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1. Introduction
Neuroimaging [1–3] is a rapidly evolving field that involves the use of non-invasive

imaging techniques to visualize and study the structure and function of the human brain.
This field has experienced transformative progress—as well as significant breakthroughs in
terms of the accuracy, speed, and efficiency of identifying various brain disorders—over the
past decade, largely driven by technological advancements and computational innovations.
Among these, artificial intelligence (AI) has emerged as a pivotal tool, offering researchers
and clinicians novel approaches to explore the brain’s structure and function [4–10]. AI
models have been widely applied in the analysis and interpretation of neuroimaging
data, aiding researchers and clinicians in diagnosing, treating, and monitoring patients
with neurological and psychiatric disorders. This Special Issue, titled “Advances of AI
in Neuroimaging”, was conceived to provide a platform for cutting-edge research at the
intersection of AI and neuroimaging, aiming to revolutionize neuroscience and healthcare.

The primary motivation behind this Special Issue was the increasing demand for
innovative solutions to address the complexity of neuroimaging data, especially in the
context of neurological and psychiatric disorders. AI techniques, such as machine learning
(ML) [11,12] and deep learning (DL) [13], offer unparalleled potential for biomarker discov-
ery, disease prediction, and personalized treatment strategies. With the prevalence of brain
disorders increasing, the need for accurate and efficient diagnostic tools is more pressing
than ever.

This Special Issue sought to highlight both technical advancements and their practical
implications for patient care and healthcare systems. The contributions span a range of
neuroimaging modalities, including magnetic resonance imaging (MRI), positron emission
tomography (PET), computed tomography (CT), and electroencephalography (EEG). By
addressing challenges such as data complexity, model interpretability, and cost-efficiency,
the featured research underscores the indispensable role of AI in advancing neuroimaging
and its applications.

2. Summary of Accepted Papers
This Special Issue attracted widespread attention, receiving over 30 submissions from

researchers from around the world. Each submission underwent rigorous quality control by
the editorial team and the journal, ensuring adherence to the highest academic standards.
The final selection of 17 accepted papers—consisting of 14 research articles, 1 review,
1 perspective, and 1 systematic review—represents cutting-edge research that successfully
passed evaluations by expert peer reviewers in the field. Below is a synthesized overview
of the published works.

Brain Sci. 2025, 15, 351 https://doi.org/10.3390/brainsci15040351
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Several studies (Contributions 1–3) focused on the application of ML and DL in medi-
cal imaging and surgical outcomes. For example, Ghanem et al. (Contribution 1) produced
a systematic review examining the use of ML and DL models in predicting outcomes such
as length of stay, readmissions, and mortality in spine surgery, revealing data imbalances
and variations in evaluation metrics. Similarly, Rasheed et al. (Contribution 2) introduced
a novel image enhancement methodology to improve the classification of brain tumors,
achieving superior results compared with pre-trained models such as VGG16 and ResNet50,
which are convolutional neural networks (CNNs) made up of 16 and 50 layers, respec-
tively. The review by Shah and Heiss (Contribution 3) provided an in-depth look at AI’s
applications in neurology, emphasizing its potential to predict neurological impairments,
intracranial hemorrhage expansion, and outcomes for comatose patients, showcasing its
diagnostic utility across diverse data sources.

Neuroimaging played a pivotal role in several contributions (Contributions 4–8). For
instance, Rudroff (Contribution 4) provided his perspective on AI’s potential to analyze
neuroimaging data, such as PET scans, to optimize treatment protocols and contribute to
Long Coronavirus Disease (long COVID) research. Xiong et al. (Contribution 5) utilized
support vector machines (SVMs) to classify Parkinson’s disease subtypes using arterial
spin labeling MRI, while Wang et al. (Contribution 6) proposed a diagnostic model inte-
grating multiple imaging modalities—namely, diffusion tensor imaging (DTI), structural
MRI (sMRI), and functional MRI (fMRI)—to enhance the diagnosis of major depressive
disorder (MDD). Similarly, Liu et al. (Contribution 7) introduced a low-rank tensor fusion
algorithm to improve brain age estimation by integrating multimodal neuroimaging data,
demonstrating enhanced accuracy. Yamao et al. (Contribution 8) proposed a deep learning
method for directly predicting the centiloid scale based on amyloid PET images.

Several papers addressed neurodegenerative diseases and cognitive impairment (Con-
tributions 9–12). For example, Saha et al. (Contribution 9) investigated baseline MRI data
to predict the response of Alzheimer’s disease patients to repetitive transcranial magnetic
stimulation (rTMS) treatment, while Grigas et al. (Contribution 10) demonstrated how
super-resolved MRI images and optimized DL models improved mild cognitive impair-
ment detection. Cerna et al. (Contribution 11) explored the neural mechanisms underlying
Tai Chi’s benefits for cognitive and physical function, highlighting its potential to mitigate
age-related declines in functional connectivity. Sone et al. (Contribution 12) examined
disease progression patterns in temporal lobe epilepsy by using diffusion tensor imaging,
revealing associations between white matter damage and clinical metrics.

Advancements in virtual reality (VR) and collaborative technologies also featured
prominently. For instance, Tadayyoni et al. (Contribution 13) examined EEG data to
classify user immersion in VR training environments, achieving high accuracy rates in
distinguishing cognitive states and offering insights into real-time user engagement. Simi-
larly, Shih et al. (Contribution 14) assessed inter-brain synchrony patterns in collaborative
design tasks, comparing co-located and distributed settings to better understand team
performance dynamics. This Special Issue also delves into cutting-edge methodologies,
such as generative adversarial networks (GANs) (Contribution 15) and novel brain activity
mapping (Contribution 16). Huynh et al. (Contribution 15) applied GANs to diagnose
neurological conditions using functional connectivity data, while Huang (Contribution 16)
introduced a method for analyzing task-evoked whole-brain activity, providing a unique
lens to study individual brain variability during tasks. Lastly, Manabe et al. (Contribu-
tion 17) focused on skill assessment in laparoscopic surgery by comparing EEG-based
models, revealing that a three-dimensional CNN approach significantly outperformed
traditional methods in classifying expertise levels. This curated collection of papers under-
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scores the transformative potential of AI-driven research in neuroimaging and its ability to
address clinical and scientific challenges.

3. Statistics on the Special Issue
The accepted papers were authored by 67 researchers from 14 countries, emphasizing

the global collaboration underlying these advancements (Figure 1). Submissions were led
by contributors from the USA (43 authors), China (22 authors), and Canada (16 authors),
among others. The selected studies reflect diverse areas of expertise and applications,
unified by their focus on leveraging AI to advance neuroimaging. The research featured
in this Special Issue reflects prominent themes through its keywords: ML (17 keywords),
neuroimaging techniques (8 keywords), brain functions and disorders (9 keywords), ad-
vanced methodologies (10 keywords), and practical applications (12 keywords) (Figure 2).
Together, these works illustrate the breadth and depth of interdisciplinary innovation
showcased in this Special Issue.
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4. Conclusions
This Special Issue received significant attention, with the volume of submissions and

the quality of accepted papers far exceeding our initial expectations. The rigorous selection
process and peer review ensured that only the most impactful and innovative contributions
were published. By highlighting the convergence of AI and neuroimaging, this issue lays
the groundwork for future breakthroughs, fostering collaboration and advancing research
at the intersection of neuroscience and technology.
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Abstract: The independent detection and classification of brain malignancies using magnetic reso-
nance imaging (MRI) can present challenges and the potential for error due to the intricate nature and
time-consuming process involved. The complexity of the brain tumor identification process primarily
stems from the need for a comprehensive evaluation spanning multiple modules. The advancement
of deep learning (DL) has facilitated the emergence of automated medical image processing and
diagnostics solutions, thereby offering a potential resolution to this issue. Convolutional neural
networks (CNNs) represent a prominent methodology in visual learning and image categorization.
The present study introduces a novel methodology integrating image enhancement techniques, specif-
ically, Gaussian-blur-based sharpening and Adaptive Histogram Equalization using CLAHE, with
the proposed model. This approach aims to effectively classify different categories of brain tumors,
including glioma, meningioma, and pituitary tumor, as well as cases without tumors. The algorithm
underwent comprehensive testing using benchmarked data from the published literature, and the
results were compared with pre-trained models, including VGG16, ResNet50, VGG19, InceptionV3,
and MobileNetV2. The experimental findings of the proposed method demonstrated a noteworthy
classification accuracy of 97.84%, a precision success rate of 97.85%, a recall rate of 97.85%, and an
F1-score of 97.90%. The results presented in this study showcase the exceptional accuracy of the
proposed methodology in accurately classifying the most commonly occurring brain tumor types.
The technique exhibited commendable generalization properties, rendering it a valuable asset in
medicine for aiding physicians in making precise and proficient brain diagnoses.

Keywords: deep learning; brain tumor; magnetic resonance imaging; classification; neural network;
pre-trained models; healthcare

1. Introduction

The development of a brain tumor can occur when there is an abnormal proliferation
of cells within the brain tissues. Tumors have been identified by the World Health Organi-
zation (WHO) as the second most significant contributor to global mortality [1,2]. Brain
tumors can be categorized into two main types: benign and malignant. In most instances,
benign tumors are not considered a substantial risk to an individual’s health. It is primarily
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due to their comparatively slower growth rate than malignant tumors, lack of ability to
infiltrate adjacent tissues or cells, and inability to metastasize. Their recurrence is generally
uncommon after the surgical removal of benign tumors.

Compared to benign tumors, malignant tumors can infiltrate adjacent tissues and
organs, and if not promptly and effectively managed, they can result in significant physio-
logical dysfunction. Detecting brain tumors in their earliest stages is crucial for optimizing
the survival rate of patients. Gliomas, meningioma, and pituitary tumors are the three most
frequently diagnosed types of brain tumors. Glioma is a neoplasm originating from the glial
cells that encompass and provide support to neurons. The cellular composition of these
structures includes astrocytes, oligodendrocytes, and ependymal cells. A pituitary tumor
is formed within the pituitary gland. A meningioma is a tumor originating within the
meninges, the three layers of tissue between the skull and the brain. According to the cited
source, it has been established that meningiomas are classified as benign tumors, while
gliomas are categorized as malignant tumors. Additionally, pituitary tumors have been
identified as benign. The dissimilarity above represents the most notable differentiation
among these three cancer variants [3–5].

Various symptoms can be produced by benign and malignant brain tumors, depend-
ing on factors such as their size, location, and growth rate. The symptoms of primary
brain tumors may exhibit variability among individual patients. Glioma has the potential
to induce various symptoms, including aphasia, visual impairments or loss, cognitive
impairments, difficulties with walking or balance, and other associated manifestations. A
meningioma is often associated with mild symptoms, including visual disturbances and
morning migraines. Pituitary tumors can exert pressure on the optic nerve, leading to
symptoms such as migraines, vision disorders, and diplopia [6,7].

Hence, it is imperative to distinguish among these diverse tumor classifications to
precisely diagnose a patient and determine the optimal course of treatment. The expertise of
radiologists significantly influences the speed at which they can detect brain malignancies.
Although magnetic resonance imaging (MRI) presents challenges due to its dependence
on human interpretation and the complexity of processing large volumes of data, it is
commonly employed to categorize different forms of cancer. Biopsies are commonly
employed in identifying and managing brain lesions, although their utilization before
definitive brain surgery is infrequent. Developing a comprehensive diagnostic instrument
for detecting and classifying tumors based on MR images is imperative [8]. The imple-
mentation of this approach will effectively mitigate the occurrence of excessive operations
and uphold the impartiality of the diagnostic procedure. The healthcare industry has
been significantly influenced by recent technological advancements, particularly in the
fields of artificial intelligence (AI) and machine learning (ML) [9–12]. Solutions to various
healthcare challenges, such as imaging, have been successfully identified [13–18]. Various
machine-learning techniques have been developed to provide radiologists with unusual in-
sights into the recognition and classification of MR images. Medical imaging techniques are
widely recognized as highly effective and widely utilized modalities for cancer detection.
These methodologies facilitate the identification and detection of malignant neoplasms.
The methodology holds significance due to its non-invasive nature, as it does not require
invasive procedures [19,20].

MRI and other imaging modalities are commonly employed in medical interventions
because they produce distinct visual representations of brain tissue, facilitating the identifi-
cation and categorization of diverse brain malignancies. Brain tumors exhibit various sizes,
dimensions, and densities [21]. Moreover, it is worth noting that tumors can exhibit similar
appearances, even when they possess distinct pathogenic characteristics. A substantial
quantity of images within the database posed a significant challenge in classifying MR
images utilizing specialized neural networks. Due to the ability to generate MR images
in multiple planes, there is a potential for increased database sizes. In order to obtain the
desired classification outcome, it is necessary to preprocess MR images before integrating
them into different networks. The Convolutional Neural Network (CNN) is employed to
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solve this problem, benefiting from several advantages, such as reduced preprocessing
and feature engineering requirements. A network with lower complexity necessitates a
reduced allocation of resources for implementation and training compared to one with
higher complexity. Resource limitations hinder the utilization of the system for medical
diagnostics or on mobile platforms. The method must be relevant to brain disorders for
daily regular clinical diagnosis.

The main contributions to this investigation are delineated as follows:

• This study presents a novel methodology integrating Gaussian-blur-based sharpening
and Contrast-Limited Adaptive Histogram Equalization (CLAHE) with the proposed
model to facilitate more precise diagnostic procedures for identifying glioma, menin-
gioma, pituitary tumors, and cases without malignancies.

• This investigation aims to demonstrate the superiority of the proposed methodology
above existing methodologies while highlighting its ability to achieve comparable re-
sults with fewer resources. Additionally, an assessment is conducted on the network’s
potential for integration into clinical research endeavors.

• The results obtained from this analysis demonstrate that the novel strategy surpasses
previous methodologies, as indicated by its ability to attain the highest levels of
accuracy on benchmark datasets. Further, we evaluate the prediction capabilities of
this strategy by comparing it to pre-trained models and other established strategies.

The subsequent sections of this work delineate the literature review in Section 2.
Section 3 explores the dataset, methodology, optimization techniques, and pre-trained
models. Section 4 presents the findings obtained from the conducted experiments. Section 5
involves a discussion. Lastly, Section 6 provides a conclusive summary.

2. Literature Review

It is challenging to distinguish between various varieties of brain tumors. The au-
thors [22] examined the clinical applications of DL in radiography and outlined the pro-
cesses necessary for a DL project in this discipline. They also discussed the potential clinical
applications of DL in various medical disciplines. In a few radiology applications, DL
has demonstrated promising results, but the technology is not yet developed enough to
replace the diagnostic occupation of a radiologist [23]. There is a possibility that DL algo-
rithms and radiologists will collaborate to enhance diagnostic effectiveness and efficiency.
Numerous studies have investigated the capability of MRI to identify and classify brain
tumors utilizing a variety of research methodologies. Afshar et al. developed a modified
version of the CapsNet architecture for categorizing the primary brain tumor consisting of
3064 images using tumor boundaries as supplementary inputs to increase effort, surpass
previous techniques, and achieve a classification rate of 90.89% [24]. Gumaei et al. proposed
a brain tumor classification method using hybrid feature extraction techniques and RELM.
The authors preprocessed brain images using min–max normalization, extracted features
using the hybrid method, classified them using RELM, and achieved a maximum accuracy
of 94.23% [25].

Kaplan et al. proposed brain tumor classification models using nLBP and αLBP feature
extraction methods. These models accurately classified the most common brain tumor
types, including glioma, meningioma, and pituitary tumors, and achieved a high accuracy
of 95.56% using the nLBPD = 1 feature extraction method and KNN model [19]. Rezaei et al.
developed an integrated approach for segmenting and classifying brain tumors in MRI
images. The methods included noise removal, SVM-based segmentation, feature extraction,
and selection using DE. Tumor slices were classified using KNN, WSVM, and HIK-SVM
classifiers. Combined with MODE-based ensemble techniques, these classifiers achieved
a 92.46% accuracy rate [26]. Fouad et al. developed a brain tumor classification method
using HDWT-HOG feature descriptors and the WOA for feature reduction. The approach
utilized the Bagging ensemble techniques and achieved an average accuracy of 96.4% with
Bagging, and, when used, Boosting attained 95.8% [27].
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Ayadi et al. presented brain tumor classification techniques using normalization,
dense speeded-up robust features, and the histogram of gradient approaches to enhance
the image quality and generate a discriminative feature. In addition, they used SVM for
classification and achieved a 90.27% accuracy on the benchmarked dataset [28]. Srujan et al.
built a DL system with sixteen layers of CNN to classify the tumor types by leveraging
activation functions like ReLU and Adam optimizer, and the system achieved a 95.36%
accuracy [29]. Tejaswini et al. proposed a CNN model to detect meningioma, glioma,
and pituitary brain tumors with an average training accuracy of 92.79% and validation
accuracy of 87.16%; in addition, the tumor region segmentation was performed using Otsu
thresholding, Fuzzy c-means, and watershed techniques [30]. Huang et al. developed a
CNNBCN to classify brain tumors. The network structure was generated using a random
graph algorithm, achieving an accuracy of 95.49% [31].

Ghassemi et al. suggested a DL framework for brain tumor classification. The authors
used pre-trained networks as GAN discriminators to extract robust features and learn MR
image structures. By replacing the fully connected layers and incorporating techniques
like data augmentation and dropout, the method achieved a 95.6% accuracy using fivefold
cross-validation [32]. Deepak et al. combined the CNN feature with SVM for the medical
image classification of brain tumors. The automated system achieved an accuracy of 95.82%
evaluated on the fivefold cross-validation procedure, outperforming the state-of-the-art
method [33]. Noreen et al. adapted fine-tuned pre-trained networks, such as InceptionV3
and Xception, for identifying brain tumors. The models were integrated with various
ML methods, namely Softmax, SVM, Random Forest, and KNN, and achieved a 94.34%
accuracy with the InceptionV3 ensemble [34]. Shaik et al. addressed the challenging task
of brain tumor classification in medical image analysis. The authors introduced a multi-
level attention mechanism, MANet, which combined spatial and cross-channel attention
to prioritize tumors and maintain cross-channel temporal dependencies. The method
achieved a 96.51% accuracy for primary brain tumor classification [35].

Ahmad et al. proposed a deep generative neural network for brain tumor classification.
The method combined variational auto encoders and generative adversarial networks
to generate realistic brain tumor MRI images and achieved an accuracy of 96.25% [36].
Alanazi et al. proposed a deep transfer learning model for the early diagnosis of brain
tumor subtypes. The method involved constructing isolated CNN models and adjusting the
weights of a 22-layer CNN model using transfer learning. The developed model obtained
95.75- and 96.89-percent accuracies on MRI images [37]. Almalki et al. used an ML approach
with MRI to promptly diagnose brain tumor severity (glioma, meningioma, pituitary, and
no tumor). They extracted Gaussian and nonlinear scale features, capturing small details by
breaking MRIs into 8× 8-pixel images. The strongest features were selected and segmented
into 400 Gaussian and 400 nonlinear scale features, and they were hybridized with each
MRI. They obtained a 95.33% accuracy using the SVM classifier [38]. Kumar et al. compared
three CNN models (AlexNet, ResNet50, and InceptionV3) to classify the primary tumor
types and employed data augmentation techniques. The results showed that AlexNet
achieved an accuracy of 96.2%, surpassing the other models [39].

Swati et al. employed a pre-trained deep CNN model and proposed a block-wise fine-
tuning technique using transfer learning. This approach was evaluated using a standard-
ized dataset consisting of T1-weighted images. Using minimal preprocessing techniques
and excluding handcrafted features, the strategy demonstrated an accuracy of 94.82%
with VGG19, VGG16 achieved 94.65%, and AlexNet achieved 89.95% when evaluated
using a fivefold cross-validation methodology [40]. Ekong et al. integrated depth-wise
separable convolutions with Bayesian techniques to precisely classify and predict brain
cancers. The recommended technique demonstrated superior performance compared to
existing methods in terms of an accuracy of 94.32% [41].

Asiri et al. enhanced computer-aided systems and facilitated physician learning using
artificially generated medical imaging data. A deep learning technique, a Generative
Adversarial Network (GAN), was employed, wherein a generator and a discriminator
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engage in a competitive process to generate precise MRI data. The proposed methodology
demonstrated a notable level of precision, with an accuracy rate of 96%. The evaluation
of this approach was conducted using a dataset comprising MRI scans collected from
various Chinese hospitals throughout the period spanning from 2005 to 2020 [42]. Shilaskar
et al. proposed a system comprising three main components: preprocessing, HOG for
feature extraction, and classification. The results indicated varying levels of accuracy
when employing multiple machine learning classifiers, including SVM, Gradient Boosting,
KNN, XG Boost, and Logistic Regression, with the XG Boost classifier attaining the highest
accuracy rate of 92.02% [43].

3. Materials and Methods

This section presents the proposed method, which consists of two primary compo-
nents: image preprocessing and model training. The flowchart illustrating the suggested
system is presented in Figure 1. To enhance the quality of the image, the preprocessing
stage incorporated Gaussian-blur-based sharpening and Adaptive Histogram Equalization
techniques using CLAHE. Subsequently, labeled images were resized while maintaining
the aspect ratio, normalized, and divided into three sets, as shown in Figure 2. Further-
more, the model underwent training using 5-fold cross-validation [44] using the Adam
optimizer and incorporated the ReduceLROnPlateau callbacks to dynamically regulate the
learning rate throughout the training process. The effectiveness of the proposed model was
evaluated using metrics such as accuracy, precision, recall, and F1-score.

This study employed a publicly accessible MRI dataset Msoud [45], obtained from
the Kaggle repository. This dataset combines three publicly accessible datasets, including
Figshare [46], SARTAJ [47], and BR35H [48]. It consists of 7023 MRIs of the human brain
provided in grayscale and jpg format. The dataset includes primary types of brain tumors,
namely glioma, meningioma, pituitary tumors, and images without tumors.
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Figure 2. Illustration of the distribution of images among various class labels throughout the training,
validation, and testing dataset splits. The bar graph displays the distribution of images across
different classes, with the training set at 64%, the validation set at 16%, and the testing set at 20%.

3.1. Preprocessing

We implemented a preprocessing framework to improve image quality by integrating
sharpening and Contrast-Limited Adaptive Histogram Equalization (CLAHE) approaches.
The process of sharpening commenced by implementing a Gaussian blur through the
utilization of a specific technique. The utilization of a 5 × 5 kernel was suitable in the
process of attenuating high-frequency noise. The resultant enhanced image was determined
using the formula:

Sharpened Image = 1.5×Original Image− 0.5× Blurred Image (1)

Subsequently, the image underwent a conversion process to grayscale, facilitating a precise
enhancement of contrast. To achieve this, CLAHE was utilized, characterized by an 8 × 8-tile
grid and a clip limit of 2.0. Distinct from global histogram equalization, CLAHE adopts a
localized strategy by partitioning the image into discrete tiles and performing individual
equalizations, encapsulated by

Hlocal(i) = CLAHE(Htile(i)) (2)

In order to ensure accordance with the specifications of the subsequent deep learning
framework, the enhanced grayscale image was transformed into the RGB color space [49,50].
Figure 3 illustrates the several stages of enhancing picture quality, from the initial image to the
CLAHE-enhanced image. This depiction showcases the effectiveness of our preprocessing
method and its notable impact on improving the overall quality of the image.
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Figure 3. Sequential image improvement as part of the preprocessing framework. The stages progress
from the unaltered original image through Gaussian blurring for noise suppression, sharpening the
emphasized edge definition to the final enhancement using CLAHE.

3.2. Proposed Architecture

Figure 4 depicts the proposed model, which acquires MRI data with input dimensions
of 224 × 224 and reveals its operational characteristics. The model consists of multiple server
blocks. A convolutional layer [51] was employed in the initial stage, consisting of 16 filters.
Each filter was employed with a kernel size of 3 × 3 and a stride size of 1 × 1. A normalizing
layer [52] and a 2D (two-dimensional) max pooling layer with a size of 2 × 2 were employed
to maximize the information among the intermediate layer’s output. Similarly, we integrated
additional convolutional layers into the model, utilizing 32, 64, 128, and 256 filter sizes. Each
filter utilized in this study had a kernel size of 3 × 3 and a stride size of 1 × 1, and the same
and valid padding was suitable for the experiment. As illustrated in Figure 4, skip connections
were employed within each block to facilitate the information flow by concatenating the
outputs of specific convolutional layers. Subsequently, a dense layer of 512 neurons was
employed, accompanied by global average pooling and activation through the rectified linear
unit (ReLU) function.
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To mitigate the issue of overfitting, the dense layer was subjected to regulation using
L1 (10−5) and L2 (10−4) regularization techniques [53]. During the training process, the
neurons within a dropout layer [54] were randomly deactivated at a rate of 0.5% to enhance
regularization implementation further. Finally, the output layer employed the softmax
algorithm [51] to compute the probability score for each class and classify whether the

13



Brain Sci. 2023, 13, 1320

input image exhibited a glioma, meningioma, pituitary, or no tumor. In addition, the model
employed the Adam optimizer [55,56], categorical cross-entropy for loss functions, and the
ReduceLROnPlateau callback to optimize the learning rate [57]. The model was trained
with a batch size of 8 for 30 epochs.

Convolutional neural networks are widely used for image classification tasks. In the
proposed model, 2D convolution involved applying a kernel to the input data to extract
features. The convolution operation captures spatial dependencies and hierarchies within
the data. The convolution operation in a 2D CNN can be mathematically defined as follows:

Yij = ∑m ∑n X(i+m)(j+n). Kmn (3)

where Yij represents the output element at the position i, j; X(i+m)(j+n) denotes the input
elements at the position (i + m, j + n); and K(mn) signifies the kernel element at the position
(m, n). The equation involves summing the element-wise multiplication of the input element
and corresponding kernel element across the indices m and n. This operation is applied
across the entire input to compute the element of the output feature map. The convolution
operation efficiently captures local patterns and interactions between neighboring elements,
enabling the network to learn the hierarchical representation and extract meaningful
features from the input data. Furthermore, the convolutional operation involved applying
the kernel to input using a sliding window. The kernel size determines the local region
considered, and the stride size controls the movement of the kernel. Padding preserves
spatial dimensions. The output size can be calculated using the following equation.

O =

⌊
I − K + 2P

S

⌋
+ 1 (4)

where O represents the output size, I denotes the input size, K represents the kernel size, S
denotes the stride size, and P represents the padding size [51].

3.2.1. Batch Normalization

Batch normalization (BN) is used in deep neural networks to normalize the inter-
mediate layers’ outputs. It suits internal covariate shifts, improving training, stability,
and performance. In our proposed model, we incorporated the BN layer, following the
skip connections and preceding the Max Pooling layer. The rationale behind this design
was attributed to the function of skip connections, which involves the concatenation of
feature maps originating from distinct layers. Including the BN layer immediately after
ensures that the aggregated feature maps undergo normalization, preserving a uniform
scale and distribution before pooling. In addition to normalization, the positioning of
BN also provides regularization, hence mitigating the potential issue of overfitting and
ensuring that the pooling layer functions on standardized activations. The equation can
represent the normalization process.

y =
x− µ

σ
.γ+ β (5)

where x is the input; µ and σ; are the mean and standard deviation computed over a mini-batch
size, respectively; and γ and β are learnable scaling and shifting parameters, respectively.

3.2.2. Pooling Layers

The pooling operation is used in a CNN for downsampling, and the input feature map
is divided into non-overlapping regions or pooling windows. The purpose is to calculate
the maximum value of each window, resulting in a downscaled output feature map. The
following equation represents the max pooling operation at the position (i, j) in the output
feature map.

Maxpooling(x)(i, j) = (∀m, n)max(x)(i + m, j + n) (6)
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Max pooling (x)(i, j) denotes the value at the position (i, j) in the output feature map
after max pooling. The term ∀m, n represents the double summation over the indices m
and n and covers all possible values within the pooling windows. max(x)(i + m, j + n)
represents the maximum value among the neighboring elements in the input feature map,
specifically at positions (i + m, j + n). The global average pooling (GAP) operation reduces
the spatial dimension of a feature map while capturing the average representation of the
entire feature map. The GAP can be formulated as follows:

GobalAvgPooling(x) =
1

k× 1

k

∑
i=1

l

∑
j=1

xi,j (7)

The equation illustrates the operational mechanism of GAP applied to a feature map
(x). The feature map is characterized by l dimensions for height, width, and channels (k).
The symbol ∑ denotes the mathematical operation of summation and the variables i and j
are employed to iterate through the spatial dimensions of the feature map. The k values in
the resulting vector correspond to the mean activation of the relevant channel across all
spatial positions in the feature map [53].

3.2.3. Activation and Loss Functions

ReLU is an activation function that introduces nonlinearity into a neural network [58].
It takes an input value and returns the maximum value and 0. Mathematically the ReLU
function can be defined as

ReLU(x) = max(0, x) (8)

where x is the input value; if the input value is positive, ReLU outputs the same value. If
the input value is negative, ReLU outputs 0.

The utilization of the softmax function occurs in the output layer of the proposed
model planned for multi-classification tasks. The process converts a vector of real input
values into a probability distribution across different classes. The mathematical expression
for the softmax role is as follows:

So f tmax(xi) =
exp(xi)

∑4
j=1 exp(xj)

, f or i = 1, 2, 3, 4 (9)

The equation xi represents the i-th element of the input vector, and the softmax
function normalizes each probability by dividing it by the sum of the exponential value of
all probabilities in the vector. Furthermore, the loss function was utilized to measure the
discrepancy between the algorithm’s predictions and actual values. Various optimization
techniques can be applied to minimize this error. In addition, categorical cross-entropy was
chosen as the loss function. Categorical cross-entropy can be calculated as the error rate
using the equation.

Categorical Cross Entropy = −∑N
i ytrue[i].log(ypred[i]) (10)

where N is the number of classes, ytrue[i] represents the true class probabilities, and ypred[i]
denotes the predicted probabilities of each class.

3.2.4. Optimization Techniques

Several regularization strategies were used in the proposed model, including dropout,
L1, L2, and ReduceLROnPlateau callbacks to reduce the overfitting in neural networks.
Dropout arbitrarily changes a small portion of the input units (neurons) to zero during the
training phase [59]. By preventing the network from being overly dependent on particular
units and encouraging generalization, this dropout process aids in the network learning
redundant representations. The model becomes more resilient and enhances its capacity to
perform effectively on unknown data by injecting this unpredictability through the 50%
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dropout rate, thereby improving its overall performance. The 50% dropout example is
shown in Figure 5.
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Figure 5. The right side of the diagram visually depicts a dropout layer characterized by a dropout
rate of 50%.

L1 and L2 strategies are employed in the neural network to mitigate the issue of
overfitting and enhance the accuracy when activated with novel data from the problem
domain [60]. These techniques were employed in the proposed model due to their effec-
tiveness among the standard regularization methods. L1 regularization is also known as
Lasso regression, and L2 regularization is known as weight decay or ridge regression. The
cost drives for L1 and L2 can be defined as follows:

L1Regularization(LassoRegression) :
Cost Function = Loss Funtion + λ∑N

i=1|wi|
L2Regularization(Weight Decay or RidgeRegression) :

Cost Function = Loss Funtion + λ∑N
i=1

∣∣w2
i

∣∣
(11)

where λ is the hyperparameter that regulates the strength of regularization, N is denoted as
the model factors, wi embodies i-th parameters, and ∑ denotes the sum of all parameters.
The cost function combines the loss, representing the error between predicted and target
values, with a regularization term to form the overall objective function.

In the proposed model, we utilized the ReduceLROnPlateau from Keras [61]. This
callback is crucial in reducing the learning rate (LR) during the model training phase,
specifically when validation losses showed no further improvement. Incorporating this
callback enabled the optimization process to take smaller steps toward minimizing the
loss function, resulting in a more efficient model. During the training phase, the ReduceL-
ROnPlateau callback monitored the chosen metric, such as validation loss. The system
recorded the optimal observed value for this metric and assessed whether the current value
demonstrated improvement over a predetermined number of epochs. If the monitored
metric did not exhibit improvement, the callback triggered a reduction in the learning rate.
We employed a factor that was set while configuring the ReduceLROnPlateau callbacks to
achieve the learning rate reduction. In the proposed model, we initially set the learning
rate to 0.001 and utilized a reduction factor (F) of 0.4; the new learning rate (New LR) can
be calculated by applying the given equation.

New LR = LR× F (12)

3.3. Pre-Trained Model

Pre-trained neural networks are ML models that have undergone training on exten-
sive datasets like ImageNet, consisting of various images belonging to various classes.
Pre-trained models have proven highly advantageous in various tasks, including image
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classification and object detection. Pre-trained models are employed because of their abil-
ity to graph data patterns, allowing them to be used as a starting point for new tasks
without having to start the training process from scratch. This investigation included five
pre-trained models, namely VGG16, ResNet50, MobileNetV2, InceptionV3, and VGG19.

3.3.1. VGG16

The VGG16 model was initially presented in 2014 by Simonyan and Zisserman [62],
scholars affiliated with the Visual Geometry Group at the University of Oxford. The
architectural design incorporates filters of dimensions 3 × 3, a stride of 1, and 16 layers,
consisting of three fully connected layers and thirteen convolutional layers. The maximum
pooling layers employ pooling windows with dimensions of 2 by 2 and a stride of 2. VGG16,
a widely recognized choice for efficient feature extraction in transfer learning, boasts a
substantial parameter count of 138 million.

3.3.2. ResNet50

Deep neural networks demonstrate improved performance as their depth increases,
as evidenced in the literature [63]. The challenges related to this improvement arise from
vanishing or exploding gradients, manifesting as the neural network expands. To overcome
this impediment, the authors of [64] have proposed ResNet50, an innovative approach
that utilizes residual modules to facilitate the learning of residual mapping instead of
conventional input–output mapping. This innovative approach involves incorporating
the input into the output of the modules through shortcut connections that circumvent
certain levels. Consequently, including residual blocks effectively mitigates the problem of
vanishing gradients, thereby preventing a decline in performance as the network depth
increases. The ResNet50 architecture incorporates convolutional layers of varying filter
sizes (1 × 1, 3 × 3, 1 × 1) within bottleneck blocks interspersed with max pooling and
average pooling layers to facilitate extracting features from the input.

3.3.3. MobileNetV2

The architectural design aims to provide mobile and embedded applications, achiev-
ing a remarkable balance between high accuracy, lightweight computation, and optimal
memory usage. The employed model utilized three primary strategies: the inverted resid-
ual, the linear bottleneck, and the width multiplier parameters. Using convolutional layers
in the inverted residual technique increases network capacity while concurrently reducing
the computational requirements and memory usage. The input is improved by increasing
the number of channels and applying convolution using a small kernel size to achieve
this objective. Subsequently, the resulting output is projected onto a reduced number of
channels. In contrast, linear bottlenecks employ a linear activation function instead of
a non-linear one, aiming to minimize the number of parameters needed. Furthermore,
utilizing width multiplier parameters can adjust the number of channels within a network,
thereby introducing enhanced adaptability [65].

3.3.4. InceptionV3

The InceptionV3 architecture is a CNN that belongs to the inception series. It is
recognized for its significant advancements compared to previous iterations. The proposed
approach employs an advanced design strategy wherein the network’s capacity is expanded
by incorporating multiple kernel sizes at a given level instead of increasing depth through
stacked layers. The proposed methodology employs inception modules, which integrate a
max pooling layer with varying kernel sizes of 1× 1, 3× 3, and 5× 5 to effectively capture a
wide range of features at different scales. The resulting output is obtained by concatenating
the outputs of these layers, which is achieved by including a 1 × 1 convolution layer before
the 3 × 3 and 5 × 5 convolutional layers. This additional layer decreases the number of
input channels and optimizes the utilization of computational resources [66].
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3.3.5. VGG19

The VGG19 architecture modified the VGG16 architecture, encompassing nineteen
layers. This included sixteen convolutional layers, three fully connected layers, a compact
filter with dimensions of 3 × 3, and a stride size 1. Additionally, the model incorporated
max pooling layers that employ a pooling of size 2 × 2 and a stride size of 2. With a
parameter count of 144 million, this model surpasses VGG16 in terms of power, although
at the cost of increased computational requirements [62].

4. Experimental Results

This study employed the proposed model to categorize a substantial MRI dataset
comprising 7023 images. The dataset encompassed glioma, meningioma, pituitary cases,
and cases with no tumor. Initially, a preprocessing stage was incorporated to enhance
the feature extraction. In this stage, image enhancement techniques with Gaussian blur
and CLAHE were applied to improve the quality of the images. The dataset was divided
into subsets, namely training, validation, and testing. The dataset was trained using the
Adam optimizer and subsequently assessed through a fivefold cross-validation method.
Algorithm 1 presents the procedure for the training and evaluation process.

Algorithm 1: Training and Evaluation Process with 5-fold Cross-Validation

1. Initialize Metrics List
. final_test_metrics = []

2. Combine Training and Validation sets
. S = N train + N val where S represents the dataset

3. 5-Fold Cross - Validation
. For i in {1, 2, 3, 4, 5}:
3.1. Data Splitting

. Traini= S – Si

. Vali= Si
3.2. Train Model

.Train the model on Traini and validate on Vali

.Setup Callbacks and Optimizer
3.3. Evaluate on Test set (T) where T represents the testing data

.temp_metrics = Model. Evaluate (T)

.Append temp_metrics to final_test_metrics
4. Calculate Average Test Metrics

.Metrics final = 1
5 ∑5

i=1 f inal_test_metrics[i]
5. Output

. Metrics final contains the average values on the set T

The learning rates were optimized using the ReduceLROnPlateau callbacks, and a
batch size of 8 was utilized. Figure 6 presents the average accuracy and losses of the
model proposed in this study. During the initial stage of training, the graphs display
fluctuations, which can be attributed to the utilization of the ReduceLROnPlateau callback.
The primary objective of this callback is to dynamically modify the learning rate of the
optimizer during the training process, specifically when the loss function reaches a plateau.
After completing 12 epochs, the optimizer demonstrates a gradual convergence toward
an optimal configuration of weights, resulting in diminished fluctuations observed in the
accuracy and loss curves.
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Figure 6. Mean accuracy and losses of the proposed model during 5-fold cross-validation.
(Left): mean accuracy progression across training folds. (Right): corresponding mean loss trend.
This demonstrates consistent accuracy improvement and decreasing loss, highlighting effective
model training.

Furthermore, the platform utilized several libraries, such as Numpy, Pandas, Mat-
plotlib, Sklearn, Keras, and TensorFlow, to enhance the efficiency of data processing and
model development. The computation was performed on an Intel Core i7-7800 CPU op-
erating at a clock speed of 3.5 GHz. The model training and tuning were managed using
an NVIDIA GeForce GTX 1080 Ti GPU. The selection of Python 3.7 as the primary pro-
gramming language for this study was based on its comprehensive set of tools for data
manipulation, analysis, and visualization. The platform successfully preserved the data
employed in this study due to its substantial RAM capacity of 32 GB.

Model Evaluation Matrices

The suggested framework was subjected to a thorough evaluation, which involved
an analysis of its precision, recall, F1-score, and accuracy. Precision evaluates the model’s
ability to minimize the misclassification of negative examples as positive, and the term “is
derived from” refers to the calculation of a specific metric, which is obtained by dividing
the number of true positives by the sum of true positives and false positives. However, it
is important to note that recall is a metric that measures the model’s capacity to classify
the appropriate tumor type accurately. This is calculated by dividing the number of true
positives by the sum of true positives and false negatives. The F1-score is a metric used
in evaluation that quantifies the balance between precision and recall. It is calculated as
the harmonic mean of precision and recall, obtained by multiplying precision and recall
and dividing the result by their sum, multiplied by two. In the context of classification
models, accuracy measures the model’s overall performance by quantifying the proportion
of correct classifications. It is calculated by dividing the number of accurate predictions
by the total number of predictions made. Equations (13)–(16) indicate the mathematical
representations of precision, recall, F1-score, and accuracy [67].

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1− Score = 2× Recall × Precision
Recall + Precision

(15)

Accuracy =
TP + TN

TP + TN + FP + FN
(16)
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The evaluation results, including the average precision, recall, F1-score, and accuracy
for both the proposed and pre-trained models, are presented in Table 1. The suggested
framework demonstrated a notable accuracy rate of 97.84%. Moreover, it achieved precision
and recall values of 97.85% and an F1-score of 97.90%. On the contrary, the InceptionV3
model exhibited the lowest performance, achieving an accuracy of 88.15%, a precision rate
of 87.70%, a recall rate of 87.89%, and an F1-score rate of 87.60%. The observed variation in
the performance of InceptionV3 can be ascribed to its utilization of multiple and parallel
modules, which may not be well suited for the specific characteristics of this dataset, as
supported by our research findings. The pre-trained models VGG16, ResNet50, and VGG19
exhibited superior performance compared to MobileNetV2. Furthermore, the pre-trained
models employed the standard input dimensions, including VGG16, VGG19, ResNet50,
and MobileNetV2 with dimensions of 224 × 224 and InceptionV3 with dimensions of
299 × 229. In order to preserve the pre-existing weights, the layers of the base model were
designated as non-trainable.

Table 1. Evaluation results of proposed and pre-trained models.

Models Name Total
Params:

Precision
Average (%)

Recall
Average (%)

F1-Score
Average (%)

Accuracy
Average (%)

Testing Time
Average (s)

VGG16 14,979,396 95.00 94.85 94.90 95.00 2.29

ResNet50 24,638,852 94.59 94.64 94.55 94.75 1.91

InceptionV3 55,362,340 87.70 87.89 87.60 88.15 2.61

MobileNetV2 2,915,908 91.65 91.40 91.60 91.73 0.99

VGG19 20,289,092 94.80 94.65 94.70 94.83 2.64

Proposed
Model 1,708,356 97.85 97.85 97.90 97.84 0.83

The utilization of the confusion matrix is a fundamental assessment instrument for
classification models [68]. The proposed network demonstrated robust capabilities in
accurately classifying various types of brain tumors, effectively identifying each type
during the examination. Figure 7 presents a visual representation of the results obtained
from the testing data, enabling a comparison between the proposed and pre-trained models.
The comparison reveals that the proposed model outperformed the pre-trained models
in performance. The proposed model demonstrated high accuracy in predicting glioma,
achieving 97%, and meningioma, achieving a 96% accuracy rate. Additionally, it achieved
a 99% accuracy rate in predicting pituitary and no-tumor cases. These results surpass the
performance of pre-trained models. However, it is crucial to emphasize that the efficacy of
treatment for glioma and meningioma in this study did not achieve comparable levels of
success. This finding underscores the necessity for additional research and investigation in
subsequent studies.

Furthermore, the Receiver Operating Characteristics (ROC) curve is a visual rep-
resentation of the performance of a classification model across different classification
thresholds [69]. The True Positive Rate (TPR) and False Positive Rate (FPR) are graphically
represented. The ROC curve illustrates the balance between correctly identifying positive
and incorrectly classifying negative instances as positive at all classification thresholds on
the testing set. The ROC curve provides insights into the model’s ability to differentiate
between different thresholds effectively.
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Figure 7. Confusion matrices of several models using the testing data. (a) The proposed model has a
high level of accuracy, achieving a score of 97.84%. (b) VGG16 model achieved a classification accuracy
of 95.00%. (c) ResNet50 model achieved an accuracy of 94.75%. (d) The accuracy of InceptionV3
is 88.15%. (e) MobileNetV2 model achieved a classification accuracy of 91.73%. (f) VGG19 model
achieved a classification accuracy of 94.83%.

21



Brain Sci. 2023, 13, 1320

The present investigation demonstrates the proposed framework’s superior diagnostic
efficacy compared to pre-trained designs. The findings of this study provide evidence
supporting the suggested model’s higher diagnostic accuracy compared to state-of-the-
art methodologies. When comparing the performance of the VGG16 architecture, it was
observed that it achieved scores of 0.95 for glioma, 0.93 for meningioma, 0.97 for pituitary,
and 0.98 for the no-tumor category. The ResNet50 architecture achieved classification scores
of 0.92, 0.93, 0.97, and 0.98 for the glioma, meningioma, pituitary, and no-tumor classes,
respectively. The InceptionV3 model yielded predictive scores of 0.84 for glioma, 0.81 for
meningioma, 0.96 for pituitary, and 0.97 for the no-tumor category. The MobileNetV2
design achieved scores of 0.90, 0.86, 0.97, and 0.98 for the glioma, meningioma, pituitary,
and no-tumor categories, respectively. Additionally, the VGG19 architecture demonstrated
classification scores of 0.92 for glioma, 0.93 for meningioma, 0.98 for the pituitary, and 0.98
for the no-tumor category.

The model under consideration demonstrates notable performance regarding ROC
scores. The achieved classification accuracies are as follows: 0.98 for glioma, 0.97 for
meningioma, 0.99 for pituitary, and a flawless accuracy of 1.00 for the no-tumor category.
The robust performance of the model is supported by a collective ROC score of 98.50%, as
depicted in Figure 8, compared to pre-trained models.
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5. Discussion

This investigation introduces a novel methodology for categorizing the Msoud dataset,
which consists of a varied assortment of 7023 brain images. The efficacy of the proposed
system is demonstrated by its capacity to attain highly precise prediction outcomes, sur-
passing prior research endeavors with comparable aims. Moreover, this study proposes a
method that does not rely on segmenting brain tumor images for classification purposes.
The primary advantage of our approach resides in its capacity to substantially diminish
the requirement for manual procedures, such as feature extraction and tumor localization.
These processes are not only time-intensive but also susceptible to inaccuracies. By em-
ploying various enhancement techniques, including sharpening with Gaussian blur and
Contrast-Limited Adaptive Histogram Equalization (CLAHE), notable enhancements are
achieved in the quality of the brain images. The enhancement process plays a crucial role
in the refinement of edges and improving the overall image clarity, reducing the manual
effort needed for feature extraction.
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Furthermore, our proposed model incorporates distinctive concatenation concepts
within the convolutional layers, demonstrating superior performance compared to alterna-
tive methods, as shown in Table 2. By incorporating these enhancement techniques, the
proposed model has demonstrated exceptional performance, surpassing the existing state-
of-the-art model in classifying brain tumors. The successful accomplishment is evidence
of the proposed model’s resilience and capacity to apply to a wide range of brain image
classification tasks, highlighting its potential for achieving precise and dependable results.
Integrating decreased manual intervention, enhanced image quality, and the suggested
model architecture renders our approach highly promising for practical implementations
in classifying brain tumors.

Table 2. Comprehensive comparison of the obtained and previous studies’ results.

Authors Year Methods Dataset Classes Precision Recall F1-Score Accuracy

Gumaei et al. [25] 2019 Hybrid
PCA-NGIST-RELM

Figshare
3064 Images 3 X X X 94.23

Swati et al. [40] 2019 VGG16 Fine tune Figshare
3064 Images 3 89.17 X 91.50 94.65

Swati et al. [40] 2019 VGG19 Fine Tune Figshare
3064 Images 3 89.52 X 91.73 94.82

Ghassemi et al. [32] 2019 CNN-based GAN Figshare
3064 Images 3 95.29 X 95.10 95.60

Huang et al. [31] 2020 CNNBCN Figshare
3064 Images 3 X X X 95.49

Fouad et al. [27] 2020 HDWT-HOG-
Bagging

Figshare
3064 Images 3 X X X 96.40

Kaplan et al. [19] 2020 NLBP-αLBP-KNN Figshare
3064 Images 3 X X X 95.56

Ayadi et al. [28] 2020 DSURF-HOG -SVM Figshare
3064 Images 3 X 88.84 89.37 90.27

Noreen et al. [34] 2021 InceptionV3
Ensemble

Figshare
3064 Images 3 93.00 92.00 92.00 94.34

Almalki et al. [38] 2022 SURF-KAZE-SVM Kaggle
2870 Images 4 X X X 95.33

Ekong et al. [41] 2022 Bayesian-CNN Benchmark BRATS 2015
4000 Images 4 94 95 94 94.32

Asiri et al. [42] 2023 GAN-Softmax Kaggle
2870 Images 4 92 93 93 96.00

Shilaskar et al. [43] 2023 HOG-XG Boost Figshare, SARTAJ and
Br35H 7023 images 4 92.07 91.82 91.85 92.02

Our work - Image Enhancement
+ Proposed Model

Figshare, SARTAJ and
Br35H

7023 images
4 97.85 97.85 97.90 97.84

The methodology of Gumaei et al. [25] introduced a combination of PCA, NGIST, and
RELM. While this hybrid approach attempted to capture a comprehensive feature set, PCA
might not always capture non-linear patterns inherent in brain images, potentially missing
crucial tumor-specific details and resulting in less accuracy. The methodologies of Swati
et al. [40] and Noreen et al. [34] relied on refining generic architectures, specifically state-of-
the-art models. Such fine-tuning of deep architectures can be resource-intensive. The intri-
cate process necessitates substantial computational resources and proves time-consuming,
given the need to adjust many parameters in these extensive networks. Contrarily, our
model is purposefully designed for brain tumor classification. It captures tumor-specific
attributes efficiently without the excessive computational demands typically associated
with deep architectures. As corroborated by Table 1, our method requires fewer parameters
than the state of the art and delivers faster testing times.
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Ghassemi et al. [32] ventured into the territory of Generative Adversarial Networks,
leveraging CNN-based GANs. While GANs are adept at generating synthetic images, their
direct application to classification might introduce synthetic nuances that deviate from
real-world MRI variations, potentially affecting classification accuracy. Huang et al. [31]
introduced the CNNBCN, a model rooted in randomly generated graph algorithms, achiev-
ing an accuracy of 95.49% and demonstrating advancements in neural network design.
In contrast, our methodology performs superior classification on extensive tumor and
no-tumor images.

Techniques like HDWT-HOG-Bagging and NLBP-αLBP-KNN, as presented by
Fouad et al. [27] and Kaplan et al. [19], rely heavily on traditional feature extraction.
While computationally intensive, such methods might still miss subtle details and patterns
in the MRI scans, resulting in less accuracy. Ayadi et al. [28] employed DSURF-HOG com-
bined with SVM for classification, a method that might overlook hierarchical and spatial
patterns in MRI images, which deep learning models can capture more effectively.

Ekong et al. [41] introduced a Bayesian-CNN approach, and while Bayesian meth-
ods offer probabilistic insights, they might not always capture the intricate features of
brain tumors. While the GAN-Softmax approach by Asiri et al.’s [42] model offers certain
advancements, it is computationally more demanding. Moreover, the efficacy of method-
ologies such as HOG-XG Boost by Shilaskar et al. [43] and the SURF-KAZE technique
by Almalki et al. [38] might be constrained, particularly in their ability to capture spatial
and hierarchical MRI patterns—areas where contemporary deep learning models exhibit
proficiency as proved in this study.

Limitations

The usefulness of the proposed methodology for extracting features has been proven
by using a specific dataset obtained from MRI scans. In order to enhance the clarity of
the images, various techniques for image enhancement were employed. Although these
strategies can enhance visibility, it is crucial to acknowledge that, in specific circumstances,
it may impact classification accuracy. Therefore, comprehensive evaluations are necessary
to test the method’s suitability for different imaging modalities and clinical scenarios and
its flexibility for image enhancements.

6. Conclusions

The present study introduced a novel approach to classify various categories of brain
tumors, such as primary, meningioma, pituitary, and instances with no tumor. This is
achieved by combining image enhancement techniques, namely, Gaussian-blur-based
sharpening and Contrast-Limited Adaptive Histogram Equalization (CLAHE), with a pro-
posed convolutional neural network. The findings of our study demonstrate a remarkable
level of accuracy, specifically 97.84%, which was achieved through a diligent evaluation
of the effectiveness of the suggested framework. The outcome of this study showcases
the model’s robust capacity for generalization, rendering it a valuable and dependable
tool within the medical field. The capacity of this method to facilitate expeditious and
accurate decision making by medical professionals in the realm of brain tumor diagnosis is
evident. To enhance patient care in the future, we intend to revolutionize medical imaging
methods. This will be accomplished by creating real-time brain tumor detection systems
and establishing three-dimensional networks to analyze other medical images.
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DE Differential Evolution AI Artificial Intelligence
SVM Support Vector Machine KNN K-Nearest Neighbors
WSVM Weight Kernel Width SVM DL Deep learning
HIK-SVM Histogram Intersection Kernel SVM ML Machine learning
HDWT Haar Discrete Wavelet Transforms MRI Magnetic Resonance Imaging
HOG Histogram of Oriented Gradients LPB Local Binary Pattern
MODE Multi-Objective Differential Evolution SURF Speeded Up Robust Feature
GAN Generative Adversarial Network WOA Whale Optimization Algorithm
CNNBCN Convolutional Neural Network based on Complex Network PCA Principal Component Analysis
RELM Regularized Extreme Learning Machine CNN Convolutional Neural Network
CLAHE Contrast-Limited Adaptive Histogram Equalization CPU Central Processing Unit
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Abstract: The purpose of this study was to automatically classify different motor subtypes of Parkin-
son’s disease (PD) on arterial spin labelling magnetic resonance imaging (ASL-MRI) data using
support vector machine (SVM). This study included 38 subjects: 21 PD patients and 17 normal con-
trols (NCs). Based on the Unified Parkinson’s Disease Rating Scale (UPDRS) subscores, patients were
divided into the tremor-dominant (TD) subtype and the postural instability gait difficulty (PIGD)
subtype. The subjects were in a resting state during the acquisition of ASL-MRI data. The automated
anatomical atlas 3 (AAL3) template was registered to obtain an ASL image of the same size and
shape. We obtained the voxel values of 170 brain regions by considering the location coordinates
of these regions and then normalized the data. The length of the feature vector depended on the
number of voxel values in each brain region. Three binary classification models were utilized for
classifying subjects’ data, and we applied SVM to classify voxels in the brain regions. The left subgen-
ual anterior cingulate cortex (ACC_sub_L) was clearly distinguished in both NCs and PD patients
using SVM, and we obtained satisfactory diagnostic rates (accuracy = 92.31%, specificity = 96.97%,
sensitivity = 84.21%, and AUCmax = 0.9585). For the right supramarginal gyrus (SupraMarginal_R),
SVM distinguished the TD group from the other groups with satisfactory diagnostic rates (accu-
racy = 84.21%, sensitivity = 63.64%, specificity = 92.59%, and AUCmax = 0.9192). For the right
intralaminar of thalamus (Thal_IL_R), SVM distinguished the PIGD group from the other groups
with satisfactory diagnostic rates (accuracy = 89.47%, sensitivity = 70.00%, specificity = 6.43%, and
AUCmax = 0.9464). These results are consistent with the changes in blood perfusion related to PD
subtypes. In addition, the sensitive brain regions of the TD group and PIGD group involve the brain
regions where the cerebellothalamocortical (CTC) and the striatal thalamocortical (STC) loops are
located. Therefore, it is suggested that the blood perfusion patterns of the two loops may be different.
These characteristic brain regions could become potential imaging markers of cerebral blood flow
to distinguish TD from PIGD. Meanwhile, our findings provide an imaging basis for personalised
treatment, thereby optimising clinical diagnostic and treatment approaches.

Keywords: Parkinson’s disease; motor subtypes; arterial spin labelling; machine learning; support
vector machine

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder that becomes in-
creasingly prevalent with age [1]. The typical symptoms of PD are rigidity, bradykinesia,
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tremor, and postural instability [2], which are caused by a profound loss of dopaminer-
gic neurons from the basal ganglia [3]. Additionally, many environmental and genetic
factors exert an influence on the risk of PD, with different factors predominating in dif-
ferent patients. These factors converge on specific pathways, including mitochondrial
dysfunction, oxidative stress, protein aggregation, impaired autophagy, and neuroinflam-
mation [4]. Several pathophysiological concepts, pathways, and mechanisms, including
the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative
stress, iron and melanin, deficient autophagy processes, insulin and incretin signalling,
T-cell autoimmunity, the gut–brain axis, and the evidence that microbial (viral) agents, may
induce molecular hallmarks of neurodegeneration [5]. The Unified Parkinson’s Disease
Rating Scale (UPDRS) is the most commonly used scale to assess the motor symptoms of
PD patients [6]. Based on the UPDRS score, Jankovic was the first person who proposed
classifying idiopathic PD into tremor-dominant (TD) and postural instability and gait diffi-
culty (PIGD) subtypes [7]. PD patients with different motor subtypes have different disease
progression and prognoses. The PIGD subtype has more severe motor and cognitive im-
pairment and worse response to drug treatment than the TD subtype [7,8]. Therefore, it is
of great significance to improve the clinical classification of PD for individualised treatment.
Meanwhile, there is an increasing interest in the analysis of variability in clinical presenta-
tion, which reflects the existence of multiple subtypes of, and heterogeneous progression
in, PD. The identification of patient subgroups within PD has significant implications for
generating hypotheses on defining the heterogeneity of PD, understanding etiopathogenic
mechanisms, and developing treatments [9].

At present, the classification of PD subtypes is mainly based on the UPDRS. The
brain imaging neural markers of PD are far from reaching a consensus. Excavating the
neural mechanism under the imaging is conducive to promoting the differential diagnosis
of PD subtypes so as to optimise the clinical diagnosis and treatment. In recent years,
neuroimaging studies have shown that cerebrovascular lesions are common in PD patients.
Therefore, PD is considered a disease related to abnormal cerebrovascular function [10].
This issue was also described in the context of atypical parkinsonisms, such as corticobasal
syndrome (CBS), characterised by both motor and higher cortical dysfunctions. Further-
more, ischemia is the primary risk factor for vascular CBS. Cerebral hypoperfusion can
play a significant role in neuropathological changes in neurodegenerative diseases, CBS
included [11]. Previous studies have confirmed that dopaminergic neurons are attached
to brain microvessels and cerebral blood flow (CBF) changes due to metabolic reduction
caused by neuronal degeneration and death [12]. However, this basic pathological change
reflected in cerebral blood perfusion in patients with different motor subtypes of PD has
not been confirmed by definite studies.

Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) perfusion tech-
nique that enables the quantification of CBF without the use of intravenous gadolinium
contrast [13]. Regional CBF measured by ASL is relatively stable and is considered to
reflect the functional activity of the brain directly [14]. Studies have shown that ASL
technology can detect signs of neurodegeneration at an earlier stage and can be used to
monitor changes in CBF during the progression of the disease [15]. There was no difference
in whole-brain CBF in TD patients compared to PIGD patients. The prolonged arterial
arrival time appeared more diffuse in the TD group than in the PIGD group. The PIGD
group had a more predominantly posterior pattern of hypoperfusion and, indeed, basal
ganglia hyperperfusion than the more temporo-parieto-frontal hypoperfusion of the TD
group (which did not show areas of hyperperfusion) [16]. To our knowledge, the PD
subtypes differences revealed in specific brain regions of CBF have not been previously
investigated. Currently, resting-state functional MRI is widely utilised in the study of PD
motor subtypes [17–20], while there are few studies on ASL-MRI. It is necessary to consider
an imaging marker of CBF to distinguish TD from PIGD.

With the development of machine learning technology, support vector machine (SVM)
has been widely used in the early diagnosis and classification of PD due to its excellent
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performance [21–24]. SVM aims to find the maximum interval between classes, which
is known as the optimal decision boundary. This helps enhance the generalisation per-
formance of classification, which is particularly important for medical data classification,
where accuracy is paramount. SVM has shown excellent performance for the classification
of PD motor subtypes using neuroimaging data or 3D kinematic data [25,26]. The aim
of this study was to use SVM to perform automatic classification on ASL-MRI data and
explore the neuroimaging markers of PD subtypes in cerebral blood perfusion.

2. Materials and Methods
2.1. Subjects

We enrolled 38 subjects in this study, including 17 normal controls (NCs). Based
on the Unified Parkinson’s Disease Rating Scale (UPDRS) subscores, there were 11 TD
and 10 PIGD patients among the 21 PD patients. This study was reviewed and approved
by the Ethics Review Committee of Shanghai East Hospital. Written informed consent
was obtained from all subjects. All subjects underwent by the following tests: (1) Mini-
Mental State Examination (MMSE); (2) Modified Hoehn and Yahr clinical grading scale;
(3) Movement Disorder Society-Sponsored Revision UPDRS.

The inclusion criteria of PD patients were as follows: (1) age 50–75 years old, tremor
was the main symptom, Hoehn and Yahr stages II–IV; (2) clear and effective treatment with
dopaminergic drugs; (3) no other systemic malignant tumours. The inclusion criteria for
the NCs were as follows: (1) sex and age matching those of participants in the PD group
(there was no statistically significant difference (p > 0.05)); (2) the patients were healthy
without nervous system diseases. The exclusion criteria were as follows: (1) history of
recurrent stroke, transient ischemic attack, brain injury, and encephalitis; (2) symptoms
during the use of antipsychotic drugs; (3) serious heart, liver, and kidney diseases and
mental disorders; (4) severe autonomic nervous dysfunction occurring in the early stage of
the disease; (5) inability to cooperate with the examination due to various reasons (such as
illiteracy, advanced age, hearing impairment, claustrophobia, etc.).

2.2. Magnetic Resonance Imaging

All subjects were scanned with a M750w 3.0T GE Signa MRI system (GE Healthcare,
Chicago, IL, USA) equipped with a 32-channel phased-array head coil. The subjects were
in a resting state during the acquisition of ASL-MRI data. During the scanning, the subjects
were in the supine position with their head fixed using a fixed band, and earplugs were
placed in both ears to reduce scanner noise. All subjects were asked to limit their head
movements as much as possible. The three groups of subjects were scanned with the
same sequence under the same parameters. The sequences included conventional MRI
sequences (T1WI and T2WI), DWI, and ASL sequences. Other nervous system lesions, such
as multiple cerebral infarctions, hydrocephalus, and intracranial tumours, can be excluded
by conventional MRI scans in selected subjects.

Conventional MRI scans were performed, including cross-sectional T1WI (repetition
time (TR) = 2000 ms, echo time (TE) = 20 ms, field of view (FOV) = 250 × 221 mm, ma-
trix = 400 × 250, and slice thickness/slice distance = 7 mm/0.6 mm); T2WI (TR = 3000 ms,
TE = 80 ms, FOV = 250 × 221 mm, matrix = 436 × 295, and slice thickness/slice dis-
tance = 7 mm/0.6 mm); FLAIR (TR = 11,000 ms, TE = 120 ms, FOV = 250 × 221 mm,
matrix =240 × 160, and slice thickness/pitch = 7 mm/0.6 mm); and DWI (TR = 2634 ms,
TE = 58 ms, FOV = 230 × 230 mm, matrix = 140 × 136, and slice thickness/slice dis-
tance = 6 mm/0.6 mm). The ASL scanning parameters were as follows: TR = 4854 ms;
TE = 10.7 ms; post-labelling delay time = 2025 ms; spiral arm = 8; sampling point = 512; flip
angle (FA) = 111◦; FOV = 240 mm × 240 mm; reconstruction matrix = 128 × 128; slice thick-
ness = 4 mm, no septum; slice number = 36, axial position; number of excitations (NEX) = 3.
The intraslice resolution was 1.9 mm × 1.9 mm, and the scan time was 282 s.
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2.3. Statistical Analysis

We analysed the general information and clinical scale data of the subjects using the
Statistical Package for the Social Sciences version 26.0 (IBM Corp., Armonk, NY, USA) and
compared the gender distribution of the groups by performing a chi-square test. For quan-
titative data, we first performed a normality test (Shapiro–Wilk test) and homogeneity of
variance test. We expressed normally distributed data as the means ± standard deviations.
We compared the three groups using one-way analysis of variance and compared pairs
of groups using a two-sample t-test. We expressed non-normally distributed data as M
(P25, P75). The Kruskal–Wallis test was used for comparisons among the three groups,
and a two-sample nonparametric t-test was used for comparisons between the two groups.
p < 0.05 was considered statistically significant.

2.4. Data Preprocessing
2.4.1. Feature Extraction

Due to the long time required for MR image acquisition, it is difficult for PD patients
with a tremor to avoid head movement, which can affect the subsequent data analysis.
Therefore, the brain images in the first 10 time points of each subject were discarded to
ensure the stability of the data signals. The brain images in the remaining time series were
corrected by interlayer time correction, strict head movement correction, brain normal-
ization, and image smoothing using the SPM spatial template to minimise the possible
influence of head movement.

After correction, the automated anatomical atlas 3 (AAL3) brain region template
(including 170 brain regions) was selected. We used SPM to register the AAL3_1 mm
template with the ASL image to obtain images with the same size and shape. According to
the brain regions defined by AAL3, we obtained the location coordinates contained by each
brain region in the AAL3 image and then obtained the voxel values of the corresponding
brain region location of the subject. A csv file was generated for each brain region containing
the voxel values of that region for all subjects, so we obtained the voxel values for 170 brain
regions. Due to the different size of each brain region, the number of corresponding voxel
values also varied. Before the data were entered into the SVM classifier, we only normalised
the voxel data of the current brain region without changing the data size. Consequently, the
length of the feature vector depended on the number of voxel values in each brain region.
The length of these feature vectors varied from brain region to brain region. However,
the length of the feature vectors was consistent for each brain region. For example, in
Acc_pre_L, the number of voxels for per patient was 626, while, in Angular_R, the number
of voxels was 1751.

2.4.2. Model Classification and Validation

Patients were classified according to the obtained voxel values in each brain region.
The data of NC, PIGD patients, and TD patients were referred to the classification methods
of previous similar studies [27], and three binary classification models were proposed: “NC
vs. others”, “PIGD vs. others”, and “TD vs. others”.

The data were normalised and used to construct SVM classifiers based on the Sklearn
library. We adopted the leave-one-out cross-validation (LOOCV) method to estimate the
performance of the classifiers. Given a set of data samples, the classifier removed one
data sample in each trial, and the classifier was trained on the remaining data samples.
The removed samples were used for model testing [28]. Since the feature vector size
of each brain region is different, we trained the model for the same brain region of all
subjects in each experiment to test the diagnostic effect under the current brain region.
According to the classification standard of the AAL3 brain region template, a total of
170 brain regions were shown. Therefore, experiments were conducted for all 170 brain
regions. In the experiment, each subject’s current brain region would be used as the test
set in turns due to adopting the LOOCV. For example, when we targeted the Thal_VA_L
in the AAL3 template for the experiment, the voxel value of Thal_VA_L for each subject
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was taken as a sample. When we performed experiments on other brain regions, since
the number of voxel values in each brain region was different, the length of the feature
vector in each experiment depended on the number of voxel values in each brain region.
The model performance indicators of accuracy, sensitivity, specificity, and maximum area
under the curve (AUCmax) in the receiver operating characteristic (ROC) analysis were
used to evaluate the classification performance of the SVM model. The overall procedure
of data preprocessing, feature extraction, model classification, and validation is displayed
in Figure 1.
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3. Results
3.1. Demographic and Clinical Study

There was no significant difference in age, sex, or disease duration among the three
groups (p > 0.05, Table 1). There was no significant difference in UPDRS score or H&Y
grade between the TD group and PIGD group (p > 0.05, Table 1). There was no significant
difference in MMSE scores between the TD group and the PIGD group (p > 0.05, Table 1).

Table 1. Comparison of general clinical data among the three groups.

Groups NC TD PIGD p-Value

Number of subjects 17 11 10 -

Age (year) 64 (52~68) 68 (55~70) 69.500
(67.25~68.75) 0.052

Sex (M/F) 5/12 5/6 4/6 0.671
Disease duration (year) - 6 (4~6) 4/6 0.152

H&Y - 1.500 (1~2) 1.500 (1.375~2) 0.809
UPDRS - 36.730 ± 15.021 39.700 ± 11.870 0.623
MMSE - 27.820 ± 3.682 26.000 ± 3.582 0.260

H&Y: Hoehn and Yahr stage; UPDRS: Unified Parkinson’s Disease Rating Scale; MMSE: Mini-Mental State
Examination; NC: normal control; TD: tremor-dominant; PIGD: postural instability and gait difficulty.

3.2. Classifier Performance Assessment

After SVM screening, a total of 4 brain regions with high accuracy were selected
from 170 brain regions in the AAL3 template. According to the performance analysis of
three binary classification models, we found that the left subgenual anterior cingulate
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cortex (ACC_sub_L) of the NCs was more sensitive to classification than that of the PD
patients. The proposed classifier differentiated PD patients and NCs with diagnostic
accuracy, sensitivity, and specificity of 81.58%, 76.47%, and 85.71%, respectively. At the
same time, the ROC analysis showed that the AUCmax reached 0.8992.

For the right supramarginal gyrus (SupraMarginal_R), SVM distinguished the TD
group from the other groups with diagnostic accuracy, sensitivity, and specificity of 84.21%,
63.64%, and 92.59%, respectively, and the AUC value was 0.9192. For the right intralaminar
of the thalamus (Thal_IL_R), SVM could distinguish the PIGD group from the other groups
with a diagnostic accuracy, sensitivity, and specificity of 89.47%, 70.00%, and 96.43%,
respectively, and the AUC value was 0.9464. For the left lateral geniculate of the thalamus
(Thal_LGN_L), the accuracy of the TD and PIGD classification was above 75%, but the
AUC value was relatively low (Table 2 and Figure 2).

Table 2. The diagnostic performance of sensitive brain regions for the three binary classifications.

Brain Regions Groups Accuracy Sensitivity Specificity AUC

NC vs. others 81.58% 76.47% 85.71% 89.92%
ACC_sub_L PIGD vs. others 65.79% 40.00% 75.00% 63.57%

TD vs. others 68.42% 54.55% 74.07% 64.98%

SupraMarginal_R
NC vs. others 76.32% 76.47% 76.19% 80.67%

PIGD vs. others 73.68% 50.00% 82.14% 70.00%
TD vs. others 84.21% 63.64% 92.59% 91.92%

NC vs. others 73.68% 70.59% 76.19% 81.79%
Thal_IL_R PIGD vs. others 89.47% 70.00% 96.43% 94.64%

TD vs. others 81.58% 63.64% 88.89% 75.42%

NC vs. others 57.89% 64.71% 52.38% 60.50%
Thal_LGN_L PIGD vs. others 76.32% 30.00% 92.86% 52.14%

TD vs. others 78.95% 45.45% 92.59% 67.34%
ACC_sub_L: the left subgenual of anterior cingulate cortex; SupraMarginal_R: the right supramarginal gyrus;
Thal_IL_R: the right intralaminar of the thalamus; Thal_LGN_L: the left lateral geniculate of the thalamus; NC:
normal control; TD: tremor-dominant; PIGD: postural instability and gait difficulty.
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3.3. Visualisation of the Most Sensitive Features

According to the sensitive brain regions screened by SVM, we input four related
sensitive brain regions into BrainNetViewer for visualisation [29] and displayed the related
brain regions intuitively (Figure 3).
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4. Discussion

This study introduces a SVM-based classifier for the differential diagnosis of PD
patients with different motor subtypes using ASL-MRI data for the first time. In general, the
proposed classifier has high classification performance in the four brain regions, showing
a satisfactory classification ability. The diagnostic accuracy, sensitivity, specificity, and
AUCmax value are high, which are almost consistent with the evaluation of the clinical
scales. This indicates the feasibility of using ASL-MRI data for the automatic classification
of PD subtypes. We also find that the voxel values of the four related brain regions are the
most sensitive classification features, which can be used as potential neuroimaging markers
for PD subtypes in cerebral blood perfusion.

The AAL3 brain template used in this study helped to further divide the brain regions
into detailed subregions [30]. These regions are of interest in many neuroimaging studies
and studies of psychiatric and neurological disorders [31–34]. Compared to radiomics
features extracted from ROIs (left and right caudate and putamen) in MRI images and DAT
SPECT images [35], we paid more attention to the extraction and selection of the features of
the whole brain. Numerous new data-driven methods, such as biclustering or triclustering,
seem to have been proposed for subtyping from neuroimaging data [36]. Unlike data-driven
methods applied to schizophrenia research [37,38], SVM has gained significant popularity
for the early diagnosis and classification of PD. The SVM algorithm in machine learning
was used for the classification model. We utilised a linear kernel SVM, which is also a
linear classifier. This classifier has demonstrated exceptional classification performance
and interpretability, rendering it extensively utilised in various research endeavours. In
our data sample, the number of subjects in the control group was large, while the number
of subjects in the other categories was relatively small, and the categories were unbalanced.
SVM can handle unbalanced data by adjusting the regularisation parameter C to ensure
that the model is not biased toward the dominant category. In the conducted experiment,
a range of regularisation parameter C values from 1 to 1000 were explored. Based on the
obtained experimental results, it was determined that the current value of C exhibited
optimal efficacy. Compared to deep learning and random forest, SVM is more suitable
for the research of small samples. Due to the existence of a “black box”, deep learning is
not as interpretable as SVM. LOOCV was used as the validation method instead of k-fold
cross-validation, because it is suitable for small sample studies. Future research could
explore the application of unsupervised machine learning for the data-driven identification
of motor subtypes in PD. Previous studies have employed clustering methods such as
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unsupervised hierarchical clustering, KMeans, and random forest clustering to identify
subtypes of PD [35,39,40].

Voxel-based morphometry (VBM) is a neuroimaging technique that investigates focal
differences in brain anatomy [41]. Furthermore, VBM is widely used for neurodegenerative
and psychiatric diseases [41–45]. In previous studies using VBM to distinguish idiopathic
PD patients from normal subjects, the analysis was based on multiple machine learning
classifiers. The results indicated that the logistic method and support vector machine
showed the best performance [46]. However, a possible problem with these approaches is
that the evaluated regions are not the most relevant to the pathogenesis of PD. We found
that SVM could distinguish the NC group from the PD group in ACC_sub_L, which was
consistent with a previous study on the cingulate cortex in PD. Evidence has been provided
for a new conceptualisation of the connectivity and functions of the cingulate cortex in
emotion, action, and memory [47]. In addition, VBM has been used in many studies of
mild cognitive impairment in PD to show reduced thickness in the anterior cingulate cortex
and posterior cingulate cortex. Regional CBF is altered in association with the verbal
intelligence quotient in the posterior cingulate cortex and anterior midcingulate cortex and
in association with executive impairments in the anterior cingulate cortex [48].

In particular, a structural MRI study showed decreased cerebellar grey matter and
increased Sulc (a measure of sulcal depth) in the right supramarginal gyrus in the TD
subtype [49,50]. SupraMarginal_R has been shown to play an important role in various cog-
nitive functions [51]. The intralaminar nuclei, through extensive projections to the striatum
and cortex, participates in a range of behaviours, including sensorimotor coordination, pain
modulation, arousal, and cognition [52]. In general, PIGD subtypes mainly involve changes
in the basal ganglia output-related circuitry (striatal thalamocortical loop, STC loop), while
TD subtypes involve an additional downstream compensation mechanism consisting of
the cerebellothalamocortical (CTC) loop [53]. Based on the more than 30 quantitative PD
studies performed to date, it seems safe to conclude that the resting state in PD patients
is characterised by various degrees of hypoperfusion and hypometabolism in cerebral
cortical structures (mostly frontoparietal) and possibly also in certain subcortical struc-
tures [54]. A recent study using ASL revealed that TD exhibited more hypoperfusion in the
temporo–parieto–frontal network, while PIGD showed hypoperfusion in a predominantly
posterior pattern, as well as hyperperfusion in the basal ganglia [55]. The TD group showed
a higher classification performance in SupraMarginal_R, while the PIGD group showed
the highest classification performance in Thal_IL_R. This is consistent with the changes
in blood perfusion related to the PD subtype. The sensitive brain regions of the TD group
and PIGD group were in the brain regions involved in the CTC and STC loops, so it is
suggested that the blood perfusion patterns of the two pathways may be different.

This study still had several limitations. First, the sample size included in this study
was small. Additionally, the relatively wide age range of participants may have had an
impact on the results due to the small sample. Therefore, the conclusions of this study need
to be further verified by large-sample and multicentre data. Second, the detection results of
cerebral blood flow perfusion by ASL are easily affected by the post-labelling delay (PLD)
time, slice thickness, matrix, and other parameters; thus, people of different ages need
different PLD times. The 2025 ms PLD time interval selected in this study conforms to the
requirements of the 2014 expert consensus for a single PLD time of pseudo-continuous
arterial spin labelling to minimise its influence in most adults [56]. Third, the reliability
of the classification model would be further improved if a multimodal comparative study
were to be carried out by combining biological markers; other modalities such as MRI,
PET, or SPECT; and other imaging methods. In the future, on the basis of expanding the
sample size and integrating other modality images, we further will optimise the algorithm
for quantitative research to enhance the accuracy of the sensitive features and provide
multidimensional neuroimaging markers for clinical diagnosis and treatment.
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5. Conclusions

In conclusion, we introduced a classification method based on machine learning to
classify ASL-MRI images of PD patients with different motor subtypes and found that the
classification efficiency was high in four brain regions. In addition, ACC_sub_L can be
used as a neuroimaging marker for the classification of PD and NCs. SupraMarginal_R and
Thal_IL_R are within the range of the CTC and STC loops, which is helpful for investigating
the cerebral blood perfusion patterns of the two loops. These characteristic brain regions
could become potential imaging markers of CBF to distinguish TD from PIGD. It can help to
explain the differences in the anatomical and clinical symptoms of different PD motor sub-
types and provide an imaging basis for research on the neuropathological mechanism and
personalised treatment, thereby optimising clinical diagnostic and treatment approaches.

