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Preface to ”Feature Papers for Celebrating the Fifth

Anniversary of the Founding of Processes”

Processes is an open access journal focused on the experimental characterization and

mathematical modeling of complex chemical, biological, and materials systems. To celebrate the

fifth anniversary of this successful journal, a Special Issue providing broad coverage of these areas

was developed. The Special Issue contains 18 papers from leading researchers in these fields

and shows the diversity of applications and methods being explored to advance the design and

optimization of these systems. In addition to advancing the current state-of-the-art, this collection

of papers demonstrates that the broadly-defined process engineering field remains vibrant and is

becoming increasingly diverse. Processes will continue to chart the progress of this field using the

open access model.

Michael A. Henson

Special Issue Editor
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The Special Issue “Feature Papers for Celebrating the Fifth Anniversary of the Founding of
Processes” represents a landmark for this open access journal covering chemical, biological, materials,
pharmaceutical, and environmental systems as well as general computational methods for process
and systems engineering. The Special Issue is available online at: https://www.mdpi.com/journal/
processes/special_issues/Feature_Papers.

Chemical Processes

A major focus of Processes is chemical process engineering with applications to both traditional
industries and emerging industries for renewable chemicals and energy production. The Special
Issue contains four papers in this area. The first paper describes the development and simulation of
a model prediction controller for achieving the desired viscosity curve in the continuous production
of a non-Newtonian fluid [1]. The second paper addresses the problem of minimizing fuel
consumption in fuel gas networks through a superstructure-based method and mixed-integer nonlinear
programming [2]. The interesting possibility of extending the favorable characteristics of cuboid
packed-bed devices originally designed for chromatographic separations to packed-bed chemical
reactors is explored in the third paper [3]. The fourth paper addresses the optimal design of ammonia
production plants based on adsorption for unreacted nitrogen and hydrogen recovery and wind energy
for electricity generation [4].

Biological Systems

The development of system models and process technology for biological applications is a major
focus area of Processes. The Special Issue contains five papers in this area. The first paper shows the
development of a systems model for investigating patient outcomes from liver surgery and determining
the processes responsible for liver failure [5]. The extension of the cybernetic modeling approach
to lipid metabolism in mouse bone marrow-derived macrophage cells is the focus of the second
paper [6]. The third paper addresses the metabolic modeling of cell-free protein expression through
adaptation of a genome-scale metabolic model and direct incorporation of metabolite measurements [7].
The engineering of cuboid packed-bed devices is revisited in the fourth paper by investigating the
effect of the length-to-width aspect ratio on chromatographic separation efficiency [8]. The fifth paper
reports on the computational development of a novel method for constraint-based metabolic modeling
of intracellular glycosylation reactions [9].

Materials Processes

Processes covers a wide range of materials related topics including fundamental modeling, process
technology, and applications. This diversity is reflected in the Special Issue through six contributions.
The first paper provides a literature-based comparison of rotor-stator mixing devices operated in batch
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Processes 2019, 6, 15

and continuous modes [10]. Two contributions focus on challenges in pharmaceutical manufacturing.
The first paper describes the development of a database of multiphase reactions for synthesizing
small-molecule pharmaceutical to facilitate investigation of reaction-separation schemes [11], while the
second paper provides a complementary study on developing an ontological information infrastructure
for integrating data from pharmaceutical manufacturing plants and analytical laboratories [12].
The Special Issue also contains two contributions focusing on polymerization processes. One paper
investigates the experimental validation of a kinetic model for thermal spontaneous polymerization
of n-butyl acrylate) [13], while the other paper presents a MATLAB-based tool for copolymerization
reactivity ratio estimation based on error-in-variables models [14]. The sixth paper in this area
addresses the problem of materials processing through the development of a classification method for
identifying a promising experimental design region from a literature database [15].

Computational Methods

The development of novel computational methods with applications to systems modeling and
engineering is an important area of Processes. The Special Issue has two papers in this area. The first
paper addresses the problem of model-based experimental design based on global parameter sensitivity
measures and demonstrates the application of the methods through a case study on the synthesis of
a precursor for protein kinase inhibitors [16]. The second contribution describes the development of
a maximum entropy-based simulation method for analysis of metabolic pathways with application to
the central metabolism of the mold Neurospora crassa [17].

Other Topics

Processes contains an “Other Topics” section to compile papers that do not fit well in the other
four sections. The Special Issue contains two papers in this section, both focused on water systems.
The first contribution presents a combined feedforward/feedback model predictive control strategy for
minimizing disturbance effects in military water networks [18]. The second contribution investigates
the problem of optimal capacity planning in seawater desalination systems from a multiscale
perspective [19].

The Future of Processes

The Special Issue covers a broad range of topics consistent with the mission of Processes to become
a highly visible outlet for publishing novel studies in systems modeling, process engineering, and
associated applications. The journal will continue to solicit high-quality contributions in these domains.

Michael A. Henson
Founding Editor-in-Chief of Processes.

Funding: There is no funding supports.

Conflicts of Interest: The author declares no conflicts of interest.
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Multivariable Real-Time Control of Viscosity Curve
for a Continuous Production Process of
a Non-Newtonian Fluid
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Abstract: The application of a multivariable predictive controller to the mixing process for the
production of a non-Newtonian fluid is discussed in this work. A data-driven model has been
developed to describe the dynamic behaviour of the rheological properties of the fluid as a function
of the operating conditions using experimental data collected in a pilot plant. The developed model
provides a realistic process representation and it is used to test and verify the multivariable controller,
which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given
region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the
mixing process.

Keywords: non-Newtonian fluid; multivariable control system; viscosity curve

1. Introduction

The industrial continuous production of complex fluids still encounters to date issues in terms
of quality control of products. Parameters like shear rate dependent viscosity, which affects product
quality, could easily go out of specifications if the ingredient characteristics or other variables of the
process move away from the original formulation. The main issue is represented by the difficulty of
controlling such processes because there aren’t commercial sensors capable of providing real-time
information about the rheological properties of the fluid. Available in-line sensors can measure the
viscosity only for a punctual shear rate value, therefore their use for controlling the production process
of non-Newtonian fluid is not possible. Furthermore, very few in-line rheometers have been tested
and few studies have been presented for non-Newtonian and opaque industrial fluids [1].

Because of the importance of the continuous monitoring of rheological parameters of industrial
fluids during production, in the last years many steps have been accomplished for designing and
developing sensors capable of providing rheological proprieties of complex fluids in real-time. Many
recent works focus their efforts on non-invasive techniques which seem the most promising for this
type of problems. Kotzé et al. [2] studied a technique based on ultrasonic velocity profiling (UVP)
which measures an instantaneous one-dimensional velocity profile in a fluid containing particles across
the ultrasonic beam axis or measurement line. The method combines the UVP technique with pressure
difference (PD) measurements, it is non-invasive, it can be used to measure opaque and concentrated
suspensions. Preliminary results obtained in concentrated cement pastes showed that UVP is a feasible
and promising technique for flow characterisation in viscous fluids. Meacci et al. [1] presented an
efficient, fully programmable and integrated system for in-line fluids characterisation of a wide range

Processes 2018, 6, 12; doi:10.3390/pr6020012 www.mdpi.com/journal/processes4
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of non-Newtonian and opaque fluids. This system, named Flow-Viz exploits ultrasounds to detect
the velocity profile of the flow moving in the pipe, and it is designed for industrial use. Recently,
Yoshida et al. [3] proposed a sensor based on ultrasonic spinning rheometry (USR), which is expected
to provide details of various rheological properties. The proposed USR capabilities were assessed for
three test fluids chosen as examples of thixotropic fluids, shear-thinning fluids, and multiphase fluids.

The recent results on innovative sensors encourage the efforts for developing control strategies
which provide the target rheological characteristics in the production of non-Newtonian fluids.
The present study is aimed to design a controller for the production of a detergent obtained by mixing
different ingredients, which should lead to specific rheological and physical properties. The product is
characterised by a complex rheological behavior and, in a previous work [4] the authors developed
a one-point control of viscosity curve for the continuous production process, showing how the choice
of the point on the viscosity-vs-shear rate curve was crucial for the quality of the product. Results
also evidenced that it is possible to partly reject disturbances using only one point as controlled
variable, but this configuration was not adequate for the severe specifics required in the plant under
investigation. In this situation, a model predictive control (MPC) can improve the performance of
the system. MPC can handle non-square system, therefore the two available manipulated inputs can
be used to control more than two points on the viscosity-vs-shear rate curve in an efficient way. It is
worth noting that the plant under consideration is characterised by high time delay, if compared to
the characteristic time of the mixing process, and again the MPC algorithm is effective in this case [5].
The multivariable control performances have been assessed by simulating the process at different
operating conditions, including time delay and measurement noise.

2. Process Description

The production of a detergent on pilot plant scale (facilities made available by the Brussels
Innovation Centre in Belgium, BIC) is considered in this work. The product is a compound which
contains several ingredients with different rheological properties, obtaining a final mixture with
a highly complex rheological behavior. It is important to underline that blends rheology is affected by
factors such rheology of single components but also temperature and polydispersity [6,7]. Details on
the ingredients cannot be reported for confidentiality reasons.

The pilot plant (Figure 1) is designed as a main pipe connected to a series of tanks, each of them
containing one ingredient, through secondary pipes. Ingredients are pumped in the main line and
a series of static mixer between inputs ensure a good blending of the mixture. At the end of the line
the product is collected in a tank for off-line rheological measurements (for further details see [8]).

 

Figure 1. Scheme of the pilot plant at Brussels Innovation Centre (BIC) (Patent N. US 2013/0225468 A1).

An in-line Endress-Hauser Proline Promass 83I Coriolis flowmeter, located in the main pipe
after the 4 inputs of the ingredients, is used to gain information about system dynamics, along with
pressure and temperature sensors. Such a flowmeter can provide only a point measurement of viscosity.
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Such measure is not exhaustive when dealing with non-Newtonian fluids but can provide a rough
estimation about dynamics.

Off-line rheological measurements were carried out on the samples collected in the final tank
with a rheometer AR-2000 TA stress controlled equipped with a 40 mm cone and plate fixture, used to
obtain the viscosity dependence on shear rate.

3. Problem Statement

The quality of the product under study is determined through its rheological properties, which
can be summarised by the viscosity-vs-shear rate curve. The rheological properties may deviate from
the nominal ones, because of process disturbances, and they can be adjusted by varying the ingredients
flow rates which have a major impact without affecting too much detergent characteristics.

As representative example, Figure 2 reports a typical viscosity curve for the detergent produced in
the plant (schematised in Figure 1), with a target reported with the green continuous line and the region
(grey shaded area) of accepted viscosity values limited by the upper and lower curves. Such region
was obtained by considering a maximum error of 10% at low shear rate (lower than 10 s−1), while 20%
has been set at high shear rate. The red dashed lines are two examples of undesired output values,
when the process is out-of-control. It is worth noting that the target of the control problem is not
a point value but infinite points lying on a one-dimensional manifold (the viscosity curve) and the
entire curve should stay within the grey region of allowable viscosity. The main issue is to individuate
the points on the curve that guarantee the respect of the limits at every condition in the plant. Based on
the previous investigation of the authors [4], the viscosities (η) of the studied compound at shear-rate
(

.
γ) values equal to 0.1, 1, 10 and 1100 s−1 have been selected. Such points are the most representative

for the rheological behavior of the considered system.

Figure 2. Rheological curves for the system under study. The shaded region indicates the viscosity
values for in-control product. The red dotted lines are examples of off-control products.

4. Process Simulator

A process simulator has been developed for designing and evaluating a rheological controller for
the continuous production of a detergent. The role of this simulator is to give time responses for the
viscosities of the produced compound taking as inputs the ingredient amounts. Because the rheological
behavior of the system is very complex, a first principle description of the process is not possible, and
a data-driven model has been preferred. The experimental apparatus used in this work cannot give
on-line information about the quality of the ingredients which are fed in the plant, meaning that it is
only possible to describe the input-output relationship between ingredient flow rates and product’s
rheological properties. For model development, several step tests were carried out at different inlet
flow rates and plant setup (distance between the last mixer and the sample collection), and the products

6
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were analysed analyzed off-line with the rheometer described in the previous section. The rheological
information obtained with such tests can be related to steady state conditions. The transient response
was on the other hand observed using the data collected with the in-line viscometer (Promass).

A simple description of the data collected in the pilot plant can be attained by means of
a continuous-time Hammerstein model [9], where the nonlinear no-memory gain is calculated with
a Neural Network (NN) model [10,11]. The time invariant state space representation of a nonlinear
continuous-time Hammerstein system (Figure 3) that cascades a static nonlinearity followed by a linear
dynamic system may be described by Equation (1)

.
x(t) = Ax(t) + fNN(u), (1)

where x is the n-dimensional state vector, u is the m-dimensional input vector, A is a constant matrix
and f NN indicates the memoryless NN model.

 

Figure 3. Nonlinear continuous time system of the Hammerstein Model.

The neural network between the inputs u and the variable z on Figure 3 has been designed and
tested to relate viscosities measured off-line at different shear rate values with the inputs of the pilot
plant, in terms of ingredient mass fraction in the feed. Mass fractions were chosen instead of mass
flows to avoid problems concerning the use of different order of mass flows magnitude. The outputs
(z) are the off-line viscosities (η) of the studied compound at shear-rate (

.
γ) values equal to 0.1, 1, 10 and

1100 s−1, as reported in the previous section. The NN structure is represented in Figure 4, where
it is shown that the input vector consists of four units, the output layer has four neurons and the
hidden layer has six neurons. For both the hidden and output layers a sigmoidal activation function is
used. The experimental data used for model calibration were obtained varying the percentage of the
ingredient flow rates within the interval reported in Table 1. In more details, 27 different operating
conditions were used in the pilot plant and with the repeated experiments allowed the collection of
171 viscosity curves. The model parameter estimation was carried out using 70% of points for the
training step, 15% for the validation and 15% for the test.

Ingredient A

Ingredient B

Ingredient C

Ingredient D

Viscosity at

Viscosity at

Viscosity at

Viscosity at

INPUT LAYER OUTPUT LAYERHIDDEN LAYER

Figure 4. Structure of the neural network used for the function fNN in the continuous Hammerstein model.

Table 1. Range of the ingredients’ mass fraction.

A B C D

MIN 0.730 0.072 0.000 0.012
MAX 0.880 0.250 0.039 0.066
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Model’s performance is evaluated by considering the coefficient R2 and the mean absolute
deviation (MAD) defined in Equation (2), where yi is the measured viscosity, fi is the calculated
viscosity, is the mean viscosity value and N is the number of experimental points.

R2 = 1 − ∑N
i=1(yi − fi )

2

∑N
i=1(yi − y)2 , MAD =

1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣ (2)

The developed NN is capable to predict viscosities of the compound with good results, as
reported in Table 2, where the performance indexes are shown for the four output variables. Measured
viscosities against predicted NN viscosities are reported, by way of example, in Figure 5 for shear-rate
equal to 0.1 s−1. The test dataset is evidenced in the figure to better evaluate the performance of
the model, because in this case the neural model uses data which have not been used during the
training/validation step. The obtained results are in the main quite good, but at = 1100 s−1, R2 is
relatively low (about 0.93) showing some predictability limits of the model. It should be considered that
the viscosity variations at high shear-rate value are however rather small (from 0.1 to 0.5 Pa·s). Standard
residuals (Figure 6) appear without a deterministic structure, indicating that the model captures the
essential features of the data and they validate the reliability of the NN to predict the steady state
values of off-line viscosities for different amounts of ingredients, at least for the investigated conditions.

The second block in the Hammerstein model (Figure 3) describes the dynamic behaviour and it
has been obtained using the in-line measurements. Because only a point viscosity is available with
Promass, a unique characteristic time is adopted for the four output variables, in the understanding
that the rheological changes in the mixture happens at the same moment for each shear rate. By the
same token, the time delay is assumed equal for each calculated output. A comparison between the
measured viscosity and the one obtained using a first-order plus time delay system is reported in
Figure 7, with the purpose of showing the dynamics assessment. It is worth noticing that it is not
possible to compare the viscosity predicted by the NN, calculated offline, and the one of the flowing
detergents in the plant, because it is not possible to relate the in-line viscosity given by Promass
with the off-line values. This means that a comparison between the model and plant behaviour is
possible only when the in-line sensor is available. In this work, the impact of process conditions on the
characteristic time is neglected and it is set equal to 20 s. Time delay has been calculated considering
one configuration of the plant and it is set equal to 8 s.

Table 2. Performance of the neural network.

.
γ (s−1) R2 MAD (%)

0.1 0.9757 8.6
1 0.9666 7.0

10 0.9808 4.0
1100 0.9315 3.7

Figure 5. Predicted viscosities against measured viscosities at 0.1 s−1. Training and validation: grey
circle; test: green diamond.
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Figure 6. Standardised residuals with respect to predicted viscosities at: 0.1 s−1 (left upper panel),
1 s−1 (right upper panel), 10 s−1 (left lower panel) and 1100 s−1 (right lower panel).

Figure 7. Viscosity measured on line (black dots) and values calculated (blue continuous line) with
a first-order plus time delay system (upper panel) due to the step change of the ingredient D flow rate
(lower panel).

9
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5. Control Algorithm

The control problem is addressed using a model predictive control (MPC) in its basic formulation
of dynamic matrix control (DMC), where the controlled outputs are selected among the ones given by
the simulator. In more details, because the small variations at

.
γ = 1100 s−1 can be challenging for the

robustness of the controller [12] only the viscosities at
.
γ = 0.1, 1 and 10 s−1 have been considered as

controlled variable, while the ingredient B and D flow rates are the manipulated inputs. The evaluation
of the control configuration has been carried out using the simulator reported in Section 4 to act as
a virtual plant and a schematic representation of the control loop is reported in Figure 8.

The objective function J used to calculate the manipulated action in the DMC is reported in
Equation (3)

J = [(e(k + 1)− FΔu)TW(e(k + 1)− FΔu)] + [Δu]TK[Δu] (3)

where k denotes the time index, e(k + 1) is the 3xHp dimensional vector representing the difference
between the desired outputs and the current output prediction without further control action, F is the
dynamic matrix [5], Hp is the prediction horizon, u is 2xHu dimensional vector of the future control
moves, Hu is the control horizon, K is a block diagonal matrix used to penalise changes of manipulated
inputs, W is a weighting matrix used as a tuning parameter. The prediction error is corrected by the
measured outputs available at the sampling instant. More in details, W is a positive (3xHp)x(3xHp)
block diagonal matrix which in turn is composed of three diagonal matrixes, one for each output
(Equation (4)).

W =

⎡⎢⎣ diag(w1) 0 0

0 diag(w2) 0

0 0 diag(w3)

⎤⎥⎦ (4)

The matrices diag(wi), with i = 1, 2, 3, have dimensions HpxHp and the element on the diagonal
is the positive weight for a specific output. The matrix K is a positive (2xHu)x(2xHu) block diagonal
matrix which in turn is composed of two diagonal matrixes, one for each input.

K =

[
diag(k1) 0

0 diag(k2)

]
(5)

Process simulator

Ingredient B

MPC

Ingredient D

Noise

+
+

Other 
ingredients

Figure 8. Schematic representation of the control loop for the model predictive control (MPC).

The matrices diag(ki), with i = 1, 2, have dimensions HuxHu and the element on the diagonal is
positive and it penalises a specific input. The process simulator (Equation (1)) provides the four points
of the rheological curve corresponding to the actual situation of the process. Random noise is then
added to the outputs in order to simulate measurement noise.

A linear predictive model is required to implement the DMC in its traditional form. This task
is addressed using the simulator to carry on step response tests from which the dynamic matrix F is

10
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obtained [5]. The simulator model is excited by varying the input corresponding to the manipulated
variables, starting from the reference condition and considering step changes of different sizes [13,14].
It is worth noting that the simulator does not model the variations of ingredients quality (composition
and rheological behavior). The coefficients of the dynamic matrix F are obtained by averaging the
responses of the different step changes.

6. Results

Various tests have been carried out with the intention of assessing the performance of the control
strategy. The main purpose of the simulations is to understand how the quality of the on-line
measurements (delay and noise) can affect the rheological control behavior, in view of a future
implementation of continuous monitoring of rheological parameters in industrial plants. Ultrasound
sensors are indeed candidate to monitor and control the production of materials with complex
characteristic behavior (e.g., [1]), but information on their in-line response such as time required
for calculation of the viscosity curve, measurement noise, reliability, repeatability is not available yet
for the fluid under investigation. In particular, it could be useful to understand what happens if the
time interval for the ultrasound sensor to collect measurements and calculate the velocity profile is
much greater than the characteristic time of the process.

6.1. MPC for Set-Point Tracking

The parameters related to the MPC development, such as prediction and control horizon, sampling
time and weights, are found by analysing the dynamic response of the process and by tuning.
Considering a measurement delay equal to 30 s, the following parameters have been selected in order
to achieve an acceptable dynamic matrix conditioning while maintaining good controller performances:
(i) the control action is applied every 10 s, and (ii) the dimension of the prediction horizon Hp is set
equal to 16. The control horizon Hu is set equal to 4 for the entire control configuration, as suggested
by [5], and only the first control move is applied at each sampling time. Table 3 summarises the process
conditions and MPC parameters for a reference case.

Table 3. Specifications for the reference case.

Parameter Value

Time interval for control action 10 s

Measurement delay 30 s

Time constants for simulator
(for each controlled viscosity) 20 s, 20 s, 20 s

Time delays for simulator
(for each controlled viscosity) 8 s, 8 s, 8 s

Noise in the measurements about ±2%:
−0.2 Pa·s < random noise for η0.1s−1 < +0.2 Pa·s
−0.05 Pa·s < random noise for η1s−1 < +0.05 Pa·s
−0.02 Pa·s < random noise for η10s−1 < +0.02 Pa·s

Weights of the controller
(for each controlled viscosity) w1 = 1, w2 = 12, w3 = 40

Parameters for the penalisation of the controller
(Ingredients D and B respectively)

k1 = 3.5 × 104

k2 = 3.0 × 102

Figure 9 shows the system responses to step variation of the set points. The controller works well
and it is capable to bring the three controlled viscosities (viscosity at shear-rates equal to 0.1, 1 and
10 s−1) to the desired values in a relatively low time. Actions on the two manipulated variables have
been penalised to avoid excessive overshoots.
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The effects of a greater measurement delay on the controlled process is represented in Figure 10.
In this case measurements are available every 60 s, and Hp was set equal to 19. The controller is capable
to bring the viscosities to the desired values but the response is slower than the reference case.

0 1000 2000 3000
Time (s)

10

12

14

0 1000 2000 3000
Time (s)

2.3

2.4

2.5

2.6

2.7

0 500 1000 1500 2000 2500 3000
7

8

9

10

11

0 500 1000 1500 2000 2500 3000
2

2.5

3

0 500 1000 1500 2000 2500 3000
Time (s)

0.7

0.8

0.9

(a) (b)

(c)

(d)

(e)

Figure 9. Performance of controller for the reference case: (a) mass flow of ingredient B; (b) mass flow
of ingredient D; (c) response of the viscosity at shear rate equal to 0.1 s−1; (d) response of the viscosity
at shear rate equal to 1 s−1; (e) response of the viscosity at shear rate equal to 10 s−1. For (c–e) the
following data are reported: target curve (red solid line), measured value (green dashed line).

12



Processes 2018, 6, 12

Figure 10. Performance of controller for the case with time sampling equal to 60 s: (a) mass flow of
ingredient B; (b) mass flow of ingredient D; (c) response of the viscosity at shear rate equal to 0.1 s−1;
(d) response of the viscosity at shear rate equal to 1 s−1; (e) response of the viscosity at shear rate equal
to 10 s−1. For (c–e) the following data are reported: target curve (red solid line), measured value (green
dashed line).

6.2. MPC for Disturbance Rejection

To study the performance of the MPC controller when different batches of ingredients are used,
another test has been designed and developed. More in details, a different type of ingredient B has
been used in the process.

Another neural network (hereafter indicated as NN_d) with the same structure shown in Figure 3
has been trained using data coming from tests where another type of ingredient B (type 2) has been used.
The second linear block of the Hammerstein model, which is only related to the dynamic behavior, is
the same of the previous case. The new model NN_d has been used to simulate a disturbance entering
the process, as explained in the following. Time intervals for process simulation, control action and
sampling are the same reported in Table 2. The magnitude of noise in the measurements is respectively
±0.2 Pa·s for η0.1 s−1 , ±0.05 Pa·s for η1 s−1 and ±0.02 Pa·s for η10 s−1 .

To simulate the disturbance, at a certain point in the timeline of the simulation (when relative
time is equal to 500 s), the neural network used for the process simulator (NN) has been replaced with
the other one (NN_d). It’s important to highlight that only the simulator is affected by this change,
while the dynamic matrix F is the same. This action has the goal to simulate what happens to the real
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process when a different batch of ingredient B, which has a different rheological behavior with respect
to the previous one, is suddenly used (maybe to replace a finished batch).

The response of the system to this change of ingredient is reported in Figure 11. As shown in the
figure, the controller is capable to maintain the controlled viscosities to target. The dotted orange line
represents the response of the process to the change of ingredient B in an open loop configuration,
while the green dotted line represents the controlled process. In this case, also the behavior of the
viscosity at high shear rate is reported in the figure, in order to evaluate if controllability for the four
states is satisfied. Indeed, the viscosity at 1100 s−1 is not controlled, nonetheless the difference between
target and actual value is reduced indicating a correct behavior of the proposed controller.

Figure 11. Performance of the controller responding to a disturbance (change of ingredient B) and
comparison with the open loop response: (a) mass flow of ingredient B; (b) mass flow of ingredient D;
(c) response of the viscosity at shear rate equal to 0.1 s−1; (d) response of the viscosity at shear rate equal
to 1 s−1; (e) response of the viscosity at shear rate equal to 10 s−1; (f) response of the viscosity at shear rate
equal to 1100 s−1. For (c–f) the following data are reported: target curve (red solid line), measured value
(green dashed line), open loop evolution of the process (orange dotted line).

7. Conclusions

The present paper was focused on the control of the rheological properties of a detergent which
is produced by means of a continuous process. The control target was to maintain the product’s
viscosity curve within a given region of the viscosity-vs-shear rate plane, and this issue was addressed
selecting three points on the viscosity curve that were controlled manipulating two ingredient flow
rates according to MPC algorithm. The paper is preparatory to the introduction of on-line innovative
rheological sensors in the complex fluid production and showed that automatic control can effectively
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improve the quality of the product but it is important to reduce the time required by the sensor to
compute the rheological curve.
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Abstract: Fuel gas network (FGN) synthesis is a systematic method for reducing fresh fuel
consumption in a chemical plant. In this work, we address FGN synthesis problems using a block
superstructure representation that was originally proposed for process design and intensification.
The blocks interact with each other through direct flows that connect a block with its adjacent blocks
and through jump flows that connect a block with all nonadjacent blocks. The blocks with external
feed streams are viewed as fuel sources and the blocks with product streams are regarded as fuel
sinks. An additional layer of blocks are added as pools when there exists intermediate operations
among source and sink blocks. These blocks can be arranged in a I×J two-dimensional grid with
I = 1 for problems without pools, or I = 2 for problems with pools. J is determined by the
maximum number of pools/sinks. With this representation, we formulate FGN synthesis problem as
a mixed-integer nonlinear (MINLP) formulation to optimally design a fuel gas network with minimal
total annual cost. We revisit a literature case study on LNG plants to demonstrate the capability of
the proposed approach.

Keywords: process integration; fuel gas network synthesis; block superstructure; optimization; MINLP

1. Introduction

Over 40% of the operating cost of a petrochemical plant is attributed to energy consumption [1].
Energy is needed for raw material preprocessing (preheating, purification), separation of products from
intermediates or impurities (product refining), and material transportation. There are multiple energy
sources that can be exploited in a refinery, such as liquefied petroleum gas, fuel gas, off-gas, etc. [2,3].
These energy sources either come from external process raw materials and purchased fuels or from
internal process products, and byproducts. Depending on where these fuel sources originate from,
they can be classified as fuel from feed (FFF, e.g., natural gas) or fuel from product (FFP, e.g., products,
byproducts) [4]. In 2016, external fuels supplied to refinery industry in the United States mainly
consisted of natural gas (31%), electricity (5%), purchased steam and coal (1%) [5]. About 63% of the
energy consumed by the refining industry comes from byproducts of the refining process for heat and
power. These energy sources can be converted to each other. For example, fuel gas, produced internally
from the distillation columns, crackers and reformers [6], can be converted to steam, electricity or heat.
Fuel gas accounts for 46% of all energy sources for the refining industry in the United States [5,7–9].
Fuel gas is often composed of hydrocarbons (methane, ethane, propane and butane), hydrogen, and
carbon monoxide, which have large heating values [10]. In most cases, these fuels are flared to the
atmosphere, leading to detrimental effects on the environment and loss of heating values [11,12].

Due to the importance of fuel gas and the environment concern of fuel gas emission, many efforts
have been made on improving the equipment efficiency [13] or exploiting new energy sources to
decrease fuel gas generation and pollution emission [14]. Although these works give insights and
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Processes 2018, 6, 23

directions on improving design of equipment and operating conditions, a generic and systematic
strategy for elucidating the effective utilization of fuel gas is crucial. For example, in a typical fuel gas
system, multiple fuel gas sources with different qualities are available for various equipment (sinks).
As a result, effective and systematic management of fuel gas flow among fuel gas sources and fuel gas
sinks can provide economic benefits for process design by fully utilizing the heating value embedded
in the fuel gas [15,16].

Optimization-based methods enable the user to address fuel gas network (FGN) synthesis
problems, which are aimed at redistributing the fuel gas at the system level [1,4,17]. To this end,
Hasan et al. formalized the FGN synthesis problem as a nonlinear programming problem (NLP)
considering the integration of fuel gases appropriately though auxiliary equipment (valves, pipelines,
compressors, heaters/coolers, etc.) to achieve best utilization of them [4]. They posed the FGN problem
as a special class of pooling problem which leads a superstructure involving many practical features
such as nonisobaric and nonisothermal operation, nonisothermal mixing, nonlinear fuel-quality
specifications, and emission standards. Here the superstructure is defined as a superset of postulated
process alternatives [18]. The proposed FGN superstructure in the work of Hasan et al. (shown in
Figure 1) includes a set of fuel gas sources with temperature specification Tf , pressure specification

Pf and feed availability specification F f eed
f for each source f , and a set of fuel gas sinks with demand

range
[
DL

p , DU
p
]
, temperature range

[
Tmin

p , Tmax
p
]
, and pressure range

[
Pmin

p , Pmax
p
]

for each sink stream
p. To achieve the sink requirements, the intermediate operations such as cooling, compression, heating
and expansion are considered in addition to mixing and splitting. Jagannath et al. [17] extended this
work to include the multi-period FGN operation. This FGN design makes dynamic plant operation
more robust and helps to reduce capital costs. Nassim et al. [1,19] modified the FGN model introduced
by Hasan et al. [4] to include more constraints on addressing environmental issues and developed a
novel methodology for grass-root and retrofit design of FGNs.

Figure 1. A classic superstructure for the fuel gas network.

The first step for many optimization-based methods is the construction of a superstructure.
Hence the appropriate selection of superstructure representation method is critical. There are many
representations such as state-task-network [20,21], state-equipment-network [21], P-graph [22,23],
state-space [24,25] , HEN and MEN building blocks [26,27], phenomena building blocks [28–30],
process-group contribution method [31], and unit-port-conditioning-stream (UPCS) approach [32,33].
We recently proposed a new superstructure representation method using building blocks for systematic
process intensification [34–36]. The block superstructure has been constructed based on the dissection
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of various unit operations into fundamental building blocks. Later on, the proposed block-based
approach is applied to address process synthesis problems [37].

In this work, we address the optimal synthesis of fuel gas networks using a block superstructure,
originally proposed in our previous work for process synthesis and intensification [34–37]. Since the
fuel gas network by its definition is a special class of pooling problem, our block representation method
can be extended to general pooling problems as well. In this representation, each block allows multiple
fuel gas inlet flows and single product outlet flow (unique composition for different product streams).
The blocks with external feeds and external products serve as sources and sinks for fuel gas respectively.
The material and energy flow among different blocks are achieved via jump flow streams connecting
all nonadjacent blocks with each other and direct connecting streams connecting only adjacent blocks.
The involvement of jump flows avoids the utilization of unnecessary intermediate blocks for inter-block
connections. Each stream connecting two adjacent blocks are placed with compressors/expanders
to adjust the pressure for achieving the sink requirements. Options for supplying extra hot/cold
utility are provided to each block for allowing nonisothermal operation. When there is no direct
connecting stream, the block boundary between adjacent blocks is regarded as completely restricted
boundary. These blocks are collected in a two-dimensional grid to form a superstructure of blocks.
We formulate the fuel gas synthesis problem as a mixed-integer nonlinear optimization (MINLP)
problem. The model constraints involve mass and energy balance, flow directions, work calculation
and logic constraints. The nonlinear terms of the proposed model arise from splitting, energy balances
and work-related calculations.

The remaining of the article is structured as follows. First, we elaborate the representation of
fuel gas network using block-based approach. Next, we present the MINLP formulation for fuel gas
network synthesis problem. Finally, we demonstrate the applicability of our approach with one case
study on FGN synthesis in an LNG plant.

2. Block-Based Representation of Fuel Gas Network

In this section, we describe how the classic fuel gas network superstructure such as the one
proposed by Hasan et al. [4] can be represented using block-based approach [34,37] as a generic tool for
designing fuel gas utilization system. First, we illustrate the classic FGN superstructure and analyze
the operation involved in synthesizing a FGN. Next, we construct a block superstructure that can also
include the same features. We provide block superstructures for fuel gas network with or without
intermediate pools which bring additional mixing operations for more economic benefits.

In a classic FGN superstructure (Hasan et al. [4]), shown in Figure 1, there are FS number of fuel
gas sources and PS number of fuel gas sinks. The source stream f has the temperature as Tf and the
pressure as Pf . The sink stream p is obtained with temperature range as

[
Tmin

p , Tmax
p
]
, pressure range

as
[
Pmin

p , Pmax
p
]

and demand range as
[
DL

p , DU
p
]
. Each stream Ff ,p connecting a source f and a sink p

passes through two utility exchangers (heater and/or cooler) and one mover (compressor or expander).
The sources completely or partially come from different fuel gas sources and are mixed at different
fuel gas sinks with different temperature, pressure and quality requirements. The operations in a FGN
problem typically include mixing, cooling, heating, pressurizing and depressurizing.

Most FGN synthesis problems involve multiple sources and multiple sinks. In addition, there are
similar equipment assignment that are assigned between sources and sinks. This allows us to develop
a general block representation for FGN synthesis as shown in Figure 2. It involves I number of rows
and J number of columns, where each row or column is a collection of blocks. Let Bi,j represent the
block at row i and column j. Each block allows multiple external feed streams Mi,j,k, f to enter block Bi,j.

The available amount of feed f can be partially or completely fed into a block Bi,j with z f eed f rac
i,j, f fraction

of available amount F f eed
f . Similarly, product stream p can be withdrawn from each block with the

component flowrate of Hi,j,k,p.
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As shown in Figure 2b, the mass and energy transfer within the block superstructure is achieved
through the direct connecting streams between adjacent blocks and jump connecting streams among
all nonadjacent blocks. Direct connecting streams are achieved via inter-block flow Fi,j,k,d, which is the
flowrate of component k between block Bi,j and Bi,j+1 when the flow alignment d = 1 (the connecting
flow between adjacent blocks is in horizontal direction) or the flowrate of component k between block
Bi,j and Bi+1,j when the flow alignment d = 2 (the connecting flow between adjacent blocks is in
vertical direction) . These direct connecting streams can be either positive when the flow is from block
Bi,j to Bi,j+1 for d = 1 (from block Bi,j to Bi+1,j for d = 2) or negative when the flow is from block Bi,j+1
to Bi,j for d = 1 (from block Bi+1,j to Bi,j for d = 2). Also, these direct connecting stream flow across
the block boundary between adjacent blocks. When there is no direct connecting stream (Fi,j,k,d = 0),
the block boundary between Bi,j and Bi,j+1 (d = 1) or between Bi,j and Bi+1,j (d = 2) is identified as
completely restricted boundary. The jump connecting streams are depicted by Ji,j,i′ ,j′ ,k, which is the
flowrate of component k from block Bi,j to Bi′ ,j′ , where i′ and j′ designate the row number and column
number of a different block. Because of this unidirectional feature, Ji,j,i′ ,j′ ,k is a jump flow withdrawn
from Bi,j and supplied to Bi′ ,j′ .

Figure 2. Construction of superstructure for fuel gas synthesis problems: (a) Block superstructure
illustration; (b) Block interaction via connecting streams (blue line: jump connecting flow from the
block Bi,j; red line: jump connecting flow into the block Bi,j; blocks at diagonal positions are ignored
for simplicity).

With these direct and jump connecting streams, blocks with multiple inlets and multiple outlets
can serve as stream mixers and splitters, respectively. Source block is identified when multiple external
feed streams enter into a block and get mixed, while blocks with external product stream are sinks.
Note that splitting of the source streams is not regarded as a splitting operation because it can be
achieved through the splitting fraction z f eed f rac

i,j, f of source stream f into block Bi,j and thus can be
regarded as supplies of multiple source streams with the same specification.

The operation equipment (heaters/coolers, compressors/expanders) is embedded in the block
superstructure through auxiliary units. To represent the pressurizing/depressurizing operation, both
direct connecting streams and jump connecting streams are assigned with compressor or expander
(only one of them would be selected). Each stream leaving block Bi,j has a pressure designated as
Pi,j, which is also the inlet pressure for the compressors or expanders on these streams. The inlet
temperature for these compressors/expanders arranged at outlet streams (Fi,j,k,d and Ji,j,i′ ,j′ ,k) of Bi,j
is the block temperature Ti,j, which is also the common temperature of outlet streams from Bi,j.
The heating and cooling operations are achieved through the heat duty Qh

i,jand cold duty Qc
i,j, which

are obtained from the energy balance around block Bi,j.
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The general block superstructure for FGN synthesis problem developed in Figure 2 can be
reduced to block superstructure with smaller size if the number of intermediate pools is known
beforehand. As an illustrative example, we first consider the case without intermediate pools. Knowing
certain number of sources and sinks together with their specification and requirement, the classic
superstructure is built by connecting each source and sink and shown in Figure 3a. Here all stream
heaters/coolers and expanders/compressors are ignored for representation simplicity. As is shown in
Figure 3b, we use a 1×N block superstructure to incorporate the classic superstructure. In this case,
the column number is directly equal to number of sinks (J = PS). Since there are no intermediate
pools, row number I = 1. Each block serves as sink block, from which product streams are withdrawn.
Meanwhile, each block could also function as feed block, where multiple types of source streams are
fed. Specifically, taking the first sink block B1,1 as an example, there could be at most FS number of
source streams entering this block. The activation of connectivity between sources and sinks could
be reflected by the feed fraction z f eed f rac

i,j, f of different sources f . If the feed fraction z f eed f rac
i,j, f of source

stream at the sink block Bi,j is zero, then there is no connectivity between the source f and the sink

p in block Bi,j; source-sink connectivity exists as long as the feed fraction of source stream z f eed f rac
i,j, f is

nonzero. Besides, the horizontal connecting streams between adjacent blocks in Figure 3b are also
allowed. This additional feature physically indicates the material flowing between two fuel gas sinks.

Figure 3. Block representation for fuel gas network problem: (a) Classical superstructure for fuel gas
network; (b) Equivalent block superstructure for fuel gas network.

As for the more general case of the fuel gas network superstructure, between the sources and
sinks layer, there can be another layer consisting of L number of intermediate pools, as is shown in
Figure 4. Source streams first come into the intermediate pools, where certain operations such as
mixing, purifying are executed according to different sink requirements. The outlet streams coming
from the intermediate pools are further directed to the sinks or to the other different pools (shown
as the blue line in Figure 4a). One way to incorporate the general superstructure is to utilize a block
superstructure with larger size so that pools (involving mixing and splitting operations) can be included
into the system. With this new feature of intermediate pools, the updated block superstructure is
shown in Figure 4b. The first row consists of L number of pool blocks (grey blocks) and the second
row consists of PS number of sink blocks (blue blocks). In this case, the number of columns can be
taken as J = max{L, PS}. The existence of intermediate pools make the row number as I = 2, one
row to accommodate pools and another row for sinks. The distribution of source streams into each
pool blocks is achieved through splitting operation of source streams. In the first row, the jump flows
are withdrawn from each block as outlet streams of intermediate pools. Specifically, taking the first
column of block superstructure in Figure 4b as an example, the jump flow JP

1,1,k (the summation of
all the jump connecting streams to other blocks from block B1,1) is withdrawn and directed to other
blocks as inlet flows. The inlet jump flows, J1,j,2,1,k, from nonadjacent blocks B1,j (j ∈ [2, J]) are mixed
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in the second row at sink block B2,1 and then taken as the final product Hp
2,1,k (the overall component

flowrate for all product stream p).
As is discussed above, the block superstructure can be converted from the classic superstructure

of fuel gas network. When there is no prior information provided on flow connectivity among sources,
pools and sinks, the block superstructure can be constructed by simply setting the row number I and
column number J (i.e., J = max{L,PS}), which then involves as many process alternatives as possible.
The benefit for block representation method is on its generic feature that each block follows the same
pattern with multiple inlet streams and outlet streams. Based on the representation method, we now
develop the MINLP formulation for the FGN synthesis problem.

Figure 4. General superstructure for fuel gas network synthesis problem with intermediate pools:
(a) General superstructure for fuel gas network with intermediate pools; (b) equivalent block superstructure.

3. FGN Synthesis Problem Statement

This section gives the formal problem description for FGN synthesis problem using block
superstructure. The sets given for this problem are the set K = {k|k = 1, ..., |K|} of components,
the set FS = { f | f = 1, ..., |FS|} of fuel gas sources with component specification y f eed

k, f , a set

PS = {p|p = 1, ..., |PS|} of fuel gas sinks with the material demand range as
[
DL

p , DU
p
]
, energy

demand range as
[
DeL

p , DeU
p
]
, purity range as

[
ymin,prod

k,p , ymax,prod
k,p

]
for species k as well as ranges

for other specifications
[
qmin,prod

s,p , qmax,prod
s,p

]
. The objective is to synthesize a fuel gas network that

systematically utilizes the arrangement of fuel gas resources and minimizes the total annual cost.
The set D = {d|d = 1, 2} designates the flow alignment. The flow alignment d = 1 when the stream is
flowing in the horizontal direction, i.e., from block Bi,j to Bi,j+1; d = 2 when the stream is flowing in
the vertical direction, i.e., from block Bi,j to Bi+1,j. The temperature range and flowrate range for all
connecting flows including direct connecting flow and jump connecting flow are set as

[
Tmin, Tmax]

and
[
FL, FU

]
respectively.

We consider the assumptions for this work as constant properties (heat capacity, lower heating
value, etc.), continuous steady-state operation, ideal gas condition, adiabatic expansion/compression,
and ideal mixing. With this, we now describe the MINLP model for fuel gas network synthesis based
on block superstructure.
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4. MINLP Model Formulation for Block-Based Fuel Gas Network Synthesis

The main constraints for the MINLP model involve block material balance, flow directions, block
energy balance, work calculation and task assignment/logic constraints. The objective of the FGN
synthesis is to minimize the total annual cost.

4.1. Block Material Balance

The general material balance for each block Bi,j considers the material flows of component k
including horizontal inlet flow Fi,j−1,k,1, the horizontal outlet flow Fi,j,k,1, vertical inlet flow Fi−1,j,k,2,

vertical outlet flow Fi,j,k,2, external feed stream M f
i,j,k, external product stream Hp

i,j,k, jump flow into the

block J f
i,j,k, and jump flow from the block Jp

i,j,k. Specifically, the material balance relation is presented
as follows.

Fi,j−1,k,1 − Fi,j,k,1 + Fi−1,j,k,2 − Fi,j,k,2 + M f
i,j,k − Hp

i,j,k + J f
i,j,k − Jp

i,j,k = 0, i ∈ I, j ∈ J, k ∈ K (1)

The last four terms in the above relation are obtained though the following constraints.

M f
i,j,k = ∑

f∈FS
Mi,j,k, f i ∈ I, j ∈ J, k ∈ K (2)

Hp
i,j,k = ∑

p∈PS
Hi,j,k,p i ∈ I, j ∈ J, k ∈ K (3)

J f
i,j,k = ∑

(i′ ,j′)∈LN
Ji′ ,j′ ,i,j,k i ∈ I, j ∈ J, k ∈ K (4)

Jp
i,j,k = ∑

(i′ ,j′)∈LN
Ji,j,i′ ,j′ ,k i ∈ I, j ∈ J, k ∈ K (5)

All variables including M f
i,j,k, Hp

i,j,k, J f
i,j,k and Jp

i,j,k are obtained by summing multiple inlet streams
or outlet streams within single block Bi,j. The positive continuous variable Mi,j,k, f indicates the amount
of component flowrate k into block Bi,j carried by feed stream f . The amount of component k taken from
block Bi,j through product stream p is designated by positive continuous variable Hi,j,k,p. The material
flowrate for component k from block Bi,j to Bi′ ,j′ is Ji,j,i′ ,j′ ,k. The index i′ and j′ indicate row position
and column position of a block Bi′ ,j′ that is different from Bi,j. The subset LN(i, j, i′, j′) designates the
connection between block Bi,j and block Bi′ ,j′ . It should be noted that for jump connecting flow Ji,j,i′ ,j′ ,k,
i �= i′ and j �= j′ so as to avoid remixing in block Bi,j. The stream connectivities at the outer boundary
of block superstructure are set as Fi=I,j,k,1 = Fi,j=J,k,2 = 0 to ensure that the interaction between the
superstructure and the environment is only achieved through external feeds and products.

The flowrate Mi,j,k, f for each feed f into block Bi,j is completely or partially from the overall

available amount F f eed
f . The distribution of feed stream f is achieved by the feed fraction z f eed f rac

i,j, f ≥ 0
in block Bi,j. Hence Mi,j,k, f can be determined as follows:

Mi,j,k, f = F f eed
f y f eed

k, f z f eed f rac
i,j, f , i ∈ I, j ∈ J, k ∈ K, f ∈ FS (6)

0 ≤ ∑
i∈I

∑
j∈J

z f eed f rac
i,j, f ≤ 1, f ∈ FS (7)

Typically, headers receiving fuel gas have purity requirement for inlet streams to ensure the
required operating conditions of the corresponding equipment. This is achieved through the following
inequality constraints:

ymin,prod
k,p ∑

k′∈K
Hi,j,k′ ,p ≤ Hi,j,k,p ≤ ymax,prod

k,p ∑
k′∈K

Hi,j,k′ ,p, i ∈ I, j ∈ J, (k, p) ∈ kp (8)
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Here, the purity range for component k in product stream p is given by
[
ymin,prod

k,p , ymax,prod
k,p

]
.

The set kp relates the key component k with product stream p with purity specifications. The product
stream p have no purity restrictions when it does not appear in set kp.

On top of purity requirement of key component k in product stream p, possible requirement on
ratio of different component k in product stream p is also considered.

Pi,j,k=k′ ,p ≥ ∑
k′′ ∈K

π
prod
k′ ,k′′ ,p

Pi,j,k′′ ,p i ∈ I, j ∈ J, p ∈ Ps (9)

where π
prod
k′ ,k′′ ,p

is the minimum product ratio requirement between component k
′

and component k
′′

for

product p.
We also impose the demand constraint for product p supplied to different headers:

DL
p ≤ ∑

i∈I
∑
j∈J

∑
k∈K

Hi,j,k,p ≤ DU
p , p ∈ PS (10)

Here, DL
p and DU

p are minimum and maximum allowed amount for product stream p respectively.

Hence if there is no specification existing for DL
p , DU

p or both, we set DL
p = 0 and DU

p = max
f∈FS

F f eed
f .

Besides, energy demands Dep for each product stream p should be satisfied based on the
following constraint:

∑
i∈I

∑
j∈J

∑
k∈K

Hi,j,k,pLHVk ≥ Dep, p ∈ PS (11)

where LHVk refers to lower heating value for each component k, which measures energy content per
unit mass or volume of pure combustible component.

Furthermore, each product stream should have acceptable limits on other certain specifications
including lower heating value (LHV), reverse specific gravity (1/SG), etc. Assuming that all the
considered specifications are linearly related with mixture compositions, the following constraint is
supplied below for each product stream p [4].

qmin,prod
s,p ∑

i∈I
∑
j∈J

∑
k∈K

Hi,j,k,p ≤ ∑
i∈I

∑
j∈J

∑
k∈K

Hi,j,k,pqs,k ≤ qmax,prod
s,p ∑

i∈I
∑
j∈J

∑
k∈K

Hi,j,k,p, p ∈ PS (12)

Here the parameter qs,k denote the value of specification s for component k, and[
qmin,prod

s,p , qmax,prod
s,p

]
is the acceptable range of specification s for product stream p. Note that the quality

specification qs,k is component flowrate-based instead of total flowrate-based, which is considered in
the work of Hasan et al. [4].

To obtain the total flowrate for all streams associated with the block Bi,j, we sum all components
in each stream. Specifically, we obtain the total flowrate FPT

i,j,d, FNT
i,j,d, JT

i,j,i′ ,j′ , MT
i,j, f , and HT

i,j,p from the
component flowrate for FPi,j,k,d, FNi,j,k,d, Ji,j,i′ ,j′ ,k, Mi,j,k, f , and Hi,j,k,p through the following relations.

FPT
i,j,d = ∑

k∈K
FPi,j,k,d, i ∈ I, j ∈ J, d ∈ D (13)

FNT
i,j,d = ∑

k∈K
FNi,j,k,d, i ∈ I, j ∈ J, d ∈ D (14)

JT
i,j,i′ ,j′ = ∑

k∈K
Ji,j,i′ ,j′ ,k, (i, j, i′, j′) ∈ LN(i, j, i′, j′) (15)

MT
i,j, f = ∑

k∈K
Mi,j,k, f , i ∈ I, j ∈ J, f ∈ FS (16)

HT
i,j,p = ∑

k∈K
Hi,j,k,p, i ∈ I, j ∈ J, s ∈ PS (17)
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With the total flowrate information, we model the splitting operation for achieving identical
composition for all outlet streams as follows:

FPi,j,k,d = yb
i,j,kFPT

i,j,d i ∈ I, j ∈ J, d ∈ D (18)

FNi,j−1,k,1 = yb
i,j,kFNT

i,j−1,1 i ∈ I, j ∈ J (19)

FNi−1,j,k,2 = yb
i,j,kFNT

i−1,j,2 i ∈ I, j ∈ J (20)

Ji,j,i′ ,j′ ,k = yb
i,j,k JT

i,j,i′ ,j′ (i, j, i′, j′) ∈ LN(i, j, i′, j′), k ∈ K (21)

Hi,j,k,p = yb
i,j,k HT

i,j,p i ∈ I, j ∈ J, k ∈ K, s ∈ PS (22)

Here the positive continuous variable yb
i,j,k refers to the block composition of component k.

This block composition refers to the composition of component k in all the outlet streams from
block Bi,j .

4.2. Flow Directions

The direct connectivity Fi,j,k,d among adjacent blocks is a bidirectional flow with its positive
component FPi,j,k,d and negative component FNi,j,k,d. Only one of them is active when the connecting
flow Fi,j,k,d is chosen to be nonzero. The selection of flow direction is a decision variable, which is
achieved through the following binary variable:

zPlus
i,j,d =

{
1 if Fi,j,k,d is from block Bi,j to Bi,j+1 (d = 1) or from block Bi,j to Bi+1,j (d = 2)
0 otherwise

As a result, the flow direction determination is achieved though the following constraints:

Fi,j,k,d = FPi,j,k,d − FNi,j,k,d i ∈ I, j ∈ J, k ∈ K, d ∈ D (23)

FPi,j,k,d ≤ FUzPlus
i,j,d , i ∈ I, j ∈ J, k ∈ K, d ∈ D (24)

FNi,j,k,d ≤ FU(1 − zPlus
i,j,d ), i ∈ I, j ∈ J, k ∈ K, d ∈ D (25)

4.3. Block Energy Balance

The enthalpy terms for block energy balance includes inlet and outlet inter-block stream
enthalpy, feed enthalpy, product enthalpy, external heating/cooling, work energy associated with
expansion/compression. Then the steady-state energy balance for block Bi,j is formulated as follows:

EFi,j−1,1 − EFi,j,1 + EFi−1,j,2 − EFi,j,2 + EMi,j − EPi,j + EJ f
i,j − EJp

i,j + Qi,j + Wi,j = 0, i ∈ I, j ∈ J (26)

where, EFi,j,d represents the stream enthalpy carried by the material flow Fi,j,k,d in flow direction
d, EMi,j is the overall enthalpy brought into block Bi,j along with external feed streams , EPi,j is

overall enthalpy taken away by external product streams, EJ f
i,j is overall enthalpy carried into block

Bi,j through jump flows, EJp
i,j is overall enthalpy taken out from block Bi,j through jump flows, Qi,j

represents amount of heat added into or removed from the block Bi,j, Wi,j indicates the amount of work
energy added into or withdrawn from block Bi,j. These energy flow variables are shown in Figure 5.

The stream enthalpy is determined as follows with the information provided on flowrate,
component heat capacities and the block temperature. Depending on the flow direction, in flow
alignment d = 1, the inlet temperature for block Bi,j is either Ti,j from block Bi,j to Bi,j+1 or Ti,j+1 from
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block Bi,j+1 to Bi,j; in flow alignment d = 2, the inlet temperature for block Bi,j is either Ti,j from block
Bi,j to Bi+1,j or Ti+1,j from block Bi+1,j to Bi,j.

EFi,j,1 = ∑
k∈K

FPi,j,k,1CpkTi,j − ∑
k∈K

FNi,j,k,1CpkTi,j+1 (27)

EFi,j,2 = ∑
k∈K

FPi,j,k,2CpkTi,j − ∑
k∈K

FNi,j,k,2CpkTi+1,j (28)

where Cpk is the heat capacity of component k.

Figure 5. Illustration of energy balance on block Bi,j.

The enthalpy amount brought into or withdrawn from block Bi,j through jump flows are
determined as follows:

EJ f
i,j = ∑

k∈K
∑

(i′ ,j′)∈LN
Ji′ ,j′ ,i,j,kCpkTi′ ,j′ i ∈ I, j ∈ J (29)

EJp
i,j = ∑

k∈K
∑

(i′ ,j′)∈LN
Ji,j,i′ ,j′ ,kCpkTi,j i ∈ I, j ∈ J (30)

It should be noted that the inlet temperature of jump flow is always the temperature of the
source block, Ti,j. Likewise, the feed enthalpy and product enthalpy are determined with the
following constraints:

EMi,j = ∑
k∈K

∑
f∈F

Mi,j,k, f CpkT f i ∈ I, j ∈ J (31)

EPi,j = ∑
k∈K

∑
p∈P

Pi,j,k,pCpkTi,j i ∈ I, j ∈ J (32)

The amount of hot/cold utility consumed in block Bi,j can be evaluated through the amount of
heat introduced into (Qh

i,j) or withdrawn from (Qc
i,j) block Bi,j.

Qi,j = Qh
i,j − Qc

i,j (33)

The work energy can be also determined by the amount of work added into or taken out of block
Bi,j, which are denoted as Wcom

i,j for compression and Wexp
i,j for expansion respectively. The calculation

of Wcom
i,j and Wexp

i,j is explained later in this Section 4.6.

Wi,j = Wcom
i,j − Wexp

i,j (34)
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Finally, to prevent condensation in the FGN and ensure sufficient superheating, the following
constraints are supplied for product stream p in block Bi,j [4].

∑
k∈K

Hi,j,k,pCpkTi,j ≥ (MDPp +
5
9
(5.15

Pi,j

100
− 312) ∑

k∈K
Hi,j,k,pCpk i ∈ I, j ∈ J, p ∈ PS (35)

∑
k∈K

Hi,j,k,pCpkTi,j ≤ (HDPp +
5
9
(2.33(

Pi,j

100
)2 − 2.8

Pi,j

100
− 305) ∑

k∈K
Hi,j,k,pCpk i ∈ I, j ∈ J, p ∈ PS (36)

where parameter MDPp is moisture dew-point temperature and parameter HDPp is the hydrocarbon
dew-point temperature for the product p.

4.4. Product Stream Assignments and Logical Constraints

We define binary variables for each product stream p at block Bi,j to determine whether they are
active in Bi,j or not:

zproduct
i,j,p =

{
1 if product stream p is withdrawn from block Bi,j
0 otherwise

The identification of block as product block is achieved through the following logical relation,
which involves product binary variable:

∑
k∈K

Pi,j,k,p ≤ DU
p zproduct

i,j,p i ∈ I, j ∈ J, p ∈ PS (37)

For each block, there are at most one type of product stream present in block Bi,j. The logic
proposition is illustrated as follows:

∑
p∈PS

zproduct
i,j,p ≤ 1 i ∈ I, j ∈ J (38)

Each product stream p appears in the block superstructure for at least once so as to ensure the
supply of fuel gas header.

∑
i∈I

∑
j∈J

zproduct
i,j,p ≥ 1 p ∈ PS (39)

The temperature range for block with product stream p is from Tmin
p to Tmax

p .

Tmin
p zproduct

i,j,p + Tmin(1 − zproduct
i,j,p ) ≤ Ti,j ≤ Tmax

p zproduct
i,j,p + Tmax(1 − zproduct

i,j,p ) i ∈ I, j ∈ J, p ∈ PS (40)

Likewise, the pressure range for product block is
[
Pmin

p to Pmax
p
]
.

Pmin
p zproduct

i,j,p + Pmin(1 − zproduct
i,j,p ) ≤ Ti,j ≤ Pmax

p zproduct
i,j,p + Pmax(1 − zproduct

i,j,p ) i ∈ I, j ∈ J, p ∈ PS (41)

4.5. Boundary Assignment

The boundary type between adjacent blocks can be either completely restricted or not. If there
is no direct connecting stream between adjacent blocks, then the inter-block boundary is identified
as completely restricted boundary. The decision of boundary type is achieved through the following
binary variable zcr

i,j,d.
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zcr
i,j,d =

⎧⎪⎨⎪⎩
1 If boundary between Bi,j and Bi,j+1 for d = 1 (between Bi,j and Bi+1,j for d = 2)

is completetly restricted
0 Otherwise

According to the definition of completely restricted boundary, the following constraints are
supplied to relate flowrate Fi,j,k,d with boundary type.

Fi,j,k,d ≤ FU(1 − zcr
i,j,d), i ∈ I, j ∈ J, d ∈ D (42)

4.6. Work Calculation

The work term Wi,j consists of compression work term Wcom
i,j and expansion work term Wexp

i,j .

Both Wcom
i,j and Wexp

i,j consist of work components for direct connecting streams (Wcomp,FP
i,j,d and Wexp,FP

i,j,d

for compression and expansion work of positive component, Wcomp,FN
i,j,d and Wexp,FN

i,j,d for compression

and expansion work of negative component), feed streams (Wcomp,FS
i,j, f and Wexp,FS

i,j, f for compression and

expansion work respectively), and jump connecting streams (Wcomp,JF
i′ ,j′ ,i,j and Wexp,JF

i′ ,j′ ,i,j for compression
and expansion work respectively). Accordingly,

Wcom
i,j = ∑

d∈D
(Wcomp,FP

i,j,d + Wcomp,FN
i,j,d ) + ∑

f∈FS
Wcomp,FS

i,j, f + ∑
(i′ ,j′)∈LN(i,j,i′ ,j′)

Wcomp,JF
i′ ,j′ ,i,j , i ∈ I, j ∈ J (43)

Wexp
i,j = ∑

d∈D
(Wexp,FP

i,j,d + Wexp,FN
i,j,d ) + ∑

f∈FS
Wexp,FS

i,j, f + ∑
(i′ ,j′)∈LN(i,j,i′ ,j′)

Wexp,JF
i′ ,j′ ,i,j , i ∈ I, j ∈ J (44)

We define the positive variable PRF
i,j,d to designate the pressure ratio between the block Bi,j+1 and

Bi,j for flow alignment d = 1 or between the block Bi+1,j and Bi,j for flow alignment d = 2. In horizontal
direction, the pressure ratio is determined as follows:

PRF
i,j,1 =

Pi,j+1

Pi,j
i ∈ I, j ∈ J (45)

Similarly, in vertical direction, the pressure ratio is determined as follows:

PRF
i,j,2 =

Pi+1,j

Pi,j
i ∈ I, j ∈ J (46)

For feed stream f , the pressure ratio is taken as the ratio between block pressure Pi,j and parameter

P f eed
f for feed pressure .

PR f eed
i,j, f =

Pi,j

P f eed
f

i ∈ I, j ∈ J, f ∈ FS (47)

From these pressure ratio definitions, we calculate the isentropic work on direct connecting
streams, feed streams and jump connecting streams. In the horizontal direction, the inlet isentropic
work is determined as follows:

ηWcomp,FP
i,j,1 − Wexp,FP

i,j,1 /η = ∑
k∈K

FPi,j−1,k,1Ts
i,j−1,1Rgas

γ

γ − 1
{(PRF

i,j−1,1)
γ−1

γ − 1} i ∈ I, j ∈ J (48)

ηWcomp,FN
i,j,1 − Wexp,FN

i,j,1 /η = ∑
k∈K

FNi,j,k,1Ts
i,j,1Rgas

γ

γ − 1
{( 1

PRF
i,j,1

)
γ−1

γ − 1} i ∈ I, j ∈ J (49)
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Here Rgas is the gas constant and γ is the adiabatic compression coefficient for process streams.
γ is taken as heat capacity ratio. η is the adiabatic compression efficiency. Similarly, the isentropic
work for a vertical entering stream is calculated as follows:

ηWcomp,FP
i,j,2 − Wexp,FP

i,j,2 /η = ∑
k∈K

FPi−1,j,k,2Ts
i−1,j,2Rgas

γ

γ − 1
{(PRF

i−1,j,2)
γ−1

γ − 1} i ∈ I, j ∈ J (50)

ηWcomp,FN
i,j,2 − Wexp,FN

i,j,2 /η = ∑
k∈K

FNi,j,k,2Ts
i,j,2Rgas

γ

γ − 1
{( 1

PRF
i,j,2

)
γ−1

γ − 1} i ∈ I, j ∈ J (51)

The work terms related to feed streams and jump connecting streams are calculated in a
similar way:

ηWcomp,FS
i,j, f − Wexp,FS

i,j, f /η = ∑
k∈K

Mi,j,k, f T f eed
f Rgas

1
n f s

{(PR f eed
i,j, f )

n f s − 1} i ∈ I, j ∈ J, f ∈ FS (52)

ηWcomp,JF
i,j,i′ ,j′ − Wexp,JF

i,j,i′ ,j′ /η = JT
i,j,i′ ,j′Ti,jRgas

γ

γ − 1
{(

Pi′ ,j′

Pi,j
)

γ−1
γ − 1} (i, j, i′, j) ∈ LN(i, j, i′, j′) (53)

Here n f s is the adiabatic compression coefficient for source stream f .

4.7. Objective Function

We consider the components of economic objective in the work of Hasan et al. [4] and derive the
objective function for the FGN synthesis as follows.

min TAC = ∑
f∈FS

(∑
i∈I

∑
j∈J

UFCf F f eed
f z f eed f rac

i,j, f + Di f (F f eed
f − ∑

i∈I
∑
j∈J

F f eed
f z f eed f rac

i,j, f ))

− ∑
p∈PS

Revp(∑
k∈K

LHVk(∑
i∈I

∑
j∈J

Hi,j,k,ps)− Dep) + ∑
i∈I

∑
j∈J

∑
f∈FS

π f F f eed
f z f eed f rac

i,j, f

+ CCHU ∑
i∈I

∑
j∈J

Qhi,j + CCCU ∑
i∈I

∑
j∈J

Qci,j + CCexp ∑
i∈I

∑
j∈J

Wexp
i,j + CCcom ∑

i∈I
∑
j∈J

Wcom
i,j

(54)

This objective function aims at minimizing total annual cost (TAC). Here parameter UFCf is
the unit cost of different source streams, Di f is the unit cost of treatment cost for unused source
streams, Revp is the unit profit from excess energy in product stream p. Besides, the parameter π f
denotes the unit transportation cost for source stream f . Parameters CCHU , CCCU , CCexp and CCcom

denote the unit cost of heaters, coolers, expansion operations and compression operations, respectively.
The first term in the objective function consists of source stream purchase cost and disposal cost.
The second term corresponds to the profit gained from the released excess amount of energy in product
stream p. The third term indicates the transporting cost of source streams. The last four terms refer
to overall cost (both capital cost and operating cost) for heaters, coolers, expansion operations and
compression operations.

This completes the MINLP model for block-based FGN synthesis. It should be noted that
commercial solvers can handle the proposed FGN design problems with small number of sinks or
pools. However, when a large-scale problem is considered, further simplification can be made by
fixing the streams associated with unused blocks to zero when the number of pools and sinks do not
match each other. This fixing ensures that the number of blocks in the first row is only equal to the
number of pools assigned in the system and the number of blocks in the second row is equal to the
number of sinks.
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5. Case Study

In this section, the FGN synthesis problem in an LNG plant is presented to demonstrate
the application of block superstructure in synthesis of FGN. We consider two cases for the FGN
synthesis problem: case 1 for representation without intermediate pools; case 2 for representation with
intermediate pools. The case study is from the work of Hasan et al. [4] and all problem instances
are solved using ANTIGONE 1.1. [38] in GAMS 24.4 on a Dell Optiplex 9020 computer (Intel 8 Core
i7-4770 CPU 3.4 GHz, 15.5 GB memory) running Springdale Linux.

5.1. Case Study Description

Natural gas (NG) utilization has expanded from residential utilization to industrial productions due
to its lower waste emission compared with fossil fuel [39]. NG is delivered to destination by transporting
through pipelines or transporting as liquefied natural gas (LNG) [40]. For long-distance transportation,
LNG is preferred for economical, technical, safety-related, and political considerations [41].
A conventional LNG plant flowsheet is found in Figure 6. Typically, an LNG process train contains
acid-gas removal, dehydration and mercury removal, liquefaction, nitrogen rejection, and sulfur
recovery systems, etc. [41,42]. The fuel gas system in the LNG plant normally takes the natural gas as
a feed (FFF) to generate steam, provide power and supply electricity to the LNG process, while large
amount of energy is lost through flares, turbine exhausts, flash gas, etc. if they are not integrated to
fuel sinks in the process. Hence, identification of other fuel gas sources (FFP) in the LNG plant can
help to effectively exploit their heating value and reduce the consumption of FFF.

Figure 6. Process diagram for a conventional LNG plant.

As can be seen from Figure 6, there are three fuel gas sources from byproducts (FFP) for the fuel
gas system: high-pressure fuel gas (HPFG) from acid gas removal, end flash gas (EFG) from nitrogen
rejection, and tankage boil-off gas (TBOG) from storage process. These fuel gas sources EFG, HPFG,
TBOG, FFF are represented as S1, S2, S3, and S4 respectively. The main components in each source
streams are methane, ethane, propane, C3+, CO and N2. Although the definition of fuel gas network is
taken from the literature (Hasan et al. [4]), the model we utilized in this work is not based on the total
flowrate but the component flowrate. Because of the model discrepancy, we keep part of the fuel gas
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source data from the literature in Table 1 and update other required component parameters in Table 2.
These component parameters include lower heating value (LHV) and reverse specific gravity (1/SG)
corresponding to the sink requirements on these specifications as well as component heat capacity
(Cpk) required for block energy balance.

Within the LNG process, liquefaction is the most energy-intensive process section and the majority
of energy is required to run refrigeration compressors which are driven by frame-type gas turbine
drivers (GTD) and gas turbine generators (GTG). Besides, boilers consume certain amount of fuel
gas to generate steam for the LNG process. According to similarity of specifications among fourteen
units [four gas turbine generators (GTG) for power generation, two gas turbine drivers (GTD) for the
propane cycle, three GTDs for the mixed refrigerant (MR) cycle, and five boilers] that consume fuel in
the LNG plant, five process sinks are identified (C1, C2, C3, C4, and C5). The sink data is directly taken
from the literature without any changes and listed in Table 3. The sink specifications include energy
demand, material demand, temperature and pressure specification, moisture dew-point temperature
(MDPp) and hydrocarbon dew-point temperature (HDPp), lower heating value (LHV) and reverse
specific gravity (1/SG). We do not consider the profit from excess energy in sink streams C1, C2, C3

and C4. It should be noted that all the data have been converted to standard units.

Table 1. Sources streams specifications.

Specification/Parameter EFG HPFG TBOG FFF

Adiabatic compression coefficient, n f s 0.254 0.2 0.18 0.2

Availability, F f eed
f (kmol/s) 0.92938 0.05310 0.18255 <7.30229

Temperature, T f eed
f (K) 240 325 113 298

Pressure, P f eed
f (bar) 1.72369 7.58423 1.72369 26.20007

Methane, CH4 (%) 60.0 81.0 92.0 85.0
Ethane, C2H6 (%) 0.0 6.0 0.0 5.0

Propane, C3H8 (%) 0.0 5.0 0.0 4.0
C3+ (%) 0.0 2.5 0.0 2.0
CO (%) 0.0 0.0 0.0 0.05
N2 (%) 40.0 5.5 8.0 3.95

Source unit cost, UFCf ($/kmol) 0.0 0.0 0.0 4.184
Source disposal cost, Di f ($/kmol) 0.209 0.292 0.209 0

Feed transporting cost, π f ($/kmol) 0.0008 0.0008 0.0008 0.0008

EFG: end flash gas; HPFG: high-pressure fuel gas; TBOG: tankage boil-off gas; FFF: fuel from feed.

Table 2. Component quality parameters.

Parameter Methane Ethane Propane C3+ CO N2

LHV(MJ/kmol) 800.234 1425.580 2041.113 2654.134 282.637 0
1/SG (28.96/mol wt) 1.8060 0.9636 0.6571 0.4985 1.0344 1.0342

Cp [KJ/(kmol K)] 37.16 57.40 80.30 114.93 29.20 29.15
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Table 3. Specification for product streams (sinks).

Specification/Parameter C1 C2 C3 C4 C5

Energy demand, 152.309 149.378 120.305 149.378 87.921Dep (MJ/s)
Material demand, 0.159–0.172 0.156–0.169 0.159–0.172 0.149–0.169 0.132–0.199[
DL

p , DU
p
]

(kmol/s)
Temperature range, 113–1000 113–1000 113–1000 113–1000 113–1000[

Tmin
p , Tmax

p
]

(K)
Pressure range, 1.72–24.82 1.72–24.82 1.72–24.82 1.72–24.82 1.72–24.82[
Pmin

p , Pmax
p
]

(bar)
MDPp (K) 277 277 277 277 277
HDPp (K) 277 277 277 277 277

LHV(MJ/kmol) 264.885–8829.500 264.885–8829.500 264.885–8829.500 264.885–8829.500 264.885–8829.500
1/SG (28.96/mol wt) 1.0–2.4 1.0–2.4 1.0–2.4 1.0–2.4 1.0–2.4

Methane, CH4 (%) >85.0 >85.0 >85.0 >85.0 >65.0
Ethane, C2H6 (%) <15.0 <15.0 <15.0 <15.0 <15.0

Propane, C3H8 (%) <15.0 <15.0 <15.0 <15.0 <15.0
C3+ (%) <5.0 <5.0 <5.0 <5.0 <5.0
CO (%) <10.0 <10.0 <10.0 <10.0 <10.0
N2 (%) <15.0 <15.0 <15.0 <15.0 <15.0

Treatment factor, ψsp 1.0 1.0 1.0 1.0 1.0
Unit profit, Revp ($/KJ) 0 0 0 0 6.6347×10−6

Table 4 lists the cost parameters including capital expenditure (CAPEX) and operating expenditure
(OPEX) for various FGN units (heaters/coolers, and compressors/expanders). Finally, we assign
temperature lower bound as Tmin = 113 K, temperature upper bound as Tmax = 1000 K. The transporting
cost for each source stream f is π f = 8.37 × 10−4 $/kmol. The adiabatic compression coefficient for
process streams is γ = 0.286. The operating time per year is 365 days.

