number of times that the metric showed
significant differences under the four combinations for subject2/subject3/subject4/subject5/subject6/subject7.

The results of the PCA for subject1 are shown in Table 4. Table 5 shows the coefficient
matrix of principal components for subject1. The contributions of the first three principal
components were more than 10% (Table 4). The VCOP, COPy, COMz, ACOMz , and MOS had
larger coefficients of principal components compared to the other metrics (Tables 4 and 5).

Table 4. Principal component analysis for subject1.

Principal Components Eigenvalue Cumulative Contribution (%) Cumulative Contribution (%)

1 7.42 33.74 33.74
2 5.36 24.36 58.1
3 3.62 16.43 74.53
4 1.79 8.14 82.67
5 1.48 6.75 89.42

Bold font represents the principal components which contributed more than 10%.
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Table 5. The coefficient matrix of principal components for subject1.

Time Domain Features Effective Balance Metrics
Principal Components

1 2 3 4 5

Var

COPy 0.330 −0.075 −0.039 −0.178 −0.157
COMz 0.073 0.257 0.331 −0.025 0.110
ACOMy 0.278 −0.002 −0.182 0.121 0.419

ACOMz 0.169 0.265 0.286 0.000 −0.040
VCOPx −0.102 0.380 −0.150 −0.073 0.002
VCOPy 0.325 −0.010 −0.128 −0.145 −0.212
MOS -0.047 0.313 −0.316 −0.140 −0.088
AANG 0.122 0.092 −0.118 0.588 −0.278

RMS

ACOMy 0.278 −0.005 −0.179 0.121 0.425

ACOMz 0.170 0.265 0.285 −0.001 −0.044
ACOM 0.203 0.266 0.156 0.081 0.078
VCOPx −0.102 0.381 −0.149 −0.072 0.003
VCOPy 0.327 −0.010 −0.123 −0.147 −0.210

Range

COPy 0.324 −0.079 −0.004 −0.184 −0.161
COMy 0.245 −0.078 −0.022 −0.170 0.046
COMz 0.073 0.238 0.281 0.033 0.174
ACOMy 0.250 0.020 −0.176 0.198 0.454

ACOMz 0.146 0.168 0.379 0.004 −0.095
VCOPx −0.110 0.346 −0.248 −0.075 0.005
VCOPy 0.318 0.002 −0.157 −0.158 −0.204
MOS −0.059 0.317 −0.311 −0.110 −0.045
AANG 0.104 0.059 −0.096 0.606 −0.326

Bold font represents that the coefficient of the metric in this principal component is larger than others.

Figure 7 shows the results of the WBI for the CMT patient (subject8) under the NW
condition with respect to subject1 under ZT and MIX conditions. The index in Figure 7A
was constructed from subject8’s NW condition and subject1’s MIX condition. The index
in Figure 7B was constructed from subject1’s ZT and MIX conditions. In both cases,
the mean and fluctuation range of the CMT subject’s WBI was much larger than that of the
healthy subject.
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Figure 7. WBI of healthy subject1 under ZT and MIX conditions and subject8 with CMT under the
NW condition. (A) The results of the WBI constructed from subject8’s NW condition and subject1’s
MIX condition. (B) The results of the WBI constructed from subject1’s ZT and MIX conditions. The
blue curves show subject1’s WBI for each stride under the ZT condition. The red curves and areas
show the mean and fluctuation range of subject1’s WBI under the MIX condition. The purple curves
and areas show the mean and fluctuation range of subject8’s WBI under the NW condition.

4. Discussion

This study presents a method to construct a comprehensive evaluation index of human
walking balance, and we used this method to generate personal and general indexes. We
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designed walking experiments with exoskeleton interference to collect data from seven
healthy subjects and collected data from one CMT subject at multiple speeds. We used
statistical analysis and PCA to construct the Walking Balance Index. We verified the
feasibility of this method in evaluating walking balance for healthy individuals and one
CMT patient.

Healthy subjects were not significantly affected by the ankle interference torque
(Figure 3). This may be because the applied torque was small (for safety). Due to the
adjustment mechanism of human ankles, the effect of interference torque on one ankle
joint is not obvious, and the impact on other parts of the human body is not great either.
The fluctuation range of these metrics increased under the MIX condition with respect to
the ZT condition, indicating that interference torque can affect the amplitude of human
motion. Especially the metrics related to COM were affected more obviously. When human
lower limbs are disturbed, the human will unconsciously adjust the trunk’s posture to keep
the COM within the support surface. Studies have shown that insufficient trunk muscle
strength affects the balance ability of humans and increases the risk of falling [4]. The CMT
subject’s metrics fluctuated more widely with respect to those of the healthy subject with
exoskeleton interference, indicating that the state of walking balance for the CMT subject
is worse than that for the healthy subject. The walking strategies of patients are different
from that of healthy individuals. The ankle movements of CMT patients are limited due to
the muscle imbalance between multiple muscle groups. They can only use the hip joint and
the stride adjustment mechanism frequently to maintain balance. This results in a large
increase in body swing for CMT patients [40]. The stepping strategy and the lateral ankle
strategy of balance control both need the contribution of the ankle joint. For healthy subjects,
the ankle interference torque disturbs the timing, magnitude, and speed of biological torque
produced by the ankle joint. For the subject with CMT, the main clinical symptoms, like
muscle weakness and atrophy, cause them to have low strength and slow response in
their lower limb muscles, which cannot provide the appropriate ankle torque to maintain
balance during walking. Although the decrease in walking balance was found in changes
in multiple metrics, the decrease in or loss of ankle joint function may be one of the main
factors affecting walking balance.

The personal index for each healthy subject could effectively distinguish the state of
walking balance under different gait conditions, indicating that the method we proposed
is feasible in evaluating human walking balance (Figure 4). A smaller value of the WBI
indicates that the subject is more balanced, while a larger value of the WBI indicates that
the subject is more unbalanced. The results of the WBI for subject2, shown in Figure 5A, are
difficult to distinguish, probably because the effect of a small amount of ankle interference
torque is not obvious for healthy subjects who have better balance ability. The means of
the WBI in Figure 5B still indicate that our method is effective in evaluating the walking
balance, even for a subject with good balance ability.

The general index constructed from the same metrics and weights could still dis-
tinguish the state of walking balance for the six subjects (Figure 6). This suggests that
our proposed method may be generalized to different individuals and gait conditions.
The metrics and weights that were used to construct the general index have certain
universality. However, the values of the WBI shown in Figure 6 are different from those
shown in Figure 4 because the metrics and weights used in the construction of the WBI
are different. This may lead to the loss of some information related to walking balance,
but the relative change trends of the index between different gait conditions did not
transform. This indicates that the relative rather than the absolute changes of the index
are more worthy of consideration.

Not all the preliminary metrics have the ability to evaluate walking balance in our ex-
periments. Some of them showed no significant difference between ZT and MIX conditions
(Tables 2 and 3). Both COPy and VCOPy showed strong significant differences in the three
time domain characteristics, suggesting that they can well reveal the adjustment strategies
for maintaining balance during walking. Relevant studies have shown that the position
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of the COP in the coronal plane has a certain predictive ability for falling and walking
stability [24]. The adjustment strategies of walking balance for different individuals show
consistencies and differences. The total number of times there were significant differences
in VCOP, COPx, COMz, AANG, and MOS for the six subjects was relatively higher (Table 3),
indicating that the six subjects made changes in these metrics to maintain their balance.
These metrics are more likely to be used as general metrics to construct the general in-
dex and evaluate the walking balance of different individuals. Five subjects showed the
most frequent significant differences in VCOPy , but subject6 did not. This result indicates
that different subjects have different adjustment strategies to combat ankle interference
and maintain walking balance. Certain metrics of the same subject showed significant
differences under each gait combination, such as subject2’s COMx, subject3’s COMy, and
subject4’s COMz. This may be because the same subject adopted the same walking strate-
gies under different gait conditions, and they did not change their walking strategies
because of different external interferences. It is also possibly because the interference was
only applied to the ankle joint.

More than 85% of the data information can be represented by five principal compo-
nents, indicating a great correlation between these metrics (Table 4). From Table 5, it can
be seen that the changes in the COP in the direction of the coronal and sagittal axes are
closely related to the walking balance of subject1. In addition, we used PCA and analyzed
the principal components that contributed more than 10% under ZT and MIX conditions
for the other healthy subjects. The VCOP and COPy of most of the healthy subjects played
an important role in their walking balance, but other metrics were different according
to individual differences. This suggests that different individuals have different walking
strategies to keep balance. The COMz of subject4 showed significant differences under all
gait combinations (Table 3) but only accounted for one item in principal component 4. It
was not the most important influencing factor of the walking balance for subject4, which
illustrated the importance of PCA in this work. Some balance metrics may be common
across different individuals while others not. Therefore, the index calculated by general
metrics and weights may have a different effect in evaluating the walking balance of dif-
ferent individuals. If the general metrics and weights used to construct the WBI are not
significantly influenced by changes in the walking balance of one subject, it will not lead
to an obvious effect on the evaluation of the specific subject’s walking balance. However,
the relative change trend of the WBI value is consistent among different walking conditions.

To compare with the existing evaluation methods, the Berg Balance Scale and Tinetti
Test were applied after the main experiments for the seven healthy subjects. Results showed
that the two scores remained at the maximum for all the healthy subjects even when wearing
the unilateral ankle exoskeleton with and without the interference torques. However,
subjects said their walking balance was influenced under the interference conditions. We
observed that some subjects even changed their walking pattern to prevent themselves from
falling. This may be because subjects still had certain ability to maintain walking balance
but decreased the state of walking balance when they were walking with interference
torques. Such situations cannot be reflected by the scores of Berg Balance Scale or Tinetti
Test, but the WBI can reflect the changing of walking balance from the variation trend of
its values.

The index constructed by our proposed method could also be used to evaluate the
walking balance of the CMT subject, and it was universal between the CMT patient and the
healthy subject1 (Figure 7). The state of walking balance for this patient was bad and varied
considerably between gait cycles. This result directly reflects the pathological gaits of the
patient. The results of the WBI in Figure 7A are different from those in Figure 7B because
the metrics and weights used to construct the index were different. To further explore
the differences in walking balance between the CMT subject and a healthy subject, we
compared the results of the PCA in the two cases (Figure 7A,B). We found that some metrics
greatly affected the values of the WBI for the healthy subject and the CMT subject, such as
COMz, MOS, VCOPx , and AANG. In the principal components whose total contribution rate
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was more than 85%, the CMT subject contained more metrics, and some of them did not
even appear in the principal components of the healthy subjects, such as COP_CMP. This
result indicates that the CMT patient adopted more balance adjustment strategies while
walking than the healthy people. Meanwhile, we found that the healthy subject was more
inclined to change in the coronal direction, while the CMT subject was more inclined to
change in the sagittal direction.

Our findings suggest that a single metric may not be enough to evaluate walking
balance. Each balance metric has the ability to assess static and dynamic balance, but it
will be changed among different individuals and gait conditions. When human walking
balance is influenced, the performance is multi-aspect and personal to different individuals.
The variation trend of different metrics reveals the different strategies humans use to
maintain walking balance. Personalized customization of the WBI may be more effective
during rehabilitation processes. Our work provides a possible method to consider multiple
metrics comprehensively in the field of walking balance evaluation. Our proposed method
is expected to provide evidence and guidance for walking balance evaluation in future
clinical treatment and rehabilitation. The WBI can be used to identify whether the walking
balance of human changes on different days and under different gait conditions. The rate of
the WBI may be used to predict the changing trend of walking balance and the possibility
of falling. By combining Human-in-the-Loop optimization, the WBI can be considered as
an objective function of exoskeleton assistance to improve the walking balance of people
in need.

There are some possible disadvantages and limitations in this study. The WBI was cal-
culated offline, which means that we could not evaluate the walking balance synchronously
when subjects were walking. Since we used the motion capture system and treadmill
to collect metrics data, the method is limited to use in the laboratory environment. Our
method needs at least two sets of data under relatively balanced and unbalanced gait
conditions to construct the WBI. In our experiments, we only applied unilateral ankle
interference to the healthy subjects but did not apply multiple external interferences to
other parts of the human body. Similar external interference could be added to knee, hip
joints, or multiple joints. Our subjects were young people and included only one CMT
patient so it is not certain whether this method can be used to evaluate the walking balance
of all age groups and different patients. Our proposed method only considers kinematic
metrics without revealing the intrinsic physiological mechanism of maintaining walking
balance. For future works, we plan to incorporate more physiological and biomechanical
metrics into the construction of the Walking Balance Index. Meanwhile, we will recruit
more subjects and apply multiple external interferences in future experiments. We hope to
apply this method to more people and gait conditions.

5. Conclusions

We presented a method to construct a comprehensive evaluation index of human
walking balance. We used this method to generate personal and general indexes for
different individuals and evaluate the state of their walking balance. We designed walking
experiments with exoskeleton interference to collect data from seven healthy subjects and
collected data from one CMT subject at multiple speeds. We used statistical analysis to pick
the effective metrics from the preliminary metrics and used PCA to construct the index
by combining multiple metrics. We not only demonstrated the feasibility and universality
of this method in evaluating walking balance for healthy people but also in one patient.
The results show consistencies and differences in walking balance adjustment strategies
for different individuals under different gait conditions. This study is expected to provide
evidence for walking balance evaluation and guidance for future clinical treatment and
rehabilitation, improving the walking balance of people in need and allowing further
consideration of the WBI as an optimization target of exoskeleton assistance for them in
the future.
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Abstract: Objectives: Existing applications of non-invasive brain stimulation in the modulation of
balance ability are focused on the primary motor cortex (M1). It is conceivable that other brain and
spinal cord areas may be comparable or more promising targets in this regard. This study compares
transcranial direct current stimulation (tDCS) over (i) the M1, (ii) the cerebellum, and (iii) trans-spinal
direct current stimulation (tsDCS) in the modulation of balance ability. Methods: Forty-two sports
students were randomized in this placebo-controlled study. Twenty minutes of anodal 1.5 mA
t/tsDCS over (i) the M1, (ii) the cerebellum, and (iii) the spinal cord, as well as (iv) sham tDCS were
applied to each subject. The Y Balance Test, Single Leg Landing Test, and Single Leg Squat Test
were performed prior to and after each intervention. Results: The Y Balance Test showed significant
improvement after real stimulation of each region compared to sham stimulation. While tsDCS
supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only.
No significant differences were found in the Single Leg Landing Test and the Single Leg Squat Test.
Conclusions: Our data encourage the application of DCS over the cerebellum and spinal cord (in
addition to the M1 region) in supporting balance control. Future research should investigate and
compare the effects of different stimulation protocols (anodal or cathodal direct current stimulation
(DCS), alternating current stimulation (ACS), high-definition DCS/ACS, closed-loop ACS) over these
regions in healthy people and examine the potential of these approaches in the neurorehabilitation.

Keywords: tDCS; tsDCS; balance; postural control; primary motor cortex; cerebellum; spinal cord;
healthy people

1. Introduction

Non-invasive DCS is a powerful tool modulating neural processing and can be suc-
cessfully used for research and therapies. DCS consists of the application of a low-intensity
direct current that flows between two or more electrodes. Present data indicate that a
single session of tDCS can induce neurophysiological changes up to 120 min beyond
the stimulation period [1–3], and its persistence increases linearly with the duration and
the intensity of current applied [1,2]. A simplified theory distinguishes between anodal
tDCS (with anode placed over the region of interest and cathode over another cranial
or extracranial region) and cathodal tDCS (with reverse electrode positioning). Anodal
tDCS should induce depolarization of neurons and increase corticospinal excitability. In
contrast, cathodal stimulation should lead to a hyperpolarization of neurons and decrease
corticospinal excitability [4–6]. Indeed, the real data show a large variability outside of this
theoretical scope [7]. A key factor that determines the tDCS-induced effects is electrode
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positioning. A current systematic review indicates that tDCS applied over different regions
modulates different aspects of walking in healthy people. While application over the pri-
mary motor cortex (M1) and cerebellum improved speed, synchronization, and variability
during simple walking, dorsolateral prefrontal cortex (DLPFC) stimulation improved gait
parameters under dual-task conditions [8]. However, another systematic review points
to the fact that diverse interactions exist between tDCS specifications (M1/cerebellum,
unilateral/bilateral/central, single/multiple sessions) and motor task interactions (uni/bi-
manual, greater/less difficulty) [9]. This makes it difficult to draw clear conclusions. In
addition, the reference electrode positioning may significantly impact the tDCS-induced
effects. A simulation study (based on a numerical body model) compared six different
cathode positions (right temporal lobe, right supraorbital region, right deltoid, left deltoid,
under the chin, and right buccinator muscle) during anodal tDCS over the left M1 [10].
The results indicate that extracephalic electrodes may be more effective in the modulation
of the spinal cord and similar or less effective in the modulation of the brainstem, than
cephalic electrodes [10]. Another modeling study shows that a multipolar tDCS, with two
anodes (over the right and the left M1) and one cathode (either over the spinal cord or
over the right deltoid) may be effective in the modulation of deep brain structures, such
as the thalamus, midbrain, and brainstem [11]. Numerous authors suggest that tsDCS,
with one electrode over the spinal cord and the other electrode over another extracephalic
region (such as spinal cord, deltoid muscle, iliac crest, etc.) are promising alternatives to
conventional cranial applications [12]. Our study extends the knowledge on this field and
investigates (in a direct comparison) the effects of three different electrode placements in
modulating balance ability.

Balance and postural control are complex sensorimotor functions controlled by in-
tegrated brain and spinal networks [13–15]. Their neural background is still not fully
understood. A recent systematic review with a meta-analysis emphasized the key role of
the brainstem, cerebellum, basal ganglia, thalamus, and several cortical regions based on
(functional) magnetic resonance imaging ((f) MRI) and positron emission tomography (PET)
data [13]. Similarly, another systematic review indicated the key role of the cerebellum and
brainstem, followed by the basal ganglia, thalamus, hippocampus, inferior parietal cortex,
and frontal lobe regions, using MRI investigations [14]. Additionally, the spinal cord seems
to play a crucial role in balance and postural control, as indicated by electrophysiological
studies [15]. It has been repeatedly demonstrated that balance training leads (in addition to
an improved balance ability) to spinal adaptations in the form of a suppressed Hoffmann
reflex (H-reflex) [15,16].

Although the available data indicate that several cortical and subcortical brain regions,
the cerebellum, and the spinal cord are crucially involved during motor control [13–15], the
present applications of DCS focus mainly on M1 [17–19]. The evidence for the remaining
central and peripheral nervous system is insufficient, similar to studies that directly com-
pare the stimulation over different areas [17–19]. Therefore, the question arises whether
other regions may be comparable or even more promising for DCS applications. Our study
investigates and compares the effectiveness of t/tsDCS over the M1, cerebellum, and spinal
cord [20–22].

2. Methods

2.1. Study Design

This was a randomized placebo-controlled crossover study. Three single sessions
of real t/tsDCS (over the (i) M1, (ii) cerebellum, and (iii) spinal cord) and one session of
sham tDCS were applied to each participant in a randomized order (PC-generated) with
a washout period of at least 48 h in between. Balance ability was evaluated immediately
before and after each intervention. The study was conducted according to the standards
established by the Declaration of Helsinki, approved by the Ethics Committee of Bielefeld
University (2022-043), and entered in the German Clinical Trial Register on 28 September
2023 (DRKS00032749).
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2.2. Participants

The inclusion criteria were as follows: (1) age between 18 and 25 years, (2) no con-
traindications for tDCS (checked by safety screening questionnaire [23]), and (3) no relevant
neurological, psychiatric, or orthopedic disorders. All subjects provided their written
informed consent prior to participation. A G*power analysis (effect size = 0.25, α error
probability p < 0.05, Power = 0.95) revealed that a sample size of at least 40 participants is
needed to detect statistically significant effects using ANOVA with four interventions and
two timepoints.

2.3. Intervention

Each subject completed four separate 20 min interventional sessions: (1) 1.5 mA tDCS
over the M1, (2) 1.5 mA tDCS over the cerebellum, (3) 1.5 mA tsDCS over the spinal
cord, and (4) sham tDCS (stimulator turned off after 5 s) over M1. A DC-stimulator
PLUS (NeuroConn Gmbh, Ilmenau, Germany) and two saline-soaked sponge electrodes
(5 cm × 7 cm) were used. For M1 stimulation, the anode was placed over the Cz, and
the cathode was placed over the right supraorbital area (Fp2). For cerebellar stimulation,
the anode was placed over the O2, and the cathode was placed over the right buccinator
muscle. The electrodes positioning for M1 and cerebellar tDCS is in line with previous
studies [24,25]. For spinal stimulation, the anode was placed over the spinal cord at
the Th8 level, and the cathode was placed over L2. A simulation study indicated that
this electrode placement is superior (in comparison to deltoid, umbilicus, and iliac crest
cathode placements) regarding the electric field generated in lumbar and sacral spinal
segments [26]. The international 10/20 EEG system [27] and palpation method [28,29] were
used to determine electrode positioning during M1, cerebellar and spinal t/tsDCS. Figure 1
shows the electrodes’ placements used in this study.

Figure 1. Electrodes positioning used for (a) M1 tDCS, (b) cerebellar tDCS, (c) spinal tDCS and
(d) sham tDCS.

2.4. Assessments

Three different assessments (Y Balance Test, the Single Leg Landing Test, and the
Single Leg Squat Balance Test) were used to evaluate balance ability. The right and the left
leg were tested in a randomized order during each test. The investigators were blinded to
intervention allocation.

The Y Balance Test was performed using a test kit (FMS, Chatham, VA, USA). The
maximal reach of the free lower leg in the (a) anterior, (b) posterolateral, and (c) posterome-
dial directions was determined during a one leg stance on the opposite leg [30]. A better
balance ability was associated with a greater reach distance. Five trials were performed for
each leg and direction. The mean value of the five trials was used for analysis.

During the Single Leg Landing Test, participants were instructed to perform a forward
jump (50% of their body height), land on a single limb, and achieve a stable position as
quickly as possible [31–33]. The center of gravity (COG) in the anterior–posterior and
medial–lateral directions and the time taken to regain balance were recorded using a force
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plate (AMTI, Watertown, MA, USA). A smaller COG area and a faster time to stabilize
indicated better balance. Five trials were performed for each leg. The mean value was used
for the analysis.

During the Single Leg Squat Test, probands performed five consecutive single-leg
squats (10% of their body height) [31,34]. The center of gravity (COG) in the anterior–
posterior and medial–lateral directions was recorded using the force plate described above.
The smaller the COG area was, the better the balance. Two trials were performed for each
leg. The mean values were used for the analysis.

2.5. Analysis

The SPSS software package, version 27 (International Business Machines Corporation
Systems, IBM, Ehningen, BW, Germany), was used to analyze the data collected during
this study. The independent sample t-tests evaluated pre-interventional comparability.
Repeated-measure ANOVAs with the factors “intervention” and “time” compared the
pre–post changes across interventions. Mauchly’s sphericity tests and Greenhouse–Geisser
corrections were applied. Due to multiple comparisons, a p-value of ≤0.01 was considered
statistically significant. The outliers (mean ± 3 SD) were excluded from the analysis. The
researcher performing statistical analysis was not blind to intervention allocation.

3. Results

Overall, 42 participants were randomized (age 25.1 ± 3.2 years, 19 females, 23 males,
36 right-footed, and 6 left-footed). The foot preferred to kick the ball was considered
to be dominant [35]. All participants tolerated the interventions well without severe
adverse events. Four participants reported less severe side effects, such as a burning
sensation and nausea (one participant after M1 stimulation) and a metallic taste in the
mouth (three participants after cerebellar stimulation). The pre-interventional data did
not differ significantly across interventions. Table 1 summarizes the data on balance col-
lected during the experiment. The outliers (4% of values) were removed. The ANOVAs
detected significant time*intervention interactions on the Y Balance Test, but not on
the Single Leg Landing Test and the Single Leg Squat Test. The effects were observed
more frequently for the left leg than for the right leg. For the left leg, a significant im-
provement of balance ability (in comparison to the sham tDCS) was detected after M1
(F1,40 = 8.999; p = 0.005) (F1,36 = 18.624; p < 0.001), cerebellar (F1,40 = 8.796; p = 0.005)
(F1,36 = 16.291; p ≤ 0.001) and spinal (F1,39 = 13.55; p ≤ 0.001) (F1,34 = 8.799; p = 0.005)
application for the posterior-lateral and posterior-medial directions, respectively. For
the right leg, only tsDCS induced significantly greater effects than the sham tDCS for
both the posterior-lateral (F1,39 = 11.53; p = 0.002) and posterior-medial (F1,39 = 7.943;
p = 0.008) directions. No significant effects were observed for the anterior direction. The
intervention-induced effects did not significantly differ across real t/tsDCS interventions.
Figures 2 and 3 illustrate the intervention-induced changes.

Table 1. Balance performance (means and SD) at both time-points (pre, post).

Sham tDCS M1 tDCS Cerebellar tDCS Spinal tDCS

Y Balance Test Right leg

Anterior
direction (cm)

pre 57.29 ± 7.41 56.10 ± 5.57 57.54 ± 7.45 56.42 ± 5.31

post 57.53 ± 7.80 56.43 ± 5.80 58.36 ± 7.76 56.91 ± 5.54

Posterolateral
direction (cm)

pre 105.21 ± 12.07 103.72 ± 10.54 104.45 ± 12.76 104.00 ± 11.09

post 106.26 ± 12.47 106.48 ± 12.31 107.14 ± 13.35 107.06 ± 12.47 **

Posteromedial
direction (cm)

pre 101.19 ± 12.76 99.18 ± 13.42 102.17 ± 13.99 99.47 ± 11.23

post 103.03 ± 13.05 103.48 ± 14.42 105.53 ± 14.03 103.45 ± 11.70 **
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Table 1. Cont.

Sham tDCS M1 tDCS Cerebellar tDCS Spinal tDCS

Left leg

Anterior
direction (cm)

pre 57.76 ± 7.02 56.96 ± 5.77 56.98 ± 5.87 57.02 ± 4.85

post 57.75 ± 7.08 56.92 ± 5.57 57.77 ± 5.92 57.60 ± 5.27

Posterolateral
direction (cm)

pre 103.78 ± 11.17 102.50 ± 10.41 103.58 ±± 12.24 102.54 ± 10.14

post 104.68 ± 11.12 106.54 ± 12.50 ** 106.56 ± 12.74 ** 106.06 ± 11.24 ***

Posteromedial
direction (cm)

pre 101.58 ± 11.15 99.88 ± 13.66 101.48 ± 14.02 100.30 ± 11.15

post 102.99 ± 11.12 103.9 ± 14.11 *** 104.98 ± 14.27 *** 103.75 ± 10.65 **

Single Leg
Landing Test

Right leg

Center of gravity
area (mm2)

pre 5163 ± 1486 5363 ± 1470 5363 ± 1678 5406 ± 1690

post 5619 ± 1975 5530 ± 1665 5752 ± 1910 5938 ± 1764

Time to
stabilization (ms)

pre 1.196 ± 0.180 1.211 ± 0.185 1.141 ± 0.154 1.191 ± 0.154

post 1.219 ± 0.188 1.243 ± 0.206 1.203 ± 0.147 1.240 ± 0.160

Left leg

Center of gravity
area (mm2)

pre 5437 ± 1224 5257 ± 1017 5017 ± 1173 5305 ± 1282

post 5997 ± 1580 5154 ± 1281 5574 ± 1546 6133 ± 1501

Time to
stabilization (ms)

pre 1.232 ± 0.153 1.273 ± 0.177 1.227 ± 0.187 1.264 ± 0.170

post 1.274 ± 0.196 1.329 ± 0.192 1.285 ± 0.210 1.326 ± 0.161

Single Leg
Squat Test

Right leg Center of gravity
area (mm2)

pre 3020 ± 1246 2967 ± 1312 3006 ± 988 3232 ± 1057

post 2950 ± 1071 3147 ± 1089 3085 ± 1201 3043 ± 1073

Left leg Center of gravity
area (mm2)

pre 3241 ± 1274 3223 ± 1159 3179 ± 987 3298 ± 973

post 3087 ± 1299 3223 ± 1302 3329 ± 817 3093 ± 898

Notes: intervention-induced changes in comparison to sham ** = p ≤ 0.01; *** = p ≤ 0.001.

Figure 2. Intervention-induced changes (means and SD) in the Y Balance Test in relation to baseline.
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Figure 3. Intervention-induced changes (means and SD) in Single Leg Squat Test and Single Leg
Landing Test in relation to baseline. Notes: = sham; = M1; = cerebellum; = spinal.

4. Discussion

The aim of this study is to investigate and compare the effects of 1.5 mA t/tsDCS
applied over the M1, cerebellum, and spinal cord on balance and postural control. The
data show that (1) stimulation of each region significantly improved balance and postural
control during the Y Balance Test but not during the Single Leg Landing Test and the Single
Leg Squat Test, and (2) spinal stimulation improved the balance ability of both legs, while
M1 and cerebellar stimulation improved the right leg stand only.

4.1. Stimulated Area Specific Modulation

Although several neuroimaging data indicate that several cortical and subcortical
regions, the cerebellum, the brainstem, and the spinal cord, are crucially involved during
balance and postural control [13–15], the majority of existing studies have applied tDCS
over the M1 [17–19]. The previous evidence for the remaining regions was insufficient.
Direct comparisons of different regions regarding t/tsDCS-induced effects on balance and
postural control were almost non-existent [17–19]. We have demonstrated that the cerebel-
lum and spinal cord are promising targets for the application of t/tsDCS in supporting
balance control, in addition to M1. Thus, our results provide an important contribution to
this field. Accordingly, a review suggests that the core systems of the automatic process of
postural control are mostly achieved by the brainstem and spinal cord, while the forebrain
structures and cerebellum act on the brainstem–spinal cord systems so that the cognitive
processes of postural control can be achieved [36]. A model developed in the 1990s indi-
cated that so-called central pattern generators (CPGs) could play a crucial role in gait and
posture control [37–39]. CPGs are located in the lower thoracic and lumbar regions of the
vertebrate spinal cord and drive rhythmic and stereotyped motor behavior such as walking
or swimming without input from higher brain areas [37–39]. It is assumed that spinal
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reflex networks are crucially involved in these self-organizing neural circuits [40,41]. This
finding is supported by studies that detected the suppression of H-reflexes after balance
training, in parallel to balance and postural control improvement [15,16]. Besides this, it is
cogitable that the orientation of neurons within the spinal cord (highly orientated axons
extending along the craniocaudal axis) [42] leads to more consistent tsDCS-induced effects
in comparison to cerebral tDCS application (inconsistent axons extending within the gyral
banks) [43,44].

4.2. Leg-Specific Modulation

Our data show a greater improvement in the balance ability for standing on the left
leg than on the right leg. This is true for M1 and cerebral tDCS, but not for tsDCS. This can
be caused by electrode positioning in relation to the sagittal body plane in our study. The
electrodes were placed symmetrically during tsDCS (anode over Th8 and cathode over L2).
In contrast, a stronger right-hemispheric modulation was expected from M1 tDCS (anode
over Cz and cathode over right supraorbital area) [45] and cerebellar tDCS (anode over O2
and cathode over right buccinator muscle) [46]. Indeed, the effects detected in our study
are not consistent with the theory that the cerebrum controls the contralateral hemi body
and the cerebellum controls the ipsilateral hemi body [47,48]. This theory (among others)
is based on fMRI investigations that show that the active movement of a single lower
limb is associated with increased neural activation of the primary sensorimotor cortex,
supplementary motor area, cingulate motor area, secondary somatosensory cortex, and
basal ganglia of the contralateral hemisphere, but with increased neural activation within
the ipsilateral anterior lobe of the cerebellum [47].

A growing number of studies have demonstrated hemispheric asymmetries of motor
control [47,49,50]. FMRI data show that brain activation during a movement of the non-
dominant limb is more bilateral than during the same movement performed with the
dominant extremity [47]. A TMS study demonstrated that the voluntary movement of
a hand resulted in an increase in MEP amplitude in the non-task hand. This increase
was more pronounced during left hand movements than during left hand tasks [50].
Accordingly, lesion studies indicate that the non-affected hemisphere can compensate
for damage to the non-dominant hemisphere rather than for damage to the dominant
hemisphere [49,51]. Hand motor recovery after left hemispheric stroke is two to three times
slower than that after a right hemispheric incident [49,51]. Thus, one may assume that
non invasive brain stimulation (NIBS) over the dominant hemisphere has the potential
to modulate neural processing and/or motor control within the whole body, while the
targeting of the non-dominant hemisphere modulates the non-dominant hemi body only.
Unfortunately, there exists insufficient evidence in this regard. Existing NIBS research
strongly focuses on the dominant hemisphere (and leg) and neglects the non-dominant
hemisphere (and extremities). Future research should address this gap.

4.3. Balance Task-Specific Modulation

Our data demonstrate that the choice of assessment significantly influences the effects.
While numerous significant t/tsDCS-induced improvements were found on the Y Balance
Test, no effects were detected on the Single Leg Landing Test and the Single Leg Squat.
Accordingly, numerous studies have shown little consistency in balance performance when
using different assessments [52,53]. Balance performance during (i) single leg landing,
(ii) stance on unstable platform, and (iii) forward falls correlated only weakly in young
healthy people [53]. Similarly, performance during (i) the bipedal stance, (ii) stance on
unstable platform, and (iii) the Functional Reach Test were not correlated in children aged
7–10 years [52]. It can be assumed that different mechanisms are responsible for balance
control. An interesting perspective on this topic offers the Balance Evaluation Systems
Test [54]. This test battery differentiates between six balance control systems (biomechan-
ical constraints, stability limits/verticality, anticipatory postural adjustments, postural
responses, sensory orientation, and stability in gait). This assessment was developed to
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identify the underlying cause for poor functional balance in several cohorts [54]. Partici-
pants with balance deficiencies in one category do not necessarily show deficits in other
categories [54]. Future studies should closely evaluate the relationships between balance
performance measured by differential assessments and the neural processing within brain
and spinal cord networks. Besides this, the relationships between deep and superficial
sensitivity and balance and/or gait performance should be investigated. The existing data
show that balance and postural control are complex neural processes, and their neural
background has not been fully understood to date.

5. Strengths and Limitations

This is the first placebo-controlled study that compared the effects of t/tsDCS over
the different areas of balance ability in healthy participants. Our results provide additional
insights into the neural background of balance and postural control and support the
development of innovative therapy strategies in several cohorts. A weakness of our
experiments is the limited number of participants; missing neuro-navigation to determine
the exact location of optimal tDCS application; and differential electrode positioning in
relation to the sagittal body plane: (1) both electrodes over the midline during tsDCS,
(2) anode over the midline and cathode over the right supraorbital area during M1 tDCS,
and (3) anode over the right cerebellum and cathode over the right buccinator muscle
during cerebellar stimulation.

6. Conclusions

Our study indicates that both cerebellum and spinal cord are promising areas for
the application of NIBS in supporting balance ability in young healthy people. While
tsDCS supported balance in both legs, M1 and cerebellar tDCS supported only right leg
balance. It is an open question whether, and to what extent, our finding can be transferred
to people of different ages and disabled populations. Future research should fill the gap
of evidence on this field and investigate the effects of tDCS applications over different
brain and spinal cord regions in different cohorts. The incorporation of neuro-navigation
to precisely target stimulation areas can improve the specificity and efficacy of the results.
The tsDCS should be more closely examined in the framework of motor rehabilitation. The
motor disabilities caused by several neurological diseases are associated not only with
changes in neural processing within the brain but also within the spinal networks [55–58].
E.g., an increased spinal reflex is observed in stroke victims compared to healthy people and
its normalization correlates with a successful gait recovery [55,56]. A desynchronization of
spinal reflex loop oscillations seems to be one of the main sources of tremor in Parkinson’s
disease [57]. An increasing number of dystonia cases (traditionally considered a disorder
of the basal ganglia, brainstem, and cerebellum) are reported in patients with spinal cord
pathology [58]. tsDCS can be a promising alternative to “traditional” cerebral applications
in these cohorts [55–58].
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Abstract: Clinical tests like Timed Up and Go (TUG) facilitate the assessment of post-stroke mobility,
but they lack detailed measures. In this study, 21 stroke survivors and 20 control participants
underwent TUG, sit-to-stand (STS), and the 10 Meter Walk Test (10MWT). Tests incorporated single
tasks (STs) and motor-cognitive dual-task (DTs) involving reverse counting from 200 in decrements of
10. Eight wearable motion sensors were placed on feet, shanks, thighs, sacrum, and sternum to record
kinematic data. These data were analyzed to investigate the effects of stroke and DT conditions
on the extracted features across segmented portions of the tests. The findings showed that stroke
survivors (SS) took 23% longer for total TUG (p < 0.001), with 31% longer turn time (p = 0.035). TUG
time increased by 20% (p < 0.001) from STs to DTs. In DTs, turning time increased by 31% (p = 0.005).
Specifically, SS showed 20% lower trunk angular velocity in sit-to-stand (p = 0.003), 21% longer
10-Meter Walk time (p = 0.010), and 18% slower gait speed (p = 0.012). As expected, turning was
especially challenging and worsened with divided attention. The outcomes of our study demonstrate
the benefits of instrumented clinical tests and DTs in effectively identifying motor deficits post-stroke
across sitting, standing, walking, and turning activities, thereby indicating that quantitative motion
analysis can optimize rehabilitation procedures.

Keywords: stroke; neurological disorders; movement analysis; kinematics; rehabilitation

1. Introduction

Stroke remains a challenge for healthcare professionals in the 21st century, rank-
ing among the foremost causes of disability in the adult population with ~795,000 new
cases each year [1–3]. More importantly, two-thirds of surviving patients, amounting to
~7 million individuals in the United States alone, struggle with compromised mobility.
Even after completing a rehabilitation program, only 40% of stroke survivors (SS) are able
to completely reclaim their lost functional capabilities [4]. These losses include diminished
sensory functions, as well as a decline in both motor and cognitive capabilities. Notably,
post-stroke hemiparesis, a condition characterized by weakness on one side of the body, is
common. This condition significantly impedes the ability to perform daily tasks, even the
most fundamental tasks, such as getting in and out of bed independently. Such activities
are collectively referred to as ‘Activities of Daily Living’ (ADLs). The impact of post-stroke
changes in body movement, including aspects such as increased risk of fall, asymmetry,
and reduced speed while performing ADLs, has been investigated in the literature [5–7].
These alterations remain a topic of interest in the stroke research community because they
can increase the risk of injury to SS who are elderly (~70 years on average), making even the
most trivial injuries fatal. Beyond physical movement, stroke also affects an individual’s
cognitive performance, affecting sensory function and coordination, as noted by Dennis

Bioengineering 2024, 11, 349. https://doi.org/10.3390/bioengineering11040349 https://www.mdpi.com/journal/bioengineering72



Bioengineering 2024, 11, 349

et al. [8]. The interconnectedness of neuro-muscular systems often compromises the ability
to perform tasks that demand both motor and cognitive functions [9]. Effective monitoring
and assessment of these functions can not only help in maintaining proper care but can
also serve as a vital tool for ensuring effective rehabilitation of such patients.