Author Contributions: Conceptualisation, Q.X.; Data curation, Z.W., X.L. and S.H.; Formal analysis,
J.X. and Z.W.; Funding acquisition, Q.X.; Investigation, Y.Z.; Methodology, J.X. and X.L.; Project
administration, Q.X.; Resources, Q.X., S.H. and Y.Z.; Software, Z.W. and X.L.; Supervision, Q.X. and
H.Z.; Validation, X.L.; Visualisation, Z.W. and X.L.; and Writing—original draft, J.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Commission of Shanghai Munici-
pality (Grant No. 20Y11911700) and the Outstanding Leaders Training Program of Pudong Health
Bureau of Shanghai (Grant No. PWRl2022-05).

Institutional Review Board Statement: The study was approved by the Ethics Review Committee
of Shanghai East Hospital (No. 2022-206).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent was obtained from the participants to publish this paper.

Data Availability Statement: All data reported in this manuscript will be made available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hirsch, L.; Jette, N.; Frolkis, A.; Steeves, T.; Pringsheim, T. The Incidence of Parkinson’s Disease: A Systematic Review and

Meta-Analysis. Neuroepidemiology 2016, 46, 292–300. [CrossRef] [PubMed]
2. Chiu, W.T.; Chan, L.; Wu, D.; Ko, T.H.; Chen, D.Y.-T.; Hong, C.-T. Cerebral Microbleeds are Associated with Postural Instability

and Gait Disturbance Subtype in People with Parkinson’s Disease. Eur. Neurol. 2018, 80, 335–340. [CrossRef]
3. Peters, O.M.; Weiss, A.; Metterville, J.; Song, L.; Logan, R.; Smith, G.A.; Schwarzschild, M.A.; Mueller, C.; Brown, R.H.; Freeman,

M. Genetic diversity of axon degenerative mechanisms in models of Parkinson’s disease. Neurobiol. Dis. 2021, 155, 105368.
[CrossRef] [PubMed]

4. Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr.
Med. 2020, 36, 1–12. [CrossRef]

5. Wüllner, U.; Borghammer, P.; Choe, C.-U.; Csoti, I.; Falkenburger, B.; Gasser, T.; Lingor, P.; Riederer, P. The heterogeneity of
Parkinson’s disease. J. Neural Transm. 2023, 130, 827–838. [CrossRef] [PubMed]

6. Ramaker, C.; Marinus, J.; Stiggelbout, A.M.; van Hilten, B.J. Systematic evaluation of rating scales for impairment and disability
in Parkinson’s disease. Mov. Disord. 2002, 17, 867–876. [CrossRef] [PubMed]

7. Jankovic, J.; McDermott, M.; Carter, J.; Gauthier, S.; Goetz, C.; Golbe, L.; Huber, S.; Koller, W.; Olanow, C.; Shoulson, I.; et al.
Variable expression of Parkinson’s disease: A base-line analysis of the DAT ATOP cohort. The Parkinson Study Group. Neurology
1990, 40, 1529–1534. [CrossRef]

8. Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS
clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [CrossRef] [PubMed]

9. Cubo, E.; Martínez-Martín, P.; González-Bernal, J.; Casas, E.; Arnaiz, S.; Miranda, J.; Gámez, P.; Santos-García, D.; Coppadis Study
Group. Effects of Motor Symptom Laterality on Clinical Manifestations and Quality of Life in Parkinson’s Disease. J. Park. Dis.
2020, 10, 1611–1620. [CrossRef]

10. Nanhoe-Mahabier, W.; de Laat, K.F.; Visser, J.E.; Zijlmans, J.; de Leeuw, F.-E.; Bloem, B.R. Parkinson disease and comorbid
cerebrovascular disease. Nat. Rev. Neurol. 2009, 5, 533–541. [CrossRef]

11. Dunalska, A.; Pikul, J.; Schok, K.; Wiejak, K.A.; Alster, P. The Significance of Vascular Pathogenesis in the Examination of
Corticobasal Syndrome. Front. Aging Neurosci. 2021, 13, 668614. [CrossRef]

37



Brain Sci. 2023, 13, 1524

12. Rane, S.; Koh, N.; Oakley, J.; Caso, C.; Zabetian, C.P.; Cholerton, B.; Montine, T.J.; Grabowski, T. Arterial spin labeling detects
perfusion patterns related to motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2020, 76, 21–28. [CrossRef] [PubMed]

13. Ho, M.-L. Arterial spin labeling: Clinical applications. J. Neuroradiol. 2018, 45, 276–289. [CrossRef] [PubMed]
14. Grade, M.; Tamames, J.A.H.; Pizzini, F.B.; Achten, E.; Golay, X.; Smits, M. A neuroradiologist’s guide to arterial spin labeling MRI

in clinical practice. Neuroradiology 2015, 57, 1181–1202. [CrossRef]
15. Takahashi, H.; Ishii, K.; Hosokawa, C.; Hyodo, T.; Kashiwagi, N.; Matsuki, M.; Ashikaga, R.; Murakami, T. Clinical Application

of 3D Arterial Spin-Labeled Brain Perfusion Imaging for Alzheimer Disease: Comparison with Brain Perfusion SPECT. Am. J.
Neuroradiol. 2014, 35, 906–911. [CrossRef]

16. Al-Bachari, S.; Vidyasagar, R.; Emsley, H.C.; Parkes, L.M. Structural and physiological neurovascular changes in idiopathic
Parkinson’s disease and its clinical phenotypes. J. Cereb. Blood Flow Metab. 2017, 37, 3409–3421. [CrossRef]

17. Wang, Q.; Yu, M.; Yan, L.; Xu, J.; Wang, Y.; Zhou, G.; Liu, W. Altered functional connectivity of the primary motor cortex in tremor
dominant and postural instability gait difficulty subtypes of early drug-naive Parkinson’s disease patients. Front. Neurol. 2023,
14, 1151775. [CrossRef]

18. Chen, Z.; He, C.; Zhang, P.; Cai, X.; Huang, W.; Chen, X.; Xu, M.; Wang, L.; Zhang, Y. Abnormal cerebellum connectivity patterns
related to motor subtypes of Parkinson’s disease. J. Neural Transm. 2023, 130, 549–560. [CrossRef]

19. Wang, Q.; Yu, M.; Yan, L.; Xu, J.; Wang, Y.; Zhou, G.; Liu, W. Aberrant inter-network functional connectivity in drug-naive
Parkinson’s disease patients with tremor dominant and postural instability and gait difficulty. Front. Hum. Neurosci. 2023,
17, 1100431. [CrossRef] [PubMed]

20. Lan, Y.; Liu, X.; Yin, C.; Lyu, J.; Xiaoxaio, M.; Cui, Z.; Li, X.; Lou, X. Resting-state functional magnetic resonance imaging study
comparing tremor-dominant and postural instability/gait difficulty subtypes of Parkinson’s disease. Radiol. Medica 2023, 128,
1138–1147. [CrossRef] [PubMed]

21. Amoroso, N.; La Rocca, M.; Monaco, A.; Bellotti, R.; Tangaro, S. Complex networks reveal early MRI markers of Parkinson’s
disease. Med. Image Anal. 2018, 48, 12–24. [CrossRef]

22. Tang, Y.; Meng, L.; Wan, C.-M.; Liu, Z.-H.; Liao, W.-H.; Yan, X.-X.; Wang, X.-Y.; Tang, B.-S.; Guo, J.-F. Identifying the presence of
Parkinson’s disease using low-frequency fluctuations in BOLD signals. Neurosci. Lett. 2017, 645, 1–6. [CrossRef] [PubMed]

23. Gu, Q.; Zhang, H.; Xuan, M.; Luo, W.; Huang, P.; Xia, S.; Zhang, M. Automatic Classification on Multi-Modal MRI Data for
Diagnosis of the Postural Instability and Gait Difficulty Subtype of Parkinson’s Disease. J. Park. Dis. 2016, 6, 545–556. [CrossRef]
[PubMed]

24. Abós, A.; Baggio, H.C.; Segura, B.; García-Díaz, A.I.; Compta, Y.; Martí, M.J.; Valldeoriola, F.; Junqué, C. Discriminating cognitive
status in Parkinson’s disease through functional connectomics and machine learning. Sci. Rep. 2017, 7, 45347. [CrossRef]
[PubMed]

25. Jin, C.; Qi, S.; Yang, L.; Teng, Y.; Li, C.; Yao, Y.; Ruan, X.; Wei, X. Abnormal functional connectivity density involvement in freezing
of gait and its application for subtyping Parkinson’s disease. Brain Imaging Behav. 2023, 17, 1–11. [CrossRef]

26. Gong, N.J.; Clifford, G.D.; Esper, C.D.; Factor, S.A.; McKay, J.L.; Kwon, H. Classifying Tremor Dominant and Postural Instability
and Gait Difficulty Subtypes of Parkinson’s Disease from Full-Body Kinematics. Sensors 2023, 23, 8330. [CrossRef] [PubMed]

27. Xu, J.; Xu, Q.; Liu, S.; Li, L.; Li, L.; Yen, T.-C.; Wu, J.; Wang, J.; Zuo, C.; Wu, P.; et al. Computer-Aided Classification Framework of
Parkinsonian Disorders Using 11C-CFT PET Imaging. Front. Aging Neurosci. 2022, 13, 792951. [CrossRef]

28. Larrañaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.A.; Armañanzas, R.; Santafé, G.; Pérez, A.; et al.
Machine learning in bioinformatics. Briefings Bioinform. 2006, 7, 86–112. [CrossRef]

29. Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 2013,
8, e68910. [CrossRef] [PubMed]

30. Rolls, E.T.; Huang, C.-C.; Lin, C.-P.; Feng, J.; Joliot, M. Automated anatomical labelling atlas 3. NeuroImage 2020, 206, 116189.
[CrossRef]

31. Long, Z.; Li, J.; Liao, H.; Deng, L.; Du, Y.; Fan, J.; Li, X.; Miao, J.; Qiu, S.; Long, C.; et al. A Multi-Modal and Multi-Atlas Integrated
Framework for Identification of Mild Cognitive Impairment. Brain Sci. 2022, 12, 751. [CrossRef]

32. Bai, X.; Wang, W.; Zhang, X.; Hu, Z.; Zhang, Y.; Li, Z.; Zhang, X.; Yuan, Z.; Tang, H.; Zhang, Y.; et al. Cerebral perfusion variance
in new daily persistent headache and chronic migraine: An arterial spin-labeled MR imaging study. J. Headache Pain 2022, 23, 156.
[CrossRef] [PubMed]

33. Cheng, W.; Rolls, E.T.; Qiu, J.; Xie, X.; Wei, D.; Huang, C.-C.; Yang, A.C.; Tsai, S.-J.; Li, Q.; Meng, J.; et al. Increased functional
connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression. Transl. Psychiatry 2018, 8, 90.
[CrossRef] [PubMed]

34. Trutti, A.C.; Mulder, M.J.; Hommel, B.; Forstmann, B.U. Functional neuroanatomical review of the ventral tegmental area.
NeuroImage 2019, 191, 258–268. [CrossRef] [PubMed]

35. Salmanpour, M.R.; Shamsaei, M.; Rahmim, A. Feature selection and machine learning methods for optimal identification and
prediction of subtypes in Parkinson’s disease. Comput. Methods Programs Biomed. 2021, 206, 106131. [CrossRef] [PubMed]

36. Castanho, E.N.; Aidos, H.; Madeira, S.C. Biclustering fMRI time series: A comparative study. BMC Bioinform. 2022, 23, 192.
[CrossRef]

38



Brain Sci. 2023, 13, 1524

37. Rahaman, A.; Damaraju, E.; Turner, J.A.; van Erp, T.G.; Mathalon, D.H.; Vaidya, J.; Muller, B.; Pearlson, G.; Calhoun, V.D.
Tri-Clustering Dynamic Functional Network Connectivity Identifies Significant Schizophrenia Effects Across Multiple States in
Distinct Subgroups of Individuals. Brain Connect. 2022, 12, 61–73. [CrossRef]

38. Rahaman, A.; Mathalon, D.; Lee, H.J.; Jiang, W.; Mueller, B.A.; Andreassen, O.; Agartz, I.; Sponheim, S.R.; Mayer, A.R.; Stephen, J.; et al.
N-BiC: A Method for Multi-Component and Symptom Biclustering of Structural MRI Data: Application to Schizophrenia. IEEE Trans.
Biomed. Eng. 2020, 67, 110–121. [CrossRef]

39. Yang, H.-J.; Kim, Y.E.; Yun, J.Y.; Kim, H.-J.; Jeon, B.S. Identifying the Clusters within Nonmotor Manifestations in Early Parkinson’s
Disease by Using Unsupervised Cluster Analysis. PLoS ONE 2014, 9, e91906. [CrossRef] [PubMed]

40. Albrecht, F.; Poulakis, K.; Freidle, M.; Johansson, H.; Ekman, U.; Volpe, G.; Westman, E.; Pereira, J.B.; Franzén, E. Unraveling
Parkinson’s disease heterogeneity using subtypes based on multimodal data. Park. Relat. Disord. 2022, 102, 19–29. [CrossRef]
[PubMed]

41. Nemoto, K. Understanding Voxel-Based Morphometry. Brain Nerves 2017, 69, 505–511. [CrossRef]
42. Pezzoli, S.; Sánchez-Valle, R.; Solanes, A.; Kempton, M.J.; Bandmann, O.; Shin, J.I.; Cagnin, A.; Goldman, J.G.; Merkitch, D.;

Firbank, M.J.; et al. Neuroanatomical and cognitive correlates of visual hallucinations in Parkinson’s disease and dementia with
Lewy bodies: Voxel-based morphometry and neuropsychological meta-analysis. Neurosci. Biobehav. Rev. 2021, 128, 367–382.
[CrossRef]

43. Matsuda, H. MRI morphometry in Alzheimer’s disease. Ageing Res. Rev. 2016, 30, 17–24. [CrossRef]
44. Nemoto, K. Voxel-Based Morphometry for Schizophrenia: A Review. Brain Nerves 2017, 69, 513–518.
45. Keramatian, K.; Chakrabarty, T.; Saraf, G.; Pinto, J.V.; Yatham, L.N. Grey matter abnormalities in first—Episode mania: A

systematic review and meta—analysis of voxe—based morphometry studies. Bipolar Disord. 2021, 23, 228–240. [CrossRef]
[PubMed]

46. Solana-Lavalle, G.; Rosas-Romero, R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to
assist in the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed. 2021, 198, 105793. [CrossRef]

47. Rolls, E.T. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct. Funct. 2019, 224, 3001–3018.
[CrossRef]

48. Vogt, B.A. Cingulate cortex in Parkinson’s disease. Handb. Clin. Neurol. 2019, 166, 253–266. [CrossRef]
49. Piccinin, C.C.; Campos, L.S.; Guimarães, R.P.; Piovesana, L.G.; dos Santos, M.C.A.; Azevedo, P.C.; Campos, B.M.; de Rezende, T.J.R.;

Amato-Filho, A.; Cendes, F.; et al. Differential Pattern of Cerebellar Atrophy in Tremor-Predominant and Akinetic/Rigidity-Predominant
Parkinson’s Disease. Cerebellum 2017, 16, 623–628. [CrossRef]

50. Li, J.; Zhang, Y.; Huang, Z.; Jiang, Y.; Ren, Z.; Liu, D.; Zhang, J.; La Piana, R.; Chen, Y. Cortical and subcortical morphological
alterations in motor subtypes of Parkinson’s disease. NPJ Park. Dis. 2022, 8, 167. [CrossRef]

51. Guidali, G.; Pisoni, A.; Bolognini, N.; Papagno, C. Keeping order in the brain: The supramarginal gyrus and serial order in
short-term memory. Cortex 2019, 119, 89–99. [CrossRef] [PubMed]

52. Vertes, R.P.; Linley, S.B.; Rojas, A.K.P. Structural and functional organization of the midline and intralaminar nuclei of the
thalamus. Front. Behav. Neurosci. 2022, 16, 964644. [CrossRef]

53. Lopez, A.M.; Trujillo, P.; Hernandez, A.B.; Lin, Y.; Kang, H.; Landman, B.A.; Englot, D.J.; Dawant, B.M.; Konrad, P.E.; Claassen,
D.O. Structural Correlates of the Sensorimotor Cerebellum in Parkinson’s Disease and Essential Tremor. Mov. Disord. 2020, 35,
1181–1188. [CrossRef] [PubMed]

54. Borghammer, P. Perfusion and metabolism imaging studies in Parkinson’s disease. Dan. Med. J. 2012, 59, B4466. [PubMed]
55. Boonstra, J.T.; Michielse, S.; Temel, Y.; Hoogland, G.; Jahanshahi, A. Neuroimaging Detectable Differences between Parkinson’s

Disease Motor Subtypes: A Systematic Review. Mov. Disord. Clin. Pract. 2020, 8, 175–192. [CrossRef] [PubMed]
56. Siger, M.; Schuff, N.; Zhu, X.; Miller, B.L.; Weiner, M.W. Regional Myo-inositol Concentration in Mild Cognitive Impairment

Using 1H Magnetic Resonance Spectroscopic Imaging. Alzheimer Dis. Assoc. Disord. 2009, 23, 57–62. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

39



brain
sciences

Article

Automatic Diagnosis of Major Depressive Disorder Using
a High- and Low-Frequency Feature Fusion Framework
Junyu Wang 1,2, Tongtong Li 1,2, Qi Sun 1,2, Yuhui Guo 2,3, Jiandong Yu 1,2, Zhijun Yao 1,2,*, Ning Hou 4,*
and Bin Hu 1,2,5,6,*

1 School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
wangjy22@lzu.edu.cn (J.W.); ttli2022@lzu.edu.cn (T.L.); sunq2023@lzu.edu.cn (Q.S.);
220220942541@lzu.edu.cn (J.Y.)

2 Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou 730000, China;
guoyh2022@lzu.edu.cn

3 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
4 Medical Department, The Third People’s Hospital of Tianshui, Tianshui 741000, China
5 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
6 CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes

for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
* Correspondence: yaozj@lzu.edu.cn (Z.Y.); 15337010167@163.com (N.H.); bh@lzu.edu.cn (B.H.)

Abstract: Major Depressive Disorder (MDD) is a common mental illness resulting in immune dis-
orders and even thoughts of suicidal behavior. Neuroimaging techniques serve as a quantitative
tool for the assessment of MDD diagnosis. In the domain of computer-aided magnetic resonance
imaging diagnosis, current research predominantly focuses on isolated local or global information,
often neglecting the synergistic integration of multiple data sources, thus potentially overlooking
valuable details. To address this issue, we proposed a diagnostic model for MDD that integrates
high-frequency and low-frequency information using data from diffusion tensor imaging (DTI), struc-
tural magnetic resonance imaging (sMRI), and functional magnetic resonance imaging (fMRI). First,
we designed a meta-low-frequency encoder (MLFE) and a meta-high-frequency encoder (MHFE) to
extract the low-frequency and high-frequency feature information from DTI and sMRI, respectively.
Then, we utilized a multilayer perceptron (MLP) to extract features from fMRI data. Following the
feature cross-fusion, we designed the ensemble learning threshold voting method to determine the
ultimate diagnosis for MDD. The model achieved accuracy, precision, specificity, F1-score, MCC, and
AUC values of 0.724, 0.750, 0.882, 0.600, 0.421, and 0.667, respectively. This approach provides new
research ideas for the diagnosis of MDD.

Keywords: major depressive disorder; magnetic resonance imaging; multi-modal; deep learning;
high and low frequencies; feature fusion

1. Introduction

Major depressive disorder (MDD) is a prevalent mental health disorder that has a
significant impact on both the individual and society [1]. It often presents as a severe and
enduring depression that is accompanied by a variety of physical and mental symptoms.
The utilization of clinical data and advanced imaging techniques in the investigation of
depression [2,3] can aid healthcare professionals in achieving a precise diagnosis. Presently,
imaging technology continues to advance at a rapid rate. Due to their non-invasive ability
to provide a more comprehensive insight into the mechanistic abnormalities associated with
disease pathology, both diffusion tensor imaging (DTI) and functional magnetic resonance
imaging (fMRI) have become prominent tools in the field of MDD research and diagnosis.
Specifically, DTI can illuminate the structural and anisotropic attributes of the brain’s white
matter fibers by tracking the diffusion patterns of water molecules, which provides a more
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profound understanding of the brain’s communication system. Additionally, using BOLD
signals for studying changes in brain function is one of the fundamental methods of fMRI.

Traditional machine learning techniques are capable of extracting information from
pre-processed data sources, including gray matter (GM) [4] and functional connectivity
(FC) matrices, among others, for disease diagnosis. Meanwhile, deep learning is partic-
ularly adept at the automated extraction of higher-level features and has demonstrated
excellent performance across a range of computer vision tasks [5]. Deep learning has been
extensively employed in various data feature extraction applications, including encom-
passing computed tomography (CT) [6], positron emission tomography (PET) [7], and
magnetic resonance imaging (MRI). Moreover, deep learning models for multimodal data
exhibit superior capabilities in capturing qualitative data features compared to unimodal
approaches, and they offer robust model interpretability. For instance, Song et al. [8]
designed multicenter and multichannel pooling GCN to diagnose Alzheimer’s disease
using fMRI and DTI modalities, with an average classification accuracy of 93.05% in their
binary classification tasks. Wang et al. [9] proposed an adaptive multimodal neuroimage
integration (AMNI) framework for automatic MDD detection using both functional and
structural MRI modalities, which demonstrated the effectiveness of the proposed method.
While researchers make use of various modal features for disease diagnosis, there is often a
missed opportunity to leverage cross-fusion between different scale features from different
modalities, resulting in the potential oversight of valuable information.

Wang et al. [10] used the depth model 3D-Densenet for MDD diagnosis with only
unimodal information from MRI. Gao et al. [11] proposed an attention-guided, unified
deep learning framework using only local structural characteristics for classification.
Marwa et al. [12] utilized shallow deep learning architecture to extract only local feature in-
formation from brain MRI for identifying a multi-class Alzheimer’s disease. However, they
only considered local or global information. Jang et al. [13] proposed a spach transformer
to accomplish image denoising for PET modalities using local and global information, but
few modalities were involved.

It is observed that convolutional neural networks (CNN) [14] predominantly empha-
size local receptive fields during convolution, which vary in texture, shape, and size across
various features. CNN leverages its robust capability in extracting effective local infor-
mation to further harness more intricate, high-frequency local details. Nevertheless, fully
concentrating on the entire dataset can be challenging, potentially resulting in the loss of
information pertaining to long-range dependencies. Transformers [15] with self-attention
mechanisms can minimize this shortcoming to capture global low-frequency information
about data. In medical imaging, high-frequency components often convey specific details
and edge information, including features like the border of brain sulci and gyri, the subtle
texture of the cerebral cortex, and more, while low-frequency components typically reflect
information at a larger scale, including things like tissue distribution and brain morphology.
Qiu et al. [16] fused long-range dependencies and global context information to alleviate
the problem of over-smoothing and over-fitting. Qin et al. [17] found that long-range
transformers have a great advantage in content selection. From a particular perspective,
the transformer’s capability to extract information over extensive distances is showcased.

Recently, Su et al. [18] proposed a convolutional model of 3DMKDR of electroen-
cephalogram (EEG) signals for depression disorder recognition. Teng et al. [19] proposed
a transformer-based modeling approach for depression prediction. Nonetheless, their
emphasis was confined to either low-frequency or high-frequency information, potentially
neglecting the comprehensive explorations of data.

To address the issue of information loss attributed to the absence of either high-
frequency or low-frequency data, we have introduced a cross-fusion, which harnesses
multiple modalities to encode low- and high-frequency feature representations for MDD
diagnosis. This approach strengthens the adversarial robustness of the extracted feature
model. The model consists of three core components: the meta-high-frequency encoder, the
meta-low-frequency encoder, and integrated learning. Specifically, the meta-high-frequency
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encoder, which consists of a simple fully convolutional network (SFCN) [20], is better able
to extract the modality’s high-frequency information with fewer parameters. The meta-low-
frequency encoder, comprising the 4-head attention and cls_token with positional encoding
added (positional encoding has the ability to learn to differentiate between positions and
cls_token serves as a learnable embedding vector, which is pre-encoded to end up with a
feature vector that can be used for classification), proves more efficient and expeditious
in extraction of the modality’s low-frequency information. Consequently, it endeavors
to steer our model towards a more comprehensive exploration of both localized specific
features and global structural characteristics. Additionally, we designed MLP for feature
extraction of the FC matrix and designed the cross-fusion of all the extracted different
features of different modalities to obtain a deeper feature representation. To delve deeper
into understanding the information loss attributed to the constraints of high-frequency
and high-frequency fusion, as well as low-frequency and low-frequency fusion, we tried to
explore this phenomenon in greater detail. Finally, the ensemble learning voting idea was
used for classification. Compared with individual modules, ensemble learning provided
greater improvements in classification performance. We summarize our contributions
as follows:

• We proposed a novel multi-modality deep learning framework for automatic diagnosis
of MDD;

• We developed a feature extractor to mine global dependencies and local responses
using transformer and CNN architectures, respectively;

• We designed an ensemble learning voting mechanism to obtain predictions.

The rest of this paper is organized as follows: Section 2 describes the source of the
subjects’ data and preprocessing. Section 3 exhibits the proposed model and experimental
details. Section 4 shows the ablation experiment and comparison with other deep learning
models. Section 5 provides the results of this study, limitations, and future improvements.
Section 6 presents a summary.

2. Material
2.1. Subjects

We collected information on three modalities—DTI, fMRI, and sMRI—from 128 par-
ticipants, and all patients with MDD in this study received a clinical diagnosis based on
the structured clinical interview for diagnostic and statistical manual of mental disorders,
fourth edition (DSM-IV) axis i disease (SCID). HCs (healthy controls) were recruited using
the non-patient edition of the structured clinical interview for DSM-IV.

All participants were within the age range of from 18 to 65 and did not manifest any
other mental illnesses. Furthermore, we obtained approval from the Ethics Committee
of Gansu Provincial Hospital, China (Approval No. 2017-071, 6 July 2017). Prior to
participation, individuals provided informed consent after attaining a comprehensive
understanding of the study’s objectives, potential risks, and benefits.

2.2. Data Processing

The rs-fMRI images underwent preprocessing, utilizing the unified data processing
assistant for the resting-state fMRI (DPARSF) pipeline within the DPARSF V6.2_220915
toolbox [21]. These preprocessing steps primarily encompassed head motion correction,
slice timing correction, spatial normalization, and spatial smoothing. We proceeded to
extract the time series data from 116 brain regions using the automated anatomical labeling
(AAL) templates. Subsequently, by calculating the Pearson correlation coefficients between
pairs of these brain regions, we derived the final FC matrix.

We applied the PANDA 1.3.1 software (http://www.nitrc.org/projects/panda) to
preprocess the raw DTI data. Ultimately, the fractional anisotropy mapping (FAM) was
generated by mapping from the MNI space to the AAL template.

42



Brain Sci. 2023, 13, 1590

For sMRI, we used the CAT12 toolbox (http://dbm.neuro.uni-jena.de/vbm/) imple-
mented in the SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/) to extract normalized
gray matter volumes.

Following data preprocessing, the data size of the FAM was 91 × 109 × 91, while the
size of the sMRI gray matter image was 113 × 137 × 113. To match the model inputs, we
used simpleITK (simpleITK is an open source tool library for medical image processing) in
the sitkNearestNeighbor to modify the size of the input data.

The clinical diagnostic characteristics of the participants are shown in Table 1. Ex-
cessive head movement (rotation degree > 2◦, translation distances > 2 mm, or mean
FD (Jenkinson) > 0.2) and missing modalities were excluded from the analysis. Patients
clinically diagnosed with MDD and possessing HAMD scores > 7 were included. A total of
116 subjects were eventually further analyzed, including 54 MDDs and 62 HCs.

Table 1. The clinical diagnosis characteristics of the participants.

MDD HCs

Number of participants 54 62
HAMA 17.19 ± 7.58 -

HAMD (17-item) 17.62 ± 5.95 -
Abbreviations: MDD = Major Depressive Disorder, HCs = healthy controls, HAMA = Hamilton anxiety scale,
HAMD = Hamilton depression rating scale.

Following the processing, we obtained a 3D medical image size of 112 × 112 × 112 for
both FAM and sMRI, while the FC matrix size from fMRI remained unchanged at 116 × 116.
As a final step, we introduced a minute value of 1 × 10−9 to normalize all the data, thereby
preventing division by zero.

3. Methods

This paper introduces an approach that integrates both CNN and transformer ar-
chitectures to extract features encompassing global low-frequency information and local
high-frequency information and then fuses these features.

3.1. Overview

The proposed model primarily consisted of encoders for extracting high- and low-
frequency features. These encoders encompassed the meta-low-frequency encoder (MLFE)
and the meta-high-frequency encoder (MHFE). The MLFE was designed as an encoder
for extracting low-frequency information, adapted to capture features in medical images
that encapsulate global information. This proficiency was valuable for comprehending the
overarching characteristics of the data. Conversely, MHFE was designed as an encoder
to extract high-frequency depth features from the image. These features represented the
local key attributes of the image, enabling the removal of redundant information and the
representation of a unique and stable data structure to a significant extent. Additionally,
the model incorporated a MLP for the extraction of functional features from the FC matrix,
as illustrated in Figure 1.
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3.2. Meta-Low-Frequency Encoder

Low-frequency information typically signifies slowly evolving structural character-
istics and global patterns, corresponding to alterations occurring over longer spatial or
temporal scales. This enables the capture of macroscopic brain structural features. In this
module, we devised the meta-component for low-frequency feature extraction responsi-
ble for acquiring low-frequency feature information from FAM and sMRI, as depicted in
Figure 2. The transformer encoder [22] element served as the foundation for our design in
this module.
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To enhance computational efficiency, we selected 4 heads of attention in the trans-
former encoder, set the individual word vector to 512, and set num_layers to 6. This method
was utilized to develop lightweight models, which were useful for implementing models in
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resource-constrained situations and could improve model utility. Initially, we generated a
positional encoding vector for the cls_token in a random manner. Prior to this, we selected
a convolutional layer rather than a linear layer to boost the module’s performance, and
finally, positional encoding was added to the input data.

Through the implementation of MLFE, we could subsequently acquire information
pertaining to the low-frequency features within the corresponding modalities.

3.3. Meta-High-Frequency Encoder

High-frequency information typically conveys localized details with rapidly changing
characteristics, corresponding to changes on shorter spatial or temporal scales. This makes
local subtleties and minute changes in the brain’s architecture easier to capture. In this
module, we designed the meta-module, which was made up of SFCN to extract sMRI and
FAM high-frequency features.

This module comprised a convolutional layer in combination with an average pooling
layer. The channel sizes of the convolutional layers were configured as [32, 64, 128, 64, 32].
Notably, the last layer did not contain a max-pooling operation and used a 1 × 1 × 1
convolutional kernel, whereas all the previous layers contained a max-pooling layer and
a 3 × 3 × 3 convolution with a padding value of 1. Then, it went through the sequence
of convolutional, BatchNorm, and ReLU layers, ending with the average pooling layer,
shown in Figure 3.
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We then could acquire high-frequency data describing the modalities’ microscopic
characteristics using MHFE.

3.4. Multilayer Perceptron

To obtain the FC matrix information, we first calculated the integrating time series
extracted from the fMRI, which could reveal the internal functional characteristics of the
brain, and help to better obtain useful information and explore the difference between
disease and normal state. Finally, we let the FC matrix go through MLP for further analysis.

This module extracted the high-level abstract FC matrix features from fMRI. The MLP
included an input layer, a hidden layer, and an output layer. Each layer was accompanied
by a ReLU activation layer and a dropout layer with a rate of 20%. The final output
consisted of a single logit value obtained from the MLP.

3.5. Feature Fusion

We fused the extracted sMRI and FAM, corresponding to the low-frequency features
and high-frequency features, respectively, according to the high-high-frequency fusion,
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low-low-frequency fusion, and high-low-frequency fusion. The micro- and macro-features
of each modality could be extracted via high-high-frequency fusion and low-low-frequency
fusion. High-low-frequency fusion serves as compensation for the potential loss of features
in each modality encountered in the initial two approaches. We amalgamated the six
features using three feature fusion methods, which proved more effective in capturing the
potential interactions between multimodal sources and within each modality. As a result,
we obtained six logit values corresponding to the fusion process.

The six logit values, along with the single logit value extracted from the fMRI data
features, were each subjected to a sigmoid activation layer to yield the seven values essential
for the final voting process.

3.6. Ensemble Learning Voting

Ensemble learning seeks to enhance a model’s performance and stability by combining
predictions from multiple weak learners. This approach mitigates the risk of overfitting,
boosts the model’s generalization capabilities, enhances its robustness, and ultimately leads
to more precise prediction or classification outcomes. Furthermore, ensemble learning
helps diminish misclassification attributed to data noise or uncertainty.

Each model in this approach predicted the sample and then this was compared to
the threshold we set. The final prediction was determined through the use of the majority
vote principle.

3.7. Experiment Detail

The experiments were compiled with pytorch-1.8.2 and run on GPUs of NVIDIA
Tesla V100 based on Ubuntu 18.04. The model was trained for a number of 200 epochs,
utilizing a binary cross-entropy (BCE) loss function with a small batch size of 4. We used
the Adam optimizer [23] with a learning rate of 9 × 10−4 and a weight decay of 1 × 10−8.
To evaluate the model’s performance, we implemented a 4-fold cross-validation on the
dataset, partitioning the data into four subsets. In each fold, one subset served as the
testing set, while the other three subsets were utilized for model training. Ultimately, the
mean ± SD was used as the result.

3.8. Evaluation Metrics

The accuracy (ACC) (Equation (1)), precision (PREC) (Equation (2)), recall (REC)
(Equation (3)), specificity (SPE) (Equation (4)), F1-score (F-1), Matthew’s correlation coeffi-
cient (MCC), and area under the receiver operating characteristic (ROC) curve (AUC) were
used to evaluate classification performance,

ACC =
TP + TN

TP + TN + FP + FN
(1)

PREC =
TP

TP + FP
(2)

REC =
TP

TP + FN
(3)

SPE =
TN

TN + FP
(4)

F− 1 = 2× PREC× REC
PREC + REC

(5)

MCC =
TN× TP− FN× FP√

(TN + FP)(FN + TP)(TN + FN)(TP + FP)
(6)

where TP, FN, FP, and TN represent True Positive, False Negative, False Positive, and True
Negative, respectively.
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4. Results

In this section, we set up ablation experiments as well as comparisons with others with
the aim of verifying the validity of our proposed models. These comparison experiments
included experiments with individual modal combination situations as inputs, experiments
with high- and low-frequency sub-modules, and experiments comparing classical CNN
as well as transformer models. To ensure the reliability of our results, we used the same
standard for dividing the datasets in all experiments. We non-overlappingly divided the
datasets into the training set (87) and the test set (29) in a ratio of 3:1, where the training set
was used to train the weights of the models and the test set was used to test the models.

4.1. Ablation Experiments

To validate the robustness of the model, we systematically deconstructed it and
analyzed its components individually. First, we assessed the cross-fusion of various
modalities by validating the performance of each modality in isolation and in various
paired combinations. The data size division used in this experiment remained the same as
above. All assessment indicators were consistent, and the assessed results are presented in
Table 2.

Table 2. Comparisons of different multi-modal inputs in the proposed model.

Modalities ACC PREC REC SPE F-1 AUC MCC

sMRI 0.620 ± 0.088 0.550 ± 0.043 0.500 ± 0.121 0.710 ± 0.082 0.520 ± 0.101 0.667 ± 0.023 0.209 ± 0.021
fMRI 0.517 ± 0.061 0.444 ± 0.068 0.667 ± 0.042 0.412 ± 0.116 0.533 ± 0.038 0.593 ± 0.042 0.080 ± 0.042
DTI 0.517 ± 0.052 0.400 ± 0.031 0.333 ± 0.153 0.647 ± 0.095 0.364 ± 0.069 0.618 ± 0.061 −0.020 ± 0.066

sMRI + fMRI 0.690 ± 0.079 0.667 ± 0.074 0.500 ± 0.086 0.824 ± 0.112 0.571 ± 0.076 0.711 ± 0.077 0.344 ± 0.115
sMRI + DTI 0.655 ± 0.044 0.583 ± 0.069 0.583 ± 0.098 0.706 ± 0.137 0.583 ± 0.124 0.642 ± 0.054 0.289 ± 0.023
fMRI + DTI 0.586 ± 0.056 0.500 ± 0.049 0.500 ± 0.078 0.647 ± 0.063 0.500 ± 0.073 0.652 ± 0.035 0.147 ± 0.121

sMRI + fMRI + DTI 0.724 ± 0.021 0.750 ± 0.028 0.500 ± 0.054 0.882 ± 0.044 0.600 ± 0.034 0.667 ± 0.029 0.421 ± 0.033

Next, we validated the fusion effect of different low- and high-frequencies. The
division of the data for this experiment remained as previously described. Then, we
validated the three modules of low- and high-frequency and fMRI blocks, respectively, so
as to verify the advantages of the proposed fusion method, and the evaluation metrics are
shown in Table 3.

Table 3. Comparison of different branches of the proposed model using sMRI, fMRI, and DTI
as inputs.

Models ACC PREC REC SPE F-1 AUC MCC

MHFE 0.690 ± 0.053 0.670 ± 0.048 0.500 ± 0.031 0.820 ± 0.065 0.570 ± 0.074 0.650 ± 0.024 0.344 ± 0.011
MLFE 0.517 ± 0.023 0.438 ± 0.034 0.583 ± 0.029 0.471 ± 0.053 0.500 ± 0.062 0.542 ± 0.051 0.053 ± 0.213

Only fMRI block 0.517 ± 0.061 0.444 ± 0.068 0.667 ± 0.042 0.412 ± 0.116 0.533 ± 0.038 0.593 ± 0.042 0.080 ± 0.042
Proposed model 0.724 ± 0.021 0.750 ± 0.028 0.500 ± 0.054 0.882 ± 0.044 0.600 ± 0.034 0.667 ± 0.029 0.421 ± 0.033

4.2. Comparison with Other Models

In this section, a comprehensive comparison was made between the proposed model
and four currently popular deep learning models (LeNet, ResNet, DenseNet, and Vision
Transformer). In this experiment, we used the same data size division as before. Using the
same model settings, the purpose of this comparison was to evaluate the validity of the
proposed model. Table 4 shows further details. The proposed model extracted data features
more comprehensively and performed feature fusion differently from other models for the
extracted features, which was advantageous to the final classification diagnosis.
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Table 4. Comparison of different encoders between the proposed model and classical CNN models
using sMRI, fMRI, and DTI as inputs.

Models ACC PREC REC SPE F-1 AUC MCC

LeNet * 0.620 ± 0.028 0.533 ± 0.022 0.667 ± 0.041 0.588 ± 0.048 0.593 ± 0.067 0.662 ± 0.049 0.251 ± 0.022
ResNet * 0.621 ± 0.042 0.545 ± 0.039 0.500 ± 0.047 0.706 ± 0.053 0.522 ± 0.035 0.613 ± 0.052 0.209 ± 0.041

DenseNet * 0.655 ± 0.012 0.583 ± 0.055 0.583 ± 0.102 0.706 ± 0.076 0.583 ± 0.042 0.637 ± 0.023 0.289 ± 0.053
Vision Transformer

[24] * 0.552 ± 0.089 0.467 ± 0.042 0.583 ± 0.057 0.529 ± 0.039 0.519 ± 0.085 0.500 ± 0.097 0.111 ± 0.037

Proposed model 0.724 ± 0.021 0.750 ± 0.028 0.500 ± 0.054 0.882 ± 0.044 0.600 ± 0.034 0.667 ± 0.029 0.421 ± 0.033

Notes: * denotes classical deep learning model.

5. Discussion

MDD is a complex and common disorder with an uncertain cause. Deep learning
models for the diagnosis of MDD have been widely proposed with the advancement of
medical imaging technology and algorithms. However, previous studies have mostly
concentrated on single-scale modal feature data used as disease diagnostic criteria and
have overlooked the possible influence of cross-fusion between various modalities. Si-
multaneously, during the modal feature extraction process, a singular focus on either
local high-frequency or global low-frequency information is prevalent. Traditional fusion
techniques employed in these situations may inadvertently mask potential interactions
between high- and low-frequency information. As a result, this may further reduce the
available data features and ultimately diminish the effectiveness of the model in disease
diagnosis. Thus, our completed experiments substantiated significantly improved results
when employing multimodal input for extracting high- and low-frequency features, as
opposed to using fewer modalities for this purpose. These results could be attributed to
the broader representational capacity of multimodal data and the enhanced utilization
of valuable information. Furthermore, the results derived from the exclusive use of high-
or low-frequency fusion techniques exhibited substantial differences when compared to
the results obtained through the three fusion methods for high- and low-frequency. This
discrepancy underscored the idea that the effective integration of high- and low-frequency
features yields more favorable diagnostic results.

We compared current approaches for diagnosing MDD based on deep learning models.
Zhu et al. [25] proposed the only deep graph convolutional neural network (DGCNN)
method for brain network classification between 830 MDD patients and 771 normal con-
trols (NC), with a final accuracy of 72.1%. Venkatapathy et al. [26] proposed an ensemble
model for the classification between 821 patients with MDD and 765 HCs, and the final
model achieved 71.18% accuracy in upsampling and 70.24% accuracy in downsampling.
Hu et al. [27] proposed a transformer-based BrainNPT model for brain network classifica-
tion on a large dataset of REST-meta-MDD, and the accuracy of the model after pre-training
reached 70.25%. The reason that these models are less accurate than ours is likely due to the
focus on more particular details or the reality that the long- and short-distance information
are not sufficiently mined for fusion, even though the amount of this data is much larger
than ours.

The integration of high- and low-frequency information represents a crucial approach
in clinical diagnosis, encompassing image features across various scales and providing
a robust foundation for disease diagnosis and analysis. Specifically, the extraction of the
high-frequency component in images is concentrated on the intricate details within the
image. These details are essential for identifying diseases because they assist in recognizing
subtle changes in pathology. Conversely, the extraction of low-frequency components in
images characterizes the macroscopic structures and features that exist within the image.
This global perspective complements the local details, providing a vital component of
information that proves critical in the final evaluation of the disease. High-frequency and
low-frequency information can have distinct features in a variety of medical problems.
This integrated method enables healthcare practitioners to selectively emphasize important
components, allowing them to conduct a full assessment that easily moves from micro to
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macro and vice versa. This comprehensive evaluation improves their ability to determine
the patients’ health status, evaluate therapy outcomes, and develop a more personalized
treatment strategy.

We proposed a model for cross-fusion of multimodal features based on high and low
frequency, aiming at a better and more thorough utilization of high and low frequency infor-
mation and an effective resolution of the prior issue. In the case of high- and low-frequency
features, the fusion of high-frequency and low-frequency data presented a distinct perspec-
tive compared to other feature information. This approach aims to comprehensively bridge
the gaps between the overlooked features, gain a deeper understanding of feature interac-
tions, and enhance the diagnosis of MDD. The addition of our cross-fusion method to a
previous fusion scheme fully explored this further and made up for the missing information
between the neglected features and achieved a more comprehensive feature interaction.

We believe that the proposed model is of great generalization and migration ability.
Although our study focuses on specific disease detection, the essential principles and
approaches of the model are applicable to other medical image-based disease diagnoses.
We believe that if the structural properties of the data are similar, the model can produce
similar results in related domains. However, every domain faces its own set of challenges
that need adaptation and validation for better use in other fields. Future study might
investigate the model’s potential for use and evaluation in other fields.

Although our model achieved satisfactory results, there are still some shortcomings.
On the one hand, the dataset we used was relatively small, and the size of the dataset
affects the effect of the deep learning model to a certain extent. On the other hand, we
only used the more common modal features as inputs to the model, and whether there are
other features that can further improve the classification ability of our model needs to be
further verified.

In future research, we aim to enhance the diagnostic efficacy of the model through
the pursuit of two key avenues. (1) Enriching modal data information: our goal is to add
the number of modalities of the data to improve the diversity and quality of the data. The
work being performed will allow for a deeper and more comprehensive understanding
of the features of the illness. (2) Enhancing encoder design: our goal is to design a more
efficient encoder that can quickly, accurately, and deeply extract underlying data features.
This enhancement will elevate the quality of features deployable in disease diagnosis.

6. Conclusions

In this paper, we proposed a multimodal cross-fusion MDD diagnostic model based
on high- and low-frequency information. We designed MHFE and MLFE to capture more
profound local high-frequency and global low-frequency information from multimodal
magnetic resonance imaging data. By cross-fusing these extracted features, we aimed
to address the issue of potential feature loss. Upon extracting the profound functional
features from the FC matrix through the MLP, we uniformly classified them utilizing the
ensemble learning voting strategy. This approach has the potential to enhance classification
performance beyond that of a single module. The model achieved a 72.4% accuracy rate,
which highlighted the necessity to study the interactions between multimodal high and
low frequencies information.
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Abstract: Background/Objectives: A multimodal brain age estimation model could provide en-
hanced insights into brain aging. However, effectively integrating multimodal neuroimaging data
to enhance the accuracy of brain age estimation remains a challenging task. Methods: In this study,
we developed an innovative data fusion technique employing a low-rank tensor fusion algorithm,
tailored specifically for deep learning-based frameworks aimed at brain age estimation. Specifically,
we utilized structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and
magnetoencephalography (MEG) to extract spatial–temporal brain features with different properties.
These features were fused using the low-rank tensor algorithm and employed as predictors for
estimating brain age. Results: Our prediction model achieved a desirable prediction accuracy on
the independent test samples, demonstrating its robust performance. Conclusions: The results of
our study suggest that the low-rank tensor fusion algorithm has the potential to effectively integrate
multimodal data into deep learning frameworks for estimating brain age.

Keywords: brain age; spatial–temporal; multimodal; low-rank tensor fusion; machine learning;
deep learning

1. Introduction

Brain aging is the gradual decline of mental function. The “brain age” biomarker
measures the aging status of the brain [1]. Advanced machine and deep learning techniques,
combined with brain imaging scans, are used to derive brain age [2–7]. Studying brain
aging can help identify markers that indicate its progression.

Functional magnetic resonance imaging (fMRI), structural magnetic resonance imag-
ing (sMRI), diffusion tensor imaging (DTI), and magnetoencephalography (MEG) have
been instrumental in detecting age-related changes in the brain [8–10]. Among these modal-
ities, sMRI is commonly used to estimate brain age due to its high-resolution images that
enable tracking of structural brain changes [10–12]. Moreover, sMRI data are more widely
available than other modalities, enhancing the reproducibility of brain age research [13].
For instance, Cao et al. applied the least absolute shrinkage and selection operator (LASSO)
algorithm to longitudinal sMRI data from 303 healthy controls (HCs) for predicting indi-
vidual brain maturity [14]. Beheshti et al. introduced a unique 3D patch-based grading
procedure for estimating cortical aging using sMRI data [15,16]. Franke et al. presented
a framework for efficiently estimating the brain age of 650 HCs from their sMRI scans
using a kernel method for regression [17]. Valizadeh et al. employed sMRI data from
3144 HCs to extract various anatomical features and using them to predict age through
different statistical techniques [18]. Cole et al. used convolutional neural networks to
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estimate brain age using raw sMRI data from 2001 HCs [19]. Lancaster et al. trained a
Bayesian optimization framework with data from 2003 HCs to predict age [20]. Liu et al.
constructed a multi-feature-based network (MFN) to estimate the brain age of 2501 HCs by
describing structural similarities between traditional cortical morphological features [21].
Liem et al. assessed functional connectomes and mean time series from both cortical and
subcortical regions, using support vector regression and regression based on random forest
methodology to predict brain age [22]. Martina J. Lund employed resting-state fMRI data
from 1126 HCs to estimate functional connectivity between brain networks, using these as
features to predict brain age [23].

In addition to the aforementioned techniques, DTI enables the identification of diffu-
sion and topological patterns across diverse brain regions, thereby aiding in the prediction
of aging [24]. Benson Mwangi et al. applied a multivariate technique, relevance vector
regression, to predict age using features extracted from diffusion tensor imaging [25].

Previous studies have primarily estimated brain age using single-modal neuroimag-
ing data. Research has demonstrated that data fusion among data from various imaging
methods could provide a more robust machine learning model and also provide a more
comprehensive understanding of brain function, structure, and connectivity [26,27]. In
the area of brain age estimation, recent research studies have also focused on integrating
features from multiple modalities, demonstrating improved accuracy in brain age predic-
tion [28–31]. For instance, D.A. Engemann et al. combined MRI, fMRI, and MEG features
to estimate brain age [32].

It is well known that the T1 signal intensity of brain structures varies with age due to
changes in brain tissue composition [33,34]. DTI helps to detect changes in diffusion and
topological patterns in the brain associated with aging [24]. Thus, studies using unimodal
features often fail to simultaneously account for age-related functional and structural
changes in spatial and temporal domains, which could potentially improve prediction
performance. Therefore, the combination of sMRI and diffusion images with functional
metrics (such as EEG/MEG or fMRI) holds promise for enhancing brain age prediction.
However, a key challenge in developing multimodal brain age estimation frameworks
is the effective integration of data from diverse sources. This integration is crucial for
improving prediction performance and providing a comprehensive view of structural and
functional brain features throughout the brain aging process.

Recently, fusion techniques for brain age estimation have integrated information from
neuroimaging modalities. Traditional methods like concatenation and early fusion may
overlook modality specifics, leading to overfitting [35]. Middle fusion, like canonical corre-
lation analysis (CCA), seeks common representations but may miss critical information [36].
Late fusion reduces overfitting but may limit performance by ignoring modality interac-
tions [37]. Advanced deep learning, like autoencoders and variational autoencoders (VAEs),
models complex interactions but faces generalizability challenges [38]. Tensor-based fusion
captures higher-order relationships but is computationally demanding [39].

To overcome these challenges, our study introduces a low-rank tensor fusion approach.
This approach employed low-rank tensors for multimodal fusion, enhancing the accuracy
of brain age predictions by integrating structural and functional features. Specifically, we
assessed the low-rank tensor fusion technique on both structural and functional brain
features, comparing the effects of fused versus non-fused features within our brain age
prediction model. Our findings demonstrated that our model performs comparably to
state-of-the-art models across three multimodal tasks evaluated on public datasets.

2. Materials and Methods
2.1. Dataset and Data Availability

We used data from the Cambridge Center for Aging Neuroscience (Cam-CAN) [40,41].
Further details are available at https://camcan-archive.mrc-cbu.cam.ac.uk//dataaccess/;
accessed on 15 February 2024. Table 1 summarizes the imaging parameters.
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Table 1. The imaging parameters of different neuroimaging data used for brain age modeling.

Scans Type Sequence TR (ms) TE (ms) Flip Angle (◦) FOV (mm) Voxel Size (mm)

sMRI MPRAGE 2250 2.99 9 256 × 240 × 192 1 × 1 × 1
Diffusion-
weighted 9100 104 192 × 192 2 × 2 × 2

Sampling rate (HZ) Duration (min:s) Task
Resting-state MEG 1000 08:40 Rest with eyes closed

Abbreviations: sMRI, structural magnetic resonance imaging. TR, the Alzheimer’s Disease Neuroimaging
Initiative. TE, Echo Time. MPRAGE, Magnetization Prepared-Rapid Gradient Echo imaging.

In this study, we utilized neuroimaging data from three modalities: sMRI, MEG,
and DTI. A total of 521 HCs (270 males, 251 females, aged 18–88, mean age: 52.3 ± 17.7)
underwent MR imaging using a 3T scanner. Figure 1 illustrates the age distribution of
the participants included in the study. Resting-state MEG data were acquired using a
306-channel system (102 magnetometers, 204 planar gradiometers) with a sampling rate of
1 kHz for 8 min and 40 s with eyes closed. The acquisition parameters were as follows: Flip
angle = 9◦, field of view = 256 × 240 × 192 mm3, voxel size = 1 mm.
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2.2. Neuroimaging Data Processing
2.2.1. sMRI Data Preprocessing

sMRI images were preprocessed using SPM12 for affine registration, realignment, bias
correction, and white matter (WM)/gray matter (GM)/cerebrospinal fluid (CSF) segmenta-
tion. CAT12 toolbox (Version 12.9; https://neuro-jena.github.io/cat/index.html accessed
on 9 December 2024) was used for estimating WM and GM probability maps with default
settings [42]. Skull stripping and registration to standard space were performed using the
Montreal Neurological Institute (MNI) 152 template. Following tissue segmentation and
bias correction, probability maps of WM, GM, and CSF [43] were generated.

2.2.2. MEG Data Preprocessing

The MEG data were preprocessed using temporal extension (tSSS) in Elekta Neuro-
mag MaxFilter v2.2 for independent head motion correction and noise reduction, with a
correlation limit of 0.98 and a 10-s correlation window [44]. Subsequently, Brainstorm [45]
was utilized for further MEG data processing, following the procedure described in Niso
et al. [46]. High-pass and notch filters were applied at 0.3 Hz and 60 Hz and harmonics,
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respectively. Cortical surface reconstruction from sMRI was performed using the recon-all
algorithm in FreeSurfer (Version 6; https://surfer.nmr.mgh.harvard.edu/ accessed on
9 December 2024) [47–49]. After the completion of source reconstruction, the computation
of the power spectral density (PSD) was performed encompassing the entire duration of
the resting-state scan.

2.2.3. Diffusion MRI Data Preprocessing

The diffusion MRI (dMRI) analyses were conducted using SPM12 with the aa 4.2
pipelines [50] and modules [51]. In the DTI stream, the data underwent skull-stripping
using the Brain Extraction Tool (BET) utility in FMRIB’s Software Library (FSL; https:
//fsl.fmrib.ox.ac.uk/fsl/docs/#/ accessed on 9 December 2024). Later, a parallel branch
was employed to nonlinearly estimate the second-order diffusion tensor and its metrics
(i.e., fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), etc.).

2.3. Multimodal Fusion Model
2.3.1. Problem Modeling

As shown in Figure 2, we first extracted high-level abstract features for multiple
modalities. For the extraction of DTI and sMRI features, in order to save computational
resources and adapt to neuroimaging datasets with less data, we utilized two identical
simple fully convolutional networks (SFCNs) [52] to obtain DTI and sMRI features. Each
SFCN comprised six parts. The first five parts contained a 3D convolutional layer with
3 × 3 × 3 convolutional kernels (with channel numbers 32, 64, 128, 256, 256), followed by a
batch normalization layer, a 2× 2× 2 maximum pooling layer, and was activated using the
Rectified Linear Unit (ReLU) function. The sixth part consisted of a 3D convolutional layer
with a 1 × 1 × 1 convolutional kernel size and 64 channels, a batch normalization layer,
activated using the ReLU function, and finally, a 3 × 4 × 3 average pooling layer. To extract
MEG features, we incorporated different attention values for each brain region using the
Transformer Encoder [53]. Next, we employed two 1-dimensional convolutional layers
with a convolutional kernel size of 1 and channel numbers of 128 and 32, respectively, as
well as an average pooling layer to capture the local information from neighboring time
points and summarize them [54,55]. Then, a fully connected layer with 64 neurons was
used for dimensionality reduction to obtain the extracted MEG features. Finally, a layer
with low-rank tensor fusion was added before the fully connected layer. Brain age was
estimated from brain images of subjects by feature extraction, low-rank tensor fusion of
multimodal features, and mapping with chronological age as label.
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2.3.2. Tensor Fusion and Representation

Tensor representation is a successful approach for multimodal fusion. Prior research
has indicated that this method outperforms basic concatenation or pooling strategies in
capturing multimodal interactions [56,57]. The tensor Z is computed by the following:

Z =
⊗M

m=1
zm, zm ∈ Rdm (1)

M represents the total number of input modalities and zi (i = 1, 2, 3, . . ., M) represents
the features extracted from the multimodal data. The tensor outer product is denoted by⊗M

m=1. The resulting feature after fusion is denoted by ZT. The tensor Z is then fed into a
linear layer g (·), which produces a vector representation as follows:

h = g (Z ; W , b) = W·Z + b (2)

whereW is the weight of this layer and b is the bias. With Z being an order-M tensor. In

the tensor dot productW·Z , the weightW can be partitioned into
∼
Wk, k = 1, . . ., dm. Each

∼
Wk contributes to one dimension in the output vector h, i.e., hk =

∼
Wk·Z .

The specific process is as Algorithm 1:

Algorithm 1. Multimodal low-rank tensor fusion algorithm.

Input: sMRI maps; DTI maps; MEG; label: chronologic age y
Output: brain age ŷ
Parameters: rank, drop rate η

1: sMRI maps and DTI maps were processed using FCN to extract the spatial structure features
z1 and z2
2: The PSD extracted using MEG are passed through the Encoder of Transformer to extract brain
temporal features z3
3: Low-rank fusion ZT
4: The fusion feature vector expressed as h = g (Z ;W , b) =W·Z + b
5: Access a fully connected network
6: Minimize the loss function MAE
7: Output bias corrected values for brain age

2.4. Model Implementation and Validation

To reduce the reliance on the disparity in brain age (brain age gap = predict brain age
− chronological age) on age, a bias correction was applied [58]. To evaluate the model, we
used R2, root mean square error (RMSE), and MAE as metrics.

MAE =
1
n
(

n

∑
i=1
|yi −Yi|) (3)

RMSE =

√
1
n

n

∑
i=1

(yi −Yi)
2 (4)

R2 = 1− ∑n
i=1(yi −Yi)

2

∑n
i=1(yi − y)2 (5)

The model is implemented in Python 3.7 and Pytorch1.11.0 library and was executed
on the Ubuntu 18.04 operating system. Throughout the training period, we utilized MAE
as the loss function with the Adam optimizer [59] using a learning rate of 1 × 10−4 and
weight decay of 1 × 10−8. Additionally, we employed a mini-batch size of 12 and trained
for a total of 300 epochs. When the model performs best on the validation set, we save it as
the final model and use it for testing.
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To evaluate the model, 521 subjects were randomly divided into training (416), valida-
tion (52), and testing (53) groups.

3. Results
3.1. Estimation Based on Different Features and Fusion Methods

The results of different features and fusion methods on the dataset are presented in
Table 2. In summary, our multimodal low-rank fusion method generally outperforms the
unimodality. Specifically, we designed the low-rank fusion module to combine multimodal
features, resulting in a lower MAE and higher R2, while the competing unimodal-based
methods achieved an optimal MAE of 4.54 and R2 = 0.92, respectively. Our multimodal
low-rank fusion model achieves smaller age errors compared to other non-fusion models.

Table 2. Performance metrics for various features and fusion methods.

Strategies Feature MAE (y) RMSE (y) R2 p

Training set

Unimodal
DTI 11.67 12.13 0.74 <0.001

MEG - - - -
sMRI 3.83 4.72 0.94 <0.001

Traditional
fusion

Add 2.89 4.30 0.96 <0.001
Concat 3.11 4.43 0.96 <0.001

Low-rank
tensor fusion

sMRI + AD + PSD 2.30 2.94 0.96 <0.001
sMRI + MD + PSD 3.04 3.82 0.95 <0.001
sMRI + FA + PSD 2.25 2.85 0.98 <0.001

Validation set

Unimodal
DTI 12.69 14.56 0.71 <0.001

MEG - - - -
sMRI 4.91 5.61 0.91 <0.001

Traditional
fusion

Add 7.91 9.29 0.89 <0.001
Concat 10.65 12.17 0.79 <0.001

Low-rank
tensor fusion

sMRI + AD + PSD 5.32 6.67 0.90 <0.001
sMRI + MD + PSD 4.80 6.18 0.90 <0.001
sMRI + FA + PSD 4.49 5.72 0.92 <0.001

Testing set

Unimodal
DTI 13.52 15.68 0.57 <0.001

MEG - - - -
sMRI 4.54 5.52 0.92 <0.001

Traditional
fusion

Add 8.56 10.13 0.90 <0.001
Concat 11.36 13.46 0.72 <0.001

Low-rank
tensor fusion

sMRI + AD + PSD 4.59 5.90 0.91 <0.001
sMRI + MD + PSD 4.47 5.45 0.92 <0.001
sMRI + FA + PSD 4.20 5.43 0.93 <0.001

Abbreviations: MAE, mean absolute error. RMSE, root mean square error. R2, the coefficient of determination.
DTI, diffusion tensor imaging. MEG, magnetoencephalography. sMRI, structural magnetic resonance imaging.
AD, axial diffusivity. MD, mean diffusivity. FA, fractional anisotropy. PSD, power spectral density. The symbol
“-” indicates that this result is not reported. Add: a parallel strategy to combine the two feature vectors into a
compound vector. Concat: a series of feature fusion methods, directly linking the features. The prediction results
using MEG data are not reported because the depth prediction model did not converge.

We employ various combinations of multimodal features to predict brain age. As
depicted in Table 2, the prediction model achieves optimal performance when fusing sMRI,
FA, and PSD. The subsequent analyses are based on the prediction results from the fusion
model that utilized the optimal feature combination. Moreover, we compared traditional
feature fusion methods, such as addition or concatenation of these features, and found that
our low-rank tensor fusion outperformed these traditional methods in predicting brain age.
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3.2. Estimation Based on Low-Rank Tensor Fusion Method

In Table 2, the results demonstrate the effectiveness of our low-rank tensor fusion
approach for age prediction. In the training set, we achieved an R2 value of 0.98, with a
MAE of 2.25 years and RMSE of 2.85 years (refer to Figure 3A). This indicates the successful
fusion of features in improving age prediction accuracy. Furthermore, on the validation
set, our method yielded an MAE of 4.49 years, R2 of 0.92, and RMSE of 5.72 years (refer
to Figure 3B). On the test set, we obtained an MAE of 4.20 years, R2 of 0.93, and RMSE of
5.43 years (refer to Figure 3C).
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4. Discussion

Multimodal brain imaging data are extensively utilized for estimating brain age across
various contexts. Niu et al. explored different analysis strategies for brain age prediction
using large datasets encompassing sMRI, DTI, and fMRI data [60]. Similarly, De Lange et al.
utilized machine learning and multimodal imaging data to predict brain age, encompassing
gray matter, white matter, and resting-state functional connectivity [61]. Their findings
highlighted improved prediction accuracy with the inclusion of multimodal features in the
model. Rokicki et al. utilized T1 and T2 structural imaging data, along with cerebral blood
flow data from arterial spin labeling, to develop a multimodal model for estimating brain
age [62]. Their study demonstrated that integrating multiple types of data can enhance the
accuracy of brain age prediction.

We aimed to test whether the use of multimodal neuroimaging data can improve
the accuracy of predicting brain age and how to fuse features more effectively. As shown
in Table 2, when single-mode features were used to predict brain age, sMRI performed
better than either DTI or MEG data (MAE = 4.54 years, RMSE = 5.52 years, R2 = 0.92 based
on structural data vs. MAE = 13.52 years, RMSE = 15.68 years, R2 = 0.57 based on DTI
data). When predicting brain age based on MEG data, the depth prediction model did
not converge, so the prediction results were not reported. As a result, multimodal data
improved prediction performance, as we hypothesized. Specifically, when unimodal data
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were used to predict brain age, sMRI performed best. This may be because sMRI can
more easily capture brain anatomical changes and structural variations in the brain [11],
which may better reflect aging [63–66]. Therefore, the majority of studies used sMRI data
to estimate brain age [30,67].

Despite the macroscopic nature of morphological features derived from sMRI data,
their sensitivity to neurodevelopmental microstructural changes is limited [68,69]. To
enhance model predictive performance, integration of additional modalities is crucial. For
example, diffusion MRI techniques, which are adept at capturing tissue microstructure by
tracking water molecule diffusion and probing cellular-level environments, offer promising
insights [70]. While numerous studies have effectively utilized DTI data to predict brain age,
dMRI faces technical challenges and exhibits higher variability compared to conventional
modalities like T1- and T2-weighted imaging [71,72]. These intricacies can introduce
nonlinear distortions in the original images, affecting diffusion metrics like MD and FA [72],
which can reduce the performance of the prediction model. This may also be one of the
reasons why the MAE is larger when using DTI prediction alone. In the application of
functional data, improvements in the prediction of brain age using fMRI are limited by
the hysteresis of the hemodynamic response function [73]. However, the MEG with high
spatial and temporal resolution can provide complementary features related to normal
aging. In exploring MEG data for brain age estimation, we found that the prediction model
failed to converge stably, highlighting common challenges in deep learning with complex
feature sets, especially during extraction and training. In a previous study, PSD features
combined with a machine learning regression model were used to predict brain age, and
the MAE value was obtained [30]. This is something we need to consider improving in
the future.

In this study, we use resting-state MEG (magnetoencephalography), which is preferred
over task-based MEG for studying age-related brain changes because it captures the brain’s
spontaneous neural activity without the influence of external tasks [74]. This provides a
clearer picture of the brain’s intrinsic functional organization and baseline neural efficiency.
Unlike task-based paradigms, which can introduce variability due to individual differences
in task performance and cognitive strategies, resting-state MEG offers a more stable and
reliable measure of brain connectivity, especially in key frequency bands like alpha and
beta, which are sensitive to aging.

Compared to fMRI, resting-state MEG has several advantages. First, MEG offers high
temporal resolution, capturing brain activity on the millisecond scale, while fMRI operates
on a much slower, second-level timescale, potentially missing important rapid oscillatory
patterns [75]. MEG also directly measures neuronal activity through magnetic fields, while
fMRI relies on the slower BOLD signal, which is influenced by hemodynamic processes
rather than direct neural firing [76]. Furthermore, MEG is less sensitive to motion artifacts,
providing clearer data, especially for older adults who may have difficulty remaining still.
These advantages make MEG particularly well-suited for detecting age-related functional
changes in the brain [74].

During the feature extraction phase, we opted for the SFCNs technique to extract
features from sMRI and DTI data due to its exceptional ability to capture both local and
hierarchical spatial patterns necessary for analyzing brain structure. SFCNs can identify
detailed patterns in both gray and white matter across different brain regions, which
is crucial for detecting age-related changes. Unlike traditional CNNs, SFCNs preserve
spatial resolution throughout the network, meaning they can extract fine-grained features
without losing information during down sampling. This ability makes SFCNs particularly
well-suited for working with sMRI and DTI data, where maintaining spatial accuracy is
important. Research has shown that SFCNs outperform other methods, like traditional
CNNs, in extracting structural features from brain imaging data [77].

When FCN and Transformer Encoder were used to process the data and then used to
predict brain age after low-rank tensor fusion, the prediction performance of the model
was significantly improved. Notably, the fusion of sMRI, FA, and PSD features achieved
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the highest prediction ability. This is inseparable from the advantages of FCN. Moreover,
the Transformer method was introduced by [53], which is mainly based on self-attention
and has been applied to many tasks, such as natural language processing, classification
tasks [78,79], and brain age prediction [80–83]. This is because the feature extraction
capability of the Transformer method is superior to that of the Recurrent Neural Network,
and the source and target sequences can be “self-associated” with each other. In this way,
the information contained in the representation of the source and target sequences is richer,
and subsequent layers of feed-forward networks improve the representation of the model.
These advantages have enhanced the performance of our models.

Our fusion mechanism, which employs low-rank tensor fusion, allows us to utilize
tensor rank minimization to learn tensors that more precisely capture the true correlations
and underlying structures within multimodal data, effectively reducing input errors [84,85].
Studies have shown that FA is the most age-sensitive of the conventional DTI metrics [86].
This may be one of the reasons why our prediction model with FA performs better in
feature fusion. In contrast to the conventional approach of fusing multiple modes of
features, the MAE value is reduced, and the prediction result is more desirable. Table 3
summarizes the current studies using Cam-CAN data to predict brain age as well as
our proposed method. Specifically, Xifra-Porxas, Alba, et al. [30] used dimensionality
reduction techniques and Gaussian process regression (GPR) to predict brain age. Using
MEG features (MAE = 9.60 years) produced worse performance than using MRI features
(MA =5.33 years), but a stacked model combining the two features improved age prediction
performance (MAE = 4.88 years). Popescu, Sebastian G et al. [87] have trained a U-Net
model that utilizes deep learning techniques to generate individualized 3D brain maps at a
local level for age prediction, which could provide spatial information about anatomical
patterns of brain aging. The Cam-CAN data were then tested on the model and the MAE
was 9.5 years. Han, Juhyuk et al. [88] trained and compared the predictive performance
of 27 machine learning models for brain age prediction and applied the trained models to
the Cam-CAN dataset. The MAE and R2 were 7.08–10.50 years and 0.64–0.85, respectively.
A brain age prediction model was constructed by using the transfer learning method and
a large dMRI dataset as the source domain. Then, the trained model was used to test
Cam-CAN data, and the MAE was 4.68–5.71 years [89]. From Table 3, we can see that our
proposed method has achieved a better performance than that of other previous studies.

Table 3. Comparative results of brain age estimation on Cam-CAN data.

Studies Modal MAE (y) R2

[30] sMRI, MEG 4.88–9.6 -
[87] sMRI 9 -
[88] sMRI 7.08–10.50 0.64–0.85
[89] dMRI 4.68–5.71 -

Our method sMRI, MEG, DTI 4.20 0.93
Abbreviations: MAE, mean absolute error. R2, the coefficient of determination. DTI, diffusion tensor imaging.
MEG, magnetoencephalography. sMRI, structural magnetic resonance imaging. dMRI, diffusion magnetic
resonance imaging.

Recently, with the broad application of multimodal data in brain age prediction, nu-
merous advanced multimodal fusion methods have been proposed and have achieved
promising results. For instance, Clements RG et al. leveraged a multimodal 3D convolu-
tional neural network and magnetic resonance elastography (MRE) technology to predict
brain age. The advantages of their method lie in the innovative combination of these
two technologies, achieving high-precision brain age prediction, and further enhancing
prediction accuracy through multimodal fusion, offering possibilities for the early diag-
nosis of neurodegenerative diseases. However, this method also has some drawbacks,
including high model complexity, substantial computational resource requirements, strong
data dependency, and limitations such as no performance improvement when incorporat-
ing damping ratio into the model [90]. The multimodal Transformer-based architecture
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proposed by Wang J and his team demonstrates notable advantages in biological age pre-
diction, including improved prediction accuracy through the fusion of facial, tongue, and
retinal images, as well as its potential application in risk stratification and progression
prediction of chronic diseases. However, this method also faces some challenges, such as
the heterogeneity of the aging process limiting prediction accuracy, deployment difficulties
due to technical complexity, and considerations regarding personal privacy and ethical
issues [91].

Compared with these methods, our proposed low-rank tensor fusion approach demon-
strates notable advantages in multimodal brain age prediction tasks. First, our method
leverages low-rank tensor decomposition to effectively reduce redundant information
within multimodal data, thus enhancing computational efficiency. Second, due to the
automatic selection of salient features between modalities afforded by low-rank tensor
decomposition, our method exhibits greater robustness under data imbalances [92]. Ad-
ditionally, in terms of cross-dataset generalization, the low-rank tensor fusion method
adapts better to feature differences across datasets, demonstrating high adaptability [93].
Additionally, by utilizing the low-rank tensor fusion technique, the likelihood of overfitting
is minimized, while interpretability is enhanced through the extraction of crucial shared
features instead of learning noise specific to each modality. This method has proven to be
successful in various multimodal learning tasks, including the classification of neurodegen-
erative diseases [39], underscoring its resilience and efficacy.

In terms of potential clinical applications, our multimodal neuroimaging approach for
brain age prediction holds promise in identifying individuals at risk of neurodegenerative
diseases or monitoring disease progression. For instance, deviations between predicted and
chronological brain age, known as brain age gaps, have been shown to serve as biomarkers
for various neurological conditions, including dementia and other conditions [4,63]. By lever-
aging the improved prediction accuracy achieved through multimodal data integration, our
model could potentially offer earlier and more accurate insights into brain health, facilitating
timely interventions and personalized treatment strategies. We plan to explore these clinical
implications in future studies.

Our study has several limitations. First, the sample size and the lack of an indepen-
dent dataset for assessing the generalizability of our model are notable constraints. Our
primary aim was to test the low-rank tensor fusion algorithm tailored for deep learning-
based frameworks in brain age estimation. We used the Cambridge Center for Aging
Neuroscience (Cam-CAN) dataset, which includes sMRI, DTI, and resting-state MEG data.
While validating our results on an independent dataset could strengthen the findings, it
is challenging to find a dataset that includes all three modalities, especially resting-state
MEG data. Therefore, future studies should validate the proposed algorithm on larger,
independent datasets. Another limitation involves the failure of our deep learning model
to converge during training when using MEG data. This may have been due to issues such
as improper weight initialization, inappropriate learning rates, insufficient data, overfitting,
or a non-convex loss function. Despite adjusting factors like learning rate and weight
initialization, the model did not converge using MEG data alone. However, the model
did show convergence when combining MEG features with DTI and sMRI data. Future
research with larger sample sizes is needed to investigate these convergence issues and
propose solutions for deep learning models applied to brain imaging data. Additionally,
in this study, we compared our low-rank tensor fusion algorithm with single-input data
and traditional feature fusion methods, such as addition or concatenation. Our results
demonstrated that the low-rank tensor fusion method provided better prediction accuracy
than traditional feature fusion methods. Future studies could focus on developing more
accurate deep learning-based data fusion methods and comparing them to existing tech-
niques. It is important to note that the choice of data fusion method in deep learning models
depends on factors such as data characteristics (e.g., structured, unstructured, multimodal),
model complexity, and computational resources [94,95]. Finally, we intended to assess
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our low-rank fusion method using combinations of all feature maps but were limited by
computational resources. Future studies may be able to explore this approach further.

5. Conclusions

In this study, we presented a novel low-rank tensor fusion algorithm developed to
integrate multimodal brain imaging data for the purpose of brain age estimation. Our
strategy involves integrating three different imaging techniques—sMRI, DTI, and resting-
state MEG—in order to offer a more thorough understanding of brain aging. We evaluated
the method using the Cambridge Centre for Aging Neuroscience (Cam-CAN) dataset. The
results indicated that incorporating both structural and functional brain features enables our
model to offer a deeper understanding of the brain’s aging process. Our data fusion method
exhibited performance that rivals state-of-the-art techniques in different multimodal tasks,
as tested on datasets that are publicly accessible.
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Abstract: Background: Standard methods for deriving Centiloid scales from amyloid PET images are
time-consuming and require considerable expert knowledge. We aimed to develop a deep learning
method of automating Centiloid scale calculations from amyloid PET images with 11C-Pittsburgh
Compound-B (PiB) tracer and assess its applicability to 18F-labeled tracers without retraining. Meth-
ods: We trained models on 231 11C-PiB amyloid PET images using a 50-layer 3D ResNet architecture.
The models predicted the Centiloid scale, and accuracy was assessed using mean absolute error
(MAE), linear regression analysis, and Bland–Altman plots. Results: The MAEs for Alzheimer’s
disease (AD) and young controls (YC) were 8.54 and 2.61, respectively, using 11C-PiB, and 8.66 and
3.56, respectively, using 18F-NAV4694. The MAEs for AD and YC were higher with 18F-florbetaben
(39.8 and 7.13, respectively) and 18F-florbetapir (40.5 and 12.4, respectively), and the error rate was
moderate for 18F-flutemetamol (21.3 and 4.03, respectively). Linear regression yielded a slope of 1.00,
intercept of 1.26, and R2 of 0.956, with a mean bias of −1.31 in the Centiloid scale prediction. Conclu-
sions: We propose a deep learning means of directly predicting the Centiloid scale from amyloid PET
images in a native space. Transferring the model trained on 11C-PiB directly to 18F-NAV4694 without
retraining was feasible.

Keywords: amyloid PET; deep learning; centiloid scale

1. Introduction

Alzheimer’s disease (AD) is a major cause of dementia characterized by amyloid-β
plaques, hyperphosphorylated tau protein, and brain atrophy [1,2]. Amyloid-β, a key
hallmark of AD, begins to accumulate over two decades before the onset of symptoms.
Non-invasive amyloid positron emission tomography (PET) allows the early detection of
amyloid-β accumulation, which is critical for a differential diagnosis of AD. Fluorine-18-
labeled amyloid tracers, such as 18F-florbetaben, 18F-flutemetamol, and 18F-florbetapir, are
currently available for routine clinical amyloid PET imaging. On the other hand, 11C-PiB
and 18F-NAV4694 are available for research only. These amyloid PET tracers visualize
the distribution of amyloid-β despite different chemical architectures. Confirmation of
amyloid pathology by amyloid PET or cerebrospinal fluid (CSF) tests is essential for the
timely administration of disease-modifying drugs [3].