Table 4. CAPEX and OPEX Coefficients for Various Equipment Units.

Unit CAPEX ($/KWh) OPEX ($/KWh) Total ($/KWh)

Compressor 10 0.01 CCcom = 10.01
Expander 1 0.05 CCexp = 1.05

Heater 5 0.01 CCHU = 5.01
Cooler 5 0.02 CCCU = 5.02

5.2. Case 1: FGN Synthesis Without Pools

In this case, the block representation of FGN shown in Figure 3 is used. To avoid part of product
stream recycled as feed into adjacent blocks through direct connecting flow, all the horizontal and
vertical material flow, namely Fi,j,k,d=1 and Fi,j,k,d=2, are ignored for each product block. Accordingly,
horizontal (d = 1) and vertical (d = 2) energy flow, EFi,j,d, as well as their associated work terms are
removed from energy balance. Also jump connecting streams from product blocks are fixed to be zero
since they make the product blocks as intermediate pools.

The model for FGN without intermediate pools has 397 continuous variables, 45 binary variables,
849 bilinear terms, 243 signomial terms. The solution is obtained within 565 CPU seconds with optimal
total annual cost as 70,136,064 $/year and optimality gap as 0.1%. The optimal solution reported in
the literature [4] is 79,943,071 $/year. This 12.27 % reduction in TAC could be attributed to the facts
that: (1) we do not consider the nonlinear quality in this work, i.e., wobbe index, which brings less
strict requirement on network design; and (2) we assume ideal gas instead of real gas for expansion
operation. The optimal block configuration for FGN and its corresponding optimal network are shown
in Figure 7a,b respectively.
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Figure 7. Block representation and process flowsheet for the optimal solution of FGN without
intermediate pools: (a) Block representation for the optimal solution of FGN; (b) process flowsheet for
the optimal solution of FGN.

In the block representation of the optimal result (Figure 7a), the block B1,1 takes compressed
streams from source EFG, HPFG, and TBOG and expanded stream from source FFF while supplying
sink stream to header C4. Both the block B1,2 and block B1,3 collect part of compressed streams from
source HBFG and TBOG and expanded stream from source FFF to generate sink stream for header
C1 and C5 respectively. In block B1,4, partial compressed streams from source EFG and TBOG mix
with expanded stream from source FFF. This block yields the sink stream for header C2. The block B1,5

blend streams from source EFG and TBOG to yield a product stream for header C3.
This obtained block representation is converted into FGN network shown in Figure 7b. It utilizes

both HPFG and TBOG fully. Among all sink streams, only C4 uses all source streams EFG, HPFG,
TBOG, FFF while C1, C5 only use HPFG, TBPG, and FFF as source streams. Sink C2 blends streams
from EFG, HPFG, and TBOG. Sink C3 takes source streams from EFG, and TBOG. It should be noted
that both C2 and C3 accept part of EFG. The whole FGN network could only utilize 2.716% of EFG and
the rest of it goes to flare. The reason is that EFG contains low methane (60%) and high inert content
(40%). To utilize EFG as much as possible, it should be mixed with other source streams; however, such
mixing could bring unacceptable large flows to sinks so EFG is only partially utilized in the system.
Regarding the FFF, none of sinks are taking it alone and sink C3 does not use FFF at all.

The optimal header pressures are 24.82, 24.82, 1.72, 24.82, and 1.78 bar for header C1–C5

respectively. The flow rate of sink streams at headers at C1–C5 are 0.172, 0.169, 0.172, 0.169, 0.199 kmol/s
respectively. The optimal header temperatures are found as 297.21, 296.21, 130.11, 296.04, 280.18 K
for header C1–C5 respectively. HPFG needs expanders before mixing with TBOG (1.72 bar) and FFF
(1.72 bar) in C5 because of its high pressure (7.58 bar). Similarly, all the FFF (26.20 bar) needs expanders
so as to mix with other flows in C1, C2, C4 and C5. However, EFG and TBOG do not need any
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compressors or expanders before entering C3, which are already at 1.72 bar. No heating and cooling
operations are required in the optimal FGN.

5.3. Case 2: FGN Synthesis With Pools

To investigate the influence of existence of pools on improving the economic performance of FGN,
we use the representation shown in Figure 4. Note that the problem specifications are the same for
case 1 and case 2. The only difference is that the row number I = 1 for case 1 and it is I = 2 for case 2.
The material balance involving jump connecting streams is utilized to build connection between pool
blocks and product blocks. For the jump flow Jp

i,j,k withdrawn from the pool block, it is distributed
back into other pool blocks or product block. To avoid self-recycle of the jump connecting stream, the
inlet streams coming via jump flows from the same block is fixed to be zero, Ji,j,i′ ,j′ ,k = 0, where i = i′

and j = j′. External feed streams are only allowed to enter into the first row, i.e., pool blocks while
external product streams are only withdrawn from the second row, i.e., sink blocks.

The model contains 1741 continuous variables, 58 binary variables, 9530 bilinear terms and 1321
signomial terms. The comparison of model statistics for these two cases are summarized in Table 5.

Table 5. Summary of model statistics for case 1 and case 2.

Case 1 Case 2

Continuous variable 397 1741
Binary variable 45 58
Bilinear terms 849 9530

Signomial terms 243 1321
CPU time (second) 565 935

Solution (MM$/year) 70.1 69.3

The solution is obtained within 935 CPU seconds with optimal TAC as 69,259,363 $/year and
optimality gap as 0.1%. The involvement of intermediate pools results in a reduction of total annual
cost by 1.25%, compared to the one reported as 70,136,064$/year for the fuel gas network without
intermediate pools. The detailed TAC comparison is shown in Table 6. Through this additional row
for intermediate pools, less source cost (specifically FFF) for purchase and disposal is needed although
the revenue obtained from excess energy in product stream C5 is also decreased. Less cost is spent on
expansion and compression operation in case 2. No heating and cooling operations are required in the
optimal FGN for both cases. Figure 8 shows the optimal fuel gas network configuration.

Table 6. Total annual cost comparison for case 1 and case 2.

TAC Component ($/Year) Case 1 Case 2

Source cost 87,852,764 68,530,679
Revenue from excess energy in sinks 17,736,117 16,329,735

Source transportation cost 23,246 23,246
Heaters cost 0 0
Coolers cost 0 0

Expansion operation cost 5850 3016
Compression operation cost 3168 2744
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Figure 8. Block representation and process flowsheet for the optimal solution of FGN with intermediate
pools: (a) Block representation for the optimal solution of FGN; (b) process flowsheet for the optimal
solution of FGN.

The obtained block representation for the FGN is given in Figure 8a. Feed stream EFG is
distributed into block B1,3 and B1,4. Part of feed stream HPFG is expanded and then enters into
block B1,4 while extra amount distributes into block B1,2. In addition, feed stream TBOG is partially
supplied to block B1,3 and block B1,5. Some other amount of TBOG is compressed and then enter block
B1,1. The feed stream FFF only enters the block B1,1 after expanding operation. The blocks B1,j in the
first row (column number j ranges from 1 to 5) collect the mixed stream and yield the outlet jump flow
which are supplied into the second row. Hence, these blocks are identified as intermediate pools, i.e.,
P1, P2, P3, P4, and P5. At the second row of the block representation, the jump flow withdrawn from
block B1,1 and block B2,4 mix at block B2,1, which supplies product stream to sink C1 and generates
outlet jump flows entering block B2,5. The block B2,2 blends the outlet jump flows from block B1,3 and
B1,5 to obtain sink stream C3. The outlet jump flows from block B1,3 split into three parts. One part
compresses first and mixes with outlet jump flow from block B1,1 at block B2,3, where the sink stream
C4 is generated. Another part is compressed and mixes with outlet jump flow from block B1,1 at block
B2,4, where the sink stream C2 is obtained. The last part mixes with outlet jump flow from block B1,5 at
block B2,2, where the sink stream C3 is obtained. Besides, an outlet jump flow is withdrawn from block
B2,4 and fed into block B2,1. The outlet jump flows from block B2,1, B1,2 are compressed and mixed
with other outlet jump flows from block B1,4 and B1,5 to supply the sink stream C5.

The corresponding network structure is shown in Figure 8b. The optimal network consumes both
HPFG and TBOG fully. Since all the blocks in the first row embed the inlet flow for mixing, five pools
can be identified. Pool P1 accepts source stream from TBOG and FFF, which only supply feed to P1. P2

takes part of source stream HPFG. P3 blends streams from EFG and TBOG. Part of external stream
from EFG and HPFG enter pool P4 while P5 only takes stream from source TBOG. The outlet flow
from pool P1 is distributed into sink C1, C2 and C4. The outlet flows from pool P2 and P4 are directly
transported to sink C5. Sink C2, C3 and C4 accept inlet flow withdrawn from pool P3. Part of the outlet
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flow from pool P5 is recycled back to pool P4 and another is transported into sink C3. Part of product
streams from C2 and C1 are recycled back to C1 and C5. The utilization of EFG in the whole FGN
network is only 4.51% and the rest of it goes to flare.

The header pressures are 24.82, 24.82, 1.72, 24.82, and 1.72 bar for C1–C5 respectively. Expanders
are arranged on inlet stream to P4 from HPFG and inlet stream to P1 from FFF. TBOG needs compressor
before mixing with FFF in P1 because of its low pressure (7.58 bar). Compressors are placed on the outlet
streams of P3 to sink C2 and C4 respectively. Expanders are arranged on the stream from P2 to sink C5 as
well as on the stream from sink C1 to sink C5 so as to meet the pressure requirement. The temperature
for sink streams C1–C5 are 118.73, 451.46, 233.94, 168.81 and 113.04 K. In addition, headers C1–C5

collect the flow rate of sink streams as 0.172, 0.169, 0.172, 0.169 and 0.199 kmol/s respectively.
To summarize for the case study section, the block-based representation method can effectively

handle the FGN synthesis problem and the involvement of intermediate pools helps to improve the
management of FGN network, which decreases the total annual cost.

6. Conclusions

We present an abstract superstructure representation for FGN synthesis, which is based on a
block-based arrangement of sources and sinks. Each block allows multiple external fuel gas source
streams and single fuel gas sink streams. The direct connecting streams between adjacent blocks and
jump connecting streams among all nonadjacent blocks enable many alternative ways for the mass
and energy flow from sources to sinks. The blocks with multiple inlet streams serve as mixers and the
blocks with multiple outlet streams are splitters. These blocks form a superstructure when arranged in
a two-dimensional grid. The row number is determined by the number of intermediate pool layers
and the number of sink layers. The column number is determined by the number of intermediate
pools and the number of sinks. With the representation method, an MINLP model for fuel gas network
synthesis problem was proposed with constraints on material balance, energy balance, flow directions,
logical relations, and work calculation. A case study from LNG plant was presented for two instances:
one without intermediate pools and another with intermediate pools. The FGN with pools reduces the
total annual cost by 1.25% to 69.3 MM$/year, compared to TAC (70.1 MM$/year) of the FGN without
intermediate pools. This case study revealed that the block-based representation method enables
the synthesis of fuel gas network and helps to find novel network design. Note that the block-based
representation method is initially proposed for systematic process intensification, and then applied to
process synthesis. The application of block-based approach for FGN integration suggests a general
framework towards process intensification, integration and synthesis.
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Nomenclature

Sets and Indices

I Set of row numbers indexed by i
J Set of column numbers indexed by j
D Set of flow alignments indexed by d
K Set of components indexed by k
FS Set of feed streams indexed by f
PS Set of product streams indexed by p

Subsets

LN(i, j, i′, j′) Set designating the connection between block Bi,j and block Bi′ ,j′

kp(k, p) Set relating the key component k with product stream p with purity specifications
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Variables

Fi,j,k,d Flowrate of component k between block Bi,j and Bi,j+1 in the flow alignment d
Qi,j Amount of heat/cold utility consumed in block Bi,j
Wi,j Amount of work energy added into or withdrawn from block Bi,j
TAC Total annual cost

Positive Continuous Variables

Ff ,p Stream connecting source f and sink p in the classic superstructure
Mi,j,k, f Component flowrate for k in external feed stream f into block Bi,j

M f
i,j,k Component flowrate k of external feed stream into block Bi,j

z f eed f rac
i,j, f Distribution of feed f into block Bi,j

Hi,j,k,p Amount of component k in external product stream p withdrawn from block Bi,j
Hp

i,j,k Component flowrate k of external product stream withdrawn from block Bi,j

Ji,j,i′ ,j′ ,k Flowrate of component k from block Bi,j to another block Bi′ ,j′

J f
i,j,k Overall component flowrate k of jump connecting flow into block Bi,j

J p
i,j,k Overall component flowrate k of jump connecting flow withdrawn from block Bi,j

FPi,j,k,d Positive component of flow Fi,j,k,d
FNi,j,k,d Negative component of flow Fi,j,k,d
FPT

i,j,d Total flowrate for flow FPi,j,k,d

FNT
i,j,d Total flowrate for flow FNi,j,k,d

JT
i,j,i′ ,j′ Total flowrate for flow Ji,j,i′ ,j′ ,k

MT
i,j, f Total flowrate for flow Mi,j,k, f

HT
i,j,p Total flowrate for flow Hi,j,k,p

yb
i,j,k Block composition of component k in block Bi,j

Pi,j Pressure designation in block Bi,j
Ti,j Temperature designation in block Bi,j
Qh

i,j Heat amount supplied into block Bi,j

Qc
i,j Heat amount withdrawn from block Bi,j

EFi,j,d Stream enthalpy carried by the material flow Fi,j,k,d in flow direction d
EMi,j Overall enthalpy brought into block Bi,j along with feed streams
EPi,j Overall enthalpy taken away by product streams at block Bi,j

EJ f
i,j Overall enthalpy carried into block Bi,j through jump flow

EJp
i,j Overall enthalpy taken out from block Bi,j through jump flow
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Wcom
i,j Work energy associated with compression operation

Wexp
i,j Work energy associated with expansion operation

Wcomp,FP
i,j,d Compression work for positive component of flow Fi,j,k,d

Wcomp,FN
i,j,d Compression work for negative component of flow Fi,j,k,d

Wcomp,FS
i,j, f Compression work for feed stream f

Wcomp,JF
i′ ,j′ ,i,j Compression work for jump flow Ji,j,i′ ,j′ ,k

Wexp,FP
i,j,d Expansion work for positive component of flow Fi,j,k,d

Wexp,FN
i,j,d Expansion work for negative component of flow Fi,j,k,d

Wexp,FS
i,j, f Expansion work for feed stream f

Wexp,JF
i′ ,j′ ,i,j Expansion work for jump flow Ji,j,i′ ,j′ ,k

PRF
i,j,d Pressure ratio between the block Bi,j+1 and Bi,j for flow alignment d = 1 or

between the block Bi+1,j and Bi,j for flow alignment d = 2

Binary Variables

zPlus
i,j,d 1 if Fi,j,k,d is from block Bi,j to Bi,j+1 (d = 1) or from block Bi,j to Bi+1,j (d = 2)

zproduct
i,j,p 1 if product stream p is withdrawn from block Bi,j

zcr
i,j,d 1 if boundary between Bi,j and Bi,j+1 for d = 1 (between Bi,j and Bi+1,j for d = 2) is completely restricted

Parameters

Tf Temperature of feed stream f
Pf Pressure of feed stream f
Tmin Minimum temperature in the process
Tmax Maximum temperature in the process
FL Flowrate lower bound in the process
FU Flowrate upper bound in the process
Tmin

p Minimum temperature of product stream p
Tmax

p Maximum temperature of product stream p
Pmin

p Minimum pressure of product stream p
Pmax

p Maximum pressure of product stream p

F f eed
f Available amount of feed stream f

y f eed
k, f Specification of component k in feed stream f

DL
p Minimum amount requirement for product p

DU
p Maximum amount requirement for product p

DeL
p Minimum energy demand for product p

DeU
p Maximum energy demand for product p

ymin,prod
k,p Minimum purity requirement of component k in product stream p

ymax,prod
k,p Maximum purity requirement of component k in product stream p

qmin,prod
s,p Minimum requirement of specification s in product stream p

qmax,prod
s,p Maximum requirement of specification s in product stream p

π
prod
k′ ,k′′ ,p

Minimum product ratio requirement between component k
′

and component k
′′

for product p

LHVk Lower heating value for component k
qs,k Specification s for component k
Cpk Heat capacity of component k
MDPp Moisture dew-point temperature for the product p
HDPp Hydrocarbon dew-point temperature for the product p
Rgas Gas constant
γ Adiabatic compression coefficient for process streams
η Adiabatic compression efficiency
n f s Adiabatic compression coefficient for feed f
UFCf Unit cost of different source streams
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Di f Unit cost of treatment cost for the remaining source stream
Revp Unit profit from excess energy in product stream p
π f Unit transportation cost for source stream f
CCHU Unit cost of heaters
CCCU Unit cost of coolers
CCexp Unit cost of expansion operations
CCcom Unit cost of compression operations

Abbreviations

FGN Fuel Gas Network
MINLP Mixed-integer nonlinear programming problem
NLP Nonlinear programming problem
HEN Heat exchange network
MEN Mass exchange network
UPCS unit-port-conditioning-stream approach
L Lower bound
U Upper bound
min Minimum
max Maximum
prod Product
feed Feed stream
T Total
Bi,j The block at row i and column j
NG Natural gas
EFG End flash gas
HPFG High-pressure fuel gas
TBOG Tankage boil-off gas
FFF Fuel from feed
FFP Fuel from products or byproducts
GTG Gas turbine generators
GTD Gas turbine drivers
MR Mixed refrigerant

References

1. Tahouni, N.; Gholami, M.; Panjeshahi, M.H. Integration of flare gas with fuel gas network in refineries.
Energy 2016, 111, 82–91.

2. Zhang, J.; Zhu, X.; Towler, G. A simultaneous optimization strategy for overall integration in refinery
planning. Ind. Eng. Chem. Res. 2001, 40, 2640–2653.

3. Pellegrino, J.; Brueske, S.; Carole, T.; Andres, H. Energy and Environmental Profile of the US Petroleum Refining
Industry; Technical Report; EERE Publication and Product Library: Washington, DC, USA, 2007.

4. Hasan, M.M.F.; Karimi, I.A.; Avison, C.M. Preliminary synthesis of fuel gas networks to conserve energy
and preserve the environment. Ind. Eng. Chem. Res. 2011, 50, 7414–7427.

5. U.S. Department of Energy (DOE): Refinery Capacity 2017; Number Energy Information Administration:
Washington, DC, USA, 2017.

6. De Carli, A.; Falzini, S.; Liberatore, R.; Tomei, D. Intelligent management and control of fuel gas network.
In Proceedings of the IECON 02 IEEE 2002 28th Annual Conference of the Industrial Electronics Society,
Sevilla, Spain, 5–8 November 2002; Volume 4, pp. 2921–2926.

7. Zhou, L.; Liao, Z.; Wang, J.; Jiang, B.; Yang, Y.; Du, W. Energy configuration and operation optimization of
refinery fuel gas networks. Appl. Energy 2015, 139, 365–375.

8. Zhang, J.; Rong, G. An MILP model for multi-period optimization of fuel gas system scheduling in refinery
and its marginal value analysis. Chem. Eng. Res. Des. 2008, 86, 141–151.

9. Zhang, J.; Rong, G.; Hou, W.; Huang, C. Simulation based approach for optimal scheduling of fuel gas
system in refinery. Chem. Eng. Res. Des. 2010, 88, 87–99.

10. White, D.C. Advanced automation technology reduces refinery energy costs. Oil Gas J. 2005, 103, 45–53.

38



Processes 2018, 6, 23

11. Ismail, O.S.; Umukoro, G.E. Global impact of gas flaring. Energy Power Eng. 2012, 4, 290–302.
12. Fawole, O.G.; Cai, X.M.; MacKenzie, A. Gas flaring and resultant air pollution: A review focusing on black

carbon. Environ. Pollut. 2016, 216, 182–197.
13. Quan, C.; Gao, N.; Wu, C. Utilization of NiO/porous ceramic monolithic catalyst for upgrading biomass

fuel gas. J. Energy Inst. 2017, doi:10.1016/j.joei.2017.02.008.
14. Mokheimer, E.M.; Dabwan, Y.N.; Habib, M.A. Optimal integration of solar energy with fossil fuel gas

turbine cogeneration plants using three different CSP technologies in Saudi Arabia. Appl. Energy 2017,
185, 1268–1280.

15. Friedler, F. Process integration, modelling and optimisation for energy saving and pollution reduction.
Appl. Therm. Eng. 2010, 30, 2270–2280.

16. El-Halwagi, M.M. Pollution prevention through process integration. Clean Prod. Process. 1998, 1, 5–19.
17. Jagannath, A.; Hasan, M.M.F.; Al-Fadhli, F.M.; Karimi, I.A.; Allen, D.T. Minimize flaring through integration

with fuel gas networks. Ind. Eng. Chem. Res. 2012, 51, 12630–12641.
18. Chen, Q.; Grossmann, I. Recent developments and challenges in optimization-based process synthesis.

Annu. Rev. Chem. Biomol. Eng. 2017, 8, 249–283.
19. Tahouni, N.; Gholami, M.; Panjeshahi, M. Reducing energy consumption and GHG emission by integration

of flare gas with fuel gas network in refinery. Int. J. Chem. Nucl. Mater. Metall. Eng. 2014, 8, 900–904.
20. Kondili, E.; Pantelides, C.; Sargent, R. A general algorithm for short-term scheduling of batch operations—I.

MILP formulation. Comput. Chem. Eng. 1993, 17, 211–227.
21. Yeomans, H.; Grossmann, I.E. A systematic modeling framework of superstructure optimization in process

synthesis. Comput. Chem. Eng. 1999, 23, 709–731.
22. Friedler, F.; Tarjan, K.; Huang, Y.; Fan, L. Graph-theoretic approach to process synthesis: Axioms and

theorems. Chem. Eng. Sci. 1992, 47, 1973–1988.
23. Friedler, F.; Tarjan, K.; Huang, Y.; Fan, L. Graph-theoretic approach to process synthesis: Polynomial

algorithm for maximal structure generation. Comput. Chem. Eng. 1993, 17, 929–942.
24. Bagajewicz, M.J.; Manousiouthakis, V. Mass/heat-exchange network representation of distillation networks.

AIChE J. 1992, 38, 1769–1800.
25. Bagajewicz, M.J.; Pham, R.; Manousiouthakis, V. On the state space approach to mass/heat exchanger

network design. Chem. Eng. Sci. 1998, 53, 2595–2621.
26. Papalexandri, K.P.; Pistikopoulos, E.N. Generalized modular representation framework for process synthesis.

AIChE J. 1996, 42, 1010–1032.
27. Proios, P.; Goula, N.F.; Pistikopoulos, E.N. Generalized modular framework for the synthesis of heat

integrated distillation column sequences. Chem. Eng. Sci. 2005, 60, 4678–4701.
28. Lutze, P.; Gani, R.; Woodley, J.M. Process intensification: A perspective on process synthesis. Chem. Eng.

Process. Process Intensif. 2010, 49, 547–558.
29. Lutze, P.; Babi, D.K.; Woodley, J.M.; Gani, R. Phenomena based methodology for process synthesis

incorporating process intensification. Ind. Eng. Chem. Res. 2013, 52, 7127–7144.
30. Babi, D.K.; Holtbruegge, J.; Lutze, P.; Górak, A.; Woodley, J.M.; Gani, R. Sustainable process

synthesis—Intensification. Comput. Chem. Eng. 2015, 81, 218–244.
31. Tula, A.K.; Eden, M.R.; Gani, R. Process synthesis, design and analysis using a process-group contribution

method. Comput. Chem. Eng. 2015, 81, 245–259.
32. Wu, W.; Henao, C.A.; Maravelias, C.T. A superstructure representation, generation, and modeling framework

for chemical process synthesis. AIChE J. 2016, 62, 3199–3214.
33. Wu, W.; Yenkie, K.; Maravelias, C.T. A superstructure-based framework for bio-separation network synthesis.

Comput. Chem. Eng. 2017, 96, 1–17.
34. Demirel, S.E.; Li, J.; Hasan, M.M.F. Systematic process intensification using building blocks. Comput. Chem. Eng.

2017, 105, 2–38.
35. Li, J.; Demirel, S.E.; Hasan, M.M.F. Simultaneous Process Synthesis and Process Intensification using Building

Blocks. Comput. Aided Chem. Eng. 2017, 40, 1171–1176.
36. Demirel, S.E.; Li, J.; Hasan, M.M.F. A General Framework for Process Synthesis, Integration and

Intensification. In Proceedings of the 13th International Symposium on Process System Engineering,
San Diego, CA, USA, 1–5 July 2018. (accepted)

39



Processes 2018, 6, 23

37. Li, J.; Demirel, S.E.; Hasan, M.M.F. Process Synthesis using Block Superstructure with Automated Flowsheet
Generation and Optimization. AIChE J. 2018, under review.

38. Misener, R.; Floudas, C.A. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear
equations. J. Glob. Optim. 2014, 59, 503–526.

39. Aslambakhsh, A.H.; Moosavian, M.A.; Amidpour, M.; Hosseini, M.; AmirAfshar, S. Global cost optimization
of a mini-scale liquefied natural gas plant. Energy 2018, doi:10.1016/j.energy.2018.01.127.

40. Alabdulkarem, A.; Mortazavi, A.; Hwang, Y.; Radermacher, R.; Rogers, P. Optimization of propane
pre-cooled mixed refrigerant LNG plant. Appl. Therm. Eng. 2011, 31, 1091–1098.

41. Lim, W.; Choi, K.; Moon, I. Current status and perspectives of liquefied natural gas (LNG) plant design.
Ind. Eng. Chem. Res. 2013, 52, 3065–3088.

42. Hasan, M.M.F. Modeling and Optimization of Liquefied Natural Gas Process. Ph.D. Thesis, National
University of Singapore, Singapore, 13 August 2009.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

40



processes

Article

Cuboid Packed-Beds as Chemical Reactors?

Raja Ghosh

Department of Chemical Engineering, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4L7, Canada; rghosh@mcmaster.ca; Tel.: +1-905-525-9140 (ext. 27415)

Received: 12 April 2018; Accepted: 23 April 2018; Published: 1 May 2018

Abstract: Columns are widely used as packed-bed or fixed-bed reactors in the chemical process
industry. Packed columns are also used for carrying out chemical separation techniques such as
adsorption, distillation, extraction and chromatography. A combination of the variability in flow
path lengths, and the variability of velocity along these flow paths results in significant broadening
in solute residence time distribution within columns, particularly in those having low bed height
to diameter ratios. Therefore, wide packed-column reactors operate at low efficiencies. Also, for
a column of a particular bed height, the ratio of heat transfer surface area to reactor volume varies
inversely as the radius. Therefore, with wide columns, the available heat transfer area could become
a limiting factor. In recent papers, box-shaped or cuboid packed-bed devices have been proposed
as efficient alternatives to packed columns for carrying out chromatographic separations. In this
paper, the use of cuboid packed-beds as reactors for carrying out chemical and biochemical reactions
has been proposed. This proposition is primarily supported in terms of advantages resulting from
superior system hydraulics and narrower residence time distributions. Other potential advantages,
such as better heat transfer attributes, are speculated based on geometric considerations.

Keywords: packed-bed reactor; packed column; cuboid packed-bed; chemical reactor; residence time
distribution; heat transfer

1. Introduction

Packed-bed or fixed-bed reactors are ubiquitous in the chemical process industry [1–3]. With the
increasing popularity of flow chemistry-based synthesis, their use is likely to increase [4–6]. A column
is the most common configuration for a packed-bed reactor. It is a cylindrical vessel within which a bed
of particles is tightly held in place under compression (see Figure 1). In certain specialized forms of
packed-beds, such as monoliths [7,8], the particles are fused together. Packed columns are also used for
chemical separation techniques such as adsorption, distillation, extraction and chromatography [9–12].

A packed-column reactor generally facilitates contact between the surface of catalyst particles
and reactant/s present in the fluid flowing through it. The most common example of the use of such
catalytic packed-column reactors is ammonia synthesis. Columns packed with inert material could also
be used to bring about intimate contact between reactants in a simple and continuous flow-through
mode. In a separation process, the solid material comprising the packed column is generally the
separation media, e.g., an adsorbent, being used to separate a solute of interest. Packed columns are
also used to increase the interfacial area between immiscible fluids in processes such as distillation
and extraction.

The residence time distribution or RTD is an important attribute in packed-bed reactors [13–15].
By the rule of thumb, the wider the column, and the poorer (i.e., the broader) is the RTD. Therefore,
wider columns are less efficient than longer columns. Also, with a column of a particular bed height,
the heat transfer surface area to reactor volume ratio (i.e., specific surface area, excluding the headers)
varies inversely as the radius. Therefore, when columns with large cross-sectional areas are used,
the available heat transfer area could become a limiting factor [16–18]. Where this is the case, multi-tube
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packed-column reactors are commonly used [19–22]. While this multi-tube configuration increases
heat-transfer, there are penalties in the form of design complexity, and higher equipment cost.

Figure 1. Idealized flow paths in a packed column.

Chromatography is traditionally carried out using packed columns. In recent papers from my
group, we have proposed the use of box-shaped or cuboid packed-bed devices as alternative to columns,
for carrying out chromatographic separation of proteins [23–26]. The design of these cuboid packed-bed
devices was inspired by laterally fed membrane chromatography (or LFMC) devices [27–31], also
developed in recent years in my research group. A diagrams of a cuboid packed-bed device is shown
in Figure 2. A set of lateral flow channels similar to those utilized in LFMC devices [27–31] are used
to distribute the feed liquid into the cuboid packed-bed and collect the effluent liquid emerging
from it on the other side. Such flow arrangement ensures uniformity in solute flow path lengths,
which in turn contributes towards the narrowing of the solute RTD within the device [24,29]. Figures 1
and 2 show images of a packed column and a cuboid packed-bed respectively, in each case, showing
the idealized flow-paths within these devices. As mentioned earlier, a combination of variability
in the flow path lengths and variability of velocity along these flow paths results in a significant
broadening in solute RTD within a column [23]. This contributes towards peak broadening and
poor peak-resolution in multi-component separation. By contrast, the flow path lengths within
a cuboid packed-bed are fairly uniform and the velocities along these do not vary that significantly [23].
The cuboid packed-bed devices described in our papers outperformed their corresponding equivalent
chromatography columns (i.e., packed with same media, and having the same bed height and area of
cross-section) in terms of multiple separation metrics such as the number of theoretical plates, peak
shape, peak width, peak asymmetry, and resolution in multi-component protein separation [23–26].
The dispersion effects in these cuboid packed-bed devices were significantly lower than those in
their equivalent columns as evident from their greater numbers of theoretical plates per unit bed
height. Based on the above considerations, could it be assumed that box-shaped or cuboid packed-bed
reactors would outperform packed-column reactors, at least in terms of their hydraulic properties and
RTD attributes?

This paper proposes the use of cuboid packed-beds as reactors for carrying out chemical and
biochemical reactions. The rationale this is provided in terms of advantages resulting from superior
system hydraulics and the resultant narrower RTD. The residence time distribution predictions are
based on mathematical models discussed in our earlier papers [24,29]. Other potential advantages,
such as superior heat transfer attributes are speculated based on geometric considerations.
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Figure 2. Idealized flow paths in a cuboid packed-bed.

2. Materials and Methods

Sodium chloride was purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium chloride
solution was prepared using water obtained from a SIMPLICITY 185 water purification unit Millipore
(Molsheim, France). All solutions were micro-filtered and degassed prior to use using PVDF micro-filter
(VVLP04700, 0.1 μm pore size, Millipore, Billerica, MA, USA). HiTrap Capto S (5 mL, product number
17-5441-2) columns, and Capto S (product number 17-5441-01) chromatographic media were purchased
from GE Healthcare Biosciences, QC, Canada. The HiTrap Capto S column was used as the surrogate
packed-column reactor while a custom designed cuboid packed-bed device filled with Capto S
resin particles served as the surrogate cuboid packed-bed reactor. The basic design of the cuboid
packed-bed devices has been described in our previous papers [23–26]. The central housing for the
cuboid packed-bed was made of polyvinyl chloride (PVC). The upper and lower plates were made of
acrylic. The lateral channels engraved in the plates were pillared for efficient flow distribution and
collection respectively. The dimensions of the cuboid packed-bed were respectively 25 mm (length) ×
8 mm (width) × 25 mm (height), the effective bed volume being 5 mL. The packed-bed was separated
from the lateral channels using nylon meshes (0.002 inch opening, product number 9318T48, McMaster
Carr, Chicago, IL, USA) for retaining and holding the chromatographic media in place.

An AKTA prime liquid chromatography system (GE Healthcare Biosciences, Quebec, QC, Canada)
was used for salt tracer experiments. E-curve type profiles for the packed column and the cuboid
packed-bed device were obtained using 0.8 M sodium chloride as tracer and 0.4 M sodium chloride
as base solution. A 0.1 mL sample loop was used for injecting the tracer pulse for characterizing the
hydraulics of the column and the cuboid packed-bed.

3. Results and Discussion

In a previous paper [23], the performance of a chromatographic column having 9 mL bed volume
(30 mm diameter and 12.7 mm bed height) and packed with Capto S media was compared with
an equivalent cuboid packed-bed (58.9 mm length × 12 mm width × 12.7 mm height). At a flow rate of
5 mL/min which corresponded to a superficial velocity of 42.4 cm/h, the number of theoretical plates
per meter were found to be 2628 and 4651 respectively, for the column and the cuboid packed-bed.
To verify whether such difference was due to flow maldistribution within the column, the RTD
within the column and the cuboid packed-bed device were simulated using the using the methods
described in our previous papers [24,29]. Figure 3 shows the RTD within the column as function of
dimensionless radius (r/R) and dimensionless column volume (V/VT) at a superficial velocity of
42.4 cm/h. The radial distance step used in the simulation was 0.001 cm. The shortest residence time
corresponded to r = 0, i.e., the center of the column, and the value increased significantly towards the
periphery. This was consistent with the idealized flow paths picturized in Figure 1. In the top header,
the liquid flowed in a radially outward direction while in the lower header, it flowed in a radially
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inward direction. This flow pattern resulted in significant variability in the path lengths, i.e., a flow
path closer to the center was significantly shorter than one closer to the periphery. Also, as discussed in
a previous paper [23], the radial velocity in the top header decreased very significantly in an outward
direction due to an increase in available cross-sectional area, and the loss of liquid due to entry in to
the packed-bed.

dvr

dr
= −

(vr

r
+

vs

h

)
(1)

In the lower header, the radial velocity increased in an inward direction due to a decrease in
available cross-sectional area and cumulative collection of liquid from the packed-bed. Quite clearly,
the increased transit time in the column headers for fluid elements traversing the peripheral regions of
the column contributed significantly to the increase in residence time. Both profiles shown in Figure 3
indicated the same trend, i.e., the residence time increased very significantly closer to the column
periphery. However, this increase was a bit more pronounced when the residence time was plotted
versus (V/VT). This reflected the fact that in a column, more media was located towards the periphery
than near the center. Figure 4 shows a plot of (V/VT) versus (r/R) which indicated that 50% of the
media existed in the outer 29% radial locations of the column. Hence, the increased residence time
closer to the periphery of the column affected a very significant volume fraction of media packed
within the column.

Figure 3. Residence time within a column as function of dimensionless radius (r/R) and dimensionless
volume (V/VT) (media: Capto Q, dimensions: 30 mm diameter and 12.7 mm bed height, bed volume:
9 mL, flow rate: 5 mL/min, superficial velocity = 42 cm/h).

Figure 4. Plot of dimensionless volume (V/VT) versus dimensionless radius (r/R).
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Figure 5 shows the RTD within the cuboid packed-bed device as function of dimensionless length
(z/l). The lateral distance step used in the simulation was 0.001 cm. In a recent paper (24) it has been
shown that the residence time as function of length within a cuboid packed-bed could be obtained by:

τ =

[
hB
vS

]
+

⎡⎣ 2z

2v0 − z
∣∣∣ dvU

dz

∣∣∣
⎤⎦+

⎡⎣ 2(l − z)

2v0 − (l − z)
∣∣∣ dvU

dz

∣∣∣
⎤⎦ (2)

When
∣∣∣ dvU

dz

∣∣∣ is small:

τ ∼= hB
vS

+
l

v0
(3)

Equation (3) implies that when the change in velocity within the lateral channels of the cuboid
packed-bed is small, the residence time is largely independent of location. Figure 5 shows that for
the cuboid packed-bed device under consideration [23], the residence time was slightly lower at the
mid-point of the device. However, the difference in residence time between the mid-point and the
ends was negligible compared to that observed with the packed column. From Equation (2), it could
be shown that the minimum residence time corresponding to the mid-point of the cuboid packed-bed
device could be obtained by [24]:

τmin =

[
hB
vS

]
+

⎡⎣ 2l

2v0 − l
2

∣∣∣ dvU
dz

∣∣∣
⎤⎦ (4)

Likewise, the maximum residence time corresponding to the ends could be obtained by [24]:

τmax =

[
hB
vS

]
+

⎡⎣ 2l

2v0 − l
∣∣∣ dvU

dz

∣∣∣
⎤⎦ (5)

For the optimum functioning of a cuboid packed-bed device, the difference between the maximum
and minimum residence time should be as small as possible [24]:

|τmax − τmin| =

⎡⎣ 2l

2v0 − l
∣∣∣ dvU

dz

∣∣∣
⎤⎦−

⎡⎣ 2l

2v0 − l
2

∣∣∣ dvU
dz

∣∣∣
⎤⎦ (6)

Tracer experiments using sodium chloride solution were carried out with the 5 mL HiTrap
Capto S column (i.e., the surrogate packed-column reactor) and the 5 mL custom designed cuboid
packed-bed device filled with Capto S resin particles (i.e., the surrogate cuboid packed-bed reactor).
These experiments were performed in triplicate. Figure 6 shows representative salt tracer peaks
obtained from these experiments which were carried at 4 mL/min flow rate (150 cm/h) using 0.4 M
sodium chloride as mobile phase and 100 μL of 0.8 M sodium chloride solution as the tracer pulse
(i.e., 2% of the packed-bed volume). The peak obtained with the cuboid packed-bed device was higher,
sharper and more symmetric than that obtained with the column. The calculated theoretical plate data
(N) obtained from these are summarized in Table 1. The number of theoretical plates was calculated
using the following equation [32]:

N = 5.545(tR/w0.5)
2 (7)

The results shown in Figure 6 and Table 1 clearly demonstrate that the cuboid packed-bed device
had vastly superior hydraulic attributes than the equivalent packed column. For the same bed height,
the cuboid packed-bed had 3.8 times the number of theoretical plates. These new experimental results
are consistent with the RTD results shown in Figures 3 and 5. Overall, these results suggest that
a reactor based on the cuboid packed-bed design would perform better than its equivalent packed
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column, at least in terms of the hydraulic properties and RTD. Future studies will involve detailed
analysis of E-curves and F-curves obtained from such reactors. Also, the experiments discussed
above were carried out using small reactors (i.e., 5 mL bed volume). Experimental work based on
200 mL scale reactors are currently being carried out in my laboratory. Computational fluid dynamics
(CFD) studies which allow the study of larger reactors through simulations are also being carried out
in parallel.

Figure 5. Residence time within a cuboid packed-bed as function of dimensionless length (z/l) (media:
Capto Q, dimensions: 58.9 mm length × 12 mm width × 12.7 mm bed height, bed volume: 9 mL,
Flow rate: 5 mL/min, superficial velocity = 42 cm/h).

Figure 6. Salt tracer peaks obtained using the surrogate packed-column reactor and the surrogate
cuboid packed-bed reactor (bed volume: 5 mL, bed height 25 mm, flow rate: 4 mL/min, superficial
velocity: 150 cm/h, media: Capto S, mobile phase: 0.4 M sodium chloride, tracer: 0.8 M sodium
chloride, tracer volume: 1 microliters).

Table 1. Number of theoretical plates in the surrogate packed-column reactor and the surrogate cuboid
packed-bed reactor (bed volume: 5 mL, bed height 25 mm, flow rate: 4 mL/min, superficial velocity:
150 cm/h, media: Capto S, mobile phase: 0.4 M sodium chloride, tracer: 0.8 M sodium chloride, tracer
volume: 1 microliters).

Device N

Packed column 35
Cuboid packed-bed 133

Error: ±5%
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The design features of the cuboid packed-bed device also provide certain potential advantages
from a heat transfer perspective. With a packed column of a given bed height, the heat transfer area
per unit reactor volume (excluding the headers) varies inversely with the diameter, i.e., the larger the
reactor diameter, the lower is the specific heat transfer area (HTA). This implies that removal or addition
of heat to a packed column with a large diameter for endothermic and exothermic reactions respectively
would be challenging. By contrast, the HTA of a cuboid packed-bed device could be changed in a very
flexible manner by changing the length to width (L/W) ratio, to increase or decrease the values of HTA
as required. To make an objective comparison, the HTA of a cuboid packed-bed device was compared
with that of a packed column having the same bed height and bed-volume. For a packed column,
the HTA is fixed based on the diameter. Figure 7 shows a plot of the (HTAcuboid/HTAcolumn) ratio
for the two reactors as function of the (L/W) ratio of the cuboid packed-bed device. The minimum
(HTAcuboid/HTAcolumn) ratio corresponded to an (L/W) ratio of 1, i.e., when the cuboid packed-bed
device had a square cross-sectional area. As the (L/W) ratio was increased, the (HTAcuboid/HTAcolumn)
ratio could be increased quite significantly. Therefore, a cuboid packed-bed reactor would have
a significant advantage over a packed column for conducting endothermic and exothermic reactions.

Figure 7. (HTAcuboid/HTAcolumn) ratio as function of the (L/W) ratio of a cuboid packed-bed reactor.

The heat transfer advantage of the cuboid packed-bed device over a packed column could also
be hypothesized from a heat transfer distance perspective. Heat transfer distance is a vital factor
determining thermal gradients within packed-beds, i.e., the greater the distance, the greater is the
likelihood of temperature variation. As shown in Figure 8, the maximum heat transfer distance
(MHTD) for a packed column corresponded to its radius. On the other hand, the average heat transfer
distance (AHTD) corresponded to 29% of the radius, since 50% of the packed material existed within
the zone extending up to 71% of the radius from the center. Therefore, both MHTD and AHTD for
a packed column varied directly with the diameter, i.e., the greater the diameter, the greater these heat
transfer distances. Therefore, for a packed column having a particular bed height and bed volume,
both MHTD and AHTD are fixed. Once again, these heat transfer distances for a cuboid packed-bed
could be adjusted in a flexible manner by changing the (L/W) ratio. To make an objective comparison,
the MHTD and AHTD of a cuboid packed-bed device were compared with those of a packed column
having the same bed height and the same bed volume. With the cuboid packed-bed device, the MHTD
was equal to half the width while the AHTD was equal to one fourth the width. Figure 8 shows
a plot of the MHTD and AHTD ratios for the two reactors (cuboid/column) as function of the (L/W)
ratio of the cuboid packed-bed device. The MHTD of the cuboid packed-bed device was consistently
lower at all values of (L/W). The AHTD was greater with cuboid packed-bed device for (L/W) values
lower than 2.4 but was lower are greater values of (L/W). Once again, these results suggest that
a cuboid packed-bed reactor would have a significant advantage over a packed column for conducting
endothermic and exothermic reactions.
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Figure 8. (MHTDcuboid/MHTDcolumn) and (AHTDcuboid/AHTDcolumn) ratios as function of the (L/W)
ratio of a cuboid packed-bed reactor.

4. Conclusions

The above discussion supports the basic proposition of this paper, i.e., cuboid packed-beds could
potentially be used as reactors for carrying out chemical and biochemical reactions. The principal
rationale behind this proposition is that the narrower RTD of the cuboid packed-bed makes it better
than a packed column for carrying out chemical reaction. The superior RTD attributes of the cuboid
packed-bed were demonstrated using mathematical models and new experimental data obtained using
surrogate packed column and cuboid packed-bed reactors. In addition to superior RTD attributes,
the cuboid packed-bed could potentially also have superior heat transfer attributes, relevant for
conducting exothermic and endothermic reactions. These potential advantages, were speculated-based
purely on geometric considerations. For packed columns of a given bed height, the heat transfer
area per unit reactor volume varies inversely with the diameter. Therefore, if a packed column with
a large diameter is to be used for conducting endothermic or exothermic reactions, removal or addition
of heat would be challenging. By contrast, the specific heat transfer area of a cuboid packed-bed
device could be changed in a very flexible manner by changing the length to width ratio. The cuboid
packed-bed also compares favorably in terms of lower heat transfer distances. Therefore, a cuboid
packed-bed reactor could potentially have significant advantages over a packed column, also from
a heat transfer perspective.

5. Patents

CHROMATOGRAPHY DEVICE AND METHOD FOR FILTERING A SOLUTE FROM A FLUID
R Ghosh—US Patent App. 15/616, 333, 2017.
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Notation

vr Radial velocity (m/s)
r Dimension in radial direction (m)
vs Superficial (or linear) velocity (m/s)
h Header height (m)
V Volume (m3)
VT Total volume of packed column (m3)
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R Total radius of packed column (m)
τ Residence time (s)
hB Bed height (m)
z Dimension along length of cuboid packed-bed (m)
v0 Inlet velocity in upper lateral channel (m/s)
vU Velocity in upper lateral channel (m/s)
l Length of cuboid packed-bed (m)
τmin Minimum residence time (s)
τmax Maximum residence time (s)
N Number of theoretical plates (-)
tR Retention time (s)
w0.5 Peak width at half height (s)
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Abstract: Synthetic ammonia produced from fossil fuels is essential for agriculture. However,
the emissions-intensive nature of the Haber–Bosch process, as well as a depleting supply of these
fossil fuels have motivated the production of ammonia using renewable sources of energy. Small-scale,
distributed processes may better enable the use of renewables, but also result in a loss of economies of
scale, so the high capital cost of the Haber–Bosch process may inhibit this paradigm shift. A process
that operates at lower pressure and uses absorption rather than condensation to remove ammonia
from unreacted nitrogen and hydrogen has been proposed as an alternative. In this work, a dynamic
model of this absorbent-enhanced process is proposed and implemented in gPROMS ModelBuilder.
This dynamic model is used to determine optimal designs of this process that minimize the 20-year
net present cost at small scales of 100 kg/h to 10,000 kg/h when powered by wind energy. The capital
cost of this process scales with a 0.77 capacity exponent, and at production scales below 6075 kg/h,
it is less expensive than the conventional Haber–Bosch process.

Keywords: ammonia synthesis; dynamic modeling; design optimization

1. Introduction

Synthetic ammonia is an important commodity in present day society. In 2015, 160 million
tonnes of ammonia were produced globally, the majority of which was used either directly or as
a building block for nitrogen fertilizer, and the global demand for ammonia is expected to grow
steadily at an annual rate of 1.5% [1]. However, the hydrogen required for ammonia production is
conventionally obtained from fossil fuels such as natural gas or coal [2]. Furthermore, conventional
ammonia production is energy intensive; in fact, ammonia synthesis for nitrogen-based fertilizers
is responsible for 1% of global energy consumption [3]. A finite and depleting supply of fossil
resources, as well as a desire for increased sustainability of fertilizer production have motivated
the idea of producing ammonia using renewable energy. Additionally, ammonia has the potential as an
energy-dense, carbon neutral liquid fuel, which, when made using renewables, could be used in various
applications such as long-term energy storage or transportation to further reduce carbon intensity [4,5].
A proposed production pathway for renewable ammonia is to use electricity generated from renewable
sources such as wind or solar to obtain hydrogen from electrolysis, nitrogen from air and to power
the ammonia synthesis process itself. Small-scale, distributed production of ammonia better enables
the use of this renewable energy. Pursuant to this notion of small-scale renewable-powered ammonia
synthesis, a 65-kg/day (2.71 kg/h) wind-powered Haber–Bosch process has been constructed in
Morris, MN [6].

The economics of renewable-powered ammonia synthesis using the Haber–Bosch process have
also been investigated. In [7], wind-powered ammonia production for the purpose of fuel on remote
islands was considered. Small-scale ammonia production was shown to be economically viable only if
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diesel costs more than $10/gallon. This result may be viable for isolated communities, but does not
lend itself to more widespread adoption. In [8], the economic feasibility of a grid-connected, offshore
wind-powered ammonia facility was examined, and the synthesis loop was found to account for over
20% of the ammonia system capital cost. An isolated (not grid-connected) ammonia energy storage
system was proposed in [9], and it was determined that the ammonia synthesis loop accounted for up
to 25% of the total system capital cost. Evidently, reducing the capital cost of ammonia synthesis would
aid in improving the economics of these systems. Taking a more expansive view, optimal ammonia
fertilizer supply chains for Iowa and Minnesota were determined [10]. In addition to purchasing
from conventional producers, the option to install small-scale wind-powered Haber–Bosch processes
was available, but the optimal supply chains only included renewable ammonia synthesis when a
carbon tax was imposed. This result provides further support for efforts to reduce the capital cost of
ammonia synthesis.

The main driver of the capital cost in the Haber–Bosch process is high pressure, which leads to
expensive compressors, as well as high wall thickness requirements for piping and vessels. However,
significantly reducing the pressure in the Haber–Bosch process is difficult because doing so reduces
reactor single pass conversion and also requires even lower temperatures for condensation of ammonia
from unreacted hydrogen and nitrogen, thus increasing refrigeration demand. An alternative approach
is absorbent-enhanced ammonia synthesis in which a bed of supported alkali metal salt replaces the
conventional condenser [11,12]. This absorbent allows for more complete ammonia separation as
compared to condensation, and subsequently, high ammonia production rates can be achieved while
operating at lower pressures [13]. Additionally, ammonia absorption can occur around 200 ◦C, meaning
that cooling water can be used, rather than refrigeration, which is required in the Haber–Bosch process.

The promise of this absorbent-enhanced process has motivated the present work. First, we develop
a model of this process (which is dynamic because absorption is inherently transient). We then use the
model for design optimization to determine process design and operating conditions that minimize
its net present cost (NPC) under the condition that the process is powered using only stranded wind
energy at multiple small scales. The rest of the paper is structured as follows. Section 2 provides a
description of the absorbent-enhanced process. Section 3 outlines the dynamic model of this process.
Section 4 provides the formulation of the optimal design problem. The results of the optimal design
problem at scales of 100 kg/h, 500 kg/h, 1000 kg/h, 5000 kg/h and 10,000 kg/h are presented in
Section 5. The implications of the optimal design results as they pertain to the economics of the
Haber–Bosch process are discussed in Section 6.

2. Process Description

A flow diagram of the absorbent-enhanced ammonia synthesis process is given in Figure 1.
Absorption is inherently transient, but the use of two beds allows for operation at a cyclic steady state.
The process can naturally be partitioned into two distinct parts: reaction-absorption and desorption
(regeneration). The feed to the reaction-absorption loop is a stoichiometric mixture of nitrogen at
1.013 bar (atmospheric pressure) and hydrogen at 10 bar (the outlet pressures of pressure-swing
adsorption and electrolysis, respectively). These gases are compressed to the process operating pressure,
which is between 15 and 30 bar (one order of magnitude lower than industrial conditions in the
Haber–Bosch process), before being sent to a heat exchanger, which uses the reactor effluent to heat the
feed gas to reaction temperature, which is around 400 ◦C. The nitrogen and hydrogen then react over a
fixed bed of wustite-based iron catalyst, which is the industrial standard, to form ammonia. The reactor
effluent is partially cooled using the previously-mentioned heat exchanger and further cooled with
cooling water to the absorption temperature, which is in the range of 100–200 ◦C. The absorber is a
fixed bed of magnesium chloride supported on silica [12], which serves to remove ammonia selectively
through its absorption into the solid. The absorber effluent, which is primarily nitrogen and hydrogen
with some unabsorbed ammonia, is then cooled to ensure safe operation of the recycle compressor,
for its discharge temperature cannot exceed 150 ◦C. These gases are mixed with the fresh feed.
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Figure 1. Absorbent-enhanced ammonia synthesis process flow diagram.

At the end of an absorption cycle, once the absorber is deemed to be saturated, it is regenerated
through a combination of heating to between 400 and 500 ◦C and decreasing pressure by opening
one end of the bed. This causes a reduction in the ammonia storage capacity of the absorbent,
and subsequently, ammonia is released to the gas phase. This gas leaves the bed through the open end
due to the imposed pressure gradient. The absorber effluent is cooled (to not damage the subsequent
compressor), compressed and condensed so that it can be stored as a liquid. The release of ammonia
occurs until the absorbent has been emptied and the bed pressure is equal to the pressure outside
the vessel. Once this occurs, one bed volume of stoichiometric nitrogen and hydrogen is fed to the
bed to displace the gaseous ammonia. The emptied bed is re-pressurized to the reaction-absorption
pressure with a stoichiometric mixture of nitrogen and hydrogen and then reconnected to the
reaction-absorption loop.

3. Mathematical Model

A dynamic model of the absorbent-enhanced process was created using gPROMS ModelBuilder
5.1 [14]. The individual unit models are described in this section, though they are largely standard to the
PML Library in gPROMS. Physical properties such as mass-specific enthalpy Ĥ, density ρ and viscosity
μ are calculated in Multiflash 6.1 [15] using temperature T, pressure P and mass composition wi as
inputs. These calculations are based on the Redlich–Kwong–Soave equation of state for thermodynamic
properties and the SuperTRAPP model [16] for transport properties.

3.1. Reactor

The ammonia synthesis reactor is modeled as an adiabatic pseudo-homogeneous plug flow reactor,
with spatial variation in the axial direction z. Reactor specifications, which are taken as constant in the
model, are given in Table 1. The mass balance for species “i” is:

εbed
∂m̃i
∂t

= −−1
At

∂ṁi
∂z

+ νi MWi(1 − εbed)rNH3 (1)

where m̃i is the species mass concentration in kg/m3, ṁi is the species mass flow rate in kg/s, rNH3

is the rate of ammonia formation in mol/(m3
cat s), νi is the species stoichiometric coefficient, MWi
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is the species molecular weight in kg/mol, εbed is the bed void fraction and At is the reactor tube
cross-sectional area in m2. Writing the species balance in terms of mass, rather than moles, as is often
the case, aids with the numerical solution in gPROMS. The energy balance is:

∂Ũ
∂t

= −−1
At

∂(ṁĤ)

∂z
+ (−ΔHrxn)(1 − εbed)rNH3 (2)

where Ũ is the volume-specific internal energy in kJ/m3, ṁ is the total mass flow rate in kg/s, Ĥ is
the mass specific enthalpy in kJ/kg and ΔHrxn is the enthalpy of the ammonia synthesis reaction in
kJ/mol. The volume specific internal energy is given by:

Ũ = ρĤ − P (3)

where ρ is the gas density in kg/m3 and P is pressure in bar. The pressure drop through the bed is
given by the Ergun equation:

− ∂P
∂z

= vs
[150(1 − εbed)

2

ε3
bedd2

p
μ +

1.75(1 − εbed)

ε3
beddp

ρvs
]

(4)

where vs is the superficial velocity in m/s, dp is the particle diameter in m and μ is the gas viscosity
in kg/(m s). In the considered range of reactor operating conditions, the reactor particle Reynolds
number is in the transitional region.

Table 1. Ammonia synthesis reactor specifications.

Parameter Symbol Specification

Bed Void Fraction 1 εbed 0.4
Catalyst Density, kg/m3 ρcat 3000

Catalyst Particle Diameter, m dp 2 × 10−3

The bed void fraction is determined from the experimental setup in [13].

The rate of ammonia formation is given by the expression proposed in [17]:

rNH3 =
k(pN2 K2

a − p2
NH3

/p3
H2
)

(1 + KNH3 pNH3 /pω
H2
)2α

(5)

where pi is the partial pressure of species “i” in atm and ω and α are fixed constants, the values of
which are given in Table 2. The rate constant k, ammonia adsorption constant KNH3 and equilibrium
constant Ka are given by:

k = ko exp(−EA/RT) (6)

KNH3 = KNH3o exp(ENH3 /RT) (7)

log10(Ka) = log10(Ka1) + Ka2T + Ka3T2 + Ka4/T + Ka5 (8)

where T is the temperature in the bed in K, and values for all constants appearing in these expressions,
such as EA, are given in Table 2. This rate expression was chosen because it is non-infinite for zero
ammonia partial pressure. This is not a concern when modeling the Haber–Bosch process because
condensation never results in complete removal of ammonia from unreacted gases, but the condition
of low ammonia partial pressure in the reactor inlet could potentially be achieved by the absorbent
used in this process. It is noted that this kinetic expression is assumed to be valid for the lower total
pressures investigated in this work and has not been validated experimentally at those conditions.
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Table 2. Ammonia synthesis reaction rate expression parameters.

Parameter Value

ko, mol/(m3
cat s atm) 1.096 × 1010

EA, J/mol 46,737
KNH3o, atm(1−ω) 2.94 × 10−4

ENH3 , J/mol 100,628
ω 1.564
α 0.64

Ka1 −2.691122
Ka2, 1/K −5.519265 × 10−5

Ka3, 1/K2 1.848863 × 10−7

Ka4, K 2001.6
Ka5 2.6899

Low ammonia partial pressures also cause internal diffusion limitations in the ammonia synthesis
catalyst [18]. Rigorously, this limitation would be accounted for by considering a heterogeneous
reactor model with the simultaneous solution of fluid and particle phase mass balances. In order to
reduce the computational complexity of the model while still accounting for mass transfer limitations,
we generated an empirical expression for the ammonia partial pressure dependence of the catalyst
effectiveness factor (η):

η(pNH3) =
a2 p2

NH3
+ a1 pNH3 + ao

b2 p2
NH3

+ b1 pNH3 + 1
(9)

where values for the fitted constants are given in Table 3. This expression was obtained following the
approach described in [19]. Effectiveness factor data were generated by the repeated “offline” solution
of the particle mass balance for varying ammonia partial pressures. The empirical expression above
was subsequently fit to the data.

Table 3. Ammonia reaction effectiveness factor parameters.

Parameter ao a1 a2 b1 b2

Value 0.03582 8.366 35.94 7.705 36.11

3.2. Absorber

The model for the bulk fluid phase of the absorber considers axial dispersion and convection
of mass and energy (the axial coordinate is z). The specifications, which are taken as constant in the
absorber model, are given in Table 4. The mass balance for species “i” in an absorber tube is:

εtotal
∂m̃i
∂t

= −−1
At

∂ṁi
∂z

+ εbedDi
∂2m̃i
∂z2 + MWi(1 − εtotal)ρabs(rdes,i − rabs,i) (10)

where Di is the species effective dispersion coefficient in m2/s, which is calculated using the Wakao
correlation for gas phase dispersion in packed beds [20], rdes,i and rabs,i are species desorption and
absorption rates in mol/(kgabs s), εtotal is the total void fraction (accounting for the bed void fraction
and absorbent particle porosity), ρabs is the absorbent density in kg/m3 and At is the absorber tube
cross-sectional area in m2. It is noted that for the range of conditions in which absorption operates,
the magnitude of dispersion coefficients is quite low such that dispersion could be neglected if desired.
The absorber is non-adiabatic to accommodate the temperature difference required between absorption
and desorption modes. The energy balance for an absorber tube is:

∂Ũ
∂t

= −−1
At

∂(ṁĤ)

∂z
+ εbedλbed

∂2T
∂z2 +

Ns

∑
i=1

ΔHabs(1 − εtotal)ρabs(rdes,i − rabs,i) +
4qext

dT
(11)
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where T is the temperature of the fluid and absorbent in K (assumed to be identical), λbed is the bed
effective thermal conductivity in kW/(m K), which is calculated using the Specchia correlation [21],
ΔHabs is the enthalpy of absorption of species “i” in kJ/mol, qext is the external heat addition or
removal in kW and dT is the absorber tube diameter in m. The volumetric internal energy holdup is
given by:

Ũ = εtotal(ρĤ − P) + (1 − εtotal)ρabsĉp,absT (12)

where ĉp,abs is the absorbent heat capacity in kJ/(kgabs K), the value of which is given in Table 4.
Under this definition of volume-specific internal energy, sufficiently fast heat transfer between the
solid and fluid phases is considered, such that their temperatures can be assumed to be identical [22].
As with the reactor, the pressure drop through the bed is given by the Ergun equation (Equation (4)),
and the particle Reynolds number is again in the transitional region.

Table 4. Absorber specifications.

Parameter Symbol Specification

Bed Void Fraction 1 εbed 0.32
Absorbent Void Fraction 1 εabs 0.60

Total Void Fraction 1 εtotal 0.728
Absorbent Density, kg/m3 ρcat 2507

Absorbent Particle Diameter, m dp 2 × 10−4

Absorbent Heat Capacity 2, kJ/(kgabs K) ĉp,abs 1.21
1 The bed and absorbent void fractions are determined from the experimental setup in [23]. 2 The absorbent
heat capacity is assumed to be constant and is from [24].

The solid phase (the absorbent) is volume-averaged; its mass balance has no explicit
spatial dependence:

dqi
dt

= rabs,i − rdes,i (13)

where qi is the absorbed concentration of species “i” in mol/kgabs. The absorbent used in this system is
selective to ammonia, and thus, the rates of absorption (and desorption) for hydrogen and nitrogen are
zero. The rates of ammonia absorption and desorption were determined using data in [23]. The rate of
ammonia absorption is given by:

rabs =

⎧⎨⎩
kabs [pNH3−peq(T)]7

Kabs+[pNH3−peq(T)]6
, for pNH3 > peq, qNH3 < qmax

NH3

0, for pNH3 < peq, qNH3 = qmax
NH3

(14)

It is noted that the exponents of 7 and 6 in the numerator and denominator, respectively, are chosen
for fitting purposes, but are generally representative of a higher order (non-linear) rate. The rate of
ammonia desorption is given by:

rdes =

{
kdes[peq(T)− pNH3 ], for pNH3 < peq, qNH3 > 0

0, for pNH3 < peq, qNH3 = 0
(15)

where pNH3 is ammonia partial pressure in bar, qmax
NH3

is the maximum capacity of the absorbent
based on stoichiometry in mol/kgabs and peq(T) is the absorbent equilibrium pressure, in bar, at a
given temperature T. Values for constants kabs, Kabs and kdes are given in Table 5. For this work,
the maximum stoichiometric capacity of the MgCl2 absorbent is assumed (conservatively) to be that
given by a 1:1 molar ratio of ammonia to salt, which corresponds to a maximum absorbed concentration
of 10.5 molNH3/kgMgCl2 . Given that the solid phase contains only 40% salt by weight, the effective
maximum absorbed concentration is 4.2 molNH3/kgabs.
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Table 5. Ammonia absorption and desorption rate parameters.

Parameter Value

ka, molN H3/(kgabs bar s) 0.4668
K, bar6 5 × 10−24

kd, molN H3/(kgabs bar s) 7.002 × 10−3

The temperature dependence of the equilibrium pressure is given by:

ln(
pcrit(T)
pcrit,re f

) = −ΔHabs
R
( 1

T
− 1

Tre f

)
(16)

where the reference equilibrium pressure-temperature pair (pcrit,re f and Tre f ) and the heat of absorption
ΔHabs are from [25] and are given in Table 6.

Table 6. Absorbent equilibrium pressure temperature dependence parameters.

Parameter Value

pcrit,re f , bar 1
ΔHabs, J/mol −87,000

Tre f , K 648.05

3.3. Compressor

Compression is assumed to by polytropic, so the compressor outlet temperature Tout and power
requirement Ẇcomp are given by the following equations:

Tout = Tin(
Pout

Pin
)

n−1
n (17)

Ẇcomp = ṁ
n

(n − 1)ηpolyηelec

zinRTin
MWgas

[
(

Pout

Pin
)

n−1
n − 1

]
(18)

where Tin is the inlet temperature in K, Pin and Pout are the inlet and outlet pressures in bar, ṁ is the
mass flow rate in kg/s and zin is the compressibility factor at inlet conditions. The values of polytropic
efficiency ηpoly and electric efficiency ηelec are taken to be 70% and 75%, respectively. The polytropic
index n is given by:

n − 1
n

=
1

ηpoly

γ − 1
γ

(19)

where γ is the heat capacity ratio at the inlet conditions.

3.4. Heat Exchanger

The heat exchanger has a counter-current flow configuration. It is governed by a steady-state
energy balance for simplicity [26]. This energy balance is:

ṁhot(Ĥin,hot − Ĥout,hot) = ṁcold(Ĥout,cold − Ĥin,cold) = UAΔT�m (20)

where ṁ is the mass flow rate in kg/s of hot and cold streams (denoted by subscripts), Ĥin and Ĥout are
the mass-specific enthalpies in kJ/kg at the inlet and outlet conditions (hot and cold streams denoted
by subscripts), A is heat transfer area in m2, U is the overall heat transfer coefficient, which is taken to
be 0.015 kW/(m2 K), and ΔT�m is the log mean temperature difference in K, which is given by:
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ΔT�m =
(Tin,hot − Tout,cold)− (Tout,hot − Tin,cold)

ln( Tin,hot−Tout,cold
Tout,hot−Tin,cold

)
(21)

where T is the temperature in K of each of the four streams (denoted by subscripts).

3.5. Cooler with External Heat Removal

As with the heat exchanger, a steady-state energy balance governs this unit:

Q = ṁ(Ĥout − Ĥin) (22)

where Q is the heat input rate in kW (negative in the case of the cooler) and Ĥin and Ĥout are the mass
specific enthalpies in kJ/kg at the inlet and outlet conditions. It is also noted that this model is used
for a condenser, where the difference between outlet and inlet enthalpies accounts for the enthalpy
of condensation.

In the range of temperatures observed or potentially observed in this process, 40 ◦C to 500 ◦C,
cooling water can be used. Thus, the external duty cooler is modeled as a heat exchanger with cooling
water in the shell side. The area A of such a heat exchanger is:

A =
Q

UΔT�m
(23)

where U is the overall heat transfer coefficient, the value of which is given in Table 7, and ΔT�m is
the log mean temperature difference, given by Equation (21) where water is used in the cold stream.
The inlet and outlet water temperatures are given in Table 7. The required flow rate of cooling water
ṁcw is calculated as:

ṁcw =
Q

ĉp,water(Tout,cw − Tin,cw)
(24)

where water heat capacity ĉp,water is given in Table 7.

Table 7. Cooler specifications.

Parameter Symbol Specification

Overall Heat Transfer Coefficient, kW/(m2 K) U 0.03
Cooling Water Inlet Temperature, ◦C Tin,cw 20

Cooling Water Outlet Temperature, ◦C Tout,cw 40
Cooling Water Heat Capacity, kJ/(kg K) ĉp,water 4.16

4. Design Optimization Formulation

4.1. Objective Function

The objective of the optimization is to minimize the 20-year net present cost of the
absorbent-enhanced process under the condition that the process is powered entirely using stranded
wind energy. The net present cost of the process is the sum of capital Ccap and operating Cop costs:

NPC = Ccap + Cop (25)

The process units under consideration are the feed compressor (comp, f eed), recycle compressor
(comp, rcy), reactor (reactor), heat exchanger (HEx), absorber precooler (cooler, pre), two absorbers
(abs), absorber trim cooler (cooler, trm), ammonia compression precooler (cooler, NH3comp), ammonia
compressor (comp, NH3) and ammonia condenser (condenser). It is noted that the capital cost of cooling
units (all coolers and the condenser) consists of costs both for the heat exchange infrastructure, as well
as the cooling water recirculation pump.
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4.1.1. Capital Costs

The capital cost of each unit is calculated using a power law relationship based on a reference size
parameter. The capital cost of unit j is given by:

Ccap
j = Ccap

j, f ixed + Ccap
j,re f (

χj

χj,re f
)β j (26)

The capital cost parameters for each unit are given in Table 8. The cost correlations are from [27].
The fixed cost parameter represents the cost of unit control systems, while the reference cost parameter
takes labor and maintenance into account. Both fixed and reference cost parameters have been scaled
with the chemical engineering plant cost index (CEPCI) from 2007 dollars (CEPCI = 525.4 [27]) to 2015
dollars (CEPCI = 556.8 [28]).

Table 8. Capital cost correlations.

Unit Basis Cj, f ixed Cj,re f χj,re f βj

Reactor Volume, m3 66,800 268,000 20 0.52
Absorber Area of Tubes, m2 66,800 1,039,000 100 0.68

Compressor 1 Rated Power, kW 7400 7,690,000 1000 0.9
Heat Exchanger Area, m2 28,600 208,000 100 0.71

Pump Rated Power 7400 15,000 23 0.29

Material of construction for feed, recycle and ammonia compressors assumed to be stainless steel [29].

A pressure multiplier fP that accounts for the need to increase vessel wall thicknesses at higher
pressures applies to the reactor and absorbers. Its value is given by [27]:

fP = 0.125(
P
10

) + 0.875 (27)

where pressure P has units of bar. Ammonia synthesis catalyst is assumed to cost $15.50/kg [9], and so,
the overall cost of the reactor is:

Ccap
reactor = Ccap

f ixed,reactor + Ccap
re f ,reactor(

Vreactor

20 m3 )0.52 fP + 15.50Wcat (28)

The absorbent is a mixture of 40 wt% MgCl2, which is assumed to cost $0.35/kg [30], and 60 wt%
silica gel, which has a cost that scales with weight as follows [31]:

Csilica = $61.33(Wsilica)
0.563 (29)

Thus, the overall cost of each absorber is:

Ccap
abs = Ccap

f ixed,abs + Ccap
re f ,abs(

Aabs

100 m2 )
0.68 fP + 0.35(0.4Wabs) + 61.33(0.6Wabs)

0.563 (30)

It is assumed that compressors are available in any required size, which allows all pressure
decisions to be unconstrained and compressor capital cost to be continuous. In the event that only
certain sizes of compressors would be available from manufacturers, additional constraints requiring
that optimal rated power be equal to that of one of the available compressors would be needed,
as would binary decisions for selecting a certain compressor size for each application.

As noted above, the pump cost correlation is included in Table 8 because it is needed to pump
cooling water. The overall capital cost of an external duty cooler, which uses cooling water, is thus:

Ccap
cooler = Ccap

HEx(ACooler) + Ccap
Pump(Ŵcwṁcw) (31)
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where cooler area and cooling water flow rate are calculated using Equations (23) and (24), respectively.
The parameter Ŵcw is the specific energy required for cooling water recirculation and is taken to be
1.898 kJ/kg [32].

In the optimization, the possibility exists for the installation of multiple feed compressors with
inter-stage cooling. This could potentially be required to achieve some range of feed pressures
while ensuring that the feed compressor outlet temperatures do not exceed 150 ◦C. In all subsequent
equations, the variable Ccap

comp, f eed denotes the capital cost for all feed compressor units and their
respective inter-coolers (heat exchanger and cooling water pump as described by Equation (31)) and is
the sum of the cost of each of those units.