Screening of deficiencies in the physiological functions of SS is widely conducted
using clinical tests [10]. Among these tests, Timed Up and Go (TUG), sit-to-stand (STS),
and the 10 Meter Walk Test (10MWT) are some of the most prevalent tools employed
to evaluate affected motor capabilities [11–13]. The TUG test includes a timed sequence
of actions, which includes (a) the process of rising from a seated position in a chair, (b)
walking 10 feet, turning, and (c) returning to the initial seated position. Similarly, the STS
test involves the evaluation of a patient’s ability to transition from a seated position to
a standing position and vice versa. In contrast, the 10MWT assesses walking speed and
endurance over a designated distance, providing insights into gait patterns and mobility.
However, it is noteworthy that conventional applications of tests like TUG, STS, and the
10MWT include measurements of general parameters (such as overall time) and tend to lack
the precision required for the evaluation of specific factors, such as a patient’s speed/time
for specific body movements and the intricate movement patterns associated with the task.
For instance, a TUG time of ~13 s was found to best discriminate between the performance
of SS and healthy individuals (HI) [11]. An in-depth examination of the specific motions
and patterns exhibited during these tests can offer several insights into the deficiencies
caused by stroke. This level of scrutiny not only enhances the detection of affected functions
but also holds the potential to refine and optimize targeted rehabilitation strategies.

Cognitive demands, especially those arising during the execution of secondary tasks,
have been found to cause irregular body movements. Clinicians have increasingly recog-
nized this aspect, with ~79% of physiotherapists incorporating assessments of cognitive
contributions [14]. Researchers have also explored a dual-task (DT) paradigm to account for
the intricate interactions between motor and cognitive functions in their evaluations. For
instance, Plummer-D’Amato et al. [15] conducted an assessment of the impact of concurrent
cognitive tasks, including speech, visuospatial, and working-memory exercises, on gait
parameters and observed a decline in the parameters during DT performance. In another
study, deterioration in gait parameters was associated with an increased risk of fall [16].
Similarly, a study that evaluated prefrontal cortex activation during DT walking found
that the activation may prioritize physical demands in SS but might prioritize cognitive
demands in HI [17]. The findings were also aligned with those from a study that suggested
the prioritization of balance over cognitive tasks [18]. Overall, studies show potential
benefits of incorporating DTs with tests that involve motor activities (like walking/turning)
because of their similarity to real-world tasks [19–22].

Recent strides in sensor technologies have played a pivotal role in enabling detailed
performance assessment through motion analysis. Patterson et al. demonstrated the ef-
ficacy of motion analysis in assessing post-stroke changes in gait parameters, and Bae
et al. showcased the utility of wearable sensors in evaluating conditions like Parkinson’s
disease [23,24]. Motion analysis can be helpful in advancing the precision and effective-
ness of targeted rehabilitation protocols. Recent studies explored the effects of motor-
cognitive DTs [25,26] and their effects during traditional clinical tests such as TUG and
the 10MWT [20,27–33]. Researchers have also implemented motion analysis to detect the
effects of stroke on movement patterns during daily activities like walking in the presence
of DTs [34–36]. Traditionally, movement patterns have been studied using optoelectronic
camera-based motion-capture systems, which are laboratory-restrictive despite being highly
accurate. To facilitate clinical evaluations, more accessible approaches are being developed.
Although video-based pose detection methods can be highly accessible, their capabilities
in accurately detecting diverse sets of postures remain a matter of debate. Meanwhile,
sensors based on Inertial Measurement Unit (IMU) technology are highly accessible, are
sufficiently accurate, and allow field evaluations. Wearable sensors are also present in most
modern electronic devices (smartphones, smartwatches, etc.) and can be efficiently used to
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objectively detect movement variations in clinical populations. By recording movement
variations using wearable sensors, it may be possible to detect deficits in specific body
functions, enabling more targeted rehabilitation approaches.

Our study is the first to evaluate motor-cognitive DT performance in instrumented
clinical tests using multiple wearable motion sensors. The efficiency in detecting affected
functions in patients using clinical tests alone, motion analysis alone, or the use of motion
analysis in combination with clinical tests remains a point of debate in the stroke commu-
nity. For instance, one study found that TUG and the step test may allow better prediction
of falls than gait speed/static balance measures [37]. The novelty of this study lies in the
level of depth in analyzing the impacts of DTs due to the inclusion of wearable sensors.
Building on our earlier studies, wherein we employed wearable Inertial Measurement
Unit (IMU) sensors to detect movement changes in SS during on-spot turning [38], this
study aims to extend our understanding by infusing TUG, STS, and 10MWT clinical tests
with detailed motion analysis. This study encompasses multiple objectives: (a) to assess
movement patterns between SS and HI during instrumented clinical tests by utilizing
multiple wearable sensors; (b) to determine the differences across specific activities within
clinical tests and identify the most effective activities to detect motor changes within the
common clinical tests; and (c) to assess the impacts of using a DT paradigm on movement
patterns in SS. We hypothesize that combining motion analysis (using wearable sensors)
with common clinical tests may be more beneficial in identifying specific activities that
are more challenging for SS. Furthermore, we expected that inducing additional cognitive
demands while performing motor tasks can stress neuro-musculoskeletal systems impact-
ing the individual’s physical performance during tests. The overarching objective of this
study is to contribute to the development of effective rehabilitation programs, ultimately
enhancing the quality of life and overall well-being of post-stroke patients.

2. Materials and Methods

2.1. Participants

We recruited 41 participants, including 21 SS/stroke and 20 HI/control. The sample
size was determined based on a preliminary power analysis using G*Power software
(version 3.1). The results of our analysis demonstrated that for effect size, significance level,
and powers of 0.8, 0.05, and 0.8, we needed a sample size of 21 subjects in each group.
There were no statistically significant differences in anthropometric measurements (mean
(SD)) between the two groups (p-values for age, height, weight, and BMI were >0.05), as
summarized in Table 1. Prior to the commencement of the study, all participants provided
their informed consent by signing a written consent form. This study was conducted
in accordance with the approval granted by the Institutional Review Board of both the
Rochester Institute of Technology and Rochester Regional Health. Inclusion criteria for the
stroke group required participants to be capable of walking independently for distances
exceeding 10 m, to have experienced a stroke at least six months prior to their participation,
and to be free from any severe medical conditions that might significantly impact their
physical performance. Likewise, the healthy control group’s inclusion criteria excluded
individuals with neurological diseases or musculoskeletal issues that might affect functional
performance during the experiment.

2.2. Study Approach

The body movement of the participants was recorded as they performed clinical tests
in two separate conditions, with and without cognitive loading. We selected clinical tests
based on the activities involved: sitting/standing, walking, and turning, consisting of
TUG, STS, and the 10MWT. All three tests are widely implemented in the stroke research
community for evaluating the motor, locomotor, and balance performance of post-stroke
patients [7,12,39]. The participants completed five different tests (TUG, STS, the Balance
Test with open/closed eyes, and the 10MWT) in a random order. Owing to the scope
of this study, we excluded outcomes from the Balance Test. Additionally, for each test,
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participants either started with a DT or single-task (ST), and these selections were made
randomly. To induce cognitive loading during DT, prior studies suggested that subtraction-
based tasks rely more on working memory and can impose a higher cognitive load than
verbal fluency [40]. Among the methods used to impose cognitive loading, such as reverse
counting, reciting alternate alphabets, and naming items (e.g., animals), reverse counting
in steps of 3 and 7 is the most common [41–43]. However, during pilot studies, our
observations showed that post-stroke patients were unable to perform reverse counting in
steps of 3 and 7 throughout the tasks because of their challenging nature. Thus, we used a
simplified version that involved counting backward from 200 in decrements of 10 while
following the prescribed path. If participants reached zero during any tests, they were
instructed to restart the counting from 200. Importantly, participants were explicitly guided
to ensure that their performance remained independent of the numerical counting task.

Table 1. Demographic data for study participants.

Parameters
Stroke

(N = 21)
Control
(N = 20)

p-Value (t-Test)

Gender 11 males
10 females

8 males
12 females -

Age (year) 66 (10) 60 (8) 0.053

Height (cm) 173.8 (8.4) 172.6 (9.6) 0.669

Weight (kg) 86.3 (14.7) 81.8 (18.2) 0.39

BMI (kg/s2) 28.5 (4) 27.2 (3.9) 0.288

2.2.1. Procedural Details of Clinical Assessments

The initial assessment, the TUG test, entailed a sequence of five timed locomotion
tasks, which are visually depicted in Figure 1: (1) initiating from a seated position and
transitioning to a standing posture; (2) advancing to a designated cone positioned approxi-
mately 3 m (equivalent to roughly 10 feet) from the chair’s starting point; (3) executing a
turn around the cone; (4) returning to the chair; and (5) performing a turn and reseating on
the chair. Each participant completed the TUG test twice, once while concurrently engaging
in a cognitive task and once without such DT demands. The selection of the TUG test for
this experiment was motivated by its widespread use in clinical settings. Subsequently, the
second assessment involved the STS test, during which participants performed five trials
of sitting and standing from a chair. Lastly, the third test, the 10MWT, required participants
to walk in a straight line for 10 m. Like in the TUG test, participants were asked to count
aloud during both the STS and 10MWT assessments.

2.2.2. Experimental Design and Independent Factors

A 2 × 2 experimental design was selected for this study, with independent factors
of group (stroke, control) and cognitive load (ST, DT). As participants performed each
of the three tests (TUG, STS, 10MWT), their movement was recorded using eight IMUs
manufactured by Movella (Xsens, Enschede, The Netherlands) placed on each of the
feet, shanks, and thighs and on the sternum and sacrum of the participant in the pre-
defined ‘lower-body and trunk’ configuration (Figure 1). Motion data were collected from
each sensor simultaneously at a sampling frequency of 100 Hz using the MVN Analyze®

software package (Xsens, Enschede, The Netherlands) as the participants performed each
of the tests.
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Figure 1. Illustration depicting (top left) segmentation of tasks while performing the Timed Up and
Go (TUG) test, (bottom left) the sit-to-stand (STS) test, (bottom right) the 10 Meter Walk Test (10MWT),
and (top-right) the placement locations of inertial sensors on the body.

2.3. Signal Processing and Feature Extraction

We employed a custom-tailored MATLAB (MathWorks, Natick, MA, USA) code to
analyze the kinematic data. The data, encompassing segment angles, angular velocity,
and linear acceleration, underwent initial preprocessing and extraction using the MVN
Analyze® software package (Xsens, Enschede, The Netherlands). To optimize data qual-
ity, a 4th-order low-pass Butterworth filter with a 5 Hz cut-off frequency was applied to
the imported data in MATLAB (version R2022b). For each test, a custom MATLAB code
was designed for automatically detecting events in each test, segmentation of the tests
for each participant, and feature extraction. Following the code’s execution for each trial,
all segmentation processes were confirmed visually by plotting graphs using markers
for detected events. In cases where discrepancies arose between the code-generated seg-
mentation and the defined strategy, manual adjustments were made to the segmentation.
As the tests encompassed various tasks, each test was subjected to a distinct signal pro-
cessing, segmentation, and event-detection approach, which will be elaborated on in the
subsequent sections.

2.3.1. TUG Test

To conduct a thorough analysis of the TUG test, it was imperative to break the test
down into distinct sections. As previously mentioned, we divided the test into five specific
sections: (1) standing up from the chair, (2) walking toward the cone, (3) turning around
the cone, (4) walking toward the chair, and (5) turning and sitting on the chair. To identify
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the start and end points of these sections, we defined six key events to be detected in each
trial, as illustrated in Figure 1:

T1: Start of the task by the initiation of standing up from the chair
T2: Start of walking toward the cone (also indicating the end of the standing-up phase)
T3: Start of the turn around the cone (also indicating the end of walking toward

the cone)
T4: Start of walking toward the chair (also indicating the turning around the cone)
T5: Start of turning and sitting on the chair (also indicating the end of walking toward

the chair)
T6: Conclusion of the test by sitting back down in the chair
To identify the T1 and T6 events, we analyzed three signals: thorax resultant angular

velocity, right thigh resultant angular velocity, and left thigh resultant angular velocity.
The commencement of the task corresponded to the initial movement of any of these body
segments. When we observed a significant rise in the signal of any of these segments, we
marked that point as T1. Conversely, to determine T6 (the end of the task), we monitored
all three signals, expecting them to reach stable, near-zero levels as participants completed
the task.

To detect the T2, T3, T4, and T5 events, we used resultant linear acceleration from
both the left and right feet, along with the thorax resultant angular velocity. These events
denoted the start and end points of the walking sections (toward the cone and chair), so we
aimed to identify them based on the periodic patterns present in the walking signals. The
thorax resultant angular velocity signal was used to enhance the accuracy of segmentation
during walking during the turning portion, as the commencement and completion of the
turn were not clearly discernible from the foot acceleration signals alone. Specifically, we
selected the end of a stride (T3) as the point at which a spike in thorax angular velocity
occurred, with T4 representing the point when the thorax angular velocity dropped to
a minimum after reaching a peak during the turn around the cone. Figure 2 provides a
sample of the segmented signals for a participant in the control group, illustrating the
effectiveness of this approach. Overall, ten features were calculated, including the total
time to complete TUG; the time to perform sit-to-stand, walk toward the cone, turn around
the cone, walk toward the chair, and turn and sit; total steps toward the cone and chair;
and cadence toward the cone and chair.

Figure 2. Illustration of the raw signals and segmented sections of the TUG task for a sample
participant from the control group.
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2.3.2. STS Test

A sit-to-stand test was implemented to evaluate patients’ ability to transition between
sitting and standing positions, and vice versa. As this task primarily involves flexion and
extension movements in various body segments, we focused our analysis on the angular
velocity of the sensors, rather than linear acceleration. Each test consisted of five repetitions
of the sit–stand–sit activity. To segment the signals and measure the duration of each
phase, we utilized the resultant angular velocity data from sensors placed on the thighs
(upper legs). Within each repetition or cycle of sit–stand–sit, we observed two distinct
convex shapes in the angular velocity data. Each of these convex shapes represented either
the sitting or standing phases, and we considered the time between two sequences of
convex shapes as an event during the segmentation process. For each sit-to-stand trial, we
calculated a total of eight features, which included the total time taken for the sit–stand–sit
activity, the mean duration of the sit–stand–sit phase, the mean duration of the sit–stand
phase, the mean duration of the stand–sit phase, and the root mean square of angular
velocity for the thorax, pelvic region, and right/left thighs during the test.

2.3.3. 10MWT

The 10MWT involved a 10 m walk and a comprehensive gait analysis relying on
kinematic data. To analyze motion, especially in walking patterns, a crucial step was
identifying heel-strike (HS) and toe-off (TO) events. Precise event timing was determined
using resultant linear acceleration data collected from sensors on the participants’ shanks,
a method consistent with our prior studies [44,45]. The linear acceleration signal displayed
two distinct peaks within each stride, one corresponding to TO and the other to HS. These
events were identified using segmentation techniques on the sensor data from each shank.
It is noteworthy that the gait event could be detected using other sensor data, such as from
sensors on the feet or sacrum [46,47]. Subsequently, seven parameters were calculated to
quantify various kinematic variables and factors related to walking. These parameters
encompassed total walk time, the number of steps during the test, cadence, mean swing
total, mean single support portion in strides, gait speed, and stride duration.

2.4. Statistical Analysis

To analyze the data, we conducted a repeated-measures analysis of variance (ANOVA).
This involved creating models that accounted for the effects of each of the 25 different
measures (shown in Table 2) obtained from the tests (TUG: 10 measures, STS: 8 mea-
sures, 10MWT: 7 measures). The key independent variables were group (consisting of
stroke and control) and cognitive load (encompassing single task (ST) and DT, as well
as their interaction). Before performing the analysis, we confirmed that the prerequisites
for repeated-measures ANOVA were satisfied, which included verifying that the continu-
ous dependent variable followed a normal distribution (implementing the Shapiro–Wilk
method) and ensuring there were no outliers in the repeated measurements. We also
calculated effect sizes (partial eta-squared: η2) for each analysis, categorizing them as small
if η2 was less than 0.06, medium if it fell between 0.06 and 0.14, and large if it exceeded
0.14 [48]. In all our analyses, we maintained a significance level of 0.05, and we conducted
these statistical computations using the JMP software (version 16.2) from the SAS Institute
in North Carolina, USA.
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Table 2. Main and interaction effects of the group (stroke and control) and cognitive load (single-
task (ST) and dual-task (DT)) on the measures from TUG: Timed Up and Go, STS: sit-to-stand, and
10MWT: 10 Meter Walk Test. (Note: The three columns headed Group, CL, and Group × CL show
the p-values for the null hypotheses of no significant effect of these factors on the dependent factors.
The partial effect size (η2) of each relevant effect analysis is reported in the column to its right.
CL: cognitive load).

Measures Group η2 CL η2 Group × CL η2

TUG Test
Total time (s) <0.001 0.244 (L) <0.001 0.085 (M) 0.124 0.004 (S)

Sit-to-stand (s) 0.036 0.079 (M) 0.056 0.023 (S) 0.542 0.002 (S)
Walk toward cone (s) 0.003 0.166 (L) <0.001 0.059 (S) 0.396 0.003 (S)

Turn around the cone (s) 0.035 0.069 (M) 0.005 0.068 (M) 0.116 0.020 (S)
Walk toward chair (s) 0.006 0.152 (L) <0.001 0.067 (M) 0.140 0.007 (S)

Turn and sit (s) 0.001 0.206 (L) 0.008 0.033 (S) 0.835 <0.001 (S)
Steps toward cone 0.002 0.202 (L) 0.113 0.005 (S) 0.371 0.001 (S)
Steps toward chair 0.005 0.170 (L) 0.022 0.018 (S) 0.440 0.001 (S)

Cadence toward cone (step/min) 0.916 0.001 (S) <0.001 0.107 (L) 0.592 <0.001 (S)
Cadence toward chair (step/min) 0.434 0.014 (S) 0.002 0.058 (S) 0.405 0.005 (S)

STS (×5) Test
Total time (s) 0.289 0.019 (S) 0.150 0.002 (S) 0.215 0.008 (S)
Mean STS (s) 0.289 0.019 (S) 0.150 0.002 (S) 0.215 0.008 (S)

Mean STS up (s) 0.166 0.038 (S) 0.353 0.001 (S) 0.288 0.005 (S)
Mean STS down (s) 0.481 0.006 (S) 0.061 0.002 (S) 0.199 0.009 (S)

RMS of ang vel thorax (deg/s) 0.003 0.187 (L) 0.390 <0.001 (S) 0.464 0.001 (S)
RMS of ang vel pelvis (deg/s) 0.182 0.037 (S) 0.285 0.001 (S) 0.143 0.005 (S)

RMS of ang vel right thigh (deg/s) 0.569 0.004 (S) 0.026 0.004 (S) 0.204 0.005 (S)
RMS of ang vel left thigh (deg/s) 0.391 0.013 (S) 0.032 0.004 (S) 0.261 0.005 (S)

10MWT
Walk time (s) 0.010 0.135 (M) <0.001 0.064 (M) 0.257 0.005 (S)

Steps 0.019 0.124 (M) <0.001 0.029 (S) 0.504 <0.001 (S)
Cadence (step/min) 0.184 0.036 (S) <0.001 0.070 (M) 0.152 0.007 (S)

Mean swing total (%) 0.133 0.050 (S) <0.001 0.037 (S) 0.076 0.007 (S)
Single support (%) 0.781 0.001 (S) 0.044 0.025 (S) 0.178 0.008 (S)
Gait speed (m/s) 0.012 0.124 (M) <0.001 0.079 (M) 0.528 0.001 (S)

Stride duration (s) 0.111 0.050 (S) <0.001 0.067 (M) 0.113 0.010 (S)

3. Results

The statistical analysis presented in Table 2 revealed significant main effects for both
group and cognitive load on various key outcome measures in the TUG, STS, and 10MWT
assessments. Although parameters such as STS time and RMS angular velocity were
primarily influenced by group but not by cognitive load, others, like cadence and swing
time, were significantly affected by cognitive load but not by group membership. Findings
show an absence of significant interactions between group and cognitive load. Effect sizes
for group-related main effects were substantial, particularly in multiple TUG parameters,
including total time, walking duration, and turning sections. In contrast, the main effects
of cognitive load generally had minor to moderate effects on the measured outcomes. The
introduction of a cognitive DT further exacerbated participants’ physical limitations during
the clinical assessment tests.

Table 3 displays the mean (SD) values of key outcome measures for both single-task
(ST) and dual-task (DT) conditions within each group. The analysis highlighted specific
activities that posed significantly greater challenges for stroke survivors. In particular, they
exhibited a 23% increase in the total time needed to complete the TUG test, with notable
variations in the TUG subsections: 20% longer for walking to the cone, 15% for turning
around the cone, and 29% for turning and sitting back down, with the most substantial
difference observed in the turn and sit subsection. In the STS test, stroke survivors exhibited
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a 20% reduction in trunk angular velocity, and in the 10MWT, they recorded a 21% longer
walk time and a reduced gait speed when compared with the control group.

Table 3. Mean (SD) values of the key outcome measures of the three tests (TUG: Timed Up and Go,
STS: sit-to-stand, and 10MWT: 10 Meter Walk Test) for each group in single-task (ST) and dual-task
(DT) conditions. Statistically significant values are denoted by: *. Ranges are defined as follows:
p-value > 0.05: -, p-value ≤ 0.05: *, p-value ≤ 0.01: **, p-value ≤ 0.001: ***).

Measures
Control (N = 20) Stroke (N = 21) Group

(Control ST
vs. Stroke ST)

CL
(Control DT

vs. Stroke DT)
Control ST Control DT Stroke ST Stroke DT

TUG Test
Time total (s) 13.34 (2.34) 14.8 (1.91) 16.15 (2.97) 18.44 (3.17) *** ***

Sit-to-stand (s) 1.37 (0.5) 1.58 (0.38) 1.84 (0.82) 1.94 (0.75) * -
Walk toward cone (s) 3.95 (0.8) 4.34 (0.78) 4.68 (1.05) 5.27 (1.07) ** ***

Turn around the cone (s) 1.75 (0.48) 1.88 (0.46) 1.87 (0.46) 2.3 (0.63) * **
Walk toward chair (s) 3.33 (0.72) 3.72 (0.75) 3.96 (1) 4.71 (1.32) ** ***

Turn and sit (s) 2.94 (0.57) 3.28 (0.6) 3.79 (0.92) 4.22 (1.2) ** **
Steps toward cone 6.05 (1) 6.15 (1.04) 7.19 (1.54) 7.57 (1.54) ** -
Steps toward chair 4.8 (0.83) 5.15 (1.04) 6.05 (1.56) 6.71 (2.55) ** *

Cadence toward cone
(step/min) 93.21 (12.11) 85.43 (7.61) 92.78 (9.97) 87.47 (14.44) - ***

Cadence toward chair
(step/min) 88.08 (12.77) 83.69 (10.61) 92.21 (11.17) 85.19 (15.83) - **

STS (×5) Test
Time total (s) 17.81 (3.23) 19.06 (4.25) 20.04 (6.59) 20.6 (6.83) - -
Mean STS (s) 3.56 (0.65) 3.81 (0.85) 4.01 (1.32) 4.12 (1.37) - -

Mean STS up (s) 1.75 (0.32) 1.85 (0.42) 2.01 (0.65) 2.06 (0.63) - -
Mean STS down (s) 1.81 (0.35) 1.96 (0.45) 2 (0.75) 2.06 (0.79) - -

RMS of ang vel thorax
(deg/s) 1.04 (0.23) 1.01 (0.23) 0.82 (0.21) 0.81 (0.18) ** -

RMS of ang vel pelvis
(deg/s) 0.91 (0.26) 0.86 (0.23) 0.78 (0.28) 0.78 (0.25) - -

RMS of ang vel right thigh
(deg/s) 1.03 (0.21) 0.97 (0.21) 0.97 (0.24) 0.95 (0.21) - *

RMS of ang vel left thigh
(deg/s) 1.03 (0.21) 0.98 (0.21) 0.96 (0.23) 0.93 (0.2) - *

10MWT
Walk time (s) 10.98 (2.12) 12.18 (2.36) 12.94 (3.41) 15.1 (3.81) ** ***

Steps 17.7 (2.3) 18.8 (2.63) 20.14 (4.04) 21.57 (4.42) * ***
Cadence (step/min) 98.05 (8.87) 93.83 (9.1) 95.58 (13.23) 87.5 (12.81) - ***

Mean swing total (%) 0.38 (0.03) 0.37 (0.02) 0.37 (0.03) 0.35 (0.04) - ***
Single support (%) 0.6 (0.06) 0.6 (0.04) 0.61 (0.04) 0.58 (0.06) - *
Gait speed (m/s) 0.94 (0.19) 0.85 (0.15) 0.82 (0.2) 0.7 (0.16) * ***

Stride duration (s) 1.21 (0.12) 1.27 (0.13) 1.26 (0.19) 1.38 (0.21) - ***

The results are further illustrated in Figures 3 and 4, which compare key outcome mea-
sures between stroke survivors and healthy individuals in ST and DT conditions. Figure 3
shows that stroke survivors took significantly longer to complete the total TUG test and
its subsections, especially for turning activities, compared with healthy individuals. DTs
increased times across both groups. Figure 4 shows that stroke survivors had more steps
toward the chair in the TUG test, reduced swing portion in the 10MWT, lower trunk ve-
locity during sit-to-stand transitions, and slower gait speed in the 10MWT compared with
controls. Implementing DTs worsened these metrics for both groups. The figures demon-
strate deficits in stroke survivors across sitting, standing, walking, and turning movements,
which were further impacted by cognitive demands during the clinical assessment tests.
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Figure 3. Comparison of the time taken to complete the tasks for different groups (stroke and control)
and cognitive loads (single task and dual task). (Top) TUG total time and (bottom) times for the five
subsections of TUG. The bars connected to the lines are significantly different (p-value < 0.05). Note:
Each set of four bars (from left to right) in each section shows the results for the control group under
ST and DT conditions and the stroke group under ST and DT conditions, respectively.
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Figure 4. Comparison of key outcome measures between stroke survivors and healthy individuals
in single-task (ST) and dual-task (DT) conditions. (Top left) Steps toward the chair in the TUG test,
(top right) mean swing portion of strides in the 10MWT (%), (bottom left) RMS of thorax angular
velocity in STS (deg/s), and (bottom right) gait speed in the 10MWT (m/s). Error bars indicate
standard deviation. The points with no common letter labels (i.e., a, b, and c) were significantly
different (p-value < 0.05) in the post-hoc analysis (lack of common letters between the control and
stroke groups denotes statistical significance). The dotted lines connect the outcomes of the relevant
cognitive loads in control and stroke groups.

4. Discussion

In this study, we examined the movement deficits in post-stroke patients by instru-
menting the common clinical TUG, STS, and 10MWT assessments with the help of wearable
sensors. The novelty of our approach was: (i) to enable detailed assessment of body move-
ment as participants performed the tasks within these tests, and (ii) to assess the impact of
cognitive loading while performing the tests by incorporating single and motor-cognitive
DT conditions. This is the first study to conduct in-depth motion analysis to assess the
impacts of DTs in common clinical tests by implementing multiple wearable motion sensors.
The outcomes of the study revealed significant impairments in SS compared with HI as they
performed tests that included a combination of ADLs, particularly sit/stand, walking, and
turning. Notably, our findings (Table 3) also showed that the addition of cognitive loading
in the DT conditions substantially impacted body movements in SS, highlighting the poten-
tial impact of divided attention on physical performance. Prior studies demonstrated that
inducing additional cognitive loading can lead to decreased performance in completing
tasks [15,18,20,34]. The findings of this study are consistent with earlier findings, and the
introduction of a secondary cognitive task during the tests further worsened the motor
impairments in SS.

Substantially greater variability was seen in the SS compared with the HI for several
of the extracted kinematic features across the clinical tests (see Table 3). SS took 23%
longer to complete the TUG test, reflecting significant challenges in the performance of
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sequential motor tasks. Segmentation of the TUG test into walking, turning, and sit/stand
was beneficial for identifying differences between SS and HI, especially for assessing
the impacts of cognitive loading [29]. As depicted in Figure 3, detailed segmentation
revealed specific sections that were more demanding, such as the 29% increase in the time
taken for the final turn and sit subsection of the TUG test. The TUG test best detected
mobility limitations in stroke survivors, with total time increased by 23% compared with
controls. Further analysis of TUG subsections provided insights into which activities were
specifically challenging (Figure 3). Turning ability in SS was objectively evaluated by
Hollands et al., 2014, wherein the mean time to turn during TUG was higher in the SS than
in the HI (2.12 vs. 1.99 s). This study yielded similar outcomes, with the turn around the
cone section being 15% longer in SS compared with HI, indicating turning deficiencies.
The final turn and sit subsection had an even greater 29% increase, suggesting transitional
movements like sitting are especially demanding. SS also took 20% longer for the straight
walk sections. Detailed TUG analysis using wearable sensors, as conducted in this study,
demonstrates the value of segmenting clinical tests to reveal specific problematic activities
compared with using total time alone.

Consistent with the findings of our earlier study [49], cognitive loading through DT in
this study impacted TUG performance in both groups, but more so in SS. DTs increased
total TUG time by 20% in SS versus 11% in HI. In a previous study, cognitive loading in
TUG increased the duration of the test by ~3.7–5.9 s (total time ~17–21 secs with cognitive
loading), similar to the findings (Figure 3) reported in our study [20]. Examining the
subsections showed that turn time was disproportionately affected, increasing by 31%
under DT conditions in stroke survivors. Turning requires the integration of multiple
sensorimotor processes, including postural transitions, asymmetric limb coordination, and
spatial navigation [35,38]. DTs may overwhelm these processes in SS in the regions of the
brain that govern cognition, attention, and motor control. Targeted training focusing on
turning and transitions under cognitive load may improve TUG performance. Overall,
instrumented analysis of TUG with DTs allowed robust assessment of the motor-cognitive
capabilities affected by stroke.

During the STS test, the total test time under DT conditions had a standard deviation
of 6.83 s in SS vs. 4.25 s in HI. This highlights the considerable heterogeneity in functional
disabilities and compensatory movement strategies adopted by the stroke population. This
result could be due to several factors, such as the location or extent of the injury (brain
lesion), severity of the stroke, and duration since stroke occurrence [16]. The obtained
kinematic features that showed pronounced deficits and variability in SS vs. HI show
potential as sensitive metrics for tracking longitudinal recovery and improvements during
rehabilitation. For example, the STS trunk angular velocity detected mobility limitations
related to transitional movements [20,34]. Clinically, these objective instrumented measures
could inform individualized prognoses and therapies tailored to each patient’s specific
functional challenges revealed during standardized tests. Furthermore, the pronounced
deficits in trunk angular velocity during sit-to-stand in stroke survivors point to weakened
core muscles and postural instability after stroke. STS transitions require dynamic balance
capabilities, which may be further compromised by divided attention demands [37,50]. It
is also possible that the greater attentional cost for maintaining stability could manifest in
the form of affected kinematic parameters, such as reduced trunk velocity.

The absence of significant main effects of group or cognitive load on metrics like
total time and phase durations during the STS test may be attributed to several factors.
High inter-individual variability in transitional movements between participants likely
contributed to considerable variability in STS performance that may have masked group
differences. The straightforward sit-to-stand motion may have posed less of a motor
challenge compared with more dynamic tasks like turning and walking for this cohort of
stroke survivors. Furthermore, multiple repetitions of the STS task could have allowed
participants to optimize their performance through practice effects, and the counting DT
may not have sufficiently challenged cognitive-motor integration during the primarily
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motor sit-stand activity. Importantly, the limited sample size of stroke survivors may
have reduced the statistical power to detect group or cognitive load effects. These factors
potentially explain the lack of significant differences and indicate that STS test parameters
may not differentiate stroke survivors from controls as well as other mobility metrics in
certain populations and testing conditions.

The 10MWT revealed considerable variability in spatiotemporal gait metrics, including
cadence, stride length, stance/swing ratios, and gait speed in stroke survivors. Similar
outcomes were reported in [15], wherein cognitive loading affected gait speed, stride time,
average stride length, and cadence during the 10MWT test. This could mean that stroke
can disturb locomotor rhythmicity and symmetry owing to affected brain functions that
map to leg motor functions, as seen in the form of alterations in gait parameters [27,51,52].
SS exhibited impaired gait speed, reduced cadence, shortened swing phase, and longer
double support time compared with HI, as depicted in Table 3. DT likely shifts priority
toward maintaining safe walking patterns, resulting in conservative alterations in cadence,
swing time, and support phases in SS [52,53]. The changes in gait metrics may signify the
recruitment of cognitive resources for conscious control and monitoring of movements. DT
costs were higher across spatiotemporal gait parameters in stroke survivors, reiterating
their limited cognitive reserve.

Among the studied clinical tests, 10MWT provided unique insights into spatiotempo-
ral gait impairments in SS, such as reduced gait speed, cadence, stride length, and swing
ratio. These gait metrics capture characteristics that may not be evident from total time
alone during short walks in the TUG test. However, the 10MWT lacks the multi-tasking
components involved in activities of daily living. Therefore, integrating the 10MWT straight
path walking into an instrumented TUG test could offer advantages for both measures.
According to the results of this study, we propose a modified TUG starting with the pa-
tient already standing, then walking 10 m, turning 180 degrees around a cone, walking
10 m back, and ending by sitting down. This would allow detailed quantification of gait
parameters over an extended distance along with an assessment of turning under cognitive
load. The sit-to-stand transition may provide less added value based on our findings.
Eliminating this portion would shorten test time and reduce the complexity of the analysis
while still capturing the key markers of mobility deficits. Thus, a modified instrumented
TUG incorporating gait analysis over 10 m and a DT turn component may optimally assess
motor-cognitive capabilities affected by stroke. Further research is needed to develop and
validate such an integrated clinical assessment.

The instrumented metrics obtained in this study hold potential for translation to clini-
cal practice to inform individualized rehabilitation. For instance, the disproportionate DT
deficits in turn time could indicate the need for targeted training focused on transitional
movements and navigation under divided attention in stroke survivors [54]. Likewise,
reduced trunk velocity during repeated sit–stand transitions points to weakened core
muscles requiring specific strengthening. Quantifying such functional limitations through
sensor-based assessment during standardized tests allows customized therapies tailored to
patient weaknesses. The metrics showing pronounced stroke-related impairments like TUG
turn time and 10MWT gait speed could also serve as sensitive outcomes to track subtle lon-
gitudinal improvements resulting from interventions. Collaborations spanning engineers,
clinicians, and data scientists would allow the development of predictive models leveraging
these metrics to forecast fall risk or functional prognosis [55,56]. Overall, the methodology
presented contributes to future technologically enabled precision rehabilitation paradigms
and could optimize the quality of care. Integration of quantified instrumented clinical tests
into immersive biofeedback platforms might actively engage patients in self-rehabilitation.
Further research should explore such clinical translation while addressing practical chal-
lenges involving patient compliance, clinician adoption, and ethical considerations around
data privacy.

This study, while demonstrating a detailed evaluation of motor-cognitive capabilities
impacted by stroke through the integration of standardized clinical tests, motion analysis,
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and DT paradigms, is not without its constraints. The relatively small sample size, though a
common limitation in studies involving clinical populations, may affect the generalizability
of the findings. In addition, there was a marginally significant difference between the ages
of the two groups that should be addressed in future studies to allow more reliable results.
Furthermore, the potential benefits of incorporating additional sensor modalities such as
electromyography to gain insights into neuromuscular control warrant consideration. To
further enhance our understanding, future research endeavors should explore longitudinal
studies that follow patients through rehabilitation, offering a dynamic perspective on how
the observed metrics evolve over time and their therapeutic implications. These endeavors
have the potential to refine rehabilitation strategies and, in turn, contribute to an improved
quality of life for SS.

5. Conclusions

In this study, we used wearable sensors to perform a detailed study of movement
alterations in stroke survivors during common clinical tests (TUG, STS, and the 10MWT).
Using motion analysis, we effectively segmented the tests into specific activities and
identified critical deficits in SS, such as reduced trunk velocity in STS, altered gait patterns
in TUG, and asymmetric strides in the 10MWT. The outcomes of our study show that SS
took significantly longer to complete the clinical tests, especially the TUG total time and
turning sections, compared with HI. When DT conditions were imposed, impairments in
SS were exacerbated across all tests, indicating the impact of divided attention on physical
performance. This showed that the combination of instrumented clinical tests and DT
paradigms allows robust assessment of motor-cognitive capabilities affected by stroke and
provides insights into functional disabilities post-stroke. Overall, detailed quantification
of specific task segments and DT conditions can inform targeted rehabilitation strategies.
Future work should explore predictive modeling of fall risks and prognoses based on
these instrumented metrics. The proposed methods can be translated to clinical practice
for the objective evaluation of patient status and recovery. Overall, this research lays the
groundwork for technologically enabled, precision rehabilitation to improve outcomes in
stroke survivors.
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Abstract: The design of human-machine interfaces of occupational exoskeletons is essential for their
successful application, but at the same time demanding. In terms of information gain, biosensoric
methods such as surface electromyography (sEMG) can help to achieve intuitive control of the device,
for example by reduction of the inherent time latencies of a conventional, non-biosensoric, control
scheme. To assess the reliability of sEMG onset detection under close to real-life circumstances,
shoulder sEMG of 55 healthy test subjects was recorded during seated free arm lifting movements
based on assembly tasks. Known algorithms for sEMG onset detection are reviewed and evaluated
regarding application demands. A constant false alarm rate (CFAR) double-threshold detection
algorithm was implemented and tested with different features. Feature selection was done by
evaluation of signal-to-noise-ratio (SNR), onset sensitivity and precision, as well as timing error and
deviation. Results of visual signal inspection by sEMG experts and kinematic signals were used
as references. Overall, a CFAR algorithm with Teager-Kaiser-Energy-Operator (TKEO) as feature
showed the best results with feature SNR = 14.48 dB, 91% sensitivity, 93% precision. In average,
sEMG analysis hinted towards impending movements 215 ms before measurable kinematic changes.

Keywords: surface EMG; occupational exoskeletons; onset detection; myoelectric control; constant-
false-alarm rate; Teager-Kaiser-Energy-Operator; electromechanical delay

1. Introduction

Powered or active exoskeletons are wearable robots designed to assist human move-
ments by enhancing the physical capacity of a person [1–4]. They are currently developed
for applications in medical therapy [4–6], support of patients with movement disorders [1,4],
as well as in occupational contexts [2,3]. In the latter case, it is hypothesized that occu-
pational exoskeletons can effectively prevent musculoskeletal diseases by assisting the
workers in handling excessive loads or by increasing their endurance, thereby limiting
muscular fatigue and associated diseases [1,3,7].

For all these applications, a main challenge is the design of a proper human-machine-
interface between the powered exoskeleton and its user. Synchronizing the forces generated
by the exoskeleton with the muscular efforts of the user is of utmost importance to react
properly and timely adequate to the movement intention, and thus provide the required
assistance [1,3,4]. This is necessary to ensure biocompatible joint kinematics and dynamics
and allow the user to adapt to the system, and gain confidence in its use [3,8–11].