While amyloid PET results are often visually assessed as negative or positive in
clinical practice, quantitative evaluations are essential for clinical investigations and the
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development of drugs to treat AD. The standardized uptake value ratio (SUVR) is a
common quantitative measure, but it varies depending on the region of interest and the
tracer. The Global Alzheimer’s Association Interactive Network (GAAIN) introduced
the Centiloid scale to address these inconsistencies [4]. The Centiloid scale is defined by
linearly scaling the average SUVR value to 0 for subjects with a high certainty of being
amyloid-negative and to 100 for typical AD patients. The reproducibility of the Centiloid
scale calculation can be verified by quality control using available PET and MRI datasets
on the GAAIN website. Although the Centiloid scale is defined based on 11C-PiB data,
conversion of the SUVR of 18F-labeled amyloid tracers to the 11C-PiB equivalent of the
Centiloid scale allows the direct comparison of quantitative values between different
tracers. However, the calculation of the Centiloid scale requires several conditions. First, a
three-dimensional T1-weighted image covering the region from the vertex to the whole
cerebellum is required from the same subject. Then, manual image analysis is required
to calculate the Centiloid scale. It involves co-registration of the PET and MRI images of
the same subject, anatomical standardization, VOI analysis using specific VOIs, and the
conversion process from SUVR to the Centiloid scale. To overcome this, a simple method of
calculating the Centiloid scale using low-dose CT instead of MRI has been reported [5–7].
However, manual image analysis and acquisition of anatomical images are still required,
and no studies have been reported that automatically calculate the Centiloid scale using
only PET images. Quantitative analysis using only PET images allows the evaluation of
subjects without the corresponding MRI data.

Recently, deep learning methods in amyloid PET have shown exceptional perfor-
mance in areas such as classification [8], visual interpretation support [9], the prediction
of cognitive decline [10], and image restoration [11]. In addition, deep learning has been
applied to predict quantitative values from amyloid PET images. Deep learning-based
anatomical standardization method for 18F-florbetaben or 18F-flutemetamol PET without
MRI has been proposed [12]. A deep learning model was developed to quantify SUVR
from 18F-florbetapir or 18F-florbetaben PET images in a native space [13]. A deep learn-
ing quantification of the SUVR of an 18F-florbetapir PET image using a pretrained 2D
CNN has also been reported [14]. The use of generative adversarial network model to
generate structural MRI image from 18F-florbetapir PET image has been proposed for the
quantification of PET alone [15]. However, most of these techniques still rely on PET and
MRI preprocessing. In particular, the Centiloid scale has not been directly predicted using
deep learning. Since the Centiloid scale is converted from the SUVR calculated with the
specific volume of interest (VOI), a deep learning model for the Centiloid scale appears
to be of importance. The advantages of 3D convolutional neural network (CNN), which
can account for continuity between slices, are significant for an accurate Centiloid scale
prediction. The direct comparison of the different tracers is also an important part of the
Centiloid scale. Therefore, it is necessary to evaluate the model using a number of amyloid
tracers, not just a single one.

In this study, we aimed to fill this gap by directly predicting the Centiloid scale from
amyloid PET images without MRI using a 3D CNN. In addition, we investigated whether
a 3D CNN constructed with 11C-PiB could be applied to 18F-NAV4694, 18F-florbetaben,
18F-flutemetamol, and 18F-florbetapir without retraining. These PET tracers have the
common feature of binding to amyloid-β deposition, suggesting the potential applicability
of the deep learning model to different amyloid tracers. These PET data are available
from GAAIN and conversion methods to the 11C-PiB-equivalent Centiloid scale have been
reported. The ability to apply various amyloid tracers enhances the utility of the Centiloid
scale calculation methods, which is a significant advantage in their adoption for research
and clinical use.
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2. Materials and Methods
2.1. Dataset

We downloaded 79 amyloid 11C-PiB [4] and 210 amyloid 18F-NAV4694 [16], 18F-
Florbetaben [17], 18F-Flutemetamol [18], and 18F-Florbetapir [19] PET images from the
GAAIN database (https://www.gaain.org/centiloid-project accessed on 6 October 2022).
Table 1 shows details of the amyloid PET dataset. The ground truth of the Centiloid scale
value for deep learning prediction is published on the GAAIN website. A Centiloid scale
value calibrated to 11C-PiB is provided for 18F-labeled amyloid PET. We employed these
PET datasets to construct a predictive model for the Centiloid scale and to evaluate its
applicability across multiple tracers. In the dataset of 18F-labeled amyloid PET, 11C-PiB
PET imaging was also conducted on same subjects. Therefore, we utilized a total of 289
amyloid 11C PiB images from different repositories. 11C-PiB PET scans were performed on
34 healthy subjects and 45 patients with AD, for a total of 79 participants [4,20–26]. 11C-PiB
PET image was acquired 50 to 70 min after injection. The acquisition time for 11C-PiB
was consistent across all datasets. The PET scanners used a BioGraph TruePoint TrueV
(Siemens Healthineers, Erlangen, Germany), an ECAT Exact HR+ (Siemens), an ECAT
Exact HR (Siemens), and an Allegro PET camera (Philips Medical Systems, Eindhoven,
The Netherlands). Images were reconstructed using the filtered back projection (FBP),
the 3D row-action maximum likelihood algorithm (RAMLA), and the ordered subsets
expectation maximization (OSEM). 11C-PiB and 18F-NAV4694 PET scans were performed
on 10 young controls, 25 elderly controls, 10 patients with mild cognitive impairment
(MCI), 7 patients with mild AD, and 3 patients with frontotemporal dementia (FTD). The
18F-NAV4694 PET image was acquired 50 to 70 min after injection using an Allegro PET
camera in the 3D mode. Images were reconstructed using the 3D RAMLA [16]. 11C-PiB and
18F-florbetaben PET images were performed on 10 young controls, 6 elderly controls, 10
patients with MCI, 7 patients with AD, and 3 patients with FTD. 18F-florbetaben PET image
was acquired 90 to 110 min after injection using an Allegro PET camera [27]. Images were
reconstructed using the 3D RAMLA and the line of response (LOR) RAMLA. 11C-PiB and
18F-flutemetamol PET images were performed on 24 young controls, 10 elderly controls, 20
patients with MCI, and 20 patients with AD. 18F-flutemetamol PET images were acquired
90 to 110 min after injection using a 16-slice Biograph (Siemens), an ECAT EXACT HR+,
a GE Advance scanner (GE Healthcare, Milwaukee, WI, USA), a Discovery RX, and a
Discovery RXT (GE Healthcare) [18,28,29]. Images were reconstructed by the FBP and the
OSEM. 18F-florbetapir PET image was obtained for 13 young controls, 6 elderly controls, 3
at-risk elderly controls, 7 patients with MCI, 3 patients with possible AD, and 14 patients
with AD. 18F-florbetapir PET image was acquired 50 to 60 min after injection using an
ECAT Exact HR+ in the 2D mode with 2D-OSEM, a Gemini TF 64 (Philips) in the 3D mode
with LOR-RAMLA, and a GE Advance scanner in the 2D mode with Fourier rebinning
iterative reconstruction algorithm [19].

Table 1. Clinical demographics of GAAIN dataset for amyloid PET. 18F-labeled and 11C-PiB amyloid
PET images were acquired in one subject each.

PET Tracer Total Controls Patients
11C-PiB 79 34 45
18F-NAV4694 and 11C-PiB 55 10 45
18F-Florbetaben and 11C-PiB 35 10 25
18F-Flutemetamol and 11C-PiB 74 24 50
18F-Florbetapir and 11C-PiB 46 13 33

2.2. Deep Learning Model Architecture for Predicting Centiloid Scale

The Centiloid scale was predicted from amyloid PET images using the 50-layer three-
dimensional (3D) ResNet architecture (https://github.com/xmuyzz/3D-CNN-PyTorch
accessed on 6 December 2023). This deep learning model was modified from the standard
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3D ResNet to address the specific complexities of processing PET images for AD. ResNet
facilitates effective learning in the deepest models through skip connection. In addition,
the ability of 3D CNN to process volumetric data makes it particularly useful for PET data
analysis in AD, where it can effectively capture the spatial complexity of local amyloid
deposition. It features a comprehensive design that includes 3D convolutional layers for
spatial data processing, batch normalization to accelerate training and improve model
performance, and rectified linear units (ReLUs) for nonlinear transformations. The archi-
tecture also includes a max-pooling layer to reduce dimensionality and improve feature
extraction, followed by four sequential layer blocks carefully constructed with bottleneck
blocks. These blocks are designed to deepen the network without increasing its complexity
or computational load through a combination of 3D convolution, batch normalization,
ReLUs, and down sampling layers. This allows the model to learn more complex features
from the PET images with greater efficiency. Sequential layer blocks consisting of 3, 4, 6,
and 3 bottleneck blocks allow the model to adaptively refine its predictions, making it
highly effective for medical imaging tasks. An average-pooling layer follows these blocks,
leading to a fully connected layer that culminates the network architecture and facilitates
the final prediction of the Centiloid scale. Figure 1 shows the structure of our deep learning
model. A network model was implemented on the following system environment: Intel(R)
Xenon Gold 5222 3.80 GHz; NVIDIA RTX A6000 video card with 24 GB of video memory;
CUDA v. 11.6; PyTorch v. 1.12.1; Python v. 3.8.13; and Ubuntu 18.04 LTS.
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Figure 1. Architecture of 50-layer 3D ResNet for predicting Centiloid scale from native amyloid PET
images. The width of the convolutional kernel was set to 1 × 1 × 1 or 3 × 3 × 3.

2.3. Deep Learning Training and Test Phase

Figure 2 shows the comprehensive training and testing processes of our deep learning
analysis. The deep learning model was trained on 231 (80%) of the 289 available 11C-PiB
amyloid PET images and tested on 58 (20%) of the 289 images, with 18F-amyloid PET images
included in the testing phase without further training. It has been demonstrated that deep
learning models trained on 18F-florbetapir PET images can be accurately applied to 18F-
florbetaben images without the need for retraining [13]. This study extends this approach
by applying a model trained on 11C-PiB to four types of 18F-labeled amyloid tracers.
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Figure 2. Scheme of deep learning training and testing phases.

All pixel values of less than 0 were adjusted to 0 because PET images reconstructed
using the FBP algorithm were included. The training images were randomly rotated (be-
tween −10◦ and 10◦) and scaled to increase the robustness of the model. Since the original
matrix size were not uniform, the images were resized to 128 × 128 × 128 voxels. In order
to ensure uniformity across the dataset and enhance the model’s ability to learn from the
PET images effectively, the voxel intensity was normalized using min–max normalization
for model input.

The mean square error (MSE) was used for the loss function and adaptive moment
(Adam) estimation of the optimization algorithm.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

where n is the number of PET images, yi is the ground truth Centiloid scale, and ŷi is
the Centiloid scale computed by our deep learning model. The use of the MSE as the
loss function is advantageous because it emphasizes larger errors by squaring the error
values, thus causing the model to focus more on reducing these errors during training. The
learning rate was 0.0001, and the batch size was 4. To avoid overfitting, the training phase
was terminated when performance did not improve over 20 consecutive epochs. Thus, the
number of epochs was 73.

The ability to predict the Centiloid scale was evaluated using the mean absolute error
(MAE) on the test dataset.

MAE =
1
n

n

∑
i=1
|yi − ŷi|

where n is the number of PET images, yi is the ground truth Centiloid scale, and ŷi is the
Centiloid scale computed by our deep learning model. Using the MAE as a performance
metric has the advantage of providing a direct interpretation of the average prediction
error in the same units as the predicted value.

2.4. Statistical Analysis

The difference in predictive performance between ADs and YCs was tested using
the Mann–Whitney U test with a significance level of 0.05. One-way analysis of variance
(ANOVA) was used to evaluate differences in predictive performance between different
tracers. In cases where one-way ANOVA indicated significant differences, Bonferroni-
corrected post hoc tests were used to identify specific groups. The correlation between
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the deep learning approach and the ground truth was assessed using Pearson correlation
analysis. The slope, intercept, and coefficient of determination were obtained using linear
regression analyses of the ground truth and predicted values of the test set. Centiloid
scale concordance between deep learning prediction and ground truth was assessed using
Bland–Altman plots. All data were statistically analyzed using Python v. 3.8.13, scikit-learn
v. 1.1.2, and SciPy v. 1.8.13.

3. Results

The evaluation of the predictive accuracy of deep learning was carefully performed
using the designated test set. Figure 3 shows a detailed comparison of the MAE for both
11C-PiB and various 18F-labeled amyloid tracers, delineating the results for young controls
(YCs) and AD patients. The MAEs for AD and YC were 8.54 and 2.61, respectively, using
11C-PiB, and 8.66 and 3.56, respectively, using 18F-NAV4694. The MAEs for AD and YC
were higher with 18F-florbetaben (39.8 and 7.13, respectively) and 18F-florbetapir (40.5
and 12.4, respectively), and the error rate was moderate for 18F-flutemetamol (21.3 and
4.03, respectively). AD patients had higher MAE values for all tracers compared to YC,
indicating a divergence in predictive accuracy between these groups. The MAE was
significantly higher for AD than YC for all tracers (11C-PiB, U = 570.0 and p < 0.001; 18F-
NAV4694, U = 319.0 and p < 0.05; 18F-florbetaben, U = 217.0 and p < 0.001; 18F-flutemetamol,
U = 958.0 and p < 0.001; 18F-florbetapir, U = 342.0 and p < 0.05;). Significant differences
between groups were found for the amyloid PET tracers by one-way ANOVA (F = 17.8
and p < 0.001). Significant differences between groups were found for the amyloid PET
tracers by one-way ANOVA (F = 17.8 and p < 0.001). Post hoc tests confirmed a significant
difference in the following six groups: 11C-PiB and 18F-florbetaben (p < 0.001), 11C-PiB and
18F-florbetapir (p < 0. 001), 18F-NAV4694 and 18F-florbetaben (p < 0.001), 18F-NAV4694
and 18F-florbetapir (p < 0.001), 18F-florbetaben and 18F-flutemetamol (p < 0.001), and 18F-
florbetapir and 18F-flutemetamol (p < 0.001).
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Figure 4 shows scatter plots of Pearson correlation analyses. The correlation be-
tween deep learning prediction and the ground truth of the Centiloid scale was significant
(r = 0.978; p < 0.001). Linear regression analysis yielded the following values: slope, 1.00;
intercept, 1.26; and coefficient of determination, 0.956. The Centiloid scale calculated by
our deep learning model was equivalent to that of the GAAIN Centiloid Project (slope,
0.98–1.02; intercept, −2–2; R2 correlation coefficient > 0.98). The prediction accuracy of
11C-PiB (r = 0.978), 18F-NAV4694 (r = 0.967), and 18F-flutemetamol (r = 0.957) without
retraining was comparable. The correlation between the ground truth and the predicted
Centiloid scale was lower for 18F-florbetaben (r = 0.883) and 18F-florbetapir (r = 0.707) than
for the other tracers.
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Figure 4. Scatter plot between the ground truth and the predicted Centiloid scale. The results of the
linear regression analysis are shown with a black line, and r is the correlation coefficient: (a) 11C-PiB,
(b) 18F-NAV4694, (c) 18F-florbetaben, (d) 18F-flutemetamol, and (e) 18F-florbetapir.

Figure 5 shows Bland–Altman plots in which the mean bias of the Centiloid scale
between deep learning prediction and ground truth was −1.31, with 95% acceptable limits
of −21.10 and 18.49.
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Figure 5. Bland-Altman plot comparing the ground truth and the predicted Centiloid scale. Blue
circles represent an individual measurement. The middle-dashed line represents the mean difference,
while the upper and lower dashed lines indicate the limits of agreement (mean difference ± 1.96
standard deviations): (a) 11C-PiB, (b) 18F-NAV4694, (c) 18F-florbetaben, (d) 18F-flutemetamol, and
(e) 18F-florbetapir.

4. Discussion

Our team has developed a deep learning system specifically designed to predict
the Centiloid scale from amyloid PET images using an advanced 50-layer 3D ResNet
architecture. Since the conventional calculation of the Centiloid Scale requires MR images
and complex quantitative analysis, our deep learning-based approach offers significant
clinical advantages and streamlines the assessment process. To our knowledge, this is
the first application of deep learning to derive the Centiloid scale directly from 11C-PiB
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amyloid PET images in their native space, marking a significant milestone in neuroimaging
analysis. In addition, we investigated the feasibility of applying models trained on 11C-PiB
data to 18F-labeled amyloid tracers without the need for further training. Our exploration
extended to evaluating the model’s performance across a spectrum of individuals with
normal cognitive function to those diagnosed with Alzheimer’s disease, with the goal
of demonstrating the versatility and potential of our deep learning system to improve
diagnostic processes for neurodegenerative diseases.

The Centiloid scale was directly and accurately computed from 11C-PiB amyloid PET
images in a native space using deep learning (Figure 3). The prediction accuracy was signif-
icantly higher in the YC than the AD group (p < 0.05). The reported cut-off for the Centiloid
scale for normal cognition and AD is 10–35 [6,30–33]. The present findings showed that the
respective Centiloid ranges for YC and AD were −18.26–28.7 and −22.2–160.7. The AD
group included patients with frontotemporal dementia (FTD) and mild cognitive impair-
ment (MCI) who had to recognize various feature patterns from images. Thus, we assumed
that such patients would have a higher learning difficulty than cognitively typical people.

The prediction performance of the Centiloid scale using deep learning differed among
the amyloid tracers (Figures 4 and 5). This might have been due to the structure or dynamic
range of each tracer (Figure 6). The deep learning prediction for 18F-NAV4694 was almost
identical to that of 11C-PiB. Time–activity curves and blood clearance of 18F-NAV4694
and 11C-PiB are similar [34] and have the same dynamic range [16,35]. Furthermore, 18F-
NAV4694 has higher specific and lower non-specific accumulation than other 18F-labeled
amyloid tracers [36–38]. The predictive performance of 18F-flutemetamol was the same
as that of PiB for YC, but the error for AD was high. The slightly wider dynamic range
of 18F-flutemetamol compared with 18F-florbetaben and 18F-florbetapir [39,40] resulted
in better prediction accuracy. High non-specific binding in white matter might affect
prediction accuracy. Errors were the highest for 18F-florbetapir and 18F-florbetaben. A
quantitative value prediction model trained with 18F-florbetapir can be applied to 18F-
florbetaben without retraining [13]. The structures of the thioflavin derivatives 11C-PiB,
18F-NAV4694, and 18F-flutemetamol are similar [41]. On the other hand, 18F-florbetapir and
18F-florbetaben are stilbene derivatives of Congo red [41]. Their distribution in the brain
varies due to these structural differences. The model that learned with 11C-PiB had high
predictive performance with 18F-NAV4694 and 18F-flutemetamol. In contrast, the model
that learned with 18F-florbetapir had high predictive performance with 18F-florbetaben.
Therefore, the translucency of the model might differ depending on the chemical structure
and the distribution of each drug in the brain even when the amyloid PET tracer is the same.
When building deep learning models for multiple tracers, chemical structure and dynamic
range have a significant impact on model performance. Therefore, not only the deep
learning model but also the knowledge of the tracers become critical in model development
and application. When using a model with tracers other than those used in training, it is
important to be careful about quantitative accuracy. It has been shown that the higher the
structural or imagistic similarity between the tracers, the higher the applicability of the
deep learning model. This is not limited to amyloid PET imaging but is also expected to
apply to other PET imaging modalities, such as tau PET.

The correlation and linearity between the ground truth Centiloid scale and the deep
learning predictions show excellent accuracy (Figure 5). Deep learning methods signifi-
cantly streamline the calculation of the Centiloid scale by eliminating the need for extensive
PET and MRI image analysis and, thus, are not affected by variations in image analysis
processes such as co-registration and anatomical standardization. In addition, this deep
learning-based Centiloid prediction minimizes quantification variability due to reference
region selection and efficiently computes the Centiloid scale from native-space amyloid
PET images in just 0.10 s. The absence of preprocessing bias in the Centiloid scale computed
by deep learning, due to its reliance on native-space PET images, and the elimination of
variation due to slice selection, unlike in 2D models, by using a 3D model, highlight the ro-
bustness and precision of this innovative approach. A 3D model has a much larger number
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of parameters than a 2D model. A 2D ResNet50, with an input size of 224 × 224 × 3 pixels,
has approximately 2.56 million parameters, while a 3D ResNet50, with an input size of
224 × 224 × 224 pixels, has approximately 48 million parameters. The number of 3D
ResNet50 parameters used in this study is consistent with those of the previous studies [42].
Therefore, we consider the structure of our 3D ResNet to be standard in the field.
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This study has several limitations. The dataset was relatively small. More data
regarding 18F-labeled amyloid tracers and amyloid PET-positive individuals are needed
from larger samples. The predictive performance can potentially be improved, particularly
in the 12–30 Centiloid range. A transparent explanation for the decision making process
used by deep learning models is essential. The disadvantage of black-box deep learning
is that the underlying decision basis must be determined by visualization using means
such as heat maps. The model must be specific to each type of amyloid tracer and carefully
selected to avoid inaccurate predictions. In this study, there was a duplication of subjects
across different amyloid PET tracers. Subjects who underwent PET imaging with 18F-
labeled amyloid tracers also underwent imaging with 11C-PiB. The 11C-PiB PET images
were used to train the model, while the 18F-labeled images were used to test the model. The
possible overestimation of predictive results is due to the duplication of subjects. However,
despite the similar distribution patterns of several amyloid tracers, the images are not
identical. In fact, differences in predictive performance were observed among the tracers
in 18F-labeled amyloid PET, and no overestimation by the model was found. In order to
improve predictive performance, ensuring a sufficient amount of data for model training
was considered critical. In future research, the use of larger datasets could improve the
prediction accuracy of the model. Subjects with different cognitive status and multiple
amyloid PET tracers must be included.

5. Conclusions

We developed a deep learning method with 3D CNN to predict the Centiloid scale
from amyloid PET images without MRI images. In addition, the applicability of a 3D
CNN constructed with 11C-PiB to 18F-NAV4694, 18F-florbetaben, 18F-flutemetamol, and
18F-florbetapyr without retraining was investigated. Our method eliminates manual image
analysis and provides consistent, reproducible quantitative results. The advanced redirec-
tion of deep learning models for tracers with similar properties was feasible. The current
findings may not be limited to amyloid PET but may be applicable to the deep learning
approach for any PET imaging.
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Abstract: This study is a post-hoc examination of baseline MRI data from a clinical trial investigating
the efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for patients with
mild–moderate Alzheimer’s disease (AD). Herein, we investigated whether the analysis of baseline
MRI data could predict the response of patients to rTMS treatment. Whole-brain T1-weighted MRI
scans of 75 participants collected at baseline were analyzed. The analyses were run on the gray
matter (GM) and white matter (WM) of the left and right dorsolateral prefrontal cortex (DLPFC),
as that was the rTMS application site. The primary outcome measure was the Alzheimer’s disease
assessment scale—cognitive subscale (ADAS-Cog). The response to treatment was determined based
on ADAS-Cog scores and secondary outcome measures. The analysis of covariance showed that
responders to active treatment had a significantly lower baseline GM volume in the right DLPFC and
a higher GM asymmetry index in the DLPFC region compared to those in non-responders. Logistic
regression with a repeated five-fold cross-validated analysis using the MRI-driven features of the
initial 75 participants provided a mean accuracy of 0.69 and an area under the receiver operating
characteristic curve of 0.74 for separating responders and non-responders. The results suggest that
GM volume or asymmetry in the target area of active rTMS treatment (DLPFC region in this study)
may be a weak predictor of rTMS treatment efficacy. These results need more data to draw more
robust conclusions.

Keywords: Alzheimer’s disease (AD); rTMS treatment; DLPFC; MRI analysis; efficacy prediction

1. Introduction

Repetitive transcranial magnetic stimulation (rTMS) has been investigated as a treat-
ment for Alzheimer’s disease (AD) in the last decade. Several rTMS studies have reported
its effectiveness for AD treatment [1–4]. However, the treatment protocols of rTMS for AD
are demanding for the families and patients as they usually involve 2–6 weeks of daily
treatment [5,6], and some also continue maintenance treatment for up to 6 months [4,7].
However, not everyone responds positively to rTMS treatment. Furthermore, in our recent
large clinical trial [8], we observed that a number of patients declined after rTMS treatment.
Therefore, there is uncertainty regarding the efficacy of rTMS. Given that rTMS is an expen-
sive and resource-intensive technology with a demanding treatment protocol for patients,
the ability to predict a patient’s response before the commencement of rTMS would be very
beneficial and could lead to the development of a more individualized therapeutic strategy.
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In this study, we analyzed magnetic resonance imaging (MRI) images of participants
with AD obtained at baseline in a recent clinical trial [8] to investigate whether brain
volume estimates have the potential to predict the patient’s response to rTMS treatment.
MRI is commonly used to examine gray matter (GM) and white matter (WM) volume
anomalies in AD brains [9,10]. In addition, its potential to predict tissue loss in distinct
brain regions has been reported in dementia studies [11,12]. Another application of MRI
in rTMS clinical trials, including in [13], is for the neuronavigation of the magnetic coil
during treatment, in which MRI scans of AD participants are utilized to localize a target
area of the brain, in the case of our study, to target stimulation to the dorsolateral prefrontal
cortex (DLPFC) bilaterally. The DLPFC is the most common brain region for the treatment
of AD using rTMS [14] due to its broad and complex connections with cortical and deeper
subcortical brain structures [15] and its executive role in planning and decision -making,
most notably in working memory [16,17]. However, to date, no study has investigated the
potential of baseline MRI analysis to predict rTMS treatment efficacy in the AD population.

The left and right DLPFC were the target sites of rTMS intervention for AD partici-
pants in our clinical trial [8]; thus, in this study, we investigated whether the volume of the
DLPFC region estimated from the baseline MRI scans differed between responders and
non-responders to rTMS treatment. We investigated this hypothesis in AD participants
undergoing rTMS treatment separately by measuring (1) the GM or WM volume of each
side of the DLPFC and (2) the magnitude of the asymmetry index of the DLPFC from
its GM or WM volume. In addition, we explored baseline structural differences between
responders and non-responders in other brain regions using whole-brain analysis. Fur-
thermore, we examined whether the abovementioned DLPFC measures correlated with
baseline cognitive scores.

2. Materials and Methods
2.1. Participants

Initially, 128 participants with AD from our rTMS clinical trial [8] who had MRI data at
baseline and completed either active (n = 86) or sham (n = 42) rTMS treatment with follow-
up post-treatment assessments were included. Subsequently, 18 subjects were excluded
owing to inadequate image quality and different MRI scanning parameters; the remaining
110 participants’ MRIs (75 in the active group and 35 in the sham group) were included.
All participants with AD and their primary caregivers provided written consent prior to
enrollment in the study, which was approved by the local ethics committee at each site
of the rTMS treatment study (Winnipeg, Montreal, and Melbourne) [17]. The diagnosis
of AD was made by a neurologist or neuropsychiatrist based on the participants’ clinical
history and neuroimaging results from MRI and/or fluorodeoxyglucose positron emission
tomography (PET) scans. Using the Super Rapid-2 Magstim system (manufactured by
the Magstim Company Limited, Spring Gardens, Whitland, UK), the protocol of rTMS
application was to deliver 25 1.5 s trains of pulses at 20 Hz with an intertrain interval
of 10 s applied to the DLPFC bilaterally (750 pulses to each side, serially) for either 2 or
4 consecutive weeks (5 days/week) [8]. The pulses were neuronavigated using the MRI
scan of each participant and were applied at 100% of the resting motor threshold of each
participant. The protocol of sham and active stimulations was exactly the same.

The primary outcome measure of the clinical trial [8] was the Alzheimer’s disease
assessment scale—cognitive subscale (ADAS-Cog), and the secondary outcome measures
were the Neuropsychiatric Inventory–Questionnaire (NPI-Q) and Alzheimer’s Disease
Cooperative Study—Activities of Daily Living Inventory (ADCS-ADL) to evaluate rTMS
treatment efficacy. Each participant’s response to rTMS was measured by comparing the
baseline ADAS-Cog, NPI-Q, and ADCS-ADL scores with those at either week 5 or post-
treatment after week-8 assessments, as detailed in [13]. In brief, a marked response is
defined as an ADAS-Cog improvement with a score of 3+. A moderate response is referred
to as an improvement (<3 scores) in ADAS-Cog AND the same score OR improvement
in ADCS-ADL OR NPI-Q scores. The response is considered small if the AND part does
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not hold in the previous moderate response criterion. A small/stabilized response is also
defined as a non-substantial decline in ADAS-Cog (<3 score decline) AND an improvement
in both ADCS-ADL and NPI-Q scores by 1. If the AND part does not meet the previous
small/stabilized response criterion, it is considered non-responsive. Notably, in all response
criteria mentioned above, the AND represents a Boolean logical AND operator (it is only
“true” if both statements are true and otherwise “false”), and OR is a Boolean logical
OR operator (it is “true” if either one of the statements or both statements is true and
otherwise “false”).

In this study, we focused on predicting the response in the active rTMS group (n = 75),
in which 42, 13, 10, and 10 participants had marked, moderate, small, and no responses,
respectively. To perform a response group-wise comparison with a sufficiently large sample
size, we combined them into binary response groups under active treatment: responders
(participants with marked and moderate responses, n = 42 + 13 = 55) and non-responders
(participants with small/stabilized and non-responses, n = 10 + 10 = 20).

2.2. MRI Data Acquisition

T1-weighted structural MRI scans were acquired using a 3D magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) imaging sequence. Our rTMS efficacy study
on AD [17] was run at three different sites: Winnipeg (3T Siemens Verio/Verio Dot
MRI system), Montreal (3T Siemens Prisma/Prisma-fit MRI system), and Melbourne
(3T Siemens Skyra/Skyra-fit MRI system). The imaging sequence parameters from all
sites were as follows: slice thickness = 0.9–1.2 mm, echo time = 2.22–2.98 ms, repetition
time = 1800–2300 ms, inversion time = 900/1100 ms, and flip angle = 8–10 degree.

2.3. MRI Data Analysis

Structural MRI data were analyzed by Voxel-Based Morphometry (VBM) using the
Computational Anatomy Toolbox (CAT12, v12.7, The Structural Brain Mapping Group,
University of Jena, Germany, http://www.neuro.uni-jena.de/cat/, accessed on 3 May
2021) [18] and Statistical Parametric Mapping software (SPM12, v7771,The Wellcome Centre
for Human Neuroimaging, University College, London, UK, https://www.fil.ion.ucl.ac.uk/
spm/, accessed on 3 May 2021). A standard “unified segmentation” approach of SPM [19]
segmented the denoised [20], bias field-corrected, and affine-registered T1-weighted MRI
data into tissue maps of GM, WM, and cerebrospinal fluid (CSF). This segmentation was
then passed through the refining process to attain the final stage of the adaptive maximum a
posteriori segmentation [21]. Subsequently, the T1-weighted image and GM, WM, and CSF
masks were non-linearly normalized to the Montreal Neurological Institute (MNI) template
using geodesic shooting [22]. Simultaneously, CAT12 performed several automated quality
assurance checks and estimated the total intracranial volume (TIV). Finally, the segmented
images were modulated to control for the amount of deformation due to differences in brain
size [23] and were used in the following region-of-interest (ROI) analysis and whole-brain
voxel-wise comparisons.

Since the participants received rTMS treatments targeting both the left and right
DLPFC, we created bilateral ROI masks using two 8 mm radius spheres centered at MNI
coordinates x = 30, y = 43, and z = 23 (right DLPFC), and x = −30, y = 43, and z = 23 (left
DLPFC) in the MarsBar [24] toolbox (v0.45, http://marsbar.sourceforge.net/, accessed on
28 March 2022). These MNI coordinates of the DLPFC, reported in previous studies [25,26],
are slightly deeper than the Talairach coordinates (x = ±50, y = 30, and z = 36), in which the
coil position and direction are specified using the BrainSight 2 software (Rogue Research,
Montreal, QC, Canada) in the clinical trial of rTMS [17]. Instead of using these Talairach
coordinates, because of their proximity to the skull, we used the MNI coordinates of
the DLPFC [25,26] mentioned above to develop the two ROI masks. These masks were
resliced, and the volumes from the modulated and warped GM and WM images were then
calculated using the get_totals.m script by G. Ridgeway (http://www0.cs.ucl.ac.uk/staff/
g.ridgway/vbm/get_totals.m, accessed on 1 April 2022). The overlays of these masks on a
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participant’s modulated and warped GM and WM images are shown in Figure 1 using the
MRIcron [27] software (v1.0.20190902, University of South Carolina, Columbia, SC, USA,
https://people.cas.sc.edu/rorden/mricron/, accessed on 15 August 2023).
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Left and right asymmetries are cardinal features of the brain [28]. In this study, we
investigated whether there was a difference in volumetric asymmetry between responder
and non-responder groups. GM asymmetry using the VBM technique with T1-weighted
MRI data has been widely studied [29]; however, WM asymmetry incorporating this
method is less consistent [30]. Nevertheless, prior studies [9,10,31] have performed VBM
on T1-weighed MRI data, and Good et al. [32] also used it for WM asymmetry analysis.
This study analyzed left GM or WM volumetric asymmetry between bilateral DLPFC
regions for each population, where the asymmetry index was calculated separately for GM
and WM volumes, using the following formula [33,34]:

Asymmetry index =
|(le f t− right)|

le f t + right
∗ 100 (1)

Note that the raw volume estimates of the GM or WM were used to calculate the asymmetry
index, and lower values indicate more symmetry (i.e., less asymmetry) between the bilateral
DLPFC ROIs.

The extracted volumes and asymmetry indices of the responders and non-responders
were statistically analyzed (described below). More exploratory post-hoc whole-brain
comparisons were then conducted using group-wise (2nd level) statistical analysis in
SPM12 to investigate whether any other brain regions (in addition to the bilateral DLPFC)
might be useful for rTMS response prediction. To achieve this, the modulated and spatially
normalized images (GM and WM) were smoothed using an 8 mm isotropic full width at
half-maximum Gaussian kernel to account for potential differences in segmentation and
non-linear normalization accuracy between participants. The 2nd level statistical analysis
was then set up in SPM12 using a two-sample t-test with two contrasts (responders >
non-responders and responders < non-responders) and participants’ age, sex, TIV, MRI
site, and Cornell Scale for Depression in Dementia (CSDD) scores as covariates. GM and
WM analyses were run separately, and family-wise error (FWE) in multiple comparisons
was corrected to p < 0.05. The extent of the threshold, k > 50 voxels, was set to consider a
cluster significant.

2.4. Statistical Analysis

A two-proportion test was used to examine statistical differences in baseline categorical
data between the two response groups under active treatment. The independent samples
t-test or Wilcoxon rank-sum test was also used depending on whether specific continuous
data were normally distributed (checked by the Shapiro–Wilk test).

Analysis of covariance (ANCOVA) was employed to find differences in ROI data
between responders and non-responders under active treatment. ANCOVA is a blended
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version of the analysis of variance and regression [35] that allows for the control of the
influences of covariates, including age, sex, TIV, MRI site, and CSDD scores. GM or WM
volume in each ROI was used as a dependent variable.

To further investigate the possible lateralization of the DLPFC region in responders
and non-responders under active treatment, we performed a paired t-test to compare the
normalized (divided by TIV) left and right volumes of GM and WM. Moreover, we used
ANCOVA to compare the magnitude of the GM or WM asymmetry index in the DLPFC
region between responders and non-responders. The asymmetry index of the GM or WM
as a dependent variable and age, sex, TIV, MRI site, and CSDD scores as covariates were
used to build the ANCOVA model. Statistical analysis was performed using the R platform
after installing the required packages in RStudio (ver. 1.4.1106) [36,37]. To control for
multiple comparisons across the two ROIs (left and right DLPFC), we employed Bonferroni
correction to control for family-wise error (p < 0.05/2 = 0.025, significance threshold).

We employed logistic regression as a predictive classification model and evaluated
its performance using a five-fold cross-validation with five repetitions. Additionally,
we employed the synthetic minority oversampling technique (SMOTE) [38], as our two
response groups’ sizes were imbalanced, and the predictive model might be biased toward
the over-represented group, that is, responders. In SMOTE, new and non-replicated
instances are generated in the minority group, whereas the conventional oversampling
scheme has an overfitting issue [39].

Of the 35 participants in the sham group, 12 individuals (responders = 8 and non-
responders = 4) received active treatment after the study period (6 months) in an open-label
study. Their data were added to the active treatment group, and the analyses were repeated.

3. Results
3.1. Baseline Characteristics of Participants

Table 1 presents the demographic data of the study participants and baseline CSDD,
Montreal Cognitive Assessment (MoCA), Clinical Dementia Rating (CDR), and ADAS-Cog
scores of the active treatment group. Responders and non-responders did not show signifi-
cant differences in sex, age, or handedness. These participants had no major depressive
disorder, and there was no substantial difference in CSDD scores between the response
groups. In cognitive scores, similarity was demonstrated in MoCA and CDR scores between
responders and non-responders, while the responders had significantly higher ADAS-Cog
scores (implying more cognitive impairment) than the non-responders.

Table 1. Demographic and pretreatment baseline clinical data of responders and non-responders
under active treatment.

Responders Non-Responders Two-Tailed p

n 55 20 -
Sex (male, female) 32, 23 12, 8 0.902 †

Age 72.5 ± 7.9 76.2 ± 5.7 0.055 ††

Handedness (left, right) * 2, 52 1, 19 0.680 †

CSDD 4.3 ± 3.7 4.6 ± 2.6 0.362 ‡

MoCA 15.3 ± 5.2 16.2 ± 4.5 0.541 ††

CDR 1.1 ± 0.3 1.2 ± 0.4 0.535 ‡

ADAS-Cog 25.2 ± 9.3 20.8 ± 7.0 0.031 ‡

Vales are reported as mean ± SD. Cornell Scale for Depression in Dementia (CSDD), Montreal Cognitive Assess-
ment (MoCA), Clinical Dementia Rating (CDR), and Alzheimer’s disease assessment scale—cognitive subscale
(ADAS-Cog). * One responder had unknown handedness. † Two-proportion test. †† Independent samples t-test. ‡

Wilcoxon rank-sum test.

3.2. Region of Interest (ROI) Analyses
3.2.1. GM and WM Volume

After adjusting for covariates, the analysis of covariance showed that the responders
in the active treatment group had significantly lower GM volume in the right DLPFC region
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(p = 0.004) than non-responders (Table 2). No significant differences were observed between
responders and non-responders in the GM of the left DLPFC or in the WM of either the left
or right DLPFC.

Table 2. Gray matter (GM) and white matter (WM) volumes (cm3) in regions of interest for responders
vs. non-responders of the active treatment group.

ROIs Responders
Mean ± SE

Non-Responders
Mean ± SE F * (1, 67) p *

GM
Left DLPFC 0.73 ± 0.02 0.72 ± 0.03 0.15 0.698

Right DLPFC 0.64 ± 0.02 0.72 ± 0.02 8.82 0.004
WM

Left DLPFC 0.51 ± 0.02 0.51 ± 0.03 0.03 0.859
Right DLPFC 0.59 ± 0.02 0.57 ± 0.03 0.14 0.713

* ANCOVA statistics with covariates of age, sex, TIV, MRI site, and CSDD scores. The significance level was p
< 0.05/2 = 0.025, following the Bonferroni correction for the comparison of two ROIs. DLPFC = dorsolateral
prefrontal cortex; SE = standard error. The bold font of p values denotes a significant difference between responders
and non-responders.

3.2.2. Lateralization and Asymmetry Index

Responders under active treatment had significant leftward lateralization (left > right)
in the GM volume and rightward lateralization (left < right) in the WM volume of the
DLPFC region, as shown in Figure 2 (paired t-test). In contrast, non-responders only had
significant rightward lateralization (left < right) in the WM volume of the DLPFC. No
significant lateralization was observed in the GM volumes of non-responders in the active
treatment group.
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In the comparative analysis of the volumetric asymmetry index using ANCOVA, the
responders showed a significantly higher GM volumetric asymmetry index (p = 0.009) in
the DLPFC region compared to non-responders (Table 3). However, the asymmetry index
in WM was not significantly different between the groups.

Table 3. Asymmetry index of the GM and WM in the DLPFC region for two response groups under
active treatment.

Volumes Responders
Mean ± SE

Non-Responders
Mean ± SE F * (1, 67) p *

GM 9.52 ± 0.86 5.06 ± 0.79 7.17 0.009
WM 9.24 ± 1.09 7.58 ± 1.39 0.99 0.324

* ANCOVA statistics with covariates of age, sex, TIV, MRI site, and CSDD scores. The bold font of p values denotes
a significant difference between responders and non-responders.

3.3. Predictive Classification Results

We assessed the performance of logistic regression for classifying responders and non-
responders (75 participants) utilizing each significant GM feature of the ROI (GM volume
of the right DLPFC and GM asymmetry index of the DLPFC) alone and their combinations
(Table 4). As expected, when both GM features of the ROI were used in the logistic
regression model, it provided the highest accuracy (0.69), with an area under the curve
(AUC) of 0.74 for separating responders and non-responders receiving active treatment.

Table 4. The logistic regression results for classifying responders and non-responders using significant
MRI-driven features. Mean values of area under curve (AUC), sensitivity, specificity, and accuracy
are presented.

Features AUC Sensitivity Specificity Accuracy

GM volume 0.71 0.67 0.62 0.65
Asymmetry index 0.70 0.63 0.72 0.66
GM volume and
asymmetry index 0.74 0.65 0.77 0.69

3.4. Whole-Brain Analysis Results

The exploratory whole-brain analysis of GM and WM volumes did not reveal any
other areas with statistically significant differences between responders and non-responders
in the active treatment group after accounting for age, sex, TIV, MRI site, and CSDD as
covariates and applying FWE correction for multiple comparisons. Even the right DLPFC
region, which demonstrated a significant outcome in the ROI analysis of participants under
active treatment, did not survive FWE correction in the whole-brain analysis.

3.5. Correlations between ROI Volumes and Baseline ADAS-Cog Scores

Spearman’s correlation analysis for non-normally distributed data was computed
between raw data points of GM volume in the ROIs of responders and non-responders
and their baseline ADAS-Cog scores. As shown in Figure 3, a significant correlation
was observed between baseline ADAS-Cog scores and GM volume in the left DLPFC
(rho = −0.26, p = 0.026) and right DLPFC (rho = −0.29, p = 0.013). After controlling for
age, sex, and TIV in the partial correlation analysis, GM volume in the right DLPFC of
responders and non-responders showed a significant correlation (rho = −0.23, p = 0.048)
with baseline ADAS-Cog scores.
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Figure 3. Scatter plots of baseline ADAS-Cog scores of responders and non-responders under
active treatment and their raw GM volumes (cm3) of (a) left and (b) right dorsolateral prefrontal
cortex (DLPFC).

3.6. Results after Adding the 12 Participants Who Received Active Treatment after the Sham
6–7 Months after the Baseline

After adding the baseline data of the 12 participants who received active treatment
after sham treatment (~7 months after the baseline) to the initial active treatment group
(now, n = 87), the ANCOVA showed significant differences [F (1, 79) = 5.55, p = 0.021]
between responders and non-responders in the GM asymmetry index of the DLPFC.

4. Discussion

In this study, we investigated whether baseline structural brain MRI data could predict
the efficacy of rTMS treatment for cognitive impairment in patients with mild-to-moderate
AD. We herein estimated the GM or WM volumes and asymmetry index in the DLPFC
region of the brain and compared those measures between responders and non-responders
to rTMS treatment.

The main findings of this study were a significantly lower GM volume in the right
DLPFC and higher GM asymmetry of the DLPFC among responders compared to non-
responders under active treatment. The responders and non-responders under active
treatment did not differ significantly in either CDR or MoCA scores; however, the ADAS-
Cog score was significantly higher, representing worse cognitive performance in responders
than in non-responders. An important point is that a “ceiling effect” could explain the
results of this study. The responders had higher ADAS-Cog scores at baseline and more
GM asymmetry in the DLPFC area. Therefore, it was easier to observe a benefit in them
after rTMS. It was harder to see a benefit in the non-responders because of the “ceiling
effect” (they had baseline ADAS-Cog scores closer to normal).

In general, GM atrophies in the DLPFC areas [40] and GM asymmetry [29] have been
reported to be associated with AD. In this study, we focused on the rTMS treatment target
area, that is, the DLPFC, and it is possible that in comparison to non-responders, the respon-
ders to active treatment at baseline might have been more affected in the pathogenesis of
amyloid-beta, tau tangles, and neurodegeneration, particularly in the areas of the DLFPC.
We also speculate that the response to treatment is affected by the presence of GM asym-
metry in the DLPFC, caused by the neuropathology of AD. Iaccarino et al. [41] reported
that amyloid beta accumulates in the association cortex (surrounding sensory and motor
regions) in the early stage of dementia, and the distribution of tau tangles may extend up
to the lateral occipital and areas of the DLPFC. Amyloid-beta plaques indirectly affect GM
volume, while tau tangles are regionally and tightly associated with GM volume reduction,
leading to neurodegeneration [41]. GM atrophic patterns in the AD population may alter
rTMS response because cortical current density is contingent on the type and extent of
atrophy [42]. A correlation was found in a previous study [43] between GM atrophy in
subjects with mild cognitive impairment (MCI) or AD and their changes in scores on the
word part of the Stroop test after high-frequency (HF) rTMS of the superior temporal gyrus.
After applying rTMS (five days/week) for four weeks, a previous study [44] did not find a
substantial longitudinal difference in GM across six months between the active and sham
intervention groups of patients with MCI.

86



Brain Sci. 2024, 14, 226

The difference in WM volume or DLPFC asymmetry was insignificant in responders
and non-responders in the active rTMS group at baseline, suggesting that WM volumetric
patterns in the DLPFC are not predictors of treatment efficacy. However, both response
groups showed rightward lateralization (left < right) in the WM of the DLFPC. Given
that greater lateralization is related to declined cognitive abilities [33,45], this extreme
lateralization in the WM of the DLPFC was expected at baseline in the two response groups.
It is worth mentioning that we investigated these WM volumetric patterns using T1-
weighted MRI data; however, T1 signal intensities are not sufficiently associated with WM
integrity. Instead, fractional anisotropy with diffusion tensor imaging has been applied in
the asymmetric pattern analysis of WM [30,46], and previous studies have also reported the
impact of rTMS on alternations in WM fractional anisotropy in individuals with post-stroke
aphasia and depression [47,48].

In the classification analysis of responders and non-responders to active treatment,
our logistic regression model yielded an accuracy of 0.69 with an AUC of 0.74 using the
GM volume in the right DLPFC and the asymmetry index of the DLPFC. These two GM
features of the ROI could be used as predictive markers for rTMS efficacy, although the
AUC was not in the range from 0.8 to 1, perhaps because of the small sample size.

The analysis within multiple regions throughout the brain did not yield significant
differences in GM or WM between the responder and non-responder groups under active
treatment. No region, including the DLPFC, reached the threshold for FWE correction
(p < 0.05, with k > 50). A setting cut-off point of p < 0.05 for FWE correction seems strict
in this study when our two groups of subjects had similar types of AD pathophysiology
and might have subtle changes to be detected. Although FWE correction at threshold
p < 0.05, a reference point, is highly recommended in neuroimaging research [49], several
studies have also reported its stringent behavior in subtle lesion detection and instead
suggested a liberal uncorrected threshold of p [50,51]. Supplementary Table S1 provides
the whole-brain analysis results using an uncorrected p of 0.001.

In the correlation analysis, we noticed a significant negative correlation between the
raw GM volumes of the left and right DLFPC and ADAS-Cog scores at the baseline of
active treatment. This suggests that in general, the lower GM of the DLPFC increased
the disease severity of our participants in the active treatment group. Such a significant
correlation also exists in the right DLPFC when controlling for age, sex, and TIV. As noted
in previous studies [9,52], a similar relationship between cognitive decline and GM volume
also exists in other brain regions in people with AD/MCI.

When the data of the 12 participants in the sham group who received active treatment
after the study period (6 months) were analyzed, the responders and non-responders (now
87 subjects) still showed a significant difference in the GM asymmetry index of the DLPFC.
However, we ran the logistic regression only on the initial dataset (75 who were in the
active rTMS group) for two main reasons: (1) the additional 12 subjects received active
treatment in an open-label study, and (2) these 12 participants received active treatment
6–7 months after the baseline MRI.

This study has some limitations that should be considered when interpreting the
results. First, the sample size was small, and the response group sizes were imbalanced.
Second, this study obtained MRI scans from the participants at three sites scanned on
different models of MRI scanners; although from the same manufacturer, a few scanning
parameters differed from site to site. Third, the depression level of participants was not
measured after treatment, and without having post-treatment measurements, we could
not thoroughly investigate the effect of depression on MRI-driven features. Fourth, other
factors, such as the distribution of CSF in the brain [53] and the degree and location of mi-
crovascular ischemic pathology, may act as confounding variables in treatment responses.
Lastly, the lack of amyloid PET or fluid biomarkers to verify the amyloid status of these par-
ticipants was a limitation of this study; it is also essential for future rTMS studies to include
either imaging or fluid AD biomarkers to be sure of the participants’ biological diagnosis.
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5. Conclusions

To the best of our knowledge, this study is the first to use volumetric measures of
MRI data to predict rTMS treatment response for AD at baseline. GM volume in the right
DLPFC or the asymmetry index in the GM of the DLPFC have shown potential, albeit weak,
as predictive markers of the efficacy of active rTMS treatment. GM volumes in the DLPFC
region were significantly associated with baseline ADAS-Cog scores of participants under
active treatment.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/brainsci14030226/s1, Table S1: Whole-brain voxel-based morphometry
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Abstract: This paper presents a novel approach to improving the detection of mild cognitive im-
pairment (MCI) through the use of super-resolved structural magnetic resonance imaging (MRI)
and optimized deep learning models. The study introduces enhancements to the perceptual quality
of super-resolved 2D structural MRI images using advanced loss functions, modifications to the
upscaler part of the generator, and experiments with various discriminators within a generative
adversarial training setting. It empirically demonstrates the effectiveness of super-resolution in the
MCI detection task, showcasing performance improvements across different state-of-the-art classi-
fication models. The paper also addresses the challenge of accurately capturing perceptual image
quality, particularly when images contain checkerboard artifacts, and proposes a methodology that
incorporates hyperparameter optimization through a Pareto optimal Markov blanket (POMB). This
approach systematically explores the hyperparameter space, focusing on reducing overfitting and
enhancing model generalizability. The research findings contribute to the field by demonstrating that
super-resolution can significantly improve the quality of MRI images for MCI detection, highlighting
the importance of choosing an adequate discriminator and the potential of super-resolution as a
preprocessing step to boost classification model performance.

Keywords: magneticresonance imaging; super-resolution; mild cognitive impairment; hyperparameter
optimization; Pareto optimality; Markov blanket

1. Introduction

Mild cognitive impairment (MCI) is considered as a prodromal stage of Alzheimer’s
disease based on clinical symptoms [1]. It is also a transitional period between healthy aging,
where cognitive decline is a normal phenomena, and dementia [2]. MCI usually impacts
cognitive abilities such as reasoning, memory, and logic [3]. People with this condition are
usually forgetful, and need more time to think or express certain thoughts. However, they
do not need assisted living facilities, because they are able to take care of themselves in
everyday life. People with MCI may or may not convert to Alzheimer’s disease [4–6] or
dementia [4]. The condition every year affects millions of people worldwide and attracts
large investments from governments into research and drug production. There is no cure
for this disease; however, certain treatments can reduce symptoms if applied on time.
Therefore, early diagnosis is crucial, which allows patients and their caregivers enough
time to prepare for the future. However, currently, there is no standardized assessment that
would allow one to accurately diagnose MCI [7]. Due to this fact, researchers try to find new
ways to accurately detect MCI via a vast number of different data modalities, for example,
electroencephalogram (EEG) [8], 18F fluoro-deoxy-glucose positron emission tomography
(FDG-PET) [9], cerebrospinal fluid (CSF) biomarkers [10], natural language [11], or T1w
and T2w MRI [12,13]. Neuroimaging markers are becoming more popular and show great
potential towards accurately identifying MCI [14,15]. Certain structural changes in the
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brain are present when a patient has MCI, for example, a decrease in gray matter volume
in the medial temporal lobe [16] and hippocampal, entorhinal cortex atrophy with cortical
volume decrease [17,18]. The task of detecting MCI is challenging, because it usually affects
elderly people, and it is hard to distinguish if changes in the brain volume are impacted due
to normal aging [19] or due to MCI, since some of the regions, for example, the temporal
lobe, show a volume decrease in both scenarios. Therefore, it is crucial for the tools to not
only focus on the specific known regions of interest (ROI), but also to incorporate other
regions of the brain, which may have a correlation to the presence of MCI. Particularly,
enhancing smaller regions with finer details in MRI may allow diagnostic tools such as
deep learning (DL) models to find other important regions and more accurately detect
MCI.

Super-resolution technology has been a helpful tool in many different science areas,
for example, hyperspectral imaging [20], nature sciences [21], satellite imagery [22], license
plate recognition [23], and medical imaging—this paper. This technology utilizes deep
learning models to increase the quality of low-resolution data by upscaling and reconstruct-
ing an image, which would be accurate and meaningful. Usually, researchers focus their
super-resolution solutions into improvements in a controlled environment, where a small
dataset with a highly specialized solution can reach high results, but all of these solutions
are impractical in real world scenarios, where data are usually not a controlled factor. A
small change in the data domain means the model will be incapable of reconstructing that
image. In these challenging scenarios, “real-world” super-resolution solutions become
useful. These solutions do not rely on paired image datasets, where a low-resolution
image is known for each high-resolution image. Here, low-resolution images are generated
randomly by utilizing degradation (augmentation) techniques in a completely random
order [24]. By using degradation techniques, we can cover a wider distribution of possible
input images, making the model more practical. Therefore, this paper utilizes the real-world
super-resolution paradigm. Another problem with super-resolution is that many solutions
are not focusing on the perceptual quality of the reconstructed images. Many researchers only
focus on peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) to
report their results, even though subjectively generated images are blurry and noisy. In the
medical imaging field, preserving the structural part of the image quality is as important as
the perceptual part. Therefore, just like in our previous paper [25], we maintain the focus to
improve the main important aspects of the image quality—structural and perceptual.

Deep learning model hyperparameter optimization plays a crucial role in enhancing
the performance and accuracy of diagnostic models in the field of medical imaging [26]. By
fine-tuning parameters such as learning rates, layer configurations, and activation functions,
these models can be better adapted to the nuances of medical datasets, which often contain
complex patterns and subtle features critical for accurate diagnosis [27]. Optimizing
hyperparameters enables the models to effectively learn from high-dimensional imaging
data, such as MRI, CT scans, and X-rays, leading to improved sensitivity and specificity in
detecting and classifying diseases [28].

In medical imaging diagnostics, the stakes are high, as the early and accurate iden-
tification of conditions can significantly impact patient outcomes [26]. Hyperparameter
optimization ensures that deep learning models are not only tailored to the unique chal-
lenges of medical data but also generalized enough to handle variations across different
imaging modalities and patient demographics [27]. This process also helps in reducing
overfitting, ensuring that the model’s performance is robust across unseen data, which
is paramount in clinical settings where the model’s predictions can directly influence
treatment decisions [29].

Bayesian networks, a class of probabilistic graphical models, represent complex re-
lationships between a set of variables using directed acyclic graphs (DAGs) [30]. Each
node in a Bayesian network symbolizes a variable, while the edges denote conditional
dependencies between them, encapsulating the probabilistic influences of variables on
one another [31]. In the context of hyperparameter optimization for machine learning
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models, Bayesian networks serve as a powerful tool to model and understand the intricate
dependencies between various hyperparameters and their impact on model performance
metrics [32]. By capturing these relationships, Bayesian networks facilitate a structured
exploration of the hyperparameter space, enabling the identification of optimal config-
urations [33]. This approach not only streamlines the optimization process by focusing
on the most influential hyperparameters but also enhances the efficiency and efficacy of
the model tuning phase, leveraging probabilistic reasoning to guide the search towards
hyperparameter sets that are likely to yield improved performance outcomes [32,33].

The novelty and contribution of this study lie in its innovative integration of super-
resolution imaging techniques and advanced machine learning optimization strategies to
enhance the detection of MCI from structural MRI scans. Specifically, the study introduces
the following novel contributions to the field of medical imaging and diagnostics:

• By employing super-resolution techniques within a generative adversarial network
(GAN) framework, this study improves the perceptual quality of structural MRI im-
ages. This enhancement is pivotal, as higher-resolution images can reveal subtle brain
changes associated with MCI, which are often not discernible in low-resolution scans.

• This research advances the state of the art by incorporating a combination of loss
functions, including perceptual loss and adversarial loss, to not only increase the
resolution of MRI images but also to maintain their diagnostic integrity. This approach
addresses common issues in super-resolution, such as checkerboard artifacts, ensuring
that the enhanced images are both high in quality and clinically reliable.

• A key contribution is the application of a POMB approach for hyperparameter op-
timization in deep learning models used for MCI detection. This method system-
atically evaluates and selects hyperparameters to balance model complexity and
performance, reducing overfitting and improving generalizability. The use of POMB
in this context is novel, offering a structured framework for enhancing model accuracy
in medical diagnostics.

• This study validates the effectiveness of super-resolution preprocessing on MCI detec-
tion across various state-of-the-art deep learning architectures. This empirical evidence
supports the premise that super-resolution can serve as a valuable preprocessing step
in medical imaging analysis, potentially applicable beyond MCI detection.

• The investigation into the impact of different discriminator architectures within the
GAN framework on the quality of super-resolved images underscores the critical role
of discriminator choice. This insight contributes to the broader understanding of how
GAN components influence the outcome of super-resolution tasks, guiding future
research and application in neuroimaging enhancement.

The main purpose of this study is to improve the processing of MRI data and validate
the proposed methodology effectiveness in mild cognitive impairment detection.

The rest of the paper is organized as follows: Section 2 discusses the related studies.
Section 3 explains the proposed methodology improvements to our previous work to
improve perceptual quality of MR images. Section 4 presents the research findings in terms
of quantitative and qualitative evaluation of the proposed methodology. Section 5 discusses
and summarizes the findings and presents the conclusions.

2. Related Works

Neuroimage enhancement is a compelling field of study that is increasingly gaining
traction in research circles. As advancements in imaging technology continue to improve,
the need for enhancing neuroimages to extract more accurate diagnostic information
becomes more pronounced. For identification of similar studies, we utilized the database
engines—Web of Science, Scopus, IEEE Xplore, Springer Link, and Science Direct (Last
accessed on 7 March 2024). We constructed the search queries using these keywords: super,
resol*, mild*, mci, detect*, class*. We combined the keywords with Boolean operators
(AND, OR) and filtered only to articles and conference proceedings. Asterisk (*) was used
to include words with different suffixes. Only sources published after 2014 and written
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in English were included. After the initial screening, 157 sources were identified. After
removing duplicates, 86 entries were left. After the title and abstract screening, 22 sources
were left. After full-text eligibility review, 6 sources were included in the study, and are
compared in Table 1.

Alwakid et al. [34] used ESRGAN [35] to upscale retinal images, and then used
the Inception v3 model [36] to classify the images into five different classes of diabetic
retinopathy (mild, moderate, proliferative, severe, undetected). The dataset they used
was APTOS [37]. Their experiments show that using super-resolution improves baseline
accuracy by nearly 18%.

Tan et al. [38] used the SRGAN [39] model to upscale computed tomography (CT)
scans of patient lungs, which then were used to classify with the VGG-16 [40] model
whether the patient has COVID-19 pneumonia or not. The dataset they used was COVID-
CT [41]. Their experiments also show that the super-resolution technique improves baseline
accuracy by approximately 8%.

Nagayama et al. [42] utilized super-resolution software PIQE (SR-DLR) [43], which
is being sold by Canon alongside their CT scanners. It is a custom 3D CNN trained on
CT images. No other details are disclosed by the company. However, validation of the
method shows that it improves not only image quality, but also the detection of coronary
lumens, calcifications, and non-calcified plaques approximately. The methodology of the
source describes using the detectability index to measure performance [44]. The authors
have not disclosed the dataset used in their study. The method shows an approximately 5%
improvement over the other state-of-the-art solutions.

De Farias et al. [45] slightly modified GAN-CIRCLE [46] and used it to evaluate whether
super-resolution improves feature selection in CT scans. For this reason, they used principal
component analysis (PCA) with spatial pyramid pooling (SPP), and then checked which
features were selected as the most important ones. The authors used the NSCLC [47] dataset.
Experiments show that using super-resolution improves feature selection by relatively 2% if
ranking by the feature importance using the intraclass correlation coefficient (ICC).

Huang et al. [48] combined wavelet transform with DDGAN [49] to improve the
resolution of the ADNI [50] dataset images. They used T1w image slices from the coronal
plane and performed ×4 times upscaling from 48 × 48 to 192 × 192 resolution. First, they
downscaled the original images and then tried to reconstruct them with super-resolution.
The experiments with the support vector machine (SVM) as classifier show a relative 2%
performance increase by using super-resolution.

Zhang et al. [51] used a custom 3D encoder–decoder GAN with residual connections
to super-resolve T2w MRI images. The dataset that they used consisted of 200 patients who
went through an inflammatory bowel disease clinical trial, but it is not publicly available.
After super-resolving the images, they used ResNet to classify the images, and found no
improvement over the baseline.
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Table 1. Comparison of different approaches for image super-resolution and classification in medical
imaging.

Reference Super-Resolution Model Classification Model Dataset Improvement

Fundus photography

Alwakid et al. [34] ESRGAN Inception v3 APTOS 18%

CT Scans

Tan et al. [38] SRGAN VGG-16 COVID-CT 8%

Nagayama et al. [42] PIQE (SR-DLR) - - 5%

de Farias et al. [45] Modified GAN-CIRCLE PCA+SPP NSCLC 2%

MRI

Huang et al. [48] DDGAN SVM ADNI 2%

Zhang et al. [51] 3D Encoder–Decoder GAN ResNet - 0%

This paper Hybrid Transformer GAN Various Models ADNI, OASIS-4 1–4%

Naturally, the accuracy varies depending on the application and the size of the dataset
used in training, but overall, super-resolution technology improves the accuracy of classifi-
cation models in the majority of tasks.

3. Materials and Methods
3.1. Experimental Data

For the super-resolution model improvements, we used the same ultra-high-resolution
MRI dataset “human phantom” [52] that we used in our previous work [25]. (Dataset avail-
able online: https://datadryad.org/stash/dataset/doi:10.5061/dryad.38s74—accessed on
5 March 2024). All of the preprocessing steps were also unchanged.

A short description of both datasets is available in Table 2. More details of how the
data were prepared are available in Section 4.1.

Table 2. Description of datasets used in classification of MCI.

Dataset Description # of Samples
Used

ADNI
First version released in 2004. Focus on Alzheimer’s

disease and its early-stage MCI. We only used T1w MRI
images, although it has many other data modalities.

689 MCI, 689 CN

OASIS-4
First version released in 2007. Focus on memory

disorders and dementia. We also utilized only T1w
MRI images.

47 MCI, 47 CN

CN—Cognitive Normal (Healthy Patient), ADNI—Alzheimer’s Disease Neuroimaging Initiative, OASIS—Open
Access Series of Imaging Studies.

3.2. Improvement of Super-Resolution Hybrid Transformer GAN

The baseline of the improvements for this study is our previously published method [25],
which increases the resolution of structural MRIs while preserving perceptional image qual-
ity. It uses hybrid attention transformer (HAT) as a generator and introduces an adversarial
training pipeline, which allows one to super-resolve structural MRI and decrease its blurri-
ness and noise. In this study, we employ the following improvements over the previous
method: (1) a deeper/denser network for discriminator of hybrid attention transformer
(HAT) model generator, (2) use of Wasserstein GAN (WGAN) loss and frequency domain
loss, (3) addition of more augmentation techniques, (4) modification of upsampling layer
of generator model, and (5) implementation of hyperparameter optimization using POMB.
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3.2.1. Usage of Deeper/Denser Network for the Discriminator

To use the deeper model for discriminator, we experimented with various existing
model architectures, which are briefly described in Table 3.

Table 3. Model architectures used for discriminator in GAN loss.

Model Reference Used Permutations of Model

VGG-16 [40] With 128 and 256 input features.

ConvMixer [53]
(width, depth, kernel size, patch size):

(1536, 20, 9, 7)
(1024, 20, 9, 14)

U-Net [54] With 128 and 256 features

ResNet-152 [55] Only original implementation

ResNext-101 [56] Only original implementation

3.2.2. Definition of Loss Function

One of the improvements proposed by our previous work was the use of Wasserstein
GAN [57] for adversarial training. WGAN proved to make the training of models more
stable. Therefore, we replaced vanilla GAN loss with WGAN loss. WGAN loss is defined
as in Equations (1) and (2):

LG = G(z), (1)

LD = x− G(z), (2)

where z is a fake image and x is a target image. WGAN discriminator is simply called
“critic”, because it is only yielding a score of the generated image. The score itself is just a
mean value of the tensor.

The next change to our methodology was to swap perceptual-style reconstruction loss
with LPIPS loss. It forces generator to focus a bit more on the contents/features of the
generated images, rather than on the style, since the loss combines features from multiple
layers in the network. The loss is just a LPIPS metric defined in Equation (25) calculation
on which gradient descent can then be used.

For pixel-level loss, we used Charbonnier loss for the same reasons that it is a better
variant of mean absolute error (MAE) loss, and it is proven to make training more stable
and make models produce images with better visual results [58–60]. Charbonnier loss is
defined in Equation (3).

LCharbonnier =
∑n

i=1

√
(yi − xi)2 + ε2

n
, (3)

The last change was to introduce frequency domain-based loss function, which uses
Fast Fourier Transform (FFT). FFT is widely used algorithm in many different science
fields. It is usually used to reduce noise in images by transforming images from spacial to
frequency domain and applying filters [61] to the extracted frequencies. The main idea of
frequency domain loss is comparing images pixel-wise like one could do in spacial domain
with L1 or L2 loss, but doing so in frequency domain makes the loss slightly more sensitive
to blurriness and noise, helps in preserving high-frequency features in images, and overall
yields better perceptual quality [62–64]. Loss equation is defined in Equation (6), which is
an L1 loss between amplitudes and phases of two distinct images.

Axi , Pxi = FFT(xi), (4)

Ayi , Pyi = FFT(yi), (5)
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LFD =
1
n

n

∑
i=1

(
∥∥Axi − Ayi

∥∥+
∥∥Pxi − Pyi

∥∥), (6)

where x is a high-resolution image, y is a generated image, and FFT is a fast Fourier
transform applied to 2D image, n is a number of samples in the mini-batch and i is the
index of the sample in the mini-batch.

Combined loss for generator is defined in Equation (7). For discriminator, we used
defined discriminator adversarial loss Equation (2).

L = LCharbonnier + LFD + LG + LLPIPS (7)

3.2.3. Image Augmentation Techniques

Our previous work was following [65]’s described augmentation pipeline, which was
developed to train the models to be more generic due to the fact that the training is based
on applying various degradation functions to the high-quality images, instead of using
paired high-/low-quality images for direct input to the model. The use of randomness in
the degradation pipeline trains the model to be more stable given various unknown levels
of blurriness, noise, etc., in low-quality images. This branch of super-resolution research
is called “real-world” super-resolution. Usually, researchers avoid it because the model
performance will be lower than the model trained on paired image dataset. This happens
because in controlled environments, models can learn the training set image distribution
quite well, but once the low-quality input image is not entirely lying within training set
image distribution, generated results will be low-quality.

In our case, a model used for sMRI super-resolution must be practical and capable of
dealing with a wider distribution of input images than the training set. Hence, the extensive
application of random augmentations (degradations) during training. Original pipeline
includes blur, resize, Gaussian noise, Poisson noise, speckle noise, and jpeg compression
noise transformations applied in random sequence multiple times. We extended the
original pipeline with the additional random augmentations of brightness and contrast jitter,
sharpening, gamma, cutout, and random rotation transformations. All used augmentations
are depicted in Figure 1.
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Figure 1. Image augmentations (degradations) used in the training of super-resolution model.
Different degradation method outputs are applied to a single extracted slice of T1w MRI of a healthy
Caucasian male from “human phantom” dataset [52].

3.2.4. Modified Upsampling Layer of Generator Model

In our methodology, we use HAT generator [66]. Originally, it uses so called “pixel-
shuffle” for the upsampling of the tensors, as described in [67]. But this technique is
known for being used in classical super-resolution tasks, where perceptual quality is not
the main selling point. For real-world super-resolution tasks, the typically used upsampling
technique is called “nearest+conv”, which uses deconvolution with overlapping to reduce
“checkerboard” artifacts in generated images [68].

3.3. Hyperparameter Optimization Using Pareto Optimal Markov Blanket
3.3.1. Types of Hyperparameters

Deep learning model architecture hyperparameters can be intricately described and
optimized using the framework of Bayesian networks. This approach uses probabilistic
graphical models to represent the conditional dependencies between hyperparameters and
the performance metric(s) of interest, enabling systematic exploration and understanding
of the hyperparameter space. Four types of hyperparameters are possible in a Bayesian
network of hyperparameters:

• A hyperparameter Xi is conditionally independent of the hyperparameter Yi given S
if and only if P(Xi|Yi, S) = P(Xi|S).

• A hyperparameter Xi ∈ R is strongly relevant to the target variable T if and only if
∀S ⊆ R \ {Xi}, s.t. P(Xi|S) 6= P(Xi|S, T).

• A hyperparameter Xi ∈ R is irrelevant to a target variable T if and only if
∀S ⊆ R \ {Xi}, s.t. P(Xi|S, T) = P(S|T).

• A hyperparameter Xi is redundant for the target variable T if and only if it is weakly
relevant to target variable T and has a Markov blanket, MB(Xi), then it is a subset of
the Markov blanket of MBT .
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The categorization of hyperparameters as conditionally independent, strongly relevant,
irrelevant, and redundant critically informs their inclusion or exclusion for hyperparame-
ter optimization. Conditionally independent hyperparameters are optimized separately;
strongly relevant ones are essential and included for optimal performance, while irrele-
vant and redundant hyperparameters are excluded to streamline the optimization process
and avoid overfitting. This selection strategy allows us to achieve an efficient balance be-
tween maximizing model performance and maintaining a concise set of hyperparameters,
facilitating a targeted and effective tuning process.

3.3.2. Bayesian Network of Hyperparameters

A Bayesian network for the optimization of the hyperparameters of a deep learning
model can be represented as a directed acyclic graph (DAG) G = (V, E), where V is the set
of nodes and E is the set of directed edges between these nodes.

Let H = {h1, h2, . . . , hn} be the set of hyperparameters of the deep learning model,
such as the learning rate, the number of layers, the number of neurons per layer, the type
of activation function, and the dropout rate, where each hi is a hyperparameter subject
to optimization.

Let M = {m1, m2, . . . , mk} represent the set of performance metrics, which are the re-
sults measured to evaluate the performance of the model under the configuration defined by
H. The optimization process seeks to find an optimal configuration H∗ = {h∗1 , h∗2 , . . . , h∗n}
such that the performance metrics in M are optimized (maximized or minimized) according
to the specified goals of the model.

Directed edges between nodes signify conditional dependencies. For example, if the
performance metric node mi (e.g., validation accuracy) is conditionally dependent on the
hyperparameters’ nodes H, then there exists a directed edge from each hj ∈ H to mi.

Strongly relevant hyperparameters are directly linked to the performance metrics
nodes with directed edges, indicating a direct influence on the model’s output. The
network highlights these hyperparameters as critical nodes whose values significantly
affect the target metrics, necessitating careful optimization.

The Bayesian network helps with conditional independence through the absence of
direct paths between certain hyperparameter nodes when conditioned on other nodes. For
example, if the hyperparameter X is conditionally independent of Y given Z, the network
will not have a direct edge from X to Y when Z is present, highlighting that X’s effect on Y
is mediated through Z.

Irrelevant hyperparameters do not have direct or indirect paths to the performance
metrics nodes, indicating their lack of influence on the model’s outcomes. In the Bayesian
network, these hyperparameters might be isolated or only connected to other irrelevant
hyperparameters, serving as a visual cue for potential exclusion from the optimization
process to simplify the model and reduce computational complexity.

Redundant hyperparameters are represented in the network by their connections
to the same performance metrics or strongly relevant hyperparameters as other nodes,
indicating overlapping influences. Redundant hyperparameters might form clusters within
the network, suggesting areas where simplification could occur without loss of predictive
power, as their removal or consolidation can lead to a more streamlined and efficient
optimization process.

3.4. Conditional Probability Table

Each node vi ∈ V is associated with a probability distribution that quantifies the
uncertainty about its values. The conditional probability table (CPT) for a performance
metric node mi, given hyperparameters H, quantifies how hyperparameters influence
performance metrics, and can be formally defined as P(mi|H). For instance, the CPT for
the performance metric node quantifying accuracy of classification can be represented as

P(Accuracy|h1, h2, . . . , hn) = p, (8)
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where p is the probability of achieving a certain level of accuracy given specific values of
the hyperparameters h1, h2, . . . , hn.

CPTs provide the quantitative backbone of a Bayesian network, specifying the proba-
bilities of a node given its parents, thereby encapsulating the strength and nature of the
dependencies among variables.

3.4.1. Faithfulness of Bayesian Network

Further, we introduce the faithfulness assumption that asserts that all and only the
conditional independencies observed in the data are reflected in the network’s structure,
meaning that the network’s edges (or lack thereof) and the CPTs together accurately model
the true underlying probabilistic relationships among the variables, which implies that
for a Bayesian network to be faithful to its represented domain, its CPTs must not only be
consistent with the observed data but also align with the network’s structure in portraying
the correct dependencies and independencies.

Assume that G denotes a Bayesian network, and P represents a joint probability dis-
tribution through the set of hyperparameters R. So, G is faithful to P if P captures all and
only the conditional independencies among the hyperparameters in G. The faithfulness
condition, a critical assumption in the construction of Bayesian networks, stipulates that all
observed conditional independencies in the data are accurately reflected in the network
structure. This condition directly impacts the assessment of conditional dependencies
among hyperparameters and performance metrics, ensuring that the relationships modeled
in the Bayesian network truly represent the underlying data generation process. When
identifying the POMB, the faithfulness condition guarantees that the dependencies and
independencies inferred from the network are reliable, thereby enabling a more accurate
selection of hyperparameters that are genuinely predictive of model performance without
being redundant. By adhering to the faithfulness condition, the process of deriving the
POMB becomes more robust and grounded in the actual interactions between hyperparam-
eters and outcomes, leading to an optimization strategy that is both effective and reflective
of true data-driven insights.

3.4.2. Pareto Optimal Markov Blanket (POMB)

Before defining the Pareto optimal Markov blanket (POMB), we introduce some
necessary concepts:

The Markov blanket of a target variable T, denoted as MB(T), is the minimal subset
of hyperparameters in a dataset D such that T is conditionally independent of D \MB(T)
given MB(T). Formally, for any hyperparameter X ∈ D \MB(T),

P(T|MB(T), X) = P(T|MB(T)). (9)

A hyperparameter set S is Pareto optimal if there exists no other hyperparameter set
S′ such that S′ is strictly better than S in at least one criterion (e.g., relevance to T) without
being worse in another (e.g., redundancy).

Now, we are ready to define a Pareto optimal Markov blanket: A Markov blanket
MB(T) is Pareto optimal if for every hyperparameter X ∈ MB(T) and any potential
hyperparameter Y /∈ MB(T), adding Y to or removing X from MB(T) cannot make MB(T)
more predictive of T without increasing the redundancy among the hyperparameters in
MB(T). Formally, MB(T) is Pareto optimal if for any X ∈ MB(T) and any Y /∈ MB(T),

@ MB′(T) :
(
Pred(MB′(T), T) > Pred(MB(T), T)

)
∧
(
Red(MB′(T)) ≤ Red(MB(T))

)
, (10)

where Pred(MB, T) measures how well MB predicts T, and Red(MB) quantifies the
redundancy within the hyperparameters in MB.

The evaluation process can be formalized using a multi-objective optimization frame-
work, where we define two objective functions: one for predictive performance ( fPred)
and another for redundancy ( fRed). The goal is to maximize predictive performance while
minimizing redundancy.
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3.4.3. Pareto Optimality

Given a Markov blanket MB(T) for a target variable T, we define the following
optimization problem:

max fperf(MB(T)) (11)

min fred(MB(T)) (12)

subject to MB(T) ⊆ H, whereH is the set of all possible hyperparameters.
fperf(MB(T)) is the predictive performance metric, which could be precision, F1 score,

or any other relevant performance metric; and fred(MB(T)) quantifies the redundancy
within the Markov blanket, possibly measured by mutual information or correlation among
hyperparameters in MB(T).

Pareto optimality comes into play when selecting the optimal MB(T), where a solution
MB∗(T) is Pareto optimal if there does not exist another MB(T) such that

fperf(MB(T)) > fperf(MB∗(T)) (13)

fred(MB(T)) < fred(MB∗(T)) (14)

without worsening the other objective. The collection of all Pareto optimal solutions
constitutes the Pareto front, from which the optimal Markov blanket can be selected
according to specific criteria or preferences.