The total installed cost of the absorbent-enhanced ammonia synthesis process is thus given by the
sum of installed costs of each unit in the process:

Ccap =Ccap
comp, f eed + Ccap

comp,rcy + Ccap
reactor + Ccap

HEx + Ccap
cooler,pre

+ 2Ccap
absorber + Ccap

cooler,trim + Ccap
cooler,NH3comp + Ccap

comp,NH3 + Ccap
condenser

(32)

4.1.2. Operating Costs

The operating costs considered in this work are those resulting from purchasing wind energy
to power. These power requirements can be divided into compression, cooling water pumping
(for coolers) and desorption. The power required for compression is given by Equation (18). The power
required for pumping cooling water is given by:

Ẇcw = Ŵcwṁcw (33)

It is noted that the variable Ẇcomp, f eed denotes the energy requirements for all compressors
and cooling water pumps in the feed compressor train. Since this process is powered entirely
using electricity, desorption heating is achieved with an electric heater. Assuming electric heating
has an efficiency of 100%, the power required for desorption is simply external heat addition
during desorption qext. Thus, the overall electric energy consumption during a single 30-min
absorption-desorption cycle is given by:

Ecycle =
∫ 1800

0
[Ẇcomp, f eed + Ẇcomp,rcy ++Ẇcw

cooler,pre + Ẇcw
cooler,trim

+ qext + Ẇcw
cooler,NH3comp + Ẇcomp,NH3 + Ẇcw

condenser]dt
(34)

Over each year of operation, the power requirements for each cycle are assumed to be identical,
and therefore, the annual energy requirement of the process is:

Eyear = 48
cycles
day

× 365
days
year

Ecycle (35)

Finally, the 20-year net present operating cost is given by:

Cop =
20

∑
y=1

1
(1 + d)y−1 cwindEyear (36)

where d is the discount rate and cwind is the unit cost of wind energy. For this work, the discount rate is
taken to be 8.3%, and wind energy is assumed to cost $0.03/kWh [33].

4.2. Decision Variables

The decision variables of the capital cost minimization problem are: the recycle mass flow rate,
the reaction-absorption loop pressure (defined as the pressure to which the feed gases are compressed),
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the reaction temperature (defined at the inlet of the adiabatic reactor), the length and diameter of
the reactor, the area of the heat exchanger that uses the reactor effluent to heat the reactor feed,
the absorption temperature (defined as the outlet temperature of the absorption precooler), the number
of absorber tubes, as well as the length and diameter of those tubes, the outlet temperature of the trim
cooler, the desorption pressure and temperature, the outlet temperature of the ammonia compression
precooler and the ammonia storage pressure and temperature.

In general, these variables must be positive, but are otherwise unconstrained. Two exceptions
to this are the reaction temperature, which is constrained to a lower bound of 370 ◦C due to the lack
of reliable kinetic expressions at lower temperatures [17] and the desorption temperature, which is
constrained to an upper bound of 500 ◦C to remain safely below the autoignition temperature of
hydrogen [34].

4.3. Constraints

In addition to decision variable bounds and the underlying dynamic model described in Section 3,
there are additional operational constraints to which the optimal solution must adhere. The amount of
ammonia produced in a 30-min cycle, defined as ammonia leaving the bed during desorption, must
meet the required demand: ∫ 1800

0
ṁNH3,desdt ≥ mNH3,target (37)

This ammonia must be stored at a temperature and pressure such that it is liquid:

Pstorage ≥ Pvap
NH3

(Tstorage) (38)

The reactor and absorbers are constrained to have length-to-diameter ratios of at least two:

Lreactor

Dreactor
≥ 2 (39)

Labsorber
Dabsorber

≥ 2 (40)

The reactor and absorber outlet temperatures are not allowed to exceed 500 ◦C in order to remain
safely below the autoignition temperature of hydrogen [34]:

Treactor(t, z = L) ≤ 773.15 ∀t (41)

Tabsorber(t, z = L) ≤ 773.15 ∀t (42)

Additionally, the outlet temperatures of all compressors are constrained to be less than 150 ◦C,
so as to not damage the components of the compressor [27]:

Tdischarge
comp (t) ≤ 423.15 ∀t (43)

4.4. Problem Summary and Computation

The optimal design problem is to minimize Equation (25) subject to the underlying process
model, the lower bound on reactor temperature, the upper bound on desorption temperature and
performance and safety constraints (Equations (37) through (43)). This is a mixed integer non-linear
problem (MINLP) with 15 continuous decisions and one integer decision, the number of absorber
tubes. The model consists of 14,954 equations after spatial discretization. The reactor and absorber are
discretized into 50 and 250 points, respectively. The mixed integer non-linear optimization was solved
using the outer approximation/equality relaxation/augmented penalty (OAERAP) solver. At each
iteration in the OAERAP algorithm, an underlying non-linear problem with fixed integer variables is

61



Processes 2018, 6, 91

solved using the non-linear problem sequential quadratic programming (NLPSQP) solver. The optimal
design problem was solved at scales of 100 kg/h, 500 kg/h, 1000 kg/h, 5000 kg/h and 10,000 kg/h.

5. Results

The optimal 20-year NPC and capital cost in millions of UDS (MM$) and specific energy
consumption for each scale are given in Table 9. In the chemical process industries, power law
correlations are commonly used to relate the capital cost of entire processes at different scales [32].
A correlation of this type for the absorbent-enhanced process is fit to the five optimal capital cost data
in Figure 2.

Table 9. Absorbent-enhanced ammonia synthesis optimal design results.

Scale, kgNH3/h 100 500 1000 5000 10,000

Net Present Cost, MM$ 3.2 11.2 20.2 85.8 164.3
Capital Cost, MM$ 2.3 7.0 11.8 43.9 80.2

Specific Energy Consumption, kWh/kgNH3 3.12 3.07 3.06 3.07 3.08

Figure 2. Absorbent-enhanced ammonia synthesis capital cost power law.

5.1. Analysis of Optimal Design

The following discussion provides a plausible physical explanation and justification for key
aspects of the optimal design decisions, which are given in Table 10. Certain reaction-absorption loop
characteristics, which are helpful in interpreting these results, are given in Table 11.
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Table 10. Absorbent-enhanced ammonia synthesis optimal design decisions.

Scale, kgNH3/h 100 500 1000 5000 10,000

Recycle Ratio 12.5 12.7 12.7 12.8 12.8
Reaction-Absorption Pressure, bar 20.3 20.3 20.3 20.3 20.3

Reactor Temperature, ◦C 370 370 370 370 370
Reactor Length, m 1.48 2.68 3.52 7.68 10.68

Reactor Diameter, m 0.74 1.33 1.76 3.84 5.34
Heat Exchanger Area, m2 247 1250 2520 12,700 30,200
Absorber Temperature, ◦C 167 174 176 178 176
Number of Absorber Tubes 4 29 68 512 1183
Absorber Tube Length, m 1.14 1.00 0.96 0.84 0.80

Absorber Tube Diameter, m 0.57 0.50 0.48 0.42 0.40
Trim Cooler Temperature, ◦C 141 142 142 141 97

Desorption Pressure, bar 13.4 13.4 13.4 13.4 13.4
Desorption Temperature, ◦C 500 500 500 500 500

Ammonia Compressor Precooler Temperature, ◦C 57 50 48 43 42
Ammonia Storage Pressure, bar 23.4 21.2 20.5 19.1 18.6

Ammonia Storage Temperature, ◦C 56 52 50 48 47

Table 11. Reaction-absorption loop characteristics.

Scale, kgNH3/h 100 500 1000 5000 10,000

Reactor Volume, m3 0.64 3.72 8.58 88.6 239
Distance from Equilibrium, % 0.07 0.04 0.02 0.001 0.0001

Reactor Pressure Drop, bar 0.04 0.14 0.24 0.57 0.85
Total Pressure Drop, bar 1.23 1.11 1.12 1.28 1.50

The reaction-absorption pressure was 20.29 bar at all scales. This is the limiting pressure, which
results in a feed compressor outlet temperature of 150 ◦C. A higher reaction-absorption pressure would
require multi-stage compression with inter-cooling for the feed, and the additional incurred cost would
not be worth the increased reactor productivity resulting from the pressure increase.

The reactor inlet temperature was 370 ◦C at all scales. This lowest allowable temperature shifts
the reaction equilibrium towards ammonia, which, from a thermodynamic perspective, allows for
the highest possible outlet mole fraction of ammonia at the given pressure. The combination of the
recycle ratio and reactor dimensions at each scale takes advantage of the favorable equilibrium shift;
it resulted in ammonia mole fractions at the reactor outlet of 4.5% to 4.6%, which is very close to
equilibrium at reactor outlet conditions. It is clear that the optimal design maximized single-pass
reactor productivity under the constraint of using only one feed compressor. The largest possible
single-pass conversion corresponds to the smallest possible recycle rate, which serves to minimize
recycle compression capital cost and energy consumption, both because power is a function of flow rate
and specific work and because it minimizes the reaction-absorption loop pressure drop. Additionally,
the lowest possible reaction temperature and recycle rates minimized the amount of cooling required
after the reactor/before the absorber, which is the product of enthalpy (temperature) difference and
flow rate, resulting in capital (smaller heat exchanger and cooler) and operating (less pumping of
cooling water) cost savings.

The absorption temperature had a complex effect on the capital and operating cost of the process.
A low absorption temperature decreased the equilibrium pressure, resulting in less ammonia leaving
the absorber and therefore a lower recycle rate. It also reduced the demand on the trim cooler, which is
needed after the absorber due to the temperature rise caused by the exothermic absorption. On the
other hand, a high absorption temperature resulted in a lessened precooling demand, and more
importantly, less heating was needed to move from the absorption temperature to the desorption
temperature. From scales of 100 kg/h to 5000 kg/h, absorption temperature increased from 167 ◦C to
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178 ◦C. This reflects the fact that a high absorption temperature primarily reduces the operating cost
(less heating for desorption), which increases linearly with production rate, whereas a low absorption
temperature primarily lowers capital cost (smaller recycle compressor), which scales up well in
comparison. At these scales, the trim cooler outlet temperature was such that the recycle compressor
reached 150 ◦C. The optimal design at 10,000 kg/h does not follow the trend of the smaller scales.
The absorption temperature in this case was 176 ◦C, and the trim cooler temperature was 97 ◦C, much
lower than in the designs at other scales. This can be explained by the fact that the reaction-absorption
loop pressure drop is higher at this scale (see Table 11), primarily due to the reactor pressure drop,
so these lower temperatures were chosen to reduce the recycle compressor power: a lower absorption
temperature gives a lower recycle rate, and compression power was linear in the inlet temperature
(trim cooler temperature in this case).

As scale increases, the absorber was designed such that its pressure drop decreases; the factor
by which the number of absorber tubes increases is greater than or equal to the factor by which the
ammonia production scale increases. This occurs primarily because compressor cost (capacity exponent
of 0.9) does not scale as well as absorber cost (capacity exponent of 0.68) and also to counteract the
increase in reactor pressure drop with scale-up.

The desorption temperature was 500 ◦C in all cases. This high temperature was chosen to give a
high absorbent critical pressure. For example, the critical pressure of the absorbent at this temperature
was 13.64 bar, whereas at 400 ◦, the critical pressure was only 1.83 bar. This allows ammonia to leave
the bed at a higher pressure and subsequently minimizes the size of the compressor required to bring
the ammonia to storage pressure. At all scales, the ammonia compression capital and energy cost
reduction that resulted outweighed the significant energy costs that came from this high desorption
temperature. As the scale of ammonia production was increased, a decrease in ammonia storage
pressure and temperature was observed; this serves to reduce the size and energy consumption of the
ammonia compressor. This occurs because the cost of coolers and the condenser (capacity exponent of
0.71) scales better than compressor cost (capacity exponent of 0.9).

5.2. Analysis of Energy Consumption

The relative contribution of different unit types of the overall energy consumption is given in
Table 12. These fractions are the same at each scale under consideration.

Table 12. Operation type contribution to optimal energy consumption.

Operation Value

Compression 0.16
Pumping cooling water 0.02

Desorption 0.82

It is evident that desorption was the dominant form of energy consumption. This is expected,
given that conventional chemical processes often rely on combustion of fossil fuels to achieve high
temperatures, but that is not an option in the wind-powered absorbent-enhanced process. On the
other hand, it is promising that cooling used such a small fraction of the energy in this process;
this supports the hypothesis that the higher separation temperatures afforded by using absorption
instead of condensation are beneficial.

6. Discussion

The absorbent-enhanced ammonia synthesis capital cost correlation determined in this work is:

Ccap = 12.7(
χNH3

1000 kg/h
)0.77 (44)
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where Ccap is in MM$ and χNH3 is the ammonia production capacity in kg/h. This result compares
well to those in the literature for small-scale Haber–Bosch processes. The ammonia supply chain
optimization work in [10] uses the following capital cost correlation for a small-scale Haber–Bosch
process [35]:

Ccap = 1.482(
χNH3

3 kg/h
)0.67 (45)

where Ccap is in MM$ and χNH3 is the ammonia production capacity in kg/h. Comparing the
correlation for the absorbent-enhanced process to this one, capital cost reductions of 86% at 100 kg/h
to 78% at 10,000 kg/h are observed.

However, the Haber–Bosch cost correlation in [35] may be overly conservative based on the small
size of the initial installation (only 3 kg/h). For another comparison at a more relevant reference
scale, a mini Haber–Bosch unit with a capacity of 3 tons/day (125 kg/h) was quoted at 3.8 MM$
in [9]. In comparison, the absorbent-enhanced process would only cost 2.55 MM$ at that scale, a cost
reduction of 33%. The 0.77 scaling exponent for the absorbent-enhanced process is higher than the
conventional chemical industry exponent of 0.67, which suggests that this process is more well suited
to implementation at a small scale. Conversely, this higher-than-average capacity exponent indicates
that the absorbent-enhanced process may not scale up well. For example, if the 0.67 exponent is
applied to the Haber–Bosch process using the process from [9] as the reference scale, this Haber–Bosch
becomes less expensive than the absorbent enhanced process at a scale of 6075 kg/h (145 ton/day)
and larger.

Although the capital cost of the absorbent enhanced process is lower than the Haber–Bosch
one at a small scale, this is not true for energy consumption. The current optimal design of the
absorbent-enhanced process uses between 3.06 and 3.12 kWh/kg NH3, whereas the process in [35]
uses 2.12 kWh/kg NH3. At a larger scale, the 100 tons/day (4167 kg/h) Haber–Bosch process in [8]
used only 0.64 kWh/kg NH3. This result is not entirely surprising, as the heating needed for desorption
is very electricity-intensive. However, given that in the overall wind-to-ammonia pathway using
electrolysis and PSA, electrolysis accounts for the majority of energy consumption (for example,
93% in [8]), the increased ammonia synthesis energy consumption may be worth the decrease in capital
cost in the economic outlook of the overall system.

Additionally, the Haber–Bosch process has been optimized over a century, whereas this
absorbent-enhanced process is novel, so there are avenues for further capital and operating cost
reduction via process improvement. The key novelty in the process is the use of absorption rather
than condensation to remove the ammonia from unreacted hydrogen and nitrogen, so naturally,
the absorbent is the part of the process to which the most significant improvements can be made.
In this work, absorbent capacity was estimated to be a ratio of 1 mol NH3 to 1 mol MgCl2 (5.6 kg of
salt are needed to absorb 1 kg NH3) based on the work in [12]. Coupled with the fact that the salt only
makes up 40% of the absorbent mixture, every absorbed kg of NH3 requires 14 kg of total absorbent.
This results in large absorbent beds as compared to what is theoretically possible, which is absorbing
6 mol NH3 on 1 mol MgCl2 [25]. Efforts to increase the working capacity of these absorbents or to
discover new ammonia absorbents with higher capacities will be beneficial in reducing process cost by
reducing the size of absorbent beds and subsequently the pressure drop through the bed. Furthermore,
the diameter of the currently-used absorbent pellets is on the order of 200 μm [23], an order of
magnitude smaller than what is conventionally used in industrial packed beds. As a result, many tubes
of absorbent are required, especially at the larger scales under investigation, to prevent prohibitively
high pressure drop. The design of larger absorbent pellets would almost certainly be beneficial in
that some compromise between reduction in absorber size and recycle compression power could be
achieved. An absorbent that can be regenerated at lower temperatures and/or with less temperature
variation between absorption and desorption but still at pressures in the range of 15 bar would be
beneficial given that desorption requires over 80% of the energy consumed in this process (see Table 12).
Regeneration of this absorbent would require less energy consumption and, hence, reduce operating

65



Processes 2018, 6, 91

cost, without increasing the size (cost) of the compressor required to liquefy the ammonia, as is the
case when the currently-used absorbent is regenerated at lower temperatures. Evidently, efforts to
improve ammonia absorbent performance will significantly ameliorate the economics of this process.

Additional efforts to expand the understanding of ammonia synthesis kinetics would also be
beneficial. It is clear that running the ammonia synthesis reaction at lower temperature is helpful at
the low pressure of this process; the lower bound of 370 ◦C was chosen as the reaction temperature
at all scales. It is possible that an even lower reaction temperature would be beneficial, but a reliable
low temperature ammonia synthesis kinetic expression does not currently exist in the literature.
The study of ammonia synthesis at lower temperatures would aid in elucidating a true optimal
reaction temperature and would perhaps lead to further capital cost and/or operating cost reduction.
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Abstract: Liver resection is an important clinical intervention to treat liver disease. Following liver
resection, patients exhibit a wide range of outcomes including normal recovery, suppressed recovery,
or liver failure, depending on the regenerative capacity of the remnant liver. The objective of this
work is to study the distinct patient outcomes post hepatectomy and determine the processes that
are accountable for liver failure. Our model based approach shows that cell death is one of the
important processes but not the sole controlling process responsible for liver failure. Additionally,
our simulations showed wide variation in the timescale of liver failure that is consistent with the
clinically observed timescales of post hepatectomy liver failure scenarios. Liver failure can take place
either instantaneously or after a certain delay. We analyzed a virtual patient cohort and concluded
that remnant liver fraction is a key regulator of the timescale of liver failure, with higher remnant liver
fraction leading to longer time delay prior to failure. Our results suggest that, for a given remnant
liver fraction, modulating a combination of cell death controlling parameters and metabolic load may
help shift the clinical outcome away from post hepatectomy liver failure towards normal recovery.

Keywords: liver regeneration; liver failure; liver resection; virtual patient; dynamic modeling;
cell death

1. Introduction

Liver regeneration is a unique repair mechanism underlying physiological recovery following
hepatic injury and enables surgical treatment as a viable clinical intervention into liver disease, small for
size liver transplant and live donor liver transplantation. The process of liver regeneration takes place
via hyperplasia and hypertrophy of hepatocytes as well as other liver resident cell types to reconstitute
the liver morphology and function. In this process, the liver parenchymal cells, that is, differentiated
post-mitotic hepatocytes, respond to signals from non-parenchymal cells that are stimulated by the
hepatic injury and re-enter cell cycle, leading to multiple rounds of cell proliferation, thus compensating
for the lost tissue mass [1–3].

Liver resection is widely performed for hepatocellular carcinoma (HCC), metastatic colorectal
cancer and benign liver disease [4]. Liver response to resection is also relevant in live donors for
liver transplantation, where the remnant liver in the donor needs to regenerate after removal of
a portion of the liver for transplantation in the recipient. Advances in surgical techniques and expertise,
careful patient selection and post-operative patient care have resulted in better clinical outcomes in the
recent years [5]. However, Post hepatectomy liver failure (PHLF) is not uncommon due to a variety
of risk factors, including patient-based factors such as age, weight, diabetes [6,7]. Preexisting liver
disease such as cirrhosis, cholestasis, steatosis result in impaired liver regeneration [8].
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Surgery related factors such as excessive blood loss, portal vein hypertension, ischemia-reperfusion
injury and sepsis can result in liver failure. One of the most important factor that determines PHLF is
how much liver can be resected which depends on the functional capacity of the remnant liver fraction.
The percentage of liver failure post hepatectomy lies in the range of 0.7 to 9.1% [9]. To improve the
outcome post-surgery, it is important to be able to predict the liver regeneration response based on
patients’ pre- and post-operative assessment. Mathematical modeling of liver regeneration can play
a significant role in predicting the potential for PHLF prior to the surgical intervention, thus enabling
consideration of alternative interventions to prevent or reduce chances of PHLF.

In this study, we started with our previously developed computational model of liver regeneration [10]
and fine-tuned the parameters based on liver volumetric data from patients that underwent liver
resection [11]. The main objective of this work is to model the dynamics of the liver failure scenario
following a surgical resection. We focused on the model parameters that control the cell death process
and generated a virtual patient cohort by sampling across the parameter space involving metabolic
load and cell death sensitivity. We employed these virtual patients to analyze different modes of
potential response; normal recovery, suppressed recovery and liver failure. Our simulations revealed
wide variation in the timescale of liver failure consistent with the range of observed timescales in
human PHLF scenarios. Simulations indicate that liver failure can either happen instantaneously
or after a varying delay. We analyzed the distribution of this delay in a virtual patient cohort and
found that the remnant liver fraction plays a significant role in controlling the time of delay in liver
failure cases. Specifically, our simulations suggest that lower remnant liver fraction can lead to faster
timescale of failure, depending on a balance of a subset of intrinsic parameters. We analyzed the effect
of these controlling parameters corresponding to the metabolic load and cell death sensitivities on the
overall cell death post resection. Our results suggest that specific combinations of these parameters
can lead to a reasonable match to the clinically observed timescales of PHLF.

2. Materials and Methods

2.1. Mathematical Model

The mechanism of liver regeneration involves increase in portal pressure and production of
cytokines from the Kupffer cells (resident macrophages in the liver). The cytokines activate the
hepatocytes resulting in the priming and initiation of hypertrophy of the cells. Once the hepatocytes
are primed they become responsive to the growth factor released from extracellular matrix via the
action of matrix metalloproteinases (MMPs), as a consequence of which the parenchymal cells advance
into the cell cycle and replicate leading to hyperplasia. The mathematical model (Cook et al. [10])
considered for this work incorporates the above-mentioned processes using eleven ordinary differential
equations representing the hepatocytes in the three phases of the cell cycle quiescent (Q), priming
(P) and replicating (R) states. The model comprises of seven equations for the molecular regulation,
three equations for the cell state balances and the last equation accounts for relative cell mass growth,
that is, hypertrophy. The system of equations is considered lumped since we assume the process of
regeneration to be homogeneous in the remaining liver mass. The model equations are:

dQ
dt

= −kQP([IE]− [IE0])Q + kRQ[ECM]R + kreqσreqP − kcdσcdQ (1)

dP
dt

= kQP([IE]− [IE0])Q − kPR([GF]− [GF0])P − kreqσreqP − kcdσcdP (2)

dR
dt

= kPR([GF]− [GF0])P − kRQ[ECM]R + kprol R − kcdσcdR (3)

d[IL6]
dt

= kIL6
M

N + ε
− VJAK[IL6]

[IL6] + KJAK
M

− κIL6[IL6] + k1 (4)
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d[JAK]
dt

=
VJAK[IL6]

[IL6] + KJAK
M

− κJAK[JAK] + k2 (5)

d[STAT3]
dt = VST3[JAK][proSTAT3]2

[proSTAT3]2+KST3
M (1+[SOCS3]/KSOCS3

I )

− VIE [STAT3]
[STAT3]+KIE

M
− VSOCS3[STAT3]

[STAT3]+KSOCS3
M

− κST3[STAT3] + k3

(6)

d[SOCS3]
dt

=
VSOCS3[STAT3]

[STAT3] + KSOCS3
M

− κSOCS3[SOCS3] + k4 (7)

d[IE]
dt

=
VIE[STAT3]

[STAT3] + KIE
M

− κIE[IE] + k5 (8)

d[GF]
dt

= kGF
M

N + ε
− kup[GF][ECM]− κGF[GF] + k7 (9)

d[ECM]

dt
= −kdeg[IL6][ECM]− κECM[ECM] + k6 (10)

dG
dt

= kG

(
M

N + ε

)
− kG M (11)

where,
ε = 0.01 (12)

σcd = 0.5
(

1 + tanh
(

θcd − (N + ε)/M
βcd

))
(13)

σreq = 0.5
(

1 + tanh
(

θreq − [GF]
βreq

))
(14)

N = Q + G(P + R) (15)

k1 =
VJAK

1 + KJAK
M

− kIL6
M

Nss + ε
+ κIL6 (16)

k2 = κJAK − VJAK

1 + KJAK
M

(17)

k3 = − VST3[proSTAT3]2

[proSTAT3]2+KST3
M (1+1/KSOCS3

I )
+ VIE

1+KIE
M
+

VSOCS3
1+KSOCS3

M
+ κST3

(18)

k4 = − VSOCS3

1 + KSOCS3
M

+ κSOCS3 (19)

k5 = − VIE

1 + KIE
M

+ κIE (20)

k6 = kdeg + κECM (21)

k7 = −kGF
M

NSS + ε
+ kup + κGF (22)

NS S = 0.99 (23)

Here, k1 . . . k7 are constants defined such that the molecular species are at steady state under
the normal functioning of the liver. The initial conditions for solving the above-mentioned system of
equations are:
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Q0 = remnant liver fraction; P0 = 0; R0 = 0
[IL60] = 1; [JAK0] = 1; [STAT30] = 1; [SOCS30] = 1;

[IE0] = 1; [GF0] = 1; [ECM0] = 1
G0 = 1

N0 = Q0 + G0(P0 + R0) = Q0

(24)

The system of equations for this model are stiff and were solved in Matlab using ode15s. The initial
conditions for the quiescent state and molecular species signify the steady state under normal
functioning of liver in which both primed and replicating cells are at zero levels.

2.2. Defining Virtual Patient Cohort

We employed the emerging approach of simulating a cohort of virtual patients [12,13] to assess the
distribution of potential responses, in an attempt to account for the clinically observed wide variation
of outcomes. In the present study, the virtual patients were defined based on sampling key parameters
within a range of 2X, 3.125X and 7X, respectively, from the nominal values for the three controlling
parameters (M, βcd, θcd). The sampling was performed in an unbiased approach to span the full range
of the three-dimensional volume using Sobol sampling [14,15] to generate a cohort of 9000 virtual
patients. The range of the controlling parameters were so chosen to capture the different response
modes in the cohort of virtual patients under study.

2.3. Identification of Distinct Response Modes

The simulated results were classified into distinct response modes based on the level of liver mass
fraction at the end of 2.5 years post liver resection—Normal recovery: 0.9–1.1, Suppressed recovery:
<0.8. Patients are classified as exhibiting a liver failure scenario if the liver mass fraction dropped below
0.1 by 2.5 years post liver resection. The liver failure cases were further classified as exhibiting delayed
failure or immediate failure based on the time taken to undergo failure. Immediate liver failure was
deemed as occurring if the liver mass fraction is below 0.1 within the 5th day post resection and the
remaining liver failure cases were classified as corresponding to the delayed failure scenarios.

2.4. Parameter Optimization

All the 33 parameters of the model (Table A1) were optimized using fmincon in Matlab using
the elastic net approach with the regularization weightage of 0.001 for both Ridge and Lasso [16,17].
We explored the effect of using different regularization weights over a wide range from 0.0001 to
0.1. However, some of the regularization weights resulted in an integration error or terminated with
a premature solution for a subset of the patients. Following this approach resulted in patient-specific
regularization weights and thus likely yielded an overfitted model in some cases. We found that the
regularization weight of 0.001 worked for all the patients and thus avoided over-fitting of the model.

The liver fraction at any given time point at and post resection is calculated as the ratio of
remnant liver volume to the total liver volume prior to resection, based on the volumetric data from
Yamamoto et al. [11]. However, note that the present ODE model considers fractional liver mass and
not volume, as we incorporated the tissue growth dynamics in the model. For the purpose of the study,
we considered the liver volume fraction information from the clinical data set to be equivalent to the
liver mass fraction calculated in the simulations, under a reasonable assumption that the density of
the tissue does not alter significantly after resection. This also permits us to compare the response
profiles across individual patients that may have wide variation in the liver size. The model dynamics
are sensitive to the three controlling parameters; metabolic load (M) and cell death sensitivities
(βcd, θcd). The initial guess for the parameter optimization was considered from the parameter values
of Cook et al. [10] for humans, except for the values of the three controlling parameters (M, θcd, βcd).
These values were fixed from a representative case of a virtual patient undergoing delayed liver failure
(Table A2).
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2.5. Clinical Dataset

The human liver volumetry dataset used for the present work was obtained from the published
literature [11], which contains information about the liver volume post resection in 196 patients.
The dataset was analyzed for volume changes over time and a subset of 7 patients that showed liver
failure were considered for further analysis and matching to model dynamics.

2.6. Model Repeatability and Reproducibility

The model equations and parameters for various simulations presented in the manuscript are
available in the main text and Appendix, respectively. The Matlab code for virtual patient cohort
simulation and response mode classification is available in the supplemental file S1. The Matlab code
for parameter optimization is available as supplemental file S2. The network model in Equations
(1)−(24) was independently implemented in the Systems Biology Markup Language (SBML) by
a laboratory colleague not involved in the original study, based on the equations and information
provided in the manuscript. This model was set up based on the parameter values in the “Nominal
Value” column of the Table A2 in the Appendix. An SBML code corresponding to this model
implementation is included as supplemental file S3. Select figures for exploring the results from
virtual patient cohort analysis are provided in the supplement in the Matlab FIG format. A brief
discussion of the biological context and assumptions motivating the model is included in the Methods
and some of the limitations were detailed in the Discussion.

3. Results

3.1. Modeling the Range of Response to Liver Resection in a Virtual Patient Cohort

We started with a computational model of liver regeneration, previously developed by our
group [10]. The mathematical model of Cook et al. [10] considers hypertrophy and hyperplasia
in liver following resection [18], by accounting for hepatocytes in different phases of the cell cycle.
The molecular aspects of this network model of liver regeneration are largely based on the dynamics
of cytokine and growth factor pathways stimulated by the liver resection injury. Immediately post
resection, the hepatocytes undergo priming in response to the cytokines released by Kupffer cells,
activating the Janus Kinase (JAK)—Signal Transducer and Activator of Transcription (STAT) signaling
pathway in the hepatocytes. Primed hepatocytes become responsive to the growth factors linking
the priming phase to the cell-cycle progression. In the present computational model, response to
liver regeneration following partial hepatectomy is triggered by metabolic load per unit liver mass.
The network model is shown in Figure 1A and the corresponding systems biology graphic notation
(SBGN) [19] diagram for the liver regeneration model is provided as supplementary information
(Figure S1). This model can exhibit distinct modes of response ranging from complete recovery of
liver mass to liver failure. As an illustrative example, Figure 1B shows the regeneration profile of two
virtual patients that underwent 1/3rd liver resection but showed opposite responses, that is, recovery
versus failure. Phase portrait [20,21] for the same virtual patients is shown in Figure 1C, depicting
the evolution of hepatocytes in different phase of the cell cycle over time. Depending on the model
parameters which corresponds to the two different virtual patients, for the same initial remnant liver
mass, there exist two different stable steady states corresponding to recovery and failure.
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Figure 1. (A) Network diagram of the liver regeneration model. (B) Regeneration profile of two virtual
patients with liver recovery and failure respectively for 1/3rd resection, their model parameters are
same as Cook et al. but with different values of the controlling parameters; Recovery: M = 11.4645,
βcd = 0.0064, θcd = 0.0262; Failure: M = 10.7312, βcd = 0.0219, θcd = 0.0224. (C) Phase plane of the
same virtual patients showing recovery and failure with the evolution of hepatocytes in quiescent and
replicating phase of the cell cycle.

We simulated the dynamics of liver mass in response to resection in a virtual patient cohort
generated by varying key model parameters (see Methods). We analyzed the distribution of responses
in the virtual patient cohort and classified the virtual patients into multiple response categories based
on the liver mass outcome at the end of 2.5 years following resection. We analyzed the responses of
9000 virtual patients to unravel the mechanisms that lead to different response modes. The virtual
patient cohort was generated by varying the metabolic load and the cell death sensitivities via Sobol
sampling, while the remaining 30 parameters (out of 33) were held at the same values as that of
Cook et al. [10] for the case of human. We chose to vary metabolic load (M) and cell death sensitivities
(βcd,θcd) from the 33-dimensional parameter space since these 3 parameters control the cell death
process as incorporated in the network model (see Equations (1)–(3) and (13)). In this formulation,
liver failure is considered as likely to occur in two ways: (i) either the liver regeneration does not
commence at the rate necessary to meet the increased functional demand post resection, or (ii) even as
the regeneration process is initiated, the cell death rate is sufficiently high as to result in liver failure [22].

Our simulation-based analysis suggests that the virtual patients can be categorized into four
distinct classes based on the response to the resection: normal recovery, suppressed recovery, delayed
failure and immediate failure. The regeneration profiles of different classes of response for 10%
and 33.3% are shown in Figure 2A,B,D,E. We note that the suppressed patients did not show fast
recovery immediately after surgery. In Figure 2C we show a representative patient data demonstrating
recovery post-surgery from Yamamoto et al. [11]. From Figure 2F we observe that a subset of the
virtual patients exhibited instantaneous liver failure, whereas others showed a delayed liver failure),
demonstrating a good match in the timescale of the liver failure based on volumetric data from patients
in Yamamoto et al. [11]. Simulated regeneration profiles of liver failure response show a sudden
drop in fraction of liver either immediately post resection or after a delay of few days. However,
such a sudden drop was not readily apparent in the clinical data. It is unlikely that patients undergoing
liver failure would be subjected to liver volumetric analysis in the clinic. Also, in reality, the liver
mass does not become zero as is seen in the numerical simulations, since the patient’s body might
succumb to the non-functioning liver even before such condition of extremely low levels of liver mass
is reached. However, the drop in the liver mass in simulations is instructive on the dynamics of the
process, informing the potential trajectories taken by a range of patients, consistent with the wide
range of time delays observed in patients exhibiting liver failure [11].
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Figure 2. Regeneration profiles of virtual patients depicting two types of liver recovery (Normal and
suppressed) for different levels of resection (A) 10% resection (B) 33.3% resection (C) Volumetric liver
data from Yamamoto et al. [11] for patients that exhibited liver recovery. Response modes of virtual
patients that underwent delayed and immediate liver failure for (D) 10% resection (E) 33.3% resection
(F) Volumetric liver data for patients showing liver failure from Yamamoto et al. [11].

We visualized the distribution of different classes of response modes—Normal, suppressed,
delayed failure and immediate failure—as a function of the three controlling parameters (Figure 3).
These classes were represented, albeit in different proportions, for varying levels of resection (10%
and 33.3%). Figure 3A–F show the projection of classes of virtual patients for increasing levels of cell
death sensitivity (θcd) at 10% and 33.3% resection. For low cell death sensitivity (θcd), we observe
that liver failure occurs at high levels of metabolic load (M) and cell death sensitivity (βcd) and
corresponds to only delayed liver failure (Figure 3A,D). For higher level of resection, we observe that
the normal recovery space is enveloped by suppressed recovery space. As the cell death sensitivity
θcd increases, it becomes apparent that the parameter regions where normal recovery and liver failure
occur are separated by a narrow region corresponding to the suppressed recovery (Figure 3A–F).
For either level of resection, low metabolic load and cell death sensitivities led to normal recovery.
This appears to be governed primarily by low cell death (Figure 4). By contrast, high values of these
controlling parameters result in liver failure. Figure 3G,H show the pattern of the parameter region
corresponding to the virtual patients that exhibited delayed failure for remnant liver fraction of 0.9 and
0.667 (Supplementary information Figures S2 and S3, Video S1, S2). The proportion of cases that
exhibited delayed liver failure varied from 8.73% to 40.22% of the total number of virtual patients
for remnant liver fraction of 0.9 and 0.667, respectively (i.e., 10% and 33.3% resection). At the same
time, the proportion of cases that exhibited suppressed recovery changed from 1.63% to 37.25% and
the proportion of normal recovery cases reduced from 37.23% to 8.17%, as the remnant liver fraction
decreased from 0.9 to 0.667 (i.e., increase in the level resection from 10% to 33%). This shift in the
response of different virtual patients with increasing resection implies that the remnant liver mass
significantly regulates the qualitative outcome of liver resection surgery. In the next section, we focus
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on the changes in the cell death process as a function of the three key controlling factors involving
metabolic load and cell death sensitivities.

Figure 3. (A–F) Two-dimensional distribution of response modes of virtual patients sampled over
a range of metabolic load (M) and cell death sensitivity (βcd), for increasing levels of cell death
sensitivity (θcd) at (A–C) 10% and (D–F) 33.3% resection. (G,H) Parameter space of the three controlling
parameters showing the distribution of virtual patients with delayed liver failure post hepatectomy for
10% and 33.3% resection, respectively. Each marker represents a virtual patient.

3.2. Cell Death as a Function of the Controlling Parameters in Different Classes of Patients

Following partial hepatectomy, both positive and negative stimulus are triggered resulting in liver
regeneration or failure based on a balance of these stimulus. Cell death is likely an important regulatory
process in liver regeneration, levels of which determine whether the organ can recover following injury.
Analysis of the cellular equations (Equations (1)–(3)) of the model along with the cell death sigmoidal
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function σcd (Equation (13)) reveals that there are three controlling parameters: metabolic demand
(M) and the two cell death sensitivity parameters (θcd) and (βcd) that influence decay of cells post
resection. In this section, we analyze the cell death profile as a function (Equation (13)) of these three
parameters (M, θcd, βcd), individually and in combination. A change in the cell death sensitivity βcd
results in a shift of the angle or slope of the cell death function (Figure 4A). At a high level of resection
(i.e., low fraction of remnant liver), increasing βcd results in a downward shift in the cell death function,
lowering the cell death (Figure 4A). However, at low level of resection (i.e., high remnant liver mass
fraction) the cell death increases with increasing βcd (Figure 4A). The cell death profile as a function of
increasing cell death sensitivity (θcd) or metabolic load (M) results in a horizontal shift towards higher
levels of remnant liver fraction (Figure 4B,C). Consequently, for a given level of remnant liver fraction,
increasing metabolic load (M) or cell death sensitivity (θcd) lead to higher levels of cell death. The cell
death profile when both the cell death sensitivity (βcd) and metabolic load are changed simultaneously
show a wide variation in both slope and the switching threshold of the sigmoidal cell death function
(Figure 4D).

Figure 4. Changes in the cell death function upon varying the parameters that control the cell death
process. (A) βcd = [3.2 × 10−3 − 3.15 × 10−2]; M = 5.8507, θcd = 0.0320. (B) θcd = [3.2 × 10−3 − 3 ×
10−1]; M = 5.8507, βcd = 0.0045. (C) M = [0.59 − 11.7]; θcd = 0.0320, βcd = 0.0045. (D) βcd = [3.2 × 10−3

− 3.15 × 10−2] and M = 5.85 or 10, θcd = 0.0320.

We analyzed the cell death function of the 9000 virtual patients that were categorized for response
modes in Section 3.1. The cell death functions corresponding to the four response mode classes of
patients are shown in Figure 5. The cell death functions of both recovery classes, normal and suppressed
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growth, are steep and shifted towards lower remnant liver fraction (Figure 5A,B,E,F), which resulted
in almost negligible cell death at low levels of resection (i.e., high remnant liver fraction). The cell
death functions for the liver failure classes show wide variation and are more inclined as compared to
normal and suppressed recovery classes, resulting in higher cell death for any given level of resection
(Figure 5C,D,G,H). The ranges of cell death functions are overlapping across the response modes,
suggesting that cell death function is not the sole determining factor for classifying the fate of the
patient post resection surgery. Specifically, the level of resection also plays a crucial role in determining
the dynamics of liver recovery and potential failure.

Figure 5. The distribution of profiles of cell death function for the four classes of patients categorized
by the response mode to a given level of resection. (A,E) Normal growth. (B,F) Suppressed recovery.
(C,G) Delayed liver failure. (D,H) Immediate liver failure. (A–D) 10% resection and (E–H) 33.3% resection.

3.3. Comparison of Cell Death between Recovery versus Failure Scenarios for Varying Level of Resection

In this section, we compare the responses of two virtual patients showing liver recovery and
liver failure to different levels of resection to examine the distribution of responses. Figure 6A,D
shows the regeneration profiles of a representative normal recovery and a liver failure cases from the
virtual patient cohort for 1/3rd resection. The response profiles were simulated for different levels
of resection. The virtual patient shows recovery for varying levels of resection, until a threshold
value of 83%, beyond which liver failure occurred due to lack of a robust regenerative response
(Figure 6A). By contrast, the response of the patient with controlling parameters leading to liver failure
was insensitive to the level of remnant liver mass (Figure 6D). Simulations suggest that at higher levels
of resection (i.e., lower remnant liver fraction), the patient can exhibit an inverse response in which
the liver mass enters an initial recovery phase while undergoing a continuous loss of liver tissue that
overcomes the recovery, resulting in liver failure. The failure is reflected in the response profile as
a fast decline in the remnant liver fraction and the time delay of failure was longer with higher levels
of remnant liver mass (Figure 6D).

For the above two virtual patient cases, we examined the evolution of hepatocytes in quiescent
versus proliferating phase over time for different levels of resection. The corresponding projections
of the phase spaces shown in Figure 6B,E suggest the existence of two attractors, one corresponding
to failure and the other to recovery. For the first virtual patient case, a threshold of 83% resection
separates the two attractors, such that increasing level of resection results in a shift in the stability of the
system from one attractor to another, that is, exhibiting a transition from recovery to failure (Figure 6B).
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By contrast, the threshold of failure for the second virtual patient was low, likely corresponding to the
existence of only one attractor for this case that is associated to liver failure (Figure 6E). We compared
the cell death function for the two cases for uncovering potential differences over time. The surface
plots shown in Figure 6C,F correspond to the two virtual patient cases and the trajectories on the
surface depict the cell death process for a specific level of resection. For the first virtual patient case,
the cell death is negligible for low levels of resection as seen by the trajectories largely spanning the
lower part of the cell death function (Figure 6C). At a resection level beyond the threshold of failure,
there is a drastic change in the cell death profile with the trajectories distributed in the upper portion
of the cell death function, resulting in high cell death. In the second virtual patient case, the cell death
trajectories show initial fluctuations at low levels of the cell death function, before shifting upward
and saturating to the maximum cell death which leads to a fast decline in the remnant liver fraction
(Figure 6F).

Figure 6. (A,D) Temporal profile of remnant liver fraction for two virtual patients for varying levels
of resection. These cases were chosen based on the recovery and failure outcomes respectively for
1/3rd resection. (Recovery: M = 11.4645, βcd = 0.0064, θcd = 0.0262; Failure: M = 10.7312, βcd = 0.0219,
θcd = 0.0224) The corresponding (B,E) phase plane and (C,F) cell death function for the two virtual
patients are shown.

3.4. Tuning the Model for Different Liver Failure Patients

The analysis so far has provided insights into the effect of key biochemical and biophysical
parameters in the liver regeneration process. We used this knowledge to tune the model parameters
to capture the timescale of response to resection as reflected in the volumetric liver data for the
patients that exhibited liver failure available in Yamamoto et al. [11]. Figure 7 shows the regeneration
profiles predicted and optimized parameters for 7 real patients who exhibited liver failure. The model
parameters were optimized for each patient-specific data set using elastic net (see Methods). The initial
values for parameter optimization were chosen such that the values of the controlling parameters
(M, θcd, βcd) were set from a representative case of a virtual patient belonging to the class of delayed
liver failure and the remaining 30 parameters were set from Cook et al. [10]. The simulated liver
fraction profiles from models with patient-specific optimized parameters showed a good match with
the volumetric data and captured both the slow (ID114, 123, 131, 29) and fast (ID45, 245, 135) timescales
of liver failure (Figure 7A). Comparing the optimized parameters to the initial values show that the
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priming of hepatocytes and JAK-STAT pathway contribute to the difference in the timescale of liver
failure (Figure 7B). The table of optimized parameter values for the individual patients is given in
Appendix A.

The profiles of remnant liver fraction for the slow and fast timescale of liver failure cases are
shown in Figure 8A,F. The corresponding phase space portrait projection and the cell death functions
of patients undergoing liver failure at the slow and fast timescales are shown in Figure 8A–E and
Figure 8F–I, respectively. Even as the regeneration profiles of the patients with slow timescale of
response appear to match a suppressed recovery case, the phase plane depicts that the patients likely
undergo liver failure, as the fraction of remnant liver in each case is progressing towards the attractor
of zero levels. Analysis of the patient-specific cell death functions and trajectories suggest that the cell
death trajectories of patients showing slow timescale of failure were largely restricted to the lower
levels of cell death function. By contrast, the cell death trajectories of patients with relatively faster
timescale of liver failure continually progressed from lower levels with a steep ascent to reach maximal
levels of cell death function, corresponding to a rapid decline in the predicted liver fraction.

We note that the optimized values of the controlling parameters of all the patients were
similar (Appendix A) and yet the cell death trajectories were rather divergent across the patients
(Figure 8B–E,G–I). This is because cell death is not only dependent on the identified controlling
parameters but also on the remnant liver fraction, which depends on the regenerative processes
including priming pathways and proliferation. The parameters for the regenerative capacity are
different between the patients (Figure 7B) and these differences manifest in the net amount of recovery,
or lack thereof, in the fractional liver, indirectly affecting the cell death trajectory. Our simulations
suggest that patients with slow timescale of liver failure sustain low cell death for a longer duration
compared to the patients with a relatively faster timescale of failure that experience high cell death
with a rapid decline in the remnant liver fraction leading to failure and patient death. These results
from analysis of patient-specific model parameterization and simulation provide insights into how
the cell death trajectories likely control the timescale of response to resection, particularly for the liver
failure cases.

Figure 7. (A) Temporal profile of fractional liver of different patients that exhibited liver failure.
The model fits are based on patient-specific optimized parameters obtained using elastic net.
(B) Optimized parameters scaled to the initial parameter values for the individual patients.

79



Processes 2018, 6, 115

Figure 8. (A,F) Phase plane of a select set of patients exhibiting liver failure. (B–E) Patient-specific cell
death functions and trajectories for patients with slow timescale of liver failure. (G–I) Patient-specific
cell death functions and trajectories for patients with fast timescale of liver failure.

4. Discussion

The focus of this study is to understand the interplay between the different processes that are
activated after a liver resection and can lead to post hepatectomy liver failure. We started with
a computational model of liver regeneration process based on the published cellular network model of
Cook et al. [10]. We simulated the model over a wide range of parameters and found that the model
captures the wide variability in patient outcomes of liver regeneration and accounts for the variation
in the observed timescales of liver failure. The variability in response to liver resection may arise due
to inter-individual differences in the sensitivity to injury, which is likely due to disease etiology as well
as intrinsic genetic factors [23]. For instance, hepatic steatosis alters the potential for cell survival and
proliferation after liver resection as compared to the normal liver [10,24].

We identified the controlling parameters in the model which govern the timescale of the post
hepatectomy liver failure in humans. These controlling parameters correspond to the metabolic load
and cell death sensitivities. We generated a cohort of virtual patients by varying the controlling
parameters and classified the virtual patients based on their model-predicted outcomes post liver
resection. Our analysis suggests an inverse relationship between the levels of resection on the
proportion of cases showing normal growth, suppressed recovery, with concomitant increase in
the liver failure cases. These results are consistent with expectations of increased potential for failure
with increasing level of resection in humans and animals [6]. Our model-based virtual patient analysis
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revealed that the parameter space corresponding to the transition from recovery to failure outcomes
corresponds to delayed liver failure and the proportion of the delayed liver failure is dependent on
the level of resection. These results show that the remnant liver fraction is an important decision
making variable that not only discriminates between liver failure and recovery but also governs the
timescale of failure especially when a patient experiences delayed liver failure. These results provide
new insights in interpreting the wide range of variation seen in clinical data sets [11].

Our model-based results on the critical role of a combination of cell death process and remnant
liver fraction in controlling the liver regenerative response is consistent with the findings from animal
studies showing that beyond a certain threshold of resection, cell death increases substantially, resulting
in high likelihood of failure [6,25]. Importantly, reducing the cell death rescues the animals from
undergoing failure after partial hepatectomy [26]. Similarly, preventing the hepatocyte death by
blocking mitochondrial permeability transition can improve liver regeneration even for low remnant
liver fraction in animals [27,28]. Our model-based results place these experimental findings in the
context of cellular networks that underlie the regeneration process, as well as point out additional
parameters that can be potentially manipulated to help shift the trajectory of the response modes to the
recovery zone. The key controlling parameters were determined such that their combination decided
the level of cell death that occurred post resection. With our analysis, we concluded that though cell
death is an important process which influences the liver regeneration it is not the sole factor which
determines liver failure. Liver failure is conditional upon the load and other perioperative conditions.
This is likely to be patient specific and needs to be correlated with epidemiological, clinical measures
and disease etiology [29]. Modulation of these additional factors likely improve the probability of liver
recovery and hence have the potential to yield additional clinical options to reduce the chances of liver
failure due to lack of regenerative response.

Various parameters of this model were derived based on biochemical data and animal/clinical
observations (Furchtgott et al. [30]; Cook et al. [10]). The validation relevant to our present study
is regarding the dynamics of liver failure. Model simulations predict a wide range of time to
failure, which is consistent with the variability of the time scale of liver failure, seen in human data
(Yamamoto et al. [11]). We note that the virtual patient analysis approach differs from patient-specific
modeling that identifies parameters for individual patients and then performs comparative analysis
across patients. By contrast, the virtual patient simulations are evaluated against the types of behavior
(e.g., recovery versus failure), distribution of outcomes (e.g., range of time scales of failure) and so
forth., that are exhibited in a cohort (An et al. [12,13]). In the present study, information from the virtual
patient analysis on delayed liver failure response was used for optimization of the model parameters
for patient-specific data, which were not used to build the original model. Our analysis identifies cell
death relevant parameters and metabolic load as key factors controlling the time scale of liver failure
post-surgical resection. These results are consistent with Yamamoto et al. [11] findings from analysis of
patient data that suggest the extent of blood loss during surgery as a key factor discriminating between
failure versus recovery scenarios. It is likely that perioperative factors such as blood loss manifest
their effects on liver at least partly through increased cell death and higher load on the remaining
functional organ.

Our study was focused on the regulatory networks at the cellular and pathway scales in the liver
during the response to resection. However, failure or success of the resection surgery also depends
on the recovery of the metabolic function in addition to the liver mass. The present computational
framework can be extended to incorporate metabolic components to account for relationship between
functional liver fraction and key metabolic functions, for example, glucose homeostasis [31], ammonia
metabolism and urea cycle [32], or genome-scale metabolic models [33]. Liver failure can also occur due
to extra-hepatic factors including immune response, as well as inter-organ metabolic and physiological
relationships. For example, hepatic encephalopathy is an important condition that is guarded against
by monitoring ammonia homeostasis, which is considered as a clinically-relevant indicator of liver
metabolic function after liver surgery [34]. These processes are not explicitly accounted for in
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the present network model. One can consider that metabolic load parameter serves as a lumped,
phenomenological factor that accounts for the stress on liver, with metabolic load per unit of liver
mass (M/N in Equations (4), (9) and (11)) serving as a stimulus for regeneration as well as cell
death [10,30,35]. Opportunities exist for integrating the liver regeneration model with multi-organ
physiology models to expand the utility of the model into a whole body context. The model- based
research discussed in this work on liver regeneration has been based on a lumped model considering
the hepatocyte functional states. This approach can be extended to incorporate functional states of
other liver cell types including hepatic stellate cells, sinusoidal endothelial cells and Kupffer cells
(resident macrophages of the liver) [36], as well as potential emerging rescue approaches such as stem
cell transplant [37]. Taken together, the above detailed extensions to the network model will permit
relating the key controlling parameters to inter-cellular, tissue-scale and whole body physiological
scale parameters and will likely provide additional insights into novel venues for clinical management
and intervention.

Our use of a virtual patient cohort approach helped delineate the key parameter intervals
and combinatorial dependencies that correspond to a wide range of predicted outcomes post
resection. Fruitful next steps could be to correlate these model-predicted parameter subspaces
to patient demographical data as well as preoperative clinical information and disease etiology.
Development of such a correspondence between patient information and model parameters is likely
to aid in generalized application of the dynamic modeling to a wide range of liver surgery scenarios.
Such a model-based approach informed by patient data to constrain the parameters can assist in clinical
decision making by predicting the categorical outcome prior to the clinical intervention. Specifically,
our model-based approach can aid in estimating the safe level of resection a patient can undergo along
with predicting the need for necessary manipulations of cell death sensitivities and metabolic load to
maximize the chances of recovery.
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Appendix A

Table A1. Nomenclature of the model parameters and values of upper and lower bounds used in
the optimization.

Parameter Range Description

M 1.00411–100.41126 Mechanical stress or increased nutrient and detoxification demand

kIL6 0.15–15 Rate of production of IL6 from non-parenchymal cells

κIL6 0.09–9 Rate of IL6 degradation

VJAK 2000–200,000 Maximum rate of activation of JAK

KJAK
M 1000–100,000 Concentration of JAK, when the rate of activation of JAK is half of

the maximum rate

κJAK 0.04–4 Rate of degradation of JAK

[proSTAT3] 0.01–20 Relative concentration of monomeric STAT3

VST3 75–7500 Maximum rate of STAT3 phosphorylation

KST3
M 0.04–40 Michaelis-Menten concentration of proSTAT3

κST3 0.05–1 Rate of dephosphorylation of proSTAT3

VSOCS3 14,000–34,000 Maximum rate of SOCS3 activation

KSOCS3
M 0.0004–0.001 Concentration of SOCS3, when it’s rate of activation is half the

maximum rate

κSOCS3 0.1–0.7 Rate of degradation of SOCS3

KSOCS3
I 0.005–0.025 SOCS3 inhibition constant on STAT3

VIE 150–350 Maximum rate of activation of IE gene

KIE
M 15–21 Concentration of IE gene, when it’s rate of activation is half the

maximum rate

κIE 3–7 Rate of degradation of IE gene

kdeg 5–9 Rate of degradation of ECM by MMPs

κECM 30–36 Rate of degradation of ECM

kGF 0.05–0.2 Rate of production of growth factor from non-parenchymal cells

κGF 0.1–0.35 Rate of degradation of growth factor

kup 0.04–0.08 Rate of binding of growth factor to ECM

kQP 0.005–0.009 Rate of hepatocytes transition from quiescence to primed state

kPR 0.003–0.006 Rate of hepatocytes transition from primed to replicating state

kRQ 0.04–0.065 Rate of hepatocytes transition from replicating to quiescence state

kprol 0.01–0.03 Rate of proliferation of hepatocytes

kreq 0.05–0.15 Rate of requiescence of primed hepatocytes

θreq 6–10 Requiescence parameter in the sigmoidal function (σreq) defining
the threshold of requiescence

βreq 2–4 Requiescence parameter in the sigmoidal function (σreq) defining
the threshold of requiescence

kcd 0.05–0.15 Cell death rate of damaged hepatocytes

θcd 0.00110–0.11050 Cell death sensitivity parameter of the sigmoidal function (σcd)

βcd 0.00260–0.26046 Cell death sensitivity parameter of the sigmoidal function (σcd)
defining the cell death threshold

kG 0.0003–0.0007 Rate of growth of relative cell mass
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Table A2. Table of the 33 model parameters optimized using the initial value as given in the table for
the 7 patients (studied in section 3.4) from Yamamoto et al. [11] that showed liver failure.

Parameter
Nominal

Value

Patient Identification Number

ID114 ID123 ID131 ID29 ID45 ID145 ID135

M 10.041128 10.7480 10.0211 10.0173 10.0396 9.9112 10.0552 10.0425
kIL6 1.5 3.9280 3.2484 1.6583 1.5000 1.0530 1.4620 1.4464
κIL6 0.9 3.9040 0.7807 0.9043 0.9000 1.0276 0.9117 0.9800
VJAK 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000
KJAK

M 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
κJAK 0.4 1.4695 1.1701 0.3941 0.4000 0.5844 0.4330 0.3804

[proSTAT3] 2 6.1276 3.0179 1.9367 1.9736 1.9422 1.9866 1.9897
VST3 750 750.0337 750.0022 750.0003 750.0001 750.0006 750.0000 749.9999
KST3

M 0.4 1.0194 1.2485 0.4001 0.4000 0.4115 0.4096 0.3752
κST3 0.1 0.0987 0.1614 0.1000 0.1000 0.1017 0.1152 0.1116

VSOCS3 24000 24000 24000 24000 24000 24000 24000 24000
KSOCS3

M 0.0007 0.0007 0.0007 0.0007 0.0007 0.0009 0.0007 0.0007
κSOCS3 0.4 0.4871 0.3970 0.4000 0.4000 0.1913 0.3855 0.3847
KSOCS3

I 0.015 0.0139 0.0149 0.0150 0.0150 0.0150 0.0147 0.0150
VIE 250 250.12 250.01 250.00 249.99 249.99 249.99 249.99
KIE

M 18 19.1762 18.1366 18.0041 18.0055 18.0474 18.0014 17.9778
κIE 5 6.9573 5.3009 5.0022 4.9925 4.9951 5.0061 4.9493

kdeg 7 6.3119 7.2057 7.0017 6.9977 7.1109 6.9982 7.0171
κECM 33 33.9672 33.0645 32.9999 33.0004 32.9871 33.0004 32.9939
kGF 0.113 0.1677 0.1214 0.1130 0.1130 0.1128 0.1166 0.1103
κGF 0.23 0.3384 0.2453 0.2300 0.2300 0.2291 0.2298 0.2302
kup 0.06 0.0577 0.0590 0.0600 0.0600 0.0598 0.0600 0.0600
kQP 0.007 0.0079 0.0069 0.0070 0.0070 0.0056 0.0070 0.0070
kPR 0.0044 0.0043 0.0044 0.0044 0.0044 0.0034 0.0044 0.0044
kRQ 0.054 0.0517 0.0536 0.0540 0.0540 0.0509 0.0507 0.0547
kprol 0.02 0.0202 0.0202 0.0200 0.0200 0.0277 0.0220 0.0144
kreq 0.1 0.1407 0.0999 0.1000 0.1000 0.1308 0.1013 0.0987
θreq 8 9.9514 8.2151 7.9998 7.9994 7.9845 8.0009 8.0182
βreq 3 3.9615 3.1587 3.0021 3.0000 2.9657 2.9990 2.9563
kcd 0.1 0.1390 0.1089 0.1000 0.1000 0.1001 0.1006 0.1003
θcd 0.011050 0.0117 0.0099 0.0111 0.0111 0.0108 0.0128 0.0114
βcd 0.026046 0.0180 0.0270 0.0257 0.0249 0.0198 0.0260 0.0234
kG 0.000657 0.000588 0.000601 0.000613 0.000614 0.000400 0.000497 0.000574
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Abstract: The goal-oriented control policies of cybernetic models have been used to predict metabolic
phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and
dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic
regulation is driven towards attaining goals that correspond to an organism’s survival or displaying
a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG)
metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A
(KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a
well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and
lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS
database. The model parameters were estimated using a two-step hybrid optimization approach.
A genetic algorithm was used to determine the population of near optimal parameter values, and a
generalized constrained non-linear optimization employing a gradient search method was used to
further refine the parameters. We validated our model by predicting an independent data set, the
prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic
model captures the complex regulation of PG metabolism and provides a reliable description of
PG formation.

Keywords: lipids; prostaglandin metabolism; omics data; cybernetic modeling; optimization;
metabolic objective functions

1. Introduction

Engineering methodologies are critical for a quantitative understanding of the physiological
mechanisms in normal and disease states. Systems biology relies upon the use of models to organize
biological knowledge and make predictions of complex processes. A variety of multi-omic data and
mathematical approaches are available for modeling with varying (simple to complex) degrees of
resolution [1,2]. One approach, cybernetic modeling, has been used for over three decades to predict
a variety of metabolic phenomena [3,4]. Cybernetic modeling of metabolism, at its core, embodies a
framework of ordinary differential equations for kinetic modeling, which describes the time-dependent
evolution of metabolite concentrations, enzyme concentrations, and cellular growth. In cells, these
changes in concentrations, both inside and outside of the cell, are governed by the directed actions of
complex biological processes.
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The cybernetic modeling framework distinguishes itself from traditional kinetic modeling by
indirectly accounting for the unknown regulatory processes in the cell. These regulations are a
cooperative cascade of molecular mechanisms that enhance cellular function, such as growth or
survival. In the absence of high resolution knowledge of all cellular signaling and metabolic events,
cybernetic regulation offers a significant advantage and modulates the level of key enzymes through
the introduction of cybernetic variables for induction (ui) and activation (vi). Cybernetic models
of metabolism were first formulated to describe the growth behavior of cells in multi-substrate
environments. These models build on the assumption that the synthesis and activity of the enzymatic
machinery are regulated to maximize a return on investment (ROI), such as, biomass, carbon uptake,
etc. [5–7]. For example, in the classic scenario of diauxic growth, E. coli regulates its transport enzymes
and prioritizes the utilization of the substitutable substrates based on an optimal growth rate [5].
While cybernetic models have focused on bacterial systems in the past, we presently adapt this
framework to model the dynamic behavior of prostaglandin (PG) formation as an inflammatory
response of bone marrow derived macrophages (BMDM) in a mammalian system [7–10].

Inflammation is an active defense mechanism of multicellular organisms in response to
various harmful stressors. The primary role of inflammation is to counter the effects of these
stressors and to initiate cell and tissue repair. Multiple factors in the immune system respond
to inflammation; for example, macrophages are a type of white blood cell of the immune system
designed to target substances that lack surface proteins associated with healthy body cells [11].
Upon infection, macrophage cells are activated via induced metabolic changes associated with
lipids [12,13]. Consequently, we focus our study on a sub-category of fatty acyls known to
contribute to inflammation, the eicosanoids. Eicosanoids are derived from arachidonic acid (AA),
a 20-carbon fatty acid and are further classified into prostaglandins, thromboxanes, leukotrienes,
and other oxidized products [14]. PGs have been found to mediate pain, fever, and other symptoms
associated with inflammation [15]. PGs are synthesized from AA via the enzyme Prostaglandin G/H
synthase (EC 1.14.99.1; cyclooxygenase (COX)), which has been targeted for treating inflammation,
musculoskeletal pain, and other conditions. COX inhibitors are common and found in daily-use drugs
such as aspirin and ibuprofen [16].

Lipid biosynthesis often requires the active transport and the chemical transformation of several
intermediates. Lipid biosynthesis is further regulated at the corresponding enzyme synthesis levels
starting from enzyme transcription through RNA processing, translation, and posttranslational
modifications. We previously developed an approach to model the flux of AA and its downstream
metabolites and applied it to the data from the murine macrophage-like (RAW 264.7) cells [17].
We also extended this model to bone marrow derived macrophages (BMDM) primed with the
lipopolysaccharide (LPS) analogue KDO2-Lipid A (KLA) and activated with a purinergic P2X7 receptor
agonist adenosine triphosphate (ATP) [18]. Despite their ability to effectively predict the metabolite
levels, these models either do not incorporate biological regulatory mechanisms or only account for
simple regulation, such as at the gene expression level [17–20]. Given that biological processes are
regulated at many other stages, such as posttranslational protein modification and interaction with a
protein or substrate molecule, we have used the cybernetic modeling framework to account for such
regulations in the modeling of lipid metabolism in this work.

The work presented here serves to provide a predictive kinetic model incorporating cellular
regulatory mechanisms for eicosanoid metabolism, and signaling using the cybernetic framework,
with inflammation as the system objective. While there is no single entity that represents the totality
of inflammation by itself, the cytokine tumor necrosis factor alpha (TNFα) is well-known for its
role in the generation of systemic inflammation and is a product of the response of macrophages to
ATP and LPS [21,22]. We hypothesize that PG metabolism is regulated to maximize inflammation,
characterized by the amount of TNFα generated by the system. Using the lipid pathways derived from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and the time-course data
from LIPID MAPS, our cybernetic approach to model the macrophage system provides a quantitative
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model of eicosanoid metabolism initiated with changes in the levels of AA (input) and resulting in the
inflammatory outcome represented by TNFα [23–27]. The present study is an exemplar that highlights
the potential for cybernetic approaches.

2. Materials and Methods

To describe the time-dependent formation of PGs, a kinetic model is generated. This description
approximates the conversion of AA into an intermediate product, prostaglandin H2 (PGH2), and its
subsequent conversion into downstream products, prostaglandin D2 (PGD2), prostaglandin E2 (PGE2),
and prostaglandin F2α (PGF2α). In this simple network of PG formation, the main focus is on how the
PGH2 conversion into the three downstream PG products is regulated, which may represent a central
decision point in the lipid metabolic system in the macrophage inflammatory response (Figure 1a).
The behavior of this network is modeled in three separate conditions, a control, a treatment with
ATP, and a combined treatment of ATP and KLA. Measurements were made at 0, 0.25, 0.5, 1, 2, 4, 8,
and 20 h after ATP stimulation (Figure 1b). The data for all these conditions was taken from LIPID
MAPS [28–31]. Details of the experimental procedure can be obtained from the LIPID MAPS website
(protocol available at: www.lipidmaps.org/protocols/PP0000004702.pdf).

Figure 1. (a) The arachidonic acid metabolic pathway map for the breakdown of arachidonic acid
into respective prostaglandin products via prostaglandin H2 (PGH2) is shown: (rectangles) enzymes,
(ellipses) lipid metabolites, (shaded) measured metabolites, (arrows) enzymatic and non-enzymatic
reactions; (b) bone marrow derived macrophages (BMDM) were pretreated with or without KLA for
4 h and then stimulated with or without ATP. The media and cells were collected for lipidomic, tumor
necrosis factor alpha (TNFα) and transcriptomic analysis at 0, 0.25, 0.5, 1, 2, 4, 8, and 20 h after ATP
stimulation; (c) depiction of the simplified system network used for kinetic modeling illustrates PGH2

as a control point and e1, e2, and e3 as cybernetic enzymes regulated via cybernetic variables for the
regulation of PGD2, PGE2, and PGF2α fluxes.

2.1. Development of the Kinetic Model

The structure of the kinetics for this reaction network is arranged into two segments (Figure 1c).
The first describes the conversion of AA into PGH2 using simple linear kinetics. The kinetics of this
reaction is modeled as three separate mechanisms, including a basal rate of synthesis, generation due
to ATP stimulation, and KLA priming of cells.

rAA→PGH2 = kPGH2 [AA](1 + kATP[ATP] + kKLA[KLA])
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To capture the effect of ATP, the treatments to the culture are modeled as a piecewise function,
f (t). This piecewise function ramps up to a maximum value of 1 at 0.5 h (ks = 2 h−1) and decreases
exponentially (kd = 17.2 h−1) following the initial half hour of the experiment. For the KLA treatment
case, the same f (t) was used with a 4 h adjustment to account for the 4 h priming of KLA prior to the
ATP stimulation.

f (t) =

{
kst i f t ≤ 0.5

e−kd(t−0.5) i f t > 0.5

The primary difference in this function from previous work is in the second term, which
includes exponential decay instead of a linear function to describe desensitization of cells to a given
stimulus [32].

2.2. The Cybernetic Framework

The other segment of this model employs the cybernetic framework to capture the regulation
between the different metabolic options [32]. In the cybernetic framework, there are two descriptions
of the reaction kinetics. The first is the raw, enzyme-dependent rate of reaction, which we termed the
kinetic rate of reaction, rkin. This kinetic rate includes an enzyme quantity, ei, which represents the
amount of enzyme devoted to the conversion of PGH2 to a PG product.

rkin
PGH2→PGi

= eikPGi [PGH2]

The second description uses the cybernetic approach, which assumes a certain metabolic
objective, namely, the optimal production of PG derivatives leading to maximum TNFα production.
The framework views each pathway as a metabolic option to achieve such an objective and describes
metabolic regulation in terms of their optimal combinations. Flux through the ith pathway is modeled
as regulated by the control of the enzyme level and its activity, that is:

rreg
PGH2→PGi

= virkin
PGH2→PGi

where vi is the cybernetic variable controlling enzyme activity. The resulting ordinary differential
equations (ODEs) for each metabolite incorporated into the model (Figure 1c) can be written as a
combination of regulated rates, rreg, and degradation, where γ is the degradation rate constant, of the
metabolites, as follows:

d[PGH2]

dt
= rAA→PGH2 − ∑

i=1
rreg

PGH2→PGi
− γPGH2 [PGH2]

d[PGi]

dt
= rreg

PGH2→PGi
− γPGi [PGi]

The enzyme level, ei, is governed by the following dynamic equations:

rkin
ei

= kei [PGH2]

rreg
ei = uirkin

ei

dePGi

dt
= α + rreg

ei − βePGi

where ui is the second cybernetic variable regulating the induction of the enzyme synthesis. The three
terms on the right-hand side denote constitutive rate, α, and inducible rate of enzyme synthesis
modulated by the cybernetic variable, ui, and the decrease of the enzyme levels by degradation, where
β is the degradation rate constant. The cybernetic control variables, ui and vi, are computed from the
Matching and Proportional laws, respectively, as follows:
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ui =
ρi

∑k ρk

vi =
ρi

maxk(ρk)

where the ROI, ρi, is defined by the flux through a particular pathway and is determined based on the
designated system goal or objective [33].

2.3. Defining the Cybernetic Goal or Objective

PGs are well-characterized for their roles in the inflammatory response. Thus, in this paper,
we focus on the regulation of PG synthesis as a function of TNFα, a marker of inflammation, for the
selection of the model’s objective function. To quantify the relationship between the PGs and TNFα,
a simple, linear model of TNFα level is developed as a function of PGi levels using their time-series
data, as follows:

[TNFα] = ∑
i

ci[PGi]

We can also approximate the time derivative of TNFα concentration as a linear combination of
time derivatives of PGi concentrations over the time course. Additionally, due to the difference in
magnitude of the different PGi levels, a scaling was used to determine the contribution of each PGi
pathway leading to TNFα production. Thus, we define the weights, wi, as follows:

wi =
ci[PGi]

∑j cj[PGj]

where wi is the weight associated with the PGi branch leading to TNFα production (wi values of
0.2114, 0.2201, and 0.5685 for i = 1, 2, and 3 correspond to PGE2, PGF2α, and PGD2, respectively).
Weights were obtained from ci and [PGi], the average concentration of PGi across time, via regression
of PGi and TNFα data (Matlab® function ‘fmincon’, using the interior-point algorithm) using eight
time points across ATP stimulated and control conditions; ci does not change with time. Of the three
pathways modeled, there is a varying degree of inflammation that results from the generation of each
PGi as described by the objective function. In this particular system, the ROI for each pathway is
assumed to be the amount of TNFα that each unregulated pathway can yield at each instant in time,
which is described by ρi.

