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Preface

Benthic biodiversity plays an important regulatory role in marine ecosystem functioning,

including the transport of energy, solutes, and materials within sediments and across the

sediment–water interface. Biological interactions within and between components often expose

co-structures and may superimpose on the relationships between biodiversity and its abiotic drivers,

potentially masking or even reversing them. Due to limited accessibility, the seafloor environment still

hides many of its inhabitants and their functions from us, even in the most studied regions.

Progress made in global and regional analyses has revealed the potential controlling mechanisms

of large-scale benthic biodiversity patterns. Changes in benthic communities along natural gradients

have been the focus of ecological research for decades. However, with a strong bias toward

macrozoobenthos and biogeochemical elemental cycling, the structures and functions of other

organism groups living in and on sediment, including prokaryotes, protists, microphytobenthos,

and meiofauna, are largely understudied. Particularly, the monitoring of benthic habitats is necessary

to expand our insights into the underlying mechanisms of spatial and temporal variability. Elucidating

the interactions between the different components of the benthic biota and parameterizing the

implications of biodiversity changes for ecosystem functions along natural gradients and in response

to anthropogenic disturbance remain continuing challenges.

This Special Issue aimed to explore how changes in the diversity of benthic communities—from

prokaryotes to macrofauna—and the interactions between these groups influence community

metabolism, biogeochemical fluxes, and transport processes. We encouraged observational,

experimental, and modelling studies that reflect the latest advances in the field, and this collection

represents the outcome of these efforts.

We sincerely thank MDPI Biology and especially our Assistant Editor, Ms. Annie Ji, for her highly

professional, thoughtful, and kind support throughout this process. Annie, it was a pleasure working

with you—your attentive communication, care, and clarity are truly appreciated.

Mayya Gogina and Judith Piontek

Guest Editors
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Editorial

Beyond the Surface: The Peculiar World of Benthic Biodiversity,
from Microbes to Multicellular Life and Their Ecosystem Roles
Mayya Gogina * and Judith Piontek

Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, D-18119 Rostock, Germany;
judith.piontek@io-warnemuende.de
* Correspondence: mayya.gogina@io-warnemuende.de

Below the water column depths, marine sediments harbor a vibrant tapestry of life
that underpins a variety of ecological balances. From the tiniest microbes to complex
multicellular organisms, benthic communities play pivotal roles in nutrient cycling, energy
flow, and habitat formation. Understanding these intricate ecosystems is paramount,
especially as they face intensive evolutionary fluctuation and natural succession. Changing
climate conditions and the increasing influence of other threats from human activities are
putting pressure on communities in benthic marine ecosystems and require adaptations
within short periods of time.

In this Special Issue, we wanted to delve into the multifaceted world of benthic
biodiversity, exploring the dynamic interactions among its diverse communities and their
impacts on marine ecosystem functioning. We were lucky to collect 13 articles, totaling
252 pages, that have been co-authored by 65 researchers from 8 countries.

The contributions span a broad spectrum of topics, beginning with microbial commu-
nities that form the foundation of benthic ecosystems. Advanced metabarcoding techniques
have unveiled the astonishing diversity and versatility of benthic protists, shedding light
on their roles in biogeochemical processes and food webs and addressing their resilience to
environmental perturbations. Transitioning to meiofauna and macrofauna, several stud-
ies investigate species distribution patterns in response to natural gradients and anthro-
pogenic pressures like bottom trawling, sea level rise, or organic and pollutant influences
from the river plume, suggesting species that suffer most from these perturbations and
spotting those that are tolerant. These findings underscore the sensitivity of benthic or-
ganisms to habitat alterations, emphasizing the need for comprehensive monitoring and
conservation strategies.

Interdisciplinary approaches featured in this issue highlight the functional interplays
between different benthic compartments, but also the need for more integrated assessments.
For instance, research on bioturbation and bioirrigation demonstrates how macrofaunal
activities enhance microbial processes, facilitating nutrient exchange across the sediment–
water interface. Such interactions are crucial for maintaining ecosystem health and pro-
ductivity. However, establishing robust quantitative relationships to improve predictive
capacity remains a challenge.

The contributions in this issue primarily focus on observational and modeling ap-
proaches to understand benthic biodiversity distribution and ecosystem functioning
(Table 1). Purely experimental studies were unfortunately lacking. We therefore advo-
cate for more of them in the future, as they can reveal not only species-specific responses
but also potential cascading effects on community structure and ecosystem services. Such
insights remain missing for many organism groups but are vital for predicting future
changes and formulating adaptive management plans.

Biology 2025, 14, 368 https://doi.org/10.3390/biology14040368
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Table 1. Summary of 13 papers included in this Special Issue, distinguishing between organism
groups studied and methodologies and highlighting key findings.

Reference Focal Organism Group Methodological Approach Key Ecosystem Function Finding

[1] Macrofauna Observational, Modeling,
Experimental

The Bioirrigation Potential index (BIPc) derived from
observational macrofauna data correlates with irrigation
rates, confirming that macrofaunal activity significantly

enhances the efficiency of solute transfer in
benthic environments.

[2] Macrofauna Observational, Experimental

Bottom trawling shifts benthic communities toward
opportunistic, deposit-feeding species that do not

bioturbate. This disturbance does not affect oxygen
consumption (site- and season-dependent) but reduces

carbon mineralization due to the removal of reactive
surface sediment. The decline in community complexity

and bioturbation leads to decreased sediment
oxygenation, a reduction in carbon mineralization, and
higher organic carbon concentrations in the sediment.

[3] Macrofauna Observational
Sea level rise will modify the seafloor macrofauna

communities in estuaries and subsequently alter the
related ecosystem functions.

[4] Macrofauna Observational

With increasing depth and decreasing influence from
the river plume, species density and related sediment

mixing and bioirrigation decreased. Highest
macrofauna diversity was observed in the upper first cm

of sediment, but the highest biomass was in deeper
(6 cm) depth layers.

[5] Macrofauna Observational

Using microsatellite markers, the genetic diversity of
commercially important clams was shown to be

influenced by breeding mode and revealed no genetic
isolation of populations by distance.

[6] Macrofauna,
brachiopods Observational, paleo

Based on precise age constraints from conodont
biostratigraphy and quantitative brachiopod data, a

previous underestimate of the diversity of Olenekian
brachiopod fauna diversity is suggested, and

brachiopod recovery in the studied section is attributed
to the latest Spathian period.

[7] Macrofauna Observational

Field assessments document a direct link between
macrofaunal diversity and sediment structure. Small

patches of different soft sediment types are associated
with elevated species richness and a higher rate of

occurrence of rare species.

[8] Macrofauna Observational

Research on marine bivalves suggested that lipid matrix
membranes of the mitochondria of long-lived species

are less sensitive to in vitro-initiated peroxidation
compared to species with shorter life spans.

[9] Microbes, protists Observational

Metabarcoding-based assessment of benthic protists,
which act as controllers of bacterial and

microphytobenthos production and contribute
significantly to the carbon flux, suggested community
response to salinity, sediment properties, and oxygen.

[10]
Fish (demersal and

benthopelagic),
megafauna

Observational

Field surveys using environmental DNA metabarcoding
(eDNA) and baited video (BRUVS) revealed no diversity
hotspots for fish at seamounts. Shallower seamounts, as
biomass oases and refuges for threatened megafauna,

were spotted as protection priorities.

2
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Table 1. Cont.

Reference Focal Organism Group Methodological Approach Key Ecosystem Function Finding

[11] Macrofauna Observational, Modeling
Field geological and biological surveys and modeling
were used to map the distribution of seabed habitats

and biotopes and their inhabitants.

[12] Macrofauna Observational

Field surveys compare recent benthic macrofauna
biodiversity in German Marine Protected Areas of the

Baltic and the North Sea along environmental gradients
and decreasing bottom trawling intensity.

[13] Macrofauna Observational

Seagrass (regardless of density) positively affects
macrozoobenthic communities and their functioning,
indicating meadows as key biotopes that can support

biogeochemical processes in coastal zones more
effectively than bare sands.

To serve as a quick reference for readers to navigate the diverse topics covered in this
Special Issue and to synthesize the wealth of information presented, Table 1 categorizes
the 13 published studies based on their focal organism groups (microbes, meiofauna,
macrofauna, fish) and methodological approaches (observational, experimental, modeling)
and outlines key findings related to ecosystem functions. In conclusion, this compilation of
research offers a snapshot of some current advancements in benthic biodiversity studies.
It underscores the importance of integrative approaches to unravel the complexities of
marine ecosystems and informs strategies for their understanding and preservation amidst
a rapidly changing world.

Additionally, Figure 1 illustrates schematically the expected interconnections between
different benthic biodiversity components, depicting how microbial, meiofaunal, and
macrofaunal interactions might drive or alter essential processes like nutrient cycling,
carbon remineralization, deoxygenation, and overall energy transfer.
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Figure 1. Schematic illustration of the expected interconnections between different benthic biodiver-
sity components and processes (labeled in white), exemplary pressures (labeled in black), as well as
some currently actively developed monitoring methods (shown in gray).
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Benthic Macrofauna Community Bioirrigation Potential (BIPc):
Regional Map and Utility Validation for the South-Western
Baltic Sea
Mayya Gogina 1,*, Judith Rahel Renz 2, Stefan Forster 2 and Michael L. Zettler 1

1 Leibniz Institute for Baltic Sea Research, Seestraße 15, 18119 Rostock, Germany;
michael.zettler@io-warnemuende.de

2 Marine Biology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3,
18059 Rostock, Germany; judith-rahel@gmx.de (J.R.R.); stefan.forster@uni-rostock.de (S.F.)

* Correspondence: mayya.gogina@io-warnemuende.de; Tel.: +49-381-519-7393

Simple Summary: The sediments on the seafloor are inhabited by multiple macroscopic organisms
such as shells and worms, which, among other things, influence the biogeochemical cycling by
flushing the near-bottom water through their gangways. This is called bioirrigation, one of key
processes in the functioning of marine sediments. The density of animals, in addition to the features
(or traits) of each species, define their specific contributions to this process. Measuring the intensity of
this rather dynamic process in nature is difficult and costly; therefore, the available direct observations
are too scarce for large-scale assessments. However, such assessments are essential for broadening our
understanding of ecosystem functioning, and of the role that biodiversity plays in it. To address this
shortage of observational data, a traits-based index “BIPc” that expresses the bioirrigation potential,
based on available data on sediment-dwelling animals, comes into play. In this paper, we focus on
the performance of the BIPc index in the south-western Baltic Sea, and on how it changes in space
and time. The results support the usefulness of this index, but also highlight its existing limitations.
Modelled distribution map layers of the bioirrigation potential and scores for 120 key species required
for index calculation are made available for reuse.

Abstract: Benthic community bioirrigation potential (BIPc), an index developed to quantify the
anticipated capacity of macrofauna to influence the solute exchange at the sediment–water interface,
was calculated for the south-western Baltic Sea. This index can be regarded as an effect trait that
is useful for predicting ecosystem processes impacted by animal burrow ventilation. The special
feature, and presumably an advantage, of BIPc, compared to alternative recently developed benthic
macrofauna-based bioirrigation indices, lies in its ability to distinguish the taxa-specific score values
between diffusion- and advection-dominated sediment systems. The usefulness of the BIPc index
was compared against the estimates of the well-established community bioturbation potential index
(BPc). The BIPc index displayed a moderately but significantly stronger correlation with estimates of
irrigation rates derived from tracer experiments. Using a random forest machine learning approach
and a number of available relevant environmental predictor layers, we have modelled and mapped
the spatial differences in this ecosystem functioning expression. The key species contributing to
bioirrigation potential in the study area were identified. The interannual variation in BIPc was
assessed on a small exemplary dataset. The scores required to calculate the index, that were assigned
to 120 taxa dominating abundance and biomass in the region, are provided for reuse. The utility,
temporal variability and uncertainty of the distribution estimate are discussed.

Keywords: benthic organisms; ecosystem functioning; irrigation; trait-based index; solute transport;
sediment–water interface; mapping; species distribution model

Biology 2022, 11, 1085. https://doi.org/10.3390/biology11071085 https://www.mdpi.com/journal/biology5
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1. Introduction

Both fluid and particle transport affect the physical properties of sediment; however,
Aller [1] suggested that, in terms of weight, water pumping is about 100 times greater
compared to bioturbation-driven particle transport. Biogeochemistry and microbial com-
munity structures of sediments in the coastal seas are influenced by the irrigation activity
of large populations of burrowing macroinfauna [2]. Burrowing benthic macrofauna is a
classic example of ecosystem engineers having a major impact on ecosystem functioning
by influencing the sediment matrix and pore solutes in the aquatic sediments. This impact
is disproportionally large compared to the abundance and biomass of macrofauna [3].
Furthermore, according to global estimates, macrofauna dominates the biomass on the
continental shelf [4].

Importantly, the effects of bioturbation and, in particular, burrow ventilation, on
oxygen uptake differ in diffusion- and advection-dominated systems, i.e., in fine grained,
muddy sediments with low permeability compared to coarse grained, sandy sediments
with high permeability [5].

Using a resazurin tracer (suitable for decoupling animal respiration and inorganic
oxygen consumption from microbial respiration), microcosm experiments in lake sediments
revealed that the transport of fluids into the sediment due to the activities of chironomid
larvae enhanced sediment respiration by a factor of 2.5 in the diffusion-dominated sedi-
ment [6]. A study using the same tracer in marine sediments of an advection-dominated
system did not detect any bioturbation-caused change in the total oxygen uptake, but
evidenced a significant increase in biologically mediated oxygen uptake [3]. Other fresh-
water studies suggested that bioirrigation by macrozoobenthos can be responsible for an
enhancement of sediment respiration ranging from 17 to 360% [7,8].

The constant transport of solutes caused by the activity of sediment-dwelling macro-
fauna modify the habitat and influence the availability of resources. These allogenic
engineers exert a major influence on the biogeochemistry of aquatic sediments by alter-
ing the microstructure, oxidating solute species, water pumping through the sediment
and enhancing bacterial activity [3,9]. Though the effects of benthos are mainly surficial,
limited to a few centimetres above the sediment surface and a few decimetres below it,
this sediment–water interface is both biologically active and chemically reactive [10]. The
reasons that justify the approach of focusing on the effects of macrofauna in soft sediments
are: macrofauna, as covered by largely available data, seem to comprise the most potent
modifiers, and soft-bottom habitats form the bulk of the seafloor in the Baltic Sea region [9].
Despite a recently emerging global database covering bioturbation intensity, ventilation
rate, and the mixing depth measurements of marine sediments [11], there is still only
sporadic and rare data on bioirrigation rates directly measured in experimental set-ups
and biodiffusion coefficients derived from bio-mixing models [12,13]. Toussaint et al. [14]
concluded that both biotic and abiotic factors are required to explain the variability in
oxygen consumption, total mineralisation, and nitrification and denitrification estimates, as
macrofaunal activities have different effects across habitats. Using the BIPc index calculated
on the base of biotic data, it could be considered to proportionally vary the bioirrigation
in generic models for marine sediment biogeochemistry (such as ERSEM, e.g., [15]), and
eventually to more accurately assess the effects on fluxes on different scales.

Bioirrigation index can be regarded as an effect trait that is useful for predicting
ecosystem processes rates, particularly in cohesive sediments. Several such indices have
been developed recently (e.g., [16]). Here, we focus on the bioirrigation potential of the
benthic community (BIPc), developed and described by Renz et al. [17], as a proxy for
burrow ventilation by fauna, specifically using data from the Baltic Sea. Environmental
steering distinguishing diffusion- and advection-dominated systems could result in a more
effective interpretation of what this statistic actually means. Measurements of irrigation
do not typically discriminate between physical and faunal burrow ventilation, and it is
therefore difficult to predict any organism’s impact on actual ventilation rates based on
trait scores alone, especially in permeable sediments. In contrast to the IPc index proposed
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by Wrede et al. [16], the BIPc index proposed by Renz et al. [17] was developed with a view
to distinguishing between diffusive and advective environmental settings by recording
different scores according to burrow type and feeding type of those two types of benthic
systems.

However, compared with related well-developed bioturbation potential, which has
already been assessed and mapped for various regions [18–20], the classification of sedi-
ments according to their bioirrigation potential is a very recent endeavour. Despite already
emerging applications, for example in the assessment of the degradation of ecosystem
functions in response to sediment contamination [21], its applicability should be further
explored [22].

Interestingly, despite agreement on the importance of burrow ventilation in fuelling
oxic mineralisation and nitrification processes [23,24], in the recent studies, the IPc index de-
veloped by Wrede et al. [16] was not selected as an explanatory variable for corresponding
oxygen or nitrate fluxes, and indicated no correlation to the measured irrigation rate [14,22].
This mismatch could suggest that an index is not an accurate estimation of burrow ven-
tilation rate. Instead, it was found to correlate more strongly to the burrow ventilation
depth [22].

As a critical comment for IPc, that also remains valid for BIPc, both indices do not
account for any temporal dynamics of faunal activity. This is crucial for the discontinuous
and fitful ventilation and short temporal scale at which the stimulation of oxic mineralisa-
tion (the one biogeochemical process that is expected to be most strongly linked to burrow
ventilation) takes place, particularly as electron acceptors that are transported downwards
are rapidly consumed. Toussaint et al. [14] therefore suggested that an index that would
account for temporal dynamic could be a more useful proxy for biogeochemical processes,
but to our knowledge no such index currently exists.

Here, we estimate the index and provide the map of BIPc for the western Baltic Sea
that can serve as basis for association with other metrics of ecosystem functioning. They can
also be useful for predicting and scaling up anthropogenic impacts on ecosystem functions.

2. Materials and Methods
2.1. Study Area

The semi-enclosed brackish Baltic Sea is connected to the North Sea by two narrow
and shallow Danish straits (the Belt Sea and the Sound). Its environmental conditions,
highly stratified by strong vertical salinity and temperature gradients, are driven by re-
stricted water exchanges through the straits, discharge of fresh waters from the rivers, and
specific topography. Halocline, controlled by freshwater runoff, wind-induced mixing and
advection [25], occurs at 10 m to 30 m depth in shallower parts. The study area in the
south-western Baltic Sea (Figure 1) comprises 14,800 km2 and has an average depth of 19 m.
Shallow seafloor habitats along the shore and on top of the offshore glacial elevations are
characterised by patches of rocks, till, gravel and coarser sands. With increasing water
depth, substrates become finer, and organic-rich muddy sediments prevail in the basins and
in the deeper parts of the trenches [26]. The main natural abiotic drivers of species richness
and composition of benthic macrofauna communities in the area are near-bottom salinity
and oxygen conditions [27]. There is a strong salinity gradient with values declining from
20 to 25 in the western part of Kiel Bay towards 7 in the eastern-most part of the study
area in the Pomeranian Bay, with the highest temporal variability in salinity occurring in
the western part. Oxygen depletion that negatively affects the diversity and density of
soft-bottom fauna [28] is irregularly observed in the deeper regions of the Kiel Bay, the Bay
of Mecklenburg and in the Arkona Basin [27].
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in a 4% buffered formaldehyde–sea water solution. The retained material was sorted in a 
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and the taxonomy was harmonised following the World Register of Marine Species 
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assigned to 120 taxa dominating abundance and biomass in the region, are included in the 
Supplementary Table S1. Taxa with defined species scores (for feeding, burrow type and 
depth to calculate BIPc) covered 93.5% of AFDW biomass and 88.9% of abundance in the 
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temporal variability, taxa that were covered by the scores list were responsible for at least 
97% of summed abundance and at least 99% of summed AFDW biomass at each of the 
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Figure 1. Map of the south-western Baltic Sea depicting the positions of the stations used as the
reference dataset in this study (sampled in 2000–2020, shown by small grey dots), as well as long-term
monitoring stations used to assess BIPc variability (shown by rhombus). The red rectangle indicates
the location of the study area on a map of the Baltic Sea (lower left corner).

2.2. Biological Dataset and Environmental Predictors

The biological data used is this case study covers 2170 sampling events. The positions
of the stations are plotted in Figure 1. It comprises the data from the German part of the
Baltic Sea described in Gogina et al. [20] updated for the period 1999–2020.

At each station, three replicate benthic samples were collected with 0.1 m2 van Veen
grab and washed through a 1 mm sieve. Any animals remaining were preserved on board
in a 4% buffered formaldehyde–sea water solution. The retained material was sorted
in a laboratory with a stereomicroscope and identified to the lowest possible taxonomic
level, and the taxonomy was harmonised following the World Register of Marine Species
(WoRMS).

The scores required to calculate the community bioirrigation potential, which were
assigned to 120 taxa dominating abundance and biomass in the region, are included in
the Supplementary Table S1. Taxa with defined species scores (for feeding, burrow type
and depth to calculate BIPc) covered 93.5% of AFDW biomass and 88.9% of abundance in
the area. Within the subset of data from eight monitoring stations analysed to characterise
temporal variability, taxa that were covered by the scores list were responsible for at least
97% of summed abundance and at least 99% of summed AFDW biomass at each of the
stations.

An interplay of physical, chemical, and biological components has a direct influence on
the habitats and community structure, thereby shaping its bioirrigation potential. Available
full-coverage layers for environmental variable for the German part of the Baltic Sea
listed in Gogina et al. [20] were used as predictors for this study. For the final spatial
distribution model that demonstrated the best performance, the selected predictors were:
mean and standard deviation (SD) of salinity; mean inorganic suspended particle matter
(SPM); bottom shear stress in Pa; age of water mass since the last contact with the surface;
mean near-bottom oxygen concentration and SD of summer temperature of near-bottom
water (modelled with the resolution of 600 × 600 m2 [29,30]); bathymetry and sediment
median grain size [31,32]; detritus concentration near the bottom (µmol/l) modelled with a
1 nm resolution [33,34]; and % of total organic content in surface sediments [35]. Pairs of
predictors were tested for collinearity, and other highly correlated independent variables
(those that indicated within any pair Pearson correlation r > 0.90, p level 0.05, and had the
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lower predictive power) were omitted from the analysis to ovoid overfitting (for variables
and correlation matrices, see Supplementary Table S2). A larger set of other predictors was
also tested, but did not enter the final model, including ice thickness as well as near-bottom
salinity, temperature and oxygen modelled as described in Neumann et al. [36].

2.3. Calculating Community Bioirrigation Potential (BIPc)

To quantify the potential for solute exchange at the sediment–water interface, com-
munity bioirrigation potential (BIPc; [17]) was calculated for the south-western Baltic Sea.
In order to account for different underlying physical processes in mud and sand, BIPc
applies different scores for advective systems (here attributed to medium sand and coarser
sediment types as classified by Tauber [32], and for diffusive benthic system (very fine
and fine sand sediments, all other muddy and less permeable sediment types). The scores
were assigned to pre-selected dominating 120 taxa, based on existing literature and expert
judgement.

To calculate BIPc, the mean individual biomass (expressed by the relation Bi/Ai, where
Bi is an ash free dry weight in g m−2, and Ai is abundance in ind. m−2) of each species
within a sample is multiplied by the relevant scores for the trait categories feeding type
(FTi), burrow type (BTi) and depth (Li), and they are weighted in turn by species abundance
as given in the following equation. Afterwards, the results are summed up across all species
present in the sample at a particular station (Equation (1)):

BIPc =
n

∑
i=1

√
Bi

Ai
×Ai × FTi × BTi × Li (1)

In those cases where trait categories were irrelevant or negligible with regard to
solute exchange across the sediment–water interface (e.g., epifauna), a score of “zero” was
assigned.

2.4. Assessing Temporal Variability in BIPc

Data from 8 long-term monitoring stations was used to assess the temporal variability
in BIPc (Figure 1, Table 1). With regard to the decisions taken for distinguishing between
diffusive and adjective systems, it is worth noting specific approach used for the long-term
monitoring stations of the University of Rostock located in fine sand near the M-018 in the
Bay of Mecklenburg. For all practical purposes of bioirrigation estimates, this location is
known as a diffusion-driven site [37]. Since the total organic content and fine fraction at
010-N1 are even higher than at M-018, this station was also considered as a diffusion-driven
system, despite the somewhat higher median grain size. Referring to this argumentation,
all very fine and fine sand sediments were approximated as dominated by diffusion-driven
processes.

2.5. Modelling Spatial Distribution of BIPc and Validating Index Performance

In order to obtain a full coverage BIPc map, we applied a Random Forest machine
learning algorithm [38] in the R package “RandomForest” [39,40] to the data described in
Section 2.2. Random Forest (RF) is a method based on an ensemble of randomly constructed
decision trees, and unlike simple spatial interpolation methods, it helps to account for
the variation in distribution driven by fine-scale habitat changes even where sampling
density is not sufficiently high [20]. Calculated community bioirrigation potential BIPc was
treated as the response variable, whereas environmental variables served as predictors. The
log10 (x + 1) transformations was applied to BIPc values prior fitting the RF models. The
number of trees was set to 1000; 1 to 5 variables per node were tested, and subsequently
the best-performing model based on the highest % of variance explained was selected.

The predictive accuracy of the final model was assessed by computing the non-
parametric Kendall’s τ rank correlation between modelled and observed BIPc values.
The importance of predictors in explaining the spatial distribution of BIPc in the final
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model was estimated using %IncMSE (the increase in mean squared error of the final
prediction as a result of random shuffling of a particular variable, estimated with the
out-of-cross-validation, considered as a robust and informative measure).

Table 1. Average values of sediment and environmental variables measured at monitoring stations,
observed in the period 2000–2020. In brackets, values of standard deviation (SD) are reported. For
station M-044 marked with *, SD could not always be defined, as multiple measurements of sediment
and environmental variables were missing; this station was only sampled in the years 2000–2008.

Monitoring Station 010-N1 012-M2 M-018 M-044 * 030-K8 109-K4 152-K3 160-PB

Diffusive (D) vs. advective (A) D D D A A D A A

Number of sampling events 22 24 35 9 21 21 20 17

Median grain size (µm) 146 21 108 197 224 19 218 191
(91) (7) (41) (67) (6) (7) (17) (11)

Fraction finer 63 µm (%) 34.2 84.5 26.5 0.0 1.8 84.3 2.5 1.8
(27.7) (22.7) (16.2) (-) (1.9) (24.7) (3.3) (2.6)

Fraction coarser 2000 µm (%) 0.28 0.84 0.04 0.00 0.01 0.61 0.84 0.03
(0.92) (3.36) (0.15) (-) (0.02) (2.29) (1.23) (0.1)

Sorting (phi) 1.64 1.76 1.31 0.56 0.49 1.67 0.60 0.50
(0.74) (0.47) (0.42) (-) (0.12) (0.43) (0.14) (0.14)

Skewness (phi) −0.40 −0.37 −0.49 0.04 −0.16 −0.46 −0.07 −0.04
(0.61) (0.44) (0.48) (-) (0.11) (0.32) (0.23) (0.12)

Total organic content (%) 2.97 9.27 1.58 0.01 0.29 12.05 0.44 0.25
(0.85) (1.13) (0.36) (-) (0.1) (1.55) (0.18) (0.1)

Oxygen (near bottom) (ml/l) 5.07 4.84 5.26 7.79 6.34 3.84 5.45 7.15
(1.47) (1.73) (1.75) (0.84) (0.53) (1.03) (1.28) (1.69)

Salinity (near bottom) 21.1 20.0 18.9 14.91 12.6 18.0 10.7 8.1
(2.5) (2.6) (2.1) (1.7) (3.2) (2.6) (2.2) (1.4)

Water depth (m) 28.1 24.3 20.3 10.8 22.6 47.4 30.6 14.3

Latitude (WGS 84), N 54◦33.08′ 54◦18.86′ 54◦10.99′ 54◦12.94′ 54◦43.41′ 55◦0.01′ 54◦37.96′ 54◦14.41′

Longitude (WGS 84), E 11◦19.17′ 11◦33′ 11◦46.01′ 12◦5.14′ 12◦47.02′ 14◦4.96′ 14◦16.96′ 14◦4.11′

To explore the degree of redundancy or usefulness of the BIPc index, we have com-
pared the resulting BIPc layer against the latest estimated distribution of well-established
community bioturbation potential index BPc [18] in the study area. The distribution of
BPc, used as a reference here, was modelled with RF [20]. BPc values were log10 (x + 1)
transformed prior entering the Random Forest model as response variable, and 24 environ-
mental layers were used as predictors. The number of trees was set to 500, best performing
model considered 3 features at each split point and explained 51.4% of variance (for more
details see [20]). A spatial overlay of predicted hot and cold spots of each of two indices,
BIPc and BPc, was analysed.

Values of BIPc and BPc estimated based on macrofauna data collected with van Veen
grab were also tested for correlation with mean total solute fluxes at the sediment–water
interface assessed using incubated cores from Lipka [41]. In this case, total fluxes from
the sediments were determined from the oxic phase of incubation experiments and they
denoted the fluxes of dissolved chemical species by both advection of water (e.g., by
organisms, via hydro-irrigation or due to relocation of pore-water and particles in surface
sediments by human activities) and simple molecular diffusion across the sediment–water
interface.

A distance-based Redundancy analysis (dbRDA; [42]) based on Euclidean distance
was also used to extract and summarise the variation in (log-tarnsformed) BIPc explained
by environmental predictors.

Taking advantage of the available data on the vertical distribution of benthic macro-
fauna in sediment cores collected by multicorer in the Fehmarn Belt in June 2020, we
compared the BIPc values obtained when taking into account the observed distribution
depth of macrofaunal individuals in the sediment, with that assumed based on literature.
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3. Results
3.1. Key Species

A few dominant bivalve species such as Mya areanaria and Arctica islandica, as well
as polychaetes Marenzelleria viridis, Scoloplos armiger and Hediste diversicolor, indicated
the highest contribution to the overall BIPc in the study area. Differences in the relative
contribution of a few key taxa to the summed BIPc were observed between sediment types
(Table 2).

Table 2. Key species contributing to BIPc overall and top five key taxa listed per sediment type.

Key Taxa and Contribution to
Overall Total BIPc Key Taxa and Contribution to Total per Sediment Type

overall Mud Medium sand
Mya arenaria 22.40% Arctica islandica 22.90% Marenzelleria viridis 19.80%

Marenzelleria viridis 18.80% Scoloplos armiger 11.70% Mya arenaria 18.10%
Arctica islandica 9.90% Terebellides stroemii 10.50% Arctica islandica 13.40%
Scoloplos armiger 7.70% Macoma balthica 10.10% Scoloplos armiger 10.00%

Hediste diversicolor 7.40% Lagis koreni 5.20% Pygospio elegans 5.00%
Pygospio elegans 4.70% Fine sand Coarse sand
Macoma balthica 3.90% Mya arenaria 31.80% Arctica islandica 15.70%
Arenicola marina 2.30% Marenzelleria viridis 19.80% Marenzelleria viridis 15.60%
Astarte borealis 2.30% Hediste diversicolor 10.00% Scoloplos armiger 10.80%
Heteromastus

filiformis 1.60% Arctica islandica 6.70% Mya arenaria 7.40%

Sum 81% Scoloplos armiger 5.70% Pygospio elegans 7.40%

3.2. Temporal Variability in BIPc

The temporal variability in BIPc observed in the period 2000–2020 at eight monitoring
stations (with four stations each located in diffusion and advection dominated systems)
is plotted in Figure 2. Despite significant temporal fluctuations (see also Supplementary
Figure S1 for the plot showing the time-series of BIPc values), the results of pairwise tests
indicated that similar magnitudes of the BIPc occur at stations with similar habitat types
regardless of salinity (see also Table 1). BIPc in advection-driven systems is quantified
significantly higher than in diffusion-driven systems, which is partly explained by the
definition of scores for each system. Advection-dominated stations showed values of
(untransformed) BIPc that were, on average, five times higher, and they were also prone to
higher temporal fluctuations (Tukey multiple comparisons of means p adjusted 0.041).

3.3. Spatial Distribution of BIPc and Comparison with Patterns in BPc

The best fitted model explained 59.29% of the observed variance in BIPc. Kendall’s τ
between the modelled and observed values was 0.65 (p < 0.05). The importance of regional
drivers of BIPc distribution, estimated as relative importance of predictors in the final RF
model, is displayed in Figure 3. Median grain size was the most important predictor for
spatial distribution of BIPc in the study area, followed by total organic content in sediments,
inorganic suspended particle matter, temperature variability and water depth. The large
effect size of sediment grain size on the potential bioirrigation activity of the organisms
is not surprising since this parameter determined the delineation between diffusion- and
advection-dominated sites.
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and then according to decreasing salinity. Subsets sharing the same letter above the plots are not
significantly different (based on ANOVA and Tukey honestly significant difference test). The locations
of the stations are indicated in Figure 1.
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Strangely, dbRDA results suggested that monthly oxygen means explain most of the
variability in BIPc (56.6%) out of all the tested modelled predictor variables. However, in
the Random Forest multiannual oxygen mean was chosen, and it was quantified as one of
the less strong predictors, compared to, for example, sediment parameters, temperature or
salinity variability. On the other hand, in support of the high importance of total organic
content predictor variable obtained from the large-scale estimate, dbRDA performed on
measured predictors, solely available as point data, showed that total organic content had
the highest explanatory power, clarifying along 49.3% of BIPc variability.

Interestingly, models fitted separately for BIPc values based solely on BIPdiff or BIPadv
scores showed lower performance, indirectly indicating the relevance of distinguishing
between differences in two sediment systems.

A comparison between the BIPc map generated here (Figure 4a) with that of BPc ob-
tained on the basis of a similar dataset (Figure 4, see [20] for more details on modelling BPc
distribution), suggested that BIPc pattern is mostly similar to that of BPc, but not identical.
An overlay of the two layers revealed that BIPc produced higher relative scores than BPc in
the deeper parts of the Bay of Lübeck, on soft sediments around Adler Ground, to the east
of Kadet Trench, in the central part of the Greifswald Lagoon and in the south/western
part of Pomeranian Bay, whereas larger patches of lower relative scores were observed in
Kiel Bay, north off Zingst and at intermediate depths of Arkona Basin (Figure 4b).
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tively). After incubation, those cores were sliced and sieved to analyse the inhabiting 
macrofauna (unpublished own data). No significant linear correlation was found between 
derived bioirrigation parameters and any of the major macrofaunal parameters (abun-
dance, biomass) or calculated functional indices (BIPc and BPc) using Pearson’s correla-
tion coefficient (Supplementary Figure S2b). Spearman’s rank correlation suggested that, 
among the biotic parameters considered, BIPc calculated based on fauna present in cores 
and with use of diffusive scores indicated the strongest significant association with irri-
gated bromide amount (Table 3). The significance of this correlation was eliminated fol-
lowing the use of advective scores for those fine sediment cores. BPc derived from the 
same faunal data also significantly correlated with dissolved tracer irrigation amount; 
however, the association was weaker. 

Figure 4. Predicted spatial distribution of BIPc (log-transformed) in the south-western Baltic Sea (a).
Bivariate map of bioturbation and bioirrigation potentials hotspots in the south-western Baltic Sea
(b). The distribution of BPc is a modelling result obtained using the same method and reported in
Gogina et al. [20]. Red areas indicate relatively higher scores of BIPc compared to BPc, whereas blue
areas are solely hotspots of BPc, but not of BIPc.
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3.4. Validating BIPc Index Sensitivity to Changes in Solute Fluxes

There are some comparisons indicating that the patterns shown by BIPc distribution
may not be unrealistic. Powilleit and Forster [43] reported bioturbation and bioirrigation
rates from Pommeranian Bight. Reported bioirrigation indicated the highest rates ever
measured using the tracer NaBr in this marine area, supporting the findings in Figure 4a.
Furthermore, the spatial pattern of the tracer in pore waters also showed a positive associa-
tion with BIPc values. A correlation of index with bioirrigation constants calculated for
various depth intervals reported in Powilleit and Forster [43] was not significant, but this
is not surprising due to the very low sample size. The strength of linear association was
higher for deeper sediment depth intervals. In particular, the linear relationship of BIPc
with bioirrigation constants was at its weakest for surface sediment layer (0–5 cm) and
steepest for the bioirrigation values derived for 10–15 cm sediment interval (see Supple-
mentary Figure S2a for more details). The NaBr tracer indicates the spatial proximity of
introduced overlying water with irregularities in nutrient distribution, a fact described in
many core sectioning studies on an overall averaged scale (e.g., [1]). However, quantifying
the exact effect of faunal solute (or particle) transport on specific locally observed interface
fluxes remains difficult.

We have tested BIPc index values against irrigation constants estimated in an ex-
periment conducted in April 2018, where bromide tracer was used in 14 incubated cores
(inner � = 10 cm) of fine and very fine sand sediment collected in the Oder Bank and in
Greifswald Lagoon (sediment median grain sizes were 0.197 mm and 0.074 mm, respec-
tively). After incubation, those cores were sliced and sieved to analyse the inhabiting
macrofauna (unpublished own data). No significant linear correlation was found between
derived bioirrigation parameters and any of the major macrofaunal parameters (abundance,
biomass) or calculated functional indices (BIPc and BPc) using Pearson’s correlation coeffi-
cient (Supplementary Figure S2b). Spearman’s rank correlation suggested that, among the
biotic parameters considered, BIPc calculated based on fauna present in cores and with use
of diffusive scores indicated the strongest significant association with irrigated bromide
amount (Table 3). The significance of this correlation was eliminated following the use of
advective scores for those fine sediment cores. BPc derived from the same faunal data also
significantly correlated with dissolved tracer irrigation amount; however, the association
was weaker.

An analysis of BIPc values obtained when taking into account the real observed depth
of vertical distribution of macrofaunal individuals (i.e., average depth of the sediment slice
where the organisms were found in sediment cores) compared to BIPc values obtained with
theoretical depth (i.e., when position or borrows depth reported in the literature was taken
into account) revealed an obvious overestimation of BIPc values (Figure 5) in the latter
case. This is not a surprise, as “theoretical” burrow depth taken from the literature often
anticipates the maximum penetration depth known for any particular species. It also seems
acceptable for this index that reflects the potential, i.e., the latent capacity of organisms to
burrow and ventilate at a certain sediment depth. However, of course individual organisms
can have the position at any depth between the declared lowest horizon and the sediment
surface, subject to environmental settings, interspecific interactions and food availability.
Therefore, the index calculated for different seafloor areas inhabited by similar communities
may not mirror the differences in the realised effects on rates of processes.
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Table 3. Spearman correlation coefficients (above the diagonal) with significance levels (p-value below
the diagonal) calculated between bioirrigation intensity measured in 14 cores using bromide tracer
(marked in green) and macrofauna parameters and functional indices BIPc and BPc (marked in blue).
Significant correlation coefficients are shown in bold font. To calculate BIPc diff, the corresponding
diffusion system scores are used for all cores, whereas for BIPc adv, advective scores are applied for
fine sand sediment cores.
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Inventory Br mmol/m2 0.896 0.866 0.723 0.569 0.473 0.582 0.437 0.207 0.446 0.477 0.389
Irrigation L/(m2 d) entire

core depth 0.000 0.936 0.553 0.405 0.278 0.447 0.319 0.054 0.227 0.253 0.295

Irrigation L/(m2 d) in 2 to
10 cm sediment depth

layer
0.000 0.000 0.509 0.328 0.264 0.434 0.282 0.068 0.225 0.264 0.311

BIPc diff 0.003 0.040 0.063 0.789 0.516 0.895 0.789 0.169 0.763 0.780 0.578
BIPc diff in 2 to 10 cm
sediment depth layer 0.034 0.151 0.252 0.001 0.248 0.538 0.903 −0.315 0.934 0.903 0.859

BIPc (adv scores in fine
sands) 0.088 0.337 0.361 0.059 0.392 0.415 0.257 0.453 0.231 0.253 0.125

BPc 0.029 0.109 0.121 0.000 0.047 0.140 0.644 0.343 0.552 0.600 0.284
BPc in 2 to 10 cm

sediment depth layer 0.118 0.266 0.329 0.001 0.000 0.375 0.013 −0.312 0.846 0.829 0.771

Abundance, ind/m2 0.478 0.854 0.816 0.563 0.273 0.104 0.230 0.277 −0.271 −0.229 −0.495
Wet weight biomass,

g/m2 0.110 0.435 0.440 0.002 0.000 0.427 0.041 0.000 0.349 0.991 0.890

Ash free dry weight
biomass, g/m2 0.085 0.382 0.361 0.001 0.000 0.383 0.023 0.000 0.431 0.000 0.873

Wet weight biomass in 2
to 10 cm sediment depth

layer, g/m2
0.169 0.306 0.280 0.030 0.000 0.670 0.326 0.001 0.072 0.000 0.000

Biology 2022, 11, x FOR PEER REVIEW 12 of 18 
 

 

The correlation between values of BIPc and BPc derived from grabs-based data and 
mean total solute fluxes from Lipka [41] was (positively) significant only for phosphate. 
This association was slightly stronger for BIPc than for BPc. Other Spearman rank corre-
lation values were not significant for both indices. Moderate non-significant negative as-
sociation with silica efflux was somewhat higher for BPc (Table 4). When the fluxes were 
averaged for multiple visits per station, the maximum silica efflux displayed a significant 
negative association with BIPc (r = −0.89, p < 0.05, n = 5). 

Table 4. Spearman rank correlation coefficients between the estimated total effluxes from sediments 
obtained from Lipka [41] and trait-based bioturbation and bioirrigation indices, BPc and BIPc (n = 
12). Significant values (p < 0.05) are highlighted in bold. 

 Oxygen Silica Ammonium Phosphate Manganese 
BPc −0.13 −0.39 0.17 0.71 0.15 
BIPc −0.20 −0.33 0.18 0.73 0.18 

 

  

Figure 5. Three exemplary vertical profiles of BIPc estimated based on measured (left) and “theo-
retical” (right) burrow depths of macrofauna organisms. Take a note of the different scales used in 
the graphs. 

4. Discussion 
Organic matter remineralisation and nutrient regeneration, cycling of carbon, nitro-

gen, and metals are among the most important active processes in marine sedimentary 
habitats. They are often characterised by uni- and multivariate fluxes, which are known 
to be altered by bioirrigation of infauna [44,45]. Since the physical and hydrological prop-
erties of sediments are decisive in determining the magnitude of solute exchange in ben-
thic ecosystems, BIPc accounts for differences in underlying physical processes in sand 
and mud by use of different traits scores for the same species [17]. Both bioirrigation and 
bioturbation are considered to have a desirable influence on those soft sediment types, as 
they are integral to a healthy soft-sediment ecosystem. 

Suitable data on dissolved nutrients fluxes at the sediment–water interface and meas-
ured irrigation rates, which could be effectively used to validate the utility of bioirrigation 

Figure 5. Three exemplary vertical profiles of BIPc estimated based on measured (left) and “theoreti-
cal” (right) burrow depths of macrofauna organisms. Take a note of the different scales used in the
graphs.

15



Biology 2022, 11, 1085

Comparing BPc and BIPc with the measured ventilation rates (ml h−1 ind.−1, based
on a mean rate over time inclusive of rest periods) and maximum reported irrigation
depth in sediments (in cm), based on scars data (only n = 4) found in [11], suggested
a somewhat stronger association and higher sensitivity of the latter index (where non-
significant R2 equalled 0.33 vs. 0.54 for ventilation rates, and 0.70 vs. 0.94 for irrigation
depth, respectively).

The correlation between values of BIPc and BPc derived from grabs-based data and
mean total solute fluxes from Lipka [41] was (positively) significant only for phosphate. This
association was slightly stronger for BIPc than for BPc. Other Spearman rank correlation
values were not significant for both indices. Moderate non-significant negative association
with silica efflux was somewhat higher for BPc (Table 4). When the fluxes were averaged
for multiple visits per station, the maximum silica efflux displayed a significant negative
association with BIPc (r = −0.89, p < 0.05, n = 5).

Table 4. Spearman rank correlation coefficients between the estimated total effluxes from sediments
obtained from Lipka [41] and trait-based bioturbation and bioirrigation indices, BPc and BIPc (n = 12).
Significant values (p < 0.05) are highlighted in bold.

Oxygen Silica Ammonium Phosphate Manganese

BPc −0.13 −0.39 0.17 0.71 0.15
BIPc −0.20 −0.33 0.18 0.73 0.18

4. Discussion

Organic matter remineralisation and nutrient regeneration, cycling of carbon, nitrogen,
and metals are among the most important active processes in marine sedimentary habitats.
They are often characterised by uni- and multivariate fluxes, which are known to be
altered by bioirrigation of infauna [44,45]. Since the physical and hydrological properties
of sediments are decisive in determining the magnitude of solute exchange in benthic
ecosystems, BIPc accounts for differences in underlying physical processes in sand and
mud by use of different traits scores for the same species [17]. Both bioirrigation and
bioturbation are considered to have a desirable influence on those soft sediment types, as
they are integral to a healthy soft-sediment ecosystem.

Suitable data on dissolved nutrients fluxes at the sediment–water interface and mea-
sured irrigation rates, which could be effectively used to validate the utility of bioirrigation
indices, are scarcely available. Published global estimates, such as those based on relation-
ships between bottom water oxygen and nitrogen loss [46], fluxes of phosphorus [47] and
biogenic silica [48] appeared to be too coarse in spatial resolution when compared to our in-
vestigation. Apart from negligible sampling size, the weak relationship between estimated
BIPc values in this study and irrigation volumes from Powilleit and Forster [43] (based on
a handful of stations) could be associated with the poor performance of the index, or also
with experimental artefacts arising during the measurements. The differences in association
for different sediment layers indicated that correspondence between the Br transport and
fauna is blurred close the sediment–water interface where, in addition to bioirrigation,
molecular diffusion drives tracer fluxes most. For fine sand cores, the strongest association
of BIPc index with tracer irrigation was found when using diffusive system scores for index
estimation. The use of advective system scores to derive the index did not fit the measure-
ments data. This suggests that burrow-linings in burrows constructed in more permeable
sands may force more transport compared to diffusion, as assumed originally during the
development of the BIPc index. For example, fertilisation and early larval development of
lugworm Arenicola marina in sand occurs in U or J-shaped burrows. For ventilation and
respiration, worms can pump water into those burrows down to 30 cm of sediment depth
with rates as high as 430 mL per hour. Later larval development takes place enclosed in
mucous tubes in the upper sediment layers [49,50]. The association of dissolved tracer
irrigation with BPc was weaker. The increased total phosphate effluxes from sediments
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with higher bioirrigation suggested by the data from Lipka [41] and our BIPc results are in
line with findings of Chaffin and Kane [51], who anticipated that bioirrigating fauna might
be a source of internal phosphorus that explains the “trophic paradox” in lakes. These
results are essential to justify our decision to assign fine sands to diffusion-driven systems
in the performed analysis and, more importantly, to advocate for the usefulness of the BIPc
index.

Using extensive benthic macrofauna data, including 2170 sampling events for over two
decades, in combination with species distribution modelling methods, we have identified
the potential key bioirrigating species and, for the first time, have mapped the distribution
of expected bioirrigation hotspots in the south-western Baltic Sea. The resulting digital map
layers are provided as Supplementary File S1. The distribution pattern for bioirrigation
index BIPc largely resemble the spatial pattern of benthic community bioturbation potential
index BPc [18], reported in earlier publications (e.g., [19,20]). This was also somewhat
expected, since both traits-based indices are mostly determined by the same species domi-
nating abundance and biomass, and by their attribution to functional groups that largely
overlap in definition. Although the mathematical formulation is different, it is mostly the
relative distribution of high and low values, and not the absolute units, that make up most
of the utility for both indices to inform and support nature-based solutions. In the area
west of the Fehmarn Belt, no hotspot for BIPc was observed, but one was observed for
BPc. This could be a result of potential differences in processes driven by differences in
community and the lower expected solute exchange in the diffusion-dominated system of
that region.

It is important to acknowledge that, due to coupling of different processes, high pro-
cess rates can also take place where measured effluxes are low. Miatta and Snelgrove [45]
found that macrofauna explained up to 41% of the variation in benthic fluxes, whereas
environmental variables only explained up to 19%, highlighting the importance of biodi-
versity for ecosystem functioning. However, their later results [52] suggested a relationship
between resource availability and macrofaunal density, diversity, and taxonomic and trait
composition. Nevertheless, those results also showed that organic matter remineralisation
exhibited a more complex response, presumably reflecting variations in hydrodynamics
and/or physical disturbances in heterogeneous continental margin habitats. In addition,
remineralisation and bioirrigation do not necessarily show a strong linear relationship, as
other drivers such as the supply of fresh and easily degradable organic matter, sedimentary
settings, temperature and salinity shape these patterns [53]. This is particularly true when
physical advections take over, in which case importance of bioirrigation as a contributor to
functional processes, such as cycling of nutrients and metals, is expected to decrease.

However, although the relationship between bioirrigation potential and relevant
processes on the scale of our study area remains to be examined, due to very limited
availability of data covering the rate measurements of processes [11,41], the map of BIPc
index can be considered a useful approximation of structuring activities in terms of the
potential effects of organisms on solute transport, facilitation of transport of oxygen and
excretory products [54].

Spatial distribution of another trait-based bioirrigation potential, IPc, was investi-
gated in the North Sea sediments by Wrede et al. [16]. Based on a range of multifactorial
experiments, the authors concluded that IPc distinctly improved the quantitative spatial
assessment of bioirrigation activity. For the present study, no such extensive dataset on
measured bioirrigation rates was available, and the presented validation is rather limited,
providing nearly no statistically significant inferences. The results of the present study were
also controversial in terms of the comparison of the strength of relations of BIPc and BPc to
solute transports. Wrede et al. [55] demonstrated (based on generalised linear modelling
results) that IPc provided a better estimation of phosphate, silicate, ammonium, nitrate
and nitrite fluxes than community density, biomass or BPc. The authors suggested that
predictive models of nutrient flux across the sediment–water interface will benefit greatly
from incorporating macrofaunal irrigation behaviour by means of such indices. The BIPc
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index was developed particularly for the Baltic Sea realm [17]. In our results, an improved
association of BIPc was suggested only for fluxes of phosphate and maximum recorded
fluxes of silica.

Our results are prone to be more in agreement with the findings of Toussaint et al. [14],
who found that BPc, and not IPc, as well as permeability, and not grain size or porosity,
were mainly significantly involved in explaining biochemical process rates (and though
the measured irrigation rate was also a frequent significant predictor, it did not correlate
well with IPc). Based on the data analysed here, we have to conclude that adjustments
distinguishing between diffusion and advection performed in estimates of BIPc do not
seem to fully solve this crux. Data on permeability was unfortunately not available for our
case study (but see [37]). Importantly, Toussaint et al. [14] concluded, and we confirm based
on our results, that measuring processes is still essential, and their link with biological traits
has not been not sufficiently studied to enable reliable and purely traits-based ecological
assessments and future predictions [56]. In line with the findings of De Borger et al. [22]
for IPc, here BIPc also showed a stronger association with burrow ventilation depths than
with ventilation intensity or magnitude of fluxes. In order to achieve a firm predictive
framework for the forecasting of relationships between bioturbators and sediment respi-
ration in different environments, the present data need to be incorporated into existing
biogeochemical models [6]. This will allow a more precise modelling of benthic-pelagic
oxygen fluxes and even carbon retentions. A combination of tracer measurements with
genomics was suggested as one possible way to better understand the microbial basis of
differences between respiration in advection- and diffusion-dominated systems.

Both interannual variability and seasonality influence the intensity of bioirrigation [54].
Roskosch et al. [57] also hypothesised that seasonal variation caused by annual cycles
of Chironomus plumosus would occur even if bioirrigation was measured under stable
laboratory conditions. Thus, the long-term spatial distribution predicted here represents a
climatic pattern which is not expected to necessarily demonstrate a strong association with
momentary single measured fluxes or ventilation rates or depth estimates (for example
with those few considered values included in the global database by Solan et al., [11]).
Species scores for BIPc calculation parameterise by a single constant the changing sediment
ventilation depth or the rates of the dynamic process, such as transport or mixing, that can
also vary directionally. Naturally, macrobenthic communities that define BIPc respond
to changes in the seabed and especially changes in sediment characteristics. Moreover,
since we a priori introduce difference in BIPc as a function of sediment type, and then
use sediment type as a predictor, the inevitable numerical gain of model accuracy seems
to be predetermined. The propinquity of profiles to those expected from the distribution
of macrofauna within the cores supports the influence of bioturbation and bioirrigation
on elemental flows. Upper sediment layers with the highest BIP values usually contain
the highest biochemical reaction rates within marine deposits [58]. However, these effects
are not fully understood. Further measurements are required to explain the high natural
variability, to understand anthropogenic effects on these processes, and finally to estimate
the consequences of potential future changes for the ecosystem.

5. Conclusions

To conclude, our results suggested that using the BIPc index can help improve our
understanding of the effects of bioirrigation on ecosystem functioning, but more evidence
is required to provide a reliable synthesis of its pros and cons and to understand which
ecological processes (that influence the fluxes of organic matter, nutrients and energy) it
best approximates. Ultimately, only rate measurements in natural conditions can serve
as cornerstones for index validation. Although statistical modelling may remain the best
available tool for projecting future changes, we recognise its limitations and encourage
more efforts to be made to gain a better mechanistic understanding of the causal relation-
ships between bioirrigation and process rates on larger spatial scales. Further sensitivity
studies and the development of trait-based indices, including the one discussed here, can
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bring us one step further to improving our ability to predict and manage biogeochemical
functioning of intact and anthropogenically altered benthic communities, which is crucial
for sustainable aquatic conservation and marine economy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology11071085/s1, Table S1: Scores required to calculate BIPc for dominating taxa; Table
S2: List of abiotic predictors and collinearity check results; Figure S1: Figure showing time-series
of BIPc values at 8 monitoring stations; Figure S2: Correlations of BIPc values with measured
bioirrigation rates. (a) Correlations of predicted BIPc values with bioirrigation constants resulting
from bromide tracer experiments estimated for various depth intervals, as reported in Powilleit
and Forster (2018). (b) Pearson correlation coefficients (above the diagonal) with significance levels
(p-value below the diagonal) calculated between bioirrigation intensity measured with bromide tracer
and macrofauna-based parameters; File S1: GIS layers of modelled BIPc distribution.
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Simple Summary: Bottom trawls when fishing move over large areas with different parts of the
gears physically impacting the sea bottom, including the trawling wires, doors, ground rope and
net. In this way, the trawl nets remove animals from bottom waters, the sediment surface and
shallow sub-surface. The animals that live in the sea bottom with their activities and lifestyle play an
important role in major ecosystem processes such as nutrient cycling. In this study, we investigated
the relationship between species functional characteristics and ecosystem functions under trawling
pressure. Our results indicated that under trawling, more opportunistic lifestyles and deposit feeders
were associated with the ecosystem processes while in the undisturbed areas these processes were
connected with bioturbating and burrowing species. Finding these links helps scientists and policy
makers to better predict the impact of fishing disturbance on marine environment and set appropriate
thresholds for marine ecosystem impacts.

Abstract: The impact of otter trawling on the relationship between functional traits of benthic
invertebrates and specific biogeochemical processes were investigated in the oligotrophic Cretan
Sea. The fishery is managed through a seasonal closure during the summer. During two seasons
(winter and summer) replicate samples were taken from the field from a commercial trawl ground
and an adjacent control area. Environmental parameters related to sediment biogeochemistry were
measured including particulate organic carbon, sedimentary organic carbon, bottom water and
sedimentary chlorophyll a and phaeopigment concentrations as well as benthic oxygen consumption.
A significant impact of trawling was recorded only for bottom water chlorophyll and sedimentary
organic carbon. Furthermore, the links between species traits and specific ecosystem processes were
affected by trawling, highlighting the importance of unique functional modalities on ecosystem
functioning. The traits that mostly influenced benthic biogeochemistry in the control sites were
related to bioturbation and burrowing activities. In contrast, in the trawled sites, the associated
traits were related to more opportunistic lifestyles and deposit feeding species that do not act as
bioturbators. Thus, under trawling disturbance, this shift can decouple the species-sediment relations
and affect nutrient cycling.

Keywords: oxygen flux; functional traits; trawling impact; seasonal fishery

1. Introduction

Grouping benthic invertebrate species according to their functional identity is a
widespread approach that has led to an improved understanding of the role of these
species within a community [1]. It also provides a useful tool for linking the ecosystem
processes with specific functions as biological traits analysis can provide a direct link to
certain functional properties related to life history, behavioral or morphological character-
istics of species that drive ecosystem functioning [2]. A better understanding of the link
between species functional traits and the processes related to specific ecosystem functions
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(i.e., nutrient cycling, oxygen consumption, denitrification) could help increase our ability
to predict the impact of fishing disturbance on the benthic ecosystem functioning.

Demersal trawls have a large footprint on the seabed [3,4]. They move over large areas,
with different parts of the gears physically impacting the sediment, including the trawling
wires, doors, ground rope and net [5]. The actual impact on the seabed is therefore complex,
partially turning over the sediment, partially reducing spatial heterogeneity and partially
increasing it on different scales [6–8]. At the biological level, the trawl net removes animals
from bottom waters, the sediment surface and shallow sub-surface. Impact studies have
shown that the abundance of macrofauna and megafauna (infaunal and epifaunal) is generally
reduced with corresponding changes in the community and trophic structure [6,9–12]. Smaller
body-sized fauna, however, with fast life cycles may be more resistant to trawling [8,13,14].

Sediment resuspension and sediment-water nutrient exchanges may also be strongly
influenced by the mechanical effects of trawling [15–20]. The effects of trawling on bio-
geochemistry depend on sediment characteristics, with stronger impacts occurring on
muddy sediments compared to sand [17,21]. In addition, bioturbating organisms are
particularly important as agents for irrigation and the movement of oxygen into the sedi-
ment [22,23]. With trawling impacting larger species in the sediment, continually impacted
areas have a lower level of bioturbation and consequently different levels of sedimentary
fluxes [8,12,13,18]. Trawling was also found to cause changes in oxygen regime, influencing
the nitrogen cycle, as oxygen regulates both nitrification and denitrification [15,24].

To date, there are only few studies that have investigated the impact of trawling on the
relationship between specific functional traits and biogeochemical processes [17,18,21,25–27],
primarily in Northern waters (North Sea and Baltic Sea). In the upper few millimeters of the
marine sediment, the oxidation of organic carbon controls the fluxes of oxygen and nutrients
across the sediment-water interface, ultimately impacting primary productivity in the
water column [28]. In the highly oligotrophic Eastern Mediterranean, where regeneration
of nutrients from the seabed is likely to be extremely important for pelagic productivity and
resultant increases in productivity may be at some distance from regeneration sites [29,30],
it is essential to reveal the role of specific traits in biogeochemical processes that take place
at the sediment-water interface.

Previous work in the study area has shown that macrofauna are impacted by trawl-
ing [6,31]. As a result, it is likely that the changes in the benthic community due to trawling
will also have an impact on the community functional composition that regulate the bio-
geochemical processes in the sediment-water interface and this impact could be chronic,
particularly in areas of the seabed that are regularly trawled. The fishery in Heraklion
Bay off Crete is regulated through seasonal closures during the summer months when
biological activity is likely to be highest. However, it is uncertain whether this closed season
is sufficient to restore biological activity at the sediment-water interface. Taking these into
account, we carried out a study to test the null hypothesis that trawl fishing affects the
sediment biogeochemistry linkage to specific species functional traits. This hypothesis was
tested by determining oxygen flux rates, chlorophyl and organic matter concentrations
in bottom water and sediment, as well as species composition and functional traits in
sediment cores collected inside and outside of trawled areas during both summer (closed
season) and winter (open season).

2. Materials and Methods
2.1. Study Area

The study was carried out in and adjacent to one of the main commercial trawling
lanes in Heraklion Bay (Island of Crete, southern Aegean, Figure 1). The area had been
identified previously and work had been carried out there for some time with respect to
trawling impacts on sediment characteristics and macrofaunal community structure [6,32].
The trawling lane follows the 200 m contour and narrows with the contours behind Dia
Island. This natural constriction allowed for easy identification of the trawling lane and
adjacent non-trawled control areas. The surface sediments of all the sampling areas were
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generally similar in terms of percentage composition. Sediments were predominantly silt
(85–90%) with smaller fractions of clay and sand (mostly made up of shell fragments of
Turritellinella tricarinata, Aporrhais serresiana and Nucula sp.). At the start of each of the
sampling periods, 2 days were spent surveying with side scan sonar to verify the limits
of the fishing lane (areas covered with trawl door marks). Four areas were identified for
bottom sampling, two control areas to the south of the trawling lane (SOE, South Out
East, 190 m depth; SOW, South Out West, 215 m depth) and two areas in the trawling lane
(FLE, Fishing Lane East, 185 m depth; FLW, Fishing Lane West, 230 m depth) (Figure 1).
Trawling takes place between the beginning of September and the end of May followed by
an annual 4 month closed period (June–September). Based on observed trawling activity
and knowledge of the gear, it was estimated that the intensity of trawling in the study area
was 200% (total coverage 2 times per year). It should be noted that during all the sampling
there were no trawlers in the vicinity.
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Figure 1. Study area showing trawling lane and control sites in Heraklion Bay, Crete (FLE, fishing
lane east; FLW, fishing lane west, SOE, control area east; SOW, control area west).

2.2. Field Data Collection

Field work was carried out at the sampling sites in Heraklion Bay during July 2002
(summer) and March 2003 (winter). From each of the four sampling areas at Dia Island,
6 individual multicore drops were made (Bowers & Connely, Oban, UK, core diameter
10 cm, core length 40 cm). From each drop, two cores were selected on the basis of good
penetration, undisturbed sediment fabric and clear water over the surface. One of these
cores was stored in a cool box for use in the oxygen flux determination and the other was
processed for sedimentary chemical parameters. This core was sub-sampled with smaller
perspex core tubes and sectioned for granulometry (4 cm diam., 0–5 cm depth), organic
carbon and chlorophyll concentrations (2 cm diam., 0–2 cm). Summarizing the sampling,
there was a total of 6 replicates for an east and a west trawled and untrawled area in
summer and winter.

2.3. Physico-Chemical Analyses

Water chlorophyll and phaeopigments were determined according to the fluorometric
method of Yentsch and Menzel [33] using a TURNER 112 fluorometer. The analysis of
water particulate organic carbon was performed according to Parsons et al. [34] by chromic
acid wet oxidation. Sedimentary organic carbon was analysed by the wet oxidation method
of Walkley and Black [35]. Chlorophyllous pigments in the sediment were determined
according to Strickland and Parsons [36].
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2.4. Oxygen Flux Determination

The oxygen flux set-up consisted of a cold sea water recycling system (15 degrees C:
stable bottom water temperature at 200 m in the area) with water flowing from a chiller unit
through a cooling coil in the bottom water reservoir tank and then into the core incubation
tank and back into the chiller (Figure 2). The incubated cores stood upright with the cooling
water covering the major part of the core tube. Each core tube was fitted with a special
head containing an electrical stirring motor, with an opening allowing overflow, sampling
and insertion of an oxygen and temperature probe. The vane of each stirrer was height
adjusted for each core tube and was situated near to the top of the water column such that
no vortices were formed. Turning speed was approximately 1 revolution per 1.5–2 s. A
12-channel peristaltic pump (Watson-Marlow, UK) fed a constant flow (1 mL per minute)
of water from the bottom water reservoir tank to the cores. When the cores were full,
they overflowed into the cooling tank. Oxygen concentrations were recorded from each of
the cores and the reservoir tank after 24 h of incubation. Oxygen was measured using a
dissolved oxygen meter and probe (WTW Oxi-330). Oxygen flux was estimated from:

Fx = (Ci − Co) · Q/A,

where:

Fx flux of nutrient x micromol m−2 h−1)
CI concentration in the reservoir tank (µM)
Co concentration in the Core overlying water (µM)
Q flow of water through the core (l h−1)
A area of the core (m2)
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Mean rates were estimated from the replicates from each sampling area.

2.5. Macrofaunal Community and Biological Trait Analyses

After the end of the experiment, cores were sieved through a 0.5 mm sieve for the
determination of the benthic macroinvertebrate community. The fauna was sorted for
species identification, enumeration and biomass measurement. A biological trait analysis
(BTA) was conducted on the macrofaunal communities to determine their bioturbation
attributes [37]. The biological response and effects traits considered in this study (7 traits,
27 modalities) describe the life history, morphological and behavioral characteristics of
the benthic community [38] that may influence oxygen sediment-water exchanges and
organic matter degradation (Table 1). Individual taxa were coded for the modalities of
each trait using a fuzzy-coding procedure, which allows assessment of the affinity of a
taxon to multiple categories. The trait scores were standardized for each species by re-
coding the scores as percentage frequencies (Supplementary material Table S1). The species
were classified into different functional categories based on information from a variety
of literature sources [22,39–41] and databases (www.marlin.ac.uk/biotic; www.polytraits.
lifewatchgreece.eu; accessed on 28 May 2021).
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Table 1. Description of traits and trait modalities used in the biological trait analysis.

Trait Modalities Code Trait Definition

Ef
fe

ct
tr

ai
ts

M
ax

im
um

bo
dy

si
ze

(l
en

gt
h) <10 S.10 <10 mm

11–20 S.20 11–20 mm

21–100 S.100 21–100 mm

Lo
ng

ev
it

y
(m

ax
) <1 L.1 <1 year

1–3 L.3 1–3 years

3–10 L.10 3–10 years

Fe
ed

in
g

m
od

e Suspension & filter FM.suspension obtains food from water
Surface deposit FM.sdeposit including grazers
Sub-surface deposit FM.subsdeposit sub-surface deposit
Scavenger/opportunist FM.scavenger feeds upon dead animals
Surface predator FM.predator actively predates upon animals

Bi
ot

ur
ba

ti
on

m
od

e Diffusive mixers BM.diffusive
vertical and/or horizontal movement of sediment or particles,
organisms with activities that result in a constant and random local
sediment biomixing over short distances

Surface depositors BM.deposition deposition of particles at the sediment surface, species whose activities
are restricted to <1–2 cm of the sediment

Upward conveyors BM.upConveyors upwards movement of particles resulting from biological activity, head
down feeders that actively transport sediment to the sediment surface

Downward conveyors BM.downConveyors
downwards movement of particles resulting from biological activity,
head up feeders that actively transport sediment from the
sediment surface

R
es

po
ns

e
tr

ai
ts

Li
vi

ng
ha

bi
t Tube-dwelling LH.tube builds a tube

Burrow-dwelling LH.burrow builds a burrow, includes mucus-lined burrows
Free-living LH.free freely moves around sediment/water
Inhabits crevices LH.crevices Inhabits crevices/holes/under stones

Se
di

m
en

tp
os

it
io

n Surface Pos.S surface dwellers

Infauna: 0–5 cm Pos.5 shallow-dwellers

Infauna: 6–10 cm Pos.10 buried deeper

Infauna: >10 cm Pos.deep deep-dwelling

M
ob

ili
ty Sessile M.sessile immobile, fixed in a place, stalked or not

Swim M.swim includes those which may stop swimming temporarily
Crawl/creep/climb M.crawl those which move above bed slowly
Burrower M.burrower Infers relatively low mobility

Traits are categorized in effect and response traits. Response traits refer to functions related to the ability of the
organism to survive and effect traits refer to how organisms influence the environment.

2.6. Data Analyses

To detect significant differences in environmental variables and oxygen fluxes between
the samples, univariate statistical techniques were used. Specifically, three-way mixed
ANOVA with trawling and season as fixed factors and site as nested factor within trawling
was conducted to determine the effects of these factors on each of the variables measured
(i.e., oxygen flux, organic carbon, chlorophyll a and phaeopigments). Residual analysis
was performed to test for the assumptions of the three-way ANOVA. Normality was
assessed using Shapiro–Wilk’s normality test and homogeneity of variances was assessed
by Levene’s test. Statistical significance was accepted at the p < 0.025 level for simple
two-way interactions and effect of trawling at each group of the other factors.
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To assess the relationship between species traits and benthic biogeochemical processes as
well as the effect of trawling on this relationship, a fourth-corner analysis was performed sep-
arately for the disturbed (trawled) and the undisturbed sites and for the two seasons [24,42].
The fourth-corner analysis requires three different data tables: the R table, with measure-
ments of the environmental variables (i.e., oxygen, silt and clay content, chlorophyll a, and
organic carbon); the L table, constituted by the biomass of each species in each sample; and
the Q table, composed of fuzzy-coded trait data for each species. Prior to fourth-corner
analysis, a standardization was applied to environmental data and variables were checked
for collinearity. The Hellinger transformation was also applied to species community data.
The fourth-corner method evaluates the significance of bivariate associations (i.e., one
single trait and one single environmental variable at a time) [43]. For the later analysis,
49,999 permutations were used in all randomization procedures and the false discovery
rate method (FDR) was selected to adjust p-values for multiple testing. The fourth-corner
method was carried out with the ade4 package in the R program (version 4.0.2) [43,44].

3. Results
3.1. Physico-Chemical Analyses

Figure 3 shows the bottom water and sedimentary parameters (no bottom water
data for the easterly sampling sites during summer sampling for technical reasons). For
chlorophyll a (Chl a), there was a statistically significant two-way interaction between
season and trawling (Table 2). A significant effect of trawling was recorded for the summer
sampling (F = 57.1, p = 0.000, lower values in the trawled area) but not for winter (F =
2.29, p = 0.138). No significant changes were recorded for the bottom water phaeopigments
(Table 2). Particulate organic carbon in the bottom water varied significantly only between
seasons (F = 16.51, p = 0.003, higher in winter).
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Figure 3. (a) Bottom water and (b) sedimentary chlorophyll a, phaeopigments and organic carbon
from the Heraklion Bay trawled and untrawled sampling sites with mean and standard deviation in
summer and winter. Grey bars indicate the eastern sites and white bars the western sites.

Table 2. Three-way ANOVA results for the comparisons of the bottom water and sedimentary
environmental variables as well as oxygen flux for the factor trawling, season and site. Significant
differences at p < 0.05 indicated with “*”, at p < 0.01 indicated with “**” and non-significant indicated
with “ns”.

Bottom Water Sediment Flux

Chlorophyll a Phaeopigments Organic Carbon Chlorophyll a Phaeopigments Organic Carbon Oxygen

Source of Variation DF F p F p F p F p F p F p F p

trawling 1 22.55 ** 1.40 ns 0.75 ns 0.02 ns 0.31 ns 116.96 ** 0.03 ns
season 1 17.93 ** 1.38 ns 16.51 ** 1.30 ns 0.23 ns 16.30 ** 33.84 **

site 1 - - - - 2.71 ns 2.04 ns 9.55 * 16.53 **
season × trawling 1 19.80 ** 0.49 ns 0.92 ns 0.02 ns 0.47 ns 0.51 ns 3.55 ns

trawling × site 1 - - - - - - 0.29 ns 1.68 ns 8.46 * 2.23 ns
season × site 1 . - - - - - 3.62 ns 1.57 ns 8.85 * 2.23 ns

trawling × season × site 1 . - - - - - 0.33 ns 0.46 ns 0.18 ns 0.53 ns
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Sedimentary Chl values were around 0.1 microg g-1 sediment. There were no signifi-
cant differences between any of the factors tested (Table 2). Sedimentary phaeopigment
values ranged 0.75–1.25 microg g-1 sediment, with the exception of a peak mean value in
the westerly fishing lane in winter. Trends were similar to that of Chl a and there were no
significant differences between any of the factors tested. A two-way interaction between
site and trawling was recorded for sedimentary organic carbon (Table 2). The simple main
effect of trawling was significant for the westerly sites (F = 25.6, p = 0.000) but not for the
easterly sites (F = 1.72, p = 0.197). Nevertheless, the same trend (higher organic carbon in
the trawled area)—even if not statistically significant—was also found in the easterly sites
(Figure 3).

Oxygen influxes were recorded in every case (Figure 4). Trawling did not significantly
affect oxygen flux rates (Table 3). Significant differences were recorded for the factors site
and season (Table 2).
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Figure 4. Oxygen flux rates (micromole per square metre per hour) from the trawled and untrawled
sampling sites with mean and standard deviation in summer and winter. Grey bars indicate the
eastern sites and white bars the western sites.

Table 3. Summary of the major functional groups related (positively: + and negatively: −) to specific
biogeochemical processes in different trawling intensities and seasons. OC: organic carbon, POC:
particulate organic carbon.