3.4.4. Ranking Markov Blankets

Ranking Markov blankets by Pareto optimality criteria within a hyperparameter
optimization context involves evaluating each Markov blanket according to multiple
objectives, aiming to maximize predictive performance while minimizing redundancy. This
approach is rooted in multi-objective optimization, where Pareto optimality provides a
framework to navigate trade-offs between competing objectives.

A Markov blanket MB1 is said to Pareto dominate another MB2 if and only if MB1 is
not worse than MB2 in all objectives and strictly better in at least one objective. Formally,
given two objectives—predictive performance ( fperf) and redundancy ( fred)—MB1 dominates
MB2 if fperf(MB1) ≥ fperf(MB2) (higher is better for performance) fred(MB1) ≤ fred(MB2)
(lower is better for redundancy) At least one of these inequalities is strict.

The Pareto front consists of all non-dominated Markov blankets. These are the MBs
for which no other MB exists that Pareto dominates. The Pareto front represents the set of
optimal trade-offs between the objectives, where no single MB is universally best, but each
is optimal within the context of a specific balance between performance and redundancy.

Ranking Markov blankets (MBs) by Pareto optimality criteria involves a systematic
process that can be detailed as follows:

The Pareto front, PF , is made up of non-dominated MBs. An MB, MBi, is considered
non-dominated if there is no other MBj such that

fperf(MBj) ≥ fperf(MBi) and fred(MBj) ≤ fred(MBi), (15)

with at least one inequality being strict. Here, fperf and fred denote the performance and
redundancy metrics, respectively.

Within PF , MBs can be further ranked based on secondary criteria. Let D(MBi)
represent the degree of dominance of MBi, defined as the number of MBs that MBi
dominates. The secondary ranking can then consider D(MBi), specific preferences, or
additional metrics:

Rank(MBi) = g(D(MBi), Preferences, Additional Metrics), (16)

where g is a function that combines these factors into a comprehensive ranking.
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The crowding distance, CDi, for a MB in a dense region of PF , is used to prefer
solutions with a broader spread of trade-offs:

CDi =
K

∑
k=1

(
f next
k (MBi)− f prev

k (MBi)
)

, (17)

where K is the number of objectives, and f next
k and f prev

k are the values of the k-th objective
for the next and previous MBs in the ranking, respectively.

The ranking of MBs can be dynamically updated as new data or insights become
available. Let PFnew represent the updated Pareto front, then

PFnew = Update(PF , New Data), (18)

where Update(·) is a function that integrates new candidates into PF and removes domi-
nated ones.

This approach detailed in Algorithm 1 provides a comprehensive framework for rank-
ing MBs in the context of Pareto optimality, balancing between performance optimization
and redundancy minimization.

Ranking by Pareto optimality criteria thus involves not only identifying the set of
optimal compromises between competing objectives, but also refining within this set based
on broader considerations of diversity, dominance, and specific preferences, which ensures
a comprehensive exploration of the hyperparameter space, guiding the selection towards
solutions that best balance the inherent trade-offs in model optimization.

3.4.5. POMB Construction Criteria

In addition, we introduce two criteria, V-structures and D-separation, which are used
to construct the POMB.

In a faithful Bayesian network, an MB of the target variable T, MBT , in a set R is an
optimal set of hyperparameters, composed of parents, children, and spouses. All other
hyperparameters are not conditionally dependent on the target variable T given MBT ,
∀Xi ∈ R \ (MBT ∪ T), s.t. Xi ⊥ T|MBT .

A V-structure in a Bayesian network occurs when two nodes (hyperparameters) have
arrows pointing to a common child, but there is no direct edge between the two parent
nodes. This structure is crucial for understanding conditional independence and depen-
dence relationships because it can introduce conditional dependencies that are not apparent
through direct connections alone. If there is no arrow between hyperparameter Xi and
hyperparameter Yi, and hyperparameter Zi has two incoming arrows from Xi and Yi,
respectively, then Xi, Zi, and Yi form a V-structure Xi → Zi ← Yi. In the context of a
POMB, V-structures can influence the determination of which hyperparameters are part
of the Markov blanket. Specifically, the spouse (SP) components of a Markov blanket are
identified through V-structures, where the spouses are the other parents of the target vari-
able’s children. Understanding and identifying V-structures help in correctly identifying
these spouses, ensuring the Markov blanket is accurately defined, which is a step toward
achieving Pareto optimality by considering redundancy and relevance of hyperparameters.
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Algorithm 1 Ranking Markov blankets by Pareto optimality criteria

1: Input: Set of Markov blankets MBs, performance function fperf, redundancy function
fred

2: Output: Ranked list of Markov blankets MBsranked
3: procedure IDENTIFYPARETOFRONT(MBs)
4: Initialize ParetoFront← ∅
5: for each MBi in MBs do
6: Dominated← False
7: for each MBj in MBs do
8: if MBj Pareto dominates MBi then
9: Dominated← True

10: break
11: end if
12: end for
13: if not Dominated then
14: Add MBi to ParetoFront
15: end if
16: end for
17: return ParetoFront
18: end procedure
19: procedure SECONDARYRANKING(ParetoFront)
20: Rank ParetoFront based on secondary criteria (degree of dominance, preferences,

etc.)
21: end procedure
22: procedure APPLYCROWDINGDISTANCE(ParetoFront)
23: Calculate crowding distance for each MB in ParetoFront
24: Re-rank ParetoFront based on crowding distances
25: end procedure
26: procedure ITERATIVEREFINEMENT(MBsranked)
27: while new data or insights available do
28: Update MBsranked by adding/removing MBs based on new evaluations
29: Re-apply procedures for identifying Pareto Front and ranking
30: end while
31: end procedure
32: ParetoFront← IDENTIFYPARETOFRONT(MBs)
33: SECONDARYRANKING(ParetoFront)
34: APPLYCROWDINGDISTANCE(ParetoFront)
35: MBsranked ← ITERATIVEREFINEMENT(ParetoFront)
36: return MBsranked

D-separation is a criterion used to decide whether a set of hyperparameters is condi-
tionally independent of another set, given a third set of hyperparameters, within a Bayesian
network. It systematically checks for blocked paths (considering chains and colliders) to
determine independence. A path D between a hyperparameter Xi and hyperparameter Yi
is D-separated by a set of hyperparameters S if and only if the following:

• D includes a chain Xi ← Zi → Yi such that the middle hyperparameter Zi is in S.
• D includes a collider Xi → Zi ← Yi such that the middle hyperparameter Zi is not in

S and none of Zi’s successors are in S.

A hyperparameter set S is said to D-separate Xi and Yi if and only if S blocks every
path D from a hyperparameter Xi to a hyperparameter Yi. D-separation is indirectly related
to the identification of a POMB because it provides a methodological way to verify the con-
ditional independencies within the network. When constructing or analyzing the Markov
blanket of a target variable, D-separation can be used to validate whether the selected
hyperparameters (forming a potential Markov blanket) indeed render the target variable
conditionally independent of all hyperparameters not in the blanket. This validation is
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essential for ensuring that the identified Markov blanket is minimal and optimal, aligning
with the goals of Pareto optimality by not including unnecessary (redundant without
adding predictive value) hyperparameters. In achieving a Pareto optimal Markov blanket,
one must balance between including relevant hyperparameters (those directly influencing
or influenced by the target variable and its spouses via V-structures) and avoiding redun-
dancy (ensuring that the inclusion of any hyperparameter does not unnecessarily duplicate
information already captured by the blanket, as can be verified through D-separation).

Pareto optimality emphasizes a balance where no hyperparameter can be added to
or removed from the Markov blanket without worsening the balance between relevance
(predictive power towards the target variable) and redundancy (overlapping information).
D-separation helps ascertain the conditional independencies that justify the exclusion of
certain hyperparameters from the Markov blanket, while the understanding of V-structures
ensures all relevant direct and indirect (through spouses) influences are considered.

Algorithm 2 outlines a structured procedure to find a POMB for hyperparameter
optimization. The algorithm starts by identifying potential Markov blankets for each
hyperparameter, considering both direct influences (parents and children) and indirect
ones (spouses) found through V-structure detection. Each identified Markov Blanket
is then evaluated for its predictive performance and redundancy, using D-separation to
ensure that included hyperparameters maintain the target performance metric’s conditional
independence. The final step involves ranking these Markov blankets by their balance of
predictive performance against redundancy, selecting the top-ranked set as the POMB.

Algorithm 2 POMB hyperparameter optimization

1: Input: Bayesian network B of hyperparametersH and performance metrics P
2: Output: Pareto optimal Markov blanket (POMB) for hyperparameters
3: procedure IDENTIFYPOMB(B,H, P)
4: Initialize POMB← ∅
5: for each hyperparameter hi ∈ H do
6: Identify PC(hi) and SP(hi) using V-Structure detection
7: MB(hi)← PC(hi) ∪ SP(hi)
8: Evaluate MB(hi) for predictive performance and redundancy
9: end for

10: Rank MB(hi) sets by Pareto optimality criteria
11: POMB← Select top-ranked Markov blankets
12: return POMB
13: end procedure
14: procedure VSTRUCTUREDETECTION(B, hi)
15: // Detect V-structures involving hi
16: Identify child nodes C of hi
17: for each pair (cj, ck) in C without a direct link do
18: if cj and ck have a common child cm then
19: Report V-structure hi → cm ← hk
20: end if
21: end for
22: end procedure
23: procedure EVALUATEMARKOVBLANKET(MB, P)
24: // Evaluate based on D-separation and performance metrics
25: Use D-separation to check conditional independencies within MB
26: Assess predictive performance using P
27: Calculate redundancy score for hyperparameters in MB
28: return Combined evaluation score
29: end procedure

The identification, evaluation, and selection of the POMB are structured around the
principles of Bayesian network analysis. Initially, the algorithm employs V-structure detec-
tion to meticulously identify potential hyperparameters that directly or indirectly influence
the target performance metric, ensuring the inclusion of all relevant and strongly connected
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hyperparameters. Subsequently, D-separation is utilized to evaluate the conditional inde-
pendencies among these hyperparameters, refining the initially identified set by removing
any hyperparameters that do not contribute to the predictive power or introduce redun-
dancy, thereby ensuring the Markov blanket’s minimality and relevance. The selection
of the POMB is then carried out by ranking the refined sets of hyperparameters based on
their collective predictiveness and non-redundancy, adhering to Pareto optimality criteria,
which systematically balances the trade-off between the complexity of the hyperparameter
set and the performance of the model, selecting the optimal set that achieves the best per-
formance without unnecessary complexity. Through these steps, the algorithm navigates
the hyperparameter space efficiently, ensuring that the selected POMB is both effective in
prediction and efficient in configuration.

3.4.6. Refinement and Validation of Markov Blanket

Algorithm 3 outlines a procedure that explicitly utilizes V-structure detection and
D-separation to refine and validate the Markov blanket. The process starts with an ini-
tial Markov blanket and refines it by ensuring all relevant hyperparameters involved in
V-structures pointing to the target variable are included, and those not contributing to
such structures or validated dependencies via D-separation are reconsidered for exclusion.
This refinement and validation step is crucial for ensuring that the final Markov blan-
ket accurately captures the essential hyperparameters that influence the target variable’s
performance, adhering to both the structural integrity of the Bayesian network and the
underlying data-driven relationships.

Algorithm 3 Refinement and validation of Markov blanket using V-structure detection and
D-separation

1: procedure REFINEANDVALIDATEMB(B, MB(T))
2: Input: Bayesian network B, initial Markov blanket MB(T) for target T
3: Output: Refined and validated Markov blanket MBrefined(T)
4: MBrefined(T)← MB(T)

. Refine MB using V-structure detection
5: for each hyperparameter hi in MBrefined(T) do
6: if hi is part of a V-structure pointing to T then
7: Ensure hi and its spouses are included in MBrefined(T)
8: else
9: Remove hi from MBrefined(T) if it only forms V-structures not pointing to T

10: end if
11: end for

. Validate MB using D-separation
12: for each pair of hyperparameters (hi, hj) in MBrefined(T) do
13: Identify all paths P between hi and hj
14: for each path p in P do
15: if path p is D-separated by MBrefined(T) \ {hi, hj} then
16: Path p does not introduce dependency; continue
17: else
18: Path p introduces dependency; refine MBrefined(T) accordingly
19: end if
20: end for
21: end for
22: return MBrefined(T)
23: end procedure

Such V-structure detection helps identify cases where two hyperparameters indepen-
dently influence a third variable (often a performance metric or another hyperparameter),
which can signify a critical interaction that should be preserved in the optimization process.
Our approach ensures that hyperparameters involved in V-structures are included in the
POMB, as the algorithm acknowledges the importance of these conditional dependencies
in predicting the target variable, and this helps with the inclusion of hyperparameters
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that might otherwise be overlooked if only direct dependencies were considered, thereby
enhancing the model’s predictive performance by capturing more nuanced interactions
within the network.

Confirming D-separation between hyperparameters serves to refine the set of optimal
hyperparameters by verifying conditional independencies. If a set of hyperparameters is
D-separated from the target variable given another set of hyperparameters, this indicates
that the former set does not directly influence the target when the latter set’s information
is available. Thus, hyperparameters that do not contribute additional predictive power
or are conditionally independent of the target variable—given the rest of the selected
hyperparameters—can be deemed redundant and excluded from the POMB, which re-
duces the complexity of the hyperparameter set, ensuring that only the most relevant and
nonredundant hyperparameters are retained, which simplifies the model and potentially
improves generalization by avoiding overfitting.

3.5. Evaluation Metrics
3.5.1. Evaluation of Image Enhancement Results

In our experiments to measure the performance of the models, we used SSIM (struc-
tural similarity index measure), PSNR (peak signal-to-noise ratio) and LPIPS (learned
perceptual image patch similarity).

Peak signal-to-noise ratio (PSNR) is a image quality metric, which measures difference
in decibels between pixel intensity values. Higher metric value indicates better image
quality. However, metric does not reflect perceptual image quality. Metric is defined in
Equation (19).

PSNR = 10 log10(
2552

MSE
), (19)

where MSE is the mean squared error or L2 loss defined in Equation (20).

MSE =
1

m ∗ n

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2, (20)

where an m × n sized image I is approximated by image K, and i, j are counters for each
image dimension.

Structural similarity index measure (SSIM) is another image quality metric, which
focuses on visible structure distortions in the image in three channels: luminance, contrast,
and structure, which are measured from mean, standard deviation, and cross-covariance
between two images. Metric higher value means images are less different. However, metric
as well as PSNR are only considering pixel intensities, which means this metric is not
capable to capture perceptual quality. Equation of SSIM is noted in Equation (21), the
luminance term in Equation (22), the contrast term in Equation (23), and the structure term
in Equation (24).

SSIM(x, y) = l(x, y)c(x, y)s(x, y), (21)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (22)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (23)

s(x, y) =
σxy + C3

σxσy + C3
, (24)

where µ is the mean, σ is the standard deviation, and σxy is the cross-covariance of images
x and y.

Learned perceptual image patch similarity (LPIPS) is a perceptual image quality metric
defined in [69]. It is an extension of feature reconstruction loss first described in [70,71]. The
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difference between the two is that feature reconstruction loss calculates Euclidean distance,
whereas LPIPS calculates the MSE distance between feature maps extracted from two
images. Another difference is that LPIPS extracts features from multiple layers, whereas
feature reconstruction loss uses only one-layer activations. Feature maps are extracted from
layers deeper in the model [72], which capture finer details of the images. Originally, VGG-
19 was used to retrieve the features, where the model would be trained on ImageNet [73]
dataset. LPIPS metric is defined in Equation (25).

LPIPS(x, y) =
1
m

m

∑
j=1

MSE(φj(x)h,w,c, φj(y)h,w,c), (25)

where m is a number of layers, j is a layer index, x is a generated image, y is a target
image, j is a convolution layer, φ is a feature map, and h, w, c are image height, width and
channel dimensions.

3.5.2. Evaluation of Detection of MCI Task

To evaluate models’ performance on detection of MCI task, we utilized widely used
metrics such as specificity, sensitivity, and accuracy. Metrics are briefly described in Table 4.

Table 4. Metrics used For detection of MCI task.

Metric Description Formula

Accuracy Sum of number N image predictions, where result
is 1 if label and prediction match, and 0 otherwise.

1
N

N

∑
i

1(yi = ŷi) (26)

Specificity
Rate of true negative, which describes the
probability that a negative prediction is

actually negative.

TN
TN + FP

(27)

Sensitivity
Rate of true positive, which describes the
probability that a positive prediction is

actually positive.

TP
TP + FN

(28)

4. Results
4.1. Preparation of Datasets Used for Detection of MCI

For the validation of the methodology in the detection of the MCI task, we used ADNI
(Alzheimer’s Disease Neuroimaging Initiative) [50] and the Open Access Series of Imaging
Studies (OASIS) v4 [74] datasets. We combined both datasets to have a broader spectrum
of images in our training and validation sets, and we prepared three datasets out of the
combined full dataset. Initially, all datasets were preprocessed with our suggested MRI
preprocessing pipeline [25], which included spatial normalization, intensity normalization,
and skull stripping. Then, we extracted mid slices (sagittal, coronal and axial) of the brain
from each patient, which were resized to 256 × 256 resolution. Dataset descriptions are
given below:

1. Only preprocessed with the standard pipeline.
2. Additionally using augmentation techniques—affine transformation, color, brightness

and contrast jitter, sharpening, blur and motion blur, Gaussian noise, gamma, and
image compression transformations. All of the augmentation techniques used are
depicted in Figure 2.
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3. Additional to augmentations, before applying augmentation, it super-resolves the
preprocessed slices to 1024 × 1024 resolution with the improved super-resolution
method. An example of a super-resolved image is depicted in Figure 3.

Figure 2. All different augmentation techniques used during training of detection of MCI model. The
slice of the brain in this figure is taken from T1w MRI of a healthy 39-year-old male from “human
phantom” dataset [52].

Figure 3. Example of super-resolved low-resolution image with our improved method. The slice of
the brain in this figure is taken from T1w MRI of a healthy 39-year-old male from “human phantom”
dataset [52].

Each dataset was split in training and validation sets with a proportion of 80/20. Since
we only used three slice images of the brain in each plane (sagittal, coronal, axial) for each
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patient, there was no risk of data leakage. The same patient slices cannot appear in training
and in validation.

4.2. Models Used in Detection of MCI

For the model architectures to use in the detection of MCI, we chose some of the
state-of-the-art models that are not vision transformers due to the fact that transformers
are very resource-hungry. Therefore, all selected models were either based on dense or
convolution layers. The evaluated model architectures are listed in Table 5.

Table 5. Model architectures used for detection of MCI task.

Model Reference Variations

ConvMixer [53] Width = 1536, Depth = 20, Kernel Size = 9, Patch Size = 7.
ResNet [55] 152.
AlexNet [75] No variations.

EfficientNet [76] B7.
DenseNet [77] 201.

4.3. Implementation Details

The training environment is a personal computer with an AMD Ryzen 5900X CPU,
RTX 4090 GPU and 32GB RAM.

The super-resolution model was trained with the batch size of 4, cosine annealing
learning rate scheduler, 600 k iterations with a minimum learning rate of 1 × 10−7. The
starting learning rate was equal to 1 × 10−4. For the optimizer, we used Adam with a
weight decay of 1 × 10−3.

The classification model was trained with a batch size of 32, cross-entropy loss for
600 epochs, and an Adam optimizer with fixed learning rate of 2 × 10−5.

4.4. Results and Discussion of Improved Super-Resolution Method

All of the results that we captured during validation of trained models with different
discriminators are listed in Table 6.

Table 6. Objective comparison of models used for discriminator to improve our previous super-
resolution HAT model published in [25].

Model SSIM ↑ PSNR ↑ LPIPS ↓
HAT + ConvMixer1536 88.966 29.621 0.0463

HAT + U-Net 256 88.612 28.809 0.0514
HAT + VGG 256 88.493 28.532 0.0515

HAT + ConvMixer1024 88.695 29.208 0.0519
HAT + U-Net 128 (ours old) 88.585 28.742 0.0529

HAT + VGG 128 88.424 28.366 0.0541
HAT (baseline) 91.406 31.765 0.0984

HAT + ResNet-152 84.460 25.303 0.1189
HAT + ResNext-101 81.170 24.457 0.1883

In Table 6, we can see that the best perceptual quality results are achieved with
the ConvMixer1536 model used as discriminator. However, looking at the subjective
comparison in Figure 4, it seems that the LPIPS metric does not capture artifacts that are
present in images generated by ConvMixer models. Comparing subjectively generated
images, images generated using U-Net or VGG are far more close to ground-truth images.
This means that LPIPS is unable to correctly quantify perceptual quality of generated
images. Similar remarks were made by other researchers, for example, those in [78]
(which investigated why artifacts appear and how to reduce them) that all currently used
perceptual quality metrics are unable to capture existence of these artifacts in the generated
images as a decrease in the metric score.
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Figure 4. Subjective comparison of super-resolved low-resolution images with our improved method.
The ground truth slice of the brain in this figure is taken from MPRAGE T1w MRI that was taken with
Siemens 7T Classic MR scanner from “human phantom” dataset [52]. Purple area shows zoomed in
section of the brain to better visualize differences between models.

Excluding the fact that LPIPS does not capture artifacts, and therefore, results with
ConvMixers are not subjectively best, new methodology improvements increased all of
the metric values over the last iteration. The best overall result is achieved with the U-Net
discriminator, which uses 256 input features.

4.5. Results and Discussion of Detection of MCI Task

Preparing a third dataset required us to use our new methodology to upscale images
into 1024 × 1024 resolution. Initial upscaling finding showed us that we faced a domain
shift problem, where our developed model performed poorly on a different dataset used
in training. We used the ultra-high-resolution MRI dataset “human phantom” [52]. Our
model subjectively was generating good results on the OASIS-4 dataset, but when we tried
to run it against ADNI dataset, we found that generated images in some cases contain
what we could call “black spot” artifacts Figure 5. This is a typical generalization problem,
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when the dataset used in real-life usually differs from the one used during training. The
best solution in our case is to expose the model to the new data during training using
fine-tuning—taking the already-trained model and re-training it with the new data added
to the dataset.

Figure 5. Example of a generated brain image of sagittal plane from ADNI [50] dataset, which
contains black spots. The slice of the brain in this figure is taken from MPRAGE T1w MRI, which
was taken with 3T MR scanner.

The first step was to upscale all ADNI dataset images and then manually pick those
that did not contain “black spot” artifacts, then add those images to the original dataset
and fine-tune the already-trained model. After training, the model was able to generate
images without “black spot” artifacts.

The second step was to train MCI detection models with three prepared datasets.
Validation results are listed in Table 7.

Table 7. Objective comparison of models used for detection of MCI on the first dataset (no augmentation).

Plane Model Accuracy Sensitivity Specificity

Sagittal

ConvMixer-1536 0.8966 0.8288 0.9641
AlexNet 0.8876 0.9144 0.8610

EfficientNet-B7 0.8562 0.8198 0.8923
ResNet-152 0.8180 0.7117 0.9237

DenseNet-201 0.7978 0.6261 0.9698

Axial

EfficientNet-B7 0.8899 0.8738 0.9058
ResNet-152 0.8854 0.8468 0.9238

AlexNet 0.8539 0.8468 0.8609
ConvMixer-1536 0.7124 0.5360 0.8878

DenseNet-201 0.6382 0.3333 0.9417

Coronal

ConvMixer-1536 0.8337 0.7747 0.8923
ResNet-152 0.8292 0.7072 0.9506

AlexNet 0.8270 0.8153 0.8385
EfficientNet-B7 0.8135 0.7027 0.9237
DenseNet-201 0.7865 0.7387 0.8340

Across a majority of trained models, there were big differences between sensitivity
and specificity metrics, which means that models tended to overfit the data. However,
in the sagittal and coronal planes, ConvMixer reached the best overall accuracy in the
detection of MCI. In the axial plane, the best model was EfficientNet.

The next step was to validate the models against dataset with augmentation techniques.
The results are listed in Table 8.
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Table 8. Objective comparison of models used for detection of MCI on the second dataset
(with augmentation).

Plane Model Accuracy Sensitivity Specificity

Sagittal

ConvMixer-1536 0.9281 0.8783 0.9775
EfficientNet-B7 0.9281 0.9369 0.9192

Resnet-152 0.9236 0.9279 0.9192
DenseNet-201 0.9101 0.9054 0.9147

AlexNet 0.8809 0.8603 0.9013

Axial

AlexNet 0.9213 0.9279 0.9147
ConvMixer-1536 0.9146 0.9730 0.8565
EfficientNet-B7 0.9146 0.9234 0.9058
DenseNet-201 0.9079 0.8603 0.9551

ResNet-152 0.8989 0.9189 0.8789

Coronal

ConvMixer-1536 0.9438 0.9414 0.9461
ResNet-152 0.9416 0.9820 0.9013

EfficientNet-B7 0.9371 0.9234 0.9506
DenseNet-201 0.9101 0.9234 0.8968

AlexNet 0.9079 0.8513 0.9641

The overall improvement using augmentation was on average around 5%. Here again,
ConvMixer showed a lead in the sagittal and coronal planes, whereas on the axial plane,
it fell shortly behind AlexNet. The last step to verify the effect of super-resolution on the
detection of MCI was to validate models on the third dataset, which used super-resolution
and all the augmentation techniques that the second dataset used. The validation results
are listed in Table 9.

Table 9. Objective comparison of models used for detection of MCI on the second dataset (with
super-resolution and augmentation).

Plane Model Accuracy Sensitivity Specificity

Sagittal

ResNet-152 0.9371 0.9369 0.9372
EfficientNet-B7 0.9348 0.9369 0.9327

ConvMixer-1536 0.9326 0.9459 0.9192
DenseNet-201 0.9326 0.9369 0.9282

AlexNet 0.9281 0.9324 0.9237

Axial

EfficientNet-B7 0.9348 0.9549 0.9147
ConvMixer-1536 0.9326 0.9414 0.9237

AlexNet 0.9213 0.9099 0.9327
ResNet-152 0.9213 0.9414 0.9013

DenseNet-201 0.9191 0.9234 0.9147

Coronal

ResNet-152 0.9573 0.9549 0.9596
EfficientNet-B7 0.9551 0.9459 0.9641

ConvMixer-1536 0.9438 0.9414 0.9461
DenseNet-201 0.9438 0.9324 0.9551

AlexNet 0.9011 0.8963 0.9058

Comparing results between the second dataset and third, it is obvious that the super-
resolution methodology has improved the stability of models, because all models show a
small difference between sensitivity and specificity. Additionally, all models across the table
show performance improvements of 1–8%, on average 4%, which means that our proposed
methodology has a positive effect on the performance of models in the MCI detection task.
What is interesting is that in the sagittal and coronal planes with super-resolution, ResNet
is showing the best results. This may be due to the fact that the third dataset is using
higher-quality images, which yields more features, and it is possible that ResNet residual
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connections allow the model to retain more important features that are contributing to the
accuracy of prediction.

5. Discussion and Conclusions

This study introduces a novel advancement in the detection of mild cognitive im-
pairment (MCI) by applying super-resolution techniques to structural MRI images and
optimizing deep learning models using a Pareto optimal Markov blanket (POMB). This
approach notably enhances the perceptual quality of MRI images, which subsequently
improves the accuracy of various state-of-the-art classifiers in identifying MCI. An improve-
ment in detection accuracy ranging from 1–4% was observed, underscoring the efficacy of
super-resolution in enhancing diagnostic models.

The incorporation of a POMB for hyperparameter optimization emerges as a key
innovation, streamlining the exploration of complex hyperparameter spaces by focusing
on parameters that impact the target variable, either directly or indirectly. This strategy
not only accelerates the optimization process but also significantly mitigates the risk of
overfitting by ensuring a balance between model complexity and performance. As a result,
models demonstrate robustness and generalizability across different datasets, a critical
advantage in medical diagnostics.

An important insight from this research is the impact of discriminator choice in
generative adversarial network (GAN) setups on the perceptual quality of super-resolved
images. The study’s comparison reveals that discriminators like VGG and U-Net produce
significantly different outcomes, with U-Net marginally superior in PSNR and SSIM metrics.
This highlights the profound influence of discriminator selection on both subjective and
objective image quality.

A notable discovery pertains to the limitations of the learned perceptual image patch
similarity (LPIPS) metric. Despite indicating high perceptual quality for images generated
by ConvMixer models, subjective assessments contradicted these findings, revealing poor
quality. This discrepancy suggests a pressing need for a new metric capable of accurately
detecting "checkerboard" artifacts and properly quantifying perceptual quality differences.

In conclusion, this study advances the field of medical imaging and MCI detection,
demonstrating the potent application of super-resolution processing and the crucial role
of hyperparameter optimization and discriminator selection in creating accurate and
reliable diagnostic models. The findings advocate for ongoing research into more ef-
fective perceptual quality metrics, further enhancing the utility of super-resolution in
medical diagnostics.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalogram
FDG-PET Fluoro-deoxy-glucose positron emission tomography
CSF Cerebrospinal fluid
ROI Regions of interest
POMB Pareto optimal Markov blanket
SSIM Structural similarity index measure
DAG Directed acyclic graphs
GAN Generative adversarial network
WGAN Wasserstein GAN
FFT Fast Fourier transform
ADNI Alzheimer’s Disease Neuroimaging Initiative
OASIS Open Access Series of Imaging Studies
PSNR Peak signal-to-noise ratio
MCI Mild cognitive impairment
HAT Hybrid attention transformer
LPIPS Learned perceptual image patch similarity
HR-MRI-GAN High-resolution MRI generative adversarial network
CNN Convolutional neural network
SVM Support vector machine
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Abstract: Tai Chi (TC) practice has been shown to improve both cognitive and physical function
in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear.
Our primary aims are to explore whether distinct age-related and TC-practice-related relationships
can be identified with respect to either temporal or spatial (within/between-network connectivity)
differences. This cross-sectional study examined recurrent neural network dynamics, employing
an adaptive, data-driven thresholding approach to source-localized resting-state EEG data in order
to identify meaningful connections across time-varying graphs, using both temporal and spatial
features derived from a hidden Markov model (HMM). Mann–Whitney U tests assessed between-
group differences in temporal and spatial features by age and TC practice using either healthy younger
adult controls (YACs, n = 15), healthy older adult controls (OACs, n = 15), or Tai Chi older adult
practitioners (TCOAs, n = 15). Our results showed that aging is associated with decreased within-
network and between-network functional connectivity (FC) across most brain networks. Conversely,
TC practice appears to mitigate these age-related declines, showing increased FC within and between
networks in older adults who practice TC compared to non-practicing older adults. These findings
suggest that TC practice may abate age-related declines in neural network efficiency and stability,
highlighting its potential as a non-pharmacological intervention for promoting healthy brain aging.
This study furthers the triple-network model, showing that a balancing and reorientation of attention
might be engaged not only through higher-order and top-down mechanisms (i.e., FPN/DAN) but
also via the coupling of bottom-up, sensory–motor (i.e., SMN/VIN) networks.

Keywords: resting state; electroencephalography; source localization; recurrent neural network
dynamics; healthy aging; mind–body practice; Tai Chi

1. Introduction

Given the global socioeconomic challenges posed by an aging population [1,2], there
is an urgent need to identify non-pharmacological interventions in order to mitigate age-
related multimorbidity and mortality estimates [3]. Aging affects a broad spectrum of func-
tions, including cognition (e.g., executive function, visuospatial processing, memory [4],
and fluid intelligence [5,6]) and physical performance (e.g., mobility, agility, strength, and
balance [7]). These changes are underpinned by neural factors such as structural [8] and
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functional [9,10] decline, as well as physical factors like the loss of skeletal muscle mass and
mitochondrial capacity [11]. Current trends exacerbate these concerns, as older adults tend
to exhibit higher levels of sedentary behavior [12] and lower levels of cognitive engage-
ment [13,14], with research indicating mixed results between different types of sedentary
behavior (i.e., passive vs. active) [15] and a heightened risk of cognitive decline [12].
Encouragingly, evidence suggests that physical and cognitive engagement, even when
adopted late in life, can have beneficial effects [16–19]. Furthermore, mind–body practices,
an umbrella term capturing practices that seek to deliberately integrate the training of
the mind and body (e.g., yoga, various forms of meditation, and Tai Chi), have received
increasing empirical support as a promising approach to promoting healthy aging and
mitigating age-related declines in cognitive and physical function [20–25].

Tai Chi (TC), a mind–body practice steeped in Chinese tradition and philosophy—
which is thus culturally rich—has shown preliminary evidence of enhancing cognitive and
physical function in older adults [23]. Similar to yoga (and its evidence basis on similar
outcomes [26]), TC practice offers a diverse range of approaches to systematically training
the mind and body in a holistic fashion. It encourages keen attention while executing
slow, deliberate movements that flow in a graceful, dance-like sequence. This mindful
movement, combined with controlled breathing exercises and elements of relaxation, makes
TC a multi-faceted intervention with the potential to address both cognitive and physical
aspects of aging [23,24]. Indeed, mounting evidence suggests that TC might be able to
mitigate age-related cognitive [23,27–29] and physical [24] decline. However, the neural
basis underlying these salutary effects remains in its infancy.

While the behavioral benefits of TC for older adults are becoming increasingly evi-
dent [23,24,28,30–32], the underlying neural mechanisms remain poorly understood [23,25,28].
Traditional neuroimaging approaches have provided valuable insights into brain structure
and function with regards to the possible effects of TC practice on brain structure and func-
tion [25]. However, these studies often lack the granularity needed to distinguish between
the effects of normal aging and those specifically attributable to TC practice. Specifically,
there is a tacit assumption in much of the literature that the plasticity induced via TC
practice will attenuate aging effects [25,33]. While some morphological findings lend some
support to this assumption [25], there is less clarity regarding functional changes [33–35].

Moreover, traditional static approaches often fall short in capturing the dynamic, time-
varying nature of neural activity [36,37]. Although various static and dynamic approaches
might be able to predict similar outcomes, represent similar information, and consequently
offer complementary approaches to studying the brain [38], they also tend to diverge and
capture distinctively meaningful patterns [39,40]. Static analyses’ primary limitation is
their insensitivity to temporal order, meaning that they only provide a snapshot of brain
function at a specific moment, potentially overlooking critical temporal fluctuations in neu-
ral communication. These fluctuations can be essential for understanding complex neural
processes, especially in practices like TC that involve continuous and adaptive interactions
between the mind and the body. Dynamic analysis, by contrast, allows researchers to
track these temporal changes, offering deeper insights into how such practices may lead to
functional improvements in the brain that unravel over time. This limitation is particularly
relevant when studying complex mind–body practices like TC, as failing to capture fluctua-
tions in neural communication may cause us to overlook key mechanistic insights into how
these practices induce functional changes that result in observable benefits [23,25,28,30,32].
By examining the dynamic nature of whole-brain/network-wide interactions and carefully
distinguishing age-related changes from TC-induced effects, we can better understand how
TC practice might modulate neural processes and ultimately lead to improved cognitive
and physical outcomes in older adults.

It is important to note that the brain likely employs multiple modes of communica-
tion [41], including amplitude coupling, phase coupling, and phase–amplitude coupling,
among others [42]. Each of these modes can be captured using different metrics, providing
insights into various aspects of neural communication. In this study, we chose to focus
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on amplitude coupling using a neuroelectric analog based on dipole magnitude. This
decision was motivated by the prevalence of amplitude-coupling measures in the exist-
ing mind–body literature [22,25,26,43,44], allowing for easier comparison across studies.
While this approach may not capture all aspects of neural communication, it provides a
robust and well-established framework for investigating the effects of TC practice on brain
connectivity in older adults [25].

Recent advances in artificial intelligence (AI) offer promising new avenues for neu-
roimaging analysis, allowing researchers to uncover hidden patterns and temporal dy-
namics in brain-activity data [39,45]. In particular, unsupervised learning methods have
emerged as powerful tools for capturing meaningful fluctuations and connections within
these time-varying network configurations [46,47]. When these methods are applied to
high-temporal-resolution methods (e.g., magneto-/electroencephalography [M/EEG]),
transient brain states and their temporal dynamics can be revealed [48,49], providing a
more nuanced understanding of neural activity than traditional static analyses [36]. These
advanced techniques not only allow for a more comprehensive examination of brain dy-
namics but also offer the potential to better differentiate between age-related changes and
those specifically induced via TC practice.

In this study, we leveraged an innovative blend of computational approaches to
investigate the neural correlates of TC practice in older adults while carefully distinguishing
age-related effects from TC-induced changes. We deployed a probabilistic identification
of latent brain-state changes via a hidden Markov model (HMM) to extract and explore
recurrent neural network dynamics from source-localized, high-density resting-state EEG
data. In addition, we thresholded our time-varying graph dynamics using an adaptive,
multi-step, data-driven approach that autonomously determines the most appropriate
threshold for each network, agnostic to whether weak or strong connections are more
relevant, ensuring the retention of statistically significant connections while minimizing
spurious links. This decision was prompted by literature that acknowledges the importance
of weak connections in neural information processing [50] and cognitive function [51]. In
other words, this approach enhanced the robustness of our network analysis by preserving
meaningful connections based on their relative importance within the network structure,
rather than their absolute strength.

Our primary aims are to explore whether distinct age-related and TC-practice-related
relationships can be identified with respect to either temporal or spatial (within/between-
network connectivity) differences using features derived from an HMM using source-
localized, resting-state EEG data. We hypothesized that aging would be associated with
decreased within- and between-network connectivity, while TC practice would partially
mitigate these changes, particularly in networks associated with attention, affect, self-
related processing, and motor control. We remained agnostic as to what differences would
be observed in temporal features, given the paucity of research showing differences based
on age or TC practice. By employing this novel analytical approach, we sought to provide
a more nuanced understanding of how TC practice might modulate brain function in older
adults, potentially informing future interventions aimed at promoting healthy brain aging.

2. Materials and Methods
2.1. Subjects

This cross-sectional study recruited community-dwelling adults (healthy younger
adult controls [YACs], n = 15; healthy older adult controls [OACs], n = 15; and Tai Chi older
adult practitioners (TCOAs), n = 15) for a single-session experiment. The inclusion criteria
were as follows: right-handedness; young adults aged 18–30 and older adults over 65; the
absence of acute or chronic neurological disorders such as Parkinson’s disease, Hunting-
ton’s disease, stroke, epilepsy, and seizures; and no severe heart conditions, including heart
attack, heart failure, and angina. Further, the following inclusion criteria were applied to
select TC practitioners: (1) currently practicing TC (Y/N) and (2) having practiced TC for
at least two hours a week in the past 16 weeks (Y/N). Subsequently, accumulated practice
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hours were derived from the following questions: (3) “How long have you practiced Tai
Chi? in weeks or years.” and (4) “Currently, on average, how many hours do you practice
Tai Chi every week?”. From these questions, accumulated practice hours were calculated
as follows: total accumulated practice hours = weeks × hours per week. Participants were
excluded if they had a cognitive impairment (TICS-M score < 18), a physical disability or
the inability to walk independently without an assistive device, or severe chronic pain that
limited their physical function. For more details about the demographic information of our
cohort, please see Table 1. After providing written, informed consent, the participants were
asked to stand as still as possible for 1 min with their eyes closed and for 1 min with their
eyes open while high-density EEG data were collected in a controlled laboratory environ-
ment that provided a consistent (21.1–21.6 ◦C) temperature and lighting at approximately
1/3 the level of a typical office, ~150 lux. The study protocol and procedures were approved
by the Institutional Review Board of the University of Illinois Urbana-Champaign.

Table 1. Participants’ demographic characteristics.

Group N Sex (% F) BMI Age Accumulated Practice Hours

YACs 15 20.0% 23.8 ± 5.1 21.5 ± 2.33
OACS 15 20.0% 24.9 ± 4.9 72.9 ± 4.83

TCOAs 15 22.2% 22.9 ± 3.0 76.7 ± 5.62 1559 (4 yrs and 3 m) ± 1288 (3 yrs and 6 m)
All values reported represent means ± standard deviations; OACs = older adult controls; YACs = younger adult
controls; TCOAs = Tai Chi older adult practitioners. Accumulated practice hours = weeks × hours per week.

2.2. EEG Acquisition and Preprocessing

Please refer to Figure 1 for a visual summary of the entire pipeline outline below.
EEG data were recorded using a 64-channel (Ag/AgCl electrode material) active system
(ActiCHamp system, Brain Vision LLC, Morrisville, NC, USA) and a sampling rate of
1 kHz. The sensor placement was based on the 10-10 international system. The ground
electrode was initially set to the left mastoid, though it is worth noting that, during this
period, the lab’s data-collection methods varied between using only the left mastoid and
using an average of both the left and right mastoids. To ensure consistency across the entire
dataset, the data were re-referenced to a common average. Inter-electrode impedance was
kept below a threshold of 15 kΩ. To account for eye blinks, electrooculographic activity
was captured using two horizontally-placed electrodes in line with the outer canthus of
both eyes and a vertically placed electrode below the right orbit.
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Raw data were loaded into MNE-Python (Python version: 3.10.11; MNE version:
1.6.1) for further processing. A 50-Hz low-pass filter, a 1-Hz high-pass filter, and a notch
filter to remove power-line noise at 60 Hz and its harmonics were applied. Bad channels
(i.e., channels with excessive drift, with flat or excessive amplitude deflections, etc.) were
visually identified, marked, and saved for further processing. Independent component
analysis (ICA) was performed on the EEG data to identify and remove artifacts using
MNE-ICALabel [52] (for a detailed breakdown of the methodology used in ICALabel,
please see Pion-Tonachini et al., 2019 [53]). Before ICA fitting, the data were referenced
to a common average. A lower bound for the component number used to fit the ICA
was determined by fitting the data to a principal component analysis (PCA), and it was
determined to be 15. An upper bound was determined via explained variance, and it
was set to 99%. After ICA components were automatically labeled using 1 of 7 categories
(i.e., brain, muscle, eye, heart, line noise, channel noise, and other), components were
plotted and inspected using time series, an activity-power spectrum, and topographies.
Only the “brain” and “other” categories with a predicted probability of >70% were con-
sidered for signal reconstruction. Automatic component labeling was revised by trained
researchers (i.e., J.C. and M.H.) and corrected as needed. Subsequently, bad channels were
interpolated using the interpolate_bads function in MNE, which uses a spherical spline
method, projecting the sensor location onto a unit sphere and interpolating the “bad”
signal(s) based on the signal at the “good” locations [54]. Interpolated EEG data were
epoched into 1-s segments. After z-score normalization, a window-to-window threshold
of 6 standard deviations was set to remove unusually high amplitude values. Finally, the
preprocessed EEG data were saved for further analysis.

2.3. Source Reconstruction, Parcellation, and Source-Leakage Correction

A custom EEG montage was loaded and adjusted to match the electrode locations
of the MRI template used. Specifically, the FreeSurfer average template brain—based on
a combination of 40 MRI scans of real brains from healthy adults—was used. To ensure
alignment between EEG sensors and the MRI head model, a 3D model was plotted. First, the
forward solution was computed, creating a model of how the EEG signals are distributed in
the brain, given the electrode locations. Assumptions for the forward model computation
included the boundary-element method using a 5120 × 5120 × 5120 volume-conductor
model (i.e., brain, skull, and scalp), a minimum distance from the inner skull surface
of 5 mm, and a default transformation matrix and source-space estimates. Following
forward solution computations, a minimum-norm inverse method was used. An inverse
operator was created using the forward model and noise covariance matrix with depth
weighting and a loose dipole orientation. Exact low-resolution electromagnetic tomography
(eLORETA) [55] was then applied, for which the dipole orientation was discarded and only
dipole-magnitude information was retained.

The inverse solution files were utilized in conjunction with a specific brain atlas—the
Schaefer atlas with 100 parcels divided into 7 networks [56] (i.e., visual [VIN], somato-
motor [SMN], dorsal attention [DAN], ventral attention [VAN], limbic [LIN], frontopari-
etal [FPN], and default mode network [DMN])—to parcellate brain activity into distinct
groups of brain regions with similar network organization to other commonly used atlases
(e.g., Yeo’s 7-network atlas [57]). This approach facilitates the grouping of source-space
EEG data into anatomically and functionally relevant areas, as defined by the atlas. Fol-
lowing the extraction of inverse solutions for each hemisphere and epoch, these were then
batch-processed to align with the parcels of the chosen atlas. For both hemispheres, the
source estimates were loaded in manageable batches to ensure computational efficiency.
The source-estimate files were read sequentially, and their respective time courses were
mapped onto the 100-parcel Schaefer atlas. By employing the extract_label_time_course
method, the mean activity within each parcel was computed, with careful consideration
given to flipping the sign of the time-course data in a manner consistent with the dominant
direction of the underlying source space. This step not only ensures that the extracted signal
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reflects the true neural activity but also corrects for potential source leakage—whereby
signals from neighboring regions may contaminate the activity of a given parcel.

Following the initial extraction of the label time courses from the source estimates, the
data underwent down-sampling to align with a target frequency of 250 Hz using an anti-
aliasing, low-pass filter to prevent the introduction of artifacts. Further, a Hilbert transform
was applied to extract the amplitude envelope, representing the instantaneous amplitude of
the EEG signal within each parcel. The orthogonalization of the analytic signal’s amplitude
envelopes was achieved using QR decomposition. Due to the potential for high correlation
between neural signals, the QR decomposition algorithm inherently provides a degree
of regularization, enhancing numerical stability during the orthogonalization process. If
any label pairs were found to be collinear—indicating that source leakage was present—
the orthogonalization process aimed to rectify this by creating a set of signals that are
orthogonal, meaning they are statistically independent of one another. The procedure used
was “symmetric orthogonalization”, ensuring that the contribution from one parcel did not
erroneously appear in another due to source leakage. This ensured the generation of robust
and truly orthogonal components, serving as a solid foundation for subsequent analyses of
network dynamics and functional connectivity (FC) [58,59].

2.4. Hidden-Markov-Model-Derived Recurrent State Dynamics

In this study, a hidden Markov model (HMM) was used to identify discrete, recurrent
states within EEG source-localized data. This approach rests on the premise that EEG
time-series data can be abstracted into a finite sequence of hidden states, each representing
distinct patterns of brain connectivity that reoccur over time. HMMs require an a priori
selection of states, often named K, to balance model complexity and fit. Previous studies
have used either (1) a variational Bayes approach, which approximates the posterior
distribution over model parameters and the optimal number of states by minimizing the
Kullback–Leibler divergence between the variational distribution and the true posterior
distribution [46,48,60,61] or (2) the a priori selection of states with replication to ensure
consistent results [62,63].

To determine the optimal number of states, the variance of the orthogonalized data
features was computed, and a small fraction of the maximum variance was set as a lower
limit to ensure numerical stability. The data underwent PCA for dimensionality reduction to
enhance computational efficiency, retaining 95% of the variance. A range of potential states,
informed by the previously cited literature, was explored using the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) to balance model complexity and
fit. The search was repeated for each participant, and the average between AIC and BIC
was used to determine the optimal state number for HMM fitting across all participants.
The exploration revealed an optimal state count of ~7 for the eyes-closed and eyes-open
conditions. These results are consistent with previous EEG and MEG studies using an
HMM in which state numbers ranged between 3 and 16 states [48,49,60–66].

To elucidate the dynamic nature of the EEG-derived brain states, we computed several
temporal and spatial features from the HMM state sequences. The temporal features in-
cluded the fractional occupancy, mean lifetime, and mean interval length for each identified
state, as well as the transition probability between states. Fractional occupancy quantified
the proportion of the total observation time each state occupied, offering insights into
the predominance of each state. The mean lifetime, or dwell time, was calculated as the
average duration a sequence remained in a particular state before transitioning, reflecting
the stability of the state. The mean interval length provided an average measure of the
temporal gaps between consecutive appearances of a state, highlighting the recurrence
rate of each state. Lastly, transition probability leveraged state-sequence information to
calculate the likelihood of transitioning from one state to another (as well as including
self-transition probability).

Spatial variables were extracted for each hidden state by computing FC features within
and between predefined neural networks. These analyses were predicated on amplitude-

124



Brain Sci. 2024, 14, 901

coupling correlation matrices derived for each HMM state. Importantly, while the initial
data were epoched into 1-s windows, the HMM’s state identification process effectively
re-windowed the data based on the duration of each identified state. This means that the
FC matrices were computed over time windows defined by the duration of each state, not
the original 1-s epochs. Within-network connectivity was then calculated by averaging
the functional connections among regions within the same network for each state-defined
window. Similarly, between-network connectivity was calculated by averaging connections
between regions belonging to different networks for each state-defined window. Lastly,
to consider the potential influence of changes in FC during state transitions, within- and
between-network transition magnitudes were calculated by extracting the difference in FC
between consecutive states, weighted by the probability of transitioning between those
states. The extraction of these spatial features, rooted in the HMM-derived state durations,
allows for a more nuanced understanding of how different brain regions dynamically
interact within and across distinct functional networks during specific brain states and
while transitioning between them, shedding light on the underlying recurrent neural
network dynamics.

2.5. Adaptive Thresholding of Neural Network Graphs

Seeking to identify spurious weak and strong connections, an adaptive thresholding
approach was deployed that incorporated (1) edge-weight aggregation, (2) bootstrapping,
(3) determination, and (4) the application of an optimal α filter. Each step was as follows:

Edge weight aggregation : W = UGi∈G

{
Wjk

∣∣∣
(

j, k, Wjk

)
∈ E(Gi)

}

(1) Where G is the set of all windowed graphs, Gi is a single windowed graph from this
set, E(Gi) represents the set of edges in Gi, and Wjk is the weight of an edge between
nodes j and k.

Bootstrapping : W = {w1, w2 · · ·wn} ; Bi =
{

w′1, w′2 · · ·w′n
}

f or i = 1, 2 · · · num iterations

(2) Let W be the set of all aggregated edge weights from the windowed graphs, where
n is the total number of aggregated edge weights. For each bootstrap iteration, i,
a bootstrap sample, Bi, is created by randomly sampling N weights from W with
replacement. Last, the median ( M) is taken, and it serves as a statistically robust
measure of the central tendency of the edge weights. The number of iterations
for the bootstrapping was set to 10,000 to strike a balance between robustness and
computational feasibility.

Computing αoptimal iteratively : αoptimal = argmin(α ∈
[αstart, αend]|abs(di f f (mean(Cw(G f iltered(α)), f or all windows w)))).

(3) First, correlation matrices were converted to NetworkX graphs. Subsequently, the
optimal α filter was determined by evaluating a range of α values and selecting
the one that minimized the absolute difference in average connectivity across the
filtered graphs. To minimize the search space and thus reduce the search time, a
golden-section algorithm was implemented to find the αoptimal . The golden-section
search algorithm is a technique for finding the minimum (or maximum) of a unimodal
function by successively narrowing the range of values inside which the extremum
is known to exist. It works by dividing the interval and evaluating the function
at two points, c and d, which are determined by the golden ratio. If f (c) < f (d),
the search interval becomes [a, d]; otherwise, it becomes [c, b]. This process iterates
until the interval is sufficiently small. The optimal α was determined as follows: Let
[αstart, αend] be the range of α values to be tested (for us αstart = 0.001, αend = 0.10),
and let G f iltered(α) be the graph filtered using a given α value. For each window w,

the mean connectivity Cw

(
G f iltered(α)

)
of the filtered graph is calculated.
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Application of α filter : G f iltered =
{
(u, v) ∈ E

∣∣∣(w(u, v)/M)2/∑(w(u, k
)

/M)}2 ≥ α, k ∈ V, (u, k) ∈ E

(4) To pinpoint meaningful connections within the network, the algorithm employs a
disparity filter by evaluating a spectrum of alpha thresholds. Each edge’s weight
is normalized against the median derived from bootstrapped samples, ensuring
uniformity in edge-weight distribution. The disparity filter then examines the relative
contribution of an edge’s weight to the total weight of connections for a given node.
This approach allows for the identification of significant connections by applying a
thresholding operation through which an edge is retained if its normalized weight’s
square, when compared to the sum of squares of all connected edges to that node,
meets or exceeds the alpha threshold. Consequently, this method adeptly discerns
vital connections, whether inherently weak or strong, by assessing their significance in
the context of the node’s overall connectivity. The optimal alpha threshold is chosen
at the point where the difference in average FC between the input graphs stabilizes
or is minimal, ensuring that only connections with substantial relative contributions
are preserved and enhancing the network analysis’s fidelity. Finally, this optimal
threshold is then applied across the dataset, refining the network representation for
subsequent analyses.

2.6. Statistical Analyses

Based on limited literature using similar approaches [35], we anticipated a large ef-
fect size (rank biserial r ≈ 0.75). To achieve 95% power with α = 0.05, a total sample
size of 42 participants was needed (computed using G*Power, version 3.1.9.7). Trending
significance (p ≤ 0.10) was also reported. All analyses were conducted using Python
(version 3.10.11). Mann–Whitney U tests assessed between-group differences in tempo-
ral and spatial features by age and TC practice, with FDR correction for Type 1 errors.
Groups were strictly separated to avoid estimate inflation from repeated observations
(age effects: OACs vs. YACs; practice effects: OACs vs. TCOAs). Data normality
was assessed using the Shapiro–Wilk test, Q–Q plots, histograms, and boxplots. Ho-
moscedasticity was assessed using Levene’s test and scatterplots. Normality and variance
tests were performed on original variables and residual/predictor plots. A two-tailed
approach with α = 0.05 determined statistical significance. Outliers were identified us-
ing z-scores and IQR-based rules and qualitatively examined to decide on exclusion or
transformation. All scripts generated for this manuscript can be found at the follow-
ing link: https://github.com/cernajonathan15/Tai-Chi-Practice-Buffers-Aging-Effects-in-
Functional-Brain-Connectivity-/tree/5ff84a08d52a5506b09506c66d1239116a6db8eb/Manu
script%20Scripts (accessed on 30 June 2024).

3. Results

Age effects: The analysis showed significant age-related differences in both within-
network and between-network mean connectivity. All networks, except for the LIN, had
significantly lower within-network FC in older adults, with only the DMN, VAN, and
VIN surviving FDR correction. Similarly, all network pairs had significantly lower FC in
older adults compared to younger adults, even after FDR correction. Older adults also
showed a trend towards a greater between-network transition magnitude for the DAN-LIN,
though it did not survive FDR correction, possibly indicating a greater FC needed for equal
communication. For detailed within-network and between-network mean connectivity
results, see Tables 2 and 3.
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Practice effects: TC practice was significantly related to greater within-network and
between-network connectivity across all networks and network pairs, even after FDR
correction. A trend for within-network transition magnitude in the LIN (Mdn diff = 0.10,
U = 163, FDR-adjusted p = 0.080, and rank biserial r = 0.45) suggests that TC practice may
reduce the FC strength needed for dynamic within-network LIN communication. Trends
for a lower mean lifetime, mean interval length, and transition probability, though not
surviving FDR correction, might indicate that TC practice is linked to more efficient and
stable network communication. Notably, the relationship between TC practice and FC
showed a greater effect size than that between age and FC, suggesting that TC practice
might compensate for the detrimental effects of age on FC. For detailed mean connectivity
results, see Tables 2 and 3.

4. Discussion

This study investigated the distinct relationships between age and TC practice with
recurrent neural network dynamics, focusing on both temporal and spatial features. Our
results showed that aging is associated with decreased within-network and between-
network FC across most brain networks. Conversely, TC practice appears to mitigate
these age-related declines, showing increased FC within and between networks in older
adults who practice TC compared to non-practicing older adults. These findings suggest
that TC practice may abate age-related declines in neural network efficiency and stability,
highlighting its potential as a non-pharmacological intervention for promoting healthy
brain aging.

4.1. Age-Related Effects

Large-scale, population-based findings by Zonnevald et al. [67] align with our re-
sults, indicating significant reductions in within-network and between-network FC in
older adults compared to younger adults. For within-network FC, this decline was most
pronounced in networks involved in bottom-up attention regulation (VAN), self-related
processing (DMN), and visual processing (VIN). With regards to between-network mean
FC, this decline was most noticeable in three key areas: (1) between networks responsible
for top-down attention regulation and emotional processing (DAN-LIN); (2) between net-
works involved in motor functions and emotional processing (SMN-LIN); and (3) between
networks handling visual processing and motor functions (VIN-SMN).

Previous findings by Ferreira and colleagues [9] were echoed in a recent systematic
review by Deery et al. [68], suggesting that normal aging can result in a loss of functional
diversity [9], known as the de-differentiation hypothesis [4,69]. In accordance with this
hypothesis, we found a trend for a greater between-network transition magnitude be-
tween the DAN-LIN. In other words, older adults may require a greater increase in FC
when transitioning between states as compared to younger adults, indicative of a loss in
amplitude-coupling efficiency with age. These results largely align with previous literature
showing a general global decline in FC [9,70], as well as a regional decline in attentional and
self-referential/internal processing networks. In addition, we can qualitatively comment
that our FC group matrices show a very clear loss of anti-correlations and an increase in
positive correlations with age (see Figure 2), aligning with the previously mentioned find-
ings by Zonnevald et al. [67], Ferreira et al. [9], and Deery et al. [68] (among others [4,9,71]).
Altogether, these results suggest that normal aging may lead to a network-wide loss of
intra-network resource efficiency and specialization and decreased inter-network modu-
larity [9,10]. Interestingly, the FC matrix of TCOAs shows a neural phenotype in between
the YACs and OACs: neither a complete loss of anti-correlations nor a total increase in
positive correlations.
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ships were most prominent. These results suggest that, despite aging-related declines, TC 
practice may facilitate robust intra- and inter-network communication and integration, 
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body and meditation literature [25,26,43,72,73], which have lent support to the triple-net-
work model of large-scale communication in the brain, initially proposed by Menon [74]. 
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Figure 2. Thresholded functional connectivity matrices for younger adult controls (YACs), older adult
controls (OACs), and Tai Chi older adult practitioners (TCOAs). Red indicates positive correlations,
and blue indicates negative correlations (z-scored values displayed). Compared to YACs, OACs show
reduced negative correlations and increased positive correlations, indicating age-related declines
in network specialization. TCOAs exhibit a pattern between YACs and OACs, suggesting that
Tai Chi practice may help preserve functional connectivity, maintaining a more balanced network
organization despite aging. Networks visualized include visual (VIN), somatomotor (SMN), dorsal
attention (DAN), ventral attention (VAN), limbic (LIN), frontoparietal (FPN), and default mode
network (DMN).

4.2. Effects of Tai Chi Practice

TC practitioners exhibited significantly higher within-network and between-network
FC across all examined networks compared to non-practicing older adults. This increase
in FC suggests that TC practice may promote neural plasticity and plausibly enhance
network efficiency in a network-wide fashion, partially attenuating the declines associ-
ated with aging. Notably, when comparing effect sizes between aging and TC practice
for within-network FC, the greatest effect size differences were observed in top-down
attention regulation and higher-order function (DAN, FPN: r diff = 0.29 and 0.30, respec-
tively), affect (LIN: r diff = 0.40), and self-related processing (DMN: r diff = 0.32) networks,
potentially pointing to the underlying neural mechanisms through which TC practice
exerts its strongest intra-network effects. In a similar fashion, when comparing effect sizes
between aging and TC practice for between-network FC, bottom-up attention regulation
and self-related processing (VAN-DMN), higher-order cognitive function and self-related
processing (FPN-DMN), and higher-order cognitive function and affect (FPN-LIN) rela-
tionships were most prominent. These results suggest that, despite aging-related declines,
TC practice may facilitate robust intra- and inter-network communication and integration,
which are crucial for maintaining cognitive and affective function, while also facilitating
a compensatory response that largely attenuates normal decrements experienced during
the aging process (please see Figure 2 for a visual comparison of FC matrices between
non-practicing older adults and TC practitioner older adults).

We contextualize the results of TC practice in light of recent studies from the mind–
body and meditation literature [25,26,43,72,73], which have lent support to the triple-
network model of large-scale communication in the brain, initially proposed by Menon [74].
This framework integrates previously disconnected models of how attentional mechanisms
reign in excessive rumination while deploying mindful attention [75,76]. According to this
adapted model, mindful attention regulates mind wandering via shifting network dynam-
ics. More specifically, the activity of key nodes within the DMN (e.g., medial prefrontal
cortex and posterior cingulate cortex) are known to coordinate stimulus-independent
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thought processes such as autobiographical memory recall, internal speech, mental time
travel, as well as the fundamental differentiation between self and other [77–79]. Although
useful and often necessary, excessive internal attention can lead to significant errors caused
by a loss of attention to relevant external stimuli [80,81]. These processes can be said to
generate a certain level of salience that is monitored and primarily regulated via the dorsal
anterior cingulate cortex along with the anterior insular cortex [82], regions known to be in-
volved in performance monitoring and salience detection, respectively [83]. In the process
of responding and/or anticipating errors, fronto-insular connections are strengthened to co-
ordinate a beneficially antagonistic process in which DMN regions are downregulated [83]
while FPN/DAN regions are upregulated. Consequently, internal attention and external
attention are balanced in a way that allows for greater pliancy and responsiveness. Indeed,
the VAN and LIN, with extensive connections to the DMN and FPN, form a cortico–striato–
thamalo–cortical loop [84] that communicates salient information to the FPN, effectively
coordinating between internally and externally oriented attention, as well as the amount of
attention that needs to be deployed via the FPN.

A previous study by Liu et al. [34] investigating resting-state fMRI differences between
TC practitioners and controls showed that decreased connectivity between the medial
frontal gyrus and dorsolateral prefrontal cortex fully mediated the relationship between
a mindful, non-judgmental stance and emotional-regulation ability. Although their seed-
based analysis did not allow for a more comprehensive evaluation of coordinated large-
scale activity, it must be noted that the decoupling observed between the key nodes of
the DMN and FPN is a key finding within the mind–body literature at large [26,85,86].
Moreover, the VAN has been observed to be of great importance for the regulation of
emotion. Thus, the neural mechanisms and outcomes examined fall squarely within the
framework of the triple-network model, as do our results. Moreover, our results add some
nuance to the existing framework. Our findings align with the triple-network model, which
places a strong emphasis on the dynamics of networks related to top-down regulation of
attention, as previously emphasized when highlighting the strongest effect sizes in our
results. However, our results also show coupling between sensory–motor networks (both
SMN and VIN), top-down and bottom-up attention (DAN and VAN, respectively), and
cognitive control (FPN). These results suggest that large-scale networks, including those
that comprise the triple-network model, could be influenced by visceral signals [26,33,87].
This possibly alludes to the benefits derived from integrating physical activity with mindful
attention, clearly showing how visceral signals may play a regulatory role in the reining in
of rumination and, ultimately, the enhancement of cognitive health.

Relatedly, comparing mind–body practices like TC, yoga, and Qigong with traditional
exercises such as aerobic and resistance training could highlight both shared and distinct
neuroprotective effects on the aging brain. Unfortunately, there are no systematic reviews
or meta-analysis to date that allow for such structured comparisons to be made. In fact, we
are aware of a single systematic review (i.e., Bray and colleagues) that assessed the possible
effects of exercise on FC in older adults with and without cognitive impairment [88]. The
inclusion of several multi-domain interventions (which included TC, Qigong, and yoga),
however, was telling of the nascent state of the exercise literature with regards to the
outcomes of interest to this study. In addition, the inclusion of these studies also makes a
differentiation between traditional and non-traditional modes of exercise on the outcomes
of interest (i.e., FC in older adults) an intractable issue. Additionally, it is becoming increas-
ingly clear that gross differences in activation and/or connectivity will be insufficient to
determine whether and how meaningful distinctions between traditional exercise modali-
ties and mind–body practices exist and how they manifest. Indeed, neither a closer look at
the pre–post changes in the study by Bray and colleagues [88], nor a closer examination
of related systematic reviews (e.g., Li et al. [89]) reveals clear-cut differences between
traditional exercise and non-traditional modes of exercise (i.e., mind–body practices).

Closely inspecting systematic reviews on mind–body practices proves to be similarly
insufficient. In particular, recent meta-analyses from Gothe et al. [22] and Pan et al. [25]
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describe similar findings: reconfigurations within and between the DMN and FPN occur
during exercise, as well as during mind–body practice. In other words, differences in
effect may be (a) non-existent, which is unlikely, or (b) subtle, which will require a careful
investigation underneath these gross-level FC differences observed in these nascent areas of
research. Only a few studies provide preliminary evidence to build upon. Amongst them,
structural findings by Villemure and colleagues found that (1) gray-matter volume (GMV)
increased with increased time spent practicing yoga; (2) as opposed to controls, GMV
was not predicted to follow the classic decline with age in yoga practitioners; (3) poses,
breathwork, and meditation all contributed to positive GMV volume, yet different ratios of
these three components resulted in distinct areas primarily benefitting [90]. In addition, a
study by Sharp et al. compared structural pre–post changes in an intervention comparing
a group receiving physical fitness training (i.e., a combination of low- and high-intensity
cardiovascular and weight training) and cognitive training (i.e., the Mind Frontiers pro-
gram) and another group receiving the same intervention, plus a mindfulness intervention
(ten 70-min sessions, 11.67 h completed in total) [91]. The added mindfulness group (and
not the physical fitness + cognitive training group) showed significantly higher mean right
insular connectivity post-training [91]. These two studies clearly show the possibility that
combining non-traditional modalities during or apart from exercise (i.e., breathwork and
meditation) may contribute to diverging results. These studies also highlight the inter-
twined nature of movement, breathwork, and mindfulness in practices that do not always
neatly separate these components—such as in TC, Qigong, and yoga—which will require
methodological dexterity on behalf of researchers who wish to better understand whether
and how they may interact.

As previously mentioned, it is important to highlight that our primary metric of choice
through which all temporal and spatial features were derived (i.e., amplitude coupling) is
only one of the many modes of communication that the brain is hypothesized to use [41,42].
Indeed, our findings are more comprehensive when considering recent complementary
findings by studies utilizing similar study designs, such as those by He and Hu [35].
Similar to the current study, He and Hu compared source-localized oscillatory patterns
in TC practitioners, age-matched OACs, and YACs. Comparable to our findings, authors
found the following pattern: YACs > TCOAs > OACs in alpha 1 (8–10.5 Hz) synchronization
and theta desynchronization in central, parietal, and occipital regions. Along with our
findings, this evidence provides joint support for a positively altered functional trajectory
in TC practitioners that likely buffers the effects of aging. Jointly, our results likely suggest
that TC practice might beneficially improve functional brain connectivity through enhanced
bidirectional signaling (given greater coupling in top-down and bottom-up pathways in
our data) while simultaneously maintaining oscillatory processes supportive of attention
and adaptive cognitive control (i.e., alpha 1 synchronization) [92], as well as sensory–motor
inhibition [93] and information-specific encoding [94].

4.3. Limitations, Methodological Considerations, and Future Directions

Our study, while providing valuable insights into the effects of TC practice on FC, has
several limitations that warrant consideration. Primarily, the cross-sectional nature of our
research design limits our ability to draw causal inferences. While we observed significant
relationships between TC practice and altered FC patterns, we cannot definitively attribute
these changes to the practice itself. Future longitudinal interventions are necessary to
establish causality and determine the precise duration of practice required to elicit the
neural changes observed in our study and those previously reported in the literature.
Furthermore, TC is often considered “mindfulness in motion”, which implies that both
physical and mental exercises are involved. Our findings should be cautiously interpreted
as indicating the overall influence of the two on FC. Future studies should aim to find ways
to separate the behavioral, cognitive, and neural influences of the physical and mental
aspects of practice to better discern how they may complement or even possibly interfere
with each other.
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Additionally, our sample size (n = 15 per group) was relatively small, and TC prac-
titioners were restricted to a single style practiced (i.e., Yang style), which may limit the
generalizability of our findings. The study findings may also have limited generalizability,
given the contribution of additional confounding factors such as physical activity levels,
sleep quality, or medication use. Larger-scale studies are needed to corroborate and repli-
cate these results, ensuring their robustness across diverse populations. Furthermore, our
reliance on an MRI template, rather than individual MRI images, may have introduced
some imprecision in our analyses. This is especially relevant in the context of FC, given
that age will result in a certain amount of structural atrophy, which has been shown to
affect functional outcomes [9]. Therefore, the results from this study should be taken with
caution, and future studies should seek to control the effects of overall brain tissue volume
on FC whenever possible. While this approach is not uncommon in EEG studies, it is
important to note that future investigations, particularly those employing high-temporal
resolution methods such as EEG or MEG, would benefit from collecting individual MRI
images. This is especially crucial when considering that template models and low-electrode
count setups can result in diminished sensitivity and specificity [35,41,42,92–95].

Regarding methodological considerations, we employed a novel unsupervised al-
gorithm to threshold the correlation matrices, aiming to minimize arbitrary decisions in
the analytical process. The adaptive nature of this algorithm dynamically adjusts the
alpha threshold, tailoring it to the specific characteristics of the cohort being studied. To
ensure robustness and generalizability, we employed bootstrapping with replacement over
10,000 iterations. This process involved aggregating edge weights from all participants to
create a representative distribution. By resampling from this distribution, we effectively
simulated drawing new samples from the same underlying population, allowing us to
determine an optimal alpha that is less sensitive to variations within individual datasets
and more reflective of the broader population from which the cohort was drawn. While
this approach mitigates the risk of overfitting and enhances the specificity of our findings,
it is important to note that it does not replace the need for a thorough power analysis.
The algorithm itself does not address issues related to statistical power directly related to
an insufficiently small sample size, which remains a crucial aspect of the research design.
Moreover, a fundamental question is raised in the field of dynamic FC analysis: How can
we accurately determine the true number of functional connections within a given cohort?

It is also crucial to acknowledge the inherent limitations of our chosen atlas (i.e.,
Schaefer atlas, the exclusion of subcortical structures, the lack of individualized parcel-
lation, imprecision with mapping activity due to age-related brain atrophy, etc.) and
source-localization method (i.e., eLORETA, which favors distributed sources and provides
smoothed/blurred spatial resolution, etc.). These methodological constraints should not
be interpreted as evidence for the absence of subcortical contributions to the processes
described in our results. Indeed, electrophysiological data have been shown to be affected
by subcortical activity [96]. Future studies should aim to expand upon these limitations
by exploring the role of subcortical structures in dynamic large-scale communication,
providing a more comprehensive understanding of the neural mechanisms underlying
TC practice.

While we have addressed several avenues for future research throughout this discus-
sion, additional directions warrant exploration. Given the high dimensionality inherent to
dynamic FC analysis, particularly when using EEG, our results provide a broad overview
of large-scale communication within this cohort. Future work should strive for a more
granular analysis, similar to the approach taken by Ferreira et al. [9], to provide a detailed
examination of the nature of correlations comprising the positive and negative connectivity
patterns observed in our results. Although we could qualitatively comment on large trends
observed, a careful quantitative analysis is still warranted. Furthermore, we aim to delve
deeper into the temporal aspects of our findings. By exploiting the Markov-chain dynamics
extractable from an HMM, we can gain better insights into the directionality and sequence
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of interactions within and between networks. This temporal analysis could reveal crucial
information about the dynamic nature of neural changes associated with TC practice.

Given the established positive effects of TC on mental health outcomes, such as stress
reduction and improvements in anxiety and depression [30,31,34], an intriguing avenue for
future research is the exploration of a “network interaction profile” or “neural phenotype”
in relation to practitioner expertise. Investigating whether such a profile is predictive
of better mental health outcomes could provide valuable insights into the mechanisms
underlying the psychophysiological benefits of TC, and it could lead researchers to better
understanding how such benefits could be reliably reproduced.

Lastly, it is essential to recognize that TC is a holistic, whole-body practice. To gain
a more comprehensive understanding of its benefits, future research should integrate
our neuroimaging findings with other physiological measures, such as heart-rate vari-
ability [97], respiration patterns, and kinematic data [24,98]. Indeed, our findings clearly
show that somatosensory networks may play a regulatory role in attention and affect
regulation. However, the nature of the interactions between neural and visceral signals
needs to be further explored. In other words, the directionality and temporal dynamics
of interactions between visceral signals (e.g., cardiac, respiratory, and kinematic/kinetic)
and the neural outcomes reported herein require further exploration. Specifically, future
research should investigate how these signals may bidirectionally interact with brain ac-
tivity to orchestrate the benefits in attention and affect regulation widely reported in the
mind–body literature [23,25,26,76,99–101]. This multi-modal approach would provide a
more comprehensive understanding of the complex interplay between bodily processes
and neural dynamics underlying the effects of TC practice.

5. Conclusions

This study explored the relationships between age and TC practice with recurrent
neural network dynamics, focusing on both temporal and spatial features. Our findings
revealed that aging is linked to decreased within-network and between-network FC across
most brain networks. In contrast, TC practice seems to counteract these age-related declines,
showing increased FC within and between networks in older adults who practice TC
compared to non-practicing older adults. These results suggest that TC practice may
help maintain neural network efficiency and stability, indicating its potential as a non-
pharmacological intervention for promoting healthy brain aging.

Our study adds support and nuance to the triple-network model showing that a
balancing and reorientation of attention might be engaged not only through a higher-
order and top-down mechanism (i.e., FPN/DAN) but also via the coupling of bottom-up,
sensory–motor (i.e., SMN/VIN) networks. Future work should seek to unpack the nature
of the intra- and inter-network couplings found, as well as the temporal directionality in
which the couplings occur, to further elucidate the neural mechanisms through which TC
practice may exert its neuroprotective effects.
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Abstract: Background/Objectives: Although the involvement of progressive brain alterations in
epilepsy was recently suggested, individual patients’ trajectories of white matter (WM) disruption
are not known. Methods: We investigated the disease progression patterns of WM damage and its
associations with clinical metrics. We examined the cross-sectional diffusion tensor imaging (DTI)
data of 155 patients with unilateral temporal lobe epilepsy (TLE) and 270 age/gender-matched healthy
controls, and we then calculated the average fractional anisotropy (FA) values within 20 WM tracts of
the whole brain. We used the Subtype and Stage Inference (SuStaIn) program to detect the progression
trajectory of FA changes and investigated its association with clinical parameters including onset
age, disease duration, drug-responsiveness, and the number of anti-seizure medications (ASMs).
Results: The SuStaIn algorithm identified a single subtype model in which the initial damage occurs
in the ipsilateral uncinate fasciculus (UF), followed by damage in the forceps, superior longitudinal
fasciculus (SLF), and anterior thalamic radiation (ATR). This pattern was replicated when analyzing
TLE with hippocampal sclerosis (n = 50) and TLE with no lesions (n = 105) separately. Further-
progressed stages were associated with longer disease duration (p < 0.001) and a greater number of
ASMs (p = 0.001). Conclusions: the disease progression model based on WM tracts may be useful as
a novel individual-level biomarker.

Keywords: temporal lobe epilepsy; white matter; diffusion tensor imaging; machine learning

1. Introduction

Epilepsy is a common chronic neurological disorder and is characterized by recurrent
seizures caused by abnormal and excessive neural activities [1]. The psychosocial and
economic burdens of epilepsy on patients and their caregivers are significant [2,3]. In
light of these serious conditions, epilepsy was selected as the target of the World Health
Organization’s Intersectional Global Action Plan in 2022 [4]. In fact, problems in epilepsy
care include not only seizure control, but also comorbidities and psychosocial issues [5]. To
address these complex issues, various advanced biomarkers, including brain imaging, are
expected to be developed [6].

In recent years, the disease progression of epilepsy has been a matter of controversy. It
is well known that brain atrophy and white matter (WM) damage in epilepsy can extend
beyond the epileptogenic foci [7,8], and it has also been suggested that abnormal brain
networks are involved in such neuronal damage [9]. A 2019 study using longitudinal brain
MRI data showed that in individuals with epilepsy, the rate of cortical thinning over time
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is higher than that in healthy aging [10]. However, even if epilepsy is progressive, not all
patients progress uniformly, and it is not clear in what order the damage progresses. In
this regard, estimating the pattern of disease progression in each patient may lead to the
development of novel individual-level biomarkers for epilepsy.

To address this issue, another study applying brain morphology MRI reported that
the use of an unsupervised machine learning analysis, i.e., the Subtype and Stage Inference
(SuStaIn) algorithm [11,12], has made it possible to classify the progressive subtypes and
stages of individual brain atrophy in epilepsy [13,14]. In the study, the patterns of brain
morphological changes in patients with focal epilepsy were classified into three subtypes:
the cortical type, starting with reduced cortical thickness; the basal ganglia type, starting
with basal ganglia atrophy; and the hippocampal type, starting with hippocampal atrophy;
the hippocampal type was reported to be the most frequent in temporal lobe epilepsy
(TLE) [13].