ρi = wirkin
PGH2→PGi

2.4. Estimation of the Kinetic Rate Parameters and Uncertainty Analysis

The model was parameterized using data from two of the three conditions, the control and the
ATP treatment cases. Data was available for the AA, PGE2, PGF2α, and PGD2 metabolites as an
eight-point time series over a 20 h time window. PGH2 is an unstable intermediate metabolite we
could not measure experimentally; in our model, we constrained the maximum concentration of PGH2

to be ~10 pmol/μg DNA based on the total amount of PGs produced. The magnitudes of the different
metabolites varied from 0.001 to 10 pmol/μg of DNA. To fit the model to the data, a least squared fit
error was computed from the scaled profiles of the lipid, with respect to its maximum value, to ensure
that the varying magnitude of each PG’s level did not skew the parameters towards the sole fit of the
PGs with higher magnitudes. The overall objective function for fitting the data was to minimize the
fit-error between the experimental and the predicted metabolite concentrations [17], as follows:

min
K,Xo

(
nsp

∑
i=1

(
ni

∑
j=1

(
yi,j,exp − yi,j,pred(K, X0)

)2
))
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where K is the set of parameters or rate constants; X0 is the set of initial conditions of the enzyme
concentrations; ni is the number of time-points, 21, interpolated from 0 to 20 h (indexed as j) in
order to provide equal weightage to later time points in the model fit; and nsp is the total number
of species (indexed as i). The ODEs in the model were solved using ode15s for the stiff systems
in MATLAB (version 9.4.0.813654, R2018a, Natick, MA, USA). The parameters (Table A1) were
optimized using a two-step hybrid optimization procedure that started with a genetic algorithm
seeded with random initial parameter values and evolved up to 100 generations in order to determine
near optimal parameter values (Matlab® function ‘ga’). The results from the application of the
genetic algorithm-based optimization were then further refined using a generalized constrained
non-linear optimization employing a gradient search method (Matlab® function ‘fmincon’, using the
interior-point algorithm).

The quality of our model fit was assessed by comparing the variance for the fitted data to the
variance in the experimental (replicate) data (treatment and control data combined) using the F-test,
as follows [18]:

F =

SSEf it
(2×nt)
SSEexp

(2×nt×(nr−1))

F =

(
∑nt

j=1

(
Ytrt

j −Xtrt
j

)2
+∑nt

j=1

(
Yctrl

j −Xctrl
j

)2
)

(2×nt)(
∑nt

j=1 ∑nr
i=1

(
Xtrt

ij −Xtrt
j

)2
+∑nt

j=1 ∑nr
i=1

(
Xctrl

ij −Xctrl
j

)2
)

(2×nt×(nr−1))

where Xj, Xj, and Yj denote the experimental data, mean experimental data, and simulated (fitted)
data at time point j, respectively; nr is the number of replicates (nr = 3, indexed as i); nt is
the number of experimental time points (nt = 8, indexed as j); and trt and ctrl are treatment
and control groups, respectively. The degrees of freedom for determining the F distribution are
df 1 = (2 × nt) and df2 = (2 × nt × (nr − 1)). F statistic values smaller than F0.95(16, 32) = 1.97 indicate
statistically equal variance in simulated (fitted) and experimental data; whereas, F values smaller than
F0.05(16, 32) = 0.4580 indicate the fit-error is statistically smaller than the experimental error.

3. Results

3.1. Development of the Kinetic Model for the COX Pathway

Our cybernetic model describes the conversion of AA into the intermediate product, PGH2, and
its subsequent conversion into downstream prostaglandin products, PGE2, PGF2α, and PGD2. In this
simple network of PG formation, the primary intent is on the regulation of PGH2 conversion into the
three downstream PG products. To address the latter, cybernetic regulation (implementation of ui and
vi variables) was used at this branch point. The model for the COX pathway was described by 7 ODEs
and 18 kinetic parameters (Table A1) in total; these 18 rate constants were estimated using a hybrid
optimization approach (Materials and Methods). Using the optimized parameters, the eicosanoid
profiles for the control and ATP stimulated cases were simulated (Figure 2). For most time points, the
difference between the simulated and experimental data in both the treatment and control conditions
fell within the standard error of the mean. The goodness of fit for the model was further examined by
performing the F-test, indicating that the fit-error was less than the experimental measurement error
(Table 1).
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Figure 2. The computational simulation of the eicosanoid profile is generated using the cybernetic
model in ATP stimulated BMDM. The mean experimental data (circles) with associated standard error
of the mean (SEM) from three replicate experiments (n = 3) for the ATP stimulated (green) and control
(red) cases are taken from the mass spectrometry measurements of lipids. The simulation results are
shown for the treatment and control cases (solid green and red curves, respectively).

Table 1. Goodness of fit, F-test, for simulated/optimized (adenosine triphosphate (ATP) stimulated
data) and predicted (Kdo2-Lipid A (KLA) primed and ATP stimulated) cases. F values smaller
than F0.05(16, 32) = 0.4580 indicate that the fit-error is statistically smaller than the experimental
error; whereas the F values smaller than F0.95(16, 32) = 1.97 indicate that the fit-error is statistically
comparable to the experimental error. PGD2—prostaglandin D2; PGE2—prostaglandin E2;
PGF2α—prostaglandin F2α.

Metabolite Model Fit to ATP Data Model Fit to KLA and ATP Data

PGE2 0.0312 0.2421
PGF2α 0.0470 0.0342
PGD2 0.2636 0.1192

The eicosanoid model robustness was evaluated by performing a parametric sensitivity analysis.
Each parameter was varied individually by ± two-fold of the original optimized value and the
maximum difference in the treatment and control case concentrations of each metabolite was plotted.
The slopes of each metabolite sensitivity curve were calculated to evaluate the sensitivity for each
parameter at the optimized value of that parameter. A heat map of the slopes was then generated
(Figure 3). Small to moderate sensitivities in most of the parameters were observed. As expected,
very little or no variation in the degradation parameters for PGD2, PGE2, and PGF2α or in the KLA
parameter is seen in response to metabolite changes. This is especially relevant to note given that
the data set in which the parameter set was optimized for simulation was not treated with KLA and,
consequently, would not have a dependence on this parameter. Based on these results, our model of
eicosanoid metabolism is shown to be robust with respect to parametric perturbations.
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Figure 3. The slope of the sensitivity curves of the arachidonic acid (AA) metabolism are shown
as a heat map. For example, the changes in the parameter associated with a conversion of AA into
prostaglandin H2 (PGH2) resulted in an increase in all of the metabolites; whereas, changes in the
degradation of PGH2 resulted in a decrease in all of the metabolites. This is expected, given that PGH2

is in the upper part of the network, so the changes associated with these parameters will result in an
impact on all of the corresponding downstream metabolites.

3.2. Prediction of the Eicosanoid Profile in KLA Primed ATP Stimulated Macrophages

To test the validity of the above obtained parameters, we used the parameter values to predict
the new data set, the eicosanoid profile in KLA primed ATP stimulated BMDM cells. When the
profiles were predicted with the optimized parameter values, the model prediction did not fit the
experimental data well. We allowed up to 30% variability in the originally optimized parameter
values for the re-estimation of parameters in the KLA primed ATP stimulated case. The range of 30%
variability was chosen based on previous work by our group in determining the uncertainty of the
calculated parameters in the ATP stimulated model [18]. The prediction with the relaxed bounds on
the parameters yields a good fit to the experimental data (Figure 4 and see the results of F-test in
Table 1). This prediction of an independent experimental dataset (KLA primed and ATP stimulated
case), which was not used to fit the ATP stimulation data, further validated the model and parameter
values. The mathematical model reflects the AA metabolic network dynamics in BMDM cells.
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Figure 4. The computational prediction of the eicosanoid profile is generated using the cybernetic
model in KLA primed and ATP stimulated BMDM. The mean experimental data (circles) with
associated standard error of the mean (SEM) from three replicate experiments (n = 3) for KLA primed
ATP-treated (magenta) and control (red) cases are taken from the mass spectrometry measurements of
the lipids. The prediction results are shown for the treatment and control cases (solid magenta and red
curves, respectively).

Table 2. Enzymes were identified from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database and other selected resources for each pathway downstream of prostaglandin H2 (PGH2)
in prostaglandin synthesis. There is not a specific enzyme associated with the regulation of PGH2

into PGF2α.

Entrez ID Pathway Gene Symbol Name

64292 PGH2 → PGE2 Ptges prostaglandin E synthase
54486 PGH2 → PGD2 Hpgds/Ptgds2 hematopoietic prostaglandin D2 synthase

3.3. Understanding the Role of Regulation in the Cybernetic Variables

In order to validate the cybernetic control mechanism that drives the modulation of the reaction
rates in the model, the scaled gene expression data (representative of the enzymes synthesized) were
compared to the scaled versions of the predicted enzyme levels. The qualitative trends among both the
gene expression data and the predicted enzyme levels are expected to be similar [34]. Simply stated,
if the gene expression level of the enzyme for one of the pathway branches is increasing over a certain
time period, the cybernetic variable for the enzyme synthesis control and, therefore, the predicted
enzyme levels should also be increasing.

For comparative purposes, we first identified the genes related to the respective branch in the
eicosanoid metabolic pathways. These genes were selected using the KEGG database (Table 2) [24,27].
For two of the three branches in the pathway modeled, there are genes associated with enzymes for
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the catalysis of those pathways in the network. However, the PGF2α branch is a non-enzymatically
regulated process and does not have an associated gene for comparison with the corresponding
cybernetic variable.

Gene expression data inform the relative levels of the enzymes present. To validate the cybernetic
approach, we qualitatively compare the gene expression measurements with the corresponding
cybernetic enzyme levels. Given that the gene expression data is represented as a fold change with
respect to the control case, we have also taken fold changes of the enzyme levels from the cybernetic
model in the treatment cases with respect to their corresponding value in the control cases. Both the
gene expression and cybernetic enzyme level data were normalized by their corresponding maximum
values (ei/ei,max) to visualize a clear comparison of the dynamic trends. These comparisons are made
for both the ATP and the combined KLA primed ATP stimulated treatment conditions. Overall, the
scaled predicted enzyme profiles in solid green (ATP stimulated case) and magenta (KLA primed
ATP stimulated case) match the general behavior of their corresponding genes, identified in Table 2,
which are denoted by dashed black lines (Figure 5). There are some discrepancies such as in the Ptges
profile for KLA primed and ATP stimulated BMDM, as well as, the Hpgds profile for ATP stimulated
BMDM. This could be attributed to the different types of data used in the comparison plot of the
cybernetic variables, which represent the modeled proteomic levels of the enzymes with the available
transcriptomic data.

Figure 5. The behavior of the scaled cybernetic model enzyme level simulations (green in ATP
stimulated case and magenta in KLA primed, followed by ATP stimulated case) generally match the
trends of the scaled gene expression values (black dashed lines) for Ptges and Hpgds/Ptgds2 pathways
in (left) ATP and (right) combined KLA primed ATP stimulated treatments.

4. Discussion

The cybernetic approach differs substantially from other modeling methods. For traditional
kinetic modeling, detailed metabolic regulatory mechanisms are necessary [35,36]; however, the
cybernetic approach models these regulatory actions as a collective process with an optimal system
objective. Cybernetic enzymes and variables are used to describe a succinct mode of regulation
related to the organism’s goal. Cybernetic models have been useful in not only describing complex
substrate uptake patterns [7] but have also yielded successful predictions of intracellular fluxes [37],
gene-knockout behaviors [38], and multiplicity of steady states in chemostats [39]. While we show
that cybernetic modeling predicts complex cellular phenomena, we also validate the assumption that
the cybernetic control mechanisms mimic cellular regulation [34]. The cybernetic variables for enzyme
synthesis and activity, ui and vi, are compared with experimental data representative of the regulatory
mechanisms in cells. We show that the scaled predicted enzyme profiles generally match the behavior
of their corresponding genes identified from literature (Section 3.3). These predicted enzyme levels are
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calculated from metabolomics data based on the assumption that the enzymes for different pathways
are regulated in such a way as to optimize the objective function—in this case, the formation of TNFα.
The predicted enzyme levels, as informed by the ei control variables, are independent of the gene
expression data. Qualitatively comparing the behavior of the dynamic gene expression profiles with
the predicted enzyme levels further validates our cybernetic model (Figure 5) and serves to validate
the idea that modeling macrophage cells from a goal-oriented perspective is useful.

The objective function used in the model, maximizing the rate of TNFα formation, is a
central postulate of the cybernetic model presented here. While TNFα is well characterized as a
signaling molecule generated in the macrophage response of LPS binding to the TLR4 receptor, other
inflammatory cytokines, such as the interleukins (ILs) like IL-1, IL-6, and IL-12, can also be used
to describe the goal of the system [40]. Control goals related to other functions of PGs, besides
inflammation, are also of interest; however, given that the response of the macrophages to ATP and
KLA is an inflammatory one, the objective function centered around TNFα is most relevant within
the context of the system and conditions studied in this paper. To generate the cybernetic model, it is
necessary to first make an assumption of the control goal. This assumption was further tested on the
basis of whether or not the model is capable of making predictions of data beyond what the model is
trained on. The fact that the model, with the TNFα objective function, is able to make predictions of
the KLA primed and ATP stimulated treatment case, as well as of the gene expression trends, validates
the use of TNFα as a control assumption central to the model.

The statistical analysis of multi-omics data coupled with the development of mathematical models
aid in the unraveling of complex biological systems. We used a two-step, hybrid optimization approach
in our study to estimate the rate constants of the AA metabolic network in BMDM using time-course
lipidomic data. All of the kinetic parameters in our model were estimated through a nonlinear
optimization approach based on the experimental data. Therefore, this study, using a multi-omics,
data-driven, systems biology approach, is useful for understanding in vitro eicosanoid metabolism.
Our model showed a good fit to the experimental data as seen from the goodness of fit performed by
the F-test (Table 1), which suggests that the model captured the key characteristics of the lipid metabolic
network in the BMDM cells. After fitting the parameters to two conditions (i.e., the control and ATP
treatment conditions), the model provided the fits, which are shown in Figure 2. Effectively, this
model is reliable as it is also evident that the model correctly explains the evolution of the metabolite
concentrations for the different conditions involved in the fit. In the control condition, we see a
relatively low rate of prostaglandin formation as we would expect. The ATP treatment case shows a
good agreement with all of the prostaglandin products generated, and the kinetics of the model are
cross-validated using an additional treatment condition, KLA primed ATP stimulated BMDM cells
(Figures 2 and 3).

We then compared the effective rate constants associated with the enzymes of Hpgds/Ptgds2
(EC 5.3.99.2) and Ptges (EC 5.3.99.3) and their corresponding values reported in the literature to
confirm the reliability of our optimized parameter values [41–47]. In order to compare the enzyme
activities obtained from concentrations in the LIPID MAPS experimental data and literature values
of enzyme-enriched protein, we used appropriate conversion factors, as discussed in Kihara et al.,
2014 [18]. In summary, the calculated values from our simulation of the eicosanoid metabolism for
Ptgds2 activity and Ptges were within the expected range of the values reported in the literature.
The reported flux of PGD2 in macrophages is not detectable and is determined to be less than
1 nmol/min/mg of total protein, which is consistent with our model value, 1 × 10−5 nmol/min/mg
of total protein [46]. For the flux of PGE2, the reported literature value of 0.4 pmol/min/mg of
the total protein is of the same order as our computed value, 0.1 pmol/min/mg of protein [43].
Our computed values are consistent with those reported in the literature and further validate our
computational model.

In conclusion, we have developed a quantitative model of the eicosanoid metabolic pathway
by using cybernetic regulation in primary macrophages under control (basal) and ATP stimulated
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conditions. Additionally, we have been successful in predicting the metabolite levels of the eicosanoid
profiles and capturing the relative changes in gene expression of relevant enzymes under a set
of conditions different from that used for calculating the model rate constants. In particular,
we successfully predicted the eicosanoid profiles for the KLA primed ATP stimulated case. We have
demonstrated the use of the cybernetic approach to model the regulation of mammalian lipid
metabolism. The cybernetic model provides a robust description of metabolite formation and can be
used to predict perturbations to metabolism. Our computational model assists in understanding the
complexity of eicosanoid metabolism and in examining complex regulatory phenomena.

Author Contributions: Conceptualization, D.R., S.S., L.A., S.G., M.R.M., and F.T.D.; methodology, L.A., S.G.,
M.R.M., and F.T.D.; validation, L.A., S.G., and M.R.M.; formal analysis, L.A. and S.G.; investigation, L.A., S.G., and
M.R.M.; resources, D.R. and S.S.; data curation, S.G., L.A., and M.R.M.; writing (original draft preparation), L.A.;
writing (review and editing), L.A., S.G., M.R.M., F.T.D., D.R., and S.S.; visualization, L.A. and S.G.; supervision,
D.R. and S.S.; project administration, D.R. and S.S.; funding acquisition, D.R. and S.S.

Funding: This work is supported by the Center for Science of Information (CSoI), a National Science
Foundation Science and Technology Center, under grant agreement CCF-0939370 (S.S. and D.R.) and
NIH Research Grants R01HL106579 (to S.S.), HL108735 (to S.S.), U01CA198941 (to S.S.), R01LM012595
(to S.S. and M.R.M.), and U19AI090023 (to S.S.).

Acknowledgments: We acknowledge Raja Hemanth—an undergraduate summer research student from the
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India—for his help with
the initial weight calculations.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Reaction parameters were estimated for the eicosanoid metabolism model. The simulated
and predicted columns refer to the parameters optimized for ATP stimulated BMDM cells and KLA
primed ATP stimulated BMDM cells, respectively. The predicted parameters were further optimized
from the simulated parameters within 30% variability.

PARAMETER SIMULATED PREDICTED
KPGH2 0.0022 0.0016
KPGE2 0.0044 0.0031

KPGF2α 0.0326 0.0339
KPGD2 0.0533 0.0585
γPGE2 0.0062 0.0044

γPGF2α 0.0205 0.0197
γPGD2 0.1275 0.0893
KKLA 17.3923 0.0001
KATP 11.9112 8.3379

KE,PGE2 8.0801 10.4215
KE,PGF2α 0.2078 0.1478
KE,PGD2 0.2243 0.157
γPGH2 0.2603 0.3384

α 0.2244 0.2918
β 0.7757 1.0082

E0,PGE2 0.3974 0.5094
E0,PGF2α 0.0133 0.0105
E0,PGD2 0.2601 0.3379
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Abstract: Cell-free protein expression has emerged as an important approach in systems and
synthetic biology, and a promising technology for personalized point of care medicine. Cell-free
systems derived from crude whole cell extracts have shown remarkable utility as a protein synthesis
technology. However, if cell-free platforms for on-demand biomanufacturing are to become a reality,
the performance limits of these systems must be defined and optimized. Toward this goal, we modeled
E. coli cell-free protein expression using a sequence specific dynamic constraint-based approach in
which metabolite measurements were directly incorporated into the flux estimation problem. A
cell-free metabolic network was constructed by removing growth associated reactions from the
iAF1260 reconstruction of K-12 MG1655 E. coli. Sequence specific descriptions of transcription and
translation processes were then added to this metabolic network to describe protein production.
A linear programming problem was then solved over short time intervals to estimate metabolic
fluxes through the augmented cell-free network, subject to material balances, time rate of change and
metabolite measurement constraints. The approach captured the biphasic cell-free production of a
model protein, chloramphenicol acetyltransferase. Flux variability analysis suggested that cell-free
metabolism was potentially robust; for example, the rate of protein production could be met by
flux through the glycolytic, pentose phosphate, or the Entner-Doudoroff pathways. Variation of the
metabolite constraints revealed central carbon metabolites, specifically upper glycolysis, tricarboxylic
acid (TCA) cycle, and pentose phosphate, to be the most effective at training a predictive model,
while energy and amino acid measurements were less effective. Irrespective of the measurement set,
the metabolic fluxes (for the most part) remained unidentifiable. These findings suggested dynamic
constraint-based modeling could aid in the design of cell-free protein expression experiments for
metabolite prediction, but the flux estimation problem remains challenging. Furthermore, while we
modeled the cell-free production of only a single protein in this study, the sequence specific dynamic
constraint-based modeling approach presented here could be extended to multi-protein synthetic
circuits, RNA circuits or even small molecule production.

Keywords: dynamic constraint-based modeling; cell-free protein synthesis; systems biology

1. Introduction

Cell-free protein expression has become a widely used research tool in systems and synthetic
biology, and a promising technology for personalized point of use biotechnology [1]. Cell-free systems
offer many advantages for the study, manipulation and modeling of metabolism compared to in
vivo processes. Central amongst these is direct access to metabolites and the biosynthetic machinery,
without the interference of a cell wall or the complications associated with cell growth. This allows
us to interrogate (and potentially manipulate) the chemical microenvironment while the biosynthetic
machinery is operating, potentially at a fine time resolution. Cell-free protein synthesis (CFPS) systems
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are arguably the most prominent examples of cell-free systems used today [2]. However, CFPS in
crude E. coli extracts has been used previously to explore fundamental biological questions. For
example, Matthaei and Nirenberg used E. coli cell-free extracts to decipher the genetic code [3,4].
Later, Spirin and coworkers continuously exchanged reactants and products in a CFPS reaction, which
improved protein production. However, while these extracts could run for up to tens of hours, they
could only synthesize a single product and were likely energy limited [5]. More recently, energy and
cofactor regeneration in CFPS has been significantly improved; for example, ATP can be regenerated
using substrate level phosphorylation [6] or even oxidative phosphorylation [2]. Today, cell-free
systems are used in a variety of applications ranging from therapeutic protein production [7] to
synthetic biology [1,8]. There are also several CFPS technology platforms, such as the PANOx-SP (PEP,
Amino Acids, NAD, Oxalic Acid, Spermidine, and Putrescine) and Cytomin platforms developed by
Swartz and coworkers [2,9], and the transcription and translation (TX-TL) platform of Noireaux [10].
Taken together, CFPS is a promising technology for protein production. However, if CFPS is to
become a mainstream technology for applications such as point of care biomanufacturing, we must
first understand the performance limits of these systems, and eventually optimize their yield and
productivity. Toward this unmet need, we have developed a dynamic constraint-based modeling that
can be used to interrogate cell-free systems.

Genome scale stoichiometric reconstructions of microbial metabolism popularized by static,
constraint-based modeling techniques such as flux balance analysis (FBA) have become standard
tools [11]. Since the first genome scale stoichiometric model of E. coli, developed by Edwards and
Palsson [12], well over 100 organisms, including industrially important prokaryotes such as E. coli [13]
or B. subtilis [14], are now available [15]. Stoichiometric models rely on a pseudo-steady-state
assumption to reduce unidentifiable genome-scale kinetic models to an underdetermined linear
algebraic system, which can be solved efficiently even for large systems using linear programming.
Traditionally, stoichiometric models have also neglected explicit descriptions of metabolic regulation
and control mechanisms, instead opting to describe the choice of pathways by prescribing an
objective function on metabolism. Interestingly, similar to early cybernetic models, the most common
metabolic objective function has been the optimization of biomass formation [16], although other
metabolic objectives have also been estimated [17]. Recent advances in constraint-based modeling
have overcome the early shortcomings of the platform, including describing metabolic regulation and
control [18] and incorporating genome sequence into the model [19,20]. Dynamic constraint-based
methods have also been developed in which the metabolic flux is computed over short-time intervals
subject to time-varying constraints [21]. These methods are common, have been used in varied
applications, [22–25], and there are open source packages to support this class of calculation [26–28].
Thus, constraint-based approaches, and their dynamic extensions, have proven useful in the discovery
of metabolic engineering strategies and represent the state of the art in metabolic modeling [29,30].
However, while constraint-based tools have been used extensively to analyze whole cells systems,
they have not yet been widely applied to study cell-free reactions.

In this study, we constructed a dynamic constraint-based model of cell-free protein expression.
This approach avoids the pseudo-steady-state assumption found in traditional constraint-based
approaches, which allowed for the direct integration of dynamic metabolite measurements into
the flux estimation problem, along with the accumulation or depletion of network metabolites.
We adapted the sequence specific constraint-based model of Vilkhovoy and coworkers [31] into
a dynamic constraint-based model of cell-free E. coli metabolism and protein production, and
leveraged the kinetic model of Horvath and coworkers [32] to provide synthetic data to inform
metabolite constraints. CFPS synthesis is often (but not always) conducted in small scale batch
reactors. Thus, the concentration of the components of the reaction mixture, and the associated
rates of the metabolic processes in the reaction are not always constant. The Vilkhovoy et al. study
considered only the first hour of the CFPS reaction producing the model protein, chloramphenicol
acetyltransferase (CAT). During this initial phase, the metabolic rates were approximately constant
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and a classical sequence specific flux balance analysis approach was sufficient to describe protein
synthesis [31]. However, after this initial phase, there was a significant shift in productivity following
the exhaustion of glucose (which occurred at approximately 1.5 h). Horvath and coworkers developed
a fully kinetic model that described the complete three hour reaction time course, including the shift
in productivity following glucose exhaustion [32]. While this model described the CFPS dynamics,
and the decrease in productivity following the exhaustion of glucose, the identification of the model
from 37 measured metabolite trajectories was difficult. Thus, there was an unmet need for a tool that
could describe the dynamics of a CFPS reaction, without the burden of identifying a full kinetic model.
Toward this need, we developed a dynamic constraint-based modeling approach for CFPS reactions
which directly incorporated metabolite measurements (as constraints) into the flux calculation. The
dynamic constraint-based model satisfied time-dependent metabolite constraints, while predicting the
concentration of the CAT protein and unconstrained metabolite concentrations. Model interrogation
suggested the most important metabolite constraint was glucose, as excluding glucose yielded the
greatest metabolite prediction error, and the greatest uncertainty in the estimated metabolic flux.
Furthermore, we evaluated metabolite constraint sets with one more and one fewer metabolites
than the base case (the 37 measured metabolites) to explore the impact of measurement selection
on model performance. The single addition of metabolites yielded no significant improvement
in the predictive power, while the single exclusion suggested glucose to be the most important
measured metabolite in the base case. Next, we selected measurement species based on the results of
singular value decomposition on the stoichiometric matrix. The top 36 species from the singular value
decomposition (SVD) analysis with the addition of glucose improved the predictive power and reduced
flux uncertainty compared with the base case. Finally, we developed a heuristic optimization approach
to estimate the optimal list of metabolite measurements. This approach significantly improved
metabolite prediction compared to the base case. However, both the base measurement set and the
heuristically optimized experimental design poorly characterized flux uncertainty. Taken together, this
suggested that dynamic constraint-based modeling can aid in experimental design and measurement
selection for metabolite prediction, but the flux estimation problem remains challenging. Furthermore,
while we modeled the cell-free production of only a single protein in this study, the sequence specific
dynamic constraint-based modeling approach presented here could be extended to multi-protein
synthetic circuits, RNA circuits [33] or even small molecule production.

2. Results

2.1. Cell-Free E. coli Metabolic Network

We constructed the cell-free stoichiometric network by removing growth associated reactions
from the iAF1260 reconstruction of K-12 MG1655 E. coli [13], and removing reactions not present in
the cell-free system (see Materials and Methods). We then added the transcription and translation
template reactions of Allen and Palsson for the CAT protein [19]. Thus, our stoichiometric network
described the material and energetic demands for transcription and translation at sequence specific
level. The metabolic network consisted of 264 reactions and 146 species; a schematic of the central
carbon metabolism is shown in Figure 1. The network described the major carbon and energy
pathways and amino acid biosynthesis and degradation pathways. Lastly, we removed genes from
the network that were knocked out in the E. coli host strain used to make the cell-free extract (A19
ΔtonA ΔtnaA ΔspeA ΔendA ΔsdaA ΔsdaB ΔgshA); see Jewett et al. for further details of the host
strain and the cell-free extract preparation [34]. Using this network, we simulated time-dependent
cell-free production of the model protein CAT. We used dynamic modified flux balance analysis,
a stoichiometric modeling technique that does not make the pseudo steady state assumption and
allows the accumulation and depletion of metabolite species. Horvath and coworkers predicted
time-dependent cell-free production of CAT using a fully kinetic model trained against an experimental
dataset of 37 metabolites, including the substrate glucose, the protein product CAT, organic acids,
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amino acids, and energy species [32]. This model was used to generate the metabolite constraints used
in this study. Transcription and translation rates were subject to resource constraints encoded by the
metabolic network, and transcription and translation model parameters were largely derived from
literature (Table 1). In this study, we did not explicitly consider protein folding. However, the addition
of chaperone or other protein maturation steps could easily be accommodated within the approach by
updating the template reactions (see Palsson and coworkers [20]). The cell-free metabolic network and
all model code and parameters can be downloaded under an MIT software license from the Varnerlab
website [35].
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Figure 1. Schematic of the core portion of the cell-free E. coli metabolic network. The network
consisted of 264 reactions and 146 metabolites. Metabolites of glycolysis, pentose phosphate pathway,
Entner-Doudoroff pathway, and the tricarboxylic acid (TCA) cycle are shown. Metabolites of oxidative
phosphorylation, amino acid biosynthesis and degradation, transcription/translation, chorismate
metabolism, and energy metabolism are not shown.
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Table 1. Reference values for transcription, translation, and mRNA degradation from literature.
Transcription rate calculated from elongation rate, mRNA length, and promoter activity level.
Translation rate calculated from elongation rate, protein length, and polysome amplification constant.
The mRNA degradation rate calculated from a characteristic mRNA half-life. CAT: chloramphenicol
acetyltransferase.

Description Parameter Value Units Reference

T7 RNA polymerase concentration RT 1.0 μM
Ribosome concentration RX 2 μM [10]
CAT mRNA length lG 660 nt [36]
CAT protein length lP 219 aa [36]

Transcription saturation coefficient KT 100 nM estimated
Transcription elongation rate v̇T 25 nt/s [10]
Translation saturation coefficient KX 45 μM estimated
Translation elongation rate v̇X 1.5 aa/s [10]

T7 Promoter activity level u 0.9 estimated

Transcription rate kT
cat =

(
v̇T
lG

)
u 123 h−1 calculated

Polysome amplification constant KP 10 estimated

Translation rate kX
cat =

(
v̇X
lP

)
KP 247 h−1 calculated

mRNA degradation time t1/2 8 min BNID 106253

mRNA degradation rate kdeg =
ln(2)
t1/2

5.2 h−1 calculated

2.2. Dynamic Constrained Simulation of cell-free Protein Synthesis

Cell-free synthesis of the CAT protein showed two production phases, an initial fast production
phase before glucose exhaustion (at approximately 1.5 h) and a slow production phase following
glucose exhaustion. The metabolite profile varied significantly between these phases; for example,
pyruvate and lactate were produced during the first phase but consumed during the second. Thus,
a static pseudo steady state flux balance approach was not possible for this system. However,
a central advantage of cell-free systems is direct access to metabolite measurements, and the
biosynthetic machinery during production. If we could directly integrate dynamic metabolite and
protein concentration measurements into the flux estimation problem, we could potentially get a better
estimate of the flux distribution. Toward this question, we developed a dynamic modeling approach
in which metabolic fluxes were estimated so that all metabolites were non-negative and the simulated
metabolites were constrained to lie within a bounded range of the measured value. Using this
technique, we simulated the cell-free production of CAT subject to dynamic metabolite measurements.

We explored the influence of uncertainty in the transcription (TX) and translation parameters (TL)
by sampling different values for the abundance and elongation rates of RNA polymerases and
ribosomes, the polysome amplification constant, the mRNA degradation rate and other kinetic
parameters appearing in the transcription and translation bounds. The base values for the TX/TL
parameters are given in Table 1, and the uniform sampling procedure is described in the Materials
and Methods. Central carbon metabolites (Figure 2), amino acids (Figure 3), and energy species
(Figure 4) in the synthetic measurement set were captured, within experimental error, by an ensemble
of dynamic constraint-based simulations. The synthetic metabolite constraints (blue regions) shown in
each of the simulation figures was derived from the kinetic model of Horvath et al. [32], which was
trained on experimental measurement of the 37 metabolites shown in Figures 2–4. Thus, the metabolite
constraints used in this study were calculated based upon the kinetic model, which shows high fidelity
with the experimental measurements. The flux estimation problem converged in greater than 99%

106



Processes 2018, 6, 132

of the simulation time intervals, given these metabolite constraints. This suggested there were not
gross measurement errors in the measurement constraints, as the stoichiometric constraints were
satisfied. Moreover, it suggested the error introduced by the time discretization scheme did not lead
to inconsistent metabolite estimates. The ensemble of models captured the time evolution of protein
biosynthesis, and the consumption and production of organic acid, amino acid and energy species.
Arginine and glutamate were excluded from the constraint set, but were still largely captured by
the ensemble of dynamic constraint-based models, although with wide variance than the synthetic
measurement set. During the first hour, glucose was consumed as the primary carbon source for ATP,
amino acids, and protein synthesis. After glucose was depleted, lactate and pyruvate were consumed
as alternate substrates for energy production and CAT synthesis. Taken together, we captured the
37 metabolite measurements in the base synthetic data set, and captured the biphasic behavior of CAT
production, although we significantly over-predicted the translation rate for some elements of the
ensemble. This suggested that there was excess capacity in the metabolic network, which could be
used to enhance protein production.

Figure 2. Simulated metabolite concentration versus synthetic data as a function of time. Central
carbon metabolism, including glucose (substrate), chloramphenicol acetyltransferase (CAT) (product),
and intermediates, as well as total concentration of energy species (energy total). The energy total
denotes the summation of all energy species in the model (all bases and all phosphate states). The
95% confidence interval for the simulation conducted over the ensemble of transcription/translation
parameter sets is shown in the orange shaded region, while the 95% confidence interval for the synthetic
constraint data is shown in the blue shaded region. The synthetic data constraints were generated from
the kinetic model of Horvath et al., which was trained using experimental measurements of the system
simulated in this study [32].

We quantified the uncertainty in the estimated metabolic flux distribution, given constrained
CAT production using flux variability analysis (FVA) for the base synthetic data across the three
hours of measurement (Tables 2 and 3). The analysis was divided into two phases: phase 1 where
glucose was consumed as the carbon source, and phase 2 when glucose was depleted and lactate
and pyruvate were utilized. The reactions associated with protein synthesis (translation initiation,
translation, tRNA charging, mRNA degradation) were unsurprisingly the most constrained, as CAT
production was forced to remain the same. Transcription was not varied in this analysis. On the other
hand, glycolytic, pentose phosphate, and Entner-Doudoroff reactions were not highly constrained,
indicating the robustness of substrate utilization. However, one exception to this was the net reaction
through zwf reaction, which was tightly constrained, suggesting that glycolysis alone cannot support
protein production. Interestingly, although the two phases consumed different carbon sources,
the flux variability remained similar. Taken together, these results suggested that there was significant
flexibility in the ability of the metabolic network to meet the carbon and energy demands of protein
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synthesis. Next, we explored alternative measurement sets to constrain the simulation of cell-free
protein synthesis.

Figure 3. Simulation of amino acid concentration versus synthetic data as a function of time. The 95%
confidence interval for the simulation conducted over the ensemble of transcription/translation
parameter sets is shown in the orange shaded region, while the synthetic constraint data is shown in
the blue shaded region. Arginine and glutamate were excluded from the constraint set. The synthetic
data constraints were generated from the kinetic model of Horvath et al., which was trained using
experimental measurements of the system simulated in this study [32].

Table 2. Flux uncertainty calculated using flux variability analysis for the base synthetic dataset during
the first production phase (0 h to 1.5 h), normalized to the glucose consumption rate.

Enzyme/Pathway Reaction Uncertainty

RNA polymerase Translation <0.01
RNA polymerase Translation initiation <0.01

tRNA charging of alanine tRNA charging (ALA) <0.01
tRNA charging of cysteine tRNA charging (CYS) <0.01

tRNA charging of aspartate tRNA charging (ASP) <0.01
tRNA charging of histidine tRNA charging (HIS) <0.01

tRNA charging of serine tRNA charging (SER) <0.01
tRNA charging of tyrosine tRNA charging (TYR) <0.01

tRNA charging of phenylalanine tRNA charging (PHE) <0.01
tRNA charging of arginine tRNA charging (ARG) <0.01

tRNA charging of glutamate tRNA charging (GLU) <0.01
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Table 2. Cont.

Enzyme/Pathway Reaction Uncertainty

mRNA degradation mRNA degradation <0.01
tRNA charging of tryptophan tRNA charging (TRP) <0.01

tRNA charging of proline tRNA charging (PRO) <0.01
tRNA charging of asparagine tRNA charging (ASN) <0.01
tRNA charging of isoleucine tRNA charging (ILE) <0.01

tRNA charging of glycine tRNA charging (GLY) <0.01
tRNA charging of glutamine tRNA charging (GLN) <0.01

tRNA charging of lysine tRNA charging (LYS) <0.01
tRNA charging of threonine tRNA charging (THR) <0.01

tRNA charging of valine tRNA charging (VAL) <0.01
tRNA charging of methionine tRNA charging (MET) <0.01

tRNA charging of leucine tRNA charging (LEU) <0.01
Step 6 of AMP synthesis R_A_syn_6 <0.01

Orotate synthase 1 R_or_syn_1 <0.01
Metionine biosynthesis R_met 0.01

Valine biosynthesis R_val 0.01
Leucine biosynthesis R_leu 0.01

Aldhyde-alcohol dehydrogenase R_adhE_net 0.01
Malate dehydrogenase R_mdh_net 0.01

Glycine biosynthesis R_gly_deg 0.02
Threonine degradation 2 R_thr_deg2 0.02

Acetate kinase R_ackA_net 0.02
Alanine biosynthesis R_alaAC_net 0.02

Isoleucine biosynthesis R_ile 0.03
Tyrosine biosynthesis R_tyr 0.03

Histidine biosynthesis R_his 0.03
Methylglyoxal degradation R_mglx_deg 0.03

Transaldolase R_talAB_net 0.04
Glycine cleavage system R_gly_fol_net 0.04

Ribulose-phosphate 3-epimerase R_rpe_net 0.04
Phosphate acetyltransferase R_pta_net 0.04

Phosphoglycerate kinase R_pgk_net 0.05
Glyceraldehyde-3-phosphate dehydrogenase R_gapA_net 0.05

Fructose 1,6-bisphosphate aldolase R_fbaA_net 0.05
Enolase R_eno_net 0.05

Phenylalanine biosynthesis R_phe 0.05
Transketolase 2 R_tkt2_net 0.06

Fumarate hydratase R_fum_net 0.06
Transketolase 1 R_tkt1_net 0.07

Orotate synthase 2 R_or_syn_2 0.07
Phosphoglycerate mutase R_gpm_net 0.08

Ribose-5-phosphate isomerase R_rpi_net 0.09
CTP synthetase 1 R_ctp_1 0.09
CTP synthetase 2 R_ctp_2 0.09

Triosephosphate isomerase R_tpiA_net 0.1
Step 7 of AMP synthesis R_A_syn_7 0.15

Step 12 of AMP synthesis R_A_syn_12 0.17
Lactate dehydrogenase R_ldh_net 0.17

Step 5 of AMP synthesis R_A_syn_5 0.2
Methylenetetrahydrofolate reductase R_mthfr2a 0.2
Glucose-6-phosphate dehydrogenase R_zwf_net 0.21

Methylenetetrahydrofolate dehydrogenase R_mthfd_net 0.21
UMP synthesis R_ump_syn 0.22
OMP synthesis R_omp_syn 0.22

Lysine degradation R_lys_deg 0.23
Lysine biosynthesis R_lys 0.23

Isocitrate dehydrogenase R_icd_net 0.23

109



Processes 2018, 6, 132

Table 2. Cont.

Enzyme/Pathway Reaction Uncertainty

Threonine degradation 3 R_thr_deg3 0.24
Step 8 of AMP synthesis R_A_syn_8 0.26
Tryptophan degradation R_trp_deg 0.27

Methylenetetrahydrofolate dehydrogenase R_mthfc_net 0.28
Tryptophan biosynthesis R_trp 0.28

Aconitase R_acn_net 0.33
Phosphoglucose isomerase R_pgi_net 0.33

Step e of folate synthesis R_fol_e 0.34
Step 4 of AMP synthesis R_A_syn_4 0.4

GMP synthetase R_gmp_syn 0.44
Step 9 of AMP synthesis R_A_syn_9 0.48

XMP synthase R_xmp_syn 0.53
Step 3 of AMP synthesis R_A_syn_3 0.6

Step 10 of AMP synthesis R_A_syn_10 0.63
Step 2b of folate synthesis R_fol_2b 0.63

Glutamate dehydrogenase R_gdhA_net 0.71
Step 3 of folate synthesis R_fol_3 0.74
Step 4 of folate synthesis R_fol_4 0.79

Pyruvate formate lyase R_pflAB 0.8
Step 2 of AMP synthesis R_A_syn_2 0.81

Step 2a of folate synthesis R_fol_2a 0.81
Step 1 of folate synthesis R_fol_1 0.99

Glucokinase R_glk_atp 1
Step 1 of AMP synthesis R_A_syn_1 1

Arginine degradation R_arg_deg 1.23
Glycine biosynthesis R_glyA 1.33

Phosphoribosylpyrophosphate synthase R_prpp_syn 1.34
Chorismate synthesis R_chor 1.35
Succinate thiokinase R_sucCD 1.55

2-Ketoglutarate dehydrogenase R_sucAB 1.55
GABA degradation 1 R_gaba_deg1 1.56
GABA degradation 2 R_gaba_deg2 1.56

Glutamate degradation R_glu_deg 1.56
Arginine biosynthesis R_arg 1.68

Pyruvate dehydrogenase R_pdh 2.06
Malate synthase R_aceB 2.3

Threonine degradation 1 R_thr_deg1 2.32
Isocitrate lyase R_aceA 2.36

Threonine biosynthesis R_thr 2.48
Citrate synthase R_gltA 2.62

6-Phosphogluconate dehydrogenase R_gnd 2.62
Cysteine biosynthesis R_cysEMK 4.59
Cysteine degradation R_cys_deg 4.6

Proline biosynthesis R_pro 5.45
Proline degradation R_pro_deg 5.47

6-Phosphogluconate dehydrase R_edd 5.96
2-Keto-3-deoxy-6-phospho-gluconate aldolase R_eda 5.96

Serine degradation R_ser_deg 6.43
Nucleotide diphosphatase (ATP) R_atp_amp 6.53
Nucleotide diphosphatase (UTP) R_utp_ump 6.53
Nucleotide diphosphatase (GTP) R_gtp_gmp 6.53
Nucleotide diphosphatase (CTP) R_ctp_cmp 6.53

Cytidylate kinase R_atp_cmp 6.56
Guanylate kinase R_atp_gmp 6.6

UMP kinase R_atp_ump 6.62
6-Phosphogluconolactonase R_pgl 6.67

Serine biosynthesis R_serABC 6.72
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Table 2. Cont.

Enzyme/Pathway Reaction Uncertainty

NADH:ubiquinone oxidoreductase R_nuo 7.39
NADH dehydrogenase 1 R_ndh1 7.39
NADH dehydrogenase 2 R_ndh2 7.39

Fumurate reductase R_frd 7.44
Succinate dehydrogenase R_sdh 7.93

Malic enzyme A R_maeA 7.99
Malic enzyme B R_maeB 8.01

Cytochrome oxidase bo R_cyo 8.03
Cytochrome oxidase bd R_cyd 8.03

ATP synthase R_atp 11.71
PEP synthase R_pps 12.98

Fructose-1,6-bisphosphate aldolase R_fdp 12.98
Adenosinetriphosphatase R_atp_adp 12.98

PEP carboxykinase R_pck 12.98
Asparagine biosynthesis R_asnB 13
Glutamate biosynthesis R_gltBD 13
Glutamine degradation R_gln_deg 13
Glutamine biosynthesis R_glnA 13.05
Acetyl-CoA synthetase R_acs 13.06

Inorganic pyrophosphatase R_ppa 13.08
Adenylate kinase R_adk_atp 13.36
PEP carboxylase R_ppc 14.22

Phosphofructokinase R_pfk 14.9
Pyruvate kinase R_pyk 15.89

Transhydrogenase R_pnt2 22.45
Transhydrogenase R_pnt1 25.5

Aspartate degradation R_asp_deg 25.5
Aspartate biosynthesis R_aspC 25.83

Asparagine biosynthesis R_asnA 247.53
Asparagine degradation R_asn_deg 247.53

Table 3. Flux uncertainty calculated using flux variability analysis for the base synthetic dataset during
the second production phase (1 h to 3 h), normalized to the glucose consumption rate.

Enzyme Reaction Uncertainty

Step 6 of AMP synthesis R_A_syn_6 <0.01
Orotate synthase 1 R_or_syn_1 <0.01
Orotate synthase 2 R_or_syn_2 <0.01

Aldhyde-alcohol dehydrogenase R_adhE_net <0.01
RNA polymerase Translation <0.01

tRNA charging of phenylalanine tRNA charging (PHE) <0.01
tRNA charging of alanine tRNA charging (ALA) <0.01

tRNA charging of glutamine tRNA charging (GLN) <0.01
tRNA charging of threonine tRNA charging (THR) <0.01
tRNA charging of aspartate tRNA charging (ASP) <0.01

tRNA charging of glutamate tRNA charging (GLU) <0.01
tRNA charging of histidine tRNA charging (HIS) <0.01

tRNA charging of lysine tRNA charging (LYS) <0.01
tRNA charging of tyrosine tRNA charging (TYR) <0.01

tRNA charging of asparagine tRNA charging (ASN) <0.01
tRNA charging of serine tRNA charging (SER) <0.01

tRNA charging of methionine tRNA charging (MET) <0.01
tRNA charging of isoleucine tRNA charging (ILE) <0.01

tRNA charging of valine tRNA charging (VAL) <0.01
tRNA charging of proline tRNA charging (PRO) <0.01
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Table 3. Cont.

Enzyme Reaction Uncertainty

tRNA charging of leucine tRNA charging (LEU) <0.01
tRNA charging of arginine tRNA charging (ARG) <0.01

tRNA charging of tryptophan tRNA charging (TRP) <0.01
tRNA charging of cysteine tRNA charging (CYS) <0.01
tRNA charging of glycine tRNA charging (GLY) <0.01

RNA polymerase Translation initiation <0.01
mRNA degradation mRNA degradation <0.01

Glycine cleavage system R_gly_fol_net 0.01
Transaldolase R_talAB_net 0.02

Transketolase 1 R_tkt1_net 0.02
Ribulose-phosphate 3-epimerase R_rpe_net 0.02

Ribose-5-phosphate isomerase R_rpi_net 0.03
Transketolase 2 R_tkt2_net 0.04

Valine biosynthesis R_val 0.05
Leucine biosynthesis R_leu 0.05

Malate dehydrogenase R_mdh_net 0.06
Triosephosphate isomerase R_tpiA_net 0.07

Fructose 1,6-bisphosphate aldolase R_fbaA_net 0.07
Glycine biosynthesis R_gly_deg 0.09

Threonine degradation 2 R_thr_deg2 0.09
Phosphoglucose isomerase R_pgi_net 0.09
Methylglyoxal degradation R_mglx_deg 0.09

Methylenetetrahydrofolate dehydrogenase R_mthfd_net 0.13
Glucose-6-phosphate dehydrogenase R_zwf_net 0.18

Tyrosine biosynthesis R_tyr 0.2
Enolase R_eno_net 0.2

Phosphoglycerate mutase R_gpm_net 0.2
Phosphoglycerate kinase R_pgk_net 0.21

Glyceraldehyde-3-phosphate
dehydrogenase R_gapA_net 0.21

Methylenetetrahydrofolate dehydrogenase R_mthfc_net 0.28
Metionine biosynthesis R_met 0.34

Phosphate acetyltransferase R_pta_net 0.4
Acetate kinase R_ackA_net 0.41

Fumarate hydratase R_fum_net 0.43
Phenylalanine biosynthesis R_phe 0.53

Glucokinase R_glk_atp 1
Step 5 of AMP synthesis R_A_syn_5 1
Step 7 of AMP synthesis R_A_syn_7 1

OMP synthesis R_omp_syn 1.09
Isoleucine biosynthesis R_ile 1.13

Alanine biosynthesis R_alaAC_net 1.49
Step 8 of AMP synthesis R_A_syn_8 1.76

Methylenetetrahydrofolate reductase R_mthfr2a 1.85
Isocitrate dehydrogenase R_icd_net 1.87

Histidine biosynthesis R_his 1.95
Step 4 of AMP synthesis R_A_syn_4 2.02
Threonine degradation 3 R_thr_deg3 2.08

CTP synthetase 1 R_ctp_1 2.09
CTP synthetase 2 R_ctp_2 2.09

Lysine biosynthesis R_lys 2.13
Lysine degradation R_lys_deg 2.13

Lactate dehydrogenase R_ldh_net 2.27
Tryptophan degradation R_trp_deg 2.55
Tryptophan biosynthesis R_trp 2.7

Aconitase R_acn_net 2.82
UMP synthesis R_ump_syn 2.85

Step 3 of AMP synthesis R_A_syn_3 3.07
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Table 3. Cont.

Enzyme Reaction Uncertainty

XMP synthase R_xmp_syn 4.04
GMP synthetase R_gmp_syn 4.04

Step 12 of AMP synthesis R_A_syn_12 4.13
Step e of folate synthesis R_fol_e 4.37
Step 2 of AMP synthesis R_A_syn_2 4.74
Step 9 of AMP synthesis R_A_syn_9 4.83

Step 10 of AMP synthesis R_A_syn_10 4.83
Step 1 of AMP synthesis R_A_syn_1 5.02

Glutamate dehydrogenase R_gdhA_net 5.14
Phosphoribosylpyrophosphate synthase R_prpp_syn 6.11

Step 4 of folate synthesis R_fol_4 6.24
Step 3 of folate synthesis R_fol_3 6.24

Step 2b of folate synthesis R_fol_2b 7.03
Step 2a of folate synthesis R_fol_2a 8.04

Step 1 of folate synthesis R_fol_1 9.04
Glycine biosynthesis R_glyA 9.58

Chorismate synthesis R_chor 13.98
Arginine degradation R_arg_deg 14.97

Succinate thiokinase R_sucCD 17.94
GABA degradation 1 R_gaba_deg1 17.95
GABA degradation 2 R_gaba_deg2 17.95

Glutamate degradation R_glu_deg 17.95
2-Ketoglutarate dehydrogenase R_sucAB 18.06

Arginine biosynthesis R_arg 18.14
Threonine degradation 1 R_thr_deg1 19.06

Pyruvate formate lyase R_pflAB 19.97
Threonine biosynthesis R_thr 22.23

Malate synthase R_aceB 28.81
Isocitrate lyase R_aceA 28.81

Pyruvate dehydrogenase R_pdh 29.86
6-Phosphogluconate dehydrogenase R_gnd 31.9

Citrate synthase R_gltA 32.2
Cysteine biosynthesis R_cysEMK 48.93
Cysteine degradation R_cys_deg 49.31

Proline biosynthesis R_pro 61.2
2-Keto-3-deoxy-6-phospho-gluconate

aldolase R_eda 61.86

6-Phosphogluconate dehydrase R_edd 61.86
Proline degradation R_pro_deg 62.62
Serine degradation R_ser_deg 68.5

6-Phosphogluconolactonase R_pgl 70.12
Serine biosynthesis R_serABC 72.05

Nucleotide diphosphatase (ATP) R_atp_amp 74.22
Nucleotide diphosphatase (UTP) R_utp_ump 74.22
Nucleotide diphosphatase (GTP) R_gtp_gmp 74.22
Nucleotide diphosphatase (CTP) R_ctp_cmp 74.22

Cytidylate kinase R_atp_cmp 74.74
Guanylate kinase R_atp_gmp 76.11

UMP kinase R_atp_ump 76.78
NADH dehydrogenase 1 R_ndh1 86.63

NADH:ubiquinone oxidoreductase R_nuo 86.63
Malic enzyme A R_maeA 86.77

NADH dehydrogenase 2 R_ndh2 87.01
Fumurate reductase R_frd 87.01

Malic enzyme B R_maeB 88.17
Succinate dehydrogenase R_sdh 90.66

Cytochrome oxidase bo R_cyo 92.08
Cytochrome oxidase bd R_cyd 92.08
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Table 3. Cont.

Enzyme Reaction Uncertainty

ATP synthase R_atp 134.61
PEP synthase R_pps 148.45

Asparagine biosynthesis R_asnB 148.45
Glutamine degradation R_gln_deg 148.45
Glutamate biosynthesis R_gltBD 148.45
Acetyl-CoA synthetase R_acs 148.45

Adenosinetriphosphatase R_atp_adp 148.45
Fructose-1,6-bisphosphate aldolase R_fdp 148.45

PEP carboxykinase R_pck 148.45
Glutamine biosynthesis R_glnA 149.67

Inorganic pyrophosphatase R_ppa 150.79
Adenylate kinase R_adk_atp 152.88
PEP carboxylase R_ppc 158.68

Phosphofructokinase R_pfk 161.64
Pyruvate kinase R_pyk 170.95

Transhydrogenase R_pnt2 258.03
Aspartate degradation R_asp_deg 286.46

Transhydrogenase R_pnt1 286.46
Aspartate biosynthesis R_aspC 290.86

Asparagine biosynthesis R_asnA 4421.48
Asparagine degradation R_asn_deg 4421.48

Figure 4. Simulation of energy species and energy totals by base versus synthetic data as a
function of time. The 95% confidence interval for the simulation conducted over the ensemble of
transcription/translation parameter sets is shown in the orange shaded region, while the synthetic
constraint data is shown in the blue shaded region. The synthetic data constraints were generated from
the kinetic model of Horvath et al., which was trained using experimental measurements of the system
simulated in this study [32].
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2.3. Alternative Measurement Sets

The base synthetic data set, consisting of 36 metabolite time series and the protein product CAT,
was the measurement set used to train the kinetic model of Horvath et al. [32]. Thus, the confidence
intervals on the synthetic data used in this study as constraints on the flux estimation problem were
informed by experimental measurements of glucose, organic and amino acids, energy species and
the protein product CAT. However, we have no a priori reason to suppose that this experimental
design was optimal. Toward this question, we performed simulations and flux variability analysis
(FVA) for alternative synthetic data sets to understand the importance of measurement selection when
characterizing CFPS (Figures 5 and 6). In all cases, we assumed the same sampling frequency as the
base synthetic dataset, but we varied which species were measured. First, we removed each of the
37 metabolites from the base set, one at a time, to create 37 measurement exclusion sets, consisting of
36 metabolites each (Figure 5, light gray dots). For each set, the state the dynamic model was used
to calculate a value of error against the synthetic data, and FVA was used to calculate a value of flux
uncertainty. Most of the exclusion sets clustered around the base case, with error values between 75%
and 110%, and flux uncertainties between 93% and 103%, of the base case. The exception to this was
the glucose exclusion set, which showed 89% higher error and 7% greater flux uncertainty. Within the
primary cluster, a slight pattern emerged: the sets in which an organic acid were removed tended to
result in increased error, while the removal of an amino acid tended to reduce error; however, this was
not true across all metabolites. We also performed the analysis on several inclusion sets to determine
which additional metabolites could improve predictive power (Figure 5, black dots). In particular,
we added unmeasured central carbon metabolites to the base case, which resulted in 23 inclusion sets,
consisting of 38 metabolites each. As with the exclusion sets, most of the inclusion sets clustered around
the base case, with error values between 72% and 103%, and flux uncertainties between 94% and
102%, of the base case. Considering all exclusion and inclusion sets, there was generally no correlation
between the metabolite prediction error and flux uncertainty. Taken together, these suggested central
carbon metabolites, especially glucose, were important to characterize the network, but performing
single additional measurements was not enough to significantly increase predictive power. Next,
we explored whether measurement selection could be based upon the structural features of a metabolic
network. Toward this question, we used singular value decomposition (SVD) of the stoichiometric
matrix to suggest which metabolites should be measured.

Singular value decomposition (SVD) measurement selection outperformed the base case, with a
prediction error improvement of 11% and similar flux variability (Figure 5, open square). SVD was
used to decompose the stoichiometric matrix into 105 modes. The top 36 metabolites that had the
greatest weighted sum across the modes that accounted for 95% of the network were estimated. Since
our exclusion analysis identified glucose as the single most important metabolite, we added it to the
top metabolites as determined by SVD to obtain a 37-metabolite constraint set, consisting of: GTP,
GDP, GMP, ATP, ADP, AMP, UTP, UMP, CTP, CMP, GLN, GLU, ASP, LYS, LEU, HIS, THR, PHE, ALA,
VAL, TYR, GLY, SER, H, ASN, ILE, MET, AKG, PYR, ARG, CYS, NH3, FUM, SUCC, TRP, ACCOA,
and glucose. The SVD measurement set suggested that energy, and amino acid species carried the most
information compared to central carbon species, which made up a relatively smaller fraction of the
list. Surprisingly, the measurement set selected by SVD was approximately 80% similar to the original
synthetic data generated by hand. However, the 20% difference was enough to improve the prediction
error by approximately 11%. Taken together, measurements selected by SVD decomposition of the
stoichiometric matrix improved the prediction of metabolite abundance, but SVD-based measurement
selection did not improve flux variability.
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Figure 5. Flux uncertainty versus metabolite prediction error against synthetic data, normalized
to the base case (white star), for exclusion (gray) and inclusion (black) metabolite constraint sets.
The performance of the singular value decomposition (SVD)-determined metabolite constraint set is
shown by the white square.

Next, we used heuristic optimization to systematically investigate the effect of changing the
dimension and identify the measurement constraints (Figure 6). In particular, we minimized the error
and flux variability of model predictions by varying the metabolites that appeared in the synthetic
constraint set. We used a binary simulated annealing algorithm to switch metabolite membership in
the constraint set on or off, and thus generated an ensemble of >200 measurement constraint sets
(Figure 6A). While there was no strict error threshold, the simulated annealing algorithm was less
likely to accept high-error sets into the ensemble; thus, the error of most sets in the ensemble was
less than that of the base case. Specifically, the error varied from just over double to less than one
ten-thousandth of the base case. Flux uncertainty was also a component of the objective function,
but was only improved by 7%, suggesting this performance metric was tightly constrained; network
flux values were not well characterized, even with comprehensive training datasets. As expected,
there was an inverse relationship between the number of metabolite constraints and the prediction
error (Figure 6B). However, the slope of that trend was striking; error was improved by three to four
orders of magnitude, simply by increasing the number of constraints by 11 or fewer. Furthermore,
the base synthetic measurement set was outperformed by the majority of the ensemble; often, the
simulated annealing approach achieved the same error with fewer constraints, or much lower error
with the same, or even fewer, constraints. This suggests that, while comprehensive, the original
synthetic dataset was not optimal in terms of predictive power per measurement. However, the base
case was one of the best in terms of reducing flux uncertainty.

Lastly, we investigated which metabolites were most effective at improving predictive power by
considering how often it appeared in the ensemble (Table 4). Glucose unsurprisingly appeared most
often (tied with G6P), but interestingly was not in every constraint set. Those that did not contain
glucose had some of the highest errors, but also some of the smallest constraint set sizes (Figure 6B,
black dots). The most frequent metabolites from the heuristic method were largely from glycolysis,
pentose phosphate, and the TCA cycle (compared to the SVD analysis which gave greater consideration
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to energetic and amino acid species). To further understand the species selection, we calculated the
frequency of appearance in the 57 best sets, those with error of least three orders of magnitude lower
than the base case (Table 5). Nineteen metabolites appeared in all of these sets, and all but Alanine
were central carbon metabolites (defined here as glycolysis, pentose phosphate, TCA). Taken together,
measurement selection made a significant difference in capturing dynamic metabolite abundance in
cell-free protein synthesis. Although the error decreased with increasing measurement number overall,
the specific combination of metabolites was arguably even more important. Metabolic fluxes, however,
remained unknown despite the large number of measurements taken.
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Figure 6. Flux uncertainty and metabolite prediction error for the simulated annealing experimental
design approach. (A) normalized flux uncertainty versus normalized metabolite prediction error;
(B) number of metabolite constraints versus normalized metabolite prediction error. Error was
computed for the synthetic experimental designs normalized to the base synthetic dataset (white
star). Sets that include glucose are show as gray circles, while those that do not are represented with
black circles.
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Table 4. Metabolites by frequency of appearance in the simulated annealing constraint sets.

Metabolite Symbol Frequency

alpha-D-Glucose GLC 89.9%
Glucose 6-phosphate G6P 89.9%

Citrate CIT 85.7%
Isocitrate ICIT 84.9%
Fumarate FUM 84.5%

Fructose 6-phosphate F6P 83.6%
6-Phospho-D-glucono-1,5-lactone 6PGL 81.5%

sedo-Heptulose 7-phosphate S7P 79.4%
Alanine ALA 77.7%

Guanosine triphosphate GTP 77.3%
Malate MAL 75.6%

D-Ribulose 5-phosphate RU5P 74.8%
Erythrose 4-phosphate E4P 73.1%

Adenosine diphosphate ADP 72.3%
alpha-Ketoglutarate AKG 71.8%

Uridine diphosphate UDP 70.2%
Succinate SUCC 69.7%

Cytidine monophosphate CMP 69.3%
Guanosine diphosphate GDP 67.2%
6-Phospho-D-gluconate 6PGC 67.2%

Arginine ARG 66.8%
Ribose 5-phosphate R5P 66.4%

Methionine MET 65.5%
Glyoxylate GLX 65.5%
Glutamine GLN 63.9%

Phenylalanine PHE 63.4%
Valine VAL 62.6%

Glyceraldehyde 3-phosphate G3P 62.2%
Adenosine monophosphate AMP 62.2%

Proline PRO 60.1%
Fructose 1,6-diphosphate FDP 60.1%

Dihydroxyacetone phosphate DHAP 60.1%
Histidine HIS 59.7%

Glycine GLY 59.7%
Oxaloacetate OAA 58.4%

2-Dehydro-3-deoxy-D-gluconate 6-phosphate 2DDG6P 58.4%
Chloramphenicol acetyltransferase CAT 56.3%

Cysteine CYS 55.5%
Acetate AC 54.2%

Succinyl coenzyme A SUCCOA 53.8%
Uridine monophosphate UMP 52.9%

Tryptophan TRP 52.5%
Lactate LAC 52.5%

Uridine triphosphate UTP 52.1%
Aspartate ASP 51.7%

Guanosine monophosphate GMP 50.8%
Asparagine ASN 50.4%

Cytidine diphosphate CDP 50.0%
Phosphoenolpyruvate PEP 48.3%

3-Phosphoglycerate 3PG 47.9%
2-Phosphoglycerate 2PG 47.1%

Lysine LYS 43.3%
Threonine THR 42.0%
Glutamate GLU 38.7%

Tyrosine TYR 37.0%
Adenosine triphosphate ATP 37.0%
D-Xylulose 5-phosphate XU5P 35.7%

Acetyl coenzyme A ACCOA 34.9%
Cytidine triphosphate CTP 33.2%

Serine SER 31.9%
Isoleucine ILE 29.8%

Leucine LEU 26.5%
Pyruvate PYR 21.8%
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Table 5. Metabolites by frequency of appearance in the 57 best simulated annealing constraint sets,
those with error at least three orders of magnitude lower than the base synthetic dataset.

Metabolite Symbol Frequency

D-Xylulose 5-phosphate XU5P 100%
sedo-Heptulose 7-phosphate S7P 100%

D-Ribulose 5-phosphate RU5P 100%
Ribose 5-phosphate R5P 100%

Oxaloacetate OAA 100%
Isocitrate ICIT 100%

alpha-D-Glucose GLC 100%
Glucose 6-phosphate G6P 100%

Glyceraldehyde 3-phosphate G3P 100%
Fumarate FUM 100%

Fructose 1,6-diphosphate FDP 100%
Fructose 6-phosphate F6P 100%

Erythrose 4-phosphate E4P 100%
Dihydroxyacetone phosphate DHAP 100%

Citrate CIT 100%
Alanine ALA 100%

6-Phospho-D-glucono-1,5-lactone 6PGL 100%
6-Phospho-D-gluconate 6PGC 100%

2-Dehydro-3-deoxy-D-gluconate 6-phosphate 2DDG6P 100%
Uridine triphosphate UTP 98.2%
alpha-Ketoglutarate AKG 98.2%

Succinate SUCC 94.7%
Arginine ARG 94.7%

3-Phosphoglycerate 3PG 94.7%
Guanosine triphosphate GTP 91.2%
Uridine monophosphate UMP 89.5%

Glutamine GLN 87.7%
Cytidine monophosphate CMP 87.7%

Tyrosine TYR 82.5%
Threonine THR 82.5%
Aspartate ASP 80.7%

Cytidine diphosphate CDP 75.4%
Uridine diphosphate UDP 71.9%

Valine VAL 70.2%
Methionine MET 68.4%

Guanosine monophosphate GMP 68.4%
Glycine GLY 68.4%

Adenosine diphosphate ADP 68.4%
Tryptophan TRP 61.4%

Phenylalanine PHE 59.6%
Acetate AC 57.9%
Malate MAL 52.6%

Phosphoenolpyruvate PEP 50.9%
Leucine LEU 49.1%
Proline PRO 47.4%

Isoleucine ILE 47.4%
Histidine HIS 47.4%

Adenosine monophosphate AMP 45.6%
Glyoxylate GLX 43.9%

Lactate LAC 40.4%
Chloramphenicol acetyltransferase CAT 38.6%

Cysteine CYS 36.8%
Asparagine ASN 35.1%

Pyruvate PYR 33.3%
Glutamate GLU 31.6%

Succinyl coenzyme A SUCCOA 22.8%
Guanosine diphosphate GDP 22.8%

2-Phosphoglycerate 2PG 22.8%
Cytidine triphosphate CTP 14%

Acetyl coenzyme A ACCOA 14%
Lysine LYS 7%

Adenosine triphosphate ATP 5.3%
Serine SER 0%
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3. Discussion

In this study, we presented a dynamic constraint-based model of cell-free protein expression.
This approach avoids the pseudo-steady-state assumption found in traditional constraint-based
approaches, which allowed for the direct integration of metabolite measurements into the flux
estimation problem, and the the accumulation or depletion of network metabolites. The approach
used the E. coli cell-free protein synthesis metabolic network from Vilkhovoy and coworkers [31],
and the simulated metabolite trajectories from the kinetic model of Horvath et al. [32] as constraints
on the CFPS flux calculation. The dynamic constraint-based model satisfied time-dependent
metabolite measurement constraints, predicted unconstrained metabolite concentrations as well as
the concentration of a model protein, chloramphenicol acetyltransferase (CAT). Model interrogation
suggested the most important metabolite measurement within the dataset to be glucose, as excluding
the glucose yielded the greatest metabolite prediction error, and the greatest uncertainty in the
estimated metabolic flux. Furthermore, we evaluated metabolite constraint sets with one more and one
fewer metabolites than the base case (37 metabolites) to explore the impact of measurement selection
on model performance. The single addition of metabolites yielded no significant improvement in the
predictive power, while the single exclusion suggested glucose to be the most important measured
metabolite in the base case. Next, we selected measurement species based on the results of singular
value decomposition on the stoichiometric matrix. The top 36 species from the SVD analysis with
the addition of glucose improved the predictive power and reduced flux uncertainty compared
with the base case. Finally, we described a heuristic optimization approach to estimate the optimal
list of metabolite measurements. Measurement sets determined by heuristic optimization vastly
outperformed the accuracy of the base synthetic dataset; model precision, meanwhile, was virtually
unchanged despite comprehensive measurement sets. Taken together, model interrogation showed
that, even with a comprehensive dataset, there still exists a great amount of uncertainty associated with
metabolic fluxes. This highlights the need for fluxomic data to fully understand biological networks.

Despite synthetic datasets consisting of greater than 30 metabolite time series, estimates of
metabolic flux were largely uncertain. Flux variability analysis suggested that the metabolite
constraints could be met with a wide range of different flux distributions. For instance, an open
question in cell-free systems is the balance between glycolytic versus pentose phosphate pathway
flux. In previous studies of E. coli cell-free protein synthesis, the kinetic model of Horvath and
coworkers suggested that glucose was consumed primarily by glycolytic reactions, with minimal flux
into the pentose phosphate pathway. However, Vilkhovoy et al. estimated, using sequence specific
flux balance analysis with the same experimental dataset, that the CAT production was unaffected
by the choice of pentose phosphate pathway versus glycolysis; deletion of either pathway did not
change protein productivity. To answer this discrepancy, model analysis showed, during the first
phase when glucose was being consumed, glycolytic and pentose phosphate fluxes (pgi and zwf,
respectively) exhibited large uncertainty, as either could be utilized to satisfy CAT production. The
measurement selection analysis was conducted by excluding or including a metabolite from the
constraint set. The exclusion sets were dominated by the removal of glucose, and to a lesser extent
the organic acids, suggesting that measurements of central carbon metabolism intermediates were
more important than energetic and amino acid measurements. However, the inclusion sets showed no
significant effect on error and flux uncertainty. There was generally no correlation between the error
and flux uncertainty of a model constrained to a particular metabolite set, except with respect to the
outlier glucose. Model calculations showed that, even with a comprehensive data set of 37 metabolite
measurements, there was significant flux uncertainty. This suggested that there were many flux
combinations that could give rise to the same set of time course measurements. This phenomenon was
further supported by analyzing the ensemble of constraint sets determined by heuristic optimization.
Although the optimization algorithm reduced the objective function by four degrees of magnitude,
the flux variability remained stagnant in comparison. An ensemble of measurement sets ranging
from 22 to 48 metabolite constraints was only able to reduce flux uncertainty by 7% from the base
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synthetic data set. The dynamic constraint-based model showed high flux variability in important
branch points, including the glucose-6-phosphate split between glycolysis and pentose phosphate,
the 6PGC split into pentose phosphate and Entner–Doudoroff, and the pyruvate split into TCA cycle
versus lactate production. This may be why the high overall flux variability was robust to the varying
of metabolite constraints. Using three different sampling approaches (single additions/exclusions,
singular value decomposition, simulated annealing) coupled with the dynamic constraint-based model,
we estimated key metabolites that could be prioritized in measurement selection, such as glucose.
Although measuring central carbon metabolites and amino acids is the intuition of most researchers,
model interrogation was able to provide the importance of certain species over others; for instance,
measuring G6P, G3P, and F6P would be more fruitful than measuring PEP. Interestingly, many of
the most valuable measurements were involved in upper glycolysis and pentose phosphate, such as
glucose, G6P, and 6PGL. This may be because upstream metabolites have an effect on more of the
network; any error or uncertainty in these metabolites will cascade down the rest of the network and
magnify throughout. Taken together, the dynamic constraint-based model quantitatively affirmed the
robustness of metabolism, and illustrated the complexity of inferring flux information from metabolite
concentrations. Ultimately, to determine the metabolic flux distribution occurring in a cell-free system,
we need to add additional constraints to the flux estimation calculation. This study suggested that
metabolite measurements alone were not sufficient. However, these are not the only experimentally
realizable types of constraints. For example, thermodynamic feasibility constraints may result in a
better depiction of the flux distribution [37,38], and 13C labeling constraints in cell-free systems could
provide significant insight. However, while 13C labeling techniques are well established for in vivo
processes [39], application of these techniques to cell-free systems remains an active area of research.