Surface electromyography (sEMG) is a biosensoric technique, which allows to effec-
tively measure and analyse muscular activity. sEMG signal processing has been investi-
gated for the control of powered exoskeletons [1,4,6,10,12–15] and in the related field of
prosthesis control [11,16–18]. Complete decoding of motion intention is not in reach due
to the high complexity of the human motor system, its time-varying nature and the high
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inter-subject variability [4,17]. Still, a broad range of techniques and algorithms has been de-
veloped to analyse sEMG with significant success within the corresponding scientific setup.
These methods vary strongly in complexity, with the more complex approaches giving
better results by accounting for the variability and stochastic nature of sEMG signals [18],
but also having higher demands towards computational power and the robustness of
measurements [4]. These demands proved as a hindrance to application of more complex
sEMG analysis in real life situations: Almost all commercially available exoskeletons for
occupational use are passive, and although recent hand prosthesis controllers allow for
multiple class pattern recognition, most amputees are only able to reliably use as little as
four classes simultaneously.

Considering an active, occupational exoskeleton whose basic control loop is based
on inertia and force sensors, follow-up control and limiting of contact forces is possible
even without biosensoric information. The disadvantage of these sensor modalities is
their inherent time latency, being only able to detect the user motion after its onset. This
method, although currently the most common control technique for active exoskeletons,
leads to the user necessarily needing to work against the exoskeleton for a short period of
time at the beginning of each movement, which is contrary to the goal to reduce muscular
effort. Additionally, such an active exoskeleton would not be able to deliver support
already at the beginning of the movement, which is important to alleviate stationary weight
and friction forces as well as acceleration. sEMG onset detection allows to determine
the onset of muscular activity which itself is the origin of all human motion. Due to the
electromechanical delay, there is a time span of 20–80 ms between the rise of sEMG and
measurable generation of muscular force [19]. This characteristic can be used to eliminate
the time latencies of the exoskeleton control loop. In contrast to other sEMG analysis
methods, onset detection has low demands towards computational power and robustness
of measurements, due to its low complexity [4,20,21].

Many studies on sEMG analysis techniques used simulated data or laboratory in-
vestigations far from real-life application cases (i.e., [22,23]). Often, isometric, isokinetic
or very simple tasks were used, diminishing the variability of sEMG signals and thereby
overestimating the algorithm performance. Also, small groups of test subjects are common.
Considering that the variability of the sEMG signal is known to be a main hindrance
towards its application, re-evaluation of established methods on a close-to-application
dataset of sufficient size is necessary. To this aim, shoulder sEMG of a heterogeneous group
of 55 healthy subjects was recorded during seated free arm lifting movements based on
assembly tasks. Several state-of-the-art sEMG onset detection techniques are reviewed and
compared according to reported performance, computational demands and signal-to-noise-
ratio (SNR). A short-list of promising algorithms is implemented and tested on the dataset.
The results are compared with kinematic onset detection and onset timings determined
through visual inspection of sEMG signals by experts.

The transfer of scientifically developed sEMG signal analysis techniques into real-life
applications was rarely achieved up to date. To improve man-machine interaction towards
a more synchronous, i.e., physiologically driven behaviour of active exoskeletons, it is
of great importance to investigate the established techniques under realistic conditions.
In this paper we investigate the performance and reliability of different methods for sEMG
onset detection for the use case of an active, occupational shoulder exoskeleton under
close-to-application conditions.

2. Materials and Methods

2.1. Experimental Protocol

The experimental protocol of this study was designed to resemble circumstances close
to a real-life application of occupational exoskeletons. Exemplifying seated assembly work,
the subjects were asked to perform arm lifts with a low weight (1 kg) while seated in front
of a desk. The movements were performed alternating with both arms. The working space
was reproduced by using different movement directions (Figure 1) and heights (Placing
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weight on the table, holding it just above the table, at shoulder height and above head
height). All movements have been conducted freely and without any physical restrictions
or direct feedback. The subjects were asked to lift the weight with their hand, move it to the
target position, stop for at least one second, and return to the starting position, resting there
for one second. On each height level, five repetitions of all direction have been performed
with each side. Between each height level, a short break was included to avoid muscular
fatigue. In total, 55 subjects (29 male, 26 female, 40 “young” (27.2 ± 4.7 years), 15 “old”
(52.2 ± 4.2 years), 38 right-handed, 17 left-handed) were included in the study, deliberately
chosen to achieve a diverse subject population in terms of sex, age, and handedness. The
experimental protocol has been approved by the ethics committee of the Jena University
Hospital, Germany (No. 2019-1350_1 BO).

Figure 1. Movement directions, projected onto table plane. Movements for left arm are shown,
but movement were done with both arms.

Bipolar sEMG was measured for multiple shoulder muscles using disposable adhesive
electrodes (contact diameter 1.6 cm, H93SG, Covidien, Germany). Regarding the elec-
trode placement SENIAM [24] recommendations were followed. Before application of the
electrodes the skin was shaved and prepared with abrasive paste. The signal was precondi-
tioned with an analogue 10–700 Hz band pass filter and digitized at 2048 Samples/s and a
resolution of 6 nV/bit, using the ToM (Tower of Measurement, Demetec, Germany). Later,
the sEMG was conditioned by a digital 20–500 Hz band pass filter and obvious movement
were removed semiautomatically. Simultaneously, movement kinematics were recorded
using a motion tracking system (Qualisys®, Göteborg, Sweden). Both measurements were
synchronized using optical trigger signals.

For the sEMG analysis, the data of the anterior deltoids [M. deltoideus pars anterior] on
both sides was used. Although in a real application of sEMG-based exoskeleton control,
probably sEMG of multiple muscles will be included in the decision making, we here
focused only on the prime mover muscle for the conducted tasks. To investigate the
performance of sEMG onset detection methods, data that reliably contains sEMG activity
at movement onsets is needed. Only the anterior deltoid can be expected to provide such
muscular activity during the investigated movement. We generally assume that given
a proper parameter calibration, any findings achieved for this particular muscle can be
transferred to other skeletal muscles. For the kinematic analysis, we utilized the position of
the subjects’ hand, indicated by a motion tracking marker.

2.2. sEMG Onset Detection Techniques

When muscles are activated, their myoelectric signals were found to show a systematic
structure during the phase of initial contraction [11]. Still, according to Drapala et al. [25],
as well as others [4,22], precise determination of EMG onset was found to be a challenging
task due to the stochastic nature of EMG, smooth gradual transitions from rest to movement,
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background noise and inter-subject variability. Over the years, several different approaches
have been developed to achieve sEMG onset detection.

The task of sEMG onset detection can be split into the steps of signal pre-conditioning,
feature extraction, detection and post-processing (Figure 2). Early works addressed the
task with the straightforward approach of applying a single or double threshold algorithm,
together with a simple time-domain feature, such as mean average value, squared, or recti-
fied and low-pass filtered EMG [26–29]. Further studies investigated more sophisticated
features, such as Teager-Kaiser-Energy-Operator (TKEO) [20,30–33], sets of optimized time-
domain (TD) features [4], sample entropy (SampEn) [23] and wavelet transform (WT)-based
time-frequency-domain features [34,35]. In terms of more advanced detectors likelihood-
based methods [22,36], Bayesian changepoint analysis [37], Gaussian-mixture-models
(GMM) [4,25] and constant false alarm rate (CFAR) adaptive, double thresholding [18,21]
have been applied. These methods are summarized in Table 1 .

Figure 2. sEMG onset detection processing structure.

Table 1. sEMG onset detection methods.

Type Method Reference(s)

Features

TKEO [20,30–33]
optimized TD feature set [4]
SampEn [23]
WT features [34,35]

Detectors

likelihood-based methods [22,36]
Bayesian changepoint analysis [37]
GMM [4,25]
CFAR adaptive tresholding [18,21]

Although processing capacities have increased significantly, computational complexity
remains a constraint for online sEMG analysis in real-life applications, especially when
considering simultaneous analysis of multiple signal channels such as in the application
of an occupational exoskeleton. Therefore, we excluded WT-based features from the
comparisons due to their high computational effort [35], even though their performance is
among the best reported. Further, Bayesian changepoint analyses, 2-step search algorithms
and GMM cannot be used in online applications, because they incorporate the signal after
the EMG onset into their decision-making. Likelihood methods are in principle real-time
applicable but require training, which is not in the scope of this work.

To assess the performance of sEMG onset detection techniques for real-life applications
of occupational exoskeletons, in the following we use a CFAR adaptive, double threshold-
ing algorithm as detector. We compared its performance in combination with different
features, namely TKEO, SampEn, the time domain feature set proposed by Trigili et al. [4]
(Integrated Absolute Value (IAV), Simple Square Integral (SSI), Waveform Length (WL),
Logarithm (LOG)) and variance (VAR) according to Tabie’s and Kirchner’s [20] results.
When Trigili et al. [4] evaluated the time domain feature set, they used a GMM with
multiple inputs, one for each feature. Since the CFAR algorithm has only one input, we
fuse the feature set by taking the average of all four features, each weighted by their mean
value to compensate for different numerical dimensions. Root-mean-square amplitude
was not investigated separately due to its similarity with VAR. The methods applied are
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described in detail in Appendix A. The features have been calculated on 50 ms windows
with 90% Overlap.

2.3. Onset Reference and Evaluation Criteria

When evaluating onset detection algorithm performance, the need for an appropriate
reference arises. The gold standard is visual inspection of the sEMG signals by trained
experts [21,22,25,35,37]. This method is known to provide the most accurate results, al-
though with some subjective influence of the sEMG examiners. On the other hand, as a
manual task, visual inspection requires a huge effort, being unfeasible for larger datasets.
The alternative is to reference the detected sEMG onset towards the movement onset which
is derived by kinematic analysis [4,20]. From the motion tracking data, we were able
to automatically determine the moment, when within the course of one movement the
distance covered excesses a certain percentage of the total distance between movement
start and end point. We used 5% of within-movement distance of the subject’s hand marker
as kinematic onset and as reference point for ground truth for the sEMG analysis. In order
to assess the differences to the gold standard method, we visually determined onsets in the
sEMG of 4 subjects.

In sEMG onset detection studies, methods are evaluated according to sensitivity,
specificity, influence of SNR, and detection latency or timing error [4,18,20–23,25,34,35].
As in the studies cited above, the algorithm sensitivity is defined as the rate of the movement
onsets that are detected by sEMG analysis. We consider a detection as correct, if it is within
500 ms before the kinematic onset reference. In our opinion, specificity is not a feasible
criterion here, because in the present experimental context the definition of negative
detection is not intuitive. Confronted with the same problem, Tabie and Kirchner [20] used
the number of time periods between onsets without detection events as true negatives.
Another approach can arise from the fact that it is among the main design goals of an
occupational exoskeleton to provide trust to the user. This would be contradicted by every
single false positive detection, which in the worst case could initiate a movement not
intended by the user. Therefore, we propose the usage of algorithm precision instead
of specificity, calculated as 100% minus false positive rate, with the latter being the rate
of detected onsets in the sEMG which are not within 500 ms before the kinematic onset
reference. In terms of SNR, no additional noise was added artificially (as i.e., in [22]).
The SNR was calculated as the feature amplitude ratio in dB between signal areas with
and without muscular activation in general and more in detail before movement onset.
Therefore, the visually inspected and marked data was used. Finally, as already stated
by Trigili et al. [4], in control applications the time delay between detected sEMG onset
and movement onset is not a bug, but a feature. Where in clinical applications, the aim
of automated sEMG onset detection is to replace manual, visual inspection and therefore
be as close to the manual detection as possible, this is not relevant for the application
in the control of powered exoskeletons. There, the algorithm is only required to detect
muscular activity early enough before the start of a movement to implement exoskeleton
pre-control. No fixed minimum time difference can be given a priori, but rather has the
exoskeleton control to be fast enough to react in the remaining time. We therefore rate
higher onset delays as better, as long as they are within a reasonable range of up to 500 ms
before movement onset. However, as long as the onset detection exhibits a sufficient time
lag towards the kinematic reference the exact timing of an algorithm is secondary to its
sensitivity and precision.

3. Results

For the example of one movement onset, the sEMG as well as the feature curves
are shown in Figure 3. There, the area visually found to contain muscular activation
is highlighted in grey. The dotted line with the ‘5%’ mark shows the kinematic onset
reference timestamp.
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Figure 3. sEMG at movement onset and feature curves, exemplarily shown for one signal section.
Area marked in grey: Visual detection of muscular activity. Dotted line with ‘5%’ mark: Timestamp
of kinematic onset reference.

The SNR of all features was calculated as their amplitude ratio in dB between signal
areas manually labelled as with muscular activity and without. Additionally, contrast
values in windows 300 ms before and after the onset of muscular activity were taken into
consideration. The results are displayed in Table 2. It is obvious that TKEO shows the
highest SNR values in all categories. The variance feature shows slightly increased values
compared to the mean of the time-domain features proposed by Trigili [4]. In contrast,
SampEn shows very low SNR values, but more consistently, reaching its maximum value
almost directly after onset.

Table 2. sEMG onset detection feature SNR in decibel.

TKEO VAR SampEn TD-Features

Total SNR 14.84 dB 13.64 dB 4.44 dB 13.42 dB
Onset SNR 10.59 dB 10.29 dB 4.15 dB 10.10 dB

The combinations of the CFAR adaptive, double threshold and each feature were
implemented and tested separately. To ensure optimal detector performance for each
feature, the thresholding algorithms’ parameters were optimized for each feature to reach a
maximum mean value of Sensitivity and Precision (MSP) on a data subset.

All movement onsets of all subjects were included into the evaluation (total: approx.
11,000 onsets). The accuracy of each feature-detector combination is displayed in Figure 4.
As comparison, the accuracy of the visual inspection is shown for both experts (MAN1,
MAN2). The TKEO + CFAR method shows the highest accuracy values of all tested
algorithms. Its sensitivity and precision is about 4% lower than both visual detections.

The onset detection latencies for each method are shown in histogram form in Figure 5.
It needs to be remembered that different data sizes amounts are displayed for the time
differences of each method. The visual inspection covered only approx. 900 onsets due
to its limitation on 4 subjects. In contrast, the algorithms have been tested on approx.
11,000 onsets, but since time differences could only be calculated for successful detections,
the amount of onsets taken into account vary between the algorithms by their sensitivity.

Most visually detected onsets showed a time difference of more than 150 ms to the
kinematic reference point. The automatically detected onsets exhibited a larger variability
and less time difference with most detections before 100 ms towards the kinematic reference.
The onset time differences of all methods were statistically tested using a mixed linear
model. Although the onset time differences of the methods show significant differences to
each other, but with only small to medium effect sizes.
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Figure 4. sEMG onset detection performance values. Sensitivity is true positive rate, precision is
100% minus false positive rate and MSP is the mean of sensitivity and precision. ‘Man#1’ and ‘Man#2’
depict the results of the manual, visual inspection by experts. Manual inspection: ca. 900 movement
onsets under investigation; Automatic detection: ca. 11,000 movement onsets under investigation.

Figure 5. Histogram of the sEMG onset detection time differences to the ‘5%’ kinematic reference.
‘MAN#1’ and ‘MAN#2’ depict the results of the manual, visual inspection by experts. Manual
inspection: ca. 900 movement onsets under investigation; Automatic detection: ca. 11000 movement
onsets under investigation.

4. Discussion

Due to the electromechanical processes during muscle activation, there are time delays
between EMG onset, muscle force generation, and movement onset. The delay between
EMG and force generation was named electromechanical delay (EMD) by Cavanagh and
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Komi [38] and is in the order of 20–80 ms [19]. The movement onset (kinematic reference)
might be delayed even further from the EMG onset because of inertia and forces opposing
the movement, up to several hundred milliseconds [4,20,35]. This is represented by the
results in Figure 5, showing an average time delay of about 200 ms to 5% of the distance
covered during the movement. Since the manual inspection can be assumed to be as
accurate as possible, its time difference towards the kinematic reference is close to the
real time difference between the onset of muscular activation and the movement onset.
Therefore, regarded inversely, the histograms of the manual, visual inspection represent the
spread in time delay introduced by the kinematic reference method. Factors contributing to
this variability may be other muscles initiating the movement or muscular co-contractions
overlaying the onset. Compared to similar studies [4,20,21,37], the time differences here
are found to be even slightly higher, possibly due to the use of an additional weight in
the experimental protocol. Concerning the algorithms for sEMG onset detection, the onset
time differences and their deviation are in the expected range. Their statistical indifference
means that all methods under investigation exhibit no relevant performance differences
regarding the onset detection timing error.

The visual inspection method reaches only 95% sensitivity and 97% precision although
commonly perceived to detect all muscular activity present in the sEMG signal. This
finding is probable to be influenced by the same causes as the variability of the onset time
differences and shows the difficulty of non-laboratory sEMG onset detection, influenced
by temporally low muscle activation, combinations of multiple muscles contributing to
a certain movement, and the presence of noise in the signal. This becomes clear when
reviewing the high sensitivity values reported by other studies with simulated data or
signals measured under laboratory conditions [18,22,23]. Therefore, 100% onset detection
performance is not to be expected when regarding a single muscle, even if it is the prime
mover such as the M. deltoideus pars clavicularis for the movements investigated here.

Regarding the automated onset detection methods under investigation, the TKEO + CFAR
combination performed best at sEMG onset detection under close-to-application. Its sen-
sitivity and precision were 91% and 93% respectively, only 4% less than the average of
visual inspection results by sEMG experts. The significance of algorithm sensitivity and
precision becomes especially clear, when regarding the error rates: 91% sensitivity means
9% of movement onsets not being detected, while 83% sensitivity means 17% of movement
onsets not being detected, which is almost the double. In the same perspective, 93% preci-
sion means 7% of the detected onsets not being in relation with an upcoming movement,
resulting in possible unwanted actions of the exoskeleton. This highlights the value of the
higher performance of the TKEO + CFAR technique versus the other methods. However,
with continuous detection regular false alarms are still to be expected. In applications of
occupational exoskeletons, this issue needs to be dealt with by post-processing, considering
multiple muscles or a robust control scheme in order to avoid unintended movements and
to ensure trust by the user in the assistive device.

5. Conclusions

The aim of this study was to investigate the performance of sEMG onset detection
methods under close-to-application conditions of active exoskeletons. Therefore, free and
unconstrained movements representing the workspace during seated manual assembly
tasks have been investigated on a large and heterogeneous group of subjects. This unique
dataset with approx. 11,000 movement onsets allowed testing of known and promising
sEMG onset detection algorithms regarding their performance in a real application case
unlike the common, limited laboratory setting.

For a reduced dataset, the gold standard for onset detection, manual, visual inspec-
tion allowed to evaluate the possible onset detection sensitivity and precision when only
regarding the prime mover muscle, showing that before 95% of movement onsets sEMG
activity can be found and that 97% of sEMG onsets happen shortly before a movement
onset. It thereby also permitted evaluation of kinematic reference as an automated method
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to generate a ground truth for onset detection in larger datasets and possibly even during
online testing.

The computationally simple approach with TKEO + CFAR showed good results for
sEMG onset detection under close-to-application condition (91% sensitivity, 93% precision),
performing best within the set of applied methods. Still, reliable sEMG onset detection in
applications remains a challenging task, with accuracies not reaching 100% even if manual
visual inspection, still serving as the gold standard is applied. Anyhow, time-frequency-
features based algorithms and data of multiple muscles bear the potential to improve the
presented results, but at the cost of necessarily higher computing cost. No matter the
actual technique used in a real application, the results presented here show that the sEMG
contains sufficient information for timely pre-detection of movement onsets and therefore
exoskeleton pre-control even under close-to-application conditions.

Author Contributions: Conceptualization, S.K., H.W. and N.-P.S.; Data curation, S.K.; Formal analysis,
S.K.; Funding acquisition, T.H., H.W. and N.-P.S.; Investigation, S.K.; Methodology, all authors; Project
administration, all authors; Resources, S.K. and T.H.; Software, S.K.; Supervision, H.W., N.-P.S. and
C.A.; Validation, all authors; Visualization, S.K.; Writing—original draft, S.K.; Writing—review and
editing, all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by German Ministry for Education and Research grant numbers
16SV8003 and 16SV8004. (project: “Muskelgesteuertes Exoskelett zur Kraftunterstützung—LEVIAKTOR”—
especially the partial projects “Myoelektrische Aktivierungsmuster der Schulter- und Armmuskulatur” and

“Biomechatronisches Systemkonzept und Gestaltung”).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Universitätsklinikum Jena (protocol code
2019-1350_1 BO, 9.4.2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank Elke Mey for her support with the experiments and data
structuring, Roland Graßme for the synchronization between EMG and kinematic measurements,
and Stefan Lutherdt for coordinating joint research efforts.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CFAR Constant False Alarm Rate Thresholding
EMD electromechanical delay
EMG electromyography
GMM Gaussian-mixture-model
IAV Integrated Absolute Value
LOG Logarithm
MSP Mean value of Sensitivity and Precision
SampEn Sample Entropy
sEMG surface electromyography
SNR signal-to-noise-ratio
SSI Simple Square Integral
TKEO Teager-Kaiser-Energy-Operator
ToM Tower of Measurement
VAR variance
WT wavelet transform
WL waveform length
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Appendix A. Feature and Detector Description

Appendix A.1. Teager-Kaiser-Energy-Operator (TKEO)

Teager-Kaiser-Energy-Operator was first proposed by Teager and later detailed, ex-
plained and published by Kaiser [30]. It approximates the energy of a time-discrete signal
in the time instant k as:

Ek = x2
k − xk−1 · xk+1

Appendix A.2. Variance (VAR)

Variance is a well known parameter in signal processing. For application on time-
discrete EMG signals the following formula was proposed [20,39]:

Vk =
1

N − 1

m

∑
i=−m

x2
k+i −

(
1

N − 1

m

∑
i=−m

xk+i

)2

N = 2m + 1 is the width of the sliding window.

Appendix A.3. Sample Entropy (SampEn)

In information theory, entropy can be described as a measure of the signals variability
and complexity in the sense of its probability to show an unpredictable change. It is
therefore strongly connected to changes in the signals information content. Richman and
Moorman [40] introduced the Sample Entropy as feature for processing of cardiovascular
data and Zhang and Zu [23] transferred it to EMG analysis. It is based on the probability
Pn(r), that within a window of length N, two sequences (xk+p)

p=n
p=0 with length n < N

match. This probability can be estimated by the average number of sequences with a total
difference lower than the threshold r. Sample Entropy is then calculated as:

SampEnk(n, r) = −ln
(

Pn+1(r)
Pn(r)

)

Appendix A.4. Time Domain Features (TD-Features)

The time domain feature set is calculated according to the work by Trigili et al. [4].
They used each of the features as a seperate input to the GMM algorithm. Since the CFAR
algorithm accepts only one input signal without further changes, hence in this work the
mean of the four features SSI, IAV, LOG and WL is taken as a single feature. The features
are calculated according to the formulations by [4,41].

Appendix A.4.1. Simple Square Integral (SSI)

Simple Square Integral calculates the sum of the signal energy within a window of
width N as:

SSIk =
m

∑
i=−m

x2
k+i

Appendix A.4.2. Integrated Absolute Value (IAV)

Integrated Absolute Value is the sum of the absolute values of the signal within a
window of length N:

IAVk =
m

∑
i=−m

|xk+i|
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Appendix A.4.3. Logarithm (LOG)

The logarithm feature is calculated as the mean of the decadic logarithm of the signals
absolute value within a window of length N:

LOGk =
1
N

m

∑
i=−m

log10(|xk+i|)

Appendix A.4.4. Waveform Length (WL)

The waveform length is the sum of the absolute values of the discrete derivative of the
signal within a window of length N:

WLk =
m−1

∑
i=−m

|xk+i+1 − xk+i|

It can also be understood as the cumulative length of the waveform.

Appendix A.5. Constant False Alarm Rate Thresholding (CFAR)

The constant false alarm rate algorithm is essentially an advanced adaptive double
thresholding method. Whilst a single threshold algorithm signifies a change once the
threshold is crossed, a double threshold method does only so if the value exceeds the
threshold in m out of n samples. Being adaptive means that the threshold is not a fixed
value, but is set based on the signals value in a reference window in the past. This threshold
can be further adapted to move between a minimum and maximum value to take special
cases into account. All those adaptions aim towards reducing the algorithms false alarm
rate. If the signals statistical properties are known a priori, the adaptive thresholds gain can
be set in order to achieve a certain constant false alarm rate [18,21]. We here did not set
the adaptive threshold gain towards a defined false alarm rate, since we did not assume a
priori knowledge on the signal properties. The parameters were indeed optimized towards
maximum combined sensitivity and precision. Still, the original structure of the CFAR
algorithm was kept. The algorithm can be described as follows.

The signal is separated backwards into a detection window of length D whose values
are compared to the threshold, a “guard” window of length G whose values are not taken
into account and a reference window of length R from whose values the threshold base is
calculated. The adaptive threshold is here defined using the reference windows median

Tak = Ka · median(xi), i = k − D − G − R + 1, . . . , k − D − G

with Ka being the adaptive thresholds gain. The threshold is limited as described above.
If the signal value xk exceeds the threshold Tak in C out of D times, an onset is detected:

Onset =
( k

∑
i=k−D

(xi > Tak)

)
> C
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Abstract: Accurate classification of electromyographic (EMG) signals is vital in biomedical applica-
tions. This study evaluates different architectures of recurrent neural networks for the classification
of EMG signals associated with five movements of the right upper extremity. A Butterworth filter
was implemented for signal preprocessing, followed by segmentation into 250 ms windows, with an
overlap of 190 ms. The resulting dataset was divided into training, validation, and testing subsets.
The Grey Wolf Optimization algorithm was applied to the gated recurrent unit (GRU), long short-term
memory (LSTM) architectures, and bidirectional recurrent neural networks. In parallel, a performance
comparison with support vector machines (SVMs) was performed. The results obtained in the first
experimental phase revealed that all the RNN networks evaluated reached a 100% accuracy, standing
above the 93% achieved by the SVM. Regarding classification speed, LSTM ranked as the fastest
architecture, recording a time of 0.12 ms, followed by GRU with 0.134 ms. Bidirectional recurrent
neural networks showed a response time of 0.2 ms, while SVM had the longest time at 2.7 ms. In
the second experimental phase, a slight decrease in the accuracy of the RNN models was observed,
standing at 98.46% for LSTM, 96.38% for GRU, and 97.63% for the bidirectional network. The findings
of this study highlight the effectiveness and speed of recurrent neural networks in the EMG signal
classification task.

Keywords: RNN; GRU; LSTM; bidirectional recurrent neural networks; GWO; metaheuristic
algorithms; EMG

1. Introduction

The classification and analysis of electromyographic (EMG) signals have emerged as
essential research fields in biomechanics and neuroscience. By reflecting the electrical activity
produced by the muscles, these signals offer a detailed overview of muscle functionality and
potential associated pathologies [1,2]. However, extracting meaningful information from
these signals for practical applications requires advanced and efficient processing techniques.
Traditionally, EMG analysis has relied on feature extraction to interpret the information, that
could help improve the quality of life of people, in different applications [2,3]. However,
recurrent neural networks (RNNs) have opened doors to new analysis methods [4].

Using the segmented signal directly instead of extracting features to feed into the
network offers a series of advantages that are crucial to the efficiency and quality of the
analysis [4,5]. Firstly, working with the totality of the information in the signal allows the
preservation of details that, although they may be subtle, are essential. Feature extraction
often involves dimensional reduction that could omit important aspects of the signal.
Furthermore, this direct approach minimizes complexity in the preprocessing stage by
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avoiding a meticulous process based on specific domain knowledge [6]. While a set of
selected features might be adequate for one application, it may be insufficient for another.
In that sense, the segmented signal-based model becomes more flexible. Likewise, neural
networks, particularly RNNs, have a remarkable ability to detect complex patterns in data.
Feeding the network with the raw signal allows it to identify and learn patterns that may
not be evident in a manual extraction process [7].

Despite the promising benefits they present, RNNs are not without significant chal-
lenges. One of the main obstacles is the proper selection of hyperparameters, which
significantly influence network performance [8]. The adequate selection of hyperparame-
ters in deep learning models is a critical task, but at the same time, it is highly challenging.
Hyperparameters, unlike parameters, are not learned during training but are set before-
hand. An incorrect choice leads to problems such as overfitting, where the model performs
exceptionally well on the training data but fails when faced with unseen data, or underfit-
ting, where the model fails to capture the underlying complexity of the data [9]. Manually
searching for these values is notoriously laborious and dependent on the knowledge of the
researcher. Although there are automatic techniques, such as grid search or random search,
these are computationally expensive [10]. In this context, the Grey Wolf Optimization
(GWO) algorithm emerges as a promising solution for hyperparameter selection. This is a
metaheuristic algorithm inspired by the social and hunting behavior of gray wolves. The
advantages of using GWO lie in its ability to explore and exploit the hyperparameter search
space simultaneously [11] and its fast convergence compared with alternative optimization
algorithms [12].

Based on the above, this work proposes that through using a combination of an RNN
and GWO to analyze EMG signals, an accurate classification is achieved, and traditional
limitations in the analysis of these signals are overcome. Long short-term memories
(LSTMs), gated recurrent units (GRUs), and bidirectional recurrent neural networks, each
with their unique characteristics, are used to capture the complex and sequential nature of
EMG signals. LSTMs are notable for their ability to learn long-term dependencies, which is
crucial given that EMG signals can contain classification-relevant information over long
periods. GRUs, on the other hand, offer an efficient and less computationally intensive
option, ideal for real-time applications where resources may be limited. Additionally,
bidirectional recurrent networks provide a more complete view of the data by processing
information in both directions, ensuring that the context of the entire sequence is taken
into account for more accurate classification [13–15]. By integrating these advanced RNN
methods with the GWO technique, the ability of the model to identify patterns in the data
is further improved, resulting in superior performance and greater accuracy in classifying
movements based on EMG signals. The contributions of this work are the following:

• Implement a novel methodology using the GWO algorithm to extract features from
EMG signals using recurrent neural networks, thereby improving accuracy.

• This approach compares three RNN structures by establishing a solid baseline. This
provides a rigorous foundation for evaluating the improvements that each structure
can bring to the system performance by integrating a GWO algorithm.

The document is structured as follows. Section 2 reviews previous research addressing
issues similar to those discussed here. Section 3 reviews the theoretical foundation, pro-
viding a vision of the techniques used. Later, in Section 4, the implemented methodology
is detailed. The experiments and their respective results are detailed in Section 5, while
Section 6 focuses on an in-depth analysis of the findings. Finally, the study is concluded in
Section 7.

2. Related Works

Xie et al. [16] developed an advanced neural network model, Bi-ConvGRU, to recog-
nize hand gestures from EMG signals, allowing detailed measurement of muscle activity.
This model was evaluated by considering 18 hand gestures from the Ninapro dataset per-
formed by both amputee and non-amputee individuals. The results highlight the potential
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of this approach for a bio-intuitive and non-invasive control of upper limb prostheses with
a physiologically acceptable latency. In [17], the researchers developed a gesture classifier
using an RNN model with LSTM layers specifically for hand control in prosthetics. A
notable contribution of the authors was enhancing the model’s adaptability for embedded
systems by reducing the number of EMG channels.

Metaheuristic algorithms are already used in the field of machine learning. Ref. [18]
introduced variations in the Artificial Bee Colony algorithm, which they applied in a KNN
classification system to discern hand movements. Likewise, they highlight that this pro-
posal can have applications in physical activities and physiotherapy therapies thanks to its
notable performance. In [19], an LSTM model was used to classify the gestures from the
forearm muscles. The authors compared the proposed neural network against GRU and
demonstrated great performance during online classification. The work of Xiong et al. [20]
compared techniques based on machine learning and four RNN configurations, such as
GRU, LSTM, and the bidirectional alternative of these two. The models were run to classify
eight different gestures from a dataset. The results showed that the bidirectional LSTM con-
figuration obtained the best performance compared to the other RNN configurations and
the machine learning models. Aviles et al. [10] developed an SVM classifier incorporating
genetic algorithms for feature extraction. Two sets of data were used: the first referring
to the right upper extremity and the second composed of movements of the right lower
extremity. Likewise, Particle Swarm Optimization (PSO) was implemented to compare both
algorithms. The SVM-GA approach significantly improves classification, efficiency, and
provides a reduction in the number of parameters compared to the PSO-based approach.

To classify flexion, extension, and ramp walking movements, the authors of [21] em-
ployed an LSTM due to its strong suitability for processing nonlinear time-series data.
Additionally, to enhance accuracy of the model, they integrated a PSO algorithm for fine-
tuning the parameters of LSTM. The PSO-LSTM model significantly improved performance
compared to the randomly initialized traditional LSTM. Li et al. [6] employed a method-
ology based on CNN for classification tasks and RNN for handling timing issues. This
approach excelled in real-time recognition, accurately classifying 20 distinct hand move-
ment patterns. A hybrid approach for classifying EMG signals was implemented by [22],
utilizing a CNN-LSTM model integrated with a kernel-based PCA technique. The findings
demonstrate that the PCA-CNN-LSTM method effectively recognizes lower limb activities
from the signals. The overview of the related works is presented in Table 1. However, there
is a need for continued research and development to create even more effective algorithms
that improve the classical models in this field.

Table 1. Overview of EMG classification methods in related studies.

Reference Classification Method Tuning Algorithm Dataset Accuracy (%) No. of Channels

[16] Bidirectional
Convolutional-GRU - Ninapro DB5 Field 88.70 16

[17] RNN-LSTM Manual
hyperparameter tuning

500 samples from
5 different gestures 87 4

[18] KNN ABC improved Ninapro 97.06 12

[19] LSTM - UC2018 DualMyo and
the Ninapro DB5

95 for DualMyo and
91 for Ninapro DB5 16

[20] LSTM - CapMyo 98.57 8 × 16 electrode array

[10] SVM PSO Healthy muscular
limbs collection 91.00 4

[21] LTSM PSO Lower limb muscle 98.58 4
[6] 1D CNN-RNN - gForce EMG Armband 91 8

[22] CNN-LSTM PCA Codamotion system
acquisition 98.50 16

3. Materials and Methods

This section discusses and analyzes the main concepts of the theoretical foundation
and the materials used to develop this work. The development of the RNN and GWO was
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carried out in Python using TensorFlow. On the other hand, the filtering and segmentation
of the EMG signals was carried out in MATLAB 2018b. The equipment used was a laptop
with a 12th-generation i7 processor with an RTX 3060 GPU.

3.1. Database

The database presented in [10] was used for this study, which is focused on the muscles
specified in Table 2. In the analog filtering phase, a combination of a low-pass filter and a
Butterworth high-pass filter was used, both implemented with a second-order Sallen–Key
topology and with cut-off frequencies of 600 Hz and 10 Hz, respectively. Additionally, a
second-order Bainter notch filter was applied to eliminate 60 Hz interference caused by the
power supply. Digitization of the signals was performed using a USB-6002 data acquisition
device (DAQ).

Table 2. Action of the muscles whose action potentials are used for movement classification.

Muscle Action

Biceps brachii (long head) Flexes the forearm at the elbow joint, supinates the forearm at the
radioulnar joints, and flexes the arm at the shoulder joint.

Triceps brachii (long head) Extends the forearm at the elbow joint and extends the arm at the shoulder
joint.

Superficial flexor of the fingers
Flexes the middle phalanx of each finger at the proximal interphalangeal
joint, the proximal phalanx of each finger at the metacarpophalangeal joint,
and the hand at the wrist joint.

Finger extensor
Extends the distal and middle phalanges of each finger at the
interphalangeal joints, the proximal phalanx of each finger at the
metacarpophalangeal joint, and the hand at the wrist joint.

The study population consisted of 9 participants, aged between 23 and 27 years: five men
and four women. All participants were free of pathologies related to the locomotor system and
nervous system and did not have amputation conditions or obesity problems. Five different
types of arm and hand movements were recorded, including flexion and extension of the arm
at the elbow joint, flexion and extension of the fingers, and a resting state. For this purpose,
four bipolar channels placed directly over the muscles of interest were used, which are shown
in Table 2. Additionally, a reference electrode was placed on the wrist. Each movement was
performed for 6 s, followed by a 2 s relaxation period, and was repeated 20 times using a
sampling rate of 1.5 kHz.

The Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM)
recommendations were followed. The SENIAM project is a European initiative focused on
superficial electromyography. It seeks to standardize aspects such as electrode placement and
signal processing for EMG. SENIAM recommends locating sensors in 30 individual muscles to
obtain quality and stable EMG signals. The recommendations include details on the location,
orientation, and distance between electrodes, as well as advice for fixation on the skin and the
location of the reference electrode [23].

For the placement of the electrodes, a separation of 20 mm between them was ensured,
and attention was paid to the specific characteristics of each muscle. Initially, the reference
electrode was placed on the dorsal area of the wrist of the right hand. Subsequently, the
reading electrodes were placed on the selected muscles, connecting them to the conditioning
and acquisition equipment to begin data capture. During acquisition, participants were
asked to perform the indicated movements, ensuring rest periods between each repetition
and after each type of movement to avoid muscle fatigue.

3.2. Recurrent Neural Network

RNNs are a category of neural networks explicitly designed to work with data sequences,
especially useful in natural language processing tasks and time-series analysis [24]. This study
explored three types of RNNs: LSTM, GRU, and bidirectional recurrent neural networks.
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LSTM is a variant of an RNN designed to address the problem of gradient disappearance,
a challenge that occurs in traditional RNNs when processing long data sequences. This is
achieved through a cell structure containing entry, exit, and forget gates, allowing the network
to have long- and short-term memory. LSTMs learn and remember over long sequences
and are, therefore, less sensitive to gaps in data sequences [13]. A GRU is another variant of
an RNN that, like LSTM, seeks to solve the problem of gradient disappearance. However,
unlike LSTM, GRU simplifies the cell structure by merging the input and forget gates into
a single update gate. This reduces the computational complexity and, in specific contexts,
offers performance comparable to or even superior to LSTM with a shorter training time [14].
Bidirectional neural networks take advantage of sequence information in both directions (past
and future) to improve accuracy in classification and prediction tasks. This is achieved by
running two traditional RNNs: one that moves forward through the sequence and one that
moves backward. Both outputs combine to provide a more informed perspective on the
sequence, which can result in better accuracy on specific tasks [15]. Algorithm 1 shows the
programming logic to implement RNNs with GWO.

Algorithm 1 Optimization of bidirectional neural network, LSTM, and GRU with GWO.