TLE is the most prevalent form of focal epilepsy and is often refractory to drug
treatment [15]. Not only is brain morphology atrophy known to occur in TLE, but so is
WM microstructural damage [16]. Since brain morphological alterations are expected to
progress in TLE, we hypothesized that WM tract damage may also be progressive along
with some specific trajectories. In addition, given the role of WM tracts in connecting
different brain regions and the recent concept of epilepsy as a brain network disorder [17],
the patterns of WM damage progression could be highly relevant. We speculated that
the subtyping and staging of the progression of WM damage over time in TLE may be
clinically useful as an individual-level biomarker for categorizing and monitoring disease
progression. We thus conducted the present study to identify the subtypes and staging
patterns of WM microstructural alterations in TLE, using diffusion tensor imaging (DTI)
and data-driven machine learning algorithms. The SuStaIn algorithm was applied to DTI
data in 155 unilateral TLE patients and it estimated the progression trajectories of WM
disruption. The flow of analysis is shown in Figure 1. We further discussed the potential
utilities of the subtyping and staging as a novel individual-level imaging biomarker.
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Figure 1. The flow of analysis in this study. The DTI data were processed by tract-based spatial
statistics (TBSS) and atlas-based calculation of fractional anisotropy (FA) within each WM tract. The
Z-scores were analyzed by SuStaIn algorithm to estimate disease progression patterns.

2. Materials and Methods
2.1. Subjects

We recruited 155 patients with unilateral TLE who were examined at our epilepsy cen-
ter in Tokyo, Japan between December 2013 and March 2017. Board-certified epileptologists
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made the diagnosis of TLE based on (i) the presence of focal seizures consistent with TLE,
and (ii) focal epileptiform discharge predominantly in unilateral temporal areas as revealed
by conventional scalp electroencephalography (EEG). Long-term video-EEG monitoring
and/or interictal 18F-FDG PET were also performed when needed. High-resolution MRI
scans of all patients were visually inspected by experienced neuroradiologists.

Patients with the following criteria were excluded: those with a significant medical
history of acute encephalitis, meningitis, severe head trauma, or ischemic encephalopathy;
suspicious epileptogenic lesions (e.g., tumor, cortical dysplasia or vascular malformation)
on MRI other than ipsilateral hippocampal sclerosis (HS) at the abnormal EEG side; or
epileptic paroxysms in extra-temporal regions on EEG.

Two hundred seventy age/gender-matched healthy controls (HCs) without any history
of neurological or psychiatric disorders and any use of central nervous system medication
were also recruited. All of the subjects provided written informed consent to participate in
accordance with the Declaration of Helsinki. This study was approved by the Institutional
Review Board at National Center of Neurology and Psychiatry Hospital, Tokyo, Japan.

2.2. MRI Acquisitions

All subjects underwent 3.0-T MRI scans with a 32-channel coil (Philips Medical System,
Best, The Netherlands). The parameters of the 3D T1-weighted image were the following:
repetition time (TR), 7.12 ms; echo time (TE) 3.4 ms; flip angle, 10◦; number of excitations
(NEX), 1; effective slice thickness, 0.6 mm with no gap; slices, 300; matrix, 260 × 320;
and field of view (FOV), 26 × 24 cm. The DTI sequence was obtained with the following
parameters: TR, 6700 ms; TE) 58 ms; flip angle, 90◦; NEX, 2; effective slice thickness, 3.0 mm
with no gap; slices, 60; matrix, 80 × 78; and FOV, 24 × 24 cm. The DTI was acquired along
15 non-collinear directions with a diffusion-weighted b-factor of 1000 s/mm2, and one
image was acquired without a diffusion gradient. Coronal fluid-attenuated inversion
recovery (FLAIR) imaging and transverse 2D turbo spin echo T2-weighted imaging were
also obtained for visual inspection.

2.3. MRI Processing

The DTI data were initially preprocessed with tract-based spatial statistics (TBSS) with
the use of the PANDA toolbox v.1.3.1 (https://www.nitrc.org/projects/panda/ (accessed
on 20 January 2023)) [18] running on MATLAB (MathWorks, Natick, MA, USA) and the
FMRIB Software Library (FSL) ver. 5.0.11. Eddy current correction and brain extraction
were performed, and then the TBSS pipeline provided an atlas-based region-of-interest
(ROI) analysis using all tracts of the Johns Hopkins University (JHU) atlas. The automated
ROI locations were visually checked for anatomical accuracy. The FA threshold for the
TBSS was set at 0.20. The pipeline calculated mean FA values within each tract of the atlas
in each patient [19]. We visually confirmed no problematic error or artifact on the quality
of the raw and processed DTI data.

2.4. Subtype and Stage Inference (SuStaIn) Analysis

First, all of the mean FA values within each tract were corrected for age and sex using
a linear regression model as in our previous study [20]. As the SuStaIn algorithm requires
Z-scores for the machine learning analysis [11], we calculated Z-scores for each tract’s FA
values of the patients by using the data of the 270 healthy controls. Since WM damage in
TLE is known to be more profound on the focus side [8], we investigated the WM changes
in consideration of the focal side; to analyze left and right TLE together, we reclassified
the Z-score of each tract to the ipsilateral and contralateral sides, except for the midline
structures, i.e., major and minor forceps.

The Z-scores of all 20 ROIs of the 155 patients with unilateral TLE were entered
into the SuStaIn algorithm (https://github.com/ucl-pond/SuStaInMatlab (accessed on
20 January 2023)) as described in our previous study [20]. Although an excessive number
of biomarkers may cause problems in this analysis, we considered 20 ROIs would be
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acceptable based on similar previous studies [20,21]. As a SuStaIn analysis performs an
unsupervised machine learning strategy, any information other than the Z-scores, e.g., the
anatomy of each ROI or clinical data, was not taken into account. The linear Z-score model
and mathematical model underlying the SuStaIn algorithm have been described [11]; the
steps include model-fitting, convergence, uncertainty estimation, cross-validation, and
similarity between subtypes. As described [11,21,22], the SuStaIn algorithm categorized
our individual patients into subtypes and estimated the most likely sequence in which the
selected ROIs reached different progression stages over time. While each subject’s stage
was estimated as probability values of weighted staging, we utilized the stage with the
maximum likelihood as the subject’s progression stage. The optimal number of subtypes
was estimated using the cross-validation information criterion (CVIC) to balance model
complexity [11,13].

2.5. Separate Analyses for the TLE Patients with and without Hippocampal Sclerosis

Although our primary analysis aimed to identify progression patterns in TLE both
with and without HS, there could be differences between these two categories, and we
therefore separately performed additional SuStaIn analyses for the 50 TLE patients with HS
(TLE-HS) and the 105 TLE patients without HS (i.e., TLE with no visible lesions [TLE-NL]).

2.6. Statistical Analyses

The Shapiro–Wilk test revealed non-parametric distributions for most of the clinical
continuous variables in this study. We investigated the relationships of the disease subtypes
and stages derived from the SuStaIn analysis with the following clinical data: focus side,
onset age, disease duration, presence of HS, number of antiseizure medications (ASMs),
and pharmaco-resistance. We used the χ2 test for categorical data, the Mann–Whitney
U-test for group comparisons with continuous variables, and Spearman’s rank test for the
correlation analysis. A p-value < 0.05 was deemed significant. The statistical analyses were
performed by SPSS software ver. 25.0 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Clinical Demographics

The demographic data of the patients with TLE and the HCs are summarized in
Table 1. There was no significant difference in age or sex between the TLE and HC groups.
Compared to the TLE-NL patients, the TLE-HS patients had younger onset ages and longer
durations of disease, and they used a greater number of ASMs.

Table 1. Demographics of the patients with temporal lobe epilepsy and the healthy controls.

TLE HC p-Value TLE-HS TLE-NL p-Value

N 155 270 NA 50 105 NA
Age (yrs) median (IQR) 42 (26) 45 (16) 0.354 44 (21) 40 (27) 0.997
Gender (M:F) 68:87 119:151 0.968 18:32 50:55 0.173
Onset age (yrs) median (IQR) 20 (22) NA NA 10 (15) 24 (30) <0.001
Duration (yrs) median (IQR) 17 (24) NA NA 28 (20) 9 (19) <0.001
Laterality L = 107, R = 48 NA NA L = 32, R = 18 L = 75, R = 30 0.35
Etiology HS = 50, NL = 105 NA NA NA NA NA
Number of ASMs median (IQR) * 2 (2) NA NA 2 (1) 2 (1) 0.002

Seizure freedom SF = 14,
not SF = 141 NA NA SF = 2,

not SF = 48
SF = 12,

not SF = 93 0.131

TLE: temporal lobe epilepsy, HC: healthy controls, HS: hippocampal sclerosis, NA: not available, NL: no lesion.
ASMs: antiseizure medications, SF: seizure freedom. * missing in 5 patients.

3.2. SuStaIn Algorithm Results

The SuStaIn algorithm identified a single subtype from the WM tract-based mean FA
data of the 155 patients with unilateral TLE. In the progression model of this subtype, the
initial damage occurs in the ipsilateral uncinate fasciculus (UF), followed by damage in
the forceps, superior longitudinal fasciculus (SLF), and anterior thalamic radiation (ATR)
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(Figure 2A). The cingulum, inferior longitudinal fasciculus (ILF), inferior fronto-occipital
fasciculus (IFOF), and corticospinal tract would be disrupted in the middle disease stages.
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Figure 2. The progression pattern of white matter (WM) tract disruption in temporal lobe epilepsy
(TLE) (left) and the number of patients at each progression stage. Results of (A) all 155 patients with
TLE, (B) the 50 patients with TLE with hippocampal sclerosis (HS), and (C) the 105 patients with TLE
with no visible lesions. ATR: anterior thalamic radiation, CST: corticospinal tract, Cing (C): cingulum
(cingulate gyrus), Cing (H): cingulum hippocampus, IFOF: inferior fronto-occipital fasciculus, ILF,
inferior longitudinal fasciculus, SLF: superior longitudinal fasciculus, UF: uncinate fasciculus, SLF
(T): superior longitudinal fasciculus (temporal projection).

3.3. Associations with Clinical Parameters

As the SuStaIn algorithm detected just one subtype, we analyzed the relationships
between the staging results and clinical parameters (Table 2). We observed that the staging
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was not significantly associated with gender, side of focus, or seizure freedom. The TLE-HS
group showed significantly more progressed stages than the TLE-NL group (p < 0.001).
Stage progression was also correlated with the disease duration and the number of ASMs
(Figure 3).

Table 2. Associations between progression stages and clinical parameters in patients with temporal
lobe epilepsy.

Categorical Comparison

Categories and median (IQR) Stages p-value

Male Female
5.5 (18) 9 (21) 0.382

HS NL
16 (28) 5 (15) <0.001

Left TLE Right TLE
7 (17) 11.5 (24) 0.205

SF not SF
6.5 (13) 8 (19) 0.427

Correlation analysis

Parameters Spearman’s rs p-value

Age 0.102 0.207
Onset age −0.191 0.017
Duration 0.330 <0.001
Number of ASMs 0.269 0.001

HS: hippocampal sclerosis, NL: no lesion, TLE: temporal lobe epilepsy, SF: seizure freedom, ASMs: anti-
seizure medications.
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Figure 3. Significant correlations of stage progression with disease duration (left) and the number of
antiseizure medications (ASMs) used (right).

3.4. Separate Analyses for the TLE-HS and TLE-NL Patients

Similar progression patterns were reproduced by the separate analyses for the patients
with TLE-HS (Figure 2B) and those with TLE-NL (Figure 2C). In both analyses, one subtype
was identified by the SuStaIn algorithm, in which the ipsilateral UF was damaged first and
the forceps, SLF, and ATR were damaged at later timepoints (Figure 2B,C). Regarding the
clinical associations with staging, similar results, i.e., correlations with disease duration,
were observed (Supplement Table S1).
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4. Discussion

We calculated the progression models of WM damage in patients with TLE, using
an unsupervised machine learning algorithm. As a result, the SuStaIn algorithm identi-
fied a single subtype in which the ipsilateral UF damage occurred first, and the forceps,
SLF, and ATR were damaged subsequently. Since the UF is a part of the limbic system,
connecting the anterior temporal lobe and the orbitofrontal cortex [23], our findings are
consistent with the anatomical pathophysiology in TLE. This progression pattern model
was replicated in the separate analyses for the TLE-HS and TLE-NL groups, indicating
that WM changes in TLE may share a similar progression trajectory. Regarding the clinical
correlates, further-progressed stages were associated with longer disease durations and
the use of a greater number of antiseizure medications. In addition, the patients with TLE
with HS showed more advanced stages compared to the TLE patients with no lesions.
Although many epilepsy neuroimaging studies have used machine learning, most were
supervised learning studies using clinically labeled data, with few reports of unsupervised
learning [24]. The advantage of unsupervised learning is that it can be used to find hidden
patterns in unlabeled data that are difficult to notice clinically and may thus lead to new
discoveries [24].

The white matter damage in TLE is extensive [8,16], but it has not been known when
and in what order this damage occurs. The progression of WM disruption over time in
TLE has not yet been clearly demonstrated with the use of longitudinal data. However, a
2019 longitudinal morphological MRI study demonstrated that the progression of brain
atrophy over time in focal epilepsy exceeds that of normal aging [10], and it is conceivable
that white matter damage may also progress over time. The WM damage progression
pattern model in TLE that was identified in our present investigation can be used to identify
the disease progression stages in individual patients and may serve as a novel clinical
biomarker. WM is the structure that communicates between brain regions and serves as
the base of the brain network, and has potential for a variety of future studies, which may
include epilepsy types other than TLE, relevance to clinical outcomes such as postsurgical
seizure freedom, or associations with brain network metrics.

Xiao et al. investigated disease progression patterns of brain atrophy in focal epilepsy
and idiopathic generalized epilepsy (IGE) by using cross-sectional MRI data and the
SuStaIn algorithm [13]. According to their findings, although IGE presented two different
trajectories, i.e., the basal ganglia atrophy type and the cortical thinning type, the brain
morphological changes in focal epilepsy were classified into three subtypes: the cortical
type, starting with reduced cortical thickness; the basal ganglia type, starting with basal
ganglia atrophy; and the hippocampal type, starting with hippocampal atrophy; in addition,
the hippocampal type was reported to be the most frequent in TLE [13]. Our present
analyses identified only one subtype for WM progression, possibly because we selected a
relatively homogeneous clinical group, i.e., patients with unilateral TLE. Another possible
explanation might be the use of a tract-level evaluation. Using tract-based mean FA values
alone may not assess white matter damage in sufficient anatomical detail and might
warrant further investigation using a better methodology beyond a tract-level analysis.
Conversely, if only one subtype actually exists, a more specific method for time-based
modeling, rather than the spatiotemporal heterogeneity approach [25], may be useful for
further detailed investigation.

We also detected several clinical correlates with disease progression stages. The TLE-
HS patients presented more progressed stages compared to the TLE-NL patients, and
this may reflect more severe WM damage in the TLE-HS group. It has been repeatedly
confirmed that the integrity of the white matter in individuals with TLE-HS is more
profoundly impaired [8,16]. We also observed a positive correlation between staging and
disease duration (Spearman’s rs = 0.330, p < 0.001), which is consistent with the recent
study using morphological brain MRI [13]. In TLE, both gray matter atrophy and WM
fiber damage may progress over time along with the duration of disease. The number of
ASMs used may also be an important factor affecting WM disruption. As our cohort was
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mostly drug-resistant cases, caution should be used when considering the nonsignificant
results between staging and seizure freedom, considering the small sample of seizure-free
patients. In addition, due to the cross-sectional design, causal relationships between these
associations cannot be addressed. We did not investigate the effect of seizure burden. While
no significant correlations between disease stages and seizure frequency were found in the
previous study [13], further investigations would be warranted for these issues.

This study has several limitations. The sample size was medium (155 patients with
TLE and 270 healthy controls) from a single epilepsy center, and careful interpretation
would be needed for sub-analyses with a small sample size, e.g., seizure-free patients
(N = 14 in total). This study lacked external validation, although the results were generally
replicated by the additional analyses performed separately for the TLE-HS and TLE-NL
groups. It should also be noted that our findings are based solely on cross-sectional data
and theoretical models, and thus our results must be tested in studies with larger cohorts
and longitudinal investigations. Our clinical data were also limited, lacking more detailed
examinations, e.g., cognitive dysfunction or surgical outcomes. More detailed clinical data
could be useful in the future to further explore the potential utility of SuStaIn results as a
clinical biomarker. There might be other unknown or unevaluated confounders, e.g., the
effect of medications, which should be considered for careful interpretations of the results
of this study.

5. Conclusions

Using a data-driven machine learning analysis, we identified the white matter disease
progression trajectory in patients with unilateral TLE, in which the initial damage occurs
in the ipsilateral UF, followed by damage in the forceps, SLF, and ATR. More progressed
stages of TLE were associated with the presence of hippocampal sclerosis, longer disease
duration, and a greater number of ASMs used. These findings may contribute to the better
pathophysiological understanding of the progression of temporal lobe epilepsy as well as
the establishment of novel imaging biomarkers.
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Abstract: Virtual reality (VR) enables the development of virtual training frameworks suitable for
various domains, especially when real-world conditions may be hazardous or impossible to replicate
because of unique additional resources (e.g., equipment, infrastructure, people, locations). Although
VR technology has significantly advanced in recent years, methods for evaluating immersion (i.e.,
the extent to which the user is engaged with the sensory information from the virtual environment
or is invested in the intended task) continue to rely on self-reported questionnaires, which are often
administered after using the virtual scenario. Having an objective method to measure immersion
is particularly important when using VR for training, education, and applications that promote the
development, fine-tuning, or maintenance of skills. The level of immersion may impact performance
and the translation of knowledge and skills to the real-world. This is particularly important in tasks
where motor skills are combined with complex decision making, such as surgical procedures. Efforts
to better measure immersion have included the use of physiological measurements including heart
rate and skin response, but so far they do not offer robust metrics that provide the sensitivity to
discriminate different states (idle, easy, and hard), which is critical when using VR for training to
determine how successful the training is in engaging the user’s senses and challenging their cognitive
capabilities. In this study, electroencephalography (EEG) data were collected from 14 participants
who completed VR jigsaw puzzles with two different levels of task difficulty. Machine learning was
able to accurately classify the EEG data collected during three different states, obtaining accuracy
rates of 86% and 97% for differentiating easy versus hard difficulty states and baseline vs. VR states.
Building on these results may enable the identification of robust biomarkers of immersion in VR,
enabling real-time recognition of the level of immersion that can be used to design more effective and
translative VR-based training. This method has the potential to adjust aspects of VR related to task
difficulty to ensure that participants are immersed in VR.

Keywords: virtual reality; immersion; task difficulty; electroencephalography (EEG); biomarkers;
machine learning

1. Introduction

Virtual reality (VR) allows the delivery of novel solutions in various domains such as
entertainment [1], simulations [2], tele-rehabilitation [3,4], and training [5]. In particular,
VR training applications not only provide the opportunity to experience scenarios that
impose high physical or hygienic risks [6], but also allow trainees to practice the module
as many times as necessary without being limited by fear of wasting real resources [7].
Despite its potential, VR’s limitations include physical drawbacks such as VR-induced
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motion sickness [5] and the weight of the head-mounted device (HMD) [8]. Furthermore,
VR-based training may not accurately simulate the level of tactile, haptic, or proprioceptive
feedback with which users need to be trained to develop the required kinaesthetic skills [9].
Additionally, virtual environments may fail to accurately represent the real-world scenario
in terms of visual and auditory cues and fidelity [10]. These restrictions may decrease the
level of effectiveness of VR-based training and must be studied and addressed to optimize
VR for training in certain applications [5].

As a result of these limitations, the success of VR training can depend on how suc-
cessful it is in engaging the user’s senses and cognitive capabilities to the same level as
its real-world counterpart. In the literature, engagement is defined in terms of different
quantities such as presence, flow, fidelity, and immersion [11]. Flow is defined as the
process of optimal experience [12], presence refers to the psychological sense of being in the
virtual environment [13], and immersion is defined as the degree to which the user feels
engaged and absorbed in the environment and attends to the planned task [14]. Immersion
encompasses different aspects of the sense of ‘being there’ [15], including being caught up
in the sensory input of the virtual environment, as well as being mentally and cognitively
invested in the intended task. Immersion that refers to the sensory information received
by the user from the virtual environment is called sensory immersion [16], while cogni-
tive immersion is defined by the degree of engagement of the user caused by the task’s
demands [1]. Although the former is mostly constrained by technology-related aspects of
the virtual environment and how well the software and hardware provide the required
levels of different real-world sensory information [4], the latter is dependent on how much
the designed task engages the user [17]. Immersion provides a better quantification of
engagement in the evaluation of a virtual training designed to replicate the real-world
experience, as its definition encompasses both sensory and cognitive components of VR
training [11].

Research on immersion has been crucial to determine the impact and success of VR
experiences in the translation of cognitive and motor learning [18]. There are different
subjective and objective methods proposed in the literature to study immersion. Subjective
methods strongly rely on participants’ opinions and self-reported data [13,19] while consid-
ering the sense of immersion tied to the phenomenological experience of the user [1]. These
measures rely on the understanding that the user has of the concept of immersion [19] and
are impacted by the inherent subjectivity of the measured quantity. Additionally, asking
about immersion while the user is inside the virtual environment breaks the immersion, as
it distracts the user from their subjective experience [20], and asking about it afterwards
makes the results highly dependent on the recollection of the user’s experience [21]. There-
fore, quantifying immersion in a consistent and objective manner that enables researchers
to compare their findings and investigate the difference between immersion levels resulting
from different tasks, environments, levels of difficulty, circumstances, etc., is necessary.
Researchers have investigated various objective methods of measuring immersion that do
not require conscious deliberation from the participants [11,22], using performance-based
and physiological-based points of view. Physiological measures have included eye track-
ing [11], galvanic skin response [23], electrocardiogram [24], and electroencephalography
(EEG) [2,25], among others.

In the literature, to our knowledge, the use of EEG for studying immersion has been
limited to measuring the amplitude of event-related potentials (ERPs), evoked in response
to a stimulus that is not related to the task in which the immersion of the participant is
studied. This is followed by a statistical analysis of ERP amplitudes to study the differ-
ences between different levels of immersion and/or presence [1,2,23,25,26]. Although this
method is more promising than other physiological measures in terms of accuracy and re-
sistance to confounding variables (including being influenced by how virtual environments
represent information, boredom, and exhaustion), it still lags in offering a robust marker
for identifying immersion that is not influenced by potential confounding variables, and
it has resulted in heterogeneous, and in some cases contradictory findings [1,25]. It also
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suffers from an inability to identify and differentiate low and high levels of immersion in
real time. Machine learning (ML) methods for classifying EEG signals can offer the ability
to differentiate between different levels of immersion in real time.

In the literature, EEG-based machine learning and other classification approaches have
been used in various paradigms to extract insightful meaning from different mathematical
features of the signals. Kamińska et al. [27] and Aliyari et al. [28] were able to classify
different levels of stress imposed on the users in the virtual environment. Deep learning
has been used to extract information from EEG for stroke patients performing a real-time
rehabilitation experiment [29]. Moncada et al. proposed a method for a VR-based protocol
to classify important characteristics related to epilepsy [30], while Yildrim has reviewed
ML-based methods used to classify EEG characteristics attributed to cybersickness [31].
Hekmatmanesh et al. investigated the use of different methods based on EEG (based on a
common spatial pattern algorithm) to improve the detection of motor imagery patterns
in EEG signals in brain–computer interface applications by evaluating the efficiency of
various types of classifiers [32]. Other work has investigated the possibility of using
brain–computer interfaces to control movements in VR based on ML-based movement
prediction [33], and other work has investigated the applications of machine learning
approaches for EEG-based emotion recognition [34].

These studies show that the potential for extracting relevant features for classification
of EEG recordings is promising, with the potential to identify biomarkers of sensory
processing in EEG recordings of a VR-based task. These methods introduce more robust
biomarkers for their corresponding applications, where more accurate and homogeneous
results are obtained, but also offer the potential for automatic recognition and classification
of EEG data in real time. If they can progress to real-time measurement, machine learning
approaches have the potential to address the limitations of VR-based training on the
performance and transfer of skills to the real world and contribute to improving the design
of VR-based training. Additionally, ML approaches might enable real-time customization
of various features of training according to the individual characteristics of a user.

In this study, immersion was attributed to the level of difficulty of the task, based on
the past literature [35,36]. Therefore, different levels of task difficulty were used, which
included sitting idle and solving a jigsaw puzzle in easy and hard conditions in VR,
where the number of pieces determined the difficulty of the task. Machine learning
algorithms (stochastic gradient descent (SGD), support vector classifier (SVC), decision
tree (DT), Gaussian naive Bayes (GNB), k-nearest neighbors (KNN), random forest (RF),
and a multilayer perceptron (MLP)) were used to classify the EEG signals recorded during
these states. Various temporal, frequency-domain, and non-linear features were used for
analysing the EEG signals and in total two sets of features were tested (10 features for
three or nine central channels and four frequency bands). The combination of a novel
design protocol (which has shown its robustness in a recent study [25]) and machine
learning approaches was used in the current study. The study aimed to determine whether
machine learning approaches could accurately classify the three states based on the features
extracted from EEG data, in addition to determining which features best represent different
states of immersion.

2. Materials and Methods
2.1. Overall Experimental Procedure

A total of 14 right-handed individuals (7 male, 6 female, 1 preferred not to say)
between the ages of 18 and 35 participated in this study. The dominance of the right hand
was determined by a score of above 40 in the Edinburgh handedness inventory [37]. The
study exclusion criteria required all participants not to have any neurological conditions
(such as epilepsy, multiple sclerosis, skull fracture or serious head injury, attention deficit
hyperactivity disorder, etc.), and not to have recurrent or chronic neck pain, and not to
take any tricyclic antidepressants, neuroleptic or antipsychotic medications, or recreational
drugs, as they can alter EEG suitability. Furthermore, to avoid hearing and severe visual
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conditions as well as motion sickness, which could compromise the results, the participants
were asked if they had hearing problems, stereo blindness, or had reported previous VR-
induced motion sickness; participants reporting any of these were excluded from the study.
This study was approved by the research ethics board of the University of Ontario Institute
of Technology (Ontario Tech University) (REB #17351).

Prior to the main study, we conducted various preliminary studies [1–3,23,26] and
developed a protocol [25] to investigate the feasibility of the chosen task for discriminating
between low and high levels of immersion. A VR jigsaw puzzle was selected for the
study because it enables potential confounding variables, not related to immersion, to be
minimized. This is described in greater detail below (Section 2.2).

The main study started with a calibration stage in which participants sat on a chair
and wore both the EEG cap and the Meta Quest Pro VR headset. The calibration focused
on collecting a ‘baseline’ data set with the participants watching a 360◦ pre-recorded video
of the real study room while remaining idle for two 6 min blocks. After completing the
baseline collection, the participants played through the jigsaw puzzles for four 6 min blocks
of easy, hard, hard, and easy levels. The overall experimental protocol is depicted in Figure 1.
The participants were instructed to use controllers to select, pick, reorient, and place pieces.
The participants were allowed to interact with the game through a familiarization block
with the objective of reducing the cognitive load that would be required when familiarizing
with the controllers while solving the puzzle at the same time. A short 2 min break was
anticipated in which the headset (and not the EEG cap) was removed, enforced to avoid
exhaustion from wearing the headset, which weighs 722 g.

Brain Sci. 2024, 14, x FOR PEER REVIEW 4 of 19 
 

take any tricyclic antidepressants, neuroleptic or antipsychotic medications, or recrea-
tional drugs, as they can alter EEG suitability. Furthermore, to avoid hearing and severe 
visual conditions as well as motion sickness, which could compromise the results, the par-
ticipants were asked if they had hearing problems, stereo blindness, or had reported pre-
vious VR-induced motion sickness; participants reporting any of these were excluded 
from the study. This study was approved by the research ethics board of the University of 
Ontario Institute of Technology (Ontario Tech University) (REB #17351). 

Prior to the main study, we conducted various preliminary studies [1–3,23,26] and 
developed a protocol [25] to investigate the feasibility of the chosen task for discriminating 
between low and high levels of immersion. A VR jigsaw puzzle was selected for the study 
because it enables potential confounding variables, not related to immersion, to be mini-
mized. This is described in greater detail below (Section 2.2). 

The main study started with a calibration stage in which participants sat on a chair 
and wore both the EEG cap and the Meta Quest Pro VR headset. The calibration focused 
on collecting a ‘baseline’ data set with the participants watching a 360° pre-recorded video 
of the real study room while remaining idle for two 6 min blocks. After completing the 
baseline collection, the participants played through the jigsaw puzzles for four 6 min 
blocks of easy, hard, hard, and easy levels. The overall experimental protocol is depicted 
in Figure 1. The participants were instructed to use controllers to select, pick, reorient, and 
place pieces. The participants were allowed to interact with the game through a familiar-
ization block with the objective of reducing the cognitive load that would be required 
when familiarizing with the controllers while solving the puzzle at the same time. A short 
2 min break was anticipated in which the headset (and not the EEG cap) was removed, 
enforced to avoid exhaustion from wearing the headset, which weighs 722 g. 

The ‘Jigsaw Puzzle VR’ (available through https://www.meta.com/experi-
ences/5080756015327836/?utm_source=altlabvr.com (accessed on 9 July 2023)) game was 
chosen because it provided the closest experience to solving a puzzle in real life. This game 
allows users to use the controllers to move and put together the pieces (Figure 2). In this 
case, difficulty refers to how complex it is to complete the puzzle according to the number 
of pieces and the time required to complete the puzzle [25]. Two levels of difficulty were 
chosen: one with 24 pieces, set as easy difficulty; and a 60-piece puzzle selected for the 
hard difficulty. Each component of this procedure is defined in detail in the following 
subsections. 

 
Figure 1. Overall experimental protocol. 

  

Figure 1. Overall experimental protocol.

The ‘Jigsaw Puzzle VR’ (available through https://www.meta.com/experiences/50
80756015327836/?utm_source=altlabvr.com (accessed on 9 July 2023)) game was chosen
because it provided the closest experience to solving a puzzle in real life. This game
allows users to use the controllers to move and put together the pieces (Figure 2). In
this case, difficulty refers to how complex it is to complete the puzzle according to the
number of pieces and the time required to complete the puzzle [25]. Two levels of dif-
ficulty were chosen: one with 24 pieces, set as easy difficulty; and a 60-piece puzzle
selected for the hard difficulty. Each component of this procedure is defined in detail in the
following subsections.
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2.2. Choice of the Experimental Task

Our proposed protocol employing a jigsaw puzzle provides a suitable testbed with
the following highlights:

• The similarity between the easy and hard levels in terms of interactions highlights
that the main difference between the difficulty levels is only related to the cognitive
demand. The scenes for the easy and hard puzzles were chosen from very similar nat-
ural and ‘unfamous’ landscapes, similar in color and pattern, so that the participants
were not stimulated by possible memories, emotions, and thoughts induced by other
types of pictures. The images used for different blocks of playing the jigsaw puzzle
are presented in Figure 3.

• The number of pieces for the puzzles was adjusted in our pilot studies to ensure
that the easy and hard puzzles could be completed within the allocated study time.
Furthermore, ensuring that the puzzle can be completed minimizes the risk of partici-
pants feeling demotivated, according to the motivational intensity model (MIM) [38].
Therefore, during the pilot phase of the study, several permutations of duration and
number of pieces were tested to find the optimum combination [25]. We came up
with the final number of pieces for easy and hard levels through multiple rounds of
piloting in which different skilled and unskilled participants played the game with
different number of pieces, puzzle scenes, and lengths. We tested durations as short as
3 min and as long as 12 min, together with the number of pieces as low as 20 pieces
and as high as 96 pieces. Most participants could complete two easy puzzles (each
with 24 pieces) or one hard puzzle (with 60 pieces) in the two 6 min blocks allocated to
each condition.
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Figure 3. Photos of similar landscapes used for 2 difficulty levels of the jigsaw puzzle game:
(a) used for the easy level and (b) used for the hard level. To have control over the difficulty
level of the puzzles, the photos were chosen to resemble the same color distribution and scenery, so
that the only difference between the levels was the number of the pieces chosen for each level of diffi-
culty. (photo sources: ((a)—top) image from wallpapers.com, “Beautiful Scenery Trees Wallpaper”,
accessed on 13 October 2023, © 2023 wallpapers.com; ((a)—bottom) Peakpx, “Shenandoah National
Park”, accessed on 13 October 2023, © 2023 peakpx.com; (b) Peakpx, “view nature, bonito, flowers”,
accessed on 13 October 2023, © 2023 peakpx.com).

2.3. Choice of Rest State (Baseline Collection)

During baseline data collection, the participant wears the VR HMD on top of the
EEG cap. Additionally, the headset is powered during the baseline collection to have all
possible confounding parameters caused by wearing the HMD exactly consistent between
the easy and hard difficulties. Acknowledging that visual cues can influence cognitive
load, we explored using a 180◦ version of the fixation cross (e.g., reticle) [39] in VR, and
playing a 360◦ video of the same environment where the visual stimuli matched the same
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environment in which the participant was currently in. The 360◦ video was chosen over the
fixation cross, since participants found that the latter was boring and monotonous, creating
mental distractions that could impact the EEG [25].

2.4. EEG Recording

The EEG signals were recorded using a WaveguardTM 64-electrode EEG cap (manufac-
tured by ANT Neuro, Hengelo, The Netherlands), following the 10–20 electrode placement
system [40] (as shown in Figure 2). We used a TMSi REFA-8 amplifier (TMSi, Oldenzaal,
The Netherlands) for EEG recording. Throughout the EEG recording, we ensured that elec-
trode impedances remained below 10 kΩ. The EEG data were collected using Advanced
Source Analysis Lab™ (ANT Neuro, Hengelo, The Netherlands) at a sampling frequency
of 2048 Hz. In this study, features were extracted from the EEG data recorded from the
three midline frontal, central, and parietal electrodes (lines 3, 4, and z shown in Figure 4).
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2.5. EEG Signals Pre-Processing

The EEG data were pre-processed offline using ASA 4.10.1 and later using Python in
Google Collaboratory, through which the artifacts from muscle activity and/or blinking
were removed. Eyeblinks were removed through the artifact removal feature of ASA. A
bandpass filter of low cut-off frequency of 0.1 Hz and high cut-off frequency of 30 Hz with
a steepness slope of 24 dB/octave was used to remove the amplifier, environment, and
connection noise. Artifacts with amplitude outside the region of [−100, 100] µv were also
removed. Later, the EMG artifacts were removed from the signal through independent
component analysis (ICA) in Python. In this study, interpolation was never required to
substitute signals from a noisy channel.

2.6. General Machine Learning Pipeline

All EEG signals were segmented into 4 s windows. This was performed so that in
future analyses the data could be grouped to see if the level of immersion changed over
time. Then, all windows are grouped and labeled according to the level of immersion for
which they were recorded (i.e., three states of baseline, easy, and hard). The temporal,
frequency-domain, and non-linear features were then extracted from each 4 s EEG window.
According to previous work related to the use of ERPs to identify different levels of
immersion during VR tasks, midline channels (Fz, Cz, and Pz) can provide relevant
information about immersion levels [1–3,23]. In this sense, two global groups of features
were generated; the first were features only extracted from the midline channels and the
second were features extracted from the midline and adjacent channels (F3, F4, C3, C4,
P3, P4). The reason for choosing the first group of features is for consistency with what
has been previously reported in the literature [3,26]. Subsequently, feature selection was
performed through two methods: one using the maximum relevance minimum redundancy
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(MRMR) method, and the other using the combination of MRMR with a statistical test of
independence (Mann–Whitney U test). Afterwards, eight machine learning classifications
were performed using different feature sets, with the first through fourth classifications
using the features of the midline channels as input. The fifth through eighth classifications
used the midline and adjacent channels’ features as input. The first, second, fifth, and sixth
classifications differentiated the easy from hard VR states. The third, fourth, seventh, and
eighth differentiated the baseline state from the difficulty. Finally, the related biomarkers
were identified through EEG characterization of the best two classifiers to identify the
differences between the baseline and VR states. The detailed pipeline of the data analysis
and machine learning process is depicted in Figure 5.
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2.7. Introducing the Primary Features

The features used in this study were selected primarily based on previous work that
showed success in defining optimal features for ML-based approaches for the classification
of EEG data for other applications [41,42]. Table 1 shows the different features that were
used in this study. In total, these 10 features were used for a group of 3 and 9 channels of
EEG filtered into 4 frequency bands (delta (0.2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and
beta (12–30 Hz)), resulting in the final counts of 120 and 360 for channel-band-feature trios.

Table 1. Features used in this study.

Type of Feature Features

Temporal
Activity (variance) [43]

Mobility [43]
Complexity [43]

Frequency-domain Power spectral density (PSD)

Entropy Permutation
Spectral Entropy

Non-linear
Higuchi’s fractal dimension [44]

Hurst’s exponent [45]

Statistical
Kurtosis

Skewness
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2.8. Methods for Feature Selection

As mentioned earlier, two techniques were used for feature selection: MRMR and
MRMR combined with the Mann–Witney U statistical test [46]. For the second technique,
the Mann–Whitney U test was applied to the MRMR results to select the features that
showed the greatest statistical difference. The MRMR approach evaluates the significance
of each feature by considering two key relationships: the F statistic between each feature
and the target variable or label, and the Pearson correlation between each feature and
the remaining features in the data set. Consequently, a higher score indicates a greater
relevance of a feature [47]. In contrast to principal component analysis (PCA), which
produces principal components that are linear combinations of all original features, and
linear discriminant analysis (LDA), which focuses on maximizing separability between
classes based on the projection of the data on a new orthogonal basis and does not directly
consider the class labels or target variable, MRMR selects a subset of original features that
are directly interpretable. This can be advantageous in situations such as this study, where
interpretation and understanding of the selected features (and not their combinations or
projections) in relation to the problem under study are the main focus [48].

2.9. Classification Methods and EEG Characterization

The following classification methods were implemented and used: SGD, SVC, DT,
GNB, KNN, RF, and MLP. A heuristic method was then applied to find the training
hyperparameters of the models. A total of 80% of the data were used for training, and
the remaining data were used to test the models. Following the classification, the channel-
band-feature trios that provide the most relevant information through specific features for
identifying the level of immersion are recognized and introduced as relevant markers. In
this study, we evaluate the performance of the classifiers based on the accuracy percentage
metric (defined as the proportion of the number of correct predictions in all predictions [49]).
The parameters used for running the classification methods are summarized in Table A1 in
the Appendix A to this paper.

3. Results

Two groups of features were generated: 120 features extracted from the midline
channels and 360 features extracted from the midline and adjacent channels. The best
classifier method was random forest, which obtained accuracies above 85%. With respect
to the features, the most relevant channels were Fz, Cz, Pz, F3, P3, C3, F4, P4, and C4.

Tables 2–5 show the accuracy of the tested model for each classification performed
during this approach. In Tables 2 and 4, we are using a total of 120 features (3 chan-
nels, 4 frequency bands, 10 basic features), and in Tables 3 and 5, we are using a total of
360 features (9 channels, 4 frequency bands, 10 basic features). Tables 2 and 3 show the accu-
racy percentages for classification between the easy and hard states, while Tables 4 and 5 show
the accuracy percentages for classification of baseline vs. VR state (easy and hard together).
In all tables, the second column lists the accuracy percentages for the most relevant and
statistically significant features obtained from the MRMR method and Mann–Whitney test,
respectively, and the third column shows the accuracy percentages of the classifiers for the
most relevant features resulting from only the MRMR.

All classifications were performed using different sets of data (batches) to train and test
the model: all features; 10% of the total features using the MRMR method; and the features
selected using the MRMR complemented by the Mann–Whitney U test. The batches for
the classifications which used the midline channels’ features as input were 120 features,
12 most relevant features (according to MRMR relevance score), and 6 most relevant features
(MRMR + Mann–Whitney). On the other hand, the batches for the classifications that used
the features of the midline and adjacent channels were 360 features, 36 most relevant
features (according to MRMR relevance score), and 20 most relevant features (MRMR +
Mann–Whitney).
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Table 2. Percentage accuracy for each classifier using the midline channels’ features as inputs
differentiating the easy and hard puzzles as classes.

Percentage of Classification Accuracy (Easy vs. Hard) 3 Channels

Classifier 6 Best Features 12 Features All Features

SGD (stochastic gradient descent) 59.47 57.23 63.14
SVC (support vector classifier) 57.84 58.04 69.86

DT (decision tree) 59.27 54.79 67.01
GNB (Gaussian naive Bayes) 56.82 54.79 52.75
KNN (k-nearest neighbors) 59.27 59.06 71.69

RF (random forest) 61.30 59.06 76.37
MLP (multilayer perceptron) 59.47 60.90 73.93

Table 3. Percentage of accuracy for each classifier using the midline and adjacent channels’ features
as input differentiating the easy and hard puzzles as classes.

Percentage of Classification Accuracy (Easy vs. Hard) 9 Channels

Classifier 20 Features 36 Features All Features

SGD 58.83 59.02 71.62
SVC 70.86 73.68 84.21
DT 66.73 70.11 75.19

GNB 55.08 56.20 53.76
KNN 72.74 75.75 86.09

RF 71.24 79.70 86.65
MLP 76.50 80.26 86.09

Table 4. Percentage accuracy for each classifier using the midline channels’ features as inputs
differentiating the baseline and VR (easy and hard together) as classes.

Percentage of Classification Accuracy (Baseline vs. VR) 3 Channels

Classifier 6 Features 12 Features All Features

SGD 70.38 73.51 83.70
SVC 74.18 76.09 89.67
DT 73.10 72.83 81.93

GNB 67.93 68.07 75.68
KNN 74.32 75.95 87.91

RF 75.41 78.26 89.81
MLP 75.27 77.31 91.98

Table 5. Percentage accuracy for each classifier using the midline and adjacent channels’ features as
inputs differentiating the baseline and VR (easy and hard together) as classes.

Percentage of Classification Accuracy (Baseline vs. VR) 9 Channels

Classifier 20 Features 36 Features All Features

SGD 85.84 87.09 93.23
SVC 86.72 88.85 96.12
DT 82.46 85.71 89.85

GNB 83.46 83.58 81.45
KNN 86.09 87.72 97.37

RF 86.34 87.22 96.87
MLP 86.22 88.35 96.49

In general, the performance of most classifiers when all features of the batch are used
as input is promising. However, when the batch contains fewer features, the performance
is observed to drop, as expected. This implies that by decreasing the number of features
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below 5%, this trend would continue, and there would be no point in performing any
analysis based on the features used if the performance of the classifiers does not even
exceed 75% accuracy percentage. This trend is also shown in Table 6, where the accuracy of
classifiers is being reported using the best 36 features (chosen by MRMR only) and the best
5, 10, or 20 features (chosen by MRMR and Mann–Whitney together). Figure 6 shows the
relevance score for the best 20 features (with the highest relevance) after applying MRMR,
and Table 7 presents the p-value of these 20 most relevant features resulting after applying
MRMR + Mann–Whitney for the fourth set of features (extracted from the midline and
adjacent channels and used to classify the baseline and VR states). To better understand
the association of the best features with different brain regions, Figure 7 depicts the mean
of the z-normalized values of the most relevant features in different electrodes.

Table 6. Percentage accuracy for each classifier that uses the features of the midline and adjacent
channels as inputs differentiating the baseline and VR (easy and hard together) as classes.

Percentage of Classification Accuracy (Baseline vs. VR) 9 Channels

Classifier 5 Features 10 Features 20 Features 36 Features All Features

SGD 84.09 85.34 85.84 87.09 93.23
SVC 84.09 86.22 86.72 88.85 96.12
DT 82.46 84.84 82.46 85.71 89.85

GNB 82.08 83.58 83.46 83.58 81.45
KNN 82.21 85.71 86.09 87.72 97.37

RF 83.21 85.84 86.34 87.22 96.87
MLP 84.96 86.22 86.22 88.35 96.49
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Based on this preliminary analysis, the EEG signal characterization and identification
of possible biomarkers was accomplished using the approach that classified the baseline
and VR states (easy and hard), using the features of the EEG signals of the midline and
adjacent channels as input parameters.
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Table 7. p-value for the most relevant features based on MRMR results (Figure 6) used to obtain
percentage of accuracy for baseline vs. VR in 9 channels (to obtain results in the third column of
Table 6).

Feature Name p-Value Feature Name p-Value

P4 Beta kurtosis 7.37 × 10−200 Cz Theta psd 9.82 × 10−148

Cz Theta mobility 3.31 × 10−188 Cz Beta permutation entropy 2.06 × 10−146

F3 Beta skewness 1.21 × 10−185 F4 Beta spectral entropy 6.07 × 10−144

F3 Alpha permutation entropy 1.91 × 10−179 Fz Delta mobility 1.14 × 10−140

F4 Beta hurst 9.89 × 10−172 F4 Alpha hurst 3.00 × 10−140

Pz Alpha kurtosis 1.02 × 10−165 Pz Beta activity 3.43 × 10−137

C4 Theta permutation entropy 2.86 × 10−164 Pz Alpha activity 2.33 × 10−128

P4 Beta activity 1.24 × 10−161 Fz Delta spectral entropy 6.89 × 10−131

Fz Alpha hurst 4.15 × 10−157 Pz Beta hurst 3.10 × 10−126

Cz Beta higuchi 3.52 × 10−156 F4 Beta complexity 5.28 × 10−125
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4. Discussion
4.1. Biomarkers of Immersion in VR

To the best of our knowledge, this study is the first to use machine learning methods
to classify features computed from EEG signals extracted during the performance of VR
tasks. This approach was able to differentiate EEG during two levels of puzzle difficulty
(easy or hard), and to differentiate the baseline state from the VR states (easy and hard
together), obtaining accuracy scores above 86% and 97%, respectively.

It is important to note that the classification performance was better when more
information was available (Tables 3 and 5), which indicates that the percentage of accuracy
presented here could be increased by adding more EEG channels adjacent to the midline.
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In addition, feature selection methods prove to be of great importance when generating
more efficient classifiers without largely affecting their performance, and to perform more
specific analyses on the features that provide relevant information, thus enabling the
characterization of the signals under study. In this case, the combination of MRMR and the
Mann–Whitney U test [50] proved to be of great help in selecting not only the most relevant
features but also those that showed statistical difference between the classes (Table 7).
For this reason, the order of the relevant features shown in Figure 6 is not the same as
that shown in Table 7. This allowed us to obtain classifiers that still reflect promising
performance using less than 5% of the total features as input (Table 6). Thus, the need for a
smaller number of features implies an increase in computational efficiency when training
and testing artificial intelligence models. This may prove valuable in future studies or
applications that require real-time processing.

Comparing the results from Tables 2–5 shows that while the accuracy percentage of
86% is obtained using only 10 features for classification between the baseline and VR states,
such accuracy rates are obtainable only using all possible features (i.e., 360 features from all
nine studied channels) for differentiating the easy and hard states, which makes a specific
analysis difficult given the nature of the results obtained for this particular case. So, as a
first contribution we propose possible biomarkers to differentiate between a baseline (idle)
state and states related to the VR-based task (easy and hard), which is a first step towards
obtaining reliable biomarkers to measure immersion.

Table 6 shows that when using the best 10 features (the first 10 features of Table 7
with the best p-values), five of the seven classifiers used achieved accuracy percentages
higher than 85%. In the case of this particular approach, the best classifiers were SVC, RF,
and MLP, with MLP being the most accurate. This may represent an opportunity for deep
learning models to be included in the future to meet the same objective. Table 7 presents
the most relevant final features, i.e., the features recorded in this table were the ones used to
obtain the results shown in Table 6. Consequently, Figure 6 and Table 7 allow us to propose
the following biomarkers to differentiate the level of immersion between a baseline state
and a VR task state in a virtual reality environment: the kurtosis of the P4 and Pz channels
in the beta and alpha frequency ranges, respectively, the mobility in the Cz channel in theta
band, the skewness for F3 in beta band, the permutation entropy in F3 and C4 in the alpha
and theta bands, respectively, the value of the Hurst exponent for F4 and Fz in beta and
alpha bands, respectively, the activity in P4 in beta band, and finally, the Higuchi exponent
value for Cz in beta band.

4.2. Association of Biomarkers of Immersion in VR and Neurophysiological Findings

A correlation between attention allocation and engagement level of immersion has
been found in previous work [51]. Given the association between frontal cortex and atten-
tional control [52], the sensitivity of features corresponding to the three frontal electrodes
in the current study to the sense of immersion is unsurprising (F3 Beta skewness, F3 Alpha
permutation entropy, F4 Beta hurst, and Fz Alpha hurst). This association has also been
studied in the context of using auditory ERPs to investigate immersion in VR [3]. More
specifically, there is a strong correlation between dorsolateral prefrontal cortex activity and
planning [53], which is one of the cognitive skills involved in solving a jigsaw puzzle. The
right and left prefrontal regions are associated with different functions [54,55]. While the
right prefrontal cortex is more involved in strategic construction of plans, the left prefrontal
cortex is more engaged in supervising the execution of the plans and control processes [53].
Fz activity has also been found to be related to the difficulty level of the task in VR [1].

This is supported by the frontal-related biomarkers of immersion found in our study
(F3 Beta skewness, F3 Alpha permutation entropy, and F4 Beta hurst). As seen in Figure 7,
the mean z-normalized permutation entropy of the EEG signals from the F3 channel in the
beta band is relatively higher than other channels as well as the same channel in the baseline
state. Permutation entropy quantifies the amount of uncertainty and unpredictability in
an EEG signal [56]. Therefore, the higher permutation entropy in the F3 channel suggests
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that the neural activities of the left prefrontal cortex were forced to change as a result
of cognitive demands related to the execution of plans to solve the puzzle. Moreover,
having a relatively higher mean skewness of F3 EEG signals in the beta band (as seen in
Figure 7) may be indicative of changes in the amplitude of the signals related to execution of
plans. Mathematically, a highly skewed distribution may indicate the presence of outliers
or rare events [57]. In contrast, Figure 7 also shows that the Hurst exponent for EEG
signals recorded at F4 is relatively larger than that of the other electrodes and for the same
electrode in baseline state. A greater Hurst exponent suggests more pronounced long-term
correlations or persistence, where the signal tends to exhibit trends or patterns that persist
over time [45]. This may be related to the association of the right prefrontal cortex with
the strategic planning necessary to integrate and maintain information while solving the
puzzle [54].

On the other hand, the superior parietal region has been associated with the visu-
ospatial and visuomotor functions [58,59]. While some studies suggest that visuospatial
functions should not be considered as primarily right-lateralized, the fact that the right
superior parietal lobe is also involved in attention processes [53,60] might be the reason
why two features related to P4 and one related to Pz appeared in the final best features,
rather than a feature related to P3. The relatively higher kurtosis of EEG signals for P4 in
Figure 7, compared to other electrodes, likely reflects the difference in complexity of neural
dynamics underlying cognitive processes in this electrode in comparison to other ones [61].

5. Limitations

This is a proof-of-concept study that suggests that EEG combined with machine
learning approaches may have the potential to create a real-time measure of immersion.
We attempted to make the puzzle versions as similar as possible so that factors such as
effort, motivation, engagement, mental exertion, cognitive demand, and interest would be
similar for both puzzles; however, it is possible that these factors did vary between puzzle
versions, and thus, impacted the results of the machine learning approaches.

6. Conclusions

To the best of our knowledge, this study is the first to introduce a machine-learning-
based approach to identify markers of virtual reality immersion in EEG signals. Subjective
methods of studying immersion in virtual reality do not always provide reliable results and
cannot be administered in real time, while objective methods such as auditory event-related
potentials have provided heterogeneous and, in some cases, contradictory results. The
machine learning method used in the current study shows promising results in the test bed
of a protocol that attributes immersion to the difficulty level of the task in virtual reality.

The ML approach was able to classify the EEG data collected during three different
states (idle, easy, and hard) with accuracy rates of 86% and 97% for differentiating easy vs.
hard difficulty states and baseline vs. VR states. Utilizing more EEG channels and features
is recommended for future work in order to propose relevant biomarkers to differentiate
between high and low immersion levels related to the difficulty of the VR task and cognitive
load of a VR training. Similarly, in the future, we plan to include deep learning models in
order to compare their performance with the classical machine learning models used in
this paper.
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Appendix A

The following tables summarize the parameters used for running different classifiers
in this study.

Table A1. Parameters used for running classifier differentiating the easy and hard puzzle as classes
(3 channels).

Classification Parameters—(Easy vs. Hard) 3 Channels

Classifier 6 Best Features 12 Features All Features

SGD

alpha = 0.01 loss = log loss = huber
loss = squared_error max_iter = 10 max_iter = 100
max_iter = 100 penalty = elasticnet penalty = elasticnet
tol = 0.0001 tol = 10 tol = 0.0001

SVC
C = 100 C = 1 C = 1
kernel = linear kernel = linear kernel = poly
tol = 0.01 tol = 0.01 tol = 0.01

DT
ccp_alpha = 0.001 ccp_alpha = 0.001

ccp_alpha = 0.001
max_features = auto

criterion = entropy criterion = entropy
max_features = auto max_features = auto

GNB var_smoothing = 1 var_smoothing = 0.01 var_smoothing = 1

KNN
leaf_size = 10 leaf_size = 10 leaf_size = 10
metric = euclidean metric = cityblock metric = euclidean
weights = distance n_neighbors = 7 n_neighbors = 17

RF
max_depth = 10

max_depth = 5
max_features = auto

max_depth = 10
max_features = auto max_features = auto
n_estimators = 500 n_estimators = 500
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Table A1. Cont.

Classification Parameters—(Easy vs. Hard) 3 Channels

Classifier 6 Best Features 12 Features All Features

MLP

activation = tanh alpha = 0.001 activation = logistic
alpha = 0.001 hidden_layer_sizes = 500 alpha = 0.001
hidden_layer_sizes = 500 max_iter = 5000 hidden_layer_sizes = 500
max_iter = 5000 solver = sgd max_iter = 5000

Table A2. Parameters used for running classifier differentiating the easy and hard puzzle as classes
(9 channels).

Classification Parameters—(Easy vs. Hard) 9 Channels

Classifier 20 Best Features 36 Features All Features

SGD

alpha = 0.01 alpha = 0.01
loss = modified_huber
penalty = l1
tol = 0.0001

loss = perceptron loss = modified_huber
max_iter = 10 max_iter = 100
penalty = elasticnet penalty = l1
tol = 0.0001 tol = 0.01

SVC
C = 100 C = 100 C = 100
kernel = poly kernel = linear kernel = poly
tol = 0.01 tol = 0.01 tol = 0.01

DT
ccp_alpha = 0.0001 ccp_alpha = 0.001

ccp_alpha = 0.001
max_features = auto

criterion = entropy criterion = entropy
max_features = auto max_features = auto

GNB var_smoothing = 1 var_smoothing = 0.1 var_smoothing = 0.01

KNN

leaf_size = 10 leaf_size = 10
metric = cityblock
n_neighbors = 13

leaf_size = 10
metric = cityblock metric = cityblock
n_neighbors = 7 n_neighbors = 7
weights = distance weights = distance

RF
max_depth = 10 max_depth = 10 max_depth = 10
max_features = auto max_features = auto max_features = auto
n_estimators = 500 n_estimators = 200 n_estimators = 1000

MLP

activation = tanh alpha = 0.001 activation = logistic
alpha = 0.001 hidden_layer_sizes = 500 alpha = 0.001
hidden_layer_sizes = 500 max_iter = 5000 hidden_layer_sizes = 500
max_iter = 5000 solver = sgd max_iter = 5000

Table A3. Parameters used for running classifier differentiating the Baseline and difficulty (easy and
hard) as classes (3 channels).

Classification Parameters—(Baseline vs. VR) 3 Channels

Classifier 6 Best Features 12 Features All Features

SGD

alpha = 0.01 alpha = 0.01
loss = log
max_iter = 100
penalty = elasticnet
tol = 0.0001

alpha = 0.01
penalty = elasticnet
max_iter = 100

loss = squared_error
max_iter = 10
tol = 0.0001

SVC
C = 10 C = 1 C = 100
kernel = linear kernel = linear kernel = linear
tol = 0.01 tol = 0.01 tol = 0.01
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Table A3. Cont.

Classification Parameters—(Baseline vs. VR) 3 Channels

Classifier 6 Best Features 12 Features All Features

DT
ccp_alpha = 0.001 ccp_alpha = 0.001

max_features = auto
splitter = random

ccp_alpha = 0.001
criterion = entropy
max_features = automax_features = auto

GNB var_smoothing = 1 var_smoothing = 1 var_smoothing = 10

KNN
leaf_size = 10 leaf_size = 10 leaf_size = 10
metric = cityblock metric = cityblock metric = cityblock
n_neighbors = 25 n_neighbors = 27 n_neighbors = 7

RF
max_depth = 7 criterion = entropy

max_depth = 10
max_features = auto
n_estimators = 10

max_depth = 10
max_features = auto max_features = auto
n_estimators = 1000 n_estimators = 50

MLP
alpha = 0.001 alpha = 0.001

hidden_layer_sizes = 500
max_iter = 5000
solver = sgd

activation = logistic
alpha = 0.001
hidden_layer_sizes = 500
max_iter = 5000

hidden_layer_sizes = 200
max_iter = 5000

Table A4. Parameters used for running classifier differentiating the baseline and difficulty (easy and
hard) as classes (9 channels).

Classification Parameters—(Baseline vs. VR) 9 Channels

Classifier 5 Best Features 10 Best Features 20 Best Features 36 Features All Features

SGD max_iter = 100
tol = 0.0001

alpha = 0.01
max_iter = 100
penalty = l1

alpha = 0.01
loss = epsilon_insensitive
max_iter = 10
penalty = elasticnet
tol = 0.0001

alpha = 0.01
max_iter = 10
penalty = elasticnet
tol = 0.01

alpha = 0.01
max_iter = 100
tol = 0.0001

SVC
C = 100
kernel = linear
tol = 0.01

C = 100
kernel = linear
tol = 0.01

C = 10
kernel = linear
tol = 0.01

C = 10
kernel = linear
tol = 0.01

C = 10
kernel = linear
tol = 0.01

DT

ccp_alpha = 0.01
criterion = entropy
max_features = auto
splitter = random

ccp_alpha = 0.001
max_features = auto

ccp_alpha = 0.01
criterion = entropy
max_features = auto
splitter = random

ccp_alpha = 0.001
max_features = auto

ccp_alpha = 0.001
max_features = auto

GNB var_smoothing = 1 var_smoothing = 1 var_smoothing = 1 var_smoothing = 0.1 var_smoothing = 10

KNN
leaf_size = 10
metric = euclidean
n_neighbors = 11

leaf_size = 10
metric = euclidean
n_neighbors = 17
weights = distance

leaf_size = 10
metric = euclidean
n_neighbors = 11

leaf_size = 10
metric = euclidean
n_neighbors = 17

leaf_size = 10
metric = cityblock

RF

criterion = entropy
max_depth = 5
max_features = auto
n_estimators = 50

max_depth = 10
max_features = auto
n_estimators = 1000

criterion = entropy
max_depth = 10
max_features = auto
n_estimators = 50

criterion = entropy
max_depth = 10
max_features = auto
n_estimators = 10

criterion = entropy
max_depth = 10
max_features = auto
n_estimators = 1000

MLP
alpha = 0.001
hidden_layer_sizes = 200
max_iter = 5000

alpha = 0.001
hidden_layer_sizes = 500
max_iter = 5000
solver = sgd

activation = logistic
alpha = 0.001
hidden_layer_sizes = 500
max_iter = 5000
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Abstract: Due to the widespread involvement of distributed collaboration triggered by COVID-19,
it has become a new trend that has continued into the post-pandemic era. This study investigated
collective performance within two collaborative environments (co-located and distancing settings)
by assessing inter-brain synchrony patterns (IBS) among design collaborators using functional near-
infrared spectroscopy. The preliminary study was conducted with three dyads who possessed 2–3
years of professional product design experience. Each dyad completed two designated design tasks
in distinct settings. In the distributed condition, participants interacted through video conferencing
in which they were allowed to communicate by verbalization and sketching using a shared digital
whiteboard. To prevent the influences of different sketching tools on design outputs, we employed
digital sketching for both environments. The interactions between collaborators were identified
in three behaviors: verbal only, sketch only, and mixed communication (verbal and sketch). The
consequences revealed a higher level of IBS when mixed communication took place in distributed
conditions than in co-located conditions. Comparably, the occurrence of IBS increased when partici-
pants solely utilized sketching as the interaction approach within the co-located setting. A mixed
communication method combining verbalization and sketching might lead to more coordinated
cognitive processes when in physical isolation. Design collaborators are inclined to adjust their
interaction behaviors in order to adapt to different design environments, strengthen the exchange
of ideas, and construct design consensus. Overall, the present paper discussed the performance of
virtual collaborative design based on a neurocognitive perspective, contributing valuable insights for
the future intervention design that promotes effective virtual teamwork.

Keywords: collaborative design; inter-brain synchrony (IBS); hyper-scanning; design cognition;
COVID-19

1. Introduction

Teamwork innovation has long been recognized as a core competitiveness in an
organization’s ability to address complex problems. Social distancing restrictions during
the COVID-19 pandemic have enforced traditional co-located collaborative mode into
virtual teamwork in an accelerative way, resulting in great transformation for design
collaborators that largely influence their way of communicating and interacting. To adapt to
this COVID-19-related disruption, organizations were striving to embrace information and
communication technologies (ICTs), such as video conferencing platforms, web-based tools,
and computer-aided systems, in order to facilitate efficient virtual teamwork. However, the
surge in ICT utilization poses a major challenge to the digital resilience of both individuals
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and organizations. Previous studies [1–5] have argued the impairments in collaborators’
cognition and communication within distributed collaborative design processes, leading to
a deterioration of group performance. Researchers generally recognized that distributed
teams reduced the awareness of collaborators [6–8] and the abundance of information [9],
as well as aggravated miscommunication and conflicts [10,11]. Although it is widely
accepted that co-located teams outperformed virtual teams, several studies suggested
minor or insignificant correlations between teamwork design processes and collaborative
(distributed or co-located) environments [12–14].

A considerable body of the literature has explored the implications of distributed
design collaboration for design outcomes, collaboration efficiency, and overall group
performance. Although several researchers have started to examine the effects of online
collaboration on design activities, the predominant research methods employed continue
to be self-reported questionnaires, interviews, and observations. Such traditional research
methods are deficient in explaining the underlying factors that affect group design activities
and interactions between design partners in different types of environments: co-located
and distributed settings. Therefore, there is a need to gain insight into the neural activities
and inter-brain connectivity during collaborative design processes, which showcases the
potential to offer more objective evidence and demystify how team interactivity operates
in various contexts.

A new technology from cognitive neuroscience, termed hyper scanning, has been de-
veloped and widely utilized to investigate inter-brain synchrony (IBS), a potential indicator
for collective performance among teams [15,16]. IBS refers to the degree to which the brains
of two or more individuals are synchronized. Reinero and colleagues [17] suggested that
IBS can be a complementary approach for understanding collective performance among
teams where self-report surveys are limited to capture design behavior. Another study,
conducted by Lu et al. [18], examined the occurrence of IBS during collaborative tasks and
interactive activities over time and observed a positive association between collaborative
behavior and IBS. However, most hyper-scanning studies of interacting individuals are
conducted in a face-to-face situation in the same room, where subjects can communicate
mutually based on both verbal cues and non-verbal cues, such as facial expressions and
body movements. A limited hyper-scanning study explores the effects of different collabo-
rative environments on the degree of IBS, thereby impacting communication effectiveness
and collective performance. Additionally, meager research focuses on design-related col-
laborations, which is a dynamic process involving various design behaviors to formulate
design requirements, build design goals, and construct design solutions jointly. Only one
relevant study [19] focused on the real-life creative problem-solving processes among
teams, which is yet merely focused on the measurement of the left hemisphere of the brain.

In this study, we aimed to address three research questions. Firstly, we examined the
design activities and interactions that occur in two distinct collaborative environments,
co-located and distributed settings. Next, we explored the similarities and differences in IBS
patterns when multiple design partners engage in design problem-solving processes within
these two types of environments. Lastly, we investigated the correlations between the
design collaboration environments and brain synchrony patterns, which in turn influence
the design outputs and team performance. This study has the potential to unravel the
neural underpinnings affecting design collaboration and its correlations with collective
performance, as well as contribute new insights into the intervention design that promotes
effective virtual teamwork, both in the context of design education and design practices.

2. Literature Review
2.1. Distributed Design Collaboration and Digital Resilience

The concept of collaborative design, as presented by Lahti et al. [20], entails an inter-
active and cooperative process in which participants engage in active communication to
collectively establish a design objective, explore problem and solution spaces, and construct
design solutions. Establishing effective communication between interactive individuals to

170



Brain Sci. 2024, 14, 60

exchange ideas during the concept generation process from diverse perspectives is a key
element of a successful design collaboration driving product innovation [21]. The rapid
development of the pandemic has forced designers to adapt to virtual teamwork; all design
collaborations take place remotely using online video conferencing platforms, which has
accumulatively become a trend that may continue during the post-pandemic era. Thus,
design practitioners are required to increase their competencies of resilience to integrate
technology into the collaborative experience so as to increase remote working benefits
and mitigate digital stressors [22]. Digital stressors are commonly defined as any adverse
effects that technology may have on users. Resilience refers to a process that enables
people to effectively navigate and manage stressors, allowing them to bounce back from
adversity [23]. The term digital resilience describes specific knowledge, skills, attitudes,
competencies, and behaviors that individuals must acquire so that digital stressors can
be counteracted. In this study, we defined digital resilience as the ability of collaborators
to overcome technical difficulties and continuously adapt to online collaboration, even
achieving collaborative effectiveness and design outcomes comparable to that of co-located
collaboration.

Effective communication in design collaborations is featured by real-time interactions
involving verbalization and the utilization of various visual techniques. In terms of the
influences of virtual collaboration on design tasks, a variety of prior studies observed the
overperformance of co-located collaborations compared to distributed teams. Based on
the consequences of Liska’s research [24], virtual teams required approximately one-third
(33.32%) more time to address the same assigned works and encountered a higher inci-
dence of revising their solutions compared to co-located teams. Moreover, Hammond
et al. [25] pointed out that even though design collaborators spend more time on the
assignment, fewer design alternatives were delivered within such a distributed collabo-
ration process. In addition, distributed collaboration can even induce specific interactive
behaviors, as Kvan [26] and Lee & Do [27] propose, designers are prone to compromise
in design decisions and showcase less willingness to explore the best solutions within
virtual collaborative settings. Likewise, in another analysis [28], distributed collaborators
were observed to exhibit a lower inclination towards using gestures, allocate more time
towards sketching, and participate in fewer studies and discussions with respect to design
problems. Several protocol studies [12,14] indicated no significant differences or even better
performance in quality or novelty of design solutions within distancing cooperation. In
addition, Yang et al. [29] found that in the context of online design collaboration, students
tend to allocate more time to sketching compared to the co-present design environment.
However, contrary to previous research, the researchers revealed a positive impact whereby
increased sketching behaviors reduced cognitive load for students, facilitated the better
expression of ideas, and promoted mutual understanding among interactive individuals.

Protocol studies, retrospective reviews, and observations alone are insufficient to
explore how different collaboration environments impact the interaction behavior and
collective performance of designers. Moreover, there is a lack of effective research on
whether the changes in design behavior result in a weakening or compensating effect
on collaborative performance. Therefore, in this study, we investigated the relationship
between design collaborative behavior and collaborative performance from a brain-based
perspective, focusing on brain movements and connectivity and brain synchrony, in various
collaborative settings.

2.2. IBS and Brain Regions Relevant to Design Activities

Neuroimaging technology is a widely utilized technique that can capture brain infor-
mation of interactive individuals within a non-invasive manner, thereby contributing to
the study regarding interpersonal social interactions. However, due to the prior related
works studying neurocognition that have focused on isolated individuals, the enigmatic
box regarding how the brain engages in dynamic group collaborations has failed to be
fully unraveled. An emerging technique termed hyper-scanning has been devised to con-
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currently capture and measure brain activations of multiple collaborative individuals [30].
Compared to conventional neuroimaging study designs [31], hyper-scanning experiments
provide a more realistic approximation of interactions between individuals. The degree
of IBS, the coordination of brain activity among collaborators, can be measured by the
hyper-scanning method. IBS serves as a neuro mechanism that aids scientists in identify-
ing brain regional connectivity and dynamics during social interaction tasks. Functional
Near-infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) have been more
frequently applied than functional magnetic resonance imaging (fMRI) for measuring IBS,
due to their reasonable spatial resolution, greater resilience to body movements and less
limitation of experimental setting. As a result, fNIRS and EEG are arguably more suitable
for studying IBS within naturalistic interactive environments [32,33].

Numerous studies have generally observed that IBS could be an objective and reliable
indicator of collective performance. For instance, the occurrence of IBS often increases
when team members communicate or infer intentions mutually [34]. Another study also
observed a close relationship between group identification and IBS when individuals
worked together to complete problem-solving tasks [17]. Likewise, a study carried out by
Hsu et al. [35] revealed a stronger IBS among subjects in cooperative mode compared to
single-player mode. Moreover, there was a noticeable decrease in the strength of IBS when
subjects switched from being collaborators to competitors.

To the best of our knowledge, the majority of hyper-scanning studies examining inter-
actions among individuals are always conducted in a co-located environment, featured by
sufficient verbal and non-verbal cues. Merely a limited number of studies have investigated
group interactions in distributed collaborative settings, where individuals exert greater
efforts in deducing and predicting partners’ intentions. One EEG study undertook an
experiment in which each pair of participants collaboratively played an online car racing
game within a physically isolated environment [36]. The researchers found significant
positive relations between better collective performance and increased brain synchrony.
Another study also illustrated that face-to-face conditions promoted more cooperation
and a higher IBS compared to face-blocked interactions. However, the tasks conducted
in the above studies are a far cry from real-world collaboration and team interactions.
Scientists still know little about temporal brain dynamics and how different cooperative
environments affect IBS and collective performance among real-world teamworks.

Additionally, to date, very few research studies have studied real design collaborations
from the neurocognition perspective. In design teamwork, team members often utilize com-
munication via various ways for idea exchange and mutual understanding establishment,
especially in problem-solving and concept-generation processes. One of the fNIRS-based
hyper-scanning studies examined real-world creative problem-solving processes in teams
and explored the temporal changes in IBS over time [19]. The main limitation of this study
is that they restricted their study to measurements of the left hemisphere of the brain.
The previous literature has shown that multiple areas of the brain are activated when
performing activities similar to those design tasks, especially the prefrontal cortex (PFC)
area [37,38]. The PFC is associated with multiple cognitive processes, including but not
limited to planning, maintaining focus, information filtering, and executive function [39].
Within the realm of design creative tasks, the PFC plays a crucial role in various cognitive
functions. Specifically, the PFC on the right is often involved in divergent thinking, while
the opposite hemisphere is more active in rule-based design, goal-oriented planning, and
analytical judgment [40]. Strong synchrony observed in the right PFC is linked to an
increased level of ingenuity in generated solutions [41].

Furthermore, during the execution of creative tasks, the left and right dorsolateral
prefrontal cortical areas (DLPFC) are both active [42]. Increased activation in the right
DLPFC is typically associated with the performance of creative problem-solving and visual–
spatial thinking [43]. The left DLPFC is also involved in creative tasks and exhibits greater
activation when engaged in goal-oriented planning for innovative solutions. In addition,
the right ventrolateral PFC (VLPFC) contributes to evaluating problems instead of solving

172



Brain Sci. 2024, 14, 60

problems, aiding in generating alternative assumptions in the problem space search [44].
By employing neuroscience methodologies to investigate design cognition, we can enhance
comprehension of the neurocognitive processes associated with design and refine design
thinking theory [45].

3. Research Methodology

This study investigated how distributed design collaborations impact design collabora-
tion behaviors, as well as the associations between specific design activities and underlying
neural activities involving IBS as a critical predictor. In light of the aims of this study, think-
aloud protocol analysis was employed to analyze and identify design interaction behaviors
into three interactive behaviors: verbal only, sketch only, and mixed communication (a
combination of verbalization and sketching). According to these three design interaction
approaches, recorded video data were segmented into smaller episodes, which are used as
critical timecodes for subsequent brain activity segmentation and brain-to-brain synchrony
analysis. Hence, this study commonly consists of five components: (i) experiment settings,
(ii) data collection, (iii) interaction segmentation, (iv) brain activity segmentation, and (v)
inter-brain connectivity analysis.

3.1. Participants

The preliminary study was conducted with three dyads of volunteers (1 female–female,
1 male–male, and 1 female–male) who were equipped with 2–3 years of professional prod-
uct design experience. All subjects self-identified as right-handed, healthy, and reported no
visual impairments or neurological conditions. The age range of participants varied be-
tween 22 and 25 years (Mean = 23.3, SD = 0.943). Participants paired in the same dyad were
previously acquainted, so that they could conduct the design process quickly and smoothly
after a warm-up session. Informed consent was obtained from both dyad members prior
to participation. The overarching aim was to design a paradigm that closely resembled
real-world design collaboration scenarios. Therefore, dyads were asked to work on design
problems for a continuous time of 25–30 min with little instruction and no interventions.
All dyads received consistent design briefs and instructions. Ethical approval was obtained
for this project on 14 September 2021 (approval number: HSEARS20210914003).

3.2. Experimental Settings and Procedures

This study was conducted in carefully configured design studio spaces in order
to create a controlled environment that is as close to a real-world setting as possible.
The experimental procedure includes two tasks, requiring participants to undertake two
separate conceptual design tasks within different design collaboration environments: co-
located and distributed. In terms of task 1, each pair of participants was seated together
on the same side of a rectangular table within the same room (see Figure 1), and a fNIRS
cap was fitted over the forehead of each participant. After subjects filled in the consent
form, the design brief was provided and elaborated to the participants prior to the start of
the experiment. Dyads were asked to work together to design a toy and collaboratively
define the target groups and contexts. Participants were then provided with a five-minute
warm-up session for a brief discussion to determine their specific design scope. No fNIRS
scanning happened during the warm-up session. Subsequently, a 25–30 min design session
commenced, yet participants had the flexibility to end their design activities earlier or later
based on their design progress. All pairs of designers were required to develop at least one
final deliverable at the end of the design session. After a five-minute break, participants
were placed in separate rooms without any communication before task 2 commenced
(see Figure 2). Participants were instructed to join a ZOOM meeting and enabled their
camera and microphone for virtual communication. They were also asked to change their
displayed names to their assigned identification numbers. The design requirement for task
2 is to cooperate on a conceptual design for multi-functional furniture that could be used
indoors and outdoors. Repeating the same steps of task 1, dyads were told to undertake a
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five-minute virtual warm-up session for design brief exploration and another 25–30 min
design session employing the whiteboard feature in the ZOOM meeting, and participants
were also allowed to end the design activities earlier or later accordingly. Figure 3 well
illustrates the designated experimental sequences and time frames.
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Figure 3. Sequence and duration of experimental sessions.

In this study, digital sketching using the ZOOM whiteboard feature was utilized in
both collaborative contexts (co-located and distributed), aiming to eliminate the influence
of different sketching tools (pen-and-paper sketching and digital sketching) on the design
outputs [46,47]. In order to record participants’ design activities and interactions, ZOOM
recording was conducted while completing design sessions for capturing verbalization and
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sketching activities. In addition, other video cameras were installed in front of each dyad
for identifying non-verbal design behaviors and interactions, such as eye contact and body
language. Figure 4 demonstrates specific cameras’ fields of view.
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Figure 4. (a) Zoom recording and one camera’s fields of view for co-located collaboration con-
texts. (b) Zoom recording and another two cameras’ fields of view for distributed collaboration
environment.

3.3. Instruments and Computational Tools

One prominent technique used in hyper-scanning research is fNIRS, a non-invasive
neuroimaging method that utilizes near-infrared light to penetrate the scalp and skull,
enabling the monitoring of hemodynamic responses in specific brain regions. Correlative
neurocognition reviews [30,48] have highlighted the wide use of fNIRS in investigations
focusing on brain-to-brain communication during social interaction tasks, especially dur-
ing interpersonal cooperation. fNIRS has been used as a dominant complement to fMRI
and EEG to measure IBS, as its reasonable spatial resolution, greater resilience to body
movement, and less experimental settings limits frequently applied for IBS measurement
within naturalistic interactive environments. Therefore, we conducted a fNIRS-based
hyper-scanning study. Each participant was fitted with fNIRS (OctaMon, Artinis Medical
Systems, the Netherlands, as shown in Figure 5a) headcap on the forehead for the assess-
ment of cerebral blood flow (CBF) changes in the prefrontal cortex. Scanning data were
recorded using OxySoft 3D software 4.0.6.1 x64, which supports recording two individuals’
changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) levels on one laptop
simultaneously in both co-present and distributed settings. Figure 6 presents the instance
of the signal extracted from one of the dyads with a time window of 400–800 s.
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Figure 6. Example of fNIRS data collected from one of the dyads. Notes: due to the length and
drifting of the signal, the signal presented above was extracted from one of the dyads with a time
window of 400–800 s.

All signal processing and statistical analyses were performed using the R program-
ming (Version 4.3.1) language, a powerful tool for statistical computing and graphics. To
facilitate these computations, we utilized a variety of relevant R packages designed for
data manipulation, signal processing, and statistical modeling. These tools allowed us
to process the fNIRS data, perform the necessary statistical tests, and derive meaningful
results about the patterns of IBS under different conditions and behaviors in the context of
design collaborations.