The use of cell-free systems as a personalized point of care biomanufacturing tools, as platforms
for vaccine development, or as the basis for portable pathogen detection are promising research
directions [1,40–43]. cell-free systems have significant advantages in these application areas compared
to in vivo systems. For example, as there is no longer a cell wall, we can experimentally observe
the system and intervene if need be. Moreover, cell-free synthetic circuitry is highly portable.
For example, it can be dried onto paper, easily transported, and potentially stored indefinitely [44].
Thus, after development and testing of the circuitry, and manufacturing of the devices, there is no
need for large, bulky and expensive equipment usually associated with in vivo bioprocesses. However,
to move beyond proof of concept and into industrial or medical practice will require extensive
optimization. Mathematical modeling is an important tool in this regard. In this study, we explored
the relationship between measurement selection and the ability to estimate metabolic flux in a cell-free
system. One of the central advantages of cell-free systems is the ability to measure the concentration of
metabolic intermediates. However, ultimately, we need to transform these measurements into testable
hypothesis about the performance of a cell-free system. The connection between flux estimation
and optimal measurement selection has been well studied for in vivo systems; for example, see
the classic work of Savinell and Palsson [45,46]. Moreover, the robust quantification of metabolic
flux in in vivo systems is also well developed, with both mature experimental and computational
tools available (see [39,47,48]). However, quantification of metabolic flux in cell-free systems from
metabolite measurements remains an open area of research. Certainly, techniques developed for the
identification and quantification of in vivo systems could be applied to cell-free. For example, Lucks
and coworkers used the D-optimal experimental design approach of Doyle and coworkers [49] to
parameterize a kinetic model of RNA-based cell-free circuits [33]. However, Lucks and coworkers
did not consider the resources required for the RNA circuits to function. Quantification of metabolic
flux, and the associated resource production and consumption in cell-free applications, is not common.
Instead, the synthetic biology community has focused on designing circuits and circuit components
with specific behaviors e.g., [50–52], assuming the resources required to express these components
will be available. At proof of concept scales, this is a reasonable assumption. However, as we move
toward industrial practice, careful attention must be paid to resource generation and consumption—for
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example, optimizing the expressed proteome for cell-free extract production, or balancing cofactor
utilization during the cell-free reaction [53,54]. Resource management has a direct impact on the
performance and industrial viability of cell-free applications—for example, potentially limiting the
rate of production and yield of circuit components, the size and complexity of possible synthetic
circuits, the operational lifetime of synthetic devices, or the titer and rate of production of protein and
small molecule products. Thus, as we move beyond technology development to realistic industrial
or medical applications, the performance of synthetic devices will become increasingly important.
Toward this need, we expect mathematical modeling will play an important role.

4. Materials and Methods

4.1. Formulation and Solution of the Model Equations

We modeled the time evolution of the ith metabolite concentration (xi), the scaled activity of
network enzymes (εi), transcription processes generating the mRNA m and translation processes
generating the protein P in an E. coli cell-free metabolic network as a system of ordinary
differential equations:

ẋi =
R
∑
j=1

σijrj (x, ε, k) i = 1, 2, . . . ,M, (1)

ε̇i = −λiεi i = 1, 2, . . . ,N , (2)

ṁ = rT − λm, (3)

Ṗ = rX . (4)

The quantity R denotes the number of metabolic reactions, M denotes the number of metabolites
and N denotes the number of metabolic enzymes in the model. The quantity rj (x, ε, k) denotes the rate
of reaction j. Typically, reaction j is a nonlinear function of metabolite and enzyme abundance, as well
as unknown kinetic parameters k (K× 1). The quantity σij denotes the stoichiometric coefficient for
species i in reaction j. If σij > 0, metabolite i is produced by reaction j. Conversely, if σij < 0, metabolite
i is consumed by reaction j, while σij = 0 indicates metabolite i is not connected with reaction j. Lastly,
λi denotes the scaled enzyme activity decay constant. The system material balances were subject to the
initial conditions x (to) = xo and ε (to) = 1 (initially, we have 100% cell-free enzyme activity).

The cell-free model equations were solved using a dynamic constraint-based approach in which
the rates of the metabolic fluxes, transcription and translation processes were estimated by solving
an optimization subproblem from t to t + Δt. In particular, the biochemical fluxes r1, r2, . . . , rR which
appear in the balance equations were calculated from t to t + Δt by solving a constrained optimization
subproblem with (potentially nonlinear) objective O (x1, x2, . . . , xM):

max
r1,r2,...,rR

O (x1, x2, . . . , xM) (5)

subject to species constraints and flux bounds:(
R
∑
j=1

σijrj − ẋi

)
≥ 0 i = 1, 2, . . . ,M, (6)

0 ≤ rj ≤ Uj (x1, x2, . . . , xM, κ) j = 1, 2, . . . ,R. (7)

In this study, we maximized the rate of translation rX unless otherwise specified. We discretized
the derivative term for each species using a constant width h forward different approximation (however,
this was done for convenience and more sophisticated techniques could have been used). The reaction
bounds Uj (x1, x2, . . . , xM, κ) are potentially non-linear functions of the system state, and can be updated
during each time step. Here, we modeled the upper bound for flux j as V̂maxεj(k), where V̂max denotes
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a characteristic maximum reaction velocity, and εj(k) denotes the scaled enzyme activity catalyzing
reaction j at time step k. The characteristic maximum reaction velocity was set to 600 mM/h (which
corresponds to an average kcat � 1000 s−1 and and enzyme concentration of approximately 0.2 μM)
unless otherwise specified. Additional species constraints can be added to directly incorporate
metabolomic, proteomic or transcriptomic measurements into the flux calculation. In this study,
we incorporated metabolite measurement constraints of the form:

χL
m,k+1 ≤ xm,k+1 ≤ χU

m,k+1 m = 1, 2, . . . , Ξ, (8)

where χL
m,k+1 and χU

m,k+1 denote the lower and upper measurement bound for metabolite m at time
step k + 1, where Ξ metabolites were measured over the time course of the cell-free reaction. Lastly,
we imposed a user-configurable bound Bi on the maximum rate of change for metabolite i:

|ẋi| ≤ Bi i = 1, 2, . . . ,M (9)

and non-negativity constraints xi ≥ 0 for all metabolites and all time steps.
The bounds on the transcription rate (LT = rT = UT) were modeled as:

rT = Vmax
T

(
GP

KT + GP

)
, (10)

where GP denotes the concentration of the gene encoding the protein of interest, and KT denotes a
transcription saturation coefficient. The maximum transcription rate Vmax

T was formulated as:

Vmax
T ≡

[
RT

(
v̇T
lG

)
u (κ)

]
, (11)

where RT denotes the RNA polymerase concentration (nM), v̇T denotes the RNA polymerase
elongation rate (nt/h), lG denotes the gene length (nt). The term u (κ) (dimensionless, 0 ≤ u (κ) ≤ 1)
is an effective model of promoter activity, where κ denotes promoter specific parameters. The general
form for the promoter models was taken from Moon et al. [55], which was based on earlier studies
from Bintu and coworkers [56], and similar to the genetically structured modeling approach of
Lee and Bailey [57]. In this study, we considered only the T7 promoter model:

uT7 =
KT7

1 + KT7
, (12)

where KT7 denotes a T7 RNA polymerase binding constant. The values for all promoter parameters
are given in Table 1.

The translation rate (rX) was bounded by:

0 ≤ rX ≤ Vmax
X

(
m

KX + m

)
, (13)

where m denotes the mRNA abundance and KX denotes a translation saturation constant.
The maximum translation rate Vmax

X was formulated as:

Vmax
X ≡

[
KPRX

(
v̇X
lP

)]
. (14)
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The term KP denotes the polysome amplification constant, v̇X denotes the ribosome elongation
rate (amino acids per hour), and lP denotes the number of amino acids in the protein of interest.
The mRNA abundance m was estimated as:

mk+1 = mk + (rT − mkλ)h, (15)

where λ denotes the mRNA degradation rate constant (h−1). All translation parameters are given
in Table 1.

Metabolic fluxes were estimated at each time step using the GNU Linear Programming Kit (GLPK)
v4.55 [58]. The objective of the optimization subproblem was to maximize the translation rate, subject to
the stoichiometric and metabolite constraints. The model code, parameters and initial conditions used
in this study are available under an MIT software license at the Varnerlab website [35]. The model code
is written in the Julia programming language [59]. Default transcription and translation parameters are
stored in TXTLDictionary.jl, while specific simulations are described in the Solve_*.jl files. Lastly,
the figures for this study were produced using the Plot_*.jl scripts.

4.2. Sampling of Transcription and Translation Parameters

The influence of the uncertainty in the transcription (TX) and translation (TL) parameters was
estimated by sampling the expected physiological ranges for these parameters as determined from
literature. We generated uniform random samples between an upper (u) and lower (l) parameter
bound of the form:

p∗ = l + (u − l)× U (0, 1) , (16)

where U (0, 1) denotes a uniform random number between 0 and 1. The T7 RNA polymerase
concentration was sampled between 800 and 1200 nM, ribosome levels between 1.5 and 3.0 μM,
polysome amplification between 5 and 15, the RNA polymerase elongation rate between 20 and
30 nt/s, and the ribosome elongation rate between 1.0 and 3.0 aa/s [10,60]; see TXTL_ensemble.jl for
a complete list of parameter ranges.

4.3. Generation and Evaluation of Alternative Measurement Sets

The measurement sets consisted of the base (one set of 37 metabolites), inclusion sets (23 sets
of 38 metabolites each), exclusion sets (37 sets of 36 metabolites each), SVD-guided (one set of
37 metabolites), and simulated annealing samples (238 sets of varying length). In all cases, we assumed
the same sampling frequency as the base synthetic dataset, but we varied which species were measured.
The exclusion or inclusion measurement sets were constructed by removing or adding a metabolite
to the base set, while the SVD-guided measurement set was constructed from high importance
metabolites; the top 36 metabolites (plus glucose) that had the greatest singular value weighted
sum across the SVD-modes, accounting for 95% of the network structure, were designated the SVD
measurement set. Lastly, we used simulated annealing to generate potentially optimal measurements
sets, where the objective was to minimize the product of the prediction error, and flux uncertainty.
The prediction error, E , was computed by comparing the simulated versus the measured value of
a metabolite, for a Mcore set of metabolites. On the other hand, the flux variability was computed
using flux variability analysis (FVA) [61], subject to constraints on the CAT production rate, and the
selected metabolite trajectories. In particular, the metabolite prediction error was calculated from the
time-dependent state array:

E =
Mcore

∑
i=1

T
∑
t=ti

(
max

(
xi(t)− yU

i (t), 0
)
+ max

(
yL

i (t)− xi(t), 0
))

,

where xi(t) denotes the simulated value of metabolite i at time t, yU
i (t) denotes the upper bound of the

95% confidence interval on the synthetic data for metabolite i at time t, yL
i (t) denotes the lower bound
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of the 95% confidence interval on the synthetic data for metabolite i at time t, and Mcore denotes the
subset of metabolites in the core metabolism. For this calculation, the entire time course was considered
(ti = 0 h, T = 3 h). The flux uncertainty was calculated from the maximal and minimal flux arrays:

σoverall = ∑
rj∈Rcore

T
∑
t=ti

(
rmax

j (t)− rmin
j (t)

)2
,

where rmax
j (t) denotes the maximum value of flux j, while rmin

j (t) denotes the value of flux j at time
t, calculated using flux variability analysis. The quantity Rcore denotes the subset of reactions that
constitute the core metabolism. For the flux uncertainty calculations, either the entire reaction time
course was considered (ti = 0 h, T = 3 h), or the uncertainty was calculated separately for each phase
(phase 1: ti = 0 h, T = 1 h; phase 2: ti = 1 h, T = 3 h).

The simulated annealing algorithm began by evaluating the error and flux uncertainty of the base
case and multiplying these to obtain a cost function:

cost = E · σoverall. (17)

Then, each metabolite that was considered measurable was added to or removed from the
constraint set with a certain probability pswitch:

θnew
i =

{
1 − θi, U (0, 1) < pswitch,

θi, U (0, 1) > pswitch,
i = 1, 2, . . . ,Mmeasurable, (18)

where θi ∈ {0, 1} denotes a binary parameter encoding whether or not metabolite i is in the
constraint set, U (0, 1) denotes a uniform random number taken from a distribution between 0 and 1,
and Mmeasurable denotes the set of metabolites deemed to be measurable. For each newly generated
constraint set, we re-solved the dFBA and FVA problems, and re-calculated the cost function. All sets
with a lower cost were accepted into the ensemble. Sets with a higher cost were also accepted into the
ensemble, if they satisfied the acceptance constraint:

Runiform
0,1 < exp

(
−α · costnew − cost

cost

)
, (19)

where Runiform
0,1 denotes a random number taken from a uniform distribution between 0 and 1, cost

denotes the cost of the current parameter set, costnew denotes the cost of the new parameter set, and α

denotes an adjustable parameter to control the tolerance to high-error sets. A total of 238 samples
were accepted into the ensemble, of which there were 219 unique sets. Both Mcore and Rcore and
user-configurable are defined in the model code repository available from the Varnerlab website [35].

5. Conclusions

In summary, we used a dynamic constraint-based modeling approach to simulate cell-free
metabolism, and to study how measurement selection impacts model performance. We extended
sequence specific flux balance analysis, by removing the pseudo steady state assumption, and adding
synthetic metabolite measurement constraints to the flux calculation. Using this method, we simulated
the cell-free synthesis of a model protein, chloramphenicol acetyltransferase, we identified the most
important measured species in the cell-free system, and additional species that yielded the lowest
metabolite prediction error and flux uncertainty. Only synthetic metabolite measurements were used
in this study; however, this work built a foundation to rationally design experimental measurement
protocols that could be implemented with a variety of analytical techniques. Taken together, these
findings represent a novel tool for dynamic cell-free simulations, measurement selection and pathway
analysis, not only for E. coli, but potentially for align variety of metabolic networks, whether in vivo
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or cell-free. However, while this first study was promising, there were several issues to consider
in future work. First, while we described transcription and translation at a sequence specific level,
we have not considered the complexities of protein folding, or post-translational modifications such
as protein glycosylation. A more detailed description of transcription and translation reactions,
including the role of chaperones in protein folding, has been used in in-vivo genome scale ME
models; e.g., see O’Brien et al. [20]. These template reactions could easily be adapted to a cell-free
system, thereby providing a potentially higher fidelity description protein synthesis and folding.
Next, the inclusion of post-translational modifications such as protein glycosylation in the next
generation of models will be important to describe the cell-free synthesis of therapeutic proteins. DeLisa
and coworkers recently showed that glycoproteins can be synthesized in a cell-free system, using
extract generated from modified E. coli cells capable of asparagine-linked protein glycosylation [62].
Simulation of the generation and attachment of glycans to protein targets could be an important step
to optimizing cell-free glycoprotein production. Lastly, while we modeled the cell-free production of a
only single protein in this study, sequence specific dynamic constraint models could be developed
for multi-protein synthetic circuits, RNA circuits or even small molecule production. Thus, this
approach offers a unique tool to model and potentially optimize a wide variety of application areas in
synthetic biology.
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Abstract: In recent papers we have discussed the use of cuboid packed-bed devices as alternative
to columns for chromatographic separations. These devices address some of the major flow
distribution challenges faced by preparative columns used for process-scale purification of biologicals.
Our previous studies showed that significant improvements in separation metrics such as the
number of theoretical plates, peak shape, and peak resolution in multi-protein separation could be
achieved. However, the length-to-width aspect ratio of a cuboid packed-bed device could potentially
affect its performance. A systematic comparison of six cuboid packed-bed devices having different
length-to-width aspect ratios showed that it had a significant effect on separation performance.
The number of theoretical plates per meter in the best-performing cuboid packed-bed device
was about 4.5 times higher than that in its equivalent commercial column. On the other hand,
the corresponding number in the worst-performing cuboid-packed bed was lower than that in the
column. A head-to-head comparison of the best-performing cuboid packed bed and its equivalent
column was carried out. Performance metrics compared included the widths and dispersion indices
of flow-through and eluted protein peaks. The optimized cuboid packed-bed device significantly
outperformed its equivalent column with regards to all these attributes.

Keywords: chromatography; chromatography box; cuboid packed-bed; bioseparation; protein;
separation efficiency

1. Introduction

Column chromatography is widely used for both analytical and preparative purification of
biopharmaceuticals [1–4]. Analytical columns, which have very large bed-height to diameter ratios,
and are packed with fine chromatography media (in the 3–10 micron range) give excellent resolution
in multi-protein separation [3,5]. On the other hand, preparative columns, especially those used for
large-scale bioseparation (which have small bed-height to diameter ratios) and are packed with larger
resin particles (>30 microns) do not [3,6]. While these columns can be loaded with large volumes of
feed material, their separation efficiencies are drastically lower than analytical columns.

In an analytical column, flow distribution in the radial direction is relatively insignificant
compared to that in the axial direction. Also, the volume of sample injected in an analytical column is
very small, and therefore solutes move through the column in a “plug-like” manner. When liquid flows
into a preparative column, it is distributed in radial and axial directions as shown in Figure 1 (on the
left). In large-scale preparative columns, the diameter is frequently comparable, or even larger than the
bed height. For example, in the 20,000 L scale purification process for monoclonal antibodies, the typical
column diameter is 100 cm and the typical bed height is 20 cm [7]. Therefore, efficient radial flow
distribution in the column headers is critically important. Column flow maldistribution and consequent
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poor separation efficiency has been investigated by many researchers [8–13]. Poor separation has
been mainly attributed to dispersion in peripherals, non-uniform packing and maldistribution in
headers [8,9]. In addition, radial temperature gradients in the large-diameter columns could affect local
superficial velocity and thereby retention parameters [14]. Non-uniformity of flow within preparative
columns results in peak broadening and poor resolution, which decrease recovery, increase operating
time and buffer usage, and necessitate subsequent concentration steps [8–14].

 

Figure 1. Idealized flow paths within a column and a cuboid packed-bed device.

Researchers have tried to address the problem of column flow maldistribution primarily
by modifying and improving the headers [15–23]. This includes the use of ribbed, hyperbolic-
and parabolic-shaped headers, the use of collimators and manifolds, the use of bifurcating,
radially interconnecting and fractal flow distributors, and the use of frits with appropriate porosity.
Other approaches include control of column packing [24–26], adjustment of the column inlet
temperature [27], and the use of parallel flow [28], curtain flow [29], and radial flow [30] columns.

In recent papers, we have proposed a radically different approach i.e., the use of box-shaped
or cuboid packed-bed devices for reducing flow maldistribution [31,32]. The design of the cuboid
packed bed is inspired by that of lateral-fed membrane chromatography (LFMC) devices [33–38].
The cuboid packed-bed device (see Figure 1, on the right) consists of a box-shaped resin-bed into which
liquid is distributed using an upper lateral channel, and from which liquid is collected using a lower
lateral channel [31,32]. This flow arrangement makes the flow path lengths within the packed bed
uniform and narrows down the solute residence time distribution (RTD). Using cuboid packed-bed
devices containing different types of ion-exchange media, we were able to demonstrate their superior
separation performances relative to their equivalent columns (i.e., containing the same media and
having the same bed-height and bed-volume) [31,32]. The cuboid packed-bed devices consistently gave
sharper and more symmetrical flow-through and eluted peaks, and higher resolution in multi-protein
separations. The length-to-width aspect ratios of a cuboid packed-bed device of a given bed height
and bed volume could be adjusted in a flexible manner. That brought us to a pertinent question, i.e.,
was this ratio important? Within a longer device, the velocity gradient in the lateral channels could be
expected to be greater. In our earlier study [32], we hypothesized that the greater the velocity gradient,
the poorer the separation. On the other hand, increasing the width of the device and thereby the width
of the lateral channels could potentially introduce some non-uniformity of flow along the channel
width and thereby affect separation efficiency [32].

In this paper, we have attempted to optimize the performance of a 5 mL cuboid packed-bed device
by systematically examining 6 different cuboid devices having identical bed height and bed volume,
but different length-to-width ratios. The performance of these devices was compared based on the
number of theoretical plates per meter bed height. A head-to-head comparison of the best-performing
cuboid packed-bed device and its equivalent column was also carried out. Performance metrics such
as the widths, and dispersion indices of flow-through and eluted protein peaks were compared.
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2. Materials and Methods

Trizma base (T1503), trizma hydrochloride (T3253), sodium hydroxide (795429), hydrochloric
acid (258148), bovine serum albumin (BSA, isoelectric point 4.8, A7906), lysozyme (isoelectric point
11, L6876) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium chloride (SOD002.205)
was purchased from Bioshop (Burlington, ON, Canada). Strong anion exchange Capto Q medium
(17-5316-03) and HiTrap Capto Q column (5 mL bed volume, 16 mm diameter, 25 mm bed height,
11-0013-03) were purchased from GE Healthcare Biosciences, QC, Canada. All the buffers and the
solutions were prepared using water obtained from a SIMPLICITY 185 water purification unit Millipore
(Molsheim, France). Prior to use, buffers and solutions were filtered through a 0.1 μm VVLP membrane
(Millipore, MA, USA) and degassed.

The different 5 mL cuboid packed-bed devices (see Figure 2), which had the same bed height and
cross-sectional area were fabricated in-house (material: acrylic for the transparent top and bottom
plates, polyvinyl chloride for the central frame). The dimensions were as follows: 14.14 mm (length)
× 14.14 mm (width) × 25 mm (height), 20 mm × 10 mm × 25 mm, 25 mm × 8 mm × 25 mm,
33.3 mm × 6 mm × 25 mm, 50 mm × 4 mm × 25 mm, and 80 mm × 2.5 mm × 25 mm. The basic
design of a 5 mL cuboid packed-bed device has been described in detail in our previous paper [32].
Briefly, it consists of 3 parts: an upper and a lower plate with engraved lateral channel for flow
distribution/collection, and a central frame with a rectangular slot for housing the cuboid packed
bed. A photograph of the assembled 20 mm × 10 mm × 25 mm device is also shown in Figure 2 (inset).
Figure 2 also shows the bed dimensions of the equivalent 5 mL HiTrap column (material: polypropylene).

Figure 2. Dimensions of the different cuboid packed-bed devices and their equivalent column.
Inset photograph: assembled 20 mm × 10 mm × 25 mm device.

The cuboid packed-bed devices were packed with the Capto Q media using the protocol described
in our previous paper [32]. The chromatography experiments were carried out using an AKTA prime
system (GE Healthcare Biosciences, Baie d’Urfe, QC, Canada). The number of theoretical plates in
the cuboid packed-bed devices and the column was determined at different flow rates by injecting
100 μL 0.8 M NaCl solution as tracer (2% of the bed volume), using 0.4 M NaCl solution as the mobile
phase. The best performing cuboid packed-bed device was selected based on the number of theoretical
plates. This device was then compared head-to-head with the equivalent commercial column in terms
of widths, asymmetry and tailing factors, and dispersion indices of flow through and eluted protein
peaks obtained at different flow rates, using different sample injection loops. In these experiments
50 mM Tris-HCl buffer, pH 8 was used as the binding buffer and 50 mM Tris-HCl buffer + 1 M NaCl,
pH 8 was used as the eluting buffer. Flow-through peaks were obtained by injecting different volumes
of 1 mg/mL lysozyme solution, while eluted peaks were obtained using 2 mg/mL BSA solution.
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All experiments with the cuboid devices and their equivalent column were run in duplicate and
average values are reported.

3. Results and Discussion

The data for the number of theoretical plates (N), tailing factor (TF) and asymmetry factor (AF)
obtained with the six cuboid packed-bed devices and their equivalent column are summarized in
Table 1. N was calculated as follows [39]:

N = 5.545
(

VR
w0.5

)2
(1)

where VR is the residence volume, and w0.5 is the peak width at half height.
TF was calculated as follows [39]:

TF =

(
wL

0.05 + wR
0.05

2wL
0.05

)
(2)

where wL
0.05 is the front peak width at 5% height, wR

0.05 is the rear peak width, also at 5% height.
AF was calculated as follows [39]:

AF =

(
wR

0.1

wL
0.1

)
(3)

where wL
0.1 is the front peak width at 10% height, while wR

0.1 is the rear peak width at 10% height.

Table 1. The number of theoretical plates and attributes of salt peaks obtained with the different
cuboid packed-bed devices and their equivalent column at different flow rates (media: Capto Q anion
exchange, bed volume: 5 mL, mobile phase: 0.4 M NaCl, tracer: 0.8 M NaCl, loop: 0.1 mL, vS = 15, 60,
150 and 300 cm/h at flow rates of 0.5, 2, 5 and 10 mL/min respectively).

Efficiency Metrics
Flow Rate
(mL/min)

Column
Cuboid—Length × Width (mm × mm)

14.14 × 14.14 20 × 10 25 × 8 33.3 × 6 50 × 4 80 × 2.5

Aspect ratio 1:1 2:1 25:8 33.3:6 25:2 32:1

Number of
theoretical plates

per meter, Ns (/m)

0.5 2296 8923 10,327 7381 6465 6886 710
2 2251 7106 7690 6347 5663 5575 633
5 1968 4403 4620 3867 3684 3402 612

10 1781 2915 3000 2705 2450 2237 602

Tailing factor

0.5 1.61 1.04 0.92 0.96 0.92 0.95 1.03
2 1.54 1.05 0.95 0.96 0.93 0.99 0.99
5 1.29 1.07 0.99 1.00 0.97 0.99 1.00

10 1.18 1.07 1.03 1.03 0.98 1.01 1.03

Asymmetry factor

0.5 2.15 1.02 0.84 0.87 0.89 0.89 1.02
2 2.07 1.04 0.93 0.88 0.90 0.94 0.96
5 1.57 1.09 0.99 0.98 0.95 0.97 0.97

10 1.35 1.08 1.06 1.00 1.00 1.03 1.03

Five out of the six cuboid packed-bed devices out-performed the column in terms of the number
of theoretical plates and other peak attributes. Only the performance of the 80 mm × 2.5 mm cuboid
packed-bed device was worse than that of the column. With all the chromatography devices examined,
i.e., the column and the six cuboid packed beds, the number of theoretical plates per meter (N)
decreased when the flow rate was increased above the optimum flow rate, as expected based on the
van Deemter equation. With the column, the number of theoretical plates increased slightly from
1781/m (at 10 mL/min, vS = 300 cm/h) to 2296/m (at 0.5 mL/min, vS = 15 cm/h). With the best
performing cuboid packed-bed device (i.e., 20 mm × 10 mm × 25 mm) the number increased very
significantly from 3000/m at a flow rate of 10 mL/min (vS = 300 cm/h) to 10327/m at a flow rate
of 0.5 mL/min (vS = 15 cm/h). However, the number of plates did not increase further when the
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flow rate was decreased below 0.5 mL/min. For instance, the value was 10,207/m at 0.4 mL/min
(vS = 12 cm/h) and 8165/m at 0.2 mL/min (vS = 6 cm/h) (data not shown in Table 1), indicating that
0.5 mL/min was the optimal flow rate for the best-performing cuboid packed-bed device. The tailing
and asymmetry factor of the salt peaks obtained with the column increased with decrease in flow rate.
However, the corresponding values for the cuboid packed-bed device remained consistently close to 1
at all the flow rates examined due to consistently uniform flow distribution.

Figures 3 and 4 show salt peaks obtained with the six cuboid packed-bed devices and the
column during the theoretical plate measurement experiments at the flow rates of 0.5 and 10 mL/min
respectively. In these experiments, 0.4 M NaCl solution was used as the running buffer while 0.8 M
NaCl solution was used as tracer. The volume of tracer injected was 100 μL (i.e., 2% of the bed volume).

Figure 3. Salt peaks obtained with the six cuboid packed-bed devices and their equivalent column at
low flow rate (media: Capto Q anion exchange, bed volume: 5 mL, mobile phase: 0.4 M NaCl, tracer:
0.8 M NaCl, loop: 0.1 mL, conductivity baseline was normalized for comparison, flow rate: 0.5 mL/min,
vS = 15 cm/h).

Figure 4. Salt peaks obtained with the six cuboid packed-bed devices and their equivalent column
at high flow rate (media: Capto Q anion exchange, bed volume: 5 mL, mobile phase: 0.4 M NaCl,
tracer: 0.8 M NaCl, loop: 0.1 mL, conductivity was normalized for comparison, flow rate: 10 mL/min,
vS = 300 cm/h).
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In the chromatograms shown in the figure, the conductivity baseline was normalized for ease
of comparison by deduction of the conductivity corresponding to 0.4 M NaCl. Consistent with the
numerical results summarized in Table 1, the peaks obtained with the best cuboid packed-bed device
(dimension: 20 mm × 10 mm × 25 mm) were sharper than those obtained with the other cuboid
packed-bed devices and the column, especially at the lower flow rate i.e., 0.5 mL/min.

The difference between the maximum and minimum residence time within a cuboid packed-bed
device would depend primarily on the magnitude of the channel velocity gradient [32]:

|τmax − τmin| =

⎡⎣ 2l

2v0 − l
∣∣∣ dvU

dz

∣∣∣
⎤⎦−

⎡⎣ 2l

2v0 − l
2

∣∣∣ dvU
dz

∣∣∣
⎤⎦ (4)

where τmax is the maximum residence time, τmin is the minimum residence time, l is the length of the
cuboid packed-bed device, v0 is the channel inlet velocity, and vU is the liquid velocity in the upper
channel at location z.

v0 could be obtained by:

v0 =

(
V
hw

)
(5)

where V is the volumetric flow rate, h is the channel height, and w is the width of the channel
(and therefore the width of the cuboid packed-bed device).

In an earlier paper it has been shown that [31]:∣∣∣∣dvU
dz

∣∣∣∣ = vS
h

(6)

where vS is the superficial velocity which could be obtained by:

vS =

(
V
lw

)
(7)

From Equations (4)–(7):

|τmax − τmin| =
(

2hlw
3V

)
(8)

Therefore, the difference between the maximum and the minimum residence time within a
cuboid packed-bed device would depend on the volumetric flow rate, the channel height, and the
area of cross-section of the cuboid packed-bed device. For the six cuboid packed-bed devices
studied, the channel height and area of cross-section were maintained the same. Therefore, based on
Equation (8), the difference between the maximum and the minimum residence time within a cuboid
packed-bed device could be expected to be the same, i.e., they would have the same efficiency. However,
Table 1 shows that this was clearly not the case, i.e., the efficiency depended on the aspect ratio, with the
best performance being observed with the device having 2:1 aspect ratio. The efficiency decreased
with an increase in this ratio, particularly severely when the ratio was 32:1. This discrepancy with the
expectations based on Equation (8) was probably due to the effect of aspect ratio on the pressure drop
within the channel. One of the design criteria for obtaining high efficiency in separation with a cuboid
packed-bed device is that the channel pressure drop should be significantly lower than the pressure
drop across the packed bed [31,32]. An equation based on the resistance model used in membrane
process [34] could be used to estimate the pressure drop in the packed bed (ΔPv):

ΔPv = vSRv (9)

where Rv is the hydraulic resistance offered by the packed bed which would depend on the property
of the packed bed and on the flow rate but would be independent of the channel aspect ratio.
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In a similar way, the pressure drop in the lateral channel (ΔPl) could be estimated as follows:

ΔPl = vU Rl (10)

where vU is the average velocity in the upper channel, Rl is the lateral resistance in the channel.
vU is given by [32]:

vU =

(
2v0 − z

∣∣∣∣dvU
dz

∣∣∣∣)/2 (11)

From Equations (5)–(7) and (11):
vU = v0/2 (12)

Thus:
ΔPl = v0Rl/2 (13)

The magnitude of both v0 and Rl would increase with aspect ratio. v0 would increase due to
a decrease in the area of cross-section of the channel while Rl would increase due to an increase in
channel length. Therefore, the greater the aspect ratio, the greater would be the net pressure differential
between the channel extremities. When the channel is long and narrow (i.e., when the aspect ratio is
very high), ΔPl might become comparable in magnitude to ΔPv and thereby the basic design criteria
for cuboid packed beds, i.e., the channel pressure drop should be significantly lower than the pressure
drop across the packed bed, would not hold good any more. Under such conditions, the higher channel
pressure closer to the entrance of a narrow channel would result in more liquid going through the
regions of the packed bed closer to the inlet than through the regions of the packed bed further down,
i.e., vS would no longer be constant. This would also result in a non-linear channel velocity gradient,
making Equation (8) invalid for such a situation. Interestingly, the cuboid packed-bed device with
an aspect ratio of 1:1 performed marginally poorer than the one with 2:1 ratio. A lower aspect ratio
implies a wider channel. The channels in each of the cuboid packed-bed devices were fed from a
narrow inlet and drained through a narrow outlet using a tapered distributor. Figure 5 shows the
diagrams for the tapered distributors corresponding to the 1:1 and 2:1 aspect ratio cuboid packed-bed
devices. While such tapered flow distributors worked well at the scale examined in this paper, i.e.,
5 mL, they are likely to be less effective with larger devices with wider channels. For such larger
devices, a better flow distributor could potentially be required.

Figure 5. Tapered channel distributors used in cuboid packed-bed devices.

The above discussion highlights an efficiency trade-off between the length and the width of a
cuboid packed-bed device. Increasing the length would increase the pressure in the channel which
could decrease the efficiency of the device. On the other hand, increasing the width of the device could
result in flow non-uniformity along the width of the channel which in turn could reduce the efficiency.
In this study, the 2:1 aspect ratio cuboid packed-bed device represents the efficiency “sweet spot” for
the 5 mL cuboid packed-bed devices examined. However, it should be noted that the difference in
efficiency between the 2:1 and 1:1 aspect ratio devices was not very big, particularly at the higher flow
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rates. For larger devices, non-uniformity along the width of the channel could potentially become a
significant factor and advanced flow distribution features to reduce such variability would need to
be incorporated.

The 20 mm × 10 mm × 25 mm cuboid packed-bed device which had approximately 4.5 times as
many theoretical plates as the column was used in all subsequent head-to-head comparisons with the
column. This cuboid packed-bed device is henceforth referred to as the best cuboid packed-bed device
to avoid any confusion.

Figure 6 and Figure S1 (supplementary information) show the unbound protein (i.e., lysozyme)
breakthrough peaks obtained with the column and the best cuboid packed-bed device at different
flow rates (1 mL/min and 5 mL/min, i.e., at vS = 30 cm/h and 150 cm/h respectively). In these
experiments, 50 mM Tris-HCl, pH 8 was used as the running buffer and 5 mL of 1 mg/mL lysozyme
solution prepared in the running buffer was injected after ultraviolet (UV) absorbance equilibration.
The large lysozyme sample volume ensured that the UV absorbance plateaued for a significant duration
before decaying back to the baseline. The unbound protein breakthrough curves obtained with the
best cuboid packed-bed device were sharper at both flow rates, clearly indicating its superior flow
distribution attribute.

Figure 6. Unbound lysozyme breakthrough curves obtained with the best cuboid packed-bed device
and its equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, buffer: 50 mM Tris-HCl,
pH 8.0, sample: 1 mg/mL lysozyme, flow rate: 1 mL/min, vS = 30 cm/h).

Figure 7 and Figure S2 (supplementary information) show lysozyme flow through peaks obtained
with the best cuboid packed-bed device and the column, at different flow rates (1 mL/min and
5 mL/min, i.e., at vS = 30 cm/h and 150 cm/h respectively) by injecting 0.5 mL of 1 mg/mL lysozyme
solution. Consistent with the salt peaks shown in Figures 3 and 4, the lysozyme flow-through peaks
obtained with the best cuboid packed-bed device were significantly sharper and more symmetrical
than those obtained with the column. In order to compare the above flow through peaks, a parameter
termed dispersion index (DI) was used, and is defined below:

DI =

(
2w0.5

Vinj

)
(14)

where Vinj is the volume injected. The calculated values are summarized in Table 2.
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Figure 7. Lysozyme flow-through peaks obtained with the best cuboid packed-bed device and its
equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, buffer: 50 mM Tris-HCl,
pH 8.0, sample: 1 mg/mL lysozyme, loop: 0.5 mL, flow rate: 1 mL/min, vS = 30 cm/h).

Table 2. Comparison of the attributes of the lysozyme flow-through peaks obtained with the best
cuboid packed-bed device and its equivalent column (media: Capto Q anion exchange, bed volume:
5 mL, buffer: 50 mM Tris-HCl, pH 8.0, sample: 1 mg/mL lysozyme, vS = 30 and 150 cm/h for the flow
rate of 1 and 5 mL/min respectively, injection volume: 0.5 mL)

Flow Rate (mL/min)
Column Cuboid

Width at Half Height (mL) Dispersion Index Width at Half Height (mL) Dispersion Index

5 0.98 3.94 0.62 2.50
1 1.1 4.42 0.6 2.38

The peak widths at half height and DI values of the flow through peaks obtained with the best
cuboid packed-bed device by injecting 0.5 mL of lysozyme sample were significantly lower than
those obtain with the column at the different flow rates. Moreover, the peaks were more symmetrical,
the difference in symmetry being greater at the lower flow rate. Once again, these results demonstrate
the role of flow distribution in the performance of chromatographic devices.

Figure 8 and Figure S3 (supplementary information) show the BSA elution peaks obtained with
the best cuboid packed-bed device and the column. The binding buffer used in this experiment
was 50 mM Tris-HCl buffer, pH 8, while 50 mM Tris-HCl buffer, 1M NaCl, pH 8 was used as the
eluting buffer. These experiments were carried out at two different flow rates (1 mL/min and
5 mL/min, i.e., at vS = 30 cm/h and 150 cm/h respectively) by injecting 5 mL of 2 mg/mL BSA
solution. Figures S4 and S5 (supplementary information) show the results obtained from similar
experiments carried out using 0.5 mL of 2 mg/mL BSA solution. In each case, a step change from the
binding buffer to 100% eluting buffer was made immediately after sample injection. At all the different
conditions examined (i.e., shown in Figure 8 and Figure S3–S5), the BSA elution peaks obtained with
the best cuboid packed-bed device were sharper than those obtained with the column. Earlier in the
paper, the parameter DI was used for quantifying the spread of flow through peaks. The corresponding
metric for an eluted peak could be referred to as the apparent dispersion index (ADI), quantified in a
similar manner, i.e., using Equation (14). The qualifier “apparent” is necessary for an eluted peak as its
spread depends not only on column hydraulics but also on the gradient used for elution. Therefore,
for comparison of two eluted peaks using ADI, the elution gradient has to be identical. The calculated

138



Processes 2018, 6, 160

ADI data obtained from the peaks shown in Figure 8 and Figure S3–S5 (supplementary information)
are summarized in Table 3 and Table S1 (supplementary information). At each experimental condition,
the peak width at half height and corresponding ADI obtained with the best cuboid packed-bed device
was significantly lower than that obtained with the column.

Figure 8. Eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent
column (media: Capto Q anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0,
eluting buffer: 50 mM Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, loop: 5 mL, flow rate:
1 mL/min, vS = 30 cm/h).

Table 3. Comparison of the attributes of the eluted BSA peaks obtained with the best cuboid packed-bed
device and its equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, binding buffer:
50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA,
vS = 30 and 150 cm/h for the flow rate of 1 and 5 mL/min respectively, injection volume: 0.5 mL)

Flow Rate (mL/min)

Column Cuboid

Width at Half
Height (mL)

Apparent
Dispersion Index

Width at Half
Height (mL)

Apparent
Dispersion Index

5 1.82 7.28 0.9 3.6
1 1.51 6.04 0.6 2.4

Chromatography columns used for large-scale purification of biologicals such as monoclonal
antibodies have low bed height to diameter ratios. For instance affinity chromatography,
anion exchange chromatography, and cation exchange chromatography columns having ratios of 0.15,
0.18 and 0.08, respectively, have been used for 20,000 L scale production of monoclonal antibodies [7].
The bed height-to-diameter ratio of the cuboid packed-bed devices and colums used in this study is
1.57. Therefore, it may be anticipated that the cuboid packed-bed devices would show even better
relative performances when the bed height-to-diameter ratio is lower. The amount of material used to
fabricate the wall of a chromatography device is an important factor determining equipment cost. For a
given wall thickness, a column would use the least amount of material as the circular cross-section
ensures the lowest perimeter for a given cross-sectional area. For the cuboid packed-bed device,
the amount of material used to fabricate the wall would depend on the length-to-width aspect ratio,
as the perimeter would depend on it, the minimum being when the aspect ratio is one. In terms of
wall material cost, the cuboid packed-bed device with an aspect ratio of one would be more expensive
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than the column by a factor of 1.128. This factor would increase with increase in the aspect ratio.
In summary, a cuboid packed-bed device shows significant promise in applications such as large-scale,
high-resolution purifications of biologicals.

4. Conclusions

Preparative columns used in large-scale biopharmaceutical purification processes typically have
low bed height-to-diameter ratios. Ensuring adequate flow distribution in such columns is challenging.
Cuboid packed-bed devices examined in this study were designed to provide superior flow distribution
and thereby better separation than equivalent preparative columns. The length-to-width aspect ratio
of a cuboid packed-bed device had a significant effect on performance. The cuboid packed-bed device
with a 2:1 aspect ratio showed the best performance while the one with an aspect ratio of 32:1 performed
the worst. The number of theoretical plates in the best-performing cuboid packed-bed device was
approximately 4.5 times of that in the equivalent column. The performance of the worst-performing
cuboid packed-bed device was poorer than that of the column. If the length-to-width ratio of the
cuboid packed-bed device is too high, increase in channel back pressure could decrease the efficiency
of the device. On the other hand, increasing the width of the device could potentially result in
non-uniformity along the width of the channel which, in turn, could also somewhat reduce the
efficiency of separation. The best-performing cuboid packed-bed device significantly outperformed
the column in terms of all the protein separation metrics examined. The results discussed in this paper
show that precice optimization of the design of a cuboid packed-bed device is essential to ensure that
it performs efficiently.

5. Patents

CHROMATOGRAPHY DEVICE AND METHOD FOR FILTERING A SOLUTE FROM A FLUID
R Ghosh—US Patent App. US20170349626A1

Supplementary Materials: The following are available online atwww.mdpi.com/xxx/s1, Figure S1: Unbound
lysozyme break through curves obtained with the best cuboid packed-bed device and its equivalent column
(media: Capto Q anion exchange, bed volume: 5 mL, buffer: 50 mM Tris-HCl, pH 8.0, sample: 1 mg/mL lysozyme,
flow rate: 5 mL/min, vS = 150 cm/h), Figure S2: Lysozyme flow through peaks obtained with the best cuboid
packed-bed device and its equivalent column (media: Capto Q anion exchange, bed volume: 5 mL, buffer:
50 mM Tris-HCl, pH 8.0, sample: 1 mg/mL lysozyme, loop: 0.5 mL, flow rate: 5 mL/min, vS = 150 cm/h),
Figure S3: Eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent column (media:
Capto Q anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM
Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, loop: 5 mL, flow rate: 5 mL/min, vS = 150 cm/h), Figure S4:
Eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent column (media: Capto Q
anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM Tris-HCl,
1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, loop: 0.5 mL, flow rate: 1 mL/min, vS = 30 cm/h), Figure S5: Eluted
BSA peaks obtained with the best cuboid packed-bed device and its equivalent column (media: Capto Q anion
exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer: 50 mM Tris-HCl, 1 M NaCl,
pH 8.0, sample: 2 mg/mL BSA, loop: 0.5 mL, flow rate: 5 mL/min, vS = 150 cm/h), Table S1: Comparison of the
attributes of the eluted BSA peaks obtained with the best cuboid packed-bed device and its equivalent column
(media: Capto Q anion exchange, bed volume: 5 mL, binding buffer: 50 mM Tris-HCl, pH 8.0, eluting buffer:
50 mM Tris-HCl, 1 M NaCl, pH 8.0, sample: 2 mg/mL BSA, vS = 30 and 150 cm/h for the flow rate of 1 and
5 mL/min respectively, injection volume: 5 mL).
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Abstract: The terminal sugar molecules of the N-linked glycan attached to the fragment crystalizable
(Fc) region is a critical quality attribute of therapeutic monoclonal antibodies (mAbs) such as
immunoglobulin G (IgG). There exists naturally-occurring heterogeneity in the N-linked glycan
structure of mAbs, and such heterogeneity has a significant influence on the clinical safety and efficacy
of mAb drugs. We previously proposed a constraint-based modeling method called glycosylation
flux analysis (GFA) to characterize the rates (fluxes) of intracellular glycosylation reactions. One
contribution of this work is a significant improvement in the computational efficiency of the GFA,
which is beneficial for analyzing large datasets. Another contribution of our study is the analysis of
IgG glycosylation in continuous perfusion Chinese Hamster Ovary (CHO) cell cultures. The GFA
of the perfusion cell culture data indicated that the dynamical changes of IgG glycan heterogeneity
are mostly attributed to alterations in the galactosylation flux activity. By using a random forest
regression analysis of the IgG galactosylation flux activity, we were further able to link the dynamics
of galactosylation with two process parameters: cell-specific productivity of IgG and extracellular
ammonia concentration. The characteristics of IgG galactosylation dynamics agree well with what
we previously reported for fed-batch cultivations of the same CHO cell strain.

Keywords: N-linked glycosylation; perfusion cell culture; CHO cells; constraint-based modeling;
monoclonal antibody

1. Introduction

Therapeutic recombinant monoclonal antibodies constitute the most important class of
drugs in the biopharmaceutical industry, making up approximately half of the total revenue of
biopharmaceutical products in 2013 [1]. The production of mAb drugs typically employs batch or
fed-batch cultivations of mammalian cells. The state-of-the-art batch/fed-batch cell cultures are able
to meet the large production volume requirement of mAbs, with reactor sizes of up to 25,000 L [2].
Nevertheless, the increasing number of mAb products entering different stages of clinical trials and
the burgeoning market of biosimilars driven by impending patent expirations of blockbuster mAb
drugs, give a strong motivation for the development of new production technology that is more robust
and cost effective [3]. The US Food and Drug Administration (FDA) initiative on quality by design
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and process analytical technology put further emphasis on implementing quantitative approaches for
process improvements in biopharmaceutical manufacturing [4,5].

Continuous manufacturing technology offers an effective and flexible way for the large scale
and robust production of drug compounds [6]. In the biopharmaceutical industry, the application of
continuous cell culture technology has thus far been limited to the production of unstable products that
require constant recovery [7]. Nevertheless, continuous perfusion cell cultures have previously been
demonstrated to be capable of producing antibodies at a volumetric rate that matches or exceeds that
of fed-batch cultures [8]. In addition to the high productivity, the stable steady state operation mode in
conjunction with the short residence time of perfusion cultures translates to a tight maintenance of
product quality. Whether or not product qualities and their key controlling parameters can be directly
translated from the traditional batch/fed-batch cell cultures to the perfusion cell cultivations is still
unresolved. Past work on converting mAb production from batch/fed-batch to perfusion cell cultures
gave conflicting reports on product qualities, where a few studies demonstrated consistent product
qualities [9,10], and many others showed differences between the two production modes [11–15].

Among the key critical quality attributes (CQAs) of therapeutic mAbs is the glycan structures
of the Fc domain [16]. The N-linked glycosylation is a common post-translational modification of
proteins, a process that occurs in the endoplasmic reticulum (ER) and Golgi apparatuses. The Fc glycan
structure has been shown to impact protein folding [17], clearance [18], bioactivity [19] and efficacy [20],
as well as immunogenicity [21]. Moreover, there exists naturally-occurring heterogeneity in the
glycosylation of mAbs. Thus, the FDA approval of mAb drugs is given for a particular composition
of mAb glycoforms [5]. Because of the importance of the N-linked glycosylation, the majority of
recombinant mAb drugs are produced using mammalian host cells in order to achieve human-like
glycan structures [22]. In particular, Chinese Hamster Ovary (CHO) cells have become the major
expression host for the biopharmaceutical production of therapeutic mAbs [23].

The N-linked glycosylation of mAbs has been shown to depend on the host genetic background [24],
expression vector [25], media composition [16], media supplements [26], and bioprocess
parameters [27]. However, the mechanism of the above dependence remains to be established [28].
Toward closing this gap, mathematical models of the glycosylation network have previously been
developed [29–36]. Many of these models have a large number of unknown and system-specific kinetic
parameters that need to be fitted to experimental data [29–33]. A number of parameter-free models
have also been proposed to study the N-linked glycosylation process based on the constraint-based
modeling approach (i.e., stoichiometric models) [34–36]. Recently, we proposed a flux analysis method,
called glycosylation flux analysis, which provides predictions of the rate or flux of intracellular
glycosylation reactions using the stoichiometric model of the glycosylation network and the cell
secretion rates of mAb glycoforms [36]. Similar to the well-known metabolic flux analysis (MFA) [37],
the GFA is based on the molar balance equations of glycoforms involved in the glycosylation reaction
network under the pseudo steady state assumption. The GFA further makes use of the relatively small
number of enzymes involved in the glycosylation process to reduce the degrees of freedom in the
flux estimation. More specifically, we assumed that glycosylation fluxes vary with time according
to a (global) cell-specific factor and a (local) enzyme-specific factor. When applied to study the IgG
production of CHO cells in fed-batch cultivations, the GFA was able to give insights on how changes
in the media affect the intracellular IgG glycosylation reactions [36].

The formulation of the flux estimation in the GFA involves a nonlinear least-square regression,
which requires computationally intensive global optimizations. One contribution of this work is
a reformulation of the flux estimation in the GFA into an iterative procedure involving two linear
regression problems, which provides higher computational efficiency. In this study, we applied the
improved GFA to analyze the N-linked glycosylation of IgG in perfusion CHO cell cultures undergoing
setpoint changes in the viable cell densities and perfusion rates. In the post-analysis of the GFA results,
we employed a random forest regression analysis to elucidate the key process parameters that affect
intracellular IgG glycosylation fluxes. Finally, we compared the characteristics of IgG glycosylation
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between the traditional fed-batch and continuous perfusion cell cultures and identified similarities
and differences.

2. Materials and Methods

Figure 1 illustrates the analysis of IgG glycosylation in our study. The perfusion cell culture
experiments are summarized in Section 2.1. In the data preprocessing step, we computed the
cell-specific secretion fluxes of IgG glycoforms, as well as other molecules such as glucose, lactate and
ammonia, from cell culture measurements. The data preprocessing is described in Section 2.2.
We applied the GFA to the secretion fluxes of IgG glycoforms calculated above using a constraint-based
model of the glycosylation network. The GFA generates estimates of enzyme-specific glycosylation
activities at different measurement time points. An improved iterative procedure for the GFA is
detailed in Section 2.3. Finally, we performed a random forest regression analysis, as outlined in
Section 2.4, to identify the process parameters that are able to explain the dynamic behavior of
intracellular glycosylation activities.

Figure 1. Analysis procedure of IgG glycosylation in CHO perfusion cell cultures. (a) Four perfusion cell
cultures were performed (see Section 2.1). Measurements of glucose/lactate/ammonia concentrations,
viable cell density, IgG titer, glycoform fractions, bleed rates and harvest rates were taken from each
cell culture run. (b) In the data preprocessing step (see Section 2.2), the cell-specific secretion fluxes of
IgG glycoforms, as well as the cell-specific secretion/uptake rates of IgG, glucose, lactate and ammonia,
were computed. (c) The glycosylation flux analysis (GFA) was applied to the secretion fluxes of IgG
and its glycoforms (see Section 2.3). The GFA is based on a constraint-based model of the glycosylation
network where the glycosylation fluxes vary with time according to two multiplicative factors: the
enzyme-specific factor αJ(t) and the cell-specific factor β(t). The factor αJ(t) captures the dynamic
changes in the enzyme-specific glycosylation activities, while the factor β(t) describes the dynamic
changes in the cell-specific IgG productivity. (d) A random forest regression analysis was carried out to
rank the process parameters (p) based on their ability to predict the dynamic changes of αJ(t).

2.1. Continuous Perfusion Cell Cultures

The detailed procedure of the perfusion cell culture is available elsewhere [38]. Here, we provide
a brief summary of the experiments. A proprietary CHO cell line expressing IgG1 was cultured
using a previously developed 1.5 L perfusion cell culture setup [39], as depicted in Figure 2. In total,
four perfusion cell culture experiments were performed with different viable cell density (VCD) and
perfusion rate (PR) set-point profiles, as shown in Figure 3. Each of the experiments was inoculated
following the same procedure. CHO cells were held back in the reactor by a cell retention device so
that only cell free reaction mixture left the reactor through the harvest stream. The feed flowrate (F)
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of fresh media into the reactor and the bleed (B) and harvest (H) flowrates out of the reactor were
balanced to keep the reactor volume constant. The perfusion rate (PR) is given by the flowrate through
the reactor, as follows:

PR = H + B = F (1)

The perfusion rate represents the rate of fresh media supplied to the cells. We define the
cell-specific perfusion rate (CSPR) as the rate of fresh media per cell:

CSPR =
PR

VCD
(2)

During the experiments, the following measurements were collected on a daily basis: cell
counts and cell viability, concentrations of glucose, lactate and ammonia, IgG titer, and protein
glycan distribution.

Figure 2. A schematic of perfusion cell culture reactor (Figure adapted from [39] with the permission
from the authors). CHO cells were cultivated in suspension in a continuous stirred tank reactor with
continuous feeding of fresh nutrients. Cell-free spent media was constantly collected in the harvest
stream, while cells remained in the stirred tank reactor. A bleed stream removed a small fraction of the
reactor mixture, including biomass, which was used to regulate viable cell density.

Figure 3. Perfusion cell culture experiments. Four perfusion cell culture experiments, labeled (A), (B),
(C) and (D), were conducted with varying VCD and PR given set-points (solid lines). The experimental
VCD and PR are shown as blue filled squares and red empty triangles, respectively.
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2.2. Estimation of Secretion and Uptake Fluxes

As inputs to the GFA, the cell-specific secretion flux of each IgG glycoform (vE,i) was determined
based on the molar balance in the reactor, as follows

V
dcE,i(t)

dt
= VvE,i(t)VCD(t)− (H(t) + B(t))cE,i(t) (3)

where cE,i denotes the concentration of the i-th IgG glycoform and V denotes the reactor volume. Since
the reactor volume is kept (approximately) constant, Equation (3) can be rearranged to give:

vE,i(t) =

(
dcE,i(t)

dt + (h(t) + b(t))cE,i(t)
)

VCD(t)
(4)

The variables h(t) = H(t)
V and b(t) = B(t)

V represent the specific harvest and bleed rate, respectively.
The concentration of the IgG glycoform was calculated as the product of the measured glycoform
fraction (fi) and the IgG titer (T) according to:

cE,i(tk) = fi(tk)T(tk) (5)

where tk denotes the k-th measurement time point.
For the estimation of the secretion fluxes in Equation (4), the computed concentration of IgG

glycoforms cE,i(tk) was first smoothened (as a function of time) using spline fitting. The time derivative
dcE,i(t)

dt was then evaluated by taking the first order derivative of the spline curve. Equation (4)
can be used to compute the cell-specific uptake/secretion fluxes of IgG, glucose, lactate and
ammonia by replacing cE,i(t) with the concentration measurements of IgG, glucose, lactate and
ammonia, respectively.

2.3. Glycosylation Flux Analysis

The glycosylation flux analysis is based on a constraint-based model of the protein glycosylation
reaction network. Like other flux analysis methods, the GFA is developed for evaluating the
intracellular (glycosylation) fluxes using the cellular (mAb glycoforms) secretion rates. In the GFA,
a pseudo steady state assumption is taken to derive the stoichiometric model of the glycosylation
network, as follows:

dcI(t)
dt

= SvI(t)− vE(t) = 0 (6)

where cI denotes the vector of m intracellular IgG glycoform concentrations, vI denotes the vector of n
intracellular IgG glycosylation reaction fluxes (rates), vE denotes the vector of secretion fluxes of IgG
glycoforms estimated above, and S denotes the m × n stoichiometric matrix. The (i,j)-th element of
S gives the number of the i-th glycoform molecule produced (if positive) or consumed (if negative)
by the j-th glycosylation reaction. Since the number of reaction fluxes (i.e., the number of unknowns)
typically exceeds that of glycoforms (i.e., the number of equations), the estimation of vI from vE in
Equation (6) is underdetermined. In other words, there exist many vI for the same experimentally
determined vE. In the method Flux Balance Analysis, the most plausible vI is set to the vector that
maximizes a cellular objective, such as the biomass production [37]. However, the appropriate cellular
objective to use for glycosylation networks is not immediately obvious.

Instead of assuming a cellular objective, the GFA enforces constraints on how groups of
glycosylation fluxes vary together. More specifically, in the GFA each glycosylation flux vI,j(t)
is computed as the product of a reference flux value vI,j

ref, an enzyme-specific factor αJ(t) and a
cell-specific factor β(t), as follows:

vI,j(t) = αJ(t)β(t)vI,j
ref (7)

The variables αJ(t) and β(t) represent the fold-change amplification or attenuation and can
therefore be normalized to 1 at a chosen reference time point tref.
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The cell-specific factor β(t) captures the (global) influence of the cell metabolism on the
glycosylation process, more specifically the total amount of mAb entering/leaving the glycosylation
network. For this reason, β(t) is represented by the ratio of the cell-specific productivity (qmAb)
between time t and the reference time tref, as follows:

β(t) =
qmAb(t)

qmAb
(
tref
) (8)

On the other hand, the factor αJ(t) describes the (local) influence of enzymatic processing capacity,
which captures the dependence of glycosylation on factors such as enzyme expression and activity, as
well as co-factor and nucleotide sugar availability. Note that the number of enzymes involved in the
glycosylation network is typically much smaller than the number of reactions, as an enzyme catalyzes
multiple reactions. Thus, the estimation of vI(t) can be reformulated to fitting αJ(t) and vI,j

ref to the
secretion fluxes, as follows:

min
αJ(t),vI,j

ref
Φ = ‖SvI(t)− vE(t)‖2

2 (9)

For a more detailed derivation of the GFA, we refer interested readers to the original publication [36].
The formulation in Equation (9) is a nonlinear programming problem that requires a global

optimization algorithm to solve. In the following, we describe an alternative and more computationally
efficient procedure for solving the regression problem in the GFA. The procedure is based on
decomposing the nonlinear least square regression above into two linear regression problems. First,
for a given reference flux vector vI

ref, one can formulate the following linear regression problem to
obtain the least square estimate of αJ :

vE(tk) = β(tk)SΨIα(tk) = β(tk)S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vref
I,1
... 0

vref
I,nJ1

vref
I,nJ1+1

0

0
...

vref
I,nJ1+J2

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ αJ1(tk)

αJ2(tk)
...

⎤⎥⎦ (10)

where ΨI is an n × e matrix with e being the number of enzymes involved in the glycosylation
network, and nJl is the number of fluxes catalyzed by the enzyme Jl . ΨI is constructed by grouping
the reference fluxes (vref

I,j ) according the enzyme that catalyzes the reactions and stacking each group

(block-)diagonally. In this manner, each vref
I,j is multiplied by the corresponding enzyme-specific factor

(αJ). In the second linear regression, given αJ(tk), one obtains vI,j
ref by solving for the least square

estimates of the following problem:

vE(tk) = β(tk)SΩ(tk)vI,j
ref

= β(tk)S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αJ1(tk)
. . .

αJ1(tk) 0
αJ2(tk)

. . .
0 αJ2(tk)

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vI,1
ref

...
vI,nJ1

ref

vI,nJ1+1
ref

...
vI,nJ1+nJ2

ref

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where Ω is an n × n diagonal matrix with the enzyme-specific factor (αJ) as its diagonal elements.
Given the two linear regressions in Equations (10) and (11), we estimated αJ and vI

ref following
an iterative procedure as follows:
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(1) generate a uniformly distributed random vector of vI
ref within a biologically feasible range

(vI,j
ref ∈ [0, 25]; unit : pg/cell/day),

(2) given vI
ref from step (1), solve for or update αJ using Equation (10),

(3) given αJ from step (2), solve for or update vI
ref using Equation (11), and

(4) repeat steps (2) and (3) until the change of Φ as described in Equation (9) becomes smaller than a
threshold (default 10−10).

Equations (10) and (11) were solved following the iterative procedure above using the MATLAB
subroutine lsqlin constraining αJ to values between zero and 20 and vI

ref to be positive. In order to
improve the chance of obtaining the global minimum of Φ, we adopted a multi-start strategy and ran
the aforementioned iterative estimation for multiple random initial vectors of vI

ref. Among the results
of the multi-start runs, we took the best αJ and vI

ref values that correspond to the lowest Φ value. Note
that the multi-start strategy is embarrassingly parallel and can be implemented on a multiprocessor
computing platform.

2.4. Random Forest for Regression

For identifying explanatory variables of the dynamical changes in the galatosyltransferase activity
αJ,GalT, we formulated a regression problem using the change in the GalT enzyme-specific factors over
time dαJ,GalT/dt as the response variable, and the experimental parameters of perfusion cell cultures
as predictor variables. More specifically, we are interested the following regression problem:

dαJ,GalT

dt
= g
(
t, αJ,GalT, p

)
(12)

which describes the dynamic change in αJ,GalT using the function g
(
t, αJ,GalT, p

)
that depends on time,

αJ,GalT, and process parameters p. Note that the function g
(
t, αJ,GalT, p

)
is likely nonlinear in nature.

Here, we employed Random Forest (RF) [40] to build the above regression model using data from all
four perfusion cell culture experiments. RF regression involves building an ensemble of unpruned
regression trees, in which each regression tree is created using a bootstrap sample of the original
dataset. At each node of a tree, a subset of predictors is selected randomly to determine the best
decision split of the samples. The final prediction of the regression trees in RF is obtained by averaging
the predictions of the entire ensemble. Notably, RF regression is able to capture nonlinear dependencies
of the response variable on the predictors.

In our work, we applied RF using normalized data of each variable, in which the data were
centered and divided by the standard deviation. We created a RF regression model using an ensemble
of 100 trees and employed one third of the total predictors for the decision split at each node. Predictor
variables (features) were subsequently ranked based on their average impurity gain over all splits
and all trees. Predictor variables with higher impurity gains contribute more to the variability in the
prediction of the response variable, and hence are considered more important.

3. Results

3.1. Perfusion Cell Culture Experiments

We performed four perfusion cell cultures (Experiment A, B, C and D) using different VCD and PR
set-point profiles, as illustrated in Figure 3. In Experiments A and B, we kept the VCD set-point constant
for the entire duration of the cell cultures but shifted the PR set-point between day nine and ten (down
in Experiment A and up in Experiment B). In Experiment C, we changed the VCD and PR set-points in
a manner that maintained the CSPR at the same value. Finally, in Experiment D, we varied the VCD
set-point while leaving the PR set-point constant. As shown in Figure 3, the VCD and PR followed the
set-points very well with only minor deviations (also see Table S1). As the control of VCD was done
only by bleeding (i.e., removal of cells), the VCD unsurprisingly tracked a decrease in the set-points
better than an increase. Supplementary Figures S1–S4 give a summary of the cell culture parameters,
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including VCD, PR, CSPR, the concentrations of glucose (Glc), lactose (Lac), ammonia (Amm) and
IgG, and the cell-specific growth rate (μ), for all experiments. As shown in Figure 4, the cell-specific
productivities of IgG, i.e., the secretion rate of IgG divided by the VCD, in all experiments follows a
decreasing trend over the course of the cell cultivation. Correspondingly, the experimental secretion
rates of the IgG glycoforms computed in the data pre-processing decrease with time (see Figure 5 and
Supplementary Figure S5).

Figure 4. Cell-specific productivity. The cell-specific productivity generally decreases over the course
of the four perfusion cell culture experiments (A), (B), (C) and (D).

Figure 5. Secretion fluxes of the main IgG glycoforms. The solid symbols show the experimental
secretion fluxes computed in the data preprocessing step, as outlined in Section 2.2 (Experiment A:
black squares, Experiment B: blue circles, Experiment C: green triangle, Experiment D: red diamonds).
The lines show the secretion fluxes from the fitting of αJ in the GFA, as outlined in Section 2.3.
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3.2. Glycosylation Flux Analysis

For the GFA, we employed the IgG glycosylation reaction network depicted in Figure 6,
which consists of 19 IgG glycoforms and 25 IgG glycosylation reactions. The glycosylation reaction
network was based on a previously published network [41], where we omitted glycosylation reactions
and molecules corresponding to IgG glycoforms that are not detected in our experiments and do
not participate as intermediate species. Since each perfusion cell culture was started in the same
manner, we used the same reference IgG glycosylation flux vector vI

ref in the GFA of all experiments,
more specifically using day one of experiment A as the reference time sample point (i.e., vI

ref of day one
in Experimental A is set to the vector of 1 s). Figure 5 shows the fitting of IgG glycoform secretion fluxes
in the GFA for the major glycoforms (see Supplementary Figure S5 for the rest of IgG glycoforms).

Figure 6. Glycosylation network for the GFA of immunoglobulin G in CHO-S. The enzyme names are
abbreviated as follows: α-Mannosidase I and II (Man I/II), N-Acetylglucosaminyltransferase I and
II (GnT I/II) and Fucosyltransferase (FucT), Galactosyltransferase (GalT) and Sialyltransferase (SiaT).
The glycan labels are provided in Supplementary Table S2.

We compared the computational speed of the iterative GFA in analyzing the perfusion cell culture
datasets with that of the original implementation. On a test computer (3.33 GHz Intel Xeon W3680,
18 GB RAM), the iterative GFA converged within 5 min using 250 random starting points. Of note,
among the 250 random starts, 40% converged to the same minimum Φ value. Meanwhile, the original
implementation of GFA using the global optimization toolbox MEIGO [42] required at least 42 min
to converge. However, among ten repeated independent runs of MEIGO, only one converged to the
same minimum Φ value as the iterative GFA, while the other runs converged to higher Φ values.

Figure 7 gives the time profiles of the enzyme-specific factors αJ(t) for each of the enzymes in the
IgG glycosylation network. Most of the enzyme-specific factors, particularly those of α-Mannosidase
I and II (Man I/II), N-Acetylglucosaminyltransferase I and II (GnT I/II) and Fucosyltransferase
(FucT), maintain a constant activity level throughout the cell cultivation (i.e., αJ(t) ≈ 1). Meanwhile,
the galactosyltransferase (GalT)-specific factor decreases during the beginning of the four experiments
and varies with changes in the VCD and PR set-points. Since the fluxes catalyzed by sialyltransferase
(SiaT) are close to zero, the estimate of the corresponding αJ(t) becomes unreliable due to high
sensitivity to experimental noise, and thus is omitted from further analysis.
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Figure 7. Predicted enzyme-specific factors. The activity of fluxes catalyzed by Man I (black), Man II
(grey), GnT I (red), GnT II (orange) and FucT (green) remain relatively constant in all experiments.
However, the fluxes catalyzed by GalT (purple) shows significant variation over the course of the four
perfusion cell culture experiments (A), (B), (C) and (D).

3.3. Effects of Process Parameters on Glycosylation

As mentioned above, the enzyme-specific factor of IgG galactosylation fluxes displays the most
dynamical change during the perfusion cell culture. However, the relationship between the changes in
the enzyme-specific factor αGalT(t) and the other process parameters is difficult to discern by a simple
observation of the experimental data. For this reason, we employed a random forest regression analysis
using the change of galactosyltransferase-specific factor over time dαGalT(t)

dt as the response variable and
using fourteen process parameters as the predictor variables (see Section 2.4). A RF regression model
should be able to capture any nonlinear dependencies between the response and predictor variables.
Here, we considered the following predictors: αGalT(t), VCD, PR, B, CSPR, time and the concentrations
of IgG, Glc, Lac and Amm, and the specific productivities of IgG, Glc, Lac and Amm (i.e., qIgG, qGlc,
qLac and qAmm, respectively). Furthermore, we excluded data from the startup period of the cell
culture (i.e., days one to three of each experiment), as we were more interested in the regulation of IgG
glycosylation during the steady state operations and setpoint changes of the perfusion cell culture.
Finally, we ranked the predictor variables in decreasing magnitudes of the impurity gains. A higher
impurity gain points to a predictor variable with higher importance in explaining the response variable.

Figure 8 gives the ranking of the predictor variables in decreasing impurity gains. The specific
productivity of IgG (qIgG) and the concentration of ammonia (Amm) are the two most important
predictors of the dynamical changes in the galactosyltransferase specific activity. Indeed, when we
repeated the RF regression using only qIgG and Amm as the predictor variables, we observed a similar
quality of data fitting to the response variables (see Supplementary Figure S6). Kolmogorov-Smirnov
(KS) test and Wilcoxon rank sum test further confirmed that the residuals of the RF regression models
using all 14 predictors and those using only qIgG and Amm, are not statistically different (KS test
p-value = 0.857; Wilcoxon rank sum test p-value = 0.824). Following qIgG and Amm in the ranking
are the glucose uptake rate (qGLC) and bleed rate (B), indicating that the specific growth rate has a
moderate contribution to the changes in the IgG galactosylation activity. The influence of growth
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rate on IgG galactosylation is somewhat expected, as the nucleotide sugar UDP-Galactose is used for
different forms of cellular glycosylation, not solely for IgG [43].

Figure 8. Ranking of predictors based on importance. The predictors are sorted in decreasing impurity
gains as measured by the improvement in the split criterion.

4. Discussion

In this work, we improved the computational efficiency of the GFA and applied the GFA to
analyze the IgG glycosylation of four perfusion CHO cell culture experiments. The GFA relies on
a stoichiometric model of the IgG glycosylation network to estimate IgG intracellular glycosylation
reaction fluxes from the secretion fluxes of IgG glycoforms [36]. The GFA assumes that the
intracellular IgG glycosylation fluxes vary with time according to two multiplicative factors: αJ
and β J . The enzyme-specific factor αJ represents the relative change of the fraction of IgG that can
processed by a specific enzyme, while the cell-specific factor β J describes the relative change of the
specific productivity of IgG. In particular, αJ captures dynamical alterations in the intracellular IgG
glycosylation fluxes that cannot be explained by increases or decreases in the amount of IgG entering
the glycosylation network.

We caution against making an inference on the intracellular IgG glycosylation fluxes directly from
the cell culture data—i.e., without using the appropriate mass and flux balances. For example, a larger
fraction of an IgG glycoform could result from a higher secretion rate of the specific IgG glycoform or
from lower secretion rates of the other glycoforms. Furthermore, as noted in Section 2.3, the flux balance
around the cells in Equation (6) is underdetermined, implying that multiple solutions there exist for the
intracellular IgG glycosylation fluxes for the same observed secretion fluxes. The GFA gets around such
an issue by assuming that reactions catalyzed by the same enzyme vary with time commensurately.
As demonstrated in the study, by quantifying dynamic intracellular glycosylation activities in an
enzyme-specific manner, the GFA enables the identification of key process parameters that are
indicative of and potentially contribute to the changes in the intracellular IgG glycosylation process.

In contrast to other approaches that rely on kinetic modeling of the glycosylation network,
the GFA does not require specifying a large number of kinetic parameters, whose values are uncertain
and likely system specific. However, the GFA requires time-series data for computing the secretion
fluxes of different glycoforms, which include viable cell density, IgG titer and glycoform fractions.
Such data may not always be available during the production of IgG. The GFA is also unable to provide
mechanistic insights for the dynamic changes in the enzyme-specific factors αJ , at least not directly.
In this study, we performed a post-analysis using a random forest regression to identify the key process
parameters that are able to explain the variability in αJ(t).
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The four perfusion cell cultures in this study differed among each other in the VCD and PR
set-point profiles, which were designed with the goal of understanding how IgG productivity and
glycosylation vary with the set-points and process variables during steady-state operations. The cell
culture conditions (i.e., media composition, seeding density, pH, temperature) of the four experiments
were kept being as similar as possible, so that the effect of changes in operating set-points VCD and
PR on the glycosylation process could be examined.

In our previous study using the same CHO cells, we reported that the cell-specific productivity
of IgG in fed-batch cultivations increases with time, and that such an increase is associated
with lower αJs for the upstream enzymes ManI/II, GnTI/II and FucT [36]. We attributed the
decreasing αJs to the inability of these enzymes to process the increasing amount of IgG entering
the intracellular glycosylation network, beyond the processing capacity of each enzyme. In contrast
to fed-batch cultivations, the cell-specific productivity of IgG generally decreases over the course of
the perfusion cell culture, as shown in Figure 4. The GFA shows that the enzyme-specific factors
of the aforementioned upstream enzymes stay approximately constant at roughly 1 throughout the
experiments. With αJ staying near 1, the IgG intracellular glycosylation fluxes associated with these
enzymes thus vary proportionally with the cell-specific productivity β(t). This trend is not surprising,
considering that the amount of IgG that needs to be processed decreases over time.