Season Trawling Description Sediment Chl a OC Silt and Clay Oxygen Water Chl a POC

summer

untrawled

Group 1 long-lived infauna, burrowers
and suspension feeding species − − −

winter

Group 2 sessile species that live in tubes
and suspension feeders − − −

Group 3
free living infauna that moves

in the sediment, scavengers
and predators

+ + + +

summer

trawled

Group 4 deposit feeding species −

winter
Group 5 free living infauna that moves

in the sediment, deposit feeders − − + +

Group 6 Suspension feeding species −

3.2. Link between Species Traits and Biogeochemical Processes

A total of 40 species were found in the samples after the end of the experiment. Their
functional traits and abundances are shown in Supplementary material (Tables S1 and S2). The
most abundant group was Polychaeta, followed by Bivalvia (mainly Abra alba), Sipuncula
and Crustacea. Crustacea were not found in the cores from the trawled site nor during
the trawling season (winter). The relationships between species functional traits and
biogeochemical variables in different sites are summarized in Figure 5.
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Figure 5. Representation of significant (p < 0.05) associations identified by the fourth-corner method.
The blue shades indicate significant positive associations and red shades significant negative associ-
ations between traits and biogeochemical variables. Variables with no significant associations are
shown in white. p values were adjusted for multiple comparisons using the FDR procedure. Codes
for traits are explained in Table 1. Chla: chlorophyll a, OC: organic carbon, %Silt&Clay: silt and clay
percentage, O2: oxygen, wChla: water column chlorophyll, wPOC: particulate organic carbon.

The significant associations (negative and positive) of species traits and biogeochemical
variables describing either the bottom water or the sediment, were different in trawled and
untrawled sites. More associations were recorded in the untrawled sites. The traits that are
linked to biogeochemical processes in trawled sites versus control sites in both seasons are
summarized in Table 3.

In the untrawled sites, biogeochemical processes are influenced by the more complex
functional traits community consisting of free-living scavengers and predators, by sessile
suspension feeders and also by burrowing species with high longevity that are oriented
with their heads towards the sediment surface. These species transport sediment from
the surface to deeper layers as they feed. In contrast, in the trawled sites biogeochemical
processes were only related to short-lived species with high mobility either deposit feeders
or suspension feeders.

4. Discussion

This study explored how trawling affects the linkage between functional traits of
benthic macrofaunal species and specific biogeochemical processes such as oxygen con-
sumption and organic matter degradation. In general, significant differences were detected
only for bottom water Chl a and sediment OC concentrations between the trawled and con-
trol areas indicating that there was an impact of bottom fishing on benthic biogeochemistry.
Nevertheless, oxygen consumption was not affected. In addition, the traits that are linked
to specific ecosystem processes were different between trawled and undisturbed sites, high-
lighting the importance of unique functional traits in preserving ecosystem functioning.
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The sediment and the adjacent bottom water environmental parameters could be
directly affected by trawling in two ways, either removal by resuspension or constant
exposure at the sediment surface by uncovering deeper sedimentary-locked carbon with
continuous trawling, but also indirectly through species loss which can cause changes
in ecosystem functioning [17,18,25,45,46]. As a result, differences in bottom water Chl a
concentration and sedimentary organic carbon at the different sites can be explained by the
aforementioned processes. Pusceddu et al. [47] in the northwestern Aegean, found that
sedimentary organic carbon concentrations displayed a significant increase immediately af-
ter the initiation of the trawling season, probably from trawling-induced uplift from deeper
sediment layers, but no significant short-term changes in sedimentary pigment levels. In
accordance, Sciberras et al. [17] have linked bottom trawling to increased sediment Chl a
and organic carbon and attributed this enhancement to a considerable reduction in bacterial
biomass due to sediment resuspension that leads to a slow-down in the remineralization of
the labile portion of organic matter within the sediment rather than to a loss in macrofaunal
community bioturbation potential. Despite the findings of Sciberras et al. [17], macrofaunal
species play also an important role in controlling the levels of OC within the sediment
via bioturbation [48]. Thus, the difference in OC between the trawled and untrawled
areas may be related to differences in macrofauna functional traits. Specifically, a decline
in community complexity and bioturbation capacity can lead to a decrease in sediment
oxygenation and carbon cycling and result in higher sedimentary OC concentrations [48].
On the other hand, oxygen consumption remains unaffected by trawling in our experiment
which is in accordance with other studies suggesting that oxygen consumption is either
unaffected [15,17] or decreased [18,19,21] by trawling due to the removal of the reactive
surface sediment and the consequent reduction in carbon mineralization.

Besides the changes in environmental parameters, trawl fishing causes changes in
species composition either through the direct removal of animals or by decreasing the
settlement succession of species with pelagic larvae [49] from the control areas in the
trawled areas and vice versa. This may result in alterations both in the functional effects
and response traits of a community, that in turn may have broad implications for the overall
ecosystem functioning [50]. In our study, trawling affected the links between species traits
and biogeochemistry. Specifically, the untrawled sites presented more variable associations
between specific traits and biogeochemical processes than the trawled sites. This indicated
that in the undisturbed area, biogeochemistry was mainly controlled by macrofaunal com-
munity. In contrast, trawled sites appeared to have less associations between macrofaunal
traits and biogeochemical variables. This could be explained either by lower functional
redundancy within the disturbed sites due to fewer species overall or by the stimula-
tion of microbial activity against the macrofaunal-induced metabolism in the disturbed
sites [18,24,51]. It is also worth noting that more associations between species functional
traits and biochemical processes were recorded in winter than in summer. It was antici-
pated that higher temperatures in summer would have favored macrofaunal activity [52]
and as a result, an increased number of significant associations between functional traits
and specific biogeochemical processes. Nevertheless, there is not always a straightforward
relation between single species and biogeochemical cycling processes but rather complex
interactions of species competition for space and food and habitat characteristics since
macrofaunal activities have different effects across different environments [53].

In the undisturbed sites, many traits were found to be related to benthic biogeochem-
istry indicating a balanced and diverse community. Bioturbation, burrowing activities
and feeding mode are some of the traits influencing sediment geochemistry. Specifically,
bioturbation and burrowing affect nutrient fluxes across the sediment water interface,
organic carbon concentrations, chlorophyll burial and decomposition, oxygen consumption
and mediation of nitrogen [22,24,54–58]. In addition, sessile species that live in tubes
influence the stability and accumulation rates of sediment, which are key drivers of organic
carbon burial and storage [28,59]. Burrowing fauna can increase the stability and accumu-
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lation rate of sediment if there is an increase in biogenic materials such as tubes or mucus
production [60].

In contrast to the undisturbed sites, long-lived bioturbators, sessile and burrowing
fauna that are particularly vulnerable to damage from mobile demersal fishing, in the
trawled sites showed reductions due to the resuspension and the following deposition
of the surface sediments caused by trawling [8,18,61]. Subsequently, small opportunistic
deposit feeders with low bioturbation ability may take advantage of the aforementioned
reduction and appeared to be linked with the biogeochemical parameters in the trawled
sites. Thus, under trawling disturbance, the shift towards opportunistic lifestyles can
decouple the macrofauna-sediment relations that facilitate nutrient cycling and lead to a
microbially driven metabolism [17,51,60].

5. Conclusions

Trawling had an impact on the links between macrofaunal functional traits and bio-
geochemical processes. Nevertheless, this impact was not adequately reflected in all the
biogeochemical variables studied. As a result, in the trawled sites, either there was an
uncoupling of species-sediment relations towards a microbially induced metabolism or
the benthic community, and specifically ephemeral deposit feeders, took advantage of the
organic matter availability due to sediment resuspension and preserved benthic biogeo-
chemistry. The differences recorded in the associations of species functional traits and
biogeochemical processes in both trawled and untrawled sites underlined the importance
of unique functional traits on ecosystem functioning. In addition, in such an experimental
design, quantitative effects of trawling are likely to be underestimated due to reduced
suitable settling area for species also within the undisturbed area due to its spatial vicinity
to the trawled sites.

Finding the links and relating species functional traits to important specific ecosys-
tem processes will help scientists and policymakers to better predict and communicate
the impact of fishing disturbance on benthic ecosystem functioning and set appropriate
thresholds for adverse effects. Exceeding these thresholds should trigger management
response actions. To this end, successful management measures could include confining
the trawling footprint within historically trawled areas and/or allocating a longer closed
period for trawling to restore the area [62].
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Simple Summary: Estuaries are among the world’s most productive ecosystems, but due to their
location between land and open sea, they are affected by many anthropogenic pressures, including the
consequences of climate change. A rising sea level is one major consequence, which will affect both
humans and ecosystems, especially in estuaries with extensive intertidal habitats. There is, however,
a lack of knowledge regarding the ecological implications of losing intertidal habitats. Therefore, we
investigated how seafloor macrofauna communities and their contribution to ecosystem functioning
may change due to rising sea levels. Based on a spatially extensive dataset on macrofauna and
environmental variables, we identified three main community groups representing intertidal, shallow
subtidal, and deep subtidal habitats. Functional trait analysis indicated low functional redundancy for
a key intertidal suspension-feeding bivalve (Austrovenus stutchburyi) and the lack of a shallow subtidal
functional replacement should intertidal habitats become inundated (i.e., become shallow subtidal
habitats). These findings thus strongly suggest that sea level rise and the associated environmental
changes will modify the seafloor macrofauna communities in estuaries, and subsequently, the
ecosystem functions that they influence will be altered.

Abstract: Estuaries are among the world’s most productive ecosystems, but due to their geographic
location, they are at the forefront of anthropogenic pressures. Sea level rise (SLR) is one major
consequence of climate change that poses a threat to estuaries with extensive intertidal habitats. The
ecological implications of intertidal habitat loss have been largely overlooked despite their likely
significance. We aimed to address this knowledge gap by investigating how benthic macroinverte-
brate communities and their contributions to ecosystem function are likely to respond to SLR. Based
on a spatially extensive dataset (119 sites) from a large coastal lagoon, depth, sediment chlorophyll
concentrations, mud content, and average current speed were identified as the main drivers of
community compositional turnover. Shifts in benthic community structure and associated functional
implications were then evaluated using depth as a proxy for SLR. Three main macrofaunal groups
representing intertidal, shallow subtidal, and deep subtidal habitats were identified. Functional
trait analysis indicated low functional redundancy for a key intertidal suspension-feeding bivalve
(Austrovenus stutchburyi) and the lack of a shallow subtidal functional replacement should intertidal
habitats become inundated. These findings strongly suggest SLR and the associated environmental
changes will alter estuarine macroinvertebrate communities, with implications for future ecosystem
function and resilience.

Keywords: sea-level rise; estuaries; intertidal area loss; benthic macrofauna; functional groups;
Aotearoa New Zealand
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1. Introduction

Estuaries comprise some of the world’s most productive and widespread ecosystems
and deliver vital ecosystem services used by humans around the globe [1,2]. The ecosystem
services provided by these dynamic and complex environments include food provision,
nutrient and carbon processing, coastal protection, and recreational activities [3–5]. Further-
more, the production from estuaries is fueling the wider coastal food webs [6], contributing
to valuable nursery grounds for fish [7], and important foraging habitats for sea birds [8].
This high level of functionality is underpinned by soft-sediment benthic communities and
the processes they regulate, e.g., [9,10]. Thus, understanding how these ecosystems respond
to changing environmental conditions is critical for understanding broader-scale changes
within coastal ecosystems.

Estuarine habitats, situated at the interface between the land and the sea, are at
the forefront of localized (within catchment) anthropogenic stressors such as sedimen-
tation, eutrophication, and pollution, often resulting from excess inputs of terrestrial
sediment, nutrients, and contaminants [11,12]. There is a rich body of literature de-
scribing the impacts of these stressors on benthic communities and associated ecosystem
functioning [13–17]. However, these ecosystems are also vulnerable to global scale climate
change, in particular sea level rise (SLR, amongst others), of which the ecological impacts
have received considerably less attention (but see, e.g., [18–22]).

Coastal barrier lagoons are a common type of estuary globally, and they are charac-
terized by deeper, permanently submerged channels and extensive intertidal flats [23].
Such systems are particularly vulnerable to SLR because even a small increase in water
depth can result in large reductions in intertidal areas. As an example, using a one-meter
SLR scenario, Mangan et al. [18] estimated up to an 80% loss of intertidal area within
12 Aotearoa New Zealand estuaries. Under current predictions, the global mean sea level
is estimated to rise between 0.3 m and 2 m by 2100 (compared to 2000 levels), following
lowest and highest global greenhouse gas emission pathways, respectively [24,25]. While
extensive research has focused on physical impacts such as changes to coastal geomor-
phology [26–28], including quantifying the loss of intertidal areas [8,19,29], the ecological
impacts on soft sediment ecosystems have received much less attention.

The ecological changes (i.e., shifts in biodiversity and ecosystem function) that are
likely to arise in response to an altered coastal environment (i.e., deeper water column,
steeper slopes, and changed sedimentary environment) are not well documented but
see e.g., [18–22]. Given the important role macro-benthic communities play in regulating
ecosystem functions, understanding how communities might change with SLR will provide
some insight into how ecosystem functions and services might be impacted. Here we make
use of an extensive data set from a large shallow coastal lagoon to explore how macro-
benthic community composition may be altered with SLR. By considering the functional
traits of the macrofaunal species, we also explore whether shifts in community composition
translate to potential shifts in function.

We focus on macrofaunal communities because their significance in sustaining valued
ecosystem services is well recognized. Through bioturbation and feeding activities, these
organisms enhance ecosystem functionality contributing to primary and secondary pro-
duction, nutrient cycling/processing, sediment stabilization, habitat formation, and carbon
sequestration, e.g., [30–35]. However, not all species contribute equally, with some making
a disproportionate contribution. For example, evidence indicates that larger individuals
play a greater role in facilitating solute fluxes (e.g., nitrogen and oxygen) and maintaining
community structure than smaller ones, directly due to their body mass and indirectly
through the larger impact of their bioturbation or generation of habitat [36]. Taxonomic
groups distinguished by certain functional traits (e.g., bioturbating bivalves), therefore,
often hold unique roles in ecosystem functionality. This suggests that the functional group
diversity response to altered environmental conditions should be considered, in addition
to changes in species diversity.
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Grouping species based on their functional traits versus focusing on the roles held
by individual species is increasingly widespread in community ecology [37]. In marine
sediments, loss of functional diversity can impact important biogeochemical processes,
including oxygen and nutrient fluxes [38], thus having flow-on effects on overall ecosystem
function [39]. Functional redundancy is usually determined by the number and abun-
dance of species sharing similar traits and, therefore, carrying out similar functions [40].
Exploring functional trait diversity allows us to gauge the resilience (determined by the
degree of functional redundancy) associated with functional groups and, therefore, the
functions regulating important processes such as primary production and nutrient cy-
cling [41]. For example, functional groups that possess a high level of resilience include
those with a greater number of species that can persist under varying stressors, such that a
loss of an individual species will not necessarily mean loss of the key functions and the
respective ecosystem services they contribute to [40,42,43]. Thus, reinforcing the impor-
tance of exploring how both species and functional group diversity may shift with rising
anthropogenic stressors.

The central objective of this study was to explore the potential implications of SLR on
macroinvertebrate community structure and ecosystem functioning within an estuarine
setting. Due to the long-time scales associated with climate change, we used space as a
proxy for time [44]. We aimed to reveal the response of community structure to shifts in
water column depth and the influence of additional environmental factors that are also
expected to shift with SLR. Additionally, using Gradient Forest analysis, we investigated if
there was evidence of thresholds along environmental gradients where disproportionately
greater shifts in community structure (represented by community turnover) occurred. To
further understand the ecosystem-level consequences of changes in community structure,
we also assessed the response of functional group community structure to shifts in water
column depth (and the respective environmental characteristics). Analysis was based on a
comprehensive dataset entailing both biological and environmental data (including water
column depth) collected in a large barrier-enclosed coastal lagoon.

2. Materials and Methods
2.1. Study Area

Data used for this research were collected within Tauranga Harbor (37◦40′ S,
176◦10′ E; Figure 1) on the north-eastern coast of Aotearoa, New Zealand’s North Island.
Tauranga Harbor is characterized as a large (~200 km2), shallow (<10 m depth, mean depth
~3 m), barrier-enclosed estuarine lagoon [45,46]. The harbor has an extensive intertidal
area constituting approximately 66% of the estuary [45] and experiences a semi-diurnal
tidal cycle with a tidal range of up to 2 m [47]. The harbor catchment is extensive
(~1300 km2) and includes horticultural, agricultural, and urban land, where water runs
from these landscapes into the large estuary. The estuary is well-flushed and vertically
well-mixed (tidal and wind mixing), but there is some spatial variation in salinity within
the estuary ranging from 28 to 34 [48]. The relative coastal sea level is estimated to have
risen at a rate of 2.3 ± 0.26 mm yr−1 measured outside Tauranga Harbor over the period of
1974-2020 [49]. The current sea level rise median projections for 2100 according to IPCC
SSP1-2.6 and SSP5-8.5 scenarios within the Tauranga Harbor areas vary between 0.3 and
1 m when also taking into account the vertical land movement [50].

2.2. Data Acquisition

Data were acquired and combined from two ecological surveys. The first focused
primarily on intertidal habitats and was conducted between December 2011 and February
2012 (austral summer) and spanned 75 sites throughout the harbor [16,51]. The second was
a subtidal survey carried out between March and May 2016 (late austral summer/autumn)
and included 44 sites [52]. Sampling locations were selected to ensure a broad range of
environmental gradients were represented, aiming to cover the full spatial extent and depth
range (up to 9 m corrected to chart datum) of the harbor. Although these data sets were
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collected in different years, we believe they can be combined because the large number of
sites included in the analysis means that the spatial variation in community structure (i.e.,
entire harbor) is likely to be greater than any between-year variation.
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Figure 1. Location of Tauranga Harbor on the northeast coast of New Zealand (insert) and sample
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(IT), shallow subtidal (SS), and deep subtidal (DS).

2.3. Environmental Variables

An array of the water column and sedimentary variables were obtained at each site,
but only variables measured in both surveys were included in this analysis (Supplementary
Table S1). The sampling design and methods were consistent with Aotearoa, New Zealand’s
standardized Estuary Monitoring Protocol [53]. At each site, sediment samples were
collected with cores 20 mm dia. and 20 mm deep (n = 10 and 6 cores per site within the
intertidal survey and the subtidal survey, respectively). For both surveys, the replicates
were composited into a single sample, and the sediment was analyzed for grain size,
chlorophyll a (Chl a), nutrient content (total phosphorus TP; total nitrogen TN), organic
content (OM, measured by loss on ignition), and heavy metals (lead Pb; zinc Zn; copper Cu)
(see Supplementary Table S2 for extraction methods and further details in Ellis et al. [54]).
Current speeds were estimated for the coordinates of each site from the Estuary Transport
Module [55], where average and maximum values were obtained for this study. Chart
datum (CD) depths for each site were determined by subtracting 1.08 m from mean sea
level (MSL) values (MSL to CD conversion published by LINZ [Land Information New
Zealand]) obtained from a hydrodynamic model grid developed by de Ruiter et al. [56] that
incorporates LiDAR data, multibeam survey measurements, and LINZ bathymetric data.

2.4. Macrofauna Data

Three replicate core (13 cm diameter, 15 cm deep) samples were taken at each site
and sieved on a 0.5 mm mesh to obtain the macrofauna. The macrofauna was preserved
in ethanol (70%), counted, and identified to the lowest attainable taxonomic resolution
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(usually species). Taxa identifications were performed by experts and based on relevant
guides (e.g., New Zealand Coastal Marine Invertebrates [57], National Institute of Water
and Atmospheric Research (NIWA) Invertebrate Collection [58]) and consultation with
taxonomic experts at NIWA. The intertidal and subtidal benthic macrofauna survey datasets
were combined, and the taxonomic resolution was standardized to be consistent across
surveys. Where individual taxa counts were low (<10 individuals across the combined data
set) and the taxonomic resolution was poor (e.g., higher than class), the taxa groups were
removed from further analysis (in total, <10 individuals were removed). Counts of larvae
and juveniles were also removed from the dataset to reduce any influence of recruitment
events on the statistical models. Site averages for macrofauna abundance data (i.e., average
abundance per core) were calculated and used for all analyses.

2.5. Functional Group Assignment

In order to assess the prospective implications of environmental change on ecosystem
function, each taxon was assigned to one of the 26 functional groups developed by Greenfield
et al. [59]. The functional groups considered a range of functional traits representing life history,
physical morphology, and behavioral characteristics that influence ecosystem functioning and
stability in estuarine ecosystems (Table 1). In this study, as the taxonomic resolution was not
always to species level, in the case where taxa can exhibit many attributes of a trait (e.g., different
species from the family Spionidae qualified for different functional groups), the most dominant
attribute of a trait was assigned as the functional group.

Table 1. Summary of defining traits for each functional group (1–26) as described by Greenfield
et al. [59]. An example species are given for each group. Taxonomic class indicated within brackets;
T = Thecostraca, B = Bivalvia, G = Gastropoda, A = Anthozoa, P = Polychaeta, M = Malacostraca.

Functional
Group Description of Traits Example Species

1 Calcified, Suspension feeding, Attached Austrominius modestus (T)
2 Calcified, Suspension feeding, Top 2 cm, Freely mobile Austrovenus stutchburyi (B)
3 Calcified, Suspension feeding, Top 2 cm, Limited mobility Arthritica bifurca (B)
4 Calcified, Suspension feeding, Top 2 cm, Sedentary Arcuatula senhousia (B)
5 Calcified, Deposit/Pred.Scav/Grazer, Above surface, Freely mobile Zeacumantus subcarinatus (G)
6 Calcified, Deposit feeding, Top 2 cm, Limited mobility Linucula hartvigiana (B)
7 Calcified, Deposit feeding, Predator/Scavenger, Top 2 cm, Freely mobile Pisinna zosterophila (G)
8 Calcified, Deposit feeding, Deep, Limited mobility, No habitat structure, Large Macomona Liliana (B)
9 Soft-bodied, Suspension feeding, Attached Anthopleura aureoradiata (A)
10 Soft-bodied, Suspension feeding, Tube structure Euchone sp. (P)
11 Soft-bodied, Deposit feeding, Top 2 cm, Freely mobile Spaerodoridae (P)
12 Soft-bodied, Deposit feeding, Below surface, Freely mobile Spionidae (P)
13 Soft-bodied, Deposit feeding, Below surface, Limited mobility Heteromastus filiformis (P)
14 Soft-bodied, Deposit feeding, Deep Hyboscolex longiseta (P)
15 Soft-bodied, Below surface, Tube structure Terebellidae (P)
16 Soft-bodied, Predator/Scavenger, Top 2 cm, Freely mobile Sigalionidae (P)
17 Soft-bodied, Predator/Scavenger, Top 2 cm, Limited mobility Syllidae (P)

18 Soft-bodied, Predator/Scavenger, Below surface + Deep, Freely mobile, No
habitat structure Perinereis sp. (P)

19 Soft-bodied, Predator/Scavenger, Below surface, Limited mobility Oligochaeta

20 Soft-bodied, Above surface, Top 2 cm, Below surface, Deep, Sedentary,
Tube structure Owenia petersenae (P)

21 Rigid, Suspension feeding, Top 2 cm Tanaidacea (M)

22 Rigid, Deposit feeding, Predator/Scavenger, Top 2 cm, Freely mobile, No
habitat structure Amphipoda (M)

23 Rigid, Above surface, Freely mobile Cumacea (M)
24 Rigid, Above surface, Freely mobile, Large Ophiuroidea
25 Rigid, Predator/Scavenger, Attached No individuals identified

26 Rigid, Predator/Scavenger, Below surface, Freely mobile, Large
burrow former Hemiplax hirtipes (M)
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2.6. Statistical Analyses
2.6.1. Determining Critical Points of Compositional Turnover along Key Environmental
Gradients (Gradient Forest Modelling)

To reveal how macroinvertebrate community structure changed along environmental
gradients, Gradient Forest (GF) modeling was employed [60,61]. GF identifies critical points
along environmental gradients where large shifts in rates of benthic macroinvertebrate
compositional turnover occur [60]. GF models allow for the identification of compositional
turnover thresholds by aggregating regression-tree-based Random Forest (RF) models.
Species considered rare (≤3 occurrences across all 119 sites) were additionally excluded
from GF analysis as models are constrained by limited data. The three sites where depth
exceeded 6 m were also removed from GF models as there were not enough data to
adequately model species turnover beyond this depth. Two key processes are undertaken
for GF modeling. The first process uses an extension R package, “extendedForest” [62],
which calls on the R package “randomForest” to fit an ensemble of RF models for the input
species. These RF models describe the relationship between the species distribution and a
set of environmental variables. The second process uses the R package “gradientForest” to
aggregate all of the individual split points determined from these models, estimating the
most important points of species turnover along each environmental gradient to provide a
measure of compositional turnover that represents the entire community.

RF models [61] are a flexible and robust way of modeling non-linear predictor-response
relationships. The RF models for individual species are built based on an ensemble of
regression trees (in this study, 500) where observations are repeatedly partitioned based on
the ‘best’ individual split. This split point is indicative of a measure of importance reflecting
the magnitude of change in abundance. The predictive power of individual RF models
(R2f) is explained by the proportion of out-of-bag variance for each species [60] and the
importance of each predictor variable (R2; a dimensionless value representing cumulative
importance). Model performance degradation was used to select variables included in the
final model as each environmental predictor is randomly permuted [63]. Multicollinearity
between predictor variables is accounted for by using a conditional approach, allowing RF
models to be robust to highly correlated variables.

GF modeling aggregates split importance values across each environmental gradi-
ent that were determined by the RF models, where species models with positive fits
(R2f > 0) are collated to form distributions reflecting compositional turnover relative to
each environmental predictor [60,63]. As the distribution is formed, individual RF models
with higher predictive importance (i.e., high R2f) have a greater influence on the turnover
distribution than models with lower predictive importance (i.e., low R2f). The shape of
the distribution constructed for each environmental variable indicates the predicted rate
of compositional change along the respective gradient, where increased slope steepness
indicates an increased rate of community compositional turnover [60,63]. Each GF model
was bootstrapped 100 times to gauge model performance and certainty. In each bootstrap
iteration, a random subsample of the macroinvertebrate data was taken, and each mea-
sure of compositional turnover was integrated when constructing final GF models for
each environmental predictor. All GF analyses were conducted in statistical software R
version 4.1.0 [64].

2.6.2. Benthic Macrofauna–Defining Tidal Zones

To examine if there were distinct shifts in macrofauna community structures with water
column depth and the other environmental variables, a hierarchical cluster analysis with
the SIMPROF test [65] was performed on square-root transformed macrofauna abundance
data. We aimed to reveal if there were unidentified assemblages of sites that could group
together based on community and environmental similarities, which would enable a closer
examination of community changes with SLR (i.e., intertidal areas becoming subtidal).
Three groups of clusters were essentially identified based on the macrofauna community
structure, and together with the environmental data, they broadly represent different tidal
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zones (Supplementary Figure S1). The (dis)similarities in community structure between
clusters were assessed with a similarity percentage analysis SIMPER; [65]. In order to ensure
adequate sampling effort within the identified clusters, species accumulation curves (SAC)
were produced by plotting the number of species against the number of sites surveyed
(Supplementary Figure S2).

A distance-based redundancy analysis (dbRDA) ordination plot was used to illus-
trate the relationship between the set of the most influential environmental predictors
(represented as vector overlays that indicate direction and strength), explaining the dis-
parities in community structure. Collinearity between predictors was examined, but no
action was required (all r < |0.8|). The multivariate analyses were conducted in PRIMER
version 7.0.13 [65].

2.6.3. Functional Group Analysis–Implications for Ecosystem Functioning

In order to investigate potential implications for ecosystem functioning associated
with environmental conditions, shifts in macrofauna community structure and associated
functional groups with SLR were examined. To confirm if the functional group community
structure also differed between the initial cluster groups, a one-way PERMANOVA and
PERMDISP were employed together with post-hoc pairwise tests using the functional group
abundance data (square-root transformed). SIMPER analysis was performed using Bray-
Curtis dissimilarities to identify the contributions of each functional group to the overall
dissimilarity between the clustered groups. The analyses were conducted in PRIMER
7 with the PERMANOVA+ add-on [66].

3. Results
3.1. Relative Importance of Environmental Gradients for Predicting Compositional Turnover

Gradient Forest (GF) analysis was employed to investigate thresholds of commu-
nity compositional turnover for environmental gradients known to influence community
structure. GF effectively modeled taxa turnover for 85 of the 157 input taxa based on
100 bootstrapped model runs. All 12 environmental predictor variables included were con-
sidered important for predicting patterns of macroinvertebrate community compositional
turnover, contributing to 48% combined cumulative importance. Depth was, however,
revealed as the most important predictor (6.6% of the conditional importance), followed
by sediment Chl a concentration (6.5% of the conditional importance). Other environmen-
tal gradients considered important predictors by GF were average current speed, gravel,
copper (Cu), mud content, total phosphorous (TP), lead (Pb), total nitrogen (TN), organic
content (OM), zinc (Zn) and sand content (3–5% of the conditional importance each).

Non-linear curves representing rates of macroinvertebrate compositional turnover
were observed for all environmental gradients except for Pb and sand, which had compara-
tively linear relationships indicating a constant rate of compositional turnover for these
predictors (Figure 2). Steep sections in the cumulative importance curves indicated large
shifts in community structure (i.e., rapid compositional turnover), whereas plateaued sec-
tions of the curves indicated more comparable communities. For depth, relatively constant
rates of compositional turnover were observed but with a few rapid changes around 1,
3, and 4.5 m (Figure 2). For Chl a, the turnover rates increased relatively constantly, but
around 30,000 µg/kg, a rapid increase was indicated. However, the variability in mean pre-
dicted cumulative change (measured by the 95% prediction interval) was noticeably high
due to few data points above this value. The compositional turnover along the gradient of
average current speed indicated gradual rates of increase at low current speeds but larger
change around 0.3, 0.5, and 0.7 m/s. Regarding grain size, there were low turnover rates
until 3% mud content, followed by more rapid changes. Similar patterns were indicated
for the nutrients (TP and TN), low turnover with low nutrient concentrations followed by
steadily increasing turnover.
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Figure 2. Cumulative importance curves (with 95% prediction intervals) visualizing the overall
pattern of compositional turnover (in R2-importance units) for all species across all environmental
predictors included in gradient forest models. Rug plots along the x-axis represent deciles across
each environmental gradient.

3.2. Definition of Tidal Zones Based on Community and Environmental Data

Hierarchical cluster analysis performed on the complete species abundance dataset
indicated six macrofaunal community clusters on a level of 37% similarity (Supplementary
Figure S1). Based on a comparison of the inter-cluster characteristics, similar sites were
combined into clusters representing three tidal zones (intertidal IT, shallow subtidal SS,
and deep subtidal DS) for further analysis. The IT sites were shallowest, with an average
water depth of −0.6 m (Table 2), compared to the SS and DS sites, with average depths of
1.5 m and 3.0 m, respectively. There was a small number of sites that overlapped in depth
between groups. However, the average depths, environmental characteristics, and position
within the harbor (Table 2, Figure 1) indicated that these clusters represented different tidal
zones. All sites were generally sandy (>85% sand on average), but the mud and OM content
varied as expected between the tidal zones, with the highest values at IT sites compared to
SS and DS sites (Table 2). The average current speeds were accordingly lowest at the IT
(0.15 m/s) sites, compared to SS (0.33 m/s) and DS (0.53 m/s) sites. The environmental
variables explaining the variation in the macrofauna community composition at each site
were illustrated by a dbRDA (Figure 3). Separation of the tidal zones occurred along the
x-axis, aligning with the variables depth, chlorophyll a and average current speed, and
along the y-axis due to sediment characteristics, mud, sand, and gravel content.
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Table 2. Summary of average environmental and univariate macrofauna diversity measures (min-
max) measured in Tauranga Harbor as a function of tidal zones; intertidal (IT, n = 70), shallow
subtidal (SS, n = 36) and deep subtidal (DS, n = 13).

IT SS DS

Environmental Variables
Depth (m) −0.6 (−2.0–3.0) 1.5 (−1.0–7.9) 3.0 (−0.2–9.0)
Mud (%) 13.6 (0.1–76.4) 9.0 (2.6–25.4) 3.0 (0.6–5.0)
Sand (%) 85 (24–100) 87 (67–96) 91 (78–99)
Gravel (%) 1.8 (0.1–14.6) 4.7 (0.1–15.0) 5.9 (0.1–17.8)
OM (%) 2.9 (0.9–10.0) 2.8 (1.3–6.2) 1.7 (1.0–3.0)
Chl a (µg/kg) 6107 (210–16,000) 16,678 (5900–41,300) 17,685 (2000–56,300)
TP (mg/kg) 168 (51–580) 152 (79–340) 121 (81–180)
TN (mg/kg) 484 (140–1900) 548 (499–1200) 452 (190–499)
Cu (mg/kg) 1.3 (1.0–6.1) 1.1 (0.4–3.5) 0.7 (0.3–1.0)
Pb (mg/kg) 2.7 (1.0–13.0) 3.0 (1.6–6.4) 2.0 (1.0–3.8)
Zn (mg/kg) 17.7 (2.5–55.0) 17.7 (7.7–37.0) 12.2 (6.4–25.0)
Av. current speed (m/s) 0.15 (0.01–0.52) 0.33 (0.01–0.67) 0.53 (0.23–0.83)

Benthic community
S (taxa per core) 19 (6–31) 25 (18–37) 15 (10–21)
N (ind. per core) 109 (27–329) 234 (49–744) 70 (22–183)
Occurrence (% of sites
taxa occurs at) 23 (1–100) 20 (3–100) 23 (8–100)

H’ (per core) 1.92 (0.11–2.71) 2.02 (0.76–2.74) 1.72 (0.45–2.55)

Most abundant taxa

Amphipoda (M)
Spionidae (P)
Heteromastus filiformis (P)
Austrovenus stutchburyi (B)
Linucula hartvigiana (B)

Spionidae (P)
Amphipoda (M)
Oligochaeta
Aricidea sp. (P)
Heteromastus filiformis (P)

Paphies australis (B)
Amphipoda (M)
Hesionidae (P)
Syllidae (P)
Magelona sp. (P)

Chl a Chlorophyll a, TN total nitrogen, TP total phosphorus, Cu Copper, Pb Lead, Zn Zinc, OM organic content,
Av. average current speed, S average number of taxa, N average abundance, H’ Shannon-Wiener diversity index.
Class indicated for the most abundant taxa: M Malacostraca, P Polychaeta, B Bivalvia.

Figure 3. Distance-based redundancy analysis (dbRDA) plot visualizing the direction and influence
of environmental predictors on shifts in macroinvertebrate community structure.

3.3. Differences in Macrofauna Communities between Tidal Zones

Species accumulation curves (SAC) were generated to provide evidence that IT, SS,
and DS clusters had been sampled adequately. For IT and SS sites, the SAC indicated that
adequate sampling (i.e., a noticeable decrease in species accumulation rates with increasing
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sampling effort) occurred after 10 sites (30 cores) and 12 sites (36 cores), respectively
(Supplementary Figure S2). For the DS cluster, species accumulation rates were less clear
due to fewer samples, and results regarding this group need to be interpreted with care.

In this study, there were 157 different taxa identified across all sites. The highest
number of taxa occurred in the SS tidal zone, with a total of 126 taxa recorded, com-
pared to the IT and DS tidal zone, with a total of 83 and 66 taxa recorded, respectively.
The abundance per core was also highest in the SS (234 ind./core) compared to the IT
(109 ind./core) and DS (70 ind. per core; Table 2). Shannon-Wiener diversity indices for all
three tidal zones were similarly varying between the tidal zones, with the highest at SS,
then IT, and the lowest at DS (2.02, 1.92, and 1.72).

Of the top five most abundant taxa determined for each zone, IT had three taxa in
common with SS (Amphipoda, Spionidae, and Heteromastus filiformis) and only one taxon
(Amphipoda) shared with DS (Table 2). Similarly, there was only one taxon in common
among the SS and DS top five most abundant (Amphipoda). A SIMPER analysis revealed
that overall dissimilarity between IT and SS sites was 66%, and this was largely driven by
differences in taxa abundance of Amphipoda (e.g., Caprellidae), Spionidae polychaetes
(e.g., Aonides trifida, Boccardia syrtis), the polychaete Aricidea sp., oligochaete worms and
the polychaete Heteromastus filiformis (Supplementary Table S3). The overall dissimilarity
between IT and DS was 77%, where differences in community structure was primarily
attributed to the polychaetes Spionidae (e.g., A. trifida, B. syrtis), Amphipoda (e.g., Caprell-
idae), the bivalve Paphies australis and polychaete H. filiformis (Supplementary Table S3).
There was 72% dissimilarity between SS and DS community structures, largely attributed to
Spionidae polychaetes (e.g., A. trifida, B. syrtis), oligochaete worms, polychaetes H. filiformis,
Aricidea sp., Amphipoda (e.g., Caprellidae) and bivalve P. australis. The top taxa (except
P. australis) generally had greater abundances at the IT and SS sites than at the DS sites
(Supplementary Table S3).

3.4. Functional Group Analysis

The functional group structures between the different tidal zones were analysed
to reveal if the shift in macrofauna communities potentially translates into a shift in
the functionality of the benthic ecosystems. Significant differences in functional group
structure between all tidal zones were indicated (PERMANOVA; Pseudo-F = 15.09; p < 0.001;
Supplementary Table S4). Additionally, there were homogenous dispersions (PERMDISP
p > 0.05) between the tidal zones except between SS and DS tidal zones (PERMDISP
p < 0.05). Subsequently, the functional group differences between SS and DS should be
interpreted with care.

A SIMPER analysis revealed that overall dissimilarity between the IT and SS functional
group communities was 51% and was largely driven by differences in functional group
abundance of FG13 (Soft-bodied, deposit-feeding, below the surface, limited mobility;
e.g., polychaete H. filiformis), FG22 (Rigid, deposit-feeding, predator/scavenger, top 2 cm,
mobile; e.g., Amphipoda), FG12 (Soft-bodied, deposit-feeding, below the surface, mobile;
e.g., polychaete Spionidae), FG17 (Soft-bodied, predator/scavenger, top 2 cm, limited
mobility; e.g., polychaetes Syllidae), FG19 (Soft-bodied predator/scavenger, below the
surface, limited mobility; e.g., Oligochaeta) (Supplementary Table S5). In most instances,
functional group abundance tended to be lower in IT compared to SS, with the excep-
tion of FG2 (Calcified, suspension-feeding, top 2 cm, mobile; e.g., bivalve A. stutchburyi)
and FG6 (Calcified, deposit-feeding, top 2 cm, limited mobility; e.g., bivalve L. hartvi-
giana), where average abundance per core was greater for IT than SS (by factors of 1.8 and
2.8 respectively). The overall dissimilarity between IT and DS was 58%, mostly attributed
to abundance differences of FG12 (Soft-bodied, deposit-feeding, below surface, mobile; e.g.,
polychaetes Spionidae), FG22 (Rigid, deposit-feeding, predator/scavenger, top 2 cm, mo-
bile; e.g., Amphipoda), FG2 (Calcified, suspension-feeding, top 2 cm, mobile; e.g., bivalve
A. stutchburyi), FG13 (Soft-bodied, deposit-feeding, below the surface, limited mobility; e.g.,
polychaete H. filiformis), FG19 (Soft-bodied, predator/scavenger, below surface, limited mo-
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bility; e.g., Oligochaeta) (Supplementary Table S5). There was 56% dissimilarity between
SS and DS, mostly driven by differences in FG12 (Soft-bodied, deposit-feeding, below
surface, mobile; e.g., polychaete Spionidae), FG13 (Soft-bodied, deposit-feeding, below the
surface, limited mobility; e.g., polychaete H. filiformis), FG22 (Rigid, deposit-feeding, preda-
tor/scavenger, top 2cm, mobile; e.g., Amphipoda), FG19 (Soft-bodied, predator/scavenger,
below the surface, limited mobility; e.g., Oligochaeta), FG2 (Calcified, suspension-feeding,
top 2 cm, mobile; e.g., bivalve A. stutchburyi).

4. Discussion

The aim of this study was to attempt to fill gaps in the scientific literature around the
implications of sea level rise (SLR) on estuarine biodiversity and ecosystem functioning.
To date, there has been little research addressing this aspect of coastal climate change
ecology despite the growing relevance of diffuse climate change stressors. The findings
indicated that there would be significant shifts in estuarine macroinvertebrate community
structure with future SLR. Additionally, some species-specific shifts may trigger functional
consequences. For example, the functionally important large cockle Austrovenus stutchburyi,
in the intertidal zone, is unlikely to have a substitute in the shallow subtidal zone. The
results thus demonstrate that localized gains and losses of individual species and func-
tional traits within the community will likely have implications for the overall estuarine
ecosystem functioning.

4.1. Environmental Drivers of Macroinvertebrate Community Structure and
Compositional Turnover

Water column depth was identified as the most important predictor of rates of commu-
nity compositional turnover. The influence of depth on the spatial distribution of marine
organisms has been well studied, e.g., [67–71]. However, links to SLR are generally ignored.
In estuaries, increasing depths will be a key outcome of SLR [72]. Therefore, gaining
an understanding of how macroinvertebrate communities shift with depth allows us to
consider the prospective implications of SLR.

The GF modeling indicated constantly increasing compositional turnover rates of
macroinvertebrate communities with increasing depth and rapid changes around 1, 3,
and 4.5 m. Using SLR predictions with current global emission rates, we can expect a
rise between 0.6 to 1.1 m by 2100 [25], and regional predictions based on different climate
change scenarios, including local variations in the harbor estimate a range of 0.3–1 m [50].
Using depth as a proxy for SLR (assuming spatial and temporal variability is equal; [44]),
the results indicated that the upper prediction reflects a threshold where a small increase in
SLR at 1 m will drive a disproportionately greater change in macroinvertebrate community
structure than that perceived for preceding SLR scenarios. This may be explained by the
expected reductions suffered by intertidal species that are constrained by their optimal
spatial distribution [73–75], impeding their ability to thrive in deeper submerged habitats.
This shift observed in macroinvertebrate community structure would also align with that
expected of the projected intertidal habitat loss under a 1.1 m SLR scenario (~85% reduction
by the year 2100; [18]). Nonetheless, steady rates of compositional turnover were still
observed approaching 1 m depth, providing an indication that even small changes in SLR
will alter macroinvertebrate community structure, perhaps irreversibly, within Tauranga
Harbor, as also earlier indicated by modeled distributions for a subset of species by Rullens
and Mangan et al. [20].

These findings highlight the importance of depth as a predictor of species and com-
munity responses to SLR. However, it is unlikely that depth alone is driving observed
responses, but instead acts as a surrogate for a combination of co-varying factors known to
shape patterns of estuarine macroinvertebrate biodiversity. The high relative importance
of depth may be owed to relationships with water column and sedimentary environment
characteristics such as sea temperature, salinity, sediment grain size, and nutrient content,
which are all known to also influence patterns of macroinvertebrate biodiversity [76–80].
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This suggests that depth can represent a host of co-varying environmental parameters that
will also shift with SLR.

The gradient forest analysis also indicated average current speed as an important
factor for predicting patterns in macroinvertebrate community structure and compositional
turnover (Figure 2). Flow rates are often highly variable throughout estuaries, largely owed
to the complex bathymetry of the seafloor (e.g., channels) and bordering landforms (e.g.,
tombolos) that influence flow dynamics [81,82]. Here, average current speeds measured
at each site varied from 0.01–0.83 m/s (Table 2), with a rapid increase in compositional
turnover rate around current speeds of 0.3, 0.5, and 0.7 m/s (Figure 2). Average current
speeds exceeding this value generally existed at deeper sites in the harbor, often in the
center of channels, which is likely explained by the strong influence of tidal exchange on
current speeds in main channels [83,84].

The flow dynamics associated with these channels often support increased delivery
rates of particulate food, which is favorable to filter-feeding organisms [85]. This may
explain why high densities of the filter-feeding bivalve Paphies australis were generally
restricted to deep subtidal sites in this study, as also shown in earlier studies e.g., [73]. As
estuary depth is expected to increase with future SLR, we can also anticipate altered current
speeds (i.e., likely reduced in deep channels) due to the influence of basin geometry (e.g.,
degree of channel constriction) and depth on flow dynamics [56,86]. This indicates that
although overall water column depth will increase with SLR, which could suggest that
species like, for example, P. australis will extend their spatial distribution, their distribution
is likely to be constrained if altered current speeds do not match those required to support
high densities. From this, we can deduce that some species will not necessarily extend their
spatial distribution to ‘follow’ their optimal depth range if other environmental factors are
altered that may limit their distribution.

4.2. Comparisons across Tidal Zones and Implications of Reduced Intertidal Area

Estuarine benthic macroinvertebrate community structure differed across intertidal
(IT), shallow subtidal (SS), and deep subtidal (DS) zones. The findings demonstrated
that species richness and average abundance were highest at the SS sites (Table 2). An
explanation for this is that SS represents a transitional zone comprising a mixture of species
that occur in IT and DS habitats [87,88]. The lower species richness and average abundance
at the IT sites were expected as many estuarine species lack unique adaptations (e.g., desic-
cation prevention) required to endure environmental circumstances typical of IT habitats,
(e.g., air exposure during periods of tidal emergence) [89]. Thus, the subtidal habitat is
preferable to more species. Although the general consensus within ecological studies is
that increased diversity positively influences ecosystem function [90–92], this can be con-
text dependent [93,94]. In estuarine ecosystems, certain species make a disproportionate
contribution to ecosystem function (e.g., Austrovenus stutchburyi) [36] owed to key factors
(e.g., abundance/dominance, functional traits) influencing important ecological processes
and functions (e.g., sediment destabilization, primary production, ecosystem engineer-
ing) [30,34,35,41,95,96]. It is thus critical to recognize that greater species richness does not
always reflect better ecosystem performance, particularly when functionally important or
unique species are reduced or lost [94].

Under future SLR conditions, it is suggested that intertidal areas will essentially be-
come subtidal as they become permanently inundated [72]. In this study, functional group
community structure significantly differed between IT, SS, and DS habitats, indicating
dominant IT functional groups may experience reductions whilst those of SS will become
more widespread. Based on our results, such a shift would suggest a two-fold increase in
the average abundance of soft-bodied deposit-feeders located below the sediment surface,
such as polychaetes (FG13 and FG12), in areas where this habitat shift occurs. Species
included in this functional group are considered important drivers of community struc-
ture, and many are key bioturbators that contribute to ecological processes and promote
ecosystem function (e.g., nutrient cycling, sediment destabilization) [97,98], which at a
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glance suggests this shift could be desirable. Additionally, these functional groups were
relatively abundant across all tidal zones and had a high degree of redundancy, indicating
high ecological resilience to environmental change. However, the results also suggested
that calcified suspension- and deposit-feeders at the sediment surface, such as the bivalves
Austrovenus stutchburyi and Linucula hartvigiana (FG2 and FG6), will experience reductions
to less than half of the average abundance in areas that shift from IT to SS, indicating this
shift may have a large impact on the ecosystem. The dominant species of FG2, A. stutch-
buryi, plays an important role in intertidal habitats as an ecological engineer and positively
influences ecological processes such as primary production, denitrification, and reworking
of the sedimentary environment [31,36,99,100]. Additionally, the distribution of species
contributing to these dominant IT functional groups is generally more spatially constrained
and displays lower redundancy. Therefore the expected habitat shifts associated with SLR
indicate implications for ecosystem function due to the predicted reductions suffered by
these groups.

There is often a degree of functional redundancy within estuarine taxa where multiple
species can offer similar contributions to ecosystem processes [59]. However, A. stutchburyi
and Paphies australis were the only abundant species characterized by FG2 (suspension-
feeding, mobile, top 2 cm), indicating low redundancy and resilience despite occurring in
high abundances. Furthermore, as P. australis is generally restricted to subtidal regions,
particularly where depth and current speeds are greater [73] (i.e., DS habitats in this
study), it is unlikely to move into all newly submerged areas due to SLR (equivalent to
SS habitats in this study). Thus, despite similar contributions to functionality, P. australis
is unlikely to provide functional resilience should intertidal A. stutchburyi populations be
reduced or lost following a shift to shallow subtidal habitats. This is concerning as SLR will
reduce intertidal area [8,18,101], whilst shallow subtidal coverage is expected to increase.
Furthermore, modeling studies in this estuary have indicated that SLR will cause the loss
of high-density areas of A. stutchburyi and these locations coincide with areas that exhibit
the highest potential for ecosystem services [20,102]. This highlights the vulnerability of
A. stutchburyi and its functional role in intertidal habitat loss. Thus, we can anticipate
significant implications on ecosystem functions and the ecosystem services they underpin
due to SLR.

An important aspect to acknowledge is the possibility that time scales associated
with geomorphic and ecological shifts due to SLR may differ. Generally, ecological shifts
can occur very rapidly as changing environmental conditions can often have a direct im-
pact on species distributions [103]. Changes to geomorphology, however, can take place
over a much longer period of time [104]. This suggests that if intertidal habitats become
flooded by SLR, the projected changes to the sedimentary environment (i.e., lower mud
content/coarser sediments) may display a time lag, whereas the response of species distri-
butions and their respective communities to SLR is expected to be much more immediate.
Moreover, there is the possibility of intertidal habitat ‘legacy effects’ (i.e., residual qualities
of the former habitat) [105] hindering the transition of ‘muddy’ sediments to ‘sandy’ sedi-
ments typical of the shallow subtidal habitats observed in this study. This suggests that
species currently thriving in shallow subtidal habitats (e.g., some polychaetes) may not
necessarily occur in the same densities in inundated intertidal areas if sediment composi-
tion limits their distribution. As we employed a space-for-time approach, key findings of
this study heavily rely on the assumption that intertidal habitats will essentially become
shallow subtidal as they become permanently inundated by SLR. Therefore, unknown
legacy effects of intertidal habitats may influence macroinvertebrate community responses
to SLR that have not been accounted for in this study.

5. Conclusions

SLR resulting from a warming planet will significantly modify coastal geomorphology,
influencing tidal dynamics, currents, and the sedimentary environment. Reduced intertidal
coverage will impact estuarine ecosystems and their communities at local and global scales,
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yet the ecological repercussions have been largely dismissed despite their prospective
significance. This study demonstrated that macrofauna community structure differed
significantly across tidal zones and that patterns in macrofauna biodiversity will shift in
response to altered depth and concomitant changes to the water column and sedimentary
environment. Thus, it highlights that SLR will significantly alter estuarine macroinverte-
brate communities and subsequently result in repercussions for ecosystem function and
resilience. The results of this study also indicated that the ecological impacts of species loss
would be dependent on the species-specific contributions to ecosystem function. Many
species-specific contributions are, however, unknown, which may mean that there are
implications that are not yet fully recognized for ecosystem function if intertidal habitats
are lost to SLR. We do, however, know that intertidal habitats hold a significant role in
maintaining important ecological processes (e.g., primary production, and denitrifica-
tion) [106,107], often exceeding that of the adjacent subtidal habitats [108]. Additionally,
species abundance has been shown to strongly influence these processes, e.g., [32,109].
Therefore, it is reasonable to assume that highly abundant intertidal species will have a
significant influence on ecological processes, although the nature of the effect will likely
depend on species identity. To obtain an extensive understanding of the implications,
we can expect to arise under future SLR conditions. We must understand the unique
roles of all species and their functional roles that are vulnerable to expected habitat shifts.
Management efforts targeting biodiversity in coastal environments should also recognize
the expected shifts in community structure that will occur through habitat loss. This will
be fundamental for ensuring management strategies are indeed effective for maintaining
biodiversity, particularly for systems such as marine protected areas that often treat habitats
as fixed in space over time. Well-informed management of biological communities and
coastal environments will be critical for ensuring that the ecosystem functions and services
valued by society are conserved for future generations.
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Simple Summary: Coastal areas, especially river plumes, are very diverse and dynamic zones where
numerous geological, chemical and biological processes take place. This is because fresh water from
the river with all substances, including pollutants from the land, mixes with salt water from the
sea, creating specific living conditions for the organisms that inhabit the area. These organisms, e.g.,
macroscopic invertebrates such as mussels or worms, live in the sediment where their movement
and feeding activities cause the sediment to mix and allow water to flow through it—these activities
are called bioturbation and bioirrigation. Our research aimed to investigate how the structure and
functioning of benthic marine ecosystems change with distance from the river mouth. We found that
coastal areas are very diverse and host a wide range of organisms that bioturbate and bioirrigate and
support sediment transformations relatively deep (up to 15 cm) into the sediment. Farther away from
the river mouth, organisms were very scarce and occurred only on the sediment surface and did not
burrow into the sediment, so bioturbation and bioirrigation did not take place. The coastal zone is
like a hotspot where ecosystem processes and services are intensively reflected, and this is especially
important when deeper areas are not functioning properly, as in the Baltic Sea. For this reason, we
should consider how we can support the protection and recovery of marine ecosystems.

Abstract: Macrozoobenthos plays a key role in the transformation of inputs from rivers to the
sea, such as nutrients, organic matter, or pollutants, and influences biogeochemical processes in the
sediments through bioturbation and bioirrigation activity. The purpose of our study was to determine
the structure of benthic communities, their bioturbation (BPC) and bioirrigation potential (IPC), and
the vertical distribution of macrofauna in the Gulf of Gdańsk. The study revealed changes in the
structure of benthic communities and, consequently, in the bioturbation and bioirrigation potential in
the study area. Despite the presence of diverse and rich communities in the coastal zone, BPC and
IPC values, although high, were formed by a few species. Both indices were formed mainly by the
clam Macoma balthica and polychaetes, although the proportion of polychaetes in IPC was higher than
in BPC. In the deepest zones, the communities became poorer until they eventually disappeared,
along with all macrofaunal functions. Both indices changed similarly with distance from the Vistula
River mouth, and there was a very strong correlation between them. We also demonstrated that
the highest diversity of the macrofauna was observed in the upper first cm of the sediment, but the
highest biomass was observed in deeper layers—at a depth of up to 6 cm, and single individuals
occurred even below 10 cm.

Keywords: macrozoobenthos; marine biodiversity; bioturbation; bioirrigation; coastal zone; Baltic
Sea; Gulf of Gdańsk; Vistula River plume

1. Introduction

Coastal zones provide a variety of benefits derived by humans from ecosystem func-
tions and processes. These include nutrient regulation or waste treatment functions, where
biota play an important role in storage, recycling or removal of nutrients and compounds [1].
All of these functions help maintain healthy and productive marine ecosystems. Coastal
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ecosystems with high biodiversity of habitats and benthic communities, especially lagoons,
bays and estuaries, play a special role in marine regulatory processes [2,3]. Benthic or-
ganisms play a key role in the circulation of chemical elements and nutrients directly by
physiological processes such as feeding, respiration and excretion, as well as indirectly
by reworking the sediment matrix through bioturbation and bioirrigation [4–9]. These
activities can be positive for the ecosystem in terms of sediment oxygenation and increasing
the surface area available for microbial activity [10–12]. Intensive bioturbation or bioir-
rigation may also lead to the intensification of degradation, transformation or burial of
organic matter and contaminants [13,14]. On the other hand, sediment reworking may
cause a release of contaminants accumulated in the deeper parts of sediments [14,15]. Thus,
bioturbation and bioirrigation play a crucial role in biochemical cycles and production at
the seafloor and basin scale [16,17].

At the same time, the coastal zone is particularly exposed to land-based pollution
from i.a. increased industrialization, urbanization, agricultural and aquacultural devel-
opment as well as climate change [18]. Nutrients, organic matter and contaminants from
land enter the seas and oceans mainly through surface runoff. Nowadays, river pollu-
tion in most populated areas is severe and according to high urbanization future scenar-
ios, about 80% of the global human population is projected to live in sub-basins with
multi-pollutant problems [19].

The Gulf of Gdańsk, located in the southern part of the Baltic Sea, is a coastal system
with a mixture of fresh and brackish water. Salinity, but also other parameters such as
nitrogenous compound and chlorophyll a concentrations, change both with distance from
the river mouth and with depth [20,21]. Research by Łukawska-Matuszewska et al. [22]
showed that sediment toxicity in the Gulf of Gdańsk increases with distance from land,
which is associated with an increase in the content of fine sediment fractions, hydrogen
sulfide and black carbon, with the latter suggesting anthropogenic contamination of the
sediment. The area of the entire Gulf is strongly affected by the Vistula River. It is the
longest river flowing into the Baltic Sea, passing through agricultural land, forests and
several urban agglomerations [23]. The river has the second largest drainage basin of
the rivers flowing into the Baltic Sea (194,000 km2, covering 11% of the whole Baltic Sea
catchment area). The Vistula River contributes about 90% of the total inflow to the Gulf
of Gdańsk [24]. Along with the river’s waters come nutrients, organic matter and various
pollutants: heavy metals, organic pollutants, including pharmaceuticals and emerging
contaminants [25–27]. In addition to the Vistula River, there are other sources of pollutants
such as dozens of watercourses, ports, industry, wastewater treatment plants, atmospheric
deposition or disturbed sediment [26]. All these compounds reaching the sea can affect
the structure and functioning of the ecosystem, while at the same time the presence of
organisms such as zoobenthos can help process these compounds. To understand the role
of the benthic fauna in these processes, it is necessary to determine how benthic animals
are distributed in the vicinity of the Vistula River and how they function.

There is a strong need for indices that demonstrate the decline in ecosystem func-
tioning under anthropopressure and improvement during sustainable ecosystem-based
marine management [28,29]. This is due, i.a. to the demand for measures to maintain and
improve the ecological status of the marine environment in accordance with the Marine
Strategy Framework Directive. Existing bioturbation and bioirrigation potential indices
can be used as a proxy of ecosystem processes [30–33]. Basic benthic monitoring param-
eters (i.e., abundance and biomass), as well as research-based knowledge (or, in many
cases, expert knowledge) of benthic fauna traits related to their behavior in the sediment,
are used for the calculations. So far, these coefficients have been successfully used and
combined with studies of biogeochemical cycles [34], solutes exchange between water and
sediment [33,35], studies of anaerobic episodes [36] and apparent redox discontinuity layer
(aRPD) [37]. Although these indices appear simple, they carry some limitations related to
insufficient knowledge of the activity of individual species and how it changes under the
influence of various factors. However, being aware of these limitations, these tools can be
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applied in both scientific research and environmental monitoring. According to Queirós
and colleagues [38], the bioturbation potential index also has limitations, and knowing this
can contribute to more informed use of the index as an indicator of benthic function.

A few studies on the role of macrofauna carried out in the Gulf of Gdańsk have
addressed the bioturbation potential index (BPC) or nutrient fluxes between water and
sediments [39–42]. Studies on the functioning of marine ecosystems in the Gulf of Gdańsk
in recent years have also considered the influence of organic matter on the structure and
functioning of trophic networks [43] and how organic matter is transformed by organ-
isms [44]. So far, no research has been carried out in the Gulf of Gdańsk on bioirriga-
tion processes. There are also few published studies on the distribution of organisms
in the sediment. They mostly contain information on the depth of occurrence of indi-
vidual macrofauna and meiofauna taxa [45–48], but only single studies addressed entire
benthic communities [40,41,49].

The objective of this study was to determine the structure of benthic fauna as well as
the bioturbation and bioirrigation potential of macrofauna in the sediments of the Vistula
plume area, in the Gulf of Gdańsk. Furthermore, it was determined quantitatively how
this impact of benthic communities varies depending on the proximity of the Vistula River
mouth, as well as which species are the most responsible for sediment matrix reworking in
the area. In addition, we have made an attempt to investigate the vertical distribution of
macrofauna taxa, detailing their maximal and typical depth of occurrence in the sediment.

The results presented in this paper will help to demonstrate the zones where, due to
the presence of animals in the sediments and their activity, nutrients, organic matter and
pollutants carried into the Gulf of Gdańsk by the Vistula River are processed. They will
also provide knowledge of the vertical distribution of species in the sediments necessary,
among other things, for indices of functionality to assess the functioning of the seafloor and
basin. Determining the role of macrofauna will also provide arguments for the protection
and proper management of marine areas in estuaries.

2. Materials and Methods
2.1. Sampling

Bottom water, sediment and fauna were collected during two cruises in the Vistula
River plume area and along an offshore depth transect in the Gulf of Gdańsk, the Baltic Sea
(Figure 1). Samples from 11 sites were collected in July 2014 from the deck of RV Elisabeth
Mann-Borgese. In March 2016, three more sites were sampled (VE04, VE06, VE07) during a
cruise aboard RV Alkor. Bottom water temperature, salinity and dissolved oxygen (DO)
concentration were measured at all sites approximately 0.5 m above the sediment using a
Seabird CTD-system with an oxygen SBE43 sensor.

For sediment and macrofauna analysis sediment cores (inner diam. 10 cm) were
collected with a multicorer and subsamples of coarse-grained sands were collected from a
Haps corer. At each site the upper 10 cm sediment sample for sediment parameters was
frozen and prior to all analysis the sediment was dried and homogenized. The organic
matter content of the dry sediments was measured as the percentage loss on ignition (LOI)
after dry combustion for 8 h at 450 ◦C and for 5 h at 550 ◦C for samples collected in March
2016. For grain size analysis, samples were sieved using a shaker and a set of standard test
sieves with mesh diameters of 2, 1, 0.5, 0.25, 0.125 and 0.063 mm [50]. Based on a percentage
of each class in the total sample mass, sediments were classified by the Udden–Wentworth
grain-size scale (after Wentworth [51]).

2.2. Macrofauna

For benthic fauna analysis, 3 to 5 replicates were collected at each site, with the
exception of station VE49, where only 2 replicates could be collected. Sediment cores were
divided into layers: 0–1 cm, 1–3 cm, 3–6 cm, 6–10 cm, 10–15 cm and >15 cm depth. We
sifted all layers separately through a 1 mm sieve to separate the macrofauna from the
sediment and preserved with 4% formaldehyde until analysis (stored for at least 3 months).
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In the laboratory, the fauna was sorted and taxa, with the exception of Oligochaeta and
Marenzelleria spp. polychaetes, were identified to the species level. Taxa were counted and
weighed to determine their abundance and biomass (wet mass) per square meter.

Figure 1. Study area with sampling sites. The red rectangle indicates the location of the study area
on a map of the Baltic Sea.

2.3. Bioturbation Potential (BPC) and Irrigation Potential (IPC)

To calculate the bioturbation and bioirrigation potential, wet mass (WW) was con-
verted to ash free dry mass (AFDW). The conversion was based on literature data; for
bivalves, the coefficients were used for individuals with shells [52–55]. The Bioturbation
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Potential Community Index (BPC) at individual sites was calculated by summing the
bioturbation potentials (BPi) calculated for individual taxa [30,36].

BPc = ∑ BPi where : BPi =

(
Bi

Ai

)0.5
∗Ai ∗Mi ∗ Ri (1)

where for taxon i: Bi is biomass (in ash free dry mass g·m−2) and Ai is abundance (ind.·m−2)
at each sample, while Mi, mobility, and Ri, sediment reworking, are categorical scores
assigned to each species (Table A1).

The Irrigation Potential Community Index (IPC) at individual sites was calculated by
summing the irrigation potentials (IPi) calculated for individual taxa [56].

IPc = ∑ IPi where : IPi =

(
Bi

Ai

)0.75
∗Ai ∗ BTi ∗ FTi ∗ IDi (2)

where for taxon i: Bi is biomass (in ash free dry mass g·m−2) and Ai is abundance (ind.·m−2)
at each sample, while feeding type (FTi), burrow type (BTi) and depth (IDi) are scores
for the trait categories assigned to each species (Table A1). Exponent 0.5 used in BPC
emphasizes the importance of organisms with high density and relatively low biomass,
while exponent 0.75 used in IPC emphasizes the activity of organisms with larger sizes but
lower densities [33].

2.4. Vertical Distrbution of Macrofauna in Sediment

The analysis of the vertical distribution of macrozoobenthos in the sediment to deter-
mine the maximum burial depth of each taxon and the entire community was performed
for both the abundance and biomass of organisms from 51 cores. To present the vertical
distribution, the benthic macrofauna abundance and biomass measured in separate sedi-
ment layers were recalculated per 1 dm3 volume. The burial depth data were averaged for
all cores in which a given taxon occurred. The percentage of individual taxa abundance
and biomass (90%) in the studied layers was indicated to determine the typical depth
of occurrence.

2.5. Data Analysis

Principal Component Analysis (PCA) was carried out to determine the relationship
between physicochemical conditions in bottom water and surface sediments, and the
variability between the sites. A matrix with normalized data on bottom water temperature,
salinity, dissolved oxygen concentration and organic matter content in surface sediments
was used in statistical analysis. Environmental parameters were strongly correlated with
the depth of the basin i.e., salinity (Pearson’s r = 0.95), DO (r = −0.79), type of sediment
(r = 0.86) and LOI (0.65).

Prior to biological data analysis, the biomass at each sampling site was averaged and
square root transformed. Cluster (Bray–Curtis similarity) and SIMPROF analysis was used
to determine the similarity of macrofauna samples. The SIMPER procedure was applied
to identify species responsible for similarities/differences in macrozoobenthic commu-
nities between the analyzed sites [57]. Biota and Environment matching analysis (BEST
BIO-ENV) was performed to determine the effects of temperature, salinity, DO concentra-
tion in bottom water and organic matter content in surface sediment on the formation of
benthic fauna communities. Distance-based linear models (distLM) were used to examine
the effects of environmental variables on biomass, maximum burrowing depth, BPC and
IPC [58]. First, the relationships between the variables were examined and oxygen concen-
tration was excluded from the analysis as being strongly correlated with salinity (Pearson’s
r = −0.84). The following three environmental variables were selected: temperature, salin-
ity and LOI and log(x + 1) transformation was used before analysis. Stepwise selection and
the AICc stopping criterion were used in distLM to investigate the role of environmental
variables in predicting biological traits of macrozoobenthos. Resemblance matrices were
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based on the Euclidean distance similarities between the sites. The results of marginal
tests indicate the proportion of the variation the predictor accounts for on its own, while
the results from the sequential test indicate the proportion added by the predictor to the
cumulative total proportion explained. The statistical analyses were computed in PRIMER
v6 & PERMANOVA +. Maps with results were prepared using Arc GIS Pro 2.9.0, ESRI Inc.,
Redlands, California, the United States of America.

Data from individual cores were used to analyze the relationship between the biologi-
cal parameters. The relationship between bioturbation and bioirrigation potential indices
(calculated using WW and AFDW, and two different exponents in the case of IPC) and the
number of taxa, abundance, biomass and maximum burrowing depth were determined by
Spearman’s rank correlation test. In addition, IPC values obtained when considering the
maximum burrowing depth of macrofaunal individuals in the sediment observed in this
study were also compared with those assumed based on the literature and expert knowl-
edge. Prior to the statistical analysis, the normality of the data was tested (Shapiro–Wilk
test p < 0.05).

3. Results
3.1. Environmental Conditions

Bottom water temperature at the surveyed sites was relatively uniform (below
6.2 ◦C), except for sites VE03, VE05, and VE18, which were surveyed in the summer
season, above thermocline (Table 1). Bottom water salinity was generally higher in the
deeper parts and reached 12.7 in the Gdańsk Deep (site TF0233). The opposite situation
was observed for dissolved oxygen concentrations in bottom water. Oxygen conditions
were above 4.68 mL·dm−3 at the shallow sites, but oxygen deficiency was observed in the
deepest part—below 3.41 mL·dm−3, and the two deepest sites (VE43 and TF0233) showed
hypoxia (DO < 2 mL·dm−3). Sediment variability was fairly typical for the coastal areas.
The shallow sites were characterized by the presence of medium and fine-grained sands,
while deeper sites were dominated by clay and silt.

Table 1. Values of sediment characteristics and environmental variables measured in the bottom
waters at research sites.

Station Temperature [◦C] Salinity Oxygen [mL·dm−3] Sediment Type LOI [%] Depth [m]

VE04 4.2 7.6 8.10 Fine-grained sand 1.25 15
VE03 14.2 7.4 5.65 Fine-grained sand 4.49 16
VE05 12.6 7.4 4.68 Fine-grained sand 4.03 24
VE18 11.2 7.3 5.83 Fine-grained sand 0.91 24
VE49 6.2 7.6 5.93 Medium-grained sand 0.89 25
VE09 5.3 8.0 6.32 Medium-grained sand 0.81 32
VE06 3.8 8.0 8.19 Fine-grained sand 0.88 38
VE23 5.0 8.0 6.47 Sandy silt 4.24 48
VE46 4.6 8.2 5.90 Silt 13.26 48
VE07 3.7 8.0 8.33 Fine-grained sand 3.07 59
VE38 4.5 9.1 3.41 Silt 4.40 67
VE39 5.3 11.2 2.56 Silty clay 18.54 84
VE43 5.8 12.3 1.52 Silty clay 3.18 94

TF0233 5.6 12.7 1.59 Silty clay 15.49 105

PCA analysis was conducted to determine the effect of four physicochemical parame-
ters on the variability between the sites (Figure 2). The first principal component explains
59.6% (eigenvalue 2.39), and together with the second principal component (eigenvalue
1.08) a total of 86.6% of the total variation (Table 2). Salinity with a coefficient of −0.612 has
the largest contribution to the distribution along the PC1 axis. The distribution along the
PC2 axis was most significantly affected by bottom water temperature (coefficient 0.939).
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from 16 taxa at site VE05 to no organisms in the Gdańsk Deep. The main factors determin-
ing the structure of macrozoobenthos biomass were salinity and oxygen concentration in 
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Figure 2. Results of principle component analysis (PCA). Variables included in the PCA are bottom
water temperature (T), salinity (S) and oxygen concentration (DO), and organic matter content in the
surface sediments (LOI).

Table 2. Percentage of variation and coefficients in the linear combinations of variables forming PCs.

Variable PC1 PC2 PC3

Variation [%] 59.6 26.9 11.7
Temperature (T) 0.128 0.939 0.104

Salinity (S) −0.612 −0.100 −0.366
Oxygen (DO) 0.576 −0.329 0.366

LOI −0.527 −0.015 0.849

3.2. Macrofauna

The study revealed the presence of a total of 23 macrofaunal taxa in the Gulf of Gdańsk.
Taxa with the highest frequency in the Vistula estuary (above 70%) were the bivalve Macoma
balthica, Oligochaeta, the polychaetes Bylgides sarsi, Marenzelleria spp., Pygospio elegans, as well
as the crustacean Corophium volutator and the gastropod Peringia ulvae (data not shown). The
biodiversity of benthic organisms decreased with depth—from 16 taxa at site VE05 to no or-
ganisms in the Gdańsk Deep. The main factors determining the structure of macrozoobenthos
biomass were salinity and oxygen concentration in the bottom water (BIOENV, r = 0.74).

Based on cluster and SIMPROF analysis, three groups of sites were distinguished
with respect to the biomass of the identified macrofauna taxa (Figure 3). In both group 1
and group 2, M. balthica was the most dominant species in the biomass and significantly
contributed to the similarity of biomass in both groups (contribution to the total biomass
of 67% and 79%, respectively). In addition, species that contributed to the similarity in
group 1 were Hediste diversicolor (11%), P. ulvae (9%) and Mya arenaria (8%). Other taxa
that accounted for the similarity between sites in group 2, in addition to M. balthica, were
Marenzelleria spp. (7%) and Halicryptus spinulosus (5%). In addition, group 3 comprised the
deepest sites, where only polychaetes represented by the species B. sarsi were observed.
The average dissimilarity between group 1 or group 2 and group 3 was >99%. In both cases,
M. balthica accounted for the highest proportion of dissimilarity (>54%).
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biomass (data transformation:

√
): top—cluster similarity of the study sites; bottom—contribution of

taxa in macrofaunal biomass in three groups of sites.

All the biological parameters studied reached the highest values at the shallow sites
and site VE46, and their values gradually decreased in subsequent groups with increasing
depth (Table 3). Benthic communities at the shallow and intermediate sites were character-
ized by high taxonomic diversity of macrofauna. The highest values of density and biomass
of macrofauna were observed at the shallow sites and decreased with depth. Similarly, the
values of the BPC and IPC indices decreased, with the values of both indices being lower by
half at the intermediate sites compared to the shallow sites.
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Table 3. Number of taxa, maximum burial depth of macrofauna, mean values: abundance, BPC and
IPC (min.–max), contribution of individual taxa to the formation of these parameters, and in each
group of sites provided in Figure 3.

Group 1 Group 2 Group 3

No. of taxa 11 (6–16) 8 (7–10) 0 (0–1)
Max. burial depth [cm] 14 (10–15) 11 (6–15) 0 (0–1)

Abundance [ind.·m−2]

11,030 (3628–30,557) 3188 (2578–3851) 63 (0–127)
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3 containing organisms. However, the maximum biomass of organisms was observed in 
the deeper sediment layers—as much as 42% of the biomass at the sites from group 1 was 
found in the 3–6 cm sediment layer, and in group 2, organisms were found in the shal-
lower layers—almost 60% of the biomass was found in the 1–3 cm sediment layer. This is 
due to the dominance of M. balthica in the infaunal biomass. 
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The vertical distribution of organisms in each group differed in terms of both abun-
dance and biomass (Figure 4). In all groups of sites, the largest number (>62%) of organisms
was found in the shallowest layer of sediment. This was also the only layer in group 3
containing organisms. However, the maximum biomass of organisms was observed in
the deeper sediment layers—as much as 42% of the biomass at the sites from group 1 was
found in the 3–6 cm sediment layer, and in group 2, organisms were found in the shallower
layers—almost 60% of the biomass was found in the 1–3 cm sediment layer. This is due to
the dominance of M. balthica in the infaunal biomass.