1: Inputs: Training data, validation data
2: Initial hyperparameters:
3: Learning rate: lr ∈ [0.00001, 0.1]
4: Neurons in layer 1: n1 ∈ [10, 150]
5: Neurons in layer 2: n2 ∈ [10, 150]
6: Batch size: batch_size ∈ [128, 512]
7: Training epochs: epochs ∈ [10, 100]
8: procedure CREATEMODEL(lr, n1, n2)
9: Initialize RNN model with defined structure

10: Add RRN layer units of n1 neurons
11: Add RRN layer units of n2 neurons
12: Add dense layer for classification
13: Compile model with learning rate lr
14: return model
15: end procedure
16: procedure FITNESSFUNCTION(hyperparameters)
17: lr, n1, n2, batch_size, epochs ← hyperparameters
18: model ← CREATEMODEL(lr, n1, n2)
19: Train model with epochs and batch_size
20: Evaluate model on validation data
21: return validation error
22: end procedure
23: Optimize with GWO:
24: Define search space with defined ranges
25: optimal_hyperparameters ← GWO(FITNESSFUNCTION)
26: optimal_lr, optimal_n1, optimal_n2, optimal_batch_size, optimal_epochs ←

optimal_hyperparameters
27: Train and validate with selected hyperparameters:
28: optimal_model ← CREATEMODEL(optimal_lr, optimal_n1, optimal_n2)
29: Train optimal_model with optimal_epochs and optimal_batch_size

3.3. Hyperparameters

A hyperparameter is a parameter not intrinsically derived from the data but set before
training the model. Hyperparameters guide how the neural network learns and how the
model optimizes. Ensuring the appropriate selection of these hyperparameters is essential
to achieving exceptional model performance [25].

When working with neural networks such as GRU, LSTM, and bidirectional neural
networks, various hyperparameters are essential and drastically influence the behavior of
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the model. These hyperparameters cover aspects such as the number of units or neurons in
the layers, the activation function used, the learning rate, and the total number of training
epochs. For example, the number of units in the layers largely determines the ability of the
network to model complex interactions in the data. Increasing this number can allow the
network to understand more sophisticated patterns but also runs the risk of overfitting [26].

The activation function introduces nonlinearity into the network, thus its ability to
model nonlinear relationships. Although the sigmoid function is recognized, in networks
such as LSTM or GRU, functions such as the scaled exponential linear unit (SELU) are fre-
quently used [27]. Regarding the learning rate, this regulates the magnitude of adjustment
of the weights in each training cycle. Too high a rate can cause oscillations in the network,
preventing convergence, while an excessively low rate can cause slow convergence, trap-
ping the model in local minima. On the other hand, the number of epochs establishes how
often the entire dataset is used during training, which is crucial to avoid overfitting or
underlearning [8].

Table 3 shows the hyperparameters adjusted using GWO to determine the most
suitable values in the GRU, LSTM, and bidirectional recurrent neural networks.

Table 3. Hyperparameters considered for adjustment using GWO.

Hyperparameter

Number of neurons per layer
Batch size

Training epoch
Learning rate

3.4. Grey Wolf Optimizer

GWO is a metaheuristic optimization algorithm proposed by [11], inspired by the
social and hunting behavior of gray wolves. Its design emulates the hierarchical structure
and hunting tactics these creatures deploy in nature. Hierarchy in gray wolves: Gray
wolves have a very marked hierarchical social structure in the wild. Within this hierarchy,
four main types of wolves stand out:

• Alpha (α): They are the leaders of the pack, usually a couple (male and female). They
make all the critical decisions, from the time of hunting to the time of migrating
or resting.

• Beta (β): They are second in command. If both alphas die, the beta would assume
leadership. They help the alphas make decisions and act as an “advisor”.

• Delta (δ): They act as guardians of the pack. They protect the wolves from external
threats and maintain order within the group.

The GWO uses this hierarchy to update the wolves’ (solutions) positions in the search
space. The rankings are updated based on the position of the top three wolves (α, β, δ). The
position of the rest of the wolves is updated based on these three best positions, emulating
hunting and tracking behavior. The hunting process is modeled mathematically using
equations that represent the pursuit, encirclement, and attack of prey. These equations
are based on the distance between the wolf and its prey and are adjusted according to the
hierarchy. One of the main advantages of GWO is its balance between exploration (looking
for new areas in the solution space) and exploitation (refining a solution in a specific area).
This is due to hierarchical and cooperative behavior of the wolves when hunting, which
allows the algorithm to evade local optima and converge towards a suitable global solution.

Hunting behavior is imitated using hunting coefficients. For each wolf (except alpha),
the following coefficients are used [11]:

• A1, A2, A3: These coefficients define the magnitude of the attraction towards the
leading wolves. They control the ability of the wolves to explore and exploit.

• C1, C2, C3: These coefficients are random vectors obtained for each iteration and wolf.
They help in adjusting the position of each wolf concerning the leading wolves.
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The hunting coefficients are typically calculated as follows:

Aij = 2a × r1 − a (1)

Cij = 2 × r2 (2)

where r1 and r2 are random numbers in [0,1], and a decreases linearly from 2 to 0 over
the iterations. For each wolf in the group (except the leading wolves), the distances to
the three leading wolves are calculated as follows:

Dα = |C1j × Xα − Xi| (3)

Dβ = |C2j × Xβ − Xi| (4)

Dδ = |C3j × Xδ − Xi| (5)

where Xα, Xβ, and Xδ are the positions of the alpha, beta, and delta wolves, respec-
tively, and Xi is the position of the current wolf. These distances are then used to
adjust the position of each wolf based on the positions of the leading wolves. The goal
is to bring the wolves closer to the best solutions in the search space, guiding the pack
toward possible optimal solutions.
Algorithm 2 shows the programming logic to implement GWO.

Algorithm 2 Grey Wolf Optimizer.

1: Inputs: Objective function f (x), Population size N, Maximum iterations T
2: Initialization:
3: for i = 1 to N do
4: Initialize wolf position Xi randomly
5: Calculate fitness f (Xi)
6: end for
7: for t = 1 to T do
8: Update coefficients:
9: a = 2 − t × 2

T
10: Update alpha, beta, and delta wolves:
11: Identify the top three wolves Xα, Xβ, Xδ based on fitness
12: for i = 1 to N do
13: for j = 1 to dimension do
14: Calculate hunting coefficients A1, C1, A2, C2, A3, C3
15: Calculate distances Dα, Dβ, Dδ

16: Update position using Xα, Xβ, Xδ

17: end for
18: Apply boundary conditions if necessary
19: Update the fitness of Xi
20: end for
21: end for
22: Output: Best solution Xα

3.5. Windowing

The windowing technique is widely used in signal processing and time series to divide
a continuous dataset into more manageable segments called windows. This technique is
advantageous when analyzing data that undergo temporal variations, such as electromyo-
graphic or electrocardiographic signals. A common and notable variant of windowing
is the use of overlapping windows. Unlike segmentation into discrete, non-overlapping
windows, overlapping windows allow an overlap between consecutive windows by a
given number of points. Overlapping windows offer several advantages: an improvement
in temporal resolution, a reduction in edge error, and an increase in data density. The
improvement in temporal resolution is because the overlap between windows allows us
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to detect events or features in the data that could go unnoticed or not be clearly defined
in a segmentation without overlap. Reducing edge error is an essential benefit since, in
some applications, the start and end of a window can introduce artifacts or errors. These
errors can be minimized by overlapping windows since data at the edges of a window are
also analyzed in the context of the adjacent window. Finally, the increase in data density
refers to the fact that segmentation with overlapping windows generates a more significant
number of segments for the same dataset compared to segmentation without overlap,
which can benefit machine learning techniques by providing more examples to train and
validate models [28,29].

When implementing overlapping windows, it is crucial to consider the degree of
overlap, generally defined as a percentage of the window size. It should be noted that a
more significant overlap increases the correlation between consecutive windows, which
can be beneficial for detecting subtle transitions in the data. However, it can also introduce
redundancy [30].

4. Methodology

This section outlines the methodological steps undertaken to implement this work.

4.1. Signal Processing

The first step in processing consisted of filtering the signals to attenuate noise. Since
the original data sequence of the EMG signal was used, the classification of the signals
may have been susceptible to interference and artifacts. Therefore, it was essential to
perform filtering before proceeding with window segmentation. For this purpose, a second
filtering stage was used in addition to the analog filtering of the database. In this case, it
corresponded to a second-order digital Butterworth bandpass filter with cut-off frequencies
between 10 and 500 Hz, which were the frequencies of interest, using the “Butter” and
“filtfilt” functions of the MATLAB 2018b software [31].

After filtering, the signals were segmented into 250 ms windows, overlapping by
190 ms [28,29]. It is important to note that the EMG signal contains 2 s of rest before
the start of the movement. Therefore, these were discarded to focus exclusively on the
information generated by the movement of the arm. After removing these 2 s, the remaining
signal was divided into 63 windows. The choice of using overlapping windows is due to
their ability to continuously collect information during the operation of the classification
algorithm, which is essential for its real-time application. Additionally, using this approach
increases the cadence of classification decisions since each analysis window requires less
data to complete, in this case, 250 ms.

After extracting the windows, the information was organized to be introduced into
the neural networks in a three-dimensional matrix of dimensions i, j, and k. Here, i
represents the total number of windows for each acquisition in the database, calculated
as 9 people × 20 trials × 5 movements × 63 windows, resulting in i = 56, 700. The
dimension j is related to the number of sensors used in each acquisition, which is four.
Meanwhile, k represents the total number of data points found in each window, with a total
of 375 points per window. This value reflects the data collected in a time interval of 250 ms,
with a sampling rate of 1.5 kHz.

The experimentation was developed in two stages. In the first, the applicability of
the method to EMG signals was validated, involving most volunteers in the training and
validation phases. In contrast, the second stage was designed to evaluate the robustness of
the methodology, using a higher percentage of individuals in the testing phase.

In the first stage, the generated matrix was organized so that the data of the first eight
people were allocated to the training and validation phases, reserving the information of
the ninth individual exclusively for testing. Of the set of 8 people, 80% of their data were
used for training and the remaining 20% for validation. It is vital to highlight that these
subsets were mixed randomly to prevent any possibility of overfitting in the network.
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A second experimental round was carried out to check the efficiency and viability of
the proposed method. In this second round, a ratio of 5 to 4 of the people was used. This
means that five individuals were used for the training and validation round, while the
remaining four were used to testing the models. On this occasion, the 80–20 division for
training and validation was also respected.

It is relevant to note that the validation accuracy is used for hyperparameter tuning.
This is evident in Algorithm 1, specifically in lines 20 and 21. On the other hand, the testing
accuracy is used to confirm the model results. The testing set is made up exclusively of
subjects not included in the training and validation sets. It is also important to mention that
the models were trained from scratch in both stages. The accuracy calculation is presented
in Equation (6). This equation defines accuracy as the ratio of correct predictions to the
total number of predictions [10].

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP represents true positives, the cases in which the model correctly predicts the
positive class. TN refers to true negatives, cases where the model correctly identifies
the negative class. FP indicates false positives, which occur when the model incorrectly
predicts a positive outcome for a case that is negative. Finally, FN are false negatives, in
which the model fails to recognize the positive class, erroneously classifying it as harmful.

Sensitivity, also known as true positive rate, measures the proportion of correctly
predicted positive instances to all actual positive instances. It focuses on the ability of the
model to capture all positive instances and avoid false negatives. Equation (7) shows the
equation that defines the sensitivity.

Sensitivity =
TP

TP + FN
(7)

Specificity, or true negative rate, measures the proportion of correctly predicted nega-
tive instances to all true negative instances. It indicates the ability of the model to identify
negative examples correctly and is crucial for its discriminative power. Equation (8) shows
the equation that defines the specificity.

Speci f icity =
TN

TN + FP
(8)

4.2. Recurrent Neural Networks

Within the framework of this work, three variants of recurrent neural network ar-
chitectures were designed and implemented, namely, LSTM, GRU, and a bidirectional
neural network. These architectures were implemented using Python, relying on the Ten-
sorFlow library. Two recurrent layers are included in each of these architectures, and the
SELU activation function is used. The Adam optimizer was selected to adjust the weights,
while, to evaluate the performance of the model, the accuracy metric was adopted. The
cross-entropy loss function was used during the training phase to calculate the error.

As the output of the model, a dense layer composed of five neurons was added, one
for each movement, using the softmax activation function. Furthermore, to stabilize the
activations and facilitate training, a normalization layer, specifically LayerNormalization,
was included before the recurrent layers.

The early_stopping callback was integrated to optimize training time, which stops
training if no improvement in accuracy is perceived in the validation dataset for five con-
secutive iterations. The number of iterations executed during training served as feedback
for the GWO algorithm, allowing the number of epochs needed to achieve the best results
to be adjusted.

Bidirectional networks can be built using GRU or LSTM structures as a base. In our
particular case, LSTM layers were used for the bidirectional configuration. Additionally, the
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computational efficiency of the different architectures was assessed, identifying advantages
and disadvantages in terms of training time, memory use, and precision.

4.3. Grey Wolf Optimizer

GWO algorithm was implemented in Python, using the numpy and pandas libraries.
A population of 20 wolves was established for this optimization, and the algorithm iterated
over ten cycles. Table 4 shows the ranges of the hyperparameters to optimize.

Table 4. Hyperparametervalues optimized using GWO.

Parameter Considered Range

Number of neurons per layer 10 to 150
Batch size 128 to 512
Training epochs 10 to 100
Learning rate 0.00001 to 0.1

At the end of the ten iterations of the GWO, various data of interest were recorded
for the best solutions found. These included the best position (representing the suggested
hyperparameters), the associated cost (indicating the validation classification error in the
neural network), the structure of the obtained neural model, and the corresponding training
and prediction times. This process allowed us to fine-tune the configuration of the neural
networks, searching for the best combinations of hyperparameters that would minimize
the classification error while optimizing the performance and efficiency of the model.

5. Results

This section details the results obtained for the two experimental stages described in
Section 4.

5.1. First Stage

Table 5 shows the hyperparameters achieved for each of the recurrent networks
optimized using GWO.

Table 5. Hyperparameter values selected using GWO for LSTM, GRU, and bidirectional neural network.

Hyperparameter LSTM GRU Bidirectional

Number of neurons in first layer 28 25 14
Number of neurons in second layer 74 18 13
Batch size 188 329 199
Training epochs 10 21 16
Learning rate 0.00346 0.00554 0.0117

A notable robustness is observed in the LSTM model, with 102 neurons distributed
between two layers. It has a total of 76,861 trainable parameters. On the other hand,
bidirectional networks have only 27 neurons in total but have 48,183 trainable parameters.
On the other hand, the GRU is presented with only 43 neurons and 33,425 trainable pa-
rameters. The lighter nature of GRU may be the reason why it takes more epochs to reach
convergence. Despite this difference in the density of neurons between GRU and bidirec-
tional networks, there is no considerable disparity in complexity. This observation shows
that a more significant number of neurons does not necessarily result in an intrinsically
more complex network. Concerning learning rates, a high rate such as the one adopted
by the bidirectional model (0.0117) suggests a faster adaptation of the weights, although
with possible oscillations that may be experienced during the process. Meanwhile, more
contained rates, such as those adopted by the LSTM (0.00346) and GRU (0.00554), suggest a
more cautious approach toward convergence.

The batch size, which is another crucial hyperparameter, shows variations between
architectures. In GRU, a considerable batch of 329 is used, probably to speed up training
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through simultaneous data processing. However, this benefit may be risky, as larger batch
sizes may compromise convergence accuracy. Despite these risks, on all architectures,
including LSTM with a batch size of 188 and bidirectional with 199, a flawless accuracy of
100% was achieved during testing. Figure 1 shows the final block diagram for each of the
three trained models.

Table 6 shows the temporal analysis of the different architectures of the recurrent neural
networks studied. A difference in time is observed between the different stages evaluated.

(a) (b) (c)
Figure 1. Final block diagram for the three trained and adjusted models, (a) LSTM network, (b) GRU,
and (c) bidirectional, for first stage.

Table 6. Training, validation, and prediction times for LSTM, GRU, and bidirectional neural network.

Model Training Time (s) Validation Time (s) Prediction Time (ms)

LSTM 31.47 0.81 0.12
GRU 51.28 0.85 0.134

Bidirectional 81.60 1.23 0.2

The LSTM network proved to be the most efficient in terms of training time, requiring
only 31.47 s. This result is particularly interesting given its high neuronal density and
relatively large number of trainable parameters. The moderate learning rate (0.00346) and
batch size (188) could contribute to this rapid convergence and efficient training. Regarding
validation time, the LSTM was also slightly faster than the GRU, needing only 0.81 s. LSTM
was remarkably effective for prediction, with a time of only 0.12 ms.

On the other hand, the GRU, despite being less dense and having fewer parameters
than the LSTM, required a longer training time of 51.28 s. Given its lighter architecture, this
longer duration is related to the need for more epochs to converge. The validation time of
the GRU was slightly longer than that of the LSTM, registering 0.85 s. Despite this marginal
difference, it is relevant to mention that the GRU’s prediction time, while still relatively
fast, was slower than the LSTM, taking 0.134 ms.

Finally, the bidirectional architecture, which uses an underlying LSTM structure to
process sequences in both directions, showed the longest training time of the three, at 81.60 s.
This increase in time is associated with the bidirectional nature of the model, which processes
forward and backward information, intrinsically increasing the computational load. Despite
its compact configuration of neurons, its validation time was the longest, requiring 1.23 s. In
terms of prediction, it also showed the longest time, at 0.2 ms.

Figure 2 presents the error evolution in different recurrent networks through the GWO
optimization method. The GRU network, shown in Figure 2b, starts with the highest error,
approximately 17.5%. However, its rapid convergence is notable, reaching an error of 0% in
the third iteration. On the contrary, the bidirectional network, which can be seen in Figure 2c,
starts with the lowest error, 1.6%, in its first iteration, thanks to an appropriate combination of
hyperparameters obtained by the algorithm. Despite this, it requires six iterations to minimize
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the error to 0%, showing a more gradual reduction than the other architectures, a direct
consequence of its low starting error. In the case of the LSTM, presented in Figure 2a, it
starts with an error of 6% and shows a rapid decrease until the third iteration, after which its
decrease becomes more gradual, reaching 0% in the eighth iteration.

(a) (b)

(c)

Figure 2. Reduction in the error classification due to the selection of hyperparameters by GWO.
Where (a) represents the error in the LSTM, (b) in the GRU, and (c) in the bidirectional network.

Figure 3 illustrates the training and validation accuracy behavior of the three recurrent
neural network models: LSTM, GRU, and bidirectional, each optimized with the GWO
optimization algorithm. Consistently across all three models, an increase in classification
across iterations is observed, indicative of an absence of overfitting. The LSTM model
shows a rapid increase in accuracy that soon stabilizes, maintaining a slight advantage
in training accuracy over validation, suggesting effective generalization without falling
into memorization. On the other hand, although the GRU model follows a similar trend
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in increasing precision, it presents a distinctive peak in the validation curve that could
be attributed to temporal overfitting or variations in the test data. However, this model
also stabilizes its precision, demonstrating its ability to adapt and generalize with the
advancement of time. The bidirectional network maintains the general behavior observed
in LSTM and GRU, with the training and validation accuracy curves advancing in close
formation throughout the process.

(a) (b)

(c)

Figure 3. Evolution of training and validation accuracy with hyperparameters defined by GWO in
the first stage. Where (a) represents the accuracy evolution in the LSTM, (b) in the GRU, and (c) in
the bidirectional network.

Figure 4 presents the evolution of the average error in the wolf population throughout
the iterations, illustrating how the global solutions improve as they advance. A distinctive
feature of metaheuristic algorithms is their ability to offer multiple solutions at the end of
the iterative process. Each solution, corresponding to an individual in the population, can
be adapted to the desired objective but with different properties. At the end of iteration
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10, several RNN configurations reported an error of less than 1%, each with different
sets of hyperparameters. For this study, those networks with faster response times in the
evaluation stage of each topology were chosen. However, it is possible to select networks
according to other criteria, such as the minimum number of neurons or the shortest training
time, depending on the specifics of the problem addressed.

Figure 4a, corresponding to LSTM, reveals a start with the highest average error,
approximately 65%. Furthermore, it shows a convergence to the lowest error in iteration 9,
characterized by a gradual decrease. This behavior suggests a constant and balanced opti-
mization of the prediction for the LSTM population. In contrast, Figure 4b, corresponding
to GRU, exhibits a more irregular evolution, with an initial error close to 60%, reaching the
minimum average error at iteration 8. This slightly oscillating behavior in GRU suggests
that the GWO algorithm faces challenges in finding solutions that significantly reduce the
error. Finally, Figure 4c shows that bidirectional neural networks start with a lower average
error, around 41%. These networks reach faster convergence, achieving the minimum error
in iteration 5. Their smooth and rapid trajectory suggests that GWO has a better facility to
identify favorable solutions in this topology.

(a)

(b)

 

(c)

Figure 4. Evolution of mean validation error for LSTM, GRU, and bidirectional recurrent neural
networks. Where (a) represents the mean validation error in the LSTM, (b) in the GRU, and (c) in the
bidirectional network.

This study used SVM with a Gaussian kernel as a reference model. Since SVM does
not allow direct processing of raw signals, performing a proper characterization of these
signals was imperative. The characteristics proposed in ref. [10] were used for this. The
features used are shown in Table 7.
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Table 7. Features selected by the sensor for classification using SVM.

Sensor Feature

1 Wavelength
2 Log detector

3 and 4 Shannon entropy
2 and 4 Myopulse percentage rate

3 Modified mean absolute value type 1
3 Zero crossings

It is relevant to highlight that the dataset and features used in this study are the same as
those used in [10]. These features were carefully selected for this database in the previously
mentioned work. By implementing the above-mentioned features, the SVM model achieved
an efficiency of 93%. Table 8 presents the fundamental comparisons between the models
based on RNN and SVM.

Table 8. Training, prediction times, and testing accuracy for LSTM, GRU, bidirectional neural network,
and SVM.

Model Training Time (s) Prediction Time (ms) Accuracy

LSTM 31.47 0.81 100%
GRU 51.28 0.85 100%

Bidirectional 81.60 1.23 100%
SVM 14 2.7 93%

Table 9 provides a detailed analysis of the performance of an SVM classifier in the
testing stage for the five moves. Regarding sensitivity, class 1 shows the best performance
with 85.2%, closely followed by class 2 with 81.9%. Class 3 also performs well, with 80.2%.
However, the sensitivity decreases noticeably for classes 4 and 5, with 63.9% and 72.1%,
respectively, indicating that the SVM classifier has difficulty correctly identifying these
classes compared to the first three. Regarding specificity, which evaluates the classifier’s
ability to correctly identify negatives, a generally high performance is observed in all classes.
Class 1 achieves a specificity of 95.6%, and classes 2 and 3 also exhibit high specificity, 93.2%
and 95.9%, respectively. Although classes 4 and 5 present lower specificity, 83.2% and
82.9%, these values are still relatively high. It is important to contrast these results with the
performance achieved by the LSTM, GRU, and bidirectional models which, by achieving
100% accuracy, also achieve 100% sensitivity and specificity. The lower performance of the
SVM, particularly in sensitivity for classes 4 and 5, could indicate limitations in its ability
to handle certain characteristics of these data or require more specific tuning of the model.

Table 9. Classifier performance for the testing step for SVM.

Class 1 (%) Class 2 (%) Class 3 (%) Class 4 (%) Class 5 (%)

Sensitivity 85.2 81.9 80.2 63.9 72.1
Specificity 95.6 93.2 95.9 83.2 82.9

Table 8 shows an interesting comparison concerning the training and response times
of the models. Noteworthy is the fact that SVM has the shortest training time. However,
this efficiency is offset by a longer response time in the classification phase. This behavior
is attributed to extracting features from the data before entering them into the classifier.
This additional step imposes a delay that affects its performance in terms of response time.
In contrast, RNN networks have the advantage of working directly with the raw data,
eliminating the need for a feature extraction step and offering faster response.

Another relevant aspect is classification efficiency. Even though all models are trained
using the same database and identical preprocessing, SVM has a lower classification rate.
This discrepancy is due to the added complexity of selecting appropriate features. While
the effectiveness of RNNs focuses on the quality and complexity of the input data, SVM has
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the particularity of depending not only on the selected features but also on the interaction
and synergy between them. This analysis highlights the fundamental differences between
feature-based approaches and those based on raw data, highlighting the strengths and
limitations inherent to each methodology in the context of EMG signal classification.

5.2. Second Stage

Table 10 shows the hyperparameters achieved for each of the recurrent networks
optimized using GWO in the second stage.

Table 10. Hyperparameter values for LSTM, GRU, and bidirectional neural network for the sec-
ond stage.

Hyperparameter LSTM GRU Bidirectional

Number of neurons in first layer 31 22 15
Number of neurons in second layer 13 101 15
Batch size 206 339 206
Training epochs 14 19 15
Learning rate 0.00502 0.00731 0.0177

For the LSTM model, an increase in the number of neurons in the first layer is observed
from 28 to 31, suggesting a need for greater capacity to adapt to the variability in the data
in the second stage, where a more significant number of individuals was included in the
testing set. However, there was a significant reduction in the number of neurons in the
second layer, going from 74 to 13, which could indicate an attempt to simplify the model
to prevent overfitting. The batch size increased from 188 to 206, while the training epochs
increased from 10 to 14, indicating that the model required more iterations on the data to
reach convergence. Additionally, there was a slight increase in the learning rate.

In this second stage, a significant change is observed in the configuration of the GRU
model. The number of neurons in the first layer was slightly reduced to 22, while it was
increased to 101 in the second layer. This redistribution in model capacity suggests a
change in modeling strategy, possibly due to differences in variability. By having a more
significant number of individuals in the testing set in the second stage, the model may
have needed to strengthen the internal layers to better generalize over the unseen data,
thus avoiding overfitting the peculiarities of the training set. The batch size experienced
a slight increase to 339, and the training epochs decreased to 19. These changes in the
training hyperparameters suggest a search for balance between the stability and the speed
of convergence of the model. A larger batch size may contribute to a more stable gradient
estimation during training. At the same time, the reduction in the number of epochs
suggests that the model was able to achieve an excellent fit to the data more efficiently.
Finally, the learning rate increased from 0.00554 to 0.00731, indicating a more aggressive
adjustment to the model weights during training. This increase can be interpreted as an
attempt to speed up the training process.

In the second stage, the number of neurons in both layers experienced a slight increase,
reaching 15 for both for the bidirectional model. This change suggests an adjustment of
the model in response to the increased variability in the data introduced by the change in
the distribution of the training, validation, and testing sets. It is important to note that a
relatively simple structure is maintained despite this increase in the capacity of the model.
The batch size was kept constant at 199, indicating that the data processed in each training
iteration was adequate from the first stage. However, the training epochs decreased slightly
to 15, suggesting that the model was able to fit the data more efficiently in the second
stage despite potential additional complexities. One of the most notable changes was the
learning rate, which increased from 0.0117 to 0.0177. This increase in the speed at which
the model adjusts its weights is an effort to speed up the training process and achieve faster
convergence. Figure 5 shows the final block diagram for each of the three trained models.
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(a) (b) (c)
Figure 5. Final block diagram for the three trained and adjusted models, (a) LSTM network, (b) GRU,
and (c) bidirectional, for second stage.

Table 11 shows the temporal analysis of the different architectures of recurrent neural
networks studied in stage two.

Table 11. Training, validation, and prediction times for LSTM, GRU, and bidirectional neural network
for the second stage.

Model Training Time (s) Validation Time (s) Prediction Time (ms)

LSTM 52.76 1 0.21
GRU 57.90 1.2 0.24

Bidirectional 115.16 2.6 0.34

In evaluating the training, validation, and prediction times of the different recurrent
neural network architectures, distinctive patterns and significant changes are observed
between the two stages of the study. The LSTM model proved the most time efficient, with
31.47 s for training, 0.81 s for validation, and 0.12 ms for predictions. However, in the second
stage, these times increased, recording 52.76 s, 1 s, and 0.21 ms, respectively. This increase
can be attributed to increased training epochs, which implies a higher computational cost.

On the other hand, despite being generally slower than the LSTM, the GRU model
maintained reasonable times and experienced a less pronounced increase between the
two stages. In the first stage, the GRU recorded 51.28 s, 0.85 s, and 0.134 ms for training,
validation, and prediction, respectively, and in the second stage, these times increased to
57.90 s, 1.2 s, and 0.24 ms. This behavior may be related to the adjustments to the number
of neurons and the learning rate observed in the hyperparameters.

The bidirectional neural network, for its part, showed the highest times in both stages,
underlining its computationally more intensive nature due to information processing in two
directions. In the first stage, the times were 81.60 s for training, 1.23 s for validation, and 0.2 ms
for predictions, while in the second stage, these increased dramatically to 115.16 s, 2.6 s, and
0.34 ms, respectively. This increase in times can be justified by the increase in the complexity
of the model, reflected in the number of neurons and the learning rate.

Figure 6 presents the evolution of the best solution per iteration of the GWO opti-
mization algorithm applied to the data from the second stage. In this instance, particular
behaviors can be observed in each of the neural network architectures evaluated. In the case
of the LSTM network, Figure 6a, it starts with an error close to 14%, which is higher than
that recorded in the first stage. However, this network shows a remarkable ability to quickly
adjust its parameters, resulting in an accelerated decrease in error. This phenomenon can be
attributed to the reduction in the number of individuals used in the training and validation
phases, decreasing the variability in these datasets and facilitating the network learning
process. On the GRU network side, shown in Figure 6b, a similar initial behavior is ob-
served in both stages, with a comparable starting error. However, during the second stage,
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the decrease in error manifests itself more gradually, reaching a minimum in the fourth
iteration for both phases of the experiment. Finally, in Figure 6c, the bidirectional network
presents a less abrupt error decay during the second stage, reaching a minimum error in
iteration 9. This contrasts with the first phase, where the minimum error is achieved in
iteration 6.

(a) (b)

(c)

Figure 6. Reduction in the error due to the selection of hyperparameters by GWO in the second stage.
Where (a) represents the error in the LSTM, (b) in the GRU, and (c) in the bidirectional network.

Figure 7 illustrates an encouraging behavior of the models during the training and
validation phases, highlighting the absence of overfitting, since a concurrent increase in
precision is observed for both phases. However, it is particularly interesting to note the
peculiar behavior of the bidirectional network between iterations 8 and 11, where a brief
decrease in percentage accuracy is experienced, as shown in Figure 7c. This small valley
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in accuracy could be attributed to a slightly high learning rate, which could have caused
oscillations in model convergence. However, the crucial thing to highlight is the ability of
the bidirectional network to recover, eventually achieving a classification close to 99%. This
demonstrates the notable resilience and robustness of the model, highlighting its ability to
overcome temporary setbacks in training and improve its accuracy.

(a) (b)

(c)

Figure 7. Evolution of training and validation accuracy with hyperparameters defined by GWO.
Where (a) represents the evolution of the accuracy in the LSTM network, (b) in the GRU network,
and (c) in the bidirectional network.

Table 12 summarizes the precision achieved by each model in the testing phase for
each experimental stage. During the first stage, the LSTM, GRU, and bidirectional models
achieved an impressive 100% accuracy, highlighting their ability to capture and learn
from the complexity of arm movement patterns based on EMG signals. However, in the
transition to the second stage, a slight decrease in the accuracy of all models was observed.
The LSTM model, initially achieving classification perfection, experienced a slight drop,
recording 98.46% accuracy. This decrease is attributed to the variability introduced by the
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new distribution of individuals in the training and testing phases. For its part, despite
having maintained an accuracy of 100% in the first stage, the GRU model showed a more
pronounced decrease in the second, reaching 96.38% accuracy. This reduction is due to
its simpler structure compared to the LSTM, making it more susceptible to variations in
the data. Despite its ability to process information in both directions and capture more
complex contexts, the bidirectional network was not immune to variability between stages
and experienced a decrease in accuracy, registering 97.63% in the second stage. Although
this decrease is notable, the bidirectional network managed to maintain relatively high
performance, demonstrating its robustness and ability to adapt.

Table 12. Accuracy of LSTM, GRU, and bidirectional neural network for testing. The accuracy for the
first stage was 100% for all models.

Model Second Stage Accuracy

LSTM 98.46%
GRU 96.38%

Bidirectional 97.63%

The results presented in Table 13 reveal the performance of the three implemented
models regarding sensitivity and specificity across five different classes. In general, all
models exhibit high sensitivity and specificity in all classes, with most values exceed-
ing 95%. This demonstrates a strong ability of the models to identify instances of each
class (sensitivity) correctly and to properly exclude instances that do not belong to that
class (specificity). Furthermore, there is notable consistency in performance across differ-
ent classes for each model, suggesting good generalization of the models across various
classification conditions.

Analyzing each model individually, LSTM achieves the highest sensitivity and speci-
ficity rates in almost all classes for values greater than 97%. On the other hand, although
achieving a sensitivity and specificity of 100% in classes 1 and 3, respectively, the GRU
model shows slightly lower performance in other classes compared to the LSTM, being
more notable in classes 4 and 5, where the sensitivity drops below 95%. The bidirectional
model shows behaviors similar to LSTM and GRU. Regarding the analysis by class, classes
1 to 4 are those that the three models most accurately identify. However, class 5 is the most
challenging regarding sensitivity, especially for the GRU model. This could suggest greater
complexity or similarity to other classes that make their precise identification difficult.

Table 13. Sensitivity (sens) and specificity (spec) of LSTM, GRU, and bidirectional models for the
different movements.

Model Class 1 Class 2 Class 3 Class 4 Class 5

Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) Sens (%) Spec (%)

LSTM 99.6 99.9 98.5 99.7 99.9 99.9 98.0 99.5 97.5 99.2
GRU 100.0 99.8 98.0 98.3 99.8 100.0 94.6 99.4 91.4 98.3

Bidirectional 98.4 99.7 95.4 99.8 99.0 99.7 98.1 99.0 96.0 98.5

6. Discussion

This study conducted a meticulous comparative analysis between various recurrent
neural network architectures, including LSTM, GRU, and bidirectional, evaluating crucial
aspects such as accuracy, training times, and testing and prediction capabilities. Using
the GWO optimization method to tune the hyperparameters, exceptional accuracy was
achieved during the evaluation stage, reaching 100% on all RNN models during the first
experimental phase. These results highlight the effectiveness of RNNs in processing EMG
data with minimal preprocessing. However, when advancing to the second experimental
phase, a decrease in precision was observed, obtaining 98.46% for LSTM, 96.38% for GRU,
and 97.63% for bidirectional. Despite this level of reduction, the RNN models continued
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to demonstrate outstanding performance, underscoring their robustness and reliability in
the classification task. Likewise, a nonlinear relationship is observed between the number
of neurons and the computational complexity of the networks. Although intuitively this
can be interpreted as, the greater the number of neurons, the greater the complexity, this
study revealed that this is not always the case. Despite having the smallest number of
neurons, bidirectional recurrent neural networks proved to be as complex as LSTM and
more complex than GRU in terms of trainable parameters.

In this study, training, validation, and prediction times varied significantly between re-
current neural network architectures. The LSTM model stands out for its temporal efficiency,
indicating more agile processing. On the other hand, the GRU and bidirectional models
show longer times, which suggests a greater demand on processing resources, possibly due
to more elaborate structures and adjustments in their hyperparameters. These differences
reflect how each architecture handles tasks, providing insight into their operation and
efficiency in different scenarios.

It is worth highlighting, however, some limitations of the present study. Although an
extensive set of 56,700 data windows was available, these come from only nine individuals,
raising questions about the generalization capacity of the models. This aspect highlights
the need to increase the dataset by including information from a more diverse group
of participants to strengthen the validity of the inferences made. Regarding the sensor
configuration, only four sensors were used to differentiate five different movements. Based
on previous work [10], this opens a field for future research, exploring how RNNs could
behave under an even greater variety of movements with a reduced set of sensors. The
discrimination capacity of RNNs in these circumstances constitutes a promising and highly
relevant line of research.

Finally, expanding the database and considering the multiple solutions GWO can offer
is essential. Although they converge towards a common goal, these solutions have unique
characteristics, which could allow diversification in robustness, speed, and complexity,
among others. Regarding SVM, a widely adopted technique in classification, it is essential
to highlight its limitations. Despite its ease of use and adaptability, SVM requires a prior
feature extraction stage, which can significantly lengthen the total classification time and
affect its accuracy compared to RNNs. This work has not only shed light on the potential
of recurrent neural networks in EMG data classification but has also pointed out important
directions for future research, especially regarding the optimization and adaptability of the
models according to the specific requirements of each application.

7. Conclusions

In this study, an in-depth analysis has been carried out on the effectiveness of recur-
rent neural networks, focusing on LSTM, GRU, and bidirectional architectures, for the
EMG signal classification task. The applied methodology, complemented by optimizing
hyperparameters using the GWO algorithm, has allowed us to achieve outstanding results,
reaching 100% precision in the evaluation stage during the first experimental phase. RNNs,
compared to traditional SVM models, show greater versatility in handling input data.
This advantage is because recurrent neural networks can directly process data sequences
after preprocessing, eliminating the need for specific feature extraction. This comparison
highlights the advantage of using RNNs for EMG signal analysis, underscoring their ability
to capture and learn from temporal sequences in the data, a limitation in models like SVM.

However, when moving to the second experimental phase, a slight decrease in the
accuracy of the models was noticed: LSTM obtained 98.46%, GRU 96.38%, and bidirec-
tional 97.63%. Although these results indicate a slight drop in performance, they are still
remarkably high and demonstrate the robustness of recurrent neural networks in the task
in question. This variation in results can be attributed to differences in training and valida-
tion settings between the two experimental phases, as well as the intrinsic nature of the
data. It highlights the importance of the careful selection and tuning of hyperparameters
specifically tailored to the characteristics of each dataset and stage of the experiment.
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Despite the challenges and decreased accuracy observed in the second phase, RNN-
based models have proven robust and practical tools for arm movement classification from
EMG signals, maintaining outstanding performance throughout the experiment.
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Abstract: The understanding of the changes induced in the knee’s kinematics by a Posterior Cruciate
Ligament (PCL) injury is still rather incomplete. This computational study aimed to analyze how the
internal loads are redistributed among the remaining ligaments when the PCL is lesioned at different
degrees and to understand if there is a possibility to compensate for a PCL lesion by changing the
hamstring’s contraction in the second half of the swing phase. A musculoskeletal model of the knee
joint was used for simulating a progressive PCL injury by gradually reducing the ligament stiffness.
Then, in the model with a PCL residual stiffness at 15%, further dynamic simulations of walking were
performed by progressively reducing the hamstring’s force. In each condition, the ligaments tension,
contact force and knee kinematics were analyzed. In the simulated PCL-injured knee, the Medial
Collateral Ligament (MCL) became the main passive stabilizer of the tibial posterior translation, with
synergistic recruitment of the Lateral Collateral Ligament. This resulted in an enhancement of the
tibial–femoral contact force with respect to the intact knee. The reduction in the hamstring’s force
limited the tibial posterior sliding and, consequently, the tension of the ligaments compensating for
PCL injury decreased, as did the tibiofemoral contact force. This study does not pretend to represent
any specific population, since our musculoskeletal model represents a single subject. However, the
implemented model could allow the non-invasive estimation of load redistribution in cases of PCL
injury. Understanding the changes in the knee joint biomechanics could help clinicians to restore
patients’ joint stability and prevent joint degeneration.