3.4. Data Analysis
3.4.1. Interaction Segmentation

The video recording data were initially filtered by coding for off-task behaviors (e.g.,
jokes, banter between the designers, and conversation of events unrelated to the design
problem). Subsequently, the video data was segmented into small episodes and coded for
three design interaction behaviors: verbal-only, sketch-only, and mixed communication
(a combination of verbal and sketch). Verbal-only means that within a certain period, the
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design ideas are only proposed and transmitted through verbal communication. Similarly,
sketch-only means that only sketch activities take place during a certain period of time,
as the only methods of conceptual exchange. In terms of mixed communication, which
means that verbalization and sketching occur simultaneously during a period or quickly
alternate. Table 1 presents specific instances collected from one of the dyads, elaborating
on each defined design behavior observed during the design collaboration process. Two
well-trained investigators conducted the episode segmentation separately aligning with the
same criteria. By comparing the segments classified by the 2 investigators, 23 controversial
segments were excluded. Overall, 432 segments were extracted, of which 250 episodes
occurred within the co-located context and 182 were distributed collaborations.

Table 1. Examples of detailed transcripts and sketching activities (screenshots) in each design
condition: verbal only, sketch only, and mixed communication (sketch and verbal).

No. Condition Specific Behaviour Instances (Scripts and Screenshots)

1 Verbal only

Participant A explained
ideas by verbalization only.

Participant B plays as
an audience.

A: “What do you think about this, like
this, stacking all the modules.”

A: “It’s a bit like Noah’s Ark. Or it can
also be stacked like a pyramid.”

B: “I think it looks great.”

Participant B explained
ideas by verbalization only.

Participant A plays as
an audience.

B: “I’m thinking we can keep the under
layer as a circle shape.”

B: “Because if the shape is too flat, it
may not float on the water, or maybe it

could be just like a little boat.”
A: “I can picture what you

are describing.”

Participants exchange
design ideas alternately

and finally reach
a consensus.

A: “But the size of this ball cannot be
too small”

B: “But if the shape is a ball, they might
fall easily”

A: “I think it’s okay, because they can
float on the water”

B: “Oh! You’re right.”

2 Sketch only

Participant A explains
ideas by sketching only.

Participant B plays as an
information receiver.
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not float on the water, or maybe it could be 

just like a little boat.” 
A: “I can picture what you are describing.” 

Participants exchange de-
sign ideas alternately and 
finally reach a consensus. 

A: “But the size of this ball cannot be too 
small” 

B: “But if the shape is a ball, they might fall 
easily” 

A: “I think it’s okay, because they can float 
on the water” 

B: “Oh! You’re right.” 

2 Sketch only 

Participant A explains 
ideas by sketching only. 
Participant B plays as an 

information receiver. 

 

Participant B explains ideas
by sketching only.

Participant A plays as an
information receiver.
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Table 1. Cont.

No. Condition Specific Behaviour Instances (Scripts and Screenshots)

2 Sketch only Participants design by
sketching collaboratively.
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3.4.2. IBS Analysis
fNIRS Data Segmentation and Variance Estimation

The continuous fNIRS data were divided into 15 s windows according to those be-
havior segments defined in Table 1. For each of these time windows and each channel,
the variance was calculated. To ensure the quality of the signals and eliminate outliers,
time windows with variance values above or below 2.5 standard deviations from the mean
variance calculated across all time windows and channels were excluded. This step was
crucial to filter out periods with potential motion artifacts, which could result in high
variance, and dead periods (where no signal was captured), which would result in low
variance. Since the behaviors of each pair of participants varied (i.e., some pairs may exhibit
more verbal behavior, while others may exhibit more sketching behavior), the selected
time windows were randomly sampled to avoid bias. For each condition (face to face and
remote) and each behavior (verbal only, sketch only, and simultaneous verbal and sketch),
10 times windows were selected.
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Establishment of Synchrony Measurement

The fNIRS device used in this study was capable of capturing data from eight channels
per participant. Four of these channels were situated on the left frontal region of the brain
and four on the right frontal region, thereby allowing for a comprehensive capture of brain
activity across these vital areas. After the data collection, the channels were aggregated
for each side of the brain for each participant. This process resulted in four distinct data
sets: Participant 1’s left frontal activity, Participant 1’s right frontal activity, Participant 2’s
left frontal activity, and Participant 2’s right frontal activity. Synchrony measures were
then established around the two regions of interest—left and right frontal regions—for
each participant. This resulted in four distinct paths for IBS analysis: (i) Participant 1 Left
Frontal to Participant 2 Left Frontal; (ii) Participant 1 Left Frontal to Participant 2 Right
Frontal; (iii) Participant 1 Right Frontal to Participant 2 Left Frontal; (iv) Participant 1 Right
Frontal to Participant 2 Right Frontal. These paths provide a comprehensive framework for
analyzing the interplay and synchrony of brain activities between the participants during
their design collaboration under various conditions and modes of communication.

IBS between any pair of sites were measured with the average length of the Kuramoto
Order Parameter (KOP). The KOP measures the phase synchrony between two signals
by calculating the vector average of phase angles over time (see Figure 7). A value of
1 indicates perfect phase synchrony, while a value near 0 indicates no phase synchrony.
The KOP was calculated for each pair of brain sites in each experimental condition. The
average KOP length across time was then used as the index of IBS between those two sites.
Higher average KOP lengths indicate greater IBS.
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Figure 7. Illustration of Kuramoto Order Parameter (the phase angles for two signal sources are
depicted by green dots, originating from their respective unit vectors; the blue arrows represent the
mean direction of these unit vectors). (a) the proximity of phase angles between the two signals
results in a magnitude nearly equal to 1; (b) shows that the phase angles from both sources are
aligned, producing a magnitude of exactly 1; (c) illustrates that the sources are in antiphase, leading
to a magnitude of 0.

IBS Calculation

To calculate IBS, we extracted 20 non-overlapping 15 s time windows from the brain
signal data timed to the interaction between the two participants as shown in the video.
Within each window, we calculated the instantaneous Kuramoto Order Parameter (KOP),
denoted r, between the two brain sites at each time point. For example, with 150 time points,
this gave 150 r values. We averaged these r values to obtain a “window-level” synchrony
value representing the phase synchrony during that 15 s period. We then averaged the
20 “window-level” r values within each experimental condition to obtain a “dyad-level”
mean KOP, denoted r, for that condition. Since there were 20 window-level values per
condition, each dyad-level r represented the mean synchrony across those 20 time periods.
The synchrony index r ranges from 0 to 1. A value of 0 indicates completely out-of-phase
signals, while 1 indicates perfect in-phase synchrony. Intermediate r values indicate partial
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synchrony. Thus, the dyad-level r reflected the average phase synchrony between the two
brain sites during a given experimental condition.

4. Results
4.1. IBS Analysis

To understand the effects of different conditions (co-located vs. distancing) and be-
haviors (verbal only, sketch only, mixed interaction (verbal + sketch)), we employed a
linear mixed model. This model allowed us to establish the main effects of condition and
behavior, as well as their interaction effects. Following this, post hoc pairwise comparisons
were calculated where appropriate to further delve into the differences between the con-
ditions and behaviors in terms of their influence on IBS. Given the small sample size of
this preliminary study, we refrained from reporting the statistical results at the individual
channel-to-channel synchrony level. However, to provide insights into the patterns of
IBS, we still present the mean values of synchrony for each of the four established paths:
(i) Participant 1 Left Frontal to Participant 2 Left Frontal; (ii) Participant 1 Left Frontal to
Participant 2 Right Frontal; (iii) Participant 1 Right Frontal to Participant 2 Left Frontal; and
(iv) Participant 1 Right Frontal to Participant 2 Right Frontal. These mean values offer a
preliminary view of the patterns of IBS under different conditions and behaviors, further
contributing to our understanding of collaborative cognition in design tasks.

Our preliminary study revealed several findings that highlight the differences in IBS
among designers collaborating in a face-to-face (F2F) setting compared with a remote
setting (see Figure 8). The interactions were categorized into three design behaviors: verbal
communication only, sketching only, and mixed communication (V + S). The IBS was higher
during the sketch-only behavior in the F2F condition compared to the remote condition.
Conversely, during the V + S behavior, the IBS was higher in the remote condition than
in the F2F condition. In addition, in the F2F condition, IBS was greater during the sketch-
only behavior than during the V + S behavior. In the remote condition, however, the IBS
was higher during the V + S behavior than during the sketch-only behavior. In the F2F
condition, the IBS was smallest during the V + S behavior compared to both verbal-only
and sketch-only behaviors.
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4.2. Statistical Analysis

To examine the influence of experimental conditions and behaviors on inter-brain
synchrony (IBS), we specified a linear mixed-effects model with the formula IBS~Condition
× Behavior + (1|Dyad) + (1|Path). In this model, IBS is the dependent variable, reflecting
the inter-brain synchrony coefficient. Condition and behavior are treated as fixed effects,
with their interaction term, Condition × Behavior, investigating whether the effect of one
factor is contingent on the level of the other. Random effects terms (1|Dyad) and (1|Path)
introduce random intercepts for each dyad and each path, respectively, which allow for the
modeling of variability within dyads and paths that are not captured by the fixed effects.

Model fitting was conducted using the ‘lme4’ package in R. To determine the sig-
nificance of the fixed effects, we performed an Analysis of Variance (ANOVA) using the
ANOVA function from the stats package, which yielded an ANOVA table presenting the
degrees of freedom, the sum of squares, mean squares, F-statistics, and associated p-values
for each fixed effect (see Table 2). To ascertain the necessity of including random effects in
our model, we compared it to simpler nested models with different random effects struc-
tures. Specifically, we compared our full model (IBS~Condition × Behavior + (1|Dyad)
+ (1|Path)) to a model with random intercepts for dyads only (IBS~Condition Behavior
+ (1|Dyad)) and to a linear model without random effects (IBS~Condition × Behavior).
These comparisons were made using chi-square tests (Figures 9 and 10), which are appro-
priate for comparing nested models differing in complexity. Additionally, the chi-square
test results indicated that the full model with both (1|Dyad) and (1|Path) random effects
provided a significantly better fit to the data than the models with fewer random effects,
justifying the inclusion of both random intercepts in our analysis. For post hoc analysis (see
Table 3), pairwise comparisons of the estimated marginal means for each pair of conditions
within behavior levels and each pair of behaviors within condition levels were executed
using the ‘emmeans’ package. We addressed the multiple comparison issue by applying
the False Discovery Rate (FDR) correction using the Benjamini–Hochberg procedure to
control for type I errors.

Table 2. ANOVA test for the interaction effect between condition and behavior.

Variable Sum Sq Mean Sq NumDF DenDF F Value p-Value

Condition 0.00901 0.009011 1 1073.8 0.172 0.678
Behavior 0.05676 0.028382 2 1073.8 0.5417 0.582

Interaction 0.47281 0.236405 2 1073.8 4.5124 0.011
Notes: Sum Sq: Sum of Square; Mean Sq: Mean Sum of Square; numDF = numerator degrees of freedom; denDF
= denominator degrees of freedom.

Table 3. Post hoc analysis of pairwise comparisons at each level of condition and behavior.

Condition Behavior Contrast Estimate SE df T Ratio p-Value fdr p

F2F / Sk − Vb −0.010 0.024 1082.02 −0.393 0.691 0.691
F2F / Sk − VS 0.043 0.024 1082.02 1.775 0.073 0.143
F2F / Vb − VS 0.053 0.024 1082.02 2.168 0.029 0.097

Remote / Sk − Vb −0.024 0.024 1082.02 −1.001 0.311 0.350
Remote / Sk − VS −0.052 0.024 1082.02 −2.120 0.032 0.097
Remote / Vb − VS −0.027 0.024 1082.02 −1.119 0.258 0.332

/ Sk F2F − remote 0.042 0.024 1082.02 1.737 0.079 0.143
/ Vb F2F − remote 0.028 0.024 1082.02 1.129 0.254 0.332
/ VS F2F − remote −0.053 0.024 1082.02 −2.158 0.029 0.097

Notes: Sk = sketch only; Vb = verbal only; VS = verbalization + sketch; F2F: co-located interaction; Remote:
distancing interaction.
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Figure 10. IBS by condition, behavior and inter-brain connectivity pathways (Note—S1_LF_S2_LF:
Designer 1 Left Frontal to Design 2 Left Frontal; S1_LF_S2_RF: Designer 1 Left Frontal to Design 2
Right Frontal; S1_RF_S2_LF: Designer 1 Right Frontal to Design 2 Left Frontal; and S1_RF_S2_RF:
Designer 1 Right Frontal to Design 2 Right Frontal). (a) illustrates the Inter-Brain Synchrony (IBS)
occurring in a co-located setting, where two designers are seated together, engaging in face-to-face
communication during the design discussion; (b) illustrates the distancing condition, the designers
are situated in separate rooms, with communication enabled through video conferencing software
that allows screen sharing and collaborative drawing.

4.3. Design Outcome Evaluation

The three design teams were able to satisfy both toy design and multifunctional chair
tasks between co-located and distributed modes. Table 4 shows the evaluation results of
the digital sketches by the four design experts. The scores in Table 5 are the average scores
of the four reviewers. The fourth column (average score) in each mode shows the average
performance of the three design teams for each criterion.
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Table 4. Screenshot of the final design solutions by digital sketches of each team within different
collaborative environments.

Co-Located Mode Distributed Mode

Team 1
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Table 5. Scores for the design outcomes within different design conditions.

Criteria
Co-Located Mode Distributed Mode

Team 1 Team 2 Team 3 Av Team 1 Team 2 Team 3 Av

How innovative 6.1 5.5 4.8 5.5 5.3 5.1 4.5 5.0

How creative 6.3 6.0 5.3 5.9 5.8 5.6 6.1 5.8

Satisfying design task 7.1 6.7 6.0 6.6 6.2 6.6 6.8 6.5

Practical solution 7.3 6.5 6.7 6.8 6.0 6.4 5.7 6.0

Flexibility of the design 6.2 6.4 7.1 6.6 6.3 6.6 7.0 6.6

Av 6.6 6.2 6.0 6.3 5.9 6.1 6.0 6.0

Team 1’s co-located mode design outcome received higher scores in terms of satisfying
the design task (7.1 vs. 6.6) and practical solution (7.3 vs. 6.4). The criterion of flexibility
of the design score was closer for the two design outcomes (6.2 vs. 6.3). In addition, the
average scores for both collaboration modes were very similar for Team 2 and Team 3
(6.2 vs. 6.1 and 6.0 vs. 6.0). Overall, the three design teams in both collaboration modes
produced very similar design outcomes.

5. Discussions

Our study provides valuable insights into the nuances of collaborative design pro-
cesses under different conditions, and how these conditions can influence IBS. The increased
IBS during the sketch-only behavior in the F2F setting suggests that co-located interactions
might facilitate a better shared understanding when designers are expressing their ideas
purely through sketches. This could be attributed to the immediate and unfiltered feedback
made possible by real-time, physical interactions. In this setting, non-verbal cues such
as body language or facial expression might also play a significant role. In contrast, the
higher IBS observed during the mixed communication (verbal and sketch) in the distributed
condition indicates that this combination of communication modes might be more effective
in synchronizing the designers’ cognitive processes when working remotely. This might be
due to the increased reliance on verbal communication to form a shared understanding
in the absence of physical presence. The need to articulate thoughts clearly and concisely
during remote collaboration might lead to a more coordinated cognitive process.

Interestingly, IBS was greater during sketch-only behavior compared to mixed verbal
and sketching communication in the co-located condition. Conversely, within the remote
collaboration setting, IBS was elevated during mixed communication versus sketch-only
behavior. This suggests the form of interaction that best facilitates cognitive alignment
may heavily depend on whether design partners share physical space. Notably, the lowest
IBS in face-to-face collaboration occurred with simultaneous verbalization and sketching,
potentially indicating heightened cognitive demands that desynchronize neural processes.
The richness of contextual cues in physical proximity may further challenge integration
across multiple communication modes. Furthermore, the highest IBS took place when
collaborators communicated in verbal-only within the co-located condition, while the
mixed communication (verbal and sketch) behavior promoted the highest IBS during
online design collaboration. This finding supports the prior discoveries [29] of increased
time allocated to sketching in virtual teams. These preliminary findings could profoundly
influence the development of optimally collaborative work environments and digital
platforms. Further research should elucidate the precise mechanisms relating design team
synchrony to performance across contexts, providing actionable direction for enhancing
collective innovation.

The limitation of this preliminary study constrains the generalizability of the findings
and conclusions. Firstly, the small sample size of the three dyads restricts the statistical
power and precludes drawing definitive conclusions regarding the impact of different
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collaborative settings on IBS patterns and design outcomes. Additional participants are
necessary to quantitatively discern such effects. Additionally, the limited age range and
design experience level of the participants may not represent the true diversity of collabo-
rative teams in real-world design practices. Broader sampling would augment ecological
validity. Therefore, future studies will be conducted on larger and more diverse samples,
considering additional confounding variables, such as gender, age ranges, and years of
design experience.

6. Conclusions

This study investigated the patterns of brain synchrony among design collaborators
during the conceptual design process within two collaborative environments: distributed
and co-located settings. The consequences based on the preliminary study emphasize sev-
eral variations in IBS among designers collaborating in these two settings. Through protocol
analysis, interactions between each dyad were classified into three categories: verbal-only,
sketch-only, and mixed interaction (verbal and sketch). Subsequently, according to the
hyper-scanning analysis, the increased IBS was observed during the sketch-only behavior
in the co-located setting, suggesting that sketching might be a facilitator for better mutual
understanding when design collaboration occurs face to face. This could be attributed to
the immediate and unfiltered feedback made possible by real-time, physical interactions.
Comparably, our results revealed a higher level of IBS when subjects employed mixed com-
munication (verbal and sketch) in distributed conditions, demonstrating the combination
of verbal communication and sketching might lead to a more coordinated cognitive process
when physical isolation.

Moreover, the IBS was greater during the sketch-only behavior than during the mixed
communication behavior within the co-present setting. Interestingly, the level of IBS
was found to be higher when participants performed sketch-only behavior compared
to mixed communication behavior in the co-present settings, while the IBS was higher
during the combination of verbal and sketching behavior within remote settings. This
finding illustrates the close associations between the utilization of communication methods
improving cognitive synchrony and collaborative environments. Design collaborators
are inclined to adjust their interaction behaviors in order to adapt to different design
environments and strengthen the exchange of opinions and the construction of consensus.
Furthermore, the results indicate that there were no significant differences in overall
collective performance and design outputs between these two collaboration contexts.

To draw statistical conclusions on the impact of IBS on team behavior and performance,
it is suggested that future studies be conducted with a larger sample size along the same
framework. The preliminary study demonstrated how neuroimaging can be used to
analyze behavioral patterns in two different collaboration environments. It could be a step
towards building effective virtual teamwork beyond the design realm. Furthermore, these
findings could have important implications for the design of collaborative workspaces with
digital tools. Further study is needed to better understand the underlying mechanisms and
how these insights could be applied to optimize team performance in design contexts. In
subsequent research, interventions that promote IBS can be tested, such as team training,
introducing diversity within groups, and assessing their impact on IBS.
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Abstract: Functional connectivity (FC) obtained from resting-state functional magnetic resonance
imaging has been integrated with machine learning algorithms to deliver consistent and reliable brain
disease classification outcomes. However, in classical learning procedures, custom-built specialized
feature selection techniques are typically used to filter out uninformative features from FC patterns
to generalize efficiently on the datasets. The ability of convolutional neural networks (CNN) and
other deep learning models to extract informative features from data with grid structure (such as
images) has led to the surge in popularity of these techniques. However, the designs of many existing
CNN models still fail to exploit the relationships between entities of graph-structure data (such
as networks). Therefore, graph convolution network (GCN) has been suggested as a means for
uncovering the intricate structure of brain network data, which has the potential to substantially
improve classification accuracy. Furthermore, overfitting in classifiers can be largely attributed to the
limited number of available training samples. Recently, the generative adversarial network (GAN)
has been widely used in the medical field for its generative aspect that can generate synthesis images
to cope with the problems of data scarcity and patient privacy. In our previous work, GCN and GAN
have been designed to investigate FC patterns to perform diagnosis tasks, and their effectiveness
has been tested on the ABIDE-I dataset. In this paper, the models will be further applied to FC data
derived from more public datasets (ADHD, ABIDE-II, and ADNI) and our in-house dataset (PTSD)
to justify their generalization on all types of data. The results of a number of experiments show the
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powerful characteristic of GAN to mimic FC data to achieve high performance in disease prediction.
When employing GAN for data augmentation, the diagnostic accuracy across ADHD-200, ABIDE-II,
and ADNI datasets surpasses that of other machine learning models, including results achieved with
BrainNetCNN. Specifically, in ADHD, the accuracy increased from 67.74% to 73.96% with GAN,
in ABIDE-II from 70.36% to 77.40%, and in ADNI, reaching 52.84% and 88.56% for multiclass and
binary classification, respectively. GCN also obtains decent results, with the best accuracy in ADHD
datasets at 71.38% for multinomial and 75% for binary classification, respectively, and the second-best
accuracy in the ABIDE-II dataset (72.28% and 75.16%, respectively). Both GAN and GCN achieved
the highest accuracy for the PTSD dataset, reaching 97.76%. However, there are still some limitations
that can be improved. Both methods have many opportunities for the prediction and diagnosis
of diseases.

Keywords: resting-state functional magnetic resonance imaging; resting-state functional connectivity;
deep learning; graph convolution network; generative adversarial network

1. Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging tool that measures
changes in cerebral blood flow to provide a visual representation of brain activity, allowing
researchers to study brain function. The use of functional connectivity (FC) obtained from
resting-state fMRI (rs-fMRI) enables imaging of temporal interaction between brain regions
and has therefore been extensively employed in the classification of brain disorders and
the identification of objective biomarkers associated with the underlying disorders. FC is a
connectivity matrix representing functional communication between different brain regions,
and the strength of connection between region i and region j is represented as the value
of row i and column j in the matrix. The value is calculated using Pearson’s correlation
between the time series representing region i and j; however, other metrics of association
between time series can also be used [1,2]. Considerable evidence from rs-fMRI studies
has shown the alteration or disruption of FC in individuals with neuropsychiatric and
neurodegenerative disorders [3–7]. Several recent works have applied convolutional neural
networks (CNNs) that incorporate these altered brain FC patterns as relevant features for
rapid and reliable classification of brain disorders. However, these models are constrained
by two challenges. First, although traditional CNNs can extract local meaningful features
from order and grid-like data (such as images), the spatial features learned in CNN may
not be optimal for graph structure data (such as networks), which are invariant to node
ordering and have irregular relationships between nodes. Second, patient fMRI data used
for training is currently limited in its sample size because of a range of factors, such as
the exorbitant expense of data acquisition, barriers to standardized data acquisition across
different sites, and consequent open sharing of data. The relatively small sample size of
patient data often leads to models being overfit. When relatively smaller samples of patient
data are used with larger samples of healthy controls in the same model, it also causes
the problem of class imbalance. To overcome those issues, graph convolutional networks
(GCNs), an extended version of CNN, are proposed to deal with graph-structure data,
while generative adversarial networks (GANs) can deal with data scarcity in neuroimaging
due to their ability to generate additional data for training purposes.

The brain can be conceptualized as a network where the specialized regions are repre-
sented as nodes, and the pathways of communication or links between these regions are
regarded as edges. By analyzing the patterns of FC, we can gain valuable insight into the
temporal properties and dynamic interplay between the brain regions, revealing a more
comprehensive view of the brain network. Therefore, graph theoretical analysis may be an
ideal tool to investigate the organizational mechanisms underlying brain networks. Several
complex graph theoretic algorithms have been applied to study the pathophysiology of
various diseases [8–10]. The brain graph is a network representation of the intricate interac-
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tions between N distinct regions of the brain and therefore can be captured by the N × N
matrix. The elements in the matrix capture the strength or degree of correlation between
each pair of nodes in the network. In general, brain graphs can be categorized as functional
connectivity or effective connectivity, where the former captures the strength of statistical
associations or correlation between brain regions and the latter represents the directionality
of information flow. Networks can also be grouped as unweighted or weighted, depend-
ing on whether the edges are assigned a binary or continuous value. In functional brain
networks, the edges can be estimated by various statistical methods, such as Pearson’s
correlation coefficients, Spearman’s correlation, or Kendall rank correlation coefficients.

Our research aims to design an end-to-end GCN model that can be applied to func-
tional graphs (here, constructed from rs-fMRI data) for distinguishing healthy controls from
those with brain disorders. Similar to CNN, the proposed GCN also includes a convolution
operation that learns localized patterns from the networks and a pooling operation that
can not only downsample the graph but also increase the receptive field, allowing the
graph to learn global graph-level patterns. The model learns features from each node and
its relationship with neighboring nodes to generate new feature maps via the spectral-
based convolution method. The spectral convolution operation [11] can transform complex
node representations to low-dimensional representations to tackle graph-structure data
more easily.

To solve the problem of small sample sizes and class imbalance, we recently proposed
a modified version of the existing GAN model to be able to generate realistic FC correlation
matrices [12]. Generally, GAN consists of two main models that are trained in the adversar-
ial optimization process: a generator G is designed to generate outputs that can mislead the
discriminator into treating them as authentic. Unconditioned GAN or unsupervised GAN
can discover the nature of data distribution and their latent structure to produce synthetic
data. By utilizing those characteristics, conditional GAN and auxiliary classifier GAN
have been used to allow GAN to perform classification tasks [13,14]. The classification
performance can be improved by adding synthetic data to the classifier [15,16]. The pro-
posed GAN model adapted these ideas to perform semi-supervised tasks. One of the issues
involved in training GANs is the phenomenon called mode collapse, where the model
only produces data belonging to a specific class. To prevent mode collapse, the proposed
model utilizes supplementary information such as class category or phenotypic features
to enhance the variety of the dataset. The generator of GAN will receive random noise
combined with additional attributions, such as gender or age, to generate a synthetic FC
matrix. The discriminator D will adopt the architecture of BrainNetCNN [17], where filters
are customized to function well with the connectivity matrix. Our previous paper [12] also
utilizes the inner product operation to embedding vectors to quantify the statistical link
between two brain regions. Thus, we utilize the GAN we previously developed, which is
an improvement over existing GAN-based methods for neuroimaging data.

We have reported on the designs of GCN and GAN needed to work on FC data
and tested them on the ABIDE-I dataset [12,18]. However, there is a need to examine the
generalizability of these models to other datasets derived from different patient populations.
Therefore, here we will test the applicability of GCN and GAN based models on FC-
based brain networks for discriminating healthy subjects from individuals diagnosed
with ADHD (ADHD-200 [19] dataset), autism (ABIDE-II [20] dataset instead of ABIDE-
I used in our previous work), PTSD (acquired in-house but publicly shared [21]), and
Alzheimer’s (ADNI [22]) datasets. We have reported the utility of traditional machine
learning models on these datasets before, and here we used those results to compare them
with those obtained from GCN and GAN. We also compared the proposed models with
BrainNetCNN [17] to evaluate the efficacy of GCN for extracting structural features and
GAN for data augmentation. The statistical tests were also conducted to determine which
models achieved superior performance.
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2. Related Work

Deep learning has attracted considerable attention for its potential to automatically
detect and classify neurological diseases at an early stage. Specifically, convolutional neural
networks (CNN) have been successful in using high-dimensional medical imaging data to
predict diagnostic status. Kawahara et al. [17] proposed the BrainNetCNN in 2017, which
is a class of CNNs that can be used to predict non-imaging variables (such as diagnostic
status) using brain networks as input features. Another study [23] improves the detection of
epileptic seizures using electroencephalogram (EEG) data by applying variable-frequency
complex demodulation (VFCDM) and CNNs. Building on basic CNNs, researchers have
improved the classification performance by applying transfer learning, a technique that
utilizes the pre-trained models to enable models to leverage knowledge gained from one
dataset to perform well on different datasets [24–26]. This method has the advantage of
allowing the model to train on image data acquired at multiple sites.

GCN is able to model the complex interconnections between nodes in a graph, making
it particularly well-suited for analyzing the irregular structure of brain network data. There-
fore, it has been employed for diagnostic classification using functional brain networks.
Prior works proposed different GCN-based architectures to distinguish between healthy
and unhealthy subjects that can be categorized as individual-based graph architecture and
population-based graph architecture. The main difference between these two methods is
the representation of a node, wherein nodes in the individual-based graph represent brain
regions while nodes in the population-based graph denote subjects. For instance, Ktena
et al. [27] proposed Siamese GCN that analyzes brain functional connectivity networks
by exploiting the similarities between two brain networks with the assumption that the
classification task can be significantly improved with more accurate similarity metrics.
Another study used varied templates to generate brain functional/structural connectivity
networks for individuals subject and then trained a triplet graph convolutional network to
learn the relationship at multiple scales [28]. The proposed model achieved high perfor-
mance in the classification of mild cognitive impairment and attention-deficit/hyperactivity
disorder with healthy controls. On the other hand, Parisot et al. [29] considered imple-
menting spectral GCN on a population-based graph where each subject is considered a
node. The model leverages the relevant features from both rs-fMRI and non-imaging data
to discriminate between nodes of healthy control and nodes of individuals with autism
disorder. Kim et al. [30] introduced the spatio-temporal attention graph isomorphism
network (STAGIN) model, which addresses dynamic graphs by employing two spatial
attention READOUT mechanisms (Graph-Attention READOUT (GARO) and Squeeze-
Excitation READOUT (SERO)) to capture spatial features at each time point and employing
a transformer encoder to learn temporal attended features. Zhao et al. [31] introduced a
data augmentation approach combining a “sliding window” strategy with the self-attention
mechanism GCN (SA-GCN) for autism classification, utilizing time series subsegments
to construct correlation matrices, and introducing both low-order and high-order func-
tional graphs to enable the model to exploit features from various perspectives. Another
study [32] proposed a model that comprises two distinct GCNs, f-GCN and p-GCN, where
f-GCN analyzes individual brain networks within subjects by utilizing stacked GCNs and
eigenpooling for coarsened graph generation, employing max pooling for node representa-
tion aggregation, while p-GCN, a population-based model, treats each subject as a graph
node and utilizes f-GCN output as a node feature.

Researchers have applied the generative aspect of GAN to various tasks in medical
image analysis, including classification [33], segmentation [34], de-noising [35], image
reconstruction [36], and image synthesis [37]. The use of GAN as a data augmentation
method has been shown to outperform various traditional augmentation methods. GAN
with feature matching has been proposed to discriminate psychiatric patients from con-
trols [38]. The model learns to generate functional network connectivity that is constructed
by independent component analysis, and the feature matching technique was used to
stabilize the training process. The paper shows that GAN performs better than other tradi-
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tional machine learning methods, such as support vector machine or nearest neighbors,
with more than 6% higher accuracy. Barile et al. [39] utilized GAN with an autoencoder
to generate brain connectivity for multiple sclerosis (MS) classification, ensuring that the
model’s training prevents collapse by producing synthetic data matching real data statis-
tics. Cao et al. [40] introduced a multiloop algorithm aimed at improving the quality of
generated data by enabling the assessment and ranking of sample distribution in each
iteration, facilitating the selection of high-quality samples for training. While many studies
have focused on generating realistic 3D brain images, only a few studies have developed
GAN models to learn to mimic functional connectivity networks. This is not only computa-
tionally less demanding but also helpful in understanding brain network anomalies and
underlying brain disorders.

3. Material and Methods

3.1. Data

Attention deficit hyperactivity disorder (ADHD) ADHD is a prevalent neurobehav-
ioral disorder in childhood that is typically characterized by symptoms of inattention,
hyperactivity, and impulsivity. Children with ADHD are classified into three separate
categories: ADHD-I (inattention), ADHD-H (hyperactive/impulsive), and ADHD-C (com-
bination of both symptoms). The ADHD-200 Global Competition was held in summer
2011 and challenged teams to provide the best performance for diagnosing individuals
with ADHD from their resting-state fMRI scans [19]. There are 929 subjects in the dataset,
which consists of 573 healthy controls, 207 individuals with ADHD-C, 13 individuals
with ADHD-H, and 136 individuals with ADHD-I. Scanning for each participant took
place at one of seven distinct sites, namely Peking University, Kennedy Krieger Insti-
tute, NeuroIMAGE Sample, New York University Child Study Center, Oregon Health &
Science University, University of Pittsburgh, and Washington University. For more infor-
mation regarding the acquisition parameters and site distribution, please refer the webpage
http://fcon_1000.projects.nitrc.org/indi/adhd200/, accessed on 19 March 2024. Since
there are fewer subjects diagnosed with subtype ADHD-H in comparison with the other
classes, we combined subjects with ADHD-H into ADHD-C, which makes the problem
into a 3-way diagnosis classification.

Autism Spectrum Disorder (ASD) ASD is a clinical term that encompasses a range
of neurodevelopmental disorders marked by deficits in social behavior and communica-
tion skills, along with repeated behaviors and restricted interests. The classification of
ASD individuals was carried out using an rs-fMRI image from the Austim Brain Imaging
Data Exchange Data (ABIDE). ABIDE is a group of organizations that has collected and
distributed datasets containing rs-fMRI, alongside additional clinical and demographic in-
formation from both individuals with ASD and those who are typically developing [20,41].
The initial ABIDE data, or ABIDE I, have been experimented with by the two models in the
papers. In this work, the algorithms were extended to apply to ABIDE II, a new multi-site
open data resource that was established to increase the sample size. Data for the imaging
were obtained from 11 different facilities and involved a total of 623 participants. Of these,
356 were considered to be healthy conhorts, 214 had been diagnosed with autism patients,
and 53 had been diagnosed with Asperger’s syndrome (a mild symptom of autism).

Post-traumatic stress disorder (PTSD) & post-concussive syndrome (PCS) PTSD
is a psychological disorder that develops in some individuals who have experienced
shocking, horrifying, or life-threatening events. PCS is a condition in which symptoms
or other functional difficulties persist for a period of time after sustaining a concussion
or a mild traumatic brain injury. Such disorders often co-occur in individuals serving
in the military. This study investigating PTSD/PCS involved 87 active-duty US solders
recruited from Fort Moore, GA and Fort Novosel, AL, USA. Data collection was approved
by the Institutional Review Board (IRB) at Auburn University and the U.S. Army Medical
Research and Development Command IRB (HQ USAMRDC IRB). This sample included
28 combat controls, 17 individuals diagnosed with PTSD, and 42 individuals who had
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both PTSD/PCS. The imaging data for the study were obtained exclusively at the Auburn
University Neuroimaging Center. Information about screening procedures to diagnose
PTSD/PCS symptoms and acquisition parameters can be found in the paper [21]. Since
each subject has 2 runs, we will treat each run as 1 subject, resulting in a dataset with 174
subjects in total.

Mild cognitive impairment (MCI) & Alzheimer’s disease (AD) As people age, the
risk of developing AD increases, and this condition is the primary cause of dementia in the
US. When an individual experiences mild cognitive dysfunction in the memory domain,
they may be diagnosed with MCI, and it is believed that people who are diagnosed with
MCI are at an increased risk of developing AD later in life. Diagnosis and treatment of
the condition remain challenging, with no definitive diagnostic test and cure available at
present. Therefore, accurate detection of MCI can aid in preventing further deterioration
and slowing the progression of AD. The imaging data was sampled from the Alzheimer’s
disease neuroimaging initiative (ADNI) database to perform a 4-way multiclass classifi-
cation: healthy controls, early MCI (EMCI), late MCI (LMCI), and AD. In particular, 35
matched healthy controls, 34 subjects with EMCI, 34 subjects with LMCI, and 29 subjects
with AD were collected from the database. The data acquisition process used for this study
can be found in the paper [22].

3.2. Data Preprocessing

FC was derived with the assistance of Data Processing Assistant for Resting-state MRI
(DPARSF, version V5.3_210101) and functional connectivity toolboxes (CONN) softwares,
version v.22.a (https://web.conn-toolbox.org/, accessed on 19 March 2024). Firstly, to
minimize subject motion artifacts during the scanning process, motion correction tech-
niques were performed to align each image to a standard reference point in time. Then,
slice time correction was performed, and after that, the subject’s data underwent a nonlin-
ear transformation to align it with a common reference MNI152 (Montreal Neurological
Institute) space, which facilitates group-level analysis. The preprocessing pipeline also
includes regressing out nuisance variables, such as six head motion parameters, the mean
white matter, and the cerebrospinal fluid (CSF) signal, in order to minimize confounding
effects. Then, the estimation of the underlying neural time series was carried out using the
blind deconvolution method proposed by Wu et al. [42]. The deconvolved data was then
achieved by the Wiener filter. We applied a temporal band-pass filter with a bandwidth of
0.01–0.1 Hz to the data. Mean time series was extracted from defined 200 regions of interest
provided by Craddock (known as the CC200 template) [43]. Pearson’s correlations between
the mean time series of two brain regions were established, resulting in the FC for each
subject with shape 200 × 200. However, due to incomplete brain coverage in the ADHD
data, only 190 out of 200 regions were captured using the Craddock atlas. Similar to the
ADHD dataset, the PTSD dataset suffered from incomplete data coverage and was only
able to cover 125 out of 200 regions.

3.3. Graph Convolutional Network

The GCN architecture is depicted in Figure 1. For each subject, we define an undirected
graph G ≡ {V, E} as a functional brain network, where V = {v1, . . . vi} is a set of N
nodes (N may vary depending on the number of regions of interests) and E = {eij}
represents a collection of connectivity edges from node vi to node vj. The graph was
represented by an adjacency matrix A ∈ RN×N , where each element aij = 1 if the value
of the corresponding position of the mean matrix Ā is greater than the cutoff threshold
τ and aij = 0 otherwise. The mean matrix Ā was determined by the mean of all the
functional connectivity matrices in the training dataset, and the threshold τ was decided
by the percentage of positive connections that we need to keep. One of the reasons that
support this idea is that by taking the mean, we can sparsify the data to different degrees
by varying the threshold. Furthermore, by keeping only relevant connections between
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regions, we can detect abnormal changes in meaningful patterns or connections that can
effectively separate healthy subjects and subjects with brain disorders [3–7].

In this work, the graph convolutional layer was implemented from the spectral per-
spective. In the process of spectral graph convolution, the graph signals are transformed
from node domain to frequency domain using the graph Fourier transform. Then, to re-
duce the computational complexity and enable the graph to learn locally, the K-polynomial
filters were used in ChebNet; this approach can be simplified by taking only the first order
approximation [11]. Hence at layer l, the output representation node was computed as:

H(l) = σ(D̃−
1
2 ÃD̃−

1
2 H(l−1)W(l)) (1)

where Ã = I + A is equivalent to adding self-loops to the adjacency matrix and D̃ is the
diagonal degree matrix of Ã, i.e., D̃i,i = ∑j Ãij. σ is activation function (Rectified Linear
Unit (ReLU) or linear activation function). In this work, ReLU activation was chosen.
Furthermore, H(l−1) ∈ RN×d represents d attributes of the N nodes, and W ∈ Rd×m

refers to a learnable matrix used at layer l that transforms the input node representation
H(l−1) from d to m feature dimensions. The initial node representations H(0) are just
the original input features or functional connectivity of each subject: H(0) = X. As
evident, we employed an individual-based graph architecture. Equation (1) aggregates
node representations in their direct neighborhood, helping to gain more information after
each iteration for the purpose of learning the graph.

Figure 1. Illustration of the GCN architecture proposed in our previous work [18] that we have
applied here. In the figure, the model consists of two convolutional layers that transforms the number
of node features from 8 to 2 and one pooling layer that pools the number of nodes from 8 to 3.
The output of GCN was also concatenated with subject’s attribute data (gender, age, imaging site)
and then the combined input was passed to the classifier. The results reported in this paper were
generated by this GCN architecture with a slight changes in parameters in each layer (as described
in methods).

To apply GCN to the graph classification task, a graph-level representation is needed.
Similar to conventional CNNs where pooling method is applied to reduce the spatial
resolution, many methods of pooling for GCNs have been proposed with the aim of
decreasing the number of nodes to obtain coarser graphs while preserving important graph
properties. One of the graph pooling approaches is self-attention graph pooling (SAGPool),
which is a technique that utilizes a graph neural network to produce a score for each node
based on its features, and subsequently selects the K nodes with the highest score [44].
Specially, the self-attention scores z for each node is calculated as:

z = tanh(D̃−
1
2 ÃD̃−

1
2 H(l−1)Θ(l)) (2)

where Ã = A(l−1) + I, which depends on the adjacency matrix of the previous layer, and
Θ ∈ Rd×1 is the weight of the pooling layer. Because graph pooling changes the graph or
particularly the adjacency matrix A, the shape of adjacency matrix A and the output node
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representation after pooling will change based on the top-k nodes we want to keep. To
update those variables, first the top-k nodes were obtained as the following steps:

idx = top-rank(z, k) (3)

zmask = z(idx) (4)

The outputs of graph pooling were then determined as:

H(l) = H(l−1)(idx, :)� zmask (5)

A(l) = A(l−1)(idx, idx) (6)

where H(l−1)(idx, :) contains node-specific features that are indexed, � performs element-
wise multiplication, and A(l−1)(idx, idx) is an adjacency matrix that is indexed by both
rows and columns.

Non-imaging measures that contribute variance to the imaging data, such as gender,
age, and imaging site, can also combine with the extracted features from GNN to boost the
prediction performance. To guarantee that all feature values are bounded in the interval
[0, 1], gender and imaging site features were first encoded to one-hot vectors, while the age
feature was normalized by dividing by 100. All non-imaging features were also transformed
to the vector of length 2 by the dense layer, and 1 dense layer was also used to transform the
output of the GNN model to the vector of length 15. Those vectors were then concatenated
and used as input for the classifier that consists of one dense layer with a softmax activation
function to compute the likelihood of each subject’s network belonging to a particular
class label.

3.4. Generative Adversarial Network

Generative adversarial network (GAN) comprises two different functional models,
namely the discriminator (D) and the generator (G). The two models can be trained simulta-
neously, in which the generator takes random variable z from a prior distribution (usually
Gaussian noise or uniform distribution) to generate new images, while the discriminator fo-
cuses on distinguishing whether the image is authentic or not. For supervised learning, the
output of the discriminator will also include the probabilities of the class label in addition
to its validity output. GAN is able to generate synthetic data that are of high quality and
closely resemble real data by using an iterative adversarial approach. The specific designs
of the discriminator and the generator are demonstrated in the following (and visually
illustrated in Figure 2):

Figure 2. Illustration of the GAN model proposed by using previously [12], which we have used in
this work. The generator produces a synthetic functional connectivity matrix via the combined input
of random noise and feature codes (gender, age, and label). The discriminator was trained on both
real FC data and synthesized FC data generated from the generator.
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Generator architecture: The generator collects the random noise vector z drawn from
a uniform distribution to produce synthetic functional connectivity data. One of the issues
of the generator is mode collapse, which occurs when there is only a limited set of samples
that the generator can generate. To mitigate this problem, we use ideas from conditional
GAN (CGAN) [13] and InfoGAN [45], which integrate more attribute data into the latent
input, including category labels and phenotypic measures (such as age, gender, etc).

Typically, the generator will directly output the image from the latent input, which will
violate the nature of functional connectivity, where each entry in the matrix corresponds to
the correlation coefficients between the average time series of pairs of brain regions i and j.
By transforming the latent vector z to a X matrix where X ∈ RN×d, we will have each row
in X representing the embedding vector of one brain region (N is the number of ROIs and
d is the dimension of the embedded region). Then the generated output A is determined
by taking the inner product of X with tanh activation function to ensure each value in A
will have a range from −1 and 1:

A = tanh(XXT) (7)

Discriminator architecture: The discriminator is provided with both types of in-
puts—the original image or a synthesized one—and decides whether the input is real or
not. To boost the performance of the discriminator, phenotypic features for each subject
were also included as input besides the FC matrix. Similar to the design of deep convo-
lutional GAN (DCGAN) [45], which uses multiple convolution layers to extract features,
we employed BrainNetCNN, which was proposed as specifically designed convolutional
filters for modeling brain networks. The BrainNetCNN consists of three special convolution
layers: the edge-to-edge layer (ECE), the edge-to-node layer (ECN), and the node-to-graph
layer (NCG). The ECE layer used cross-shaped filters to calculate the weighted sum of
all the neighboring edges that results in a new edge value. On the other hand, regarding
edge-to-node layer, given one node, we do the convolution for all the edges that connect to
that node. If the number of ROIs is N, then the output of the ECE layer will have the shape
of N × N, while the shape of the output of the ECN layer is N × 1. Finally, the NCG layer
acts as a fully connected layer, which summarizes all the nodes into a single graph.

Then the dense layers were used to convert the output of the NCG layer and pheno-
typic features to a new feature space. These two vectors were then concatenated and fed to
the dense layer with two heads, one with sigmoid activation for validity classification and
another with softmax activation for label classification.

4. Experimental Setting

The architectures and hyper-parameters of both GAN and GCN were adopted from
our previous papers [12,18] based on their highest performances on the ABIDE-I dataset.

In particular, the GCN model that was tested on the datasets has the following struc-
ture: 2 convolution layers, followed by 1 pooling layer. In particular, the first and second
convolution layers transformed feature vectors to have sizes of 25 and 10, respectively,
then the pooling layer was applied to downsample the graph from N nodes to 10 nodes.
The shallow GCN was selected because the model performance tends to decrease with an
increase in the number of layers. This phenomenon is known as over-smoothing, where
through many messages passing steps, all node representations may become similar to
each other, making it infeasible to identify discriminant features. The output of the pooling
layer is then flattened and integrated with normalized age, one-hot coding of gender, and
the imaging site (only available for ADHD and ABIDE-II datasets). One classifier layer was
used to directly read out the combined inputs to produce the probability for each class by
using the softmax activation function.

Regarding GAN, the discriminator has three type of layers similar to BrainNetCNN,
which include an ECE layer with 16 feature maps, followed by an ECN layer with 64 filters,
and an NCG layer with 128 filters to extract all the nodes’ features. The BatchNormalization,
the LeakyReLU activation function, and the Dropout function with a dropout rate of 0.5
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were used consecutively after each layer. The dense layer with 64 hidden units continues
to extract features from the flattened output of the NCG layer. To combine with phenotypic
features, the age and gender of one individual are first concatenated to a vector of length 2,
and this vector is then transformed into a vector of length 16 by a dense layer. The fully-
connected output is then merged with this feature vector. The combined input is passed
through one more dense layer with 32 perceptrons before being fed to the classification
layer that predicts the class label for the subject as well as the validity of the FC (real or
fake). As for the generator part, a random vector of length 50 (including gender, age, and
label) is fed into the embedding layer, which has the function to turn the input into an N× d
matrix, where N corresponds to the number of regions and d represents the embedded
dimension. N are equal to 190, 200, 125, and 200 for the ADHD, ABIDE-II, PTSD, and ADNI
datasets, respectively, while d is selected to be 10. Since not all subjects in the ADHD and
PTSD datasets had usable data from all 200 ROIs (either because of data quality or a lack of
whole-brain coverage), the values of N for these datasets are not equal to 200. Nonetheless,
the left-out ROIs corresponded to the cerebellum, and subcortex and cortical ROIs were
present in all datasets. For every region, its feature representation is stored in a single row
of the matrix. The inner product is then taken to output the functional connectivity matrix.

A test dataset consisting of 10% of the data was created for each dataset to assess the
model’s performance. After leaving out 10% of the data for testing, a 5-fold cross-validation
approach was used to split the remaining data into training and validation sets. Therefore,
each model was trained five times, and the cross-validation performance of each model
is the average of these repeated runs. The model that had the best performance on the
validation set was chosen for assessment on the test set. The test accuracy is, of course,
obtained by using the test data on the trained model once. For the GAN model, validity
accuracy is also considered to select the model besides its performance on the validation set
(note that in GANs, the discriminator has two outputs: one for the probability of validity
to test the authenticity of the FC (real or fake) and one for classification (HC or patients)).
We applied the Adam algorithm as an optimization method with a learning rate of 0.01 for
GCN and a learning rate of 0.0001 and β1 = 0.5 for GAN.

Other models: For comparison purposes, 18 traditional machine learning models used
by Lanka et al. [21] were also trained on all the datasets by the default hyper-parameters
from Scikit-learn and Matlab tools provided in the paper. These models include probabilis-
tic or Bayesian methods. In the probabilistic framework, the models were assumed with
some prior belief in the data distribution, and then the model parameters were selected to
maximize the probability of the observed data, given particular parameter settings. The
representatives of the probabilistic models were Gaussian Naïve Bayes (GNB), linear dis-
criminant analysis (LDA), quadratic discriminant analysis (QDA), sparse logistic regression
(SLR), and ridge logistic regression (RLR). The kernel-based models utilize kernel functions
to transfer the input into a different space, and then the models can be trained on the new
feature space, including support vector machines with linear functions (LinearSVM), radial
basis functions (RBF-SVM), and relevance vector machines (RVM). Some traditional neural
networks are also involved, namely the multilayer perceptron neural net (MLP-Net), the
fully-connected neural net (FC-Net), the extreme learning machine (ELM), and the linear
vector quantization net (LVQNET). Also, k-nearest neighbors (kNN) is an instance-based
learning model that assigns the unknown data to the appropriate categories based on the
distances between the unknown data and the data points that have been labeled. Finally,
ensemble learning is the technique that allows multiple classifiers to solve a problem with
the belief that multiple classifiers can provide a better result than a single classifier. Using a
decision tree as a base classifier, several methods were used to train ensemble classifiers,
namely bagged trees, boosted stumps, random forest, and rotation forest. Further details
regarding these models can be found in Lanka et al. [21]. Additionally, BrainNetCNN,
which is the top-performing method for connectome classification, was also trained with
the same 5-fold CV, and the hyper-parameters and training process are similar to the
settings of the discriminator in GAN.
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To evaluate the models, using only accuracy may not be appropriate for imbal-
anced classification scenarios. Therefore, other metrics such as precision score, recall
score/sensitivity, specificity, F1 score, and area under the curve (AUC) are also reported.
Those metrics often apply to binary classification problem; therefore, to deal with multiclass
classification, the one-vs-rest (OvR) algorithm (with a macro-averaging strategy) was used.

5. Results

5.1. Cutoff Threshold

The binary adjacency matrix representing the graph for each dataset was built by
thresholding the values of the mean matrix derived from the training data. In particular, if
the correlation coefficient between region i and region j is greater than cutoff threshold τ,
the value of the adjacency matrix at (i, j) is equal to 1 and 0 otherwise. In order to choose
the appropriate threshold, we plotted the percentages of preserved edges against the cutoff
threshold and chose the elbow of the curve as the cutoff, as in previous work [46,47]. The
mean matrix was derived from the average of all the training data across the 5-fold CV.
Figure 3a–d shows the appropriate cutoff thresholds that can preserve meaningful edges
for the ADHD, ABIDE-II, PTSD, and ADNI datasets, respectively. The cutoff threshold for
ADHD, ABIDE-II, and ADNI datasets is 0.15, which maintains 13.17%, 20.60% and 14,80%
of the total edges in each dataset, respectively, while the threshold for the PTSD dataset is
0.2, which keeps 16.19% of edges.

(a) ADHD dataset (b) ABIDE-II dataset

(c) PTSD dataset (d) ADNI dataset

Figure 3. Percentages of edges preserved when the cutoff threshold is varied for each dataset.

5.2. Model Comparison

The outcomes of all the models for multinomical classification are presented in
Table 1 (a), Table 2 (a), Table 3 (a), and Table 4 (a) for the ADHD, ABIDE-II, PTSD, and
ADNI datasets, respectively, while Table 1 (b), Table 2 (b), Table 3 (b), and Table 4 (b) demon-
strate the results of those respective datasets in binary classification scenario. The value
highlighted with red color represents the top performing result across all the models, while
the blue highlight indicates the second highest result. In Figure 4, the models have been
sorted from worst to best performance. We can observe that some models may perform
very well for some metrics or datasets, but the deep learning models (including GCN and
GAN) generally perform well across all metrics and datasets.
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Table 1. Performance comparison of models on ADHD dataset for multinomial (a) and binary (b)
classification (Red color indicates best performance, while blue color denotes second best perfor-
mance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 54.19% 33.72% 47.86% 56.49% 39.56% 68.48%

LDS 50.32% 19.55% 13.51% 72.28% 15.47% 55.81%

QDA 44.52% 17.47% 18.31% 63.51% 13.15% 49.89%

SLR 59.35% 24.93% 22.08% 80.00% 23.18% 75.42%

RLR 62.15% 35.18% 37.99% 73.68% 36.34% 75.31%

Linear SVM 41.72% 33.67% 51.49% 31.93% 40.58% 68.13%

RBF_SVM 61.94% 30.00% 1.36% 100.00% 4.35% 82.28%

RVM 63.44% 42.24% 22.86% 86.67% 29.31% _

MLP-Net 52.47% 32.62% 50.19% 50.88% 39.34% 71.49%

FC-Net 45.38% 22.96% 33.34% 49.47% 26.09% 61.38%

ELM 57.63% 34.43% 32.21% 71.58% 33.24% _

KNN 33.76% 13.41% 50.00% 16.49% 21.16% 71.25%

Bagged Trees 57.42% 14.52% 3.44% 91.23% 6.91% 57.46%

Boosted Trees 57.42% 20.41% 15.45% 81.75% 17.49% 57.81%

Boosted Stumps 57.63% 28.97% 14.74% 83.86% 19.36% 63.52%

Random Forest 61.29% 0.00% 0.00% 100.00% _ 59.80%

Rotation Forest 61.29% 22.67% 2.73% 97.89% 7.82% _

BrainNetCNN 67.74% 53.32% 42.60% 82.44% 46.08% 74.96%

GAN 68.16% 41.16% 34.82% 85.96% 36.82% 74.46%

GCN 71.38% 59.52% 45.00% 84.58% 49.86% 75.94%

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 63.23% 51.78% 73.89% 56.49% 60.88% 69.38%

LDS 54.84% 38.17% 27.22% 72.28% 31.76% 54.11%

QDA 52.47% 37.79% 35.00% 63.51% 36.16% 49.25%

SLR 62.80% 52.97% 35.56% 80.00% 42.53% 73.68%

RLR 66.02% 56.48% 53.89% 73.68% 55.10% 73.95%

Linear SVM 50.11% 42.36% 78.89% 31.93% 55.09% 63.65%

RBF_SVM 61.94% 60.00% 1.67% 100% 5.41% 82.89%

RVM 64.73% 58.94% 30.00% 86.67% 39.57% _

MLP-Net 61.94% 50.56% 79.44% 50.88% 61.57% 69.92%

FC-Net 57.20% 46.18% 69.44% 49.47% 54.91% 60.65%

ELM 63.01% 52.40% 49.44% 71.58% 50.82% _

KNN 47.31% 42.10% 96.11% 16.49% 58.55% 66.45%

Bagged Trees 60.22% 44.09% 11.11% 91.23% 17.45% 57.53%

Boosted Trees 60.00% 46.42% 25.56% 81.75% 32.85% 57.58%
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Table 1. Cont.

Model Accuracy Precision Recall Specificity F1 Score AUC

Boosted Stumps 60.00% 44.84% 22.22% 83.86% 29.48% 58.62%

Random Forest 61.29% 0% 0% 100% _ 58.04%

Rotation Forest 61.72% 56.00% 4.44% 97.89% 10.05% _

BrainNetCNN 71.62% 66.56% 54.44% 82.44% 58.50% 74.74%

GAN 73.96% 72.80% 55.02% 85.96% 61.22% 76.34%

GCN 75.50% 71.66% 61.12% 84.58% 65.48% 78.80%

Table 2. Performance comparison of models on ABIDE-II dataset for multinomial (a) and binary (b)
classification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 66.13% 47.83% 41.90% 73.89% 44.54% 68.13%

LDS 64.52% 46.19% 31.33% 81.67% 37.25% 65.89%

QDA 46.45% 21.91% 27.05% 55.56% 24.18% 53.09%

SLR 71.29% 43.23% 33.90% 85.00% 37.14% 77.96%

RLR 70.97% 49.86% 40.29% 80.56% 43.68% 77.96%

Linear SVM 71.29% 47.21% 40.29% 81.11% 43.07% 75.13%

RBF_SVM 63.23% 38.12% 10.48% 96.67% 16.32% 72.00%

RVM 69.68% 72.68% 33.24% 88.33% 45.16% _

MLP-Net 65.16% 34.72% 39.81% 71.11% 36.89% 74.56%

FC-Net 56.13% 17.78% 24.76% 67.78% 24.50% 63.67%

ELM 58.71% 27.45% 33.05% 66.11% 29.98% _

KNN 59.68% 37.00% 4.76% 97.22% 8.13% 58.99%

Bagged Trees 55.81% 18.52% 11.90% 82.22% 14.27% 54.14%

Boosted Trees 57.42% 22.17% 14.76% 81.67% 17.49% 59.26%

Boosted Stumps 60.03% 27.18% 19.05% 81.67% 22.32% 59.44%

Random Forest 60.32% 34.29% 6.19% 96.67% 10.23% 61.84%

Rotation Forest 59.03% 22.90% 12.38% 87.22% 15.89% _

BrainNetCNN 70.36% 39.28% 28.20% 90.02% 33.12% 70.5%

GAN 73.56% 34.7% 32.88% 88.34% 33.60% 68.26%

GCN 72.28% 38.78% 32.02% 88.90% 34.96% 72.68%

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 69.35% 63.65% 63.08% 73.89% 63.33% 72.29%

LDS 68.06% 65.99% 49.23% 81.67% 56.29% 71.60%

QDA 56.45% 48.20% 57.69% 55.56% 52.48% 56.62%

SLR 73.55% 73.62% 57.69% 85.00% 64.65% 81.11%

RLR 74.52% 71.05% 66.15% 80.56% 68.50% 80.34%
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Table 2. Cont.

Model Accuracy Precision Recall Specificity F1 Score AUC

Linear SVM 74.52% 71.55% 65.38% 81.11% 68.19% 81.54%

RBF_SVM 63.55% 79.10% 17.69% 96.67% 28.74% 80.21%

RVM 71.94% 75.48% 49.23% 88.33% 59.41% _

MLP-Net 70.32% 63.98% 69.23% 71.11% 66.04% 77.28%

FC-Net 60.00% 53.84% 49.23% 67.78% 44.79% 65.19%

ELM 66.13% 58.51% 66.15% 66.11% 62.04% _

KNN 59.68% 74.00% 7.69% 97.22% 13.51% 58.53%

Bagged Trees 58.71% 51.06% 26.15% 82.22% 34.09% 57.79%

Boosted Trees 59.03% 51.78% 27.69% 81.67% 35.62% 59.17%

Boosted Stumps 61.29% 57.26% 33.08% 81.67% 41.84% 53.95%

Random Forest 61.29% 79.43% 12.31% 96.67% 20.88% 65.38%

Rotation Forest 60.97% 56.69% 24.61% 87.22% 33.95% _

BrainNetCNN 73.56% 78.64% 50.58% 90.02% 61.54% 75.84%

GAN 77.40% 79.62% 62.30% 88.34% 69.62% 75.90%

GCN 75.16% 78.44% 56.12% 88.90% 65.06% 74.12%

Table 3. Performance comparison of models on PTSD dataset for multinomial (a) and binary (b) clas-
sification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 82.22% 81.89% 78.75% 80% 80.29% 92.75%

LDS 50.00% 49.27% 57.50% 43.33% 52.96% 68.35%

QDA 47.78% 44.44% 40.00% 53.33% 41.67% 58.79%

SLR 88.89% 90.83% 81.25% 93.33% 85.57% 98.81%

RLR 95.56% 94.53% 93.33% 93.33% 95.29% 99.53%

Linear SVM 96.64% 97.78% 96.25% 96.67% 96.95% 99.53%

RBF_SVM 68.89% 59.45% 57.50% 63.33% 56.66% 97.94%

RVM 68.89% 75.00% 67.50% 56.67% 70.31% _

MLP-Net 92.22% 91.75% 96.25% 86.67% 93.78% 98.56%

FC-Net 68.89% 52.61% 48.75% 86.67% 48.10% 94.01%

ELM 36.67% 44.09% 45.00% 23.33% 43.97% _

KNN 48.89% 23.52% 48.75% 16.67% 31.71% 73.63%

Bagged Trees 83.33% 90.02% 77.50% 86.67% 83.08% 91.72%

Boosted Trees 70.00% 80.46% 68.75% 56.67% 74.00% 85.88%

Boosted Stumps 60.00% 66.10% 65.00% 30.00% 64.34% 76.87%

Random Forest 81.11% 85.76% 77.5% 73.33% 81.12% 97.51%

Rotation Forest 83.33% 87.71% 78.75% 80.00% 82.49% _

BrainNetCNN 97.76% 98.88% 97.50% 96.67% 98.08% 98.44%

GAN 96.64% 95.76% 98.76% 93.33% 97.20% 98.98%

GCN 95.56% 95.76% 95% 93.33% 95.32% 96.96%
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Table 3. Cont.

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 90.00% 90.51% 95.00% 80.00% 92.67% 94.72%

LDS 68.89% 74.49% 81.67% 43.33% 77.81% 64.72%

QDA 64.44% 74.62% 70.00% 53.33% 71.94% 61.67%

SLR 96.67% 96.79% 98.33% 93.33% 97.53% 98.61%

RLR 97.76% 96.92% 100.00% 93.33% 98.40% 99.44%

Linear SVM 97.76% 98.46% 98.33% 96.67% 98.33% 99.44%

RBF_SVM 87.78% 84.57% 100.00% 63.33% 91.62% 98.33%

RVM 80.00% 80.95% 91.67% 56.67% 85.90% _

MLP-Net 94.44% 94.33% 98.33% 86.67% 96.11% 98.33%

FC-Net 75.56% 94.18% 70.00% 86.67% 76.09% 93.06%

ELM 54.44% 64.94% 70.00% 23.33% 66.78% _

KNN 70.00% 69.90% 96.67% 16.67% 81.06% 83.06%

Bagged Trees 90.00% 93.85% 91.67% 86.67% 92.51% 92.78%

Boosted Trees 80.00% 81.42% 91.67% 56.67% 85.92% 86.11%

Boosted Stumps 66.67% 68.75% 91.67% 16.67% 78.57% 75.00%

Random Forest 90.00% 88.22% 98.33% 73.33% 92.92% 99.44%

Rotation Forest 90.00% 90.58% 95.00% 80.00% 92.59% _

BrainNetCNN 97.76% 98.46% 98.33% 96.67% 98.34% 98.60%

GAN 97.76% 96.92% 100.00% 93.33% 98.40% 99.16%

GCN 97.76% 96.92% 100.00% 93.33% 98.40% 96.38%

Table 4. Performance comparison of models on ADNI dataset for multinomial (a) and binary (b) clas-
sification (Red color indicates best performance, while blue color denotes second best performance).

(a)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 37.14% 38.00% 27.78% 55.00% 31.82% 55.85%

LDS 30.00% 40.78% 32.78% 25.00% 36.15% 57.00%

QDA 22.86% 25.52% 28.89% 10.00% 26.49% 49.22%

SLR 32.86% 23.22% 21.67% 65.00% 21.88% 58.34%

RLR 32.86% 28.78% 28.89% 45.00% 27.86% 62.16%

Linear SVM 35.71% 29.89% 29.44% 50.00% 29.45% 57.95%

RBF_SVM 30.00% 24.02% 17.78% 55.00% 19.26% 63.80%

RVM 37.14% 40.33% 32.78% 50.00% 35.95% _

MLP-Net 37.14% 32.78% 36.67% 35.00% 34.49% 59.52%

FC-Net 35.71% 23.94% 31.11% 50.00% 26.84% 66.11%

ELM 17.14% 21.44% 21.67% 5.00% 20.06% _

KNN 24.29% 23.00% 30.56% 5.00% 26.11% 50.59%

Bagged Trees 24.29% 10.89% 13.33% 50.00% 19.95% 54.45%

Boosted Trees 25.71% 29.75% 26.67% 25.00% 34.00% 52.33%
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Table 4. Cont.

Model Accuracy Precision Recall Specificity F1 Score AUC

Boosted Stumps 30.00% 36.83% 39.44% 10.00% 36.33% 52.33%

Random Forest 37.14% 41.22% 29.44% 55.00% 34.15% 54.57%

Rotation Forest 30.00% 42.00% 25.00% 40.00% 31.16% _

BrainNetCNN 38.02% 21.50% 23.34% 50.00% 21.66% 58.86%

GAN 52.84% 42.42% 41.66% 80.00% 41.20% 66.42%

GCN 44.28% 37.56% 29.46% 55.00% 31.82% 62.46%

(b)

Model Accuracy Precision Recall Specificity F1 Score AUC

GNB 65.71% 79.72% 70.00% 55.00% 74.50% 59.00%

LDS 58.57% 70.73% 72.00% 25.00% 71.33% 74.50%

QDA 54.29% 66.57% 72.00% 10.00% 68.99% 41.00%

SLR 74.29% 84.67% 78.00% 65.00% 81.16% 85.00%

RLR 75.71% 80.51% 88.00% 45.00% 83.86% 87.00%

Linear SVM 71.43% 80.41% 80.00% 50.00% 79.94% 81.00%

RBF_SVM 65.71% 79.72% 70.00% 55.00% 74.50% 70.50%

RVM 70.00% 79.78% 78.00% 50.00% 78.84% _

MLP-Net 78.57% 79.34% 96.00% 35.00% 86.60% 88.00%

FC-Net 74.29% 81.14% 84.00% 50.00% 82.22% 80.00%

ELM 50.00% 63.84% 68.00% 5.00% 65.58% _

KNN 55.71% 66.73% 76.00% 5.00% 70.97% 59.50%

Bagged Trees 60.00% 77.17% 64.00% 50.00% 69.60% 70.00%

Boosted Trees 65.71% 73.41% 82.00% 25.00% 76.20% 69.00%

Boosted Stumps 65.71% 71.00% 88.00% 10.00% 78.36% 53.50%

Random Forest 65.71% 79.43% 70.00% 55.00% 73.88% 70.75%

Rotation Forest 60.00% 74.11% 68.00% 40.00% 70.81% _

BrainNetCNN 82.86% 82.88% 96.00% 50.00% 88.80% 82.00%

GAN 88.56% 92.66% 92.00% 80.00% 91.96% 84.00%

GCN 80.00% 83.47% 90.00% 55.00% 86.34% 84.18%

ADHD For multinominal classification, GCN achieves the highest values for the accu-
racy score, precision score, and f1 score and the second highest for AUC. GAN also achieves
the second highest accuracy score with 68.16%, which is only 3% less than the accuracy
of GCN. The results remain the same in the binary classification scenario, with the only
exception in the precision score where the GAN model takes the first place while GCN has
the second place. Although the RBF-SVM model has the highest performance for specificity
and AUC scores, its recall score is rather low with only 1.67%, which fails to predict the
actual patients with disease. GAN and GCN therefore achieve better performance overall
among all the models.

ABIDE-II GAN and GCN outperform the other models in accuracy for both multi-
nomial classification (73.56% and 72.28%) and binary classification (77.40% and 75.16%).
GAN also shows the highest results in precision score and f1 score. kNN, RBF-SVM, and
random rorest classifiers obtained the highest and second highest specificity; however, their
recall scores are rather low. On the other hand, the specificity scores of GAN and GCN are
relatively high (88.34% and 88.9% respectively).
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PTSD This is a homogeneous dataset wherein the scanning of all subjects was carried
out on a single scanner using the same sequence. Since the sources of non-neural variability
are minimized relatively in this dataset, most models performed very well (AUC > 90%).
Therefore, it is not very informative to evaluate various classification models against one
another. Nevertheless, BrainNetCNN outperforms GAN and GCN in terms of accuracy,
precision, and f1 score for 3-way classification. Also in 3-way classification, while the
evaluation results of GCN were outperformed by Linear SVM and BrainNetCNN, the
model still has better performance than the others do (by a margin of 1% to 4%). As for
binary classification, it can be seen that GAN and GCN have approximately similar patterns
where they achieve the highest accuracy, highest recall, highest f1 score (97.76%, 100% and
98.40% respectively), and second highest precision score (96.92%) and specificity (93.33%).
The best performance on this dataset also includes RLR, Linear SVM, and BrainNetCNN.

ADNI GAN appeared to reach the top level of performance in both 4-way classification
and binary classification, particularly the accuracy score where the value is higher than
the second highest value by large margins (52.84% vs. 44.28% and 88.56% vs. 82.86%).
GCN displays only the second highest result in accuracy for multinomial classification. The
reasons for this issue may be due to the limited sample dataset for training and the fact
that the cut-off threshold may remove some important features in the graph.

(a) ADHD dataset (b) ABIDE-II dataset

(c) PTSD dataset (d) ADNI dataset

Figure 4. Illustration of the models’ performance sorted from worst to best for each dataset.

5.3. Effect of Different Thresholds on GCN’s Performance

Even though we have used a criterion for threshold selection that has been widely
reported before, we want to ensure that our choices do not remove any important connec-
tions that may negatively impact the model’s performance. Therefore, we estimated binary
classification for the four datasets and plotted against different cutoff thresholds. As we
can see in Figure 5a–d, all the accuracy results for all four datasets peak at our choices of
thresholds, justifying the selection of thresholds based on the elbow cutoff criterion.
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(a) ADHD dataset (b) ABIDE-II dataset

(c) PTSD dataset (d) ADNI dataset
Figure 5. GCN’s performance on different thresholds for each dataset.

5.4. Statistical Significance

A random classifier for the binary classification problem would have the probability of
50% to predict the label correctly. A model with a prediction below that expectation cannot
be used [48]. Therefore, we modeled the outcomes of each classifier as a Bernoulli process
B(n,p), where n is a total number of subjects from the test samples and p is the probability
of success. Then we want to test whether the probability of correctly predicted labels by
the classifiers could surpass the expected probability. The results of all the models on all
the datasets are shown in Table 5. GAN and GCN appear to achieve significant results on
all the datasets.

Table 5. The p-values of the Bernoulli test for all the models. Significance was defined at α = 0.05.

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.005 0.001 4.84 ×10−4 0.042
LDA 0.175 0.003 0.079 0.168
QDA 0.302 0.155 0.079 0.282
SLR 0.008 6.95 ×10−5 8.12 ×10−5 0.006
RLR 0.001 6.95 ×10−5 1.10 ×10−5 0.006

LinearSVM 0.459 6.95 ×10−5 1.10 ×10−5 0.017
RBF-SVM 0.009 0.021 4.84 ×10−4 0.042

RVM 0.003 1.88 ×10−4 0.009 0.017
MLP-Net 0.008 4.80 ×10−4 8.12 ×10−5 0.002
FC-Net 0.089 0.064 0.009 0.006

ELM 0.005 0.005 0.319 0.424
kNN 0.698 0.064 0.030 0.282

Bagged Tree 0.024 0.102 4.84 ×10−4 0.168
Boosted Tree 0.024 0.064 0.009 0.042

Boosted Stump 0.024 0.038 0.003 0.042
Random Forest 0.015 0.038 4.84 ×10−4 0.042
Rotation Forest 0.015 0.038 4.84 ×10−4 0.168
BrainNetCNN 1.06 ×10−5 6.95 ×10−5 1.10 ×10−5 5.35 ×10−5

GCN 5.48 ×10−7 2.41 ×10−5 1.10 ×10−5 5.35 ×10−5

GAN 1.53 ×10−6 7.87 ×10−6 1.10 ×10−5 2.66 ×10−5
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5.5. Statistical Comparison

To test the hypothesis that GAN and GCN generalize better than the other models, all
the accuracy scores generated by the CV method were collected as samples for a statistical
test. In particular, we made the assumption of the null hypothesis that the performances
of GAN and GCN are worse than those of the other models, and we would like to check
whether there is enough evidence to reject the null hypothesis. The Wilcoxon rank-sum
test was applied to compare the performances of GAN and GCN with other models.
The Wilcoxon technique, as an alternative approach to the Student’s t-test, can be more
appropriate when the sample is small because we cannot assume the data are normally
distributed [49]. The level of significance was selected at α = 0.05.

Table 6 (a) and (b) show the statistical results (p-value) of the Wilcoxon test for the
comparison of GAN and GCN, respectively, with the other models on all the datasets. The
tests indicated that GAN and GCN statistically have greater accuracy scores than almost all
the traditional ML models on all the datasets (p-value < 0.05). We also do not have enough
evidence to conclude that GAN and GCN statistically perform better than BrainNetCNN,
although the test suggests that GAN has a better performance than BrainNetCNN for the
ABIDE-II dataset (p-value = 0.02).

Table 6. The p-value of the Wilcoxon rank-sum test for the comparisons of GAN with the other
models (a) and GCN with the other models (b) on all the datasets. Significance was defined at
α < 0.05.

(a)

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.004 0.004 0.04 0.004
LDA 0.004 0.004 0.004 0.004
QDA 0.004 0.004 0.004 0.004
SLR 0.004 0.032 0.579 0.020
RLR 0.004 0.032 0.738 0.004

LinearSVM 0.004 0.059 0.738 0.004
RBF-SVM 0.004 0.004 0.004 0.004

RVM 0.004 0.004 0.004 0.004
MLP-Net 0.004 0.044 0.341 0.171
FC-Net 0.004 0.004 0.004 0.004

ELM 0.004 0.004 0.004 0.004
kNN 0.004 0.004 0.004 0.004

Bagged Tree 0.004 0.004 0.087 0.004
Boosted Tree 0.004 0.004 0.004 0.004

Boosted Stump 0.004 0.004 0.004 0.004
Random Forest 0.004 0.004 0.012 0.004
Rotation Forest 0.004 0.004 0.04 0.004
BrainNetCNN 0.206 0.020 0.738 0.198

GCN 0.794 0.187 0.738 0.059

(b)

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.004 0.004 0.04 0.008
LDA 0.004 0.004 0.004 0.008
QDA 0.004 0.004 0.004 0.004
SLR 0.004 0.14 0.579 0.159
RLR 0.004 0.38 0.738 0.048

LinearSVM 0.004 0.556 0.738 0.044
RBF-SVM 0.004 0.004 0.004 0.008
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Table 6. Cont.

(b)

Model
Dataset

ADHD ABIDE-II PTSD ADNI

RVM 0.004 0.016 0.004 0.044
MLP-Net 0.004 0.194 0.341 0.567
FC-Net 0.004 0.004 0.004 0.044

ELM 0.004 0.008 0.004 0.004
kNN 0.004 0.004 0.004 0.004

Bagged Tree 0.004 0.004 0.087 0.008
Boosted Tree 0.004 0.004 0.004 0.016

Boosted Stump 0.004 0.004 0.004 0.012
Random Forest 0.004 0.004 0.012 0.016
Rotation Forest 0.004 0.004 0.04 0.004
BrainNetCNN 0.095 0.258 0.738 0.825

GAN 0.270 0.877 0.738 1

6. Discussion

GAN shows excellent results on independent test data on both large and small datasets,
where the model had the best performance for the ABIDE-II, PTSD, and ADNI datasets
and the second best performance for the ADHD dataset. The improvement of GAN using
BrainNetCNN as the backbone network over using just BrainNetCNN alone demonstrates
the benefits of data augmentation by GAN. This could potentially address the problem
of data scarcity for neuroimaging based diagnostic prediction in patient populations in
neurology and psychiatry.

Table 7 shows the computational time required for each model to complete training
across datasets. Generally, all three deep learning models require more time to train than
the traditional method, which can be attributed to their complexity and larger number
of trainable parameters. We can observe that the GAN exhibits the longest training time.
This is because the GAN model needs to learn the data distribution to synthesize data,
in addition to the time required for training the classifier. Despite this extended training
time, GAN achieves the best performance among all models across the four datasets.
Notably, GCN requires less training time than BrainNetCNN across the three datasets
(ABIDE-II, PTSD, and ADNI), yet it achieves better performance in ABIDE-II and ADNI
and equivalent performance in PTSD. This suggests that, despite requiring fewer trainable
parameters, GCN is a superior tool for capturing the complex structure of brain networks.
Some traditional models require very little training time, sometimes as low as 0.01 s.
However, their performance does not match that of GAN and GCN. This indicates a
trade-off between training time and performance across traditional and deep learning
models. In future research, there is a need to decrease the training time of GAN and GCN
while maintaining satisfactory accuracy results to enhance their practical applicability in
real-world clinical settings.

In Figure 3a–d, we can see that each dataset has a different cut-off threshold. As
mentioned above, we aim to retain only the strong connections in the backbone network
crucial for identifying abnormal patterns in individuals with brain disorders. Therefore,
we intend to prune the low tail of the curve, which comprises solely low connection values.
However, selecting an excessively high threshold may result in the elimination of many
relevant connections, thereby negatively impacting accuracy performance (as demonstrated
by examples in Figure 5a–d, where accuracy decreases with increasing thresholds). To
strike a balance, we opt to set the threshold at the elbow of each curve distribution, which
shares a similar concept with the elbow criterion used in k-means clustering. This choice
allows for the retention of meaningful connections while removing redundant, noisy ones.
Our hypothesis is validated by the accuracy results presented in Figure 5. Additionally,
since each dataset exhibits distinct distributions in connection values, the selection of the
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elbow must vary accordingly. This accounts for differences in cut-off threshold selection
across datasets.