M. balthica accounted for the largest proportion of biomass at all but the deepest sites
(Figure 5) (Table A2). The biomass was also composed of Marenzelleria spp., P. ulvae and
H. diversicolor. Only epifaunal B. sarsi was observed at the deepest sites. The coastal sites
were characterized by the occurrence of taxa such as Marenzelleria spp. and H. diversicolor,
which burrow to a depth of 15 cm. With the distance from the Vistula River, fewer taxa
were observed burrowing deeper into the sediment.

62



Biology 2023, 12, 147

Biology 2023, 12, x FOR PEER REVIEW 10 of 22 
 

 

 

 
Figure 4. Vertical distribution of macrofaunal taxa deep into the sediment in each group of the sites 
shown in Figure 3. The scale of abundance and biomass differs for individual groups. 

M. balthica accounted for the largest proportion of biomass at all but the deepest sites 
(Figure 5) (Table A2). The biomass was also composed of Marenzelleria spp., P. ulvae and 
H. diversicolor. Only epifaunal B. sarsi was observed at the deepest sites. The coastal sites 
were characterized by the occurrence of taxa such as Marenzelleria spp. and H. diversicolor, 
which burrow to a depth of 15 cm. With the distance from the Vistula River, fewer taxa 
were observed burrowing deeper into the sediment. 

Both the bioturbation potential index and the bioirrigation potential index followed 
the distribution of biomass, with the highest values in the shallow areas and in vicinity of 
the Vistula River mouth, and lower values in the deep area and no bioturbation activity 
in the Gdańsk Deep. BPC and IPC at all (except the deepest) sites were mainly formed by 
M. balthica. At the shallow sites, the polychaetes, M. arenaria and Pontoporeia femorata con-
tributed relatively significantly to the formation of BPC, while at VE18 it was mainly 
formed by Marenzelleria spp. In the formation of IPC, Marenzelleria spp. contributed more 
than other taxa at several sites (VE18, VE06, VE09). The highest BPC (5001) and IPC (1958) 
values were recorded at site VE05.  

 

Figure 4. Vertical distribution of macrofaunal taxa deep into the sediment in each group of the sites
shown in Figure 3. The scale of abundance and biomass differs for individual groups.

Biology 2023, 12, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 5. (a) Biomass [g·m−2]; (b) maximum burial depth of organisms [cm]; (c) bioturbation poten-
tial index (BPC) and (d) bioirrigation potential index (IPC), and the proportion of taxa in the values 
of each parameter in the Gulf of Gdańsk. 

Among environmental parameters, salinity (and highly correlated DO) was the most 
important predictor, explaining more than 44% of the variability in biomass, burial depth, 
BPC and IPC (Table 4). Salinity (and highly correlated DO) and temperature, and in the 
case of BPC also LOI, explained more than 80% of the data variation in BPC and IPC. 

Table 4. Proportion of the variables explaining the distLM model adjustment in marginal and se-
quential tests for biomass, burial depth, BPC and IPC. 

 Biomass Burial Depth BPC IPC 

  Marginal 
Test 

Sequential 
Test 

Marginal 
Test 

Sequential 
Test 

Marginal 
Test 

Sequential 
Test 

Marginal 
Test 

Sequential 
Test 

Salinity 0.442 ** 0.442 * 0.644 ** 0.644 ** 0.529 ** 0.529 ** 0.564 ** 0.564 ** 
Temperature 0.302 * 0.153 0.03   0.425 * 0.23 ** 0.456 ** 0.247 * 

LOI 0.01 0.1021 0.250   0.027 0.076 * 0.062   
Total   0.697   0.644   0.835   0.811 

Significance levels * p < 0.05, ** p < 0.01. 

There are strong positive correlations between bioturbation and bioirrigation poten-
tial indices, as well as between them and key characteristics of benthic communities, i.e., 

Figure 5. (a) Biomass [g·m−2]; (b) maximum burial depth of organisms [cm]; (c) bioturbation
potential index (BPC) and (d) bioirrigation potential index (IPC), and the proportion of taxa in the
values of each parameter in the Gulf of Gdańsk.
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Both the bioturbation potential index and the bioirrigation potential index followed
the distribution of biomass, with the highest values in the shallow areas and in vicinity of
the Vistula River mouth, and lower values in the deep area and no bioturbation activity
in the Gdańsk Deep. BPC and IPC at all (except the deepest) sites were mainly formed
by M. balthica. At the shallow sites, the polychaetes, M. arenaria and Pontoporeia femorata
contributed relatively significantly to the formation of BPC, while at VE18 it was mainly
formed by Marenzelleria spp. In the formation of IPC, Marenzelleria spp. contributed more
than other taxa at several sites (VE18, VE06, VE09). The highest BPC (5001) and IPC (1958)
values were recorded at site VE05.

Among environmental parameters, salinity (and highly correlated DO) was the most
important predictor, explaining more than 44% of the variability in biomass, burial depth,
BPC and IPC (Table 4). Salinity (and highly correlated DO) and temperature, and in the
case of BPC also LOI, explained more than 80% of the data variation in BPC and IPC.

Table 4. Proportion of the variables explaining the distLM model adjustment in marginal and
sequential tests for biomass, burial depth, BPC and IPC.

Biomass Burial Depth BPC IPC

Marginal
Test

Sequential
Test

Marginal
Test

Sequential
Test

Marginal
Test

Sequential
Test

Marginal
Test

Sequential
Test

Salinity 0.442 ** 0.442 * 0.644 ** 0.644 ** 0.529 ** 0.529 ** 0.564 ** 0.564 **
Temperature 0.302 * 0.153 0.03 0.425 * 0.23 ** 0.456 ** 0.247 *

LOI 0.01 0.1021 0.250 0.027 0.076 * 0.062
Total 0.697 0.644 0.835 0.811

Significance levels * p < 0.05, ** p < 0.01.

There are strong positive correlations between bioturbation and bioirrigation potential
indices, as well as between them and key characteristics of benthic communities, i.e., the
number of taxa, abundance, biomass as well as maximum burrowing depth (Table 5).
Similarly strong and significant relationships exist between BPC and IPC calculated from
differently presented biomass data (WW and AFDW), as well as when comparing IPC
calculated from benthic fauna burial depth data obtained in this study with the index using
the literature data.

The examination of the macrofauna in different layers of the cores showed that
the sediments are inhabited to a depth of 15 cm (Figure 6). All the studied taxa, with
the exception of H. spinulosus, are observed in the shallowest layer of sediment. For
some taxa (Planaria torva, Ecrobia ventrosa, Potamopyrgus antipodarum, Saduria entomon,
Mysis mixta and Neomysis integer), this is the only layer of occurrence. Few—especially
polychaetes—are observed in the deeper sediment layers, and their dominant abundance
and biomass occurs in the 3–6 cm and 6–10 cm layers. The deepest recorded taxa are the
polychaetes Marenzelleria spp. and H. diversicolor, the clams M. balthica and Oligochaetes,
which were found in the layer up to a maximum of 15 cm deep into the sediment.
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Figure 6. Depth of occurrence of individual macrofaunal taxa in the sediment. Green color indicates
to what depth 90% of all organisms are observed. n is number of cores in which particular taxa
was observed.
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4. Discussion
4.1. Conditions of Bottom Water and Sediments and Their Impact on Macrozoobenthos

Coastal areas, such as estuaries, lagoons and bays, are dynamic environments with
gradients of freshwater and seawater flows, representing transition zones between land
and sea [3,59,60]. Gradients in physicochemical parameters of bottom water and surface
sediments are typical for the Gulf of Gdańsk [41,42,61] [this research]. As the depth of
the basin increases, salinity increases, DO decreases, while the proportion of the finest
fraction, organic matter content and hydrogen sulfide concentration increases. The area of
the Vistula outflow is characterized by the presence of increased amounts of organic matter
and nutrients supplied with river runoff [62–65]. Organic matter and nutrients, as well as
contaminants on their way from land to open sea are transformed, retained or removed by
biota or moved unchanged to the offshore areas of the Baltic Sea [26,44,66–68].

The conditions prevailing in the bottom water and sediments affect the distribution
and species composition of macrozoobenthos. In the case of benthic communities inhabiting
the seabed of the Gulf of Gdańsk, the factors that had the greatest impact on biomass
structure, macrofauna burial depth and indices of bioturbation and bioirrigation potential
were conditions such as salinity and oxygen concentration in the water above the bottom,
and factors strongly related to these, such as sediment conditions. It is known that as
oxygen conditions in the water above the seabed deteriorate, the concentration of toxic
hydrogen sulfide in the sediments increases [41,69–71].

4.2. Macrozoobenthos

The present study revealed the presence of 23 taxa of the benthic macrofauna in the
study area. The results were similar to those obtained during other macrozoobenthos
studies conducted in the Vistula estuary [39,41,72,73]. The greatest diversity of benthic
organisms was observed in the coastal zone, where the density was dominated by P. ulvae, a
gastropod species typical of the coastal zone in the Baltic Sea, while in the deeper zones the
species composition of the benthic community shifted and the abundance was dominated
by P. elegans and M. balthica, species also common in the Baltic Sea. The biomass in all but
the deepest zones was dominated by M. balthica.

The highest number of taxa was observed at some distance from the Vistula estuary
(at a depth of 16–24 m). Relatively few taxa were found at the shallowest site (15 m
depth), due to the fact that the estuary is highly dynamic and the material carried by the
river forms an unstable and easily eroded substrate, unfavourable to macrozoobenthos
development [72–75]. Although organic matter carried with river runoff constitutes food
resources for macrofauna [44], it can also cause benthic organisms to become covered and
buried, leading in extreme cases to the complete disappearance of benthic macrofauna in
a given area [76]. As the depth of the water body increases, both the taxonomic diversity
and the biomass of the macrofauna decreases. At the deepest sites, the macrofauna is either
absent or represented by single individuals of the surface-living, semi-pelagic polychaete
B. sarsi. The reason for this is the decomposition of large amounts of organic matter
accumulating on the bottom and stable stratification in the deeper area, which leads to
oxygen deficiency or anoxia at the bottom and occurrence of hydrogen sulfide in the surface
sediments [69]. These conditions adversely affect the behaviour, physiological processes,
fitness of the benthic fauna, and consequently lead to a loss of functions performed by the
benthic fauna [36,77,78]. Such a loss of biodiversity can result in reduced resistance of the
environment to stress [79].

4.3. Bioturbation and Bioirrigation

The research carried out has shown that while the zoobenthos biomass in the Vistula
estuary is completely dominated by M. balthica, the use of bioturbation and bioirrigation
potential indices reveals the role of other species, i.e., those whose biomass is not large but
it is known from experimental studies that their activity can significantly affect biogeochem-
ical processes [80,81]. The benthic communities described in this study are characterized
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by their high bioturbation and bioirrigation potential in the coastal region. This is where
their impact on various compounds is most likely to be greatest. M. balthica, whose in-
tensive bioturbation and bioirrigation activity is relatively well studied, had the largest
contribution to the indices [80,81]. Polychaetes of the genus Marenzelleria also contributed
relatively significantly to the bioirrigation potential index. Experimental studies have
shown that this species is an extremely effective bioirrigator and bioturbator [6,48,82,83]. In
situ experiments in the Vistula plume showed a significant increase in nutrient fluxes from
sediments inhabited by macrofauna, with the greatest impact observed in the presence of
polychaetes [39]. In previous studies, a comparison between bioturbation and bioirrigation
potential indices maps showed a very similar pattern, but also some differences [56,84]. For
example, differences on a spatial scale were found in the German Bight, with higher IPC
scores in areas where sessile or semi-sessile species (i.e., Lanice conchilega and Notomastus
latericeus) were particularly abundant [56]. In the Vistula estuary, such a difference is
apparent only for one site (VE18), where higher IPC values compared to BPC are due to the
abundance of Marenzelleria spp.

The present study demonstrated a strong positive relationship between the two indices
and their strong correlation with both the maximum burrowing depth of macrozoobenthos,
the number of taxa, as well as the abundance and total biomass of macrozoobenthos. In-
terestingly, there was virtually no difference in these relationships regardless of how the
calculations were made (i.e., wet or ash free dry mass). In an earlier study conducted in
another region of the Baltic Sea, the authors found no relationship between the bioirrigation
index and the number of taxa [84]. According to Queirós et al. [38], BPC was found to
be a good predictor of bioturbation distance (average distance travelled by a sediment
particle). However, it was found unsuitable for determining other attributes of infauna,
such as bioturbation activity, bioturbation depth or diffusion transport. In addition, the
index also appears to be a better predictor of community-level estimates, rather than those
for individual species. Statistical models using experimental results showed that BPC
explained a considerable amount of variance in oxic processes, i.a. oxic mineralization,
total N mineralization, and nitrification [85]. Few studies have also been conducted to
determine the correlation between bioirrigation potential index values and actual bioirriga-
tion. However, the results of these studies are inconclusive and require further research.
A study by De Borger et al. [86] showed that IPC correlates more strongly with burrow
ventilation depth than with ventilation rate. The correlation between IPC and irrigation
rate was not confirmed by Toussaint et al. [85].

The present study did not use the bioirrigation index (BIPC) proposed by Renz
et al. [32], the scoring system of which additionally takes into account the distinction
between the advection and diffusion system performance. The use of this index would
result in higher values for free living species and species living in burrows as well as facul-
tative deposit/suspension feeders in advective sediments. Furthermore, it would result in
even higher values of bioirrigation potential in the coastal zone, where the advection system
dominates, and an even higher proportion of M. balthica or polychaetes H. diversicolor and
Marenzelleria spp. in the index for this zone. At the deeper sites where diffusive sediments
occur, bioirrigation potential would be much lower than in the coastal zones. The system
by Renz and co-workers [32] would emphasize the variability of the bioirrigation index in
the Gulf of Gdańsk and the gradual loss of this function in the environment with increasing
depth of the water body. Both approaches to the determination of the bioirrigation potential
index are certainly worth testing in further studies, especially those combining studies of
benthic assemblages, including functional indices, with experimental studies of the impact
of macrofauna on biogeochemical processes, or measurements of animal activity.

The indices used provide only a simplified approximation of the potential capabilities
of benthic communities. Bioturbation and bioirrigation are dynamic and complex activities
performed by those organisms. They are determined by a number of factors that affect the
biological functions of these animals. BPC was observed to follow the seasonal pattern in
seawater temperature, with the highest values in summer and autumn [38]. However, it
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should be kept in mind that temperature and food availability have the potential to impact
bioturbation and bioirrigation intensity, as these factors affect physiological processes of
benthic species. Studies conducted on the polychaete Alitta virens showed that sediment
reworking processes could be affected by both low and high temperature, with the lowest
bioturbation intensity under low temperature [87]. Oxygen depletion may also change
the activity of animals in the sediment, thus affecting bioturbation and bioirrigation. De-
pending on the oxygen concentration and exposure time, these conditions can result in, for
example, an increase in burrow ventilation, a decrease in animal activity or no activity at
all [88–90].

4.4. Burrowing Depth

The burrowing depth of organisms provides, among other things, an indication of
the depth to which they can affect the conditions and processes in the sediments. In the
present study, most of the organisms (>62% of all individuals) inhabited the shallowest
layer of sediment (0–1 cm). The maximum biomass of organisms can be found in the deeper
layers of sediment—deeper layers (3–6 cm) at the shallowest sites and slightly shallower
layers at the intermediate sites (1–3 cm). A similar distribution of organisms deep into the
sediment was observed in earlier studies conducted in the Gulf of Gdańsk—the highest
abundance of organisms was found in the shallowest layer of the sediment and it decreased
with depth [40,41]. In contrast to the abundance, the biomass of organisms in the shallow
water zone did not decrease with depth and its distribution was more varied—the highest
biomass was usually observed in deeper layers, i.e., up to 6 cm into the sediment [40].

However, even organisms living on the sediment surface can play an extremely
important role by being active in disrupting the diffusive boundary layer, which improves
the oxygen conditions of the sediment [91]. Few organisms, i.e., bivalves and polychaetes,
burrow naturally into the sediment and are rarely present on its surface [83,92], and their
typical burrowing depth is 3–10 cm. The maximum depth of occurrence of a given taxon
depends on the ability of the organism to contact the sediment surface, for example, the
burial depth of M. balthica depends on the length of the clam’s siphon, which is often
also related to the size and age of the organism [46]. Our research showed the occurrence
of M. balthica below a depth of 10 cm, which is also the maximum depth at which the
bivalves bioturbate and bioirrigate the sediments. Other deep burrowing species—from
the genus Marenzelleria—were found up to a depth of 15 cm, but some scientists indicate
that these species can burrow as deep as 35 cm [93]. These deep burrowing organisms,
such as polychaetes, form burrows that enable water transport in the sediment and aerobic
chemical reactions in the deeper layers, as well as affect nutrient cycling [83,94,95].

The vertical distribution of organisms is determined by environmental factors. Or-
ganisms change the depth of their occurrence seasonally [46], e.g., M. balthica has been
shown to burrow deepest in winter and remain shallowly buried in the sediment during
the summer season. Oxygen deficiencies and hydrogen sulfide cause the animals to move
to the sediment surface or they become periodically inactive [92,96,97]. While animals are
present in the sediment, their functions may be temporarily impaired.

5. Conclusions

Our research has shown changes in the structure and functioning of benthic communi-
ties with increasing distance from the Vistula River mouth. Coastal zones are characterized
by relatively high biodiversity and great burrowing depth of macrofauna, as well as high
bioturbation and bioirrigation potential of benthic communities. However, this activity
disappears in deep zones with the absence of benthic organisms. The lack of bioturbation
and bioirrigation means there is no support for biogeochemical transformation by the
macrofauna in the deep zones. In the study area, only a few species drive bioturbation and
bioirrigation—the bivalve M. balthica and the polychaetes H. diversicolor and Marenzelleria
spp. Other taxa had a marginal impact. Such a strong dominance of single taxa in per-
forming bioturbation and bioirrigation could lead to instability in ecosystem functioning in
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the case that these organisms were to disappear as a result of an ecological disaster, envi-
ronmental degradation or disease. At the same time, these large organisms were the only
taxa burrowing deep into the sediment (below 10 cm), and thus the only ones supporting
geochemical processes deep in the sediment. To summarize, the coastal zone, unlike the
offshore zone, proved to be a hotspot for bioturbation- and bioirrigation-driven processes,
which are responsible for the proper functioning of the seafloor and basin. However, very
poor functional diversity of the benthic macrofauna in the deepest zones means that we
should appreciate and protect coastal zones more efficiently.
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Appendix A

Table A1. Categorical scores assigned to each taxon for BPc and IPc indices calculations according to
Solan et al. [30], Villnäs et al. [36] Queirós et al. [31] and Wrede et al. [98] (modified), where: Mobility
(Mi): 1, feeding on the sediment surface; limited movement on the sediment surface; sessile; 2, limited
movement; 3, slow free movement; 4, free to movement. Reworking type (Ri): 1, epifauna; 2, surficial
modifiers; 3, upward or downward conveyor; 4, biodiffusors. Burrow type (BTi): 1, epifauna or
internal irrigation (i.e., siphons); 2, open irrigation (i.e., Y- or U-shaped burrow); 3, blind ended
burrow. Feeding type (FTi): 1, surface filter feeder; 2, predator; 3, deposit feeder; 4, sub-surface filter
feeder. Irrigation depth (IDi): 1, 0–1 cm; 2, 1–3 cm; 3, 3–6 cm; 4, 6–10 cm; 5, 10–15 cm.

Taxa
BPc IPc

Mi Ri BTi FTi IDi

Planaria torva 1 1 1 2 1
Cyanophthalma obscura 3 1 3 2 2
Oligochaeta 3 2 3 3 4
Bylgides sarsi 3 1 1 2 2
Fabricia stellaris 2 1 3 1 2
Marenzelleria spp. 4 4 3 3 5
Pygospio elegans 2 2 3 3 3
Streblospio shrubsolii 2 2 3 3 2
Hediste diversicolor 4 3 2 3 5
Ecrobia ventrosa 1 1 1 3 1
Peringia ulvae 1 1 1 3 2
Potamopyrgus antipodarum 1 1 1 3 1
Cerastoderma glaucum 3 2 1 1 1
Macoma balthica 3 4 1 3 4
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Table A1. Cont.

Taxa
BPc IPc

Mi Ri BTi FTi IDi

Mya arenaria 3 4 1 1 2
Corophium volutator 2 2 2 3 3
Monoporeia affinis 4 2 3 3 2
Pontoporeia femorata 4 4 3 3 4
Diastylis rathkei 3 2 3 3 2
Saduria entomon 4 2 3 3 1
Mysis mixta 4 1 3 3 1
Neomysis integer 4 1 3 3 1
Halicryptus spinulosus 3 4 3 3 4

Table A2. Average (±SD) number of taxa and biomass (g. m−2) at the sampling sites of the dominant
taxa present (n = 2 for sites VE49, n = 3 for TF0233, VE09, VE38, VE39, VE43; n = 4 for VE04, VE06,
VE07, VE18, VE23, VE46 and n = 5 for VE03 and VE05).

Site No. of Taxa Marenzelleria spp. Hediste
diversicolor

Peringia
ulvae

Macoma
balthica

Saduria
entomon Others *

VE03 8 ± 4 1.9 ± 2.0 21.7 ± 22.1 42.5 ± 26.1 370.7 ± 227.2 0.0 ± 0.0 14.6 ± 10.1

VE04 5 ± 0 0.0 ± 0.0 16.2 ± 13.0 7.6 ± 8.4 90.1 ± 97.4 0.0 ± 0.0 3.4 ± 2

VE05 8 ± 3 1.1 ± 2.1 35.4 ± 19.3 39.3 ± 8.6 375.5 ± 117.5 0.0 ± 0.0 10.8 ± 11.7

VE06 5 ± 0 18.3 ± 6.8 0.0 ± 0.0 0.1 ± 0.2 81.8 ± 57.9 0.0 ± 0.0 3.2 ± 2.6

VE07 4 ± 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 177.2 ± 77.5 14.0 ± 27.9 3 ± 3.7

VE09 5 ± 4 10.0 ± 8.7 10.6 ± 17 1.1 ± 1.9 109.1 ± 113.5 0.0 ± 0.0 6.1 ± 7.3

VE18 9 ± 2 34.1 ± 30.3 4.6 ± 6.5 12.0 ± 7.4 158.7 ± 59.8 0.0 ± 0.0 18.2 ± 16.4

VE23 6 ± 1 1.1 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 118.0 ± 150.6 0.1 ± 0.1 10.3 ± 7.7

VE38 0 ± 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 3.1

VE39 0 ± 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2

VE43 0 ± 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.7

VE46 5 ± 0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 458.1 ± 82.1 0.7 ± 1.4 5.8 ± 3.3

VE49 7 ± 0 0.0 ± 0.0 15.9 ± 6.1 3.8 ± 0.8 374.7 ± 183.2 0.0 ± 0.0 10.2 ± 7.1

TF0233 0 ± 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

* Species covered by the category “Others” include the taxa listed in Table A1.
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structure to seasonal and regional variability in organic matter properties. Ecol. Indic. 2021, 132, 108326. [CrossRef]

44. Szczepanek, M.; Silberberger, M.J.; Koziorowska-Makuch, K.; Kędra, M. Utilization of riverine organic matter by macrobenthic
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in the Gulf of Gdańsk, Baltic Sea. J. Mar. Syst. 2005, 57, 127–145. [CrossRef]
64. Voss, M.; Asmala, E.; Bartl, I.; Carstensen, J.; Conley, D.J.; Dippner, J.W.; Humborg, C.; Lukkari, K.; Petkuviene, J.; Reader, H.; et al.

Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries. Biogeochemistry 2020, 154, 385–403. [CrossRef]
65. Reader, H.E.; Thoms, F.; Voss, M.; Stedmon, C.A. The Influence of Sediment-Derived Dissolved Organic Matter in the Vistula

River Estuary/Gulf of Gdansk. J. Geophys. Res. Biogeosci. 2019, 124, 115–126. [CrossRef]
66. Asmala, E.; Carstensen, J.; Conley, D.J.; Slomp, C.P.; Stadmark, J.; Voss, M. Efficiency of the coastal filter: Nitrogen and phosphorus

removal in the Baltic Sea. Limnol. Oceanogr. 2017, 62, S222–S238. [CrossRef]
67. Nybom, I.; Horlitz, G.; Gilbert, D.; Berrojalbiz, N.; Martens, J.; Arp, H.P.H.; Sobek, A. Effects of Organic Carbon Origin on

Hydrophobic Organic Contaminant Fate in the Baltic Sea. Environ. Sci. Technol. 2021, 55, 13061–13071. [CrossRef]
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Simple Summary: The Manila clam (Ruditapes philippinarum) is one of the most commercially im-
portant bivalves along the coast of China. The increasing expanding of clam culture may result in
some serious problems. In this paper, we investigated the genetic diversity and differentiation of
R. philippinarum populations and tested the hypothesis that clam population differentiation is in-
fluenced by the southern breeding and northern culture. The present findings will provide useful
information for natural resource conservation and genetic breeding of the Manila clam in China.

Abstract: The Manila clam (Ruditapes philippinarum) is one of the most commercially important
bivalves along the coast of China. With the continuous expansion of clam farming scale, it may
lead to some serious problems, including loss of genetic variation, inbreeding depression, and
reduced effective population size (Ne). In the present study, eleven microsatellite markers were
used to investigate the genetic diversity and differentiation among 13 clam populations along the
coast of China. As a result, 150 alleles were detected according to the genotyping results of eleven
microsatellite loci. The observed heterozygosity (Ho) was estimated to be ranging from 0.437 to
0.678, while the expected heterozygosity (He) was calculated to be varying from 0.587 to 0.700. Fst

values between populations ranged from 0.0046-0.1983. In particular, the Laizhou population had the
highest genetic variability, which was significantly different from the others (all Fst values > 0.1). For
all the clam populations, there was no significant linear regression between genetic and geographic
distance, indicating that these populations do not follow a pattern of isolation by distance (IBD).
Genetic structure was estimated according to NJ, principal coordinates (PCoA), and structure-based
clustering. Estimates of effective population size range from dozens to thousands among different
populations, based on linkage-disequilibrium and molecular coancestry methods. The results reveal
the genetic diversity of clams and verify the hypothesis that clam population differentiation may be
influenced by the mode of southern breeding and northern culture, providing guiding information
for natural resource conservation and genetic breeding of clams.

Keywords: Ruditapes philippinarum; SSR; genetic diversity; genetic differentiation; effective popula-
tion size

1. Introduction

The Manila clam (Ruditapes philippinarum) is an important marine bivalve living in the
intertidal zone and has the second largest production among bivalve mollusks [1]. In China,
it is widely distributed in the coastal areas from Liaoning in the north to Hainan in the
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south [2]. It has become one of the most commercially important bivalves in the shellfish
industry, with an annual production of more than three million tons [3]. In recent years,
more than 60% of adult clams are produced in Liaoning and Shandong provinces [3]. In
contrast, clam seeds for culture in northern China are mainly purchased from the artificial
breeding in southern China. The mode of southern breeding and northern culture may have
some negative impacts in local populations such as loss of genetic variation, inbreeding
depression, and reduced effective population size [2,4]. Artificial breeding with a small
number of parents may increase the probability of cross-generation inbreeding depression,
possibly decreasing their ability to adapt to new and challenging environments. [5]. How-
ever, the current genetic structure in a wide range of clam populations remains largely
unknown. Therefore, it is essential to investigate the genetic diversity and differentiation
of clam populations along the coast of China.

Genetic variation can affect the ability of aquatic animals to adapt to environmen-
tal changes [6]. Examination of genetic variation is critically important for the suitable
management and conservation of natural and cultured populations in aquatic animals [7].
Molecular genetic markers are powerful tools to detect genetic variation among popula-
tions in fisheries [8]. Among the available molecular markers, microsatellite or simple
sequence repeat (SSR) markers have been widely accepted as the popular molecular tools
in population genetics and parentage analyses due to their high polymorphism and codom-
inance [9]. For instance, the application of SSR in population genetics has been reported
in a variety of aquatic animals, such as pearl mussel (Hyriopsis cumingii), ridgetail white
prawn (Exopalaemon carinicauda), Silond catfish (Silonia silondia), Pacific abalone (Haliotis
Discus hannai), blood clam (Barbatia virescens), and crab (Portunus trituberculatus) [10–15].
Despite this, most of these microsatellite studies are relying on the traditional silver staining
of DNA in polyacrylamide gels, which may cause some typical sources of scoring errors
capable of biasing biological conclusions, such as stuttering and null alleles [16]. SSRs
are also limited by the relatively low-throughput genotyping because of their difficulties
for automation and data management compared with SNPs. Despite this, SSRs can be
accomplished through co-amplification of multiple microsatellites in a single PCR cocktail
by multiplexing, which has been improved by decreasing genotyping costs and increas-
ing throughput, e.g., using labelled M13-tails [17–19]. However, the current practices of
multiplexing microsatellites in population genetics are lagging, especially in mollusks.

In this study, the new multiplex SSR method has been performed by using labelled
M13-tails, providing a cost-effective method for SSR genotyping in clams. Eleven polymor-
phic microsatellite markers were selected to analyze the genetic diversity and differentiation
of the Manila clam (R. philippinarum) along the coast of China. The examination of popula-
tion genetic structure and differentiation of the clams aims to verify the hypothesis that
clam population differentiation may be affected by the mode of southern breeding and
northern culture. The present findings will not only provide useful information for genetic
structure in a wide range of populations, but also help to promote natural conservation
and genetic breeding of clam R. philippinarum.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

A total of 406 clams (R. philippinarum) were collected from the northern and southern
coast of China (Figure 1). The sampling time, locations, and quantities for the clam
samples are summarized in Table 1. Six populations were collected from the southern coast,
including Chaozhou (CZ), Lianjiang (LJ), Ningbo (NB), Sanya (SY), Zhangzhou (ZZ), and
Beihai (BH). Meanwhile, six populations were collected from the northern coast, including
Laizhou (LZ), Rizhao (RZ), Qingdao (QD), Haiyang (HY), Donggang (DG), and Zhuanghe
(ZH). In addition, the sample of XY was collected from the selected clam population for
rapid growth. For each sample, the foot muscle of clams was dissected and preserved in
100% ethanol. The traditional phenol chloroform method was used for DNA extraction
from the foot muscle. After DNA extraction, the quality of DNA was assessed by 1.5%
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agarose gel electrophoresis. The DNA concentration was measure by the Nanodrop Lite
ultra-micro spectrophotometer. All the DNA samples were diluted into 50 ng/µL and
stored at −20 ◦C.
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Table 1. Sample code, location, collection date, and sample sizes for all populations of R. philippinarum.

Sample
Code Name Location Collection Date Sample Size

CZ Chaozhou Chaozhou, Guangdong Province July 2020 32
LZ Laizhou Laizhou, Shandong Province August 2020 32
LJ Lianjiang Lianjiang, Fujian Province July 2020 32
NB Ningbo Ningbo, Zhejiang Province July 2020 32
SY Sanya Sanya, Hainan Province June 2020 32
RZ Rizhao Rizhao, Shandong Province August 2020 32
ZZ Zhangzhou Zhangzhou, Fujian Province July 2020 32
BH Beihai Beihai, Guangxi Province June 2020 32
QD Qingdao Qingdao, Shandong Province August 2020 29
HY Haiyang Haiyang, Shandong Province August 2020 28
DG Donggang Donggang, Liaoning Province August 2020 24
ZH Zhuanghe Zhuanghe, Liaoning Province August 2020 29
XY Selected population Putian, Fujian Province August 2020 40

2.2. Primer Screening and PCR Amplification

Eleven pairs of microsatellite markers with stable amplification were selected from the
previous reports [20,21]. The basic information for primer sequences and PCR conditions
is shown in Table 2. The fluorescent labeling for SSRs using M13 tails were performed
according to the previous study with minor modifications [17]. Briefly, three primers
were used for each PCR amplification: (1) the first one was a forward primer with M13
tails at the 5′ end; (2) the second one was an SSR reverse primer; (3) the third one was
an M13 universal primer with a fluorescent label (the 5′ end labeled with 6-carboxy-
fluorescine (Fam), hexachloro-6-carboxy-fluorescine (Hex), 6-carboxy-X-rhodamine (Rox),
and tetramethylrhodamine (Tamra) fluorescent groups). The selected primer pairs were
sorted according to the size ranges. The similar size fragments were labeled with different
fluorescence, while different size fragments were labeled with the same fluorescence (Figure
S1, Table 2). The PCR reaction system included template DNA 50 ng, 2× Taq plus Master
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Mix II 8 µL (Nanjing Vazyme Biotechnology Co., Ltd., Nanjing, China), forward primer
0.04 µL (10 µmol/L), reverse primer 0.16 µL (10 µmol/L), and fluorescent labeled M13
primer 0.16 µL (10 µmol/L), plus dd H2O to 16 µL. The PCR reactions were performed as
follows: 94 ◦C for 5 min; 30 cycles of 94 ◦C for 30 s, 53 ◦C for 45 s, and 72 ◦C for 45 s; 8
cycles of 94 ◦C 30 s, 53 ◦C 45 s, 72 ◦C 45 s; a final extension at 72 ◦C for 10 min. The quality
of PCR products was detected by 1.5% agarose gel electrophoresis. Finally, 1 µL of PCR
products was added to 22 µL formamide and 0.5 µL ROX standard and run on the ABI
3730XL (Shanghai Sangon Bioengineering Co., Ltd., Shanghai, China).

Table 2. Primer sequences and information about microsatellite loci from Ruditapes philippinarum.

Sequence Locus Accession Primer (5′-3′) Repeat Unit Tm (◦C) Fluorescent
Labelling

Size Ranges/
bp

1 Rpt23 KC811247
F: AGCGTGTTGCTGCTCTTC (AGC)6 48 FAM 81–117R: ATTACTCCCACTGTTCGT

2 Rp-07 AM874000
F: TATGGCTGGTTTGGACTG (AT)7 51 TAM 119–151R: TCCCGTTACACTTACTTTCA

3 Asari16 AB257421
F: GCTCGAGTCTGATTGGCTACTGAA (CT)12 55 ROX 151–174R: GGTATCTAGTCAGCTCTTGCAGTA

4 Rp-03 AM873616
F: CCGCTGTGAGGAGACCAA (TTG)6 58 FAM 170–213R: CCGCCTATGTGACAAAATGA

5 Rpt36 KC811251
F: TTGAGGCATCAATAACTTTC (TTG)8 50 TAM 230–268R: ACTTCTGCATCTCGGCTA

6 Rpt100 KC811260
F: TCATTTCCAAGGCAGGTA (ATG)5 50 ROX 237–274R: GAGGTGTTGAAGGAGCAG

7 Rpt106 KC811263
F: ACCTCAGTTCAAATGTCT (AGT)6 48 HEX 373–409R: AATACTAACGCTGTGGAT

8 Rpt105 KC811262
F: GGTATGGTGGTAAATGGA (GTT)5 46 FAM 375–411R: TCATAGGTAGGGTGGTTT

9 Rpt67 KC811255
F: GGGTTCTTCTGTAGTTGG (GAA)5 46 TAM 379–415R: TGAGAAATCAGACCCAAT

10 Rpt32 KC811249
F: TCACTTTCTGCTCCTACA (CAT)5 47 ROX 415–451R: AAAGGGAATCTCGTGGTG

11 Rpt83 KC811257
F: GGTCGCCTAATTTCGTAG (TGT)7 46 HEX 429–472R: TAATAATTTTCCTGGAGCTCTGGCG

2.3. Data Processing

The software MSAnalyzer 4.05 was used to calculate number of alleles (N), the ob-
served heterozygosity (Ho), and the expected heterozygosity (He) [22]. The allelic richness
(Ar) and inbreeding coefficient (Fis) were calculated through FSTAT 2.9.3 [23]. The signifi-
cant positive Fis values indicate inbreeding within populations (excess of homozygotes),
whereas the significant negative Fis values represent an excess of heterozygosity. The differ-
ences of allelic richness among different groups were compared by the Kruskal–Wallis test
of SPSS 26. Furthermore, differences in the allelic richness for each population at each locus
was tested using a Kruskal–Wallis rank sum analysis [24]. Hardy–Weinberg equilibrium
test and genetic differentiation coefficient (Fst) were calculated by Genepop 4.0 [25]. For
the STRUCTURE analysis, the optimal K value was calculated according to the procedure
of Evanno [26], and then the Q value corresponding to the optimal K value was obtained
through the repeated sampling analysis of the structure operation results by the CLUMPP
software [27]. The genetic structure figure of 13 populations were finally constructed by
the software distruct1.1. Genetic distance (Ds) was calculated based on POPULATION
software, and then MEGA X was used to build NJ and ME evolutionary trees [28]. An
analysis of molecular variance (AMOVA) was performed by the ARLEQUIN program
ver. 3.0 to measure the components of variance among and within the populations [29].
A principal component analysis (PCoA) was performed based on the covariance matrix
of allele frequencies using GenAlEx 6.3. Mantel test was also performed with GenAlEx
6.3. Linkage-disequilibrium (LD) and molecular coancestry (Cn) methods were used to
estimate Ne by using LDNe and NeEstimator v2.0 [30,31].
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3. Results
3.1. Genetic Diversity within Populations

For the eleven microsatellite loci, the genotyping results of 408 individuals were
derived from 13 clam populations with sample sizes ranging from 24 to 40. The descriptive
genetic statistics (e.g., N, Ar, GD, Ho, and He) were shown for each locus and population in
Table S1. As a result, more than nine alleles were found in each of the eleven microsatellite
loci, with the maximum alleles (18 alleles) detected in Rp-03. The mean allelic richness (Ar)
varied from 3.2 (Rpt100 and Rp-07) to 5.5 (Rpt106). At the population level, the average
of observed heterozygosity (Ho) was calculated to be ranging from 0.437 to 0.678, while
the expected heterozygosity (He) was estimated to be varying from 0.587 to 0.700. Among
the eleven loci, the highest He value (0.700) was detected in the selected population of XY,
while the lowest value (0.587) was found in the QD population. The number of alleles per
locus in each population ranged from 2 to 11, and allelic richness per locus varied from
1.7 to 5.5. For all these populations, the LZ population had the largest number of alleles
(6.9), as well as the maximum of allele richness (4.1). In contrast, the least number of alleles
(5.1) and the minimum of allele richness (3.3) were found in the ZH population. Despite
this, no significant difference in allelic richness was detected among these populations
(Kruskal–Wallis test, p > 0.05). The positive values of Fis were consistently found in all the
populations, except for HY population (Table S1). A total of 69 (48.3%) of the 143 locus–
population combinations were significantly deviant from Hardy–Weinberg equilibrium
(HWE) after the Bonferroni correction (p < 0.005).

3.2. Genetic Differentiation among Populations

Pairwise Fst values among the 13 populations were shown in Table 3. Pairwise Fst values
across all samples were ranging from 0.0046 to 0.1983 (Table 3). The lowest genetic differentiation
was detected between population LJ and NB (Fst = 0.0046,
p < 0.01), whereas the highest differentiation was found between the QD and LZ popula-
tions (Fst = 0.1983, p < 0.01). The genetic differentiation between the LZ population and other
populations is relatively high, varying from 0.1020 to 0.1983 (p < 0.01). The genetic distances (DS)
among populations were also displayed in Table 3. The lowest genetic distance (0.0446) was
detected between CZ and LJ, while the largest value (0.4702) was found between LZ and DG.
The genetic distances between LZ and the other 12 populations were ranging from 0.1141 to
0.4702. The NJ and ME clustered dendrograms were constructed based on the pairwise genetic
distances (Figure 2). As illustrated, no obvious pattern of genetic differentiation was detected
among the populations from the northern and southern coast. As displayed in Figure 2A,
three northern populations (QD, HY, and RZ) and one southern population (SY) were clustered
into one independent branch. In the meantime, two northern populations (ZH and DG) and
the selected population (XY) were clustered into another branch. Subsequently, the two small
branches were merged with some southern populations (NB, CZ, LJ, BH, and ZZ). The large
branch was finally clustered with the LZ population. The clustering result of the ME tree is
similar to the NJ tree.
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orange clade clusters with the yellow branches (NB, CZ, LJ, BH, and ZZ), forming into a higher-
level clade. The blue color represents the independent branch for the LZ population different from 
the large clade. 

For each locus, the Fst value was ranging from 0.0357 to 0.1729 (p < 0.01), with an 
average of 0.0663 (Table S2). The Nm value of gene flow was varying from 1.1958 to 6.6869, 
with an average of 4.5900. The Fis value for each locus was calculated to be ranging from 
−0.1021 to 0.6411, with an average of 0.1855. The STRUCTURE analysis revealed K = 3 was 
the most probable number of populations to explain the observed genotypes (Figure 3). 
As indicated by STRUCTURE analysis, all the individuals can be divided into three sub-
groups (Blue, Green, and Red; Figure 3). Consistently, the individuals from each popula-
tion were also classified into the three genetic clusters, suggesting the high gene flow of 
these clam populations. According to AMOVA analysis, the greatest number of variances 
occurred within individuals (67.33%), compared to 25.7% among individuals and 6.97% 
among the populations (Table 4). 
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Figure 2. Cluster analysis of 13 populations of R. philippinarum by NJ (the neighbor-joining) and ME (the
minimum evolution) methods. (A) NJ tree; (B) ME tree. The different colors are used to differentiate the
clustered clades among the clam populations. The orange color represents the independent branch of
the clam populations, including QD, HY, SY, RZ, ZH, DG, and XY. The orange clade clusters with the
yellow branches (NB, CZ, LJ, BH, and ZZ), forming into a higher-level clade. The blue color represents the
independent branch for the LZ population different from the large clade.

For each locus, the Fst value was ranging from 0.0357 to 0.1729 (p < 0.01), with an
average of 0.0663 (Table S2). The Nm value of gene flow was varying from 1.1958 to 6.6869,
with an average of 4.5900. The Fis value for each locus was calculated to be ranging from
−0.1021 to 0.6411, with an average of 0.1855. The STRUCTURE analysis revealed K = 3 was
the most probable number of populations to explain the observed genotypes (Figure 3). As
indicated by STRUCTURE analysis, all the individuals can be divided into three subgroups
(Blue, Green, and Red; Figure 3). Consistently, the individuals from each population were
also classified into the three genetic clusters, suggesting the high gene flow of these clam
populations. According to AMOVA analysis, the greatest number of variances occurred
within individuals (67.33%), compared to 25.7% among individuals and 6.97% among the
populations (Table 4).
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Figure 3. Estimated genetic clusters of thirteen R. philippinarum populations. The graph is based on
the proportion of individuals per population in the inferred clusters according to STRUCTURE. Each
of the three colors represents a different genetic cluster, and black lines separate the populations.

Table 4. Analysis of molecular variance (AMOVA) in thirteen populations of R. philippinarum.

Source of Variation d.f. Sum of
Squares MS Est. Var. Percentage Variation

Among Populations 12 260.237 21.686 0.273 6.97%
Among Individuals 393 1828.026 4.651 1.007 25.70%
Within Individuals 406 1071.000 2.638 2.638 67.33%

Total 811 3159.262 3.918 100.00%

Degree of freedom (d.f.), mean square (MS), variance component (Est. Var.).
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The visual representation of genetic distances among the 13 populations revealed by
PCoA analysis was displayed in Figure 4. In accordance with STRUCTURE results, PCoA
analysis indicated that these 13 populations were mainly formed into three main groups:
group I (LZ), group II (HY, DG, and QD), and group III (XY, SY, ZH, BH, RZ, NB, ZZ,
LJ, and CZ) (Figure 4). A plot of the first and second principal coordinates is presented,
accounting for 37.63% and 19.25% of the total variation, respectively. Samples from group
I were well-differentiated from others on the first and second axes, while samples from
group II were mainly separated on the first axis. Although four northern sites (Group I
and Group II) seem to be different from other sites (Figure 4), the genetic difference within
northern populations (Group I and Group II) are much greater than the difference between
Group II (northern populations) and Group III (comprises both northern and southern
populations). Based on the Mantel tests in GenAlex6.51, no significant linear relationship
was detected between genetic distance and geographic distance in the clam samples (Y
= −5.41 × 10−6X + 0.1959, R2 = 0.0018, p > 0.05; Figure 5). The results indicate that the
clam populations do not follow a pattern of isolation by distance (IBD; Figure 5), and this is
evidenced by high gene flow among populations within the large geographic scales (Group
III, Figure 4). For instance, ZH and BH are thousands of kilometers apart (>2500 km), but
they have a relatively low genetic differentiation level, Fst = 0.058.
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group I (LZ), group II (HY, DG, and QD), and group III (XY, SY, ZH, BH, RZ, NB, ZZ, LJ, 
and CZ) (Figure 4). A plot of the first and second principal coordinates is presented, ac-
counting for 37.63% and 19.25% of the total variation, respectively. Samples from group I 
were well-differentiated from others on the first and second axes, while samples from 
group II were mainly separated on the first axis. Although four northern sites (Group I 
and Group II) seem to be different from other sites (Figure 4), the genetic difference within 
northern populations (Group I and Group II) are much greater than the difference be-
tween Group II (northern populations) and Group III (comprises both northern and south-
ern populations). Based on the Mantel tests in GenAlex6.51, no significant linear relation-
ship was detected between genetic distance and geographic distance in the clam samples 
(Y = −5.41 × 10−6X + 0.1959, R2 = 0.0018, p > 0.05; Figure 5). The results indicate that the clam 
populations do not follow a pattern of isolation by distance (IBD; Figure 5), and this is 
evidenced by high gene flow among populations within the large geographic scales 
(Group III, Figure 4). For instance, ZH and BH are thousands of kilometers apart (>2500 
km), but they have a relatively low genetic differentiation level, Fst = 0.058. 

 
Figure 4. Principal coordinate analysis of genetic similarity among 13 clam populations. 

 
Figure 5. The non-significant linear regression between genetic distance and geographic distance 
based on eleven microsatellite loci in the clam samples (Y = −5.41 × 10−6X + 0.1959, R2 = 0.0018, 
10,000 permutations). 

Figure 5. The non-significant linear regression between genetic distance and geographic distance
based on eleven microsatellite loci in the clam samples (Y = −5.41 × 10−6X + 0.1959, R2 = 0.0018,
10,000 permutations).

3.3. Estimation of Effective Population Size (Ne)

Two single-sample methods were used to estimate Ne for all 13 samples collected in
Table 5. The LDNe method yielded part negative Ne estimates (Table 5). According to
the LD and Cn methods, the Ne values of most populations were low except for the XY
population (Ne = 375.4). The lowest values of Ne were found in Chaozhou and Donggang,
having extremely low Ne of less than the critical value (Ne = 50). Generally, the Ne values
estimated from the Cn method were relatively lower than those from the LD method.
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Table 5. Effective population sizes (Ne) for R. philippinarum populations estimated by the linkage
disequilibrium (LD) and molecular coancestry (Cn) methods.

LD Cn

Pop n : r̂2
E (:

^
r

2
) Ne (95% CI) Pop n Ne (95% CI)

CZ 28.5 0.0483 0.0391 31.7 (20.3–58.8) CZ 30.1 7.2 (3.4–12.5)
LZ 31.0 0.0384 0.0355 114.9 (50.1–Infinite) LZ 31.5 Infinite (Infinite–Infinite)
LJ 29.5 0.0373 0.0377 −876.7 (92.3–Infinite) LJ 30.8 Infinite (Infinite–Infinite)
NB 28.8 0.0375 0.0387 −258.6 (129.9–Infinite) NB 30.4 32.8 (0–164.9)
SY 28.6 0.0434 0.0390 68.2 (33.3–510.2) SY 29.8 20.7 (1.5–64.4)
RZ 29.0 0.0418 0.0384 88.3 (36.7–Infinite) RZ 30.5 18.9 (0–94.8)
ZZ 29.2 0.0374 0.0380 −513.7 (74.7–Infinite) ZZ 30.3 Infinite (Infinite–Infinite)
BH 24.7 0.0419 0.0458 −79.9 (290.4–Infinite) BH 27.9 54.3 (0.1–272.7)
QD 17.7 0.0526 0.0672 22.7 (-39.9–Infinite) QD 19.0 11.9 (2–30.6)
HY 18.2 0.0526 0.0649 −26.5 (-47.9–Infinite) HY 22.4 11.1 (2.7–25.4)
DG 14.9 0.0776 0.0827 −62.1 (58.3–Infinite) DG 19.5 6.2 (4.2–8.5)
ZH 22.9 0.0497 0.0498 −4158.7 (47.7–Infinite) ZH 26.5 17.0 (2.8–43.7)
XY 30.3 0.0374 0.0365 375.4 (73.5–Infinite) XY 34.8 Infinite (Infinite–Infinite)

Mean sample sizes per locus (n), mean squared correlation of allelic frequencies over (: r̂2) the expectation of : r̂2

based on mean sample size (E (: r̂2)).

4. Discussion
4.1. Genetic Diversity of Manila Clams in Different Populations from North to South

High levels of genetic diversity appear to be a common feature of marine bivalves [32].
In this study, microsatellite analysis of R. philippinarum populations revealed a relatively
higher level of genetic diversity (He = 0.636) than those estimates from allozymic analysis
and other DNA-based analyses, such as mtDNAs, AFLP, and RAPD [4,33,34]. Consistent
with our study, high levels of genetic diversity estimated from microsatellite markers were
also observed in other bivalves, such as Crassostrea gasar (He = 0.843 [35], Barbatia virescens
(He = 0.790 [9]), and Crassostrea ariakensis (He = 0.805 [36]). Large population sizes and
high nucleotide mutation rates are likely to be the major contributors to the high levels of
genetic diversity estimated from microsatellites [37,38].

Departures from Hardy–Weinberg equilibrium (HWE) were measured through the
significance of permutation tests for the null hypothesis, Fis = 0 [39]. In the present study,
the significant heterozygote deficiency was detected in clam populations according to
these genotyped microsatellite loci (Fis = 0.1855; p < 0.05). In addition to clams, multi-
locus heterozygosity deficiencies have been previously widely reported in many other
bivalves [40,41]. Early explanation for the departure from HWE in bivalves mainly in-
volved null alleles, natural selection, inbreeding, and Wahlund effects [42]. However, the
recent hypothesis of genetic load shows more compelling evidence for this phenomenon,
indicating the large genetic load of partially dominant or additive detrimental mutations
in wild adult populations [43,44]. It is therefore suggested that the high genetic load is
largely responsible for heterozygote deficits in wild populations and segregation distortion
in pair crosses, resulting in substantial genetic sterility [44]. Further studies will be needed
to elucidate the genetic load by pair crosses of clams.

4.2. The Genetic Differentiation among Clam Populations

The overall genetic differentiation among these populations was moderate but highly
significant (global Fst = 0.066, p < 0.001),indicating the existence of the genetic heterogeneity
among populations. As the wild population in Laizhou Bay (Shandong province, North
China), the LZ population remains the population with the highest level of genetic vari-
ability, showing great differentiation with other populations. This is consistent with the
previous studies, supporting the natural status of clam populations with high levels of
genetic variability [2,45]. As reported, natural selection continuously removes neutral
diversity linked to either beneficial or deleterious variants [46]. In contrast to the LZ popu-
lations, other clam populations are likely to have low differentiation and high glow flow
according to cluster and PCoA analysis. In the present study, the low differentiation among
different populations supports the hypothesis that the genetic structure of clams may be
influenced by the mode of southern breeding and northern culture.
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In this study, the clam populations do not follow a pattern of isolation by distance,
and this contrasts with the reported IBD pattern caused by larval dispersal in other coastal
bivalve species [41]. For the clam populations, high gene flow among populations so far
apart seems unlikely to be caused by the larval dispersal. The more reasonable explanation
for this is probably due to seeds’ transplantation by local farmers among different culture
regions. In recent decades, there is considerable translocation of clam seeds cultivated in Fu-
jian province (south) to culture sites in Shandong and Liaoning provinces (north) [4,20,21].
Therefore, the artificial breeding and culture of clams may increase the gene flow of clams,
resulting in the low genetic differentiation between northern and southern populations, as
evidenced by our present results. The low genetic differentiation between northern and
southern populations has also been detected in the previous studies [2,47]. Therefore, the
present findings do not support the typical pattern of genetic differentiation between north-
ern and southern populations due to geographic isolation. The translocation of clam seeds
may be served as one of the major factors influencing the population genetic structure of the
clams. Adapted conservation measures for wild populations are required to maintain high
levels of genetic diversity of clams on the coast of China. In order to protect the wild clam
populations, it is necessary to take measures to prevent excessive harvesting and formulate
laws and regulations to limit the number and time for clam harvesting. It is also important
to ensure that natural habitats of clams have not been occupied or damaged by environmen-
tal pollution. We recommend the use of responsible conservation aquaculture protocols,
such as large numbers of local adult clams for bloodstocks and new techniques reducing
hatchery selection to facilitate the management of genetic variability [46]. However, simply
increasing the number of breeders does not necessarily increase the effective breeding
numbers in shellfish hatcheries. Therefore, the development of breeding strategies and
optimization of production is also important in the maintaining of genetic diversity, such
as pedigree monitoring by genetic markers and performing controlled spawning [47–49].
Recently, the rapid development of high-throughput sequencing methods have facilitated
the incorporation of genomic tools in clam breeding programs by control parental contri-
bution [49]. Overall, these strategies are recommended for the retention of high genetic
variability in clam R. philippinarum, especially for the wild population in Laizhou Bay.

4.3. Estimation of Effective Population Sizes in Clam Populations

The effective population size (Ne), a key parameter in evolutionary biology, determines
the rates of genetic drift and loss of genetic variability and modulates the effectiveness of
selection [50]. For wild populations, the supplement with artificially breeding individuals
can lead to the Ne reduction, known as the Ryman–Laikre effect [51]. As reported, the
reduction of Ne would lead to a collapse of local genetic adaptation, which could expose
local populations to adverse effects [52–54].

The previous studies have indicated that Ne of shellfish bloodstocks should be large
enough to produce the first generation with relatively medium or high genetic diver-
sity [55]. The small Ne population will lead to the depletion of rare alleles, increasing of
the random drift of the original population, and thus threatening of the sustainability of
populations [56]. As a rule-of-thumb in populations, Ne in the short term should not be
less than 50, and in the long term should not be less than 500 [57]. The estimates of Ne
thresholds for avoiding inbreeding depression (Ne = 50) and retention of genetic variation
for future adaptations (Ne = 500) can be used as a guiding principle to indicate the short-
and long-term genetic viability of populations [55,56].

In the present study, small Ne values (less than 50) have been obtained in several
populations (e.g., QD and CZ) according to LD and Cn methods. The small Ne values
may be caused by inadvertent selection of the best offspring produced by a few parents
and asymmetric reproduction [58]. Despite this, the accumulation of inbreeding might
have some negative effects on survival rates of clams in these populations with small Ne
values [21,22]. Thus, it is essential to recover the local populations by the conservation
programs (e.g., broodstock management and controlled spawning) to maintain a minimum
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viable population to maintain the evolutionary potential [59,60]. Surprisingly, negative Ne
values from the LD method have been detected in multiple populations of clams, probably
due to the linkage disequilibrium generated by the sampling process and inadequate
correction [61]. If Ne is very large or limited data are available, by chance r2 (mean squared
correlation of allelic frequencies) can be smaller than the sample size correction, resulting
in the negative estimates of Ne [58,62]. Therefore, the negative estimates may occur when
genetic results can be explained entirely by sampling error without invoking any genetic
drift, interpreted as the infinite Ne [58]. This is also supported by the computer simulations,
indicating that the LD method is biased when the sample size is small (<100) and below
the true Ne [61]. Despite this, the lower bound of CIs in this study can provide some useful
information for the plausible limits of these negative Ne values. The future estimation of Ne
needs an extensive evaluation in larger sample sizes using increased numbers of loci and
alleles. Despite uncertainties related to the small sampling size, Ne estimates obtained by
the two applied methods can provide useful complementary information for conservation
programs to prevent inbreeding depression and loss of genetic variation. According to the
present findings, the small Ne values, as well as the low differentiation, may be caused
by few broodstock used in southern hatcheries, with offspring transferred to the northern
coast for culture at the mode of southern breeding and northern culture.

5. Conclusions

In this study, genetic diversity and differentiation were investigated by 11 microsatel-
lite loci for R. philippinarum (Manila clam) populations from the coastal areas of China.
The multiplex PCR using the labelled M13-tails was shown to be a cost-effective method
for SSR genotyping in clams and mollusks, provided that the sufficient sampling size is
ensured. The present findings support that the genetic population structure of clams may
be influenced by the mode of southern breeding and northern culture. The assessment
of the genetic diversity of R. philippinarum populations is of considerable importance for
the optimal development of programs aimed at the conservation of cultivated and wild
genotypes in the ecosystems. The present findings will provide guiding information on
natural resource conservation and genetic breeding of the Manila clam in China. The
highest level of genetic variability and greatest differentiation with other populations was
confirmed for the wild Laizhou population. It was suggested that multi-locus heterozygote
deficiency and segregation distortion in such populations may be caused by high genetic
load. No relation was found between genetic and geographic distance, implying clam
aquaculture may be served as one of the major factors influencing clam population genetic
structure. Despite uncertainties related to the small sampling size, Ne estimates obtained by
the applied methods can provide useful complementary information for conservation pro-
grams to warn about inbreeding depression and loss of genetic variation, thereby serving
the needs of natural resource conservation.
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for a single sample. Green color, Hex fluorescence; Red color, Rox fluorescence; Blue color, Fam
fluorescence; Black color, Tamra fluorescence.
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Simple Summary: Brachiopods have been thought to be in very low diversity in the Early Triassic
for a long time. There are only several Olenekian brachiopod fauna reported worldwide, all of which
are in very low diversity. This paper reports the most diverse Olenekian brachiopod fauna so far,
containing 14 species with nine genera. Among them, three new species are proposed, and six genera
are found in the Early Triassic for the first time. This diverse fauna indicates that the diversity of
Olenekian brachiopod fauna has been underestimated. Based on precise age constrained by conodont
biostratigraphy and quantitative data of brachiopod, it can be inferred that brachiopod recovery in
the studied section occurred in the latest Spathian rather than the Smithian when the environment
started to ameliorate. Global brachiopod data also indicates that the initial recovery of brachiopods
happened in the Spathian.

Abstract: As one of the predominant benthic organisms in the Palaeozoic, brachiopod was largely
eliminated in the Permian–Triassic boundary mass extinction, and then highly diversified in the
Middle Triassic. Since fossil data from the Early Triassic are rarely reported, the recovery patterns of
Early Triassic brachiopods remain unclear. This study documents a well-preserved fauna that is the
most diverse Olenekian brachiopod fauna so far (age constrained by conodont biostratigraphy) from
the Datuguan section of ramp facies in South China. This fauna is composed of 14 species within nine
genera, including six genera (Hirsutella, Sulcatinella, Paradoxothyris, Dioristella, Neoretzia and Isocrania)
found in the Early Triassic for the first time and three new species, including Paradoxothyris flatus
sp. nov., Hirsutella sulcata sp. nov. and Sulcatinella elongata sp. nov. The Datuguan fauna indicates
that the diversity of Olenekian brachiopod fauna has been underestimated, which can be caused by
a combination of reduced habitats (in geographic size and sedimentary type) compared with the
end-Permian, great bed thickness making it difficult to find fossils and most species in the fauna
having low abundance. Based on the faunal change in the Datuguan section and environmental
changes in South China, it can be inferred that brachiopod recovery in the studied section occurred
in the latest Spathian rather than the Smithian when the environment started to ameliorate. Global
brachiopod data also indicates that the initial recovery of brachiopods happened in the Spathian, and
many genera that widely occurred in the Middle or Late Triassic had originated in the Olenekian.

Keywords: Early Triassic; brachiopod; biotic recovery; benthos; Nanpanjiang basin; Datuguan section

1. Introduction

The Permian–Triassic boundary mass extinction (PTBME) event greatly disrupted
marine ecosystems, which transformed from ‘Palaeozoic-type’ to ‘Mesozoic- and Cenozoic-
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type’ fauna [1–7]. The hostile environmental conditions (e.g., deadly high temperature [8];
anoxia event [9]) caused by volcanism were proposed to trigger this major biological crisis,
and then these persistent environmental disasters and significantly decreased diversity
limited the biotic recovery process in the post-extinction interval. Brachiopods were largely
eliminated [10], but this gave way to a new evolutionary stage, and brachiopods subse-
quently evolved modest taxonomic, morphological, functional and ecological diversity
in the Mesozoic and Cenozoic [11,12]. New ecomorphologies appeared, with changes
from reclining and anchoring to pedicle-fixing ecologies [11], and changes from brachial
ridges and spiralia to loops, spiralia and crura in the mineralised lophophore supports [12].
Through the whole Triassic, the Athyridida, Spiriferinida, Terebatulida and Rhynchonellida,
which are characterised by the pedicle fixing type and loops, spiralia or crura supports, are
the dominant brachiopod orders.

In the post-extinction interval, Induan brachiopod fauna is mostly reported from
South China, characterised by the transient Permian holdovers (e.g., Paryphella, Fusichonetes,
Prelissorhynchia, Paracrurithyris) [13–15], lingulids [16,17] and a few newcomers (e.g., Meis-
hanorhynchia, Lichuanorelloides) [18,19]. In the Olenekian, brachiopod fauna is rarely re-
ported (Idaho, western USA [20,21]; Qilian Area, north-western China [22]; Primorye,
Russia [23]; Romania [24]; and Tibet, China [25]), and have very low diversity in most
of these areas. Up until now, glimpses into the evolutionary dynamics of Early Triassic
brachiopods (excluding Permian holdovers) show very low diversity and few occurrences.
If this is true, what constraints (such as global warming, anoxia, and biotic interaction)
brachiopod diversity and recovery patterns in the Early Triassic?

To investigate the early evolution of Triassic brachiopods, this study reports an Olenekian
brachiopod fauna from the Datuguan section, Nanpanjiang Basin, southern Guizhou
Province, South China. It is currently the most diverse fauna when compared to global con-
temporaries. This paper also provides several brachiopod fossil data models to outline how
the main drivers (e.g., extinction event, environmental factors, sampling bias) influenced
brachiopod diversity and recovery in the Early Triassic.

2. Geological Settings and Age

South China (especially the Yangtze Block part) is one of the few regions in the world
yielding successive Lower to Middle Triassic strata, spanning a continuum of deposi-
tional environments from the nearshore clastic shelf, carbonate platform, offshore clastic
shelf, ramp, isolated carbonate platform and basin [26]. Abundant trace fossils [27], and
abundant and diversified marine organisms have been reported from these strata (e.g.,
gastropods [28–30]; brachiopods [18,31]; ammonoids [32,33]; ostracods [34]; bivalves [35];
and foraminifers [36]).

The Datuguan section is located 120 km south of Guiyang City and 5 km north of
Luodian County. The section occurs on the southern ramp (below the storm wave base)
of the Great Guizhou Bank from the Changhsingian (Late Permian) to Middle Triassic
(Figure 1). At the Datuguan section, the upper Changhsingian strata belong to the Linghao
Formation, which mainly contains dark grey thin-bedded siliceous mudstone, yellow-green
thin-bedded calcareous mudstone and grey thick-bedded micritic limestone. The Induan
and Olenekian strata are represented by the Luolou Formation, which is characterised by
fawn medium-bedded calcareous mudstone and greyish-green medium-bedded siltstone,
intercalated with dark grey medium-bedded micritic limestone. The Anisian strata are
represented by the Xuman Formation, which mainly includes greyish-green tuff (only at
the bottom), greyish-green medium-bedded siltstone, fawn medium-bedded calcareous
mudstone, intercalated with dark grey medium-bedded micritic limestone (Figure 2).
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Figure 1. Early Triassic palaeogeographical map of Nanpanjiang Basin, South China (modified af-
ter [37]), showing the location of the Datuguan section and Qingyan section. 

 
Figure 2. Distribution of brachiopods and zonations of conodont from the Linghao, Luolou and 
Xuman formations in the Datuguan section. Conodont data are from [38]. Subst., Substage; 
Lithostra., Lithostratigraphy; Thi., Thickness; Changhs., Changhsingian; Gr., Griesbachian; Di., 
Dienerian; Fm., Formation; C., Clarkina; H., Hindeodus; Nv., Novispathodus; Ds., Discretella; I., Icri-
ospathodus; Tr., Triassospathodus, Ch., Chiosella. 
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Figure 2. Distribution of brachiopods and zonations of conodont from the Linghao, Luolou and
Xuman formations in the Datuguan section. Conodont data are from [38]. Subst., Substage; Lithostra.,
Lithostratigraphy; Thi., Thickness; Changhs., Changhsingian; Gr., Griesbachian; Di., Dienerian;
Fm., Formation; C., Clarkina; H., Hindeodus; Nv., Novispathodus; Ds., Discretella; I., Icriospathodus; Tr.,
Triassospathodus, Ch., Chiosella.
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Strata of the Datuguan section from the Changhsingian (uppermost Permian) to the
Anisian (lower Middle Triassic) are precisely defined by successive conodont biostratig-
raphy [38]. Based on the first occurrence of Novispathodus waageni, Nv. pingdingshanensis
and Chiosella timorensis, the Induan–Olenekian boundary, the Smithian–Spathian boundary
and the Olenekian–Anisian boundary are placed at the bottom of Bed 16, Bed 27 and the
middle of Bed 42, namely the bottom of the Luolou Formation, the middle of the Luolou
Formation and the bottom of the Xuman Formation (Figure 2).

3. Materials and Methods

In total, 1583 complete brachiopod specimens were collected from the Luolou For-
mation (Beds 21, 35, 38 and 39) and basal part of the Xuman Formation (Bed 46). All
the specimens (accessible upon request from the corresponding author) are and will be
permanently deposited in the Laboratory of Palaeontology, College of Geoscience and
Surveying Engineering, China University of Mining and Technology, Beijing, China, with
the prefixes LD.

To estimate completeness of sampling, a rarefaction analysis was applied and con-
ducted using PAST (Palaeontological Statistics [39]). In order to investigate the changes
to craniformean and rhychonelliformean brachiopod diversity and abundance from the
Wuchiapingian (Late Permian) to the Anisian (Middle Triassic), brachiopod genera and
occurrence data were collected from the Paleobiology Database (PBDB) (http://paleobiodb.
org, up to 30 June 2022) and Treatise on Invertebrate Palaeontology Part H: Brachiopoda,
Volume 2–6 [40–43]. When counting the occurrence frequency of a genus, specimens
occurred in the same section were counted as one occurrence. Since this paper mainly
focused on the ‘Mesozoic-type’ brachiopod, the occurrence data of Lingulida were not
collected. The data downloaded from the PBDB used the following parameters: time
intervals = Changhsingian and Rhaetian, and Taxon = brachiopoda. All brachiopod data
have been checked and revised according to the most recently accepted classifications, and
records with uncertainty were not included herein.

4. Results

A total of 16 species in 11 genera are recognised in the Datuguan brachiopod fauna
(Figure 2), including three newly proposed species, Hirsutella sulcata sp. nov., Paradoxothyris
flatus sp. nov. and Sulcatinella elongata sp. nov. Among the 11 genera of the Datuguan fauna,
six of them are found in the Early Triassic for the first time (Hirsutella, Sulcatinella, Para-
doxothyris, Dioristella, Neoretzia and Isocrania), and occupied nearly a quarter of brachiopod
genera reported in the Olenekian (Figure 3).

There are only several Olenekian brachiopod fauna found worldwide so far (Table 1),
mainly including those reported from western North America [20,21], the Balkan re-
gion [24], the Far East of Russia [23], north-western China [22], and Tibet [25]. Compared
with those fauna, the Datuguan brachiopod fauna shows the highest richness (14 species in
nine genera in the Olenekian) (Table 1, Figures 4–8).

Table 1. Main Olenekian brachiopod fauna worldwide, fauna with only one or two species not
included herein.

Location Genus/
Species Order Age Reference

Primorye, Russia 6/6 Rhynchonellida, Terebratulida,
Spiriferinida, Athyridida Olenekian [23]

Qilian Area, China 4/10 Rhynchonellida, Terebratulida, Athyridida Olenekian [22]

Tibet, China 3/3 Rhynchonellida, Terebratulida, Athyridida Smithian [25]

Idaho, USA 4/5 Rhynchonellida, Terebratulida, Spiriferinida Spathian [20,21]

Dobrogea, Romania 3/3 Rhynchonellida Spathian [24]

Guizhou, China 9/14 Rhynchonellida, Terebratulida, Spiriferinida, Athyridida, Craniida Olenekian This study
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Figure 4. (A), Isocrania sp., ventral valve, LD380288. (B–E), Dioristella indistincta, (B–D), internal
moulds of ventral valve, LD380119, LD380219, LD380396; I, an internal mould of a dorsal valve,
LD380413. (F,G), Dioristella sp., internal moulds of dorsal valves, LD380200, LD380141. (H–L),
Spirigerellina concentrica, (H), an internal mould of a ventral valve, LD385533; (I), an internal mould of
a dorsal valve, LD385605; (J–L), ventral, dorsal and anterior views of a conjoined shell, LD385352.
(M–T), Spirigerellina pygmaea, ventral, dorsal, lateral and anterior views of two conjoined shells,
LD385207, LD385260. In (A–L), scale bar = 2 mm, in (M–T), scale bar = 5 mm.
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Figure 5. (A,B), Spirigerellina sp., (A), an internal mould of a ventral valve, LD215553; (B), an in-
ternal mould of a dorsal valve, LD215554. (C,D), Hustedtiella planicosta, (C), an internal mould of a 
dorsal valve, LD380056; (D), an internal mould of a ventral valve, LD380272. (E), Schwagerispira? 
sp., a ventral valve, LD435623. (F,G), Neoretzia sp., (F), an external mould of a ventral valve, 
LD380267; (G), an internal mould of a dorsal valve, LD380172. (H), Norella sp., a ventral valve, 
LD435517. (I–L), Nudirostralina trinodosi, ventral, dorsal, anterior and lateral views of a conjoined 
shell, LD381185. Scale bar = 2 mm. 

5. Systematic Palaeontology 
Order Spiriferinida Ivanova, 1972a [44] 
Suborder Cyrtinidina Carter and Johnson in Carter, et al., 1994 [45] 
Superfamily Suessioidea Waagen, 1883 [46] 
Family Bittnerulidae Schuchert, 1929 [47] 
Subfamily Hirsutellinae Xu and Liu in Yang, et al., 1983 [22] 
Genus Hirsutella Cooper and Muir-Wood, 1951 [48] 
Hirsutella sulcata sp. nov. (Figure 6F–L) 

Derivation of name. In reference to the prominent sulcus in the ventral valve. 
Diagnosis. Rounded subpentagonal to semicircular outline, distinct ventral sulcus 

with an extended median tongue. 
Type specimen. Holotype, a ventral valve (LD384281, Figure 6K); paratype, a ventral 

valve (LD383719, Figure 6F). 
Other material. A ventral valve (LD384237), a dorsal valve (LD383526). 
Description. Shell medium in size for genus, 7.68–13.5 mm in length and 9.12–16.6 

mm in width (12 specimens measured), rounded subpentagonal to semicircular in out-
line; maximum width at about midvalve; hinge slightly shorter than shell width; cardinal 
extremities rounded. Ventral valve moderately convex; umbo highly elevated and in-
flated, moderately incurved; beak narrow and pointed; sulcus beginning from umbo or 
midvalve, widening and deepening anteriorly, with a median tongue distinctly extend-
ed. Dorsal valve moderately convex, umbo slightly over hinge; lateral slopes strongly 
inclined, fold wide and elevated, not well demarcated from lateral slopes. External sur-
face covered with costae, obscure at umbonal region, and even invisible when the surface 
layer of the shell is peeled off. 

Figure 5. (A,B), Spirigerellina sp., (A), an internal mould of a ventral valve, LD215553; (B), an internal
mould of a dorsal valve, LD215554. (C,D), Hustedtiella planicosta, (C), an internal mould of a dorsal
valve, LD380056; (D), an internal mould of a ventral valve, LD380272. (E), Schwagerispira? sp.,
a ventral valve, LD435623. (F,G), Neoretzia sp., (F), an external mould of a ventral valve, LD380267;
(G), an internal mould of a dorsal valve, LD380172. (H), Norella sp., a ventral valve, LD435517. (I–L),
Nudirostralina trinodosi, ventral, dorsal, anterior and lateral views of a conjoined shell, LD381185.
Scale bar = 2 mm.