Keywords: musculoskeletal modeling; PCL injury; knee joint biomechanics; knee ligaments

1. Introduction

The knee joint is a remarkably complex system from both the anatomical and functional
points of view, with very specific biomechanical requirements. In the sagittal plane, it allows
a wide range of flexion/extension in the presence of major loads resulting from body weight
and inertia forces. In the coronal plane, it provides a high degree of stability throughout
the full range of motion, and concerning the transverse plane it allows internal/external
rotation when the knee is flexed. All these functional properties result from the specific
morphology of the joint contact surfaces and the presence of ligaments.

In recent decades, plenty of literature was published regarding the role of cruciate
ligaments and the effects of ligament deficiency in anterior–posterior stability, both in the
native and the prosthetic knee. Most of the scientific attention was devoted to the Anterior
Cruciate Ligament (ACL), probably due to the particular epidemiology of knee joint injuries,
showing that the ACL is affected significantly more frequently than other fibrocartilaginous
and ligamentous structures [1]. In contrast, the Posterior Cruciate Ligament (PCL) has been
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less investigated, despite being a pivotal structure within proper knee biomechanics. This
ligament is an intra-articular extra-synovial cord of dense connective tissue, consisting of
two distinct bundles, i.e., anterolateral and posteromedial bundles [2]. It plays a crucial
role in resisting posterior tibial translation relative to the femur during knee motion, and
recent literature enlightens the importance of this structure in maintaining the rotational
stability of the knee, especially between 90◦ and 120◦ of flexion [3–6].

The role of the PCL is crucial also in the choice between cruciate-retaining and
posterior-stabilized prosthetic implants [7]. If the cruciate-retaining implants could better
preserve the physiological kinematics of the knee [8,9], their application becomes challeng-
ing in cases of PCL laxity due to the problematic balancing of the ligaments [10]. However,
in the case of cruciate-retaining implants, recent findings showed that the mobile bearing
design could ensure the stability of the knee joint even in case of PCL deficiency [11].

Although these findings are fairly well accepted in the scientific community, the
understanding of the changes induced in the knee kinematics by a PCL injury is still rather
incomplete. The large cross-sectional area of this ligament would lead us infer that it
must bear significant loads, but in practice the functional impairments induced by an
isolated injury of this ligament are essentially limited. In fact, many surgeons prefer to treat
isolated injuries of the PCL conservatively. The PCL retention could influence not only the
knee kinematics and stability, but also the shear forces on the tibial contact surface and
the proprioception [12–14]. The surgical treatment of ligament reconstruction is therefore
reserved for rare cases of significant and persistent functional limitations. The relative
paucity of symptoms suggests that there are intrinsic forms of compensation that the joint
can exploit when a ligament injury occurs. One of these could be the greater healing
capacity of the PCL compared to the ACL as reported in the literature, probably due to a
better synovial coverage and perfusion [15]. Patients with isolated PCL tears may have few
functional problems in the short-medium term, but there is growing literature enlightening
the detrimental effects of PCL deficiency in terms of acute or degenerative injury of the
remaining joint structures and development of early arthrosis [16–18].

In general, the analysis of weightbearing activities (i.e., walking and climbing stairs)
is limited in the literature. Specifically, for the task of walking, the effects of PCL lesion
remain unclear and are worthy of further investigation [19]. Understanding the changes
in the knee joint biomechanics could help clinicians to restore patients’ joint stability
and prevent joint degeneration. The inherent complexity of the knee joint and the close
interdependence between the various elements makes the study of individual anatomical
structures and their pathophysiology particularly difficult, and this applies specifically
to PCL. In addition, this ligament injury is relatively infrequent, and the isolated rupture
is rare. In an observational study of 85 PCL injuries, Fanelli G.C. et al. [20] reported that
isolated PCL ruptures were no more than 3.5% (3 of 85), whereas 95.5% (82 of 85) of PCL
injuries occurred in combination with other ligament lesions. This indicates the difficulty
of analyzing the effect of this particular lesion on the knee biomechanics while also having
regard to the dynamic interaction with other articular structures.

Computational musculoskeletal models effectively overcome this difficulty by en-
abling the researcher to observe the effect of a single-element modification on the overall
joint motion and biomechanics. This is one of the main reasons why research on mus-
culoskeletal models has grown exponentially (the number of scientific publications has
increased by nearly 1500% in the last 20 years). Musculoskeletal models have proven to be
fundamental tools for improving our understanding of the musculoskeletal system and
related pathological conditions [21,22]. For example, in a previous study [23], the effects
on knee joint kinematics and internal load distribution produced by removal of the ACL
were simulated with reference to the walking cycle. In that study it was also possible to
investigate the effects of different muscle contractions, the compensatory role of quadriceps
and hamstrings in particular.

Kang et al. [24] simulated a PCL deficiency in a subject-specific knee model through a
force-dependent kinematics method under gait and squat loading conditions. The cited
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authors found out that the PCL deficiency affects the contact forces of the tibial–femoral
and patellar–femoral joints less during the gait cycle with respect to the squat loading
condition. However, this study did not focus on the effects of PCL injury on the knee
kinematics under dynamic conditions, but only on passive flexion and posterior drawer
tests. Moreover, to our best knowledge, no other studies investigated on the impact of
different degrees of PCL lesion on knee kinematics during walking.

In the present study, several dynamic simulations of the gait cycle were performed
aimed at answering to two main questions: (i) how are the internal loads redistributed
among the remaining joint ligaments when the PCL is lesioned at different degrees? (ii) is
there a possibility to compensate for a PCL lesion by changing the hamstring’s contraction
in a particular phase of the stride cycle?

2. Materials and Methods

2.1. Modeling Approach

The dynamic simulations of the gait cycle were performed by means of a previously
developed three-dimensional musculoskeletal model implemented on the SimWise-4D
platform (Design Simulation Technologies, DST, Canton, MI, USA) [25]. This software
performs both the forward and the inverse dynamics of complex articulated systems and
solves the mechanical interaction between body surfaces. Figure 1 represents a schematic
overview of the numerical procedure. The integration algorithm used to solve the dynamic
equilibrium equations was based on the Kutta–Merson process. The following parameters
were adopted: integration step 0.02 s, configuration tolerance 0.01 mm and 0.1◦.

 

Kinematics of  walking

Ground reaction forces and 
moments

The 
musculoskeletal 

model of  the knee

Knee joint kinematics

Tibial-femoral contact forces

Ligament lengths and 
tensions

The driving model

Estimated muscle forces

Figure 1. Schematic overview of the numerical research procedure.

The implemented model included a “driving model”, composed of trunk, pelvis,
thighs, shanks and feet, and a detailed “knee joint model” attached to it. The anatomical seg-
ments in the driving model, represented by rigid bodies, were linked together by rotational
actuators (motors), by means of which it was possible to impose the desired kinematics,
in our case the walking cycle (Figure 2). The pelvis was linked to the trunk by three rota-
tional actuators controlling 3 degrees of freedom (d.o.f): anteversion/retroversion, frontal
plane tilt and horizontal rotation. Three other motors were used to control the relative
movement between the thigh and the pelvis (hip flexion/extension, adduction/abduction,
internal/external rotation). Similar actuators controlled the 2 d.o.f between the shank and
the thigh (knee flexion/extension and internal/external rotation) and the 2 d.o.f between
the foot and the shank (ankle plantar/dorsiflexion and pronation/supination).

All these motors received as input the kinematic data from our repository, referring
to the average of 14 strides recorded on 5 healthy male subjects aged between 24 and
36 years, walking barefoot at their self-selected speed. These data (trajectory of a reference
point on the trunk and joint angles corresponding to the d.o.f of the model) were obtained
by applying the SAFLo (Servizio di Analisi della Funzionalità Locomotoria) marker set
protocol [26] and were normalized in time so as to obtain an ideal walking cycle lasting 1 s.
To ensure that the results were obtained at steady state condition, two subsequent walking
cycles were simulated, and only the second one was analyzed. Anthropometric tables [27]

127



Bioengineering 2023, 10, 1178

provided masses of body segments corresponding to a healthy subject with a height of
1.72 m and 70 kg of body mass.

Figure 2. The walking model simulating the gait cycle (from right to left). Gait cycles events (heel
strikes and toe off) are referred to the left lower limb, including the detailed knee joint model.

The knee joint model was composed of the digital models of the femur and tibia,
obtained by digital segmentation of MRI images (Amira 5.3.3, Visage Imaging, Inc., San
Diego, CA, USA) of a 42 year old Caucasian male who was 1.72 m tall and had 70 kg of
body mass. The two femoral condyles were in contact with the tibial plateaus and could
slide along the contact surfaces. In order to obtain a proper sliding between the contact
surfaces, the portions of the distal femur and of the proximal tibia were separated from the
rest of the bones and their contact surfaces were smoothed by using a commercial software
(Meshmixer 3.5.47, Autodesk, San Rafael, CA, USA). Then, for the purpose of reducing the
simulation time, the two portions were imported again in the software SimWise4D and
connected to the respective bones by rigid constraints; thereby, the algorithms analyzing
the surface interaction had to work only on these small portions of the bones. Specifically,
a friction coefficient equal to 0.01 between the contact surfaces of the tibia and the femur
was set [28] and their interaction was modeled as an inelastic collision. The two bones
were connected by springs representing the knee joint ligaments. The knee joint model
was introduced in the driving model by rigidly connecting the femur to the thigh. A
specially designed device called a “Grood&Suntay mechanism (G&S)” (the name comes
from the convention adopted for the definition of the knee joint d.o.f. [29]) was used
to impose the flexion/extension movement of the knee while keeping the other 5 d.o.f.
unconstrained. Thus, the movement of the tibia relative to the femur was determined by
the geometrical interaction between the surfaces of femoral condyles and tibial plateau,
the tension produced by the ligaments, and all the forces acting on this structure (muscle
forces, ground reaction forces, weight and inertial forces of shank and foot). The relative
movement between the tibia and femur was measured by the G&S mechanism in terms of
adduction/abduction, internal/external rotation and proximal/distal, medial/lateral and
anterior/posterior tibial displacements. As for the muscle forces, an estimate was obtained
by implementing an optimization procedure for the minimization of the maximum force
(Min/Max criterion [30]) in relation to the muscle’s physiological cross-sectional area. The
muscle lever arms were obtained by analyzing the moment produced by each muscle
when it was activated with a predefined muscle force. Each muscle acting on the knee
joint was modeled as a force actuator producing the respective estimated concentric force.
The quadriceps group was represented by four actuators corresponding to the Vastus
Lateralis, Vastus Medialis, Vastus Intermedius and Rectus Femoris. The hamstrings group
was considered to be composed of the Semitendinosus, Semimembranosus, Biceps Femoris
long head and Biceps Femoris short head. The Gastrocnemius Lateralis and Gastrocnemius
Medialis were also implemented in the model, acting as knee flexors.

The ground reaction forces (anterior–posterior, medial–lateral and vertical compo-
nents) measured during walking were applied to the knee model. Through an inverse
dynamics analysis, the inertia forces and moments associated with the movement of the
shank and foot were computed.

A detailed ligament structure was implemented in the knee model. Each ligamentous
fascicle was represented by a straight spring with non-linear behavior (viscoelastic element).
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Hence, for each ligament, several springs were included to represent the different fascicles
that may be tensioned in different working conditions (Figure 3). The Anterior (ACL)
and Posterior (PCL) Cruciate Ligaments were subdivided into two springs each. Three
springs representing the anterior, intermediate and posterior fascicles were used both to
model the Lateral Collateral Ligament (LCL) and the superficial Medial Collateral Ligament
(MCL). The deep fascicles of the Medial Collateral Ligament (MCL deep) were modeled
by two additional springs. The fibrous capsule was also included in the knee model
and was represented by its antero-lateral (Cap-Ant-L), posterior-lateral (Cap-Post-L) and
posterior-medial (Cap-Post-M) bundles. The springs representing the ligaments were
attached to specific points identified with the support of many publications [31–35] and a
joint physiology text [36]. Each spring was characterized by a quadratic rise of the force
up to a predefined strain limit (assumed equal to 0.03) and a linear behavior for larger
deformations, in accordance to [31,37,38]. As regards the stiffness parameter associated to
the non-linear springs, the values reported by [33] were adopted. Specifically, for those
ligaments appearing as single units in the cited study but split in more bundles in our
model, the stiffness of each elastic element was obtained by dividing the reported value by
the number of bundles constituting the ligament.

 

Figure 3. Springs with non-linear characteristics represented the ligaments connecting femur and tibia.
On the left, Lateral Collateral Ligament and anterior and posterior lateral bundles of fibrous capsule.
In the middle, the extensor mechanism, superficial and deep bundles of Medial Collateral Ligament
and medial portion of fibrous capsule. On the right, Anterior and Posterior Cruciate Ligaments.

As for the extensor mechanism, to reduce the computational time the rotula was
reproduced by a cylinder sliding on the femoral trochlea and having the lower extremity
attached to the tibial tuberosity by a rope representing the patellar tendon (Figure 3). Its
upper extremity was linked by a series of smaller cylinders reproducing the quadriceps
tendon, which in turn were attached to the muscle actuators. The cylinders were connected
to each other by a spherical joint. The cylinder representing the rotula was put in collision
mode with the femur.

Interested readers can find an exhaustive description of the implemented model in
our previous publication [25].

2.2. Model Validation

The performance of our intact knee model was assessed in detail in our previous
publication [25] by looking at three major determinants of the knee function during the
whole gait cycle. First of all, we considered the knee kinematics, since in our model only the
flexion/extension movement was imposed and the remaining 5 d.o.f were completely free.
A forward displacement of the tibia with respect to the femur was observed during each of
the two knee flexion phases, the first during the stance phase and the second associated
with the swing phase. This was consistent with the consolidated knowledge about the
association of sliding and rotation in the tibial–femoral movement. Secondly, in the men-
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tioned study, we observed the presence of the well-known “screw home mechanism”: the
tibia experienced an external rotation when approaching the full extension and, conversely,
showed an internal rotation during the initial flexion of the knee.

Thirdly, we analyzed the tibial–femoral contact forces. In our model, the values ob-
tained were larger than the force measured by instrumented prostheses [39–41], but the
main features [42] were well reproduced: they exhibited two peaks during the stance phase
(second peak higher than the first one) and a third peak at the end of the swing phase,
ensuring the joint stability. To make a quantitative assessment, we made a comparison
between our data and those provided as a reference for the Grand Challenge competi-
tion [41]: after downscaling our results, the RMS difference with respect to the reference
data was 318 N. This result shows that the predicted time-course reproduces the force
measured in vivo well. As for the amplitude, it must be considered that our input data for
the model are probably different from those of the subjects analyzed in the reference study
(operated by knee arthroplasty) in terms of anthropometric measures and walking speed.
In our musculoskeletal model, the first peak reaches 3.5 BW and the second peak is equal to
4.8 BW. These values are similar to the results obtained by Hu et al. [43]: 4 BW and 4.7 BW
for the first and the second peaks, respectively. Moreover, the value we predicted for the
first peak lies within the range of many studies published in the literature: Winby et al. [44]
reported 3.2–4.9 BW, Meireles et al. [45] obtained 3.3–4.8 BW, and in Morrison et al. [46]
2.1–4.0 BW was found.

Thus, in terms of amplitude, the tibial–femoral contact force estimated in our intact
knee model was higher than the force measured in vivo using sensorized prostheses, but in
agreement with several studies that estimate the amplitude through computational models.

Further comparisons were made with data in the literature considering the typical
clinical functional tests aimed at assessing the ligament’s condition. The knee model was
subjected to the typical anterior–posterior drawer, varus–valgus and internal–external rota-
tion tests performed under passive conditions and different flexion angles. The predicted
stiffness and laxity of the knee joint were compared to the experimental results obtained by
Markolf et al. [47] on cadaver specimens, and proved to be in relatively good agreement.

Finally, as for the muscle forces, our approach looked for the minimization of the
maximum force referred to the muscular physiological cross-sectional area and our results
were consistent with the well-known electromyographic patterns [48], as was the case for
most of the published works [49–53].

2.3. Simulation Conditions

In this study, two sets of simulations were performed to respond to two main questions
(Figure 4). The first objective was to quantify the effects of different degrees of PCL injury
on the knee kinematics, ligaments load redistribution and tibial–femoral contact force.
Starting from the ‘IntactKnee’ model, a progressive PCL injury was simulated by reducing
gradually, by 10% steps, the stiffness of the two non-linear springs representing the PCL.
Thus, the conditions of PCL residual stiffness from 90% to 20% were obtained. Then, in this
study, the most critical condition was obtained assuming a residual stiffness of 15% of the
original one. In each of the nine simulated conditions, a dynamic simulation of the gait
cycle was run and the ligament’s tension, contact force and knee kinematics in each PCL
injury condition were analyzed. In particular, we quantified the changes occurring in the
phase of maximum PCL recruitment, the second half of the swing phase, from 76% to 100%
of the stride cycle.

The second objective of this study was to understand if the hamstrings muscle group
could compensate for PCL injury. Hence, starting from the most critical condition (PCL
residual stiffness being 15% of the original, named “PCL-15%”), the force produced by each
hamstring’s muscle (Semitendinosus, Semimembranosus, Biceps Femoris long head and
Biceps Femoris short head) was progressively reduced by 10% steps. Four new dynamic
simulations of walking were performed, corresponding to a hamstring residual force of
90%, 80%, 70% and 60% of the original, having a PCL residual stiffness at 15%. Knee
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kinematics, ligaments load and tibial–femoral contact force were analyzed in all these
conditions as before. Specifically, the changes occurring in the time window from 76% to
100% of the gait cycle were quantified in relation to the reference condition of 15% PCL
stiffness and hamstring force at 100%.

 

Figure 4. Workflow of the study.

3. Results

In a physiological knee joint (100% of PCL stiffness), the PCL expresses its maximum
tension in the second half of the swing phase, between 76% and 100% of the stride cycle.
To quantify the changes with respect to the intact knee, in each condition and for each
variable, we calculated the average of the difference between the curve obtained in the
altered condition and the curve computed for the intact knee in the time window 76% to
100% of the stride cycle.

Considering the posterior displacement of the tibia in relation to the femur, we realized
that the most critical conditions were reached when the PCL residual stiffness was less than
50% of the physiological state. In fact, as reported in Figure 5, the posterior displacement
did not increase significantly due to a decrease in stiffness up to that value.
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Figure 5. Mean increment of posterior tibial displacement calculated in the second half of the swing
phase resulting from each simulated condition. In red, the polynomial regression function. Points to
the right of the dashed line correspond to the most critical conditions.
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In the following section, only the main findings obtained from the conditions of PCL
residual stiffness lower than 50% will be outlined.

3.1. Residual PCL Stiffness from 50% to 15%

For the sake of clarity, in this section, the effects of PCL stiffness reduction on the knee
kinematics, ligaments tension and tibial–femoral contact force will be outlined separately.

3.1.1. Effects on Anterior–Posterior Displacement of the Tibia

The progressive reduction in PCL stiffness consistently decreased the ligament tension
all along the stride cycle, as shown in Figure 6a. The anterior–posterior displacement of the
tibia during the gait cycle in the different PCL conditions is reported in Figure 6b. It appears
that this variable was almost unaffected for the whole stance phase and the first half of the
swing phase, while it exhibited a progressive increase in the backwards displacement in
the second half of the swing phase, precisely when the PCL would express its maximum
tension in a physiological knee (Figure 6a, black curve).

 
(a) 

 
(b) 

 
Figure 6. Tension of PCL in the simulated conditions (a). Anterior–posterior displacement of the
tibia (b) during the gait cycle in the six simulated conditions. Values are positive for the anterior
displacement. The gray vertical line refers to the toe–off event, marking the end of the stance phase
and the beginning of the swing phase.

Specifically, in the time window considered (76% to 100% of the gait cycle), the average
increase in the posterior displacement of the tibia was 1.3 mm and 1.5 mm with respect to
the intact knee when the PCL residual stiffness was 50% and 40% of the healthy condition,
respectively, but became 3.6 mm for a reduction in the PCL stiffness to 30% of the original
one, 8 mm for a PCL stiffness of 20% and 10 mm for a PCL stiffness reduced to 15% of the
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original one (see also Figure 5). The peak of posterior displacement occurred at around 90%
of the stride cycle, with a tendency towards lag for lower PCL stiffness.

3.1.2. Effects on the Tension of the Remaining Ligaments

Regarding the loads on the remaining ligaments, the collateral ligament structures
were the most affected by the PCL injury (Figure 7). In particular, the gradual reduction
in PCL stiffness resulted in a progressive increase in MCL (deep and superficial) and LCL
tension specifically in the late swing phase. The average increase for a reduction in PCL
stiffness to 50% and 40% compared to the intact knee condition was in both conditions
about 30 N for LCL (Figure 7c). The peak of force was about 220 N and occurred at the
same instant in which the injured PCL exhibited the peak of force and the tibia gained its
maximum posterior displacement (90% point of the gait cycle, Figure 6).

 
(a) (b) 

 
(c) 

 

Figure 7. Tension of deep Medial Collateral Ligament (a), superficial Medial Collateral Ligament (b),
Lateral Collateral Ligament (c) along the gait cycle in the six simulated conditions. The gray ver-
tical line refers to the toe-off event, marking the end of the stance phase and the beginning of the
swing phase.

Concerning the MCL (deep and superficial), no appreciable changes were observed
until the PCL stiffness decreased to 30%. In this condition (see Figure 7a,c), a cooperation
between the lateral and medial passive stabilizers was observed: the deep bundles of MCL
(MCL-deep) and LCL increased their tension by approximately 50 N and 63 N on average
compared to physiological conditions.

A further reduction in PCL stiffness (PCL-20%, PCL-15%) additionally demanded the
recruitment of the deep and superficial layers of MCL, resulting in an average increase of
250 N and 50 N, respectively. In the same conditions, the LCL tension increased on average
by 113 N.
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Thanks to the combined recruitment of the passive stabilizers, at the end of the gait
cycle the tibia recovered a physiological position (Figure 6b), except for the most critical
condition (PCL-15%) in which the tibia remained less than 1 mm more posterior than the
intact knee.

3.1.3. Effects on Tibial–Femoral Contact Force

Figure 8 provides an insight into the effects of the different degrees of PCL injury on
the contact force between tibia and femur in the second half of the swing phase.

 

 
Figure 8. Tibial–femoral contact force in the second half of the swing phase, resulting from the six
simulated conditions.

Except for some small oscillations, the contact force was unaffected by the tested
conditions until the 87% point of the gait cycle. Then, in the late-swing phase, the contact
force increased as far as the PCL residual stiffness was reduced. With respect to the intact
knee, the average force increment was 70 N for PCL-50%, 90 N for PCL-40% and 190 N for
PCL-30% conditions. The average increment became dramatic for PCL-20% and PCL-15%,
achieving approximately 500 N.

3.2. Effects of the Hamstrings on the PCL-Injured Knee (PCL-15%)

Further dynamic simulations of the gait cycle were performed keeping the PCL resid-
ual stiffness at 15% of the healthy state and gradually reducing the hamstring’s force from
100% down to 60% of the physiological condition. In this section, the main findings about
the effects of hamstring force on a PCL-injured knee (PCL-15%) are reported.

3.2.1. Effects on Anterior–Posterior Displacement of the Tibia

The force applied by the hamstrings to the tibia was progressively reduced, as shown
in Figure 9a. Figure 9b depicts the resulting anterior–posterior displacements of the
tibia. Quite obviously, the main differences were noticed in the late-swing phase, when
hamstrings are activated: the gradual reduction of hamstring force resulted in a progressive
decrease in the posterior tibial displacement.

Specifically, as summarized in Figure 9c, with respect to the condition in which
hamstrings expressed the physiological muscular activity (“PCL15%-Ham100%”, reference
condition), a force reduction to 90% lead to a decrease in the posterior displacement of
the tibia by 2.5 mm on average. A further 10% drop in the hamstring’s force (“PCL15%-
Ham80%”) produced a reduction of 3.5 mm on average with respect to the reference
condition. When the hamstring force was reduced to 70%, the tibial posterior sliding
decreased by an average of 7.3 mm; when it was reduced to 60%, the posterior displacement
was reduced by 7.6 mm on average. As a consequence, the peak of backward displacement
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of the tibia decreased from 28 mm to 8 mm (see Figure 9b), very close to the displacement
occurring in the intact knee.
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Figure 9. Progressive reduction of hamstring force (a). Anterior–posterior displacement of the
tibia (b) during the gait cycle in the five simulated conditions. Values are positive for the anterior
displacement. Dashed curve represents the intact knee condition. The gray vertical line refers to the
toe–off event, marking the end of the stance phase and the beginning of the swing phase. Posterior
tibial displacement average reduction with respect to “PCL15%-Ham100%” condition calculated in
the second half of the swing phase (c), resulting from each simulated condition. In red, the polynomial
regression function.
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3.2.2. Effects on the Tension of the Remaining Ligaments

Figure 10 depicts the effects of hamstring force on the tension produced by the col-
lateral ligaments in an injured knee (residual stiffness of PCL equal to 15%). The main
differences in ligament tension were observed during the hamstring’s activation phase (late-
swing phase of the gait cycle). The progressive reduction of the muscular force resulted in
a gradual relieving of Medial and Lateral Collateral Ligaments, as shown in the figure.

 
(a) (b) 

 
(c) 

 

Figure 10. Tension of deep Medial Collateral Ligament (a), superficial Medial Collateral Ligament (b),
Lateral Collateral Ligament (c) along the gait cycle in the five simulated conditions. Dashed curve
represents the intact knee condition. The gray vertical line refers to the toe-off event, marking the end
of the stance phase and the beginning of the swing phase.

The MCL superficial gradually relaxed similarly to the other collateral ligaments,
but compared to them, its variations were not remarkable. With respect to the reference
condition (“PCL15%-Ham100%”), when decreasing the hamstring’s force to 90%, the deep
bundles of MCL reduced their tension by 100 N on average, while in the LCL no appreciable
effect was recorded. Assuming a force generated by the hamstrings equal to 80% of the
physiological condition, MCL-deep experienced a further relieving with a reduction in
tension of 120 N on average.

A significant tension drop (reduction of 248 N on average with respect to “PCL15%-
Ham100%”) was highlighted for MCL-deep when hamstring force was decreased to 70%.
In the latter case, a more noticeable effect was observed on the LCL which experienced a
tension reduction of 68 N on average.

Overall, considering all the simulated conditions, the strongest effects were recorded
in the case of 60% hamstring force, in which the LCL and MCL-deep were relieved by an
average of 82 N and 280 N, respectively.
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3.2.3. Effects on Tibial–Femoral Contact Force

As regards the tibial–femoral contact force, in the late swing phase, a gradual decrease
was recorded as the hamstring’s force was progressively reduced, as depicted in Figure 11.
Compared to the “PCL15%-Ham100%” condition, in the second half of the swing phase, an
average force reduction of 190 N and 280 N was recorded when the hamstring’s residual
force was assumed to be 90% and 80%, respectively.
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Figure 11. Tibial–femoral contact force in the second half of the swing phase, resulting from the five
simulated conditions. Dashed curve represents the intact knee condition.

Further, an additional 10% drop in the muscular force decreased the contact force by
430 N on average, and again a decrease in the hamstring’s force to 60% lead to a mean
decrease of 520 N.

Interestingly, the curves obtained in these two last conditions were below the curve of
the intact knee, demonstrating that PCL injury compensated by a reduced activity of the
hamstrings can reduce the total force exchanged between femur and tibia.

4. Discussion

In the physiological knee, the posterior traction transmitted to the tibia by the ham-
strings during the second half of the swing phase is efficiently sustained by the recruitment
of the PCL (as shown in the previous study [25]). Consistently, this study showed that in
this time window the gradual reduction in PCL stiffness resulted in a progressive increment
of the posterior tibial displacement with respect to the intact knee. Specifically, in corre-
spondence with a PCL injury such that the residual ligament stiffness is reduced to the 50%
or 40% of the healthy state, the tibial posterior displacement reached an average increase
of 1.3 mm and 1.5 mm, respectively, with respect to the intact knee. The average posterior
sliding of the tibia gradually augmented as the PCL residual stiffness was reduced to the
most critical simulated condition (residual stiffness of 15%), in which the lesion led to an
averaged increase of 10 mm in the posterior tibial displacement.

As reported by [18,54,55], one of the major complications in PCL rupture is caused by
the posterior displacement of the tibia, which leads to the degeneration of both the tibial–
femoral and patellofemoral joints. Consistently, the outcomes of our study highlighted that,
in the late-swing phase, the contact force between femoral condyles and tibial plateaus had
a mild gradual increase as the PCL residual stiffness was reduced from 50% to 30%. In the
most critical conditions (PCL residual stiffness of 20% and 15%), the average increment in
contact force reached up to approximately 500 N compared to the healthy condition. As
reported in our findings, this effect could be related to the enhancement in the remaining
ligaments’ tension (mainly in deep MCL and LCL) compensating for the PCL lesion, which
resulted in increased longitudinal traction force between femur and tibia. Indeed, the
contact force, as well as the tension of the remaining ligaments, was unaffected by the PCL
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lesion until the 80% point of the gait cycle, while considerable changes were evident from
the 80% point to the end of the gait cycle, when the PCL should express its maximum force.

A typical cartilage degeneration pattern for a PCL-deficient knee presents anterior
wear on the medial tibial plateau [56]. Our findings are consistent with anterior tibial
cartilage wear, given the posterior translation of the tibia and the consequent anterior
translation of the tibial–femoral contact point [57–59].

On the other hand, no significant changes were recorded on patellar–femoral contact
force (not depicted in this study) and this result was in agreement with the findings of
Kang et al. [24], who simulated the gait loading conditions by a subject-specific knee
model. The cited authors outlined that no differences were found on patellar–femoral
joint contact force between the intact and PCL-injured conditions at 0◦ and 60◦ of knee
flexion during gait, while the contact force consistently increased during high flexion in the
squat-loading condition.

It is worth mentioning that the patellar–femoral contact force we predicted presented
two peaks in correspondence with the quadriceps contractions occurring approximately
at 15% and 50% of the stride cycle [25]. Their values were 0.88 BW for the first peak
and 0.74 BW for the second one. These values are within the range estimated by [60],
who applied computational modeling of experimental data collected from six healthy
subjects during walking. Since these contact forces occurred in correspondence with a
negligible PCL tension, the change in the PCL stiffness did not affect the patellar–femoral
contact force.

Actually, in our opinion, the increase in the contact force between patella and femur
would occur if the backward displacement of the tibia with respect to the femur was
so large that the angle of the patellar tendon with respect to the tibial plateau would
change significantly. Moreover, if such a displacement occurred in a phase in which no
quadriceps force is present, this effect would be not completely evident. This could explain
the reason why, during the second half of the swing phase (no quadriceps activation),
corresponding to the interval of the gait cycle in which the PCL would be mostly recruited
under physiological conditions, no change in the patellar–femoral contact force can be
appreciated. Then, for the rest of the gait cycle, the recruitment of the PCL is very limited
and, consequently, as consistently outlined in this study, no appreciable changes in the
kinematics, and therefore not even in the patellar–femoral force, would be expected.

Moreover, this study showed that a reduction of the contraction force of the hamstring
muscles could compensate for PCL injury. Indeed, in an intact knee the PCL would
be recruited during the second half of the swing phase, and at the same time the knee
flexors would be activated to brake the forward movement of the shank. The required
knee flexion moment is thus produced by the backward-oriented hamstring force and
the forward-oriented PCL tension. In the absence of PCL, or in the case of reduced PCL
stiffness, the point of attachment of the hamstrings on the tibia constitutes a sort of pivot
point, so that the distal leg moves forward while the proximal tibia slides backwards,
and this is depicted well in our results. Our outcomes showed that a gradual reduction
of hamstring activity in a PCL-injured knee (PCL residual stiffness of 15%) resulted in a
progressive reduction in the posterior tibial excursion. These findings are consistent with
the well-known posterior traction effect of the hamstrings on the proximal tibia [61–65]. The
reduction in the hamstring’s force limited the posterior sliding of the tibia and, consequently,
the tension of the ligaments compensating for PCL injury (LCL and mainly deep MCL)
decreased. Accordingly, thanks to the reduction in ligament tension, the tibial–femoral
contact force appeared as gradually reduced.

As previously reported, a chronic anteriorization of the tibial–femoral contact point is
an issue in the PCL-deficient knee, especially for the medial compartment. This could occur
if the posterior sliding of the tibia is increased, and our results show that the hamstring’s
force associated with PCL deficiency can be responsible for that. In this context, our
results highlight the importance of targeting specific muscle groups in the rehabilitation
setting during conservative treatment of PCL injury. The focus should be on promoting
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quadriceps recruitment, while hamstrings are best addressed with stretching and relaxation
in order to avoid fostering their negative effect on tibial translation during activities of
daily living [66,67].

Moreover, this study reports evidence of the compensation role of the MCL in re-
straining the posterior tibial translation in the case of PCL injury, and this is coherent
with previous literature [68]. This observation raises awareness regarding the inherent
difference between isolated PCL injury and PCL injury combined with lesions of the medial
ligamentous structures. The latter condition should probably be approached with more
caution, particularly during the initial phase, since one of the most important compensation
structures is lacking. For example, even if at present there is limited evidence about the
importance of knee bracing in the initial phase, we can assume that this indication should
be stronger if the PCL lesion is combined with MCL injury.

In our model, the main limitations are the lack of cartilage and menisci between the
articulating surfaces and the simplification of the patellofemoral joint. Furthermore, this
study is based on a single, exemplary subject, and does not pretend to represent any specific
population. Many studies showed that there is a great variability among subjects in terms
of both attachment points and mechanical properties [31,32,69,70]. The realization of a
subject-specific model is a challenging objective to be pursued. However, at present, the
repositioning of the ligaments and changing the geometry of the joint surfaces in our model
is a very delicate procedure, and this makes it difficult to adapt the model to different sizes.

However, the implemented musculoskeletal model has shown its potential in allow-
ing the non-invasive estimation of loads on ligaments and articular surfaces and of the
redistribution of loads in case of PCL injury. These aspects could hardly be evaluated
in vivo.

5. Conclusions

The implemented musculoskeletal model appeared as a valuable tool for (i) non-
invasive estimation of tension redistribution on remaining ligaments in the case of PCL
injury, (ii) investigation on knee biomechanics modification in response to PCL injury
and (iii) analysis of a conceivable compensatory muscular mechanism on a PCL-injured
knee. The obtained results have to be considered as generic and not representative of
a specific population, since the implemented musculoskeletal model refers to a single
exemplary subject. However, this approach allowed us to understand and analyze the
effects of a single-element modification through dynamic simulations. Moreover, it made it
possible to investigate conditions hardly verifiable or reproducible in experiments, such
as a gradual reduction of the hamstring’s force, as well as aspects difficult to evaluate
in vivo due to ethical and technical issues, such as the ligaments’ tension or the anterior–
posterior displacement of the tibia during dynamic tasks. Specifically, this computational
study simulated different degrees of PCL injury and outlined their effects on the knee
biomechanics: both the posterior tibial sliding and the ligaments’ load redistribution were
quantified and analyzed. In the implemented model, in the case of PCL lesion, the Medial
Collateral Ligament adopted the role of the main passive stabilizer of the tibial posterior
translation, with a synergistic recruitment of the Lateral Collateral Ligament. However, this
coping strategy resulted in an enhancement of the tibial–femoral contact force with respect
to the intact knee condition and did not prevent the posterior displacement of the tibia and
consequent anteriorization of the tibial–femoral contact point. This can explain the well-
known conditions of tibial cartilage degeneration in a PCL-injured knee. Moreover, this
study showed that reducing the hamstring activity would allow for relieving all ligaments
further recruited for compensating the PCL injury and, as a consequence, limiting the
contact force between the distal femur and the proximal tibia.
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Abstract: Walking, a basic physical movement of the human body, is a resource for observers in
forming interpersonal impressions. We have previously investigated the expression and perception
of the attractiveness of female gaits. In this paper, drawing on our previous research, additional
analysis, and reviewing previous studies, we seek to deepen our understanding of the function
of gait attractiveness. First, we review previous research on gait as nonverbal information. Then,
we show that fashion models’ gaits reflect sociocultural genderlessness, while nonmodels express
reproductive-related biological attractiveness. Next, we discuss the functions of gait attractiveness
based on statistical models that link gait parameters and attractiveness scores. Finally, we focus on
observers’ perception of attractiveness, constructing a model of the visual information processing
with respect to gait attractiveness. Overall, our results suggest that there are not only biological but
also sociocultural criteria for gait attractiveness, and men and women place greater importance on
the former and latter criteria, respectively, when assessing female gait attractiveness. This paper
forms a major step forward in neuroaesthetics to understand the beauty of the human body and the
generation of biological motions.

Keywords: gait; attractiveness; self-expression; interpersonal cognition; nonverbal communication;
structural equation modeling; gait observation; gaze behavior

1. Introduction

The movements of the human body interact with the social environment. In other
words, human movements can be modulated by social stimuli and can convey nonver-
bal messages, taking the form of social stimuli, such as the actor’s interpersonal attitude,
intention, gender, and emotional state (e.g., inclusive or noninclusive attitudes toward
a person that are implicitly conveyed by the physical positioning of two people) [1–5].
Charles Darwin systematically described the connection between emotions and behav-
ioral expression, clarifying the role of animals’ bodily expression in their social environ-
ment [6]. Darwin’s theory was developed into the Laban movement analysis, which
describes emotional expressions, such as the characteristics and quality of movement (ef-
fort) and geometrical characteristics (shape) [7,8]. In addition, Norton classified linguistic
and paralinguistic information (including body motion) into nine communicative styles
(i.e., dramatic, dominant, animated, relaxed, attentive, open, friendly, argumentative, and
impression-leaving) in relation to how observers interpret and give meaning to it [9]. These
styles have three dimensions, assertiveness, responsiveness, and versatility, relating to
the ability to attract or control the observer’s interest and attention, his or her emotional,
flexible, and approachable nature, and the ability to change behavior in response to others,
respectively [10]. In this way, human body movements have an important role to play
in interpersonal communication, conveying the psychological state of the person who is
performing the movement.
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Gait, the most basic human movement, functions as a social stimulus, conveying the
attributes and psychological state of the walker as nonverbal information. Among other
features, there are gender differences in gait kinematics, reflected in hip flexion angle, knee
flexion moment, and pelvic tilt angle [11–13]. Using these differences, it is possible to
generate motions of gait that are characteristic of each gender [14]. Age also alters gait,
including increases in step width and double support period and decreases in stride length,
cadence, gait symmetry, toe-off angle, and walking speed [15,16]. In addition, gait reflects
the walker’s emotions, and observers can estimate a walker’s emotions from walking speed,
posture, and dynamic cues [17–21]. Even where interpersonal communication is active,
gait patterns affect the evaluations made by others. For example, in job interviews, the
gait patterns of applicants convey an impression of their temperament and personality [22].
In this way, walking motion embodies the physiological and psychological states of the
walker. However, it remains unclear what specific dynamic cues in gait affect interpersonal
communication and what functions they have.