The enzyme-specific factor with the most dynamical changes in the perfusion cell cultures
corresponds to galactosyltransferase (GalT), which parallels that in the fed-batch cultivations. However,
unlike the reduction in the GalT-specific factor αGalT(t) over time during the fed-batch cultivations [36],
αGalT(t) dynamics in perfusion cell cultures showed both up and downward trends during the
different steady-state operation periods, as shown in Figure 7. Because of the rich dynamics of αGalT(t)
in the perfusion cell culture, the relationship among the GalT-specific factor αGalT(t) and process
variables was not immediately obvious. By applying a random forest regression analysis, we identified
the specific productivity of IgG and the concentration of ammonia as the two variables with the
highest importance in explaining the dynamic changes of IgG galactosylation (see Figure 8). The
accumulation of ammonia and its inhibitory activity on GalT have previously been reported as one of
the main reasons for decreasing IgG galactosylation in fed-batch cultivations [36,44]. Unlike ammonia,
the connection between the IgG specific productivity and galactosylation is not immediately clear.
The partial correlation between dαGalT(t)

dt and qIgG is small and negative (partial correlation = −0.037),
suggesting that the relationship between the two variables as revealed by RF analysis is likely to be
nonlinear. The negative partial correlation further implies that keeping all other process parameters
the same, a higher qIgG is concomitant with decreasing αGalT with time. Such a trend is in general
agreement with how αJ of the upstream enzymes vary with the cell-specific productivity of IgG as
explained earlier.

Taken together, the key process variables that are associated with IgG galactosylation in our
perfusion cell cultures resemble those in the fed-batch cultivations of the same CHO cells. Note that
the aforementioned similarity between fed-batch and perfusion cell cultures cannot be concluded by a
direct observation of the process data and is only apparent through the combination of the GFA and
random forest regression analysis. Such similarity suggests the possibility of using extensive data and
knowledge from traditional batch/fed-batch production to inform or predict the IgG glycosylation in
continuous perfusion cell cultures, which is a topic of interest in our research groups. In a separate
publication, we noted comparable IgG glycoform patterns between our perfusion cell culture process
at steady state and the fed-batch cultivation beyond the stationary growth phase [15]. In the literature,
past studies produced contradictory conclusions on the IgG glycosylation when comparing the two cell
culture modes, where some studies demonstrated similarities [9,10] and others showed discrepancies in
the IgG glycan structures [13,14]. A recent report of a head-to-head comparison between perfusion and
fed-batch cell cultures noted a strong similarity in the IgG glycosylation dynamics [45], an observation
that aligns well with the result of our analysis.

154



Processes 2018, 6, 176

5. Conclusions

The application of glycosylation flux analysis to IgG production data from four perfusion CHO cell
culture experiments shed light on the possible controlling factors of IgG glycosylation. The activity of
galactosyltransferase and thus intracellular IgG galactosylation fluxes displayed the most time-varying
changes during the perfusion cell cultivation. The GFA, coupled with a random forest regression
analysis, pointed to the cell-specific productivity of IgG and the concentration of ammonia in the
media as the most important process parameters for explaining the dynamical alterations in GalT
activity. These observations parallel our previous report on IgG glycosylation in fed-batch production.
The similarity between fed-batch and perfusion cell culture, especially in how IgG galactosylation
flux activity varies with the cell culture parameters, suggests the possibility of using extensive data
and knowledge from batch/fed-batch production to predict the dynamics of IgG glycosylation in the
continuous perfusion cell cultures.
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Abstract: Although continuous production processes are often desired, many processing industries
still work in batch mode due to technical limitations. Transitioning to continuous production requires
an in-depth understanding of how each unit operation is affected by the shift. This contribution
reviews the scientific understanding of similarities and differences between emulsification in turbulent
rotor-stator mixers (also known as high-speed mixers) operated in batch and continuous mode.
Rotor-stator mixers are found in many chemical processing industries, and are considered the
standard tool for mixing and emulsification of high viscosity products. Since the same rotor-stator
heads are often used in both modes of operation, it is sometimes assumed that transitioning from batch
to continuous rotor-stator mixers is straight-forward. However, this is not always the case, as has
been shown in comparative experimental studies. This review summarizes and critically compares
the current understanding of differences between these two operating modes, focusing on shaft
power draw, pumping power, efficiency in producing a narrow region of high intensity turbulence,
and implications for product quality differences when transitioning from batch to continuous
rotor-stator mixers.

Keywords: rotor-stator mixer; high shear mixer; inline; batch; continuous; emulsification; mixing

1. Introduction

A fully continuous mode of production is often desired in most types of industrial processing.
Continuous production decreases the per unit cost of production and reduces the risk of quality
differences between batches. However, batch processing is still commonly employed in many
production lines, especially in the food, pharmaceutical, and cosmetics sectors.

Continuous production does introduce some additional difficulties. The first requirement
is that each unit operation in the production process can be achieved in a continuous setup.
Second, converting a given batch process into a continuous one requires an understanding of what
(if any) differences there are between the batch and continuous versions of each unit operation.
This second difficulty also applies to product development projects for continuous mode production,
since laboratory testing is almost always performed in batch.

This review focus on liquid processing in rotor-stator mixers (RSMs), also known as high-shear
mixers. RSMs, together with high-pressure homogenizers, are considered the standard tool for
mixing and emulsification of liquid dispersions. High-pressure homogenizers are generally used
for low to intermediate viscosity products and RSMs for products with higher viscosities [1].
Whereas high-pressure homogenization is an inherently continuous operation, RSMs can be operated
in either batch or continuous mode. The same rotor-stator head is often used in both batch and
continuous mode of operation, see illustrations in Figures 1 and 2. Continuous mode RSMs are
sometimes referred to as inline (or in-line) RSMs.

Processes 2018, 6, 32; doi:10.3390/pr6040032 www.mdpi.com/journal/processes158
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Figure 1. Schematic drawings of rotor-stator mixers (RSMs) operated in continuous (A) and batch (B)
mode of operation.

Figure 2. Schematics of RSMs for use in continuous (A) and batch (B) mode of operation.

From an industrial perspective, it is important to understand how the characteristics of a given
batch mode RSM compare to those of a given continuous mode RSM. This understanding is crucial for
both converting an existing batch production process to continuous production, and for generalizing
results from laboratory (batch) experiments to pilot and production scale in a product development
process. Since the rotor-stator heads are often very similar between batch and continuous modes of
operation, it is tempting to assume that converting between the modes is straight-forward, both in
terms of production economy (i.e., power draw of the rotor shaft) and in terms of obtained product
quality (mixing or dispersing efficiency). However, as has become apparent in the scientific literature,
this is not obviously the case [2,3]. Great care must therefore be taken when comparing RSMs run in
batch to RSMs run in continuous mode of operation.
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RSMs are used in many different applications, particularly in the food, pharmaceutical,
and cosmetic processing industries. However, as pointed out in an editorial from 2001, despite their
wide use, there has been a lack of fundamental understanding [4]. During the last 16 years there has
been an increasing number of scientific research projects aimed at characterizing and understanding
RSMs. Three major reviews have been published since then, summarizing many of these advances.
In 2004, Atiemo-Obeng and Calabrese provided a comprehensive review of the mechanical designs
of RSMs, focusing on power draw, flow profiles, and scale-up [5]. This review was also updated
in 2016 [6]. Another fairly recent review has been provided by Zhang et al. [7], focusing on power
draw and flow fields, but also providing an overview of the proposed emulsification scaling-laws
and the mass and energy transfer correlations. However, none of these previous reviews provide
a comprehensive discussion on the difference between batch and continuous mode of operation.
Moreover, there has been a number of relevant studies on this in the last couple of years, after these
reviews were written.

The objective of this contribution is to provide a more specific review on what is known about
the similarities and differences between RSMs operated in batch and continuous mode, including the
most recent advances. The intention is to provide an overview, both for engineering professionals
struggling with the transition from batch to continuous rotor-stator mixing, and for the research
community utilizing or studying RSMs. After a brief description of RSMs, this review will focus
on four topics: The shaft power draw (power requirements) of batch and continuous mode RSMs
(Section 3), the flowrate and pumping capacity of RSMs (Section 4), the pumping and turbulent
dissipation efficiency (Section 5), and the implications of these differences on emulsion processing
(Section 6). A summary of recommendations for further studies to resolve remaining issues is provided
in Section 7, and the review is concluded in Section 8. Although RSMs can be operated under both
laminar and turbulent conditions, this review will focus on turbulent RSMs, which are the most
common RSMs employed in industrial applications.

2. The Rotor-Stator Mixer

The term RSM does not refer to a specific design but a range of mixer geometries [5]. RSMs are
produced by several different manufacturers, and each have their own design, or more often several
different designs for use with different applications, see References [5,7] for detailed overviews of
different RSM geometries.

The common denominator of these RSMs is that they all consist of one or several high velocity
rotors and one or several static stator screens separated by a short distance, the rotor-stator clearance,
δ. The rotor accelerates the fluid tangentially and redirects it radially through the stator holes or slots.
This gives rise to steep velocity gradients in the stator slot, or in the direct proximity of it, and creates a
narrow region of high intensity hydrodynamics stresses [8–15], which give rise to high mixing and
dispersing efficiency, characteristic of RSMs [14,15].

Although there are many different rotor-stator designs, they can broadly be classified into two
groups based on the rotor: teeth-designs and blade-designs. A schematic view of the two design
principles can be seen in Figure 3. As seen in the figure, the blade-design uses a rotor similar to that
found in a centrifugal pump, either extending all the way from the shaft (as in the figure) or with
shorter blades mounted on a plate attached to the rotor. The teeth-design uses a circular plate-mounted
rotor, as seen in Figure 3. Both blade- and teeth-designs can use different stator screens (differing in
the shape and size of the holes). Many rotor-stator heads also have multiple (i.e., 2–3) sets of concentric
rotors and stators.

Figure 4 displays velocity profiles calculated with computational fluid dynamics (CFD) from two
recently published investigations; one on blade-design [16] and one on teeth-design [11]. Looking at
the general outline of the flow, there are many similarities. We can see how the fluid obtains a high
tangential velocity in the rotor-stator clearance region, and how it is accelerated into a turbulent jet
as it enters the (outer) stator slot. Note that the jet attaches to the leading edge of the stator and that
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the jet only fills a small portion of the slot [8,11,12]. This gives rise to a re-circulation region in the
slots and, consequently, a “back-flow” of fluid that re-enters the slot from the bulk without passing the
rotor [5,8,12,15,17,18].

The same rotor-stator heads are often used in both batch and continuous RSMs [3,19],
the difference is primarily in how they are mounted, and how the product flow is subjected to the
rotor-stator. In batch operation, the rotor-stator is mounted inside a mixing tank, either as an integrated
part of the bottom of the tank as in Figure 1 (as is often the case in production-scale batch RSMs)
or mounted on an impeller shaft lowered into the tank (more common for laboratory-scale batch
RSMs). When used for continuous production, the rotor-stator head is mounted inside a narrow casing,
similar to a centrifugal pump, with an inlet directing fluid towards the center of rotation and an outlet
mounted at the periphery, see Figure 2.

Figure 3. Schematic representation of a rotor-stator head with blade-design (A) and teeth-design (B).
D denotes the rotor diameter, and δ denotes the rotor-stator clearance.

Figure 4. Velocity fields calculated using computational fluid dynamics (CFD) for two rotor-stator
heads. (A) The flow field in a blade-design (Silverson RSM), reproduced with permission from [16],
published by Elsevier, 2015; (B) The flow field in a teeth-design (Fluko RSM) from Xu et al. [11],
reproduced with permission from [11]; published by Willey Online Library, 2013. Both show systems
with two rows of rotor-stators.
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3. Shaft Power Draw

The economic benefit of using an RSM depends on the power draw, Pshaft, required to operate the
rotor shaft at a given speed. Much attention has been put into investigating and predicting the power
draw for RSMs.

3.1. Batch Mode RSMs

A batch RSM is principally an impeller mixer, and the power draw of such systems have been
under scientific investigation since the 1880s [20]. From dimensional analysis, it has been suggested
that shaft power scales with rotor speed (N), rotor diameter (D), and fluid density (ρ) [21,22]:

NP =
Pshaft

ρN3D5 . (1)

Under turbulent conditions, the power number, NP, is constant with respect to impeller speed
and diameter, but depends on tank and impeller geometry [21–23]. Several studies have shown that
Equation (1) is valid for batch RSMs [5,7,8,10,17,24,25]. Fully turbulent, Reynolds number independent,
power numbers are obtained above a critical Reynolds number of approximately 104 [24–27], with Re
defined based on the rotor tip-speed:

Re =
ρND2

μ
(2)

where μ denotes fluid viscosity. The power number NP is often found to be in the range 1–3, depending
on the geometry of the rotor-stator head [5,7,10,17,24,27] and the tank design [25]. These values are
often found to be in the same range or somewhat lower than the power numbers of Rushton type
impeller mixers [22,28].

For impeller mixers, several experimental studies have also investigated and established
mathematical relations for how the impeller and tank geometry influences NP. Less information
is available for batch RSMs. The tank geometry is expected to influence the power draw less
than in tank agitators, since most of the pressure drop occurs in the stator. Regarding RSM
geometry, several high-quality investigations have been published [17,24,25,29], but they often
compare commercial designs and it has been difficult to establish which geometrical difference is
responsible for the observed effects. However, there has been two recent exceptions. One study focused
on the effects of stator hole width (keeping all other design parameters constant) and suggests that NP
decreases with increasing stator hole diameter for a single row Tetra Pak design [10]. Another study,
conducted on a range of commercial available Silverson designs, suggests that the NP is proportional
to the square of the stator hole area [26]. The discrepancy between these two different systems is still
not understood.

3.2. Continuous Mode RSMs

For continuous mode of operation, the power draw is more complex as the flow through the RSM
is not set by the system, as in the batch case, but can be varied over a large range by the processing
equipment of the continuous line. Experiments reveal that power draw depends on both rotor speed
and flowrate. During the last decade several experimental investigations, using a number of different
RSM designs, have found support for a three factor model that describes the power draw [7,27,30–34]:

Pshaft = Πrot + Πflow + ΠL = NP0ρN3D5 + NP1ρQN2D2 + ΠL, (3)

where Q is the flowrate through the RSM. Equation (3) can be understood by considering that the
continuous RSM is something in between a batch RSM and a centrifugal pump [5,34]. The first
term, Πrot is similar to that found for the batch design, and describes the effect of rotor speed.
The second term, Πflow, is similar to the power draw of a centrifugal pump and describes the effect of

162



Processes 2018, 6, 32

flowrate. The third term, ΠL is a loss-term, representing the energy lost due to vibrations and losses in
bearings [33].

Equation (3) contains two constants, NP0 and NP1. Just as NP for the batch RSM, these are design
dependent but do not change with flowrate or rotor speed. NP0 is often found to be on the order of
0.1 and NP1 on the order of 10. See Table 1 for specific values of these constants for a few different
RSM designs. Although several studies have compared NP0 and NP1 values for different commercial
designs [27,28,33,35], no systematic studies describing the effect of different design variables have yet
been reported.

Although Equation (3) has received substantial experimental support, it should be remembered
that RSMs can be operated under a wide set of conditions and such designs differ substantially.
A correction including a fourth and a fifth term has been suggested by Jasinska et al. [16].
However, these extra terms only apply when operating the RSM at flowrates that are below what is
typically used in commercial applications [16] (p. 47), and can therefore often be neglected.

Equation (3) has been used with success for describing power draw in continuous mode RSMs
manufactured by Fluko [27], Silverson [28,33], Tetra Pak [35,36], and Ytron [15]. However, in one
study [35], it was reported that for Conti TDS designs it is more appropriate to use a
different correlation:

P = N∗
P(Re) · ρQN2D2 + ΠL. (4)

Note that N*P in Equation (4) is Reynolds number dependent, in contrast to NP0 and NP1 in
Equation (3) [27]. It is still not completely clear why this difference is observed. The Conti design
has no obvious geometrical difference when compared to the Fluko, Silverson, Tetra Pak, and Ystral
mixers—for which Equation (3) is valid. The reported Conti design is with a slotted stator and a
rotor with both teeth and blades [37], whereas the designs supported by Equation (3) range from
teeth-designs to blades, and with a variety of different stator designs [7,28,30–34].

Table 1. A comparison of power and pumping characteristics of some continuous mode rotor-stator
mixers (RSMs).

RSM
Power

Characteristics
Pumping

Characteristics * Ref. Figure 5 **

Rotor Stator Manufacturer D (m) NP0 NP1 c1 c2

Blade Circular
holes Tetra Pak 0.20 0.11 9.2 0.46 −3.8 [36] I

Blade Square
holes Fluko 0.060 0.24 8.4 0.24 −1.1 [27] II

Blade Circular
holes Silverson 0.12 0.10 6.4 0.44 −3.2 [34] III

Teeth
(1 row) Teeth Ystral 0.12 0.13 9.7 0.23 −2.4 [34] IV

Teeth
(2 rows) Teeth Fluko 0.060 0.15 14.5 0.13 −4.5 [27] V

* See Section 5.2 for definitions and a discussion on pumping characteristics. ** Relates the five mixers to the graphs
in Figure 5.
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Figure 5. (A) Plot of Equation (11) to determine the pump constants c1 and c2 for the five mixers
in Table 1. (Ppump denotes the pumping power of the mixer and Πflow denotes the flow-term in the
power-draw correlation, see Section 5.2.) (B) Pumping efficiency (ηpump) as a function of the flow
number (NQ) for the five mixers, compared to data for a typical centrifugal pump. Data from [27,34,36].
See Reference [35] for the methodology.

4. RSM Flowrate and Pumping

The net flowrate passing through the stator holes, Q, can be described in terms of a flow-number,
NQ, via:

NQ =
Q

ND3 . (5)

This applies for both batch [8,9,11,12,38] and continuous modes of operation. However, it should
be noted that the interpretation and controllability of this value differ substantially between the
two modes. For a continuous RSM, flowrate is an externally set and easily measured parameter.
Flowrate, and consequently NQ, can be adjusted by varying what is referred to as the system curve in
pump design; the total pressure loss of the system the mixer is connected to. In practice, NQ can be
decreased by using a valve downstream of the mixer or increased by adding a separate feed pump
placed in series with the mixer.

When the mixer is operated in batch mode, however, NQ is a constant that depends on
the geometry of the mixing head [8,9,12,17,38], and to some degree on the tank geometry.
The NQ parameter is important for batch RSMs since it determines how fast the liquid is mixed.
More specifically the expectation value for the time a fluid element spends in the tank between two
passages of the rotor-stator head is [3,19,29]:

τ =
VT
Q

=
VT

NQND3 , (6)

where VT is the tank liquid volume.
Another difference between the two modes of operation is that Q (and consequently NQ) is

difficult to measure for batch RSMs; it requires a non-intrusive experimental technique for measuring
fluid velocities inside of and just outside of the stator slots, such as laser Doppler anemometry
(LDA) [11,12,38] or particle image velocimetry (PIV) [17]. Alternatively, it can be determined by a CFD
model that has been validated by one of the above-mentioned experimental techniques [17].

Table 2 compiles values of NQ for a number of different batch RSMs and compares them to the
NQ span resulting from operating some different continuous mode RSMs under technically relevant
flowrates [3,16,27,34,39]. As seen in Table 2, flow numbers are between 0.1 and 0.3 for batch RSMs.
Systematic investigations are scarce, but based on a recent PIV investigation, it has been suggested
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that NQ decreases with increasing stator slot width. This phenomenon has been linked to the increase
in backflow obtained when increasing the slot width [9].

Table 2. Flow numbers (NQ) for a number of batch and continuous mode RSMs.

RSM
Rotor Speed, U (m/s) NQ (-) Method * Ref.

Rotor Stator Manufacturer D (m)

Batch Mode of Operation

Blade Rectangular slots Tetra Pak 0.20 3–14 0.11 PIV [8]
Blade Rectangular slots Tetra Pak 0.20 3–14 0.11–0.15 PIV [9]
Blade Circular holes Silverson 0.0028 3–5 0.22 LDA [12,38]
Blade Rectangular slots Silverson 0.0028 6 0.18 CFD [17]
Blade Square holes Silverson 0.0028 6 0.26 CFD [17]

Inline Mode of Operation

Blade Circular holes Tetra Pak 0.20 20 0.02–0.06 - [3]
Blade Circular holes Silverson 0.040 6–22 0.0003–0.037 - [39]
Blade Circular holes Silverson 0.022 5–12 0.0003–0.0095 - [39]
Blade Circular holes Silverson 0.0038 6–10 0.002–0.04 - [16]
Blade Circular holes Silverson 0.12 13–19 0.0005–0.08 - [34]
Teeth Teeth Ystral 0.12 13–19 0.0005–0.08 - [34]
Teeth Teeth Fluko 0.060 5–10 <0.05 - [27]
Blade Circular holes Fluko 0.060 5–10 <0.05 - [27]

* Method used for obtaining the flowrate through the stator slots in batch mode of operation: PIV (particle image
velocimetry), LDA (laser Doppler anemometry) and CFD (computational fluid dynamics). (For continuous mode of
operation, the flowrate is an externally measureable parameter).

For continuous RSMs, NQ is substantially lower (NQ < 0.1); it is not uncommon that continuous
mode RSMs are operated at a flow number one or several decades below that of batch RSMs.
This implies that the flowrates through the mixer are substantially lower for continuous mixers
compared to those through batch mixers. Using the same rotor-stator head and operating it at
the same rotor speed will therefore result in much lower radial velocities in the rotor-stator region.
This difference can also be explained using a centrifugal pump analogy. The flowrate is determined by
the properties of the pump (what in pump-theory is referred to as a pump curve) and the properties
of the system (the system curve) [16]. Since tanks used with batch RSMs provide a much lower flow
resistance than the pipes used for continuous RSMs, the flowrate becomes substantially higher.

5. Pumping and Turbulent Dissipation Efficiency

RSMs are designed to deliver a narrow region of high intensity shear and/or turbulence in order to
achieve efficient mixing and emulsification. Under turbulent conditions, this corresponds to delivering
a high local energy density or dissipation rate of turbulent kinetic energy (TKE) [13,14,16,40–42].
When comparing batch and continuous mode RSMs, one should therefore keep in mind that the
proportion of the supplied energy which can be translated into intense turbulence differs between the
two modes of operation.

5.1. Batch RSM

For a batch RSM run under turbulent conditions, all of the shaft energy (except the losses, ΠL)
must ultimately be dissipated as heat. This implies that the loss-free shaft power (P’shaft) equals the
total dissipated power (Pdiss):

P′shaft = Pshaft − ΠL = Pdiss. (7)

Not all of this energy is available for mixing or emulsification since these phenomena occur in a
narrow region in or around the rotor-stator head [13,40]. The energy that is dissipated outside of this
high-intensity region will be an additional loss-term, seen from the point of view of the efficiency of
converting energy into efficient mixing. Estimations of the local dissipation rates of TKE in a batch
RSM have suggested that approximately 80% of the total dissipation occurs in the high intensity
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region (independent of rotor speed) for a one-row blade design [13]. This value is also close to the one
reported from estimations from CFD simulations [12,17] for a similar geometry.

Assuming that the losses in bearings and those due to vibrations are negligible (ΠL/Pshaft << 1),
the energy available for dispersion or mixing in a batch RSM, can be estimated directly by the
power number:

Pdiss = 0.8 · NPρN3D5. (8)

Since the pump number is relatively easy to determine [33] for a given batch RSM, it is also
relatively easy to estimate how much energy is available for turbulent mixing and/or emulsification in
a given batch design.

5.2. Continuous Mode RSMs

It is considerably more complicated to calculate how much energy is available for generating
turbulence when running an RSM in a continuous mode of operation. In this case, energy provided by
the shaft can take two routes: it can either be converted to turbulent fluctuations (and subsequently
dissipated as heat), Pdiss, or it can be used for pumping, Ppump. In the latter case, energy is transferred
to increase the average velocity or the static pressure of the fluid, often referred to as the “head” across
the RSM [35]. These effects are summarized via:

P′shaft = Pshaft − ΠL = Pdiss + Ppump <=> Pdiss = P′shaft − Ppump. (9)

Reformulated using Equation (3):

Pdiss = Πrot + Πflow − Ppump. (10)

Note the difference between the Π-terms and the P-terms in Equations (9) and (10). Πflow and
Πrot are the terms used in correlations to model power draw (Equation (3)), whereas Pdiss and Ppump

are the power associated with the two underlying mechanisms of turbulent dissipation and pumping.
As seen below, experimental investigations reveal that the terms in the power draw correlations do not
translate directly into terms in the energy balance (e.g., Πflow �= Pflow). Again, further insight on the
continuous RSM can be gained by comparing it to a centrifugal pump, where the pumping power is
proportional to the flow-term in Equation (3) (Πflow) and a linear function of the flow number [35,43]:

Ppump = Πflow · (c1 + c2NQ), (11)

where c1 and c2 are constants that depend on the design of the centrifugal pump. A similar relation has
been shown to hold true for several mixer designs [35]. Figure 5A shows the linear fit of the right-hand
side parenthesis in Equation (11), used to experimentally determined the pumping powers for five
continuous RSMs using data from several different investigators, RSM manufacturers, and rotor-stator
head designs [27,34,36]. See Table 1 for values and design specifications.

Combining Equations (10) and (11) allows one to determine how much of the energy fed into the
system is used for pumping (ηpump) and how much is dissipated as turbulence (ηturb):

ηpump =
Ppump

P′shaft
=

(
c1 + c2NQ

)
NQ

NP0/NP1 + NQ
, (12a)

ηturb =
Pdiss

P′shaft
=

NP0/NP1 − (1 − c1)NQ − c2N2
Q

NP0/NP1 + NQ
. (12b)

Note that the efficiency is given by four empirically determined constants: the power draw
constants (NP0, NP1) and the pumping constants (c1 and c2). These four constants are relatively easy to
determine experimentally by measuring the power draw and the increase in head across an RSM for a
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range of different rotor-speeds and flowrates (see Reference [33] for the power draw methodology and
Reference [35] for the pump-constant methodology).

Figure 5B shows the pumping efficiencies for the five different continuous mode RSMs from
Table 1. The pumping efficiency of a centrifugal pump (LKH50, Alfa Laval, Lund, Sweden) has also
been inserted as a comparison. Just as for the centrifugal pump, the percentage of energy translated
into pumping in a continuous mode RSM (ηpump) varies with flowrate (NQ). For centrifugal pumps,
the flowrate with the maximal pumping efficiency, often referred to as the best efficiency point (BEP) is
always the desired operating point. However, for the continuous RSM, determining which flowrate
is optimal will be considerably more complicated. The primary objective of the RSM is to transfer
as much energy as possible into turbulence. This would suggest that a minimal ηpump (and hence a
maximal ηturb) would be desired. However, continuous RSMs are often also designed to contribute to
pumping the fluid; they are often used without external feed pumps. Hence, for most application a
reasonable balance between pumping and turbulence efficiency is desired.

Note that the teeth-designs generally give rise to lower pumping efficiencies (see Table 1). One of
the RSMs in Table 1 even gives a negative efficiency at high flowrates, implying that it is able to
convert some of the power supplied from an external feed pump into turbulence. This suggest
that teeth-designs are more desirable for applications where RSMs are not intended to contribute to
pumping (i.e., when an external feed pump is used) and that blade-designs are more desirable for
processes without an external pump.

6. Implications for Emulsification

From an industrial perspective, the most important question with regards transitioning from
batch to continuous RSM is how to operate a continuous mode RSM in a way such that it results in
the same product quality as batch RSM. In an emulsification context, this corresponds to the question
of how to predict the resulting drop diameters in batch and continuous operation RSMs, and to the
question of whether there are mechanistic differences between the two products.

Turbulent drop breakup is often explained in terms of Kolmogorov–Hinze theory [44–48],
which suggests scaling relations between the largest drop diameter that can survive a given turbulent
field and the dissipation rate of TKE of that field. Depending on the size of this limiting drop in relation
to the size of the smallest turbulent structures (the Kolmogorov length-scale), different explicit scaling
laws have been suggested, see References [7,41,47] for comprehensive reviews and some different
explicit formulations.

However, as shown for impeller mixers [49] and high-pressure homogenizers [50], in order for this
approach to be satisfactory, the dissipation rate of turbulent kinetic energy should be the local value in
the most intense region (where breakup takes place). However, since the local dissipation rate of TKE
is highly challenging to measure [49], practical application of Kolmogorov–Hinze theory to RSMs are
often based on externally measurable quantities such as rotor speed [31,39,51], the total dissipation
power (Pdiss) [52,53], and the globally defined Reynolds and Weber numbers [41]. The global Weber
number is defined as:

We =
ρN2D3

σ
, (13)

where σ is the interfacial tension of the drop. The Kolmogorov–Hinze theory is very general, and not
specific to design or mode of operation. However, there is some disagreement in the scientific literature
when it comes to the question of if there are mechanistic differences between emulsification in the
two modes of operation, and hence, if the same scaling law expressions can be used for both modes
of operation.

Experimental studies have reported some systematic differences. Emulsions passed n times
through a batch RSM do not always show the same drop size as an emulsion processed for a time
t = nτ, despite the fact that this would result in the same the number of passages though the RSM,
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at least in terms of expectation number [2,3]. Three different standpoints discussing this discrepancy
and the emulsification implications can be found in the RSM literature.

6.1. Flowrate and Its Influence on Turbulence

As previously mentioned, there is a decisive difference in flowrate (and thus in NQ) between
RSMs operated in batch and continuous mode; batch mode RSMs show approximately ten times higher
flowrates (Table 2). The difference between the two systems can be investigated by understanding
the effect of flowrate on emulsification. Hall et al. [39] undertook a large systematic investigation of
emulsification in continuous mode RSMs and suggested that the flowrate-based Reynold number:

ReQ =
ρQd
Atotμ

, (14)

where d is the slot diameter and Atot is the total flow-through area of the stator, has a small but
significant effect on the resulting drop size (when tip-speed is kept constant). When keeping the
geometry constant, it can be shown that ReQ is proportional to the product between flow number and
Reynolds number [54]:

ReQ ∝ NQRe. (15)

This would suggest that NQRe would be an appropriate scaling law when comparing
emulsification results from batch to inline mode of operation. However, it should be kept in mind
that the variations in flowrate seen in this type of experiment are much smaller than that between
continuous and batch RSMs.

6.2. Radial Flow and Dissiaption Profile Scaling

RSM mixing and emulsification ultimately depends on the hydrodynamic conditions created in
the rotor-stator region. Thus, it is interesting to investigate if there are any differences to the flow fields
between batch and continuous modes of operation for the same rotor speed and rotor-stator head
geometry. Unfortunately, no such experimental studies have been reported. However, a recent CFD
investigation might be used to shed some light on the situation [54]. The study [54] reports flow fields
obtained with CFD for a continuous mode RSM run at different flowrates and rotor speeds. The lower
flowrates correspond to those generally obtained for continuous mode of operation (NQ = 0.007) and
the higher to those obtained in batch mode of operation (NQ = 0.082). The radial velocity profiles
in the stator holes were compared and it was found that neither ReQ nor NQReQ were appropriate
scaling laws, in contrast to what was suggested in Section 6.1. Instead, it was found that both
radial and tangential velocities (appropriately scaled with rotor speed) were determined by the flow
number [54]. This has an important implication on the difference between the two modes of operation.
Since transitioning from batch RSM to a continuous mode RSM decreases NQ, the velocity profile in
the rotor-stator head will undergo a substantial change. This change is not merely a scaling due to the
reduction in flowrate but a shift into a fundamentally different turbulent flow [54]. Most notably the
position of the highest local dissipation rate of TKE shifts from the turbulent jet formed downstream
of the slot in the batch RSM flow number, to the rotor-stator clearance for the continuous RSM flow
numbers [54]. This effect is illustrated in Figure 6.
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Figure 6. CFD-estimated dissipation rates of turbulent kinetic energy TKE in the stator slot region
for the same rotor-stator head run at a flow number corresponding to an RSM run under continuous
mode of operation (A) and run under batch mode of operation (B). Adapted from data obtained in
Reference [54].

A shift in the position of highest local dissipation rate of TKE suggests a mechanistic difference
between the two modes of operation. As seen in Figure 6, the dissipation volume is smaller for the
low-NQ (continuous mode) case than in the high-NQ (batch mode) case. This also suggests that the
average dissipation rate in the two regions will scale with different parameters: with the clearance
length-scale for continuous RSMs and with the slot diameter for the batch RSM. However, this has not
yet been experimentally verified.

Due to the lack of experimentally measured flow fields, this difference in flow pattern between
modes of operation has not yet been experimentally verified, but a validation study has shown that
the CFD model employed is able to capture the position of high intensity local dissipation at least for
the batch RSM [55].

Further insight can be obtained by single drop breakup visualizations. However, only one such
study on RSMs has yet been reported [42]. This study was conducted for a batch RSM (NQ = 0.11) [8]
and showed that drops are deformed and subsequently broken up just downstream of the stator
hole [42], as suggested by the CFD simulations for the NQ-values found in batch RSM (i.e., in Figure 6).
However, no corresponding investigations on continuous RSMs (or low NQ-systems) have yet
been reported.

6.3. A Purely Stochastic Effect

An altogether different, but highly promising approach to describe the previously reported
differences between batch and continuous modes of operation on emulsification results has recently
been reported. Carrillo De Hert and Rodgers [19] suggest that the differences only apply if the wrong
scaling is employed when comparing data from different modes of operation.
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In the first step of their study, they conclude that the mode drop diameter, d0, resulting from
processing an emulsion n times through their continuous mode RSM at flowrate Q and rotor speed N
is given by [19]:

d0 = CQ−1/5N−6/5n−1/5. (16)

Note the −6/5 exponent, that corresponds to the scaling expected from Kolmogorov–Hinze
breakup in the turbulent viscous regime [7,47].

The authors then continue by suggesting that the only difference between continuous and batch
modes of operation is in the stochastic effect of the rotor-stator head passage [19]. After processing an
emulsion for a time t in a batch system, the expectation number of the number of passages is:

n =
t
τ

. (17)

However, for each volume element of the emulsion, the actual number of passages is a stochastic
property following a Poisson distribution. By assuming that Equation (16) (the model for continuous
mode of operation) applies each time a volume element passes the rotor-stator head, they conclude
that the corresponding model for a batch system after being processed for a time t would be [19]:

d0 = CQ1/5N−6/5 · [exp(t/τ)− 1]−1 ·
∞

∑
n=1

1
n1/5n!

(
t
τ

)n
. (18)

Moreover, for t/τ > 2, Equation (18) converges to [19]:

d0 = CQ1/5N−6/5
(

t
τ

)−1/5
, (19)

which was found to accurately describe their data for a wide range of properties [19].
These results suggest that there is no mechanistic difference between the modes of operation

and that (at least when processing times are fairly large) emulsification results can be translated
directly using Equation (17); one continuous mode RSM passage would then correspond directly
to processing for t/τ in a batch RSM. However, this is not completely general. In a previous study
on emulsification of mayonnaise, it was concluded that this scaling was inadequate to describe the
experimental differences [3]. The reason behind this discrepancy is still not understood, but it is
hypothesized that it is related to the higher volume fraction of oil in Reference [3] which increases the
complexity of the process.

In summary, there is as of yet no consensus in literature on which (if any) of these theories
(Sections 6.1–6.3) best describes the differences between emulsification efficiency in batch and
continuous modes of operation. Some of the confusion can be explained by postulating that the
underlying differences between batch and continuous modes—i.e., the higher flowrate in batch
systems—are the different hydrodynamic effects of the rotor-stator head in RSMs with different
designs. It might be that the ReQ-scaling is appropriate for the design investigated by Hall et al. [39]
(a pilot scale Silverson dual blade design), that the NQ-scaling is appropriate for the design investigated
by Håkansson et al. [54] (a production scale Tetra Pak blade design), and that there is no mechanistic
difference for the design investigated by Carrillo De Hert and Rodgers [19] (a laboratory scale Silverson
blade design). However, it is not clear why these different behaviors would occur, and how they could
be linked to the design differences. Further investigations are needed in order to draw any definite
conclusions on this matter.

7. Suggestion for Further Research

During the last couple of years, significant advances have been made into improving the
fundamental understanding of RSMs in general and more specifically on the difference between
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batch and continuous modes of operation. However, there are still a number of issues that need further
investigation, especially when it comes to the difference between continuous and batch modes of
operation:

• Although general models for the scaling of power draw with operating parameters have now
been obtained for both modes of operation (Equations (1) and (3)), there is still a lack of systematic
investigation into how the model parameters (NP, NP0, NP1) depend on the design parameters
(rotor, stator and tank dimensions). A better understanding of this would be helpful in the
mechanical design of both batch and continuous mode RSMs.

• As seen throughout this review, the continuous mode RSM could be seen as something between a
batch RSM and a centrifugal pump. Further investigations on the relative pumping and turbulence
producing properties of different mixer designs (i.e., determination of pumping constants, c1 and
c2) would be helpful for choosing the right rotor-stator head for a given application.

• A large number of experimental studies correlating drop sizes to operating parameters have been
published, but it has been difficult to use these studies to obtain a fundamental understanding
of the breakup process or the underlying hydrodynamics of RSMs. The single drop breakup
visualizations reported by Ashar et al. [42] shows a promising alternative approach where
the breakup probabilities are measured directly and then linked to the local hydrodynamic
conditions. Expanding these types of investigations into other RSM geometries and repeating it
for a continuous mode RSM is needed to further our fundamental understanding.

• As seen in Section 6, there is some remaining uncertainty whether there exist mechanistic
differences between breakup when using the same rotor-stator head in the batch or continuous
mode of operation. Comparing the scaling suggested by Carrillo De Hert and Rodgers [19] to
data from more RSM designs could be one way towards reaching a more definite conclusion;
single drop breakup visualization in a continuous mode RSM at varying NQ-values would be
another interesting way forward.

8. Summary and Conclusions

The objective of this contribution was to review the current scientific based understanding of
the differences between RSMs in batch or continuous mode of operation. Section 3 showed that
correlations for shaft power draw are available for both modes of operation, allowing for accurate
prediction of process economy in terms of energy expenditure. In Section 4, it was seen that the
flow number (NQ), and consequently the flow through the stator screen, Q, is considerably lower for
continuous mode of operation (compared to batch mode) when using the same rotor-stator head and
operating it at the same rotor speed. Section 5 showed that, in general, a much higher proportion
of the energy fed to the shaft is converted into turbulence in the high-intensity region where mixing
and emulsification takes place for a batch RSM than for an RSM operated in continuous mode. For a
continuous mode RSM, more of the energy is used for pumping (i.e., increasing the head of the
flow). Section 6 discussed what this implies when comparing emulsification efficiencies between the
two modes of operation. Several different theories have been suggested, but there is of yet no clear
consensus in the literature for how continuous mode RSMs should be operated in order to give the
same emulsion as in a batch RSM.
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Abstract: This article describes the development of a reaction database with the objective to collect
data for multiphase reactions involved in small molecule pharmaceutical processes with a search
engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role
of organic solvents in reaction performance improvement. The focus of this reaction database is to
provide a data rich environment with process information available to assist during the early stage
synthesis of pharmaceutical products. The database is structured in terms of reaction classification of
reaction types; compounds participating in the reaction; use of organic solvents and their function;
information for single step and multistep reactions; target products; reaction conditions and reaction
data. Information for reactor scale-up together with information for the separation and other
relevant information for each reaction and reference are also available in the database. Additionally,
the retrieved information obtained from the database can be evaluated in terms of sustainability using
well-known “green” metrics published in the scientific literature. The application of the database is
illustrated through the synthesis of ibuprofen, for which data on different reaction pathways have
been retrieved from the database and compared using “green” chemistry metrics.

Keywords: reaction database; pharmaceutical process engineering; organic solvents; “green”
metrics analysis

1. Introduction

Organic chemistry has an important role to play in the development of synthetic routes for new
drugs during early stage process development. To pursue synthesis at a high level, access to chemical
information is needed, which can be provided by using knowledge databases, experience, literature
review and/or computer-aided tools [1,2]. The retrieved data is used for similarity search, reaction data
retrieval, synthesis route planning, drug discovery-development and prediction of physicochemical
properties [3]. The development of methods, algorithms and tools to systematize data collection,
retrieval of chemical information-data, and to assist the solution approach to many problems related to
the synthesis of molecules in organic chemistry has been developed since the 1970s. The methods and
tools for reaction synthesis are based on retrieving chemical information organized in chemical reaction
databases where data for individual reactions and structural information for different components
involved in the reaction are stored.

Computer-aided tools have been developed to solve problems related to “synthesis” and
“retrosynthesis.” The focus of these tools is to generate a number of possible chemical synthesis
paths for possible precursors (synthesis tree) to achieve the synthesis of a given target compound.
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In retrosynthesis, the process of generating the possible pathways starts from the given target
compound and, by going backwards, the reactions necessary to synthesize the target compound
are identified. In addition, the reactions to produce the reactants of identified reactions are generated.
The process is repeated until commercially available reactants are identified. These approaches are
based on heuristics and logical rules and all of them rely on knowledge databases [4–8]. Recently,
computer-aided tools that are based on algorithmic approaches have been developed, such as The Route
Designer [9], which automatically extracts rules that capture the essence of the reactions in the chemical
reaction database [10]. The tool ICSYNTH utilizes a graph-based approach with available data from
the literature to generate the reaction rules [9]. Many other computer-aided methods and tools for
reaction synthesis have already been developed with different characteristics. For example, tools to
perform combinatorial searches, to screen generated alternatives based on information retrieved from
knowledge databases and to perform extensive reaction assessment calculations [11–15].

Searching for reactions and retrieving the relevant information is a complex problem because it
involves searching for chemical structures (complete or partial), transformation information (reaction
centers), description of the reactions (reaction type, general comments) and numerical data such as
experimental reaction data (including conversion, yield, selectivity, reaction conditions etc.). Reaction
databases that help to organize, store and retrieve data continue to be developed (Houben-Weyl [16]
and Theillheimer [17]), but more recently, the field of reaction databases has evolved further and
databases (see Table 1) such as CASREACT [18], ChemReact [17] and REAXYS (previously Beilstein
plus Reactions) [19] have been established, while reaction databases such as ChemInform [20] have
become well-known.

1.1. General Databases

In these types of database, the information included is focused on organic reactions and synthetic
methods in general. The CASREACT reaction database [18] was started in 1840 and since then
more than 74.9 million reactions have been added as it is updated daily. The information is related
to organic synthesis including organometallics, total synthesis of natural products and biocatalytic
(biotransformation) reactions. This database can be used to provide information on different ways to
produce the same product (single step or multi-step reactions), used for applications of a particular
catalyst and various ways to carry out specific functional group transformations. The REAXYS reaction
database [19]—based on data from Elsevier’s industry-leading chemistry databases (CrossFire Beilstein,
CrossFire Gmelin and Patent Chemistry Database)—includes data for more than 40.7 million reactions,
dating from 1771 to the present. It includes a large number of compounds (organic, inorganic and
organometallic) and experimental reaction details (yield, solvents etc.). It is searchable for reactions,
substances, formulas, and data such as physico-chemical properties data, spectra. Additionally,
the REAXYS database can be used for synthesis route planning. The Current Chemical Reaction (CCR)
database [21] includes over one million organic reactions together with reaction diagrams, critical
conditions and bibliographic data. The Reference library of synthetic methodology (RefLib) covers
reaction data from 1946 to 1992. The database contains information from different sources and the
latest version has a comprehensive heterocyclic chemistry database [17].

The ChemReact reaction database [17] is a closed database that covers the period from 1974 to
1998 and includes over 3.5 million reactions. It is searchable by reaction type and provides information
for the reaction transformation classified by type of reaction and relevant data (bibliographic, spectra
and yield). Chemogenesis is a web-book [22], dealing with chemical reactions and chemical reactivity.
It examines the rich science between the periodic table and the established disciplines of inorganic
and organic chemistry. The Organic Synthesis database [23], includes more than 6000 organic
reactions and is searchable by the reaction type or the structure of the compounds and it provides
information for single and multi-step organic reaction together with reaction components, conditions
and description. The reaction database-Chemical Synthesis [24] enables the user to find reactions
related to reagents or target products and it also provides information with the necessary details of the
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reagents. The Synthetic Pages reaction database [25], covers 292 reactions and provides information for
the optimized reaction procedure. It is searchable by reaction type and/or the structure of the reagent
or the target product. The Chemical Thesaurus reaction database [26] contains 4000 reactions classified
as organic, inorganic, organometallic, transition metal and biochemical.

The WebReaction reaction database [27] covers over 400,000 reactions; it can be searched by defining
the structure of the reactant and the product and it performs search based on the reaction similarity
with focus on reaction center. The Science of Synthesis database (previously Houben-Weyl) [16]
covers information for organic and organometallic reactions with detailed experimental procedures,
methodology evaluation and discussion of the field. Finally, the SPRESI reaction database [28] contains
4.6 million reactions and it enables searching of structures, references and reactions.

The Synthetic Reaction Updated (previously Methods in Organic Synthesis) lists many organic
reactions (in graphical form) and is searchable by reaction type [29].

1.2. Specialized Databases

These databases are specialized in one class of reaction type. The ChemInform reaction
database [20] includes more than 2 million reactions, including organic, enzymatic and microbial
reactions. The available data can be used for the application of new reagents and also for catalysts as
with the preparation of natural and pharmaceutical products. Other aspects that are covered by the
ChemInform database include synthetic procedures, enantio-and diasteroselective syntheses and new
protection/de-protection procedures. The Biotage Pathfinder reaction database [30] is specialized in
the verified methods of microwave synthesis.

The e-EROS (Encyclopedia of Reagents for Organic Synthesis) [31] focuses on the reagents
and catalysts used in organic chemistry for synthesis. The FlowReact Search [32] covers a range of
over 2000 flow chemistry reactions adapted from publications on pharmaceutical, fine chemical
and biotech companies. The Protecting Groups reaction database [33] provides information for
protection, de-protection and trans-protection methods, stability, liability, and reaction conditions,
and includes up-to-date information. Recently, a reaction library focused on generic reactions
(88 reactions, ~20,000 reactants) with high reliability and reasonable yield has been developed by
Masek et al. [34]. The objective of this library is to provide information on synthetically feasible design
ideas for de novo drug design.

Representing chemical reactions in a structured way is a complex task. The reaction information
contained in a database needs to fulfil several criteria and needs to be categorized with respect to their
searchable reaction information. The criteria that a reaction database should fulfill are [17]:

(i) Each reaction is an individual record in the database (detailed and graphical). The reaction
must be able to be retrieved from the database as a detailed record (reagents, products, stoichiometry
etc.). It can also be extracted as a graphical representation where the reaction scheme is shown.
In many databases, the reaction is represented in a graphical form.

(ii) Structural information for target product as well as substrates.

(iii) Reaction centers. The reaction center of a reaction is the collection of atoms and bonds that are
changed during the reaction [3].

(iv) Reaction components must be searchable. Information for the components involved in the
reaction such as reagent, catalysts, solvents etc.

(v) Multistep reactions. In the case of multistep reactions, all reactions (individual and whole
pathway) must be searchable.

(vi) Reaction conditions. Conditions such as pH, temperature, pressure etc. should be searchable by
exact and a suitable range of values.

(vii) Reaction classification. The type of reaction (i.e., esterification) should be searchable.
(viii) Post-processing of the database contents. Export of the retrieved reaction data in other tools

(i.e., MS Excel).
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Many reaction databases have been developed over time—some of them have a large number of
reactions available and others a smaller number, and some of the databases cover the whole range of
the organic and/or inorganic reactions. There are also reaction databases that cover more specialized
reactions such as solid reactions, flow reactions etc. It can also be seen that most of the databases cover
the most important criteria as defined by Zass [17], such as the need for individual reaction records
(criterion i, in Table 1). In Table 1, existing reaction databases are listed and have been classified based
on the different presented criteria. The numbers of reactions, as well as online sources, have also
been listed.

Table 1. Database review. All the databases have been summarized with respect to the number of
reactions and the focus of the database.

Database Number of Reaction Criteria [17] Reference

CASREACT >74.9 million (1840–present) i, iv, v, vi [18]
REAXYS (previously CrossFire Beilstein) 40.7 million (1771–present) i, ii, iv, vii [19]

Theilheimer >72200 (1946–1980) i, v, vi, vii [35]

ChemInform RX >2 million
(since 1990–present) i, iv, vi [20]

Current chemical reactions 1,083,758 (1840–present) i, vi [21]
Methods in organic synthesis 33,000 (1999–2014) i, vii [29]

Reference library of synthetic methodology 209.800 (1946–2001) i [17]

ChemReact 3.5 million reactions
(1974–1998) i, vii [17]

Chemogenesis - ii, iii [22]
Organic synthesis >6000 (1921–present) i, ii, v, vi, vii [23]

Reaction Database-Chemical Synthesis - i, ii [24]
Synthetic Pages 292 i, ii, vi, vii [25]

The chemical thesaurus 4000 i, ii [26]
WebReactions >400,000 i, ii, iii [27]

Biotage Pathfinder (reaction assisted with microwave technology) >1000 i, vi, vii, viii [30]
e-EROS Encyclopedia of Reagents for Organic Synthesis >70,000 (4000 *) i, ii [31]

FlowReact Search >2000 i (reaction in flow) [32]
Protecting groups - i [33]

Science of Synthesis (previously Houben-Weyl) 240,000 (early 1800s–present) i, ii, iii [16]
SPRESI 4.6 million i, ii, iii [28]

The main objective of this article is to assist pharmaceutical process development in the early
stages of the synthesis route selection and development, by providing enhanced process understanding.
To achieve this task, a data-rich environment where knowledge can be collected, stored and retrieved
is a requirement. A database that covers reactions taking place in pharmaceutical processes covering
information connected to the criteria listed by Zass [17] and additionally covering process information
has been developed to create an environment where process knowledge is available. The connection
of individual reactions to criteria like scalability, cost, expected yield, and reaction steps, ease of
separation, safety and to parameters such as reaction conditions, experimental data and models,
they can improve the process understanding and the decision making process during the synthesis
route selection process. In addition to constraints of high product quality and process economics,
a pharmaceutical process needs to fulfill the criteria for environmental issues. In particular, for
pharmaceutical processes, the environmental sustainability evaluation must be performed during the
early stage of process development [36] before the approval of the regulatory bodies as the re-approval
of the process can be a very expensive process [37]. Constable et al. [38] has reviewed “green” metrics
proposed in literature and these metrics are used to increase the awareness of generated waste sources
from the reaction and to identify opportunities for further improvement. The reviewed “green” metrics
are listed in Table 2, where for each metric an explanation and the equation to quantify the specific
metric are given.
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This information, in combination with other knowledge databases and computer-aided synthesis
design (CASD) tools developed earlier, provides an opportunity for an integrated approach to the
solution of problems related to synthesis route selection and improvement, taking into account
important process considerations such as the development time to establish the synthesis route,
product quality, cost of manufacture that are often linked to “green” chemistry metrics and the final
approval of regulatory agencies [1]. This process related information is not available in the reaction
databases listed in Table 1, but is needed for plant-wide design, process-operation simulation and
optimization in studies related to sustainability and the economics of processes producing active
pharmaceutical ingredients [39–41].

In this article, the developed reaction database is presented with a specific focus on reactions
(including multiple reactions) taking place in pharmaceutical processes within the pharmaceutical
industry and connecting them with process information. The reactions in this database have been
categorized according to the reaction type, the target product to be produced (when single-step or
multistep reactions are considered), the reaction product and the effect of the solvent use on the
reacting system. Reaction conditions (temperature, pressure etc.), reaction components (reagents,
catalysts etc.), reaction data (conversion, selectivity, etc.), scaling information and finally batch or
continuous processing is included in the developed database. For each reaction entry, a description
of the process exists and the references are provided. A more detailed description of the database
development and structure follows later in this article.

This reaction type database, more specifically, aims to:

1. Identify reactions that are used to produce different types of products (Active Pharmaceutical
Ingredients (API), Intermediates).

2. Identify reactions to be utilized, for a given compound availability.
3. Investigate the function of different type of solvents in single/multiphase reactive systems.
4. Facilitate the choice of the reaction conditions.
5. Evaluate the reaction pathway in terms of yield, cost and sustainability metrics.
6. Facilitate the reactor design from available experimental data and kinetic models.

In addition, with the process information that is included in the database and has been mentioned
in points 1–6 above, the database fulfills most of the criteria defined by Zass [17] (see Table 3). Table 3
provides a comparison of the available database with respect to the criteria given by Zass [17]. It can
be noted that most of the available databases provide information for individual reactions (criterion i)
and molecular structure information on reactants and products (criterion ii). However, the remaining
criteria are covered only in some databases (see Table 3).
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2. Reaction Database

The data required to populate a reaction database to satisfy the abovementioned objectives
has been acquired from numerous published articles and patents. The collected knowledge from
these sources has been structured in the database according to a developed ontology (knowledge
representation) and stored for easy data retrieval and re-use in different likely applications.
The database consists of classes, sub-classes, instances and objects. A class is a representation for
a conceptual grouping of similar terms. Classes are the focus of most ontology. A class describes
concepts in the domain. A class can have subclasses that represent concepts that are more specific
than a super class [42]. A simplified flow-diagram, which serves as a guide for the reaction database
in terms of knowledge representation system, classes and instances of data and information on the
available data, and where information can be found in the article, is shown in Figure 1.

Figure 1. Simplified flow-diagram highlighting the contents of the reaction database. Figures 2 and 3
provide details of the knowledge representation system, Table 4 provides information on the classification
of the data and Tables 5–10 provide information on the available data.

2.1. Knowledge Representation

For the development of the reaction database, classes have been used to represent the main
knowledge categories such as the reaction type, the reaction, phases involved, how the phases are
created, solvent use, solvent function, type of solvent, reaction conditions, available data and finally
operation mode (listed in Table 4 and shown in Figure 2). The first knowledge class consists of
different reaction types that are commonly found in pharmaceutical processes (i.e., hydrogenation).
The set of these reaction types are called the instances of the class. The second class in the knowledge
representation system (or data) is the reaction, which is divided in four sub-classes; the reactants,
reaction products, and target product and reaction information (see Figure 3). The instances of the
three first sub-classes of the second class are classified in terms of name of the compound, type of the
compound and molecular structure while the fourth class summarizes information for the specific
reaction. This type of information is important to identify the structural changes of the compounds
during the reaction. The fourth class of data consists of instances describing the phases involved in
the specific reaction. It is important to note that this class connects the reaction information with
the reaction performance class, which will be described later, and it has an important role in the
database since in this way, the advantages of using a multiphase or a single-phase system can be
identified. The next two classes of the database consist of instances describing the solvent function,
in case an organic solvent has been used in the reactive system, for example, the solvent function is
“creates a second phase and removes the reaction product,” and the type and name of the used organic
solvent. The last three classes of the data consist of instances describing the reaction performance
under certain conditions. The reaction conditions class consists of instances, which have to do with the
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reaction variables such as reaction temperature, stoichiometric amount, catalyst (type and amount),
pH, pressure and the need to use acid or base. The data class consists of four sub-classes, reaction
data, dynamic data, kinetic model, and scale. The instances of the reaction data sub-classes are
information related to reaction time (or residence time), conversion, selectivity, reaction yield and
overall process yield (usually after isolation and purification). The instances of the dynamic data are
sets of experimental data that can be used to fit or to develop a kinetic model. The next sub-class
describes the availability of kinetic models that can be used either directly, or after fitting to the
experimental data for reaction optimization studies. The last sub-class of the data is a super class that
provides important information on the scale the reaction has been performed. Finally, the last class of
the data is the operation mode, instances of this class can be different operational modes such as batch
reaction or flow reaction.

2.2. Database Structure

Table 4 lists the classes of the data in the first column, the second column relates the classes to the
instances that an individual class contains and in the third column, the instances are listed for different
classes. The structure of the database is visually shown in Figure 2.

Table 4. Main classes of the reaction type database and the instances.

Main Classes Relation with Instances Instances

Reaction Type, T T = [T1, T2, ..., Ti, . . . , Tn] Ti: reaction type in the knowledge base
(i.e., acylation etc.)

Reaction, R R = [R1, R2, ..., Ri, . . . , Rn]

Ri: reaction of the ith reaction type; for each
reaction information about the reactants and

reaction products are provided as well as
information for the target product and process
(for example: 1st step for production of an API)

Phases involved, P P = [P1, P2, ..., Pi, . . . , Pn] Pi: phase of the ith reaction
(i.e., organic-aqueous, organic-gas etc.)

How phases are created, C C = [C1, C2, ..., Ci, . . . , Cn] Ci: (i.e., solvent etc.)

Solvent function, F F = [F1, F2, ..., Fi, . . . , Fn] Fi: (i.e., phase creation, carrier etc.)

Solvent type, ST ST = [ST1, ST2, ..., STi, . . . , STn] STi: (i.e., ether, alcohol etc.)

Solvent, S S = [S1, S2, ..., Si, . . . , Sn] Si: Solvents in ith reaction

Reaction condition, RC RC = [RC1, RC2, ..., RCi, . . . , RCn] RCi (i.e., Temperature, composition, cat, pH etc.)

Data, D D = [D1, D2, ..., Di, . . . , Dn]
Di (reaction data: conversion, selectivity, reaction
time, and dynamic data: concentration vs. time,

scale information and kinetic models etc.)

Operation Mode, OP OP = [OP1, OP2, ..., OPi, . . . , OPn] OPi: batch, continuous, fed batch
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In Figure 3, the subclasses and the values of each instance in the “Reaction” class are illustrated.
For example, each reaction has reactants—as well as reaction products—and can be used to eventually
produce a target product (in case of multi-step reactions), each of the sub-classes take values such as
the name of the compound (N), the type of the compound (T, for example, alcohol) and the molecular
structure of the compound. The reaction info subclasses takes text values that can be used to give
useful insights for the reaction.

Reactants Reaction 
products

Target product Reaction info

Reaction

N T S N T S N T S text

Class

Sub-Classes

Instances/
individuals

N: name of the compound, T: type of the compound and S: molecular structure

Figure 3. Sub-classes and instance/individuals for the reaction class of the database.

3. Statistics of the Reaction Database

To determine the range of applications and the capability of the reaction database, the statistics of
the stored data within the database are needed. The statistics are given in terms of number of reactions,
reaction types, list of APIs, reactions where the use of solvent improves the reaction performance and
available kinetic models.

3.1. General Numbers

In this section, the general statistics of this database are given, for example, total number
of reactions, total number of APIs, the number of the intermediates, reactions that require solvent,
multiphase reactions, experimental data, type of reaction operation (batch or continuous, technology i.e.,
microwave technology). The general characteristics of the reaction type database are listed in Table 5.

Table 5. Summary of the information included in the database.

Category Number

Total number of reactions 285

Types of reactions 44

Number of multiphase reactions 88

Number of reaction with solvents 226

Solvent Dissolve, Phase creation, Substrate/catalyst carrier,
compound extraction

Number of APIs (with total synthesis pathway) 21

Number of building blocks (type of compounds) 19

Number of experimental data 275 (conversion, selectivity, reaction yield, conditions),
32 (dynamic data), 11 (kinetic models)

Number of production mode data 96 (in flow), 203 (in batch)

Number of application examples 14 (chemicals), 16 (Fine chemicals),
251 (pharmaceuticals)
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3.2. Reaction Types

The different reaction types included in the database are listed in Table 6, together with the number
of the reactions, the catalyst need, the phases (usually) involved and the solvent function if it used.

Table 6. Reaction types included in database, phases involved and function of the used solvent.

Reaction Type Catalyst Phases Solvent Function

1. Alkylation Yes Liquid (org.) Dissolves reactants

Liquid (org.)—Liquid (aq.) Creates second phase

2. Hydrogenation Yes Liquid (org.)—Gas Dissolves reactants

3. Epoxidation Liquid (org.)—Liquid (aq.) Creates second phase
Reactant/catalyst carrier

4. Carbonylation Yes Liquid (org.)—Liquid
(aq)—Gas

Creates phase
Carrier for catalyst

Yes Liquid (org.)—Gas Dissolves reactants

5. Hydroformulation ? Creates second phase
Catalyst carrier

6. Enzymatic reduction Yes Liquid (org.)—Liquid (aq.) Reactant carrier
Creates second phase

7. Arylation Yes Liquid (org.)—Liquid (aq.) Creates second phase

Yes Liquid (org.) Dissolves reactants

8. Oxidation Yes Liquid (org.)—Gas Dissolves reactants

9. Transamination yes Liquid (org,)—Liquid (aq.) Creates second phase
Product removal

10. Saponification No Liquid (org.) Dissolves reactants

11. Amidation Yes/No Liquid (org.)—liquid (aq.) Creates second phase
removes product

12. Amination Yes Liquid (org.) Dissolves reactants

13. Esterification Yes
Liquid (org.) Solvent free

Liquid (org.) Dissolves reactant

14. Hydrolysis Yes Liquid (org.)—liquid (aq.)
Creates second phase

removes product

Dissolves reactants

15. Aminolysis yes Liquid (org.) Dissolves reactants

16 .Condensation No Liquid (org.) Dissolves reactant

17. Deprotection No Liquid (org.) Dissolves reactant

18. Protection Yes Liquid (org.) Dissolves reactant

19. Dehydration Yes Liquid (org.)—liquid (aq.)
Catalyst carrier

Create second phase
Product removal

20. Cyclization No Liquid (org.)—liquid (aq.) Dissolves reactant
Product separation

21. Lithiation No Liquid (org.) Dissolves reactants

Note: aq.: aqueous and org.: organic.

3.3. Active Pharmaceutical Ingredients (APIs)

In Table 7, the list of the available APIs (or the final drug) in the database is given. The database
includes at least one pathway for each API listed in Table 7. In some cases, more than two completely
different published reaction pathways (for example, for Ibuprofen) exist, which are also listed in the
database. Finally, in some cases efforts have been focused on improving a certain reaction within the
reaction path that has also been included in the knowledge database.
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Table 7. List of APIs and final drugs (*) in the database, of which complete reaction pathway and the
reactions are provided in the database.

APIs

1. 6-aminopenicillanic acid 12. Tramadol
2. Zuchopenthixol 13. Artemisinin
3. 6-Hydroxybuspirone 14. Saxagliptin
4. aliskiren hemifumarate 15. Atazanavir
5. Ibuprofen 16. PDE5 inhibitor *
6. Meclinertant * 17. Axitinib
7. Rufinamide 18. Olanzapine *
8. Ciprofloxacin 19. Amitriptyline
9. Naproxen 20. Tamoxifen
10. OZ439 * (antimalarial drug candidate) 21. Vildagliptin
11. Efavirenz *

3.4. Reaction with Improved Reaction Performance When Solvent Is Used

Reaction improvements in terms of reaction time, reaction volume, yield, conversion and/or
selectivity and post-processing improvement in the separation and purification steps related to solvent
use are considered in database development. The functions of solvent and the possible process
improvements are listed below and summarized in Table 8:

a. Reaction medium.
b. Separation of the main product in order to shift the equilibrium reaction towards the product

side in order to increase the yield and/or reduce the separation steps required.
c. Separation of an inhibitory product to increase the productivity of the reaction.
d. Controlled released of substrate, it might improve the process safety in case of hazardous

compounds or increase selectivity towards the desired product.
e. Reaction volume reduction.
f. Dissolves reactants to increase the reaction rate and/or to avoid process complications when the

reaction involves compounds in solid phase at the reaction conditions.

Table 8. Solvent functions in reaction and their possible improvements.

Possible Improvements

Productivity Process safety Separation steps Waste reduction

S
o

lv
e

n
t

F
u

n
ct

io
n

s Reaction medium � � - -

Product removal
(phase creation) � - � �

Substrate carrier
(phase creation) � � - �

Catalyst carrier
(Phase creation) � � � �

In Table 9 below, different reactive systems where solvent has been added in order to improve the
reaction performance are listed. Table 9 has been classified based on the reaction type and the main
product—it also gives the reaction phases, the solvent function and the reaction improvement.
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3.5. Kinetic Models Available

Table 10 lists the kinetic model availability (found through literature search) and their inclusion
in the reaction database kinetic model library. Some of the available kinetic models in the literature
have been analyzed, validated against experimental data and, if found acceptable, then been used for
reaction optimization in order to establish the design space. In other cases a model has been used by
taking it directly from the reported reference, for example, the model reported by Thakar et al. [57] for
the second hydrogenation step of ibuprofen synthesis has been successfully used without any modification
(of the kinetic parameters) to fit the dynamic experimental data published by Cho et al. [58].

Table 10. Kinetic models availability; * indicates those that are included in the kinetic model library.

Kinetic Models Number Reference

Dehydration 1 [59]
Enzymatic reduction 3 [51,60]

Esterification 1 [61]
Transamination 3* [50,62,63]

Hydrolysis 2 [64,65]
Carbonylation 2* [66–68]
Hydrogenation 2* [57,69]

4. Reaction Database Application

The reaction database has multiple features that can assist in the creation of a data-rich
environment in the early stage pharmaceutical process-product development. The knowledge stored
in the database is searchable by forward or backward search options. As is illustrated in Figure 2, data
can be retrieved for the specific search and the retrieved data is used for reaction improvement studies
in subsequent calculation-analysis.

4.1. Reaction Data

Process improvements are usually related to resources such as development cost and time.
The process of establishing the reactions, the experimental procedure, and the reaction conditions might
require significant resources during the initial reaction screening that is required to identify the reaction
pathway that leads to the production of the desired type of products (i.e., chiral alcohols). However,
having an information-based system that can provide information for reaction identifications, reaction
conditions and experimental procedures, can rapidly reduce the required time and cost of the initial
screening process. The data-rich environment can also provide solution for reaction improvements
related to the mass and heat transfer improvements by the use of new technologies such as flow
reactions using for example new microwave technologies.

The use of experimental data (dynamic or end-points) can assist the improvement of the reaction
system as the effect of reaction variable changes can be understood and quantified. Moreover,
experimental data can be used to develop or to fit kinetic models that capture the behavior of the system
under different conditions. These kinetic models can be used for validation studies, optimization
studies to identify improved reaction conditions, evaluate different operation scenario and/or different
reactor designs and networks.

4.2. Organic Solvents

Another class of process improvement is related to the solvent role during the synthesis step.
There are cases where solvent use might enhance the reaction performance. Solvents might have
different roles such as creating a second phase to remove an inhibitory product and shift the reaction
equilibrium towards the product side, or simply it can create the second phase to remove the product
in order to facilitate the following separation procedure. The solvent can also be used as a carrier
for the controlled release of the substrate in the reaction mixture, which can minimize the amount
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of by-products produced when the concentration of substrate is high. The solvent can also have a
role as the medium of the reaction and broaden the reaction conditions in order to improve reaction
performance or satisfy other process concerns such as process safety. For example, if a reaction takes
place at very low temperatures (<−25 ◦C), the solvent should be liquid at this condition and have the
ability to dissolve the reactants, products and catalyst [70].

4.3. Search Options

The search options of the database in terms of both the retrieved data and the use of that data for
a defined process are given below.

1. Search for reaction types

Different reaction types can be searched in the reaction database, the retrieved results provide
information for the reaction (reactants, product and target product), the solvent role and how
it improves the reaction, reaction conditions (i.e., temperature range, acid/base, different
catalyst) and quantitative data (i.e., conversion, concentration vs. time), and finally applicability
information such as scale or batch/continuous mode. The results can be used as similarity
check, to identify reaction conditions, solvents and possibilities for improvement (i.e., equipment,
production mode, technology) for quick reaction optimization.

2. Search for main products (such as APIs or intermediates or type of products like chiral alcohols)

Searching for main products or type of products, reactions that are used to synthesize this type of
compound can be retrieved. The results are used to identify different ways for synthesis and to
evaluate them in terms of reaction performance, cost, scalability and sustainability.

3. Search for reactants

The results obtained by searching reactants are used to identify ways for further utilizing them in
case they have used or produced a product during a reaction.

4. Multiphase reactions

Multiphase and single reactions where the solvent use has improved the reaction performance
can be searched, the retrieved results are used to identify the role of the multiphase system, for
example, solvent creates a second phase to remove inhibitory by-product and to quantify the
improvement in reaction performance, for example, increased conversion.

To summarize, the information retrieved from the reaction database can be used to:

a. Identify reaction pathways, reaction types, reactants, catalysts, solvents and base/acid.
b. Optimization reaction conditions.
c. Investigate the solvent role in process improvement.
d. Optimize the process development identified reactions in terms of cost, yield and time.
e. Improve the overall process performance in terms of separation process, overall yield,

sustainability, safety, scalability, controllability and utilized mass.
f. Improve reactor design and evaluate different reactor designs.
g. Establish operation procedure for the reactors.
h. Assist in plant-wide design, simulation, and techno-economic optimization.
i. Enhance process understanding.

5. Application Example: Ibuprofen Synthesis and Evaluation

5.1. Problem Definition

To illustrate the applicability of the database, the synthesis of ibuprofen is selected as an example.
The objectives of this example are:
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1. To retrieve data relevant to the reaction pathway of Ibuprofen.
2. Collect data related to individual reactions.
3. Evaluate the alternatives based on green metrics.

Database Search: “Main Product = ‘Ibuprofen’”.

5.1.1. Database Results

The main product sub-class is found in the “Reaction” class and from there information before
(reactants, reaction types) and information forward (solvents, reaction conditions, data etc.) are retrieved.
The database information as retrieved from the database is shown in Figure 4, which contains three
screenshots for the purpose of illustration. Screenshot-1 connects the main product (ibuprofen) to
the reaction type data; screenshot-2 connects the main product to the specific reaction information
(temperature, pressure, solvent use, etc.); screenshot-3 connects the main product to modelling details
(for example, kinetic model). The information is also given in the text as follows:

a. Summary of the findings (reaction pathways, reaction types, operation mode, available data
and reference).

b. For each reaction pathway, each reaction is analyzed in terms of:

i. Reactant, products, by-products, acids/base, solvents, catalysts.
ii. Then the reaction conditions for each reaction is presented.
iii. Finally, the reaction data is presented.

The retrieved information is used for the evaluation of different pathways to produce ibuprofen
using the green chemistry metrics.

The database search gives three different reaction pathways. Pathway 1 consists of three reactive
steps. It has been proposed by Elango et al. [71] and consists of three batch reaction steps—a Friedel
craft acylation, a hydrogenation and finally, a carbonylation step. The first reactive step has been
improved by Lindley et al. [72] using a continuous counter flow reaction-separation system which
enables the recovery and recycle of the solvent and the unreacted reactants. The second reactive step is
a hydrogenation step that takes place in a fed-batch reactor and the final step is a carbonylation step
that also takes place in a fed-batch reactor. Pathway 2 consists of 3 reactive steps as well—a Friedel
crafts acylation, an 1,2-aryl migration step and a saponification step—all the reactions are taking place
in a continuous flow reactor and this reaction pathway that has been proposed by Snead et al. [73].
Finally, the third reaction pathway consists of the same three reactive steps, as the second pathway,
although the intermediates and reactants are different Bogdan et al. [74]. Table 11 gives a summary of
the reaction pathways retrieved from the database.

Table 11. Summary of the data retrieved from the database.