5. Systematic Palaeontology

Order Spiriferinida Ivanova, 1972a [44]
Suborder Cyrtinidina Carter and Johnson in Carter, et al., 1994 [45]
Superfamily Suessioidea Waagen, 1883 [46]
Family Bittnerulidae Schuchert, 1929 [47]
Subfamily Hirsutellinae Xu and Liu in Yang, et al., 1983 [22]
Genus Hirsutella Cooper and Muir-Wood, 1951 [48]
Hirsutella sulcata sp. nov. (Figure 6F–L)

Derivation of name. In reference to the prominent sulcus in the ventral valve.
Diagnosis. Rounded subpentagonal to semicircular outline, distinct ventral sulcus

with an extended median tongue.
Type specimen. Holotype, a ventral valve (LD384281, Figure 6K); paratype, a ventral

valve (LD383719, Figure 6F).
Other material. A ventral valve (LD384237), a dorsal valve (LD383526).
Description. Shell medium in size for genus, 7.68–13.5 mm in length and 9.12–16.6 mm

in width (12 specimens measured), rounded subpentagonal to semicircular in outline;
maximum width at about midvalve; hinge slightly shorter than shell width; cardinal
extremities rounded. Ventral valve moderately convex; umbo highly elevated and inflated,
moderately incurved; beak narrow and pointed; sulcus beginning from umbo or midvalve,
widening and deepening anteriorly, with a median tongue distinctly extended. Dorsal
valve moderately convex, umbo slightly over hinge; lateral slopes strongly inclined, fold
wide and elevated, not well demarcated from lateral slopes. External surface covered with
costae, obscure at umbonal region, and even invisible when the surface layer of the shell is
peeled off.
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Figure 6. (A–E), Hirsutella rectimarginata, (A), an internal mould of a ventral valve, LD380429; (B), a 
ventral valve, LD383507; (C), an external mould of a dorsal valve, LD380440; (D), a dorsal valve, 
LD384020; (E), an internal mould of a dorsal valve, LD380253. (F–L), Hirsutella sulcata sp. nov., 
(F–K), ventral valves, (F), LD383719, (I), LD384237, (K), LD384281; (G,H), lateral and anterior views 
of (F); (J), anterior view of (I); (L), a dorsal valve, LD383526. Scale bar = 5 mm. 

Remarks. The present species is similar to Hirsutella extraruga (Yang and Yin in Yang, 
et al., 1962) [49] in shell outline and lateral profile, but it has a more distinct sulcus and an 
extended median tongue occasionally developed in the ventral valve. Hirsutella hirsuta 
(Alberti, 1864) [50] is similar to the present species in shell outline and development of 
ventral sulcus, but differs by having a more elevated ventral beak. The current species is 
similar to Sinucosta bifucata Sun and Shi, 1985 [51] from the upper Triassic of Yunnan, 
China, in the rounded subpentagonal outline and moderately developed costae, but the 
former has a wider hinge, coarser costae and more distinct fold and sulcus. The Da-
tuguan specimens resemble Mentzelia subspherica Yang and Xu, 1966 [52] from the Ani-
sian of Guizhou, south China, in semicircular outline and sulcus beginning from beak, 
but the latter has more costae than most of the Datuguan specimens and developed 
spondylium. It is similar to Dagyssia multicostata (Yang and Xu, 1966) [52] from Qinghai, 
China, in the similar outline and feebly developed costae, but the latter has less devel-
oped sulcus and fold and more number of costae. 

Distribution. Olenekian; China. 
Order Terebratulida Waagen, 1883 [46] 
Suborder Terebratulidina Waagen, 1883 [46] 
Superfamily Dielasmatoidea Schuchert, 1913 [53] 
Family Angustothyrididae Dagys, 1972b [54] 
Genus Paradoxothyris Xu, 1978 [55] 
Paradoxothyris flatus sp. nov. (Figure 7) 

Figure 6. (A–E), Hirsutella rectimarginata, (A), an internal mould of a ventral valve, LD380429;
(B), a ventral valve, LD383507; (C), an external mould of a dorsal valve, LD380440; (D), a dorsal
valve, LD384020; (E), an internal mould of a dorsal valve, LD380253. (F–L), Hirsutella sulcata sp. nov.,
(F–K), ventral valves, (F), LD383719, (I), LD384237, (K), LD384281; (G,H), lateral and anterior views
of (F); (J), anterior view of (I); (L), a dorsal valve, LD383526. Scale bar = 5 mm.

Remarks. The present species is similar to Hirsutella extraruga (Yang and Yin in Yang,
et al., 1962) [49] in shell outline and lateral profile, but it has a more distinct sulcus and
an extended median tongue occasionally developed in the ventral valve. Hirsutella hirsuta
(Alberti, 1864) [50] is similar to the present species in shell outline and development of
ventral sulcus, but differs by having a more elevated ventral beak. The current species is
similar to Sinucosta bifucata Sun and Shi, 1985 [51] from the upper Triassic of Yunnan, China,
in the rounded subpentagonal outline and moderately developed costae, but the former has
a wider hinge, coarser costae and more distinct fold and sulcus. The Datuguan specimens
resemble Mentzelia subspherica Yang and Xu, 1966 [52] from the Anisian of Guizhou, south
China, in semicircular outline and sulcus beginning from beak, but the latter has more
costae than most of the Datuguan specimens and developed spondylium. It is similar to
Dagyssia multicostata (Yang and Xu, 1966) [52] from Qinghai, China, in the similar outline
and feebly developed costae, but the latter has less developed sulcus and fold and more
number of costae.

Distribution. Olenekian; China.

Order Terebratulida Waagen, 1883 [46]
Suborder Terebratulidina Waagen, 1883 [46]
Superfamily Dielasmatoidea Schuchert, 1913 [53]
Family Angustothyrididae Dagys, 1972b [54]
Genus Paradoxothyris Xu, 1978 [55]
Paradoxothyris flatus sp. nov. (Figure 7)

Derivation of name. In reference to the low convexity of both valves.
Diagnosis. Rounded lateral and anterior margins, variably developed median ridges

on both valves, both valves slightly convex or nearly flattened, sometimes with regularly
distributed costellae.
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Remarks. The present species is similar to Paradoxothyris cyclis Xu, 1978 [55], Para-
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valve and almost flat dorsal valve. 
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Other material. A conjoined shell (LD384755). 

Figure 7. Paradoxothyris flatus sp. nov., (A,B), internal moulds of ventral valves, LD380016, LD380303,
(C), enlarged area of (B); (D–H), internal moulds of dorsal valves, LD380100, LD380419, LD380125,
LD380204, (F), enlarged area of (E). Scale bar = 2 mm.

Type specimen. Holotype, an internal mould of a ventral valve (LD380303, Figure 7B);
paratype, an internal mould of a dorsal valve (LD380419, Figure 7E).

Other material. An internal mould of ventral valve (LD380016), and three internal
moulds of dorsal valves (LD380100, LD380125, LD380204).

Description. Shell small to medium in size for genus, 2.92–9.44 mm in length and
2.25–8.39 mm in width (16 specimens measured), elongated suboval in outline; maximum
width at middle to the anterior part of the shell. Ventral valve slightly convex to nearly
flat; maximum convexity at umbo; posterior margin V-shaped, lateral and anterior margins
very rounded; sulcus absent; interior with a weak median ridge beginning from beak and
extending to one-fifth to a half of shell length, and absent in some specimens. Dorsal valve
nearly flat; margins curved; fold absent; interior with a median ridge beginning from beak,
and extending to about one-sixth to one-half of shell length; sockets long and narrow, and
inner socket ridges thin and diverging at an angle of about 105◦. Shell punctate; external
surface sometimes ornamented with fine and dense costellae at the middle to the anterior
part of the shell.

Remarks. The present species is similar to Paradoxothyris cyclis Xu, 1978 [55], Para-
doxothyris sangkaensis (Jin, et al., 1979) [56] and Paradoxothyris pentagona (Jin, et al., 1979) [56]
in the absence of a fold and sulcus, but differs in having a much less convex ventral valve
and almost flat dorsal valve.

Distribution. Olenekian; China.

Family Dielasmatidae Schuchert, 1913 [53]
Subfamily Dielasmatinae Schuchert, 1913 [53]
Genus Sulcatinella Dagys, 1974 [57]
Sulcatinella elongata sp. nov. (Figure 8I–T and Figure 9)

Derivation of name. In reference to the elongated outline.
Diagnosis. Elongated rhombic to subpentagonal outline, distinctly inclined lateral

slopes of ventral valve, strong unisulcate anterior commissure.
Type specimen. Holotype, a conjoined shell (LD384867, Figure 8Q–T), paratype,

a conjoined shell (LD384907, Figure 8M–P).
Other material. A conjoined shell (LD384755).
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Figure 9. Serial sections of Sulcatinella elongata sp. nov., LD384907. 

Description. Shell medium to large in size for genus, 9.16–16 mm in length and 
7.19–12.5 mm in width (12 specimens measured), elongated rhombic to subpentagonal in 
outline; lateral commissure moderately to strongly incurved towards the dorsal side, 
anterior commissure strong unisulcate. Ventral valve moderately convex; beak slightly 
curved; posterior margin V-shaped, lateral and anterior margins straight to slightly 
curved; fold elevated, beginning from the umbonal region and widening anteriorly; lat-
eral slopes flattened to slightly convex, distinctly inclined towards dorsal valve; interior 
with distinct and short pedicle collar; dental plates slightly diverging at an angle of about 
30° (Figure 9). Dorsal valve slightly to moderately convex; sulcus strong, originating from 
umbo, distinctly widening and deepening anteriorly, strongly bending towards ventral 
valve at anterior part; interior with distinct and large crural bases, inner hinge plates 

Figure 8. (A–H), Sulcatinella sulcata, ventral, dorsal, lateral and anterior views of two conjoined shells,
LD384756, LD384786. (I–T), Sulcatinella elongata sp. nov., ventral, dorsal, lateral and anterior views of
a conjoined shell, LD384755, LD384907, LD384867. Scale bar = 5 mm.
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Figure 9. Serial sections of Sulcatinella elongata sp. nov., LD384907.

Description. Shell medium to large in size for genus, 9.16–16 mm in length and
7.19–12.5 mm in width (12 specimens measured), elongated rhombic to subpentagonal
in outline; lateral commissure moderately to strongly incurved towards the dorsal side,
anterior commissure strong unisulcate. Ventral valve moderately convex; beak slightly
curved; posterior margin V-shaped, lateral and anterior margins straight to slightly curved;
fold elevated, beginning from the umbonal region and widening anteriorly; lateral slopes
flattened to slightly convex, distinctly inclined towards dorsal valve; interior with distinct
and short pedicle collar; dental plates slightly diverging at an angle of about 30◦ (Figure 9).
Dorsal valve slightly to moderately convex; sulcus strong, originating from umbo, distinctly
widening and deepening anteriorly, strongly bending towards ventral valve at anterior
part; interior with distinct and large crural bases, inner hinge plates converging at an angle
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of about 65◦ to form a V-shaped septalium, connected with median septum, septalium and
septum disappear at about the same time (Figure 9).

Remarks. Shell length, width and thickness of ventral valve of S. sulcata and S.
elongata specimens from the studied section are measured. The length-to-width ratio is
adopted to represent the shell outline, and the thickness of ventral valve-to-width ratio
is used to represent the inclination of lateral slopes of ventral valve. It is shown that
the present species differs from S. sulcata by having a more elongated outline and more
strongly inclined lateral slopes of ventral valve (Figure 10). It is similar to S. incrassata by
Grădinaru and Gaetani [24] in the elongated subpentagonal outline and shell convexity,
but differs by having a much more curved lateral commissure and wider dorsal sulcus.
The Datuguan specimens resemble Angustothyris qingyanensis Guo et al., 2020 [31] from the
Anisian in having an elongated outline, unisulcate anterior commissure and smooth shells,
but differ by having distinctly developed dental plates and strongly declined lateral slopes
of ventral valve.

Distribution. Olenekian; China.
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Early Triassic [12,40–43] (Figures 3 and 11). Evident evolutionary bottlenecks widely 
occurred in marine organisms during the Early Triassic (e.g., radiolarians, foraminifer-
ous, ammonoids [6]), and are a typical evolutionary pattern for the transitional interval 
between the mass extinction and subsequent completed ecosystem recovery. Generally, 
there are several parameters which can result in the phenomenon of hidden diversity, 
including the reduced habitat in geographic size and sedimentary type, taxa abundance 
and great bed thickness. 

Figure 10. Graph of shell length to shell width and thickness of ventral valve to width of S. sulcata
and S. elongata from the studied section.

6. Discussion
6.1. The Hidden Diversity in the Early Triassic

Olenekian brachiopod fauna was thought to be in very low diversity for a long
time (as is shown in Table 1, wherein the species richness index was chosen to measure
diversity); however, this newly discovered Luodian fauna shows a very high diversity
(14 species in nine genera) and thus indicates a very likely hidden brachiopod diversity
in the Early Triassic. Pietsch, et al., [58] referred to the hidden echinoid diversity of the
Early Triassic. Massive diversity losses during the extinction event, coupled with hidden
diversity in the recovery, result in evolutionary bottlenecks. If we examine the diversity
changes of craniformean and rhynchonelliformean brachiopods from the Lopingian to
Triassic, an evolutionary bottleneck existed in all the brachiopod orders Rhynchonellida,
Spiriferinida, Terebratulida and Athyridida, which all have their lowest diversity in the
Early Triassic [12,40–43] (Figures 3 and 11). Evident evolutionary bottlenecks widely
occurred in marine organisms during the Early Triassic (e.g., radiolarians, foraminiferous,
ammonoids [6]), and are a typical evolutionary pattern for the transitional interval between
the mass extinction and subsequent completed ecosystem recovery. Generally, there are
several parameters which can result in the phenomenon of hidden diversity, including
the reduced habitat in geographic size and sedimentary type, taxa abundance and great
bed thickness.
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Figure 11. Stratigraphic ranges and occurrences of the Datuguan brachiopod genera (shown by 
black lines) and four brachiopod orders (shown by purple lines). Numbers above lines represent 
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During the Early Triassic, persistently deteriorated ocean environments made hab-
itats hostile for marine organisms [8,9,59,60], especially for the benthos, and there were 
only a few ‘habitable zones’ in some specific environments [61–63]. In this case, the hab-
itats of craniformean and rhynchonelliformean brachiopods were significantly reduced 
in the Early Triassic. The largely shrunken habitats in the Early Triassic oceanic envi-
ronment would clearly reduce brachiopod abundance and the probability of fossil 
preservation and discovery, and could lead to considerable underestimation of Early 
Triassic brachiopod abundance and diversity. 

How does taxa abundance affect diversity? We chose the Datuguan brachiopod 
fauna (Spathian, this study) and Jianzishan brachiopod fauna (Dienerian [19]) as exam-
ples to demonstrate the abundance model. As shown in Figure 12A,B, the brachiopod 
communities of Beds 38 and 39 are both characterised by one or two dominant species, 
and more than half of the species have very low abundance (less than 20 in Bed 38). The 
Jianzishan brachiopod fauna, which contains Lichuanorelloides lichuanensis (212 speci-
mens), Lissorhynchia sp. (86 specimens) and Crurithyris sp. (eight specimens) [19], is a 
typical Induan-type fauna with an absolute dominant taxon. In this case, Early Triassic 
brachiopod fauna, which contains a dominant species and many low-abundance species, 
is very likely to underestimate diversity due to inadequate sampling. 

Figure 11. Stratigraphic ranges and occurrences of the Datuguan brachiopod genera (shown by
black lines) and four brachiopod orders (shown by purple lines). Numbers above lines represent the
highest occurrence frequency of genera.

During the Early Triassic, persistently deteriorated ocean environments made habitats
hostile for marine organisms [8,9,59,60], especially for the benthos, and there were only
a few ‘habitable zones’ in some specific environments [61–63]. In this case, the habitats
of craniformean and rhynchonelliformean brachiopods were significantly reduced in the
Early Triassic. The largely shrunken habitats in the Early Triassic oceanic environment
would clearly reduce brachiopod abundance and the probability of fossil preservation and
discovery, and could lead to considerable underestimation of Early Triassic brachiopod
abundance and diversity.

How does taxa abundance affect diversity? We chose the Datuguan brachiopod fauna
(Spathian, this study) and Jianzishan brachiopod fauna (Dienerian [19]) as examples to
demonstrate the abundance model. As shown in Figure 12A,B, the brachiopod communi-
ties of Beds 38 and 39 are both characterised by one or two dominant species, and more than
half of the species have very low abundance (less than 20 in Bed 38). The Jianzishan bra-
chiopod fauna, which contains Lichuanorelloides lichuanensis (212 specimens), Lissorhynchia
sp. (86 specimens) and Crurithyris sp. (eight specimens) [19], is a typical Induan-type
fauna with an absolute dominant taxon. In this case, Early Triassic brachiopod fauna,
which contains a dominant species and many low-abundance species, is very likely to
underestimate diversity due to inadequate sampling.
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fauna was mainly characterised by holdovers (26 genera), and the newcomers, which in-
cluded a few genera of Rhynchonellida (seven genera) and Spiriferinida (two genera) 
(Figure 3). If we exclude the holdovers in the earliest Induan fauna, the Smithian and 
most Induan brachiopod fauna generally have very low diversity [18,19,25,67], which 
should be categorised in the ‘survival stage’ of the overall recovery process. 

Most of these previously reported Olenekian fauna are mainly composed of Rhyn-
chonellida, Terebratulida, Spiriferinida and Athyridida, except for that from Dobrogea 
(Romania), which only contains Rhynchonellida [24]. The faunal composition at the order 
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Figure 12. (A,B), frequency distribution of brachiopods from bed 38 (nine species) and bed 39 (seven
species) in the Datuguan section; (C), results of rarefaction analysis of brachiopod data from three
main beds yielding brachiopods in the Datuguan section. D: Dioristella; S: Spirigerellina; H: Hirsutella.

As for bed thickness, it is reasonable to speculate that fossil sampling is more difficult
in thicker strata of the same duration. In South China, the Early Triassic strata are much
thicker than the end-Permian strata. Most of the Early–Middle Triassic brachiopod fauna
in South China are reported from ramp environments (the Yinkeng Formation [18]; the
Xinyuan Formation [64]; the Daye Formation [19]; and the Qingyan Formation [30]), where
much thinner strata are yielded than in shallow water settings. Weak hydrodynamic
conditions in the deeper water environments could help to preserve fossils, and thinner
strata would clearly increase the chance of fossil discovery.

To summarise, Early Triassic marine ecosystems, which existed between the collapse of
Palaeozoic-type ecosystems and the final reconstruction of Mesozoic-type ecosystems, are
characterised by high dominance and low evenness. The great loss of diversity (extinction
event) [65,66] and hostile environments [8,9] led to the high dominance of certain taxa (dis-
asters, opportunists, newcomers) within these fauna, which further limited the abundance
of other species. This pattern is one of the most important features of Early Triassic marine
ecosystems, and could be one of the main reasons for substantially underestimated diver-
sity. We examined the occurrences of nine genera found in the Olenekian from the studied
section, and discovered that they all have the fewest records in the Olenekian, and six of
them were first reported in the Early Triassic (Figure 11). In this case, adequate sampling
(1583 complete specimens, Figure 12C) and condensed strata (the Luolou Formation in the
ramp) should minimise the effect of sampling biases on brachiopod faunal diversity.

6.2. Brachiopod Recovery Pattern in the Post-Extinction Interval

In the post-extinction interval, the Induan (especially Griesbachian) brachiopod fauna
was mainly characterised by holdovers (26 genera), and the newcomers, which included
a few genera of Rhynchonellida (seven genera) and Spiriferinida (two genera) (Figure 3). If
we exclude the holdovers in the earliest Induan fauna, the Smithian and most Induan bra-
chiopod fauna generally have very low diversity [18,19,25,67], which should be categorised
in the ‘survival stage’ of the overall recovery process.

Most of these previously reported Olenekian fauna are mainly composed of Rhyn-
chonellida, Terebratulida, Spiriferinida and Athyridida, except for that from Dobrogea
(Romania), which only contains Rhynchonellida [24]. The faunal composition at the order
level is consistent with the statistical data of brachiopod genera in the Triassic [43], and
represents the initial stage of brachiopod evolution in the post-extinction interval. The
Datuguan brachiopod fauna only includes Athyridida (three species within one genus)
in the Smithian, and is dominated by Athyridida, Spiriferinida and Terebatulida in both
species (13 species within nine genera), and specimen counts in the Spathian (Figure 13).
This suggests that the brachiopod recovery occurred in the Spathian rather than Smithian,
which is consistent with the global biotic recovery event for this substage [68–70].
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Figure 13. Composition of the Datuguan brachiopod fauna. (A,B) are based on species amount data,
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The fossil horizons (Beds 38 and 39) of the Datuguan section yielding abundant
brachiopods are restricted to the Triassospathodus triangularis and Tr. sosioensis conodont
zones (Figure 2), which indicate a latest Spathian Age [71–73]. According to [8], the lethally
hot temperatures started to fall, and a cooling event occurred in the latest Spathian (upper
part of Tr. homeri Zone). Based on the evidence from pyrite framboids, the redox condition in
ramp settings also started to improve from an anoxic–lower dysoxic to upper dysoxic–oxic
environment in the latest Spathian of the Qingyan section (northern margin of Nanpanjiang
Basin) (upper part of Tr. homeri Zone [9]) (Figure 1). As for the benthos, the Datuguan
brachiopod fauna started to diversify in this improved habitat in the latest Spathian. The
deteriorated environments (e.g., deadly temperatures, anoxia) in low latitudinal areas since
the latest Permian evidently started to return to normal conditions after nearly five million
years [8,9,59,60], and the reconstruction of the Triassic marine ecosystem truly began in the
latest Spathian.

Unexpectedly, based on global data from online databases and published works of liter-
ature, the recovery rate of Olenekian (especially Spathian) brachiopod fauna (28 genera) has
been substantially undervalued. Brachiopods showed high diversity in the late Olenekian,
which is three times that in the Induan, and more than one-third of that in the Anisian
(84 genera), and is therefore indicative of an initial recovery in the Spathian. It is notewor-
thy that some brachiopod genera, which have their maximum occurrences in the Middle or
Late Triassic, already started to appear in the Olenekian age (Figure 11).

In addition, the fact that most contemporaneous brachiopod fauna are reported from
the Balkan region, Primorye, the Qilianshan region, the Nanpanjiang basin and Idaho,
indicates that the Palaeo-Tethys Sea region and the western margin of North America
provided the most important habitats for brachiopods in the Spathian Age. These areas
were actually the most hostile habitats during the Permian–Triassic boundary mass extinc-
tion event [59,74,75]. Environmental amelioration in tropical regions indicates an overall
improvement of global oceanic environments, which might then have given rise to the
subsequent overall recovery during the Middle Triassic.

7. Conclusions

1. A Olenekian brachiopod fauna which is the most diverse one so far, is reported in
this study. It contains 14 species in nine genera, among which Hirsutella, Sulcatinella,
Paradoxothyris, Dioristella, Neoretzia and Isocrania are found in the Early Triassic for the
first time, and three species are newly proposed;

2. Brachiopod abundance and diversity data indicated that brachiopod recovery in the
studied section happened in the latest Spathian when the environmental condition
(deadly temperatures and anoxia) started to ameliorate;

3. One of the reasons that brachiopod was widely considered to be in very low abun-
dance in the Early Triassic was the phenomenon of hidden diversity. It could be
caused by the decrease of habitat, low taxa abundance and great thickness of strata.
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Simple Summary: An increasing number of different habitats leads to an increasing number of
species and has been considered a key driver for biodiversity. However, there is no common
understanding on how to measure habitat diversity. In this study, we tested a newly proposed
measure of substrate heterogeneity by classifying changes on the seafloor with underwater video
imaging. This analysis showed that the presence of small patches of different soft sediment types
was associated with elevated species richness and a higher rate of occurrence of rare species.

Abstract: Many studies show that habitat complexity or habitat diversity plays a major role in
biodiversity throughout different spatial scales: as structural heterogeneity increases, so does the
number of available (micro-) habitats for the potential species inventory. The capability of housing
species (even rare species) increases rapidly with increasing habitat heterogeneity. However, habitat
complexity is not easy to measure in marine sublittoral sediments. In our study, we came up with
a proposal to estimate sublittoral benthic habitat complexity using standard underwater video
techniques. This tool was subsequently used to investigate the effect of habitat complexity on species
richness in comparison to other environmental parameters in a marine protected area situated in
the Fehmarn Belt, a narrow strait in the southwestern Baltic Sea. Our results show that species
richness is significantly higher in heterogeneous substrates throughout all considered sediment types.
Congruently, the presence of rare species increases with structural complexity. Our findings highlight
the importance of the availability of microhabitats for benthic biodiversity as well as of the study
area for regional ecosystem functioning.

Keywords: habitat complexity; macrozoobenthos; Baltic Sea; species richness; rare species

1. Introduction

Species composition and species richness of faunal communities are well known to
depend on different environmental factors with respect to the considered spatial scale [1].
For example, diversity and species richness of endobenthic macrofauna assemblages in
the Baltic Sea are mainly influenced by salinity at regional scale of hundreds of kilometers
(i.e., the entire sea or its southwestern part, stretching through several sub-basins [2,3]).
By contrast, on a sub-regional scale of tens of kilometers, substrate characteristics and
other factors, often masked by water depth, become more important [4,5]. However,
many terrestrial, limnic, and marine studies show that habitat complexity, or habitat
diversity, plays a major role in biodiversity throughout different spatial scales (e.g., [6–8]):
as structural heterogeneity increases, so does the number of available (micro-) habitats for
the potential species inventory [9]. The effect of the available number of habitats might
not only be additive in the sense that the species inventory of the different habitats is
added in a small area, but also that highly specialized species might even be endemic
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in these areas [10]. Furthermore, ecosystems that are more complex show higher levels
of multiple ecosystem functions than ecosystems with low habitat diversity [11]. The
capability of housing species (even rare species) increases rapidly with increasing habitat
heterogeneity. On the other hand, common and rare species potentially play an important
role in ecosystem functioning, either by offering novel contributions to functional diversity
or via functional redundancy [12]. In addition, in natural or anthropogenic stress phases,
communities with an extensive set of functional traits have a higher probability of surviving
and contribute to the stabilization of the system [13].

However, habitat complexity is not easy to measure in marine sublittoral sediments.
On larger scales, seafloor morphology is often used as a proxy to capture habitat heterogene-
ity [14]. On smaller scales, heterogeneity in sediment characteristics can be a key factor for
determining species diversity (e.g., [5]). Nevertheless, sediment heterogeneity is often not
captured in standardized sampling with a low number of replicates at individual stations.
Hence, sediment composition in heterogeneous areas can be determined by significantly
increasing the number of repetitions in physical sampling, leading to a huge amount of
additional effort [15]. Another challenge arises in connection with the amount of sediment
that is taken to analyze sediment characteristics. Taking a small sub-sample for sediment
analysis often does not represent the full range of the present grain size span. This is why
sediment and infauna samples are often taken separately to guarantee enough sample
material for both analyses [16]. However, taking separate samples to estimate substrate
heterogeneity may lead to potentially significant spatial mismatches between biogenic and
geological data and may restrict the ability to cover the full range of available sediment
structures. In addition, potentially important geogenic and biogenic structures such as
boulders, pebbles, macrophyte meadows, and bivalve shells are often overlooked. An
alternative, efficient way to estimate habitat complexity of a patch is through the use of
underwater video that often accompanies the physical sampling [17].

In our study, we came up with a proposal to estimate sublittoral benthic habitat
complexity using standard underwater video techniques. Data derived using this tool
were subsequently used to investigate the effect of habitat complexity on species richness
in comparison to other environmental parameters in an area with steep environmental
gradients at a relatively small spatial scale of a few tens of kilometers.

2. Materials and Methods
2.1. Study Area

The Natura 2000-site “Fehmarn Belt” (EU-code DE 1332-301, hereafter referred to
as marine protected area, MPA) is located in the southwestern Baltic Sea and covers an
essential part of a narrow strait between the Danish island Lolland and the German island
Fehmarn (Figure 1). It covers an area of 280 km2 and is characterized by a steep depth
gradient. The Fehmarn Belt is part of the Baltic transition zone that is influenced by the
inflow of saline water from the Atlantic and the outflow of brackish water from the Baltic
Proper [18,19]. More than two-thirds of the water volume exchanged between the North
Atlantic and the Baltic Sea passes by the Belt Sea and, hence, through Fehmarn Belt [20].

Seafloor morphology and surface sediment structure in this area are formed out of
glacial and postglacial processes. While the eastern and the southwestern parts of the
MPA mainly consist of wide areas of muddy sand and sandy mud, the central part of the
area is characterized by a high grain size heterogeneity [21]. This part of the study area
consists of a large abrasion platform with the lowest water depths of 10 m cut by a deep
valley (Vinds Grav channel) from east to west. The highest water depth here is around
40 m [22], filled with fine-grained deposits. Coarse lag deposits dominate the abrasion
platform north of the incision. Boulders, pebbles, shell gravel, and sand of different grain
size form a highly patchy mosaic of microhabitats. Sediment classes can change within
meters. Similar deposits can be found south of the valley but with increasing distance,
closer to the coast of Fehmarn, sand partly covers the lag deposits. A remarkable geological
feature is a field of sand ribbons and drowned dunes of a height up to 2 m [23]. The sand
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dunes generally consist of medium-to-coarse sand with finer grain sizes dominating in
higher depths below 18 m. In addition, accumulating Arctica-shells and floating kelp also
increase habitat variability in this ribbon field.
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Figure 1. Map including the expected distribution of sediment types (after Tauber, 2012 [24]) and the
location of sampling stations. Circles indicate 162 sampling locations (further referred to as stations)
used for statistical analyses and the construction of general linear models, with circle colors referring
to the results of the sediment type classification (crosses indicate samples excluded from the initial
dataset (n = 355) due to the criteria listed in Section 2.2). The blue line indicates the border of the
Natura 2000-site and the white area indicates unmapped seabed in Danish waters.
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2.2. Infauna and Sediment Data

Samples were collected during various projects at different spatial locations between
2012 and 2018. The locations (subsequently called stations) were selected in order to
representatively cover the expected distribution of all major surface sediment types in the
study area based on existing mapping, literature review, and the authors’ experience (see
Figure 1). Although the sampled stations included both monitoring stations and randomly
placed mapping stations, the applied sampling method remained the same over the seven
years. At each station, at least one sample for infauna and one for the analysis of sediment
properties was collected using a Van Veen grab (sampling area 0.1 m2), and one short video
survey was conducted on the same day within a vicinity of 50–100 m.

Infauna samples were sieved using a 1 mm mesh sieve and fixated using a 4% buffered
formaldehyde seawater solution. In the lab, samples were sorted using a binocular with a
10-fold magnification, and individuals were identified to the lowest possible taxonomical
level (mainly species level) and counted. Taxonomy followed the World Register of Marine
Species (WoRMS).

In contrast to the expected sediment types depicted in Figure 1, the final attribution
of stations to the four sediment types was based on grain size distribution measurements
using granulometric analyses. The considered sediment types were (i) muddy substrate
(median grain size d50 < 63 µm), (ii) fine sand (d50 63–250 µm), (iii) medium sand (d50
250–500 µm), and (iv) coarse sand and gravel (d50 > 500 µm). The chosen number of
classes was determined by the intention to have a sufficient number of stations within
each class at the end and to adhere to the commonly accepted (coarse) sediment grain size
classification. Sandy and gravelly sediments were dry-sieved automatically over a cascade
of 10 sieves with differing mesh sizes ranging from 63 µm to 2 mm. Grain size distribution
of muddy sediments was analyzed without chemical treatment by laser-diffraction particle
size analyzer CILAS 1180L (3P Instruments GmbH & Co. KG, Odelzhausen, Germany).
Parameters describing cumulative grain size distribution (namely median grain size, sort-
ing, and skewness) were then calculated by using a skewed s-shape function, fitted to the
cumulative grain size data with the least sum of squares method, applying a special fitting
algorithm (the description is given in [25]). However, due to locally heterogeneous sedi-
ment conditions, additional information on sediment composition of the infauna sample
was taken from the on-board optical sediment description. Samples were rejected from the
analysis if a substantial mismatch occurred between the parameters of sediment sample
and the on-board description of the sediment of infauna sample.

Depending on the particular aim of the project, one or three replicates were taken
per infauna sampling event. However, only one randomly selected infauna sample per
location and sampling event was included in the analysis to avoid spatial dependencies.
To eliminate the overwhelming effects from epibenthic communities, samples with hard
substrate (boulders exceeding approximately 5 cm in diameter) or kelp were also excluded
from the analysis before randomly selecting one sample per site. Overall, 162 stations
(unique sampling events at location) with infauna and sediment information were finally
included in the analysis (Figure 1).

Unattached sessile epibenthic specimens as well as specimens that were not identified
to species level were excluded from the following analysis. In addition, oligochaetes were
excluded, as they were identified to species level only in some of the campaigns. In contrast,
a few genera were included if they were never identified to species level and if the genus
was known to be represented by a single species in the regional dataset (e.g., Autolytus,
Phoronis, Edwardsia). Additionally, the frequency was determined, which represented the
percentage of stations at which a species occurred. Rare species received special attention
in the following analysis and were here defined as species occurring at fewer than four
stations, corresponding to a frequency of <2%, and at none of the stations present in the
abundance exceeding 3 individuals per sample (0.1 m2).

Video transects were taken using a towed system with a SeaViewer underwater
camera. Until 2014, an analogous camera was used that was subsequently replaced by an
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HD camera of the same make. The video platform was equipped with additional light
and towed over ground behind the floating vessel with the viewing direction ahead. The
towing speed depended on the currents and wind speed and varied between 0.2 and 0.7 kn.
The seabed was usually recorded for 5 minutes at approximately 0.5 m above the ground,
depending on turbidity conditions. Only the first five minutes of the video were analyzed if
the recording time exceeded this time span. Seafloor structures were categorized as follows:
large boulders (hard substrates >50 cm), cobble/small boulders (hard substrates 5–50 cm),
coarse gravel (2–5 cm), fine gravel (<2 cm), coarse or medium sand, fine sand, mud, bivalve
shells (undestroyed or large pieces), and shell gravel. As the system was not equipped with
laser pointers, no area calculation was possible. Consequently, the apparent occurrence of
abiotic features was classified by estimation of the coverage using the following classes:
absence of the feature, occasional occurrence (coverage <1% of the seafloor), frequent
occurrence (1–10% coverage), dense occurrence (10–50%), and very dense occurrence
(≥50%). For consistency in the video analysis and to avoid introducing observer-specific
artefacts, the same person analyzed all the videos. As the video analysis only allows for a
semi-quantitative approach, the substrate heterogeneity was described categorically. The
four categories were defined as follows (see also Table 1 for schematic presentation):

• No heterogeneity (none): Other than the dominant (very dense) substrate class, at
most one additional feature occurs occasionally;

• Low heterogeneity: Other than the dominant (very dense) substrate class, at most
three additional features occur occasionally, or at most two additional features occur
occasionally or frequently;

• Medium heterogeneity: Other than the dominant (very dense) substrate class, at most
five additional features occur occasionally, or at most three additional features occur
frequently of which one feature might occur densely;

• High heterogeneity: Any other combination, including at least four feature classes.
Often, no single feature exceeds 50% coverage.

Table 1. Classification of substrate heterogeneity using a number of substrate features identified in
short video transects.

Substrate Number of Features Occurring

Heterogeneity Class Occasionally Frequently Densely Very Densely

(≤1%) (>1–10%) (>10–50%) (>50%)

none ≤1 0 0 1

low ≤3 0 0 1
or ≤2 0 1

medium ≤ 5 0 0 1
or ≤2 1 1
or ≤3 1

high >5 0 0 1
or >3 ≤1

2.3. Analyses and Statistics

In this study, the species richness parameter was chosen to represent the species diver-
sity. This metric is commonly used in studies addressing effects of habitat heterogeneity
and complexity on biodiversity [26–28]. The Shannon–Wiener Index could alternatively
be used [29,30], but equitability in distribution of species among a sample was outside the
focus of this study.

All analyses were performed within the R environment [31]. Tests for normality
in species richness were performed using a Shapiro–Wilk test [32]. Kruskal–Wallis and
pairwise Mann–Whitney tests were used to initially evaluate the overall differences in
species richness between the sediment types and substrate heterogeneity classes [33,34].
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To compare diversity properties and account for possible sampling effort bias in esti-
mating the expected number of observed species per sediment type, species-accumulation
(rarefaction) curves were derived using the specaccum command of the R package ve-
gan [35]. Default specaccum settings were used.

The dependency of species diversity on different environmental factors was tested
using generalized linear models (GLM). GLM was chosen as the modelling method, as it
was expected to have a higher power than linear models when analyzing count data [36].
The Shapiro–Wilk normality test suggested that species richness was not normally dis-
tributed. First, Poisson distribution was assumed for species richness (supported by the
results of the Wilcoxon rank sum test) and correlations between numerical predictor vari-
ables were explored (see Supplementary Materials, Explanatory Text S1 for test results
and Figure S3 for correlation graphs between numerical predictor variables). To reduce
the complexity and find the best model, non-significant predictors were dropped, and
backward selection based on the AIC information criterion [36] was carried out as the final
step. However, the best-fitted Poisson model indicated overdispersion. To evaluate overdis-
persion, the DHARMa R package was used [37]. The variance was 3.8 times larger than the
mean: plotted Pearson residuals considerably exceeded 1 (see Supplementary Materials,
Explanatory Text S2). In order to address the detected overdispersion, we changed our
distributional assumption to the negative binomial. To check if the distribution assumption
could considerably influence our results, we also estimated the dispersion parameter within
the model using the quasi-Poisson family. As there was no substantial difference in the
interpretation, we focused on the outcome of the negative binomial model in the results,
whereas the results of both dispersion-adjusted final models, side by side, are reported in
the Supplementary Materials (Explanatory Text S2).

Overall, nine environmental parameters were tested in the initial model. The sediment
variables loss on ignition, median grain size, skewness, and sorting were derived from the
sediment analysis. Median grain size (in µm) indicated two outliers (values above 1500 µm):
their influential effect was removed by transforming variable to phi units before entering
the model [38]. Salinity and water depth were taken from measurements accompanying
the sampling event. Slope and bathymetric position index (BPI) were derived from the
bathymetry map by BSH [39], using the benthic terrain modeler extension (BTM, version 3.0)
in ArcGIS [40]. Finally, substrate heterogeneity was estimated as described above and
included as a 4-level categorical variable into the model (categories: none, low, medium,
high). Sampling year and season (spring and summer) were included in GLM to test effects
of temporal trends and seasonality.

Prior to entry into the model, numerical predictors were tested for collinearity using
Spearman rank correlation (as mentioned above), and for the set including categorical
predictors, the rule of Generalized Variance Inflation Factor GVIF (1/(2 × Df)) < 2.2 (as
equivalent to simple variance inflation value VIF < 5) was applied. Values of GVIF suitable
for categorical predictors were adjusted to make them comparable across different numbers
of parameters, as recommended by Fox and Monette [41]. Potentially important environ-
mental parameters, such as oxygen depletion or the portion of particular grain size fraction
in the sediment, were excluded from the analysis after testing for variable collinearity.

In order to obtain more insights on where the differences captured by the final model
came from, a post hoc test was carried out for between-subject factors and interactions.
For post hoc test, the emmeans R package [42] was used with the default settings of Tukey
method for comparing estimates.

3. Results
3.1. Overall Species Inventory

Overall, 199 species were identified, with polychaetes (79 species), molluscs (54), and
crustaceans (39) being the main contributors to species richness (Figure 2). Few species
were present throughout the area, with Scoloplos armiger (147 records, frequency 90.7%),
Kurtiella bidentata (140, 86.4%), Diastylis rathkei (131, 80.9%), Ophiura albida (122, 75.3%), and
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Abra alba (122, 75.3%) being the most commonly occurring species. Overall, only 18 species
were present in more than half of the stations. On the other hand, 25 species were identified
in a singular sample and 48 species could be considered as rare in our dataset, following
the definition given above (i.e., those occurring at frequency below 2% and with abundance
at any station not exceeding 3 individuals per 0.1 m2 sample). A complete list of species
is provided in the Supplementary Materials—File S1. Of all the 199 species observed,
84 species were shared between all 4 sediment types considered, 9 were found only in mud,
2 were unique for fine sands, 14 for medium sands, and 15 for coarse sediments.
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most to species richness.

3.2. Species Richness in Different Sediment Types

Species richness varied between 6 and 70 species identified per 0.1 m2, with a median
of 27 species per sample. Median species richness per sediment type per sample varied
between 17 taxa and 38 taxa per 0.1 m2, with the lowest values in muddy substrate and the
highest values in fine and medium sand (Figure 3). Although species richness in mud was
significantly lower than in all other substrates (p < 0.001), no significant difference between
the other sediment types were detected., Shapiro–Wilk tests for normality failed, indicat-
ing a non-normal distribution of species richness for all sediment types (Supplementary
Materials—File S1).

113



Biology 2023, 12, 825
Biology 2023, 12, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 3. Boxplot showing species richness per grab and sediment type (mud, fine sand, medium 
sand, and coarse substrate). Boxes indicate the 25–75% interval, whiskers the 5–95% interval. Note 
that the black lines represent the median values that differ from the mean. Corresponding number 
of samples per category are given above each bar. Outliers are marked with circles. 

Results from the species area curves (rarefaction analysis) for different sediment 
types consistently showed the lowest species richness in muddy substrates (Figure 4). The 
course of the species area curves for fine sand flattened earlier than the course for medium 
sand and coarse substrates. At an area of 1 m² (10 samples), 72 ± 10 species were identified 
in muddy substrates, whereas species richness exceeded 100 m−2 in fine sand (104 ± 8), 
medium sand (109 ± 6), and coarse substrate (108 ± 11). In muddy substrates, a comparable 
number of species (105 ± 8) could only be found by aggregating 25 samples (correspond-
ing to a cumulative sampled area of 2.5 m²). At this spatial scale, the species richness in 
fine sand (129 ± 2) was also significantly lower than in medium sand (142 ± 5) and coarse 
substrate (146 ± 4). 

 
Figure 4. Species area curves for the four sediment types: mud (n = 53), fine sand (n = 27), medium 
sand (n = 53), and coarse substrate (n = 29), with vertical bars indicating the confidence interval at 
each step. A sample covers 0.1 m². 

Figure 3. Boxplot showing species richness per grab and sediment type (mud, fine sand, medium
sand, and coarse substrate). Boxes indicate the 25–75% interval, whiskers the 5–95% interval. Note
that the black lines represent the median values that differ from the mean. Corresponding number of
samples per category are given above each bar. Outliers are marked with circles.

Results from the species area curves (rarefaction analysis) for different sediment types
consistently showed the lowest species richness in muddy substrates (Figure 4). The course
of the species area curves for fine sand flattened earlier than the course for medium sand
and coarse substrates. At an area of 1 m2 (10 samples), 72 ± 10 species were identified
in muddy substrates, whereas species richness exceeded 100 m−2 in fine sand (104 ± 8),
medium sand (109 ± 6), and coarse substrate (108 ± 11). In muddy substrates, a comparable
number of species (105 ± 8) could only be found by aggregating 25 samples (corresponding
to a cumulative sampled area of 2.5 m2). At this spatial scale, the species richness in fine
sand (129 ± 2) was also significantly lower than in medium sand (142 ± 5) and coarse
substrate (146 ± 4).
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3.3. Testing the Relevance of Other Environmental Parameters

A negative test for normality indicated that other parameters in addition sediment type
might influence the species richness of benthic communities in the investigation area. To
explore the relative importance and explanatory power of both sediment type and substrate
heterogeneity and to test for the influence of other parameters, a GLM was performed.

We included the years of sampling treated as a continuous variable in the GLM, in
order to evaluate the presence of any temporal trend. Stations were sampled either in
spring (n = 36) or in summer (n = 126). To test seasonality, we also included the season and
its interaction with the sediment type. Mud results, in particular, suggested a significantly
higher mean number of species in spring. However, this seasonal difference must be treated
with caution, as it could be caused by the lower number of spring samples and be an artefact
of an admittedly unbalanced sampling design, especially as the summer observations with
the highest values of species richness in mud were statistically treated as outliers (see box-
plot in Supplementary Materials). The post hoc analysis results (Supplementary Materials,
Tables S3–S5) provided more insights on the significant between-classes differences of this
interaction term: pairwise comparison of individual classes revealed only significantly
lower number of species in spring observed in coarse sediment type compared to summer
values in fine and medium sand sediment types in our dataset.

Median grain size (in phi units) had no significant effect on species richness when
sediment type was included as a predictor and was dropped from the final model (the effect
plot for this variable in the full model can be found in Supplementary Materials—File S1).
The variable year was significant and had a negative estimate, suggesting some consistent
reduction in species richness during the study period, particularly in “coarse” substrate
and “fine” sand. Here, it is important to acknowledge the limits of this statistical inference
due to possible temporal pseudoreplication. Sediment type and substrate heterogeneity
both had significant effects on species richness. In particular, ‘none’ or ‘low’ heterogeneity
showed the strongest linkage to a lower species number (Table 2 and Supplementary
Materials—File S1). Common parameters describing seafloor topography (BPI and slope)
where dropped from the final model for species richness.

Table 2. Results of the final GLM obtained using negative binomial distribution to explore the depen-
dency of response variable species diversity (number of species) on different environmental factors of
interest, appearance of multiannual trends, and seasonal differences. Substrate heterogeneity classes
are abbreviated as “GeoClass” in the table.

Model (AIC: 1246)

Estimate Std. Error t-Value p Significance

(Intercept) 307.1 93.2 3.30 0.001 ***
Factor (GeoClass)—low −0.37 0.09 −4.23 0.000 ***

Factor (GeoClass)—medium −0.05 0.09 −0.60 0.550
Factor (GeoClass)—none −0.62 0.15 −4.04 0.000 ***

Depth −0.03 0.01 −2.69 0.007 **
Salinity 0.04 0.01 2.83 0.005 **

Year −0.15 0.05 −3.26 0.001 **
Factor (sediment)—fine −144.7 174.5 −0.83 0.407

Factor (sediment)—medium −325.2 120.0 −2.71 0.007 **
Factor (sediment)—mud −374.7 139.6 −2.68 0.007 **

Factor (Season)—summer 0.29 0.17 1.74 0.082 .
Year: (sediment)—fine 0.07 0.09 0.83 0.405

Year: (sediment)—medium 0.16 0.06 2.71 0.007 **
Year: (sediment)—mud 0.19 0.07 2.69 0.007 **

Summer: (sediment)—fine −0.26 0.28 −0.92 0.356
Summer: (sediment)—medium −0.15 0.22 −0.67 0.502

Summer: (sediment)—mud −0.55 0.23 −2.44 0.015 *

* Significance codes: *** p < 0.001; ** p < 0.01; * p < 0.05; p < 0.1; Null deviance: 322.5 on 161 degrees of freedom;
Residual deviance: 165.9 on 145 degrees of freedom.
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The influence of substrate heterogeneity on species richness was illustrated using a
boxplot (Figure 5). In homogeneous substrates, species richness barely exceeded 20 species
per 0.1 m2 (median: 14 species per 0.1 m2). Species richness significantly increased by
adding a few additional structural elements (substrate heterogeneity (GeoClass) ‘low’,
median: 22 species per 0.1 m2) and even more at medium and higher substrate heterogene-
ity (38 per 0.1 m2 for substrate heterogeneity (GeoClass) ‘medium’ and 37 for substrate
heterogeneity (GeoClass) ‘high’). Looking separately at the four substrate classes described
above revealed a similar pattern in all substrates (Figure 6). In all substrate classes, species
richness was considerably lower in homogenous sediments or at low heterogeneity. How-
ever, due to the low number of samples in some combinations of substrate class and
heterogeneity level, the significance of this pattern could not be verified. Results of the post
hoc analyses (Supplementary Materials Figure S8) gives more detailed insights on species
richness differences in independent categorical variables and interactions.
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3.4. Occurrence of Rare Species

Overall, 80 records of 48 rare species were identified. Based on the number of records
and the number of samples, the rate of rare species detected per sample was calculated.
The rate successively increased from homogeneous substrates (0.22 rare species per sample)
to 0.83 rare species per sample in very heterogeneous substrates, when summarized across
all sediment types. The occurrence of rare species differed between the sediment classes.
The lowest probability of finding a rare species was discovered in fine sand (0.11 rare
species per sample), whereas statistically more than one rare species could be identified per
sample in coarse substrates (1.17). Moreover, the probability of finding a rare species was
highest in highly heterogeneous coarse substrates if heterogeneity and sediment classes
were considered separately (Table 3).
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Table 3. Mean number of rare species per sample in different combinations of sediment classes and
substrate heterogeneity. Numbers in brackets indicate the number of samples per combination. NA:
combination not present.

Substrate
Heterogeneity Mud Fine

Sand
Medium

Sand
Coarse

Substrate Overall

None 0.23 (22) NA 0 (1) NA 0.22 (23)
Low 0.11 (18) 0 (7) 0.42 (12) 0.83 (6) 0.28 (43)

Medium 0.25 (8) 0.21 (14) 0.72 (25) 0.50 (2) 0.49 (49)
High 0.60 (5) 0 (6) 0.53 (15) 1.33 (21) 0.83 (47)

Overall 0.23 (53) 0.11 (27) 0.58 (53) 1.17 (29) 0.49 (162)

4. Discussion

In this study, we tested a newly proposed measure of substrate heterogeneity. It
was derived from the frequency of morphological structures on the seafloor recorded
with underwater video, and it was attributed to seafloor heterogeneity at a spatial scale
somewhat larger than that of a standard grab sample (roughly 40 m2 vs 0.1 m2 [17]). Our
results suggest that the sediment information value from a grab sample can be limited,
especially when the sediment in the grab is homogenous but comes from an overall
heterogeneous surrounding.

The data used in this study were not based on experiments, but rather on various
projects that have been carried out within the study area over several years. Such an
approach often carries the risk of an unrepresentative distribution of stations with regard
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to the relevant environmental gradients. We acknowledge that the results should be
interpreted with caution due to a possible temporal pseudoreplication. Also, in this study,
the data points were not evenly distributed along the considered substrate gradient and
the substrate heterogeneity classes. However, the fact that the combinations of sediment
type and heterogeneity class were not evenly distributed in the data mainly originates
from the genesis and the amount of sediment supplied [43]. The coarse sediments were
relicts of glacial deposits and were granulometrically poorly sorted by nature. Permanent
hydrodynamic forces, winnowing the fine fraction that accumulated in low energetic areas
(e.g., depressions, stone shadow), reinforced the heterogeneity of lag sediment-dominated
areas. The coverage of the southern abrasion platform with mobile sands and, thus, a
homogenous sediment distribution was related to the availability of large amounts of
reworked nearshore sediments [23]. In this study, we also included only one replicate per
sampling event in the analysis. This absence of replication may increase uncertainty in our
results and cause limited reliability, due to unaccounted patchiness and existing fine-scale
variability in benthic fauna distribution, which should be kept in mind.

Additionally, the comparatively large period of seven years and the fact that the
data originate from different seasons increases the included natural variability in the
biological data and, consequently, the associated uncertainty in the results. As the Fehmarn
Belt is situated at the entrance of the Baltic Sea, inhabiting communities are frequently
influenced by protruding saline waters from the Kattegat and Skagerrak. These water
masses potentially carry pelagic larvae and also adult specimens with them, temporarily
complementing the autochthonous species inventory. However, as both homogeneous and
heterogeneous sediments have been sampled throughout the full time span, it is unlikely
that this had significant impact on the overall pattern of the results.

In our study, we have focused on substrate characteristics and included comparatively
few factors of water chemistry and physics that potentially may also affect species richness
in the region. However, the included factors are known to be the most important for the
distribution in the southwestern Baltic Sea and many other not included factors are known
to be correlated with water depth; in particular, if the values describing them are derived
from oceanographic models, this often remains the only option [44,45]. Additionally, other
studies have shown that the available spatial resolution of such data (e.g., for drivers such
as water currents or organic load) cannot act as a useful predictor on the considered scale
of tens of kilometers [46]. Nevertheless, seasonal oxygen depletion mainly occurs in the
deeper parts of the Fehmarn Belt and may (temporarily) reduce species richness in the
predominantly homogenous muddy sediments. In addition, physical disturbance caused
by anthropogenic activities, e.g., by demersal trawling, may have a negative impact on
species richness (e.g., [47]). Bottom trawling mainly occurs on homogenous muddy and
sandy sediments in the western and eastern parts of the study area [48], where species
richness was detected to be comparably low. Nevertheless, due to limitations in our
ability to adequately quantify the magnitude of this pressure in this area (c.f. [49]), its
potential influence on species richness was not quantified here and needs to be addressed
in future studies.

The way to estimate habitat complexity varies considerably between different stud-
ies dealing with marine benthic habitats [9,14,50]. The diversity in approaches is partly
related to the particular considered spatial scale and the availability of data to describe
the habitat complexity. However, no common understanding on how to measure habitat
diversity is available and, consequently, the studies are often hardly comparable. In our
study, we used a simple classification scheme of structures and substrates detected using
underwater video. As one person analyzed all videos and the same approach was applied
to all records, the approach can be considered as standardized within the study. However,
the selection of the included features and their classification remained subjective. One
potentially crucial issue is the handling of the surrounding boulders inhabited by their
own epibenthic-dominated communities [46]. As the target of the study was to detect
the influence of substrate heterogeneity on soft sediment communities, we tried to avoid
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including samples randomly taken on boulders or patches of dense stones by excluding
all stations with a corresponding description of the substrate. Nevertheless, the presence
of small stones in the samples could not be ruled out. As small stones are often popu-
lated by species-poor communities [46,51] that correspond to those often found on large
bivalve shells, which are in turn considered as structuring elements in soft sediments,
it was unfeasible to a priori deselect all sessile species. Consequently, a few sessile and
many characteristic accessory species of hard-substrate communities were found in the
sample and significantly contributed to overall species richness, observed especially in
heterogeneous substrates. Large shells from Arctica islandica are the dominating biogenic
hard substrate and can be found throughout the whole study area. They provide settling
space for small epibenthic species, such as barnacles, tunicates, and epibenthic bivalves,
and shelter for mobile or tube-building species, e.g., of polychaetes genera Harmothoe and
Flabelligera. Likewise, the surrounding geogenic hard substrates such as boulders and
cobbles add to the species inventory of the soft-sediment communities. This happens either
by detached biogenic material, such as floating algae or pieces of sponge colonies, carrying
specimens that inhabit them or by mobile species. However, not only the presence of
geogenic hard substrate and its epibenthic community, but also the presence of different
soft sediment types on small patches significantly raised species richness. The positive
effect of habitat heterogeneity on biodiversity has been demonstrated for both hard-bottom
and soft-bottom in previous studies on benthic systems [8,52–54]. Explanations for the
mechanisms behind this effect include a greater number of niches due to increased micro-
habitat availability and, associated with greater surface area, a higher productivity and
sampling effect [7]. High substrate heterogeneity may form greater variation in space
sizes, providing habitable space to organisms with a wider variety of body sizes, thereby
leading to higher species richness [50,55]. Furthermore, Kovalenko et al. [7] argue that
increasing habitat complexity may decouple trophic interactions and subsequently increase
ecosystem stability. Overall, our findings are in line with the results of other studies from
marine and brackish waters (e.g., [8,14]). It could be shown that the variety of ecological
niches in the heterogeneous areas in MPA Fehmarn Belt not only raise local biodiversity
but additionally, and more importantly, provide habitats for rare species that were not
found in homogeneous sediments. The role of these rare species in ecosystem function and
stability is still not fully understood, but most studies concordantly highlight their potential
role in functional redundancy and, consequently, in securing ecosystem resilience [11,13].
Consequently, the integrity of the heterogeneous areas and the inhabiting communities in
the Fehmarn Belt can be of special interest, not only for nature conservation, but also for
ecosystem function of the whole area.

5. Conclusions

To conclude, heterogeneous seabed forms structure habitat three-dimensionally, in-
crease species richness, and buffer ecosystem functional diversity, thereby resisting fluc-
tuating environmental factors. Areas with such a high multidimensional diversity are
likely to be of outstanding importance in times of global overfishing, climate change, and
exploration of offshore space and resources. The Fehmarn Belt is one these areas in the
Baltic Sea, and its ecological development requires special attention to secure the future
provision of related ecosystem services.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology12060825/s1: Figure S1: Description of the occurring
substrates at the study site; Explanatory Text S1: Testing the suitability of Poisson distribution; Figure
S2: Poisson distribution; Figure S3: Checking predictors for collinearity; Table S1: Generalized
Variance Inflation Factors; Figure S4: Effect plots for each predictor in the field model; Explanatory
Text S2: Dispersion analysis and evaluation of how much the coefficient estimations are affected by
overdispersion; Figure S5: Plot of estimated variance against the mean (Pearson residuals) for the
best fitted Poisson model; Figure S6: DHARMa nonparametric dispersion test via sd of residuals
fitted vs. simulated for the best fitted Poisson model: (dispersion = 3.8552, p-value < 0.0001) and plots
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of scaled residuals; Table S2: Results of GLM using the Quasipoisson family and alternatively used
Negative Binomial instead of the Poisson model; Figure S7: DHARMa nonparametric dispersion test
via sd of residuals fitted vs. simulated for negative binomial model (dispersion = 0.88992, p-value =
0.424) and plots of scaled residuals; Figure S8: Effect plots for each predictor in the final negative
binomial model remained very similar; Tables S3–S5: Results of post-hoc tests for the final negative
binomial GLM model. Upper triangle: p values adjust = “tukey”; diagonal: [Estimates] (emmean);
lower triangle: Comparisons (estimate) earlier vs. later; Figure S9: Boxplot comparing the number of
species in spring and summer; Figure S10: Positioning of stations sampled in mud; Figure S11: GLM
results and effect plots for each predictor in the full model with the two influential points (outliers);
Figure S12: Effect plots for each predictor in the full model with median grain size transformed in
phi units; Table S6: List of species.
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Simple Summary: Determining the physiological and biochemical causes of aging in animals is
important both because of the potential health utility for humans and because aging is related to
growth, reproduction processes, and the response of organisms to environmental conditions and
stress. It is assumed that the peculiarities of the fatty acid composition of mitochondrial membranes
(“membrane-pacemaker” theory of aging) can influence the rate of oxidative damage in cells, as
well as the rate of the aging process. This property, in turn, may be fundamental for all living
organisms. In this study, the fatty acid composition of gill tissues’ mitochondrial membranes, in
marine bivalves, was determined and analyzed. The observed features in the lipid composition of
mollusk mitochondria correlate well with the longevity of these animals.

Abstract: Marine bivalves belonging to the Mytilidae and Pectinidae Families were used in this research.
The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill
membranes in bivalves with different lifespans, belonging to the same family, and to calculate
their peroxidation index; to compare the levels of ROS generation, malondialdehyde (MDA), and
protein carbonyls in the mitochondria of gills, in vitro, during the initiation of free-radical oxation;
to investigate whether the FAs of mitochondria gill membranes affect the degree of their oxidative
damage and the maximum lifespan of species (MLS). The qualitative membrane lipid composition
was uniform in the studied marine bivalves, regardless of their MLS. In terms of the quantitative
content of individual FAs, the mitochondrial lipids differed significantly. It is shown that lipid
matrix membranes of the mitochondria of long-lived species are less sensitive to in vitro-initiated
peroxidation compared with the medium and short-lived species. The differences in MLS are related
to the peculiarities of FAs of mitochondrial membrane lipids.

Keywords: oxidative stress theory; peroxidation index; oxidative stress in vitro

1. Introduction

The process of biological aging is characterized by a progressive decline in the effi-
ciency of physiological functions. The ability to maintain the homeostasis of basic cellular
processes weakens with age, which ultimately leads to an increased risk of many diseases
and increases the probability of death [1].
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Currently, the most widely accepted explanation of the mechanisms of aging is the
free radical theory proposed by Harman in 1956. According to this theory, reactive oxygen
species (ROS) formed during metabolism exhibit high reactivity and inevitably damage
important biological structures (including lipids, proteins, and nucleic acids). The accumu-
lation of damages is accompanied by a decrease in physiological functions, and it ultimately
leads to the aging and death of the organism [2]. However, the status of this theory is far
from certain, as some studies have found a lack of correlation between oxidative damage
and lifespan, and the genetic manipulation of antioxidant pathways in invertebrate models
(e.g., the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster)
have yielded variable results on life span, whereas studies in higher animals (e.g., the
naked mole-rat Heterocephalus glaber) have not, generally, supported a role for oxidative
stress in modulating longevity [3–6].

Later, it became evident that there is a close link between ROS generation (mainly
in the respiratory chain of mitochondria) and the aging process [7,8]. Most of the oxygen
consumed by the cell is involved in mitochondrial oxidative phosphorylation. During
this process, a stepwise one-electron reduction in an oxygen molecule occurs, with the
generation of its active forms (O2

•−, OH•, H2O2) as intermediate products [9]. It has been
shown that the rate of oxidative attacks, of ROS, on mitochondrial DNA is higher than
on nuclear cell DNA [10]. At the same time, it turned out that the oxidative damage of
mitochondrial DNA was inversely correlated with the lifespan of some birds and mammals
since mutations, caused by damage in mitochondrial DNA, increased the aging process [10].

When explaining the mechanisms of aging, an attempt was made to combine the
theory of oxidative stress (“free radical” theory) with the intensity of metabolism (“rate
of living” theory). According to this viewpoint, organisms with a high metabolic rate are
characterized by an increased production of oxyradicals that promote the rapid generation
and accumulation of oxidative damage in the cell. On examples of certain representatives
of mammals, birds, cephalopod mollusks, and the housefly (Musca domestica), by direct
and indirect methods, it has been shown that ROS generation negatively correlates with
lifespan [11–13].

However, as the experimental data were accumulated, this popular concept was
considered to be erroneous. For example, it has been shown that spontaneous physical
exercise and the associated increase in metabolic rate do not decrease the lifespans of
mammals [1]. Another example is that birds and mammals have similar metabolic rates,
but birds tend to live much longer than similarly sized mammals [14].

A relatively recent viewpoint has emerged, according to which the processes of aging
and maximum lifespan (MLS) are closely connected to the susceptibility of a membrane
lipid matrix to peroxidation, the key role in which is assigned to the nature of Fatty Acids
(FAs). The composition of the FAs of membrane lipids subjected to oxidation correlates with
the MLS of some birds and mammals, varies with body size [15,16], and is related to their
MLS [17,18]. These studies played an important role in the development of “homeoviscous-
longevity” theory and, later, the “membrane-pacemaker” theory of aging [19,20]. These
theories assume that the characteristics of the FAs of mitochondrial membranes may
influence the rate of oxidative damage in cells and the MLS of species.

It is known that the susceptibility of the same FAs to peroxidation increases exponen-
tially with the number of double bonds of the carbon chain. Therefore, a single average
value of susceptibility to peroxidation for any biological membrane, which has been named
as peroxidation index (PI) [1,21], can be calculated from the profile of membrane FAs. The
higher the value of the index, the more sensitive the lipid matrix is to oxidation.

The first indications of the relationship between the membrane composition and
maximal lifespan were given by Pamplona and colleagues [22], who showed that the
oxidation index PI of rat liver, guinea pig, and human mitochondria membranes correlated
with their respective lifespan values. Later, it was shown that such a pattern is also typical
for other tissues of humans and animals, including mammals, birds, and crustaceans [1].
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Nevertheless, there are very few papers describing the applicability of this hypothesis
to various invertebrate species. Despite the fact that there are extensive literature data on
the FAs of lipids in invertebrate membranes, there are almost no papers linking it to the
aging processes and lifespan of a particular species. For example, among invertebrates,
the membrane lipid oxidation index has been calculated for individual representatives of
bivalves [21,23]. The authors claim that there is a significant negative correlation between
PI and the maximum lifespans (MLS) of these species. MLS is equivalent to the lifespan of
the oldest observed specimen of a particular animal species, and it remains a frequently
used trait in comparative biology [24].

Taking into account the fact that similar studies on phylogenetically similar species
of marine mollusks have not been performed, we aimed to fill this gap and make some
contribution to the development of this theory (“membrane-pacemaker” theory of aging).
In addition, the specific objectives of this study were:

- to determine the FAs of mitochondrial gill membranes, in bivalves with different
lifespans belonging to the same family, and to calculate their peroxidation index;

- to compare the levels of ROS generation, products of oxidative damage to lipids—
malondialdehyde (MDA)—and protein carbonyls in the mitochondria of mollusk gills,
in vitro, during the initiation of free-radical oxidation in the Fe-ascorbic acid model;

- to investigate whether the FAs of gill mitochondrial membranes affect the degree of
their oxidative damage and the MLS of species.

Marine bivalves belonging to the Mytilidae Families (Mytilus trossulus Gould, 1850,
Modiolus kurilensis Bernard, 1983, Crenomytilus grayanus Dunker, 1853) and Pectinidae Fami-
lies (Chlamys farreri Jones and Preston, 1904, Swiftopecten swiftii Bernardi, 1858, Mizuhopecten
yessoensis Jay, 1857) were used in this research. Bivalves are genetically intermediate to
classical invertebrate models of aging (e.g., worms and flies) and mammals. This provides
a better opportunity to understand the evolution of stress-response pathways and organ-
ismic aging [7]. Recent studies have shown that bivalves are excellent models for aging
research [25,26]. First, some individuals can reach a significant age: for example, Arctica
islandica (507 years) or Crenomytilus grayanus (150 years). At the same time, among them,
there are also short-lived species, such as surf clams (Family Donacidae), with species of no
more than a 1 year lifespan, as well as Mytilus trossulus (6 years). Second, it is possible to
study the different-aged species living in the same environmental conditions and, accord-
ingly, experiencing similar fluctuations in the environmental temperature during the year.
It is likely that such species should have an approximately constant FA composition of
membranes. Third, some bivalves are capable of maintaining their metabolism, at a basic
level, under stressful conditions in the shelf zone. Among the mechanisms for maintaining
such a state, one is the low susceptibility to membrane lipid peroxidation. In addition, the
composition of mollusk membranes is very different from that of endothermic animals.
Plasmalogens and non-methylene-interrupted FAs are found in significant amounts in the
membrane lipids of all molluskan organs. It is assumed that they significantly affect the
liquid crystal structure of the lipid matrix and act as retarders of the peroxidation processes
in the membrane. Their presence also increases the antioxidant activity of lipids [8,27]. The
variations in membrane FA composition may be an important missing link in the problem
of explaining aging and the mechanisms that determine the maximum lifespan specific to
each species. This is a testable hypothesis that requires further experiments.

2. Materials and Methods
2.1. Site of Bivalves Collection and Material

Mature mollusks were collected during the post-spawning period, in November 2021,
in the waters of the Alekseev Bay and Stark Strait in the Sea of Japan (Figure 1).
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(1—the collection site of mussels, 2—scallops).

The biological characteristics of bivalves are shown in Table 1.

Table 1. Biological characteristics of bivalves.

Species Length, mm Approximate Age, Years MLS, Years Reference

Mytilidae

Crenomytilus grayanus 116.9 ± 5.0 24 150 [28,29]

Modiolus kurilensis 111.7 ± 4.9 20 61 [29,30]

Mytilus trossulus 42.2 ± 3.9 4 6 [31]

Pectinidae

Mizuhopecten yessoensis 132.0 ± 11.2 5 22 [32]

Swiftopecten swiftii 83.9 ± 5.2 4 15 [29,33]

Chlamys farreri 92.3 ± 5.3 4 9 [34]
Note: MLS—maximum lifespan.

Mollusks were transported to the aquarium of the A.V. Zhirmunsky National Scientific
Center of Marine Biology, where they were maintained at a constant temperature of 16 ◦C
for 3 days to relieve the stress of transportation.

For FA analysis, 2 g of gills were obtained from one individual, for a total of 5
individuals for each species; for M. trossulus, tissue from 16 individuals was pooled for a
total of 80 individuals. The mitochondria obtained for each mollusk species were separated
into three samples (n = 3). For ROS, MDA, and carbonyl analysis, mitochondria were
obtained from gills weighing 0.6 g. For most mollusks, 1 sample was 1 individual, for a
total of 6–8 samples (n = 6–8). For M. trossulus, 1 sample was an assemblage of 3 individuals,
for a total of 6–8 samples (n = 6–8). The isolated gills were frozen in liquid nitrogen and
stored for not more than 1 month before analysis. All procedures in the present work, as
well as the mollusk disposal methods, were approved by the Commission on Bioethics at
the V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of
Science (protocol №16 and date of approval 15 April 2021), Vladivostok, Russia.

The individual age of scallops and M. trossulus was estimated by growth retardation
rings on the surface of the shell. The data were comparable with the growth curves obtained
for these species by other authors (Table 1). The age of C. grayanus and M. kurilensis was
determined by the curves of group linear growth (Table 1).
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2.2. Mitochondria Isolation

Gills were homogenized on ice (1:5, weight/volume). Mitochondria were isolated
in 0.5 M NaCl in a 0.05 M Tris-HCl (pH 7.5) medium containing 0.25 M sucrose, 1 mM
EDTA, and 0.1 mM PMSF. The medium for homogenization was pre-blown with argon. The
homogenate was centrifuged at 1000× g for 12 min to remove large residual cells and nuclei.
The resulting supernatant was centrifuged at 12,000× g for 30 min. The mitochondria were
washed from sucrose 3 times in 0.5 M NaCl in 0.05 M Tris-HCl (pH 7.5).

2.3. Biochemical Analysis

ROS levels were determined by the oxidation of DHR 123 (dihydrorhodamine 123)
to fluorescent rhodamine 123 [35]. MDA content was determined by a color reaction
with 2-thiobarbituric acid [36]. Protein carbonyl groups were determined by the alka-
line method [37], and protein concentration was determined by the modified Lowry
method [38].

2.4. Oxidative Stress In Vitro

The oxidative stress reaction was triggered by adding Fe2+ and ascorbic acid (50 µM
and 100 µM in the incubation medium, respectively) to mitochondria at 20 ◦C for one hour
for MDA and carbonyl determination, as well as 15 min for ROS determination.

2.5. Determination of FAs

Lipid FAs were analyzed in the form of methyl esters using an Agilent 3700 chro-
matograph with a flame ionization detector. We used a Carbowax-20 M capillary column
25 m × 0.2 mm, a helium carrier gas, and a thermostat temperature of 200 ◦C [39]. FAs
were identified by comparing the relative retention times of their methyl esters with the
FA methyl esters of the standard mixture and the “carbon numbers” values [40]. The
percentage of acids was calculated according to the method of Carrol [41]. FA methyl esters
were obtained according to the method of Carreau and Dubacq [42].

2.6. Statistical Analysis

Statistical processing of the results was performed using Statistica 7. Breakdown
and one-way ANOVA, as well as Statistics by Groups, Post-hoc were used to assess the
reliability of parameter changes. Significance was established at p < 0.05.

3. Results
3.1. FAs in Mitochondrial Membranes of Mollusk Gill Cells

According to the results of the analysis presented in Table 2, the qualitative composi-
tion of the FAs of gill cell mitochondria lipids is uniform in all the studied marine bivalves,
regardless of their MLS. However, in terms of the quantitative content of individual FAs,
the mitochondrial lipids of mollusks differed significantly.

Despite significant variations (from 21.06 to 47.8%) in the content of total saturated
fatty acids (SFAs), in all representatives of the Mytilidae Families and the Pectinidae Families,
the palmitic and stearic acids (16:0 and 18:0) dominated. At the same time, the lowest
content of SFAs was found in the mitochondrial lipids of the scallop S. swiftii, and the
maximum was in the Pacific mussel M. trossulus. In general, it turned out that the SFAs in
mitochondrial lipids in short-lived species was higher than in medium-lived and long-lived
bivalves (Table 2).

In most mollusks, oleic acid (18:1 n−7) dominated among monounsaturated fatty
acids (MUFAs), except for C. grayanus and M. yessoensis, in which eicosenoic acid (20:1 n−9)
MUFAs predominated. The total content (MUFAs) in lipids also varied widely (from 11.4
to 20.5%) in the mollusks studied: the minimum amount was observed in the mitochondria
of M. trossulus, and the maximum was in C. grayanus and C. farreri.
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Table 2. Fatty acids (%) from gill mitochondria lipids. Values are mean ± SD, n = 3.