Immediacy, defined as a certain level of physical and psychological intimacy that is
recognized between two people [10], is important for smooth interpersonal communication.
People who behave in a way characterized by high immediacy are more likely to be liked
by others, highly evaluated, and selected [5,23]. In nonverbal immediacy, physical attrac-
tiveness in appearance and behavior plays an important role in making others perceive
one as attractive, thus increasing the closeness between two people [10]. Many previous
studies have identified the characteristics of attractive physical appearance. For example, it
has been reported that men who have a muscular body shape, called mesomorphic [24–26],
and male bodies with healthy amounts of fat and muscle mass [27,28] are considered
attractive by women. In addition, waist-to-hip ratio [29] and lumbar curvature, when
viewed from the side [30,31], are cues for the evaluation of attractiveness in female bod-
ies. Because these physical characteristics are related to health and reproductive function,
physical attractiveness may function as material for detecting individuals’ health [32,33].
This is the dominant evolutionary psychological interpretation of the function of physical
attractiveness. However, in some cases, physical features deviating from a healthy state
are evaluated as attractive, especially in female bodies (e.g., a BMI [28] and fat mass [34]
lower than the healthy level are considered attractive), which may be influenced by the
cultural environment reflected by mass media [35]. To the best of our knowledge, there is
no consistent view of physical attractiveness, including in the context of the sociocultural
environment. In addition, physical attractiveness is not only seen in static representations
of the face and body but also in physical movements (dance, walking, gestures, etc. [36,37]),
and Morris et al. suggested that stride length and hip rotation are factors in the assess-
ment in the attractiveness of the female gait [38]. However, detailed whole-body features
related to attractiveness have not been elucidated, and the causal relationship between
the parameters of the gait and impression evaluation, as well as how observers perceive
the attractiveness of gait, remain unclear. Against this background, we have conducted
research into the expression of attractiveness in terms of walking movements and the
perception and evaluation of gait attractiveness [39–41].

In psychology, “Attractiveness refers to a person’s perceived qualities, characteristics,
or traits that evoke positive feelings, interest, or desire for social interaction. The mul-
tifaceted concept of attractiveness encompasses several components, including physical
appearance, personality, intelligence, social skills, and other traits.” [42]. In this study,
we focus on attractiveness as perceived by observers in terms of physical appearance,
including human movement. Following our previous research on the expression and
perception of gait attractiveness and using additional data analysis, we seek to deepen our
understanding of the function of gait attractiveness, as well as construct a model of the
visual information processing process in gait attractiveness perception. Along with reviews
of various previous studies on nonverbal communication, evolutionary psychology, and
visual information processing, we structured this paper in the following three sections.
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• Section 2: Expressing the attractiveness of female walkers. What gait patterns do
women use to express attractiveness and increase their immediacy to others? From our
previous work [39] and additional analyses of comparisons between fashion models
and nonmodels, as well as impression evaluation by observers, we comprehensively
identify the expression of physical attractiveness in walking motion.

• Section 3: Attractiveness evaluation model of female gait. We outline statistical estima-
tion models for female gait attractiveness using the parameters of gait as explanatory
variables [40]. The models we constructed partially show elements that may be incon-
sistent with evolutionary adaptations. Thus, we discuss the influence of the biological
and sociocultural environment on the attractiveness of physical movements in relation
to a review of previous research.

• Section 4: Perception of gait attractiveness. From our research on gaze behavior and
its gender differences when evaluating gait attractiveness [41], we discuss how the
visual gait information related to attractiveness is processed in observers, conducting
a review of previous research. Finally, we develop a neuroaesthetic model for visual
information processing for gait attractiveness.

In this paper, we use the terms “gender” and “sex” differently depending on how
previous research is described. Moreover, in our data analysis and interpretation, we
use the term “sex” instead of “gender” because the latter includes the meaning of self-
representation of one’s own sexuality, which is not covered in this study.

2. Expressing the Attractiveness of Female Walkers

2.1. Biomechanical Strategies to Maximize Gait Attractiveness

Nonverbal behavior has the function of increasing immediacy in interpersonal re-
lationships. Gait kinematics may be a cue for female attractiveness, which is a factor in
increasing immediacy [43]. Gait can also exhibit the intentional expression of beauty, such
as the gait of a runway model [44], although the strategy for expressing attractiveness in
gait remains unclear. Thus, we investigated the biomechanical basis of how women express
their attractiveness in walking [39].

We recruited professional fashion models (N = 7; 42.4 ± 7.0 years; 170.6 ± 3.7 cm;
55.6 ± 3.4 kg) and nonmodels (N = 10; 34.0 ± 7.2 years; 162.0 ± 5.4 cm; 54.7 ± 7.7 kg) and
had them walk barefoot or in heels on a treadmill at a fixed speed of 1.0 m/s. In each
footwear condition, the participants walked under two types of instructions: (1) walking as
casually as possible, in the normal condition, and (2) walking as attractively as possible, in
the attractive-conscious condition. Using a motion capture system, the 3D positions of the
anatomical feature points of the entire body of the walker were recorded, and then we used
these in subsequent offline analyses to calculate the 3D joint angles for 13 joints throughout
the body. The most challenging part of this study (i.e., [39]) was selecting gait parameters
to capture the expression of gait attractiveness. From the Laban movement analysis [7,8],
the performer’s intention is expressed by the speed and energy of the movement, the use
of space exhibited, and the movement’s geometric alignment (as shown in the silhouette).
Because a gait pattern in a straight line has a limited degree of spatial freedom, this study
focused on the kinetic energy and silhouette of each joint and compared them between
conditions.

The results suggest that female gait attractiveness is expressed through the following
five strategies (Figure 1): increased hip joint energy immediately following heel contact,
increased trunk curvature in the side view, head tilted and facing frontward, knee extension
during push-off (i.e., before and after toe-off), and upper arm take-back. Following previous
research on the characteristics of physical attractiveness, these strategies may have the
function of expressing femininity and the health of walkers. For example, trunk curvature
could embody the silhouette of the body in relation to reproductive function [30,31,45]. In
addition, increased hip joint energy and drawing back of the upper arm have the effect of
emphasizing the chest and buttocks [46]. The knee extension during push-off is associated
with walking capacity, related to the muscle strength of the knee extension [47,48], which
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expresses the health of the walker. It should be noted that this study revealed a relationship
between head silhouette and female gait attractiveness. The possible interpretations of
this result are as follows: the change in head silhouette is a byproduct of the change
in the alignment of the whole body, or, alternatively, the head silhouette conveys the
defensive attitude of the walker [22] or emotion [19,21], which then leads observers to
perceive attractiveness. The function of the head silhouette in attractiveness requires further
investigation and is discussed in Section 3.2. This study showed that movements expressing
health and reproductive function may be nonverbal elements inducing the perception of
attractiveness (at least, performers adopt these elements as a strategy for the expression of
physical attractiveness). The walking on a constant-speed treadmill captured in this study
(differing in part from the gait kinematics of overground walking [49–51]) may affect the
attractiveness ratings (which are influenced by walking speed [52,53]), so further research
is needed to capture the attractiveness of gaits in more everyday environments.

Figure 1. Five strategies for women to have an attractive gait.

2.2. Differences Between Fashion Models and Nonmodels: What Is the Attractive-Conscious Gait
Generated by Nonmodels?

How did the nonmodels generate attractive gait in our study [39]? If seeking to
reproduce the gait of fashion models in a neural representation, the expression strategies of
attractiveness for both models and nonmodels should be similar. The focus of our study
was the strategy for expressing attractiveness, and we did not examine statistical differences
between the groups. Therefore, here, we additionally compared the models and nonmodels
using statistical parametric mapping (SPM) [54,55]. Figures 2 and 3 present time series data
(% gait cycle) for the gait parameters (silhouette-related and energy-related parameters,
respectively) for each group (models: blue and dark blue plots; nonmodels: yellow and
orange plots) and condition (the left and right rows represent the normal and attractive-
conscious conditions, respectively). The SPM{t} function using alpha = 0.05 was calculated
with the SPM1D MATLAB package (http://www.spm1d.org (accessed on 15 October 2024)),
and the black bars on the horizontal axis show time points with statistically significant
group differences. As a result, the group differences in body silhouette in walking were
observed in head tilt and rotation, as well as thoracolumbar curvature in the frontal plane
(Figure 2). In other words, relative to nonmodels, models tilted their heads more forward
(in both the normal and attractive-conscious conditions: 0–100% of the gait cycle), rotated
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their heads horizontally while pulling back their shoulders (normal condition: 31–37.5%
and 82–88% of the gait cycle, with a similar tendency in the attractive-conscious condition),
and with increased hip twisting when seen from the front (attractive-conscious condition:
9.5–15% of the gait cycle, around 60–65%, and a normal condition with a similar tendency).
In addition, while no statistically significant difference was seen, the models tended to
take their upper arms back more than the nonmodels. No statistically significant group
differences were found for energy-related gait parameters (Figure 3), but the models tended
to exhibit smaller hip and thoracolumbar joint energies in the double-leg support phase
(around 15–35% and 65–75% for the hip and around 20–40% and 70–90% of the gait cycle).

 

Figure 2. A between-group comparison in silhouette-related gait parameters: The values in the
first (left) and second (right) rows show a comparison between groups in the normal and attractive-
conscious conditions, respectively. The yellow and orange plots represent the model, and the blue
and dark blue plots represent the nonmodel. The black bars on the horizontal axis indicate time
points showing statistically significant group differences. The horizontal axis shows one stride
beginning with a right-heel contact, followed by a left-toe-off (approximately 10.3%), a left-heel
contact (approximately 50.7%), and a right-toe-off (approximately 60.3%), ending with a subsequent
right-heel contact. Vertical axis: A larger value of each parameter (i.e., first to the fourth rows)
represents a further backward head tilt, smaller head rotation in the horizontal plane (that is, facing
the front), larger hip twist from the front view, and more backward arm swing, respectively.

The results above suggest that certain strategies that women adopt when expressing
attractiveness go against the characteristics of the gaits of the fashion models. For example,
the kinetic energy of the hip and thoracolumbar joints increased in both groups when they
expressed attractiveness, but when the groups were compared, little kinetic energy was
a characteristic of the model’s gait (Figure 3). In addition, the horizontal rotation of the
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head is smaller in the attractive-conscious condition, i.e., the head gazes straight ahead, but
the horizontal rotation of the models’ heads is greater than that of the nonmodels’ heads.
Of course, other attractiveness-expression strategies were consistent with the model’s gait.
In the attractive-conscious condition, the woman tilts her head forward, forming a gait
characteristic of fashion models. Likewise, the strategy of twisting the thoracolumbar
joints on the frontal plane and taking back the upper arms is also emphasized in the
models’ walks. What features were seen in the attractive-conscious gait of the nonmodels?
If they were seeking to reproduce fashion models’ gait as a neural representation, the
attractiveness-oriented gait of the nonmodel should go in the direction of closing the gap
with the models’ gait. However, both models and nonmodels expressed patterns that were
partially opposite to the strategies that are learned and embodied by models in their gait.

Figure 3. Between-group comparison of energy-related gait parameters: The values for the first (left)
and second (right) rows present a comparison between groups in the normal and attractive-conscious
conditions, respectively. The yellow and orange lines represent the models, and the blue and dark
blue lines represent the nonmodels. The black bars on the horizontal axis present the time points
using statistically significant group differences.

There may be a qualitative difference here between the expression of biological attrac-
tiveness and sociocultural attractiveness. The gait of a fashion model has as its purpose
and function the showcasing of the attractiveness of clothes in the fashion industry, and
the garments and styles change with the times [56]. In recent years, the tendency for
models to cross their legs (employing the so-called cat walk) in their fashion display walks
has decreased, and this change in gait appears to be due to the less gendered nature of
clothing in a more gender-neutral or gender-fluid environment [56]. In addition, fashion
model gaits are characterized by a relaxation of the upper body and a lack of excessive
movement [57]. Our results can be interpreted as follows: A model’s gait is influenced
by a sociocultural environment exhibiting genderlessness, with less crossing of the legs,
resulting in less hip joint energy. In addition, the kinetic energy of the thoracolumbar joints
is also reduced in the relaxation of the upper body, with the prevention of excessive chest
movement. The increase in horizontal head rotation is a matter of further investigation,
but it reflects a strategy of attracting the audience’s attention through increasing head
movement [56]. Conversely, when increasing the attractiveness of their own gait, without
reference to the fashion industry, women tend to increase their biological attractiveness
by increasing the energy expressed in the hip and thoracolumbar joints, which could go
against genderlessness. The function of the attractiveness expressed by head movements,
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such as facing front and having a forward tilt, needs to be clarified, but taking into account
that the head silhouette can be a nonverbal message, reflecting a defensive posture [22]
or emotion [19,21], a strategy to induce the perception of attractiveness could involve ex-
pressions of psychological states in one’s gait. Thus, it may be that an attractive-conscious
gait is not simply a reproduction of a model’s gait but could be a biological adaptation
emphasizing gender.

2.3. Was the Strategy of Expressing Attractiveness Successful?

Do observers perceive the attractiveness that is expressed by pedestrians? A total of
60 subjects (30 women, aged 38.50 ± 13.26 years; and 30 men, aged 40.70 ± 10.59 years)
rated the attractiveness of all gaits on a 7-point scale (1: very ugly, 7: very attractive). In
the barefoot condition, the attractiveness scores for the nonmodel gaits were 3.09 ± 0.53
in the normal condition and 3.50 ± 0.43 in the attractive-conscious condition, while the
attractiveness scores of the models’ gaits were 3.77 ± 0.44 in the normal condition and
4.29 ± 0.64 in the attractive-conscious condition. After the normality and homogeneity
of variance in the data were checked, a 2-way ANOVA was performed, and the results
show a main effect of condition (F(1,30) = 6.8, p = 0.014, η2 = 0.13) and group (F(1,30) = 17.2,
p < 0.001, η2 = 0.32), with no interaction. The same analysis was performed for the heel
condition: the attractiveness scores for the nonmodels’ gaits were 3.49 ± 0.75 in the normal
condition and 4.20 ± 0.64 in the attractive-conscious condition, while the attractiveness
scores of the models’ gaits were 4.85 ± 0.69 in the normal condition and 5.41 ± 0.48 in
the attractive-conscious condition. A 2-way ANOVA showed a main effect of condition
(F(1,30) = 7.74, p = 0.0093, η2 = 0.11) and group (F(1,30) = 31.3, p < 0.001, η2 = 0.45), showing
no interaction. These results indicate that, in both footwear conditions, the attractive-
conscious gait was rated as significantly more attractive than the normal condition, where
the models’ gaits were rated as more attractive than the nonmodels’ gait. The great
social value of this result is that others’ attractiveness ratings are not only influenced
by body shape and appearance, which are innate and unchanging or require significant
time to change, but also by physical movements that can be instantly adjusted at will
by the performer. Saito et al. [58] found that the tilted pelvic posture in gait affects the
attractiveness evaluation, regardless of one’s figure. These facts may help steer individuals
away from the ideal of thinness as promulgated in the mass media and social media [35],
with its resulting unhealthy eating behaviors [59].

3. Attractiveness Evaluation Model of Female Gait

3.1. Statistical Models for Estimating Gait Attractiveness

Section 2 shows that women can change their gait to express attractiveness, and this
makes observers perceive them to be more attractive. What causal relationship is there
between gait parameters and attractiveness evaluation? D’Argenio et al. [60] investigated
the causal relationship between body dynamics and femininity and attractiveness, reveal-
ing that body poses that are less dynamic are preferred for the female body, and that such
poses are linked to attractiveness through femininity. However, they did not note the
movement elements that affect the evaluation of the visual impression or their function
in terms of nonverbal messages. We conducted a study to examine the function of gait
parameters in attractiveness evaluation by clarifying the causal relationship between a
range of gait parameters and impression scores (i.e., attractiveness and femininity) [40].
We created statistical models to explain gait attractiveness and femininity with the use
of gait parameters. To construct the models, we performed structural equation model-
ing (SEM), which has the advantage of combining measurement models and structural
(i.e., regression) models into one overarching model that can optimally handle measurement
errors in predictors [61,62].

A 30 s gait animation was created using motion capture data obtained in Section 2.1.
In all of the animations, the angle of presentation was rotated 180 degrees at a constant
speed for 30 s to observe the walkers from the front and from the side. We recruited

149



Bioengineering 2024, 11, 1037

60 subjects (30 women, aged 38.50 ± 13.26 years, and 30 men, aged 40.70 ± 10.59 years),
and each subject watched all of the animations, rating the attractiveness and femininity
of each animation on a 7-point Likert scale (as above). To obtain explanatory variables
for SEM, we first performed a correlation analysis between the impression scores and the
walkers’ parameters, including gait parameters and physical characteristics. The walkers’
parameters were as follows: height, weight, BMI, waist-to-hip ratio, lumbar curvature,
upper arm pull-back, forward head tilt, horizontal rotation of the head, stride CV, cadence,
clearance, symmetry, knee extension, and toe-off angle. Next, we used the parameters of
the walkers with a moderate or higher correlation with the impression score as explanatory
variables to construct statistical models using SEM. Because it is possible for observers
to distinguish between barefoot and heel walking, SEM was constructed for the footwear
conditions separately.

From the correlation analysis, BMI, lumbar curve (barefoot only), upper arm take-back,
head forward tilt, horizontal rotation of the head (heels only), cadence, clearance (heels
only), knee extension, and toe-off angle (barefoot only) were moderately correlated with
impression scores. Using SEM with these parameters as explanatory variables, two models
were constructed for each footwear condition: one model consisting of silhouette elements
of the head and trunk (Model 1), and a model consisting of body shape, trunk silhouette,
and health elements (Model 2). We attempted to merge Models 1 and 2, but they diverged,
which is likely because they were independent. Figure 4 forms an overview of the walkers’
elements, which affected the observers’ perception of attractiveness, based on the SEM
models constructed in [40]. The functions of Models 1 and 2 are discussed in Section 3.2.
Because it is possible to predict target values based on SEM models [63], this study likewise
made it possible to estimate gait attractiveness using gait parameters and artificially tune
gait attractiveness in the generation of biological motion.

 
Figure 4. An overview of the walkers’ elements affecting the observers’ attractiveness perception.
Models 1 and 2 indicate the evaluation criteria for attractiveness (silhouette-related and health–
physique-related standards, respectively) in the two models that were constructed in our previous
study [40]. The positive and negative signs indicate whether larger or smaller values lead to higher
attractiveness ratings.

3.2. Function of Gait Attractiveness in Evolutionary Psychological and Sociocultural Contexts

Model 2 (Figure 4) is composed of the elements of health-related gait parameters, body
shape, and trunk silhouette in relation to femininity, which are the criteria reflecting the
walker’s physical characteristics. In support of previous studies [30,31,58], it was found
that the lumbar curvature (i.e., the anterior pelvic tilt) promotes the observer’s perception of
attractiveness in walking movements. The criterion of the knee extension, which decreases
with age, is also consistent with the explanation of attractiveness according to evolutionary
psychology, which states that the perception of attractiveness is a psychological process
that detects an individual’s health (e.g., [32,33]). Our findings suggest that observers
sense information related to evolutionary adaptability using visual information of the
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movements of the body, linking it to the perception of attractiveness. However, other
evaluation criteria went against the perception of health. BMI is an index of weight, where
a normal weight is between 20 and 24.9 kg/m2 [64]. The BMI of the walkers in this
study was 20.01 ± 1.89 (minimum of 17.02 and maximum of 24.07), within the range of
underweight to normal weight. A negative correlation was observed between the BMI and
attractiveness score. This is consistent with previous research, which shows that women
having BMIs lower than the healthy standard are preferred [28], which may reflect a feature
of physical appearance that is shaped by the sociocultural environments [65], such as in
the tendency of the mass media to promote underweight body appearance as part of the
standard of beauty as a gender role norm for girls [35,66,67]. In addition, the negative
correlation we found between cadence and attractiveness scores [40] is inconsistent with
an association between health and attractiveness, in that lower cadences reflect a reduced
ability to modulate the gait cycle duration, which can be linked to age-related diseases,
such as knee osteoarthritis [68]. Why does attractiveness perception based on the physical
characteristics of walkers both coincide with and contradict their health? One reason for
this may be that the evaluations conducted by men and women are mixed. From the
perspective of evolutionary psychology, males’ evaluations of female attractiveness should
have qualitative differences from females’ evaluations of female attractiveness. We discuss
this point in Section 4.

Model 1 (Figure 4) is based on the silhouette of the trunk and head. To the best of
our knowledge, the relationship and function between head alignment and attractiveness
is unclear. Head alignment is linked to emotional expression and interpersonal attitudes.
For example, sadness [19,21] and a defensive posture [22] are expressed in a tilt of the
head. In addition, the relationship between the horizontal rotation of the head is a negative
correlation with the attractiveness score, which suggests that a silhouette with the head
tilted forward and facing front in walking may convey a message of low openness and
conservatism toward others, and this psychological state may be perceived as favorable.
This is consistent with a preference for a static pose in female bodies [60]. Thus, Model 1
could form a criterion to judge the walker’s emotions and interpersonal attitudes. Where
first impressions are being formed in romantic relationships, women tend to communicate
their approachability in nonverbal behaviors, such as tilting their head, shrugging their
shoulders, looking down, looking to the side, frowning, holding hands, hugging, patting,
having their hands in front of their bodies, and smoothing their hair [69]. Therefore, head
movements are important for conveying women’s nonverbal immediacy. The function and
meaning of head movements in women’s nonverbal immediacy must be further examined.
In summary, it was suggested that the attractiveness of the female gait is determined by
two criteria (Figure 4): the physical state of the walker, i.e., both evolutionarily adaptive
and sociocultural criteria (Model 2), and the walker’s interpersonal attitude (Model 1).

4. Perception of Gait Attractiveness

4.1. Gaze Behavior Associated with Gait Attractiveness Evaluation and Its Sex Differences

Section 3 identifies the criteria according to which observers evaluate the female gait
attractiveness. What gaze behavior gathers information on gait and leads to the perception
of attractiveness and positive evaluation? Gender differences appear in the perception
of physical attractiveness. For example, in the observation of both men’s and women’s
body images, male observers pay attention sooner and for longer to women’s chests, while
female observers pay attention sooner to men’s legs [70]. Moreover, men pay more attention
to female breasts and heads than women do [71]. Pazhoohi et al. [72] also show that there
are sex differences in terms of the prominence of the shoulder-to-hip ratio (SHR), where
men paid more attention to SHR. Here, two forces of sexual selection exist: intersexual
(i.e., mate choice) and intrasexual (i.e., the sexual competition between individuals of the
same sex) selection [73]. In human sexual selection, physical attractiveness is an important
criterion in mate selection [74], and women compete with the same sex through attracting
men, while men tend to compete with the same sex through physical strength [75]. We thus
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investigated what bodily cues are used to assess female gait attractiveness, focusing not
only on men’s evaluation of women, which could affect mate selection, but also on women’s
evaluation of their potential competitors [41]. In addition, when an observer perceives
attractiveness, their attention interacts with their preference of bodily appearance [76].
We thus investigated the relationship between gait attractiveness and gaze behavior, in
addition to sex differences.

We analyzed the gaze behavior of 33 (17 women; 38.06 ± 14.21 years, and 16 men;
42.25 ± 10.32 years) of the 60 participants in the impression evaluation experiment de-
scribed in Section 3. We analyzed their gaze-tracking data using eye-tracking software
(Tobii Pro Lab, Screen Edition, version 1.181) and a Tobii Pro Nano screen-based eye-
tracking camera (Tobii, Danderyd, Sweden) attached to the bottom of the computer
monitor. We set five AOIs (head, trunk, hip, leg, and others) for each walking anima-
tion in the software, and we calculated the fixation rate for each AOI and each partici-
pant. The observers’ gaze area could have been influenced by their sex and preferences
(i.e., for gait attractiveness). Therefore, we compared fixation rates according to the
four factors of sex, preference (i.e., top vs. bottom 5 animations in attractiveness ranking
among 68 animations), phase (phase 0 is the first 1.0 s from the start of the animation, and
phases 1–4 are each a period of 7.5 s, totaling 30 s), and AOI (i.e., head, trunk, hip, leg, and
others). We also constructed models that link gait parameters and the attractiveness scores
for each observer’s sex by using SEM and qualitatively compared standardized estimates.

A sex difference was found in visual attention in the fixation rates of the trunk and
leg. Male observers were highly fixed on the trunk, while female observers tended to shift
their attention from the trunk to the legs, especially in the observation of high-preference
gait animations. In addition, the models constructed by SEM for each sex showed a
tendency for male observers to place a greater weight on the walkers’ trunk silhouette,
while female observers prioritized parameters requiring whole-body observation. In
human sexual selection, women’s physical attractiveness is an important criterion for men’s
mate selection [74,77–79], and women compete with the same sex by attracting men [75].
We found that in the evaluation of female walkers’ attractiveness, men place importance on
the gait silhouette of the female trunk, which supports the idea that the reproductive regions
of the female body are important for men in mate choices. Meanwhile, female observers
tended to highlight BMI, knee extension, cadence, and head silhouette, requiring full-body
observation when evaluating female gait attractiveness. Considering that the preferred
women’s BMI and fat mass values are below the healthy standard [28] and that mass media
uses underweight bodies as icons of beauty and gender norms for girls [35,66,67], women
may consider other women’s attractiveness in relation to the dominant beauty standards
of their sociocultural environment [65]. Further, taking into account that head silhouettes
can function as nonverbal messages that reflect a walker’s interpersonal attitude [22] and
emotions [19,21], the walker’s psychological state is a potential factor used in evaluating
the attractiveness of potential competitors.

4.2. Visual Information Processing of Gait Attractiveness

The central nervous system processes visual information in a hierarchical and parallel
manner [80–82]. Sequential hierarchy is divided into three stages [83]: an early vision that
extracts simple elements such as color, shape, motion, and position [84,85]; intermediate
vision, which groups elements into coherent entities [86–89]; and late vision, which selects
areas of coherence for the direction of attention and recalling memories that allow us
to recognize and attach meaning to objects [80,90]. According to neuroaesthetics [91,92],
an observer’s perception of an aesthetic object includes visual information processing,
impression evaluation, and emotional reaction to the object. Each of these processes can be
further deconstructed as follows: Once the basic visual elements of the object have been
received, this information is collated in higher-level cognitive and attentional processes to
form an impression and a final determination of aesthetic evaluation. This principle applies
not only to visual aesthetics but also to music, dance, literature, and aesthetic judgments of
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the body [92]. In the evaluation of gait attractiveness, the motion of walking as a stimulus
was initially deconstructed into visual features and sorted and processed. Then, higher-
level cognitive and attentional processes are used to evaluate walkers’ gaits attractiveness.

Drawing on information processing in neuroaesthetics [92], we created a model that
showed the visual information processing of the attractiveness of female gaits (Figure 5).
When walking motion is input as visual information, gait parameters such as lumbar
curvature and head tilt are first extracted in early vision, and then they are recognized
as a whole in intermediate vision. Here, male observers emphasize the trunk silhouette,
while female observers emphasize the silhouette and movement of the head and whole
body, and attention is induced in such sex-dependent vision. Based on this information,
men and women attach meanings that are related to reproductive function, sociocultural
standards of beauty, and the psychological state of the walker, respectively. In this way, the
extraction of visual elements, attention, and meaning (i.e., context) interact to evoke the
emotional responses of attractiveness and the final decision making of aesthetic judgment.
Because attention and emotional response interact (i.e., they induce each other) [76], a
reciprocal path appears between them. To the best of our knowledge, this is the first
attempt to build an information processing model for gait attractiveness. It not only
deepens our understanding of the central perceptual processes of physical attractiveness
but also provides a deeper descriptive texture to bodily aesthetics (i.e., the psychological
nature of the reward of the attractive experience). However, our study features limitations,
such as the limitation of the visual stimuli to the female gait and the observers being limited
to individuals of Japanese culture in a small sample. Thus, further verification is needed.

Figure 5. Visual information processing for the attractiveness perception and evaluation of female
gaits. The arrows represent the flow of visual processing.

5. Conclusions

In this paper, we deepened our understanding of the meaning and function of walk-
ing in terms of nonverbal information regarding our previous study of the expression
and perception of gait attractiveness in a comprehensive literature review. In Section 2,
we focused on gait patterns used by women to express attractiveness and introduced
five strategies of increase in hip joint energy immediately after heel contact, increase in
trunk curvature in the side view, tilt and front facing of the head, knee extension during
push-off (i.e., before and after toe-off), and upper arm drawback. Additional analysis of
the differences between models and nonmodels showed the following qualitative differ-
ences between the expression of biological attractiveness and cultural attractiveness: In the
models’ gait, influenced by the sociocultural environment, leg crossing is reduced, which
reduces the energy of the hip joint. In addition, the kinetic energy of the thoracolumbar
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joint is reduced to prevent the excessive movement of the upper body. These features are
thought to be due to the trend toward genderlessness in the fashion industry. However,
when trying to increase the attractiveness of their gait, women, including fashion models,
increase the energy of their hip and thoracolumbar joints, which is in tension with gender-
lessness. Thus, the generation of attractive gait in nonmodels may not be a reproduction of
the gait of fashion models but a biological adaptation to emphasize gender.

In Sections 3 and 4, we discussed the link between the gait parameters and evaluation
of attractiveness, the visual information processing of the gait in observers, and gait attrac-
tiveness in relation to the evolutionary psychological and sociocultural perspectives. There
are not only criteria for gait attractiveness consistent with the reproductive function and
health of walkers but also sociocultural criteria that contradict them. Male observers tend
to place more importance on the former criteria when evaluating female gait attractiveness
as intersexual selection, while female observers tend to assign more importance to the
latter when evaluating the attractiveness of their competitors in intrasexual selection. From
these results, we proposed a visual information processing model for the attractiveness
perception and evaluation of female gaits. This forms a major step forward in the neuroaes-
thetics of the beauty of the human body. The generation of biological motion for walking is
widely used in the robot and AI industries, and the review in this paper provides a useful
psychological basis for industrial implementation. In further studies, we plan to investigate
the function of attractiveness of human movements and behavior, including social factors
like clothing and context.
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Abstract: According to the modular hypothesis for the control of movement, muscles are recruited
in synergies, which capture muscle coordination in space, time, or both. In the last two decades,
muscle synergy analysis has become a well-established framework in the motor control field and
for the characterization of motor impairments in neurological patients. Altered modular control
during a locomotion task has been often proposed as a potential quantitative metric for characterizing
pathological conditions. Therefore, the purpose of this systematic review is to analyze the recent
literature that used a muscle synergy analysis of neurological patients’ locomotion as an indicator of
motor rehabilitation therapy effectiveness, encompassing the key methodological elements to date.
Searches for the relevant literature were made in Web of Science, PubMed, and Scopus. Most of
the 15 full-text articles which were retrieved and included in this review identified an effect of the
rehabilitation intervention on muscle synergies. However, the used experimental and methodological
approaches varied across studies. Despite the scarcity of studies that investigated the effect of
rehabilitation on muscle synergies, this review supports the utility of muscle synergies as a marker of
the effectiveness of rehabilitative therapy and highlights the challenges and open issues that future
works need to address to introduce the muscle synergies in the clinical practice and decisional process.

Keywords: motor coordination; musculo-skeletal redundancy; motor modules; neural disease; stroke;
Parkinson’s disease; cerebral palsy; multiple sclerosis; myelopathy; brain tumor

1. Introduction

Gait is a complex task that requires the coordination of multiple muscles, driven by
different cortical and spinal structures [1–4]. Neurological diseases can lead to impairments
in the neuromuscular control of gait, with an increased risk of accidental falls [5] and the
consequent reduced independence in performing activities of daily living, due to alterations
in coordination strategies and in spatiotemporal gait parameters [6]. In this scenario, gait
rehabilitation plays a crucial role, and recovering a functional gait is a fundamental step for
independent living. Gait rehabilitation may require the action of physiotherapists alone,
or it could additionally involve the use of rehabilitation devices. Gait assistive equipment
comes in a variety of forms that can be roughly classified into two major categories that
can be identified as follows [7,8]: alternative devices, which are used by patients with no
movements and do not involve exercises for injured extremities, and augmentative devices,
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employed by people with limited mobility to generate movements or workouts with a
rehabilitative purpose. Augmentative gait devices can be used on a treadmill, on foot-
plates, overground through the use of mobile robotic bases [9], or they can be stationary [10].
The quantitative assessment of gait is of great importance to characterize the stage of a
neurological pathology [11–14], to validate the beneficial effects of a therapy [15–18], or for
the early detection of conditions such as risk of fall [19], dementia [20], and Parkinson’s
disease [11]. The quantification of the motion of body segments in two or three dimensions
is frequently exploited to estimate the spatiotemporal and kinematic parameters of gait [21].
This is usually carried out through marker-based [22] or marker-less [23,24] motion capture
systems, even though the use of Inertial Measurement Units (IMUs) have started to gain
popularity [25–28]. This kind of analysis is often complemented by the measurement of
contact forces during the stance phase of gait to quantify impact forces, loading rates,
propulsive and breaking forces, and to track variations in the center of pressure [29,30].

However, the main window on the physiological mechanisms underlying the neural
control of gait is provided by electromyography (EMG), which allows to gain quantitative
information regarding muscle coordination. Earlier EMG systems used cables to transmit
recorded signals. This additional wiring represented a major limitation as it potentially
reduced the subject’s range of motion. However, over the last two decades, EMG systems
have been improved by the incorporation of technology that enables the data to be delivered
wirelessly or kept in a data logger worn by the subject to detect relevant pathological
features [31–34] or to drive robotic devices [35–43].

Concurrently, data analysis techniques have been proposed that allow us to investi-
gate multi-muscle activity in order to quantitatively characterize the coordination among
muscles acting across different joints. Muscle synergy analysis, i.e., the analysis of low-
dimensional structures through the factorization of multi-muscle sEMG recordings, has
gained popularity as it has been shown to provide relevant information regarding the neuro-
mechanics of movement for a variety of motor tasks and motor impairment in neurological
conditions [44–57]. Indeed, muscle synergies are suggested to derive from neural inputs
that drive multiple muscles [58–60]. This idea is supported by the presence of synchronized
oscillations within the firings of motor unit pools across different muscles, potentially
stemming from cortical oscillations [61–63]. The sEMG signal represents the sum of action
potentials induced in multiple muscle fibers [64,65]. Motor unit action potentials have been
modeled as electromagnetic resonant modes [66], and their spectral characteristics [67] are
known to change during fatiguing tasks [36,68,69], with aging [70], and at different muscle
temperatures [71]. The synchronous modulation of motor unit pools is thought to reduce
kinematic noise [72] and the existence of a common drive has been suggested to respect
both the size principle [73–76] and the onion skin principle [77].

Many previous studies have shown that muscle coordination during human gait
can be well described by the combination of a small number of muscle synergies and
that each synergy is associated with specific biomechanical functions of gait in various
conditions [53,78–82]. There is relatively vast literature analyzing muscle synergies in
gait in physiological and pathological conditions, indicating how changes in the muscle
synergy dimensionality and spatiotemporal structures can account for several behavioral
correlates and clinical scales as well. This body of literature collectively suggests that muscle
synergy analysis might be a good quantitative tool to investigate the neural correlates of
gait performance and functional gait recovery.

Following the acknowledgment of motor synergies as a potential tool to compactly
index motor functions [83–85], reviews have been published that examine the alteration
of synergies after neurological diseases such as Parkinson’s disease [86], stroke [87,88], or
neurodevelopmental disorders [89]. However, to the best of our knowledge, no review to
date has comprehensively examined the alteration of muscle synergies identified during
locomotion tasks after rehabilitation therapy. If muscle synergies capture the neurophysio-
logical mechanisms underlying the control of gait and provide a reliable indicator of gait
performance, they should also highlight specific changes in motor coordination during
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motor recovery. Therefore, this work aims to systematically review the literature to assess
the state of the art in research on the use of muscle synergies during a locomotion task, as a
quantitative tool to analyze the efficacy of rehabilitation therapy.

2. Materials and Methods

2.1. Search Strategy

A systematic search strategy was conducted using the electronic databases of PubMed,
Scopus, and Web of Science and performed on the 1 April 2024. The time of publication
was restricted to the interval between January 2011 and March 2024. The lower bound
of January 2011 was that of the publication date of the first study that suggested muscle
synergies as a tool for clinicians to assess healthy and pathological muscle activity [83].
As shown in Table 1, the searches involved a combination of the following words only in
the title or abstract: “Gait”, or any word beginning with “walk” or “locomot”; “Therapy”,
or “training”, or any word beginning with “rehabilit” or “neurorehabilit”; “synergy”,
or “synergies”, or “muscle coordination”, or “motor module”, or “motor modules”, or
“primitive”, or “primitives”.

Table 1. Search query used in all systematic searches (PubMed version shown in table).

Search Query
(PubMed, Scopus,

WoS)

(“gait”[Title/Abstract] OR “walk*”[Title/Abstract])
AND

(“therapy”[Title/Abstract] OR “rehabilit*”[Title/Abstract] OR
“neurorehabilit*”[Title/Abstract] OR “training”[Title/Abstract])

AND
(“muscle synerg*”[Title/Abstract] OR “synergies”[Title/Abstract] OR

“muscle coordination”[Title/Abstract] OR “motor
module*”[Title/Abstract] OR “primitive*”[Title/Abstract])

2.2. Study Eligibility: Inclusion and Exclusion Criteria

Studies were retained if the following eligibility criteria were met: (1) a pathological
condition was investigated; (2) a therapy, which was finalized to recover gait motor function,
was administered; (3) the muscle synergies of the patients were assessed before and after
the therapy; (4) studies followed clear and reproducible methodological stages [90], and
studies were excluded when the therapy was not adequately specified, the task was not
clear and reproducible, or the assessment of muscle synergies did not include the lower
limb; (5) the study was published in English in peer-reviewed journals. Reviews, meta-
analysis articles, perspective/position papers, editorials, commentaries, and conference
papers were excluded, but case reports were retained.

2.3. Study Selection and Data Extraction

In compliance with the PRISMA statement [91,92], the eligibility of potentially relevant
studies was based on title and abstract adherence to inclusion/exclusion criteria, and the
screening was conducted by three authors independently (D.B., C.D., and Angelica Quercia).
Full texts were then retrieved and evaluated thoroughly to confirm eligibility based on
the described inclusion and exclusion criteria. Conflicts were resolved by discussions
among the authors. Reference lists of the included studies were manually screened to
identify additional relevant studies. From the retained studies, we extracted the following
information and imported them into an Excel spreadsheet: First author, year of publication,
the number of patients, the assessed pathology, the collected muscle set (for details, see
Table 2), the type of task during which muscle synergies were extracted, the type of
training and its duration, the algorithm used to extract the muscle synergies and define
their number, the metrics adopted to compare synergies extracted before and after the
training were tabulated for each study. The number of patients and the number of control
participants enrolled in each study were both recorded in the spreadsheet. Additionally,
a check on the inclusion of healthy control participants, the acquired clinical scales, and
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the presence of other kinematic measures was conducted. Figure 1 shows the PRISMA
flowchart for study inclusion/exclusion.

Figure 1. PRISMA flowchart for study inclusion/exclusion.

3. Results

3.1. Selected Studies

Our search query returned a total of 563 studies, of which 26 full-text articles were
retained and further screened based on their title and abstract and the inclusion/exclusion
criteria. Manual reference list screening did not result in any additional studies. A total of
15 articles passed this further screening and were thus included in this review.