Pathway Reaction Steps Database Entries Operation Reference

1
1.1 Friedel Crafts

acylation 67 and 74
Batch (67),

continuous (74)
Elango et al. [71]
Lindley et al. [72]

1.2 Hydrogenation 68–71 and 92 Batch Elango et al. [71]
1.3 Carbonylation 9–13 Batch Elango et al. [71]

2 3.1 Friedel Crafts 45 Continuous Snead et al. [73]
3.2 1–2 aryl migration 46 Continuous Snead et al. [73]

3.3 Saponification 44 Continuous Snead et al. [73]
3 2.1 Friedel-Crafts 73 Continuous Bogdan et al. [74]

2.2 1–2,aryl migration 72 Continuous Bogdan et al. [74]
2.3 Saponification 44 Continuous Bogdan et al. [74]
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The details for reaction pathways 1 and 3 are given in the supplementary material (see Sections A.1
and A.2 for pathways 1 and 3 respectively) while the retrieved data for reaction pathway 2 are given
and analyzed in the text below.

5.1.2. Pathway 2: Ibuprofen Synthesis

The individual reaction details for the reaction pathway proposed by Snead et al. [73] are presented
in Table 12, where the reaction is given in terms of reactants and reaction product for each step and
the overall reaction pathway is illustrated in Figure 5. The stoichiometric amounts of the reactants,
the solvents, the catalyst, acid/base and by-products are also given in Table 12 for the three reaction
steps involved in this pathway.

Table 12. Retrieved reaction information from the database.

Reaction
Information

Reaction Step 1 Reaction Step 2 Reaction Step 3

Friedel Crafts (Flow) Aryl Migration (Flow) Saponification (Flow)

Reaction

Isobutylbenzene +
propionyl chloride →

4-isobutylpropiophenone
+ HCl

C13H18O (4-isobutylpropiophenone)
+ C4H10O3 (trimethyl orthoformate)

→ C14H18O2 (Methyl
2-(4-isobutylphenyl) propanoate) +

C3H8O2 (Dimethoxymethane)

C14H21O2 (Methyl
2-(4-isobutylphenyl)

propanoate) + C2H6OS
(2-mercaptoethanol) +

NaOH→ C13H18O2 Na
(ibuprofen sodium salt) +

CH3OH ( MeOH )

Composition
(Reactant A:
Reactant B,

in moles eq.)

1:1.17 1:8 1:8

Solvent Water DMF/1-propanol MeOH/H2O

Catalyst AlCl3 ICI -

Acid/Base HCl - -

By Products - - -

Figure 5. Reaction pathway proposed by Snead et al. for the continuous flow synthesis of ibuprofen.
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The reaction conditions in terms of temperature, pressure, residence time, catalyst amount and
solvent amount are listed in Table 13 for all the reaction steps.

Table 13. Reaction Conditions for the three reactive steps.

Reaction Conditions
Reaction Step 1 Reaction Step 2 Reaction Step 3

Friedel Crafts (Flow) Aryl Migration (Flow) Saponification (Flow)

Temperature 87 ◦C 90 ◦C 90 ◦C

Pressure 17 atm 14 atm 14 atm

Residence time 1.25 min 1min 1 min

Catalyst amount 1.11 eq. AlCl3 3 eq. ICI -

Solvent amount - 0.25 eq. DMF/0.71 eq. n-propanol MeOH/H2O (1:3 v/v)

The retrieved experimental data are given in Table 14 in terms of conversion, selectivity, overall
reaction yield, experimental data and model availability.

Table 14. Available experimental data as retrieved from the database.

Type of Data
Reaction Step 1 Reaction Step 2 Reaction Step 3

Friedel Crafts (Flow) Aryl Migration (Flow) Saponification (Flow)

Conversion 99% 90% 89%*(*yield)

Selectivity (main
product; by-product) - - -

Reaction Yield - - -

Experimental Steady state data for
different residence times

Steady state data for
different residence times

Steady state data for
different residence times

Model No No No

5.1.3. Reaction Pathways Evaluation through the “Green” Metrics

A simple evaluation based on green metrics [38] has been performed and the results are illustrated
in Figure 6. For this analysis, pathway 1 (BHC pathway) with and without recycling of HF and IBB,
pathway 3 proposed by Bogdan et al. [74], and pathway 2 proposed by Snead et al. [73] have been
considered. The effective mass yield, which is a ratio of the produced product (in mass, kg) over the
total amount of non-benign reactant, has been evaluated first. As shown in Figure 6, step 1 of the BHC
synthesis requires larger amounts of non-benign reactants compared to pathways 2 and 3, whereas
reaction steps 2 and 3 require much less non-benign reactants. Another metric that has been evaluated
is the mass intensity (MI), which shows the total required mass for the reaction per kg of product.
In Figure 6b, it can be seen that the first reaction steps of pathways 2 and 3 require fewer reactants
than the amount required for the BHC pathway without considering the recycling. However, when
recycle is considered, the MI metric has lower values for BHC pathway than the other two pathways
where recycle is not possible. In addition, pathway 2 proposes much fewer reactants than are required
by pathway 3.

The E-factor metric, which shows the generated waste per kg of product, has been evaluated for
all the four cases (shown in (Figure 6c). The first step of the BHC pathway has been found to be the
main contributor in the E-factor metric—even if step 1 produces a small amount of waste during the
reaction, the large value of E-factor is caused by the large stoichiometric amounts of needed solvent
and reactant. When the solvent and the reactant are recycled back into the reactor, the E-factor reduces
dramatically and the small value of the E-factor is now caused by the small amount of waste and
non-recovered solvent and reactant (~1%) [72]. The other two pathways (2 and 3) have relatively high
E-factor values, which means that larger amounts of waste are generated through the synthesis steps.
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The generated waste for pathway 2 has been found to be slightly lower compared to the reaction in
pathway 3. Finally, the atom efficiency has been evaluated for the all pathways and is illustrated in
Figure 6d. It can be seen that the atom efficiency for the BHC pathway is very high and therefore, most
of the reactant atoms remain in the final product whereas the atom efficiencies are much lower for the
two new pathways which means that pathways 2 and 3 might generate more waste than the batch
process. Note that the interpretation and the analysis of each “green” metric should be performed
individually for each reaction pathway as they represent different aspects of the process (for example,
waste generation and total mass used per kg of product). Therefore, an overall conclusion about the
“green extent” of the reaction pathways using weighted individual metrics cannot easily be made.
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Figure 6. “Green” metrics evaluation for the reaction pathways found in the reaction database:
(a) effective mass yield (EM) metric, (b) mass intensity (MI) metric, (c) E-Factor metric and (d) atom
efficiency metric.

6. Conclusions

In this article, a reaction database has been developed to assist pharmaceutical process
development during the early stages of the synthesis route selection and process-product development
by providing enhanced process understanding. A data-rich environment is proposed for this task,
where knowledge can be collected, stored and retrieved. The focus of this database is on the
pharmaceutical processes and multiphase reactions taking place within them. The reactions in this
database have been represented in terms of reaction type, target product to be produced (when
single-step or multistep reactions are considered), reaction product and the effect of the solvent use
in the reacting system. Information that is contained in the database includes: reaction conditions
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(temperature, pressure etc.), reaction components (reagents, catalysts etc.), reaction data (conversion,
selectivity, dynamic data set, and kinetic models), scaling information and finally batch or continuous
processing. For each reaction entry, a description of the process together with literature references
are provided.

Reaction data collection is a crucial and very challenging task together with the development of
an appropriate knowledge representation system. Also, verification of the consistency of the data is
necessary but tests for consistency of data are not yet available, except for some phase equilibrium data.

The application of the database has been highlighted by retrieving data for the synthesis of
ibuprofen and using the retrieved data to evaluate the identified reaction pathways using “green”
metrics. This reaction database can be used to provide important information during the development
of pharmaceutical processes at the early stages of process design. The reaction database covers chemical
and biochemical reactions and the future aim is to extend it in terms of reactions and pathways to cover
a wider range of reaction systems-products. Many multiphase reactions or single-phase reactions
have been improved through the use of solvents available in the database. The solvents are either
organic solvents or ionic solvents and in some cases, the extra phase is created by resin, especially for
biochemical processes.

Supplementary Materials: Reaction data and reaction pathways for ibuprofen synthesis. The following are
available online at www.mdpi.com/2227-9717/5/4/58/s1.
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Abstract: As the pharmaceutical industry seeks more efficient methods for the production of higher
value therapeutics, the associated data analysis, data visualization, and predictive modeling require
dependable data origination, management, transfer, and integration. As a result, the management
and integration of data in a consistent, organized, and reliable manner is a big challenge for the
pharmaceutical industry. In this work, an ontological information infrastructure is developed to
integrate data within manufacturing plants and analytical laboratories. The ANSI/ISA-88.01 batch
control standard has been adapted in this study to deliver a well-defined data structure that will
improve the data communication inside the system architecture for continuous processing. All the
detailed information of the lab-based experiment and process manufacturing, including equipment,
samples and parameters, are documented in the recipe. This recipe model is implemented into
a process control system (PCS), data historian, as well as Electronic Laboratory Notebook (ELN)
system. Data existing in the recipe can be eventually exported from this system to cloud storage,
which could provide a reliable and consistent data source for data visualization, data analysis, or
process modeling.

Keywords: data management; continuous pharmaceutical manufacturing; ISA-88; recipe; OSI Process
Information (PI)

1. Introduction

For decades, the pharmaceutical industry has been dominated by a batch-based manufacturing
process. This traditional method can lead to increased inefficiency and delay in time-to-market of
product, as well as the possibility of errors and defects. Continuous manufacturing in contrast, is a
newer technology in pharmaceutical manufacturing that can enable faster, cleaner and economical
production. The US Food and Drug Association (FDA) has recognized the advancement of this
manufacturing mode and has been encouraging its development as part of the FDA’s QbD
paradigm [1]. The application of process analytical technology (PAT) and control systems is a very
useful effort to gain improved science-based process understanding [2]. One of the advantages of
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continuous pharmaceutical manufacturing process is that it provides the ability to monitor and rectify
data/product in real time. Therefore, it has been considered a data rich manufacturing process.
However, in the face of the enormous amount of data generated from a continuous process, a
sophisticated data management system is required for the integration of analytical tools to the control
systems, as well as the off-line measurement systems.

In order to represent, manage and analyze a large amount of complex information, an
ontological informatics infrastructure will be necessary for the process and product development
in the pharmaceutical industry [3]. The ISA-88 Batch Control Standard [4–6] is an international
standard addressing batch process control, which has already been implemented in other industries
for years. Therefore, adapting this industrial standard into pharmaceutical manufacturing could
provide a design philosophy for describing equipment, material, personnel, as well as reference
models [7,8]. This recipe-based execution could work as a hierarchical data structure for the assembly
of data from the control system, process analytical technology PAT tools, and off-line measurement
devices. The combination of the ISA-88 recipe model and the data warehouse informatics strategy [9]
leads to the “recipe data warehouse” strategy [10]. This strategy could provide the possibility of
the data management across multiple execution systems, as well as the ability for data analysis
and visualization.

Applying the “recipe data warehouse” strategy to continuous pharmaceutical manufacturing
provides a possible approach to handle the data produced via analytical experimentation and a process
recipe execution. Not only the data itself but the context of data can also be well-captured and saved
for documentation and reporting. However, unlike batch operations, continuous manufacturing is
a complicated process containing series of interconnected unit operations with multiple execution
layers. Therefore, it is quite challenging to integrate data across the whole system while maintaining
an accurate representation of the complex manufacturing processes.

In addition to the data collection and the integration of the continuous manufacturing plant, the
highly variable and unpredictable properties of raw materials are necessary to be captured and stored
in a database because they could have an impact on the quality of the product [11]. These properties of
relevance to continuous manufacturing are measured via many different analytical methods, including
FT4 powder characterization [12], particle size analysis [13], Washburn technique [14], etc. The
establishment of a raw material property database could be achieved by the “recipe data warehouse”
strategy. Nevertheless, compared to the computer aided manufacturing used in production process,
the degree of automation would vary a lot in different analytical platforms. Therefore, an easily
accessible recipe management system will be highly desirable in the characterization laboratories.

Moreover, a cloud computing technology for data management and storage is adapted to deal
with massive amount of data generated from the continuous manufacturing process. While traditional
computational infrastructures involve huge investments on dedicated equipment, cloud computing
offers a virtual environment for users to store or share infinite packets of information by renting
hardware and storage systems for a defined time period [15]. Because of its many advantages
including flexibility, security, and efficiency, cloud computing is suitable for data management in the
pharmaceutical industry [16].

Objectives

In this work, a big data strategy following ISA-88 batch control standard is applied for data
management in continuous pharmaceutical manufacturing. The ontology of recipe modeling and the
design philosophy of a recipe is elaborated. A data management strategy is proposed for the data
integration in both continuous manufacturing processes and the analytical platforms used for raw
material characterization. This strategy has been applied to a pilot direct compaction continuous tablet
manufacturing process to build up data flow from equipment to recipe database on the cloud. In the
characterization of raw material and intermediate blends properties, experiment data is also captured
and transferred via a web-based recipe management tool.
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2. Materials and Methods

2.1. Ontology

An ontology is an explicit specification of a conceptualization where conceptualization refers to an
abstract, simplified view of the world that we wish to represent for some purpose [17]. A more detailed
definition of an ontology has been made where the ontology is described as a hierarchically structured
set of terms for describing a domain that can be used as a skeletal foundation for a knowledge
base [18]. Ontologies are created to support the sharing and reuse of formally represented knowledge
among different computing systems, as well as human beings. They provide the shared and common
domain structure for semantic integration of information sources. In this work, a conceptualization
through the ISA-88 shows the advantage of building up a general conceptualization in pharmaceutical
manufacturing and development domain.

Information technology has already developed the capabilities to support the implementation of
such proposed informatics infrastructure. The language used in an ontology should be expressive,
portable, and semantically defined, which is important for the future implementation and sharing
of the ontology. The World Wide Web Consortium (W3C) has proposed several markup languages
intended for web environment usage, and Extensive Markup Language (XML) is one of them [19].
XML is a metalanguage that defines a set of rules for encoding documents in a format which is both
human readable and machine readable. The design of XML focuses on what data is and how to
describe data. XML data is known as self-defining and self-describing, which means that the structure
of the data is embedded with the data. There is no need to build the structure before storing the
data when it arrives. The most basic building block of an XML document is an element, which has
a beginning and ending tag. Since nested elements are supported in XML, it has the capability to
embed hierarchical structures. Element names describe the content of the element while the structure
describes the relationship between the elements.

As an XML Schema defines the structure of XML documents, an XML document can be validated
according to the corresponding XML Schema. XML Schema language is also referred as XML Schema
definition (XSD) which defines the constraints on the content and structure of documents of that
type [20].

2.2. Recipe Model

In ISA-88, a recipe is defined as the minimum set of information that uniquely identifies the
production requirements for a particular product [4]. However, there will still be a significant amount
and different types of necessary information, which is required to describe products and to make
products. Holding all the information in one recipe will be complicated and cumbersome for human
beings. As a result, four types of the recipe are defined in ISA-88 to focus on different levels and
accurate information.

2.2.1. Recipe Types

Table 1 shows the four recipe types defined in ISA-88 and their relationship. Each of the four
recipe types is described in Table 1 according to the ISA-88. The different type of the recipe together
with an example from pharmaceutical industry is shown in Figure 1.
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Table 1. ISA-88 recipe types.

Type Definition

General recipe A type of recipe that defines raw materials and site independent processing requirements.

Site recipe A type of recipe that usually derived from the general recipe to meet specific conditions or
constraints of the site manufacturing the product.

Master recipe A type of recipe that contains the information of an individual product and depends on
equipment situation.

Control recipe A type of recipe that defines the manufacturing process a single batch of product.

Figure 1. ISA-88 recipe model.

2.2.2. Process Model

The ISA-88 standard defines a process model that has four levels, including process, process
stages, process operations, and process actions. The structure of this process model has been displayed
in Figure 2. As shown in the figure, the higher level consists an ordered set of the lower levels.
The information of equipment, parameter, and material can be included in the attributes of the
process actions.
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Figure 2. ISA-88 process model.

It is important to note that the reference model and guideline recommended in the ISA-88 standard
are not to be strictly normative. This feature provides the sufficient level of flexibility to represent
the current manufacturing process according to the ISA-88 standard, as well as the opportunity to
expand the reference model to suit unusual manufacturing [21]. In this case, the ISA-88 recipe model
is extended to continuous manufacturing, instead of the batch manufacturing process, to provide a
hierarchical structure for data management and integration.

2.2.3. Recipe Model Implementation

The purpose of this part is to illustrate the proposed methodological method to assess them
implementation of ISA-88 recipe model into continuous pharmaceutical manufacturing. Proven
evidence has shown that developing a new product manufacturing process might be a difficult task.
Although ISA-88 standard provides a practical reference model for sure, adapting a batch model to the
continuous process will still be challenging. The implementation of the recipe model is divided into
several steps to perform the activities in a structured way.

• Step 1. ISA-88 applicable area identification

The initial scope and project boundaries will be defined in this step-in order to discuss the main
objectives. As mentioned above, the ISA-88 standard is not strictly defined and can be expanded
to continuous manufacturing in contrast. Moreover, since analytical experiments are performed by
each sample, one sample can be treated as a “batch” in the analytical process. Therefore, it is also
reasonable to consider the offline characterization experiment of material to be applicable to the ISA-88
standard. In this situation, a technique-specific recipe containing detailed process steps could provide
instructions for specific experiment type, as well as the designed structure for result documentation.
As shown in Figure 3, after analytical tests are performed on samples according to the procedures in
the recipes, experiment results will be recorded in the recipe as well.
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Figure 3. Material and data flow in an experiment process.

Preliminary data gathering is performed to provide a clear understanding of the stream process
and the requirement of each particular case. The component may be modified in ISA-88 recipe model
could be recipe type, recipe content structure, recipe representation, etc. The in-depth knowledge
of process architecture, manufacturing execution systems, product and material information, and
analytical platform will be necessary to the accomplishment of this step.

• Step 2. Recipe structure definition

An XML Schema is created for the implementation of an ISA-88 standard to provide the recipe
model a structured, system-independent XML markup. This step needs to be completed based on
the data collected from the previous step. An XML Schema document works as a master recipe
standard. The goals of this document include setting restrictions to the structure and content of
the recipe, maximizing the recipe model’s expressive capability and realizing machine’s ability of
recipe validation.

• Step 3. Process analysis

Due to the master recipe’s equipment dependent property, it will be complicated and inefficient to
develop a single master recipe to describe the whole continuous pharmaceutical process. The process
itself consists an ordered set of multiple unit operations, which may change from time to time,
depending on the equipment used. This does happen a lot in the product process development
stage, especially in the early time period. Another barrier is the transformation from research and
development (R&D) to production. Usually, R&D performs the product development process on
small-scale pilot plants, which could be quite different from the production plant in technology
aspect. Moreover, the differences between technologies used in every plant are crucial to product
manufacturing after the transformation. The entire problem mentioned above is critical to the
implementation of ISA-88 to continuous pharmaceutical manufacturing.

A suitable approach to implementation of ISA-88 into continuous manufacturing might be
developing a robust modular structure that could support a variety of equipment types and classes. In
this case, a continuous process is divided into several unit operations, such as mixing, and blending.
Each unit operation could be performed by different equipment types that correspond to a different
recipe module. In other words, each equipment type might take place in a continuous process and will
be mapped to a recipe module individually. The ordered combination of these recipe modules will
form the master recipe of continuous manufacturing.

PAT tools used in continuous pharmaceutical manufacturing, Near-infrared NIR and Raman for
example, are implemented in a continuous process to provide real-time monitoring of the material
properties and are essential to manufacturing decision making. The PAT tools will also be treated as a
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unit operation that has a corresponding recipe module, in order to provide flexibility and reliability for
the management of PAT.

• Step 4. Process mapping

XML-based master recipes will be developed in accordance with an XML Schema to represent the
manufacturing process. Firstly, the equipment information, operation procedure, as well as process
parameters of unit operations will be mapped carefully to the ISA-88 recipe model to generate respect
recipe modules. These recipe modules could be transformed into the master recipe and used for the
individual study and data capturing of unit operations.

2.3. Systematic Framework of Integration

The fast development of information and communication technology, such as big data and cloud
computing, provides the capability to increase productivity, quality and flexibility across industries.
The process industry is also seeking a possible approach to bringing together all data from different
process levels and distributed manufacturing plants in a continuous and holistic way to generate
meaningful information [22]. For continuous pharmaceutical manufacturing, a data flow across
the whole process is proposed in Figure 1 following the traditional design pattern, automation
pyramid [23], to create an information and communication infrastructure.

Enterprise resource planning (ERP) systems are placed at the top of structure shown in Figure 4.
It provide the integrated view of the core business process, based on the data collected from various
business activities [24]. Long-term resource planning—primarily human and material resources—will
be its primary objective. Historian, on Level 4, is intended for collecting and organizing data to provide
an information infrastructure. Meaningful information in different representations, ISA-88 recipe
document, could be generated from the organizational assets, as well.

Figure 4. Architecture of data integration.

In terms of the levels below, they are separated into two parts, continuous manufacturing process,
and analytical laboratory platform. Because of the distinct data acquisition method used these two
areas, they will be elaborated separately in the following section.
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2.3.1. Continuous Manufacturing

As shown in Figure 4, there are three more levels in the continuous manufacturing
process. Manufacturing Execution System (MES) performs the real-time managing and monitoring
work-in-process on the plant floor. During the manufacturing process, the process control system plays
a significant role in controlling the system states and conditions to prevent severe problem during
operations. Process equipment located in Level 1/0 contains process equipment and PAT tools. Process
equipment is always consisted of the field device and embedded programmable logic controllers
(PLC). PLC is an industrial computer control system which monitors input devices, such as machinery
or sensors and makes the decision to control output devices according to its program [25]. The
most powerful advantage of PLC is its capability to change the process or operation while collecting
information. In terms of PAT tools, it has corresponding PAT data management tools that could
communicate with the control platform. Above are the different levels of control systems across the
manufacturing process.

Distinct from the control flows organized top-down, whereas the data capturing and information
flow are bottom up. After generated from process equipment and PAT tools in the continuous process,
various field data is fed into PCS to form a recipe structure which is accordance with ISA-88 recipe
model. In other words, manufacturing data is collected, organized, interpreted and transformed into
meaningful information starting from PCS level. This recipe structure will be mapped identically
into historian for storage. The low-level network in this information architecture is mainly based
on the communication over bus systems, such as field device to PLC. However, most of high-level
systems use connections based on ethernet technology named object linking and embedding (OLE) for
process control, which is also known as OPC. OPC is a software interface standard that enables the
communication between Windows programs and industrial hardware devices to provide reliable and
performable data transformation.

2.3.2. Laboratory Experiment

Unlike control systems used in continuous manufacturing process plant, the laboratory platform
consists of light-weighted, but various types of instruments are generating analysis data in different
formats. Therefore, on the third level located the electronic laboratory notebook (ELN) system or
laboratory information management system (LIMS) that has the ability for support all kinds of
analytical instruments. While material properties are measured by instruments and collected by
laboratory systems, these data sets will be transformed into ELN or LIMS systems for further
organization and interpretation. Meaningful information is generated in recipe form according to the
ISA-88 standard in Level 3.

The basic workflow of using ELN to support experiment documentation is illustrated in Figure 5.
The first step is to select the master recipe developed for this specific test and create a control recipe. If
such master recipe doesn’t exist, this issue needs to be reported to laboratory manager because only
lab administrators have permission to create and import recipes. However, users are able to change
the control recipe, adding/deleting steps or parameters, according to their particular experiment plan.
After the execution of the control recipe, user will perform experiments according the steps in the
recipe and recording test parameters at the same time. Eventually, all the data related to this single
test—including operator, sample, instrument, and result—will be documented in the recipe and be
transferred to cloud storage.
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Figure 5. Workflow of using electronic lab notebook (ELN) to perform an experiment.

2.4. Transferring Data from Lab Computer to Cloud System

Transfer of data from a computing cloud to a storage cloud can be non-trivial, since cross platform
support is not guaranteed to be available on the cloud service of choice. There is the option of using
the application program interface (API) provided by the cloud service but the heterogeneity in the
API’s provided by different services makes this approach difficult. This issue is highlighted in our
current case: the cloud platform of choice here is Box.com. The computing cloud, i.e., the Amazon
Elastic Compute Cloud (EC2) runs a Linux distribution (Amazon Linux AMI) based on RHEL (Red
Hat Enterprise Linux) and CentOS. Box.com, however, neither has support for, nor has any plans to
include support for this platform. This puts the user in a situation where there is no direct method
to easily and trivially push data to the cloud using a tool such as an app. Additionally, there is the
difficulty in transitioning to a different platform should that need ever arise.

In order to address these issues, we have put in place a data transfer pipeline between the compute
and storage clouds using davfs2 [26], a specific implementation of WebDAV (web-based Distributed
Authoring and Versioning) [27], an extension of the hypertext transfer protocol (HTTP) that allows a
user (client) to remotely create/edit web content. This method makes it possible to set up a directory
on the Linux EC2 compute cloud that serves as a window into the cloud storage location. Now a
rsync [28] may be set up to sync to this directory, and by extension, to the cloud.

3. Case Studies

Two different case studies have been performed to verify the proposed systematic framework in
both pilot-plant and analytical laboratory.
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3.1. Direct Compaction Continuous Tablet Manufacturing Process

A direct compaction continuous pharmaceutical tablet manufacturing process has been developed
at the Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Rutgers
University [29]. This schematic of the process is illustrated in Figure 6. Three gravimetric feeders
are used to provide raw materials, including active pharmaceutical ingredient (API), lubricant and
excipient. The flow rate of powder is controlled via manipulating the rotational screw speed of
the feeder. If necessary, a co-mill can be used to delump the API and excipient while lubricant
will be directly added into the blender to avoid over lubrication. After the continuous blender, the
homogeneous powder mixture is sent to tablet compaction. Some of the tablets produced will be sent
for dissolution testing. In order to use the gravity, the pilot plant is built in three levels high for better
material flow. The feeders (K-Tron) are located on the top level. The second level is used for delumping
and blending and the tablet compactor (FETTE) is located on the bottom floor.

Figure 6. Continuous tablet compression process.

3.2. FT4 Powder Characterization Test

The input materials of continuous direct compaction tablet manufacturing process are powders
whose physical and mechanical properties vary. Since this variation may have an impact on the
performance of the final dosage, it is important to develop effective measurement methods on the
critical properties. The FT4 Powder Rheometer of Freeman Technology developed over the last two
decades is an ideal solution.

The FT4 Powder Rheometer (Figure 7) is designed to characterize powders under different
conditions in ways that resemble large-scale production environments. It provides a comprehensive
series of methods that allow powder behavior to be characterized across a whole range of process
conditions. The methods include rheological, torsional shear, compressibility and permeability tests
which can be performed using small bulk samples, such as 1, 10 or 25 mL.
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Figure 7. FT4 powder rheometer.

4. Results and Discussions

4.1. Data Integration in Continuous Tablet Manufacturing

Figure 8 presents the data flow within the continuous direct compaction tablet manufacturing
process. Data generated from both process equipment and PAT tools will be sent into DeltaV system
and organized according to the ISA-88 recipe model. PI system, playing the role of historian, is able to
receive data from PCS and build up recipe hierarchical structure using PI Event Frame. In the final
step, cloud storage is chosen for permanent data storage and the portal of ERP.

Figure 8. Data flow in continuous tablet manufacturing.
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4.1.1. DeltaV Recipe Model

ISA-88 batch manufacturing standard is supported by DeltaV Distributed Control System. Recipes
has been created and maintained by DeltaV’s Recipe Studio application. Recipe Studio supports two
types of recipes: master recipes and control recipes. A master recipe created and modified by process
engineers, while control recipe can be modified and downloaded by operators. All recipes have four
main parts: a header, a procedure (sequence or actions), the parameters, and the equipment. They are
further elaborated in Table 2.

Table 2. Recipe parts.

Name Function

Header Contains information about the exact version and the author of the recipe

Procedure Contains the procedural function chart (PFC) that defines the steps needed for the batch to run.

Parameters Allow you to set values for different formulations of the product using the same recipe.

Equipment Defined in DeltaV Explorer and associated with the recipe. Each operation in Recipe Studio is
associated with a particular equipment unit.

Instead of the ISA-88 process model, the procedural control model can be implemented in DeltaV
Recipe Studio. This model, shown in Figure 9, focuses on describing the process as it relates to physical
equipment. Procedures, unit procedures, and operations of the continuous direct compaction process
are constructed graphically using IEC 61131-3 compliant sequential function charts (SFCs) [30].

Figure 9. ISA-88 procedure model.

While the data generated from field devices is collected by DeltaV, PAT’s spectrum data is captured
and organized by the PAT data management platform, synTQ. synTQ has been designed to provide
harmonization and integration of all plant-wide PAT data, including spectral data, configuration data,
models, raw and metadata, and orchestrations (PAT methods). It is worth noting that synTQ is fully
compatible with the Emerson process management system. This feature means data collected and
managed in synTQ can be transferred into the DeltaV system for process control and data integration.
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4.1.2. OSI PI Recipe Structure

PI system is an enterprise infrastructure for management of real-time data and events provided
by OSIsoft. It is a suite of software products that are used for data collection, historicizing, finding,
analyzing, delivering, etc. Figure 10 illustrates the structure and data flow of the PI system, in which
PI data archive and PI asset framework (AF) are the keys parts.

Figure 10. Structure and data flow of Process Information (PI) system.

After the PI interface receives data from a data source (DeltaV system in this case) via the OPC
server, the PI Data Archive gets the data and routes it throughout the PI system, providing a common
set of real-time data. PI AF is a single repository for objects, equipment, hierarchies, and models. It is
designed to integrate, contextualize, and reference data from multiple sources including the PI data
archive and non-PI sources such as human input and external relational databases. Together, these
metadata and time series data provide a detailed description of equipment or assets. Figure 11 shows
how equipment from the continuous tablet direct compaction process is mapped in PI System. The
attributes of element representing equipment performance parameters are configured to get value
from the corresponding PI data archive points.

 

Figure 11. Include equipment into PI asset framework (AF) elements.
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Moreover, PI AF supports the most significant function of implementing ISA-88 Batch Control
Standard, PI Event Frame. Events are critical process time periods that represents something happening
and impacting the manufacturing process or operations. The PI Event Frame is intended to capture
critical event contexts which could be names, start/end time, and related information that are useful
for analysis. Complex hierarchical events, shown in Figure 12, are designed in order to map the ISA-88
process model of continuous tablet press process.

 

Figure 12. Using PI Event Frame to map ISA-88 recipe model.

4.2. Recipe-Based ELN System

A novel ELN system is developed and implemented for data management in raw material
characterization laboratories to replace paper laboratory notebooks (PLN). Scientists could create,
import, modify recipes within ELN following the ISA-88 standards, as well as input data and upload
related data files. This system has sufficient capability of documenting experiment process and
gathering data from various analytical platforms. It could also provide material property information
that complies with recipe model.

4.2.1. Information Management

This recipe-based ELN system is developed as a custom module for Drupal, an open-source
content management system (CMS) written in Hypertext Preprocessor (PHP). The stand release of
Drupal, also referred as Drupal core, contains the essential features of CMS, including taxonomy, user
account registration, menu management, and system administration. Beside this, Drupal provides
many other features, such as high scalability, flexible content architecture, and supporting mobile
devices. One widespread distribution of Drupal, Open Atrium is selected as the platform for laboratory
data handling because of its advanced knowledge management and security features.

In this case, Drupal is installed and maintained on a cloud computing service, Amazon Web
Service (AWS). AWS is an on-demand computing platform, instead of setting up actual workstations
in computer rooms. AWS provides large computing capacity cheaper and quicker than actual
physical servers. Drupal runs in a Linux operating system on one of AWS’ service, Amazon Elastic
Compute Cloud (EC2). The MySQL database which Drupal is connected to is supported by Amazon
Relational Database Service (RDS). The adoption of cloud computing technology into laboratory data
management benefits a lot, including economic computing resource expense, extensible infrastructure
capacity, etc.
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After installation and configuration, this Drupal system can be accessed in the form of the website
via an Internet browser. Within Open Atrium, spaces can be created as the highest level of content
structure. While the public space is open to all system users, the content of private space can only
be accessed by website members that have been added to such space. After the ELN module is
installed in Drupal, a notebook can be created as a section housed in every space. Via the section
visibility widget, specific permissions for certain member group or people could be set for ELN section.
Although the CMS is accessible across the world through Internet, the confidentiality of content in
ELN is well protected.

The web interface of ELN system (Figure 13) contains two main parts: master recipe list and
control recipe list. As mention in previous sections, master recipes are the templates for recipes used to
perform experiments on individual samples, and they are analytical process dependent. Using ELN
tool, master recipes can be created within the system or imported from external recipe document in
XML format, as is shown in “Recipe Import” area. After clicking the green “Create Control” button, a
control recipe will be generated as one copy of the master recipe with username and time in the name.
It will work as the experiment note to document all the experiment process and data. Figure 14 is an
example of control recipe for FT4 compressibility test.

 

Figure 13. The web interface of ELN system.
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Figure 14. Example of control recipe.

The “Recipe Components” placed on the right sidebar of ELN front page contains four relevant
information may be included in the recipe, and they are further introduced in Table 3. The list of each
recipe component includes all the items, as well as their related information and attributes. Each item
is linked to a page listing the recipes that use the particular piece of the component. Figures 15 and 16
show the equipment list and the information page of FT4 Powder Rheometer, for example. The QR
code displayed on the top right of the page is another feature of ELN. Each equipment or material
existing in ELN system will have a unique QR code, which has the corresponding Uniform Resource
Locator (URL) address, encoded. By scanning the QR code attached to the material or equipment, its
information, and related recipes could be accessed on the website.

Table 3. Recipe components.

Name Definition Attributes

Materials
Pharmaceutical ingredient used in
manufacturing process

Material Name
Role

Aliases & Chemical Info

Products Things produced from manufacturing process Product Name
Catalog

Equipment The analytical instrument used in material
characterization.

Equipment Name
Equipment ID

Equipment Description

Measurement Units A definite magnitude of a quantity Unit Name
Unit Symbol
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Figure 15. Equipment list in ELN system.

 

Figure 16. Equipment page of FT4 power rheometer.

As shown in Figure 17, the left side of this execution dialog display the recipe steps from process
to process action. Part of the recipe steps is marked with a green pencil icon which means there are
step parameters, step ingredients, or step equipment linked to such steps. Related step information
will be presented on the right side of the prompt window. In terms of the step parameters, there are
two types of them regarding of the actions need to be taken, “input” and “output”. “Input” means this
step parameter will be manually typed into ELN by a scientist. “Output” indicates that such parameter
is recorded in the output data file from instrument system. Once the step parameters are saved, the
green pencil icon will turn into a check mark. The last action in the workflow is to upload the data file
generated by analytical device system if there is any.
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Figure 17. Execution dialog of control recipe.

4.2.2. Other Features

• QR code printing

It is worth mentioning that the ELN system has the capability of directly printing QR codes for
recipe components via a barcode printer. Within this system, there always exists a unique QR code
corresponded to the process material and equipment. A QR code sidebar can certainly be found on
the material and equipment information web pages. After simply clicking the “Print” button, the QR
code will be printed on a sticker from the barcode printer connected to the computer. Such convenient
feature is enabled by the custom Drupal module “zprint”. It is designed to send the command of
printing current web URL to the printer via the Google Cloud Print service.

• Mobile device supporting

By reason of ELN system’s web interface, this recipe portal could be accessed via all kinds of
mobile devices not only desktops or laptops. Scientists can open up recipes through the internet
browsing apps on their smartphones or tablets, as well as executing recipe. Moreover, mobile devices
are more convenient for scanning QR codes to acquire information of material, equipment, and samples.

4.2.3. Data Flow

There are two primary data sources for the ELN system: human input and data file outputted by
the instrument. Both will be loaded into the control recipe of the experiment as the actual value of step
parameters. As mentioned before, manually inputting data can be done via the execution dialog shown
in Figure 18. However, the extraction of data from instrument-generated data file will be performed by
ELN system’s Excel Parsing function. Considering the fact that most of the analytical device systems
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have the ability to export data into Excel supported documents (xlsx and csv for example), ELN’s
Excel Parsing capability is developed based on the contributed Drupal module “PHPExcel”. After the
data file is attached to the recipe, PHPExcel module will convert the data into an array. Once there is a
match within the step parameters, the value of an array item will be updated to that step parameter.
Therefore, ELN supports various of analytical instruments, as well as manually data input.

 

Figure 18. Data flow in performing FT4 experiment using the ELN system.

Containing the information of the analytical process, test results and instrument information,
each control recipe is an integral documentation of experiment. The ELN system can export control
recipe into XML document for archiving or data transformation. Drupal has the built-in functionality
of dumping content into JavaScript Object Notation (JSON) format. JSON is an alternative to XML
for storing and exchanging data. Thus, the recipe is transformed into JSON document at first. To
complete a fast and strict conversion between JOSN and XML format, a small application is developed
in Haskell language. After these two steps, an XML file of control recipe is generated from ELN system,
which is suitable for archiving and sharing information.

Figure 8 shows data flow within ELN system using FT4 Powder Rheometer Characterization
for example. In this case, the final step is uploading recipe document into BOX database, which is
intended for data warehousing. BOX is a cloud computing business that provides content management
and file sharing service. Keeping data in cloud storage is a secure and economical method of data
archiving. This is also the cornerstone of the data analysis and visualization that also happens on
cloud computing.

5. Conclusions and Future Directions

A systematic framework for data management for continuous pharmaceutical manufacturing has
been developed. The ISA-88 Batch Control Standard is adapted to continuous manufacturing in order
to provide a design philosophy, as well as reference models. The implementation of such a recipe model
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into the continuous process is well-summarized and assessed. The recipe data warehouse strategy is
used for the purpose of data integration in both manufacturing plant and material characterization
laboratory. The proper communication among PLC, PAT, PCS, and historian enable the data collection
and transformation across the continuous manufacturing plant. A recipe-based ELN system is in
charge of capturing data from various analytical platforms. Therefore, data from different process
levels and distributed locations can be integrated and contextualized with meaningful information.
Such knowledge plays an important role in supporting process control and decision making [31].
Future work includes validating the possibility of using this data management strategy to support
the design of experiment (DOE). In terms of the laboratory platform, instrument configuration and
calibration information will be included into experiment recipes, which are helpful for error analysis.
The importance of this developed data management and integration is important since it will enable
industrial practitioners to better monitor and control the process, identify risk, and mitigate process
failures. This will enable the product to be produced with reduced time-to-market and increased
quality, leading to potentially better and cheaper medicines.
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Abstract: This experimental and theoretical study deals with the thermal spontaneous polymerization
of n-butyl acrylate (n-BA). The polymerization was carried out in solution (n-heptane as the solvent)
at 200 and 220 ◦C without adding any conventional initiators. It was studied with the five different
n-BA/n-heptane volume ratios: 50/50, 70/30, 80/20, 90/10, and 100/0. Extensive experimental
data presented here show significant monomer conversion at all temperatures and concentrations
confirming the occurrence of the thermal self-initiation of the monomer. The order, frequency factor,
and activation energy of the thermal self-initiation reaction of n-BA were estimated from n-BA
conversion, using a macroscopic mechanistic model. The estimated reaction order agrees well with
the order obtained via our quantum chemical calculations. Furthermore, the frequency factor and
activation energy estimates agree well with the corresponding values that we already reported for
bulk polymerization of n-BA.

Keywords: n-butyl acrylate; thermal self-initiation; free-radical polymerization; reaction order

1. Introduction

Free-radical polymerization has been initiated by a thermal initiator like ammonium persulfate [1]
and azobisisobutyronitrile [2], or a method such as plasma [3], ultrasound [4], UV-irradiation [5],
ionizing-irradiation [6], and redox initiation [7]. A monomer can also initiate free-radical
polymerization by itself. Examples are vinyl monomers that undergo self-initiation in bulk [8,9],
gas [10], and (mini)emulsion media [11,12]. However, the latter needs a large amount of surfactants
to stabilize monomer droplets and polymer particles [12]. The monomer self-initiation reactions can
also be exploited as a radical generation source in other radical polymerization mechanisms like
reversible addition-fragmentation chain transfer (RAFT) polymerization where a RAFT agent exists.
Among the vinyl monomers, styrene has shown high tendency for thermal self-initiation. The proposed
mechanism is the formation of two monoradicals from two styrene monomers via self-Diels-Alder
cycloaddition [13,14]. Monomer self-initiation strongly depends on temperature; styrene needs more
than one year to self-polymerize to reach 50% conversion at 29 ◦C, however, the same conversion
will be obtained after only 4 h at 127 ◦C. In addition to styrene, thermal self-initiation of acrylate
and methacrylate monomers have been studied [15–17]. For methyl methacrylate, the rate of thermal
self-initiation is two orders of magnitude lower than styrene [18].

Purity is an important advantage of thermally self-initiated polymers. Pure polymers have
many applications in medicine and food industries [19–21], because initiator and catalyst leftovers
in polymers reduce their applicability in such areas. For example, molecularly imprinted polymers
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(MIPs) as antibodies are synthesized through thermal self-initiation free-radical polymerization [22].
The absence of any kind of functional groups in the microstructure of self-polymerized polymers
prevents them from participating in many kinds of side reactions. Thus, the so-called dormant chains
can be used as a characterization tool in some living polymerizations [23]. In general, in any kind of
application where fully-pure polymer chains are required, polymerization through thermal monomer
self-initiation is a good choice. Another advantage of thermally self-polymerized polymers is their low
molecular weight [24] especially where they are used as paints and coatings [25].

Environmental regulations constantly have forced resin manufacturers to reduce the level of
organic solvents in their products. However, solvents are needed in coatings and paints to endow
them with good flowability and brushability. Low molecular weight acrylate resins synthesized
through thermal monomer self-initiation polymerization can obviate the need for high amount
of solvent. Thermally self-polymerized acrylate polymers usually have Mw < 10,000 g/mol and
thereby do not need a high amount of solvent to gain flowability [26]. In the synthesis of hybrid
organic/inorganic nanoparticles, thermal monomer self-initiation may also contribute. Hui et al. [27]
synthesized polystyrene/silica hybrid brushes via ATRP technique, however, they reported that some
pure untethered polystyrene homopolymers are formed due to the thermal self-initiation of styrene.
Their results showed that nearly 23 weight % of the styrene undergoes self-initiation reactions and these
untethered homopolymer chains, though are formed unintentionally and are considered as impurity,
improved elastic modulus and toughness of the polystyrene/silica brushes. Another advantage of
thermally monomer-self-initiated polymerization comes into play when conventional thermal initiators
are not able to polymerize some monomers. For example, it has been reported that benzoyl peroxide
is not able to polymerize dimethylaminoethyl methacrylate, while this monomer undergoes thermal
self-initiation polymerization [28]. Moreover, thermally monomer-self-initiated polymerization is a
good method for the synthesis of macromonomers as the occurrence of a β-Scission reaction, which is a
prevalent reaction at high temperatures, leads to the formation of an unsaturated carbon double bond
at the backbone of the produced shortened chain [29]. Such macromonomers have wide applications in
the synthesis of brush polymers and graft copolymers [30]. Similar to controlled/living polymerization,
thermally monomer-self-initiated polymerization is capable of producing macromonomers without
a need for an initiator or a mediating agent [29,30]. Monomer-self-initiated polymerization has also
been utilized to synthesize graphene/polystyrene nanocomposites. Graphene was functionalized to
improve its lipophilicity, while neither external initiator nor immobilization of initiating groups on the
surface of the graphene were required to initiate the polymerization [31].

To fully exploit potentials of the monomer self-initiation reaction, a detailed understanding of its
kinetics is needed [32]. Monomer self-initiation reaction affects polymer average molecular weights,
molecular weight distribution, and consequently many properties of the polymers [10,15]. At high
temperatures, styrene undergoes self-initiation reaction through a third order reaction [33]. For acrylate
and methacrylate monomers, a kinetic study of the polymerization at high temperatures is more
complicated as many side reactions take place at high temperatures. These side reactions are transfer to
monomer, transfer to polymer, midchain radical propagation, midchain radical termination, backbiting,
and β-Scission. In general, for non-styrenic monomers, the monomer self-initiation mechanism occurs
through Flory’s diradical mechanism [16,34,35]. For alkyl acrylate monomers, computational quantum
chemistry studies [35–37] showed that two monomer molecules (M) react and form a singlet diradical
(*MM*S) (Figure 1):

M + M → *MM*S (1)

222



Processes 2018, 6, 3

H

O

O
C4H9

H

O

O
C4H9

O

O
C

H

H

O

O
C4H9

C4H9

C
H

O

O C4H9

Singlet Diradical
Intersystem Crossing

O

O
C

HC4H9

C
H

O

O C4H9

Triplet Diradical

H
C

O

O
C4H9

O

O

HC4H9

C
H

O

O C4H9

Monoradicals

+

+
..

..

..

 

Figure 1. n-BA self-initiation mechanism [35].

The singlet diradical includes two monomer units. A singlet diradical has a pair of electrons,
one spin-up and one spin-down (+1/2 and −1/2), in one orbital with the second, equal energy orbital,
empty [38]. The singlet diradical then goes through a spin crossover reaction and changes into a triplet
diradical (*MM*T):

*MM*S → *MM*T (2)

The triplet diradical also includes two monomer units. A triplet diradical has two “spin-up”
electrons in adjacent, degenerate (equal energy) orbitals (two electrons of the same spin, +1/2 and
+1/2) [38]. Finally, a third monomer molecule abstracts a hydrogen atom from the triplet diradical
and forms two monoradicals, one with two monomer units (MM*) and the other with one monomer
unit (M*):

*MM*T + M → MM* + M* (3)

Thus, the overall (apparent) monomer self-initiation reaction is:

3M
ki,m→ MM ∗ + M∗ (4)

which according to quantum chemical calculations [35–37], is second order. In this paper,
experimentally we investigate this theoretical finding (reaction order) via estimating the order of
reaction from monomer conversion measurements made in solution and bulk polymerizations.
In addition, we estimate the frequency factor and activation energy of the n-BA self-initiation reaction
and compare them with those estimated in bulk polymerization of n-BA.

2. Materials and Methods

n-BA with purity of 98% containing 50 ppm of inhibitor (4-methoxyphenol) was purchased from
Alfa-Aesar. Anhydrous n-heptane (99%) was supplied by Sigma-Aldrich, MO, USA. Stainless steel
Swagelok tubes (Swagelok Inc., Huntingdon Valley, PA, USA) with length of 4-inch were used as
batch reactors. Both ends of the reactors were capped with Swagelok stainless steel caps. These tubes
provide 4.8 mL reaction volume and bear pressures as high as 3300 psig. Before polymerization,
n-BA was passed through an inhibitor removal column to remove the manufacturer-added inhibitor
from the monomer. The columns were DHR-4, supplied by Scientific Polymer Products of Ontario,
New York, NY, USA. n-BA/n-heptane mixtures with different volume ratios of 50/50, 70/30, 80/20,
90/10, and 100/0 were then prepared by adding the inhibitor-free n-BA to n-heptane followed by
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magnet stirring. The mixtures were then transferred to a sealed round flask, where its inlet was
blocked by a rubber cap, to be purged by ultra-high pure nitrogen. After 1 h purging, the nitrogen flow
was stopped and the rubber cap was covered with an aluminum adhesive tape very quickly to make
sure no oxygen diffused into the flask contents. Next, the flask, tubes and caps were transferred to a
nitrogen-atmosphere glove box (LC Technology Solutions, Salisbury, MD, USA). Before transferring
the items to the main chamber of the glove box, several vacuum-nitrogen purging cycles were repeated.
When the concentration of oxygen in the glove box was lower than 0.1 ppm, the sealed flask was opened
and around 3 mL of the flask contents was added to each tube. Afterwards, the caps were tightened
and the tubes were removed from the glovebox and weighed, and their weights were recorded.

To carry out the polymerization, a fluidized sand bath was heated to 200 or 220 ◦C, and left in that
temperature for a while to reach a steady state condition. Each polymerization reaction was started by
fastening two tubes to a metal basket and putting it in the stabilized sand bath. The reaction times
were 55, 110, 165, and 220 min. After staying in the sand bath for the desired time, the basket was
removed from the sand bath and immersed in a cold-water bath to cool down the tubes and stop
polymerization. The tubes were then detached from the basket, dried, and weighed again to compare
their weights with the values recorded after removing them from the glove box. In case of weight
difference, the tube was not considered for monomer conversion measurements. Finally, each tube’s
contents were discharged to an aluminum petri dish and left in a vacuum oven at 50 ◦C to allow the
contents to dry for monomer conversion measurements. It is worth noting here that, our previous
studies showed that nearly 1 min is required for the monomer inside the tubes to reach the sand bath
temperature. Thus, the tubes were allowed to stay for one minute extra in the sand bath beyond each
nominal reaction time. The monomer conversion was measured using the gravimetric method [39].

3. Results and Discussion

Figure 2 shows measured monomer conversion at 200 and 220 ◦C. These results agree with what
one expects from free-radical polymerization; that is, the conversion increases with time, monomer
concentration, and temperature. In addition, this figure shows that the n-BA self-initiation reaction
in both solution and bulk media [39] is so strong that the monomer conversion can exceed 60% after
only 220 min in the absence of any external initiators. Monomer self-initiation reactions of both
acrylate and methacrylate families were investigated in our previous quantum chemical calculation
studies [35–37]; it was found that the second reaction step, transition from a singlet diradical to a
triplet one (Equation (2)), is the rate limiting step in the monomer self-initiation. We also found
theoretically that the overall monomer self-initiation reaction is second order [35–37]. To validate the
overall-reaction order obtained via the quantum chemical calculations, we estimate the overall-reaction
order from monomer conversion measurements using a macroscopic mechanistic model.
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Figure 2. Cont.
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Figure 2. Measured n-BA conversion vs. time (different n-BA/n-heptane ratios) at 200 ◦C (top) and
220 ◦C (bottom).

In thermally monomer-self-initiated polymerization, various reactions happen simultaneously.
A list of the most likely reactions is presented in Table A1 in the Appendix A; more details
can be found in Ref. [39]. The reactions include, propagation by secondary and tertiary radicals,
termination by secondary and tertiary radicals, monomer self-initiation, back-biting, β-Scission,
inter-chain transfer to polymer, chain transfer to monomer, chain transfer to solvent, termination by
combination, and termination by disproportion. Except for monomer self-initiation reaction, all other
reactions are considered as elementary reactions and their reaction rate equations are derived by
the method of moments. Writing component mass balances leads to 21 differential equations [39],
describing monomer and solvent concentrations; concentrations of secondary radicals containing zero,
one, two and three monomer unit(s); the zeroth, first and second moments of the secondary radical
chain length distribution; the zeroth, first, second and third moments of the chain length distribution
of tertiary radicals formed through intermolecular chain transfer to polymer reactions; the zeroth, first,
second and third moments of the chain length distribution of tertiary radicals created by backbiting
reactions; and the zeroth, first, second and third moments of the chain length distribution of live
and dead polymer chains. Given the initial monomer concentration and the monomer concentration,
[M]0 and [M], the monomer conversion, X, is calculated using:

X =
[M]0 − [M]

[M]0
(5)

To simulate the model, we use the rate coefficients of all reactions except for the overall
self-initiation reaction, reported in Ref. [39]. Although frequency factor and activation energy of n-BA
self-initiation reaction in bulk had been estimated in our previous article [39], we re-estimate them
here in solution to compare these results with our previous findings. In our previous bulk study [39],
to simulate the macroscopic mechanistic model, the order of n-BA overall self-initiation reaction was
set to 2, obtained from quantum chemical calculations [35–37]. Here, in addition to re-estimating the
frequency factor and activation energy, we estimate the order of n-BA overall self-initiation reaction
from the conversion measurements. We use ode15s command of MATLAB to integrate the differential
equations of the macroscopic mechanistic model and use ga command of MATLAB to minimize the
sum of squared residuals:

SSRs =
8

∑
l=1

5

∑
j=1

2

∑
k=1

(
Xe
(
tl , CSj, Tk

)
− Xm

(
tl , CSj, Tk, n, Z, Ea

))2 (6)
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subject to:
5.145 × 106 − 4.289 × 106 ≤ Z ≤ 5.145 × 106 + 4.289 × 106

(
M−1s−1

)
1.65 × 105 − 0.05 × 105 ≤ Ea ≤ 1.65 × 105 + 0.05 × 105 (J/mol)

1.5 ≤ n ≤ 2.5

where 5.145× 106 ± 4.289× 106
(

M−1s−1
)

and 1.65× 105 ± 0.05× 105 (J/mol) are the frequency factor
and activation energy values for n-BA bulk polymerization reported in [39], and 2 is the theoretical
value of n reported in [35–37]. Here, Xe is the measured monomer conversion value at the reaction
time tl , the solvent concentration CSj, and the temperature Tk, while Xm is the model-predicted
monomer conversion at the same time, solvent concentration and temperature. n, Z, and Ea are the
order, frequency factor, and activation energy of the n-BA overall self-initiation reaction, respectively.
The monomer conversion measurements are available at two different temperatures (200 and 220 ◦C),
five different n-BA/n-heptane volume ratios (50/50, 70/30, 80/20, 90/10, and 100/0), and four different
times (55, 110, 165, and 220 min) twice.

In high temperature free-radical polymerization, secondary reactions like transfer to solvent are
possible. In this work, n-heptane was used as the solvent, because transfer reactions to this solvent
are negligible. For other vinyl monomers such as styrene and methyl methacrylate, the transfer to
n-heptane constant is also very low [40]. On the other hand, solvents like n-butanol, methyl ethyl
ketone, and p-xylene participate in chain transfer reactions [41]. The macroscopic mechanistic model
showed that the concentration of n-heptane does not change under the experimental conditions used
in this study. For example, the highest transfer to n-heptane constant found in [40] is 90 × 10−4,
while values as low as 0.865 × 10−4 are also reported in the same reference. In the worst scenario
when the transfer-to-solvent constant is 90 × 10−4, n-BA/n-heptane ratio is 50/50 volume%, and the
temperature is 220 ◦C, our model showed that the solvent concentration decreased by 0.39% from 3.4169
to 3.4033 (mol/L) after 250 min of the polymerization, indicating the insignificance of chain-transfer-to
n-heptane reactions. Thus, it is logical to assume that transfer-to-n-heptane reactions are negligible.

The frequency factor, activation energy, and the order of n-BA overall self-initiation
reaction estimated from the conversion measurements are: 1.069 × 106 ± 0.656 × 106

(
M−1s−1

)
,

1.61 × 105 ± 0.026 × 105 (J/mol), and 2.08 ± 0.28. A possible reason for this frequency factor
value (estimated here for solution polymerization) being less than the value obtained for bulk
polymerization [39] is the cage effect of the solvent. Figures 3 and 4 show the model prediction of
n-BA conversion with these estimated values. They indicate that the model can predict the conversion
well at all temperatures and solvent concentrations. The frequency factor and activation energy values
reported here for the solution polymerization agree well with the values already reported for the
bulk polymerization: 5.145 × 106 ± 4.289 × 106

(
M−1s−1

)
and 1.65 × 105 ± 0.05 × 105 (J/mol) [39].

The order of the monomer self-initiation reaction found here also agrees well with the one obtained
theoretically through quantum chemical calculations [35–37]. Figure 5 shows the sensitivity of our
macroscopic mechanistic model to changes in the order, activation energy, and frequency factor.
It indicates that the predicted conversion has the lowest sensitivity to the frequency factor (Z) and the
highest sensitivity to the activation energy, Ea.
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Figure 3. Measured and predicted n-BA conversion at 200 ◦C (n-BA/n-heptane volume ratios 50/50
and 70/30 (top), and 80/20, 90/10, and 100/0 (bottom)).

Figure 4. Measured and predicted n-BA conversion at 220 ◦C ( n-BA/n-heptane volume ratios 50/50
and 70/30 (top), and 80/20, 90/10, and 100/0 (bottom)).
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Figure 5. Sensitivity of the model predictions to changes in n (top figure), Z (middle figure),

and Ea (bottom figure) (50/50 n-BA/n-heptane ratio; 220 ◦C). Z∗ = 1.069 × 106
(

M−1s−1
)

,

E∗
a = 1.61 × 105(J/mol), and n∗ = 2.08.

4. Conclusions

Experimental results showed that n-BA undergoes self-initiation reaction at high temperatures
in the presence and absence of the solvent. Macroscopic mechanistic model predictions showed that
n-heptane does not participate in the polymerization; that is, chain-transfer-to-n-heptane reactions
are negligible under the experimental conditions. The monomer conversions predicted by the model
agree well with the experimental data. In addition, the order of the n-BA overall self-initiation reaction
estimated from conversion is 2.08 ± 0.28, which is in agreement with the theoretical value of 2 calculated
using quantum chemical calculations [35–37]. Moreover, the frequency factor and activation energy of
n-BA overall self-initiation reaction in solution polymerization are in agreement with those estimated
for the same reaction in bulk. The sensitivity analysis showed that the macroscopic mechanistic model
is adequately sensitive to the three estimated parameters.
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Appendix A

Table A1. n-BA polymerization reactions.

a. Apparent monomer self-initiation reaction

3M
ki→ R∗

1 + R∗
2

b. Propagation reactions

R∗
n + M

kp→ R∗
n+1

R∗∗
n + M

kt
p→ R∗

n+1 (+LCB)

R∗∗∗
n + M

kt
p→ R∗

n+1 (+SCB)

R∗
n + Um

kmac→ R∗∗
n+m

c. Backbiting reactions (n > 2)

R∗
n

kbb→ R∗∗∗
n

d. β-scission reactions (n > 3)

R∗∗∗
n

kβ→ U3 + R∗
n−3

R∗∗∗
n

kβ→ R∗
n−3 + U3

R∗∗∗
n

kβ→ Un−2 + R∗
2

R∗∗∗
n

kβ→ R∗
2 + Un−2

R∗∗
n

kβ→ Un−m + R∗
m

R∗∗
n

kβ→ R∗
m + Un−m

e. Intermolecular chain transfer to polymer reactions

R∗
n + Dm

mktrP→ Dn + R∗∗
m

R∗
n + Um

mktrP→ Dn + R∗∗
m

f. Chain transfer to monomer reactions

R∗
n + M ktrM→ Dn + R∗

1

R∗∗
n + M

kt
trM→ Dn + R∗

1

R∗∗∗
n + M

kt
trM→ Dn + R∗

1

g. Chain transfer to solvent reactions

R∗
n + S

ktrS→ Dn + R∗
0

R∗∗
n + S

kt
trS→ Dn + R∗

0

R∗∗∗
n + S

kt
trS→ Dn + R∗

0

h. Termination by coupling reactions

R∗
n + R∗

m
ktc→ Dn+m

R∗
n + R∗∗

m
2kt

tc→ Dn+m

R∗
n + R∗∗∗

m
2kt

tc→ Dn+m

R∗∗
n + R∗∗

m
ktt

tc→ Dn+m

R∗∗
n + R∗∗∗

m
2ktt

tc→ Dn+m

R∗∗∗
n + R∗∗∗

m
ktt

tc→ Dn+m
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Table A1. Cont.

i Termination by disproportionation reactions

R∗
n + R∗

m
ktd→ Dn + Um

R∗
n + R∗∗

m
kt

td→ Dn + Um

R∗
n + R∗∗

m
kt

td→ Dm + Un

R∗
n + R∗∗∗

m
kt

td→ Dn + Um

R∗
n + R∗∗∗

m
kt

td→ Dm + Un

R∗∗
n + R∗∗

m
ktt

td→ Dn + Um

R∗∗
n + R∗∗∗

m
ktt

td→ Dn + Um

R∗∗
n + R∗∗∗

m
ktt

td→ Dm + Un

R∗∗∗
n + R∗∗∗

m
ktt

td→ Dn + Um
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Abstract: The error-in-variables-model (EVM) is the most statistically correct non-linear parameter
estimation technique for reactivity ratio estimation. However, many polymer researchers are unaware
of the advantages of EVM and therefore still choose to use rather erroneous or approximate methods.
The procedure is straightforward but it is often avoided because it is seen as mathematically and
computationally intensive. Therefore, the goal of this work is to make EVM more accessible to
all researchers through a series of focused case studies. All analyses employ a MATLAB-based
computational package for copolymerization reactivity ratio estimation. The basis of the package
is previous work in our group over many years. This version is an improvement, as it ensures
wider compatibility and enhanced flexibility with respect to copolymerization parameter estimation
scenarios that can be considered.

Keywords: copolymerization kinetics; copolymer composition; design of experiments;
error-in-variables-model (EVM); parameter estimation; polymer reaction engineering; reactivity ratios

1. Introduction

In copolymerization kinetics, reactivity ratios are important parameters. Not only do reactivity
ratio estimates specify the degree of incorporation of each comonomer into the copolymer (i.e., average
copolymer composition) but they also provide information about other copolymer microstructural
indicators (namely azeotropic point, sequence length distribution, triad fractions and so on).
This knowledge of kinetics and microstructure can be useful in synthesizing copolymers with specific
desirable properties for specific applications. Thus, polymer chemists and polymer reaction engineers
require reliable reactivity ratio estimates.

Over the years, many different (and incorrect) methods have been implemented for reactivity
ratio estimation. Linear parameter estimation techniques (such as the Mayo-Lewis method (method
of intersections), the Fineman-Ross method and the Kelen-Tüdös method) were used previously due
to lack of computational power. However, these techniques should not be used, as linear estimation
techniques applied to non-linear models result in faulty parameter estimates and a distorted error
structure [1–3]. Other common sources of error in parameter estimation include poorly designed
experiments—too few (usually unreplicated) data points, chosen at random—inherent experimental
difficulties (especially at low conversion levels) and inappropriate kinetic models. Ultimately, this has
created a wide variety of reactivity ratios in the literature, even for similar copolymer systems (see,
for example, reactivity ratios associated with the copolymer of 2-acrylamido-2-methylpropane sulfonic
acid and acrylamide, as summarized by Scott et al. [4]).

The most statistically correct technique for reactivity ratio estimation is the error-in-variables-model
(EVM). EVM is a non-linear parameter estimation technique that considers the error present in all
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variables. The procedure is fairly straightforward but somewhat computationally intensive. As a result,
researchers often revert back to “historical” (and incorrect) linear parameter estimation techniques.
It is speculated that researchers choose not to use EVM for two main reasons: (1) They are unaware
of EVM and its advantages, and/or (2) They are intimidated by the complexity of the background
mathematics required to use EVM. Therefore, the goal of the current work (based on past work as
described in references [1–3]) is to make EVM more accessible to all researchers by analyzing a variety
of copolymerization case studies using a ready-to-use computational package.

A series of five case studies presented herein revisits copolymerization data from the literature;
each analysis has a specific goal in mind. Initially, we will look at current “best practices” and their
shortcomings (Section 4.1) by exploring linear parameter estimation techniques (Exhibit A) and the
limitations associated with low conversion data sets (Exhibit B). Next, we will demonstrate how to
maximize and exploit information content from experimental data (Section 4.2). More specifically,
case studies will exhibit the benefits of using cumulative copolymerization data (Exhibit C), the need for
replicated experiments (Exhibit D) and the advantages of sequential design of experiments (Exhibit E).

2. A Brief Overview of EVM for Reactivity Ratio Estimation

2.1. Copolymerization Models

Monomer reactivity ratios (r1 and r2) are parameters used to describe the potential for
homopropagation relative to cross-propagation. Reactivity ratios can be estimated using experimental
data and a copolymerization model, if the unreacted monomer composition in the polymerizing
mixture and the cumulative copolymer composition are known [1–5].

The Mayo-Lewis equation (see Equation (1)), also called the instantaneous copolymer composition
(ICC) equation, is the most widely used copolymerization model. Equation (1) can be used to
determine the instantaneous mole fraction of monomer 1 incorporated into the copolymer (F1) given
the comonomer composition in the polymerizing mixture (as mole fractions of unbound monomer,
fi). It is important to note that the Mayo-Lewis equation provides the instantaneous copolymer
composition, which means that the model is only applicable for low conversion data (typically <10%,
where composition drift is minimal).

F1 =
r1 f 2

1 + f1 f2

r1 f 2
1 + 2 f1 f2 + r2 f 2

2
(1)

where r1 = k11
k12

and r2 = k22
k21

(kij is the rate constant for each of the four possible propagation reactions,
with active center i adding monomer j).

In order to analyze copolymerization data for medium or high conversion levels, the cumulative
form of the copolymer composition model becomes necessary. Direct numerical integration (DNI)
requires combining and solving (simultaneously) an instantaneous mole balance and a cumulative
mole balance (after reaching a certain molar conversion level, Xn). The instantaneous mole balance
(Equation (2)) is an ordinary differential equation, from which fi can be found at any conversion level
(initial conditions f 1 = f 1,0 at Xn = 0). The cumulative mole fraction corresponding to Xn is given by
the well-known Skeist equation (Equation (3)). DNI is a direct numerical approach and does not rely
on model transformations or other potentially restrictive assumptions. This is a significant advantage
over other estimation approaches with copolymerization models [3,6].

d f1

dXn
=

f1 − F1

1 − Xn
(2)

F1 =
f1,0 − f1(1 − Xn)

Xn
(3)
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2.2. Error-in-Variables-Model (EVM)

A full statistical explanation of the error-in-variables-model (and enumeration of its benefits)
has been presented previously; the interested reader should refer to Reilly and Patino-Leal [7] or
Kazemi et al. [3,6,8]. Only the basics are presented herein, for the reader to have a brief overview
before we tackle the case studies.

As mentioned previously, EVM forces the researcher to consider all sources of error, including the
error associated with independent variables (such as feed composition) and (measured) cumulative
copolymer composition. To obtain estimates of the “true” values of both the independent variables
and the parameters, the EVM program uses a nested-iterative loop (this is represented schematically
in Figure 1, with variables defined in the discussion below). The inner loop searches for “true” values
of the independent variables, since there is inevitably some error associated with the measured values.
Mathematically, we can relate the vector of measurements (xi) to the vector of their unknown “true”
values (ξi) and an error term (kεi), according to Equation (4). In the error term, k is a constant that
represents the magnitude of the error and ε (error) is a random variable that is typically uniformly
distributed on the interval [−1, 1] (an additional explanation is included in Appendix A, for the
interested reader). At the same time, the outer loop uses a copolymerization model (such as the
ICC model, Equation (1)) to relate the “true” variables and the parameter (reactivity ratio) estimates,
as shown in Equation (5).

xi = ξi(1 + kεi) (4)

g
(

ξ i, θ
)
= 0 (5)

 

Figure 1. Nested-iterative algorithm for the error-in-variables-model (EVM).

From a statistical perspective, the program uses this nested-iterative approach to minimize the sum
of squares between the observed and predicted values, both in terms of the error in the independent
variables and in terms of the parameter estimates. When the objective function (Equation (6)) is
minimized, the program has found the best estimates for both the independent variables and the
parameters (reactivity ratios).

Φ =
1
2

n

∑
i=1

ri(xi − ξ̂ i)
′V −1

(
xi − ξ̂ i

)
(6)
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where n is the number of experimental trials (runs), ri is the number of replicates for the ith trial, xi is
the average of the ri measurements (xi), ξ̂ i is an estimate of the true values of the variables (ξ i) and V is
the variance-covariance matrix of the variables (which provides information about measurement error
of the variables involved).

Alternatively, minimizing the objective function can be considered graphically, as in Figure 2.
Given a model and some measured (independent) data, the inner loop minimizes the horizontal
distances between the data points and the model (curve). At the same time, the outer loop minimizes
the vertical distances between the data points and the model (that is, the outer loop attempts to
reconcile model predictions and measurements).

Figure 2. Graphical representation of EVM (inspired by [2]).

The computational package described herein that employs EVM for reactivity ratio estimation
is based on the RREVM program created by Dubé et al. [1] (in Fortran 77), which was later updated
by Polic et al. [2]. The program version was further updated and converted to MATLAB by
Kazemi et al. [3,6,8]. The new and improved software version in MATLAB ensures wider compatibility
and allows for possible extensions to other multi-component systems [9]. Also, using MATLAB as
the program platform allows for open-source programming, which gives researchers the option of
modifying and tailoring the program as needed.

3. Program Description

3.1. Overview

Although the technical aspects of EVM were kept to a minimum in Section 2 (since more details
can be found in the references), several comments are now in order about the modifications to the
program, in order to make it more user-friendly. The program has been equipped with a graphical
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user interface (GUI), so that very little knowledge of MATLAB (or programming, in general) is
required to invoke the EVM algorithm. Once users open the QuickStart file and execute the program,
they are presented with a series of instructions and user prompts. Details and program screenshots are
presented in Appendix B for the interested reader, whereas a brief overview is presented in this section.

First, the user must choose their preferred method of data entry (Figure A1). Data input may be
manual (with step by step prompts) or may employ a user-prepared data file. Next, the user must
indicate whether the copolymerization information (data) for analysis is instantaneous (below 10%
conversion) or cumulative (medium-high conversion).

Once these preliminary decisions have been made, the user is prompted to provide the
copolymerization data required for analysis (Section 3.2). Finally, the program evaluates the data and
presents the results (Section 3.3). The program typically converges within seconds for the instantaneous
analysis and in under one minute for the cumulative analysis (usually within less than 10 to 20 iterations
in both cases). The time (or number of iterations) required for convergence is a consequence of the
location of the initial estimates and the precision required in the estimates; better initial estimates will
result in faster program convergence. The EVM program is also equipped with a “time-out” option,
which occurs if no solution has been found after a pre-determined number of iterations.

3.2. Program Requirements

3.2.1. Instantaneous Model

Preliminary estimates of r1 and r2 act as “starting points” for EVM (Figure A2). Depending on
how much is known about the copolymer system, this information may be acquired from either the
literature or preliminary experiments. Literature values can be good starting guesses for reactivity
ratios, either from a prior study on the same copolymer system (or even from existing values from
a similar system) or from simple trending analysis based on preliminary/screening experiments over
a limited range of conditions. Prior knowledge can provide valuable information for both the design
and estimation steps. If these preliminary estimates are far from the real ones, convergence may simply
take slightly longer than typical orders of magnitude given at the end of Section 3.1.

For the instantaneous case, the copolymerization data required are the feed composition (f 1,0)
and cumulative copolymer composition (F1), both in terms of monomer 1 (see sample program
prompt in Figure A3). (F1 is approximated by F1 for low conversion experiments treated by the
instantaneous case). As mentioned previously, the ICC model assumes that composition drift does
not occur. Therefore, it is recommended that only low conversion data (below 10% conversion) be
included in this analysis.

The final prompt prior to parameter estimation is a review of the default settings (Figure A4).
This window gives users the opportunity to check settings such as the error type (additive
vs. multiplicative error), the error tolerance level and the variance-covariance matrix for the
copolymerization system. Details regarding these input values are presented in the Default Settings
section (Section 3.2.3).

If the user prefers to use a pre-made data file for program input (see again Figure A1), the same
information is required: preliminary reactivity ratio estimates, experimental data and program settings.
However, all of the data input is presented in a single ‘.txt’ file, which can be saved, modified
(as necessary) and re-analyzed. This is particularly advantageous if a data set is being altered slightly
between analyses, as in some of the case studies presented in Section 4. For the interested reader,
a sample data file is presented in Appendix B (Figure A5).

3.2.2. Cumulative Model

The analysis with the cumulative model uses many of the same inputs as the instantaneous
analysis but the direct numerical integration (DNI) requires additional information. After the user
provides preliminary reactivity ratio estimates, one is prompted to input the molecular weights (MWi)
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of both comonomers. This information is required to relate weight conversion data (Xw, which can be
experimentally determined using gravimetry) to molar conversion data (Xn, which is used in the DNI
as per Equations (2) and (3)). The program converts Xw to Xn according to Equation (7).