Fatty Acid Mytilidae Pectinidae

C. grayanus M. kurilensis M. trossulus M. yessoensis S. swiftii C. farreri

12:0 1.0 ± 0.0 0.7 ± 0.2 1.1 ± 0.1 0.7 ± 0.0 0.7 ± 0.2 1.0 ± 0.7

14:0 ai 0.2 ± 0.0 0.7 ± 0.1 0.8 ± 0.0 0.5 ± 0.0 0.3 ± 0.1 0.8 ± 0.2

14:0 0.6 ± 0.0 0.3 ± 0.1 0.7 ± 0.0 0.1 ± 0.0 0.4 ± 0.1 0.1 ± 0.0

15:1 n−7 1.0 ± 0.0 1.8 ± 0.0 1.6 ± 0.3 0.4 ± 0.0 0.4 ± 0.1 0.6 ± 0.0

16:0 17.9 ± 0.9 15.9 ± 0.3 19.0 ± 0.1 12.5 ± 0.6 12.7 ± 0.8 13.7 ± 0.7

16:1 n−9 2.1 ± 0.1 2.0 ± 0.5 2.7 ± 0.3 1.3 ± 0.0 - 2.2 ± 0.2

16:1 n−7 2.3 ± 0.1 2.3 ± 0.1 1.9 ± 0.0 1.4 ± 0.0 2.3 ± 0.5 1.2 ± 0.0

17:0 i 0.6 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.3 ± 0.0 0.9 ± 0.1 0.1 ± 0.0

17:0 ai 1.1 ± 0.1 1.8 ± 0.1 1.8 ± 0.0 1.2 ± 0.0 0.3 ± 0.1 2.3 ± 0.0

17:0 0.8 ± 0.0 1.9 ± 0.1 1.7 ± 0.0 1.0 ± 0.0 0.9 ± 0.2 -

18:0 i 2.8 ± 0.1 2.5 ± 0.2 4.0 ± 0.1 0.9 ± 0.0 1.2 ± 0.3 1.3 ± 0.1

18:0 9.6 ± 0.5 10.9 ± 0.3 19.8 ± 3.1 4.8 ± 0.2 3.3 ± 0.6 9.7 ± 0.1

18:1 n−9 0.7 ± 0.0 - - - 0.1 ± 0.1 1.0 ± 0.0

18:1 n−7 4.3 ± 0.2 5.1 ± 0.3 2.3 ± 1.6 4.3 ± 0.2 4.5 ± 0.4 5.4 ± 0.4

18:2 n−6 1.0 ± 0.0 2.4 ± 0.5 1.6 ± 0.3 2.0 ± 0.1 2.2 ± 0.2 2.5 ± 0.1

18:2 n−4 0.4 ± 0.0 1.5 ± 1.5 0.5 ± 0.2 0.6 ± 0.0 0.1 ± 0.0 0.3 ± 0.1

18:3 n−6 - - 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 -

18:3 n−3 0.8 ± 0.0 1.2 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 0.1 ± 0.0

20:0-i 1.8 ± 0.1 1.7 ± 0.1 0.4 ± 0.1 - - 0.8 ± 0.1

18:4 n−3 0.2 ± 0.0 - 0.4 ± 0.0 - 0.1 ± 0.0 -

20:1 n−13 2.2 ± 0.1 0.6 ± 0.1 0.8 ± 0.2 2.0 ± 0.1 1.8 ± 0.0 2.9 ± 0.1

20:1 n−9 5.8 ± 0.3 3.4 ± 0.1 1.9 ± 0.3 5.5 ± 0.3 4.2 ± 0.5 4.2 ± 0.2

20:1 n−7 2.2 ± 0.1 3.9 ± 0.0 1.3 ± 0.2 1.0 ± 0.1 0.6 ± 0.3 2.5± 0.1

20:2 (5,11) 3.9 ± 0.2 1.9 ± 0.0 1.8 ± 0.1 5.4 ± 0.3 5.5 ± 0.6 0.9 ± 0.0

20:2 (5,13) 1.6 ± 0.1 0.6 ± 0.1 1.1 ± 0.2 1.7 ± 0.1 1.0 ± 0.1 0.7 ± 0.1

20:4 n−6 5.5 ± 0.3 5.7 ± 0.5 3.5 ± 0.3 6.7 ± 0.3 5.8 ± 1.2 3.9 ± 0.2

20:5 n−3 4.2 ± 0.2 6.2 ± 0.5 6.0 ± 0.4 3.9 ± 0.2 4.7 ± 0.6 9.7 ± 0.3

22:2 8.2 ± 0.4 5.2 ± 0.1 4.1 ± 0.2 11.7 ± 0.6 9.0 ± 1.2 1.0 ± 0.0

22:6 n−3 8.6 ± 0.4 9.7 ± 0.3 9.3 ± 0.4 22.1 ± 1.1 25.8 ± 1.4 21.7 ± 1.3

Total 91.1 ± 4.6 90.4 ± 0.9 87.4 ± 4.0 93.6 ± 4.7 89.5 ± 7.2 92.0 ± 1.3

SFAs 36.3 ± 1.8 37.0 ± 0.0 47.8 ± 0.5 22.36 ± 1.1 21.0 ± 1.9 30.3 ± 1.4

MUFAs 20.5 ± 1.0 19.0 ± 1.0 11.4 ± 3.1 16.12 ± 0.8 13.4 ± 0.4 20.4 ± 0.6

PUFAs 34.3 ± 1.7 34.4 ± 0.1 28.2 ± 1.4 55.13 ± 2.8 55.0 ± 4.9 43.6 ± 5.7

∑n−3 13.6 ± 0.7 17.1 ± 0.8 15.4 ± 1.0 26.55 ± 1.3 30.8 ± 1.9 31.6 ± 1.6

∑n−6 6.5 ± 0.3 8.1 ± 1.0 5.2 ± 0.4 9.03 ± 0.5 8.3 ± 1.5 6.4 ± 0.4

n−3/n−6 2.10 2.11 2.98 2.94 3.69 4.92

SFAs/
PUFAs 1.05 1.08 1.70 0.41 0.38 0.70

∑NMI FAs 13.7 ± 0.01 7.75 ± 0.24 6.93 ± 0.15 18.9 ± 0.1 15.68 ± 1.63 2.76 ± 0.22

∑2n, 3n/
∑4n, 6n 1.11 0.84 0.73 0.77 0.58 0.22

PI 124.5 ± 6.2 146.7 ± 6.6 129.7 ± 7.9 238.2 ± 11.2 267.3 ± 19.5 252.7 ± 13.6

MLS 150 61 6 22 15 9
Note: MLS—maximum lifespan; PI—peroxidation index; SFAs—saturated fatty acids; MUFAs—monounsaturated
fatty acids; PUFAs—polyunsaturated fatty acids; NMI FAs—non-methylene-interrupted fatty acids.
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Non-methylene-interrupted fatty acids (NMI FAs), represented mainly by docosa-
dienoic acid (22:2), were found in the FA composition of the mitochondria of marine
mollusks. The greatest variation in the content of this acid was observed in pectinids: from
1% in the scallop C. farreri to 11.7% in the scallop M. yessoensis. The 22:2 level in representa-
tives of the Mytilidae Family increased in the series: M. trossulus—M. kurilensis—C. grayanus;
in representatives of the Pectinidae Family—in the series: C. farreri—S. swiftii—M. yessoensis.
Regarding NMI FAs, both by the content of individual 22:2 and by the total level of NMI
FAs, the total content of which varies from 2.76% (C. farreri) to 13.7% (C. grayanus), a direct
connection with MLS is observed in species of the relevant family.

In representatives of the Pectinidae Family, polyunsaturated fatty acids (PUFAs) domi-
nated in the FAs of gill mitochondrial cell membranes; their amount was greater than the
total sum of SFAs and MUFAs. The Mytilidae Family showed a different pattern: the level of
PUFAs did not exceed, and in some cases, it was lower than the total sum of saturated and
monounsaturated acids (Table 2). Docosahexaenoic acid (22:6 n−3) significantly prevailed
in the PUFA of mitochondria lipids, especially in pectinids. Among PUFAs, the ratio
of n−3/n−6 acids varied from 2.10 to 4.92, with the minimum values observed in the
C. grayanus and the M. yessoensis, and the maximum values were characteristic of the Pacific
mussel M. trossulus and the Zhikong scallop C. farreri (Table 2).

3.2. PI of Mitochondrial Membranes

On the basis of the composition of FAs, according to the formula given in [21], the
lipid peroxidation index was calculated, the values of which are shown in Table 2. From
the analysis of these values, it follows that the propensity to oxidation of the FA lipids of
mitochondrial membranes, in representatives of the Pectinidae Family, is higher than that in
representatives of Mytilidae Family. At the same time, no correlation between the obtained
values of PI and MLS of bivalves was revealed.

3.3. Constitutive Levels of ROS, MDA and Carbonyls

The basal levels of ROS generation and MDA content in mitochondria were highest in
the long-lived Gray’s mussel C. grayanus and the coastal scallop M. yessoensis, as compared
with the medium and short-lived representatives of the respective families (Figure 2). In
general, representatives of the Mytilidae Family differed from those of the Pectinidae Family
(S. swiftii, C. farreri) in higher MDA content in the mitochondria of gill cells. At the same
time, C. grayanus and M. kurilensis had a lower level of ROS generation compared to M.
yessoensis and C. farreri, respectively. No interspecific differences in the content of protein
carbonyls were found in any of the bivalves studied.
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M. trossulus; b—C. grayanus vs. M. kurilensis; c—M. yessoensis vs. S. swiftii and C. farreri; d—M. yessoen-
sis vs. S. swiftii and C. farreri; #—C. grayanus vs. M. yessoensis; * C. grayanus, M. kurilensis and M.
trossulus vs. S. swiftii and C. farreri; ##—M. kurilensis vs. C. farreri (n = 6–8; Post-hoc, p < 0.05).

3.4. Induction of Oxidative Stress In Vitro

The results of this series of experiments showed that, when free-radical processes
were initiated using the Fenton reaction, the lowest level of oxygen radical generation was
registered in the mitochondria of the long-lived mussel Gray’s C. grayanus and the scallop
M. yessoensis in contrast to the short-lived mussel M. trossulus and the scallop C. farreri
(Figure 3). A similar pattern was observed in the formation of the main product of lipid
oxidation—MDA.
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Figure 3. Response to induced oxidative stress in vitro. Significance of differences between: a—
C. grayanus vs. M. trossulus; b—C. grayanus vs. M. kurilensis and M. trossulus; c—M. yessoensis vs.
S. swiftii and C. farreri; d—M. yessoensis vs. C. farreri; *—C. grayanus, M. kurilensis and M. trossulus
vs. M. yessoensis, S. swiftii and C. farreri; #—C. grayanus vs. M. yessoensis, S. swiftii and C. farreri;
##—M. kurilensis and M. trossulus vs. C. farreri (n = 6–8; Post-hoc, p < 0.05).

Under these conditions of ROS generation initiation, the least amount of MDA accu-
mulated in the mitochondrial lipids of long-lived mollusks (C. grayanus mussel and M.
yessoensis scallop) compared with short-lived ones (M. trossulus and C. farreri). Mitochon-
drial membranes did not differ in protein carbonyl levels in bivalves from both families
(Figure 3).

4. Discussion
4.1. Specific Features of FAs in Gill Mitochondria Lipids

Unsaturated fatty acids are easily subjected to oxidative damage in the cell, and the
rate of oxidation increases with the number of double bonds. Therefore, unlike SFAs
and MUFAs, which are relatively resistant to oxidation, PUFAs are easily and rapidly
oxidized [8,43]. According to homeoviscous theory, the liquid crystalline state of the lipid
matrix, necessary for the function of biological membranes, is maintained by regulating
the degree of unsaturation of the acyl chains of phospholipids. In this respect, using
mammalian and avian representatives as an example, it has been shown that the high
unsaturation of membrane lipid FAs is associated with an increased level of oxidative
lipid damage, but it negatively correlates with MLS [17,44]. Thus, in representatives of
long-lived mammals, as compared to species with shorter lifespans (short-lived ones), a
decrease in the ratio of acids with 4 or 6 double bonds and an increase in the level of FAs
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with 2 and 3 double bonds were found. At the same time, as noted by the authors, not only
was a significant increase in lipid resistance to peroxidation observed but the corresponding
fluidity of the lipid matrix was also maintained, and all the most important functions of
membranes (receptor, ion transport, metabolite transport, etc.) were performed [8,44].

In fact, the results of this study of the FAs of mitochondrial lipids, in representatives
of two families of marine bivalves, confirm this theory.

On the basis of the SFAs/PUFAs ratio, the authors showed that the amount of SFAs in
gill membrane lipids was higher in representatives of the Mytilidae Family compared with
the Pectinidae Family. It turned out that the long-lived C. grayanus and M. yessoensis had a
lower SFAs/PUFAs ratio compared to the short-lived M. trossulus and C. farreri from the
respective families. In addition, as in mammalian representatives, the proportion of FAs
with 2 and 3 double bonds, in relation to FAs with 4 and 6 double bonds, was higher in
long-lived species vs. short-lived species (Table 2).

It is known that the tendency of oxidation of acyl chains of lipids is determined not
only by the degree of unsaturation but, also, by the position of double bonds. It was
found that n−3 PUFAs are oxidized faster than n−6 PUFAs. Accordingly, membranes
enriched with phospholipids with n−6 FAs are more stable in response to unfavorable
environmental factors [45]. In addition, the ratio of these PUFAs (Σn−3/Σn−6) is an index
characterizing the viscosity/liquidity of the lipid matrix of biological membranes. The
lower is the ratio of n−3/n−6, the lower is the viscosity of the lipid matrix, but the higher
is the resistance of lipids to oxidation, which is beneficial for the stability of membrane
processes. In this respect, the paper of Valencak and Ruf [46] should be particularly noted.
The authors revealed a negative correlation between the increase in the n−3/n−6 ratio in
the skeletal muscle lipids of mammalian representatives and their lifespan. This interesting
tendency is also clearly seen in marine bivalves. In this study, it was found that, in the
mitochondrial lipids of long-lived mussel C. grayanus and scallop M. yessoensis, the ratio of
Σn−3/Σn−6 is lower in comparison with the medium-lived and short-lived representatives
of the respective families (Table 2). Based on this, there is every reason to believe that the
lipid matrix of mitochondrial membranes of long-lived species is more stable in response
to the effects of unfavorable environmental factors.

In addition to the above characteristics of mitochondrial membrane lipids, the presence
of NMI FAs draws attention, which can also have a significant influence on the structure and
function of biological membranes. These unusual FAs can act as “structural antioxidants”,
slowing down the lipid matrix peroxidation processes [47]. The obtained results showed
that the acids [Σ20:2 (5,11); 20:2 (5,13); 22:2] were present in far greater amounts in the lipids
of long-lived C. grayanus and M. yessoensis mollusks than in the lipids of medium-lived and
short-lived species from the respective families (Table 2). Therefore, it is logical to assume
that the lifespans of the studied mollusks are related to the presence of these FAs in the
lipids, which protect mitochondrial membranes from oxidative damage to a certain extent.

In general, the observed features in the lipid composition of mollusk mitochondria,
through the presumed effect on lipid matrix oxidability, correlate well with the lifespans
of these animals. Although the integral index (PI), calculated based on FA composition,
demonstrated an increased sensitivity to the oxidative degradation of lipid membranes
of representatives of the Pectinidae Family vs. representatives of the Mytilidae Family,
it showed no relationship with the lifespans of bivalves. In this respect, the results of
these studies and reasoning are consistent with those of Valencak and Ruf [46], who also
found no correlation between the skeletal muscle lipid oxidation index (PI) and lifespan in
42 mammalian species.

The absence of such correlation calls into question the correctness of the calculation of
this index, which does not consider additional factors influencing lipid oxidability. Among
them, it should be emphasized that the high content of etheric lipids with alkyl and alkenyl
fat radicals is characteristic of bivalves, whose contribution to lipid matrix oxidation of
membranes is practically unstudied [48].
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4.2. Constitutive Levels of ROS, MDA and Carbonyls in Gill Mitochondria

The “membrane-pacemaker” theory of aging suggests that lifespan can be related not
only to lipid matrix oxidizability (based on PI) but, also, to the rate generation of ROS
in the cell. The main source of ROS generation in the cell is the electron-transport chain
localized in mitochondrial membranes. Taking into account their high reactivity, these ROS
can initiate free-radical processes and cause the destruction of membrane lipids, proteins,
and damage to mitochondrial DNA. In the latter case, there is strong evidence that the
rate of aging is closely related to the frequency of mutations occurring in mitochondrial
DNA [10]. In the lipid matrix of membranes, unsaturated fatty acids, especially PUFAs,
become the preferred target for ROS. After the initiation of free-radical processes through a
cascade of reactions, these FAs decompose to form highly reactive carbonyl compounds,
such as malondialdehyde (MDA) and 4- hydroxynonenal (4-HN), which exhibit various
cytotoxic and genotoxic properties [49]. It is likely that, through the regulation of ROS
generation, mitochondria play a key role in preventing the formation and accumulation of
various destructive damages affecting aging processes.

This opinion is based on the results of mammalian and bird studies in which it has
been shown that, regardless of oxygen uptake rate, long-lived species show low rates
of mitochondrial radical generation and contain lower constitutive levels of antioxidant
activity [7,8,12,14]. Nevertheless, it has been shown that, in the long-lived (naked mole rat)
Heterocephalus glaber, the endothelial and smooth muscle cells of carotid arteries and aorta
produce comparable—or even higher—levels of ROS compared to short-lived mice [50].

The results of these studies also do not fit the general hypothesis. In long-lived
C. grayanus and M. yesonensis, a relatively high baseline level of ROS generation and
elevated MDA content in mitochondria were observed compared with other representatives
of their families. Moreover, all this is realized against the background of a relatively low
baseline level of antioxidant potential, including the activity of antioxidant enzymes and
low molecular weight antioxidants [51].

Previously, in comparative studies of bivalves belonging to different families, it was
shown that the isolated gill and heart mitochondria of long-lived Arctica islandica gener-
ated less ROS compared to short-lived Mya arenaria, Spisula solidissima, and Mercenaria
mercenaria [27,51]. At the same time, the short-lived scallop Argopecten irradians and the
long-lived Tridacna derasa did not significantly differ in ROS generation in gills, adductor
muscles, and heart cells [52]. There was also no difference in the carbonyl content of the
gills and adductor muscle in these species.

Comparing these results with the above examples, it is logical to assume that, in long-
lived mollusks, against the background of low antioxidant protection, the hydrophobic
component probably plays an important role in the mechanisms maintaining the oxidative
stability of the lipid membrane matrix. These ideas, to a certain extent, were confirmed in
the authors’ experiments with the induction of mitochondrial lipid peroxidation initiated
by the Fenton reaction. This approach makes it possible to not only estimate the potential
ability of mitochondria to generate ROS but, also, to reveal the integral vulnerability of the
hydrophobic matrix to oxidative degradation in case of oxidative stress.

4.3. Response to Induced Oxidative Stress In Vitro

The results showed that the mitochondria of long-lived C. grayanus and M. yessoensis
produced lower levels of ROS and less MDA as compared to medium and short-lived
representatives of the respective families, indicating greater resistance of their lipid matrix
to in vitro-induced oxidative damage. As far as one can estimate from the published data,
the presented results are not only characteristic for the study species. It was also found that
exposure of the scallop Argopecten irradians to paraquat, rotenone, or organic hydroperoxide
causing oxidative damage of mitochondria was accompanied by a faster death of these
short-lived mollusks compared to the long-lived Mercenaria mercenaria, Arctica islandica, and
Tridacna derasa [53,54]. Moreover, there is evidence that experiments in vitro, fibroblasts,
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and lymphocytes of long-lived vertebrate species show increased resistance to induced
oxidative stress [55].

When analyzing the results of mollusk mitochondrial resistance to the in vitro-induced
oxidative damage of membrane lipids, the authors found two opposite trends. In represen-
tatives of the Mytilidae Family, in response to Fenton’s reagents, mitochondria generated
high levels of ROS, which nevertheless led to an insignificant accumulation of MDA. In
similar experiments on representatives of the Pectinidae Family, a different picture was
observed: against the background of an insignificant level of ROS generation, we detected
a significant increase in the MDA content of mitochondrial membrane lipids. Although it is
beyond the scope of this study to investigate the reasons for these peculiarities, the authors
should admit that the mitochondrial membranes of these two families differ significantly
not only in lipid matrix accessibility to peroxidation but, also, in the function of ROS
generation centers.

As the experimental data accumulate, it becomes more and more evident that different
mechanisms of stabilization of not only the lipid matrix but proteins can make a certain
contribution to the processes ensuring cell resistance to stress and lifespan [51,56]. Never-
theless, according to the experimental data, the authors found no changes in the content of
protein carbonyls at neither the baseline nor after ROS generation in bivalves with different
lifespans. Apparently, the reparation processes of the damaged mitochondrial membrane
proteins, with the participation of proteosomal and autophagic mechanisms, are stable
and exhibit resistance to short-term exposure to oxidative stress in these representatives of
marine mollusks. Regarding the poor study of this issue, the authors consider it necessary
to perform further studies to identify the mechanisms maintaining the stability and in-
tegrity of membrane protein components with the involvement of representatives of other
taxonomic groups with different lifespans.

5. Conclusions

The common features of the relationship between the FA composition of gill mito-
chondrial membranes and the MLS of species are revealed only in a comparative analysis
of mollusks having a common origin within a family. The response to in vitro-induced
oxidative stress also has a relationship with the MLS of species belonging to the same family.

The basal levels of ROS and MDA formation in gill mitochondria are higher in the
long-lived C. grayanus and M. yessoensis vs. medium and short-lived representatives of
the respective families, and the gill mitochondrial membranes of these species are more
resistant to in vitro-induced oxidative stress (low levels of ROS and MDA).

It is likely that an important mechanism of lifespan maintenance in C. grayanus and M.
yessoensis is a specific FA composition of mitochondrial membranes. It is characterized by
a lower ratio of SFAs/PUFAs and n−3/n−6, a higher ratio of the sum of FAs with 2 and
3 bonds and the sum of FAs with 4 and 6 bonds, and higher content of the sum of NMI FAs
vs. medium and short-lived species of the respective family.
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Simple Summary: Unicellular eukaryotes (organisms with a nucleus), or protists, are an extremely
diverse group of organisms and inhabit almost all environments. In the world’s oceans, they make
up a large proportion of the overall diversity. Many heterotrophic protists feed on bacteria and, in
this way, not only control bacterial abundance but also transport the bacterial-derived carbon to
organisms at higher trophic levels in the food web. In recent years, many studies have focused on
assessing the diversity of planktonic protists (organisms in the water column), but studies on seafloor
dwelling (benthic) protists are much less frequent. So far, there are no extensive studies present
that try to access the benthic protist communities in the Baltic Sea, one of Earth’s largest brackish
water environments. Within our study, we try to make a first assessment of this diversity using
the molecular technique of metabarcoding, which allows the simultaneous identification of many
organisms from one sample via the barcoding of nucleic acids, such as DNA and RNA. To obtain an
overview of how certain environmental factors such as salinity and water depth of the sediment may
influence the community structure, we chose two regions of the southern Baltic.

Abstract: Heterotrophic protists are key components of marine ecosystems. They act as controllers
of bacterial and microphytobenthos production and contribute significantly to the carbon flux to
higher trophic levels. Still, metabarcoding studies on benthic protist communities are much less
frequent than for planktonic organisms. Especially in the Baltic Sea, representing the largest brackish
water environment on earth, so far, no extensive metabarcoding studies have been conducted to
assess the diversity of benthic protists in this unique and diverse habitat. This study aims to give
first insights into the diversity of benthic protist communities in two different regions of the Baltic
Sea, Fehmarnbelt, and Oderbank. Using amplicon sequencing of the 18S rDNA V9 region of over
100 individual sediment samples, we were able to show significant differences in the community
composition between the two regions and to give insights into the vertical distribution of protists
within the sediment (0–20 cm). The results indicate that the differences in community composition in
the different regions might be explained by several abiotic factors such as salinity and water depth,
but are also influenced by methodological aspects such as differences between DNA and RNA results.

Keywords: Baltic Sea; brackish; unicellular eukaryotes; diversity; amplicon sequencing; sediment

1. Introduction

The marine benthal represents the largest habitat on earth, yet most studies focusing
on the marine environment target the planktonic community. This is particularly detrimen-
tal for protist research, as benthic protist communities exhibit key ecosystem functions as
main controllers of the bacterial and microphytobenthos production and the transfer of
organic carbon to higher trophic levels. Moreover, marine sediments serve as seedbanks
for planktonic communities [1] and, in this way, always comprise a mixture of actually
active organisms, dormant stages, and free DNA [2]. Protists in general make up a large
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proportion of the molecular (and hence also functional) diversity in marine ecosystems [3].
This large diversity is naturally associated with a spread over several trophic levels. While
phototrophic protists (e.g., diatoms and some dinoflagellates) may act as important contrib-
utors to primary production in shallow waters, heterotrophic protists, which form the focus
of the present study, are voracious consumers of prokaryotes attached to particles in the
sediment or being suspended in the pore water [4]. In addition, they act as decomposers for
marine detritus [5], and as parasites [6,7]. The biology of heterotrophic protists comprises a
large variety of lifestyles that have a strong influence on the marine carbon cycle through
multiple food web connections [4].

Their adaptations to several trophic conditions allow them to exist in oxic as well as
anoxic [8] environments and can make them indicators for certain environmental factors in
the benthic realm.

The enclosed Baltic Sea represents one of the largest brackish water environments on
Earth [9]. Through the inflow of saline water from the North Sea on the one hand and
the inflow of freshwater from different rivers on the other hand, the Baltic Sea waters are
stratified and offer a variety of salinity changes vertically and horizontally. The Baltic
Sea is relatively shallow, with a mean depth of 60 m and—from a geological point of
view—with 10,000 to 15,000 years being rather young [10] (its ecological age being approx.
8000 years [9]). The Baltic Sea has a large catchment area with heavy exploitation by
humans, such as fisheries, pollution, and nutrient inflow via riverine runoff [10].

Within the Baltic Sea, several studies have focused on planktonic protist diversity,
using “classic” cultivation methods [11,12] and clone libraries [13] within suboxic and
anoxic waters [14], but also through metabarcoding in estuary regions [15] or along a salinity
gradient [16]. Regarding benthic protists, some studies assessed diversity over live counting
and staining [17–19] for the small-scale vertical distribution of heterotrophic protists in
the sediment. Larger studies, estimating a broader benthic protist community (e.g., over
metabarcoding), are so far missing for the Baltic Sea. Thus, the state of knowledge about
benthic protists communities that are most likely shaped by the various abiotic conditions
described above is poor with regard to the Baltic Sea. Previous studies have shown that
especially grain size [20], as well as salinity [21], are important factors influencing benthic
protist communities.

Earlier studies [22] usually tried to asses biodiversity through live counting of morpho-
types, a task that not only requires a deep knowledge of the morphological characteristics
of certain species, but can also be biased by the occurrence of cryptic species [23]. The
large amount of metabarcoding studies in the past 10 years has contributed to resolving
these issues and also unveiled several new protist lineages [24,25]. Nevertheless, classic
methods have not lost their power. Classic taxonomical work gives sequences a “face”
and an ecological meaning and is the backbone of public databases, without which an
assignment and interpretation of the myriad of sequences produced through extended
metabarcoding studies would simply not be possible.

Based on previous studies regarding benthic protist communities in littoral sites [22],
we aimed to assess the diversity of benthic protist communities of the Baltic Sea through
metabarcoding of the V9 region of the 18S rDNA in two sublittoral regions of the southern
Baltic Sea.

2. Materials and Methods
2.1. Sampling

The sampling for this study took place during two different cruises. The research ves-
sel R/V Elisabeth Mann Borgese (EMB238) collected sediment samples from Fehmarnbelt
at eight stations in 2020, four within the marine protected area (MPA) and four within a ref-
erence area. In 2021, sediment samples were taken at eight stations in the Oderbank region
(EMB267), five stations from the MPA, and three from the reference area (Figure 1). For the
metabarcoding studies, only a selection of samples was analyzed by the metabarcoding
study (see Table 1). All sediment samples were taken with a Multicorer System (MUC).
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Figure 1. (A) Sampling regions of the two cruises in the western Baltic Sea, (B) MUC core taken from
sediments of the Fehmarnbelt region, (C) close up of the sampling stations in the Fehmarnbelt region
during cruise EMB238, (D) close up of the sampling stations in the Oderbank region during cruise
EMB267, (E) MUC core taken from sediments of the Oderbank region. Maps were created using
Ocean Data View [26].

Table 1. List of sampling stations relevant to this study. Sampling region (FB = Fehmarnbelt,
OB = Oderbank), station/cast in the region, area (MPA = marine protected area, Ref. area = reference
area), and the GPS position of the stations are given. The depth intervals at which MUC cores were
cut are indicated (cmbsf = cm below seafloor), and cruise number and sediment type at the stations
are added.

Region Station/Cast Area Longitude/Latitude Depth Intervals
[cmbsf] Depth [m] Cruise Sediment

Type

FB 2-4 MPA 54◦33.37′ 10◦45.52′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 23.5 EMB238 muddy

FB 5-5 MPA 54◦32.77′ 10◦46.61′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 23 EMB238 muddy

FB 8-5 MPA 54◦33.08′ 10◦45.63′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 23.9 EMB238 muddy

FB 10-4 Ref. area 54◦32.36′ 10◦43.49′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 22.8 EMB238 muddy

FB 13-6 Ref. area 54◦32.34′ 10◦43.55′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 23 EMB238 muddy

FB 15-5 Ref. area 54◦32.51′ 10◦41.71′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 23.2 EMB238 muddy

FB 17-6 Ref. area 54◦32.5′ 10◦41.16′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 23 EMB238 muddy

FB 18-6 MPA 54◦32.93′ 10◦46.11′ 0–1, 1–2, 2–4, 4–6,
6–10,10–15,15–20 24.4 EMB238 muddy

OB 3-12 MPA 54◦15.774′

14◦19.148′
0–1, 1–2, 2–3, 3–4,

6–7, 8–9, 10–11 15.3 EMB267 sandy

OB 10-3 MPA 54◦15.438′

14◦19.733′
0–1, 1–2, 2–3, 3–4,
6–7, 9–10, 10–15 14.9 EMB267 sandy
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Table 1. Cont.

Region Station/Cast Area Longitude/Latitude Depth Intervals
[cmbsf] Depth [m] Cruise Sediment

Type

OB 19-2 Ref. area 54◦14.934′

14◦18.435′
0–1, 1–2, 2–3, 3–4,
6–7, 9–10, 14–15 15.5 EMB267 sandy

OB 25-2 Ref. area 54◦15.655′

14◦16.873′
0–1, 1–2, 2–3, 3–4,

6–7, 9–10, 13.5–14.5 15.9 EMB267 sandy

OB 28-7 Ref. area 54◦15.406′

14◦17.241′
0–1, 1–2, 2–3, 3–4,
6–7, 9–10, 14–15 15.5 EMB267 sandy

For each station, three cores per station were taken and sliced into seven layers. If
cores were too short, the interval was adjusted (Table 1). The chosen sampling regions
significantly differed in environmental conditions. At Fehmarnbelt, the sediment was fine,
dense, and muddy with a median grain size of around 55 µm, and the salinity at the bottom
ranged around 19 PSU; in the Oderbank region, the sediment was much coarser and sandy
with a median grain size of around 178 µm, and the salinity at the bottom ranged around
8 PSU.

2.2. DNA and RNA Extraction and cDNA Synthesis

For the Fehmarnbelt stations 17-6 and 18-6, we extracted DNA and RNA of each of
the three cores, each with seven depth intervals by using the ZymoBIOMICS DNA/RNA
Miniprep Kit (Zymo Research, Freiburg, Germany) using 250 mg of sediment per sample,
as recommended for soil samples by the manufacturer. In principle, the kit allows a simul-
taneous extraction of DNA and RNA from the same sample. When RNA concentration
after extraction was not sufficient for downstream processing using this kit, RNA was
re-isolated using the RNeasy PowerSoil Total RNA® Kit (Qiagen, Hilden, Germany) using
2 g of sediment. For the remaining stations, we extracted DNA from each of the three cores
per station, but only for the upper two cm (0–1, 1–2 cmbsf = cm below seafloor), using
the DNeasy Power Lyzer Power Soil® DNA Isolation Kit (Qiagen, Hilden, Germany) to
extract whole genomic DNA, but added additional pre-washing steps with three differ-
ent washing solutions to improve downstream applications through removing potential
contaminants [27,28] and adding further heating steps after bead beating [27].

For sediment samples from the Oderbank, we extracted only RNA using the RNeasy
PowerSoil Total RNA® Kit (Qiagen, Hilden, Germany). When RNA concentrations were
too low after using 2 g of sediment per sample, we doubled the amount of sediment to 4 g,
as recommended by the manufacturer.

For both sampling regions, RNA was synthesized to cDNA using the Thermo Scientific
First strand cDNA Synthesis Kit (Thermo Fisher, Waltham, MA, USA) with an RNA
template concentration of approx. 500 ng/µL per reaction using random hexamer primers
included in the kit.

2.3. PCR Amplification and High-Throughput Sequencing

After quantification of total DNA and cDNA with a Quantus Fluorometer (Promega,
Germany), the hypervariable V9 region of the 18S rDNA was amplified using the eukaryotic
primer set 1389F (5′-TTG TAC ACA CCG CCC-3′) and 1510R (5′-CCT TCY GCA GGT TCA
CCT AC-3′) [29] via PCR reaction. PCR mixtures contained 50 ng of total DNA/cDNA
template, a final concentration of 0.35 µM for each primer, and VWR Red Taq DNA
Polymerase Master Mix (VWR, Germany). The thermal program started with an initial
denaturation step at 98 ◦C for 30 s followed by 25 cycles at 98 ◦C for 10 s, 57 ◦C for 30 s,
72 ◦C for 30 s, and completed with a final elongation step at 72 ◦C for 10 min. Chimera
formation during PCR was reduced by a low number of cycles (25) [30]. To reduce intra-
sample variability, PCR reactions were performed in triplicates. Because the results of
metabarcoding data strongly depend on the targeted marker region, the hyper-variable V9
region was selected. While being much shorter than the hyper-variable V4 region and less
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present in public databases, the V9 region represents a good compromise to make a broad
diversity of marine taxa visible, but also to recognize some rare species that are neglected
when using V4 primers [31].

For subsequent quality measures during data analysis, we created an in vitro com-
munity, called a “mock community”, comprising DNA of nine different protist cultures
(Table 2) from the HFCC (Heterotrophic Flagellate Culture Collection Cologne). The species
were chosen as representatives of the main protist supergroups. DNA of those cultures
was isolated using the Quick g-DNA Miniprep kit (Zymo Research, Freiburg, Germany),
amplified by PCR (V9 region of the 18S rDNA), purified, and quantified as described for
the samples. PCR products of each member of the mock community were then pooled
(50 ng of purified PCR product/strain) and added to each individual Next Generation
Sequencing run. The Cologne Center for Genomics (CCG, University of Cologne) then
performed a paired-end NovaSeq sequencing (2 × 150 bp) run of the amplified fragments.

Table 2. List of organisms used for the “mock community”.

HFCC No. Species Protist Group

171 Rhynchomonadidae undet. Kinetoplastida
175 Fabomonas tropica Ancyromonadida
176 Massisteria marina Cercozoa
178 Ministeria vibrans Opisthokonta
203 Cafeteria burkhardae Stramenopiles
744 Aristerostoma sp. Ciliophora
766 Protocruzia sp. Ciliophora
768 Halocafeteria sp. Stramenopiles
828 Neobodo sp. Kinetoplastida

2.4. Bioinformatic Processing

After sequencing, the raw reads were demultiplexed and processed as follows: barcode
and primer sequences were clipped using cutadapt version 2.8 with parameters set to no-
indels, m = 30, and e = 0 for the barcodes and e = 0.2 for the primer sequences [32]. The next
steps were conducted using the dada2 package [33] in R version 4.1.2, starting with the filter
and trim command and setting the parameters maxEE = 1, truncQ = 11, truncLen = (125, 120),
and maxN = 0 for quality filtering of the reads. The errF and errR functions were used to
learn the error rates for the dataset. The derepFastq function was used for the dereplication
of sequences and ASVs were inferred with the dada function. The mergePairs command
merged paired reads with a minimum overlap of 12 nucleotides. As a last quality filtering
step, chimeric sequences were removed using the removeBimeraDenovo function. By the
addition of the V9 region of 150 protist strains from the Heterotrophic Flagellate Collection
Cologne, we enlarged the existing PR2 database and used it for taxonomic assignment of
ASVs via the pairwise alignment function usearch_global (version v2.18.0; [34]). Retaining
only heterotrophic protist sequences, Metazoa, fungi, autotrophic protists (determined
on the basis of taxonomic assignment), as well as unassigned sequences were removed,
keeping only ASVs with a pairwise identity of >80% to a reference sequence. As a last
filtering step, we used the previously described mock community. Each library preparation
was accompanied by one individual mock community, resulting in a total of 18 mock
community datasets that were analyzed prior to sample analysis, as described above. For
the main dataset of samples, we then chose individual minimum thresholds per sample
according to the accompanying mock community on the respective sequencing lane. For
calculation of these thresholds, we used the proportion of the lowest read number of an
ASV in the mock community data set that could be assigned to the cultured species. ASVs
in the sample data sets with a smaller read number than this calculated proportion were
discarded. For the 18 accompanying mock communities, the calculated thresholds ranged
between 0.02 and 0.07%.
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2.5. Statistical Analyses

All statistical analyses as well as figures were conducted and plotted with RStudio
v2023.03.0. To estimate sequence quality and depth, we calculated rarefaction curves as well
as Shannon indices to compare the alpha diversity using the vegan package [35]. Non-metric
multidimensional scaling (NMDS) analyses were performed to calculate the differences
in protist communities between different sediment depths and sampling stations/regions.
Therefore, the dissimilarity matrix was calculated based on the Jaccard distance. To compare
if those differences were significant, we performed permutational multivariate analyses
of variances (PermANOVA) using the adonis and pairwise.adonis functions. To visualize
the proportion of shared and unique ASVs between stations and sediment layers, we
used both the R package UpSetR [36] as well as the Treemapify package. To test whether
abiotic factors such as salinity, grain size, and water depth had a significant impact on the
community composition, we conducted a canonical correspondence analysis (CCA) using
the vegan package [35] followed by a Monte Carlo permutation test.

The dataset used for the analysis of Fehmarnbelt consisted of six stations with three
replicates for the upper 0–2 cm layer and two stations with three replicates for the seven-
layer depth profile derived from DNA. Additionally, RNA extractions of samples from the
vertical profile of these two stations were analyzed. The dataset for the Oderbank region
is smaller, consisting of five stations with five-layer depth profiles (for the two deepest
sediment layers, RNA yield was never sufficient for downstream analyses).

3. Results
3.1. Alpha Diversity of Benthic Protists in the Southern Baltic

After sequencing with NovaSeq, we received data for 129 sediment samples, resulting
in a read number of 444,473,336 raw, demultiplexed reads, and 210,074 ASVs for the whole
dataset. This results in an average of 3.4 ± 2.9 million reads per sample. Despite the high
standard deviation (which was subsequently excluded from analysis), rarefaction curves
of all but one sample reached saturation. Summed for sediment depth layers, all curves
reached saturation (Figure 2). After the assembling and filtering steps, 293,254,105 reads
could be assigned to a sequence from the V9 reference database with a pairwise identity of
a minimum of 80%. After the exclusion of Metazoa, fungi, Streptophyta, and exclusively
phototrophic taxa, 139,203,557 reads could be assigned to heterotrophic protists. After
applying the read threshold derived from the mock community and after manual correction
of ambiguous sequences, 78,023,157 reads were clustered into 1233 ASVs. From this dataset,
only stations with complete depth profiles were used for further analyses.

In the Fehmarnbelt region, the uppermost sediment layers (0–2 cm) had an average of
39 ± 13 ASVs assigned to heterotrophic protists and the highest mean number of ASVs was
found at station 15-5 with 44 ± 18 ASVs, while the lowest number was found at station 2-4
with 33 ± 3 ASVs (Figure 3). Differences in ASV numbers between the stations regarding
these sediment layers were not significant (one-way ANOVA, p > 0.5). The Shannon
index as an alpha-diversity measure ranged between 2.9 and 3.4, showing no significant
difference between the stations (Kruskal–Wallis test, p > 0.5) in the upper sediment layers.
In the uppermost 2 cm sediment, the highest mean number of reads was detected at station
18-6 with 363,238 ± 254,045 and the lowest at station 2-4 with 111,097 ± 56,751 reads at
0–2 cm sediment depth (Figure 3). Comparing the depth layers (0–1 cm, 1–2 cm, 2–4 cm,
4–6 cm, 6–10 cm, 10–15 cm, and 15–20 cm) of cores for stations 17-6 and 18-6, the highest
mean number of ASVs was found at 6–10 cm sediment depth for both stations with 61 ±
23 ASVs at station 17-6 and 82 ± 9 ASVs at station 18-6 (Figure 3). The Shannon index for
the different layers ranged between 2.5 and 4.1 (Figure 3), the differences were found to be
significant (Kruskal–Wallis test, p < 0.05).
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Figure 2. Rarefaction curves of samples from Fehmarnbelt and Oderbank region summed for
sediment depth.

The highest mean number of reads was found for station 17-6 with 417,669 ± 464,385
(high standard deviation results from one sample with only 89,299 reads) at 15–20 cm
sediment depth and the lowest number of reads was found for station 17-6 in the 2–4 cm
sediment layer with 137,696 ± 8444 ASVs (Figure 3). For station 18-6, the highest mean
number of reads was detected at 15–20 cm with 947,200 ± 540,776 ASVs and the lowest at
2–4 cm sediment depth with 333,787 ± 104,046 ASVs.

For station 17-6 from Fehmarnbelt, we found that for RNA, the mean ASV number
was 54 ± 11, and for station 18-6, 46 ± 18. For RNA at station 18-6, the mean read numbers
were 364,111 ± 349,887, and for station 17-6, 340,954 ± 184,354.

In the Oderbank region, the stations had an average number of 26 ± 10 ASVs, the
highest number of ASVs was detected at station 19-2 with 42± 9 ASVs, and the lowest value
at station 10-3 with 20 ± 4 ASVs. The differences in these numbers were not significant
(Kruskal–Wallis test, p > 0.5). The Shannon index between the stations ranged between 2.0
and 3.6 but showed no significant differences (one-way ANOVA, p > 0.5). The lowest mean
number of reads was detected at station 25-5 with 413,163 ± 191,111 reads, and the highest
at station 19-2 with 639,953 ± 304,727 reads (Figure 3).

Looking at the different depth layers in the Oderbank region (0–1 cm, 1–2 cm, 2–3 cm,
3–4 cm, 6–7 cm) the lowest mean number of ASVs was found in layer 2–3 cm with
25 ± 6 ASVs, and the highest in layer 6–7 cm with 27 ± 10, as well as in 1–2 cm with
27 ± 13 ASVs. The differences in the numbers were significant (Kruskal–Wallis test, p < 0.05).
The Shannon index ranged between 2.0 and 3.6 and was found to not be significantly
different (one-way ANOVA, p > 0.05). The lowest mean number of reads could be de-
tected at 2–3 cm sediment depth with 428,497 ± 292,736 and the highest at 0–1 cm with
699,095 ± 342,518 reads (Figure 3).
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Figure 3. Results of metabarcoding studies of two regions in the western Baltic, Fehmarnbelt, and
Oderbank. (A) Number of ASVs per station for Fehmarnbelt; (B) number of ASVs per sediment
depth at Fehmarnbelt; (C) number of ASVs per station for Oderbank; (D) number of ASVs per
sediment depth at Oderbank; (E) number of reads per station for Fehmarnbelt and (G) for Oderbank;
(F) number of reads per sediment depth at Fehmarnbelt and (H) at Oderbank; (I) Shannon index
per station at Fehmarnbelt and (K) at Oderbank; and (J) Shannon index per sediment depth at
Fehmarnbelt and (L) at Oderbank.

3.2. Protist Community Composition at Different Regions and Sediment Depths

The data for the uppermost 2 cm of sediment at all stations of the Fehmarnbelt were
dominated by Ciliophora (Figure 4A) with relative proportions of ASVs between 24%
(station 17-6) and 38% (station 2-4), followed by Dinoflagellata with 13% (station 10-4)
up to 21% (station 13-6), followed by Cercozoa with relative proportions between 11%
(station 13-6) and 17% (station 17-6). The largest proportions of ciliate ASVs belong to
the Litostomatea (18%), Spirotrichea (18%), and Oligohymenophorea (20%). Among the
Dinoflagellata, almost 80% of taxa belong to the Dinophyceae, and among the Cercozoa,
most belong to the Filosa-Thecofilosea (55%).

The depth profiles (seven layers) for all three cores of stations 17-6 and 18-6 in Fehmarn-
belt were compared. At station 17-6, almost all layers were again dominated by ASVs
belonging to Ciliophora with 23% to 44% of relative proportions of ASVs, followed by either
Stramenopiles (non-Ochrophyta) with 20% to 23%, Cercozoa with 18–20%, or Dinoflagellata
with 17–24% of ASVs. Much lower proportions were reached by Katablepharidophyta,
mainly in the lower sediment layers (3–15%, Figure 4B). The largest proportion of cili-
ate taxa belonged to the Litostomatea (20%), Labyrinthulea were most abundant among
Stramenopiles (38%), and Dinophyceae dominated the Dinoflagellata (80%).
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Figure 4. Community composition of benthic protists at Fehmarnbelt and Oderbank showing the
relative proportion of ASVs assigned to taxonomic groups. (A) Comparison of all samples from
0–2 cmbsf at Fehmarnbelt; (B) protist community structure obtained from depth profiles of cores
(7 different depths, each with 3 replicates) at stations 17-6 and 18-6 at Fehmarnbelt; (C) vertical
distribution of the protist community structure at Oderbank (summed for all stations from 5 different
depth layers); (D) vertical changes in community structure for the different stations at Oderbank;
and (E) direct comparison of the protist community structure of two stations from both regions,
Fehmarnbelt and Oderbank, regarding different sediment layers based on RNA ASVs.

A similar pattern was obtained for station 18-6. The most dominant groups of ASVs
belonged to the Ciliophora (17–42%, with Oligohymenophorea and Spirotrichea both 19%),
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Dinoflagellata (13–33%, with 80% Dinophyceae), Cercozoa (8–24%, 70% of which belong
to Filosa-Thecofilosea) and Stramenopiles (non-Ochrophyta) with 3–18% (49% of which
belong to Labyrinthulea). Again, a rise of Katablepharidopyhta taxa was observed towards
deeper sediment layers. They contributed 5–9% of ASVs in the deepest layer 15–20 cm (vs.
~1% in the upper layers; Figure 4B).

In the Oderbank region, Ciliophora taxa were even more dominant in all sediment
layers compared to the Fehmarnbelt. With relative proportions between 38 and 74%, they
made up a large proportion of the whole community (Figure 4C,D). The largest proportion
(20%) of ASVs belonged to Spirotrichea, followed by Karyorelicta (18%). The second largest
relative proportion of ASVs was contributed by Dinoflagellata with 6–32% (with 70%
belonging to the Dinophyceae), followed by Stramenopiles (5–21%, of which 30% belong
to the MAST groups and 30% to bicosoecids) and Cercozoa (2–18%, with 62% belonging
to the group of Filosa-Thecofilosea). Apart from that, no clear pattern of taxa distribution
in relation to sediment depth was visible. Summing up ASVs of all stations sorted for
sediment depth, one group (Telonemia) was only present in the uppermost layer, whereas
the taxa belonging to the Katablepharidophyta were absent in the deepest layer (6–7 cm),
while Cercozoa were present to a larger proportion in the deepest layer.

Apart from these minor differences in community composition, both regions did
not show remarkable differences in the vertical distribution of protists when only large
taxonomic groups are considered. As we could only obtain RNA data for two stations of
the Fehmarnbelt region (stations 17-6 and 18-6, Figure 4E), we randomly chose two stations
of the Oderbank region (stations 10-3 and 25-2) for direct comparison. While Fehmarnbelt
samples were dominated by several groups in more similar proportions (Ciliophora 24–49%,
Dinoflagellata 6–25%, Cercozoa 10–26%), Oderbank was highly dominated by Ciliophora
(up to 74%). Samples from Fehmarnbelt seem to show a larger variety of taxonomic
groups (22, compared to 12 at Oderbank). In this sense, a taxonomic group represents the
taxonomic rank of division, above the class rank.

3.3. Protist Beta-Diversity in Relation to Sediment Depth

NMDS analyses revealed a higher resolution of taxonomic composition regarding
sampling stations and sediment depth. In the 0–2 cm layer of the Fehmarnbelt samples, the
protist communities formed significantly separate clusters regarding the different stations
(permANOVA, p = 0.001, Figure 5A).

Stations 17-6 and 18-6, in particular, cluster quite separately, with almost no overlap
with the other stations (Figure 5A). This phenomenon is still visible when the depth profiles
of stations 17-6 and 18-6 are compared, where no significant differences between sediment
depth but between the two stations were recorded (permANOVA, p < 0.01, Figure 5D,E). In
the uppermost sediment layers, we found the highest number of unique ASVs at station
17-6 with a relative proportion of 16%, followed by station 18-6, with a relative proportion
of 12%. Overall, the stations only shared 1% of ASVs, divided between the most dominant
groups, with ASVs of Stramenopiles (non-Ochrophyta) at 33.3% and Ciliophora as well as
Dinoflagellata both at 25%. With regard to the depth layers, the highest numbers of unique
ASVs were detected in the deeper sediment layers, with 11% of unique ASVs found in
15–20 cm depth at station 18-6 followed by station 17-6 in 6–10 cm sediment depth, also
with 11%. Overall, the two stations shared only 0.5% ASVs, with cercozoans being the most
dominant group (33.3%).

For the Oderbank region, the NMDS analysis showed significant differences in com-
munity composition between the sediment layers (permANOVA, p = 0.001, Figure 5G),
but not between the stations within the region. Therefore, the layers were summed up for
all stations for comparison. With 16%, the highest number of unique ASVs was found in
6–7 cm depth, directly followed by 14% of unique ASVs in 0–1 cm (Figure 5H), explaining
the significant differences between the layers. While the layers overall only shared 0.4% of
ASVs, most taxa were shared out of the clade of Dinoflagellata at 60% (Figure 5I).
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Figure 5. NMDS plot based on the Jaccard Index comparing benthic protist communities of the
different stations in the western Baltic. (A) NMDS plot comparing all stations at Fehmarnbelt for the
surface sediment layer 0–2 cmbsf. (B) Upset plot showing the number of shared ASVs between the
different Fehmarnbelt stations (top bar chart) or unique to one station, as well as the overall number
of ASVs (horizontal bars). Connected dots below the bar chart mean ASVs are shared between two
or more stations. (C) Tree map showing the relative proportion of shared and unique ASVs per taxa
group at Fehmarnbelt stations for the 0-2 cmbsf sediment layer. (D–F) Comparison of the vertical
distribution of ASVs of the two Fehmarnbelt stations 17-6 and 18-6 in a similar manner as for (A–C).
(G–I) Comparison of the community structure regarding all different sediment layers from stations
at Oderbank analyzed in a similar manner as for (A–C).

The NMDS analysis revealed a clear separation of the compared protist communities
from the two stations of Oderbank (stations 10-3 and 25-2) and Fehmarnbelt (stations 17-6
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and 18-6) based on RNA-derived data (permANOVA, p = 0.001, Figure 6). On the basis
of the rigid filtering of the data set using the mock community, the two chosen stations
from Oderbank shared no ASVs with the two stations of Fehmarnbelt (Figure 6B,C). They
instead displayed a high percentage of unique ASVs that were not shared between all
12 sediment layers (Figure 6B). The highest number of unique ASVs for Oderbank and
Fehmarnbelt was found among the Ciliophora group.
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Figure 6. NMDS plot based on the Jaccard distance comparing protist communities in different
sediment depth layers of two sampling stations in the Oderbank region and two in the Fehmarnbelt
region (A). (B) Upset plot showing the number of shared or unique ASVs for the different sampling
depths for both regions (bar chart at the top). Connected dots below each bar show shared ASVs
between different depths and stations. Horizontal bars indicate the total number of ASVs for the two
stations in each region. (C) Tree map showing relative proportions of ASVs for taxa groups unique to
one depth and region.

4. Discussion

Even though metabarcoding studies of protist communities have become much more
frequent in the past 15 years, the majority of studies still concentrate on pelagic protist
communities [3]. While studies on benthic communities are scarce, benthic brackish water
communities are even more poorly studied and metabarcoding studies of benthic protists of
the Baltic Sea are basically non-existent. According to our knowledge, our study represents
the first metabarcoding approach to estimate the benthic protist community of sediments
in the Baltic Sea and aims to better understand their biodiversity and ecological roles.
By targeting the V9 region of the 18S rDNA, we chose a suitable region to estimate the
overall richness of the protist community in the Baltic Sea, also including rare taxa [31].
As mentioned above, benthic protist communities for the Baltic Sea have so far received
relatively little attention. It is therefore likely that Baltic Sea-specific members of the protist
community are underrepresented in the reference databases. To verify and improve the
outcome of the analysis, we chose to add an additional filtering step using a mock commu-
nity. The addition of a mock community as a supplementary sample in a next-generation
sequencing run has been recommended by several studies [37–39], especially as a measure
to eliminate “noisy” sequences. We adapted those ideas to create individual read thresholds
for each library preparation. The rather strict limit values derived in this way served as an
additional form of quality control. It has been shown that the overall impression of the com-
munity composition does not dramatically change when these thresholds are applied [39].
On the other hand, applying a strict filter increases the likelihood that differences in species

147



Biology 2023, 12, 1010

composition between stations will be overemphasized. This could be the reason for the
relatively high level of uniqueness we found for many species.

As no previous metabarcoding data on benthic protist communities in the Baltic Sea
seem to exist, it is hard to compare our results on the basis of molecular data sets. Addition-
ally, the specific nature of the brackish water environment allows only limited comparisons
to studies from either marine or freshwater environments, and different bioinformatic
pipelines may additionally influence the results. There are only a few quantitative and
qualitative studies from the regions based on direct counts using light microscopy. Benthic
ciliates were intensively studied at a station in the Kiel Bight [17], in the vicinity of the
Fehmarnbelt stations; however, the water depth of the region studied by Sich [17] was
much shallower and sandier than the region investigated in the present study. In another
study of benthic ciliates in the vicinity of the Oderbank region [22], again the sampling
site was shallow, though similar in the sediment quality. In both cited studies, karyorelic-
tid, spirotrich, litostome, and oligohymenophoreans were dominant, comparable to the
present investigation using molecular techniques. Regarding benthic flagellated protists,
only the shallow-water study near Ruegen Island [22] was available for comparison. The
comparison with our metabarcoding studies shows that flagellate groups recorded from
live counting were also recovered by the metabarcoding studies.

Regarding the community composition obtained by our metabarcoding study, Cilio-
phora were the main dominant group regarding the number of ASVs in Baltic Sea sediments
(with differing proportions regarding the region), but on the sides of read abundances,
the MALV-I clade, a rather poorly studied group of marine Syndiniales with only a few
cultured species [24], reached by far the highest read abundances. Sequences of the MALV
group are known to dominate in DNA studies, which is, most plausibly, because they
have higher rDNA copy numbers [40] and may not reflect actual activity. Still, also in the
dataset from Oderbank derived only from RNA, an ASV representing a sequence from
the MALV-I 4 group has the highest read abundance. In line with previous studies [24],
the largest proportion of ASVs of the MALV clade in the dataset belonged to the MALV-1
group known to be predominant in anoxic environments and hydrothermal vents, and
seems to be common in sediments.

Benthic ciliates are known to have a high species richness in brackish water environ-
ments [41], especially in the Baltic Sea [42], proposing that salinity can have a negative
effect on species richness. It is therefore not surprising that our analyses showed a high
proportion of ASVs belonging to ciliates. Similar patterns have been found for planktonic
organisms in the Baltic Sea [43], refuting the theory that the taxonomic diversity of organ-
isms is lowest in the horohalinicum [44]. A CCA of the complete dataset has shown that out
of several abiotic factors, salinity had a significant effect on the benthic protist community
(Monte Carlo permutation, p = 0.001; Figure 7) as well as water depth (p = 0.003) and
sediment depth (p = 0.002). For a Pacific littoral region, Gong et al. [45] showed that water
depth had the strongest influence on α- and β-diversity of benthic protist communities.

Apart from salinity, grain size not only has an effect on functional ciliate diversity—implying
that coarser sediment promotes free-swimming species with an elongated cell form,
whereas fine sediment houses species with crawling behavior and flattened cell bod-
ies [41]—but also on the abundance of ciliates, which was shown to be positively correlated
to median sediment grain size [46,47]. In contrast to these studies, our results obtained
from CCA analysis could not verify that grain size has a significant influence on the protist
community as a whole. At Fehmarnbelt, a region with approx. 19 PSU salinity and median
grain size of approx. 55 µm, the relative proportion of ASVs belonging to ciliate taxa make
up about 44% of the overall number of ASVs, comprising 100 different ASVs of ciliate taxa
in total. At Oderbank, we measured a salinity of about 8 PSU and a median grain size of
178 µm. Here, we found a much higher relative proportion of ASVs belonging to ciliates
of up to 78%, with 143 different ASVs. Still, one has to keep in mind that the majority of
samples from Fehmarnbelt were derived from DNA studies while that from Oderbank
originate from RNA. Sediments can act as storages of DNA sunken down from the water
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column and therefore might contain also DNA of pelagic species, which might lead to an
overestimation of diversity [48]. However, most of the dominant ciliate ASVs, for instance,
belonged to well-known benthic taxa. Several protist species are known to have remarkably
high abilities to adapt to different salinities. We showed that among other Stramenopiles
of the genus Cafeteria, Cafeteria baltica, isolated from sediment of the Fehmarnbelt, can
tolerate salinities between 0 and 125 PSU [49]. We, therefore, assume that at least some
protist species are ubiquitously dispersed in the Baltic Sea, independent of the salinity. This
assumption is supported by the fact that we were able to retrieve several protists from an
accompanying cultivation approach that were also recovered from the dataset of Oderbank
and Fehmarnbelt (Figure 8).
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Of course, the results of cultivation approaches may be biased by the fact that mostly
generalists or especially robust organisms are easier to cultivate and therefore do not reflect
the actual diversity. Nevertheless, it shows that several protist strains isolated from the
two study regions are able to live under various abiotic conditions in the laboratory, and,
importantly, the recovery of sequences of cultivated protists from the respective region
verifies our metabarcoding study.

A large proportion of ASVs, both from Fehmarnbelt and Oderbank, was assigned
to the Stramenopiles and Cercozoa. At Fehmarnbelt, the highest proportion of ASVs
belonging to the Stramenopiles was assigned to Labyrinthulea, a class of Stramenopiles
known mainly from marine and estuarine environments [50]. Labyrinthulids are able
to decompose marine detritus by extracellular hydrolytic enzymes [5]. In their role as
decomposers, they are typical inhabitants of sediments that are rich in organics [51] and
could be typical for the eutrophic environment of the Baltic Sea. At Oderbank, stramenopile
sequences mainly belonged to bicosoecids and the MAST group. While the bicosoecids
detected in the samples from Oderbank could not be assigned to a level lower than the
class level, it is hard to make any specific comments. Sequences of the MAST group
(Marine Straminopiles) belonged to different ribogroups regarding their phylogenetic
position, but also according to their ecological preferences [25]. At Oderbank, 50% of the
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ASVs were assigned to the MAST-2 group, which comprises mainly marine—but also
some freshwater—species originating from different geographic regions. This group is
known to be exclusively planktonic and mainly occurs in oxic (sometimes also micro-
oxic) environments [25]. At Oderbank, ASVs belonging to this group were found in the
surface sediment layer, but also in deeper layers (maybe originating from encysted cells).
Surprisingly, not one of the ASVs showed 100% identity to the sequences deposited in
the reference database (highest identity of 99.2%), this underlines that the Baltic Sea is
under-sampled and therefore underrepresented in public databases.
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which they were detected in a regional dataset.

Compared to a metabarcoding study, which investigated the diversity of pico- up to
mesoplankton in the Baltic Sea along a salinity gradient [16], there are some similarities to
the Arkona Sea, which was their planktonic sampling site closest to our sampling region in
the Oderbank. The major taxa groups were composed of similar classes of organisms to the
ones in our studies of the sediment, which underlines the idea that the sediment might act
as a sink for the planktonic diversity. An example is that, e.g., Strombidium, an oligotrich
ciliate, was found with high dominance in the planktonic samples, and was also present
with high read abundances in Fehmarnbelt sediments. High read numbers of the MAST-2
group occurred in plankton samples and were also found, especially in Oderbank samples.

Another important factor shaping protist communities is the availability of oxygen.
While some protist taxa are able to survive both under aerobic and anaerobic conditions,
others are sensitive to either one or the other condition [8,52]. Anaerobic ciliates are
known to possess certain organelles, called hydrogenosomes, to ferment pyruvate into
acetate and H2 [53]. The protist community in the oxidized surface layers of the sediment
was found to be different from the deeper sediment layers. While the exact O2 content
of the sediment layers was not measured during our study, we observed dark spots in
the sediment layers, indicating anaerobic conditions already at 2 cmbsf. Even though
the community of the different depth layers at Fehmarnbelt did not show a significantly
different community, a high number of unique and unshared ASVs were found, especially
in the deeper sediment layers. For Oderbank, we could detect significant differences, even
though the sediment layers did not go as deep as those of Fehmarnbelt. At Oderbank,
we could detect ciliate species known to be able to survive anaerobic conditions ([53];
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e.g., Trimyema, Lacrymaria, Caenomorpha) in almost all sediment layers, indicating, at least,
anaerobic patches in the sediment. For Fehmarnbelt, we could detect Trimyema, Metopus,
and also Lacrymaria in many layers of the sediment. Besides salinity and water depth, the
CCA of the complete dataset showed a significant influence on the sediment depth on the
community composition (p = 0.002, Figure 7).

As part of the microbial food web, the abundance of protists is closely linked to the
predominant bacterial community and abundance [22,54], which are also heavily influenced
by abiotic factors and sediment properties [55]. Therefore, it is very likely that the bacterial
community in both regions differ, thereby substantially affecting the protist community
as well, and vice versa. Studies on prokaryotes are carried out at the moment and might
reveal interesting data for comparative analyses in the future.

To analyze if there are differences in community composition between Fehmarnbelt
and Oderbank, we compared the RNA-derived dataset of two stations from Fehmarnbelt
with two randomly chosen stations at Oderbank. At least for those four stations, we could
show that the protist communities form two distinct clusters for the two regions with no
shared ASVs, at least not when we use our strict filtering step. Still, we know from our
cultivation approach that there are at least a few taxa that appear in both datasets. In
terms of the distribution and diversity of protists, several partly contradicting hypotheses
have been established during the last years [56] that also addressed the main problems of
estimating protist diversity, which includes under-sampling. Other studies have shown that
the seafloor can be very heterogeneous regarding protist diversity even at a small spatial
scale [57]. More data are needed to draw robust conclusions regarding the differences
and similarities of benthic protist communities in the Baltic Sea. Nevertheless, our study
might give novel insights into protist diversity for the vastly understudied benthic protist
community of the Baltic Sea.

5. Conclusions

Our study on the community of benthic protists in the Baltic Sea obtained via metabar-
coding of the V9 region of 18S rDNA showed significant differences in community compo-
sition not only between the different sampling regions but also between different sediment
layers. For both regions, ASVs belonging to Ciliophora dominated the overall community,
especially at Oderbank. Dinoflagellata, Stramenopiles, and Cercozoa showed also high
diversity, but differed with regard to the lower taxonomic groups between the two regions.
We assume that certain abiotic factors such as salinity, sediment grain size, and availability
of oxygen are responsible for the differences in the communities, even though there are
some taxa being ubiquitously distributed in both regions.
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Simple Summary: Underwater mountains, or seamounts, are deep-sea habitats collectively forming
an area as large as Europe. Yet, they are one of the least studied ecosystems on earth. Known for
supporting rich marine life compared to surrounding deep-sea environments, we have no information
on how seamounts truly compare to other iconic biodiversity hotspots like shallow coral reefs. To
assess the effective ecological value of seamounts, we compared fish communities in coral reefs and
seamounts up to 500 m deep using two techniques: environmental DNA to detect the presence of
species by filtering fragments of DNA lost by organisms in seawater, and underwater cameras to
directly measure fish abundance and size. We found that the deepest seamounts had almost 10 times
fewer fish species than coral reefs. However, the shallowest seamounts had larger fish species,
including sharks, than coral reefs. We conclude that while seamounts are important and unique
ecosystems, they may not be as diverse for fish species as previously thought (diversity hotspots) but
rather biomass oases and refuges for endangered species. This study therefore calls for protecting the
shallowest seamounts, as they are critical areas for marine life.

Abstract: Seamounts are the least known ocean biome. Considered biodiversity hotspots, biomass
oases, and refuges for megafauna, large gaps exist in their real diversity relative to other ecosystems
like coral reefs. Using environmental DNA metabarcoding (eDNA) and baited video (BRUVS), we
compared fish assemblages across five environments of different depths: coral reefs (15 m), shallow
seamounts (50 m), continental slopes (150 m), intermediate seamounts (250 m), and deep seamounts
(500 m). We modeled assemblages using 12 environmental variables and found depth to be the
main driver of fish diversity and biomass, although other variables like human accessibility were
important. Boosted Regression Trees (BRT) revealed a strong negative effect of depth on species
richness, segregating coral reefs from deep-sea environments. Surprisingly, BRT showed a hump-
shaped effect of depth on fish biomass, with significantly lower biomass on coral reefs than in
shallowest deep-sea environments. Biomass of large predators like sharks was three times higher
on shallow seamounts (50 m) than on coral reefs. The five studied environments showed quite
distinct assemblages. However, species shared between coral reefs and deeper-sea environments
were dominated by highly mobile large predators. Our results suggest that seamounts are no diversity
hotspots for fish. However, we show that shallower seamounts form biomass oases and refuges for
threatened megafauna, suggesting that priority should be given to their protection.

Keywords: conservation; biomass; biodiversity; hotspot; coral reefs; mesophotic slope
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1. Introduction

Seamounts are ubiquitous deep-sea habitats that collectively form an area as large as
Europe [1]. Although seamounts are often considered biodiversity hotspots [2], oases [3,4],
and refuges for marine megafauna [5], they are the least studied landforms of the major
biomes of the global ocean. Out of more than 170,000 seamounts around the world, only less
than 0.002% have been sampled for scientific purposes [6]. Yet, evidence is accumulating
that seamounts are increasingly threatened by anthropogenic impacts such as overfishing,
destructive fishing, and marine mining [6,7]. Thus, it is essential to fill the large gaps in our
knowledge regarding the diversity and abundance patterns of species on seamounts. This
is especially urgent at a time when human-related disturbances are affecting all areas of the
world and oceans may experience a mass extinction of sufficient intensity to rank among
the major extinctions of the Phanerozoic (541 Ma to present), with vertebrates, including
fish, being at the forefront [8].

Seamounts are generally defined as underwater mountains greater than 100 m in
relief above the seafloor, with often further subdivision into hills (elevation < 500 m from
seafloor), knolls (>500 m from seafloor), and seamounts (>1000 m from seafloor) [9]. In
geology, oceanic islands are also considered emerging seamounts [10]. Some ecologists also
regard remote atolls as seamounts [11]. Above all, seamounts are geological features that
can modify the properties of their surrounding oceanic environment. In particular, some
studies indicate higher biodiversity and biomass on seamounts than in surrounding abyssal
and pelagic environments [12,13]. Although many factors, including physical and biogenic
habitat structure, may explain such patterns, the complex effects of seamounts on ocean
circulation, including Taylor column formation, tidal amplification, internal waves, and
upwelling formation, are thought to enhance primary production, zooplankton abundance,
attract pelagic predators above seamounts, and permit these deep-sea habitats to host large
populations of demersal and benthopelagic fish [6,14,15].

Due to their higher biodiversity than their surrounding environment, seamounts have
long been considered hotspots, although this claim is now widely debated [16]. The term
“biodiversity hotspot” was first introduced in 2000 and defined by delineating subjective
regions of high (>1500 species, or 0.5% of the world’s richness) endemic vascular plant
richness under threat [17]. This analysis was supported by vertebrates’ data but clearly
warned against different congruence levels depending on the region. The marine realm also
adopted the hotspot terminology and used the number of species, proxies of endemism,
and global threats [18,19]. Today, “hotspot” has become a broader term that encompasses
more biodiversity traits such as functional, beta, and phylogenetic diversity, leading to
different definitions and uses. For this study, we consider the original definition of a
marine hotspot based on biodiversity, which includes species richness and its previously
stated derivatives. However, the identification of hotspots still relies on a comparison with
other ecosystems, implying that biodiversity on seamounts should be compared to other
recognized hotspots such as coral reefs (i.e., the shallow tropical coral reefs formed by
reef-building corals associated with mostly photosynthetic coral assemblages), rather than
merely surrounding abyssal and pelagic environments.

Biomass is another index that can refer either to abundance or mass, which directly
connects to ecosystem services, for instance, through resources [20]. Temperature, nutrient
availability, human influence, and biodiversity (where evolutionary adaptation results in
species-rich communities using a larger fraction of available resources) are among the
main factors controlling biomass production, at least in marine fish [21]. The concept of
an ecosystem with higher biomass than its surroundings typically refers to an “oasis”.
Originally defining a fertile spot in a desert due to abundant water [22], attempts were
made to translate the term to the marine realm with hydrothermal vents in the abyss, as
they basically represent an isolated ecosystem lying within a desert, but where previously
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limiting factors allow a drastic increase in biomass [23]. This definition has further been
used to praise coral reefs [24], but also seamounts [3,4] and other deep-sea landforms, e.g.,
canyons [25]. However, definitions of marine oases and hotspots often mix and shift towards
diversity oasis [26], a synonym of the hotspot, or biomass hotspot, a synonym of oasis. Here,
we consider the term oasis as the original analogy, which implies that biomass levels are
higher in the studied environment (e.g., seamounts) than in their surroundings [3,23].

The definition of an oasis does not have particular regard for anthropogenic threats,
but the degree of isolation of an oasis may straddle the line with the concept of “refuge”.
The original notion of refuge implies the existence of safe havens for species impacted
by large-scale disturbances like the effects of climate change [27–29]. This definition has
recently been enhanced to accept a smaller scale of direct threat avoidance for mobile
species like fish [30,31]. Particularly, the “depth refuge” hypothesis implies that species
may use deeper, ecologically less favorable environments at the extreme of their ecological
niche as an avoidance pathway to short-time-scaled disturbances like fishing [32] or climatic
events like storms [29,33]. Refuges include habitats such as seamounts [5] and remote
coral reefs [34,35], where low accessibility to fishing fleets can create an economic barrier
to harvesting [36] and induce a high abundance of shallow-water predators such as reef
sharks that are otherwise largely extirpated [37].

Considering their wide definition, seamounts include a vast range of environmental
conditions, from the warm photic zone at the surface of oceans to the cold aphotic zone
on abyssal seafloors, and therefore show high variation in their biological communities,
e.g., [38]. The question is thus no longer to know if seamounts are hotspots, oases, or
refuges, but to assess which environmental conditions enhance biodiversity, biomass, and
threatened species abundance across a wide environmental and human impact gradient
and compare various seamount environments with well-studied and recognized hotspots
such as coral reefs.

New Caledonia is a vast (1.4 million km2 economic exclusive zone—EEZ) South Pacific
archipelago composed of a main island, large surrounding islands (Loyalty Islands), and
many islets, approximately 1200 km east of Australia in the Coral Sea [39]. The archipelago
has one of the largest barrier reefs in the world, covering 24,000 km2, and hosts one-third
of the world’s most remote and wilderness reefs [36]. Its extraordinarily rich shallow coral
reefs [40] were added to the UNESCO World Heritage List in 2008. The archipelago also
includes 80 hills, knolls, and seamounts, with at least 19 larger seamounts >1000 m in height
from the seabed (hereafter seamounts), whose summit depths range from near surface at 4
m to 2400 m [41]. Thus, New Caledonia is probably the ideal site to compare seamount
biodiversity and biomass with those of another iconic biodiversity hotspot, biomass oasis,
and megafauna refuge such as coral reefs.