Table 7. The comparison of computational time (in seconds) required to train each model.

Model
Dataset

ADHD ABIDE-II PTSD ADNI

GNB 0.12 0.11 0.01 0.01
LDA 1.65 1.49 0.22 0.34
QDA 6.28 3.09 0.07 0.1
SLR 44.18 29.14 2.18 5.35
RLR 21.29 14.88 1.41 3.54

LinearSVM 67.83 4.22 3.08 0.48
RBF-SVM 5.13 1.61 0.05 0.3

RVM 242.32 92.47 35.31 23.24
MLP-Net 24.09 19.55 10.77 8.19
FC-Net 18.86 17.26 10.17 9.42

ELM 2.02 0.08 0.17 0.17
kNN 0.409 0.23 0.01 0.01

Bagged Tree 52.74 35.92 1.32 2.79
Boosted Tree 5.06 4.40 0.388 0.63

Boosted Stump 4.02 3.99 0.41 0.55
Random Forest 5.20 3.23 0.29 0.30
Rotation Forest 304.66 201.79 19.89 34.10
BrainNetCNN 114.42 133.79 38.74 132.46

GCN 144.6 110.57 34.13 90.76
GAN 194.98 236.23 83.29 260.87

7. Limitations and Future Research

The hyperparameters used in this paper were obtained from our previous works [12,18],
where a hyperparameter tuning approach was employed to select the optimal parameters
yielding the best results. Therefore, we applied the same parameters to this paper and
achieved good results. However, it must be noted that extensive tuning of hyperparameters
to a given dataset makes the model overfit the data and hence makes it less generalizable.
This is not desirable in clinical diagnostic applications since there is wide variability in the
human population, and we want these models to be generally applicable.

Ensemble methods can combine multiple deep neural networks to achieve more
stable and generalizable predictions by mitigating variance and reducing generalization
errors. However, due to the distinct characteristics and nature of GANs and GCNs, the
development of ensemble frameworks for these techniques remains incomplete. While
implementing this method requires careful planning and a significant time investment, its
potential benefits are substantial. In our future work, we aim to explore the integration of
GANs and GCNs to investigate whether this combination can lead to further performance
improvements in terms of accuracy.

Interpretability is considered a crucial factor when integrating deep learning into
clinical practice. In our study, we employed GCN coupled with a top-k pooling method.
This approach offers interpretability by selecting a set (k) of the most relevant brain regions
most predictive of brain disorders. These identified regions have the potential to serve
as biomarkers, helping in the early detection of diseases. Although the paper has not
presented the results, the methods hold significant potential, and we plan to implement
them in future work.

GCN illustrates the effectiveness of applying graph neural networks to graph-structure
data by achieving the highest performance in the ADHD dataset and also comparatively
good results in other datasets. One of the ways to improve GCN is to train embedding of
nodes in a space that has fewer dimensions instead of directly using row vectors as feature
vectors [50]. This technique utilizes a framework from an encoder-decoder perspective
that can better capture the information contained in the data. The design of the adjacency
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matrix also plays an essential role. Instead of static non-directional graphs obtained from
FC, directional graphs can be obtained using effective connectivity [51]. The graphs could
also be computed across different blocks of time to estimate the dynamics [52]. These types
of advanced graphical features, when used with GCN, have the potential to improve our
understanding of the mechanisms underlying neuronal dynamics by examining alterations
between patients and healthy controls.

8. Conclusions

We identified two major challenges for the application of deep learning for neuroimaging-
based diagnostic classification: small sample sizes of patients and incompatibility of graph-
ical features of brain networks and architectures of traditional deep learning models. We
have illustrated how these issues can be addressed using brain connectivity features from
four different clinical datasets. The patient data scarcity issue was addressed using GANs,
while GCNs allowed us to conveniently handle graph-based features within a deep learning
framework. Both GAN and GCN provided the best and second best accuracy for the four
clinical datasets we used.
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Abstract: It is imperative to study individual brain functioning toward understanding the neural
bases responsible for individual behavioral and clinical traits. The complex and dynamic brain
activity varies from area to area and from time to time across the entire brain, and BOLD-fMRI
measures this spatiotemporal activity at large-scale systems level. We present a novel method to
investigate task-evoked whole brain activity that varies not only from person to person but also from
task trial to trial within each task type, offering a means of characterizing the individuality of human
brains when performing tasks. For each task trial, the temporal correlation of task-evoked ideal time
signal with the time signal of every point in the brain yields a full spatial map that characterizes
the whole brain’s functional co-activity (FC) relative to the task-evoked ideal response. For any
two task trials, regardless of whether they are the same task or not, the spatial correlation of their
corresponding two FC maps over the entire brain quantifies the similarity between these two maps,
offering a means of investigating the variation in the whole brain activity trial to trial. The results
demonstrated a substantially varied whole brain activity from trial to trial for each task category.
The degree of this variation was task type-dependent and varied from subject to subject, showing a
remarkable individuality of human brains when performing tasks. It demonstrates the potential of
using the presented method to investigate the relationship of the whole brain activity with individual
behavioral and clinical traits.

Keywords: human brain function; whole brain activity; individuality

1. Introduction

Our perception, cognition and action are mediated by brain function. Brain functional
organization consists of multiple functional systems from simple systems such as sensori-
motor and visual systems to complex cognitive systems such as language. These separated
systems seem to suggest a functional segregation of brain function, but human behavior is
the result of an integrated functioning of the whole brain’s activity. For example, perform-
ing a simple visually cued finger-tapping (FT) task evokes both visual and sensorimotor
systems. The information of visual cue is first processed through the visual system and
then triggers the motor system to plan and execute the task of tapping fingers, which
consequently evoke the somatosensory system. This performance may vary from trial to
trial due to possible attention variation and interaction among these systems, resulting
in a task-evoked whole brain activity that may vary from trial to trial. Investigating this
trial-by-trial whole brain activity may provide insight to understand the relationship of
brain activity with individual behavior.

Even without performing any specific task, human brain intrinsic activity accounts for
20% of all the energy consumed by the body to maintain the operations of the brain, and
these operations involve the acquisition and maintenance of information for interpreting,
responding to and predicting environmental demands [1]. This intrinsic activity, i.e., the
resting-state (rs) activity, is spontaneous but exhibits a surprising level of spatial and temporal
organization across the entire brain [2,3]. Numerous rs-fMRI studies demonstrate the existence
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of multiple functional connectivity networks (FCNs) within the entire brain [4–6]. The sliding
window approach of analyzing rs-fMRI data reveals the time-varying behavior of these
FCNs, demonstrating dynamic FCN from time to time [7]. These rs-fMRI studies, however,
are group-based studies that analyze the fMRI data in a standard template space. It remains
to be explored how to extend the rs-fMRI technique to investigate the relationship of
window-by-window activity of FCNs with individual behavior.

A recent combined rs- and task-fMRI study revealed the relationship of functional
connectivity of the sensorimotor and visual cortical networks between resting and task
states [8]. The study showed that the intrinsic and task-evoked FCNs shared a common
network and the task enhanced the coactivity within that common network in comparison
to the intrinsic activity. However, the task activated only partial but not whole of the
intrinsic FCN. The task also activated substantially additional areas outside the intrinsic
FCN, demonstrating the different functioning of the intrinsic FCNs compared to the task-
evoked FCNs. Another combined rs- and task-fMRI study compared the intrinsic activity
with the activity evoked by tasks at several levels of analysis from an FT-activated area
within the primary sensorimotor cortex to the entire brain [9]. Contrary to our intuition,
the intrinsic activity was found to be substantially larger than the task activity at all levels
of analysis. The study also found that, for the task state, the brain controlled the intrinsic
activity not only during the task period but also during the rest between tasks. The brain
activated a task-specific network only when the task was performed but kept it relatively
“silent” for other different tasks, and at the same time, it simultaneously controlled the
activation of all task-specific networks during the performance of each task. These results
demonstrate a dynamic whole brain activity that may depend on each individual brain’s
controlling of its activity, and consequently, the whole brain activity may vary from task
trial to trial for each individual brain. Accordingly, investigating this trial-by-trial whole
brain activity may provide insight to understand the relationship of brain activity with
individual behavior.

The complex and dynamic brain activity varies from area to area and from time to time
across the entire brain. BOLD-fMRI measures this spatiotemporal activity at large-scale
systems level [10,11]. Numerous fMRI studies have demonstrated its effectiveness and
reliability in investigating the common features of human brain functional organization at a
group level (i.e., the commonality across the subjects within a group) and the effects of brain
disorders on brain activity. It is imperative, however, to study individual brain functioning
for understanding the neural bases responsible for individual behavioral and clinical traits.
Person-specific neuroimaging approaches in investigating individual brain functioning
have been reported in the literature [12–15]. In this study we present a novel method to
investigate task-evoked whole brain activity that varies not only from person to person
but also from task trial to trial within each task type, offering a means of characterizing the
individuality of human brains when performing tasks.

2. Materials and Methods

We extend our previous four studies [9,16–18]. This study analyzed the same fMRI data. It
used the same subjects, same image acquisition, and similar image preprocessing procedures.
We briefly describe each paragraph. For more information, refer to our previous study [16].

Participants: 9 healthy subjects (4 female and 5 male, ages 21–55 years old) participated
in the study.

Image acquisition: functional brain images were acquired on a GE 3.0 T clinical scanner
with an 8-channel head coil using a gradient echo Echo-Planar-Imaging pulse sequence
(TE/TR = 28/2500 ms, flip angle 80◦, FOV 224 mm, matrix 64 × 64, slice thickness 3.5 mm,
and spacing 0.0 mm). Thirty-eight axial slices to cover the whole brain were scanned, and
the first three volume images were discarded. Each subject undertook a 12 min task-fMRI
scan while performing three different tasks. Each task was presented eight times, for a total
of 24 task trials, and the task presentation was interleaved. Each trial comprised a 6 s task
period followed by a 24 s rest period, resulting in 12 volume images for each task trial. Task
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1 was a word-reading (WR) paradigm: subjects silently read English words. Task 2 was a
pattern-viewing (PV) paradigm: subjects viewed a black-and-white striped pattern with a
spatial frequency of 2.8 cycles per degree. Task 3 was a visually cued FT paradigm: each
subject tapped the five fingers of their right hand as quickly as possible in a random order.
During the 24 s rest period, subjects were asked to focus their eyes on a small fixation mark
at the screen center and try not to think of anything. After the task-fMRI scan, T1-weighted
whole brain MR images were also acquired using a 3D IR-SPGR pulse sequence.

Image preprocessing: image preprocessing of the functional images was performed
using AFNI (analysis of functional neuro images) software (http://afni.nimh.nih.gov/
afni, accessed on 11 December 2023, Version AFNI_2011_12_21_1014) [16,19]. It included
removing spikes, slice-timing correction, motion correction, spatial filtering with a Gaussian
kernel with a full-width half-maximum of 4.0 mm, computing the mean volume image,
bandpassing the signal intensity time courses to the range of 0.009–0.08 Hz, and computing
the relative signal change (%) of the bandpassed signal intensity time courses. After these
preprocessing steps, further image analysis was carried out using in-house developed
Matlab-based software (MATLAB R2019b) algorithms.

Quantification of trial-by-trial brain activity within each subject: task-evoked brain
activity can be characterized by an ideal BOLD response time signal [20]. This ideal
response was generated by convolving the 6 s task on and 24 s task off temporal paradigm
with a hemodynamic response function, using the 3dDeconvolve program in AFNI with
the convolution kernel SPMG3. For each task trial, the temporal correlation (TC) r of this
ideal time signal with the time signal of every point in the brain yields a full spatial map
that characterizes the whole brain’s functional co-activity (FC) relative to the task-evoked
ideal response. This computation results in 8 FC maps for each of the three task categories
and each subject. A given task should evoke similar FC maps by repeating the task. For any
two task trials, regardless of whether they are the same task or not, the spatial correlation
(SC) R of their corresponding two FC maps over the entire brain quantifies the similarity
between these two maps, offering a means of investigating the variation in the whole
brain activity trial to trial. For each individual subject, the SC R values of all pairwise FC
maps for all task trials measure the variations in these FC maps and therefore quantify the
individuality of that subject in performing these tasks.

For each subject, each FC map uniquely characterizes the whole brain’s activity when
performing a given task trial for that subject, offering a marker to distinguish tasks based
on their FC maps. To test this prediction, we choose one FC map from each task category
and use these three FC maps as their corresponding task markers to predict the task type
of each trial for the remaining 21 trials. For a given test trial, the predicted task type
is the one with the largest SC R among the three chosen FC maps. There are a total of
512 combinations in choosing three FC maps from the three task categories and 21 test trials
for each choice, resulting in a total of 10,752 tests for each individual subject. The correct
rate of identifying these task trials further quantifies the individuality of that subject in
performing these tasks.

The commonality of brain activity across the subjects: To examine this commonality,
for each subject, we first compute the task-mean FC map averaged over the 8 FC maps
for each task category and use this task-mean FC map to represent the whole brain’s FC
in performing that task. Then, using AFNI, we convert all 27 task-mean FC maps from
the 9 subjects to a standard template space (icbm452) for group analysis. In this standard
template space, for each task category, the SC R of any two paired FC maps over the entire
brain measures the similarity of brain activity between the corresponding two subjects in
performing that task, offering a means of quantifying the commonality of brain activity
across the subjects in performing these tasks.

3. Results

For each subject, based on the T1 and EPI images, in the original MRI space, we
generated a mask to cover the entire brain. For each subject and each task trial, we
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computed the TC r of the ideal BOLD response with the time signal of every voxel within
the brain mask to yield the FC map for that subject and that task. The trial-by-trial variation
in this TC r map across the brain for a representative subject is illustrated in Figure 1. Then,
for each subject, we computed the SC R for (1) all pairwise FC maps within each task
category (a total of 28 paired FC maps for each task category) and (2) all pairwise FC maps
between any two task categories (a total of 64 paired FC maps between two task categories)
(Table 1). The mean R within the FT category had the largest value among all categories for
each individual subject, showing the greatest similarity of the whole brain’s activity when
performing the FT task (Figure 2). The mean R within each of the other two tasks (WR
and PV) was substantially reduced for every subject, demonstrating that the whole brain’s
activity varied substantially from trial to trial when performing these tasks. The mean R
of paired FC maps between two task categories was relatively smaller in comparison to
that within a task category and varied substantially from subject to subject, consistent with
the expectation that the difference in the brain’s activity of performing two different tasks
should be larger than that of performing the same task repeatedly.

Brain Sci. 2024, 14, x FOR PEER REVIEW  5  of  11 
 

 

Figure 1. Illustration of the variation in trial-by-trial whole brain FC relative to the task-evoked ideal 

response for a representative subject. For the illustration purpose, these TC r maps were presented 

with threshold |r| > 0.58 (N = 12, p < 0.05). The right-hand FT-evoked activity in both the left sen-

sorimotor cortex and supplementary motor area was consistent for all 8 trials, but the FC for other 

cortical areas within the selected slice varied substantially from trial to trial (the third row in the top 

panel). Similarly,  the PV-evoked activity  in  the visual  cortex was also  consistent  for all 8  trials, 

though its degree varied substantially from trial to trial (the second row in the bottom panel). WR: 

word reading; PV: pattern viewing; FT: finger tapping; R: right; L: left. 

Table 1. Similarity of trial-by-trial whole brain FC within each task category and between any two 

task categories for each individual subject. This similarity was measured with the SC R of pairwise 

FC maps over the brain mask. The number of voxels within the brain mask varied from subject to 

subject with a mean brain size of 1085 ± 96 cm3. WR: word reading; PV: pattern viewing; FT: finger 

tapping; Min: minimum; Max: maximum; MN: mean; SD: standard deviation. 

Subject 
Number of 

Voxels 

R within WR Category  R within PV Category  R within FT Category 

Min  Max  MN  SD  Min  Max  MN  SD  Min  Max  MN  SD 

1  23,542  0.12  0.55  0.35  0.13  0.11  0.36  0.22  0.07  0.25  0.53  0.41  0.07 

2  27,035  0.10  0.44  0.27  0.09  0.05  0.36  0.20  0.09  0.19  0.57  0.43  0.10 

3  29,249  0.03  0.40  0.21  0.09  0.04  0.29  0.18  0.07  0.15  0.42  0.31  0.08 

4  22,005  −0.05  0.41  0.15  0.13  0.05  0.48  0.28  0.11  0.20  0.55  0.45  0.09 

5  25,877  −0.08  0.31  0.14  0.10  −0.04  0.47  0.27  0.12  0.30  0.63  0.45  0.09 

6  23,951  0.06  0.52  0.26  0.12  0.06  0.55  0.31  0.12  0.13  0.64  0.40  0.11 

7  23,681  0.00  0.47  0.24  0.13  −0.06  0.41  0.17  0.13  0.12  0.61  0.36  0.11 

8  26,840  0.01  0.40  0.16  0.09  0.05  0.42  0.25  0.09  0.05  0.59  0.32  0.15 

9  25,528  −0.01  0.48  0.23  0.14  −0.10  0.54  0.20  0.17  0.16  0.47  0.30  0.09 

MN  25,301  0.02  0.44  0.22  0.11  0.02  0.43  0.23  0.11  0.17  0.56  0.38  0.10 

SD  2229  0.06  0.07  0.07  0.02  0.07  0.09  0.05  0.03  0.07  0.07  0.06  0.02 

Subject 
Number of 

voxels 

R between WR and PV  R between WR and FT  R between PV and FT 

Min  Max  MN  SD  Min  Max  MN  SD  Min  Max  MN  SD 

1  23,542  −0.03  0.36  0.19  0.09  0.01  0.43  0.22  0.10  −0.05  0.41  0.14  0.10 

Figure 1. Illustration of the variation in trial-by-trial whole brain FC relative to the task-evoked ideal
response for a representative subject. For the illustration purpose, these TC r maps were presented
with threshold |r| > 0.58 (N = 12, p < 0.05). The right-hand FT-evoked activity in both the left
sensorimotor cortex and supplementary motor area was consistent for all 8 trials, but the FC for other
cortical areas within the selected slice varied substantially from trial to trial (the third row in the
top panel). Similarly, the PV-evoked activity in the visual cortex was also consistent for all 8 trials,
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Table 1. Similarity of trial-by-trial whole brain FC within each task category and between any two
task categories for each individual subject. This similarity was measured with the SC R of pairwise
FC maps over the brain mask. The number of voxels within the brain mask varied from subject to
subject with a mean brain size of 1085 ± 96 cm3. WR: word reading; PV: pattern viewing; FT: finger
tapping; Min: minimum; Max: maximum; MN: mean; SD: standard deviation.

Subject Number
of Voxels

R within WR Category R within PV Category R within FT Category

Min Max MN SD Min Max MN SD Min Max MN SD

1 23,542 0.12 0.55 0.35 0.13 0.11 0.36 0.22 0.07 0.25 0.53 0.41 0.07

2 27,035 0.10 0.44 0.27 0.09 0.05 0.36 0.20 0.09 0.19 0.57 0.43 0.10

3 29,249 0.03 0.40 0.21 0.09 0.04 0.29 0.18 0.07 0.15 0.42 0.31 0.08

4 22,005 −0.05 0.41 0.15 0.13 0.05 0.48 0.28 0.11 0.20 0.55 0.45 0.09

5 25,877 −0.08 0.31 0.14 0.10 −0.04 0.47 0.27 0.12 0.30 0.63 0.45 0.09

6 23,951 0.06 0.52 0.26 0.12 0.06 0.55 0.31 0.12 0.13 0.64 0.40 0.11

7 23,681 0.00 0.47 0.24 0.13 −0.06 0.41 0.17 0.13 0.12 0.61 0.36 0.11

8 26,840 0.01 0.40 0.16 0.09 0.05 0.42 0.25 0.09 0.05 0.59 0.32 0.15

9 25,528 −0.01 0.48 0.23 0.14 −0.10 0.54 0.20 0.17 0.16 0.47 0.30 0.09

MN 25,301 0.02 0.44 0.22 0.11 0.02 0.43 0.23 0.11 0.17 0.56 0.38 0.10

SD 2229 0.06 0.07 0.07 0.02 0.07 0.09 0.05 0.03 0.07 0.07 0.06 0.02

Subject Number
of voxels

R between WR and PV R between WR and FT R between PV and FT

Min Max MN SD Min Max MN SD Min Max MN SD

1 23,542 −0.03 0.36 0.19 0.09 0.01 0.43 0.22 0.10 −0.05 0.41 0.14 0.10

2 27,035 −0.07 0.35 0.14 0.09 −0.10 0.27 0.13 0.09 −0.27 0.28 0.06 0.12

3 29,249 −0.09 0.43 0.14 0.09 −0.00 0.35 0.18 0.10 −0.10 0.29 0.09 0.10

4 22,005 −0.20 0.43 0.11 0.13 −0.28 0.25 −0.04 0.14 −0.22 0.21 −0.00 0.12

5 25,877 −0.16 0.43 0.15 0.14 −0.26 0.34 0.04 0.13 −0.22 0.39 0.09 0.14

6 23,951 −0.07 0.56 0.25 0.13 −0.06 0.49 0.18 0.12 −0.10 0.35 0.14 0.12

7 23,681 −0.16 0.36 0.09 0.11 −0.27 0.47 0.12 0.15 −0.28 0.34 0.02 0.13

8 26,840 −0.18 0.33 0.10 0.11 −0.20 0.27 0.06 0.10 −0.23 0.23 0.00 0.10

9 25,528 −0.23 0.32 0.04 0.12 −0.18 0.38 0.02 0.11 −0.39 0.35 −0.00 0.16

MN 25,301 −0.13 0.40 0.13 0.11 −0.15 0.36 0.10 0.12 −0.20 0.32 0.06 0.12

SD 2229 0.07 0.08 0.06 0.02 0.11 0.09 0.09 0.02 0.11 0.07 0.06 0.02

Each FC map uniquely characterized the whole brain’s activity in performing that
task trial for that subject. Using FC map as a marker to distinguish tasks based on their FC
maps, for each individual subject, the correct rate of identifying these task trials was higher
than that of random selection correct rate of 33.3% for each of the three task categories
(Figure 3). This correct rate was substantially and consistently higher for the FT task than
that for the other two tasks of WR and PV, independent of the subjects. For all subjects,
the correct rate of identifying these task trials ranged from 41.2% to 77.4% with a mean of
62.3 ± 13.4% (SD) for the WR trials, 50.0% to 84.5% with a mean of 66.9 ± 10.9% for the PV
trials and 83.9% to 99.8% with mean 92.7 ± 5.8% for the FT trials, respectively. A paired
t-test analysis showed that this correct rate was significantly larger than that of random
selection for each task category (largest p < 0.0002). For each subject, we computed the
mean SC R within each task category and investigated the association of the correct rate
of identifying that task with this mean SC R value. A significant correlation between the
R and correct rate was observed across all subjects (r = 0.83, p = 1.9 × 10−5 for N = 27)
(Figure 3).
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Figure 2. Comparison of the mean spatial correlation (SC) R of pairwise FC maps within each task
category and between two task categories for each individual subject (left three columns) and the
group-mean values averaged over the nine subjects (right plot). WR: word reading; PV: pattern
viewing; FT: finger tapping. The error bars indicate the standard deviations.
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Figure 3. The correct rate (CR) of identifying task trials based on their FC maps for each individual
subject (left three columns) and the group mean averaged over the nine subjects (right top plot).
The dash lines indicate the random selection CR of 33.3% (1 out of 3 choices). The right bottom
plot illustrates the association of the correct rate with the SC R across the subjects. WR: word
reading; PV: pattern viewing; FT: finger tapping; RL: regression line. The error bars indicate the
standard deviations.

The task-mean FC map for each task category and each subject is illustrated in Figure 4.
This task-mean FC map showed a substantial variation not only between different tasks but
also from subject to subject (Figure 5). The group-mean SC R was larger within each task
category than that between task categories, showing the commonality of these task-evoked
FC maps across all subjects. Using each subject’s three task-mean FC maps as the three
task markers to identify the 24 tasks for the rest eight subjects, the correct rate of task
identification was 65.3% for WR, 90.3% for PV and 100% for FT, respectively, substantially
higher than the correct rate of 33.3% for random selection.
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4. Discussion and Conclusions

This study examined trial-by-trial whole brain activity for each individual subject. As
expected, the right-hand FT task activated the left sensorimotor cortex and supplementary
motor area consistently across all eight trials for each individual subject. The size of this
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activation in these areas, however, varied not only from trial to trial (Figure 1) but also from
subject to subject (Figure 4). Outside the sensorimotor system, the cortical activity varied
substantially from trial to trial for all subjects; i.e., some areas showed a positive activity
relative to the FT-evoked ideal response for one trial but a negative activity for another
trial, demonstrating a varied whole brain activity when performing these repeated FT tasks.
This variation in the whole brain activity from trial to trial characterizes the individuality
of the human brains in performing these repeated FT tasks. Similar results were observed
for the other two tasks of WR and PV with the same conclusion (Figures 1 and 4). The SC
R of two FC r maps quantifies the degree of the similarity of the whole brain activity in
performing the two tasks, regardless of whether they are the same task or not; i.e., the larger
the R value, the smaller the variation in the whole brain activity. Although the FT task
showed the smallest variation consistently across all nine subjects, this variation varied
substantially from trial to trial for every subject as reflected in their corresponding large
values of standard deviation (Figure 2), providing evidence to show the individuality of the
human brains in performing these repeated FT tasks. In comparison to the FT task, the WR
and PV tasks showed larger variations that also varied from subject to subject, providing
further evidence to demonstrate the individuality of the human brains in performing
these tasks.

For a given task, the FC r map across the entire brain reflects the whole brain’s activity
in performing that task and therefore provides a marker to identify the task based on its FC
r map. The correct rate of identifying these tasks was higher than that of random selection
for each individual subject (Figure 3), and as a group, this correct rate was significantly
higher than that of random selection for each task category (largest p < 0.0002). As the SC R
of any two FC r maps over the entire brain measures the similarity between these two maps
and the correct rate of identifying these two tasks depends on this similarity, as expected,
the correct rate of identifying these tasks was found to be positively associated with the SC
R (p = 1.9 × 10−5) (Figure 3). Among the three tasks of WR, PV and FT, the FT task had
the largest R value followed by PV and then WR, indicating a possible inverse relationship
of this R value with the degree of simplicity of the task. These results demonstrate the
potential of using the presented method to investigate the relationship of the whole brain
activity with individual behavioral and clinical traits.

For each subject, the task-mean FC r map of each task category reflects the common
brain activity in performing that task. This mean FC map substantially reduced the trial-
by-trial variation in the whole brain activity (last column in Figure 1). However, it varied
substantially from subject to subject for each of the three tasks (Figure 4), showing a large
variation in the whole brain activity from subject to subject when performing the same task.
This large variation was also reflected in the large value of standard deviation of the SC R
values for both within each task category and between any two task categories (left plot in
Figure 5), demonstrating a limited commonality of the whole brain activity across these
subjects when performing the same task. It provides further evidence to demonstrate the
imperative of developing novel method to investigate the relationship of the whole brain
activity with individual behavioral and clinical traits.

It may be worth comparing our presented method with those approaches reported
in the literature in regard to the person-specific neuroimaging approach for studying
individual brain functioning and its relationship to personal traits. First, to the best of
our knowledge, we have not seen any method that can measure trial-by-trial whole brain
activity within each task category for each individual subject. Second, most task-fMRI
studies comprise group-based analysis aiming to identify regions of common activation or
common functional networks across participants. Such an analysis requires the transference
of each individual data to a standard template and then their analysis of as a group.
This approach is effective and reliable in identifying the commonality of brain functional
organization across a group as demonstrated by numerous fMRI studies. However, it may
ignore important differences across the participants that might be responsible for individual
traits. This is because individual brains may differ in size and shape, functional areas may vary
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in anatomical location across individuals, and abnormal brain structure may be associated
with neurological disorders [21–25]. Accordingly, it is imperative to be able to analyze the fMRI
data for each individual subject. Third, although person-specific approaches can effectively
and reliably identify individual from group, they use either a pre-defined functional brain atlas
or group-based parcellations and/or functional networks defined in a standard template space
as their frameworks to carry out their analyses [12,26–30]. In comparison, the analysis of our
presented method is conducted in the original MRI space for each individual participant,
which might be crucial for applying the BOLD-fMRI technique to daily clinical practice.

In clinical practice, fMRI has been applied to presurgical planning and preoperative
risk assessment for brain tumor and epilepsy surgeries [31–33]. To preserve language from
surgical damage is a challenging but crucial task. It requires a precise mapping of lan-
guage areas and associated networks. One main challenge is to dissociate task-associated
from language-essential neural activity with fMRI because even a simple task may evoke
multiple networks. One language fMRI mapping study with direct cortical stimulation of
40 consecutive patients with gliomas showed a 37.1% sensitivity and 83.4% specificity of
the fMRI mapping in identifying the language areas, demonstrating the demand of substan-
tially improved language fMRI mapping in clinical practice [34]. This result is consistent
with our observed large variation in the WR task in the whole brain activity for both within
each subject (Figures 1 and 2) and between subjects (Figures 4 and 5). As our presented
method enables us to analyze trial-by-trial whole brain activity for each individual subject,
it may improve the precision of language fMRI mapping. Furthermore, combining artificial
intelligence with this method may develop a more effective and reliable method to examine
individual human brain functioning that is crucial in daily clinical practice.

5. Conclusions

This study presented a novel method to examine trial-by-trial whole brain activity for
each individual subject, providing insights for investigating the individuality of human
brains when performing tasks. The results demonstrated a substantially varied whole
brain activity from trial to trial for each task category. The degree of this variation was task
type-dependent and varied from subject to subject, showing a remarkable individuality of
human brains when performing tasks. It demonstrates the potential of using the presented
method to investigate the relationship of the whole brain activity with individual behavioral
and clinical traits.
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Abstract: The study aimed to differentiate experts from novices in laparoscopic surgery tasks using
electroencephalogram (EEG) topographic features. A microstate-based common spatial pattern
(CSP) analysis with linear discriminant analysis (LDA) was compared to a topography-preserving
convolutional neural network (CNN) approach. Expert surgeons (N = 10) and novice medical
residents (N = 13) performed laparoscopic suturing tasks, and EEG data from 8 experts and 13 novices
were analysed. Microstate-based CSP with LDA revealed distinct spatial patterns in the frontal and
parietal cortices for experts, while novices showed frontal cortex involvement. The 3D CNN model
(ESNet) demonstrated a superior classification performance (accuracy > 98%, sensitivity 99.30%,
specificity 99.70%, F1 score 98.51%, MCC 97.56%) compared to the microstate based CSP analysis with
LDA (accuracy ~90%). Combining spatial and temporal information in the 3D CNN model enhanced
classifier accuracy and highlighted the importance of the parietal–temporal–occipital association
region in differentiating experts and novices.

Keywords: fundamentals of laparoscopic surgery; electroencephalogram; skill classification; common
spatial pattern; temporal–spatial pattern recognition; deep neural networks

1. Introduction

Laparoscopic surgery training is a comprehensive module under the Fundamentals of
Laparoscopic Surgery (FLS) curriculum, aimed at equipping medical professionals, scien-
tists, and doctors with basic surgical skills required for successful laparoscopic procedures.
FLS is a joint program by the American Gastrointestinal and Surgery Association and
the American Academy of Surgery for general surgery [1]. FLS certification involves five
psychomotor tasks of increasing complexity: pegboard transfer, pattern cutting, placement
of a ligating loop, suturing with extracorporeal knot tying, and suturing with intracorpo-
real knot tying. This training focuses on cognitive and psychological abilities essential
for minimally invasive surgery and serves as a standardised assessment of physicians’
capabilities where brain correlates are important to robustly identify expertise [2].

To evaluate brain correlates of FLS skills, it is proposed that the brain forms a cognitive-
perceptual mental model [3,4] during the initial stages of the skill acquisition in a novel
laparoscopy environment [5–8]. Here, Fitts and Posner proposed a three-stage model
for motor skill acquisition, comprising the cognitive stage, the associative stage, and the
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autonomous stage [9]. During these stages for motor skill acquisition, the brain–behaviour
relationship can be explored based on portable brain imaging. Brain circuit mechanisms,
driven by motor skill proficiency, involve selective attention and cortical alterations in
motor planning and execution [6]. For example, specific brain mechanisms [10] subserved
by motor skill proficiency may represent dissociable selective attention or local excitability
alterations in the cortex during motor planning and execution that are postulated to
be driven by a supplementary motor area, premotor cortex, and cerebellum [11]—all
communicating via the thalamus [12] and the corticothalamic loops [13,14]. In this study,
we hypothesised that these semi-stable brain states involving selective attention and cortical
alterations in motor planning and execution can be estimated based on the topography
of electroencephalogram (EEG). The majority of contemporary brain–computer interfaces
utilizing EEG rely on machine learning algorithms [15] and a wide array of classifier types
is employed within this domain including facial expressions as control commands [16].

In this study, it is postulated that while experts will already have a cognitive perceptual
model for FLS task performance based on their prior experience, the novices will start
building the cognitive perceptual model on their first exposure to the FLS task [3,4]. Semi-
stable brain states have been analysed in prior studies based on microstates [17], which can
be estimated based on the scalp potential field or EEG topography [18], and are differentially
modulated by the vigilance level [19]. Microstates approach to analyse brain states has an
a priori assumption that only one spatial map accurately defines the brain’s global state
at a given time and that the residuals are considered noise [18]. This microstate-based
analysis has been applied to error-based learning using EEG in conjunction with functional
near-infrared spectroscopy during a complex surgical motor task [20]. Based on related
prior studies [14,21], we postulated in this study that the EEG topography during FLS
suturing with intracorporal knot tying task will differ between experts and novices. First,
we applied conventional common spatial pattern (CSP) approach, one of the most common
methods for feature extraction in brain–computer interfaces [22], to classify two skill levels,
experts and novices. We improved the traditional CSP method that is known to suffer
from noise sensitivity due to the L2 norm in its optimisation problem to find a spatial
filter [23]. We developed a microstate-based CSP approach that performed better due
to a metacriterion that favours the highest signal-to-noise ratio [24]. We presented these
preliminary results using microstate-based CSP approach at the Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) 2022 [21]. In our I/ITSEC
presentation, we focused on a cohort of 10 expert surgeons and 10 novice medical residents.
Through the application of a linear discriminant analysis with 10-fold cross-validation,
we successfully attained a classification accuracy exceeding 90%, utilizing spatial pattern
vectors extracted from the scalp. In this paper, we present a more advanced convolutional
neural network (CNN) based approach with Grad-CAM analysis [25] and compare the
results with our microstate-based CSP approach.

Our current study is motivated by prior studies that show non-Markovian and nonsta-
tionary microstates [26] can classify cognitive states using the attention-based time series
deep learning framework [27]. However, the challenge remains in pre-selecting scalp
potential topographies (microstates) that are considered stable [18], while short periods
of unstable EEG topographies may occur, e.g., during errors. Instead of preselecting EEG
microstates, one can use EEG topography as 3D tensor input for attention features in a
CNN, e.g., see ESNet [28], where topography-preserving EEG-based temporal attentive
pooling may be neurophysiologically interpretable [29] using Grad-CAM analysis [25].
Therefore, we adapted ESNet [28] to classify experts versus novices and compared the
temporally important topography-preserving time segments with the microstate-based CSP
approach [21] for mechanistic insights into skill learning [30]. Mechanistic insights were
guided by prior studies [30,31] using functional near-infrared spectroscopy (fNIRS) that
found cortical activation in the right prefrontal cortex, the right precentral gyrus, and the
right postcentral gyrus at the start of the FLS task. Then, the left inferior frontal gyrus, the
optical part, the left superior frontal gyrus, the medial orbital, the left postcentral gyrus, the
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gyrus, the left superior temporal gyrus, right superior frontal gyrus, and the medial orbital
cortical areas of the cortical areas of the orbital showed significant differences between
experts and novices in the error epochs [20]. In the current study, we analysed a subset
of participants from prior studies [20,30] where simultaneous EEG measurements were
conducted for our EEG topographic feature analysis.

2. Methods
2.1. Subjects and Experimental Setup

The study received approval from the Institutional Review Board of the University
at Buffalo, USA, and all procedures adhered to local research regulations for human
subjects. Thirteen neurologically normal novice medical students (seven females) and
ten experienced surgeons (five females), all right-handed, participated after providing
written informed consent. The EEG data utilised in this study are a subset of a previously
published study [20,30] where multimodal fNIRS-EEG data were collected.

The experienced surgeons, with 1 to 25 years of expertise in FLS laparoscopic suturing
tasks, were compared to novices new to FLS suturing with intracorporal knot tying. A prior
study [30] demonstrated a statistically significant superior performance of experienced
surgeons (overall score: 370.4, SD: 61.3) compared to novices (overall score: 84.2, SD:
65.3). Participants received verbal instructions and were equipped with laparoscopic tools
for the task, which involved suturing through two marks in a Penrose drain and tying
specific knots using needle drivers operated by both hands. The task began with the ‘start’
command, recorded in the multimodal data, and concluded when the subject cut both ends
of the suture within a 180 s timeframe.

A customised multimodal fNIRS-EEG montage with 32 active gel electrodes (Figure 1A)
was used to record brain activation signals. The EEG signals were captured by a wireless
LiveAmp system (Brain Vision, Brain Vision, LLC-515 N. Greenfield Parkway, Suite 100,
Garner, NC 27529, USA) at a rate of 500 Hz through 32 channels, as indicated by the grey
‘E’ discs in Figure 1A.
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reject problematic channels. The interpolation of bad channels was accomplished using 
spherical splines [32] within the ‘clean_rawdata’ function, followed by re-referencing the 
EEG time series to the global average. 

Task epochs were defined from the ‘start’ trigger by the experimenter, marking the 
initiation of the FLS task for each subject. The data then underwent artefact subspace re-
construction (ASR) using default settings in EEGLab, followed by re-referencing the EEG 
time series to the global average. ASR, an automated method, effectively removed transi-
ent EEG artefacts [33]. The default ASR parameter value of 20 was used, balancing the 
removal of non-brain signals with retaining brain activity, with the optimal range typi-
cally between 20 and 30 [33]. 

To focus on cortical sources corresponding with fNIRS HbO activity [20], a Laplacian 
spatial filter was applied to eliminate volume conduction from subcortical sources. Two 
expert subjects were excluded from the analysis due to the presence of ≥5 bad channels, 
as reliable microstate analysis requires the maximum number of bad channels to be less 
than five per subject [34]. Consequently, eight expert subjects remained in the study. 
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Microstate analysis was performed using the EEGlab toolbox [35] after aggregating 
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hemoglobin peaked within 10 seconds during complex motor actions. Therefore, a 10 s 
duration was deemed sufficient for investigating the FLS complex task onset response us-
ing EEG and functional near-infrared spectroscopy [20]. FLS task related EEG dynamics 
will continue beyond the initial 10 seconds, which was not investigated in this study. First, 
we identified EEG microstate prototypes based on modified K-means clustering in EE-
Glab. The modified clustering of K-means was based on the goodness of fit of the micros-
tate segmentation determined from the global explained variance (GEV) and the cross-
validation criterion (CV). Here, the GEV criterion should theoretically become monoton-
ically larger with increasing number of clusters [35]. The modified clustering of K-means 
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from spontaneous EEG data during the FLS task (and the rest periods between the trials). 
Here, global field power (GFP) peaks are used to segment the EEG time series. The 

Figure 1. (A) Multimodal sensor montage where the 32 active EEG gel electrodes (E1–E32) are shown
with grey discs. The fNIRS source (S1–S16) and detectors (D1–D15) were not used in the current
study. (B) EEG data processing pipeline in EEGLab and BCILab for the CSP-based classification of
experts versus novices. (C) Repeated measures of FLS task (3 min) with rest periods (2 min).

2.2. Data Preprocessing in EEGLab

The EEG data underwent comprehensive pre-processing and offline analysis using
the EEGLab toolbox, an open-source software (https://sccn.ucsd.edu/eeglab/index.php
accessed on 27 November 2023), designed for microstate analysis [18]. Initially, the data
were downsampled to 250 Hz and high pass filtered at 1 Hz. To eliminate line noise, the
‘cleanline’ function was applied, followed by the ‘clean_rawdata’ function to identify and
reject problematic channels. The interpolation of bad channels was accomplished using
spherical splines [32] within the ‘clean_rawdata’ function, followed by re-referencing the
EEG time series to the global average.

Task epochs were defined from the ‘start’ trigger by the experimenter, marking the
initiation of the FLS task for each subject. The data then underwent artefact subspace
reconstruction (ASR) using default settings in EEGLab, followed by re-referencing the EEG
time series to the global average. ASR, an automated method, effectively removed transient
EEG artefacts [33]. The default ASR parameter value of 20 was used, balancing the removal
of non-brain signals with retaining brain activity, with the optimal range typically between
20 and 30 [33].

To focus on cortical sources corresponding with fNIRS HbO activity [20], a Laplacian
spatial filter was applied to eliminate volume conduction from subcortical sources. Two
expert subjects were excluded from the analysis due to the presence of ≥5 bad channels, as
reliable microstate analysis requires the maximum number of bad channels to be less than
five per subject [34]. Consequently, eight expert subjects remained in the study.

2.3. Data Processing of EEGLab and BCILab for Microstate-Based CSP Analysis

Microstate analysis was performed using the EEGlab toolbox [35] after aggregating
EEG data during the FLS task from all experts (N = 8) and novices (N = 13), which is
detailed in our published study [20]. In this study, we investigated the FLS complex
task onset response where a previous study [36] demonstrated that the concentration of
oxyhemoglobin peaked within 10 seconds during complex motor actions. Therefore, a
10 s duration was deemed sufficient for investigating the FLS complex task onset response
using EEG and functional near-infrared spectroscopy [20]. FLS task related EEG dynamics
will continue beyond the initial 10 seconds, which was not investigated in this study.
First, we identified EEG microstate prototypes based on modified K-means clustering
in EEGlab. The modified clustering of K-means was based on the goodness of fit of
the microstate segmentation determined from the global explained variance (GEV) and
the cross-validation criterion (CV). Here, the GEV criterion should theoretically become
monotonically larger with increasing number of clusters [35]. The modified clustering of K-
means in EEGlab found topographical maps of polarity-invariant microstate prototypes [35]
from spontaneous EEG data during the FLS task (and the rest periods between the trials).
Here, global field power (GFP) peaks are used to segment the EEG time series. The
minimum peak distance was set at 10 ms (default) and 1000 randomly selected peaks
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(default) per subject were used for segmentation. Then, we rejected the GFP peaks that
exceeded the standard deviation of all GFPs of all maps one time to segment the EEG data
into a predefined number (2 to 8) of microstates. Here, the goal is to maximise the similarity
between the EEG samples and the prototypes of the microstates they are assigned to using
the modified K-means algorithm [35]. The modified K-means algorithm also sorts the
microstate prototypes in decreasing GEV. We had set 100 random numbers of initialisations
and 1000 maximum iterations for the modified K-means algorithm with 1 × 10−6 (default)
as the relative threshold of convergence [35]. These microstates provided prototypes for
subsequent microstate-based CSP analysis [21].

Microstate labels were applied to EEG samples from experts and novices based on
topographical similarity (called backfitting) using the EEGlab toolbox [35]. Modified K-
means algorithm [35] benefits of using k-means++ [37] for initialisation and the squared
Euclidean metric for similarity calculation. Since short periods of unstable EEG topogra-
phies can occur, we applied temporal smoothing. Then, the temporally smoothed EEG
topographies of experts (N = 8) and novices (N = 13) at the start of the FLS task in a 10 s
time window were subjected to CSP analysis and classification using BCILab [38]. Here, if
X1 and X2 are the EEG topographies from the experts and novices at the start of the FLS
task, viz., X1 is a matrix of rows 250 Hz× 10 s (=2500 data points) and columns 32 channels,

then, the desired spatial filter is obtained by, argmax
w

J(w) =
wT XT

1 X1w
wT XT

2 X2w
= wTC1w

wTC2w , where

w denotes the spatial filter, and C1 and C2 represent the covariance matrices of X1 and
X2, respectively. Using the Lagrange multiplier approach, the optimisation problem can
be written as, L(λ, w) = wTC1w− λ

(
wTC2w

)
, where λ is the Lagrange multiplier. The

optimisation problem to find the spatial filter, w, requires the derivative set to zero, i.e.,
δL
δw = 2wTC1− 2λwTC2 = 0. The solution to this optimisation problem are the eigenvectors,
M = C−1

2 C1, representing the spatial pattern vectors on the scalp. Here, the regularised
CSP can improve robustness in small sample setting [39], and the largest eigenvector from,
M1 = (C2 + αK)−1C1 and M2 = (C1 + αK)−1C2, represent the spatial pattern vectors on
the scalp with K assumed as an identity matrix [40]. Then, the classification was performed
using a simple linear discriminant analysis (LDA) with a 10-fold cross-validation. The
computational pipeline, starting from the raw EEG data to the classification, is shown in
Figure 1B. Figure 1C shows the repeated measure design with 3 min for the FLS task and
2 min for the rest period.

2.4. Data Processing for Topography-Preserving CNN Approach

The procedure to convert the EEG data into a cuboid tensor is represented in Figure 2.
Since spatiotemporal patterns were considered distinctive between experts and novices,
spatiotemporal patterns were represented as 3D data that contained spatial information
in two dimensions as well as temporal information in the third dimension. The EEG
time series obtained from each channel was first downsampled at 120 Hz [28] and then
projected to the corresponding position (from the scalp EEG montage; see Figure 1A) into
a 2D image of a 16 × 16 square grid (height × width) using an azimuthal equidistant
projection. We followed [28] so the EEG data during the FLS task from 2 s before the start
trigger was divided into 3 s segments using a 1-second sliding window. The process was
repeated in all sliding time steps, and the empty locations on the 16 × 16 grid between
the projected electrode locations were interpolated using the griddata() function, Matlab
(Mathworks, Inc., Natick, MA, USA) built-in function. Here, the griddata() function grids
process 2D or 3D scattered data with a desired interpolation method. We used the v4
interpolation method in Matlab (Mathworks, Inc., USA) for better quality instead of cubic
spline interpolation in ESNet [28]. Finally, the EEG data was shaped as a 3D tensor that
included spatio-temporal information (that is, height × width × time). Here, we generated
Xeeg ∈ R16×16×360 3D EEG image for each 3-seconds (360 data points) EEG time window
according to ESNet [28]. Therefore, 21 subjects (8 Experts and 13 Novices), with each
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subject performing the task three times (trials or reps), provided 21 subjects × 3 reps × 180
time windows (=11,340 cuboid tensors).
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2.5. CNN for the 3D-EEG Tensor Classification of Expert versus Novice

A 3D CNN model, called ESNet [28], takes into account both spatial and temporal
information by implementing a specific pooling layer called temporal attentive pooling
(TAP) layer that compresses temporal information efficiently. The structure of the 3D CNN
model is shown in Figure 3, which we adapted from ESNet [28]. The model consisted of
three convolutional layers, and each of them is followed by a rectified linear unit (ReLU)
activation function. Each layer inputs the channel information and doubles it as an output.
Short-length kernels and strides were used for spatial information (i.e., the first and second
axes) in each convolutional layer. Then, for temporal information (i.e., the third axis),
short length kernels and stride were used in the second and third convolutional layers,
while longer kernels and stride lengths were used in the first convolutional layer [28]. In
summary, we determined the size of [kernel, stride] = [(2, 2, 10), (2, 2, 4)] for the first layer,
[(2, 2, 2), (2, 2, 2)] for the second layer, and [(2, 2, 3), (2, 2, 2)] for the third layer. After
the three convolutional layers, the TAP layer followed an efficient pooling process in the
CNN model. The TAP layer first conducts Spatial Attentive Pooling (SAP), where the
characteristic after the third convolutional layer is multiplied element by element by a
trainable parameter, ϕ∈R2×2×46×64, and then computes the sum along the spatial axis for
the characteristic, resulting in the SAP feature shape of R1×1×46×64. Then, the SAP feature
was classified by a Fully Connected (FC) layer, followed by the Softmax activation function,
and multiplied element by the original feature after the third convolutional layer, and then,
the sum along the temporal axis for the result was calculated. In total, the entire TAP
process converted the shape of the original feature R2×2×46×64 to R2×2×1×64, providing a
larger weight to the relevant temporal information and, therefore, compressing it efficiently.
The detailed structure and concept of the TAP layer are described in the original paper [28].
Then, the feature after the TAP layer was passed through the FC layer, followed by the
ReLU function, Dropout, and Softmax layer. In addition to the dropout layer, we further
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implemented the batch normalisation between each convolutional layer and the ReLU
function, after the TAP layer and FC layer and the ReLU function. The L2 regularisation
was also adapted in a kernel and bias at each FC layer with a regularisation factor of
0.01 to prevent overfitting. The mechanistic insights were based on Gradient-weighted
Class Activation Mapping (Grad-CAM) for “visual explanations” of decisions from our
CNN-based model [25]. GradCAM uses the gradients of the EEG map flowing into the final
convolutional layer to produce a coarse localisation map highlighting the salient regions
for expert versus novice classification.
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2.6. CNN Classification & Evaluation Criteria

We applied our customised ESNet [28], as shown in Figure 3, to classify experts
versus novices with a five-fold cross-validation. In the five-fold cross-validation and
testing, we divided the participants data in the 9:1 ratio, in which 10% of the total experts
(8 subjects × 3 reps × 180 time windows) and novices (13 subjects × 3 reps × 180 time
windows) data were used as holdout test data, and 90% of the total data were used for
ten repeats of five-fold cross-validation. In each five-fold cross-validation, we trained the
model using 80% of the 90% of total experts (8 subjects × 3 reps × 180 time windows) and
novices (13 subjects × 3 reps × 180 time windows) data and cross-validated the model
using 20% of the 90% total data, as shown in Figure 4. In each training epoch, the batch size
was set at 32, and the training epoch was repeated 200 times, with five iterations within a
five-fold cross-validation, with the learning rate set at 0.001. Then, for testing, this five-fold
cross-validation was repeated 10 times that generated a new training and validation splits of
the trials, at random, where we initialised the weights each time using the Keras initialiser
function ‘glorot_uniform’, in which random values are pulled as initialised variables. The
results of each iteration were evaluated with the holdout test data (10% of the total data)
using indices: accuracy, F1 score, Mathews correlation coefficient (MCC), sensitivity, and
specificity. The definition of F1 score, MCC, sensitivity, and specificity are as follows:

F1 =
(precision)× (recall)
(precision) + (recall)

× 2

MCC =
(TP× TN − FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Sensitivity = Recall =
TP

TP + FN

Speci f icity =
TN

FP + TN
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Figure 4. Data distribution for the five-fold cross-validation procedure that was repeated 10 times
that generated a new training and validation splits of the trials, at random. Test data, shown in
orange, remained the same for all the 10 repeats of the five-fold cross-validation.

Here, precision is shown as follows:

Precision =
TP

FP + FP
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Here, TP, FP, FN, and TN are the elements of the confusion matrix for binary classifica-
tion.

C = [TP, FP; FN, TN]

Moreover, TP (true positive) and FP (false positive) are the ratios of data correctly and
falsely classified as positive data (i.e., Expert), respectively. Then, FN (false negative) and
TN (true negative) are the numbers of data correctly and falsely classified as negative data
(i.e., Novice), respectively.

3. Results
3.1. Microstate-Based CSP Classification of Expert versus Novice

We selected six microstate EEG prototypes based on the global explained variance
(GEV) and the cross-validation criterion (CV) that was published earlier [20]. Here, the
CV criterion, which points to the best clustering solution at its smallest value, reaches the
minimum value for six microstates that are shown in Figure 5, sorted in decreasing GEV.
As expected for a visuomotor task, the highest GEV is for microstate 1, corresponding to
activation of the visual cortex (visual imagery [41]). The six microstate prototypes were
backfitted to the EEG for 10 s at the start of the FLS task where it is postulated to be the
start of building a cognitive-perceptual model [3,4] by the novices [6].
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Figure 5. The 1–6 EEG microstate prototypes are sorted by decreasing global explained variance.
These six EEG microstates are thought to represent basic building blocks of cognitive and perceptual
processes during FLS skill learning [20].

The global field power (GFP) of the first active microstates at the start of the FLS
task was subjected to CSP analysis to find the spatial filters. Then, after applying spatial
filters to the expert and novice EEG data and extracting features from them, the experts
and novices were classified by LDA. We compared our microstate-based regularised CSP
approach with conventional regularised CSP, where the microstate-based regularised CSP
approach achieved a classification accuracy of 90.84% compared to 82.26% with conven-
tional regularised CSP. The scalp topography for the first spatial filter using microstate
based regularised CSP approach identified topographical maps from microstates 2 and 4 as
the most significant eigenvectors. Also, our microstate based regularised CSP approach
achieved classification accuracy greater than 90%. Here, microstate analysis applied a
meta-criterion favouring the highest signal-to-noise ratio [24] that improved the accuracy
when compared to that of conventional regularised CSP. Furthermore, microstates 2 and
4 as the most significant eigenvectors illustrated the importance of EEG electrodes in the
parietal–temporal–occipital region for the classification of experts and novices during the
FLS task. Microstate 2 was dominant in novices, while microstate 4 was dominant in the
experts. We also computed the Kappa coefficient, which is a statistical method to measure
the degree of agreement between classes. The Kappa coefficient method assigns zero to
random classification and one to perfect classification [42], which is a more robust criterion
than classification accuracy by considering random agreement. The microstate based regu-
larised CSP approach outperformed conventional regularised CSP with a Kappa coefficient
of more than 0.9. Importantly, the regularised CSP approach identified topographical
maps from microstates 2 and 4 as the largest eigenvectors (from M2 = (C1 + αK)−1C2 and
M1 = (C2 + αK)−1, respectively).

232



Brain Sci. 2023, 13, 1706

3.2. CNN for EEG 3D Tensor Classification of Expert versus Novice
Five-Fold Cross-Validation

Figures 6 and 7 show the loss function and accuracy of the model, respectively, during
200 epochs of training and validation processes. The learning curve converges at the middle
(100th epoch) of the training epochs, and the accuracy performance gap between training
and validation stays within 2.5% by the end. Table 1 shows the average and maximum
accuracies during the learning phase are shown for each of the 20 epochs.
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Table 1. Training and validation results: mean ± standard deviation and maximum accuracy during
training and validation.

Training Accuracy Validation Accuracy

Epoch Mean ± Standard
Deviation Maximum Mean ± Standard

Deviation Maximum

1 0.7895 ± 0.0157 0.8369 0.5522 ± 0.0398 0.7339

20 0.9883 ± 0.0016 0.9927 0.9570 ± 0.0140 0.9889

40 0.9934 ± 0.0013 0.9974 0.9685 ± 0.0099 0.9912

60 0.9952 ± 0.0008 0.9980 0.9699 ± 0.0126 0.9918

80 0.9956 ± 0.0011 0.9994 0.9709 ± 0.0105 0.9924

100 0.9962 ± 0.0010 0.9988 0.9779 ± 0.0080 0.9924

120 0.9966 ± 0.0009 0.9990 0.9796 ± 0.0062 0.9936

140 0.9973 ± 0.0008 0.9990 0.9794 ± 0.0070 0.9912

160 0.9972 ± 0.0008 0.9994 0.9793 ± 0.0065 0.9912

180 0.9971 ± 0.0008 0.9991 0.9778 ± 0.0096 0.9936

200 0.9975 ± 0.0008 0.9996 0.9836 ± 0.0038 0.9936

3.3. Ten Evaluations with the Holdout Test Dataset

Table 2 shows the mean ± standard deviation and maximum for F1, MCC, precision,
sensitivity, and specificity for the holdout test dataset over 10 repetitions of five-fold cross-
validation. In Table 2, the highest values of each assessment (F1, MCC, accuracy, sensitivity,
and specificity) are highlighted in red. Since our previous results of the classification
accuracy using microstate-based CSP and LDA were 90.53%, so the topography-preserving
CNN resulted is a significant improvement with >98% classification accuracy. The highest
sensitivity, which indicates the percentage of correct predictions in the data labelled as pos-
itive (i.e., Expert), is 99.30% maximum. Then, the specificity, the rate of correct predictions
in data labelled as negative (i.e., Novice), is 99.70% maximum. Furthermore, the F1 score,
which evaluates the trade-off between recall and precision, reached 98.51%, indicating the
equivalence of the model classification. Finally, the Matthews correlation coefficient (MCC),
which evaluates the trade-off between the precision of positive and negative classifications
(ranging from −100% to 100%), had a maximum of 97.56%. This implied that there was
almost no classification bias among novices and experts even after five-fold cross-validation
was repeated 10 times that generated a new training and validation splits of the trials, at
random—see Table 2.

3.4. Gradient-Weighted Class Activation Mapping (Grad-CAM) Assessment of the CNN

The input of 16 × 16 EEG grid data to CNN (see Figure 3) is shown in the supple-
mentary materials in Figure S1A for experts and novices. Then, the Grad-CAM heatmap
for the convolutional layer 1 is shown in Figure S1B, for convolutional layer 2 is shown in
Figure S1C, for the convolutional layer 3 is shown in Figure S1D, and for the TAP layer is
shown in Figure 8. Note that the TAP layer first conducts Spatial Attentive Pooling which
can provide insights into salient brain areas distinctive between experts and novices. The
heatmap shows the salient regions in the topography-preserving convolutional layers from
1 to 3 (see Figure 3) where the time compressed central tendency of the heatmap for the
TAP layer is shown in the top panel of Figure 8. The bottom left quadrant of the 16 × 16
EEG grid data is the discriminating salient region between experts and the novices. This
bottom left quadrant is denoted by ‘2′ on the 1D x-axis in the bottom panel of Figure 8
showing temporal activation with flattened 2D space. The discriminating salient regions
from the TAP layer corresponded (see E9, E10, E11, E12, E13, E14, and E15 in Figure 1A)
with the centro-parietal (CCP5h, CCP3h), parietal (P3, P5, P7), and parieto–occipital (PO3,
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PO7) regions that partly overlap with the significantly different regions between experts
and novices in our prior study [20].

Table 2. Test results with the holdout test data (five-fold cross-validation repeated 10 times that
generated a new training and validation splits of the trials): mean± standard deviation and maximum
for F1, MCC, precision, sensitivity, and specificity (confusion matrix for each iteration is shown in
Table S1 in the supplementary materials). Numbers in Bold are highest across iterations.

Iteration

F1 MCC Accuracy Sensitivity Specificity

Mean ±
Standard
Deviation

Maximum
Mean ±
Standard
Deviation

Maximum
Mean ±
Standard
Deviation

Maximum
Mean ±
Standard
Deviation

Maximum
Mean ±
Standard
Deviation

Maximum

1 0.9843 ± 0.0162 0.9928 0.9756 ± 0.0221 0.9887 0.9886 ± 0.0126 0.9947 0.9930 ± 0.0197 1.0000 0.9863 ± 0.0229 1.0000

2 0.9851 ± 0.0171 0.9913 0.9765 ± 0.0237 0.9864 0.9891 ± 0.0138 0.9937 0.9824 ± 0.0330 0.9942 0.9931 ± 0.0130 0.9983

3 0.9784 ± 0.0239 0.9869 0.9660 ± 0.0334 0.9796 0.9842 ± 0.0193 0.9905 0.9822 ± 0.0401 0.9971 0.9855 ± 0.0109 0.9882

4 0.9767 ± 0.0278 0.9871 0.9633 ± 0.0382 0.9796 0.9828 ± 0.0225 0.9905 0.9783 ± 0.0525 1.0000 0.9860 ± 0.0300 0.9950

5 0.9792 ± 0.0142 0.9843 0.9674 ± 0.0197 0.9754 0.9849 ± 0.0110 0.9884 0.9799 ± 0.0236 0.9940 0.9878 ± 0.0213 0.9983

6 0.9746 ± 0.0228 0.9843 0.9600 ± 0.0304 0.9752 0.9813 ± 0.0174 0.9884 0.9707 ± 0.0350 0.9908 0.9880 ± 0.0333 0.9967

7 0.9821 ± 0.0144 0.9871 0.9719 ± 0.0193 0.9796 0.9870 ± 0.0110 0.9905 0.9861 ± 0.0192 0.9940 0.9876 ± 0.0223 0.9950

8 0.9745 ± 0.0403 0.9942 0.9594 ± 0.0552 0.9909 0.9804 ± 0.0335 0.9958 0.9550 ± 0.0692 0.9942 0.9970 ± 0.0117 1.0000

9 0.9829 ± 0.0167 0.9871 0.9730 ± 0.0232 0.9798 0.9874 ± 0.0136 0.9905 0.9758 ± 0.0340 0.9912 0.9944 ± 0.0139 0.9983

10 0.9758 ± 0.0366 0.9899 0.9618 ± 0.0491 0.9841 0.9821 ± 0.0284 0.9926 0.9741 ± 0.0425 0.9912 0.9874 ± 0.0402 1.0000
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4. Discussion

In this study, the novice trainees attempted a complex visuomotor task in a novel
laparoscopic environment; therefore, they had to start building the perceptual model of the
novel 3D environment based on 2D video and tactile feedback [43]. EEG topography, for
example, microstate topographies, can be used as a marker of proficiency such that FLS
psychomotor tasks with increasing task complexity can progress in the simulator as the
novice trainee achieves proficiency towards FLS certification. For example, microstate 4 (see
Figure 5) has been associated with the activation of the left inferior parietal lobe [44] related
to the level of expert skill [45]. In our previous study [20], the microstate 4 was found to be
more common in experts who are expected to have the action semantic knowledge [45].
Furthermore, global gestalt perception [46] is postulated to be present in experts due to
their experience. Here, EEG topography can provide neurophysiological insights [20],
e.g., microstate 1 (corresponding to visual cortex [41]), microstate 3 (corresponding to
attention reorientation [41] and medial frontal cortex activation [47], and microstates
5 (topography comparable to microstate 3) during task performance can be considered
markers of expertise. Then, the sequential flow of information between different brain states
can be related to microstate sequences corresponding to the perception–action coupling [20].

We postulated that the CNN approach can learn the underlying temporal dynamics
and provide latent representations that can be sensitive to other factors such as mental
stress [26]. In this study, the ESNet approach [28] using EEG topography was adapted to
classify experts from novices that provided a significant improvement with the highest
sensitivity of 99.30% and the highest specificity at 99.70%. Since our CNN is topography-
preserving, the Grad-CAM heatmap highlighting the bottom left quadrant of the TAP
layer aligned with microstate 2 (see Figure 5) was found dominant in the novices from
microstate-based CSP analysis. Here, microstate 2 is comparable to right-frontal left-
posterior microstate A of the prototypical microstate classes [18,48], whereas microstate 4
hotspot that overlies the temporoparietal junction and the left inferior parietal lobe [44]
may be related to the intact perception of global gestalt [49]. In particular, the Grad-CAM
heatmap in the bottom panel of Figure 8D highlighted the parietal–occipital association
area in novices (when compared to experts) at the beginning of the FLS task. This requires
further investigation based on higher density EEG source localisation, since parietal hotspot
was also found to be important for discrimination (relevant for spatial binding [46] based
on CSP analysis which aligns well with the cognitive perception models [3,4]). Then,
the supplementary motor area complex (SMA) is postulated to play a central role in the
descent from the prefrontal to the motor cortex for the flow of skill-related information [7].
Here, SMA is known to be involved in planning complex motor finger tasks [50], and
considered the programming area for motor effector subroutines in bimanual coordination
tasks. Additionally, SMA has been suggested to form a queue of time-ordered motor
commands before voluntary movement is executed via the descending pathways of the
primary motor cortex (M1). In the current study, microstate 5 is postulated to capture
SMA-related brain activity, which was found to be more frequent in experts than novices.

In the context of the perception–action cycle [51], investigation of motor skill acquisi-
tion with different virtual and physical simulation technologies [52] can provide insights
into the neurophysiology of skill learning. Specifically, perception and action form a func-
tional system through which behaviour is adapted in novices during exploratory actions to
develop perceptual memory at the beginning in a novel environment. Then, perceptual
memory allows action planning for improved skilled behaviour by updating the action
parameters and refining them in executive memory, a continuous process of exploitative
learning to reduce task variability. The two crucial attributes of the perception–action cycle
are perceptual and executive memory [53], which are subserved by the frontoparietal net-
work [54]. Here, the EEG-based analysis using microstate-based CSP and ESNet identified
primarily the parietal–temporal–occipital EEG electrodes (microstates 2 and 4, the most
significant eigenvectors) that illustrated the importance of the parietal–temporal–occipital
association region for the classification of experts and novices.
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In our previous study [55], we found that average fNIRS HbO-based cortical activation
in novices was mainly in the left pars opercularis of the inferior frontal gyrus involved in
cognitive control [56]. The inferior frontal gyrus is postulated to be crucial for error-based
learning [20] since published studies have shown that the inferior frontal gyrus and the
presupplementary motor area (pre-SMA) are involved in stop signal task performance [57]
that is relevant in error correction. Then, the prefrontal area [20,58] was found to be more
active based on the activation of fNIRS HbO, which may be related to the manipulation of
structured information [59]. Therefore, the fNIRS-guided attention network (FGANet) [28]
may improve neurophysiological interpretation by capturing the frontoparietal hemo-
dynamic network [54]. Specifically, neuroimaging of the rostrocaudal characteristics of
the frontal lobes that are associated with varying degrees of information processing com-
plexity [60] can be improved with fNIRS-EEG fusion where spatially important regions
can be identified from fNIRS signals while temporally detailed neuronal activation, e.g.,
microstates, can be extracted from the EEG signals [20].

The main limitation of the current study is the low-density EEG montage since mi-
crostate analysis is more reliable with higher electrode densities [34,61,62]. Furthermore,
a higher EEG electrode density can allow robust source localisation [63] to establish the
regions of the brain underlying salient microstates that support skilled behaviour. Also,
the limited number of subjects (8 experts and 13 novices) did not allow classification of
individual skill level. Here, we conducted group comparison of EEG topography that
may be too nonspecific to support clear conclusions about the skill level of individual
subjects [64]. Therefore, the current study showed the feasibility of the CNN approach
that substantially improved (>98%) EEG topography-based group classification of experts
versus novices for FLS suturing with intracorporeal knot tying task when compared to
microstate-based CSP analysis with LDA (~90%). Here, the accuracy performance gap
between training and validation stayed within 2.5% by the end due to a limited number
of subjects (see Figures 6 and 7), and that gap did not lead to classification bias even after
five-fold cross-validation was repeated 10 times and generated new training and validation
splits, at random—see Table 2. A potential pitfall in using artifact removal using ICA in
EEGlab is a decrease in rank that can cause decreased accuracy in the CSP implementation
in BCIlab used in the current study [65]. Therefore, we have verified the spatial filters that
they are not complex numbers in the current CSP analysis with LDA. Task onset trigger
was set manually by the experimenter when the start command was assigned by him/her
to the subject to start the FLS task, which can affect CSP analysis with LDA; however,
the temporal attentive pooling layer of ESNet [28] can find temporally important time
segments despite small (<10 s) misalignments. Then, a weakness of Grad-CAM used in
this study is its partial derivative approach that can miss multiple occurrences of the same
class and/or can lead to inaccurate localisation of a heatmap; therefore, Grad-CAM++ may
be preferred in the future [66].

5. Conclusions and Future Research

We postulated that testing ESNet [28] for our application can provide mechanistic
insights from EEG topography-preserving CNN approach that can be enhanced with a
temporal attentive pooling layer using simultaneous fNIRS signals (see FGANet [28]). In
the future research, FGANet [28] approach of online fNIRS-EEG fusion may drive closed-
loop adaptive FLS simulators in virtual reality such that task difficulty may be individually
paced according to brain-based metrics to develop “coping” to handle cognitive stress
response (sympathetic vasoconstriction or ‘choking’ [67,68] monitored with portable neu-
roimaging [26]. Furthermore, subject-specific portable neuroimaging skill learning may
provide brain-based error prediction [20] that can be compared with actual task errors from
3D (behaviour) video data (from FLS box trainer) to develop predictive fNIRS-EEG-video
fusion. An expected task error can be highlighted in the 2D video feedback to novices
to facilitate visuospatial attention for corrective action in the early stage of skill learning.
Here, a distinction is necessary between sensory prediction error [69], which is postulated
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to be important at the initial perceptual-cognitive stage of skill learning [70], and task error
which is postulated to be important in the later stages for strategy learning [9] to achieve
expert performance. Then, the CNN with Grad-CAM approach provided insights into
the main brain areas that differentiated experts from novices, which may be facilitated
with neuroimaging-guided non-invasive brain stimulation—[58,71]. For example, non-
invasive cerebellar stimulation may facilitate sensory prediction error and/or non-invasive
frontal stimulation may facilitate task error feedback to improve FLS task performance and
demonstrate brain-behaviour causality [72]. Also, a simultaneous multimodal EEG-fNIRS
approach to measure task and/or non-invasive brain stimulation related brain response can
provide important mechanistic insights, e.g., during non-invasive brain stimulation facili-
tated skill learning, where neurovascular coupling may be modulated by endogenous [73]
and exogenous [74] arousals, e.g., due to sympathetic vasoconstriction [20,67,75].
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Abstract: Neurology is a quickly evolving specialty that requires clinicians to make precise and
prompt diagnoses and clinical decisions based on the latest evidence-based medicine practices. In
all Neurology subspecialties—Stroke and Epilepsy in particular—clinical decisions affecting patient
outcomes depend on neurologists accurately assessing patient disability. Artificial intelligence [AI]
can predict the expected neurological impairment from an AIS [Acute Ischemic Stroke], the possibility
of ICH [IntraCranial Hemorrhage] expansion, and the clinical outcomes of comatose patients. This
review article informs readers of artificial intelligence principles and methods. The article introduces
the basic terminology of artificial intelligence before reviewing current and developing AI applica-
tions in neurology practice. AI holds promise as a tool to ease a neurologist’s daily workflow and
supply unique diagnostic insights by analyzing data simultaneously from several sources, including
neurological history and examination, blood and CSF laboratory testing, CNS electrophysiologic
evaluations, and CNS imaging studies. AI-based methods are poised to complement the other tools
neurologists use to make prompt and precise decisions that lead to favorable patient outcomes.

Keywords: artificial; intelligence; neurology; stroke; epilepsy; neuroimaging

1. Introduction

In the coming years, the complexity of data used in Neurology’s clinical and research
aspects will proliferate. Electronic medical records hold vast amounts of information.
Major health systems rely on data-heavy technology to analyze clinical and genomic
information. Computer analysis of digital medical data could aid the neurologist in
making diagnoses, detecting disease patterns, and detecting health vulnerabilities. With
its sophisticated machine learning algorithms, AI offers efficient and practical tools to
clinicians to better interpret, access, and understand clinical information and narrow
differential diagnoses in simple and complex cases [1,2]. AI has demonstrated great clinical
utility in the management of Migraines as demonstrated by Torrente A. et al. [3]. Due to a
high incidence of Stroke and Epilepsy in United States, which have been leading causes of
morbidity and mortality, we would like to focus, exhibit, and discuss potential applications
of AI in these two fields specifically by presenting our literature review and innovations so
far, which can serve as great clinical adjuncts for clinicians which, in turn, can help deliver
excellent patient care. Artificial intelligence could aid the neurology subspecialties of stroke
and epilepsy by increasing the speed and consistency of analysis of clinical imaging studies
and other data and clinical decision-making. Artificial intelligence can use evidence-based
medicine practices to assure that the most modern and accepted medicine is being delivered.
Artificial intelligence systems draw on extensive data sets of clinical information and are
less prone than humans to have recency, recall, and other biases that can lead to inaccurate
conclusions or ranking of the likelihood of the various diagnoses in a differential diagnosis.
AI can help usher the era of personalized medicine into routine neurology clinical practice.
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2. Basic Terminology and Concepts of AI

Key AI terms include ‘Machine Learning’, ‘Supervised Learning’, ‘Unsupervised
Learning’, ‘Model and Training’, ‘Artificial Neural Network’, ‘Deep Neural Network’,
‘Convolutional Neural Network’, ‘Black Box’ and ‘Reinforcement Learning’ [4,5].

Machine Learning: Machine Learning [ML] is a field of AI associated with developing,
studying, and generalizing statistical algorithms over time to perform tasks without specific
instructions. A developed algorithm encodes statistical regularities extrapolated inherently
from a database of examples to assess parameters for future predictions [4,6].

Supervised Learning: Supervised Learning [SL] uses previously established expert-
labeled training examples to create an algorithm to assess parameters for future predictions.
Its paradigm is analogous to machine learning because input and output values are used to
train the algorithm model and derive the function relating input to output values. The SL
function analyzes new data and derives the expected output values. Because SL creates
a learning algorithm from training data, it may misinterpret data related to situations or
diagnoses not present in the training data. SL is susceptible to errors from incomplete
training data, so-called generalization errors [4,7].

Unsupervised Learning: Unsupervised Learning [UL] is less constrained than Super-
vised Learning because algorithms are learned and developed from the patterns in un-
labeled data. In UL, machine learning algorithms discover patterns or data groupings
without human intervention [4,8].

Modeling and Training: Modeling trains a machine-learning algorithm to make pre-
dictions from unseen data. Training coincides with modeling, where machine learning
algorithms are fed examples from a training data set to update and calibrate parameters for
future predictions. In model training, information types and their weights and bias fit into
a machine learning algorithm to improve function over the predictive range [4].

Artificial Neural Network [ANN]: A machine learning technique that amalgamates and
processes many layers of information, each holding essential parameters extracted incre-
mentally from training data. Brain neuron network organization inspired this concept.
Signals travel from input to output after traversing all layers multiple times [4,9].

Deep Neural Network: A deep neural network [DNN] is an artificial neural network
[ANN] with multiple layers between the input and output layers. The various types of
neural networks share these components: neurons, synapses, weights, biases, and functions.
These components function together like brain neural networks. A DNN can be trained
like other ML algorithms [4,10].

Convolutional Neural Network: Like the human visual cortex, the convolutional neural
network displays connectivity patterns. It is a feed-forward neural network that learns
feature engineering via filter optimization [4,11].

Black Box: Black box AI models arrive at conclusions or decisions without explaining
how they were reached. The precise steps leading to the Black Box model’s predictions
cannot be explained because the predictions arise from unexplained parameters being
processed by a highly complex analysis maze that is machine-derived and not a direct
product of human consciousness and thought processes [4].

Reinforcement Learning

Reinforcement learning [RL] is a machine learning training method that develops
decision algorithms by rewarding desired behaviors and punishing undesired ones. RL
depends on environmental interactions. The algorithm receives rewards or penalties
according to the desirability of behaviors and learns through this editing to make better
decisions over time. The RL algorithm completes tasks without earlier instructions. It can
learn while failing to complete the task. It derives basic rules guiding future predictions
from experience performing the task [5].
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3. Methods

To write this review, we searched PubMed using the key words “Artificial Intelligence”,
“Acute Ischemic Stroke”, “Epilepsy”, “Clinical Decision Making” and “Intracranial Hem-
orrhage (ICH)” for articles published on these subjects between 2000 and 2023 (Figure 1).
From these articles, we decided which papers utilized AI in their decision-making. Articles
describing studies that answered research questions about the clinical utility of AI methods
were then selected and reported in tabular format (Tables 1–3). The Quality Improve-
ment method of the Plan-Do-Check-Act was suggested as a way for ongoing testing and
improving of AI algorithms used in clinical practice (Table 4).

Brain Sci. 2024, 14, x FOR PEER REVIEW 3 of 11

while failing to complete the task. It derives basic rules guiding future predictions from 
experience performing the task [5]. 

3. Methods
To write this review, we searched PubMed using the key words “Artificial Intelli-

gence,” “Acute Ischemic Stroke”, “Epilepsy”, “Clinical Decision Making” and “Intracra-
nial Hemorrhage (ICH)” for articles published on these subjects between 2000 and 2023
(Figure 1). From these articles, we decided which papers utilized AI in their decision-mak-
ing. Articles describing studies that answered research questions about the clinical utility 
of AI methods were then selected and reported in tabular format (Tables 1–3). The Quality 
Improvement method of the Plan-Do-Check-Act was suggested as a way for ongoing test-
ing and improving of AI algorithms used in clinical practice (Table 4). 

Figure 1. Flow diagram of the search strategy. 

Table 1. Summary of some studies showing the application of AI for initial neuroimaging in AIS
[Acute Ischemic Stroke] between 2000 and 2023. 

Year Authors Research Question Outcomes Measures/Conclusions 

2023 [12] Field N. et al. 
Does supplying an LVO detection algorithm notifica-
tion to the thrombectomy team’s cell phone improve 

ischemic stroke workflow?

Transfer time and Mechanical Thrombectomy 
[MT] Initiation time decreased. 