3.2. Study Characteristics
3.2.1. Patients

Most of the retained studies (9 out of 15) investigated the effect of physical gait
rehabilitation on the muscle synergies of stroke survivors [93–101]. The other studies
investigated Parkinson’s disease [102,103], cerebral palsy [104], multiple sclerosis [105],
myelopathy [106], and brain tumor [107].

Four studies enrolled a large population of patients (≥20 patients) [96,99,100,103],
while two studies were case reports [106,107], and two other studies only enrolled two
patients each [94,95].

Three studies included as control groups patients who underwent conventional ther-
apy [99], cognitive training [100], or treadmill training with body weight support [97].

Seven studies also enrolled healthy control participants to define a set of representative
healthy muscle synergies sets and activation profiles for reference data [94–97,101,103,105],
five of which selected age-matched healthy controls [95–97,103,105].

3.2.2. Task

During walking, the changes in the muscle synergies were investigated overground
in 10 studies [94,95,97–100,102,103,105,106] but also on a treadmill [96,104,107]. Both over-
ground and treadmill conditions were investigated in one study [101]. In addition to gait,
in two studies, muscle synergies were also explored during a reactive balance task [102]
and a recumbent cycling task [93].
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3.2.3. Training and Clinical Evaluation

In the 15 retained studies, patients underwent rehabilitative training for an average
of 4 weeks (range: 3–12 weeks). Rehabilitative sessions (14 on average; range: 9–36)
were administered 2 to 5 times a week, and each session lasted 33 min on average (range:
5–90 min).

In 6 out of our 15 selected studies [97–99,101,105,107], gait rehabilitative training
of the lower limbs of patients was based on robotic exoskeletons [108,109]. Lower-limb
exoskeleton-assisted training was mainly used for post-stroke patients [97–99,101], in
children with cerebral palsy [104] and in cases of thoracic myelopathy [106]. In 4 of
the selected studies, multichannel Functional Electrical Stimulation (FES) was applied
as a rehabilitation method combined with walking [94,95,107] and cycling [93]. FES is
considered an effective intervention for lower-limb rehabilitation, particularly suitable in
stroke patients, as the combination of FES with walking or cycling can enhance motor
learning and plasticity, improve locomotion ability, and strengthen lower limb muscles
and motor coordination [110,111]. In the absence of severe musculoskeletal and neurologic
pathologies that could influence gait, treadmill walking sessions can also be used for
locomotor rehabilitation [112,113]. In the retained studies, treadmill training sessions were
administered both in stroke patients [96] and patients with multiple sclerosis [105]. Finally,
in three out of the 15 studies [101,103,104], the rehabilitation protocol did not involve
an assistive device. One study [100] investigated muscle activation patterns after trunk
training in stroke patients to provide new insights in gait recovery. Another study [102],
instead, investigated changes in the neuromuscular control of gait and balance after dance-
based rehabilitation in Parkinson’s patients, specifically, an Adapted Tango (AT) dance.
Finally, a third study [103] investigated the alteration in muscle synergies after a bilateral
deep brain stimulation of the subthalamic nucleus.

Across the retained studies, participants were evaluated at baseline (T0) and after an
intervention period (T1) with the following validated clinical scales used to measure patient
motor functions: Functional Independence Measure-Motor General (FIM-M) [114]; Func-
tional Independence Measure-Locomotion (FIM-Locomotion) [114]; Functional Ambulation
Categories (FACs) [115]; The Motricity Index (MI) [116]; Fugl-Meyer Assessment, Lower
Extremity (FMA-LE) [117]; Barthel Index (BI) [118]; Functional gait assessment (FGA) [119];
the Berg Balance scale (BBS) for standing balance [120]; Mini Best test (MBT), which evalu-
ated the dynamic balance [121]; Fullerton Advanced Balance scale (FAB) [122]; Dynamic
Gait Index (DGI) [123]; the 2 Minute Walking Test (2MWT) for gait endurance [124]; the
10 m timed walk (10MTW) for gait speed [125]; time up and go (TUG) [126]; the 6 min walk
test (6MWT) [124]; Tinetti Performance Oriented Mobility Assessment (POMA) [127]; the
Brunnstrom recovery stage (BRS), which evaluated impairment of the lower limb [128];
Trunk Control Test (TCT) [129]; and Trunk Impairment Scale (TIS) [130]. The motor function
of children with cerebral palsy in [104] was evaluated following the Gross Motor Function
Classification System (GMFCS) [131] to establish the ability to walk and which lower limb
was most affected.

3.2.4. Muscles

Across the selected studies, the EMG activity was collected either unilaterally or
bilaterally. Given a set of available EMG sensors, a unilateral arrangement allows to
collect the activity of more muscles in a single leg, and therefore, it provides a finer
characterization of the locomotor patterns which may allow for a better assessment of
intra-subject variability [82]. On the contrary, a bilateral sensor arrangement allows to
investigate gait asymmetries occurring as a consequence of several diseases [132]. Six out
of the 15 identified studies collected muscle activity unilaterally [94,95,97,102,104,105], and
seven studies collected muscle activity bilaterally [93,96,98,99,101,106,107]. One study [100]
collected unilaterally the activity of six leg muscles and bilaterally the activity of one
trunk muscle (i.e., the erector spinae), while another study [103] collected unilaterally the
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activity of eleven leg muscles and bilaterally the activity of one trunk muscle (i.e., the
longissimus dorsi).

Muscle selection varied across studies. In Table 2, the number and the identity of the
muscles included in each study are reported, while in Figure 2, the percentage of studies
which included each muscle is reported. Due to the redundancy of the musculoskeletal
system [133] or its abundance [134], different studies selected different muscles with similar
function, e.g., while nine studies collected the activity only from Vastus Medialis muscle
(VM), three studies collected the activity from the Vastus Lateralis muscle (VL) whose action
is the same as the VM. Moreover, one study [103] collected the activity from the lateral and
medial hamstring without specifying whether the activity was from the semitendinosus or
the semimembranosus muscles (medial hamstring) or the short or long head of the biceps
femoris (lateral hamstring).

Figure 2. Percentage of the selected studies in which the activity of a muscle is collected.

Table 2. Muscles that were collected from the selected studies. An ‘X’ in correspondence to the
column related to a muscle indicates that the muscle was acquired. The muscles were Tibialis Anterior
(TA), Gastrocnemius Medialis (GM), Gastrocnemius Lateralis (GL), Vastus Medialis (VM), Vastus
Lateralis (VL), Soleus (SOL), Rectus Femoris (RF), Biceps Femoris long head (BFl), Biceps Femoris
short head (BFs), Semitendinosus (ST), Adductor (AD), Tensor Fascia Lata (TFL), Gluteus Maximus
(Gx), Gluteus Medius (Gd), Erector Spinae (ES), External Oblique (XO), Rectus Abdominis (RA),
Peroneus Longus (PL), Longissimus Dorsii (LD), Lateral Hamstrings (Hl), and Medial Hamstrings
(Hm). The ‘number of muscles’ column reports how many muscles were collected on a single side
(unilaterally, U) and on both sides (bilaterally, B).

Muscles

Reference TA GM GL VM VL SOL RF BFl BFs ST AD TFL Gx Gd ES XO RA PL LD Hl Hm Number

Allen et al., 2017 [102] X X X X X X X X X X X X X 13 U
Ambrosini et al., 2020 [93] X X X X X X X X X 9 B
Conner et al., 2021 [104] X X X X 4 U
Ferrante et al., 2016 [94] X X X X X X X 8 U

Ghislieri et al., 2023 [103] X X X X X X X X X X X X 12U + 1B
Jonsdottir et al., 2020 [105] X X X X X X X X 8 U
Kadone et al., 2020 [106] X X X X X 5 B

Kinugawa et al., 2022 [107] X X X X 4 B
Lim et al., 2021 [95] X X X X X X X X 8 U

Routson et al., 2013 [96] X X X X X X X X 8 B
Srivastava et al., 2016 [97] X X X X X X X X X X 10 U

Tan et al., 2020 [99] X X X X X X 6 B
Tan et al., 2018 [98] X X X X X X 6 B

Van Criekinge et al., 2021 [100] X X X X X X X 6 U + 1 B
Zhu et al., 2021 [101] X X X X X X X X 8 B
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3.2.5. Muscle Synergies Extraction

In all the retained studies, muscle synergies were analyzed within the framework
of the spatial (or synchronous) model, in which the muscle activity m of M muscles can
be represented as the linear combination of a set of N < M time-invariant modules W
modulated by time-varying activation profiles C, as follows:

m(t) =
N

∑
i=1

wi ci(t) + ε(t)

In which m(t) is a vector of EMG data samples of all the recorded muscles at time t,
wi is the i-th synergy vector, ci(t) is the synergy activation coefficient of the i-th synergy at
time t, and ε(t) is additive noise vector at time t. In all studies but one, muscle synergies
were extracted through a Non-negative Matrix Factorization (NMF) algorithm [135], which
decomposes the muscle activation data matrix M = [m(t1) . . . m(tT)], whose dimensions
are [M × T] where M is the number of muscles and T the number of time samples, into two
matrices such that M = WC+ ε, where W is an [M × N] matrix with N muscle synergies, and
C is an [N × T] matrix of synergy activation coefficients. One study [93] implemented an
algorithm, the Weighted Non-negative Matrix Factorization (WNMF) [136], that differs from
the traditional NMF as it assigns each data sample a weight (1 = EMG present, 0 = EMG
absent), to accommodate clinical data that contain poor or missing EMG channels.

The number of muscle synergies, which is a free parameter of the factorization algorithm,
was defined in all studies but one, according to the uncentered Variance Accounted For (VAF),
which measures the quality of the experimental EMG data with the extracted synergies:

VAF = 100·
(

1 − ∑t(mt − (Wct))
2

∑t(mt)
2

)

One study [103] used a centered VAF, otherwise called the coefficient of determination
(R2), defined as follows:

R2 = 100·
(

1 − ∑t(mt − (Wct))
2

∑t(mt − m)2

)

where m is the mean of the observed EMG data and retained the number of synergies at
which the R2 vs. number of synergies curve achieves the highest curvature [137].

Seven studies identified the number of synergies as the set whose VAF was higher
than 90% [93,96,97,100,102,105,106]. Three studies [94,98,99] added to the condition of VAF
> 90% a second condition, by which a new synergy, added to the identified set, did not
increase the VAF more than 5%. One study [101] exploited a ‘three-way VAF > 90%’, which
imposed that the overall VAF, calculated with all muscles through the entire gait cycle, each
of the VAF values separately calculated for each muscle throughout the entire gait cycle,
and each of the VAF values calculated with all muscles within six separate gait phases were
higher than 90%. In contrast, two studies [104,107] calculated the total variance accounted
for by one synergy from the EMG data (VAF1), and one study [95] reconstructed the EMG
signals collected from patients with four synergies extracted from healthy participants.

3.2.6. Muscle Synergy Analysis and Improvement-Related Metrics

To assess the effectiveness of the adopted rehabilitation therapy, the retained studies
relied on a set of metrics related to the spatiotemporal structure of the extracted muscle
synergies and compared their evolution along the rehabilitation process, mostly compar-
ing the T0–T1 modifications in these metrics before (T0) and after (T1) the therapy and
sometimes comparing them with the metrics of healthy participants, when available.
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• Clinical evaluation

As shown in Table 3, overall, patients improved in all clinical scales after the reha-
bilitation protocols. The most sensitive scales to clinical improvement in motor function
resulted in the Functional Independence Measure-Locomotion (FIM-Locomotion) [114], the
10 m timed walk (10MTW) for gait speed [125], and 6 min walk test (6MWT) [124]. How-
ever, only [93] investigated correlations between muscle synergies and clinical scales. The
authors found from moderate to high correlations between BBS, TCT, and motor subscale
of FIM and VAF1 of the affected and unaffected leg.

Table 3. Effect of the rehabilitation therapy on measured clinical scales.

Clinical Scales

Improved Not Improved Not Altered

Allen et al., 2017 [102] UPDRS-III, BBS, FAB, DGI,
TUG, 6MWT

Ambrosini et al., 2020 [93] MI, TCT, BBS, FIMM

Conner et al., 2021 [104]

Ferrante et al., 2016 [94] mini best test, Fugl-Meyer
motor

Ghislieri et al., 2023 [103] UPDRS-III, FAB MMSE

Jonsdottir et al., 2020 [105] 2MWT, 10MWT BBS

Kadone et al., 2020 [106] FIM motor, Barthel, FAC 10MWT

Kinugawa et al., 2022 [107] 10MWT FMA, BRS

Lim et al., 2021 [95] 10MWT BBS

Routson et al., 2013 [96] FMA DGI

Srivastava et al., 2016 [97] FMA, FGA, 6MWT, TUG

Tan et al., 2020 [99] FIM motor, FIM locomotion,
FMA lower ex

Tan et al., 2018 [98] FIM motor, FIM locomotion,
FMA lower ex

Van Criekinge et al., 2021 [100] FAC, TIS, POMA Tinetti, Barthel

Zhu et al., 2021 [101] 10MWT, 6MWT TUG

• Number of synergies

Among the analyzed parameters, the number of extracted synergies was the most
commonly adopted metric (see Table 4), as 10 out of the 15 retained studies used the number
of extracted synergies as a marker of the complexity of the modular organization [79] to
assess rehabilitation effectiveness [93,94,96,98–103,105].

Table 4. Type of rehabilitation therapy (R = robotic based, F = FES-based, O = other techniques)
and its effect of the rehabilitation therapy on muscle synergies characteristics (+: improvement
post-rehabilitation, −: no improvement post-rehabilitation, n/a: comparison not performed).

Type of
Therapy

Number of
Synergies

Spatial
Synergies

Temporal
Activations

Coordination
Symmetry

Allen et al., 2017 [102] O − + n/a n/a

Ambrosini et al., 2020 [93] F − + + −
Conner et al., 2021 [104] R + n/a n/a n/a

Ferrante et al., 2016 [94] F + n/a n/a n/a
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Table 4. Cont.

Type of
Therapy

Number of
Synergies

Spatial
Synergies

Temporal
Activations

Coordination
Symmetry

Ghislieri et al., 2023 [103] O + + + n/a

Jonsdottir et al., 2020 [105] O − − + n/a

Kadone et al., 2020 [106] R − n/a n/a n/a

Kinugawa et al., 2022 [107] F + n/a n/a n/a

Lim et al., 2021 [95] F n/a + + n/a

Routson et al., 2013 [96] O + + + n/a

Srivastava et al., 2016 [97] R n/a + − n/a

Tan et al., 2020 [99] R + n/a n/a +

Tan et al., 2018 [98] R − n/a n/a +

Van Criekinge et al., 2021 [100] O − + n/a n/a

Zhu et al., 2021 [101] R − − + n/a

No accordance was identified among studies in terms of changes in the number of
muscle synergies after the intervention. Some of the studies on stroke patients reported that
an increase in the number of muscle synergies reflected an increase in performance [94,96,100]
but other studies on stroke patients [93] and on patients with multiple sclerosis [105] or with
Parkinson’s disease [103] did not show such change after the therapy. One study even reported
a reduction in the number of muscle synergies for a subset of participants [102].

• Spatial and temporal organization

A total of 10 out of the 15 studies made quantitative assessments of the spatial composition
of the extracted muscle synergies, either by comparing their spatial structure [93–101,103,105] or
their degree of bilateral symmetry [98,99] to that of healthy individuals. The same studies also
used the temporal activation coefficients to define quantitative metrics, either by calculating the
temporal symmetry between sides or by measuring the similarity with the synergy activation
pattern of healthy controls. A subset of studies (4 out of 15) defined VAF-based metrics to
compactly indicate the complexity of muscle coordination with the VAF explained by one
synergy [93,104,106,107] or two and three synergies [106]. One study constructed specific
metrics on the synergy vectors, assessing generalizability, sparsity, and variability [102].

An increase in the complexity after rehabilitation was identified in patients with
brain tumor [107] or cerebral palsy [104] but not in stroke patients [93] or patients with
myelopathy [106]. Finally, an increase in the synergy coefficients within gait subphases was
correlated with performance increase in patients with multiple sclerosis [105].

Some neurological diseases, such as unilateral stroke, led to a kinematical asymmetry
in the lower limbs during locomotion [138], which is reflected in an asymmetry in muscle
synergies [139]. Therefore, an improvement in the synergy symmetry, which was accompa-
nied by an improvement in performance, was demonstrated by [98], or a synergy timing
symmetry, not accompanied by improvements in clinical scores, was identified by [99].

4. Discussion

The goal of the present review was to assess the state of the art of the investigation of
the effect of gait rehabilitation in patients with neurological diseases in terms of changes in
the organization and recruitment of muscle synergies. Even though muscle synergies as a
tool to investigate motor coordination was introduced over two decades ago [140–142] and
despite several studies demonstrating that neurological patients showed altered muscle
synergies with respect to healthy participants [51,86,143–146] and that synergies were
proposed as a potential candidate marker for the quantitative assessment of neurological
pathologies [143,147], only a few studies have specifically investigated the alteration of
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muscle synergies after rehabilitation. Specifically, we found only 15 studies in the last 13
years that investigated the effect of gait rehabilitation therapies on muscle synergies in
neurological patients and to what extent the changes in muscle synergies are related to
clinical improvements.

Fourteen out of the 15 selected studies reported a modification of the muscle synergies
after gait rehabilitation, and only one study [106] identified no clear effect on muscle syner-
gies. Most of the studies that involved a control group demonstrated that rehabilitation
makes the muscle synergies more similar to those of healthy participants in terms of struc-
ture. In contrast, the temporal patterns of activation of the muscle synergies identified in
patients with multiple sclerosis after rehabilitation differed from those of healthy controls
when walking at comparable speeds [105]. An improvement in the synergy symmetry [98],
or timing synergy symmetry [99], were also identified.

No accordance could be found across studies, in terms of changes in the number
of muscle synergies. While some studies on stroke patients demonstrated an increase in
the number of muscle synergies, also related to a performance increase [94,96,100], other
studies that enrolled patients with multiple sclerosis [105], Parkinson’s disease [102], or
stroke patients [93] either found no change or even a reduction in the number of muscle
synergies [102]. Moreover, an increase in the number of synergies after rehabilitation was
identified in patients with brain tumor [107] or cerebral palsy [104] but not in stroke pa-
tients [93] or patients with myelopathy [106]. Finally, an increase in the synergy coefficients
within gait subphases was correlated with performance increase in patients with multiple
sclerosis [105].

Overall, this review supports the hypothesis that modifications in the muscle synergies
can index the progression of the rehabilitation process in an interpretable and quantitatively
measurable manner.

Discrepancies were found among the studies. These discrepancies may be a conse-
quence of the investigated neurological pathologies, which differ among the studies, and
therefore may differently influence motor control and muscle synergies. Moreover, these
discrepancies may reflect the lack of standardized protocols for processing and investigating
muscle synergies and to compare them with those extracted from healthy participants.

When characterizing the modular control of locomotion in healthy subjects, four-to--
five muscle synergies are typically extracted, and they are usually related to four specific
biomechanical sub-functions along the gait cycle [79]:

- M1—a knee-hip extensor module, activated during early stance, serving as body
support and weight acceptance

- M2—a calf plantar-flexor muscle module, activated during late stance, with forward
propulsion, body support, and swing preparation function

- M3—an ankle dorsiflexion module, activated during early swing, contributing to the
ground clearance of the foot

- M4—a knee flexor module, activated during late swing, to decelerate the leg an
prepare heel strike

Despite the previously discussed large variability both in adopted methodologies and
pathological conditions across studies, few invariances could be identified regarding the
effect of rehabilitation therapy on muscle synergies. Indeed, regardless of the adopted
metric to characterize the change, all those studies showing modifications in the spatial
organization or temporal recruitment of muscle synergies after the therapy [70–73,77,78,82]
reported a modification related to the plantarflexion module M2 and/or the knee flexor
module M4, likely indicating an effect on forward propulsion and balance.

A recommendation for future research is to define standardized protocols and algo-
rithms for the characterization of synergy structures and patterns in neurological patients,
and for their comparison with healthy participants [148]. This would allow for a system-
atic characterization and comparison of the muscle synergies of patients with different
pathologies and different levels of motor impairment.
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Moreover, this review underlines the need for further research on muscle synergy
analysis in the assessment of neurological patients’ rehabilitation, before it can be fully
transferred to the clinical practice as a marker of the progression of the rehabilitation and as
a support to clinical decision making [85], which would provide clinicians and therapists
with a novel instrument to assess the efficacy of a therapy and whether and how it should
be changed, not only by analyzing movement kinematics and kinetics but also through the
lens of the underlying neural control strategies.

5. Conclusions

The present review strongly suggests that muscle synergy analysis has a very high
potential as a tool to quantitatively assess the efficacy of rehabilitation therapies in neu-
rological patients. However, it also highlights the significant lack of studies specifically
investigating the effect of physical rehabilitation on muscle synergies. In the last 13 years,
only 15 studies have examined the alteration of muscle synergies after physical rehabilita-
tion during locomotion tasks. This indicates that the potential of muscle synergy analysis
remains largely untapped as it has been scarcely used in clinical studies so far. For this
promising approach to move to the clinical practice, the scientific community working on
these topics should spend a greater effort in defining a methodological standardization
of the assessment protocols and algorithms for the extraction and description of muscle
synergies, together with the creation of an extensive publicly available database of the
synergies identified in patients with different neurological pathologies and different levels
of impairment. This would facilitate the standardization of the adopted procedures, to-
gether with the related metrics to quantify the effect of motor rehabilitation on the muscle
synergies of a patient. This would provide clinicians and physiotherapists with a novel tool
to be used as a marker of the effectiveness of therapy, as well as a source of information to
develop innovative therapies.
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Abstract: In recent years, there has been a notable increase in the clinical adoption of instrumental
upper limb kinematic assessment. This trend aligns with the rising prevalence of cerebrovascular
impairments, one of the most prevalent neurological disorders. Indeed, there is a growing need for
more objective outcomes to facilitate tailored rehabilitation interventions following stroke. Emerging
technologies, like head-mounted virtual reality (HMD-VR) platforms, have responded to this de-
mand by integrating diverse tracking methodologies. Specifically, HMD-VR technology enables the
comprehensive tracking of body posture, encompassing hand position and gesture, facilitated either
through specific tracker placements or via integrated cameras coupled with sophisticated computer
graphics algorithms embedded within the helmet. This review aims to present the state-of-the-art
applications of HMD-VR platforms for kinematic analysis of the upper limb in post-stroke patients,
comparing them with conventional tracking systems. Additionally, we address the potential benefits
and challenges associated with these platforms. These systems might represent a promising avenue
for safe, cost-effective, and portable objective motor assessment within the field of neurorehabilitation,
although other systems, including robots, should be taken into consideration.

Keywords: motion capture; head-mounted display; virtual reality; upper limb kinematics;
post-stroke; neurorehabilitation

1. Introduction

Human upper limb tasks require fine-tuned coordination of multiple joints and mus-
cles for interaction with the surrounding environment. Upper limb functions are often
impaired after a brain injury [1]. In 2017, it was estimated that approximately 1.12 million
people in Europe were affected by cerebrovascular disorders, due to ischemic or haemor-
rhagic events [2]. Post-stroke patients can manifest altered motor patterns in the contrale-
sional upper and lower limbs, due to paralysis and/or spasticity [3]. In detail, infarctions
of the middle cerebral artery affecting the primary motor cortex and the integrity of the
corticospinal tract have been associated with upper limb movement deficits (including
weakness, decreased inter-joint coordination, and diminished finger dexterity) [3,4]. Over
the last few decades, upper limb kinematic assessment has grown in popularity in a clinical
context. Indeed, it has been increasingly used as a more objective outcome, especially
in stroke patients. During robotic-assisted therapy, the use of kinematic assessment is
fundamental to monitor the patient’s progress and to tailor the rehabilitation process to
their needs. It is noteworthy that some robotic devices can perform a complete kinematic
assessment automatically, as suggested by Bonanno and Calabrò [5]. In detail, a new
category of robotic devices, known as collaborative robots, is growing in popularity in the
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field of rehabilitation. Due to their inherent safety and reliability, collaborative robots are
increasingly being explored in healthcare applications, including robotic rehabilitation and
kinematic assessment, where they can provide physical interaction with patients driven by
actuation systems [6].

The advantage of upper limb instrumental kinematic measurements, compared to
standard clinical assessments (e.g., Fugl-Meyer, Box and Block, 9-Hole Peg Test), is that
different aspects of motion can be tracked more objectively and continuously [4]. However,
the diversity and heterogeneity of kinematic assessment techniques, instrumentation,
and selected outcomes expanded along with this developing area, make it challenging
to interpret results. Moreover, the upper limb tasks comprise a wide set of activities,
including “non-contact” movements such as gestures, or “contact” movements such as
grasping activities [7]. This assessment can be performed in dedicated environments, like
camera-based motion laboratories, or using robot-based measurement systems [5,8,9].

In the literature, the most used motion capture (MoCap) systems are based on opto-
electronic technology, which is often considered as the “gold standard” because it is the
most accurate and reliable when compared to other MoCap technologies [9]. Specifically,
optoelectronic systems detect light and estimate the 3D position of a marker by triangu-
lation from multiple cameras. They involve two main categories of markers: passive and
active [9]. The passive marker system uses markers that reflect infrared (IR) light to the
cameras, e.g., the VICON (Oxford, UK) or Optitrack (Corvallis, OR, USA) systems, whereas
active marker systems contain a source of light for the sensors (often IR), provided that
they are powered. To reconstruct the motion of a skeletal segment, reflective skin markers
are placed on anatomical landmarks, and kinematics are derived from the marker position
by adapting them to a human body model [10,11]. Despite the accuracy and reliability
of optoelectronic systems, the widespread implementation of such devices as large-scale
screening tools is impeded by their costs. Consequently, their usage is confined only to
specialised clinical laboratory settings [10]. Over the past decade, the advent of novel
technologies for motion analysis utilising wearable inertial sensors has paved the way
for new approaches in clinical practice for the delivery of patient-centred rehabilitative
interventions [8,12]. Inertial measurement units (IMUs) are small devices that integrate
different multiaxial sensors, like accelerometers, gyroscopes, and magnetometers, to detect
movements. These systems are particularly popular since they have several advantages,
being low-cost, wearable, easy-to-use, settings which allow continuous monitoring of
movement both in the clinic and at home [8]. IMUs collect raw data from each integrated
sensor through on-board sensor-fusion algorithms, based on Kalman filters [13], in order
to obtain different motion parameters. Generally, these systems allow the recording of
kinematics, providing data on angular acceleration, velocity, and spatial orientation, from
different body parts, including upper limbs [8,10]. However, the main disadvantage is that
IMUs are less accurate and reliable than optoelectronic systems. In fact, IMUs estimate the
orientation of body segments which may be likely to cause drifting due to the integration
of noisy measurements [10]. To overcome this issue, there are numerous strategies allowing
the corrections of potential bias in the motion analysis. Another MoCap method consists of
the image analysis captured by one or more cameras through computer vision algorithms,
which extracts information to describe movement. These tracking systems exploit machine
learning methodologies, facilitating the recognition of human body movements, hand
gestures, and expression of the face [14].

Virtual Reality Head-Mounted Display (HMD-VR) Platforms

On the other hand, novel technologies have recently caught on in clinical settings,
like virtual reality (VR) platforms which integrate MoCap systems. Virtual reality head-
mounted displays (HMD-VR) technology offers various possibilities to track body posture.
These include specific marker positions, or a camera integrated in the helmet combined with
computer graphic algorithms to estimate hand position and gestures. VR employs real-time
rendering to generate immersive visual experiences, constantly updating images based on

176



Bioengineering 2024, 11, 538

the users’ movements within the virtual space. Another method to provide virtual feedback
is augmented reality, which combines the real world and computer-generated 3D content.
Augmented reality adjusts the ongoing perception of a real-world environment, while VR
entirely substitutes the user’s real-world environment with a simulated one. These systems
can incorporate visual, auditory, and haptic feedback (i.e., hand controller vibration) to
enhance the sense of immersion. Visual and auditory feedback are widely integrated in
VR setups, but haptic technology remains neglected, often limited to adjustable vibrating
motors found in handheld controller or wearable tracker devices. These haptic systems can
modulate intensity, frequency, and duration to enhance user experience [15]. Other devices
can be used and integrated in HMD-VR platforms to provide a wider range of haptic
vibration feedback, such as haptic gloves, vests, and whole-body suits [16,17], or haptic
force magnitude feedback [18]. However, these devices can significantly increase the overall
price of the HMD-VR system and are often prototypes and not available on the market yet.
Thanks to the gaming world, the HMD-VR has made great strides in recent years in terms
of system usability and reliability of movement estimation. With positional tracking, users
can navigate within the virtual environment along the X, Y, and Z axes, enabling not only
head rotation but also horizontal and vertical movement. In addition, hand controllers,
as well as additional trackable devices, are equipped with sensors to monitor the users’
interactions within a virtual space. The possibility of easily creating controlled virtual
experimental environments integrating different types of sensors within such platforms,
through opensource development libraries, has opened the way for complex rehabilitation
applications [19,20].

Moreover, HMD-VR are easy-to-use and low-cost systems, which allow users to
perform rehabilitation treatments for both inpatients and outpatients [21]. In the neu-
rorehabilitation context, the HMD-VR platforms were mostly used to train upper limb
functions in post-stroke patients. According to recent studies [22,23], these systems are
promising tools used to improve upper limb functional outcomes and daily living activities
in chronic post-stroke patients. HMD-VR platforms offer the possibility of performing
task-oriented movements with high degrees of realism, which could enhance gesture rel-
evance [21,24]. According to some studies, post-stroke patients reported high levels of
satisfaction, engagement, and motivation during rehabilitation treatment with VR as well
as HMD-VR, denoting an overall acceptance of the device. Despite their promising role in
the rehabilitation context though, it is still not clear if they are reliable and advantageous
systems when compared to the classical MoCap.

In this review, we aim to report the state of the art of HMD-VR used for the kinematic
analysis of upper limbs in post-stroke patients, offering a comparison between the con-
ventional MoCap and HMD-VR. Moreover, the emerging role of robots and collaborative
robots with virtual and augmentative reality has also been investigated.

Given the narrative and perspective nature of this review, we have analysed the most
relevant studies in the English language (such as studies with different designs, focusing on
the kinematic evaluation of upper limb motor tasks in post-stroke patients, using HMD-VR
compared with conventional MoCap). Finally, each article has been assessed by the authors
considering its title, abstract, text, and scientific validity.

2. Kinematics of Upper Limb Movements in Post-Stroke Patients

Differently from lower limbs, upper limbs have many degrees of freedom, allowing
subjects to perform fine movements of reaching and grasping for daily life activities
(ADL). Hand and arm movements constantly influence human ADL and sensory functions,
providing a constant interaction with the environment [7,25]. In terms of kinematics,
the upper limbs are an open kinematic chain starting in the sternoclavicular joint and
ending in finger joints [26]. Due to the specific structure of human proximal joints, only
rotational motions in these joints are possible [26]. Upper limb movements also involve
object manipulation, which entails controlling finger forces to execute specific grasp types.
For instance, when reaching for an object, the hand adjusts to its location and shapes the
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fingers to grasp it securely [27,28]. During planar reaching tasks, where the aim is to reach
a target at a set distance by moving the arm and/or forearm, healthy individuals swiftly
move towards the target. If the target is far away and the task takes longer, they may make a
secondary corrective movement based on sensory feedback (like visual cues) to adjust their
trajectory. Healthy individuals not only achieve consistent accuracy in reaching the target,
but they also adjust their movement speed to maintain a fairly constant duration [25].

Upper limb reaching or hand and arm grasping actions may be impaired in post-stroke
patients [28,29]. These patients can manifest weakness related to the inability to activate
specific upper limb muscles or segments with uncoordinated inter-joint movements [28,29].
This abnormality is caused by an irregular flexor synergy during reaching, resulting in
reduced finger dexterity for grasping and an increase in trunk movements as compensation.
Pathological flexor synergy entails abnormal muscle activation, resulting in an uncoordi-
nated contraction of elbow flexors and shoulder abductors. This phenomenon becomes
apparent during upper limb tasks necessitating fine motor control and finger manipula-
tion [25,26,28,29]. After a stroke, patients typically have slower hand movements and may
take longer to complete grasping actions. Their grip openings tend to be wider, and they
may move their hand along a longer path while performing grasping tasks. Furthermore,
they often experience reduced grip strength while grasping and lifting objects [26,30].
Stroke survivors employ various compensatory strategies to improve grasping, including
narrowing finger spread and adjusting finger and hand joints. These adaptations aim to
enhance their ability to grasp objects effectively after stroke [4,29].

In this sense, functional assessment of the upper limbs is fundamental to plan re-
habilitation and treatment of post-stroke patients according to their needs. By or large,
physiotherapists are used to administering clinical scales and tests to assess upper limb
functionality. For example, the Fugl-Meyer Assessment (FMA) scale is often administered
to patients with stroke to evaluate functional abilities of the shoulder, elbow, wrist, and
hand [7]. Despite its large use in clinical practice, this scale does not allow for sufficiently
discriminating physiological and the above-mentioned pathological movement behaviour.
To this aim, new emerging technologies are growing in the field of neurorehabilitation. In
recent years, kinematic analysis has increasingly been used to objectively assess upper limb
motor function after stroke and evaluate therapy effectiveness [4,31]. Unlike gait analysis,
upper limb kinematic assessment does not have specific evaluation protocols, which makes
the kinematic assessment more difficult. Previous studies have used different tasks and
MoCap systems to illustrate the kinematic features of upper limb motor impairments
following stroke (see Table 1).

These tasks often simulate ADL such as drinking, carrying, reach-to-grasp motion, or
playing games. The Second Stroke Recovery and Rehabilitation Roundtable (SRRR2) [32]
suggested that post-stroke patients with moderate to severe upper limb impairments may
benefit from simpler point-to-point tasks, also known as two-dimensional (2D) tasks [25,31].
Examples of these tasks include Hand-to-Mouth (HTM) [33], Finger-to-Nose [34], or LIGHT
tasks [35]. This recommendation aimed to make kinematic analysis more accessible and
valuable for these patients. For example, Huang et al. [36] evaluated the HTM in post-stroke
patients. They analysed kinematic variables such as movement smoothness, movement
velocity, movement trajectories, and the range of movement (RoM) of trunk and upper
limb joints, using a 3D MoCap system. Similarly, Shwartz et al. [4] conducted a kinematic
motion analysis of the upper limbs in post-stroke patients. They examined parameters
including trunk movements (e.g., displacement), shoulder, forearm, and wrist movements,
as well as movement time, peak velocity, the number of velocity peaks (NVP), and spectral
arc length (SPARC).
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Table 1. The main kinematic features extracted from motion analysis of the upper limb in post-
stroke patients.

Kinematic Features Description

Path length ratio

Path length ratio (PLR) in upper limb kinematic analysis is a quantitative measure used to assess
movement efficiency. It is calculated by dividing the actual path length travelled by a specific point
or segment of the upper limb during a movement task by the shortest possible path length for the

same movement. Higher PLR indicates less efficient movement patterns.

Joint excursion
Joint excursion consists of the angular RoM experienced by a specific joint during a movement task.
It is typically measured in degrees or radians and provides insight into the flexibility, mobility, and

coordination of the joint during the execution of a motor task.

Smoothness
Smoothness in upper limb kinematic analysis is a quantitative measure used to assess movement

quality during reaching. There are several methods to measure movement smoothness. One of these
is calculated as the number of peaks detected in the velocity profile.

Movement time Movement time refers to the duration taken to complete a specific movement task. It is a crucial
measure in assessing motor control, coordination, and efficiency of upper limb movements.

Movement velocity

Movement velocity is calculated by dividing the displacement of the point or segment by the time
taken to complete the movement. It provides information about the speed or pace of movement

execution, and it can be used to understand motor performance, coordination dynamics, and
task difficulty.

Peak velocity
Peak velocity refers to the maximum instantaneous velocity achieved by a specific point or segment

of the upper limb during a movement task. It represents the highest speed attained during
the movement.

Number of velocity peaks
The number of velocity peaks refers to the count of distinct instances where the velocity of a specific
point or segment of the upper limb reaches a local maximum during a movement task. Each velocity
peak corresponds to a moment of rapid acceleration or deceleration within the movement profile.

Choi et al. [37] measured upper limb parameters in the sagittal, coronal, and transverse
planes. Indeed, the authors also considered the thoracic angles and RoM in tilt obliquity,
and rotation at the four points between each phase. Also, angle deviations for each joint
angle were calculated during the task to estimate the degree of movement deviation,
comparing them with healthy controls. On the other hand, Guzik-Kopyto et al. [38]
identified 16 parameters, encompassing maximum joint angles and motion ranges of the
joints, spinal kinematics to detect compensatory movements, and the velocity of movements
to assess upper limb physical efficiency and capability.

Aprile et al. [39] assessed the kinematics of drinking activity in post-stroke patients,
examining parameters like arm elongation, trunk forward inclination, and trunk axial
rotation to understand their impact on reaching movements. In addition, the authors
calculated the RoM of the elbow during the reaching tasks, and measured mouth forward
displacement during specific phases to determine trunk inclination.

Kinematic analysis is vital in post-stroke patients for quantitatively detecting move-
ment alterations, including compensations and pathological synergies. It also enables the
monitoring of progress following rehabilitation interventions. In addition, it could influ-
ence treatment decisions and maximise recovery. This may also improve the confidence of
patients in the efficacy of the interventions during the chronic stage.

3. Technologies for Motion Capture: Optoelectronic, IMUs, and Vision-Based Motion
Tracking and Other Solutions

In this paragraph, we aim to describe the most common MoCap systems used for
kinematic motion analysis. We have explored different types: optoelectronic, IMU, and
vision-based motion tracking, as well as robotic devices and HMD-VR, pointing out their
technical features and differences (see Table 2).
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Table 2. Shows a schematic description of the advantages and limitations of HMD-VR systems relative
to conventional MoCap and robot-based systems used for upper limb kinematic motion analysis.

MoCap
System

Portability Markerless
Easy-to-

Use
Tele-

Monitoring
Untethered Rehabilitation Cost

Optoelectronic No No No No No No High

IMU Yes No Yes Yes No No Medium

Vision-based Yes Yes Yes Yes No No Low

Robot No Yes No No No Yes High

HMD-VR Yes Yes Yes Yes Yes Yes Low

Optoelectronic devices represent a valid instrument for upper limb functional assess-
ment providing a valid tool for 3D kinematic motion analysis [9,35]. These systems use
light to estimate the 3D position of a marker by triangulation from multiple cameras, and
they can use active and passive markers [9,10]. The latter are covered by photo-reflective
materials that reflect the infrared light, while active markers emit IR light (see Figure 1A).

 

Figure 1. Conventional MoCap systems used for kinematic analysis of upper limb. (A) An example
of a commercial optoelectronic MoCap system setup (Optitrack Flex 13 Motion Capture Camera [40]),
which consists of several IR cameras where subjects are instrumented with reflective markers; (B) one
of the subjects, who is wearing one of the commercially available IMU Mocap systems (Xsens
Awinda [41]); (C) VBMA key points detection using an OpenPose pose estimation algorithm through
a camera [42].