Comparing biodiversity between shallow and deep environments is challenging due
to the use of specialized sampling methods. For example, coral reefs are typically surveyed
by divers [31], while seamount fauna is generally surveyed by experimental fishing, acous-
tic echosounders, and ROVs. However, new technologies such as environmental DNA
(eDNA) metabarcoding and video surveys allow the collection of quantitative data in a
standardized way in almost all marine ecosystems. The metabarcoding of eDNA is based
on the retrieval and analysis of genetic material naturally released by organisms in their
environments. It was recently shown to outperform dive and video surveys for estimating
marine biodiversity [37,42], with a higher capacity to detect small, cryptic, low-density,
and elusive species [43–46]. Yet, the drawback of eDNA metabarcoding is the lack of
knowledge about organism size and biomass. Stereo Baited Remote Underwater Video
Stations (BRUVS) can efficiently estimate species abundance and biomass in virtually any
marine habitat [47,48], so the two methods seem complementary to compare biodiversity
across a long depth gradient.

In this study, we collected eDNA and BRUVS data from seven shallow coral reefs,
four shallow seamounts, four deep continental slopes, three deep seamounts, and four
seamounts of intermediate depth in the New Caledonian EEZ. Taking advantage of this
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unique dataset, we modeled the effect of key environmental and human variables on fish
biodiversity, abundance, and biomass using boosted regression trees (BRT) [49]. Then we
compared fish fauna on seamounts of variable summit depth, deep continental slopes, and
shallow coral reefs and evaluated if and when seamounts qualify as biodiversity hotspots,
biomass oases, and refuges for megafauna.

2. Materials and Methods
2.1. Data Collection

Data was collected during four oceanographic campaigns aboard the R/V Alis in
April and June 2019 and August and September 2020, and during six coastal trips from
September to December 2019. We sampled 22 sites, including seven barrier coral reefs, four
deep continental slopes along the west coast of Grande Terre, and 11 seamounts (>1000 m in
height from the seabed) summits of variable depth (45–511 m) across the New-Caledonian
archipelago (Figure 1, Supplementary Section S1, Table S1). All samples were collected at
the bottom. The seamounts were chosen to have different summit depths corresponding to
euphotic, intermediate, and aphotic zones: four seamounts had summits higher than 200
m depth, four seamounts had summits between 200 and 320 m depth, and three seamounts
had summits between 320 and 500 m depth. Coral reefs were sampled between 2 and
28 m depth, virtually covering their full depth range, continental slopes between 80 and
235 m, and seamounts between 45 and 570 m. Altogether, 224 BRUVS were deployed
(5–16 per site) and 192 eDNA samples (6–10 per site) were collected in five environmental
strata: coral reefs (average sample depth 13 m, SD ± 7 m), shallow seamounts (average
60 m, SD± 8 m) labeled “Seamount (50 m)”, continental slopes (average 142 m, SD ± 45 m)
labeled “Continental slope (150 m)”, intermediate seamounts (average 265 m, SD ± 36 m)
labeled “Seamount (250 m)” and deep seamounts (average 498 m, SD ± 33 m) labeled
“Seamount (500 m)”.
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Figure 1. Sampling design in the five environmental strata. BRUVS and eDNA samples were
collected on seven barrier coral reefs (15 m deep), four shallow seamounts (50 m summit depth),
four continental slopes (150 m deep), four intermediate-depth seamounts (250 m summit depth), and
three deep seamounts (500 m summit depth). Bathymetry data were derived from [50]. See Table S1
for more details on sampling design.
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2.2. Stereo Baited Remote Underwater Video Stations (BRUVS)

Sampling started in the daylight morning. Each BRUVS was deployed 300–500 m
apart on the coral reef and up to 1 km on seamount summits to prevent fish individuals
from appearing on multiple videos and to ensure the independence of samples [48]. A
BRUVS rig consisted of a protective metal structure holding two horizontally aligned
cameras facing a bait canister attached at the end of a 1.5 m bar [51]. For each deployment,
one kilogram of crushed sardines (Sardinops spp.) filled the canister. BRUVS were weighted
and attached to a rope leading to a surface buoy. The stereo pair of cameras were separated
by 800 mm, with a convergent angle of 8◦. GoPro Hero 4 cameras were used and set to a
medium field of view (FOV) in 1920 × 1080-pixel format, running at 30 frames per second.

Soaking times were calculated from the time BRUVS reached the seabed (t0) to t0 + 60 min.
Fish were visually identified and counted on video using the EventMeasure software (version
5.42 (64 bit), released April 2020, www.seagis.com.au). We used the MaxN method (corre-
sponding to the maximum number of fish for each species counted in an image across the
video), which is until now the standard method [47,48,52].

Stereo measurement was made available with the recording of three claps before
deployment to synchronize frames. Calibration was done using CAL software (version
3.25 (64 bit), released March 2019, www.seagis.com.au). Fork length (FL) of individual fish
was measured, when possible, up to a limit of 10 individuals per BRUVS per species to
optimize video processing time.

2.3. Biomass Estimation

Biomass was calculated for each species on each BRUVS using the length-weight
relationship Weight (g) = a × Length (cm)b, with a and b [53] retrieved from FishBase
(https://www.fishbase.se (accessed on 12 February 2023)), and fish length calculated as
the average length of all measured individuals (up to 10) of a species in a BRUVS [53].
When particular species could not be measured on a single BRUVS, the missing species
length was estimated by data imputation using the MissForest algorithm with 999 trees [54].
We imputed the missing length using measured length records of other samples, but also
family, genus, maximum size, and size type from Fishbase. The latitude and longitude of
the localities where length records were taken were also used to account for the geographic
proximity of measured lengths. The MissForest accuracy was tested with a k-fold cross-
validation procedure by predicting 5% of the lengths each time by training the missForest
on the 95% left of the data and looking at the linear fit between the original and predicted
value (see Supplementary Section S2 for details, Figure S1). We also ensured that the
imputed length did not exceed Fishbase’s maximum reported length.

2.4. eDNA Metabarcoding

For each sample, environmental DNA was filtered out of 32 L of seawater in a ster-
ile VigiDNA® 0.2 µm cross-flow filtration capsule with a polyethersulfone membrane
(SPYGEN, Le Bourget du Lac, France). Samples were collected as close as possible to the
substrate, mostly 5 m above the seafloor. Water was pumped into the filter capsule with a
disposable sterile tube connected to an Alexis® peristaltic pump (Proactive Environmen-
tal Products LLC, Bradenton, FL, USA; nominal flow of 1.0 L min−1) and a Masterflex™
segment connected to it. On coral reefs, samples could be filtered along transects with a
slow forward-going boat (~2 knots) using a reusable, extended, and weighted tube down
and close to the substrate. Strict protocols were followed to avoid contamination, which in-
cluded using the most disposable sterile equipment (surgical gloves, tubes, and tube joints)
along with longer reusable, bleached tubes [44,55]. On continental slopes and seamount
summits, four 8-L Niskin bottles (Ocean Test Equipment, Ft. Lauderdale, FL, USA) were
used to collect 32 L of water at a single point for every sample. Filtration then occurred on
the bridge of the ship. When the filtration process ended and all water was expelled from
the filter capsules, around 80 mL of CL1 conservation buffer (SPYGEN, Le Bourget du Lac,
France) was poured and enclosed in the capsule for storage and transport at room tempera-
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ture. On coral reefs, eDNA transect itineraries were set to be either parallel (spread out by
a few hundred meters) or following each other inside the BRUVS sample’s grid at each site.
Generally, sampling of BRUVS and eDNA occurred at the same predefined coordinates.

DNA extraction was performed following an existing protocol [46]. Briefly, the DNA ex-
traction was performed using NucleoSpin® Soil (MACHEREY-NAGEL GmbH & Co., Düren,
Germany), starting from step 6 and following the manufacturer’s instructions. The elution
was performed by adding 100 µL of SE buffer twice. The two 50 mL tubes per filtration
capsule were extracted separately, and then, the two DNA samples were pooled before the
amplification step. A teleost-specific 12S mitochondrial rRNA primer pair (teleo, forward
primer—ACACCGCCCGTCACTCT, reverse primer—CTTCCGGTACACTTACCATG) [44]
was used for the amplification of metabarcode sequences. Because we analyzed our data
using MOTUs as a proxy for species, we chose to amplify only one marker. Twelve DNA am-
plifications PCR per sample were performed in a final volume of 25 µL, using 3 µL of DNA
extract as the template, following the protocol in [56]. The teleo primers were 5′-labeled
with an eight-nucleotide tag unique to each PCR replicate with at least three differences
between any pair of tags, allowing the assignment of each sequence to the correspond-
ing sample during sequence analysis. The tags for the forward and reverse primers were
identical for each PCR replicate. Negative extraction controls and negative PCR controls
(ultrapure water) were amplified (with 12 replicates as well) and sequenced in parallel to
the samples to monitor possible contaminations. The purified PCR products were pooled
in equal volumes, to achieve a theoretical sequencing depth of 1,000,000 reads per sample.
Library preparation and sequencing were performed at Fasteris (Geneva, Switzerland). A
total of 18 libraries were prepared using the MetaFast protocol. A paired-end sequencing
(2 × 125 bp) was carried out using an Illumina MiSeq (2 × 125 bp, Illumina, San Diego,
CA, USA) using the MiSeq Flow Cell Kit v3 (Illumina, San Diego, CA, USA) or a NextSeq
sequencer (2 × 125 bp, Illumina, San Diego, CA, USA) with the NextSeq Mid kit following
the manufacturer’s instructions.

2.5. eDNA Bioinformatic

Following sequencing, reads were processed using clustering and post-clustering
cleaning to remove errors and estimate the number of species using Molecular Operational
Taxonomic Units (MOTUs) [57]. The methodology is described elsewhere [46]. Briefly,
vsearch [58] and cutadapt [59] were used to assemble and demultiplex reads [58,59]. Swarm
v.2 [60] was used to cluster sequences into MOTUs with a minimum distance of 2 mismatch
between clusters. The Lower Common Ancestor (LCA) algorithm ecotag implemented
in the Obitools toolkit [60] was used for taxonomic assignment of MOTUs [61] using the
European Nucleotide Archive (ENA, [62]) as a reference database (release 143, March 2020).
We then applied quality filters to be conservative in our estimates. To avoid spurious
MOTUs originating from a PCR error, we discarded all sequences with less than 10 reads
and presented only one PCR per site. Then, errors generated by tag-jumping and index-
hopping [63,64] were corrected using a threshold of 0.001 of occurrence for a given MOTU
within a library. Taxonomic assignments at the species level were accepted if the percentage
of similarity with the reference sequence was 100%, at the genus level if the similarity was
between 90 and 99%, and at the family level if the similarity was ≥85%. If these criteria
were not met, the MOTU was left unassigned. The post-LCA algorithm correction threshold
of 85% similarity for the family assignment was chosen to include a maximum of correct
family assignments while minimizing the risk of adding wrong family identifications.
Potential eDNA contamination from BRUVS bait (Sardinops spp.) was also removed from
eDNA reads.

2.6. Environmental Variables

Fourteen environmental variables were identified for each sample (Table S2). They
were chosen for their potential influence on fish diversity, biomass, and assemblage structure.
They included the mean, minimal, and maximal Sea Surface Temperature (SST) from NASA’s
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Multiscale Ultrahigh Resolution (MUR) analysis, averaged over the last 10 available years
(2009–2019). The potential seafloor temperature from the Mercator global reanalysis of mod-
els constructed on satellite and in situ observations (Copernicus—CMEMS) was also used.
Temperature is well known to segregate diversity at a large scale across taxa [65]. We used
chlorophyll-a, suspended particulate matter, salinity, and current from the Global Ocean
Satellite Observations (Copernicus—CMEMS). Chlorophyll-a concentration may indicate
regions of higher energy availability and pinpoint the presence of shallow seamounts [14,66].
Suspended particulate matter concentration may differentiate oligotrophic from eutrophic
nutrient zones (e.g., lagoon versus open ocean) but also seamounts, which may re-enhance
nutrient internal cycling [67]. Salinity may differentiate waters closer to freshwater flux [68]
and currents may influence migratory flows for species recruited on seamounts [6]. Depth
was recorded for each sample as it highly structures communities, notably through light loss
and associated processes [5,69]. Travel time to the nearest fish market, an index of human
accessibility to natural resources, was retrieved as human pressure also impacts diversity
and biomass [36,70]. The micro-habitat was also included in the BRUVS data. We evaluated,
through a semi-quantitative scale [71], the distinct visually observable features (e.g., percent
cover of coral, sand, vegetation, and more, see [72] for details on the method). Micro-habitat
variables were used to calculate the Shannon habitat diversity index and assess whether
micro-habitat diversity would influence fish diversity or biomass [73,74]. Environmen-
tal strata (“Stratum”) were also considered, as we assumed that while depth may be the
main structuring variable, our environmental strata may incorporate a larger spectrum of
influence that was not taken into account with the rest of the environmental variables.

2.7. Data Analysis

Fish species richness (BRUVS), MOTU richness (eDNA), fish abundance and biomass
(BRUVS), and 14 environmental variables (Table S2) were determined for each sample. We
also computed the biomass of large predators (>50 cm carnivore or piscivore species) and
sharks using our functional traits database [75]. All analyses were performed with R [76].

2.8. Diversity and Biomass Modelling

Boosted Regression Trees (BRTs) [49] were used to model species richness, MOTU
richness, fish biomass, biomass of large predators, and shark biomass along the matrix of
14 environmental variables. The two advantages of BRTs rely on their ability to assess non-
linear relationships between the response and the explanatory variables along with their
ability to manage complex interactions between variables. A grid search method [49] was
used to determine the best BRT hyper-parameter values (number of trees, tree complexity,
learning rate, and bag fraction). BRTs with the best cross-validation (10-fold) correlation
were kept and then fitted again keeping only variables with more than 5% importance in
the model [49]. Cross-validation correlation was used to assess the accuracy of the models.
Variable importance and marginal effects were also computed. Marginal effects allow
evaluation of the “pure” effect of an explanatory variable while accounting for the effects of
all other variables included in the model. Correlated explanatory variables were removed,
and biomass values were transformed prior to modeling. Due to the correlated nature
of micro-habitat percent cover and their poor interpretability on such a large ecological
gradient (i.e., there is no coral reef at great depth due to lack of light), these were not
included in the BRTs. However, habitat was included in the models with the stratum and
the Shannon habitat diversity variables.

2.9. Comparisons across Strata

Permutational multivariate analyses (PERMANOVAs [77]) were used to compare
species richness, MOTU richness, total biomass, biomass of large predators, and biomass of
sharks between the five environmental strata. Significant PERMANOVAs were followed by
pairwise permutation t-tests to identify significant factor levels. Both analyses were done
with 9999 permutations. To better assess species and MOTU richness, rarefaction curves
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were constructed using the Hill-number method with richness as incidence data [78,79].
The Hill number’s framework considers sample size to get asymptotic richness estimates
that are robust to unbalanced sampling, providing better estimation than other rarefaction
methods [72,78].

2.10. Assemblages Structure

Principal coordinate analyses (PCoA) were used to determine the assemblages’ struc-
ture in the five environmental strata [80]. Due to heterogeneous data and the presence of
double zeros in our community matrix, we used the Hellinger distance for both abundance
data (BRUVS) and presence-absence data (eDNA). The Hellinger distance can accommo-
date heterogeneous data and allows either presence-absence or abundance data to identify
communities [80]. Then, we looked at species that were common to the different envi-
ronments, especially coral reef species that were also observed in at least one deep-sea
environment. We looked at the functional traits of these species to determine the propor-
tion of shared species belonging to large predators. We chose to illustrate species sharing
between environments through Euler diagrams. In addition to what Venn diagrams do,
Euler diagrams draw ellipses that are proportional to the defined groups of species. Shared
species will prompt an intersection between ellipses that is proportional to their list size.

3. Results
3.1. Biodiversity

A total of 423 species and 791 MOTUs were recorded through 224 BRUVS and
192 eDNA samples. Boosted regression tree modeling fitted well with richness data with
values of 0.89 (species richness) and 0.86 (MOTU richness) of cross-validation (CV) correla-
tion. BRTs revealed that depth was the main driver for both species and MOTU richness,
with 76.5% variable importance on BRUVS data and 74.8% on eDNA data (Table 1). The
analysis of marginal effects further showed a sharp drop in richness with depth, from high
richness values at shallow depth to low values at great depth (see Supplementary Section
S3, Figures S2 and S3). The pattern was particularly marked for MOTU richness (Figure S3).
Habitat diversity was the second most influential variable on BRUVS species richness, with
15.7% importance in the model. Accounting for the effects of other explanatory variables,
the marginal effects of habitat diversity indicated higher species richness in more diverse
habitats (presence of balanced, multiple feature covers). A slight interaction between depth
and habitat diversity was revealed by the BRT, reinforcing the suitability of environments
that combine shallow depth and high habitat diversity compared with models in which
no interaction effects are allowed (Figure S6). Several other environmental variables were
included in the BRT models, however, with weaker importance. Mean sea surface temper-
ature showed 7.8% importance on species richness, with slightly more species at higher
temperatures. Travel time (6.7% importance) and northward current (6.6% importance)
were also retained in the MOTU richness model. Some interactions were found with these
variables but remained anecdotic (Figures S6 and S7).

The major negative effect of depth on richness was reflected in the five studied strata
comparison, with a steady decrease in species richness from shallow coral reefs to deep
seamounts and a sharp drop of MOTU richness between coral reefs on the one hand and
all deep-sea environments on the other hand (Figure 2A). PERMANOVA results on species
richness revealed four significantly distinct groups: coral reefs with on average 21.8 species
(±18.0 SD), followed by seamounts (50 m) with 11.7 species (±4.7 SD), then the continental
slope (150 m) with 8.3 species (±4.1 SD), and finally deeper seamounts (250 and 500 m)
with respectively 3.4 (±1.7 SD) and 3.0 (±1.4 SD) species per BRUVS (Figure 2A). MOTU
richness was significantly higher on coral reefs (average 71.8 MOTU ± 49.7 SD) than on
any deep-sea environment. Little differences were observed between seamounts (50 m)
(12.9 MOTUs ± 11.0 SD), continental slopes (150 m) (10.8 MOTUs ± 9.8 SD), seamounts
(250 m) (12.2 ± 14.1 SD), and seamounts (500 m) (8.3 MOTUs ± 5.2 SD) (Figure 2B).
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Figure 2. Violin plots and superimposed boxplots showing species richness observed on BRUVS (A)
and MOTU richness in eDNA samples (B) for coral reef, seamounts (50, 250, 500 m), and continental
slopes (150 m). The mean is represented by the red lozenge. Grey dots represent individual sample
values scattered around each distribution. Significant differences at p < 0.05 are highlighted by
grouping letters (PERMANOVAs and permutational t-tests with 9999 permutations). (C) Rarefaction
curves of species richness from BRUVS and (D) MOTU richness from environmental DNA across
coral reefs, seamounts, and continental slopes environments. The samples were rarefied (solid line)
and extrapolated (dashed line) using the Hill number method [78,79]. 95% confidence intervals (CI)
are shown in each respective ribbon. Horizontal lines are asymptote estimates (γ-diversity).

Rarefaction curves of species and MOTU richness showed dramatically higher biodi-
versity on coral reefs than on any deep-sea environments, with particularly low richness
on the deepest seamounts (Figure 2C,D). The pattern was especially marked for MOTU
richness. Asymptotic estimates of richness were 443 species (confidence interval—CI: 403–
482) and 589 MOTUs (CI: 570–620) for coral reefs, then half less species (157, CI: 119–195)
and even less MOTUs (167, CI: 156–189) on seamounts (50 m), 120 species (CI: 73–168)
and 189 MOTUs (CI: 168–229) on continental slopes (150 m), 37 species (CI: 25–62) and 111
MOTUs (CI: 107–122) on seamounts (250 m), and 18 species (CI: 16–27) and 74 MOTUs (CI:
70–88) on the deepest seamounts (500 m).
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Table 1. Environmental explanatory variables of several fish richness and biomass indices retained
in the boosted regression trees modeling. Four different BRTs were run with species (BRUVS) and
MOTU (eDNA) richness, followed by biomass (BRUVS) of full assemblages and biomass of large
predators (>50 cm carnivorous and piscivorous species). Models were fit with best hyper-parameters
(number of trees (NT), tree complexity (TC), learning rate (LR), bag fraction (BF) and evaluated using
cross-validation correlation (CV). Explanatory variables retained in each BRT models are ordered
by importance.

BRT Model NT TC LR BF CV (SD) Variables Variable
Importance

Species richness 1050 4 0.005 0.5 0.89 Depth 76.5%
(BRUVS) (0.01) Habitat diversity 15.7%

Mean SST 7.8%

MOTU richness 700 4 0.01 0.75 0.86 Depth 74.8%
(eDNA) (0.05) Chla 11.9%

Travel time 6.7%
Northward velocity 6.6%

Total biomass 2875 5 0.001 0.75 0.73 Depth 36.7%
(BRUVS) (0.03) Habitat diversity 23.6%

Travel time 11.7%
Eastward velocity 8.5%

Chla 8.1%
Northward velocity 5.9%

Mean SST 5.5%

Large predators’ biomass 2825 5 0.001 0.75 0.71 Depth 26.1%
(BRT) (0.03) Habitat diversity 19.6%

Travel time 15.0%
Eastward velocity 8.7%

Chla 8.6%
Mean SST 8.4%

Environmental stratum 6.9%
Northward velocity 6.8%

3.2. Biomass

BRT modeling of fish biomass fitted well with the data, with a cross-validation corre-
lation of 0.73 (Table 1). Depth was again the most important explanatory variable (36.7%
importance), followed by habitat diversity (23.6%), travel time (11.7%), Chla (8.1%), cur-
rents (eastward: 8.5%, northward: 5.9%), and mean SST (5.5%). The analysis of marginal
effects further showed hump-shaped patterns for depth, with the highest biomass observed
between approximately 50 and 300 m and the lowest biomass for shallow depth with coral
reefs and the deepest strata of seamounts (500 m) (Figure S4). Habitat diversity and SST
had an overall positive effect on biomass. Travel time also had a positive effect on fish
biomass, with the lowest biomass values recorded near humans, and the highest in remote
environments at more than 10 h travel time (Figure S4). BRT modeling of large predator
biomass showed similar patterns (Figure S5). Depth was again the most important variable
(26.1%), followed by habitat diversity (19.6%), travel time (15.0%), equally eastward current,
Chla, and mean SST (8.7, 8.6, and 8.5%, respectively), and finally the environmental stratum
(6.9%) and northward current (6.8%). Interactions found by the BRTs involved habitat
diversity and northward velocity, and depth and eastward velocity with anecdotic effects
(Figures S8 and S9).

Comparison of fish biomass across the five strata showed a dome-shaped pattern
corresponding well to the combined effects of environmental variables retained in the BRT
model, especially depth and environmental stratum (Figure 3A). PERMANOVAs further
revealed that biomass levels on shallow seamounts had significantly the highest biomass
(132.9 kg ± 103.4 SD), while coral reefs (54.3 kg ± 71.6 SD) showed similar biomass levels
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as continental slopes (150 m) (76.9 kg ± 65.7 SD) and seamounts of intermediate depth
(250 m) (66.6 kg ± 63.0 SD). The deepest seamounts (500 m) showed the lowest biomass
level (7.2 kg ± 5.2 SD). The pattern was identical for large predators’ biomass (Figure 3B)
and sharks’ biomass (Figure 3C).
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Figure 3. Violin plots and superimposed boxplots of biomass (BRUVS) on (A) all observed species,
(B) large predators, and (C) sharks across 5 environmental strata: coral reefs, seamounts of variable
depths (50, 250, and 500 m), and the continental slope (150 m). The mean is represented by the red
lozenge. Grey dots represent individual sample values scattered around each distribution. Significant
differences at p < 0.05 are highlighted by grouping letters (PERMANOVAs and permutational t-tests
with 9999 permutations).

3.3. Assemblage Structure

Principal Coordinate Analysis showed that the five studied environments were home
to relatively distinct assemblages, coral reefs, and deepest seamounts (500 m) showing the
highest distinctiveness (see Supplementary Section S4, Figure S10). Coral reefs showed the
second highest proportion (77%) of unique species (257 species out of 334) (Figure 4) and the
highest proportion (84%) of unique MOTUs (454 MOTUs out of 540) (see Supplementary
Section S5, Figure S11). Likewise, the deepest seamounts (500 m) showed the highest
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proportion (81%) of unique species (13 out of 16 species), although uniqueness was less
with eDNA (20 out of 68 MOTUs, 29%). Other deep-sea environments showed relatively
mixed assemblages, with 27% unique species (26 out of 97) and 42% unique MOTUS (62 out
of 147) on seamounts (50 m), 32% unique species (23 out of 73) and 54% unique MOTUs
(78 out of 144) on continental slopes (150 m), 36% unique species (9 out of 25) and 39%
unique MOTUs (41 out of 106) on seamounts (250 m).
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Figure 4. Euler diagram of species identified on BRUVS between coral reefs, seamounts of variable
summit depths, and the continental slopes. Coral reef species that were also observed in at least one
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Interestingly, species that were shared between coral reefs and at least one deep-sea
environment, including the deepest seamounts (black contouring in Figure 4), represented
23% of the 334 species observed on coral reefs, corresponding to 77 species. When looking
at the functional traits of these coral reef species also observed in deep-sea environments,
77% (59 species) were carnivores, and 42% (32 species) were large-sized (>50 cm) carnivores,
i.e., large predators (Barplot, Figure 4).

4. Discussion

Our study is one of the few addressing the fish biodiversity of multiple marine ecosys-
tems using two standardized and replicated quantitative methods to provide comparative
information. We showed that coral reefs may qualify as biodiversity hotspots with con-
siderably higher species richness than any other deep-sea environments in this study. In
turn, seamounts and continental slopes showed comparatively lower biodiversity both at
the local scale (α-diversity) and the regional scale (γ-diversity). The deepest seamounts
had on average seven times fewer species and nine times fewer MOTUs than coral reefs.
Combined with the general negative effect of depth on biodiversity, our results suggest that
seamounts are not hotspots for fish diversity. However, shallow seamounts surprisingly
showed almost three times higher fish biomass than coral reefs, and biomass levels up
to 300 m were at least equivalent. These higher biomass levels in environments between

166



Biology 2023, 12, 1446

50 and 300 m depth may represent what would be called oases for fish. Moreover, while
species assemblages were distinct among the studied environments, dominant species of
shallow seamounts were highly mobile large predators also observed on coral reefs, sug-
gesting that they may use shallow seamounts as refuge from shallow coral reef anthropic
pressure. Overall, our results suggest that strong conservation efforts should be prioritized
on shallow seamounts and continental slopes where very high fish biomass is observed,
especially for threatened large predators such as sharks. Although deeper seamounts are
less rich, they are still home to unique fauna that is certainly worth protecting as well.

Our BRUVS records of coral reef fish species richness are impressively in line with
previous studies around the world, with around 20–25 species average per BRUVS [81–85].
BRUVS have been deployed near seamounts to assess pelagic diversity [5,12], and on
seamounts of abyssal depth, far outside our study’s depth range [86]. To our knowledge,
this is the first study to explore a seamount’s fish biodiversity using BRUVS at summits
reaching between 50 and 500 m. However, more work has been done on deep continental
slopes, showing usually lower species richness on mesophotic reefs than on shallow coral
reefs [74,87–89].

The eDNA method across studies may greatly vary depending on the volume of
filtered water, the primers, the laboratory protocols, and the bioinformatic pipelines used
to generate the MOTU sequences, making comparisons still binding [57,90,91]. However,
the tendency to further use this method is driven by its capacity to establish better levels
of species richness by integrating a larger area per sample [37,92]. On coral reefs, a study
with a similar protocol highlighted more species found by eDNA than by diver-operated
Underwater Visual Censuses (UVC), but with less average MOTU richness per sample than
in our study (26.2 ± 12.6 SD against 71.8 ± 49.7 SD in our study) [42]. Sampling deeper
strata using eDNA can also become limited when trying to assign MOTUs to referenced
species, e.g., [93]. While we partly used assignment to further clean our MOTU list, we
did not analyze our assigned species dataset since only 25.6% of the 791 recorded MOTU
sequences were assigned to the species level.

Asymptotic estimates of total MOTU richness as well as mean MOTU richness showed
unparalleled levels for coral reefs compared to all sampled deep-sea environments. This
observation may be explained by the cryptobenthic fish species diversity hosted on coral
reefs [94,95]. The cryptobenthic fish diversity is harder for BRUVS to capture. However, this
method also showed much higher fish diversity on shallow coral reefs. BRUVS are known
to sample a smaller but more representative part of the studied community compared to
other methods, meaning the observed assemblages are not necessarily biased [47,48,96].
However, studies of the deep sea using video-assisted methods are bound to strong technical
constraints, and our soaking times (60 min) are rarer in the literature, with longer soaking
times and time-delayed videos being favored [47]. However, the involved depths in our
study (around a 500-m maximum) remained relatively shallow compared to the rest of the
deep-sea research that usually works at several thousands of meters.

Defining a biodiversity hotspot comes with defining threats and indices of vulner-
ability [17,97]. Coral reefs are acknowledged to be globally declining due to anthropic
pressure [98,99]. Seamounts have been heavily fished, trawled, and exploited on a global
scale [6,100]. The impacts of trawling and dredging are largely documented for seamounts
and involve major erosion of biodiversity and habitat complexity [6,101–104]. Regarding
our results, coral reefs may then further be praised as hotspots for biodiversity. Seamounts,
on the other hand, had much lower fish species richness and therefore were not comparable
to a hotspot “reference”. However, biodiversity is multifaceted, and other organisms’
richness was not studied, which could have a major impact on the overall biodiversity
of seamounts. Regarding the hotspot definition applied to the marine realm, the ease of
propagules spreading out in the ocean induces much more widespread species compared
to land, which limits endemism in marine environments and therefore the delimitations
of hotspots [17–19]. Further studies are certainly needed to further compare the whole
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biodiversity of shallow and deep-sea ecosystems. The metabarcoding of eDNA across all
realms has shown promising results in that regard, e.g., [95,105].

Fish biomass followed a dome-shaped relationship with depth. Seamounts at 50 m
depth had the largest biomass, followed by 150 m continental slopes and 250 m deep
seamounts. Surprisingly, coral reefs showed lower biomass despite the positive effects
of their habitat diversity. It is commonly accepted that biomass would decrease with
respect to light, primary production, and food availability [106], and indeed, we report
decreasing fish biomass between 50 and 500 m with the lowest values on the deepest
seamounts. High biomass has recently been reported on continental slopes and the shelf
break, e.g., [30,107]. We report even higher levels on shallow seamounts. While coral reefs
are characterized by high habitat complexity, associated with important biomass [108],
shallow seamounts (50 m) also harbor a strong habitat diversity, notably with extended
rhodolite beds composing the substrate along with vegetation and few corals. Rhodolite
beds are recognized to host high biomass as they offer substrate complexity and resources,
inducing an abundance of predators [109]. Thus, our comparison of seamounts and coral
reefs from the same region may promote the vision of shallow seamounts and, to a lesser
extent, continental slopes as oases of biomass. Nonetheless, fishing has long exploited the
resources of seamounts, and some fisheries even collapsed in the 1980s as stocks could not
replenish fast enough due to the slower life cycle of deep-sea species [6,100]. Catches still
have increased with time with further demand and technology to go deeper, with targeted
species usually being large-bodied predators that are globally declining, e.g., [110–112].

This race to exploit ever deeper resources may have yet left out the shallowest
seamounts, as they are not the first target of deep demersal fisheries. We showed that
the assemblages of the shallow seamounts at 50 m shared many common species with
coral reefs and the other deeper environments (Figure 4). A considerable proportion of
these species were large predators. Deep-sea species assemblages often have a high pro-
portion of carnivores [74,87,107], potentially caused by the shift to more heterotrophic
environments [106,113]. Yet, the larger biomass of reef-associated large predators, espe-
cially sharks, on shallow seamounts should place these environments as refuges from
anthropic pressure [35,114]. Seamounts are highly isolated and difficult to access features
without large vessels capable of withstanding the open ocean. The travel time for the
closest seamount was seven hours and up to two and a half days for the furthest, still
inside the new Caledonian EEZ. We suggest that these shallow features may be of crucial
ecological importance for endangered and high-value target species also found on coral
reefs.

Our results on species richness are consistent across two independent sampling meth-
ods. Biomass estimated by BRUVS also seems coherent across functional traits (here size
and trophic group), which are known to better reflect assemblages [115]. However, some
caveats can be discussed. While we tried to use standardized methods for both shallow
and deep environments, small adaptations had to be realized, such as switching between
eDNA transects on coral reefs to Niskin bottles in deep environments due to technical
limits. The change in protocol may have influenced the observed densities of MOTUs
between coral reefs and deep environments. Currents can also increase by an order of mag-
nitude on seamount summits. Coupled with variable degradation times and potentially
lower quantities of eDNA produced by deeper species with slower metabolic rates, these
factors may have also influenced the detection of MOTUs in eDNA samples [6,90,116,117].
While recent studies show remarkable site fidelity of emitted eDNA [118,119], MOTUs of
species associated with the pelagic and reef environment may also not be differentiated
as both environments are intimately interacting on the external barrier reef. Soaking time
for BRUVS between 60 and 90 min has been estimated to provide the best samples of the
shallow communities in the cost/effort ratio [47]. Due to our samples still being relatively
shallow (<500 m), the demersal species assemblages remained mostly active and mobile
species, with few exceptions in the deeper environments, which supports our standard
soaking time of 60 min.
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Furthermore, we compared the biodiversity of several environments but used only
fish as an indicator. Fish diversity and biomass provide valuable indicators of ecosystem
services such as regulation and linkage for ecosystem functioning (e.g., predation, con-
sumption, sediment redistribution, nutrient recycling and redistribution, and more), food
security with fisheries, and cultural services like aesthetics [120–124].

5. Conclusions

A better understanding of how biodiversity is spatially distributed is fundamental to
better addressing ecosystem trajectories and issues caused by large-scale disturbances like
climate change [125] or anthropic pressure [126]. The human perspective of nature is mainly
utilitarian and economical, implying conservation needs to be better informed through
baselines on the priorities for conservation, notably in lesser-known ecosystems like the
deep sea [127]. This work aimed at helping to refine fundamental questions underlying
these environments, such as seamounts, and better conceive our perception of biodiversity
and its distribution across coral reefs and deeper environments. The potential of new
technologies with video and eDNA metabarcoding may allow better comparative values to
address biodiversity on the same baseline and compare ecosystems, regions, or habitats
in order to reprioritize locations of interest for conservation and science. Our study calls
for prioritizing the conservation of shallow seamounts and continental slopes since these
environments support considerable fish biomass and are a refuge for large predators such
as sharks, but are virtually ignored by current management plans, with only 2% of the
world’s seamounts inside MPAs [5,9]. However, our study was restricted to fish, a crucial
yet only small part of biodiversity. Further work looking at the whole biodiversity is
warranted and may become possible with the development of key technologies such as
eDNA metabarcoding.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12111446/s1, Section S1. General data description: Table S1.
BRUVS and eDNA samples collected on 5 different environments: coral reefs, seamounts (50 m),
continental slopes (150 m), seamounts (250 m), and seamounts (500 m); Table S2. Environmental
variables used in the BRT modeling of species richness, fish biomass and large predator biomass for
BRUVS, and eDNA MOTU richness. BRUVS micro-habitat variables were extracted through a semi-
quantitative scale. Micro-habitat covers were evaluated on a 0–100% scale at 5% precision. Substrate
complexity and topography were evaluated on a scale of 0 to 5 and transformed in percentages. These
variables were then used to calculate the Shannon diversity indices used in the boosted regression
tree modeling; Section S2. Imputing missing length data on BRUVS: Figure S1. Predicted against true
measures of fish for each of the twenty-fold cross-validation results from the 5% artificial imputation
using missForest out of the 792-measurement data; Section S3. Boosted regression trees on richness,
biomass and biomass of large predators: Figure S2. Variable importance and partial dependence
plots from boosted regression trees ran on the reduced number of variables on BRUVS data with
richness as the predicted value (response). The cross-validation correlation value was 0.89 for this
model; Figure S3. Variable importance and partial dependence plots from boosted regression trees
ran on the reduced number of variables through previous boosted trees run on eDNA data with
MOTU richness as the predicted value (response). The cross-validation correlation value was 0.86 for
this model; Figure S4. Variable importance and partial dependence plots from boosted regression
trees ran on the reduced number of variables through previous boosted trees run on BRUVS data
with biomass as the predicted value (response). The cross-validation correlation value was 0.71 for
this model; Figure S5. Variable importance and partial dependence plots from boosted regression
trees ran on the reduced number of variables through previous boosted trees run on BRUVS data
with biomass of large predators as the predicted value (response). The cross-validation correlation
value was 0.75 for this model; Figure S6. Interaction plots found from boosted regression trees ran on
the reduced number of variables on BRUVS data with richness as the predicted value (fitted value).
The cross-validation correlation value was 0.89 for this model; Figure S7. Interaction plots found
from boosted regression trees ran on the reduced number of variables through previous boosted
trees run on eDNA data with MOTU richness as the predicted value (response). The cross-validation
correlation value was 0.86 for this model; Figure S8. Interaction plots found from boosted regression
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trees ran on the reduced number of variables through previous boosted trees run on BRUVS data with
biomass as the predicted value (response). The cross-validation correlation value was 0.71 for this
model; Figure S9. Interaction plots found from boosted regression trees ran on the reduced number
of variables through previous boosted trees run on BRUVS data with biomass of large predators
as the predicted value (response). The cross-validation correlation value was 0.75 for this model;
Section S4. Assemblage ordination: Figure S10. Ordination using Principal Coordinate Analysis
(PCoA) on the Hellinger transformed distance matrix of baited remote underwater video stations
(BRUVS) abundance data (A) and presence-absence environmental DNA (eDNA) data (B). Ellipses
were calculated from the covariance matrix of each stratum weighted by the number of points;
Section S5. sharing of eDNA sequences among the environmental strata: Figure S11. Euler diagram
of identified MOTUs from eDNA metabarcoding along 5 environmental strata: coral reefs, seamounts
of variable summit depths and continental slopes. References [5,6,14,51,54,65,67–70,72–74,128,129]
are cited in the supplementary materials.
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Simple Summary: This study provides full-coverage maps of the habitats and biotopes in the German
Baltic Sea at an unprecedented level of resolution. We combined geological and biological surveys
to map the seabed and collected extensive data to classify different habitats and their inhabitants.
Using newly established national guidelines and modelling, we produced highly accurate maps.
These maps are of practical use in meeting national and regional reporting requirements, facilitating
management decisions, supporting marine spatial planning, and answering research questions.

Abstract: To maintain or enhance biodiversity and sea floor integrity, mapping benthic habitats is
a mandatory requirement in compliance with the Marine Strategy Framework Directive (MSFD).
The EU Commission Decision distinguishes between Broad Habitat Types (BHTs) and Other Habitat
Types (OHTs). At the regional level, biotopes in the Baltic Sea region are classified according to the
HELCOM underwater biotope and habitat classification (HUB). In this study, the habitats and their
benthic communities were mapped for the entire German Baltic Sea at a high spatial resolution of
1 km. In two nature conservation areas of the Exclusive Economic Zone (EEZ) as well as selected
focus areas in the coastal waters, the resolution we provide is even more detailed at 50 × 50 m.
Hydroacoustic data recording and benthological surveys (using bottom grabs, underwater towing
camera technology, and diver sampling) helped identify biotopes in high resolution. Based on these
data, together with additional data acquired since 2010 (a total of over 7000 stations and transect
sections), we were able to spatially delineate benthic biotopes and their communities via predictive
habitat modelling. The results are provided as full-coverage maps each for BHT, OHT, and HUB
(9 classes of BHTs, 5 classes of OHTs, and 84 classes of HUB) with a level of spatial detail that does not
yet exist for the Baltic Sea, and they form an essential basis for future monitoring, status assessments,
and protection and management measures.

Keywords: habitats; biotopes; mapping; MSFD; broad habitat types—BHTs; other habitat types—
OHTs; HELCOM Underwater biotope and habitat classification system—HUB; predictive biotope
modelling; Baltic Sea

1. Introduction

A good environmental status in our oceans is more important than ever. The Baltic
Sea is particularly vulnerable to anthropogenic pressures due to its unique and fragile
ecosystem (involving marine and limnic influences, a shallow depth, and limited water
exchange through the shallow Strait system) [1,2]. Over the past century, the Baltic Sea has
experienced human-induced regime shifts towards a eutrophic state with altered species
composition [3], affecting entire food webs [4]. To overcome transnational challenges,
regional regulatory frameworks were created to protect marine ecosystems. The Marine
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Strategy Framework Directive (MSFD, 2008/56/EC [5]) was initiated at the EU level to
protect, conserve, and, where feasible, restore the marine environment. Among other things,
the Directive requires EU member states to assess and monitor the current ecological status
of their marine waters, with the aim to implement measures to reduce pressures as well
as monitor their effectiveness. Benthic habitats and their specific benthic communities
(together considered as biotopes) are of ecological importance as integral parts of the
food web, providing breeding, nursery, and feeding grounds for benthic and pelagic
species, as well as migratory birds, and may even represent a biodiversity hotspot [6].
Consequently, the Directive considers the seafloor and its inhabitants under Descriptor
1 (“Benthic Habitats”) and Descriptor 6 (“Seafloor Integrity”) with the view that benthic
ecosystems and physical disturbance as well as loss of the seabed should be avoided, and
that they should not be adversely affected (MSFD Annex I). To implement the requirements
of the MSFD, but also other EU legislation and regional programmes, e.g., the Habitats
Directive (HD, Article 11, 92/43/EEC [7]) and the Baltic Sea Action Plan set by HELCOM
(Baltic Marine Environment Protection Commission, or shortly, Helsinki Commission),
reliable full coverage maps of the distribution and extent of benthic habitats as well as
their changes over time are essential. The respective regulations are based on different
habitat and biotope classification systems which have been adapted to each other over time.
For the Habitats Directive, delimitation rules for habitat indication had to be created [8],
while the MSFD is based on the European Nature Information System (EUNIS), and
HELCOM developed its own system (HUB—HELCOM Underwater Biotope and Habitat
Classification [9]).

The assessment within the framework of the MSFD must be carried out separately
for benthic broad habitat types (BHTs) and other habitat types (OHTs) [10]. Examples of
BHTs, which are specified according to the EU Commission Decision (2017/848/EU [11]),
are “Infralittoral/circalittoral rock and biogenic reef”, “Infralittoral/circalittoral mixed
sediment”, “Infralittoral/circalittoral coarse sediment”, “Infralittoral/circalittoral sand”,
and “Infralittoral/circalittoral mud”. The delimitation of these habitats is based on the
definition of the European Nature Information System, EUNIS, and corresponds to EUNIS
level 2 (ending at level 3 with regard to the Baltic Sea). EUNIS covers, in a hierarchical way,
marine benthic habitats with their sedimentological and biological components. Infralittoral
refers to the light-flooded zone that allows for the growth of vascular plants and green
algae [12]. In contrast, the circalittoral is not sufficiently flooded with light. EUNIS also
distinguishes between the offshore circalittoral and the (nearshore) circalittoral. However,
the offshore circalittoral is not relevant in Germany.

Additional benthic habitat types (so-called other habitat types, OHTs) can be selected
by the respective EU member state to be assessed separately from BHTs, e.g., due to their
ecological relevance as protected biotopes [10]. Such OHTs for German marine waters
include biotope types according to §30 of the German Federal Nature Conservation Act
(BNatSchG), according to the European Habitats Directive (92/43/EEC), as well as the
Baltic Sea-wide HELCOM Red List types [13]. Relevant OHTs of the German Baltic Sea are
“species-rich areas of gravel, coarse-sand and shell-gravel areas”, “seagrass meadows and
other marine macrophyte populations”, “reefs”, “sandbanks which are slightly covered by
sea water all the time”, and “Baltic aphotic muddy sediment dominated by ocean quahog
(Arctica islandica)”.

The latter biotope originates from the HELCOM HUB system. It is a hierarchical
system, in which the Baltic Sea marine region, the light availability, the structuring habitat,
and the associated dominant benthic community are entered and indicated in a uniform
code. The definition of the HUB system is largely compatible with EUNIS. In contrast to
the BHTs, which are equivalent to EUNIS level 2 (the substrate level), the HUB biotope
types in this study are specified down to level 6 (dominating taxa), i.e., the lowest level
possible. EUNIS level 2 (or BHT) is consistent with HUB level 3.

Benthic habitat types according to the Habitats Directive [14] and EUNIS [15] as well
as benthic biotope types [16,17] or both [18] were previously mapped for selected parts of
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the Baltic Sea. Habitat types as full-coverage maps were provided by the EMODnet Seabed
Habitats project for the entire Baltic Sea on a large scale [19]. A comparable map with HUB
biotope types for the German Baltic Sea has previously only been presented by Schiele
et al. [20] and modified by Zettler and Darr [21]. However, these maps were based on a
limited dataset and took little account of the epibenthic colonisation of the hard substrate.
Since the compilation of the map by Schiele et al. in 2015 [20], guidelines were developed on
how to geologically map the seafloor in German marine areas in a standardised way, how
to compile sediment and boulder distribution maps, and how to delineate geogenic reefs on
a large scale, respectively [8,22]. Selected areas in this present study were comprehensively
hydroacoustically mapped at a high resolution, and sediment types were delineated using
these mapping instructions from the BSH (Federal Maritime and Hydrographic Agency)
and the BLANO technical expert group, HyMo (technical expert group “Hydrography,
Hydrology and Morphology” of the Federal Government/Federal States Committee on
the North Sea and Baltic Sea). Newly developed AI-supported methods for the semi-
automatic detection of boulders supported the updated mapping [23–25]. Various sources
of information were used in order to create maps that are as coherent as possible and to be
able to indicate hard bottom communities in particular. Thus, the BHT, OHT, and HUB
maps reach an unprecedented level of detail, combining various classification systems with
updated data, which can now be reproduced in a standardised way.

This study provides the basis for the national assessment under MSFD Descriptor 6,
taking into account the requirements of various regulations, and it is thus vital for further
management decisions and the adaptation of monitoring programmes.

2. Materials and Methods

The study area covers the entire German part of the Baltic Sea. However, the map
showing HUB biotopes could not be produced for the inner coastal waters of Mecklenburg-
Western Pomerania due to a lack of data. The created maps were grid-based with a spatial
resolution of at least 1 × 1 km. In areas where seabed sedimentology was fully mapped
using hydroacoustic techniques (following section; Figure 1), namely the “Outer Wismar
Bay”, the “Darss Sill”, and the “Plantagenet Ground” in the coastal waters of Mecklenburg-
Western Pomerania, as well as the nature conservation areas “Fehmarn Belt” and “Kadet
Trench” in the EEZ, a resolution of 50 × 50 m was applied. These high-resolution areas
that were mapped with hydroacoustic recordings are referred to as “detail areas” in the
following sections. For more information on each detail area (the sediment and boulder
distribution maps as well as BHT, OHT, and HUB maps), see [25–29].

2.1. Geological Mapping

The sedimentology of the seafloor was mapped by hydroacoustic methods in three
areas in the coastal waters of Mecklenburg-Western Pomerania and two nature conserva-
tion areas in the EEZ [25,26]. Side-scan sonars (including Marine Klein 4000, Edgetech
4200, Edgetech 4300 MPX, Starfish 450F, Edgetech 4200 HF, and R2Sonic2024) with differ-
ent frequencies (100–600 kHz) were used for this purpose. External data were acquired
(Vermessungsbüro Weigt, BSH, Christian-Albrechts-University Kiel) in order to apply the
time-consuming measurements only in areas where data with the required resolution and
quality were not yet available. Sediment samples and videos were used to verify the
hydroacoustically recorded data within the detail areas (ground truthing, as shown in
Section 2.5 and further described together with the benthos sampling in Section 2.4). Data
processing was carried out with SonarWiz (Chesapeake Technology Inc., Los Altos, CA,
USA) software, which creates backscatter mosaics of the seafloor surface. After setting the
bottom tracks, correcting for slant range distortion, and setting the layback, empirical gain
normalisation was applied, and the backscatter mosaics were imported into ArcMap 10.7.
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Figure 1. The German Baltic Sea including areas which were mapped in detail (resolution: 50 × 50 m).

Sediment analyses from ground truthing samples were performed optically using
a Mastersizer 3000 (Malvern Panalytical Ltd., Malvern, UK) as well as by dry and wet
sieving due to the heterogeneity of the samples (silt, sand, and coarse sediment). The
Mastersizer was used to measure samples up to a maximum grain size of 3.0 mm. Samples
with coarser components were sieved. Seemingly fine-grained samples were treated with
HCl and H2O2 before measurement to remove carbonate and organic components, because
these compounds impact grain size distributions. For the evaluation of the hydroacoustic
data, the results of the sediment analyses were evaluated according to Blott and Pye [30]
and fitted to the Folk triangle [31] while considering the BSH hydroacoustic mapping
instructions [22].

With the help of the hydroacoustic data, video recordings, sediment samples, and the
sediment map according to Tauber [32], sediment distribution maps were created within the
detail areas according to a national guideline [22] with the following standards: Sedimento-
logical classification of the areas delineated on the backscatter mosaic was performed for
the sediment types at three different levels where possible. Level A includes fine sediments,
sands, mixed sediments, coarse sediments (simplified classification according to Folk [31]),
and both residual sediments and peat. The term “residual sediment” (lag sediment) is not
a clearly defined concept in marine geosciences, but it is nevertheless frequently used for a
higher-level description of certain sediment types. Residual sediments cannot be identified
by an exact granulometric measurement. Rather, residual sediments describe the remaining
part of sediments that have been reworked by natural dynamic processes. Such reworking
processes usually result in a granulometric separation/sorting of the sediment components,
whereby the less mobile components like gravel, small boulders, or marl remain in the area
of the original sediment for longer [33–35]. This distinguishes them from the categories
of mixed sediments and coarse sediments defined by Folk [31], which contain only mud,
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sand, and gravel, but not fractions beyond that. In Level B, the clastic sediment types from
Level A are further subdivided according to Folk [31]. Since there is no subdivision of
sands in the Folk triangle, Level C was introduced, in which sediments designated as sands
in Levels A and B were further subdivided according to Figge [36] (for more information,
see [26]; Table 1).

Table 1. Level specifications of sediment classifications according to BSH [22]. * Not specified = lack
of information and/or knowledge for exact classification. ** Not classified = cannot be classified
further in this level.

Level A Level B Level C

Fine sediment (Fsed) not specified * not classified **
mud (M) not classified
sandy mud (sM)
muddy sand (mS)

Sand (S) sand (S) not classified
fine sand (fSa)
medium sand (mSa)
mixed sand (mxSa)
coarse sand (cSa)

Coarse sediment (Csed) not specified not classified
gravelly sand (gS) not classified
sandy gravel (sG)
gravel (G)

Mixed sediments (MxSed) not specified not classified
gravelly mud (gM) not classified
gravelly muddy sand (msG)
muddy gravel (mG)

Peat
Lag sediment (LagSed) not classified not classified
Not specified not specified not specified

The distribution of boulders is displayed in a separate map. The number of boulders
in the nature conservation areas in the EEZ (“Fehmarn Belt” and “Kadet Trench”) was
estimated manually for each 50 × 50 m grid cell by dividing them via subitising (recording
the number of boulders at first sight without counting) into three classes, according to
the guideline for the large-scale delineation of geogenic reefs in the German Baltic Sea [8]:
cells without boulders (Class 1), cells with 1–5 boulders (Class 2), and cells with more than
5 boulders (Class 3). Boulders in the detail areas of the coastal waters in Mecklenburg-
Western Pomerania (“Outer Wismar Bay”, “Darss Sill”, and “Plantagenet Ground”) were
detected semi-automatically using the methods reported in the study by Feldens et al. [23,24].
A neural network detected individual boulders in the backscatter mosaics [25]. Where
possible, mosaics acquired at a frequency between 300 and 500 kHz were chosen as a
baseline, as these show better individual object resolution [37]. The results were screened
for false detections (mainly caused by water column stratification artefacts in the data) and
then classified into the same three classes as described above. A boulder distribution map
was used to place a grid over the areas and indicate these three categories per 50 × 50 m cell.

The sediment and boulder distribution maps formed the basis of the subsequent
BHT, OHT, and HUB maps, which were created using ArcGIS Desktop 10.7. All maps can
be found in the Supplementary Materials and are available for download as an ArcMap
package.

2.2. Compiling the BHT Map (Benthic Broad Habitat Types according to EU Commission Decision
2017/848/EU)

The BHT sediment definition according to EUNIS in the area of the German Baltic Sea
differentiates types of the infralittoral (light-flooded) and the circalittoral (nonlight-flooded)
zones such as “mud”, “sand”, “coarse sediment”, “mixed sediment”, and “rocks and
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biogenic reef”. “Mixed sediment” corresponds to a hard substrate fraction of 10–90 % cover.
The category of “rocks and biogenic reef” only refers to the occurrence of biogenic reefs
because of the lack of information on specific coverages of geogenic hard substrates. A
distinction between above 90% (“rocks and biogenic reef”) and below 90% hard substrate
(“mixed sediment”) could thus not be made. However, it cannot be ruled out that the hard
substrate cover locally exceeds 90 %. Only peat bottoms entered the category as biogenic
reefs because they were covered by mussels. Geogenic hard substrates (categorised as
“mixed sediment” in this study) within the detail areas is assigned when >5 boulders are
present in a 50 × 50 m cell, or if both 1–5 boulders (as seen from the boulder distribution
map) as well as lag sediment (as seen from the sediment distribution map) occur in a cell.
Otherwise, the sediment is defined as soft substrate. In addition to the sediment map of
Tauber [32], the hard substrate was assigned according to the reef coverage, which, for
the first time, was delineated over a large area for reef designation according to [8] within
the detail areas. These areas were reported to HOLAS III (HELCOM holistic assessment).
Outside of the detail areas, reef coverage in Schleswig-Holstein [38], Mecklenburg-Western
Pomerania [39], and the EEZ (BfN) was used for further hard substrate allocation. Mapped
reef areas and suspected reef areas were assigned to the BHT “mixed sediment (hard
substrate)”, and the polygon areas were gridded. Reefs in Mecklenburg-Western Pomerania,
in contrast to those in Schleswig-Holstein (at 50 × 50 m), were shown at 1 × 1 km because
they were not mapped out. The sediment map of Tauber [32] was used for the soft substrate
allocation outside the detail areas. An overview of the data basis entered for the BHT, OHT,
and HELCOM HUB maps can be found in Table 2.

Table 2. Data basis for the BHT, OHT, and HELCOM HUB maps inside and outside the detail areas.
Note the distinction between endobenthos and epibenthos in the predictors used for HUB biotope
modelling.

BHT OHT HUB

Detail Areas Outside of
Detail Areas Detail Areas Outside of

Detail Areas Detail Areas Outside of
Detail Areas

Overall
resolution 50 × 50 m 1 × 1 km 50 × 50 m and

polygons
1 × 1 km and

polygons 50 × 50 m 1 × 1 km

Map basis for
soft bottom

Sediment
distribution maps

from
hydroacoustic

surveys (gridded)

Tauber [32]
(gridded)

Seagrass
meadows and
“species-rich

areas of gravel,
coarse-sand and

shell-gravel areas”
mapped

according to
hydroacoustic

results;
distribution area
of “Baltic aphotic
muddy sediment

dominated by
ocean quahog

(Arctica islandica)”
modelled in this

study

“Seagrass
meadows”

modelled by
[40,41] (gridded);

sandbanks as
reported to
HOLAS III
(polygons);

distribution area
of “Baltic aphotic
muddy sediment

dominated by
ocean quahog

(Arctica islandica)”
modelled in this

study

Sediment distribution
maps from

hydroacoustic surveys
(gridded)

Tauber [32]
(gridded)

Map basis for
hard bottom

Boulder
distribution maps

from
hydroacoustic

surveys according
to [8] (grids)

Reef areas as
reported to
HOLAS III
(gridded)

Distribution area
of “other marine

macrophyte
populations”

modelled in this
study; reefs

mapped
hydroacoustically

in this study
(gridded)

Reef areas as
reported to
HOLAS III
(polygons)

Boulder distribution
maps from

hydroacoustic surveys
according to [8] (grids)

Reef areas as
reported to
HOLAS III
(gridded)
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Table 2. Cont.

BHT OHT HUB

Detail Areas Outside of
Detail Areas Detail Areas Outside of

Detail Areas Detail Areas Outside of
Detail Areas

Hard bottom
assignment

>5 boulders/50 ×
50 m cell or lag

sediment and >1
boulder/50 × 50

m cell (from
boulder and

sediment
distribution

maps)

Reef areas as
reported to
HOLAS III
(gridded)

Reefs mapped
according to [8]

Reef areas as
reported to
HOLAS III

>5 boulders/50 × 50 m
cell or lag sediment and
>1 boulder/50 × 50 m
cell (from boulder and
sediment distribution

maps)

Reef areas as
reported to
HOLAS III
(gridded)

Biotope
classification

schemes
EUNIS EUNIS

“Species-rich
areas of gravel,

coarse-sand and
shell-gravel areas”
according to [42];

“Seagrass
meadows and
other marine
macrophyte

populations” and
“Baltic aphotic

muddy sediment
dominated by
ocean quahog

(Arctica islandica)”
according to
HUB; reefs

according to [8]

“Seagrass
meadows and
other marine
macrophyte

populations” and
“Baltic aphotic

muddy sediment
dominated by
ocean quahog

(Arctica islandica)”
according to
HUB; reefs

according to [8]

HUB HUB

Predictors
used for

modelling
- -

Only “Seagrass
meadows and
other marine
macrophyte

populations” and
“Baltic aphotic

muddy sediment
dominated by
ocean quahog

(Arctica islandica)”
were modelled in

this study; the
former is

equivalent in
their spatial

extent to HUB
class “Baltic

photic mixed
substrate

dominated by
perennial

non-filamentous
corticated red

algae” and “Baltic
a-/photic mixed
substrate/coarse

sediment
dominated by

foliose red algae”
(Zostera spp. and
Fucus spp. were
not modelled in
this study) and
only indicated
outside the reef

areas; for
predictors, see
HUB entries

See detail areas

Endobenthos:
sediment distribution

map (50 × 50 m), water
depth (50 × 50 m),

temperature, salinity,
current velocity (in

directions north/south,
east/west, without

directional information),
bottom shear stress,

oxygen concentration,
number of hypoxic

days, DOC, ammonium,
nitrate, phosphate (600

× 600 m)
Epibenthos: boulder

distribution map, water
depth, photic zonation,
slope gradient (50 × 50

m), temperature,
salinity, current velocity

(in directions
north/south, east/west,

without directional
information), bottom

shear stress,
photosynthetically

active radiation (PAR),
oxygen concentration,

number of hypoxic
days, DOC, ammonium,
nitrate, phosphate (600

× 600 m)

See detail areas;
Tauber [32] was
used instead of
the sediment
distribution

map for
endobenthos

modelling, and
reef coverage

(as reported to
HOLAS III) was
used instead of

boulder
distribution

map for
epibenthos
modelling
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Table 2. Cont.

BHT OHT HUB

Detail Areas Outside of
Detail Areas Detail Areas Outside of

Detail Areas Detail Areas Outside of
Detail Areas

“Seagrass
meadows
and other

marine
macrophyte
populations”
(paragraph
§30 Federal

Nature
Conservation

Act)

- -

Seagrass mapped
in the

“Plantagenet
Ground”; other

macrophytes
modelled in this

study

Zostera spp.
modelled in
Schleswig-

Holstein [40] and
Mecklenburg-

Western
Pomerania [41];

Fucus spp.
modelled in
Schleswig-

Holstein [40];
other

macrophytes
modelled in this

study

See OHT See OHT

The sediment classification schemes used for hydroacoustic interpretation and by
Tauber [32] are incompatible with the biotope classification systems; therefore, a translation
was necessary. The reclassification for Tauber is documented in Table 3. The silt and
gravel/coarse sand content of each sediment class from the map according to Tauber was
used from the underlying sediment analyses to categorise the sediment classes according
to the definitions by EUNIS. Habitat categorisation according to EUNIS [43] is defined as
“muddy sediment” if the mud, silt, or clay (<63 µm) content is at least 20%; “coarse sedi-
ment” if the mud/silt/clay fraction is less than 20% and the gravel and pebbles (2–63 µm)
exceed 30% of the combined gravel and sand fraction; and “sand” if the mud/silt/clay
fraction is less than 20% and the sand (0.063–2 mm) exceeds 70% of the combined gravel
and sand fraction. The categories “muddy sediment”, “coarse sediment”, “sand”, or “rock
and boulders” (>63 mm) are used when a coverage of at least 90 % is reached. “Mixed
sediment” is used if the coverage of hard (rock/boulders/stone) and soft substrata (muddy
sediment/sand/coarse sediment) is at least 10–90%. EUNIS is therefore based on the
HELCOM HUB classification. The silt fraction (grain size < 63 µm) of the sediment class
“very fine sand” from the map according to Tauber, for example, was >20% and was
therefore assigned to the EUNIS/BHT type “mud”. As the sediment characteristics varied
considerably in the detail areas, reclassification from the hydroacoustic surveys to EUNIS
sediment types was carried out in an area-specific manner.

Table 3. Translation of sediment types classified according to Tauber [32], following Folk [31] and
Figge [36], into sediment classification according to EUNIS, on which the BHTs are based.

Sediment Type Classified according to
Tauber (2012)

Sediment Type Reclassified according to
EUNIS

gravel, very coarse sand coarse sediment
fine sand—coarse sand sand

very fine mud—very fine sand mud
clay, peat, lag sediment/till mixed sediment (hard substrate)

For photic zonation, a modelled polygon shape from [44] was used. Photic zonation
was assigned in this study to the infralittoral zone, and aphotic zonation was assigned to
the circalittoral zone.

For this study, BHTs occupying an area of <1 ha were eliminated and aligned with the
surrounding BHTs. Areas within the inner coastal waters were retained as shown in the
latest BHT map prepared in 2018 [45].
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The nationally protected habitat type involving “species-rich areas of gravel, coarse-
sand and shell-gravel areas” (§30 of the German Federal Nature Conservation Act) was
specified as BHT “sand” rather than “coarse sediment” because the condition of >30%
gravel or coarse sand content (EUNIS) was not met, based on the available sediment
distribution maps.

2.3. Compiling the OHT Map (Benthic Other Habitat Types according to EU Commission Decision
2017/848/EU)

In contrast to BHTs, OHTs were included in the map as they were. For example, if
reef areas were reported as polygons nationally, this area was integrated into the map
as it was, and not gridded. Reefs mapped in this study were derived according to the
national guideline for large-scale delineation of geogenic reefs in the German Baltic Sea [8].
The guideline specifies certain rules for gap closure within reef occurrences, so that the
delineated reefs do not have to completely match with the indication of the BHT “mixed
sediment”. Thus, in a cell where habitat type 1170 is indicated, the BHT “sand” may occur.

Sandbanks were shown in the same manner as the reefs from Schleswig-Holstein
(Schleswig-Holstein State Office for the Environment, LFU [38]), Mecklenburg-Western
Pomerania (Leibniz-Institute for Baltic Sea Research Warnemünde, IOW; State Office for
the Environment, Nature Conservation and Geology Mecklenburg-Western Pomerania,
LUNG [39]) and the EEZ (IOW; Christian-Albrechts-University Kiel, CAU Kiel; Federal
Agency for Nature Conservation, BfN; Federal Maritime and Hydrographic Agency, BSH).
Sandbanks in “Fehmarn Belt” and “Adler Ground”, as identified and described in the study
by Boedeker et al. [46], were remapped by CAU Kiel and IOW and intersected with the
reef cover from 2022.

“Seagrass meadows and other marine macrophyte populations” (§30 Federal Na-
ture Conservation Act) and “Baltic aphotic muddy sediment dominated by ocean qua-
hog (Arctica islandica)” (HELCOM Red List) were modelled in this study in contrast to
the other OHTs as HELCOM HUB biotope type and integrated into the OHT map (see
Sections 2.6 and 2.7). Zostera spp. and Fucus spp. distribution areas for Schleswig-Holstein
([40]; data from the State Office for the Environment Schleswig-Holstein, 21 February
2022 and 18 March 2022) that were already modelled and mapped eelgrass beds for
Mecklenburg-Western Pomerania [41] were integrated into the modelled HUB map at
the end and indicated as OHT. Fucus spp. or Zostera spp. entered a cell as soon as they
were modelled with an occurrence of at least 50 % (this also corresponds to the prediction
probability) or mapped with at least 10 individuals/m2. The biotope type “seagrass mead-
ows and other marine macrophyte populations” also includes foliose and corticated red
algae, which were not indicated here in favour of the reef indication as habitat type, except
when individual occurrences were observed outside the reef cover.

2.4. Biological Mapping

A total of 1637 grab samples, 403 station videos, 59 station photos, and 47 photo
transects were taken and processed. Dominant benthic communities were classified in
preparation for the HELCOM HUB map. Data from grab samples were used to determine
dominant endobenthic organisms, and video and photographic records as well as diver
samples were used to determine dominant epibenthic organisms.

Grab sampling was conducted using a Van Veen grab (0.1 m2) (Alu-Bau Ltd, Büdels-
dorf, Germany) with an additional sediment sample obtained for granulometric analysis.
The benthic samples were flushed through a sieve with a mesh size of 1 mm or, in the
case of coarser sediment content, suspended in several subsamples, and the supernatant
was decanted and poured through a 1 mm sieve again. The sample was fixed using a 4%
formalin buffer solution, and marble grit was added to preserve mussel and snail shells. In
the laboratory, the specimens were determined to species level, if possible, using a Carl
Zeiss Discovery.V8 binocular (Carl Zeiss AG, Oberkochen, Germany). The wet weight was
determined. Determination of dry weight and ash-free dry weight was carried out using
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Leibniz Institute for Baltic Sea Research (IOW) internal conversion factors [47]. Sampling
was carried out according to standard instructions [48,49].

In addition to grab sampling, optical methods (underwater video and photography)
were used to record epibenthic colonisation. Simultaneously with grab sampling, video
recordings were taken at the grab station sites using a SeaViewer Sea Drop 6000 HD for a
minimum of 5 min. For transects (0.3–2 nm), the recordings were obtained using a towed
camera system developed at IOW (BaSIS—Baltic Sea Imaging System [50]), towed at ~0.5 kn.
This camera system took one image every 15 s, of which one photo per minute that was
suitable for analysis (not blurred, no shadows, and no sediment turbulence) was selected. In
addition, in one campaign, an external drop camera system was used in the EEZ, which was
designed by the German Federal Agency for Nature Conservation (BfN). This drop camera
frame, equipped with a GoPro HERO4 Black, took a picture every 5 s at a station.

Video analysis (SeaViewer) was semi-quantitative based on the estimated coverage of
epibenthic taxa and substrate according to the ACFOR scale (abundant, common, frequent,
occasional, rare), which was visible in 5 min of video recording at the station. Image
analysis (BaSIS, BfN drop camera) was performed quantitatively using the open-source
software CoralPhotoCount 4.1 with an Excel extension (CPCe [51]), as described in the
study by Beisiegel [50].

Furthermore, diver sampling was performed, during which scratch samples were
obtained through collection frames (0.1 m2) with attached net bags, where the surface of a
stone/boulder was scraped off within the frame, and biomass (dry weight) was determined.
In addition, diver photos were used to estimate the degree of coverage of the epibenthic
organisms.

Dominant benthic communities were indicated according to the HUB (HELCOM
Underwater Biotope and Habitat Classification) system published by HELCOM [9]. In-
dividual HUB classes were assigned manually at each station or georeferenced transect
section (still images). As a result, several HUB classes in one cell could be included (as re-
sponse variables) in the modelling. Both soft- and hard-bottom classifications were carried
out separately. Endobenthos classification was assigned first from grab samples, and then
epibenthos classification was assigned from video and photographs. For an endobenthic
taxon, the critical value was based on a biomass fraction of >50%, and for an epibenthic
taxon, the criteria were based on coverage of 10% on the total area or 90% on hard substrate
to be considered dominant [9]. Assigned HUB classes were then represented areally by
predictive habitat modelling (see Section 2.6).

2.5. Data Basis for Modelling

In addition to the data collected in the current study’s projects and data from the
IOW database, acquired data from the 2010–2021 period were used (~45% internal and
~55% external data). Table 4 shows the amount of data and where it was derived from.
These data originate from grab samples provided by authorities and private sector service
companies (LUNG, LFU, StALU MM, StALU WM, WSA Stralsund, IfAÖ, Palaemon aquatic
service company). A total of 3,628 stations were included in the model for endobenthic
communities (Figure 2).

External data used for sessile epibenthos modelling came from photo-recorded diver
sampling from management plans [52–56] and diver scratch sampling [57,58]. A total of
3623 stations and transect sections from the 2010–2021 period (~92% internal and ~8%
external data) were included in the model (Figure 3). All cells with a larger areal proportion
of hard sediment (>5 boulders or lag sediment with at least one boulder per 50 × 50 m
cell) to soft sediment within a 1 × 1 km cell were included in the epibenthos modelling.
The basis for the hard bottom modelling was the current reef boundaries of the coastal
waters of Schleswig-Holstein, Mecklenburg-Western Pomerania, and the EEZ. In the area
of Schleswig-Holstein, this includes suspected reef areas and geologically as well as bio-
logically verified reefs [38]. In the area of Mecklenburg-Western Pomerania, the data were
derived from the management plans and the suspected habitat type areas (according to the
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Habitats Directive) from 2011 [39]. In the EEZ, it consisted of reef areas mapped by CAU
Kiel, BSH, and IOW through the EEZ project 6 and the project SEDINO phases I, II, and III
(both funded by BfN).

Table 4. Number and sampling instruments of internal and external (in brackets) data that
were mapped and acquired. Further data were obtained from the Federal Maritime and Hydro-
graphic Agency (BSH), the State Office for the Environment, Nature Conservation and Geology of
Mecklenburg-Western Pomerania (LUNG), the Schleswig-Holstein State Office for the Environment
(LFU), the State Office for Agriculture and the Environment of Central Mecklenburg (StALU MM) and
Western Mecklenburg (StALU WM), the Waterways and Shipping Office Stralsund (WSA Stralsund),
the Christian-Albrechts-University Kiel (CAU Kiel), the Institute for Applied Ecosystem Research
Ltd. (IfAÖ) (Neu Broderstorf, Germany), and the GEOMAR—Helmholtz Centre for Ocean Research
Kiel.

Area Number of Acquired Data Points Sampling Instruments References of Used Data

D
et

ai
la

re
as

Outer Wismar Bay 85 (18) grab stations, 29 video stations,
6 video transects

Van Veen grab, SeaViewer,
BaSIS

IOW, IfAÖ, LUNG, StALU WM,
StALU MM

Darss Sill 73 (106) grab stations, 26 video stations,
4 video transects

Van Veen grab, SeaViewer,
BaSIS

IOW, IfAÖ, LUNG, StALU WM,
StALU MM

Plantagenet Ground 49 (67) grab stations, 27 video stations,
4 video transects

Van Veen grab, SeaViewer,
BaSIS

IOW, IfAÖ, LUNG, StALU WM,
StALU MM

Kadet Trench 103 (17) grab stations, 37 video stations,
8 video transects, 36 photo stations

Van Veen grab, SeaViewer,
BaSIS, BfN drop camera IOW, CAU Kiel, BSH

Fehmarn Belt 339 grab stations, 134 video stations,
11 video transects Van Veen grab, BaSIS IOW, CAU Kiel, BSH

German Baltic Sea

1637 (1991) grab stations, 403 video
stations, 47 video transects, 59 photo

stations, (45) diver stations, 9 (82) diver
photo stations

Van Veen grab, SeaViewer,
BaSIS, BfN drop camera, diver

scratch samples and photos

IOW, BfN, BSH, LFU, LUNG,
StALU WM, StALU MM, WSA

Stralsund, CAU Kiel, IfAÖ,
Geomar

Figure 2. Stations and their data sources that entered the endobenthos model.
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Figure 3. Stations and transects that entered the epibenthos model, indicating data source and type.

2.6. Predictive Biotope Modelling

The HELCOM HUB map was created using predictive habitat modelling, unlike
the BHT and OHT maps (except for HELCOM HUB biotope types included therein). In
preparation for the modelling and subsequent HUB biotope map, a grid of 1 × 1 km grid
cells (corresponding to the EEA standard grid) was placed over the coastal waters and EEZ,
with each cell assigned a unique entry from the abiotic variables. If a grid cell contained
multiple sediment types, the sediment with the higher proportion within the cell was
assigned to the cell. The same procedure was used for the detail areas with a 50 × 50 m
grid. Both the overview area and the detail areas were each modelled separately. The data
used for the detail areas also went into the modelling of the overview map.

A random forest classification model (after [59]) was used to predict HUB biotopes.
Modelling was carried out separately for endobenthos and epibenthos using the “random-
Forest” package (version 4.6–14, [60]) in RStudio 2022.12.0 (R environment version 4.2.2,
the R Foundation for Statistical Computing Platform).