2023 [13] Zhaou X. et al. 
Does CTA derived from CT Perfusion [CTA-DF-CTP] 

give better image quality and diagnostic accuracy 
than traditional CTA in AIS? 

CTA derived from CTA-DF-CTP had diagnos-
tic accuracy comparable to traditional CTA 

and CTA-DF-CTP. 

2023 [14] Xiang et al. 

Is it feasible to apply computed tomography perfu-
sion [CTP] imaging-guided mechanical throm-

bectomy in acute ischemic stroke patients with LVO 
beyond the therapeutic time window? 

NIHSS of MT group-CTP guided [at 6 h, 24 h,
7 days, and 30 days] was significantly better [p 
< 0.05]; however, infarct core volume approxi-
mation was too high or too low for this group. 

2023 [15] Du B. et al. 
In patients with ICAS [Intracranial Atherosclerotic 
Stenosis] in the anterior circulation, is AI based on 

Cognitive impairment seems better predicted 
by AI analysis of sCoV than CBF.

Articles identified from 

Pubmed using the search 

terms “Artificial Intelligence,” 

“Acute Ischemic Stroke,” 

“Intracranial Hemorrhage,” 

“Clinical Decision Making”  

Articles identified in Pubmed that 

used AI in clinical decision-making 

(n = 185) 

Studies included in the review (n = 33); included those that 

had a predefined research question and outcomes measure. 

Articles removed before 

screening (n = 61) 

Articles excluded (n = 152) 

In
clu

de
d 

Sc
re

en
in

g 
Id

en
tif

ica
tio

n 

Figure 1. Flow diagram of the search strategy.

Table 1. Summary of some studies showing the application of AI for initial neuroimaging in AIS
[Acute Ischemic Stroke] between 2000 and 2023.

Year Authors Research Question Outcomes Measures/Conclusions

2023 [12] Field N. et al.
Does supplying an LVO detection algorithm

notification to the thrombectomy team’s cell phone
improve ischemic stroke workflow?

Transfer time and Mechanical
Thrombectomy [MT] Initiation

time decreased.

2023 [13] Zhaou X. et al.
Does CTA derived from CT Perfusion

[CTA-DF-CTP] give better image quality and
diagnostic accuracy than traditional CTA in AIS?

CTA derived from CTA-DF-CTP had
diagnostic accuracy comparable to
traditional CTA and CTA-DF-CTP.

2023 [14] Xiang et al.

Is it feasible to apply computed tomography
perfusion [CTP] imaging-guided mechanical

thrombectomy in acute ischemic stroke patients
with LVO beyond the therapeutic time window?

NIHSS of MT group-CTP guided [at
6 h, 24 h, 7 days, and 30 days] was

significantly better [p < 0.05];
however, infarct core volume

approximation was too high or too
low for this group.
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Table 1. Cont.

Year Authors Research Question Outcomes Measures/Conclusions

2023 [15] Du B. et al.

In patients with ICAS [Intracranial Atherosclerotic
Stenosis] in the anterior circulation, is AI based on

CBF [Cerebral Blood Flow] or sCoV [Spatial
Coefficient of Variation] better for predicting

vascular cognitive impairment?

Cognitive impairment seems better
predicted by AI analysis of sCoV

than CBF.

2023 [16] Farsani S. et al.
Can AG-DCNN [Attention Gated Deep

Convoluted Neural Network] predict infarct
volume and size?

AG-DCNN, using only admission
DWI, predicted infarct volumes at

3–7 days after stroke onset with
accuracy like models using DWI

and PWI.

2022 [17] Kossen T. et al.

How can modern machine learning methods such
as generative adversarial networks [GANs]
automate perfusion map generation from

[DSC-MR] Dynamic Susceptibility Contrasted MR
in AIS on an expert level without manual

validation?

DSC-MR using machine learning can
speed up patient stratification by

perfusion mapping in AIS.

2022 [18] Long Le et al.

Can an advanced deep learning-based method
accurately and rapidly assess collateral perfusion
in AIS by automatically generating a multiphase

collateral imaging map from dynamic
susceptibility contrast-enhanced MR perfusion

[DSC-MRP] images?

DSC-Enhanced MR Perfusion
improved accuracy and sped the

assessment of the collateral perfusion.

2021 [19] Neeves G et al.
Can a machine-learning [ML] algorithm grade
digital subtraction angiograms [DSA] by the

mTICI scale?

ML of complete cerebral DSA
predicted mTICI scores following

EVT of MCA occlusions.

2020 [20] Grosser M. et al.

In AIS patients, how do predictions of machine
learning models based on local [regional] tissue
susceptibility to ischemia compare with those of

machine learning models based on global
brain imaging?

Compared to single global machine
learning models, locally trained

machine learning models can lead to
better prediction of lesion outcomes

in AIS patients.

2019 [21] Satish R. et al.
Can Convolutional Neural Network analysis of
Multisequence MRI in AIS predict the ischemic

core and penumbra?

CNN analysis experimentally
confirmed local changes.

2019 [22] Reid M. et al.

For detecting early severe ischemia, how does
NCCT compare with multiphase computed
tomography angiography [mCTA] regional
leptomeningeal score [mCTA-rLMC] and an

mCTA venous [mCTA-venous] perfusion lesion?

An assessment blinded to clinical
information in patients undergoing

endovascular therapy [EVT] showed
that mCTA-venous more accurately

detected early ischemia and predicted
clinical outcomes than NCCT and the

mCTA-rLMC score.

2018 [23] Nielsen A. et al. In AIS, can Deep Learning improve Tissue
Outcome and Treatment Effect predictions?

Deep Learning improves predictions
of final neurological outcome and

lesion volume.

2018 [24] Chung-Ho. et al.

Can imaging features and advanced machine
learning use the TSS [Time Since Stroke]

classification to characterize the Acute Ischemic
Stroke Onset Time?

Demonstrates the potential benefit of
using advanced machine learning

methods in TSS classification.

2017 [25] Yu. Y. et al.

Can machine learning models trained on
perfusion-weighted magnetic resonance imaging
[PWI] and diffusion-weighted MRI scans predict
HT [hemorrhagic transformation] occurrence and

location in AIS?

HT prediction was a
machine-learning problem.

Specifically, the model learned to
extract imaging markers of HT

directly from source PWI images.
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Table 1. Cont.

Year Authors Research Question Outcomes Measures/Conclusions

2016 [26] Tian X. et al.

Can clinically acceptable PCT [dynamic cerebral
Perfusion Computed Tomography] images be

created from low-dose CT images restored with a
coupled dictionary learning [CDL] method in

chronic and AIS patients?

CDL increased kinetic enhanced
details and improved diagnostic
hemodynamic parameter maps

2013 [27] Fang R. et al.

Will the robust sparse perfusion deconvolution
method [SPD] accurately estimate cerebral blood

flow [CBF] in CTP performed at a low
radiation dose?

SPD was superior to existing methods
for CBF and helped differentiate

normal and ischemic brain tissue.

2010 [28] Mendrick A.
et al.

Can the diagnostic yield of CTP in cerebrovascular
diseases be expanded by combining arterial and

venous segmentation and
vessel-enhanced volume?

This artery and vein segmentation
method was accurate for arteries and

veins with normal perfusion.
Combining the artery and vein

segmentation with the
vessel-enhanced volume produced an

arteriogram and venogram,
extending the diagnostic yield of CTP

scans and making a CTA
scan unnecessary.

2007 [29] Meyer-Baese A.
et al.

Do five unsupervised clustering techniques help
analyze dynamic susceptibility contrast MRI

time series?

Clustering is a valuable tool for
analyzing and visualizing brain
regional perfusion properties.

Table 2. Studies applying AI to diagnosing and managing ICH [IntraCranial Hemorrhage] between
2000 and 2023.

Year Authors Research Question Outcome Measures/Conclusions

2023 [30] Feng H. et al.

Can AI use the GCS score, NIH stroke scale,
INR, BUN, hemorrhage location,

hematoma volume, modified Rankin score,
and other risk factors to construct a

prediction model for the prognosis of ICH
at discharge, 3 months, and 12 months?

The study showed that prediction models for
modified Rankin scores showed a relatively

high predictive performance. Also, the study
found risk factors and constructed a prediction
model to predict poor modified-Rankin score

outcomes and mortality at discharge, 3 months,
and 12 months in ICH patients.

2023 [31] Maghami M.
et al.

Are machine learning methods for
detecting ICH from non-contrast CT scans

sufficiently precise to be considered
acceptable diagnostic tests of

accuracy [DTA]?

This meta-analysis showed that assessing
noncontract CT scans using ML algorithms for

detecting ICH had acceptable DTA.

2023 [32] Vacek A. et al. Can E-ASPECTS delineate the extent and
distribution of ICH from brain CT?

AI software-Brainomix Ltd. (Oxford, UK)
excellently delineated ICH extent- on stroke

CTs by AI software in about 71% of cases. ICH
extent was more likely to be over or

underestimated when ICH was extensive,
intraventricular, or extra-axial.

2023 [33] Chen Y. et al.

Can a convolutional neural network [CNN]
create a clinical imaging perfusion model

predicting the short-term neurological
outcomes of ICH patients?

The CNN prognostication prediction model
was more effective than ICH scales in

predicting neurological outcomes and ICH
patients at discharge. Predictions improved

slightly after including clinical data.
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Table 2. Cont.

Year Authors Research Question Outcome Measures/Conclusions

2023 [34] MacIntosh B.
et al.

Can Viola AI estimate the number and
volume of hematoma clusters in traumatic

brain injury and ICH patients?

The automated total hemorrhage volume
estimate correlated with the per-participant

hemorrhage cluster count. This tool may help
evaluate various types of ICH in the future.

2023 [35] Kotovich D.
et al.

Did implementing a commercial artificial
intelligence solution in a level 1 trauma

center emergency room affect ICH’s
clinical outcome?

Artificial intelligence computer-aided triage
and prioritization software in the emergency

room setting was associated with a significant
reduction in 30 day and 120 day all-cause

mortality and morbidity in ICH patients. It
was also associated with a significant reduction

in modified Rankin score on discharge.

2023 [36] Li. Y. et al.

Can ML predict early perihematomal
edema expansion [PHE] from non-contrast

CT scan data in patients with
spontaneous ICH?

This model was the best marker for predicting
prior hematoma edema expansion in patients
with ICH. It could predict early perihematomal

edema expansion and improve the
discrimination of early identification of
spontaneous ICH in patients at risk of

PHE expansion.

2023 [37] Mastoukas S.,
et al.

What are AI methods’ reported sensitivity,
specificity, and accuracy for detecting ICH

and chronic cerebral microbleeds?

In 40 studies, overall sensitivity, specificity, and
accuracy were more than 90% for ICH and

cerebral microbleed detection. AI algorithms
were developed from large data sets,

volumetric analysis of imaging examinations,
fine-tuning, and false-positivity reduction.

2022 [38] Lim M. et al.

How do deep neural networks [DNN] and
support vector machines [SVM] compare

with clinical prognostic scores for
prognosticating 30-day mortality and

90-day poor functional outcome [PFO] in
spontaneous intracerebral

hemorrhage [SICH]?

The SVM model performed significantly better
than clinical prognostic scores in predicting

90-day PFO in SICH.

2021 [39] Heit J. et al.

What is the accuracy of RAPID ICH,
2D/3D, a volitional neural network

application designed to detect ICH, in
detecting and measuring ICH volume?

Rapid ICH was highly accurate in detecting
ICH and quantifying the volume of

intraparenchymal and intraventricular
hemorrhages.

Table 3. Studies applying AI to diagnosing and managing Epilepsy between 2000 and 2023.

Year Authors Research Questions Outcome Measures/Conclusions

2023 [40] Zheng Z. et al.

Can EEG Deep Features and Machine Learning
Classifiers assess and prognostically analyze

KCNQ2 patients by combining the two well-trained
models, RESNET-15 and RESNET-18, to extract deep

features of EEG?

An outcome of 79% accuracy was
reported in pediatric patients.

2023 [41] Wang H. et al.

Can the multi-technique deep learning method
WAE-Net use clinical data and multi-contrast MR
imaging [T2WI and FLAIR images combined as

FLAIR3 images] to forecast antiseizure medication
treatment in a retrospective study involving

300 children with tuberous sclerosis
complex-related epilepsy?

The hybrid technique of FLAIR3
could accurately localize tuberous
sclerosis complex lesions, and the

proposed method achieved the best
performance [area under the

curve = 0.908 and accuracy of 0.847]
in the testing cohort among the

compared methods.
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Table 3. Cont.

Year Authors Research Questions Outcome Measures/Conclusions

2023 [42] Asadi-Pooya A.
et al.

Can AI machine learning methods reliably
differentiate idiopathic generalized epilepsy from

focal epilepsy using easily accessible and applicable
clinical history and physical examination data?

This algorithm aimed at easing
epilepsy classification for individuals
whose epilepsy began at age 10 and
older. The stacking classifier led to

better results than the base classifier
in general. Precision was 81%,

sensitivity was 81%, and specificity
was close to 77%.

2023 [43] Tveit J. et al.

Can the artificial intelligence program SCORE-AI
[Standardized Computer-based Organizing

Reporting of EEG] be developed and validated to
distinguish abnormal from normal EEGs, detect

focal epilepsy epileptiform discharges and
generalized epilepsy, and distinguish focal

nonepileptiform and diffuse nonepileptiform EEGs?

SCORE-AI accuracy approached
human expert-level and fully

automated interpretation of routine
EEGs. Accuracy was approximately
88.3%, significantly higher than the
three previously published models
comparing EEG interpretation to

human experts.

2023
[44]

Gustavo T.
et al.

In patients diagnosed with epilepsy wearing the
mjn-SERAS brain activity sensor, can AI create a

personalized mathematical model for the
programmed recognition of oncoming seizures

before they start using patient-specific EEG
training data?

The AI program accurately detected
pre- and interictal EEG segments in

drug-resistant epilepsy patients.

Table 4. PDCA [Plan-Do-Check-Act] Concept Extrapolation for AI [45].

Extrapolation of PDCA in AI

Plan
Explore and discuss the question, assess the potential solution, and make use of the various machine learning models or methods as
described above, set the endpoint in the objectives and goals, identify the potential metrics to use for implementation and quality

measurement, prepare the action plan which includes implementation along with a potential route to reevaluate as needed.

Do
Evaluate earlier models; train or retrain and test different machine learning models; assess and see if known machine learning

solutions and components of the AI protocol can be improved or changed; test the overall solution to assess its integrity; review the
code and filter out older ML models which did not work.

Check
Monitor the model for fairness; assess for bias and variance; monitor the stability precisely to ascertain clarity and results;

implement split testing of two methodologies; compare them head-to-head and assess to see which performs better.

Act
The goal is standardization and continuous improvement, deploying the solution and continuing to monitor for biasing and

variance, evaluating for areas of improvement in active machine learning algorithms and machine learning components,
standardizing data, and features, and continuing the PDCA cycle accordingly.

4. Discussion

A growing body of literature suggests that artificial intelligence is becoming an invalu-
able tool for stroke and epilepsy clinicians. Studies report AI applications complementing
traditional neurological care and improving diagnostic accuracy and clinical outcomes.
As discussed above, early AI applications in the 2000s used clustering to analyze MRI
sequences for regional brain perfusion properties. AI applications are standard care tools at
the major level in CSCs [Comprehensive Stroke Centers] for analyzing CT perfusion studies
and detecting large vessel occlusion [LVO]. The field of Stroke Neurology has improved its
care systems by perfecting diagnostics and hastening stroke care. For example, AI tools can
help minimize transfer time and improve outcomes by shortening the time to treatment
with thrombolytics or mechanical thrombectomy. CT perfusion studies hold data critical
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to evaluating the cerebral vascular physiology after a stroke. A fundamental measure is
rCBF [relative Cerebral Blood Flow], the flow rate through the vasculature in the brain
region of interest [ROI]. Other measures include rCBV [relative Cerebral Blood Volume], the
volume of blood within the ROI vasculature; MTT [Mean Transit Time], the average time
for arterial-to-venous blood transit through infarcted tissue; and TTP [Time-To-Peak] the
time interval between first appearance to peak enhancement of contrast-containing blood in
the arterial vessels [46]. These CT perfusion imaging factors help assess the Mismatch Ratio
and the infarct Core. Clinical decisions on the likelihood of improvement with mechanical
thrombectomy consider these measures and the Modified Ranking Score [mRS]. AI assures
clinical decisions are evidence-based, consistent with diagnostic and treatment guidelines,
and give proper weight to relevant diagnostic and prognostic factors.

Acute decision-making in AIS uses AI for rapid and reliable analysis of perfusion and
vessel imaging [Table 1—via PubMed search]. AI has vessel-imaging applications beyond
the AIS setting. For example, in the setting of intracranial atheromatous disease or multiple
vascular risk factors, AI can help predict cognitive impairment and other patient outcomes
in a patient. Physicians can explore the nonemergent role of AI in vessel imaging by using
Deep Convoluted Neural Networks and Generative Adversarial Networks to generate
automated perfusion maps that stratify a patient’s AIS risk.

Convoluted Deep Neural Networks have been used extensively to predict the prog-
nosis of ICH patients [Table 2—via PubMed search]. In addition, AI software can detect
ICH and chronic cerebral microbleeds, ascertain ICH volume, and predict the rate of ICH
expansion. AI can aid in emergency room intake neuroimaging of patients with suspected
ICH. AI methods give clinicians precise volumetric and quantitative analysis of ICH’s
intraparenchymal and intraventricular components, guiding treatment that may lower
the morbidity and mortality of ICH in these patients. Additionally, AI analysis of serial
imaging in an ICU-level setting may guide physician prognostication of ICH expansion or
stability and patient outcome. Some AI studies estimate the functional outcomes of ICH
patients. A physician knowing the outcome AI predicts and the relevant prognostic clinical
information not considered by the AI can give patients’ families an evidence-based view of
the expected ICH outcome that aids decision-making.

In Epilepsy, AI can detect ictal and interictal patterns in routine and long-term EEGs.
AI-based EEG analysis can be applied to adult and pediatric epilepsy patients [Table 3—via
PubMed search]. AI programs may provide clinicians with information about which AED
regimen would lead to better seizure control for patients with known epilepsy syndromes
or genetic mutations predisposing patients to epilepsy. Also, using AI, the risk of epilep-
togenicity of focal MRI lesions can be predicted by routine or 1 h EEGs. This information
can guide the decision for advanced neuroimaging for epilepsy patients who are epilepsy
surgery candidates. This would be key in the current era given the significant evolu-
tion of surgical application in treatment refractory epilepsy patients and severely morbid
conditions leading to epilepsy including Tuberous Sclerosis and Rasmussen’s Encephalitis.

Artificial intelligence’s continued adoption in neurology depends on clinicians and
researchers continuing to test and improve AI prediction models. The quality improvement
models used in industry can be used to continually improve AI by reducing diagnostic
and other experience-based prediction errors. As new AI methods and protocols evolve,
medical experts should iteratively compare expected and actual results to judge their
validity, accuracy, and clinical value. Designing an AI algorithm is a plan, or hypothesis,
that the algorithm will be of clinical value. However, testing an AI algorithm allows
iterative scientific hypothesis testing and revision until the hypothesis fits the data. After
the final version of the algorithm fits the practice data set, the algorithm is tested with new
data to assess its accuracy and error rate. After that, the algorithm is revised as necessary
using quality improvement methods. The quality improvement steps are [1] Plan, [4] Do, [6]
Check, and [7] Act- PDCA cycle [Table 4] [45].

A sole human clinician can only see a tiny fraction of the patients covered by an
extensive healthcare system and knows his patient outcomes, those reported by his col-
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leagues, and those reported in the clinical literature. AI can potentially draw upon data
from the entire healthcare system to derive diagnostic and prognostic information that can
fill gaps in a neurologist’s experience or serve as reminders before decision-making. AI
can retrospectively mine data for suspected and unsuspected factors leading to an AIS or
ICH that could inform future medical treatment of at-risk individuals in a neurologist’s
and primary care physician’s practice.

The PDCA quality improvement cycle rigorously reviews the predicted and actual
outcomes of AI-based methods, leading to their progressive updating and improvement.
The AI models from practice data sets are tested with new clinical information and revised
appropriately. Testing of mature AI models with new data assesses their clinical value
and error rate. AI models can be revised and re-tested iteratively until their accuracy is
clinically valuable. Many organizations and companies adopted the Deming PDCA cycle
to improve their systems and functional outcomes. Implementing the PDCA concept can
ensure AI-based protocols have continued quality improvement, regular checks to assess
their outcomes, and are developed into clinically valuable and reliable products.

5. Conclusions

AI is a diagnostic and prognostic tool to help neurologists assess patients more effi-
ciently and treat them more effectively. AI can usher in a new era in clinical neurology
by supplying a complementary tool in stroke and epilepsy that improves diagnostics and
systemic efficiency, enabling better and more predictable functional patient outcomes. From
a futuristic standpoint, as more data is collected by various systems-based practices in the
field of medicine, with the implementation of PDCA and more efficient AI-based stroke
and epilepsy protocols, implementation systems can be utilized as adjuncts to clinical
evaluation in the field of Neurology.
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Abstract: Clinical prediction models for spine surgery applications are on the rise, with an increasing
reliance on machine learning (ML) and deep learning (DL). Many of the predicted outcomes are
uncommon; therefore, to ensure the models’ effectiveness in clinical practice it is crucial to properly
evaluate them. This systematic review aims to identify and evaluate current research-based ML
and DL models applied for spine surgery, specifically those predicting binary outcomes with a
focus on their evaluation metrics. Overall, 60 papers were included, and the findings were reported
according to the PRISMA guidelines. A total of 13 papers focused on lengths of stay (LOS), 12 on
readmissions, 12 on non-home discharge, 6 on mortality, and 5 on reoperations. The target outcomes
exhibited data imbalances ranging from 0.44% to 42.4%. A total of 59 papers reported the model’s
area under the receiver operating characteristic (AUROC), 28 mentioned accuracies, 33 provided
sensitivity, 29 discussed specificity, 28 addressed positive predictive value (PPV), 24 included the
negative predictive value (NPV), 25 indicated the Brier score with 10 providing a null model Brier,
and 8 detailed the F1 score. Additionally, data visualization varied among the included papers. This
review discusses the use of appropriate evaluation schemes in ML and identifies several common
errors and potential bias sources in the literature. Embracing these recommendations as the field
advances may facilitate the integration of reliable and effective ML models in clinical settings.

Keywords: machine learning; artificial intelligence; deep learning; predictive modeling; spine surgery

1. Introduction

In recent years, the integration of machine learning (ML) into spine surgery has shown
promise in enabling personalized risk predictions [1,2]. These advancements could improve
patient outcomes, streamline surgical decision-making, reduce costs, and optimize medical
management [3]. ML, a subset of artificial intelligence (AI), utilizes computer algorithms
to efficiently solve intricate tasks. A notable advantage lies in its adaptability, enabling
models to continually learn and be redesigned by incorporating new data and modifying
their underlying knowledge.

Machine learning has witnessed significant advancements, notably in the realm of
deep learning (DL)—an advanced subset that involves neural networks with multiple
layers, enabling more intricate data processing and abstraction. This structure contributes
to its capability to automatically learn and extract features from complex datasets [4]. The
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accumulation of advancements has garnered strong support from the industry, recognizing
the substantial potential of ML and DL in enhancing medical research and clinical care [5].
However, despite the developments made in prediction models, their effective application
in predicting uncommon outcomes remains limited in the literature. This brings attention
to the class imbalance challenge in ML, where certain classes of interest occur far less
frequently than others [6].

Imbalanced data essentially means that a dataset is skewed, leading to challenges with
data generalizability, inadequate training of the ML model, and false positive readings.
This issue is particularly relevant in medical ML models, where only a small proportion of
individuals may experience a certain event, such as a specific condition or complication.
In spine surgery, the outcomes of interest, such as readmission, extended length of stay,
or specific complications, are considered infrequent events. In such cases, the integration
of ML for personalized risk predictions becomes trickier, as the rarity of these specific
events adds complexity to predictive modeling. If ML models lack design considerations
for tackling class imbalance, they may become skewed towards one end of the spectrum,
making their predictions unreliable. This underscores the significance of addressing the
class imbalance challenge within ML. Hence, this review highlights the importance of refin-
ing our understanding and application of evaluation methods to navigate the complexities
of uncommon outcome predictions more effectively.

2. Inadequate Evaluation Metrics

A classifier can only be as effective as the metric used to assess it. Selecting the wrong
metric for model evaluation can lead to suboptimal model training or even mislead the
authors into selecting a poor model instead of a better-performing one. Below are metrics
that should not be solely relied on for imbalanced classification.

2.1. Accuracy

Accuracy measures how well a model predicts the correct class. It is calculated as the
ratio of correct predictions to the total number of predictions. However, when evaluating a
binary classification model on an imbalanced dataset, accuracy can be misleading. This
is because it only considers the total number of correct predictions without weighing the
dataset’s imbalance.

In scenarios with imbalanced datasets, a model consistently predicting the majority
class can exhibit high accuracy but may struggle to accurately identify the minority class.
When accuracy closely aligns with the class imbalance rate, it suggests the model might be
predicting the majority class for all instances. In such cases, the accuracy is driven by the
class imbalance, hindering the model’s ability to distinguish between positive and negative
classes. Therefore, it is crucial to employ multiple metrics for a comprehensive evaluation
of the model’s performance.

2.2. The Area under the ROC Curve (AUROC)

AUROC is calculated as the area under the curve of the true positive rate (TPR) versus
the false positive rate (FPR). A no-skill classifier will have a score of 0.5, whereas a perfect
classifier will have a score of 1.0.

While AUROC is useful for comparing the performance of different models, it can be
misleading with class imbalance as the TPR and FPR are affected by the class distribution.

For instance, in a model predicting a specific disease on an imbalanced dataset, the
TPR may be low as the model struggles to predict sick cases, while the FPR may be high
because the model accurately predicts healthy cases. In such instances, the AUROC may
yield falsely high-performance results.
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2.3. Adequate Evaluation Metrics

In assessing a binary classification model on an imbalanced dataset, key metrics
include the confusion matrix (CM), F1 score, Matthews correlation coefficient (MCC), and
area under the precision-recall curve (AUPRC).

2.4. Confusion Matrix

The CM matrix delineates true positive, true negative, false positive, and false negative
in model predictions [7]. This matrix is particularly useful for imbalanced classes, offering
insights into the model’s performance on each class separately. It also facilitates the
calculations of various metrics such as precision, recall, and F1 score.

As mentioned earlier, relying solely on accuracy is advised against in imbalanced
cases, with the confusion matrix providing a strong rationale for that. Researchers can use
it to visualize the model’s performance, pinpoint common errors, and make the necessary
adjustments to enhance overall performance. Table 1 displays the metrics provided by
the CM.

Table 1. Metrics Provided by the Confusion Matrix.

Metrics Provided by the Confusion Matrix.

True Positive (TP) The number of predictions where the classifier correctly predicts the positive
class as positive.

True Negative (TN) The number of predictions where the classifier correctly predicts the negative
class as negative.

False Positive (FP) The number of predictions where the classifier incorrectly predicts the negative
class as positive.

False Negative (FN) The number of predictions where the classifier incorrectly predicts the positive
class as negative.

Recall/Sensitivity The proportion of true positive predictions to all actual positive cases
TP/(TP + FN).

Specificity The proportion of all negative samples that are correctly predicted as negative
by the classifier TN/(TN + FP).

Precision/Positive predictive value (PPV) The proportion of true positive predictions to all positive predictions
TP/(TP + FP).

Negative predictive value (NPV) The proportion of true negative predictions to all negative predictions made by
the model TN/(TN + FN).

2.5. F1 Score

Improving the model’s performance often involves aiming for a balance between
precision and recall. However, it is essential to acknowledge that there is a trade-off
between these two metrics, where enhancement of one metric score can lead to a reduction
in the other. The correct balance is highly reliant on the model’s objective and is referred to
as the F1 score. The F1 score is particularly useful when faced with imbalanced classes as it
emphasizes the harmonic mean between precision and recall [8].

2.6. Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC) stands out as a robust metric,
especially when dealing with imbalanced class data. MCC is a balanced metric
that takes into account all four components of the CM. It is defined as
(TP × TN − FP × FN)/sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)). The
MCC tends to approach +1 in cases of perfect classification and −1 in instances of entirely
incorrect classification (inverted classes). When facing class-imbalanced data, the MCC is
considered a strong metric due to its effectiveness in capturing various aspects of classifica-
tion performance. Notably, it remains close to 0 for completely random classifications.

255



Brain Sci. 2023, 13, 1723

2.7. Informedness (Youden’s J Statistic)

Informedness, also known as Youden’s J statistic, quantifies the difference between
the true positive rate (Recall) and the false positive rate (FPR). It is computed as
Recall + Specificity − 1, with values ranging from −1 to +1. A higher informedness
value signifies a superior classifier [9].

2.8. Markedness

Markedness gauges the difference between the PPV and NPV. The calculation involves
adding PPV and NPV, then subtracting 1, resulting in a range from −1 to +1. A higher
markedness value suggests a better overall performance in predictive values [9].

2.9. The Area under the Precision-Recall Curve (AUPRC)

AUPRC is a valuable metric when working with imbalanced datasets as it considers
precision and recall in its calculation [10]. This is important when dealing with imbalanced
datasets where the focus is on identifying positive cases and minimizing false positives.
The AUPRC is derived by plotting precision and recall values at various thresholds and
then computing the area under the resulting curve.

The resulting curve is formed by different points, and classifiers performing better
under different thresholds will be ranked higher. On the plot, a no-skill classifier manifests
as a horizontal line with precision proportional to the number of positive examples in the
dataset. Conversely, a point in the top right corner signifies a perfect classifier.

2.10. Brier Score (BS)

The Brier Score (BS) serves as a metric for assessing the accuracy of a probabilistic
classifier and is used to evaluate the performance of binary classification models [11]. It is
determined by calculating the mean squared difference between the predicted probabilities
for the positive class and the true binary outcomes. The BS ranges from 0 to 1, with a
score of 0 indicating a perfect classifier, while 1 suggests predicted probabilities completely
discordant with actual outcomes.

It is important to note that while the BS possesses desirable properties, it does have
limitations. For instance, it may favor tests with high specificity in situations where the
clinical context requires high sensitivity, especially when the prevalence is low [12].

To address these limitations, a model’s BS evaluation should consider the outcome
prevalence in the patient sample, prompting the computation of the null BS. The null BS
acts as a benchmark for evaluating a model’s performance by always predicting the most
prevalent outcome in the dataset. The model’s BS is then compared to that of the null model,
and ∆Brier is calculated by subtracting the null BS from that of the model under evaluation.
The ∆Brier is a scalar value and indicates the extent to which the model outperforms the
null model. The formula follows ∆Brier = BS of the model − BS of the null model.

2.11. Additional Evaluation Metrics and Graphical Tools
2.11.1. Calibration Curves

A calibration plot is a graphical tool used to evaluate a probabilistic model. The curve
illustrates the alignment between the model’s predicted probabilities and the observed
frequencies of the positive class in the test set. A perfect model would exhibit an intercept
value of 0 and a slope value of 1. These plots are particularly valuable for evaluating
models trained on imbalanced data, offering insights into the model’s ability to predict the
positive class.

Addressing imbalanced data involves using techniques such as undersampling and
oversampling to achieve classification balance and alleviate classifier bias. However,
determining the optimal sample size for training remains a significant challenge. An
alternative strategy is to leverage learning curves, which provide insights into reducing
error probability as the training set size increases. One example is a theoretical learning
curve for the multi-class Bayes classifier, considering general multivariate parametric
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models of class-conditional probability density [13]. This curve offers an estimate of the
reduction in the excess probability of error without relying on specific model parameters.
Learning curves contribute to an essential understanding of the model’s behavior and its
performance improvements with increased data. Table 1 outlines the metrics derived from
the confusion matrix.

2.11.2. Decision Curve

A decision curve is a graphical tool used to evaluate a classifier’s performance by
examining the trade-off between sensitivity and 1-specificity across varying thresholds for
classifying an instance as positive. The optimal threshold is the one that maximizes the
net benefit. By convention, the model’s benefit strategy at each threshold is compared to
the treat-all and treat-none strategies. The decision curve analysis stands out from other
statistical methods by its ability to evaluate the clinical value of a predictor. Figure 1A–D
depicts the AUROC, AUPRC, calibration, and decision curve figures.
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With that in mind, this systematic review of the literature aims to provide a com-
prehensive summary of the state of AI within the field of spine surgery. The focus will
be on reporting metrics, data visualization, and common errors, including inappropriate
handling of imbalanced datasets and incomplete reporting of model performance metrics.
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3. Materials and Methods
3.1. Data Sources and Search Strategies

A comprehensive search of several databases was performed on 28 February 2023.
Results were limited to the English language but had no date limitations. The databases
included Ovid MEDLINE(R), Ovid Embase, Ovid Cochrane Central Register of Controlled
Trials, Ovid Cochrane Database of Systematic Reviews, Web of Science Core Collection
via Clarivate Analytics, and Scopus via Elsevier. The search strategies were designed and
conducted by a medical librarian in collaboration with the study investigators (Table S1).
Controlled vocabulary supplemented with keywords was used. The actual strategies
listing all search terms used and how they are combined are available in the Supplemental
Material. Ultimately, 3340 papers and 121 full-text articles were assessed, resulting in the
inclusion of 60 studies (Figure 2) [14–72]. This review was conducted in accordance with
the PRISMA guidelines (Table S2).
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3.2. Eligibility Criteria and Data Extraction

Inclusion criteria encompass studies focusing on ML-based prediction models per-
taining to binary surgical outcomes following spine surgery. Both intraoperative and
postoperative outcomes were eligible. Exclusion criteria comprised studies predicting
nonbinary outcomes (e.g., 3+ categorical or numeric outcomes), those predicting non-spine
surgical outcomes, studies with balanced outcomes, and those lacking predictive models.

The extracted data from all studies included the first author, paper title, year of
publication, spinal pathology and surgery type, sample size, outcome variable (the primary
result being measured), imbalance percentage, accuracy, AUROC (area under the receiver
operating characteristic curve), sensitivity, specificity, PPV (positive predictive value), NPV
(negative predictive value), Brier score (BS), other metrics, dataset, performance, journal,
and error type (Table 2).
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3.3. Data Synthesis and Risk of Bias Assessment

Our aim was to investigate the methodologies employed by the included studies,
emphasizing the process rather than the outcomes or findings themselves. Accordingly, we
refrained from engaging in narrative synthesis, data pooling, risk of bias assessment, or
evidence certainty determination. Instead, our review specifically addressed methodologies
related to models handling class imbalance.

3.4. Statistical Analysis

Given the considerable heterogeneity between studies, we did not perform a meta-
analysis and opted for a qualitative and comprehensive analysis instead. Study character-
istics are presented using frequencies and percentages for categorical variables. In cases
where studies reported multiple results within a single outcome (e.g., different AUCs per
type of complication), the top scores were taken. Metrics were computed for studies that
provided a confusion matrix.

4. Results
4.1. Characteristics of the Included Studies

The selected papers cover a variety of outcomes, some focusing on a single target
while others address multiple targets. Table 2 outlines the metrics derived from the
confusion matrix. Among the 60 papers, 12 focused on readmissions, 13 predicted lengths
of stay (LOS), 12 addressed non-home discharge, 6 estimated mortality, and 5 anticipated
reoperations. The models also forecasted a variety of medical and surgical outcomes, as
detailed in Table 3. The target outcomes exhibited data imbalances ranging from 0.44% to
42.4%. Figure 3 illustrates the growing number of papers in the field over time.
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Figure 3. Annual Count of ML and DL Papers on Binary Outcome Prediction in Spine Surgery
Included in the Review.

In the analysis of the 60 included papers, 59 reported the model’s AUROC, 28 men-
tioned accuracies, 33 provided sensitivity, 29 discussed specificity, 28 addressed PPV,
24 considered NPV, 25 indicated BS (with 10 providing null model Brier), and 8 detailed
the F1 score. Additionally, a variety of representations and visualizations were presented in
these papers: 52 included an AUROC figure, 27 featured a calibration curve, 13 displayed
a confusion matrix, 12 showcased decision curves, 3 incorporated PR curves, and only
1 offered a precision-recall curve. Moreover, to train their models, 23 studies utilized NSQIP
data, and 19 used single-center data, while the rest used multicenter data or other national
datasets. In the following sections, we explore prevalent errors observed in the reviewed
articles, highlighting key areas for improvement in the evaluation and reporting of machine
learning models in spine surgery applications.
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Table 3. Outcome variables predicted by ML models in reviewed studies.

Topic Complication Number

Infection

Surgical site infection 5

Wound complications 3

Infection 1

Sepsis 1

General Adverse Events

Surgical adverse events 2

Any adverse event 4

Major complications 1

Medical adverse events 5

Mortality 6

Readmission 12

Reoperation 5

Quality of Life/Pain

Visual Analog Scale Back 1

Visual Analog Scale Leg 1

6 Month: mJOA 1

6 Month: SF-6D 1

12 Month: mJOA 1

12 Month: SF-6D 1

Sustained postoperative opioid prescription 4

24 Month: mJOA 1

24 Month: SF-6D 1

EuroQol 1

Ability to return to work (1 year) 1

Worsening functional status 1

Oswestry Disability Index 1

Surgical

Risk of Recollapse 1

Prolonged Operation 1

Recurrent lumbar disc herniation 1

Intraoperative vascular injury 1

Cardiac

Cardiac complications 3

Cardiac dysrhythmia 1

Congestive heart failure 1

Pulmonary
Pulmonary complications 1

Unplanned re-intubation 1

Pneumonia 3

Length of Stay
Extended length of stay 10

Short length of stay 3

Neurology

C5 palsy 1

Neurologic complications 1

Postop delerium 2
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Table 3. Cont.

Topic Complication Number

Other

VTE complications 4

Transfusion 3

Perioperative blood loss 1

Urinary retention 1

4.2. Error Type I: Incomplete Reporting of Performance Metrics

Han et al. presented models predicting various medical and surgical complications,
demonstrating strong performance metrics such as AUROCs, BS, sensitivity, and acceptable
specificity [15]. Similarly, Arora et al. developed a well-performing model that predicts
patient discharge to rehabilitation, achieving high AUROC, sensitivity, and specificity with
an adjusted threshold of 0.16 [32]. Both studies also demonstrated well-calibrated models
through calibration plots.

Shah et al. developed models predicting readmission or major complications, achiev-
ing satisfactory AUROC, AUPRC, and BS while outperforming the baseline AUPRC,
indicating its effectiveness in predicting true positives well [17]. Valliani et al. predicted
non-home discharge with remarkable AUROCs, PPV, and NPV. The study also presented
a well-calibrated model through a calibration plot, although the plot did not display true
probability and predicted risks greater than 0.8 [18]. Despite these models’ solid perfor-
mance on the metrics reported, studies in this category failed to report other metrics crucial
for model evaluation. While some omitted the PPV and NPV, others failed to mention
baseline AUPRC, sensitivity, specificity, and the null model BS. Without the inclusion of all
the necessary evaluation metrics, the assessment lacks validity, even when reported metrics
show high performance.

4.3. Error Type IIA: Metric Optimization at the Expense of Others

Li et al. developed artificial neural networks (ANN) and random forest (RF) models for
predicting day-of-surgery patient discharge. The ANN model exhibited high sensitivity but
low specificity, while the RF model showed the opposite [26]. Kim et al. and Arvind et al.
presented models predicting mortality, wound complications, venous thromboembolism,
and cardiac complications [30,31,34]. The Linear regression (LR) models exhibited high
specificities at the expense of extremely low sensitivities. In contrast, ANN displayed high
sensitivities and specificities but low PPVs. Goyal et al. developed models predicting
non-home discharge and 30-day unplanned readmission [24]. The models predicting non-
home discharge achieved high AUROCs, accuracies, sensitivity, specificity, and NPV but
low PPV, leading to many false positives. This training method is advised only when the
target is critically important and should not be missed, even if it means encountering many
false positives.

Stopa et al. and Karhade et al. trained models to predict non-routine discharge,
presenting high AUROC, BS, specificity, and NPV but low sensitivity and PPV [21,25].
Although both models demonstrated well-calibrated performance via calibration plots,
they struggled to detect positive cases correctly, facing low sensitivity scores and PPVs.
Moreover, both papers presented a decision curve demonstrating that their models are
better than the treat-all or the treat-non approach.

4.4. Error Type IIB: High Accuracy and AUROC but Poor Sensitivity

Cabrera et al. developed models that predict extended LOS, readmission, reopera-
tion, infection, and transfusion. Although these models achieved high accuracies, their
sensitivities were generally low, except for the model predicting transfusion [14]. Gowd
et al. predicted multiple surgical outcomes with high AUROCs and NPV but low PPV and
extremely low sensitivity scores [19]. Kalagara et al. trained models to predict unplanned
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readmission, reporting high accuracies but low sensitivities, while specificity, PPV, and
NPV were not provided [22]. Hopkins et al. developed a readmission prediction model
with high accuracy, AUROC, specificity, PPV, and NPV but low sensitivity, indicating an
inability to identify a significant proportion of true positive instances [23].

4.5. Other Errors

In addition to the previously mentioned errors, some papers provided poor calibration
plots and omitted essential metrics. Kuris et al., Veeramani et al., and Zhang et al. presented
models predicting readmission, unplanned re-intubation, and short LOS, respectively, with
acceptable AUROCs, accuracies, and BSs [16,27,29]. However, all three studies provided cal-
ibration plots indicating poor calibration, as the calibration curves were not in proximity to
the near-perfect prediction diagonal. Moreover, the null model BS was not reported. Ogink
et al. developed models predicting non-home discharge displaying adequate AUROCs
and BSs [33]. Nevertheless, the calibration plots in both studies revealed that the models
were not well-calibrated for larger observed proportions and predicted probabilities, as the
calibration curves drifted away from the near-perfect prediction diagonal. Furthermore,
these five papers failed to report sensitivities, specificities, PPVs, and NPVs.

5. Discussion

ML’s ability to predict future events by training on vast healthcare data has attracted
substantial interest [73]. Nevertheless, predicting rare events poses significant challenges
attributed to the skewed data distribution. To address this issue, techniques for imbalanced
class learning have been designed. This paper focuses on showcasing the application of
ML in predicting uncommon patterns or events within the realm of spinal surgeries. These
surgeries encompass various risks and require a thorough assessment of potential outcomes,
such as readmission, reoperation, ELOS, and discharges to non-home settings [74,75].

We reviewed 60 papers addressing post-spinal surgery outcome predictions, exam-
ining specific elements of spinal surgeries such as pathologies, surgical procedures, and
spinal levels. However, a limited number of these studies adequately evaluated their mod-
els using suitable metrics for imbalanced data binary classification tasks. This observation
highlights the need for more rigorous model evaluation methods to ensure their clinical
reliability and effectiveness in rare-event predictions. In a study by Haixiang et al., it was
revealed that 38% of the 517 papers addressing imbalanced classification across various
domains used accuracy as an evaluation metric despite the authors’ awareness of dealing
with an imbalanced problem [76]. In some instances, the accuracy of a proposed method
might be lower than the class imbalance ratio, implying that a dummy classifier solely
predicting the majority class would yield better performance.

The importance of appropriate evaluation metrics for imbalanced classification prob-
lems in machine learning cannot be overstated. Our analysis revealed that many papers
relied on inadequate evaluation metrics. Moreover, our review identified instances where
models optimized one metric at the expense of others. These practices can lead to misinter-
pretation of model performance and hinder clinical applicability. Therefore, it is crucial to
conduct a comprehensive evaluation of classifier performance, addressing all relevant met-
rics rather than focusing on only one or two. Additionally, striking a balance between the
various performance metrics is essential to ensure that models can be effectively employed
in clinical decision-making. By emphasizing the need for a holistic approach to classifier
evaluation, our study encourages the development of more robust and reliable ML models
for predicting rare outcomes in spinal surgery and other healthcare applications.

Training a binary classification model on an imbalanced dataset, where one class
significantly outnumbers the other, poses challenges as the model may be biased towards
the more prevalent class. Most strategies addressing this issue can be applied in the prepro-
cessing stage prior to model training. These strategies include undersampling the majority
class, oversampling the minority class, modifying weights, and optimizing thresholds.

272



Brain Sci. 2023, 13, 1723

Undersampling involves reducing instances of the majority class in the training sample
to equalize the classes. Various undersampling techniques, such as random undersampling,
NearMiss, cluster-based undersampling, and Tomek links, can balance a dataset. Random
undersampling selects a subset of majority class examples randomly, while NearMiss
retains examples from the majority class closest to the minority class [77]. Cluster-based
undersampling sorts majority class examples into clusters and selects a representative
subset from each cluster. Tomek links remove examples from the majority class closely
related to minority class examples, increasing the space between classes and facilitating
classification [78].

Another method for balancing classes is oversampling, which entails adding more
minority class examples to the training dataset. For binary classification, strategies such
as random oversampling, the synthetic minority over-sampling technique (SMOTE), and
adaptive synthetic sampling (ADASYN) can be employed. Random oversampling adds
random minority class samples to the training set until classes are equal, potentially leading
to overfitting if the oversampled data does not represent the original minority class distri-
bution. SMOTE, a more advanced technique, creates synthetic samples using the k-nearest
neighbors algorithm to ensure new samples resemble original minority class samples [79].
ADASYN is similar to SMOTE but generates synthetic samples more representative of
the feature space region where the minority class is under-represented. While oversam-
pling techniques appear more promising than undersampling ones, especially with small
datasets, it is important to note that oversampling involves the addition of synthetic data
that might not correspond to the real data. Given this constraint, advanced generative
deep-learning algorithms were developed [80,81]. One such advancement is generative ad-
versarial network synthesis for oversampling (GANSO), which has demonstrated superior
performance compared to the synthetic minority oversampling technique (SMOTE) [82].

In addition to the sampling methods discussed, threshold optimization can enhance
classification model performance by adjusting the decision threshold for identifying pos-
itive category cases [83]. This involves calculating the model’s performance at various
thresholds and selecting the one with the best performance. It is essential to conduct this
optimization on a separate validation set to avoid overfitting. Once the optimal threshold
is determined, it can be applied to a model’s predictions on new data.

It is good practice to systematically test various suitable algorithms for the task at
hand. Decision tree algorithms, such as random forest (RF), classification and regression
tree (CART), and C4, perform well with imbalanced datasets. Additionally, classifiers’ per-
formance can be enhanced by assigning weights based on the inverse of class frequencies or
using advanced techniques like cost-sensitive learning. In place of traditional classification
models, anomaly detection models can also be used. Ensemble methods, such as bagging
and boosting, are also effective in handling imbalanced data. Finally, it is crucial to evaluate
using appropriate metrics for imbalanced classification tasks, such as MCC, CM, precision,
recall, F1 score, and AUPRC. By employing a diverse set of metrics and considering the
unique characteristics of each dataset, researchers can avoid being misled by metrics like
accuracy and AUROC.

6. Conclusions

This systematic review summarizes the current literature on ML and DL in spine
surgery outcome prediction. Evaluating these models is crucial for their successful in-
tegration into clinical practice, especially given the imbalanced nature of spine surgery
predicted outcomes. The 60 papers reviewed focused on binary outcomes such as ELOS,
readmissions, non-home discharge, mortality, and reoperations. The review highlights the
prevalent use of the AUROC metric in 59 papers. Other metrics like sensitivity, specificity,
PPV, NPV, Brier score, and F1 score were inconsistently reported.

Based on the findings of this review, our recommendations for future research in ML
applications for spine surgery are threefold. First, we advocate for the comprehensive
use and reporting of all appropriate evaluation metrics to ensure a holistic assessment of
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model performance. Second, developing strategies to optimize classifier performance on
imbalanced data is crucial. Third, we stress the necessity of increasing awareness among
researchers, reviewers, and editors about the pitfalls associated with inadequate model
evaluation. To improve peer review quality, we suggest including at least one ML specialist
in the review process of medical AI papers, as a high level of model design scrutiny is not a
realistic demand from clinician reviewers.

The significance of proper evaluation schemes in applied ML cannot be overstated.
Embracing these recommendations as the field advances will undoubtedly facilitate the
integration of reliable and effective ML models in clinical settings. Ultimately, integrating
such models in the clinical setting will contribute to improved patient outcomes, surgical
decision-making, and medical management in spine surgery.
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Abstract: Cutting-edge brain imaging techniques, particularly positron emission tomography with
Fluorodeoxyglucose (PET/FDG), are being used in conjunction with Artificial Intelligence (AI) to
shed light on the neurological symptoms associated with Long COVID. AI, particularly deep learning
algorithms such as convolutional neural networks (CNN) and generative adversarial networks (GAN),
plays a transformative role in analyzing PET scans, identifying subtle metabolic changes, and offering
a more comprehensive understanding of Long COVID’s impact on the brain. It aids in early detection
of abnormal brain metabolism patterns, enabling personalized treatment plans. Moreover, AI assists
in predicting the progression of neurological symptoms, refining patient care, and accelerating
Long COVID research. It can uncover new insights, identify biomarkers, and streamline drug
discovery. Additionally, the application of AI extends to non-invasive brain stimulation techniques,
such as transcranial direct current stimulation (tDCS), which have shown promise in alleviating Long
COVID symptoms. AI can optimize treatment protocols by analyzing neuroimaging data, predicting
individual responses, and automating adjustments in real time. While the potential benefits are
vast, ethical considerations and data privacy must be rigorously addressed. The synergy of AI and
PET scans in Long COVID research offers hope in understanding and mitigating the complexities of
this condition.

Keywords: AI; Long COVID; neuroimaging; cognition; non-invasive brain stimulation

1. Introduction

The COVID-19 pandemic has fundamentally changed the way we view healthcare,
leaving us with a plethora of unanswered questions and emerging challenges. Long
COVID, also known as post-acute sequelae of COVID-19, refers to the persistent symptoms
experienced by some patients after recovering from an initial COVID-19 infection. There
has been much discussion around the terminology used to describe the extended health
effects of COVID-19 infection. Terms such as “Long COVID”, “COVID long-haulers”, “post-
acute COVID-19”, and “late sequelae of COVID-19” have all been proposed. However,
for consistency in this perspective, we will use the term “Long COVID”. The WHO
defines Long COVID as a condition occurring in those with a confirmed or probable
history of SARS-CoV-2 infection, typically 3 months from initial COVID-19 onset [1].
While the respiratory and cardiovascular aspects of COVID-19 have been widely studied,
less attention has been paid to its effects on the brain. Recently, researchers have begun
employing cutting-edge imaging techniques, such as positron emission tomography with
fluorodeoxyglucose (PET/FDG), in conjunction with artificial intelligence (AI), to delve into
the intricate world of brain function in Long COVID patients. This innovative approach
has the potential to shed light on the neurological symptoms of Long COVID and may
pave the way for more effective treatments.
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2. The Enigma of Long COVID and Brain Function

There is increasing concern about the potential effects of Long COVID on brain func-
tion and cognition. Many Long COVID patients report neurological symptoms including
fatigue, headache, loss of taste and smell, impaired concentration and mental fog, forgetful-
ness, anxiety, and depression. Studies have found objective cognitive deficits in some Long
COVID patients, including impaired performance on tests of processing speed, executive
function, verbal learning, and episodic memory [2–6]. Neuropsychiatric disorders like
anxiety, depression [7], and post-traumatic stress disorder (PTSD) [8] also appear to be more
common following COVID-19. The biological mechanisms underlying these cognitive and
neuropsychiatric effects are still under investigation but likely involve neuroinflammation,
microvascular changes, and neural network dysregulation.

Several theories have been proposed regarding the pathophysiology of Long COVID
neurological effects [9]:

• Direct viral invasion of the brain.
• Neurotoxic effects of inflammatory mediators.
• Autoantibodies against neural antigens.
• Microvascular pathology and blood–brain barrier disruption.
• Mitochondrial dysfunction and cellular bioenergetics issues.
• Neuroplasticity changes due to illness stressors.

The neurological manifestations of Long COVID have puzzled researchers, as the
virus primarily affects the respiratory system. In an effort to understand the underlying
mechanisms, the focus has shifted towards brain imaging techniques like PET/FDG and
the power of AI.

3. PET/FDG Imaging: A Window into Brain Function

Emerging brain imaging studies are providing insights into potential neurological
changes associated with Long COVID. Positron emission tomography imaging with fluo-
rodeoxyglucose (PET/FDG) is emerging as a promising tool for illuminating brain abnor-
malities associated with Long COVID. PET/FDG scans involve the injection of a radioactive
tracer into the body, which accumulates in areas with high metabolic activity, such as the
brain. The PET scanner then detects the gamma rays emitted by the tracer, creating a
detailed image of the brain’s metabolic activity. PET/FDG provides a non-invasive way to
measure glucose metabolism in the brain.

Details on the PET/FDG imaging techniques and protocols typically used to assess
brain function in Long COVID studies [10–12]:

• Radiotracer used: 18F-fluorodeoxyglucose (FDG), a glucose analog, is the standard
radiotracer used to image glucose metabolism in the brain.

• PET scanner types: These studies generally use whole-body PET/CT scanners or
dedicated brain PET scanners with a resolution around 4–6 mm.

• Patient preparation: Patients are asked to fast for 4–6 h before the scan to stabilize
metabolic state. Serum glucose levels are checked prior to radiotracer injection.

• FDG Dose: 5–10 mCi of FDG is injected intravenously. Scanning begins 30–60 min
post-injection when radiotracer accumulation in brain reaches equilibrium.

• Scan duration: 15–30 min per PET acquisition. Longer scans can improve image
statistics and allow for full brain coverage.

• Image reconstruction: Iterative reconstruction algorithms like ordered subset expecta-
tion maximization (OSEM) used.

• Image processing: Standardized uptake value (SUV) metrics calculated in regions of
interest. AI algorithms applied for advanced analyses.

• Control groups: Age-matched healthy controls are scanned using the same protocol
for comparison.

Standardization of imaging protocols is important to obtain reproducible quantitative
results across subjects and follow-up scans. The combination of PET with AI and MRI
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scans provides complimentary information on neural inflammation, network disruption,
and atrophy patterns in Long COVID.

Areas of decreased metabolism on PET/FDG imaging have been linked to inflamma-
tion and neurodegeneration. PET/FDG allows for measurement of glucose metabolism
as an indicator of inflammation and cellular activity [10]. It can identify affected brain
regions in Long COVID patients. PET/FDG studies have found reduced metabolic activity
and hypometabolism in certain brain areas of Long COVID patients, including the frontal
and temporal lobe, limbic system, and brainstem. This suggests inflammation preferen-
tially targeting these regions. The brain hypometabolism patterns are associated with
neuropsychiatric disorders and could underline cognitive/neurological symptoms in Long
COVID [11,12]. The neuropsychologic test battery comprises the Hopkins Verbal Learning
Test-Revised, Brief Visuospatial-Memory Test-Revised, Digit Span forward/revers, Trail
Making Test part A/B, Color-Word Interference Test, Symbol-Digit Modalities Test, and a
semantic and letter fluency test. However, PET/FDG requires interpretation by specialists
in nuclear medicine and neuroimaging to make pattern recognition decisions mostly using
qualitative readings. Thus, the challenge lies in interpreting the complex data generated by
these scans, and this is where AI comes into play.

4. Artificial Intelligence (AI) as the Cognitive Enhancer

In this quest for understanding, the marriage of PET/FDG and AI stands out as a
transformative force, offering a beacon of hope in our battle against Long COVID. AI has
revolutionized the healthcare industry, and its applications extend to the interpretation
of medical images. In the case of PET/FDG scans, AI algorithms have demonstrated
remarkable capabilities in detecting subtle changes in brain metabolism that might be
challenging for human experts to identify. These algorithms can process vast amounts of
data quickly and efficiently, increasing the accuracy and reliability of results.

Matsubara et al. [13] reviewed recent studies applying AI, especially deep learning
techniques, for PET image generation. For denoising, convolutional neural networks
(CNNs) like U-Net [14,15] and generative adversarial networks (GANs) [16,17] have been
applied to recover standard dose/duration PET from low-dose/short scans. CNNs have
become the predominant deep learning approach for recovering full PET data from low-
dose or abbreviated scans. Xiang et al. [18] pioneered the use of CNNs for this application,
training a model to generate standard 12 min brain fluorodeoxyglucose (FDG) PET images
from 3 min scans. Their auto-context CNN architecture, comprising three 4-layer CNN
blocks with skip connections, achieved results comparable to the previous state-of-the-art
method. Subsequently, U-Net, a U-shaped CNN with built-in skip connections, has proven
highly effective for full PET data recovery across various tracers and scan types. For
example, Chen et al. [19] showed a U-Net trained on multi-contrast MRI could recover full-
dose amyloid PET scans from just 1/100 of the radiotracer dose. Recovered images enabled
accurate visual assessment of amyloid status. U-Net has also been successfully applied to
reconstruct full-dose whole body and cardiac PET/FDG images from abbreviated scans.

4.1. CNNs and GANs for PET Image Generation

CNNs and GANs are types of deep neural networks with different architectures
and applications.

4.2. CNN Architectures for PET Image Generation

CNNs are a specialized type of artificial neural network commonly used for image
processing and computer vision tasks. Here is a quick explanation of how CNNs work:

• Convolutional layers—These layers perform convolutions over the input image to
extract features. The convolution is performed by sliding filters or kernels over the
image and computing dot products between the filter and image patch. Different
filters detect different types of features like edges, colors, textures, etc.
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• Pooling layers—These layers downsample the image representation to reduce compu-
tational load and overfitting. Max pooling takes the maximum within filter regions
while average pooling takes the average.

• Fully connected layers—These classic neural network layers connect the extracted
features to the output nodes for classification. They help combine the features and
make predictions.

• Non-linear activations—Non-linear activation functions like ReLU are applied after
each convolution and fully connected layer to introduce non-linearity in the model.

Some key advantages of CNNs are the ability to automatically learn relevant features
from training data, invariance to translations, rotations and distortions, and capability to
exploit spatial structure. CNNs have revolutionized computer vision and are also very
effective for neuroimaging analysis and diagnosis. However, they require large-labeled
datasets for training. Overall, CNNs provide a powerful tool for automated feature learning
from neuroimages. CNN architectures, especially U-Net, have become the dominant deep
learning approach for recovering complete PET data from low-dose or short-duration scans.
CNNs can generate full dynamic range, standard duration PET images from truncated
scans across brain, whole body, and cardiac imaging.

4.3. GANs as an Alternative Approach

GANs have emerged as an alternative deep learning approach for recovering full
dose, standard-duration PET images from truncated scans. Wang et al. [20] first applied
adversarial training between a generator network to produce 12 min brain PET/FDG scans
from 3 min scans, and a discriminator network to classify images as real or generated. Their
3D conditional GAN architecture outperformed 3D U-Net in terms of peak signal-to-noise
ratio, normalized mean squared error, and standard uptake value bias. Subsequently, Lu
et al. [21] demonstrated GANs could reconstruct whole-body PET/FDG images to standard
dose levels from just 10% dose scans. The GAN achieved comparable performance to
U-Net in terms of signal-to-noise ratio and standard uptake value biases.

Here is a simplified explanation of how GANs work:

• Generator network—This network generates new synthetic data instances (images,
audio, etc.) that are similar to the training data. It starts from random noise and
transforms it to match the data distribution.

• Discriminator network—This network tries to distinguish between real training data
and the synthetic data created by the generator. It estimates the probability that a
sample came from the real training data.

• Adversarial training—The generator and discriminator networks are trained together
in an adversarial manner. The generator tries to better fool the discriminator, while
the discriminator tries to properly classify real vs. fake data.

• Nash equilibrium—The training reaches equilibrium when the generator produces
such realistic data that the discriminator cannot differentiate it from real data. At this
point, both models have maximized their objectives.

The key advantages of GANs include the ability to generate novel realistic data, learn
meaningful latent representations, and model complex high-dimensional distributions. In
neuroimaging, GANs can be used for data augmentation, image synthesis, and modeling
brain data distributions. In summary, alongside CNNs, GAN frameworks show promise for
reconstructing complete, full-dynamic range PET scans from low-dose or short acquisition
protocols across brain and whole-body imaging. Adversarial training provides an alter-
native deep learning strategy to CNNs for PET image recovery tasks. However, training
stability can be an issue with GANs. Overall, they are a powerful generative modeling
framework with many applications in medical imaging and healthcare.

So, in summary, CNNs are optimized for discriminative tasks while GANs are opti-
mized for generative modeling and synthetic data generation. CNNs classify data while
GANs create new data, but they can complement each other in certain applications.
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4.4. CNNs and GANs for Image Translation and Synthesis

The application of deep learning (CNN, GAN) in medical imaging extends to the
challenging tasks of intra- and inter-modality image translation and image synthesis.
Techniques like CNN and GAN have successfully tackled these previously daunting
endeavors within the medical imaging domain [22]. An illustrative example of this progress
is the use of deep learning to create computed tomography (CT) images from magnetic
resonance (MR) images, which has been employed to enhance PET attenuation correction
in hybrid PET/MR scanners, as elaborated in the “PET attenuation correction” section.

The utilization of deep learning (CNN, GAN) for image translation and synthesis in
medical imaging offers three significant advantages for PET imaging:

1. Supplement Missing Data: In medical imaging, missing data can occur due to various
reasons. For example, the acquisition of thin-sliced MR images is often omitted from
clinical routines due to lengthy scan durations, even though these thin-sliced MR
images are essential for quantitative analysis of brain PET images. Deep learning can
be employed to synthesize thin-sliced MR images, thus enabling quantitative analysis
of PET images even when MR acquisitions are not available.

2. Reduction in Scans: Deep learning-driven image translation and synthesis allow for
the avoidance of acquiring specific target images, leading to a reduction in the total
acquisition time. This reduction not only alleviates the burden on patients but also
minimizes their exposure to radiation.

3. Data Augmentation: Image translation and synthesis play a vital role in data augmen-
tation, addressing issues related to insufficient training data and data imbalance in
machine learning applications. This approach is especially valuable in the computer-
aided diagnosis of rare diseases where collecting large amounts of data is a formidable
challenge. Deep learning-based data augmentation through image translation and
synthesis enhances the performance of machine learning models in such cases.

4.5. CNNs and GANs for Diagnosis and Prediction

CNNs (convolutional neural networks) and GANs (generative adversarial networks)
are two types of deep learning architectures that show promising applications for helping
with diagnosis and prediction in Long COVID patients:

1. CNNs for Diagnostic Pattern Recognition: CNNs can be trained on medical imaging
datasets like PET, MRI, or CT scans to recognize unique radiographic signatures
associated with post-COVID neurological, cardiovascular, or respiratory damage.
This allows for automated diagnosis aid systems to be developed for detecting Long
COVID sequalae.

For example, brain PET scans analyzed by a CNN could identify distinct patterns
of inflammation or glucose hypometabolism that characterize memory and cognitive
dysfunction in long haulers.

2. GANs for Synthetic Data Augmentation: A major barrier in applying deep learn-
ing is limited patient data. GANs can generate synthetic PET scans that emulate
Long COVID-specific abnormalities like neurological inflammation. This artificially
expanded dataset helps train CNN diagnostic models to be more robust and general-
izable with less real-world examples.

3. CNNs for Prognostic Risk Stratification: Analyzing temporal sequences of scans from
confirmed Long COVID patients, CNN algorithms can discover prognostic imaging
biomarkers linked to disease recovery trajectories. Such predictive models can guide
treatment personalization and follow-up care.

Overall, CNNs and GANs have exciting utilities in harnessing medical imaging
data to assist detection, prognosis, and management of Long COVID afflictions. Larger
multi-center studies are needed to assemble diverse training data to implement these
AI technologies.
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4.6. Further Readings on CNNS and GANs

Review articles that provide an overview and survey of CNNs and GANs: “Optimiz-
ing Image Captioning using Deep Learning based Object Detection” by Sahu et al. [23]
provides a thorough review of CNN architectures like VGGNet, ResNet, Inception, etc.,
for image captioning. “Generative Adversarial Networks: An Overview” by Creswell
et al. [24] reviews the basic framework, theory, types of GANs, training methods, evalu-
ation metrics, and applications. “A review of convolutional neural networks for inverse
problems in imaging” [25] focuses on CNN methods for image denoising, super-resolution,
inpainting, artifact removal, etc. “Convolutional Neural Networks for Medical Image Anal-
ysis: Full Training or Fine Tuning?” [26] discusses CNN training techniques for medical
imaging—full training vs. fine tuning. “Recent advances in deep learning for medi-
cal image segmentation” [27] surveys deep learning especially CNNs for medical image
segmentation tasks.

These review papers provide a broad overview of key CNN and GAN methodolo-
gies, architectures, applications, and trends within computer vision and medical imag-
ing. They serve as a good starting point to better understand these widely used deep
learning techniques.

In summary, deep learning’s ability to perform image translation and synthesis in
the field of medical imaging has opened up new avenues for improving the quality and
efficiency of various medical procedures, including PET imaging. These advancements
have the potential to enhance patient care, accelerate diagnoses, and facilitate the devel-
opment of more effective treatments. Limitations include lack of large PET datasets and
evaluation metrics for generated images. Future directions include unsupervised learning
and transformer models. Deep learning has brought advances in PET image generation
and will likely be commonly used in clinical practice for image quality improvement and
scan burden reduction.

5. The Transformative Role of AI in Long COVID Research

AI possesses a unique ability to analyze intricate patterns and subtle changes in
PET/FDG data that might evade human recognition. By identifying regions of the brain
with altered metabolic activity, AI can offer a deeper understanding of how Long COVID
affects the brain. These findings help pinpoint areas of concern, such as inflammation or
reduced blood flow, providing a more precise view of the neurological changes associated
with the condition.

Where AI truly shines is in its capacity to discern patterns and correlations in vast
datasets. Researchers can use AI to compare the PET scans of Long COVID patients
with those of healthy individuals, thus revealing specific brain regions that exhibit ab-
normal activity. These discoveries hold the promise of identifying novel biomarkers
associated with Long COVID, allowing for early diagnosis and the development of targeted
treatment strategies.

Furthermore, AI can help predict the progression of neurological symptoms in Long
COVID patients. By analyzing PET scan data alongside clinical information and genetics,
AI models can provide insights into the likelihood of severe cognitive impairment or mental
health issues. This proactive approach to patient care offers an invaluable opportunity to
manage Long COVID ‘s long-term effects.

AI-powered computational approaches can integrate diverse datasets from omics
to imaging to glean new mechanistic insights into Long COVID pathophysiology. For
example, deep learning algorithms applied to high-dimensional molecular data may un-
cover novel biological pathways underlying lingering symptoms. AI-enabled analysis
of medical imaging could identify distinct radiographic phenotypes and signatures of
organ dysfunction.

Advanced analytics using natural language processing and machine learning on
enormous sets of healthcare data can unravel risk factors and subtypes of Long COVID. AI
tools can rapidly mine electronic health records, insurance claims data, digital biomarker
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wearables, and more to find clinical, demographic, and social determinants that predispose
patients to Long COVID or its most severe presentations. These big data analytics can
guide prognosis, treatment, and study design.

Another application is the accelerated identification of new therapeutics for Long
COVID using AI-based drug discovery and repurposing platforms. By screening libraries
of molecules, predicting compound–target interactions, and modeling drug response, AI
can fast-track the development of novel treatments to alleviate stubborn Long COVID
symptoms. AI can also identify promising repurposing opportunities for existing drugs.

AI promises to transform Long COVID clinical trials through better participant stratifi-
cation and outcome measurement. It also enables tailored interventions via individualized
predictions. In the clinic, AI augmentation can help multidisciplinary Long COVID care
teams deliver coordinated, evidence-based services. Chatbots and virtual assistants provide
accessible support.

Summary points:

1. Early Detection: AI can help in the early identification of abnormal brain metabolism
patterns in Long COVID patients, potentially allowing for timely interventions and
personalized treatment plans.

2. Precision Medicine: By analyzing PET/FDG scans alongside other clinical and genetic
data, AI can facilitate the development of more precise treatment strategies tailored to
each patient’s unique profile.

3. Monitoring Disease Progression: Long COVID can manifest differently in various
individuals, and its symptoms may evolve over time. AI can continuously monitor
brain function and adapt treatment plans accordingly.

4. Accelerating Research: AI-powered analysis of PET/FDG data from a large number
of patients can speed up research into Long COVID, enabling a better understanding
of the condition and potential therapies.

5. Uncovering New Insights: AI can identify patterns and correlations that might go
unnoticed by human researchers, leading to the discovery of previously unknown
factors contributing to Long COVID.

AI is a disruptive technology that can substantially advance every aspect of Long
COVID research and care—from elucidating biological mechanisms to validating treat-
ments. By leveraging the power of AI, researchers seek to unravel the mysteries of this
confounding condition and substantially improve patient outcomes. The full benefits have
yet to be realized; however, the future looks bright at the intersection of AI and Long
COVID research.

Nonetheless, as we embrace AI’s transformative role in illuminating brain function
with PET scans in Long COVID patients, we must also consider the ethical implica-
tions. Safeguarding patient data privacy and ensuring responsible AI usage is paramount.
Strict measures and regulations should be in place to protect individuals’ rights and
personal information.

6. Challenges for Clinical Transformation: Beyond Performance Validation

There is a significant challenge in translating AI innovations into routine patient
care. The transformational gap refers to the gap between developing an artificial in-
telligence/machine learning model in a research setting and successfully deploying it
in real-world clinical practice. Some key aspects of the transformational gap include
(Figure 1):

• Performance gap—Models often perform worse in real-world settings compared to re-
search environments due to differences in data distribution, population characteristics,
clinical workflows, etc. Bridging this gap requires extensive validation and testing.

• Utility gap—Even accurate models may not improve meaningful clinical outcomes,
quality of care, or costs. Clinical utility needs to be proven through randomized trials
or comparative effectiveness studies.
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• Usability gap—Integration into clinical workflows is non-trivial. Factors like user
interfaces, interpretability, interoperability, and physician acceptance determine real-
world adoption.

• Regulatory gap—Lack of regulatory frameworks for AI/ML model approval and
governance creates uncertainty around safe and ethical deployment.

• Implementation gap—Organizational barriers around costs, liability, reimbursement,
training, and IT infrastructure can prevent adoption. Planning for sustainability
is crucial.
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7. Potential Future Research Avenues
7.1. Assessing Cognitive Impairment in Long COVID Patients

As discussed above, cognitive impairments like brain fog, difficulty concentrating,
and memory issues have emerged as common Long COVID symptoms [2–9]. Assessing
cognitive impairment in Long COVID patients is crucial for prognosis and guiding treat-
ment. FDG/PET imaging provides a quantitative means to measure brain metabolism and
has shown utility in evaluating neurodegenerative disorders like Alzheimer’s disease [28].
AI techniques like deep learning algorithms offer new opportunities to analyze FDG/PET
data to predict cognitive decline.

7.2. Using PET/FDG and AI for Early Prediction

PET/FDG brain scans analyzed by convolutional neural networks (CNNs) can be
used to predict future cognitive impairment in Long COVID patients. CNNs can extract
spatial features from PET images relevant to brain metabolism patterns linked to cognitive
decline. By training CNN models on labeled FDG/PET data from cognitively normal and
impaired populations, the networks can learn to classify scans based on disease-related
metabolic patterns. Long COVID patients, especially those over age 50, complaining of
brain fog [28] would undergo FDG/PET scans at baseline. A pretrained CNN classifier
would analyze the PET data to generate predictions on the patient’s risk of developing
mild cognitive impairment or dementia within 1–2 years. High-risk patients could then
potentially be selected for early interventions or clinical trials for Alzheimer’s prevention.
The AI could also help uncover why COVID-19 might raise dementia risk in some patients.

Key challenges include curating multi-institutional labeled PET datasets for model
training and validation. Physician assessments of cognitive function using standard tests
like the Montreal Cognitive Assessment [29] would provide ground truth labels. Exten-
sive testing is essential to establish the predictive performance and clinical utility of the
AI methodology.

This AI-powered FDG/PET approach could enable early identification of Long COVID
patients at risk for cognitive decline. Early interventions could then be explored to halt
further deterioration. With Long COVID affecting millions globally, tools to assess long-
term neurological impacts are urgently needed.
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7.3. Enhancing Non-Invasive Brain Stimulation with AI

Furthermore, non-invasive brain stimulation (NIBS) techniques like transcranial.
Direct-Current Stimulation (tDCS), transcranial Alternating Current Stimulation (tACS),

and transcutaneous Vagus Nerve Stimulation (tVNS) can modulate brain activity and con-
nectivity. They are safe, well-tolerated options for neurological disorders. tDCS studies
show reduced fatigue and improved cognition in Long COVID patients when applied to
frontal and parietal areas [30]. tACS may counteract abnormal brain oscillations underlying
fatigue [31]. Early data show cognitive improvements in Alzheimer’s patients. tVNS
activated cholinergic anti-inflammatory pathways and reduced fatigue in a Long COVID
pilot study [32]. It has anti-inflammatory effects relevant to post-viral immune dysfunction.
NIBS provides a promising non-pharmacological approach to target proposed mechanisms
underlying Long COVID fatigue like inflammation, hypofrontality, and network dysfunc-
tion. More research is needed on optimal NIBS protocols and sham-controlled trials in
Long COVID patients, but early findings suggest these techniques could alleviate persistent
neurological symptoms.

AI could be utilized to advance NIBS techniques. Machine learning algorithms can
analyze neuroimaging scans (PET/FDG, fMRI, EEG) before stimulation to identify optimal
target regions for each patient based on their unique brain connectivity patterns.

• AI models can be trained on large datasets to predict individual treatment response
and side effects based on demographic, clinical, and neuroimaging variables. This
allows for personalized, precision medicine approaches.

• Closed-loop systems can track physiological signals during stimulation and automati-
cally adjust stimulation parameters in real time to optimize effects.

• Reinforcement learning algorithms can iteratively adjust stimulation settings across
sessions to maximize therapeutic benefits and minimize side effects for each patient.

• Advanced neural networks and deep learning models can help automate analysis of
complex physiological signals acquired during and after stimulation.

• AI planning can design optimal stimulation protocols involving scheduling, electrode
placement, and dosage to efficiently achieve treatment goals.

• Big data analytics can identify patterns, correlations, and subgroups across diverse
patient populations that inform individualized stimulation protocols.

• Simulations of brain network dynamics can model effects of stimulation on connectiv-
ity. This allows for in silico optimization before delivering it to patients.

• Natural language processing can extract clinically meaningful insights from patient
reports on symptoms over the course of therapy.

In summary, AI has diverse applications spanning predictive modeling, closed-loop
control systems, large-scale analytics, simulations, and adaptive learning algorithms that
can enhance development of non-invasive brain stimulation as a precision medicine for
neurological disorders.

8. Limitations

Evaluating the quantitative accuracy of PET images generated by deep learning is
important, but there is currently a lack of consensus on the best methods. Commonly
used measures like peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
reflect perceptual similarity but not quantitative accuracy. Some studies have evaluated
quantitative accuracy by comparing radioactivity concentration, SUV, contrast recovery,
etc. However, more work is needed to establish standardized evaluation methods. A
limitation is the lack of large PET image datasets to train deep learning models. Creat-
ing shared public databases could enable more transfer learning. However, given how
emergent this post-COVID neurological dysfunction phenomenon is, such repositories are
simply not available yet. As with many cutting edge applications of AI to new medical
contexts, progress often starts from limited datasets. Efforts like the UK Biobank imaging
dataset [33–35] on post-COVID neurological deficits demonstrate feasibility. With more
patients being scanned, open data sharing and global coordination amongst researchers
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are absolutely key—and achievable. For optimal AI development, consolidated image
repositories must be the crucial first step. Alternative techniques like unsupervised, self-
supervised, and weakly supervised learning may help with limited data. Transformers
have potential for breakthroughs in PET image generation, as they have in natural language
processing. Attention-based models like BERT and XLNet could be applied to PET images.
Multimodal PET/MR data alignment can introduce errors. Systematic evaluation of the
effect of PET-MR alignment errors on deep learning performance is needed.

In summary, key challenges are developing standardized quantitative evaluation
methods, creating large public PET image datasets, and exploring alternative deep learning
techniques that require less data. Evaluating the impacts of multimodal data alignment is
also important in future work.

9. Conclusions

Cutting-edge PET/FDG neuroimaging combined with AI analysis offers tremendous
potential to elucidate the neurological impacts of Long COVID. AI techniques including
CNNs and GANs can detect subtle patterns in PET data that provide insights into brain in-
flammation, hypometabolism, network dysfunction, and cognitive decline associated with
Long COVID. Although still an emerging application, the integration of AI and advanced
imaging could transform our understanding of Long COVID’s effects on the brain, enabling
better diagnosis, prognostics, treatments, and eventually prevention. However, rigorous
validation and attention to responsible and ethical AI development remain imperative as
these technologies progress from bench to bedside. By harnessing the synergy between
AI and neuroimaging, researchers seek to unravel the neurological complexities of Long
COVID and meaningfully improve patient outcomes.
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