The 3D kinematic analysis of the upper limbs using optoelectronic devices can vary
significantly in terms of marker sets, kinematic models, analysed functional movements,
and reported kinematic outcomes. By or large, two sets of markers are used: anatomical or
cluster marker sets. The former is placed in correspondence with body landmarks to build
kinematics models, as anatomical landmarks are essential to define the local coordinate
systems of a body segment (e.g., scapula, humerus, and thorax) in static conditions. On the
other hand, cluster marker sets are placed in different body segments. These markers are
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calibrated to correspond to specific anatomical landmarks, facilitating accurate tracking of
movement [43].

Motion recording systems based on inertial sensors allow the estimation of movement
and orientation of specific body segments [8] (see Figure 1B). These systems typically rely
on data from integrated accelerometers, gyroscopes, and magnetometers within compact,
lightweight devices attached to the targeted body region. Accelerometers register velocity
alterations along the sensor’s three axes, enabling estimation of velocity and spatial dis-
placement through integration processes. Gyroscopes measure angular velocity, enabling
tracking of orientation changes, while magnetometers detect magnetic field strength and
direction, providing absolute orientation relative to the Earth’s magnetic field [8,10].

Position estimation based on inertial systems is not a direct process; indeed, it begins
with estimating velocity from acceleration and then proceeds to estimating position from
velocity through a double integration process.

This technique is known as dead reckoning (path integration), a navigation method
used to estimate the current position based on a previously determined one, utilising speed,
elapsed time, and course direction [44].

Commercial systems may comprise a single sensor, like the BTS G-WALK (BTS Bio-
engineering S.p.A., Milan, Italy), or multiple sensors like Xsens Link system (Movella
Technologies, Enschede, The Netherlands), contingent on application requirements. For
example, a single sensor positioned at the sacral level, combined with mathematical models,
is adequate for evaluating walking, running, and jumping performances [10].

Conversely, complex kinematic analyses, like upper limb reaching tasks that involve
numerous degrees of freedom, require the integration of multiple sensors and more sophis-
ticated mathematical models [45].

Sensor placement typically involves specialised suits or elastic bands tailored to the
target segment. Inertial systems are considered feasible also in post-stroke patients, as
demonstrated by Held et al. [46]. To collect kinematic data, these authors used an Xsens
full-body motion capture suit. In particular, IMUs registered kinematic parameters of
movement during clinical assessment, both at the hospital and in home settings. This
aspect is extremely advantageous because IMUs systems allow for the quantification of
kinematic analysis outside a laboratory environment [8,28].

However, when comparing IMUs to optoelectronic systems, they are considered
less accurate. This is because they do not directly record position (unlike optoelectronic
systems); instead, they estimate it from acceleration [47].

However, when comparing IMUs to optoelectronic systems, they are considered less
accurate. Secondly, IMU systems notably suffer from drift accumulation which leads to
gradual change or offset in their output readings over time. This drift can be caused by vari-
ous factors, including temperature changes, aging of internal components, imperfections in
manufacturing, and electronic noise. Thirdly, metal objects in the evaluation environment
may cause electromagnetic interference and significant distortions. Furthermore, conduct-
ing precise analyses involving multiple joints often necessitates the use of several sensors.
However, due to the finite resolution and dynamic range of accelerometers, measurements
of extremely small or large accelerations may not be reliable. [10,47]. On the other hand,
IMU systems, as outlined in Table 2, provide significant advantages. They offer large
capture volume capabilities and are portable, lightweight, and wireless. Additionally, they
are adaptable to various environments, including outdoor conditions [48,49]. They boast
cost-effectiveness and minimal recording latency, facilitating real-time applications. This is
why they are often used for recording in real-time situations. In post-stroke patients, Nie
et al. [50] analysed wrist reaching movements, comparing optoelectronic and IMU devices.
The authors found that the mean error between the two systems was 0.09 ± 1.81 cm.

Moreover, another branch of MoCap is revolutionising the field of movement analysis,
such as vision-based motion analysis systems (VBMA). VBMA is a type of markerless
motion capture, which extracts information from subsequential images to describe move-
ment [10]. Generally, this type of MoCap uses cameras with high resolution to ensure high
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accuracy. Hence, these tracking systems incorporate cameras or camera arrays to facilitate
the recording of human body movements. Subsequent application of computer vision and
machine learning techniques enables the capture of gestures of the hands and expressions
of the face [14].

Significant implementations of these technologies include software libraries like Me-
diaPipe [51], MoveNet [52], and OpenPose [53] (see Figure 1C). These libraries empower
developers to cover a wide area of the image and track multiple individuals simultane-
ously, with numerous points, reaching up to 500, and including finger and facial features.
Technical evaluations indicate that fast movements or considerable distances from the
camera can cause a notable decline in the accuracy of segment recognition. This often
leads to incorrect delineation of skeletal nodes. A significant limitation arises from the
inability of a single camera to accurately establish the third coordinate of points (along
the Z-axis), which makes it impossible to determine the distance between the camera and
the object. Nonetheless, these limitations may be less impactful in certain musculoskeletal
rehabilitation exercises, particularly those involving simple movements along one or two
axes. Alternative solutions such as camera arrays, specialised cameras equipped with depth
sensors or stereo capabilities provide opportunities for capturing the necessary data on
the positioning of body parts [14,54]. According to Faity et al. [55], the Kinect, a device for
VBMA, was reliable in assessing trunk compensations, hand range of motion, movement
time and mean velocity with a moderate to excellent reliability, in post-stroke. In contrast,
this system did not show the same accuracy in estimating elbow and shoulder range of
motion, time to peak velocity, and path length ratio.

Other Technologies for Motion Capture: Focus on Collaborative Robots

Beyond conventional MoCap, other technologies can perform an objective and quan-
titative kinematic motion analysis, such as robotic devices. In fact, these technologies
are commonly used for rehabilitation purposes, but they also can be translated to both
analyse the patient’s limb trajectory and accurately register spatial–temporal parameters
of movement, collecting a large amount of data. These devices may be characterised by
an end-effector attached to a set of arms connected by proper joints. Thanks to kinematic
calculation methods and integrated measurement devices, the position of the end-effector
or the arms can be measured [5]. In particular, robots integrate measurement devices, called
encoders, which record joints angular deviations through optical, mechanical, or magnetic
technology. These devices provide a reliable and objective motion analysis, also during
rehabilitation training. For example, some authors [56–58] evaluated the range of joint
upper limb movements, movement velocity, accuracy, and smoothness in active training,
using robotic devices (i.e., Armeo Power, Armeo Spring).

Moreover, within rehabilitation, robotic devices can play pivotal role in upholding and
overseeing the quality of users’ movements, which is essential for customised treatment
effectiveness. Consequently, robot-assisted therapy is gaining attention as a method for
addressing motor function issues, particularly in the upper limbs, facilitating repetitive,
high-intensity training while ensuring movement precision [59–61]. Incorporating robots
can also diminish the necessity for continuous, hands-on supervision by therapists, as they
can automate tasks and track the speed and accuracy of movements continuously [59–61].
Collaborative robots, called also cobots, are a small class of industrial robotic devices
able to reduce human effort and minimise the risk of high-velocity impacts or injuries
by collisions. In general, cobots can be differentiated from traditional robots by their
flexible characteristics and safety features, which are provided by sensor-based control
methodologies [62]. Additionally, these systems can use augmented reality, and may be
customised for each patient.

Some authors [63,64] used cobots for both rehabilitation and motion evaluation pur-
poses. In fact, all the data from the instrumented robot arm is available and the process
can be monitored with accuracy. The system can also integrate decisions on increasing the
difficulty of the training and its progress in order to motivate the patients. For example,
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Kyrkjebø et al. [63] used an industrial cobot (UR5e) as a rehabilitation tool for upper limb
training in post-stroke patients. The authors found that this device is feasible, since the
robot can be customised to execute a wide range of movements suitable for the treatment
process. In addition, the feasibility of cobots is enhanced when it is combined with accurate
force and torque measurements.

Reinkensmeyer et al. [64] used a lightweight exoskeleton (Pneu-Wrex) to train upper
limbs in post-stroke subjects, allowing a wide RoM of the arm in a 3D space by incorporating
pneumatic actuators to generate active forces. In particular, the robot constantly monitored
the assistance the patient needed to achieve the current task, and then provided slightly less
assistance than the estimated amount. In this way, post-stroke subjects were encouraged to
make more effort, improving their motor skills. Rodrigues et al. [65] combined cobots with
augmented reality.

This work proposes grouping a collaborative robot with one specific augmented reality
equipment to create a rehabilitation system where some gamification levels might be added
to provide a better and more motivating experience to patients.

To date, studies on robotic devices have mostly focused on helping patients with
neurological disorders improve their motor skills and functional recovery. However, the
potential role of robots, regarding cobots, in the growing field of motion analysis deserves
further investigation.

4. Benefits and Challenges of Virtual Reality Head-Mounted Display Platforms

Given the remarkable diversity observed in literature regarding the technology used,
the upper limb motor tasks performed, and the kinematic metrics analysed, specific recom-
mendations have been developed. These recommendations aim to establish standardised
methods for assessing upper limb kinematics after stroke [33]. However, in recent years,
an increasing number of motion analysis technologies have become commercially avail-
able, such as HMD-VR, which have different characteristics and features that have not
yet been fully investigated in the field of rehabilitation [19]. In this paragraph, we have
shed some light on the benefits and challenges of the different types of HMD-VR platforms
compared with conventional marker-based MoCap systems, since they are considered as
the “gold standard”.

HMD-VR platforms, which are portable and low-cost, serve dual purposes: motor
training and objective kinematic analysis of the upper limbs (see Table 2). HMD-VR plat-
forms integrate validated technologies such as optoelectronic, IMUs, and VBMA for motion
tracking to estimate the user’s position in virtual space [20]. Obtaining a good estimate of
the user’s position is necessary to move and interact within VR environments. In HMD-VR
platforms, the environment is displayed within the helmet, and the view of the physical
world is completely obscured. Typically, these systems use head and hand position tracking
for most applications. More complex applications may also require tracking of other body
parts using multiple sensors or integrating data within biomechanical models [66]. In detail,
HMD-VR incorporates various technical features to enhance the user’s experience. These
include high-resolution displays for detailed visuals, wide fields of view for immersion, and
high refresh rates for smooth motion. Tracking technology monitors the user’s head move-
ments and position, while comfort features like adjustable straps and lightweight designs
ensure prolonged use. Built-in audio systems or support for external headphones provide
spatialised audio, and connectivity options enable interaction with external devices. Addi-
tionally, some HMDs come with handheld controllers and additional wearable trackers to
interact with the virtual environment and record kinematics. Adjustable straps positioned
on body segments enable recording of paretic limb motion without requiring the user to
hold the controllers. These features collectively contribute to the performance, comfort, and
immersion provided by HMDs in VR applications [67]. Moreover, these systems should
possess adaptability for diverse settings and pathologies, as well as scalability features.
Specifically, HMD-VR systems exhibit adaptability, providing portability, integration with
other technologies (such as sensors and computers), interactivity via hand gestures, voice
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commands, and motion controllers, as well as comfort and ergonomic features (including
adjustable headbands, cushioned padding, and lightweight materials). It is noteworthy
that the adaptability of HMD-VR as a treatment device for other neurological patients
has already been already demonstrated for use in treating Parkinson’s disease [68] and in
traumatic brain injury [69].

In addition, HMD-VRs offer scalability features, related to the following: (i) HMD-VR
systems (e.g., these systems allow switching from one HMD-VR to another); (ii) degrees
of VR (e.g., visual quality and latency which depend on the type of feedback and the
desired performance); (iii) numbers of collaborators (e.g., numbers of users connected
simultaneously in the same VR environment). However, it is not a common practice
nowadays to use and interact with multiple users within VR, probably due to a lack of
appropriate haptic feedback; (iv) the number of recorded objects/joints/limbs is based on
the type of technology (e.g., in HMD-VR outside-in, the number of recorded objects depends
on the number controllers/trackers presented in the scene and integrated within the device;
however, in HMD-VR inside-out tracking, additional controllers (marker-based) need
integration, or complex mathematical models (markerless) must be employed, ensuring
they remain within the camera’s field of view) [70].

A promising trajectory in motion analysis lies in the direction of a fully automated,
non-intrusive method. Such an approach has the potential to represent a significant ad-
vancement for both research and practical applications within the domains of biomechanics
and neurorehabilitation [19,21]. Nevertheless, most clinical studies have investigated the
effects of the HMD-VR platform as a tool for rehabilitation intervention, due to its enriched
and controlled environment [19,21]. Relatively little attention has been directed towards the
potential utility of HMD-VR as kinematic measurement devices. Notably, only a handful of
studies have examined the kinematic accuracy of HMD-VR in comparison to conventional
MoCap systems [66,71], and even less research has investigated this issue in post-stroke
patients [50,72].

Nowadays, there are different methods that rely on different technologies to track the
user’s position: outside-in (Figure 2A) and inside-out (Figure 2B) [10,66].
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Figure 2. HMD-VR platforms. (A) An outside-in HMD-VR platform (HTC Vive, HTC Europe Co.,
Ltd., Slough, Berkshire, UK). This system consists of an HMD (1), 2 controllers (2), 2 trackers (3),
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2 base stations or “lighthouses” (4). (B) An inside-out system (Meta Quest 3, Meta Technologies
LLC, New York, NY, USA), which simply consists of an HDM (1) with integrated cameras (2) and
2 controllers (3). (C) Three-dimensional hand model representation developed with Unity [73]
software (version 2023.2.1f1) and the device’s software development kit (Meta XR Core SDK, version
65.0) [74].

The first systems commercially available have outside-in technology; that is, they
allow the position of the HMD (Figure 2A, 1) and handheld controllers and wearable
trackers (Figure 2A, 2, 3) to be estimated through external cameras or sensors (Figure 2A, 4).
These systems, such as the HTC Vive (HTC Europe Co., Ltd., Slough, Berkshire, UK) or
the Oculus Rift (Oculus, Irvine, CA, USA), integrate information from external cameras
with IMUs placed inside the wearable devices, allowing reliable and accurate estimation
even in large working environments [24]. The IR light-sensitive cameras rely on optical
technology to estimate the position of a given set of markers that is placed on the HMD or
controller. Typically, two “lighthouse” station bases emit flashes from an IR LED array at a
fixed frequency, along with vertical and horizontal lasers sweeping in both horizontal and
vertical directions across the room. By analysing the sequence in which the photosensors on
the HMD and controllers receive these laser sweeps, the position of the tracked devices can
be determined [66]. Since the external base stations are placed in stationary locations, the
estimated position of the tracked objects depends on the lighthouses. Indeed, a calibration
procedure is required to set system components and achieve reliable and accurate mea-
surements. The tracking volume depends on the type and placement of the base stations.
Considerable tracking spaces can be achieved up to a maximum size of 7 m × 7 m. For
object tracking, it is only necessary that the objects are within the tracking volume of the
base stations. The data stream from the HMD-VR platforms reaches the PC through a cable.
Graphics processing is then carried out by the PC, which is responsible for updating the
virtual scene [75].

On the other hand, inside-out systems have been gaining popularity in recent years,
since their features are more suitable in the field of gaming and entertainment than the
outside-in systems. First, the main difference lies in the fact that in the inside-out systems,
the camera is not located externally but physically inside the HMD (Figure 2B, 2) [75].

Two different types (i.e., marker-based, and markerless) of tracking objects modalities
are possible within inside-out systems. In particular, when the application requires a
controller to interact with the VR environment, the same technology of outside-in systems,
based on IR and IMU, is used. However, in contrast to outside-in systems, inside-out
systems do not rely on external cameras or base stations to detect controller position.
Instead, in these cases, the IR LED in the controllers is detected by HMD cameras, which
integrate this information with data from multiple IMUs placed on the controllers [76]. The
inside-out systems also allow the user to interact with the VR environment using hands
and without any markers [77]. A combination of computer vision algorithms, including
visual-inertial mapping, place recognition, geometry reconstruction, and cameras placed
on the HMD, can be employed to estimate the position and gesture of the hands [72].
Position and gestures are extrapolated from the recorded images through the integration
of stereoscopic information obtained from the cameras and VBMA [14], as shown in
Figure 2C. For example, in Figure 2C, hand pose and position, extrapolated from recorded
images, are shown through a 3D model representation. This 3D model representation
was developed with Unity (Unity Technologies, San Francisco, CA, USA) [73] software,
which is one of the most popular VR environments development software. In addition,
Unity software allows 2D and 3D VR environment developments on different platforms,
like desktop, mobile, augmented, and virtual reality. To aid and facilitate multi-platform
content development, different tools such as the software development kit (SDK) and
specific open source software, like SteamVR (Valve Corporation, WA, USA) [78], provide a
wide set of libraries.
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Regarding the tracking volume, significant differences are evident among the different
types of HMD-VR systems. In inside-out devices, the tracking volume is limited by the
visual space of the cameras that are on the helmet. Therefore, the volume is dynamic and
restricted when it is compared to outside-in systems. Objects can therefore be tracked if
they are within the field of view of the cameras [79]. If hands are beyond the camera’s field
of view, tracking becomes unfeasible, except in marker-based situations where position
estimation is still achievable, albeit with less reliability and for a limited duration, solely
relying on IMUs. (see Figure 3).

Figure 3. Tracking systems for HMD to estimate upper limb motion. Figure shows motion tracking
technology exploited by HMDs to estimate upper limb (end-effector) position.

These systems allow untethered, i.e., unconstrained configuration [80]. All process-
ing of the virtual scene and updating of object positions within the room as well as the
viewpoint itself, are handled directly by the HMD. Alternatively, when high graphical
or computational demands are present, this processing can be offloaded to a PC via ca-
ble. Given that, both HMD outside-in and inside-out present different characteristics and
meeting points, which are all displayed in Table 3.

Table 3. Table shows the differences/meeting points between outside-in and inside-out, both marker-
based and markerless.

Features Outside-In
Inside-Out

(Marker-Based)
Inside-Out

(Markerless)

Portability � � �
Untethered � � �

Hand gesture � � �
HMD field of view tracking � � �

External field of view tracking � � �

Considering the aforementioned aspects, HMD-VR platform and conventional Mo-
Cap systems differ for tracking performance accuracy and precision. Some authors have
compared these technologies in both healthy and post-stroke patients (see Table 4).
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Table 4. Description of the most significant studies evaluating accuracy of HMD-VR for upper limb
position estimation.

Study
Reference

MoCap Systems
Comparison

Performed Task Parameters of Precision/Accuracy Kinematic Assessment

HMD Outside-In

[50]

IMUs and HMD VR
sensor (Vive) compared

with Optoelectronic
system (Vicon)

Wrist position, during
reaching tasks, with

respect to the shoulder

Compared to a traditional optical
tracking system, both methods

accurately tracked the wrist during
reaching, with mean signed errors of
0.09 ± 1.81 cm and 0.48 ± 1.58 cm

for the IMUs and Vive, respectively.

Normalised mean
endpoint speed
(Smoothness)

[66] HTC Vive HMD and
Vive tracker Reaching tasks

HTC Vive headset and Vive Trackers
showed that both can track joint

rotation and position with
reasonable accuracy and a very low

end to latency of 6.71 ± 0.80 ms.

Joint rotation
and position

HMD Inside-Out Marker-based

[81]

HMD (Oculus Quest 2)
compared with
Qualysis optical
capture system

Upper limb rotational
and translational

movements

The results showed a mean absolute
error of 13.52 ± 6.57 mm at a

distance of 500 mm from the HMD
along the x-direction. The maximum

mean absolute error for rotational
displacements was found to be

1.11 ± 0.37◦ for a rotation of 40◦
around the z-axis.

Translational and
rotational movement

[71]
HMD (Oculus Touch

v2) controller
compared with IMU

Flexion–extension
movement of the

forearm.

The level of agreement between the
measurements of these devices was
0.999 with a 95% confidence interval

(ranged from 0.996 to 1.000). The
accuracy degrades at flexion values

between 70◦ and 110◦, peaking
at 90◦.

Range of motion of
elbow in the
sagittal plane

HMD Inside-Out Marker-less

[72]

HMD (Oculus Quest 2,
Meta) compared with
Optoelectronic system

(Optitrack).

Reaching
Maximum distance: mean

slope = 0.94 ± 0.1; peak velocity:
mean slope = 1.06 ± 0.12).

Peak velocity and
hand position

For example, Nie et al. [50] evaluated the tracking accuracy (0.48 ± 1.58 cm) of the
wrist during the reaching task in post-stroke optoelectronic, outside-in HMD-VR. On the
other hand, some authors compared the tracking performance of inside-out marker-based
HMD-VR with optoelectronic systems. For example, Carnevale et al. [81] tracked trans-
lational (mean absolute error of 1.35 ± 0.66 cm) and rotational (mean absolute error of
1.11 ± 0.37◦) shoulder movements. Also, Jost et al. [82] analysed positional data to deter-
mine the translational and rotational accuracy of the HMD (0.17 ± 0.07 cm, 0.34 ± 0.38◦)
and controllers (0.44 ± 0.29 cm, 1.13 ± 1.23◦). Similarly, Monica and Aleotti [75] found
an average translation error for the HMD of about 1.83 cm and an average rotation error
of 0.77◦.

Casile et al. [72] evaluated upper limb movements in post-stroke patients, comparing
the inside-out markerless HMD-VR with optoelectronic marker-based MoCap. In partic-
ular, the authors found a slope close to 1 (maximum distance: 0.94 ± 0.1; peak velocity:
1.06 ± 0.12) from a linear regression analysis of peak velocity and hand positional data.

Furthermore, other authors compared the tracking performances of HMD-VR inside-
out markerless platforms with IMUs. For instance, Trinidad-Fernandez et al. [20] calculated
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the absolute error of HMD (0.48 ± 0.09◦), while Rojo et al. [71] compared controllers’
tracking accuracy to measure the elbow’s motion in the sagittal plane (intra-rater reliability
of 0.999, with a 95% confidence interval).

Moreover, there is another issue to be considered for the implementation of HMD-
VR in current clinical practice that is referred to regulatory considerations. In fact, CE
marking indicates that a product has been assessed by the manufacturer and deemed
to meet European safety, health, and environmental protection requirements. While this
process is relatively short worldwide, in Europe, new laws have complicated this pathway.
Obtaining a CE marking is a long and complex path that initially requires the recognition
of the device as a medical one, and the Medical Device Regulation must be applicable. So
the path to CE marking is long, time-consuming, and money-consuming, and this could
hinder investments in innovation systems, like HMD-VR, for rehabilitation [83].

On the other hand, the European Union is allocating sustained funding for rehabilita-
tion technologies, displacing private investments while contributing to the reconstruction
of a more environmentally friendly, technologically advanced Europe. The World Health
Organization (WHO) acknowledges the significance of health financing as a vital tool in
advancing objectives such as enhancing accessibility, shielding against financial burdens,
and facilitating the delivery of high-quality services. The WHO proposes that health financ-
ing strategies can be leveraged to advance these objectives specifically for rehabilitation
services, thus allowing access to new technological devices [83].

5. Discussion

In this perspective review, we primarily aim to highlight the benefits and challenges
of the different types of HMD-VR for the motion analysis of upper limbs in post-stroke
patients, as compared to conventional MoCap systems. We identified the most used
tracking technologies in clinical practice, encompassing their main technical features and
comparing them to the novel HMD-VR. Despite the wide range of literature about the use
of optoelectronics and IMUs for the motion analysis of upper limbs [8,29,48,49], few studies
have, to date, dealt with HMD-VR technologies [50,66,72,81,82]. It seems that HMD-VR
has been largely used as a tool for rehabilitation of upper limbs [19,80], but its potential
use for motion analysis is still overlooked. Some authors used HMD-VR to assess visual
neglect and motor performance in patients with Parkinson’s disease, demonstrating that
HMD–VR allows instrumental quantitative and objective measurements [84].

In the context of upper-limb rehabilitation, reliable motion tracking is essential for
effective rehabilitation [28]. In particular, hand tracking has a significant impact on the
interaction between the patient and the virtual targets. Indeed, these systems should be
able to recognise the individual differences among the different types of grips and range of
movement of each individual patient [4,29,35]. Another point is that the VR rehabilitation
systems must be able to record all data generated during the performance of the exercises.
These data allow therapists to objectively assess the patient’s progress over time.

5.1. Benefits and Challenges of HMD-VR in a Neurorehabilitation Context

Differently from conventional tracking systems, HMD-VR platforms exploit the ben-
efits of VR. They offer simultaneous task-oriented training and assessment within a con-
trolled and safe environment that closely resembles real-world scenarios. Therefore, pa-
tients can perform ADL (cooking, driving, etc.) without any risk, in the simulated scenarios,
through different levels of difficulty for each task [19]. A key benefit of using HMD-VR for
motor assessment is the motivation of the patients. As already stated by Saldana et al. [19],
these systems increase the patients’ motivation and engagement during rehabilitation tasks.
Fostering patients’ intrinsic motivation to actively participate in the therapeutic process
is especially important, particularly when conventional methods may lead to boredom or
lack of interest [85]. The available studies [22,85,86] on neurorehabilitation indicate that
HMD-VR exhibits the potential to enhance tailored assessment and intervention methods
by engaging patients within an immersive virtual environment. According to different
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authors [22,36,86,87], HMD-VR can be an effective tool to improve upper limb motor out-
comes and kinematic factors, as well as ADLs, in post-stroke patients. In particular, De
Giorgi et al. [88] used HMD-VR to perform virtual art therapy, which remarkably promotes
the autonomy of post-stroke patients in their ADLs and upper limb functioning, in terms
of muscle strength and pinching.

Furthermore, HMD-VR platforms were perceived as easy to use, and user-friendly
by post-stroke patients. Some authors reported high levels of usability, and adherence to
the treatment [87,89], which could have positively influenced their intention in using the
VR exercise system. In this way, the authors enable multisensorial stimulation, involving
auditory, visual, and tactile feedback, to promote patients’ engagement.

To enhance active participation and adherence to the treatment, Rodrigues et al. [65]
proposed a prototype of combined augmented reality interface with collaborative arm
robot. This integrated method, combining augmented reality with a robotic arm, enables
the creation of novel user experiences by harnessing gamification principles. These include
introducing challenging scenarios, implementing reward systems, and even encouraging
users to surpass their previous high scores. Collaborative robots are growing in popularity
as translational devices, and they can be used as a valid and alternative to VR tools,
especially in those patients suffering from cybersickness. In rehabilitation, they can be
used in active or passive mode. In active mode, they can guide the patients in the early
stages when they need to learn (relearning mechanism). Gradually, they can be used in
passive mode where the patients are guiding the robot arm. In addition, they also provide
kinematic information about a patient’s performance [90].

Like any other therapy, rehabilitation with HMD-VR has its limitations and challenges.
In fact, it should be also considered that these systems can elicit cybersickness (including
dizziness, headaches, disorientation, and fatigue) as well as side-effects which may limit the
usability of HMD-VR. Some studies have shown that side effects tend to get worse in full VR
immersion, having a negative effect on static balance [91]. According to Caserman et al. [66],
some participants reported cybersickness, such as dizziness, nausea, or a headache, while
wearing an HMD for a longer time. Another side-effect that could be elicited by immersive
VR is the loss of visual contact within the environment and rehabilitation setting (including
physiotherapists), with potential negative consequences for patients’ psychological state.

Despite the limited evidence on the side effects of HMD-VR, this must be considered
when choosing the type and the duration of rehabilitation for a neurological patient. In
addition, it should be considered that post-stroke patients may suffer from psychological
conditions, like anxiety and depression, which could overload the sickness effects provided
by the VR. This is the case when it is recommended to use other devices, including robots
and cobots. However, a previous case study [92] reported that rehabilitation in an immer-
sive VR environment, in a post-stroke subject, was effective in improving psychological
symptoms. In this sense, the authors spelt out the use of immersive VR as a promising
device for the of psychological post-stroke symptoms, including anxiety.

Another clinical challenge for the implementation of HMD-VR in post-stroke reha-
bilitation consists of some difficulties when the subject is managing the technology [24].
Indeed, interaction with HMD-VR requires a long press of the button on the controller,
which can be demanding for post-stroke subjects. To this aim, patients could benefit from
robotic-assisted upper limbs training, which supports the paretic limb against throughout
the RoM required by the exercise, preventing the subject from becoming discouraged due to
muscle weakness. In contrast to VR, robotic devices can allow the mobilisation of the hand
and fingers, also giving a physiological trajectory of movement while avoiding abnormal
muscle compensations due to spasticity.

However, robotic devices can require a long time for setup and specialised staff to
operate with them. In fact, precise alignment between users and robotic devices is crucial
to prevent adverse interaction forces that could lead to discomfort and safety concerns. To
overcome this issue, soft exoskeletons, composed of flexible textiles or elastomers, present a
promising solution by enhancing user compliance compared to rigid orthoses. However, the
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limited availability of robotic devices in rehabilitation centres due to cost, maintenance, and
specialised staff requirements poses a significant obstacle to their integration into clinical
practice at scale. These factors contribute to the current limited adoption of robot-based
assessments in clinical settings.

On the other hand, HMD-VR exploits the conventional tracking methodology of
these technologies by cutting down on costs and complexity, thanks to their link with
the world of consumer electronics. The accessibility of these devices should help make
future studies using HMD-VR with larger populations more feasible. Considering that
HMD-VR represents a growing and potential field, it should be also analysed in terms of
cost-effectiveness. The whole HMD-VR platform (HMD, computer, and/or controllers,
and/or lighthouses) is relatively low-cost when compared with other VR devices [93]. In
addition, the primary savings due to the use of HMD-VR for post-stroke patients rely
on its utilisation for both evaluation and treatment with or without the presence of the
therapist. In this latter condition, HMD-VR allows for the reduction in costs related to
therapist’s service and travel expenses for both the therapist (i.e., domiciliary therapy) and
the caregiver (i.e., ambulatory care) in terms of money, time spent, and effort. To this aim,
some authors [94] investigated the effects of an outside-in HMD-VR for telerehabilitation,
in a post-stroke patient. Although this is only one case study, the authors have shown that
HMD-VR can be an ecological, user-friendly, and adjunctive rehabilitation approach to
conventional treatment, even for those subjects living in rural regions.

5.2. Reliability, Technical Features, and Limitations of HMD-VR

On the other hand, the analysis of motion in the neurorehabilitation context allows
the instrumental registration and monitoring of patients’ movement parameters (Table 1)
in a more objective way than clinical scales (clinical purpose). The multitude of data
produced from motion analysis can be used to build machine learning algorithms, detecting
prognostic and predictive factors for better motor outcomes (research purpose) [5].

To this end, both accuracy and precision of tracking measurements are essential for
obtaining reliable results. Indeed, many studies have focused on the tracking measurement
quality of such systems compared with conventional MoCap systems. For instance, Nie
et al. [50] and Caserman et al. [66] found that outside-in HMD-VR devices (HTC Vive) track
the wrist during reaching, with mean signed errors of 0.48 ± 1.58 cm (36) and a latency
of 6.71 ± 0.80 ms (42) when compared to a traditional optical tracking system. According
to Nie et al. [50], the IMUs and HMD-VR (HTC Vive) necessitate minimal alignment and
calibration steps compared to optical tracking systems like Vicon. These procedures take
at most 10 min and can be performed by individuals, including those with stroke. In
particular, Caserman et al. [66] reported encouraging results on the accuracy of the HMD
(HTC Vive). Indeed, the system efficiently provided real-time joint configuration, enabling
smooth and accurate movement tracking.

Regarding inside-out marker-based device (Oculus Quest 2), Carnevale et al. [81]
measured the rotational and translational movements of the upper limbs with a mean
absolute error of 1.11 ± 0.37◦ and 13.52 ± 6.57 mm, respectively (51). These results were
registered at 500 mm from the HMD along the x-direction. On the other hand, a recent
study [82] investigating the accuracy of the same inside-out marker-based device reported a
reduced absolute error. The researchers [82] pointed out that the best controller performance
occurred when the HMD wearer observed it closely, which contrasts with Carnevale’s
et al. [81] study where they varied the distance between the headset and controller.

In contrast to previous studies, Rojo et al. [71] found a high agreement level of
0.999 (with a 95% confidence interval) between measurements of forearm flexion-extension
using both Oculus Touch v2 controllers and IMU devices. However, the controllers exhibit
inaccuracies, especially near a 90◦ angle in the sagittal rotation plane. Despite this, they
adequately capture the full range of motion of the elbow joint in virtual environments.
According to the authors [71], while minor misalignments may be acceptable in VR ap-
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plications where precision is not critical, for tasks requiring high accuracy in orientation
measurement, an IMU sensor is preferable.

Finally, comparing markerless inside-out HMD-VR with optoelectronic systems,
Casile et al. [72] found a maximum distance of 0.94 ± 0.1 and a peak velocity of 1.06 ± 0.12.
The authors suggested that the inside-out markerless HMD-VR (Oculus Quest) provided
hand position and peak velocity estimates that closely matched those of a marker-based
commercial system. In addition, Casile et al. found that Oculus Quest was also sensitive in
distinguishing pathological from healthy upper limb movements.

From a technical point of view, HMDs present some differences and limitations among
them. For example, the outside-in systems enable the estimation of upper limb during
complex tasks, even when they are outside of the field of view of the HMD. In contrast,
inside-out can only estimate the position of the upper limbs if they are within the field of
view of the HMD cameras [75]. Additionally, outside-in systems are generally faster and
more accurate than inside-out systems, and the accuracy of these systems can be easily
improved by adding more cameras. Also, outside-in systems are capable of tracking even in
dark settings, and controllers can be tracked even while they are behind the user’s back [75].
Indeed, inside-out systems cannot estimate the position of the patient’s paretic hand if it is
outside the field of view of HMD cameras during a reaching task of an object, framed with
the HMD. These systems are easier to set up than outside-in, since there is no need to install
fixed cameras for the calibration. Regardless of whether these systems are inside-out or
outside-in, marker-based systems are generally less reliable in estimating hand gestures [14].
In fact, these systems employ a controller, enabling the estimation of a few basic hand
gestures decoded through the controller’s buttons. Conversely, the HMD-VR inside-out
markerless systems facilitate complex hand gesture recognition but necessitate computer
vision algorithms. It is noteworthy that the HMD-VR platform is based on conventional
and validated MoCap methods to estimate user’s motion. Conventional methods are
accurate although they present some disadvantages related to their expensiveness, which
are time-consuming for instrumentation and data processing, requiring qualified staff to
be used in some cases [10]. In addition, these systems have not yet been recognised as
medical devices; in fact, they do not have the CE mark. However, their use in the world of
gaming and education has been translated to the neurorehabilitation field. Overall, these
aspects could explain why these devices are not always used in clinical settings, but they
are largely diffused in the context of research.

5.3. Clinical Perspectives and Future Directions

From a clinical point of view, the motion analysis of hand gesture is fundamental to
track those compensatory strategies that post-stroke patients use to perform a grasping
function. Some examples refer to reduced finger abduction, proximal interphalangeal
joint flexion, and metacarpophalangeal joint extension during object grasping [28,29,48].
To overcome these issues, rehabilitation modalities should ideally be affordable, easily
transportable, and user-friendly for long-term use. Specifically, portability and ease of use
are crucial for promoting treatment adherence and enabling continuous care at home. While
full embodiment in a virtual avatar may not be necessary, the presence of the affected body
part in the virtual environment is essential. Creating a feeling of presence by synchronising
limb movements in real-time is crucial, and monitoring both the affected and intact limbs
may be necessary for the task. Therefore, HMD-VR platforms meet most of the needs of
post-stroke patients, both in terms of treatment and kinematic motion analysis. However,
the dose of treatment and which patients to select is still to be understood. Researchers
and clinicians must consider the risks faced by certain individuals when engaging in VR.
Examples include those with epilepsy, seizure disorders, recent concussions, and elderly
adults experiencing vision impairment due to age-related changes. These groups may
encounter adverse effects during VR experiences, highlighting the importance of clinical
patients’ examination.
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In the end, we could hypothesise that HMD-VR should be considered task-specific-
based. This aspect has an important bearing on clinical practice, because the choice of
HMD-VR is closely linked to the type of task that needs to be assessed. Clinicians need
to consider their intended use and what they want to achieve, in terms of reliability and
effectiveness. To this aim, the collaboration between clinicians bioengineering profes-
sional figures should be also considered. This aspect can promote the implementation of
innovative technologies, like HMD-VR, in the neurorehabilitation setting. For example,
physiotherapists and neurologists could collaborate more with bioengineers to share bidi-
rectionally practical information, which is needed to plan specific motor training based on
objective and quantitative findings.

Indeed, since these devices are being designed for the gaming/entertainment world,
the newest models may not always be the best solution in the rehabilitation field, especially
in neurological patients. Future research and clinical trials aiming to validate the effec-
tiveness of HMD-VR technology in rehabilitation may involve investigating the accuracy
of both outside-in and inside-out HMD-VR systems compared to conventional MoCap
methods across various motor tasks. Another future consideration is the utilisation of these
systems at home for both treatment and kinematic motion analysis, ensuring the continuity
of care. Additionally, the extensive data collected from these devices could be leveraged to
develop machine learning algorithms capable of predicting outcomes. Finally, we present
some perspectives about the use of HMD-VR platform for upper limb motion estimation in
neurorehabilitation context. From our literature analysis, we gather the following points:

• A comparison between the different types and brands of HMD-VR platforms is still
missing, intended as measurement and rehabilitation tools. In addition, among the
studies that we have included in this review, there is no homogeneity in results
regarding accuracy and precision analysis.

• According to the authors (Table 4), these systems are suitably accurate and reliable to
be used as rehabilitation tools and MoCap systems.

• The selection of one device over another depends on its intended use and on the
severity degree of the disease. Therefore, clinicians must consider the reliability and
effectiveness of the instrument.

• It is noteworthy that VR is not the only technology capable of providing an objec-
tive and quantitative assessment of movement as well as delivering rehabilitation
treatment. In fact, robotic devices can be tailored to meet the patient’s needs, offer-
ing both precise movement evaluation and intensive, repetitive, and task-oriented
treatment options.

6. Conclusions

According to the reviewed literature, the HMD-VR platform can be a safe, cost-
effective, and portable tool for upper limb kinematic motion analysis in the context of
neurorehabilitation. The HMD-VR platforms not only provide the advantage of offering an
objective and quantitative assessment of upper limb function but also support rehabilitation
treatment. Particularly for post-stroke patients, VR presents a compelling option due to
its immersive and safe environment enriched with multisensory stimuli. This immersive
experience enhances patient attention, fostering increased engagement and adherence
to treatment protocols. Yet, it is crucial to consider both the duration of treatment and
the severity of patients’ conditions when formulating rehabilitation plans, taking into
consideration also other devices, including robots and cobots. Indeed, the use of VR is
still far from being considered standard in clinical practice. Future studies should explore
HMD–VR applications in neurological clinical settings and home-based training to better
investigate whether and to which extent these promising tools can be used in the movement
assessment of patients with neurological disorders, including stroke.
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