First, with respect to modelling, the already assigned HUB classes of each station/transect
section (as described in Section 2.4) were specified at levels 4–6 (biotope level, without
sediment information), and after modelling, the predicted HUB codes were completed
with the found sediment and photic zone in the respective cell (levels 1–3) according to
the definitions of HELCOM (for the HUB map). The previous manually assigned HUB
classes entered the model as response variables and were used to classify HUB classes in
every cell of the German marine waters (for endobenthos) and the hard substrate areas
(for epibenthos). This study therefore follows a community-based modelling approach, as
described by other authors [61–63]. In addition to the soft-bottom data from the sediment
distribution maps of the detail areas, the following raster datasets from both the ERGOM
model (Ecological Regional Ocean Model, model run from 2010 to 2017, [64]) and the
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GETM model (General Estuarine Transport Model, model run from 2010 to 2020, [65]) were
available as predictors at a 600 × 600 m resolution:

• Temperature, salinity, current velocity (in directions of north/south, east/west, with-
out directional information), and bottom shear stress from the GETM model [65];

• Photosynthetically active radiation (PAR), oxygen concentration, number of hypoxic
days, DOC, ammonium, nitrate, phosphate from the ERGOM model [64];

• Water depth and sediment type [32];
• Photic zonation (based on ERGOM model, [44]);
• Slope gradient (based on [32]).

The values from these raster datasets were assigned from the centre point of a cell.
Outside of the detail areas, where no areal geologic mapping was conducted, the sediment
map of Tauber [32] was used as a predictor for soft-bottom categorisation. Slope was
only included in the epibenthos modelling and was created from the bathymetric map of
Tauber [32] using the Spatial Analyst tool in ArcGIS Desktop 10.7.1. PAR (photosyntheti-
cally active radiation), and photic zonation was also included in the epibenthos modelling
only. The polygon shapefile used for photic zonation is based on the light penetration
depth (PAR) values from the 2000–2010 ERGOM model run [44]. To separate the photic
and aphotic zones, the 1% light penetration depth (averaged over the growing season from
March to October) was coupled with bathymetry [66]. The initial dataset was randomly
divided into a training dataset (70%) and testing dataset (30%). To improve model per-
formance, hyperparameters (number of trees and number of predictors at each decision
node) were tuned until lowest out-of-bag (OOB) error was found, and model adjustments
were made if the dataset was imbalanced (using downsampling, balanced random forest,
upsampling, and the SMOTE algorithm).

2.7. HUB Map Modelling Limitations and Conventions

In general, the model performance decreases when modelling classes are very similar
to each other, for example, when separating and predicting a biotope class of a dominant
specific species from a biotope class of a community containing exactly the same species.
Therefore, the following conventions had to be adopted in the modelling process (based on
Sections 2.5 and 2.6):

• Elimination of outliers:
• Before modelling the endobenthos in the whole German Baltic Sea, stations dominated

by taxa that rarely occurred in the area and that accounted for max. 1% of the total
number of stations were eliminated. Such outliers were Actiniaria and oligochaetes
(in HELCOM HUB they are classified as meiofauna).

• Ophelia spp./Travisia spp. could not be separated from other communities by the
random forest (RF) model and therefore were not reliably predicted, so stations with
dominant Ophelia spp./Travisia spp. were also deleted.

• Less frequent dominant taxa were assigned to a higher category:
• Dominant Mya arenaria and Astarte spp. were assigned to the community with multi-

ple infaunal bivalve species, because being a part of the overarching community,
they were poorly separable from each other. Because the polychaete communi-
ties (partly with dominating Scoloplos armiger, Marenzelleria spp., Pygospio elegans,
and Hediste diversicolor) were difficult to separate from the other communities; they
were grouped together as the community with macroscopic infaunal biotic struc-
tures (HUB Level 4), as were stations ending at HUB level 5 (e.g., dominant bi-
valves/polychaetes/crustaceans). Therefore, the community with macroscopic in-
faunal biotic structures includes not only communities without dominant taxa, but
also those previously mentioned that are too unspecific in their occurrence, leading to
improved model performance.

• Non-dominant communities were indicated as dominant:
• Epibenthos-dominated stations that ended up at HUB level 5 were indicated as HUB

level 6 (e.g., foliose red algae were treated as dominant even though they had < 50%

188



Biology 2024, 13, 6

cover), because the model cannot separate dominant and non-dominant communities,
in order for those stations to be included in the model. This means that in areas where
epibenthic communities are predicted, they do not need to be dominant, but they are
more likely to occur than other communities.

• Mixed communities were indicated as non-mixed communities:
• Mixed communities that are very similar in species composition (e.g., foliose red

algae, foliose red algae/sponges, foliose red algae/filamentous red algae, foliose red
algae/bryozoans, and foliose red algae/sponges/kelp) cannot be clearly delineated by
the model. Therefore, these mixed communities were assigned to those taxa that play
a superior role in the biotope function (structuring, long-lived, and geographically
dominant). For example, the classes listed above were assigned to dominant foliose
red algae. This means that epibenthic mixed communities can always occur, even
when indicated otherwise. Transitions cannot be modelled with the procedure chosen
here because the model considers each class as distinct.

The predictions of endobenthos and epibenthos from the models were intersected
eventually, in the sense that the epibenthic community in a cell was indicated at the sites
where hard substrate dominates. Unlike the BHT map, the HUB map was not generalised
(i.e., areas < 1 ha were not matched to surrounding sediment).

Benthic broad habitat types and other habitat types according to the Commission
Decision [11] are aligned with HELCOM HUB biotope types. This means that habitats (i.e.,
sediment information) coincide, except for the indication of OHT “reefs” and BHT “mixed
sediment”, as different delimitation rules underlie here (see Section 2.3).

3. Results
3.1. Broad Habitat Type (BHT) Map

The map in Figure 4 shows the broad habitat types at a 1 × 1 km resolution with the
incorporation of the areas mapped at a 50 × 50 m resolution in this study (“Outer Wismar
Bay”, “Darss Sill”, and “Plantagenet Ground” in the coastal waters of Mecklenburg-Western
Pomerania, as well as the nature conservation areas of the EEZ, “Fehmarn Belt” and “Kadet
Trench”). Infralittoral sand and circalittoral mud occupy the largest areas in the German Baltic
Sea, with each being >20% of the total area (Table 5), followed by circalittoral sand, infralittoral
mixed sediment (hard substrate), infralittoral mud, and circalittoral mixed sediment (hard
substrate). The remaining BHT categories amount to less than 1% of the total area.

Major differences to the previous version of the map from 2018 [45] are the update of
hard-bottom areas and the detailed representations of sediment compositions in selected
areas. However, the assignment of sediment types (Table 3) shown according to [32] also
differs from the sediment reclassification in the map submitted to HOLAS II; for example,
mudflats (e.g., west of Fehmarn, in the Plantagenet Ground, east of the Isle of Rugia) are
more widespread or larger than in the 2018 map. Another difference is the photic zonation.
While a layer from the EUSeaMap was used for the previous map, a more detailed shapefile
from [44] was used here for the classification into infralittoral (photic) and circalittoral
(aphotic) zones. The area of the infralittoral zone is larger in the shapefile used in this
study, with the Kiel Bight, in particular, differing on a large scale, and the rest differing on
a rather small scale. The inner coastal waters are consistent with the 2018 map. The only
change was made in the Szczecin Lagoon, where circalittoral mud and sand were changed
to infralittoral mud and sand.
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Figure 4. Distribution of broad habitat types (BHT) in the German Baltic Sea.

Table 5. Areas and their proportions of individual broad habitat types (BHT) in the German Baltic Sea.

BHT Area (km2) Area (%)

Infralittoral rock and biogenic reef 1.0 0.007
Infralittoral mixed sediment (hard substrate) 1785.3 11.6
Circalittoral mixed sediment (hard substrate) 488.3 3.2

Infralittoral coarse sediment 35.5 0.2
Circalittoral coarse sediment 16.2 0.1

Infralittoral sand 4600.0 29.8
Circalittoral sand 3010.4 19.5
Infralittoral mud 1393.8 9.0
Circalittoral mud 4115.1 26.6

3.2. Other Habitat Type (OHT) Map

Reefs occupy the largest area of all OHTs with 2183.5 km2 (Figure 5, Table 6). They
consist mainly of boulder fields and extend mostly on abrasion platforms that continuously
expose boulders during the ongoing erosion of glacial till [34]. So far, only small areas of
pure lag sediment reefs have been mapped. Biogenic reefs (pure mussel beds) have not yet
been observed.
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Figure 5. Distribution of other habitat types (OHT) in the German Baltic Sea that are protected under
EU-/national law or included in the HELCOM Red List.

Table 6. Areas and their proportions of other individual habitat types (OHT) in the German Baltic Sea.

OHT Area (km2)
Area within the

German Baltic Sea (%)

Reefs (habitat type 1170) 2183.5 14.1
Sandbanks (habitat type 1110) 875.6 5.7

Seagrass meadows and other marine
macrophyte populations 321.4 2.1

Species-rich areas of gravel, coarse-sand, and
shell-gravel areas 5.9 0.04

Baltic aphotic muddy sediment dominated by
ocean quahog (Arctica islandica) 1417.6 9.2

Non-OHT 10,641.6 68.9

The nationally protected habitat type involving “species-rich areas of gravel, coarse-sand
and shell-gravel areas” consists of a suspected area found in the detail area of the “Darss Sill”.
The total area covered is 9 km2. Reef areas and “species-rich areas of gravel, coarse-sand and
shell-gravel areas” partly overlap. However, since both habitat types cannot be designated as
protected biotopes at the same time, the area is reduced to almost 6 km2.

“Seagrass meadows and other marine macrophyte populations” (§30 Federal Nature
Conservation Act) containing modelled eelgrass is found near the coast in the light-flooded
areas. However, they have not yet been mapped for the inner coastal waters of Mecklenburg-
Western Pomerania. The only mapped seagrass meadow is located in the “Plantagenet
Ground”. Seagrass occurrences were recorded using hydroacoustic data (side scan sonar)
and could be verified using video footage. They occur in the east of the detail area on
fine sand. The stock thins out to the north. Delineation to the 10 % cover is not possible
using side-scan sonar mosaics due to shadow formation. Since very shallow areas could
not be approached by the research vessel, it is uncertain whether this nationally protected
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biotope type extends over a larger area towards the west. Seaweeds (Fucus spp.) occur
more frequently in denser populations in the coastal waters of Schleswig-Holstein. Foliose
red algae, such as Delesseria sanguinea, occur in marine areas approximately as far as the
Darss Sill and where more saline water can flow through the Kadet Trench to the east. They
largely dominate the reefs, but are not specified in favour of habitat type 1170. Corticated
red algae, such as Furcellaria lumbricalis, could only be mapped sporadically as the dominant
stock (see also Section 3.3).

“Baltic aphotic muddy sediment dominated by ocean quahog (Arctica islandica)” are
found in deep basin areas where currents are low enough to allow for fine sediments to
deposit, such as Eckernförde Bay, Mecklenburg Bay, and Arkona Basin. It occupies the
second largest area of the OHT with 1417.6 km2.

3.3. HELCOM HUB Map

A total of 84 HUB biotope types could be modelled in the detail areas and the entire
German Baltic Sea (Table 7). Figure 6 shows the HUB biotope map for the German Baltic
Sea, and Figures 7–9 show the HUB biotope maps for the detail areas in Mecklenburg-
Western Pomerania (for more information on the detail areas in the EEZ, see [26,27]). The
colours represent sediment types and the shadings represent benthic communities. NAs
result from non-evaluable data in the boulder distribution maps and from sediment types
that were not included in the model (due to missing benthological ground truthing) and
therefore could not be predicted. However, this accounts for only about 8 km2 in the detail
areas of “Kadet Trench”, “Outer Wismar Bay”, “Darss Sill”, and “Plantagenet Ground”.

Table 7. Mapped HELCOM HUB biotopes and their respective areas with colour indication, as
shown in the HUB map (Figure 6). The question marks (?) represent unclassifiable sediment areas.
Unclassifiable sediment areas, presumably representing lag sediment areas and/or mussel beds
with or without glacial till, were labelled as “AA.I1E1?” (without boulders) or as “AA.M1E1?” (with
boulders). The codes marked with an asterisk (*) were introduced in this study and do not yet exist
in the HUB classification.

Colour Coding
HUB Map HUB Code HUB Biotope Area

(km2)

AA.? Baltic photic benthos 0.4

AB.? Baltic aphotic benthos 0.5

AA.?1E1 Baltic photic unknown substrate dominated by Mytilidae 0.5

AA.?3 Baltic photic unknown substrate characterised by macroscopic infaunal biotic
structures 2.1

AA.?3L3 Baltic photic unknown substrate dominated by ocean quahog (Arctica islandica) 0.003

AB.?3L3 Baltic aphotic unknown substrate dominated by ocean quahog (Arctica islandica) 0.1

AA.?3L4 Baltic photic unknown substrate dominated by sand gaper (Mya arenaria) 0.4

AA.?3L9 Baltic photic unknown substrate dominated by multiple infaunal bivalve species:
Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 2.4

AA.M Baltic photic mixed substrate 0.02

AB.M Baltic aphotic mixed substrate 0.04

AA.M1 Baltic photic mixed substrate characterised by macroscopic epibenthic biotic
structures 14.4

AB.M1 Baltic aphotic mixed substrate characterised by macroscopic epibenthic biotic
structures 15.3
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Table 7. Cont.

Colour Coding
HUB Map HUB Code HUB Biotope Area

(km2)

AA.M1C1 Baltic photic mixed substrate dominated by Fucus spp. 102.8

AA.M1C2 Baltic photic mixed substrate dominated by perennial non-filamentous corticated
red algae 16.3

AA.M1C3 Baltic photic mixed substrate dominated by foliose red algae 840.8

AB.M1C3 * Baltic aphotic mixed substrate dominated by foliose red algae 0.9

AA.M1C5 Baltic photic mixed substrate dominated by perennial filamentous algae 24.2

AA.M1E1 Baltic photic mixed substrate dominated by Mytilidae 540.6

AA.M1E1? Baltic photic mixed substrate dominated by Mytilidae? 0.2

AB.M1E1 Baltic aphotic mixed substrate dominated by Mytilidae 302.9

AA.M1G1 Baltic photic mixed substrate dominated by hydroids (Hydrozoa) 80.4

AB.M1G1 Baltic aphotic mixed substrate dominated by hydroids (Hydrozoa) 109.0

AA.M1H2 Baltic photic mixed substrate dominated by erect moss animals (Flustra foliacea) 0.02

AB.M1I1 Baltic aphotic mixed substrate dominated by barnacles (Balanidae) 0.01

AA.M1S1 Baltic photic mixed substrate dominated by filamentous annual algae 75.0

AA.M1V Baltic photic mixed substrate characterised by mixed epibenthic macrocommunity 0.1

AB.M1V Baltic aphotic mixed substrate characterised by mixed epibenthic macrocommunity 10.9

AA.M2T Baltic photic mixed substrate characterised by sparse epibenthic macrocommunity 36.0

AB.M2T Baltic aphotic mixed substrate characterised by sparse epibenthic macrocommunity 28.9

AB.M4U Baltic aphotic mixed substrate characterised by no macrocommunity 3.0

AA.G+AA.J1E1 Baltic photic peat bottoms + Baltic photic sand dominated by Mytilidae 1.0

AA.I Baltic photic coarse sediment 0.006

AA.I1E1 Baltic photic coarse sediment dominated by Mytilidae 11.4

AA.I1E1? Baltic photic coarse sediment dominated by Mytilidae? 0.7

AB.I1E1 Baltic aphotic coarse sediment dominated by Mytilidae 9.0

AA.I1C3 Baltic photic coarse sediment dominated by foliose red algae 0.1

AA.I3 Baltic photic coarse sediment characterised by macroscopic infaunal biotic structures 10.5

AB.I3 Baltic aphotic coarse sediment characterised by macroscopic infaunal biotic
structures 3.9

AA.I3L3 * Baltic photic coarse sediment dominated by ocean quahog (Arctica islandica) 4.3

AB.I3L3 * Baltic aphotic coarse sediment dominated by ocean quahog (Arctica islandica) 2.0

AA.I3L4 * Baltic photic coarse sediment dominated by sand gaper (Mya arenaria) 0.2

AA.I3L9 * Baltic photic coarse sediment dominated by multiple infaunal bivalve species:
Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 4.1

AB.I3L9 * Baltic aphotic coarse sediment dominated by multiple infaunal bivalve species:
Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 1.7
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Table 7. Cont.

Colour Coding
HUB Map HUB Code HUB Biotope Area

(km2)

AA.I3L10 Baltic photic coarse sediment dominated by multiple infaunal bivalve species:
Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. 4.8

AB.I3L10 Baltic aphotic coarse sediment dominated by multiple infaunal bivalve species:
Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. 1.0

AA.I3L11 Baltic photic coarse sediment dominated by multiple infaunal polychaete species
including Ophelia spp. 0.7

AB.I3M6 * Baltic aphotic coarse sediment dominated by multiple infaunal polychaete species 0.01

AA.J Baltic photic sand 0.1

AB.J Baltic aphotic sand 0.005

AA.J1B7 Baltic photic sand dominated by common eelgrass (Zostera marina) 223.1

AA.J1E1 Baltic photic sand dominated by Mytilidae 141.3

AB.J1E1 Baltic aphotic sand dominated by Mytilidae 196.2

AA.J1S Baltic photic sand characterised by annual algae 4.0

AA.J3 Baltic photic sand characterised by macroscopic infaunal biotic structures 425.9

AB.J3 Baltic aphotic sand characterised by macroscopic infaunal biotic structures 121.5

AA.J3L1 Baltic photic sand dominated by Baltic tellin (Macoma balthica) 8.2

AB.J3L1 Baltic aphotic sand dominated by Baltic tellin (Macoma balthica) 60.7

AA.J3L3 Baltic photic sand dominated by ocean quahog (Arctica islandica) 367.4

AB.J3L3 Baltic aphotic sand dominated by ocean quahog (Arctica islandica) 252.4

AA.J3L4 Baltic photic sand dominated by sand gaper (Mya arenaria) 15.7

AB.J3L4 Baltic aphotic sand dominated by sand gaper (Mya arenaria) 0.1

AA.J3L9 Baltic photic sand dominated by multiple infaunal bivalve species: Cerastoderma
spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 2338.7

AB.J3L9 Baltic aphotic sand dominated by multiple infaunal bivalve species: Cerastoderma
spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 2381.1

AA.J3L10 Baltic photic sand dominated by multiple infaunal bivalve species: Macoma calcarea,
Mya truncata, Astarte spp., Spisula spp. 1.1

AB.J3L10 Baltic aphotic sand dominated by multiple infaunal bivalve species: Macoma calcarea,
Mya truncata, Astarte spp., Spisula spp. 1.2

AA.J3L11 Baltic photic sand dominated by multiple infaunal polychaete species including
Ophelia spp. 5.7

AA.J3M6* Baltic photic sand dominated by multiple infaunal polychaete species 0.005

AB.J3M6* Baltic aphotic sand dominated by multiple infaunal polychaete species 0.3

AA.H1B7 Baltic photic muddy sediment dominated by common eelgrass (Zostera marina) 69.0

AA.H1E1 Baltic photic muddy sediment dominated by Mytilidae 46.6

AB.H1E1 Baltic aphotic muddy sediment dominated by Mytilidae 15.0

AA.H1S Baltic photic muddy sediment characterised by annual algae 1.0

AA.H3 Baltic photic muddy sediment characterised by macroscopic infaunal biotic
structures 65.2

AB.H3 Baltic aphotic muddy sediment characterised by macroscopic infaunal biotic
structures 546.4
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Table 7. Cont.

Colour Coding
HUB Map HUB Code HUB Biotope Area

(km2)

AB.H3L1 Baltic aphotic muddy sediment dominated by Baltic tellin (Macoma balthica) 1131.6

AA.H3L3 Baltic photic muddy sediment dominated by ocean quahog (Arctica islandica) 249.9

AB.H3L3 Baltic aphotic muddy sediment dominated by ocean quahog (Arctica islandica) 1435.5

AA.H3L4 * Baltic photic muddy sediment dominated by sand gaper (Mya arenaria) 0.003

AB.H3L4 * Baltic aphotic muddy sediment dominated by sand gaper (Mya arenaria) 0.005

AA.H3L9 * Baltic photic muddy sediment dominated by multiple infaunal bivalve species:
Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 307.9

AB.H3L9 * Baltic aphotic muddy sediment dominated by multiple infaunal bivalve species:
Cerastoderma spp., Mya arenaria, Astarte borealis, Arctica islandica, Macoma balthica 991.0

AA.H3L10 * Baltic photic muddy sediment dominated by multiple infaunal bivalve species:
Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. 0.003

AB.H3L10 * Baltic aphotic muddy sediment dominated by multiple infaunal bivalve species:
Macoma calcarea, Mya truncata, Astarte spp., Spisula spp. 0.1

AB.H3M6 Baltic aphotic muddy sediment dominated by multiple infaunal polychaete species 3.2

NA 8.0

Figure 6. Distribution of HELCOM HUB Biotopes in the German Baltic Sea. For legend of colours,
see Table 7.

The selected models for the detail areas and the overall area are shown in Table 8. The
modelling of the endobenthic communities in the areas of “Plantagenet Ground”, “Kadet
Trench”, and “Fehmarn Belt” achieved a higher model goodness of fit (AUC = 0.79–0.8)
than those for the coastal areas, “Outer Wismar Bay” and “Darss Sill” (AUC = 0.65–0.76),
where the biotope classes were more difficult to distinguish from each other. The values for
the overall German Baltic Sea model were in the middle range (AUC = 0.70). The results
of the modelling of the epibenthic communities showed a very high model goodness of
fit (AUC > 0.9) for the “Outer Wismar Bay”, the “Darss Sill”, and the “Fehmarn Belt”
areas. In contrast, the values of the “Kadet Trench” (AUC = 0.71) and the overall area
(AUC = 0.81) were lower. The epibenthos in the “Plantagenet Ground” was not modelled,
as only mussels were observed on the hard substrate in the entire area.
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1 
 

 
Figure 7. Distribution of HELCOM HUB biotopes in the “Outer Wismar Bay” area. For legend of
colours, see Table 7.

Figure 8. Distribution of HELCOM HUB biotopes in the “Darss Sill” area. For legend of colours, see
Table 7.
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Figure 9. Distribution of HELCOM HUB biotopes in the “Plantagenet Ground” area. For legend of
colours, see Table 7.

Table 8. Overall performance of the selected model in the respective detail areas and the German
Baltic Sea; 95% CI: 95 % confidence interval of overall accuracy, AUC: area under (receiver operating
characteristic) curve. Epibenthic communities did not need to be modelled in the “Plantagenet
Ground”, as only mussels dominated the hard bottoms in this eastern area.

Endobenthos Epibenthos

Area Overall
Accuracy 95% CI AUC Kappa

Most
Important
Variables

Overall
Accuracy 95% CI AUC Kappa

Most
Important
Variables

D
et

ai
la

re
as

Outer
Wismar

Bay
0.393 0.215–0.594 0.758 0.035

current
velocity

(10th
percentile)

0.98 0.893–1 0.975 0.96

DOC (10th
percentile),

O2 (10th
percentile)

Darss
Sill 0.564 0.423–0.7 0.648 0.453

temperature
(10th

percentile)
1 0.936–1 1 1 DOC (mean)

Plantagenet
Ground 0.719 0.533–0.863 0.797 0.559 sediment NA NA NA NA NA

Kadet
Trench 0.759 0.565–0.9 0.786 0.576

shear stress
(mean),
current

velocity N/S
(90

percentile)

0.657 0.556–0.748 0.716 0.485 depth

Fehmarn
Belt 0.763 NA 0.788 0.563 sediment,

depth 0.926 NA 0.915 0.83 DOC (mean),
depth

German
Baltic
Sea

0.666 0.636–0.695 0.704 0.535 sediment 0.797 0.770–0.821 0.805 0.712
depth,
salinity
(mean)

The wide sandy areas in the Pomeranian Bay and the Rugia-Falster Plateau are
colonised by multiple infaunal bivalve species (consisting of Cerastoderma glaucum, Ma-
coma balthica, Mya arenaria, Astarte borealis, and Arctica islandica). Silty areas in the Arkona
Basin are particularly dominated by Macoma balthica, which, although also a component
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of the aforementioned community, is the main dominant species, especially in this area.
Other basins where mud is deposited, such as the Mecklenburg Bay, the Fehmarn Belt,
the Eckernförde Bay, and parts of the Arkona Basin, are dominated by Arctica islandica.
Especially in the first two areas, the prediction confidence that ocean quahog is dominant
is high (>80%). Mussels (also as part of the endobenthos) are correctly predicted where
reef structures or hard bottoms are present. The habitats characterised by macroscopic
infaunal biotic structures (ending on HUB level 4) covers not only communities where no
taxa dominate, but also polychaete communities, and generally dominant bivalves and
crustaceans. Particularly, in the areas where the sediment is heterogeneously distributed
on a small scale (nearshore areas off northwest Mecklenburg and the Rostock district, the
Darss Sill, and the coastal waters of Schleswig-Holstein) or due to the lack of data in the
nearshore areas in Schleswig-Holstein or in the southwestern Arkona Sea, the prediction
probability of the model is low (<50%).

The biotope map shows that not only does sediment influence the spatial distribution
of benthic communities, but also salinity, which is observable at the Darss Sill, which
is a natural barrier. In front of it (in the western Baltic Sea), a wide variety of marine
communities occur, whilst behind it, specialists adapted to brackish water have established
themselves. The salinity gradient is also visible in the spatial distribution of the epibenthic
communities (see also Table 8). While there are still numerous mixed communities of
various colonisers off the Darss Sill, the number of species decreases steadily towards the
east. In the Bay of Kiel, communities with non-filamentous corticated red algae, such as
Furcellaria lumbricalis, dominate the coastal waters. Towards Fehmarn and Mecklenburg
Bight up to the Kadet Trench, predominant communities are foliose red algae and mussels,
while the deeper, poorly lit areas are colonised only by hydrozoans or are sparsely colonised.
In the eastern Baltic Sea, mainly Mytilus edulis communities dominate the hard substrates.
Mixed communities are rarely found here anymore.

In the “Plantagenet Ground”, an area of peat with a thin sand layer was identified
using a video transect (Figure 9). It is colonised by mussels (with a cover of filamentous
algae) and was therefore classified as peat bottom with mussels on sand (AA.G+AA.J1E1).
Thus, peat is also considered a reef-building substrate.

Benthic communities modelled in both the study by Schiele et al. [20] and the current
study show similar spatial distributions. This is found for Arctica islandica, the multiple
infaunal bivalve community (HUB code L9), the Mytilidae community, and Macoma balthica,
whereby the latter’s distribution range extends further south according to Schiele et al. [20]
than in this current map. However, with Macoma balthica being the dominant species and
also occurring within the (L9) community adjacent in the south, the boundaries of its
distribution range are likely to be fluid. A difference in the degree of detail between the
two maps is further evident at the outer edge of the Arkona Basin on the German side,
where Schiele et al. [20] indicate Bivalvia (ending at HUB level 5), whilst here, the multiple
infaunal bivalve community, the Arctica islandica community, and macroscopic infaunal
biotic structures (ending at HUB level 4), respectively, were modelled. The reef structure
east of the Bay of Greifswald was mapped only after the publication of the 2015 biotope
map, so that mussel occurrence increases here.

Another significant difference is that additional epibenthic communities, such as red
algae, hydrozoans, barnacles, and moss animals, were modelled here, and Zostera spp.
and Fucus spp. were added. Due to the fact that reef structures were further mapped
and sampled after 2015, additional epibenthic biotope types, including sparse (2T) and
non-existent colonisation (4U), could be indicated here.

Macrophytes or algae were not differentiated into perennial or annual macrophytes
in the study by Schiele et al. [20], whereas in this study, perennial macrophytes and algae
were differentiated. This provides a more accurate picture of the occurrence of specific
morpho-species. Nevertheless, the distribution areas are similar. Furthermore, it should be
mentioned that annual filamentous algae are often associated with other taxa, and such
mixed communities were assigned to another taxon at the expense of the algae in this
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work. This means, e.g., that when annual filamentous algae co-occurred with mussels, the
biotope was assigned to mussel-dominated areas. Thus, depending on the season, annual
filamentous algae can also be found more widely distributed than shown in this HUB map
(Figure 6).

The HUB, BHT, and OHT maps are largely congruent. The photic zonation and
substrate allocation are the same for the HUB and BHT map. The OHT map partly in-
cludes results of the HUB modelling (“seagrass meadows and other marine macrophyte
populations” and “Baltic aphotic muddy sediment dominated by ocean quahog (Arctica
islandica)”). Sandbank areas are also shown as “sand” in the HUB and BHT maps. Only
“species-rich areas of gravel, coarse-sand and shell-gravel areas” are indicated as “sand” in
the BHT and HUB maps, as this substrate does not correspond to the EUNIS or HUB type
“coarse sediment” according to the sediment analysis, but to “sand”, as already described
in Section 2.2. Other exceptions are the reef areas, which do not fully correspond to the
BHT/HUB substrate “mixed sediment”, as described in Section 2.3.

4. Discussion

The new maps now integrate the latest mapping results of widespread habitats, their
benthic communities, and protected habitats and biotope types in one map package. Due
to the, in some part, high-resolution, standardised, up-to-date mapping and improved
modelling through a larger data basis, a more precise picture of the state of the seafloor in
the German Baltic Sea is now provided (Figure 10). The map according to Tauber [32] is a
pure soft-bottom sediment map interpolated from a large dataset of grab samples. A sepa-
rate hard bottom map created by the same author only gives roughly drawn polygons from
point observations [32]. Although the sediment information gives a correct representation
of the seabed when viewed over a large scale, it is too inaccurate when viewed over a small
scale. The habitat maps from the current study can now replace the previous sediment
and boulder maps according to Tauber [32] in selected areas (two nature conservation
areas in the German EEZ and three detail areas in Mecklenburg-Western Pomerania) as
well as the biotope map of Schiele et al. [20]. This is due to an improved methodology
and more recent mapping results, which increase the level of detail compared to earlier
maps, and it should not be interpreted as an indicator of temporal habitat change. [20] used
a dataset from 2004 to 2013, while in this modelling, data from 2010 to 2021 were used,
partially overlapping with Schiele’s dataset. The temporal factor (as well as seasonality)
was neglected in this work, as the focus was on the spatial distribution of habitats and
biotopes. For a more accurate assessment of potential habitat changes, it is recommended
to conduct precise mapping (using hydroacoustics and ground truthing) and delineation
of an area already known and, ideally, captured according to national standards (such as
habitat types according to the HD). The maps serve as the basis for this purpose.

4.1. Modelling Biotope Distributions

Benthic communities settle on certain substrate types under specific conditions of
salinity, light availability, exposure, etc. [67–69], which was reflected in the importance of
variables in our model building, where parameters such as sediment, salinity, and depth
played major roles, especially at large scales (Table 8). On the other hand, at small scales,
the most important predictors were the dissolved organic carbon content (“Darss Sill”,
“Outer Wismar Bay”, and “Fehmarn Belt”), sediment (“Plantagenet Ground” and “Fehmarn
Belt”), current velocity (“Outer Wismar Bay” and “Kadet Trench”), depth (“Fehmarn Belt”),
bottom temperature (“Darss Sill”), oxygen content (“Outer Wismar Bay”), and bottom
shear stress (“Kadet Trench”). Small-scale processes, which can overlap large-scale ones,
are relevant in the detail areas, which are reflected in the formation of different biocenosis.
For example, in the channel system of the “Kadet Trench”, the bottom shear stress and
current velocity play major roles in the distribution of endobenthic communities within
the channels or on the flanks and reef flats. However, both parameters are also related to
water depth and sediment. In the shallower reef areas, the currents reach a higher velocity
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than in the deeper channels. Fine sediment is washed away from the lag sediment areas
above and deposited within the deep channels, where the current velocity decreases. On
these fine sediments, a multiple infaunal bivalve species community settles with Arctica
islandica or Macoma balthica dominating in certain areas, respectively. This community was
easily distinguishable for the random forest model from the community characterised by
macroscopic infaunal biotic structures predicted in the shallower areas with higher current
velocity, following the simulated current velocity by the GETM model [65]. The interaction
of several environmental parameters defines the benthic community formation. Large-scale
gradients such as salinity, which cause a shift in benthic community composition in the
Baltic Sea [2,70] are replaced on a small scale by other environmental factors that influence
the diversity of community structures through their local heterogeneity [71,72].

Figure 10. Previous suspected reef areas (A) and newly mapped OHT (B) reefs (grey) and sandbanks
(yellow) in the Kadet Trench.

In addition to model statistics (Table 8), prediction probabilities (not shown here)
and the resulting biotope maps also determined model selection. A model was chosen if
the biotope classes were predicted where they were actually found, and the biotope map
generally showed high confidence (at least a 67% prediction probability). The dominant
taxa were superimposed on the biotope maps for additional validation and compared.
With very few exceptions, the dominant taxa found in ground truthing coincided with
those predicted by the model as biotope class. The “Plantagenet Ground”, which is located
east of the Darss Sill barrier and where the number of marine species is thus strongly
reduced due to reduced salinity, has a higher goodness of fit (endobenthos AUC = 0.80)
with its very homogeneous sediment composition than the more diverse “Outer Wismar
Bay” (endobenthos AUC = 0.76). Where the distribution of a community is limited by a
boundary of divergent abiotic conditions, thus favouring biotope delimitation, biotope
classes can be clearly distinguished from each other, as was the case at the “Darss Sill”
(epibenthos AUC = 1). There, mussels dominate the southern part of the hard substrate,
which is shallower with a higher temperature, lower salinity, and lower DOC content
than the northerly deeper areas, where foliose red algae prevail. The extent of foliose
red algae with a transition to filamentous red algae or hydrozoans in the “Outer Wismar
Bay” also follows the simulated distribution of dissolved organic carbon from the ERGOM
model and therefore reaches a high goodness of fit (AUC = 0.98). These degraded areas,
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where turbidity and organic sedimentation are high and oxygen depletion occurs, can only
be successfully colonised by hydrozoans, whilst other epibenthic colonisers struggle to
survive.

4.2. OHT “Species-Rich Areas of Gravel, Coarse-Sand and Shell-Gravel Areas”

The biotope type “species-rich areas of gravel, coarse-sand and shell-gravel areas”
is present if, among others, the indicator organisms Ophelia spp./Travisia forbesii occur at
three stations within an occurrence area, according to [42]. This condition was met for the
sediment type gS-mxSa (gravelly sand to mixed sand) in the “Darss Sill” area where the
biomass fraction of a single taxon was at least 10% or a combined biomass fraction (of both
Ophelia spp./Travisia forbesii) comprising at least 5% of the total biomass. In addition, there
were two stations on LagSed+mSa (lag sediment and medium sand), in close proximity to
gS-mxSa, where both taxa occur. Furthermore, Ophelia spp./Travisia forbesii dominate at two
stations on mxSa-gS, close to LagSed (lag sediment). Due to the similarity of mxSa-gS and
gS-mxSa, both substrate types in the “Darss Sill” are considered as potential “species-rich
areas of gravel, coarse-sand and shell-gravel areas”. However, both sediment types do not
comprise >50 % of gravel, coarse sand, and shell fraction and therefore do not meet the
conditions to be designated as “species-rich areas of gravel, coarse-sand and shell-gravel
areas” [42]. Due to the heterogeneity of sediment composition during sampling, it is open
to question whether thin covers of sand in this area are positionally stable or if they might
instead cover coarse sediment within the suspected substrate types. Further, the area is in
spatial proximity to lag sediment and is dominated by reef structures, which is considered
an indication of the protected habitat type according to [42]. Towards the east/northeast,
Ophelia spp./Travisia forbesii occurrence reaches into fine sand areas (with a transition to
mixed and medium sand). Therefore, the high density of dominant indicator organisms
generally supports the plausibility of this suspected area in the “Darss Sill” area.

4.3. Methodological Review

Methodologies differ per state for the external data obtained. Regarding the coastal
waters of Schleswig-Holstein, it is above all the mapping of the epibenthic organisms that
differs from the procedure at IOW (and thus also Mecklenburg-Western Pomerania). At
IOW, mainly video and photo techniques are used, which are supported by diver sampling,
while in Schleswig-Holstein, mainly diving is used. Therefore, there were differences in
the data availability during the adaptation of these external data to our approach. In some
cases, only biomass was taken, but no coverage was recorded. In order to preserve these
data, the epibenthic colonisation shown in the biotope maps is therefore based on the
coverage of video, photo, and diver samples, but also on the biomass fraction of the total
biomass at a station. The external data, where only macrophytes were mapped as a part of
MSFD monitoring, could unfortunately not be included in the epibenthic modelling.

Little benthos data were collected in the nearshore area, and the raster data of the
predictors are also less reliable in this zone. For methodological reasons, this area has been
included in the maps but should be treated with caution.

The random forest method used here is considered very well suited for biotope
classification because it is a nonparametric, robust algorithm showing high performances
in supervised machine learning methods [73–75] that can handle outliers and noisy or
redundant input features [59,76]. The algorithm selects a variable out of a random subset
of predictors that is most important for decision formation at each node of a branch of each
decision tree [60]. Aggregating the outcome of many random trees leads to an increase
in generalisation power [76]. The overall AUC (0.7–1) and Cohen’s Kappa values (0.5–1)
indicated a good to excellent prediction [77,78]. Nevertheless, the endobenthos model of
the “Outer Wismar Bay” only showed very poor performance regarding Cohen’s Kappa
(0.035). However, a visual examination showed that even with the perceived poor model
performance, the random forest algorithm provides biotope maps that can approximate
reality.
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The model also reaches its limits as the number of response variables (biotope classes)
that are closely interrelated increases. Naturally, there are no strictly delineated sediment
types, each with different biocenosis. Transitions of different grain size fractions are fluent,
or sediment mixtures can cause benthic communities to overlap [67]. Particularly in the
case of differently composed sedimentological substrates, high biodiversity can occur,
where it becomes difficult for the Random Forest model to find patterns and boundaries, as
was the case, e.g., in the “Outer Wismar Bay” area. However, this is a general difficulty in
modelling and not a question of methodology.

Furthermore, an assemblage always consists of different community-associated species.
The dominant species given here, which give a biotope its name, therefore always occur
with other associated species. Thus, the maps do not lay claim to the exclusive occurrence
of individual habitat-determining species, nor do these species occur with absolute con-
fidence in certain areas, nor are these distribution areas fixed. Rigid boundaries, as the
maps suggest, do not exist, and are instead fluid transitions. Sediment types, like their
inhabitants, are subject to natural dynamics. Rather, the maps are intended to provide
indications of the likely spatial distribution patterns of benthic communities at large and
small scales, and they do not give any indication of the status of biotopes.

4.4. Outlook

The spatial extent of habitats and protected biotopes in high resolution is still unknown
in vast areas of the Baltic Sea. The demand for biotope maps is increasing, so monitoring
and mapping is ongoing and will continue, not only to detect spatial changes but also to
detect temporal changes due to natural and anthropogenic causes. By observing habitat
changes over time, possible habitat loss can be detected (with regard to MSFD Descriptor
6), impacts can be assessed, and measures can be taken. The interplay between applied and
basic research can contribute to the direct implementation of nature conservation measures.

Comprehensive hydroacoustic mapping provides new insights, particularly in the
area of suspect reef areas, which can now be identified more accurately and in much greater
detail. This does not only fulfil national mapping requirements at high resolution, but also
national reporting requirements (monitoring of spatio-temporal changes and improvement
and restoration measures) for the implementation of relevant directives, as well as for
marine spatial planning and specific projects. Particularly, in light of the forthcoming
Nature Restoration Law, which includes the introduction of restoration measures for at
least 20% of the EU’s marine and terrestrial ecosystems by 2030 and for all ecosystems in
need of restoration by 2050, these maps are an important tool, e.g., for identifying potential
restoration areas or assessing the success of measures. The comprehensive HUB map is
also a valuable tool for monitoring and assessment under HELCOM and the MSFD, and
for deriving targeted management measures. However, as the modelling of community
distribution is highly dependent on the dataset used, the maps should be used with caution
as a basis for detecting changes in biotope distribution and for projects in small-scaled
areas.

5. Conclusions

For the first time, habitats and biotopes in the German Baltic Sea have been mapped
at a level of detail that has not been available before. In this study, we mapped specific
sediment types in their actual extent using side scan sonar and on a larger scale for the first
time using neural networks for stone detection [23,24]. Furthermore, the latest mapping
results from federal and state governments have been incorporated into the maps. Based
on national guidelines that have been developed over the past seven years to standardise
sediment and boulder distribution maps and the large-scale mapping of reefs [8,22], these
maps have been improved and updated with the latest available data.

The spatial distributions of the protected biotope types here show that specifically, the
geogenic reefs (HD, §30 Federal Nature Conservation Act) can now be exactly reported.
The biological verification of these geogenic reefs was essential and paves the way for a
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subsequent designation of this protected habitat type at an official level. The same applies to
the protected seagrass meadows (§30 Federal Nature Conservation Act) in the “Plantagenet
Ground” and the sandbanks (HD, §30 Federal Nature Conservation Act) in the “Kadet
Trench” and “Fehmarn Belt”. For the first time, a suspected area of the nationally protected
habitat type “species-rich areas of gravel, coarse-sand and shell-gravel areas” was found
and mapped in the “Darss Sill”.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biology13010006/s1, Map Package S1: Maps showing broad habitat types
(BHTs), other habitat types (OHTs), and HELCOM HUB biotope types in the German Baltic Sea and
the location of the underlying observation data for endobenthos and epibenthos sampling.
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Simple Summary: This study illustrates a baseline biodiversity snapshot of macrofauna inhabiting
the seafloor in German marine protected areas (MPAs) if the North and Baltic Seas in 2020–2022,
before the full closure for bottom-contact fishing. While the closure is now in place in some MPAs,
it is still planned for the near future in others. The analyses included different habitats in nine
Natura 2000 MPAs. We provide essential data and comprehensive macrofauna species lists per area,
relevant for the joint future conservation efforts and effective management. We explore environmental
drivers of community structure and touch upon suggested effects of bottom-contact fishing in both
geographic regions. Despite the expectation of more limited connectivity between MPAs in the Baltic
Sea compared to the North Sea, the degree of community differentiation between MPAs was higher
in the North Sea. Alpha diversity generally increased towards the open North Sea, and gamma
diversity seemed comparable for these two regions. The Baltic Sea dataset unexpectedly contained a
higher number of taxa, including Red List species. Achieving homogeneity of monitoring data and
joint assessment even within one national program and biological compartment between different
geographic regions, research institutions and fields remain challenging. This joint work appeals
for flexible data sharing and prioritizing informal intersessional communication. Such a baseline is
important for assessing future faunal changes.

Abstract: The response of benthic habitats and organisms to bottom-contact fishing intensity is
investigated in marine protected areas (MPAs) of the German EEZ in the North and Baltic Seas.
We examined the current state of macrofauna biodiversity in 2020–2022. Comparative analysis for
macrofauna (in- and epifauna) inhabiting nine Natura 2000 MPAs constitutes a baseline to assess the
effects of bottom-contact fishing exclusion in the future. Aspects of spatial and temporal variability
are briefly summarized and discussed. We provide a species list for each region, including 481 taxa,
of which 79 were found in both regions, 183 only in the North Sea, and 219 only in the Baltic Sea. The
Baltic Sea dataset surprisingly included higher numbers of taxa and revealed more Red List species.
The share of major taxonomic groups (polychaetes, bivalves and amphipods) in species richness
showed peculiar commonalities between the two regions. In the North Sea, multivariate analysis of
community structure revealed significantly higher within-similarity and stronger separation between
the considered MPAs compared to the Baltic MPAs. Salinity, temperature and sediment fractions
of sand were responsible for over 60% of the variation in the North Sea macrofauna occurrence
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data. Salinity, mud fraction and bottom-contact fishing were the most important drivers in the Baltic
Sea and, together with other considered environmental drivers, were responsible for 53% of the
variation. This study identifies aspects of macrofauna occurrence that may be used to assess (causes
of) future changes.

Keywords: Natura 2000; Baltic Sea; North Sea; benthic habitats; invertebrates; fishing intensity;
variability; environmental drivers; diversity; macrozoobenthos

1. Introduction

Germany borders on two semi-enclosed seas, the North Sea [1] and the more conti-
nental brackish Baltic Sea [2]. These two seas, separated only by a few hundred kilometers
of land mass (at the narrowest point only 33 km wide), possess distinct characteristics.
Linked by the narrow passage of the Skagerrak and Kattegat [3], both seas offer a variety
of ecosystem services necessary for humans and provide habitats or breeding grounds for
hundreds of species including benthos [4,5]. Although they are both part of the Atlantic
Ocean and are geographically close, they show remarkable differences in macrobenthic
ecology [6].

The North Sea (NS), located between the coasts of Norway, Sweden, Denmark, Ger-
many, the Netherlands, Belgium and the UK, is characterized by higher salinity and greater
water movement. Powerful tides and strong currents ensure a high rate of water exchange
with the open Atlantic. These dynamic conditions shape the diversity of habitats from
the sandy coastal areas to the deep underwater trenches. In contrast, the Baltic Sea is
semi-enclosed, surrounded by the coasts of Denmark, Sweden, Germany, Finland, Estonia,
Latvia, Lithuania, Russia and Poland. The Baltic Sea (BS) is characterized by lower salinity
and less water movement, barely affected by any tides [7]. This results in more stratified
water and a limited exchange rate with the open ocean. These features have led to a unique
evolution and adaptation of inhabiting organisms [8].

The large-scale distribution of the North Sea macrofauna communities was intensively
studied since the last century (e.g., [9–14]). These studies confirmed a generally depth-
based structure of three benthic zones: less than 50 m, between 50 and 100 m, and beyond
100 m [15]. Other environmental drivers of this zonation were sediment composition,
depth, salinity, tidal patterns, sea surface temperature (SST), and primary productivity
(PP). Comparable spatial studies of the ICES (International Council for the Exploration
of the Seas) NS Benthos Survey (NSBS) in 1986 and the NS Benthos Project (NSBP) in
2000 (e.g., [10,12,16]) and recent studies of Fiorentino et al. [17] and Meyer et al. [14]
identified four southeastern North Sea macrofauna communities at a depth < 50 m. These
are the Amphiura filiformis community, the Tellina (Fabulina) fabula (or Bathyporeia-Tellina)
community, the Goniadella-Spisula community, and the Nucula nitidosa community. Between
1986 and 2000, the spatial distribution of the four communities was stable [18]. However,
structural changes within each of the southeastern North Sea macrofauna communities
were since found in small-scale studies (e.g., [19–21]). These changes were often thought to
be—directly or indirectly—driven by an increase in SST by 1.1 ◦C for the whole North Sea
since 1950 [22] and about 2 ◦C for the southern North Sea [20].

Benthic macrofauna in the German waters of the Baltic Sea was systematically investi-
gated since the 18th century (e.g., [23–29]). The distribution and dynamics of macrozooben-
thos east of Fehmarn Belt were summarized in [30] based on data from 1839 to the 2000s.
High temporal fluctuations in the occurrence, abundance, and biomass of macrozoobenthos
were linked to (albeit natural irregular) saltwater intrusions and oxygen deficiency. The
latter likely caused declines of some relict species, including the amphipods Pontoporeia
femorata and Monoporeia affinis, the mussels Macoma calcarea and Astarte spp., or the isopod
Saduria entomon. For other species, like the lugworm Arenicola marina, data suggested an
eastward expansion. Relying on the findings by Zenkevitch [31], Schiewer [32] listed the
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most important species assemblages for the Baltic Sea, including the Abra alba-coenosis
(with Varicorbula gibba, Arctica islandica, Lagis koreni, Nephtys spp., Diastylis rathkei, and
Ophiura albida) dominating the western part, Arctica-Astarte assemblages found eastwards
and Macoma balthica-coenosis dominating the shallow part of the Baltic Proper. Recent
studies of spatial distribution on the large and medium scales suggest stability of commu-
nity structure over time for some areas, higher fluctuations or even regime shifts due to
species invasions for others, and increasing variability towards the entrance to the North
Sea [33,34].

1.1. Habitat Protection

The German seas and MPAs therein are protected by various conservation measures
to ensure their ecological integrity, biodiversity and the sustainable use of resources [35].
The German Exclusive Economic Zones (EEZ) of the North and Baltic Seas include ten
nominated Natura 2000 sites within the EU Natura 2000 protected areas network [36].
The main international EU legislative drivers that regulate protection of endangered wild
plants and animals in those special natural habitats are the Birds Directive and the Habitats
Directive (Council Directive 92/43/EEC), as well as OSPAR and HELCOM regulations;
nationally, they have the status of protected nature reserves [37]. The EU Marine Strategy
Framework Directive (MSFD) divides benthic habitats into broad habitat types (BHTs) and,
in accordance with the EU Commission, into biotope classes and other habitat types (OHT).
In addition to the protected areas designated on the basis of the Habitats Directive, the
OHTs thereby also include the particularly endangered biotope types such as species-rich
gravel, coarse sand and gravel beds, or mudflats with drilling megafauna, based on OSPAR
or national law (Section 30 BNatSchG).

In the North Sea, the “Dogger Bank” (DGB), “Borkum Reef Ground” (BRG), and the
“Sylt Outer Reef–Eastern German Bight” (that comprise two sites included in this study: the
“Sylt Outer Reef” (SAR) and the “Amrum Bank” (AMB)) cover an area of 7920 km2 (28% of
the EEZ). In the Baltic Sea, the “Fehmarnbelt” (FB), “Kadetrinne” (KT) and “Pomeranian
Bay—Rønne Bank” (including Adler Ground (AG), Odra Bank (OB) and Western Rønne
Bank (RB)) have a total area of 2472 km2, which constitutes 55% of the EEZ [38,39].

1.2. MGF and BfN Monitoring Projects and Aims of This Study

Here, we aim to summarize baseline macrofauna biodiversity data gained within two
research projects (MGF North Sea and MGF Baltic Sea, financed by the Federal Ministry
for Education and Research (BMBF)) that investigate the effects of the exclusion of mobile
bottom-contact fishing in MPAs of the German EEZ.

We complement it with external data to enhance spatial consistency across regions.
In the North Sea, MGF-project data were collected from larger areas, while grid-based
sampling was employed in designated MPAs (Figure 1A). In the Baltic Sea, sampling
focused on specific areas within and outside future exclusion zones of MPAs (Figure 1B).

Macrofauna communities of the Western Baltic Sea and the North Sea have high
exposure to natural and anthropogenic stressors [18,40] and especially to bottom-contact
fishing [41–46]. Historically, in both regions, macrofauna monitoring and assessment are
well-covered by established programs, such as projects in MPAs funded by the Federal
Agency for Nature Conservation (BfN) like LABEL [47,48], CLUSTER and LEGRA [49],
the project ATLAS (funded by the State Agency for Environment, Nature Conservation
and Geology Mecklenburg-Vorpommern (LUNG MV) [50]), as well as long-term research
studies (e.g., [18,51]).

Mobile bottom-contact fishing impacts on macrofauna have been studied in the North
Sea in EU projects like IMPACT I-II [52,53], MAFCONS [54], and recently BENTHIS [55];
in ICES actions [37,56,57]; as well as in national projects (such as those named above or
the recently launched CRANIMPACT, which investigates the effects of shrimp fishing on
the seabed).
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es) in (A) the North Sea and (B) the Baltic Sea. The small grayscale inlet (inserted in (A)) shows a 

general view of the North and Baltic Seas. The thin red line marks the boundaries of the German 

Exclusive Economic Zone (EEZ). Black dots show the sampled stations. Focus areas in the Baltic Sea 

are zoomed in on the three small inlet maps. Dots inside the focus areas are stations sampled 

within the MGF Baltic Sea project, whereas other stations were mostly visited within the LEGRA 

and ATLAS projects. The half-transparent red line outlines the initial focus area in Rønne Bank, 

later shifted due to proximity to wind farms that inhibited later sampling. Intense green back-

ground outlines the future OB closure area if it will only take place in part of the MPA. 

Macrofauna communities of the Western Baltic Sea and the North Sea have high 

exposure to natural and anthropogenic stressors [18,40] and especially to bottom-contact 

Figure 1. Maps of Natura 2000 sites (green polygons) and the MGF focus areas (thick red line boxes)
in (A) the North Sea and (B) the Baltic Sea. The small grayscale inlet (inserted in (A)) shows a
general view of the North and Baltic Seas. The thin red line marks the boundaries of the German
Exclusive Economic Zone (EEZ). Black dots show the sampled stations. Focus areas in the Baltic Sea
are zoomed in on the three small inlet maps. Dots inside the focus areas are stations sampled within
the MGF Baltic Sea project, whereas other stations were mostly visited within the LEGRA and ATLAS
projects. The half-transparent red line outlines the initial focus area in Rønne Bank, later shifted due
to proximity to wind farms that inhibited later sampling. Intense green background outlines the
future OB closure area if it will only take place in part of the MPA.

In the Baltic Sea, there have been no targeted studies since the 1990s [58–60]. The
planned closure of MPAs for mobile bottom-contact fishing requires scientific evaluation of
its efficiency. Such evaluation implies the development of optimal methods and monitor-
ing concepts, particularly targeting those aspects that relate to potential changes, and is
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impossible without sufficient knowledge of the present standing stock and variability in
macrofauna and understanding of its role in maintaining ecosystem services. Both MGF
projects complement the existing monitoring programs.

Here, we do not aim for an explicit report of all the investigated macrofauna-related
aspects but rather give a joint status quo summary to build upon and discuss the emerging
peculiarities. We do aim to synthesize baseline macrofauna biodiversity data from MGF
projects in German MPAs and evaluate impacts of mobile bottom-contact fishing and other
environmental drivers on macrofauna.

2. Materials and Methods
2.1. The North Sea Case Study
2.1.1. North Sea Study Areas

The sampled stations were located within or near the focus areas defined by the
MGF North Sea project in order to be able to investigate the regions with strong anthro-
pogenic influence before, during, and after the exclusion of mobile bottom-contact fisheries
(Figures 1A and 2A). We also included all sampled stations at the MPA Sylt Outer Reef
(SAR). These MGF focus areas and the SAR stations allow a comparison of different sub-
samples with regard to the in- and epifauna, as well as temporal comparison with earlier
collected data for certain areas [20,51,61].
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Figure 2. Overview of the mobile bottom-contact fishing intensity, (A) subsurface swept area ratio
(>2 cm, subsurSwAR) in 2020 in the North Sea EEZ, based on ICES [62,63], and (B) subsurSwAR
in 2020 in each 0.05◦ × 0.05◦-degree c-square from ICES [64] data in the Baltic Sea EEZ; red = high
mobile bottom-contact fishing intensity; blue = non or low mobile bottom-contact fishing intensity.

The Dogger Bank (DGB) is a shallow, 300 km-wide sandbank in the central North
Sea [20], interesting due to its faunal composition: in the north, it is characterized by
species typical for the northern North Sea, while in the south, species typical for the
southern North Sea are common [20,65]. However, the German MPA at DGB only covers a
comparatively small part of the whole DGB. Borkum Reef Ground (BRG) is characterized by
reef structures surrounded by sandbanks. It is located in the southern North Sea, relatively
close to the coast of the East Frisian island of Borkum [66]. The Sylt Outer Reef (SAR) area
shows a variety of sediment structures with reefs, gravel areas and sandbanks [67]. The
Amrum Bank (AMB) is mainly characterized by sandy substrate. In addition, due to strong
wind conditions, the sandbank is used for wind turbine installation. Exclusion of mobile
bottom-contact fishing in 2023 took place in a large part of SAR and the entire area of BRG.

2.1.2. North Sea Data Collection

A total of 150 stations were sampled within the four study areas in the North Sea
(Figure 1A) with RV “Senckenberg” in 2020–2022 in order to study the in- and epifauna
biodiversity along the gradients of decreasing bottom-contact fishing intensity (Table 1).
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Table 1. Sampling in 2020–2022 in the North Sea Natura 2000 areas, sampling method
(infauna = 0.1 m2 van Veen grab, epifauna = ring dredge and beam trawl), number of sampled
stations and sampling month. Note: # only four stations had the same locations for the in- and
epifauna sampling, but were sampled at different research cruises; * in- and epifauna sampling took
place at the same research cruise: at each station, infauna was sampled first, then epifauna.

Study Site Sampling Methods No. of Stations Month

2020

Sylt Outer Reef (SAR) # In- and Epifauna 20 May

Borkum Reef Ground (BRG) * In- and Epifauna 14 July

2021

Dogger Bank (DGB) Infauna 20 May

Sylt Outer Reef (SAR) Infauna 20 May

Dogger Bank (DGB) Epifauna 25 July

Amrum Bank (AMB) Epifauna 11 August

2022

Sylt Outer Reef (SAR) Epifauna 15 May

Borkum Reef Ground (BRG) Epifauna 14 July

Amrum Bank (AMB) Epifauna 11 July

The sampling for in- and epifauna took place at the same research cruise only in 2020
at the MPA BRG (14 stations). During this research cruise at these stations the infauna
sampling was performed, and next, the epifauna sampling was performed. The other
stations were sampled in separate cruises. At the MPA DGB 20 stations sampled in 2021
had the same location but were visited on different cruises in different months (Table 1).
Only four stations in 2020 at the MPA SAR had the same locations for the in- and epifauna
sampling (Table 1). For the infauna, two replicate samples were collected with a 0.1 m2 van
Veen grab at each station and were sieved through a 1 mm mesh size. The samples were
preserved on board in a 4% buffered formaldehyde-seawater solution. Retained material
was identified to the lowest possible taxonomic level. The taxonomy (also for the Baltic
Sea) was harmonized following the World Register of Marine Species [68].

During epifauna sampling, at each station first, the water temperature and salinity
were determined using a CTD probe (Sea and Sun technologies). After measurement
of water parameters, a ring dredge (diameter 1 m, mesh size 1 cm2) was lowered to the
seafloor for sampling the main taxa of the in- and epifauna. The dredge was slowly pulled
by the ship in a constant direction for 3–5 min (depending on the prevailing sediment). The
ring dredge penetrated about 5 cm into the sediment of the seafloor (also depending on the
sediment type) so that after retrieval, the main in- and epifauna could first be documented
photographically, sorted and identified to the finest taxonomic level possible. The identified
species were recorded in a presence/absence matrix and then released directly back into
their natural habitat to ensure their survival. Additionally, the epifauna was subsequently
sampled using a 2 m beam trawl (rump mesh size 1 cm2). The beam trawl was lowered
to the seafloor and then towed in one direction at 2 knots over a distance of 1 nautical
mile (=1.85 km). The sample was then documented photographically on board, and the
fine fraction (>1 mm) was separated from the larger sieve fraction (<1 cm) using a sieve
barrel. After sorting and identification, caught species were quantitatively recorded in the
case of non-colonial forms. The sieve fractions (>1 mm) of the beam trawl sampling and
species that could not be determined directly on board were fixed in 96% ethanol or in a
~5% formaldehyde-seawater solution to ensure later final determination in the Senckenberg
Research Institute’s laboratory.
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2.2. The Baltic Sea Case Study
2.2.1. The Baltic Sea Study Areas

The three MGF Baltic Sea focus areas (Figure 1B) selected in the Fehmarnbelt (FB),
Rønne Bank (RB) and Odra Bank (OB) are characterized by different sediments. While the
FB focus area is located on muddy sediment with a fine sand component, the area selected
at RB is covered by fine, organically rich mud, and the OB focus area is a typical sand
bank. Moreover, they are also home to different communities due to the gradient of salinity,
which, in the Baltic Sea, decreases sharply from west to east. Thus, different responses to
bottom-contact fishing intensity and termination thereof are expected in the three areas.
Not all MPAs in the Baltic Sea are equally affected by bottom-contact fishing. Two MPAs,
Kadetrinne (where highly intensive ship traffic takes place) and the Adlergrund, both
characterized by reef structures (not favored by trawling fishers due to the risk of fishing
gear damage), were excluded from the MGF investigation as less relevant in order to keep
the efforts feasible (see Figure 2B). However, on the larger scale, the condition of these reef
MPAs and inhabiting benthic fauna was annually monitored within the LEGRA project.

2.2.2. Data Collection: Baltic Sea

A total of 222 stations were sampled in the Baltic Sea MPAs in 2020–2022, and 35 more
stations in close vicinity (Table 2, Figure 1B). At each station and visit, for quantitative
macrofauna data, three replicate samples were commonly collected with a 0.1 m2 van Veen
grab (weight about 75 kg, sediment penetration depth of up to 15–20 cm) and washed
through a 1 mm sieve. Remaining animals were preserved in a 4% formaldehyde-seawater
solution buffered with marble chippings; material was sorted in the laboratory at the Leib-
niz Institute for Baltic Sea Research, Warnemünde, with a stereomicroscope and identified
to the lowest possible taxonomic level. Organisms were counted and weighed to obtain
estimates of species abundance and biomass per square meter. At three specific areas—FB,
RB, and OB—we identified the “key species” defined here as those having a substantial
contribution to biomass, an extended lifespan, a high potential for bioturbation, and a
pivotal role in the local food web [69,70].

Table 2. Number of sampled stations as well as the year and month of sampling of the Baltic Sea
MPAs in 2020–2022—always in- and epifauna. * Single stations were visited in other months.

Study Site No. of Stations
in MPA (Close Outside) Month

2020

Fehmarnbelt (FB) 29 (12) June *

Western Rønne Bank (RB) 1 July

Pomeranian Bay with Odra Bank (OB) 4 June–July

Kadetrinne (KR) 6 June

Adler Ground (AG) 8 July

2021

Fehmarnbelt (FB) 13 (3) June *

Western Rønne Bank (RB) 6 June

Pomeranian Bay with Odra Bank (OB) 40 June *

Kadetrinne (KR) 11 June

Adler Ground (AG) 14 July–Aug

2022

Fehmarnbelt (FB) 33 (16) March, June

Western Rønne Bank (RB) 7 (4) April, June
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Table 2. Cont.

Study Site No. of Stations
in MPA (Close Outside) Month

Pomeranian Bay with Odra Bank (OB) 40 March, June

Kadetrinne (KR) 4 June

Adler Ground (AG) 6 June

We also took 0.00785 m2 sediment core samples with a multicorer. The number of cores
per station varied from one to six. Cores were sliced for macrofauna vertical distribution
(using 7 intervals of 0–2, 2–4, 4–6, 6–8, 8–10, 10–15, and >15 cm sediment depth) and each
slice was sieved separately with a 0.5 mm sieve.

Additionally, the Kieler Kinderwagen dredge was used to qualitatively assess quick-
moving, rare or large species [71]. The dredge has a 92 cm inner opening, and 5 mm mesh;
it was towed with 1 knot over the ground for about 1 min (=31 m) in mud and 5 min in
sand (=155 m), penetrating the sediment to roughly 5 cm in mud and only scraping the
sediment surface in sand.

Epifauna in the studied habitats was additionally investigated using an underwater
video system (only a hand-held SeaViewer HD camera could be used on MGF transects due
to logistical limitations, whereas in LEGRA campaigns, the BaSIS system that is suitable for
gathering quantitative coverage data [72] was also applied).

2.3. Environmental Drivers, Mobile Bottom-Contact Fishing Data and Statistical Analysis
2.3.1. Temperature, Salinity, and Sediment Data

CTD near-bottom water measurements were conducted at each location before biolog-
ical sampling in order to obtain relevant abiotic parameters (including near-bottom water
temperature and salinity (for North Sea and Baltic Sea) and oxygen concentrations (only
for Baltic Sea)).

A surface sediment sample (upper 2 cm) was taken from one additional grab replicate
at each location for later sediment granulometry. The North Sea sediment samples were
sieved using a 63 µm mesh size to determine the mud content (<63 µm, in %). The shell
content (>2000 µm, in %) was determined by wet dry sieving over a 2 mm mesh. In
addition, the % of gravel debris was measured. For the Baltic Sea samples, dry sieving was
used for sands, and a Mastersizer 3000 was used for finer sediments.

For the Baltic Sea, mean near-bottom temperature values for 2010–2020 available from
the GETM model [73] were extracted using ArcGIS for each sampling location to illustrate
general longer-term conditions.

2.3.2. Bottom-Contact Fishing Intensity

Data describing mobile bottom-contact fishing intensity originated from ICES for both
the North Sea [62,63] and the Baltic Sea regions [64,74]. The intensity of bottom-contact
fishing was calculated based on VMS and linked logbook data submitted by EU member
states to ICES and aggregated consistently across years and quarters for 2016–2020 for
the North Sea and 2016–2021 for the Baltic Sea period. Intensity is expressed in either
kilowatt fishing hours (kwfhr) or as surface or subsurface swept area ratio (surSwAR
or subsurSwAR) at the spatial resolution of c-square with the extension of 0.05◦ × 0.05◦

degrees. A SwAR value of 1 implies that the sediment of the entire area was trawled once
or, e.g., that half of the area was swept over twice within a period of time (here recalculated
to multiannual values). Surface SwAR (surSwAR) reflects the potential impacts on benthic
epifauna, considering the surface penetration depth (<2 cm) of the gear components. The
impact on benthic infauna is reflected in the Subsurface SwAR (subsurSwAR), considering
the subsurface penetration depths (≥2 cm) of each gear, assuming no differences across
sediment types [75].
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2.3.3. Statistical Analysis

To avoid the bias related to the differences in sampling methods and efforts applied
in the studied regions, we focused here on multivariate statistical techniques, such as
ordination, to explore patterns in species composition and occurrence within each area
rather than abundance.

A non-metric multidimensional scaling (nMDS) and similarity profile analysis (SIM-
PROF) were accomplished for each MPA, based on a Bray–Curtis resemblance matrix of the
Presence/Absence transformed abundance data, separately for each region, using PRIMER
6 for the North Sea and PRIMER 7 for the Baltic Sea Data. The SIMPROF analysis is a
permutation test analyzing the statistical significance of groups. Characteristic taxa for
each MPA were identified by similarity percentage analysis (SIMPER), using the Bray–
Curtis similarity matrix. The defined clusters (representing the MPAs) were confirmed by
Analysis of Similarities (ANOSIM), which is a permutation test, analyzing the statistical
significance of a priori divided clusters. ANOSIM reveals a global R for the whole dataset
and a pairwise R, testing between the clusters [76].

For the North Sea statistical analyses, we only used the data from the stations for
which we had abundance data for both in- and epifauna. For the MPA SAR there were
only four stations sampled in 2020 for which both data sets were available. In the MPA
BRG, 14 stations were sampled in 2020, and in the MPA DGB, 20 stations in 2021. In the
Baltic Sea, all stations were included, since sampling was targeting all macrofauna without
distinguishing between in- and epifauna.

To determine the set of environmental drivers that best explain the variation of ben-
thic macrofauna at each MPA, we performed a distance-based linear model permutation
test (DistLM) based on a significant RELATE analysis employing the routine from the
software PRIMER 6 with PERMANOVA+ add-on [77]. Predictor variables were subjected
to a sequential stepwise selection procedure using Akaike’s information criterion with
a correction for finite sample size (AICc). To calculate resemblance in DistLM, the Bray–
Curtis similarity was used. We included several environmental drivers (Table 3) that can
affect macrofauna and the available corresponding mobile bottom-contact fishing intensity
data at each location as additional independent variables. Predictor pairs were tested
for collinearity.

For both the NS and BS, based on a correlation threshold of 0.8 (with higher values
suggesting multicollinearity) and the marginal test results, only subsurface SwAR was
retained in DistLM as the most influential out of three initially considered fishing intensity
parameters. For the BS, some variables (% mud, % gravel and subsurface SwAR) were
square root transformed to remove right-skewness in the raw data in case it was observed
on Draftsman’s plots. For the NS, only the subsurface SwAR was square root transformed.
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3. Results
3.1. Biodiversity and Community Analysis
3.1.1. Species Richness and Major Groups

A total of 481 taxa were found in all nine MPAs of the Baltic and North Sea during
2020–2022 (see full taxa list in Supplementary Material S1; there, all the scientific names
are provided with authorities, whereas for the sake of readability, authorities are mostly
omitted here in the main text). The 481 taxa belonged to the phylum Annelida (162 taxa),
Arthropoda (126 taxa), Mollusca (100 taxa), Cnidaria (33 taxa), Echinodermata (19 taxa),
Bryozoa (16 taxa), Porifera (7 taxa), Chordata (6 taxa), Nemertea (6 taxa), Priapulida (3 taxa),
Phoronida (1 taxon), Platyhelminthes (1 taxon) and Entoprocta (1 taxon).

Only in the North Sea MPAs, 183 of the 481 (38.0%) taxa were found, for example the
polychaete Aonides paucibranchiata, the crustacean Urothoe elegans, or the bivalve Gari fervensis.

Exclusively in the Baltic Sea MPAs, 219 of the 481 (45.5%) taxa were found. The
polychaete Dipolydora quadrilobata, the gastropod Alvania punctura, and the echinoderm
Ekmania barthii were examples of such taxa found in the MPAs of the Baltic Sea but not in
the North Sea MPAs.

79 of the 481 (16.4%) taxa occurred in the North Sea and in the Baltic, for example
the polychaete Eteone longa, the crustacean Pagurus bernhardus, or the gastropod Aporrhais
pespelecani. Only one of the 481 (0.2%) taxa was found in all of the nine MPAs: the crustacean
Crangon crangon.

180 of the total of 481 (37.4%) taxa were found in only one of the nine MPAs in the
North and Baltic Sea. For example, the crustacean Tryphosites longipes was present only in
the SAR, and the echinoderm Echinocardium flavescens only in the AMB in the North Sea,
whereas the mollusc Lamprops fasciatus was found only in the FB, and the gastropod Ecrobia
ventrosa only in the OB in the Baltic Sea.

North Sea

A total of 262 taxa were found in the four MPAs in the NS during 2020–2022 (Supple-
mentary Material S1). The 262 taxa belonged to the phylum Annelida (93 taxa), Arthropoda
(76 taxa), Mollusca (50 taxa), Echinodermata (17 taxa), Cnidaria (12 taxa), Bryozoa (5 taxa),
Chordata (2 taxa), Nemertea and Porifera (2 taxa each), as well as 1 taxon each of Phoronida,
Platyhelminthes and Priapulida (Figure 3).

The most taxa were found in the SAR with 187 taxa (Table 3). Only 17 of the 262 (6.5%)
taxa were found in all four MPAs of the North Sea, for example, the polychaete Nephtys
hombergii and the decapod Corystes cassivelaunus. 106 of the 262 taxa (40.5%) were present
in only one of the four MPAs of the North Sea. The holothurian Leptosynapta inhaerens, the
gastropod Epitonium clathrus and the decapod Goneplax rhomboides appeared only in the
MPA SAR. In the MPA BRG, the polychaete Hesionura elongata and the bivalve Lutraria
lutraria occurred exclusively. The echinoderm Amphipholis squamata, the gastropod Euspira
montagui and the polychaete Hydroides norvegica were only found in the MPA DGB (see full
species list in Supplementary Material S1).

Baltic Sea

A total of 298 taxa were found in the five MPAs of the Baltic Sea during 2020–2022
(Supplementary Material S1). These taxa belonged to the phylum Annelida (96 taxa), Mol-
lusca (69 taxa), Arthropoda (66 taxa), Cnidaria (23 taxa), Bryozoa (15 taxa), Echinodermata
(7 taxa), Porifera (7 taxa), Chordata (5 taxa), Nemertea (5 taxa) and one taxon each of
Phoronida, Platyhelminthes and Entoprocta (Figure 3).

The most taxa were found in the focus area FB with 264 taxa (Table 3). Only 19 (6.4%)
of taxa were found in all five MPAs of the Baltic Sea: for example, the polychaete Hediste
diversicolor and the bryozoan Einhornia crustulenta. 145 of the 298 taxa (48.7%) were present
in only one of the five MPAs. The bivalve Tellimya ferruginosa and the amphipod Aora gracilis
appeared in the MPA FB only. The gastropod Theodoxus fluviatilis, the tanaid Heterotanais
oerstedii and the fish leech Piscicola sp. occurred exclusively in the MPA AG. The polychaete
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Marenzelleria neglecta and the crustacean Rhithropanopeus harrisii were only found on the OB
(see full species list in Supplementary Material S1).
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Figure 3. Number and (after semicolon) percentage of taxa found per group in the MPAs in the
North Sea (upper pane) and the Baltic Sea (lower pane). The groups used here in order to facilitate
the summary should be rather considered as functional, i.e., not strictly taxonomic, as they vary in
rank ranging from Phylum to Order level. In the North Sea MPAs (upper pane), the category “other”
includes Isopoda (4), Cirripedia (3 taxa), Nemertea (2), Sipuncula (2) and single taxa of Ascidiacea,
Leptocardii, Oligochaeta, Phoronida, Platyhelminthes, Priapulida, Pycnogonida and Tanaidacea. In
the Baltic Sea MPAs (lower pane), the category “other” includes Oligochaeta (6), Isopoda (5), Mysida
(5), Nemertea (5), Ascidiacea (4 taxa), Cirripedia (4), Priapulida (2), Pycnogonida (2), Tanaidacea (2)
and single taxa of Arachnida, Entoprocta, Hirudinea, Leptocardii, Phoronida, Platyhelminthes and
Polyplacophora.

3.1.2. Community Structure
North Sea

The analysis of community structure based on presence/absence transformed data
for the NS showed distinct differences between the MPAs (Figure 4, upper pane). The
MPAs in the North Sea can be significantly separated in terms of the macrofauna (ANOSIM:
R-value = 0.991; p-value = 0.001), at least based on stations where in- and epifauna data
were available. Some exemplary most frequent species found in the study region are shown
in Figure 5.
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Figure 5. Most common species in the North Sea MPAs. (A) Echinocardium cordatum (Pennant,
1777), (B) Spiophanes bombyx (Claparède, 1870), (C) Liocarcinus holsatus (Fabricius, 1798), (D) Aonides
paucibranchiata Southern, 1915, (E) Asterias rubens Linnaeus, 1758, (F) Bathyporeia elegans Watkin, 1940,
(G) Abra alba (W. Wood, 1802), (H) Ophiura ophiura (Linnaeus, 1758), (I) Spisula solida (Linnaeus,
1758). Indicated sizes are approximate total lengths (of longest dimension) for all species, with two
exceptions: for L. holsatus (C), the value corresponds to carapace length, and for O. ophiura, the disc
diameter is specified. These sizes were measured with calipers and are provided only for visualization
and to show scale differences between species; they are not relevant for any other reported results.

The SIMPER analysis revealed the mean similarity of MPAs (Table 4). The MPA
SAR had a mean similarity of 62.3%. It was mainly characterized by the bivalve Abra
alba, the echinoderm Amphiura filiformis, the echinoderm Astropecten irregularis, the bivalve
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Chamelea striatula, and the decapod Corystes cassivelaunus. The mean similarity in the MPA
BRG was 57.5%. Characterizing taxa were the polychaete Aonides paucibranchiata, the
echinoderm Astropecten irregularis, Ensis spp. bivalves, the polychaete Lanice conchilega, and
the swimming crab Liocarcinus holsatus. The MPA DGB had a mean similarity of 67.5%
and was mainly characterized by the echinoderm Amphiura filiformis, Cnidaria (Anthozoa
indet.), the amphipod Aora gracilis, as well as by the echinoderms Asterias rubens and
Astropecten irregularis.

Table 4. Results of the SIMPER analysis: ten characteristic taxa contributing most to the average
similarity within the MPAs in the North Sea.
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Amphiura filiformis

Amphiura filiformis Astropecten irregularis Anthozoa

Astropecten irregularis Ensis spp. Aora gracilis

Chamelea striatula Lanice conchilega Asterias rubens

Corystes cassivelaunus Liocarcinus holsatus Astropecten irregularis

Cylichna cylindracea Spio symphyta Bathyporeia elegans

Echinocardium
cordatum Spiophanes bombyx Bathyporeia

guilliamsoniana

Eudorella truncatula Thia scutellata Dosinia lupinus

Hyala vitrea Asterias rubens Echinocyamus pusillus

Kurtiella bidentata Bathyporeia
guilliamsoniana Euspira nitida

Baltic Sea

The analysis of community structure for the BS based on presence/absence data
(Figure 4, lower pane) showed less difference between MPAs compared to the NS dataset.
The MPAs in the BS could still be significantly separated in terms of the macrofauna
(ANOSIM: R-value = 0.784; p-value = 0.001). Some exemplary most frequent species found
in the study region are shown in Figure 6.

The SIMPER analysis revealed the mean similarity of each MPA (Table 5). The FB
MPA had the lowest mean similarity of 38.8% among the Baltic Sea MPAs. In terms of pres-
ence/absence, FB was mainly characterized by the polychaetes Aricidea suecica and Scoloplos
armiger, the echinoderm Ophiura albida, the bivalve Varicorbula gibba and the cumacean
Diastylis rathkei. The mean similarity in the KR MPA was 46.9%. Characterizing taxa were
the bivalve Mytilus edulis, the gastropod Peringia ulvae, the polychaetes Bylgides sarsi and
Pygospio elegans, and the bryozoan Eucratea loricata. The MPA RB had a mean similarity of
49.2% and was mainly characterized by the bivalve Macoma balthica, the gastropod P. ulvae,
the polychaete S. armiger, the cumacean Diastylis rathkei and the amphipod Pontoporeia
femorata. Within the stations of AG MPA, a mean similarity of 60.2% was observed, mainly
driven by the bivalve M. edulis, the gastropod P. ulvae, the amphipod Gammarus salinus, the
bryozoan Einhornia crustulenta, and the polychaete P. elegans. In the OB MPA, the mean
similarity was 64%, and characteristic species were the gastropod P. ulvae, the polychaete
P. elegans, the oligochaetes of subfamily Tubificinae, as well as the bivalves M. edulis and
Mya arenaria.

Additionally, within the three MGF focus areas in the Baltic Sea, it is worth noting
the “key species”, which we defined as biomass-dominant bivalves possessing a long
lifespan, playing a crucial role in the local food web, and making significant contributions
to bioturbation. For FB, it is the ocean quahog Arctica islandica, with biomasses > 90%
of the total macrozoobenthos biomass; for RB, it is the Baltic tellin Macoma balthica, with
biomasses of about 23% of the total biomass. For OB, there are two key species: the sand
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gaper Mya arenaria as well as M. balthica, with biomasses of about 54% and 18% of the total
biomasses, respectively.
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Figure 6. Most common species in the Baltic Sea MPAs. Size measures for each species are given in
mm. (A) Mytilus edulis Linnaeus, 1758, (B) Mya arenaria Linnaeus, 1758, (C) Cerastoderma glaucum
(Bruguière, 1789), (D) Peringia ulvae (Pennant, 1777), (E) Macoma balthica (Linnaeus, 1758), (F) Abra alba
(W. Wood, 1802), (G) Diastylis rathkei (Krøyer, 1841), (H) Scoloplos armiger (Müller, 1776), (I) Carcinus
maenas (Linnaeus, 1758), (J) Pygospio elegans Claparède, 1863, (K) Crangon crangon (Linnaeus, 1758).
Indicated sizes are approximate total lengths (of longest dimension) for all species but I (for C. maenas,
the value corresponds to carapace length). These sizes were measured with calipers and are provided
only for visualization and to show scale differences between species; they are not relevant for any
other reported results.
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Table 5. Results of the SIMPER analysis: ten characteristic taxa contributing most to the average
similarity within the MPAs in the Baltic Sea.
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Peringia ulvae

Scoloplos armiger Peringia ulvae Peringia ulvae Peringia ulvae Pygospio elegans

Ophiura albida Bylgides sarsi Scoloplos armiger Gammarus salinus Tubificinae

Varicorbula gibba Pygospio elegans Diastylis rathkei Einhornia
crustulenta Mytilus edulis

Diastylis rathkei Eucratea loricata Pontoporeia femorata Pygospio elegans Mya arenaria

Kurtiella bidentata Kurtiella bidentata Halicryptus
spinulosus Hediste diversicolor Hediste diversicolor

Tubificinae Asterias rubens Bylgides sarsi Tubificinae Marenzelleria viridis

Levinsenia gracilis Mya arenaria Hediste diversicolor Jaera albifrons Macoma balthica

Abra alba Nephtys caeca Capitella capitata Amphibalanus
improvisus

Cerastoderma
glaucum

Paradoneis eliasoni Diastylis rathkei Mya arenaria Bylgides sarsi Streblospio shrubsolii

3.2. Variation Explained by Environmental Drivers and Trawling Intensity
3.2.1. North Sea

The results of the dbRDA (Figure 7) show the relationship between the environmental
drivers that best explain the variability in the macrofauna communities in the three North
Sea MPAs. The RELATE analysis revealed a significant relation of the environmental
drivers and bottom-contact fishing to the presence/absence macrofauna data with a Rho of
0.815 (significance level of 0.1%).
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Figure 7. dbRDA ordination of stations in the North Sea MPAs along environmental (depth (m), sedi-
ment parameters (shell fraction > 2 mm, sand fraction < 2 mm to >0.063 mm, mud fraction < 0.063 mm,
and gravel fraction), temperature (◦C) and salinity (psu)) and anthropogenic (bottom-contact fishing
expressed as subsusSwAR) drivers. Labeling according to the MPAs.
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In the North Sea, the set of considered abiotic predictors explained together 66.3%
of the total variation in the presence/absence macrofauna data. Based on results of the
marginal test, salinity explained 39.7%, the depth (m) of the stations was responsible for
38.7% of changes in community structure, and the bottom-contact fishing explained 33.6%
(SubsurSwAR) of variation in presence/absence data (see “DistLM results North Sea”
tab in the Supplementary Material S1). In the sequential test (see “DistLM results North
Sea” tab in the Supplementary Material S1), salinity (psu) as the most important predictor
was followed by temperature and fraction of sand that explained an additional 20.5% of
variation in macrofauna.

3.2.2. Baltic Sea

The results of the dbRDA (Figure 8) show the relationship between the environmental
drivers that best explain the variation in the macrofauna composition in the five sampled
Baltic Sea MPAs. Here, the set of considered abiotic predictors explained 53.1% of the total
variation in the presence/absence macrofauna data. The dbRDA1 was mainly driven by
salinity and % mud in sediment, and the dbRDA2 by bottom-contact fishing (subsurface
SwAR), % mud, % gravel, and measured near-bottom temperature. Based on results of the
marginal test, salinity of the near-bottom water alone was responsible for 33.3% of changes
in community structure, mud content in sediments explained 24.3%, and among fishing
parameters (that were highly correlated with each other), subsurface SAR explained 13.7%
of variation in presence/absence data. In the sequential test (see “DistLM results Baltic
Sea” tab in the Supplementary Material S1), bottom-contact fishing expressed in subsurface
SwAR was the second most important predictor, explaining an additional 8.2% of variation
in macrofauna. Modeled near-bottom water temperature and % gravel showed the least
direct effect on community structure among considered predictors (based on the marginal
test), but were still significant and retained in the final model.
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3.3. Endangered Species

In total, 110 of the 481 (22.9%) taxa found in all considered MPAs of the North and
the Baltic Seas were at or near risk of various degrees of extinction (Table 6). In addition,
47 of the 481 (9.8%) taxa are endangered with the status “Threat of unknown Extent”
according to the Red List based on [78,79]. Some examples were the chordate Branchiostoma
lanceolatum, the echinoderm Astropecten irregularis, the polychaete Fabriciola baltica and the
bivalve Musculus discors.

Table 6. Number of Taxa with a critical Red List status in the focus areas of the North Sea and Baltic
Sea (source: [78,79]).

Status Both North Sea Baltic Sea
Near Threatened 16 7 9
Extremely Rare 26 12 16

Threat of Unknown Extent 47 28 30
Threatened 10 6 5

Highly Threatened 8 5 5
Threatened with Extinction 3 1 2

3.3.1. North Sea

Fifty-nine of the 262 taxa found in the North Sea were at or near risk of various
degrees of extinction, accounting for 22.5% of the taxa (Table 6). Five taxa are endangered
with the status “Highly Threatened”: the gastropod Buccinum undatum, the polychaete
Sabellaria spinulosa, and the bivalves Ensis ensis, Mya truncate, and Spisula elliptica. The
crustaceans Ebalia tumefacta and Lepas anatifera, the bivalves Arctica islandica, Ensis magnus,
and Goodallia triangularis, and the cnidarian Alcyonium digitatum are endangered with
the status “Threatened”. The status “Near Threatened” is allocated to the polychaete
Polygordius appendiculatus, the decapod Galathea intermedia, the amphipod Megaluropus
agilis, the bryozoan Membranipora membranacea, the echinoderms Amphipholis squamata and
Ophiothrix fragilis and the gastropod Acteon tornatilis.

3.3.2. Baltic Sea

In total, 67 of the 298 taxa found in the Baltic Sea were at or near risk of various degrees
of extinction, accounting for 22.5% of the taxa (Table 6). Two taxa endangered with the
status “Threatened with Extinction” are the cnidarian Halcampa duodecimcirrata and the
bivalve Macoma calcarea. The bivalves Modiolus modiolus and Mya truncata, the gastropods
Boreotrophon truncatus and Buccinum undatum and the polychaete Euchone papillosa are
endangered with the status “Highly Threatened”. The status “Threatened” is allocated
to the amphipod Monoporeia affinis, the bivalves Arctica islandica (though not uncommon
in the typical Arctica community in aphotic muddy sediment) and Astarte montagui, the
hydrozoan Halitholus yoldiaearcticae and the polyplacophoran Lepidochitona cinerea.

4. Discussion
4.1. Species Richness and Composition in MPAs

We found in a total of 481 taxa in all nine MPAs in the North and the Baltic Seas
(see full taxa list in Supplementary Material S1). Contrary to our expectation and the
literature [40], 37.9% of the taxa were found exclusively in the North Sea MPAs, while 45.8%
of our taxa were found exclusively in the Baltic Sea MPAs, and only 16.3% were shared by
the two seas. According to the annotated checklist from Zettler et al. [40], 36.6% of taxa
were shared between two seas, 48.7% occurred only in the NS, while 14.7% occurred only
in the BS. Among taxa found only in the NS, both in Zettler et al. [40] and in our study
are the polychaete Aphrodita aculeata and Nephtys cirrosa, the echinoderm Echinocardium
cordatum, the decapod Necora puber, the amphipod Megaluropus agilis and the bivalve Dosinia
lupinus. Example taxa specific to the BS in both studies are the bivalve Astarte borealis, the
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polychaetes Fabriciola baltica and Spio arndti, the gastropod Lacuna parva and the amphipod
Pontoporeia femorata.

Some examples of species found in both areas and confirmed by both studies are the
echinoderms Amphiura filiformis and Echinocyamus pusillus, the crustaceans Carcinus maenas
and Pagurus bernhardus, the polychaetes Eteone longa and Lanice conchilega and the bivalves
Arctica islandica and Kurtiella bidentata.

Multivariate analysis of the North Sea macrofauna data in our study revealed low
similarity between the three considered MPAs, DGB, SAR and BRG. Based on ring dredge
and beam trawl data from 33 stations in SAR and BRG sampled in 2020, Hahn et al. [80]
published a checklist of benthic fauna that comprised 99 species from the phyla Mollusca,
Arthropoda, Echinodermata, Annelida, Cnidaria, and Bryozoa (listed according to descend-
ing species number per group). In line with our results, Hahn et al. [80] also reported clear
separation of species composition between the two areas. In contrast to our results, the
higher species diversity found at BRG (compared to SAR) in that dataset was associated
to lower bottom-contact fishing pressure. In our study, community composition within
one area was more similar in DGB and SAR compared to the BRG. In the southeastern
North Sea, differences in macrofauna biodiversity, intensively studied since the last century
(e.g., [9–14,81]), are well represented by the four distinct macrofauna communities already
mentioned in the introduction. The macrofauna communities of the DGB, BRG and SAR
are assigned to the Bathyporeia-Tellina, the Goniadella-Spisula, and the Amphiura-filiformis
communities, respectively [17]. According to Fiorentino et al. [17] taxa identified as char-
acteristic for the Bathyporeia-Tellina community are Bathyporeia elegans, Lanice conchilega,
Tellina (Fabulina) fabula and Spiophanes bombyx. These macrofauna species were also found
in DGB MPA in our study. Among characteristic taxa of the Goniadella-Spisula community,
Fiorentino et al. [17] listed Aonides paucibrachiata, Branchiostoma lanceolatum, Pisione remota
and Echinocyamus pusillus, reported in our list for BRG MPA. In agreement with our results
for SAR MPA, taxa listed as characteristic for the Amphiura filiformis community, apart from
the name-giving species, were Kurtiella bidentata, Nucula nitidosa and Phaxas pellucidus.

Multivariate analysis for the Baltic Sea macrofauna suggested less distinct and there-
fore more similar community structure between the five MPAs compared to those in the
North Sea. This is likely due to the inclusion of multiple habitats and biotopes with patchy
distribution in each of the German Baltic Sea MPAs [50], and due to less distinct boundaries
and gradual ecological transitions along environmental gradients between the adjacent
communities. In agreement with previously reported increasing variability towards the
entrance to the North Sea [33,34], our results showed gradually increasing similarity within
the Baltic Sea MPAs with decreasing salinity from west to east. The FB MPA had the
lowest mean similarity of 38.8% among the Baltic Sea MPAs as it includes stations from
broad habitat types ranging from circa- and infralittoral mixed sediment (hard substrate) to
sand and mud [50]. Characteristic species in the FB MPA apart from A. islandica included
infaunal polychaete species like Aricidea suecica and Levinsenia gracilis, as well as Diastylis
rathkei, Varicorbula gibba and Abra alba, in line with Schiewer [32], Gogina et al. [34] and
Marx et al. [50]. Blue mussel Mytilus edulis and infaunal bivalve species like sand gaper Mya
arenaria were among characteristic taxa for KR MPA, confirming the habitat distribution
reported in [50]. Also, in accordance with Marx et al. [50], muddy sediment at RB MPA was
dominated by the Baltic tellin M. balthica, whereas blue mussels were common in mixed
and sand substrate. Mytilus edulis as well as Gammarus salinus associated with benthic
vegetation were typical macrofauna species for AG. At sands of OB, characteristic infaunal
bivalve species were M. arenaria, M. balthica and Cerastoderma glaucum; Mytilidae were
also common.

The inventory presented here is just a snapshot documenting and comparing macro-
fauna diversity sampled within two years before the expected official closure for bottom-
contact fishing took place. It seemed interesting to check how well our taxa list, which
consists of two years of sampling, matches the compilation of the study from Zettler
et al. [40], who included long-term databases provided by 11 marine research institutes
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and private consultancies. We have identified 9 taxa not recorded in the earlier published
annotated checklist (marked in yellow in the full species list in Supplementary Material
S1). Newly recorded 8 taxa were found in samples from the North Sea MPAs (Epizoanthus
papillosus (SAR and DGB), Macropodia tenuirostris (BRG), Lepas anatifera (DGB), Gilvossius
tyrrhenus (SAR and BRG), Epimeria cornigera (DGB), Malmgrenia lunulata and Loimia ramzega
(BRG and DGB) and Clymenura lankesteri (DGB)), and one taxon occurred in the MPA
Fehmarnbelt (Alvania punctura) in the Baltic Sea. Cylista sp. (formerly Sagartia sp.) was
recorded only in the North Sea according to the checklist issued in 2018, whereas we
recorded this taxon in our FB samples in 2020 and 2021. Such additional records in new
studies were expected and discussed in [40], on the one hand through the introduction
of new species and on the other through the spread of marine species from neighbor-
ing areas. In their review of non-indigenous species, Lackschewitz et al. [82] reported
159 marine and estuarine taxa, including both macrofauna and macroflora introduced
by anthropogenic vectors as well as cryptic species. The number of introduced species
detections increased from 9 before, to 48 within, and 65 after the 20th century, partly due
to ship traffic, but also due to targeted monitoring programs and growth of taxonomic
expertise. The highest number of macrofauna neobiota in the North Sea was represented
by bryozoans and tunicates, in the Baltic Sea—by Ponto-Caspian amphipods and mysids.
In addition to the actual immigration or even introduction of species, taxonomic revisions
are also responsible for the fact that nomenclatures change or species were split up or
deleted. One example of such a recently described species is the polychaete L. ramzega [83].
Spatial expansion of warm-temperate non-native species into German waters due to water
temperature rise or changes in (de-)eutrophication [14,84,85], increasing number of newly
introduced species [86], and disappearance of some native taxa are among expected drivers
of future changes in species compositions. After closure for bottom-contact fishing in MPAs,
those drivers might superimpose on effects of vanished bottom-contact fishing, and will
act alongside high natural variability and unpredictable recruitment events particularly
relevant in the young and temporally less stable Baltic Sea ecosystem.

4.2. Environmental Drivers

Salinity, temperature, sediment parameters describing fractions of sand, mud, gravel
and shell, depth and bottom-contact fishing were together responsible for over 68% of the
variation in the presence/absence structure of macrofauna data from the North Sea MPAs.
The MPA SAR showed the highest taxa number (187 taxa) among North Sea MPAs. The
MPA SAR covers 28% of the German EEZ in the North Sea and is characterized by different
kinds of sediment parameters [67]. The correlation between sediment parameters and the
distribution of macrofauna communities was found in many previous studies [18,40,51,81],
although it is often linked to food supply. The distribution of sediments in the German
EEZ is heterogeneous, consisting mainly of sand, mud or a mixture of both [87,88]. The
mud content correlated, for example, with the abundances of the decapods Nephrops
norvegicus and Goneplax rhomboides [87]. These two species together with high numbers of
the holothurian Paraleptopentacta elongata were found at stations in the MPA SAR, where
the mud content was higher (species list in Supplementary Material S1). MPAs DGB, BRG
and AMB are sandbanks and are normally not characterized by a high biodiversity [89].
Due to its geographical position, the DGB MPA had a higher number of taxa than the other
two, comprising species typical for the northern North Sea together with species typical
for the southern North Sea [20,65]. Typical northern arctic-boreal species were the bivalve
Abra prismatica and the polychaete Ophelia limacina [20]. However, climate change had led
to a community shift even on the Doggerbank, and the abundance of northern species
decreased at the MPA DGB [20].

Measured near-bottom salinity was by far the strongest factor of changes in (presence/
absence-based) community structure on the scale of five studied Baltic Sea MPAs, alone
responsible for over 33% of variation (in agreement with multiple studies reporting higher
diversity with high salinity ([34,72] and references therein)). Without salinity, mud fraction
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could explain over 24%. Surprisingly, fishing intensity (subsurface SwAR) was the second
most important predictor, explaining 8% of the cumulative effect, followed by modeled
long-term averaged temperature (4%), whereas sediment parameters describing fractions of
gravel and mud as well as depth each added no more than 2% to the cumulative explained
variation. On one hand, this indirect confirmation of trawling impact on macrofaunal
biodiversity is in line with recent findings of Bradshaw et al. [90]. This study highlighted
for the Swedish part of the southern Baltic Sea that environmental variables (including
salinity) affected fauna more than trawling (we will discuss this further in the next section).
On the other hand, sediment parameters and depth are commonly considered major
environmental forcing factors for macrofauna distribution in the Baltic; therefore, such
a small partial effect here, outperformed even by modeled temperature, was somewhat
unexpected in the context of previous findings (see e.g., [34]). This discrepancy is likely
explained by certain redundancy of variation in those drivers and variation in salinity as
the main predictor in this particular dataset, meaning they are capturing similar aspects
of the variation in the presence/absence-based community structure (presumably, those
covariates would also have more additional explanatory power for abundance- or biomass-
based structure).

4.3. Bottom-Contact Fishing Intensity

Overall bottom-contact fishing intensity in the considered North Sea MPAs was highest
at AMB (Table 3). Bottom-contact fishing seemed to change in ranking between the MPAs
over time. Based on the spatial distribution of the surSwAR and subsurSwAR data [62,63],
the bottom-contact fishing at the DGB was second highest, followed by the SAR and BRG
(Table 3). Even though there is a significant difference between the bottom-contact fishing
in the North Sea MPAs, it alone explained over 33.6% (subsurSwAR) of variation in the
presence/absence data. In the Baltic Sea, bottom-contact fishing alone could explain 13%
of macrofauna variation. It was highest in the Fehmarnbelt MPA (Table 3), followed by
Western Rønne Bank (where trawling was mainly active on the muddy northwestern side
of the major MPA area) and Odra Bank. It was substantially lower in the Kadetrinne (where
shipping traffic is particularly intense) and in the Adler Ground MPA (characterized by
riffs avoided by fishers due to gear damage risk). Where bottom-contact fishing occurs, it
is often found to be among the most significant disturbances of macrofauna taxonomic [39]
and functional composition [91], resulting in clear declines in benthic abundance and
species richness [18,92]. Remarkably, despite including the most heavily trawled spots for
our Baltic Sea study area, the Fehmarnbelt MPA provided home for the highest number of
recorded species (264 taxa) and showed the largest variation in assemblage composition
between its stations, not least due to its transition position, variety of habitat types, and
highest salinity among Baltic Sea focus areas (see [93]). Generally, in the North and the
Baltic Seas, the mobile bottom-contact fishing intensity has more or less decreased since
the early 2000s (see Supplementary Material S2 refs. [62–64,74]). In the North Sea, the
implementation of the Natura 2000 directive seems to be having an effect, but no uniform
consensus has yet been implemented to bring fisheries and nature conservation together in
a coherent way (see also [94]).

Here we have not studied the influence of other anthropogenic drivers, but among
other factors communities are also affected by the construction and exploitation of offshore
wind farms (OWF), marine traffic, heavy metal pollution, and changes in oxygen condi-
tions [95]. Large-scale development of OWF has an impact on marine biodiversity due to
changes in sediment characteristics and the creation of artificial reefs, the latter causing a
doubling of species richness and an increase of abundance by two orders of magnitude.
Furthermore, it leads to a decrease or cessation of bottom-contact fishing, prohibited in
many OWFs, though fishing avoidance benefits there have yet to be proved [95].

Though temporal variability could not be explicitly analyzed based on datasets con-
sidered in our study, it is worth noting that the decline of bottom-contact fishing may
have different effects on the macrofauna, depending on how bottom-contact fishing and
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environmental drivers change and how quickly the communities can adapt. In protected
areas where no bottom-contact fishing took place, certain fish species and their macrofauna
prey have the opportunity to recover. However, the cumulative effect of decreased direct
bottom-contact fishing, changes of the environmental drivers and increased predation
pressure may be difficult to disentangle. For macrofauna, especially for epifauna, improved
food supply can have a positive impact on population dynamics. Decreased bottom-contact
fishing can allow the restoration of mussel banks and seagrass beds.

Some species can adapt quickly to changing environmental conditions (climatic
changes), while others are more sensitive [96,97]. The response of the species is driven by
the different life histories (growth or age at maturity), differences in morphology (shape and
structure) and ecological attributes (like mobility and position on/within the sediment) [42].
The effects of extreme events, for example cold winters in the North Sea can influence
habitats for several years, and recovery time of the macrofauna communities from trawling
in such disturbed habitats may take just as long [87,98]. When bottom-contact fishing
activities change, e.g., in response to sustainable management, changes in community
composition and density are expected to follow, but how quick and strong the response will
be is dependent on the region. Species that can recover quickly after bottom-contact fishing
distribution are decapods like Crangon crangon, Carcinus maenas, Corystes cassivelaunus
and Pagurus bernhardus [42]. Species with a long lifespan and fragile morphology like
bivalves and sessile species (ascidians and bryozoans) showed no short-term recovery
after bottom-contact fishing events [42,86,98]. Long-term monitoring is thus crucial to
understand the ecosystem changes and to develop appropriate protection measures for
benthic macrofauna and their habitats.

To assess the possible impact of bottom-contact fishing on the populations of “key
species” [69,70] in the MGF focus areas of the Baltic Sea (A. islandica in the FB, M. balthica
in the RB, and M. balthica and M. arenaria in the OB), their size-frequency distributions
were documented to allow comparison with data planned to be obtained after the fishery
exclusion. In FB, the absence of medium size classes (10–30 mm) of A. islandica was
noticeable, suggesting only occasional mass recruitment success. This lack of cohorts
may threaten the continuous development of a stable population, with large, old mussels
ensuring its continued existence and dominance. In addition, shell damage from trawling
was evaluated [99], suggesting a significant negative impact caused particularly to larger
individuals of A. islandica by high mechanical forces (traction, pressure) while towing or
hauling up the net.

ICES datasets are only of limited use for ecosystem impact studies due to limited
spatial resolution. In relation to bottom-contact fishing, these datasets only map the
biomass brought ashore, not the biomass (including bycatch) actually removed from the
habitat [100–102]. For the scale of this study, it currently remains the best available data
source, though for small case studies, acoustically derived bottom-contact fishing indices
can be the best alternative [103].

Limitations and possible biases of our results should draw attention to differences in
methodologies used (overall standardized, but featuring regional details, particularly as in
the Baltic in- and epifauna were always sampled together, whereas separate targeting of one
or another was more common for the North Sea, as explained in detail in the Materials and
Methods section) and the temporal and spatial distribution of stations. The relatively small
number of environmental factors used in our statistical analyses, as well as the absence of
some other important factors, such as sediment organic matter content or chlorophyll A
(that were not available for both studied regions), could have implications for our results,
and would likely explain additional variation. Two factors were included for only one of
the two regions, namely mean multiannual near-bottom water temperature from the GETM
model for the Baltic [73] and the % of shell content > 2000 µm in the sediment for the North
Sea. In contrast to the North Sea, where temperature measured at stations during sampling
added over 16% to cumulative explained variation, in the Baltic Sea, modelled temperature
explained an additional 4% of the cumulative effects on benthic macrofauna structure,
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whereas measured temperature, though significant, added only 0.7%. As samples in both
regions were collected in different seasons and months of the year, these differences most
likely reflect variations in thermal regimes and species composition. As for % of shell, it
had no significance in the cumulative effect for community composition in the North Sea
after considering the effects of salinity, temperature and % of sand fraction.

Syntheses of long-term monitoring data collected over the last two decades under
the terms of BfN and other initiatives (already highlighted in the Introduction) should
provide a more thorough description and understanding through future research. There is
an intense discussion that future data collection, particularly in MPAs, should be revised
and developed towards non-invasive sampling. Possibilities here include, for example,
the collection of eDNA from water samples (e.g., [104]) or the observation of certain areas
using underwater video [72,105]. Even though these methods were confirmed to have
great complementary value (e.g., [105]), the taxonomic and quantitative resolution and
reliability of data that they can deliver [106] seem, for now, to be insufficient, even for a
snapshot assessment like ours. The development of new emerging methods (including
the assessment of eDNA persistence and spatial representability, upbuilding of reference
libraries and automation of imagery data processing) should go along with their compari-
son with traditional morphological approaches to support consistency [107,108]. For solid
scientific comparison before and after fishing closure, it is still inevitable and essential to
use bottom-contacting and dragged scientific equipment (at least in a limited amount) even
after the closure. For now, keeping “invasive” scientific gear out of the MPAs may only
hamper efficient monitoring. In particular, the importance of long-term ecological research
sites in these areas should also be emphasized.

5. Conclusions

The baseline inventory of macrobenthic species presented here is important for as-
sessing future faunal changes. Studying biodiversity across German NS and BS MPAs in
a collective approach is particularly important for understanding ecological connectivity,
integrating conservation strategies, and robustly evaluating the resilience of these ecosys-
tems. A collaborative viewpoint enables the identification of shared species, fostering a
more precise understanding of species migration, interactions, and their contributions to
overall ecosystem vitality. By adopting a joint perspective, conservation efforts can be
strategically enhanced on a broader scale, taking into consideration common threats and
species distribution patterns across both regions, thus facilitating more effective planning
and management strategies.
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Simple Summary: Seagrass meadows, especially those formed by eelgrass Zostera marina,
are very important biotopes, crucial to the healthy functioning of the Baltic coastal ecosys-
tems. These meadows provide feeding and breeding areas for many marine organisms.
Plants and animals that form these biotopes play a key role in transforming organic matter
and nutrients in the marine ecosystem. Organisms dwelling in the sediments of seagrass
meadows alter them through bioturbation (sediment mixing) and bioirrigation (water flow
in the sediment). The objective of our study was to determine how the density of plants
that form a meadow and the season of the year affect the species composition, density,
and activity of these organisms. The results show that the presence of seagrass increases
the number of species in the meadows and that their abundance boosts the activity of
organisms. The season also plays an important role in shaping the functioning of the
meadows, with the majority of organisms found in autumn; benthic communities have
also been proven to have the highest potential for activity during this season compared to
the rest of the year. Overall, the presence of seagrass helps maintain coastal ecosystems
much more effectively than bare sand.

Abstract: Zostera marina meadows play a key role in the Baltic Sea ecosystem. They are char-
acterized by high primary production and provide feeding and reproduction grounds for
organisms. These characteristics vary due to year-round environmental changes and may
be due to the characteristics of the meadows themselves. Organisms inhabiting seagrass
meadows are involved in the transformation of substances from terrestrial runoff, and,
through bioturbation and bioirrigation, affect biogeochemical processes in the sediments.
This study aimed to determine the structure of benthic communities inhabiting Z. marina
meadows and their bioturbation (BPC) and bioirrigation (IPC) potential as affected by
seagrass density and seasonal changes. This study shows a positive correlation between
the density of Z. marina and the structure of macrozoobenthos, as well as the bioturbation
and bioirrigation potential of the studied communities. The autumn season stimulated
the density of macrofauna and recorded the highest values of their potential activities in-
dices. The presence of Z. marina positively affects macrozoobenthic communities and their
functioning regardless of seagrass density, indicating that seagrass meadows inhabited by
macrofauna are key biotopes that can support biogeochemical processes in the coastal zone
more effectively than bare sand.

Keywords: seagrass; macrozoobenthos; bioturbation; bioirrigation; marine biodiversity;
coastal zone; Baltic Sea
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1. Introduction
Coastal zones represent one of the most important areas in marine ecosystems. They

are characterized by specific physicochemical conditions that uniquely shape the diver-
sity of habitats and the organisms living in them [1]. These zones are under very high
water dynamics, and their environmental conditions are strongly affected by rivers and
anthropogenic factors. All of these factors, combined with conditions such as the type of
sediment in a given habitat, strongly affect the formation of unique and heterogeneous
habitats in these zones [2]. Various types of unique habitats can be observed on the coast of
the Baltic Sea [1,3–5]. These habitats—including the seagrass meadows of Zostera marina
Linnaeus, 1753—are characterized by high variability in environmental conditions and
perform different functions in the ecosystem [6,7].

Seagrasses play an important role as an engineering biotope; as meadows, they can
modify the direction of ocean currents and stabilize sediments, thus preventing bottom ero-
sion, and are involved in the circulation of elements and matter and the flow of energy [8,9].
In addition, they play a crucial role as stores of chemical substances, e.g., carbon. Even
though they occupy less than 0.2% of the ocean’s surface, they store up to 10% of the carbon
entering the oceans annually [10,11]. The high capacity of seagrasses to absorb carbon
compounds from the environment can result in a local reduction in the level of water acidi-
fication [12]. However, high heterogeneity is observed among submerged meadows. This
can include both the species composition of the macrophytes that make up the meadows
and the prevailing conditions, namely the physicochemical parameters and the density
of shoots. Each meadow is different and is characterized by unique environmental condi-
tions. It has also been shown that even meadows in the same area can be distinguished by
different functionality [13–15].

Organisms living in underwater meadows perform diverse activities and contribute
to the proper functioning of these ecosystems [16]. Meadows are home to organisms of
various sizes and taxonomic groups and representatives of all kinds of trophic guilds, from
filter feeders and grazing organisms to predators [17,18]. Benthic organisms are essential to
the cycling of chemical elements and nutrients, which they affect directly through activities
such as feeding, respiration, and excretion, or indirectly by altering the sediment structure
through activities such bioturbation and bioirrigation [6,19]. Both of these activities posi-
tively affect sediment conditions: water flowing through the burrows increases sediment
oxygenation, and the burrows themselves create an increased surface area for colonization
by microorganisms. In addition, intensive bioturbation and bioirrigation cause an exchange
of substances between water and sediment and can stimulate the transformation of organic
matter in the sediment [20–25]. Due to their important role in ecosystems, bioturbation
and bioirrigation have been relatively extensively studied over the years. Various types
of methods have been used for this purpose, including the estimation of bioturbation as
its actual measurement. Bioturbation intensity is estimated by calculating Bioturbation
(BPC) and Bioirrigation (IPC) Potential Indices, and is a relatively simple and widely used
method for determining the functionality of given benthic species or communities [26–30].

Bioturbation and bioirrigation are important processes, but neither has been exten-
sively studied for underwater meadows. One of the few studies conducted to date in these
ecosystems involved Zostera noltei Hornemann, 1832 meadows in France, and showed
an inhibitory effect from the meadows on the intensity of bioturbation activity of organ-
isms [31]. The Baltic underwater meadows remain unexplored in terms of the intensity
of bioturbation taking place there, but are fairly well studied in such aspects as the tax-
onomic composition of plants and animals that form and inhabit underwater meadows,
the functioning of the meadows as trophic networks observed in them, and the biological
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traits of the macrofauna species living there. The studies were carried out on a single- or
multi-seasonal basis [32–36].

The research presented here focuses on the effects of Z. marina density on macrofauna
communities and their bioturbation and bioirrigation activities, both of which affect the
functioning of coastal habitats, but are so far poorly researched in the Baltic Sea. The
research was conducted on a seasonal basis to determine the effect of environmental
conditions on the benthic communities of seagrass meadows and their activities.

2. Materials and Methods
2.1. Study Area and Sampling Design

Macrozoobenthos samples were collected seasonally in November 2021 (Autumn)
and February (Winter), May (Spring), and August (Summer) 2022 by divers at four density
treatments in the Z. marina meadow (54◦40.352′ N; 18◦41.754′ E) on Długa Mielizna, a
sandy shoal along the Hel Peninsula (Puck Bay) (Figure 1).

Biology 2025, 14, x FOR PEER REVIEW 3 of 20 
 

 

the macrofauna species living there. The studies were carried out on a single- or multi-
seasonal basis [32–36]. 

The research presented here focuses on the effects of Z. marina density on macrofauna 
communities and their bioturbation and bioirrigation activities, both of which affect the 
functioning of coastal habitats, but are so far poorly researched in the Baltic Sea. The re-
search was conducted on a seasonal basis to determine the effect of environmental condi-
tions on the benthic communities of seagrass meadows and their activities. 

2. Materials and Methods 
2.1. Study Area and Sampling Design 

Macrozoobenthos samples were collected seasonally in November 2021 (Autumn) 
and February (Winter), May (Spring), and August (Summer) 2022 by divers at four den-
sity treatments in the Z. marina meadow (54°40.352′ N; 18°41.754′ E) on Długa Mielizna, a 
sandy shoal along the Hel Peninsula (Puck Bay) (Figure 1). 

 

Figure 1. Study area with sampling site. The red rectangle indicates the location of the study area 
on a map of the Baltic Sea. 

The unvegetated (UnV) site was located on bare sand about 2 m from a vegetated 
area (outside of the meadow) and three remaining sites—Low-Density Seagrass (SLD), 
Medium-Density Seagrass (SMD), and High-Density Seagrass (SHD)—were selected and 
delineated by a diver in the increased density gradient of Z. marina (Figure 2). Each repli-
cate of macrofauna cores was located approx. 50–70 cm away from each other; meanwhile, 
sediment samples were subtracted approx. 30 cm from the fauna cores. Each Zostera treat-
ment was taken from different Z. marina patches; the patches were about 4–6 m2 in size. A 
50 × 50 cm frame was placed at each treatment site five times, and the number of Zostera 
shoots was counted. Bottom water temperature, salinity, and dissolved oxygen (DO) con-
centration were measured at each site. Five sediment cores (10 cm inner diameter, 25 cm 
of sediment) were collected at each site for macrofauna analysis. 

Figure 1. Study area with sampling site. The red rectangle indicates the location of the study area on
a map of the Baltic Sea.

The unvegetated (UnV) site was located on bare sand about 2 m from a vegetated
area (outside of the meadow) and three remaining sites—Low-Density Seagrass (SLD),
Medium-Density Seagrass (SMD), and High-Density Seagrass (SHD)—were selected and
delineated by a diver in the increased density gradient of Z. marina (Figure 2). Each replicate
of macrofauna cores was located approx. 50–70 cm away from each other; meanwhile,
sediment samples were subtracted approx. 30 cm from the fauna cores. Each Zostera
treatment was taken from different Z. marina patches; the patches were about 4–6 m2 in
size. A 50 × 50 cm frame was placed at each treatment site five times, and the number
of Zostera shoots was counted. Bottom water temperature, salinity, and dissolved oxygen
(DO) concentration were measured at each site. Five sediment cores (10 cm inner diameter,
25 cm of sediment) were collected at each site for macrofauna analysis.
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2.2. Sediment Characteristics

Fifteen (three per macrofaunal treatment) additional intact sediment cores (3.5 cm
inner diameter, 8 cm length) were collected to determine sediment parameters at each
station. From five of these cores, the surface layer of the sediment (0–1 cm) was sliced and
collected, and samples were subsequently frozen after being transported to the laboratory.
The organic matter (OM) content was determined as the percentage of mass loss on ignition
(LOI) (450 ◦C, 5 h) of the dried, homogenized sediment. The remaining two cores per
macrofaunal treatment were used for grain size analysis. Samples were sieved using a
shaker and a set of standard test sieves with mesh diameters of 2, 1, 0.5, 0.25, 0.125, and
0.063 mm [37]. Sediments were classified according to the Udden–Wentworth grain-size
scale [38] based on the percentage of each class in the total sample mass.

2.3. Macrofauna

Animals were selected from the sediment, bypassing the sieving step that usually
precedes the analysis of the macrofauna in a sample. The organisms were then sorted,
and all taxa, except for Oligochaeta and Marenzelleria spp., were identified to the species
level using specialistic identification guides [39–41]. The taxa were counted, and their
wet mass was measured to determine their abundance and biomass per square meter.
Shannon-Wiener’s (H’) diversity index and Pielou’s (J) evenness index were calculated
using PRIMER 6 software (PRIMER-E Ltd., Ivybridge, UK).

2.4. Bioturbation Potential and Irrigation Potential

The wet mass of the organisms was used to calculate the Bioturbation Potential and
Bioirrigation Potential indices. Despite the fact that many researchers use ash-free dry
weight to calculate potentials, our previous studies of Baltic organisms showed that values
of the indices calculated from wet weight and ash-free dry weight are in perfect agreement
with each other r = 0.999 [26]. The Bioturbation Potential Index (BPC) at each site was the
sum of the bioturbation potentials of individual taxa (BPi) [28,29] calculated according to
the following equation:

BPc = ∑ BPi where BPi =

(
Bi

Ai

)0,5
∗Ai ∗Mi ∗ Ri (1)

where Bi is the biomass (wet mass g·m−2) and Ai is the abundance (ind.·m−2) of taxon i in
each sample, while mobility Mi and sediment reworking Ri are categorical scores assigned to
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species i (Appendix A). In the scores assigned we focused on the macrofaunal impact on the
sediment including epifauna living and influencing the sediment surface [26,28,29,42,43].

The Irrigation Potential Community Index (IPC) at each site was calculated by sum-
ming the irrigation potentials (IPi) calculated for each taxon [44]:

IPc = ∑ IPi where IPi =

(
Bi

Ai

)0,75
∗Ai ∗ BTi ∗ FTi ∗ IDi (2)

where Bi is the biomass (g·m−2) and Ai is the abundance (ind.·m−2) for taxon i in each
sample, while the feeding type FTi, burrow type BTi and depth IDi are scores for the trait
categories assigned to each species.

Exponent 0.5 used in BPC emphasizes the importance of organisms with high density
and relatively low biomass, while exponent 0.75 used in IPC emphasizes the activity of
organisms with larger sizes but lower densities [30].

2.5. Data Analysis

A Principal Component Analysis (PCA) was conducted to determine the relationship
between physicochemical conditions in sediments and bottom water and the variability
between the sites. Data normality was tested using a Shapiro–Wilk test. A matrix with
normalized data on bottom water temperature, surface sediment organic matter content,
and the number of Zostera shoots was used in the analysis. The amount of <63 µm fraction
and the biomass of Z. marina were not taken into account in this analysis due to the high
correlation with organic matter content (r = 0.699) and the number of Z. marina shoots
(r = 0.615), respectively. The abundance of macrofauna was square root transformed, and
cluster analysis (Bray–Curtis similarity) was used to determine the similarity between
macrofauna samples. Differences in total abundance, H’, J, BPC, and IPC between the
sampling sites and seasons were tested using PERmutational Multivariate Analysis of
VAriances (PERMANOVAs) [45]. Data visualization and statistical analyses were per-
formed in Microsoft Office 365 ProPlus, RStudio v4.30 (Venn diagram), and PRIMER v7
with PERMANOVA+ (PRIMER-E Ltd., Plymouth, UK).

3. Results
3.1. Environmental Conditions

Due to the close proximity of the sites, no differences in the parameters of bottom
water were observed in a given season at the study sites. Variability in these parameters
was observed only between seasons. The lowest temperature (3.9 ◦C) and the highest
concentration of oxygen in the benthic water (13.97 mL/L) was observed in winter (Table 1).
An inverse relationship was observed in summer when the temperature was highest
(20.5 ◦C) and dissolved oxygen concentration was lowest (9.81 mL/L). Due to the shallow
depth of the study sites (3 m), the water was well mixed and well oxygenated. Salinity at
the surveyed sites was relatively stable, ranging from 6.8 in winter to 7.5 in autumn and
summer. The organic matter content was relatively uniform among all sites during the
studied seasons, and so was the sediment type, which was medium sand at all sites in all
seasons. In all seasons, we were able to find seagrass patches at our designated density.
The SLD treatment covered a density of 24–64 Z. marina shoots·m−2 and the SHD treatment
covered a density of 148–240 shoots·m−2.
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Table 1. Sediment characteristics and environmental parameters measured in bottom waters at the
study sites in all seasons at the studied treatments—Unvegetated (UnV), Low-Density Seagrass (SLD),
Medium-Density Seagrass (SMD), and High-Density Seagrass (SHD).

Season Site Temperature
[°C]

Oxygen
[mL/L] Salinity LOI [%]

0–1 cm
Number of

Zostera shoots

Autumn

UnV 7.8 11.86 7.5 0.26 0
SLD 7.8 11.86 7.5 0.20 48–64
SMD 7.8 11.86 7.5 0.26 116–144
SHD 7.8 11.86 7.5 0.24 164–240

Winter

UnV 3.9 13.97 7.3 0.27 0
SLD 3.9 13.97 7.3 0.28 28–52
SMD 3.9 13.97 7.3 0.32 112–132
SHD 3.9 13.97 7.3 0.28 148–184

Spring

UnV 9.9 12.56 6.8 0.23 0
SLD 9.9 12.56 6.8 0.27 24–44
SMD 9.9 12.56 6.8 0.29 98–140
SHD 9.9 12.56 6.8 0.27 148–180

Summer

UnV 20.5 9.81 7.5 0.25 0
SLD 20.5 9.81 7.5 0.29 28–44
SMD 20.5 9.81 7.5 0.28 96–124
SHD 20.5 9.81 7.5 0.32 156–192

The PC1 axis resulting from PCA explains 41.1% of the total variance (eigenvalue 1.23),
with OM and the number of shoots being the most important explanatory factors (Table 2).
PC1 and PC2 (eigenvalue 1.02) together explain 75.1% of the total variance (Figure 3).
Temperature, with a coefficient of 0.936, contributed the most to the distribution along the
PC2 axis.
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Figure 3. PCA results. Variables included in the PCA are bottom water temperature (TEMP), organic
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(UnV), Low-Density Seagrass (SLD), Medium-Density Seagrass (SMD), and High-Density Seagrass
(SHD).
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Table 2. Percentage of variation and coefficients in linear combinations of variables forming PCs.

Variable PC1 PC2 PC3

Variation [%] 41.1 34.0 24.9
Bottom water temperature −0.166 −0.936 −0.310

Organic matter content of surface sediments −0.718 −0.101 0.689
Number of Zostera shoots −0.676 0.337 −0.655

3.2. Macrofauna

In the present study, we observed 29 taxa of benthic macrofauna in Z. marina meadows
in Długa Mielizna in 2021–2022 (listed in Appendix Table A1). The species with the highest
frequency of occurrence were the polychaete Hediste diversicolor (O.F. Müller, 1776) (99%
of all collected cores) and the mud snails Peringia ulvae (Pennant, 1777) (97%) and Ecrobia
ventrosa (Montagu, 1803) (85%). Other species present in more than 70% of the samples
included Oligochaetes, polychaetes of the genus Marenzelleria, the bivalves Cerastoderma
glaucum (Bruguière, 1789) and Mya arenaria Linnaeus, 1758, and the crustacean Cyathura
carinata (Krøyer, 1847). In all of the studied seasons, the lowest species richness was noted
at the unvegetated site. The greatest difference between the number of species at the
surveyed sites was observed in summer, when only eight taxa were found at the site
without vegetation, while 21 species were found at the SMD and SHD sites (Figure 3). The
highest number of taxa at a single site was 23, observed in spring at the SMD site. At none
of the bare sand treatments did the number of taxa exceed 10.

The highest H’ values were recorded at the sites covered with vegetation in spring
(Figure 4). Statistically significant differences were found between the studied seasons
(Table 3). There were no significant differences in the Z. marina gradient treatments. The
Pielou index showed statistically significant differences between the sites and the seasons,
as well as in their interaction—season x site. The autumn season was characterized by
the lowest evenness values, which were due to the high dominance of P. ulvae in the
macrofauna communities.
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Figure 4. Macrofauna community descriptors (mean ± SD), Pielou index, Shannon–Wiener and
total number of taxa diversity index by season following a spatial gradient of increasing shoot
density: Unvegetated (UnV), Low-Density Seagrass (SLD), Medium-Density Seagrass (SMD), and
High-Density Seagrass (SHD).
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Table 3. Results of PERMANOVA analysis for differences in Abundance, BPC, IPC, Pielou Index, and
Shannon–Wiener Index. Bold—statistically significant differences. df stands for deegrees of freedom.

Abundance Pielou
Index

Shannon
Index BPC IPC

Site df 3 3 3 3 3
MS 5838.3 1.0872 × 107 1.2916 × 107 12,109 1.9954 × 107

Pseudo-F 9.6171 3.0852 1.5442 24.513 4.0247
p(perm) 0.001 0.035 0.184 0.001 0.001

Season df 3 3 3 3 3
MS 10,678 5.0784 × 107 7.4832 × 107 10,608 3.4079 × 107

Pseudo-F 17.589 14.411 8.947 21.475 6.8738
p(perm) 0.001 0.001 0.002 0.001 0.001

Site x Season df 3 9 9 9 9
MS 1797.1 8.3333 × 106 1.6627 × 107 2137.2 5.7653 × 106

Pseudo-F 2.9603 2.3647 1.988 4.3267 1.1629
p(perm) 0.001 0.025 0.057 0.001 0.239

Analysis of the Venn diagram showed that 11 of the observed taxa were present in
both the meadows and the bare sand area (Figure 5). Furthermore, 13 taxa were unique to Z.
marina meadows. Four taxa were observed only in areas of dense seagrass: Rhithropanopeus
harrisii (Gould, 1841), Fabricia stellaris (Müller, 1774), Corophium volutator (Pallas, 1766),
and Gammarus zaddachi Sexton, 1912. The taxon found only on bare sand and at medium
seagrass density was the amphipod Bathyporeia pilosa Lindström, 1855.
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Figure 5. Venn diagram showing the number of taxa unique or common to different Zostera
treatments—Unvegetated (UnV), Low-Density Seagrass (SLD), Medium-Density Seagrass (SMD),
and High-Density Seagrass (SHD).

Sites with the lowest biodiversity, i.e., those that were not overgrown with seagrass
in any season, were also characterized by the lowest density of macrofauna. Our research
indicates a small number of epifaunal species. At a few sites, less than 1% of the total macro-
fauna belonged to epifauna, but in most treatments, epifauna accounted for approx. 5% of
all the fauna abundance. In terms of density, snails of the species P. ulvae dominated in all
the study sites (12–76%; Figure 6). Mud snails E. ventrosa and clams C. glaucum contributed
up to 14% and 10%, respectively, to the total abundance of organisms. We observed large
differences between the abundance of organisms in all seasons (PERMANOVA, p < 0.01;
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Table 3). The highest abundance of organisms was observed in autumn, and large numbers
of organisms were also observed in the meadows in summer. The fewest organisms were
observed at all sites in spring. The difference between the abundance of macrofauna at the
UnV and Zostera sites was statistically significant (PERMANOVA, p < 0.001; Table A3). In
some months, lower densities of organisms were observed at the SMD sites than at the SLD
and SHD (e.g., in autumn and summer).
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Figure 6. Abundance of macrofauna [ind.·m−2] at the sampling sites in four seasons. Values are pre-
sented as means with standard deviation indicated. Unvegetated (UnV), Low-Density Seagrass (SLD),
Medium-Density Seagrass (SMD), and High-Density Seagrass (SHD). ‘Others’ include 22 species
with the lowest abundance (less than 5% of the total abundance).

3.3. Bioturbation and Bioirrigation

Both the bioturbation potential index and the bioirrigation potential index were higher
at sites with higher seagrass density than at bare sand (Figure 7). In most seasons, the
highest values of the bioturbation index were determined at the SHD site with the highest
seagrass density. The bivalves C. glaucum and M. arenaria and P. ulvae snail were the main
contributors to BPC, followed by the fourth most abundant taxon, H. diversicolor. The lowest
index was recorded at the sites not covered with seagrass, and was relatively similar (<5000)
in all seasons except autumn; the difference between UnV and all Zostera treatments was
statistically significant. Autumn was also the only season that was different from all of
the other studied seasons (PERMANOVA, p < 0.001; Table A3). Other taxa than those
responsible for BPC were involved in the formation of bioirrigation potential. Polychaetes
of the species H. diversicolor contributed the most to the formation of IPC, followed by the
snails P. ulvae. C. glaucum, although also present, was not as important at most sites, except
those surveyed in autumn. The highest values of the indices were observed in autumn,
with the highest BPC (35 162) and IPC (11 071) being at the SHD site (Figure 7). As with
BPC, the only season that differed statistically significantly from the other seasons was
autumn, and only the UnV site differed from the other sites in terms of Zostera treatments
(PERMANOVA, p < 0.001; Table A3).
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Figure 7. Functional indices (a) BPC and (b) IPC of the benthic community in cores collected from the
sampling sites (n = 5). Values are presented as means with standard deviation indicated. Unvegetated
(UnV), Low-Density Seagrass (SLD), Medium-Density Seagrass (SMD), and High-Density Seagrass
(SHD). ‘Others’ include 22 species with the lowest abundance (less than 5% of the total abundance).

4. Discussion
4.1. Zostera Meadows

The coastal zone is a dynamic environment characterized by very good mixing and
oxygenation of water, resulting in a lower probability of water stratification [46]. The bottom
water in the study area was well oxygenated and the salinity was uniform in all of the study
sites. It is more likely that other parameters, such as sediment characteristics or temperature,
had a greater impact on shaping the diversity of the benthic community. Research suggests
that seagrass meadows are particularly attractive habitats for benthic organisms due to the
accumulation of large amounts of organic matter in the sediments [11,47,48]. This is largely
due to the filtering function of meadows in the coastal zone; they have the ability to trap
and retain organic matter [49] and prevent sediment erosion [50]. Our results, however, did
not confirm this relationship. A possible explanation for this is the fact that our research
focused on seagrass patches rather than large seagrass meadows, which may accumulate
less organic matter. In the past, Jankowska et al. [47] indicated that the organic matter
content in the surface layer (up to 10 cm) of the sediments was not correlated with seagrass
density in this area.
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Our research has shown that Zostera meadows occur in the bay all year round, and
in each season of the year, we are able to find fragments of meadows with a relatively
high density of seagrass. Although the density of grass at each site varied from season to
season in our study, we observed seagrass densities reaching up to at least 180 shoots·m−2,
even in the winter season, considered unfavorable for seagrass growth. Thus, the density
of underwater meadows observed in our study appears to be relatively typical of Puck
Bay. To the best of our knowledge, however, meadows of varying density and species
composition of the macrophytes forming them are also observed in Puck Bay. Jankowska
et al. [51] observed the highest density of seagrass in summer, and the density of Z. marina
reached 200 shoots·m−2, while in winter, the observed meadows were much sparser, and
the number of shoots was only about 55 m−2. However, compared to other Z. marina sites
in the Baltic Sea, it can be concluded that our meadows are characterized by relatively low
densities. While conducting research in the Baltic Archipelago, Rodil et al. [35] observed
that meadows there could reach a density of up to 800 shoots·m−2, but those that were
sheltered had lower densities of 150–250 shoots·m−2.

4.2. Macrozoobenthos

The study of the macrofauna of underwater Z. marina meadows in Puck Bay presented
here revealed the presence of 29 taxa at the surveyed sites, indicating the high taxonomic
richness of the area. Many of these species were observed both in the underwater meadows
and at the sites without vegetation, but the vegetated sites were always characterized by
higher species diversity. This phenomenon underscores the importance of Z. marina mead-
ows in shaping the coastal biodiversity, as described previously [3,32,35,52,53]. Thirteen
of the observed taxa were specific to submerged meadows, regardless of their density. A
similar pattern of the presence of specific species associated solely with vegetation was
reported previously [16,33,54].

Interestingly, our study does not show a clear effect of meadow density on species
composition; most species were simply present in vegetated areas, and only a few species
were associated with specific levels of seagrass density: R. harrisii (SHD), C. volutator and
G. zaddachii (SMD + SHD), and B. pilosa (UnV + SMD). Some researchers have shown
a positive correlation between seagrass complexity and the diversity of macrofaunal
communities [35,55]. In Puck Bay, Z. marina forms meadows together with other macro-
phyte species, such as Potamogeton spp., Zannichelia palustris L., Stuckenia spp., and Ruppia
spp. [13,33,56]. We chose monospecific meadows for our study because we wanted sites to
be homogeneous in terms of meadow density and species composition, even though mixed
meadows may harbor a more diverse macrofaunal community [35,57].

Regarding the density of macrofauna, we found a typical pattern: higher abundance
and biomass of organisms were recorded at vegetated sites compared to areas with bare
sand. Overall, as indicated by other researchers [16,33,52,58], seagrass had a positive effect
on the abundance of benthic taxa, but we did not observe a correlation between the density
of macrofauna and the density of plants. Dense underwater meadows are not necessarily an
indicator of diverse and densely populated macrofauna biotopes, and there are even studies
showing a positive effect of habitat fragmentation on the density and species richness of
macrofauna [59]. Rodil et al. [35], on the other hand, showed that the density of organisms
and grasses is not a linear relationship.

Temperature was the second factor that explained most of the differences in macro-
zoobenthic communities and was closely related to the sampling season. Studies have
shown large changes throughout the year in the number and diversity of species [51,58,60].
Some mobile macrofauna species are known to migrate to deeper parts of the coastal zone
in search of more favorable environmental conditions during the year [61]. Ten of the
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species observed in submerged meadows occurred throughout the year; these were mainly
the most abundant species with limited mobility, such as C. glaucum and Macoma balthica
(Linnaeus, 1758). The highest number of organisms was found in autumn, which may be re-
lated to favorable environmental conditions for life and reproduction. Previous studies [51]
have shown that the highest density and biomass of organisms in seagrass meadows were
observed in the summer of 2011, so high biodiversity in the autumn season may indicate an
extension or shift in favorable living conditions for organisms. These findings underscore
the key role of temperature in shaping the diversity of macrozoobenthos communities.

The H’ index showed no differences between the treatments, but there were differences
between seasons. Previous studies have shown differences in H’ between bare sand and
meadow [33,58] and a relationship between H’ and the number of grass seedlings [62]. The
lack of differences in the values of our indices may be due to the relatively homogeneous
and similar environmental conditions prevailing at the treatments studied. However, in
most cases, we observed larger differences in the J index at sandy sites than in the meadow.
This is due to the fact that the meadows were often dominated by P. ulvae, a snail species
that is typical and common in meadows.

4.3. Bioturbation and Bioirrigation

The occurrence of seagrass meadows affected both indices of organism activity, i.e.,
BPC and IPC. In both cases, we observed higher values of the indices for the vegetated
treatments than for those without vegetation, and there was also a strong seasonal variation
between the values of the indices. The BPC values recorded for the Zostera meadows are
slightly lower in autumn and significantly lower in the other seasons compared to BPC

(calculated for wet mass) determined for the Vistula Plume [26]. This study was conducted
on a similar type of sediment, but, due to the greater depth, a large number of intensely
bioturbating taxa (M. balthica, Marenzelleria spp., H. diversicolor, and M. arenaria) dominated
in the plum areas. Queirós et al. [63] showed that, in communities of muddy bottoms, BPC

was the highest in summer and autumn. High seasonal variation in the BPC index was also
observed in the western part of the Baltic Sea [64].

Our results indicate that autumn was a favorable season for the development of sea-
grass meadows and the activity of macrofauna due to favorable environmental conditions.
As a result, we recorded high values of BPC and IPC indices, which reflect the potential for
intense activity of organisms during this season.

The research presented here shows significant differences in the contribution of indi-
vidual macrofaunal species to the formation of bioturbation and bioirrigation potential of
benthic communities in the studied biotopes. The bioturbation potential is most strongly
shaped by bivalves of the species C. glaucum and M. arenaria, which were the dominant
species in the macrofauna biomass. Previous studies conducted in the Gulf of Gdańsk
have shown a strong correlation between the BPC index and the biomass of the observed
organisms [26]. Our previous studies have also shown the dominance of bivalves in cre-
ating bioturbation potential. Although both indices, BPC and IPC, are calculated based
on the abundance and biomass of organisms, the coefficients used in the calculations to
determine the aforementioned processes emphasize the contribution of specific species to
the formation of the indices, and not necessarily those that dominated the abundance or
biomass of organisms in the meadows. We observed such a phenomenon in the case of
the index of bioirrigation potential, IPC. For this index, we observed a strong dominance
of the polychaete H. diversicolor in its formation, as well as a relatively high proportion of
mud snails P. ulvae. Numerous studies have shown that H. diversicolor is a very effective
bioturbator and bioirrigator [65,66], even though, in our research, it did not significantly
contribute to the abundance of organisms in the meadows. On the other hand, the high
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contribution of snails to the bioirrigation potential of organisms is more surprising. P.
ulvae occurs relatively shallowly in the sediment and burrows only a few centimeters deep
into the sediment without forming burrows. However, the high density of these snails
indicates that this species can have a major impact on bioturbation and bioirrigation in
sediments. The study by Andersen et al. [67] showed that the high density of P. ulvae
causes a significant increase in the rate of sediment erosion. This was due to the intense
movement of snails on the sediment surface and in the sediment, resulting in bioturbation
and increased the permeability of the sediment to water. Thus, although P. ulvae does not
create typical burrows, its presence in high densities can significantly affect bioturbation
and bioirrigation.

BPC and IPC indices indicated both seasonal variation and variation related to Zostera
density. Bioturbation and bioirrigation are very complex processes that are determined
by numerous factors affecting the functioning of benthic organisms. In general, it can be
said that both indices showed higher values in the meadows than in nearby unvegetated
areas. Unfortunately, bioturbation or bioirrigation activity in seagrass meadows has not
been studied much to date, neither by direct nor indirect methods. There are few studies
focusing on bioturbation in Z. marina meadows. Bernard et al. [31] conducted direct
experiments using luminescent markers to determine the exact bioturbation in seagrass
meadows. However, they showed a correlation opposite to that presented in our study.
Bernard et al. [31] showed that sediment particle mixing processes were less intense in
meadows than in unvegetated areas, indicating a mitigating effect observed in submerged
meadows. In summary, the results of our study indicate that bioturbation and bioirrigation
in seagrass meadows are very complex and dynamic processes. They vary depending on
local environmental conditions and the selected method of measurement or estimation.
The different conclusions of our and Bernard’s research underscore the need for further
and more comprehensive research in this area. Understanding the processes performed by
organisms is crucial to assessing the role of seagrass meadows and seagrass itself in the
functioning of benthic coastal ecosystems.

5. Conclusions
Our study highlights the key role of seagrasses in shaping the structure and function-

ality of benthic communities. Even meadows with relatively low densities have a positive
impact on the biodiversity and functionality of the biotope. Both the overall density and
species richness of organisms and potential for bioturbation BPC and bioirrigation IPC were
significantly higher in the meadows than in the nearby sandy bottom without vegetation.
Moreover, seasonal dynamics play a crucial role in shaping macrobenthic communities
and their potential functioning. Autumn proved to be the most stimulating season, having
the highest abundance of organisms and favoring increased BPC and IPC. Our results
underscore the ecological importance of seagrass meadows and the importance of these en-
dangered habitats not only as reservoirs of biodiversity, but also as drivers of the ecological
functioning of coastal biotopes.
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Appendix A

Table A1. Categorical scores assigned to each taxon for BPC and IPC indices were calculated according
to Solan et al. [28], Villnäs et al. [29], Queirós et al. [42], Miernik et al. [26], and Wrede et al. [43]
(modified). Modifications to scores were made to focus on the impact of macrofauna on the sediment,
including epifauna living and influencing the sediment surface. Mobility (Mi) scores: 1—movement
on the sediment surface, sessile; 2—limited movement; 3—slow, free movement through sediment;
4—free movement through sediment. Reworking types (Ri): 1—epifauna; 2—surficial modifiers;
3—upward or downward conveyors; 4—biodiffusors. Burrow types (BTi): 1—epifauna or internal
irrigation (i.e., siphons); 2—open irrigation (i.e., Y- or U-shaped burrow); 3—blind ended burrow.
Feeding types (FTi): 1—surface filter feeders; 2—predators; 3—deposit feeders; 4—subsurface filter
feeders. Irrigation depth (IDi): 1—0–1 cm; 2—1–3 cm; 3—3–6 cm; 4—6–10 cm; 5—10–15 cm.

Taxa
BPC IPC

Mi Ri Bti Fti IDi

Oligochaeta 3 2 3 3 4
Fabricia stellaris (Müller, 1774) 2 1 3 1 2

Hediste diversicolor (O.F. Müller, 1776) 4 3 2 3 5
Marenzelleria spp. 4 4 3 3 5

Pygospio elegans Claparède, 1863 2 2 3 3 3
Streblospio shrubsolii (Buchanan, 1890) 2 2 3 3 2

Cerastoderma glaucum (Bruguière, 1789) 3 2 1 1 1
Macoma balthica (Linnaeus, 1758) 3 4 1 3 4

Mytilus trossulus Gould, 1850 1 1 1 1 1
Mya arenaria Linnaeus, 1758 3 4 1 1 2

Ecrobia ventrosa (Montagu, 1803) 2 3 1 3 1
Peringia ulvae (Pennant, 1777) 2 3 1 3 2

Theodoxus fluviatilis (Linnaeus, 1758) 1 1 1 3 1
Amphibalanus improvisus (Darwin, 1854) 1 1 1 1 1

Bathyporeia pilosa Lindström, 1855 4 4 3 3 2
Chironomidae 2 2 1 1 1

Corophium multisetosum Stock, 1952 2 2 2 3 3
Corophium volutator (Pallas, 1766) 2 2 2 3 3
Crangon crangon (Linnaeus, 1758) 4 2 1 3 1
Cyathura carinata (Krøyer, 1847) 2 2 1 3 1

Gammarus oceanicus Segerstråle, 1947 1 1 1 3 1
Gammarus salinus Spooner, 1947 1 1 1 3 1
Gammarus zaddachi Sexton, 1912 1 1 1 3 1

Idotea balthica (Pallas, 1772) 1 1 1 3 1
Idotea chelipes (Pallas, 1766) 1 1 1 3 1

Idotea granulosa Rathke, 1843 1 1 1 3 1
Insecta larvae 1 1 1 3 1

Lekanesphaera hookeri (Leach, 1814) 1 1 1 3 1
Rhithropanopeus harrisii (Gould, 1841) 4 2 1 2 1
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Table A2. PERMANOVA pairwise results for differences in IPC and Shannon–Wiener Index. Un-
vegetated (UnV), Low-Density Seagrass (SLD), Medium-Density Seagrass (SMD), and High-Density
Seagrass (SHD). Bold—statistically significant differences.

Pair
IPC Shannon–Wiener

t p t p

Si
te

UnV, SLD 2.721 0.002
UnV, SMD 3.202 0.002
UnV, SHD 3.202 0.001
SLD, SMD 0.521 0.916
SLD, SHD 1.046 0.326
SMD, SHD 1.042 0.366

Se
as

on

Autumn, Summer 2.881 0.001 0.162 0.858
Autumn, Winter 3.175 0.001 4.308 0.003
Autumn, Spring 3.105 0.001 4.308 0.002
Summer, Winter 2.020 0.014 3.194 0.009
Summer, Spring 2.432 0.004 3.194 0.005
Winter, Spring 0.960 0.338 0.584 0.781

Table A3. PERMANOVA pairwise results for differences in the Abundance, Pielou Index, and
BPC. Unvegetated (UnV), Low-Density Seagrass (SLD), Medium-Density Seagrass (SMD), and
High-Density Seagrass (SHD). Bold—statistically significant differences.

Abundance Pielou Index BPC

Pair t p t p t p

U
nV

Autumn, Summer 2.891 0.012 3.624 0.011 3.224 0.005
Autumn, Winter 1.912 0.008 2.982 0.013 3.089 0.012
Autumn, Spring 2.187 0.008 3.644 0.008 2.886 0.005
Summer, Winter 4.229 0.008 1.572 0.132 1.753 0.081
Summer, Spring 2.973 0.013 0.190 0.858 2.699 0.051
Winter, Spring 1.631 0.008 1.653 0.146 1.162 0.29

SL
D

Autumn, Summer 2.774 0.008 1.384 0.216 3.625 0.013
Autumn, Winter 2.630 0.02 3.284 0.016 3.383 0.008
Autumn, Spring 4.287 0.012 1.941 0.093 6.757 0.009
Summer, Winter 2.643 0.009 3.054 0.036 1.658 0.09
Summer, Spring 4.038 0.008 1.338 0.256 4.735 0.01
Winter, Spring 1.997 0.006 0.068 0.985 1.738 0.101

SM
D

Autumn, Summer 2.350 0.008 1.653 0.145 2.076 0.033
Autumn, Winter 1.924 0.01 0.071 0.903 3.317 0.023
Autumn, Spring 2.966 0.008 7.332 0.01 2.973 0.023
Summer, Winter 1.759 0.015 0.706 0.474 0.525 0.701
Summer, Spring 1.923 0.016 4.000 0.009 0.877 0.457
Winter, Spring 1.512 0.025 2.659 0.014 1.302 0.207

SH
D

Autumn, Summer 2.864 0.005 1.136 0.325 3.517 0.012
Autumn, Winter 2.874 0.008 1.033 0.351 4.008 0.009
Autumn, Spring 3.702 0.005 5.252 0.008 7.453 0.01
Summer, Winter 2.266 0.009 1.578 0.159 0.714 0.526
Summer, Spring 2.713 0.006 4.420 0.011 2.493 0.021
Winter, Spring 1.048 0.394 1.151 0.297 1.467 0.192
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Table A3. Cont.

Abundance Pielou Index BPC

Pair t p t p t p

A
ut

um
n

UnV, SLD 1.186 0.061 0.185 0.883 1.193 0.138
UnV, SMD 1.085 0.168 0.537 0.565 1.004 0.337
UnV, SHD 1.507 0.009 0.731 0.454 1.585 0.013
SLD, SMD 0.743 0.746 0.450 0.739 0.580 0.677
SLD, SHD 1.719 0.039 0.719 0.634 1.833 0.113
SMD, SHD 1.776 0.013 0.465 0.718 1.991 0.067

W
in

te
r

UnV, SLD 2.044 0.002 0.202 0.845 3.257 0.011
UnV, SMD 2.352 0.012 2.177 0.043 5.223 0.009
UnV, SHD 2.496 0.013 1.292 0.18 5.893 0.008
SLD, SMD 0.868 0.601 1.964 0.084 0.644 0.726
SLD, SHD 1.011 0.357 1.100 0.329 1.398 0.208
SMD, SHD 0.891 0.583 0.794 0.302 1.191 0.274

Sp
ri

ng

UnV, SLD 2.024 0.006 0.674 0.883 1.425 0.164
UnV, SMD 2.582 0.009 0.232 0.842 6.835 0.011
UnV, SHD 3.046 0.009 1.998 0.094 6.585 0.008
SLD, SMD 1.930 0.019 0.599 0.893 4.774 0.005
SLD, SHD 2.433 0.005 0.051 0.992 4.194 0.006
SMD, SHD 0.946 0.595 1.611 0.149 1.776 0.106

Su
m

m
er

UnV, SLD 5.220 0.01 5.880 0.015 6.982 0.013
UnV, SMD 3.559 0.007 4.136 0.024 3.971 0.008
UnV, SHD 4.581 0.017 5.608 0.008 6.453 0.011
SLD, SMD 1.135 0.279 0.412 0.667 0.959 0.403
SLD, SHD 1.408 0.068 1.884 0.064 0.756 0.478
SMD, SHD 1.184 0.242 1.955 0.081 1.196 0.263
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