Xn = Xw
MW1 f1,0 + MW2 f2,0

MW1F1 + MW2F2
(7)

The next program requirement is the input of the copolymerization data. In this case, since
medium or even high conversion data may be analyzed, the conversion values must be included
for each point. Therefore, the user enters three arrays of data: Xw (measured mass conversion), f 1,0

(known initial feed composition) and F1 (measured cumulative copolymer composition). Again, initial
reactivity ratio estimates, monomer molecular weights and experimental data may be provided
through this series of prompts or in a single data file.

3.2.3. Default Settings

A number of default settings are included in the program to ensure ease of implementation
(see again Figure A4). However, settings such as the number of parameters, equations and/or variables
involved should not be modified. Changing these settings (and modifying the associated source code)
allows for expansion of the program to other applications, such as reactivity ratio estimation for
multi-component polymerizations (a program for ternary reactivity ratio estimation has already been
developed and applied to experimental terpolymerization data) [9].

The only change that might be made to the default settings is to the variance-covariance matrix,
V. The matrix dimension must not be modified but individual entries may be changed to incorporate
prior knowledge. For example, since the instantaneous model uses two variables (f 1,0 and F1),
the variance-covariance matrix is a 2 × 2 matrix. Additional information about default entries in the V
matrix can be found in Appendix A.

3.3. Results & Diagnostics

Once the program has all necessary (input) data, EVM acquires the best possible estimates of the
reactivity ratios (θ) and the independent variables (ξ i).

Additional outputs are the objective function value (Φ, minimized as per Equation (6)) and G,
which is the expected value of the second derivative of Φ with respect to the parameters. This is
expressed mathematically in Equation (8).

G = E

[
d2Φ

dθidθj

]
=

n

∑
i=1

riZ′
i
(
BiVB′

i
)−1Zi (8)

For the interested reader, more information about Equation (8) (and relevant variables) is given in
Appendix A. However, since the program calculates the G matrix “behind the scenes”, the average
user should focus on the fact that the G matrix gives valuable information about the parameters
(θ, specifically r1 and r2). In fact, the inverse of the G matrix provides an approximation of the
variance-covariance matrix for the parameters. With this information, the MATLAB program can plot
joint confidence regions (JCRs), which are discussed in what follows.

Joint Confidence Regions

JCRs are typically elliptical contours that quantify the level of uncertainty in the parameter
estimates; smaller JCRs indicate higher precision and therefore more confidence in the
estimation results.
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In this program, the joint confidence region for parameter estimates can be visualized using
an “error ellipse” (Equation (9)). This assumes that the error be normally distributed and that the
variance be known. (

θ − θ̂
)′G(θ − θ̂

)
≤ χ2

p,α (9)

where χ2
p,α represents the chi-squared distribution for p parameters and a confidence level of (1 − α).

The program uses χ2
2,0.05 = 5.991 to plot JCRs at the 95% confidence level.

Perhaps the most useful information from the calculation of JCRs is the degree of precision (that
is, the size and shape of the error ellipse). Ideally, the JCR will be small and round (as in Figure 3,
ellipse “A”). A small JCR confirms that the parameter estimates are close to the “true” values and
a round JCR indicates that the two parameter estimates have approximately the same amount of
associated uncertainty. If, on the other hand, the JCR is long and narrow, it suggests that one parameter
may be well-defined, whereas the other parameter may have a significant amount of associated
uncertainty (see, for example, Figure 3, ellipse “B”).

 
Figure 3. Sample Joint Confidence Regions (JCRs).

Another important piece of information is the degree of parameter correlation, which can be
evaluated according to the slope of the JCR. Parameter correlation is something that should be avoided
as much as possible and can be minimized by using designed experiments. If there is a high degree of
parameter correlation, the elliptical JCR will be at an angle, as in Figure 3, ellipse “C”. Well-behaved
copolymerization systems should have reactivity ratios with similar degrees of uncertainty and
minimal correlation.

4. Case Studies

4.1. Current “Best Practices” and Their Shortcomings

4.1.1. Exhibit A: Why Do Researchers Continue to Use Linear Parameter Estimation Techniques?

As mentioned in the introduction, linear parameter estimation techniques were originally used
for reactivity ratio estimation (RRE) due to lack of computational power. However, since the required
technology is now readily available, linear parameter estimation techniques should no longer be
used for RRE. Linearizing or transforming the model distorts the error structure and may result in
faulty parameter estimates. The statement may seem obvious but it is still worth emphasizing:
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linear parameter estimation techniques should not be used for the estimation of parameters in
non-linear models!

Although most polymer researchers know that linear techniques are inaccurate, they are still
taught in both introductory and graduate level polymer chemistry/science courses. Additionally,
in perhaps the most commonly perused non-technical “reference,” Wikipedia, only the outdated linear
techniques are mentioned. It is no wonder, then, that researchers continue to use incorrect parameter
estimation techniques.

Exhibit A presents an overview of recent literature [10–13] regarding the copolymerization of
2-methylene-1,3-dioxepane (MDO; monomer 1) and vinyl acetate (VAc; monomer 2) (see also Table 1;
RR stands for reactivity ratio). This copolymer has gained considerable attention in the past decade,
largely due to its degradable properties. Researchers are especially interested in the reactivity ratios
for the system, as reactivity ratios provide information about the copolymer microstructure. However,
the reactivity ratio estimation (RRE) techniques used in this field are often incorrect. This case study
will focus primarily on the issue of linear parameter estimation techniques, but invalid low conversion
assumptions (that is, inappropriate use of the instantaneous copolymerization model) and error-prone
data cannot be overlooked. Therefore, to demonstrate the advantages of EVM, select data from the
literature will be re-evaluated (properly) and comparisons will be conducted.

Table 1. Summary of reactivity ratio estimation (RRE) studies for 2-methylene-1,3-dioxepane (MDO;
monomer 1)/vinyl acetate (VAc; monomer 2) copolymerization.

Ref. RRE Technique
RRE Results

Comments
r1 r2

[10] Kelen-Tüdös (K-T) 0.47 1.56

• Linear RRE technique used
• Inappropriate low conversion assumption (reactivity ratios

are “different enough” that composition drift is possible)
• Low conversion (<20%) data not presented; cannot be

re-evaluated with EVM

[11] Fineman-Ross (F-R) 0.93 1.71

• Linear RRE technique used
• Unequal weighting of experimental data
• Instantaneous model applied to high conversion data

(58–78% conversion reported)
• F-R plot axes unintentionally flipped in original work

(which changes RR estimates)
• More comments in what follows

[12] Non-Linear Least
Squares (NLLS) 1.03 1.22

• Non-linear RRE technique used (good!)
• Controlled radical polymerization (RAFT) data used for

RRE, therefore parameter estimates are “apparent”
reactivity ratios (as per Feldermann et al. [14])

[13] Fineman-Ross (F-R) 0.14 1.89

• Linear RRE technique used
• Inappropriate low conversion assumption (as with [10],

reactivity ratios are “different enough” that composition
drift is possible)

• Suggest that low MDO reactivity (compared to other
MDO/VAc RRE results in the literature) a result of low
temperature; however, effect of temperature on RRs is
usually weak

Evaluation of MDO/VAc Copolymerization Data: Fineman-Ross vs. EVM

In a recent study by Undin et al. [11], experimental data from six distinct feed compositions
were used to estimate reactivity ratios for the MDO/VAc copolymerization. These six (batch) runs
were allowed to continue until conversion did not change and the final conversion and composition
measurements were reported. Finally, the reactivity ratios for the system were calculated using the
Fineman-Ross (F-R) method. However, as mentioned briefly in Table 1, the data on the x and y axes
were unintentionally flipped in the analysis; thus, the reactivity ratio estimates originally reported are
not representative of the experimental data collected.

Besides this unintended error, there are several other problems with the analysis, including
(1) the use of undesigned data (that is, no design of experiments used for the selection of feed
compositions); (2) the lack of composition drift considerations (RRE experiments should be performed
at low conversion, or a cumulative model should be used); (3) the use of an outdated (and linear!) RRE
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technique. For the purposes of this discussion, we will focus on the use of the F-R method for RRE but
the other important points should also be noted and kept in mind.

As discussed by Hagiopol [15], the F-R method is often justified by its simplicity. However,
it has many shortcomings, including unequal weighting of experimental data and symmetry issues
(i.e., calculation results depend on which monomer is selected as M1). The data set presented in [11] is
especially vulnerable to these shortcomings, largely due to the undesigned initial feed compositions
(collection and use of undesigned data for parameter estimation also induce considerable correlation
between the parameters, which is highly undesirable). As shown in Table 2, some of the data are
obtained under fairly low M1 comonomer feed fraction; these conditions tend to have the greatest
influence on the slope of a line, which ultimately affects reactivity ratio estimates obtained using the
F-R method [15].

Table 2. RRE data for the copolymerization of MDO (monomer 1)/VAc (monomer 2) [11].

Sample Monomer Feed Copolymer Composition

f 1,0 f 2,0 F1 F2

MDO70 0.70 0.30 0.66 0.34
MDO50 0.50 0.50 0.42 0.58
MDO30 0.30 0.70 0.23 0.77
MDO10 0.10 0.90 0.06 0.94
MDO5 0.05 0.95 0.03 0.97
MDO1 0.01 0.99 0.005 0.995

The more pressing concern with the F-R method (also described by Hagiopol [15]) is the lack of
symmetry. Thus, values of r1 and r2 depend on which monomer is selected as M1. To demonstrate this
point, the data collected by Undin et al. [11] are evaluated with M1 = MDO (which was performed
incorrectly in the original work; see Figure 4a) and with M1 = VAc (performed herein for the
demonstration; see Figure 4b).

It is clear from Figure 4 that the reactivity ratio estimates depend on which comonomer is selected
as M1; the fact that two reactivity ratio pairs can be obtained from a single estimation technique
is problematic. It is also interesting to note that both analyses give r1 > 1 and r2 > 1. While this
is physically impossible, it is a side-effect of experimental (and estimation) error. In reality, these
results suggest that both reactivity ratios should be close to unity (which agrees with the findings of
Undin et al. [11] and Hedir et al. [12]) but that at least one reactivity ratio is <1.

(a) (b)

Figure 4. Fineman-Ross plots for the copolymerization of MDO/VAc with (a) M1 = MDO (rMDO = 1.06;
rVAc = 1.83 and (b) M1 = VAc (rMDO = 1.96; rVAc = 2.03).
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The issue of symmetry (combined with the statistical inaccuracy of using linear parameter
estimation to evaluate non-linear models) highlights the need for a non-linear parameter estimation
technique like EVM. When using EVM for reactivity ratio estimation, the influence of which
comonomer is defined as M1 has no impact on the parameter estimates. (If RR estimates are slightly
different based on the choice of M1, this is due to experimental error in the data). As shown in Figure 5,
reactivity ratio estimates are within the JCR, regardless of which monomer is identified as M1. That is,
slight discrepancies between EVM-obtained reactivity ratio estimates are well within the expected
error (1% error in fi,0 and 10% error in Fi; more on typical error levels in Appendix A). As expected,
using measured/reported values as program inputs (in this case, f MDO,0 and FMDO) provides us with
a greater degree of confidence in our results; note that the JCR in Figure 5a is smaller than that in
Figure 5b. There is also significantly more parameter correlation visible in Figure 5b, as evidenced
by the diagonal nature of the (more elongated) JCR. This, again, is as expected; the VAc data set
was calculated from the measured MDO composition data, so correlation is inevitable here. For the
interested reader, data files used for this analysis are provided in Appendix C (Section C.1).

In using EVM to re-analyze the data, r1 > 1 and r2 > 1 is still observed (see again Figure 5).
This outcome is likely a result of using cumulative composition data in an instantaneous model, since
composition drift was not taken into account for this data set and conversion levels up to 80% are
reported. Even the most statistically correct technique cannot reconcile cumulative experimental
data with an instantaneous model (and, in this case, appropriate conversion data are unavailable for
reanalysis with the cumulative EVM program).
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Initial Estimates: rMDO = 0.93 & rVAc = 1.71

M1 = MDO: rMDO = 1.19 & rVAc = 1.87

M1 = VAc: rMDO = 1.01 & rVAc = 1.72

Figure 5. EVM-obtained RR estimates and JCRs for the copolymerization of MDO/VAc with
(a) M1 = MDO (rMDO = 1.19; rVAc = 1.87) and (b) M1 = VAc (rMDO = 1.01; rVAc = 1.72).

Finally, we can visually evaluate the prediction performance of the reactivity ratio estimates, which
involves comparing the experimental values to those predicted by the ICC equation (Equation (1)).
As shown in Figure 6, the symmetry issues associated with the Fineman-Ross (F-R) technique have
a significant impact on the prediction performance (red curves, Figure 6a). In contrast, both of the
predictions using EVM-obtained RR estimates (blue curves, Figure 6b) are in agreement with each
other and with the experimental data. This is compelling evidence to choose non-linear parameter
estimation techniques like EVM over the statistically incorrect linear parameter estimation techniques.
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(a) (b)

Figure 6. Comparison of prediction performance for RR estimates obtained by (a) F-R and (b) EVM.

4.1.2. Exhibit B: Are Researchers Addressing the Limitations of Low Conversion Data Analysis?

As described in Section 2.1, the instantaneous copolymer composition equation (Equation (1))
is only valid at low conversion levels (<10%). This limitation, though sometimes difficult to achieve
experimentally, allows researchers to assume that composition drift does not occur in the samples
being analyzed. Hence, the cumulative and instantaneous mole fractions in the copolymer are about
the same. This experimental fact (and subsequent analysis) is considered “best practice,” and is used
throughout the reactivity ratio estimation literature (see, for example, [10,12–14,16,17]).

However, limiting kinetic investigations to low conversion levels presents some fundamental
challenges. In spite of our best efforts to validate the “lack of composition drift” assumption, there is
almost inevitably some change in feed composition with increasing conversion. From a more practical
perspective, collecting low conversion data presents experimental challenges and the collected data
are extremely prone to error.

Researchers should be aware of these limitations and should act accordingly. One might choose
to include conversion data in the analysis (using a cumulative model and DNI, as per Section 2.1)
to account for composition drift. Alternatively (rather, in addition), researchers might use design of
experiments and experimental replication to address the inevitable error associated with the data
collected. If nothing else, parameter estimation using EVM considers the error present in all variables,
which can account for some of the experimental error. Ultimately, though, even the most statistically
correct technique cannot compensate for bad data collection!

Evaluation of HEA/DCP Copolymerization Data

Recent work by Suresh et al. [16] describes the synthesis and reactivity ratio estimation of
photosensitive copolymers based on 4-(3-(2,4-dichorophenyl)-3-oxoprop-1-enyl) phenylacrylate (DCP;
monomer 2). In the study, DCP was copolymerized with hydroxyethyl acrylate (HEA; monomer 1) and
with styrene and reactivity ratios were determined to better understand copolymerization behavior.
However, as established in Exhibit A (Section 4.1.1), researchers often revert back to linear parameter
estimation techniques and the authors (incorrectly) used the Fineman-Ross (F-R) and Kelen-Tüdös
(K-T) methods for parameter estimation (see Table 3).

Since the virtues of EVM over linear parameter estimation techniques have already been
established, the goal of the current case study is to emphasize the limitations of low conversion data
and demonstrate how they can be addressed using EVM. All experimental data that Suresh et al. [16]
used for reactivity ratio estimation were kept below 15% conversion, so that the instantaneous
copolymerization equation could be used for parameter estimation. But, is “below 15% conversion”
enough? As mentioned previously, this is largely considered “best practice,” but does not account for
composition drift even at low conversions nor for experimental error. As shown in Figure 7, only five
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(seemingly unreplicated) data points were collected for reactivity ratio estimation, with obvious
discrepancies between the experimental data and the model predictions.

Table 3. Summary of RRE results for hydroxyethyl acrylate (HEA; monomer
1)/4-(3-(2,4-dichorophenyl)-3-oxoprop-1-enyl) phenylacrylate (DCP; monomer 2) copolymerization.

Ref. RRE Technique
RRE Results

r1 r2

[16] Fineman-Ross (F-R) 1.53 ± 0.10 0.76 ± 0.16
[16] Kelen-Tüdös (K-T) 1.67 ± 0.13 0.58 ± 0.05
[16] Extended K-T 1.65 ± 0.13 0.60 ± 0.08

Current Work Instantaneous EVM 1.28 * 0.56 *
Current Work Cumulative EVM 1.32 * 0.55 *

* Note: For EVM-obtained reactivity ratio estimates, statistically correct JCRs are presented instead of approximate
confidence intervals (derived on a linear hypothesis); see Figure 8.

 

Figure 7. Prediction performance of RR estimates obtained by linear RRE techniques.

It is likely that these discrepancies are due to experimental error; this type of behavior is observed
very often, especially for low conversion data. In order to address this, researchers should review
potential sources of error; they are likely (1) unidentified composition drift and/or (2) experimental
difficulties. This case study will demonstrate both of these sources of error (and how to handle them).
This is another very important, yet implicit, contribution of EVM. EVM, if nothing else, forces one to
think about the possible sources of variation (and quantify them). Relevant data, program screenshots
and results are available in Appendix C, Section C.2.

To account for composition drift (even at low conversions), the cumulative copolymerization
model (Equations (2) and (3)) should be used. Using direct numerical integration to solve this system of
equations ensures that the feed composition (f 1) is considered as a function of conversion, thus taking
any composition drift into account mathematically. To establish whether unidentified composition
drift is the culprit in the current experimental data set, we can evaluate the data using both the
instantaneous and cumulative models and compare the results (Figure 8, discussed below). In reality,
using the cumulative model would also increase the amount of data available for analysis, as the
copolymerization would be allowed to go to higher conversion levels (and data would continue to be
collected); in addition, the experimental information is enhanced, anyway, since both conversion and
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copolymer composition data are included; see also Section 4.2.1. Ultimately, this would increase the
degree of confidence in the reactivity ratio estimates and decrease the size of the JCR.
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Figure 8. EVM-obtained RR estimates and JCRs for the copolymerization of HEA/DCP using the
instantaneous model (rHEA = 1.28; rDCP = 0.56) and the cumulative model (rHEA = 1.32; rDCP = 0.55).

Figure 8 indicates that the two EVM-obtained reactivity ratio estimates are in good agreement
and the JCR sizes and orientations are similar. Thus, in this case, the effect of composition drift is likely
minimal. Therefore, we will continue our troubleshooting by investigating the second source of error:
experimental difficulties. Since no replicate data are available, we cannot calculate the error associated
with the composition measurements shown in Figure 7. However, as discussed in Section 2.2, EVM
considers the error present in all variables throughout the parameter estimation process. The program
default values of 1% error (associated with f 1,0) and 5% error (associated with F1) were therefore used
in the analysis (see Appendix A for additional information).

The reactivity ratios calculated using the EVM program are as described in Table 3 and Figure 8.
The converged program also provides the best possible estimates of “true” values of the variables,
a feature which was described in Section 3.3 (see also Appendix C, Section C.2. Thus, in Figure 9,
we can compare the experimental (measured) values to the “true” experimental values and the EVM
model predictions (both instantaneous and cumulative).
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Figure 9. Prediction performance of RR estimates obtained using EVM.

Figure 9 indicates that the experimental data points were subject to some degree of error, especially
for f 1,0 = 0.3 and f 1,0 = 0.7. Thus, experimental difficulties are likely the culprit here. The best way to
mitigate this type of problem is to design experiments, replicate copolymerization runs and use EVM
for parameter estimation. Additionally, using full conversion data with the cumulative model gives
a more complete picture of copolymerization kinetics; researchers do not have to struggle with the
experimental challenges of collecting low conversion data.

4.2. Maximizing and Exploiting Information Content

4.2.1. Exhibit C: What Happens when We Take Advantage of ALL Copolymerization Data?

Collecting low conversion data presents some challenges (as described in Exhibit B) but the
instantaneous model is statistically valid if managed properly. That is, good control over conversion
levels (typically < 10%), statistical design of experiments, experimental replication, and/or a non-linear
parameter estimation technique should be used.

Evaluation of BMA/BA Copolymerization Data: Low Conversion Analysis

Ren et al. [18] recently investigated the copolymerization kinetics of n-butyl methacrylate (BMA;
monomer 1) and n-butyl acrylate (BA; monomer 2). Originally, the group collected copolymerization
data at low conversion levels (<10%) so that the instantaneous model (Equation (1)) could be used
for analysis. After estimating preliminary reactivity ratios using the RREVM program [1], additional
(replicated) designed experiments were completed to improve the quality of the data.

This low conversion data set has been re-analyzed using the new MATLAB-based EVM program.
As with the original investigation, analysis was first performed with the preliminary data only
(9 equidistant feed compositions). Then, the analysis was repeated with preliminary data supplemented
by the designed replicates (feed compositions selected using the Tidwell-Mortimer criterion [4,19]).
A comparison of reactivity ratio estimates is shown in Table 4 and the original data and program
output are provided in Appendix C, Section C.3.
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Table 4. Summary of RRE results for n-butyl methacrylate (BMA; monomer 1) and n-butyl acrylate
(BA; monomer 2) copolymerization.

Ref. RRE Technique
RRE Results

r1 r2

[18] Preliminary Estimates (RREVM) [1] 2.100 0.489

[18] Estimates from Tidwell-Mortimer
Designed Experiments (RREVM) [1,2] 2.008 0.460

Current Work Instantaneous EVM (preliminary data) 2.109 0.492

Current Work Instantaneous EVM (preliminary data &
designed replicates) 2.012 0.462

Current Work Cumulative EVM 2.114 0.500

Good agreement is observed between reactivity ratio estimates, no matter what the amount
(or type) of data used. This indicates well-behaved data; the low conversion analysis was done in
a methodical and statistically correct manner.

Evaluation of BMA/BA Copolymerization Data: Medium-High Conversion Analysis

This type of low conversion analysis (as performed by Ren et al. [18]) would be sufficient for
reactivity ratio estimation, especially since design of experiments was included in the investigation.
However, in this case, what if one had also included additional (medium-high conversion) experimental
data? Ren et al. [18] chose to run three feed compositions up to high conversion values; the full
conversion experimental data was used to evaluate the prediction performance of the reactivity ratio
estimates. The analysis showed good agreement between model predictions and experimental data,
thus confirming the reactivity ratio estimates.

Let’s now take this a step further for illustration purposes. We know that using the cumulative
model and direct numerical integration provides us with the opportunity to “repurpose” this
cumulative (medium-high conversion) data for improved reactivity ratio estimation. With a cumulative
model, there is potential to obtain significantly more information (that is, more data points) from each
experiment. Since researchers are not limited to low conversion, less experimental tedium is required
to obtain the same degree of accuracy, as long as the experiments are well-designed.

A direct comparison of the preliminary analysis (9 feed compositions) and the cumulative analysis
(3 feed compositions) results is provided in Figure 10. The same initial estimates were used in both
cases to ensure that both of the RRE techniques had the same starting point. It is interesting to
note that both the reactivity ratio estimates and the JCR areas are almost identical for the two data
sets. This provides us with two main conclusions: that the parameter estimation results using the
instantaneous and cumulative models are in agreement and that the degree of confidence in our results
is approximately the same (regardless of which data set and/or model is being used). Therefore, in this
case, 3 full conversion runs have approximately the same information content as 9 runs that are limited
to low conversion levels.

This result should motivate researchers to think carefully about their preliminary experimental
work. By strategically selecting feed compositions (using design of experiments techniques like
Tidwell-Mortimer [4,19] or EVM [8,9]) and collecting copolymerization data up to medium or high
conversion levels, it is possible to obtain sufficient information about a new system. The results shown
herein suggest that preliminary experimental work can almost be reduced to 1/3 of the original load,
without any loss of information content. Therefore, researchers should be encouraged to make use of
all copolymerization data by employing the cumulative copolymerization model.
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Figure 10. Comparison of results for the copolymerization of BMA/BA using the instantaneous model
(rBMA = 2.11; rBA = 0.49) and the cumulative model (rBMA = 2.11; rBA = 0.50).

4.2.2. Exhibit D: How Many Replicates Do We Really Need?

As demonstrated in Exhibit C, experimental replication is an important aspect of reactivity ratio
estimation. Collection of data for reactivity ratio estimation, especially at low conversion, is subject
to experimental error; replicating experiments helps researchers account for experimental error and
potential lurking variables. In deciding on the number of required replicates, a number of aspects
must be considered [20]. The goal of the current case study is not to do a statistical evaluation of the
number of replicates required but rather to look at pre-existing data and demonstrate once more the
importance of experimental replicates.

Many reactivity ratio estimation studies (including [18,21–23]) have used the Tidwell-Mortimer
(T-M) criterion for design of experiments to select the feed compositions at which to run
copolymerizations for reactivity ratio estimation. In most cases, two optimal feed compositions
(according to T-M) are used and replicated four times each. To establish the importance of replication
and symmetry, this case study will analyze subsets of an original data set from the copolymerization
of styrene (Sty; monomer 1) and ethyl acrylate (EA; monomer 2) [21].

When experiments are statistically designed, it is possible to obtain accurate reactivity ratio
estimates from reduced experimental effort. Replication ensures that experimental results are
repeatable, gives us an estimate of the experimental error and increases the degree of confidence
in the resulting reactivity ratio estimates. The data reported by McManus and Penlidis [21] included
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an initial run and 3 replicates at two feed compositions (8 data points total); the data set is available in
Appendix C, Section C.4.

To create this collection of reactivity ratio estimates and JCRs (Figure 11), the original data
set [21] was revisited with the MATLAB-based RREVM program (blue JCR and circle point estimate in
Figure 11; 3 replicates). Then, one randomly selected replicate at each feed composition was removed
and the data was re-evaluated (red JCR and square point estimate; 2 replicates). This process was
repeated, thus leaving half of the original data set (green JCR and triangle point estimate; 1 replicate).
Finally, only one data point at each feed composition was used in the analysis (black JCR and diamond
point estimate; no replicates).
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Figure 11. Importance of replication for the copolymerization of Sty/EA.

As shown in Figure 11, the reactivity ratio estimates are all similar for the copolymerization of
styrene and ethyl acrylate, regardless of how many replicates are used (in this specific case, for this
specific data set). The JCRs form a series of concentric ellipses and the slight skew (off-centeredness)
depends on which of the replicates are randomly removed. Clearly, using the full data set (3 replicates)
gives a much smaller JCR (and a much higher degree of confidence) compared to the other estimates.
In general, the JCR size increases (that is, the uncertainty becomes greater) as the number of
replicates decreases.

At first glance, it seems as though the uncertainty in r1 is much greater than that in r2

(as demonstrated by the horizontal growth in the JCRs as the number of replicates decreases). However,
this is partially due to the fact that r1 is approximately 6 times larger than r2. Thus, the same relative
error will have a larger absolute value in r1 compared to r2. Another factor that should be considered
is the feed compositions used to collect the experimental data (f 1,0). The T-M criterion suggested
f 1,0 = 0.0788 and f 1,0 = 0.7193, where monomer 1 is styrene [21]. While this is the statistically correct
approach (and an excellent starting point), this means that the experimental data contain information
only about a “monomer 2”-rich system (given f 1,0 = 0.0788, f 2,0 = 0.9212). While f 1,0 = 0.7193 contains
more styrene than ethyl acrylate, an even higher f 1,0 would further improve the degree of confidence in

249



Processes 2018, 6, 8

r1. This will be discussed further (and proven through a case study) in Exhibit E, which demonstrates
the effectiveness of a sequential design of experiments.

In looking at the importance of replication, it is also worth examining the effect of symmetry
on reactivity ratio estimates and JCRs. Specifically, the next step in the investigation looks at how
estimation results are affected when replicates are only available for one of the two recipes. Again, the
styrene/ethyl acrylate data set from McManus and Penlidis [21] was employed.

The reactivity ratio estimates and JCRs presented in Figure 12 tell an interesting story.
When replicates are only included from the high f 1,0 runs, the error in r2 (vertical error, in this case)
increases (red JCR and square). The reverse is true when all of the replicates are from the low f 1,0 (high
f 2,0) runs; uncertainty in r1 becomes much more substantial (green JCR and triangle). This observation
is in agreement with the results of Figure 11, as the inclusion of “monomer 1”-rich data improves the
degree of confidence in r1.

Both asymmetrical data sets give reasonably good estimates of reactivity ratios for the styrene
and ethyl acrylate copolymerization. Ultimately, limited replication is better than no replication at all.
However, it is no coincidence that the JCR from the fully replicated data set is located almost in the
intersection of the other two curves (between the red and green curves in Figure 12). Including all of
the experimental replicates in the analysis ensures that we have the highest degree of confidence in
both r1 and r2, thus decreasing the JCR area as much as possible.
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Figure 12. Effect of symmetry in replication for the copolymerization of Sty/EA.

4.2.3. Exhibit E: Can We Use Design of Experiments to Increase Confidence in Our Results?

In both Exhibit C and Exhibit D, we observed that design of experiments (specifically, using
the Tidwell-Mortimer criterion) is an important aspect of reactivity ratio estimation. Reactivity
ratio estimates obtained using designed data are more accurate and more precise than preliminary
experiments, because they use a combination of prior knowledge and statistical principles to increase
confidence in the final estimates.

In the current case study, we will look at experimental data for the copolymerization of butyl
acrylate (BA; monomer 1) and methyl methacrylate (MMA; monomer 2). The original investigation by
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Dubé and Penlidis [22] was a detailed, multi-step analysis but only data from the first step are used in
the current exhibit.

In investigating the effect of experimental design on the confidence in our estimation results, there
are two important pieces of information to consider. If the preliminary estimates of r1 are smaller than
r2, then (1) uncertainty in r1 will seem much lower than uncertainty in r2 (as explained previously in
Section 4.2.2, the same relative error will have a larger absolute value in r2 compared to r1) and (2) the
Tidwell-Mortimer design will suggest recipes rich in monomer 1. As shown in Figure 13 (black JCR;
2 feed compositions), r1 < r2 for the BA/MMA system and there is more uncertainty in r2 (that is, in the
vertical direction). Generally speaking, we find that the JCR is “stretched” along the axis of the larger
reactivity ratio estimate, which is due to both the absolute error and the selected feed compositions.

Since the absolute error is experiment-dependent, it is a fact of life that one has to live with.
Thus, this case study focuses on item (2) described above: how do the feed compositions (selected
randomly or via design of experiments) affect the reactivity ratio estimates and associated JCRs?
In the case of BA/MMA copolymerization (given preliminary estimates r1 = 0.51 and r2 = 2.38
from Grassie et al. [24]), the Tidwell-Mortimer criterion suggests the following feed compositions:
f 1,0 = 0.543 and f 1,0 = 0.798, where monomer 1 is butyl acrylate [22]. Based on this criterion, all of
the experimental data collected are rich in monomer 1, which provides us with more certainty in r1

(see again Figure 13; black JCR; 2 feed compositions).
At the next step, we can use EVM-based sequential design of experiments [8]. This allows for

further refinement of the reactivity ratio estimates, a higher degree of certainty and therefore smaller
JCRs. The procedure is described below:

(1) EVM is applied to instantaneous (low conversion) data (from [22]) to estimate reactivity ratios.
Feed compositions are selected according to Tidwell-Mortimer design and four runs are done at
each level: f 1,0 = 0.543 and f 1,0 = 0.798.

(2) Parameter estimation results from EVM are recorded (see Appendix C, Section C.5). Specifically,
reactivity ratio estimates (r1 and r2) and the G matrix (Appendix A) are required for sequential
design of experiments.

(3) The EVM-based sequential design of experiments program (using data from step (2), as well as
the preliminary feed compositions from step (1)) is employed. Details on the design have been
reported by Kazemi et al. [8].

From the sequential design of experiments, we find that the “next best” feed composition for
analysis of the BA/MMA copolymerization is f 1,0 = 0.100. This indication that more monomer 2-rich
data is required is very reasonable, since all data collected to this point has been rich in monomer 1.
By introducing experimental data rich in monomer 2, the uncertainty in r2 should decrease.

In the absence of experimental data for f 1,0 = 0.100, data were simulated using the instantaneous
copolymerization model and random error was added (based on the variance reported in the original
study [21]). As was the case for the other feed compositions, four data points at f 1,0 = 0.100 were added
to the analysis. These new data points, along with the original data (shown in Appendix C, Section C.5)
were then used to re-estimate the reactivity ratios with EVM. The results are shown alongside the
original analysis in Figure 13 (red JCR; 3 feed compositions).

The inclusion of data rich in monomer 2 drastically improves the degree of certainty in our
reactivity ratio estimates. While the point estimates are unaffected, the error in r2 is significantly
reduced. This is as expected: when data rich in monomer 2 are available, we can have greater
confidence in r2.

This result demonstrates the importance of design of experiments for reactivity ratio estimation.
We are able to maximize the information content from a minimal number of runs and we are able to
decrease the degree of uncertainty in our parameter estimates. Sequential designs are extremely useful
and revealing and minimize the overall experimental effort.
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Figure 13. Effect of sequentially designed experiments for the copolymerization of BA/MMA.

5. Conclusions

The MATLAB-based program for reactivity ratio estimation (using the error-in-variables-model)
is statistically correct, accurate and user-friendly. This ready-to-use software can easily be employed to
evaluate conversion and composition data, providing researchers with precise reactivity ratio estimates
within seconds. Using EVM for reactivity ratio estimation should provide polymer researchers with
confidence, especially as they continue to use reactivity ratios to predict copolymer properties and
microstructure for specific applications.

We hope that the case studies presented herein will motivate polymer chemists and engineers to
think critically about which technique(s) they use for parameter estimation. Current “best practices”
have serious shortcomings, especially as linear parameter estimation techniques continue to be
used. Ignoring the limitations of low conversion data is imprudent; inappropriate statistical
approaches can undermine even carefully collected data. The case studies have also shown that the
error-in-variables-model can maximize information content from copolymerization data. Researchers
can ensure the accuracy of their results (while minimizing required time and resources) by collecting
and analyzing full conversion data. Also, as demonstrated by the case studies, replication and design
of experiments are key to a high degree of confidence.

Ultimately, the computer program described and demonstrated herein provides both the
ease-of-use required for introductory studies and the flexibility needed for extensions to complex
and/or multi-component systems. Therefore, it should find use in both industry and academia.
The program can be obtained by contacting the authors.
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An Overview of the Appendices

In Appendix A, information about relevant statistical principles is presented. This is intended to
provide the interested reader with additional insight about “behind-the-scenes” mathematical details.
Appendix B presents a general program description, including screenshots with default program
values. Finally, Appendix C contains details and data for each of the specific case studies presented in
the main text (Section 4).

Appendix A. Relevant Statistical Principles

The user need not have a detailed understanding of the statistical principles used in the
error-in-variables-model. However, for the interested reader, some additional information is included
in what follows.

Appendix A.1. Additive and Multiplicative Error

The magnitude (and type) of error associated with the variables can be determined through
independent replication. Typically, the relationship between a variable and its error is either additive
(absolute) or multiplicative (relative). Multiplicative error is typically assumed because error is
presented as a percentage of the measurement (and is, therefore, relative in nature). However, if a user
has insight about a system that indicates additive error, it is possible to modify the program accordingly.

The relationships between the “true” value of the variable (ξ i) and the measured/recorded values
(xi) are shown in Equations (A1) and (A2) for additive and multiplicative error, respectively. Note that
Equation (A2) has been shown previously as Equation (4) but is repeated here (more generally)
for reference.

x = ξ + kε (A1)

x = ξ(1 + kε) (A2)

As explained before, k is a constant that reflects the uncertainty of the variables (for example, if 5%
error is assumed for the multiplicative case, k = 0.05). Error, ε, is a random variable that is typically
uniformly distributed between −1 and 1 [25].

When multiplicative error is assumed, it becomes necessary to transform Equation (A2) so that
the error term is additive. Taking the natural logarithm of both sides gives Equation (A3). Note that
ln(1 + kε) can be replaced by kε, as long as the magnitude of the error does not exceed 10% (k ≤ 0.10).

ln(x) = ln(ξ) + kε (A3)

Regardless of error structure, the value of k (the degree of uncertainty) manifests itself in the same
way in the variance-covariance matrix. This is shown in Equations (A4) through (A7). Equation (A4)
gives the variance of x (for the additive case), whereas Equation (A5) gives the variance of ln(x) (for
the multiplicative case).

V(x) = V(ξ + kε) = k2V(ε) (A4)

V(ln(x)) = V(ln(ξ) + kε) = k2V(ε) (A5)

Equations (A6) and (A7) are relevant to both error structures since V(x) = V(ln(x)), as shown above.

V(ε) = E
(

ε2
)
− [E(ε)]2 =

1∫
−1

ε2

2
dε =

1
3

(A6)

V(x) = V(ln(x)) =
k2

3
(A7)
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The variance estimate shown in Equation (A7) is applied to different variables, which populate
the variance-covariance matrix for the EVM program. The program’s default settings assume 1% error
associated with feed composition (x1 = f 1,0 and k1 = 0.01) and 5% error associated with cumulative
copolymer composition (x2 = Fi and k2 = 0.05). Therefore, the variance-covariance matrix, V, for the
instantaneous (low conversion) case is shown in Equation (A8).

V =

[
V(x1) 0

0 V(x2)

]
=

⎡⎣ k2
1

3 0

0 k2
2

3

⎤⎦ =

[
0.012

3 0
0 0.052

3

]
=

[
0.00003 0

0 0.00083

]
(A8)

This can be cross-referenced with the input data shown in Appendix B (Figures A4 and A5).

Appendix A.2. Calculation of G as an EVM Program Output

Only the very basics are presented in what follows. A detailed discussion of the nested-iterative
EVM algorithm has been presented by Reilly and Patino-Leal [7] and has more recently been described
by Kazemi et al. [3,6].

Equation (A9) below is the definition of G, the second derivative of Φ with respect to the
parameters, given earlier by Equation (8) (Section 3.3).

G = E

[
d2Φ

dθidθj

]
=

n

∑
i=1

riZ′
i
(
BiVBi

′)−1Zi (A9)

ri and V are as defined in Equation 6 (recall that ri is the number of replicates for the ith trial
and V is the variance-covariance matrix of the variables). Zi is the vector of partial derivatives of the
function g

(
ξ i, θ

)
(that is, the model, e.g., see Equation (5)) with respect to the parameters for the mth

element (see Equation (A10)) and Bi is the vector of partial derivatives of the function g
(

ξ i, θ
)

with
respect to the variables.

Zi =

⎡⎢⎢⎣
∂g
(

ξ i, θ
)

∂θm

⎤⎥⎥⎦ (A10)

Bi =

⎡⎣∂g
(

ξ i, θ
)

∂
(

ξ i

)
⎤⎦ (A11)

Appendix B. General Program Description

The following screenshots from the MATLAB-based EVM program are meant to supplement
descriptions in the main text (especially Section 3.2). The analysis of instantaneous copolymerization
data is presented herein but the same general information is relevant to the analysis of cumulative data.

We will start by demonstrating the manual data input option, then we will show the same
information using the “data file” option. The prompts contain sample data from McManus and
Penlidis [21]. If the user decides to input data using a pre-made data file, the same inputs are required
(with slightly different formatting).

Running the program brings up the “QuickStart” menu (Figure A1), which was described in
Section 3.1. Figures A2–A4 show the pop-up menus (that is, the required data) for manual input of
instantaneous composition data. Typically, only the preliminary reactivity ratio estimates (Figure A2)
and the copolymerization (composition) data (Figure A3) need to be modified by the user; the “form”
of the data entry can be observed in the screenshots below.

As for Figure A4, the only “default” value that may require updating (at the user’s discretion)
is the variance-covariance matrix. The default values were explained in Section A.1. If necessary,
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the magnitude of the matrix entries may be modified but the size of the matrix itself should not be
changed (that is, it should remain a 2 × 2 matrix for the instantaneous case).

 

Figure A1. “QuickStart” Menu.

Figure A2. “Preliminary Estimates” prompt.

Figure A3. “Copolymerization Data” prompt.
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Figure A4. “Default Settings” prompt.

An alternative to the step-by-step prompts is to include all of the required estimation data in
a single “.txt” data file. When a user chooses the data file input option, a pop-up window containing
their files appears (that is, any files in the same folder as the “QuickStart” file). Once an appropriate
file is selected, the program will access the data and run automatically.

As mentioned previously, a data file includes all of the same data as the prompts but it can be
saved, modified and reused. It can either be created in Notepad or in MATLAB but should have the
extension “.txt”. The data file must be prepared prior to running the EVM program, since the program
will access the data file “behind the scenes” to obtain the required information. A sample data file
(here for the McManus and Penlidis [21] data set) is shown in Figure A5.

Figure A5. Sample data file.

256



Processes 2018, 6, 8

In Figure A5, line 1 provides the “Default Settings” for the program, such as the number of
parameters, equations and variables (the reader will notice that these values are the same as in
Figure A4, with slightly different formatting). Line 2 contains preliminary reactivity ratio estimates
(recall Figure A2), while lines 3 and 4 can be combined to form the variance-covariance matrix for the
variables. Finally, lines 5 through 12 are the experimental copolymerization data (recall Figure A3).
The first column represents the initial feed composition (f 1,0) and the second column represents the
corresponding measured cumulative copolymer composition (F1).

Appendix C. Data & Screenshots from Case Studies

In this section, additional data and program screenshots are presented for the interested reader
(or potential program user). Data files are typically shown (rather than step-by-step prompts), which
allows for easy reference and modification. However, the same data could be fed to the EVM program
using the prompts described in Section 3 and Appendix B. The time required for parameter estimation
(that is, parameter convergence) is listed for each case study below (as run on an Intel(R) Core™
i7-860 processor). However, one should note that execution time is dependent on a number of factors
including preliminary parameter estimates, data sets (size and associated error), computer processor,
background tasks, etc.

Appendix C.1. Screenshots from MDO/VAc Copolymerization Analysis

The additional information shown herein is relevant to Exhibit A (Section 4.1.1), the copolymerization
of 2-methylene-1,3-dioxepane (MDO) and vinyl acetate (VAc). In spite of the fact that cumulative
copolymer composition was measured and reported by Undin et al. [11], information from relevant
conversion data was not included. Thus, the analysis conducted was based on the instantaneous
model. Regardless of which monomer was selected as M1, all calculations converged in less than
five seconds.

Two data files (used to obtain the results shown in Figure 5) are presented in Figure A6.
Both contain the same data set (for the MDO/VAc copolymerization from Undin et al. [11]) but
differ in terms of which comonomer is identified as M1. Here, Figure A6a is as reported (M1 = MDO)
and Figure A6b is the reverse (M1 = VAc).

(a) (b)

Figure A6. Data files for the analysis of MDO/VAc using EVM assuming (a) M1 = MDO and (b) M1 = VAc.

Text output is shown in Figure A7 for M1 = VAc, as a sample program output (described in
Section 3.3). THETA gives the reactivity ratio estimates (r1 and r2), XI gives the best estimates of
the “true” values of the variables (compare to lines 5 through 10 in Figure A6b), Phi is the objective
function value (recall Equation (6)) and G is the expected value of the second derivative of Φ with
respect to the parameters (recall Equation (8)).
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Finally, the user is asked “Do you wish to continue with Joint Confidence Calculations?” By
typing “Y,” the JCR shown in Figure 5b is obtained.

 

Figure A7. Program output for the analysis of MDO/VAc.

Appendix C.2. Screenshots from HEA/DCP Copolymerization Analysis

The additional information shown herein is relevant to Exhibit B (Section 4.1.2),
the copolymerization of hydroxyethyl acrylate (HEA) and 4-(3-(2,4-dichlorophenyl)-3-oxoprop-1-enyl)
phenylacrylate (DCP) (original data from Suresh et al. [16]).

The two data files (Figure A8) contain similar information, as discussed in Section 3.2.2.
The additional data required by the cumulative model are the monomer molecular weights and
the conversion values. The sample output shown below (Figure A9) is for the cumulative analysis;
XI here is the best estimate for the cumulative copolymer composition

(
F1
)
. JCRs for the two analyses

are shown in Figure 8. The instantaneous analysis required less than five seconds to estimate reactivity
ratios, whereas the cumulative model converged in less than twenty seconds.

 
(a) (b)

Figure A8. Data files for the (a) instantaneous and (b) cumulative analysis of HEA/DCP.
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Figure A9. Program output for the analysis of HEA/DCP using the cumulative model.

Appendix C.3. Screenshots from BMA/BA Copolymerization Analysis

The additional information shown herein is relevant to Exhibit C (Section 4.2.1), the copolymerization
of n-butyl methacrylate (BMA) and n-butyl acrylate (BA) (original data from Ren et al. [18]).
The analysis of low conversion data (using the instantaneous model) is shown first, followed by
the analysis of full conversion data (using the cumulative model). Only the preliminary (instantaneous)
data analysis and the cumulative data analysis (rows 3 and 5 in Table 4; featured in Figure 10) are shown
herein. However, the same general procedure was applied to the “Instantaneous EVM (preliminary
data & designed replicates)” analysis (refer to row 4 in Table 4). Instantaneous analyses converged in
under five seconds, whereas the cumulative analysis took less than twenty seconds.

Figure A10a shows the preliminary (low conversion) data set reported by Ren et al. [18].
Figure A10b shows the full conversion data (again reported by Ren et al. [18]) which was originally
used for reactivity ratio prediction performance (see original work, Figure 5). Non-truncated data
points are a result of plot digitization. Next, Figure A11 shows the program output for the preliminary
analysis (data from Figure A10a) and Figure A12 shows the same for the analysis of full conversion
data (data from Figure A10b). Notice here that both the reactivity ratio estimates (THETA) and the G
matrices (G) are similar, which translates into similar JCRs, as observed in Figure 10.
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(a) (b)

Figure A10. Data files for the (a) instantaneous and (b) cumulative analysis of BMA/BA.
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Figure A11. Program output for the preliminary analysis of BMA/BA using the instantaneous model.
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Figure A12. Program output for the analysis of BMA/BA using the cumulative model.
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Appendix C.4. Screenshots from Sty/EA Copolymerization Analysis

The additional information shown herein is relevant to Exhibit D (Section 4.2.2), the copolymerization
of styrene (Sty) and ethyl acrylate (EA). Since all of the recorded data was for low conversion
experiments, only the instantaneous model was used (and always converged in under five seconds).
Several examples of low conversion data files have already been shown throughout the appendix (see,
for example, Figures A6, A8a and A10a), so the information is not repeated herein.

However, as explained in Section 4.2.2, subsets of the original data (reported by McManus and
Penlidis [21]) were analyzed to demonstrate the importance of experimental replicates. Specific
data used at each stage of the analysis (and resulting reactivity ratio estimates) are shown in
Tables A1 and A2. As stated in the main text, runs were randomly selected for removal during
this exercise. The investigation could be repeated with different runs removed (or, the same runs
removed in a different order) and the general observations would be the same.

Table A1. Experimental data for investigating the importance of replication (see Figure 11).

3 Replicates 2 Replicates 1 Replicate No Replicates

f 1,0 F1 f 1,0 F1 f 1,0 F1 f 1,0 F1

0.079 0.296 0.079 0.296 0.079 0.296 0.079 0.296
0.079 0.308 0.079 0.308 0.079 0.308 0.079 0.308
0.079 0.303 0.079 0.303 0.079 0.303 0.079 0.303
0.079 0.286 0.079 0.286 0.079 0.286 0.079 0.286
0.719 0.716 0.719 0.716 0.719 0.716 0.719 0.716
0.719 0.736 0.719 0.736 0.719 0.736 0.719 0.736
0.719 0.736 0.719 0.736 0.719 0.736 0.719 0.736
0.719 0.732 0.719 0.732 0.719 0.732 0.719 0.732

r1 = 0.717 r1 = 0.746 r1 = 0.740 r1 = 0.750
r2 = 0.128 r2 = 0.132 r2 = 0.127 r2 = 0.124

Table A2. Experimental data for investigating the effect of replicate symmetry (see Figure 12).

3 Replicates High f1,0 Replicates High f2,0 Replicates

f 1,0 F1 f 1,0 F1 f 1,0 F1

0.079 0.296 0.079 0.296 0.079 0.296
0.079 0.308 0.079 0.308 0.079 0.308
0.079 0.303 0.079 0.303 0.079 0.303
0.079 0.286 0.079 0.286 0.079 0.286
0.719 0.716 0.719 0.716 0.719 0.716
0.719 0.736 0.719 0.736 0.719 0.736
0.719 0.736 0.719 0.736 0.719 0.736
0.719 0.732 0.719 0.732 0.719 0.732

r1 = 0.717 r1 = 0.715 r1 = 0.752
r2 = 0.128 r2 = 0.123 r2 = 0.129

Appendix C.5. Screenshots from BA/MMA Copolymerization Analysis

The additional information shown herein is relevant to Exhibit E (Section 4.2.3), the copolymerization
of butyl acrylate (BA) and methyl methacrylate (MMA). The original data set from Dubé and
Penlidis [22] employed the Tidwell-Mortimer design of experiments; the data file is shown in
Figure A13 and the program output (obtained in less than five seconds) is shown in Figure A14.
The associated JCR was shown previously (recall Figure 13).
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Figure A13. Data file for the preliminary analysis of BA/MMA.

 

Figure A14. Program output for the preliminary analysis of BMA/BA.

Given the output data from Figure A14, the EVM-based sequential design of experiments can be
used to select the next optimal feed composition. Using EVM for sequential design of experiments has
been discussed by Kazemi et al. [8]. From the design of experiments, the next logical feed composition
is f 1,0 = 0.1. Simulated data (shown in addition to the preliminary data set) used for subsequent
analysis are shown in Figure A15, with the results shown in Figure A16. Again, the program converged
in under five seconds.
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Figure A15. Data file for the sequential (DOE) analysis of BA/MMA.

 

Figure A16. Program output for the sequential (DOE) analysis of BMA/BA.
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Abstract: Materials processing is challenging because the final structure and properties often depend
on the process conditions as well as the composition. Past research reported in the archival literature
provides a valuable source of information for designing a process to optimize material properties.
Typically, the issue is not having too much data (i.e., big data), but rather having a limited amount
of data that is sparse, relative to a large number of design variables. The full utilization of this
information via a structured database can be challenging, because of inconsistent and incorrect
reporting of information. Here, we present a classification approach specifically tailored to the task
of identifying a promising design region from a literature database. This design region includes all
high performing points, as well as some points having poor performance, for the purpose of focusing
future experiments. The classification method is demonstrated on two case studies in polymeric
materials, namely: poly(3-hexylthiophene) for flexible electronic devices and polypropylene–talc
composite materials for structural applications.

Keywords: materials; processing; polymers; database; classification; informatics

1. Introduction

Research institutions and their funding sources have made a strong push in recent years to
leverage the tools of modern data analytics for scientific research. This effort has fostered the creation
of large centralized data repositories, the proliferation of more open-source software and code libraries,
and a general move toward ‘open science’ [1]. The tools of data analytics and informatics were
developed to analyze truly massive databases containing millions to billions of entries, such as the
collective Google search history of a country’s population, or the Amazon shopping history of the same.
As such, early efforts in the sciences have focused on the assembly of the largest possible collections
of data, namely: thermodynamic constants for every known chemical compound, density functional
theory (DFT) simulations of every known crystalline material, or characterization data from every
known biological protein [2–6].

While the scope of these centralized databases is vast, they still do not capture the full extent
of the scientific data collected and published on a daily basis. Day-to-day research is not driven by
a desire to fill in the billionth row of a central repository, but rather to solve problems and produce
knowledge in specialized fields with moderately-sized communities and dynamic trends. The design
of a new research study is most often based upon the results of a few dozen previous studies at most.
This would not be considered ‘big data’ by any measure, yet these small sets of experimental results
play a crucial role in daily decision-making. In order to use data analytics to guide this decision-making
process, it would be beneficial if the datasets from related publications were assembled into interim
databases with a common schema. It is likely that many researchers already aggregate data in this way,
especially for a formal literature review. This is all the more reason to develop tools and strategies to
work quantitatively with these small, sometimes sparse datasets.
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Experimental research in materials processing depends crucially on the selection of a promising
initial design region within the available process parameters. When processing a material,
there are many potential design variables by which to optimize its properties and performance,
including formulation, equipment selection, and settings. The challenge of process design for
materials differs from chemical production, because the process influences the material’s structure,
which further influences its properties. Some crystalline solids and disordered liquids are processed
to reach an equilibrium structure, but many materials, such as the soft materials presented here,
are guided to process-dependent non-equilibrium states, sometimes with multiple phases. Furthermore,
interfacial structures can often influence or even dictate the final performance beyond the bulk material
properties. Selecting a process variable design space for a new experiment should thus be approached
using as much quantitative knowledge as possible [7].

Data mining approaches to experimental design have experienced a recent uptick in interest.
For example, Kim et al. performed an automated review of the synthesis conditions of metal
oxides across over 12,000 manuscripts. Their data extraction pipeline consisted of a combination
of trained machine learning models and software such as ChemDataExtractor. A decision tree classifier
considering 27 synthesis variables was trained to predict whether or not a titania synthesis route would
produce nanotubes, achieving 82% accuracy [8]. Agrawal et al. compared a range of machine learning
approaches, including multivariate polynomial regression (R2 = 0.9801), support vector machines
(R2 = 0.9594), and artificial neural networks (R2 = 0.9724), to predict the fatigue strength of steels [9].
Input variables describing chemical composition, processing temperatures and times, and upstream
processing details were taken from the National Institute of Materials Science (NIMS) MatNavi [10].
Ren et al. combined literature data and high-throughput experiments to predict the likelihood of
finding metallic glasses in the Co–V–Zr ternary [11].

The use of the design of experiment methodologies to generate ideal process–property databases
is another approach to enable subsequent data mining of process–property relationships. This is
exemplified by AbuOmar et al. and Zhang et al., where polymer nanocomposite databases were
generated via carefully designed experiments [12,13]. The databases generated using uniform design
approaches typically only survey low-dimensional design spaces with a priori domain knowledge to
appropriately grid experimental values [14]. The common element among these previous studies is
the accessibility of fully informed databases with all descriptors fully characterized and reported.

The scientific literature can be conceived as an unstructured materials database, rich with
process–property data points. However, the nature of exploratory materials discovery suggests
a high-dimensional design space, with individual publications providing a limited number of data
points. There are several challenges in constructing and analyzing a literature database, even with
manual construction by domain experts, namely: (1) literature reports do not have standardized
fields for frequently-reported quantities; (2) authors report non-overlapping sets of information,
leading to data sparsity; and (3) reporting of design variables and property measurements suffer
from variability due to measurement equipment, inconsistent application of mathematical models,
and human error [15]. Persson et al. provides an illustrative example of these challenges by mining
the literature on poly(3-hexylthiophene) organic field effect transistors [16]. Over 200 data points from
19 publications describing the role of 28 processing variables were curated to predict charge carrier
mobility. Identifying a subset of the five most similar devices reduced the range of charge carrier
mobility values from over six orders of magnitude to three. The presence of unreported, missing data
limited the applicability of the standard classification and regression materials informatics techniques.

Herein, we demonstrate how the construction of a structured database containing relevant
literature results can be used to guide experimental design for materials processing. This tailored
approach to classification is proposed to specifically handle datasets with missing data, but is also
applicable to fully characterized databases. The set of best performing points indicates a promising
design region for future experiments. Two case studies are presented to demonstrate the approach,
with each database containing 100–200 data points. The number of data points is largely governed by
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the available relevant publications. The analysis is primarily intended to guide future experiments
into regions likely to have the desired properties. Further local optimization can then be performed
using response surface methodology [17,18]. Once the optimal point is identified, then additional
design variables could be added to enable further improvement, or previously unexplored regions
could be explored.

2. Materials and Methods

2.1. Database Construction

The databases are constructed manually using a Microsoft Excel spreadsheet. The data extracted
from relevant publications is found in text, tables, and graphical format. Each row in the spreadsheet
corresponds to a particular data point. The columns represent the process design variables, which may
be numerical (continuous or integer) or categorical. In some cases, the categorical variables (e.g.,
solvent type) are augmented with numerical descriptors to quantify their properties (e.g., solvent
boiling point). In other cases, the categorical variables are hierarchical (e.g., deposition method:
spin-coat) with associated numerical values quantifying that category (e.g., spin rate and spin time).
Each property measurement is also associated with a column. Additional columns are included so as
to document the source of each datapoint, including its digital object indicator (DOI). Further metrics
of the journal impact factor and the number of citations of the paper can also be included, but present
additional complications as they change over time.

While this manual, ad hoc approach is not ideal from a scalability standpoint, the cost of
automating this step can be prohibitive in terms of time and expertise. Furthermore, the automation
of data extraction requires a significant number of labeled training examples, and the construction
of the training set frequently accomplishes so much of the labeling that it makes more sense to simply
finish the job manually. This trade-off should be evaluated on a case-by-case basis.

2.2. Classification Approach

A common approach to the classification of data is the support vector machine (SVM), which, in its
simplest form, constructs a hyperplane to divide two prelabeled classes. This approach is exemplified
by Kim et al., who separated metal oxide structures into nanotube-forming and non-nanotube-forming
by their processing conditions [8]. SVMs are optimized to maximize the distance between the decision
boundary and the nearest point from each class. In other words, SVMs try to minimize the occurrence
of misclassification on both sides of the boundary. In exploratory research, however, it is much worse
to exclude a potential positive result from consideration than it is to run an experiment that turns out
negative. Here, we apply a different approach to classification, in which the objective is to retain all
datapoints with good properties in the ‘promising region’.

A property of interest is selected, then a critical value of that property is specified by the
user. All datapoints in the database are thus labeled as ‘high’ or ‘low’, depending on whether
they lie above or below this critical value. The region of the design space that contains all the ‘high’
points is then constructed. Figure 1 illustrates this classification approach. This approach helps to
ensure that potential positive results are never excluded from the promising region. It is, however,
inherently sensitive to outlier points, in which a ‘high’ property value has been incorrectly reported.
These outliers should be uncommon, because such results would most likely have received great
interest and scrutiny in the review process. Nonetheless, points with a reported ‘high’ performance
should receive further investigation in subsequent experiments, that is, they should be repeated to
validate (or invalidate) their good performance.
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Figure 1. Flow chart of classification approach to constructed reduced design regions.

One possible implementation for quantifying the promising region is to construct a convex hull
containing all of the ‘high’ points in the literature database. Here, we take a simpler approach, which is
to calculate the upper and lower bounds of each design variable within which all of the ‘high’ points
are contained, defining a box. The rationale is to provide better intuition and visualization for the user.
For each design variable, one compares the minimum and maximum values for ‘high’ performance to
the minimum and maximum values in the entire database, quantifying the percent reduction of the
design space, which can be achieved by focusing future experiments on past ‘high’ performing regions.
This reduction rs can expressed mathematically, as follows:

rs =
∏ns

1 lsi

∏ns
1 Lsi

(1)

where S is the set of indices for a subset of the design variables, ns is the dimensionality of the design
space (equivalent to the size of S), li is the span of variable i that contains ‘high’ points, and Li is the
span of variable i over all points in the database. In the one-dimensional (1-D) case, rs is the relative
length of the line segment that contains the ‘high’ points, while in the two-dimensional (2-D) case,
rs is the relative area that contains the ‘high’ points. Each design variable, or combination of design
variables, is then represented with a value of rs between 0 and 1, where it is hypothesized that a smaller
value signifies that the associated design variable is a better indicator of a ‘high’ performance.

While rs expresses the volumetric reduction of the design space, it is also useful to understand the
fraction of the original data contained in the promising region, as data density is likely non-uniform.
This is expressed as follows:

Fr =
|d|
|D| (2)

where d is the number of points contained within the box and D is the total number of observations in
the database. Each observation corresponds to a row in the Excel database spreadsheet.

It is certainly possible that the box excludes potential regions of high performance that were not
investigated in previous studies. One could apply a padding parameter to the box bounds to reduce this
risk. Alternatively, future experiments can explore additional regions, locally, through response surface
methodology, or more globally, with random experimental settings or a particular focus on unexplored
regions. Certainly, physical models and domain expertise will also guide future experiments, but the
details of the experimental design are beyond the scope of this article [17–19].

2.3. Case Studies

2.3.1. Poly(3-Hexylthiophene) (P3HT)

Poly(3-hexylthiophene) is a semiconducting polymer that has been widely studied for application
in large-area flexible electronics [20]. Such systems could access new markets beyond silicon transistors
if they can be printed economically in a roll-to-roll process. Thin films of P3HT exhibit hole mobilities
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that vary by orders of magnitude, depending on how they are processed [21]. Distinct fibrillar
morphologies are observed in the atomic force microscopy, and the morphology can be influenced
by the process, and correlated with the hole mobility [22,23]. Design variables that are reported
in the literature include polymer molecular weight and regioregularity, solvent and concentration,
deposition method and film thickness, and annealing time [16]. This system is depicted in Figure 2.

Figure 2. One possible processing route for poly-3-hexylthiophene (P3HT), and a key property of
interest in organic field-effect transistor (OFET) performance.

The analyzed database, which was presented in a previous publication, is comprised of 218 datapoints
from 19 publications. To model process–property relationships to obtain high mobility devices,
29 design variables were identified that are either numerical (20 design variables) or categorical
(9 design variables). The design variables were removed from consideration if all relevant entries
were identical, exceptionally sparse, or deemed irrelevant according to expert opinion (e.g., dip rate,
dip time, process environment, and electrode material). The mobility values in this database range
from 1.0 × 10−6 to 2.8 × 10−1 cm2/V·s.

This database is included in the supplementary information and is also publicly accessible at:
http://www.github.com/Imperssonator/OFET-Database.

2.3.2. Polypropylene–Talc Composite

The properties of polymeric materials can be altered and improved by mixing them with fillers to
create a composite material [24–26]. In addition, the processing method impacts the properties [27].
Polypropylene (PP) has relatively strong mechanical properties for a polymer and it is widely available.
If its properties could be further enhanced, polypropylene might be a candidate for replacing metals,
for example in the additive manufacturing of automotive parts. Here, we consider talc as our filler.
Talc is a clay material composed of magnesium silicate. It is a good filler candidate for our study
because it has been reported to enhance polypropylene performance in many literature studies and
because it is relatively inexpensive, enhancing commercial viability [28,29]. This system is illustrated
in Figure 3.
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Figure 3. Proposed polymer and filler to develop high strength composites and a key property of
interest: Young’s modulus.

The polypropylene-talc database is comprised of 140 datapoints from 22 publications with the
goal of improving the strength of polypropylene. The Young’s modulus was selected as the relevant
mechanical parameter representing the materials’ strength. Fourteen design variables were selected for
this analysis, with eleven being numerical and three being categorical. Expert opinion was leveraged
to characterize differing melt mixer equipment by recording the highest temperature in a multistate
extruder. The Young’s modulus values for this database vary from 0.38 to 6.94 GPa.

This database is included in the supplementary information and is also publicly accessible at:
https://github.com/DocMike/TALC-Database.

3. Results

3.1. Case Study 1: Poly-3-Hexylthiophene

The breadth of processing conditions recorded in the P3HT database illustrates the utility of the
proposed classification approach. In this database, a mobility cutoff value of 0.1 cm2/V·s was selected
to differentiate between ‘high’ and ‘low’ devices. The design variables extracted from the literature
can be grouped into five main categories, namely: (1) polymer characteristics, (2) solvent environment,
(3) deposition conditions, (4) post-deposition processing, and (5) transistor configuration. All of these
variables have been hypothesized to influence the morphology of the final semiconducting film and
thus the charge carrier mobility [30,31].

Figure 4 illustrates the classification approach applied to the P3HT database for 13 of the
continuous design variables contained in the database, out of a total of 29 design variables of numerical
and categorical type. The one-dimensional analysis is shown in Figure 4a for these 13 design variables,
with results scaled to the full range of values reported in the database. For each of these design variables,
the difference between the maximum and minimum values associated with a ‘high’ performance li,
is divided by Li, the difference between the maximum and minimum values associated with all entries
in the database, according to Equation (1). In some cases, a ‘high’ performance is observed only for
a small fraction of the full reported range, such as for regioregularity, spin rate, and channel width,
such that rs < 0.1. In other cases, a ‘high’ performance can be observed at most of the reported values
(molecular weight, initial concentration, boiling point, annealing temperature, and time), such that
rs > 0.9. In other intermediate cases, a restricted range can be observed, namely: polydispersity, Hansen
radius, film thickness, and channel length.

One might first focus on regioregularity, spin rate, and channel width to reduce the design space
for future experiments. However, these are not the best candidates. Regioregularity must be high for a
‘high’ performance, which is well known; only a small number of the earlier papers used polymers
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with lower values of regioregularity [32,33]. Moreover, precision synthesis and characterization of
a specific regioregularity is infeasible [34]. Of the 37 ‘high’ devices, only 8 report a spin rate and all
8 arise from the same publication. Thus spin rate is not an ideal candidate. The channel width is
also shown to impact the observed mobility, but device physics indicate that it should not influence
the transistor performance [35]. The standardization of test conditions is necessary to improve the
quantification of results in polymer organic electronics, and future experiments should conform to this
common standard [36].

Figure 4. Representative analysis plots of (a) one-, (b) two-, and (c) three-dimensional classifying
design variables, resulting in charge mobility values exceeding 0.1 cm2/V·s. Blue squares are data
points above the cutoff, red dots represent points below the cutoff but within the target design region,
and red x markers indicate all other data points below the cutoff but not within the target region.
All axis ranges denote the full range of values present in the database.

The more revealing design variables are those with a moderate reduction of the design space,
namely: polydispersity, Hansen radius, film thickness, and channel length. Like channel width,
channel length affects performance through device physics rather than material properties, and can be
excluded. This leaves three key design variables, which can be visualized in two or three dimensions,
as shown in Figure 4b,c. A high value of polydispersity is required to achieve a good performance,
but low values of the Hansen radius and film thickness are also needed.

The two-dimensional plots can be generated for each pairwise combination of design variables,
or on the selected promising design variables identified in the one-dimensional analysis. Figure 4b
delineates the promising design region using the polymer polydispersity index (PDI) and Hansen
radius. The area of the identified design region relative to the full area spanned by the design variables
is quantified by rs = 0.27, for S = {3,7}. Thus, future experimental efforts can be focused on only 27%
of the original design region. When film thickness is additionally added as a classifier, rs = 0.056,
for S = {3,7,9}.

However, quantifying the reduction using rs without visualizing results or utilizing additional
metrics can lead to misleading conclusions, depending on the quality of the information in the database.
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Issues with only characterizing the relative reduction can be grouped into two main categories,
as follows: (1) limited coverage of the entire design region (sparsity), and (2) inconsistent reporting and
characterization. These cases are illustrated in Figure 5. Note that in Figure 5b, there are no datapoints
shown with regioregularity (RR) values below 90%, despite their presence in the database, because film
thickness was not reported for any of those datapoints.

(a) (b)

Figure 5. Illustrative two-dimensional plots indicating (a) limited collective screening of the entire
design region (sparsity), and (b) inconsistent reporting and characterization. Axis values denote the
full range of values present in the database.

The fraction of points contained within the reduced designed region (Fr) serves as a simple
indicator for the distribution and sparsity of points throughout the entire design region. Table 1
highlights both the reduced area and the fraction of points contained in this region. In general, rs is
smaller than Fr, indicating that the volumetric reduction of the design space is greater than the fraction
of database points excluded. This can be rationalized in the context of Schrier’s Dark Reaction Project;
negative results are infrequently reported in the literature [37]. It makes sense that data density would
be concentrated in the promising region, because other experimentalists intuitively concentrate their
effort in a similar region, and because they omit negative results from outside that region. This is a
source of significant bias in the training set, but it can also serve as a sanity check on the selection of
the promising region. Nonetheless, the importance of reporting negative results cannot be overstated.

Table 1. Metrics for the two-dimensional analysis of the poly-3-hexylthiophene (P3HT) system.
PDI—polymer polydispersity index, RR—polymer regioregularity.

PDI/Hansen
Radius

PDI/Film
Thickness

Hansen Radius/Film
Thickness

Channel
Length/Annealing Temp

RR/Film
Thickness

rs (%) 27 12 10 25 4
Fr (%) 45 30 53 45 63

This classification approach can theoretically be scaled to any dimension. However, the reliability
of the identified target region containing high performing devices decreases as the dimensions increase.
This reliability issue is illustrated in Figure 4c with a box denoting the target design region. The data is
distributed throughout the x and y plane (PDI and Hansen radius), indicating that these two variables
are highly reported. In contrast, no results are presented with a thickness greater than ~40 nm,
despite thickness values as high as 130 nm being reported in the database. This problem arises from a
lack of standardized reporting. Despite the fact that 146 of the entries report PDI, 190 report Hansen
radius values, and 149 report film thickness, only 105 entries have all three of these variables specified.
This issue can also impact the relative volume of the target design region. While the two-dimensional
analysis (Figure 4b) points to a ‘high’ device with a PDI value of ~2.3 and a Hansen radius of ~4.5,
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this database entry does not contain a corresponding film thickness and as a result does not appear
in Figure 4c. Thus, the analysis of higher-dimensional design spaces to simultaneously optimize
numerous processing conditions relies heavily upon consistent and standardized reporting.

In addition to the 13 numerical design variables, three relevant categorical variables were
identified. The choice of solvent influences the ability of the polymer chains to self-assemble in
the solution and the solvent evaporation rate during the film deposition phase. The analysis performed
in this study indicated that the use of chloroform and trichlorobenzene result in ‘high’ performing
devices, while toluene, thiophene, benzene, chlorobenzene, and styrene do not. Section 3.1.2 will
discuss how solubility parameters (Hansen radius) were used to represent a solvent on a continuous
scale. Of the 37 ‘high’ performing devices, 28 films were formed through drop casting, 8 via spin
coating, and 1 film using dip casting, spanning all deposition methods in the database. It is likely that
the interaction of these deposition methods with other process variables was optimized to produce
favorable thin film microstructures. Finally, the treatment of the silicon dioxide capacitance layer
to modify the wettability and polymer-substrate interface using hexamethyldisilane (HMDS) or no
treatment at all can both result in ‘high’ devices. In contrast, perfluorodecyltrichlorosilane (FDTS) and
octadecyltrichlorosilane (OTS) surface treatments produced unfavorable results. Ideally, surface free
energy would be reported as a way to quantify the surface treatment, similar to the Hansen radius for
the solvent.

Once the target design region has been identified, hypothesis generation and future experiment
planning can occur. Here, we briefly discuss the physical intuition that can guide experimental design
beyond the selection of the promising design region.

3.1.1. Polydispersity Index

Long polymer chains are required to extend across grain boundaries and thus provide high-mobility
pathways through otherwise amorphous regions of the film [33,38,39]. The one-dimensional analysis
of polymer characteristics (Figure 4a) suggests that ‘high’ performance devices can be obtained
with number average molecular weights ranging from 26 kDa to 117 kDa. The PDI indicates the
spread of the molecular weight distribution in a polymer sample, so a sample with a low average
molecular weight could still contain many long chains if it has a high PDI. Our analysis indicates that
a PDI > 1.5 is required for a high-performance device. However, there is experimental difficulty in
synthesizing polymers with tailored PDIs for systematic studies [34]. Instead, techniques to either
fractionate the P3HT samples or blend multiple polymers samples to target a specified PDI have been
employed [40,41].

3.1.2. Hansen Radius

Thin film formation is a complex and dynamic process in which solvent evaporation governs
structural organization mechanisms such as polymer aggregation and phase separation [42].
These processes are captured, albeit incompletely, through the initial polymer concentration,
solvent boiling point, and Hansen radius, in addition to the equipment deposition parameters (e.g.,
spin rate, spin time). According to the one-dimensional analysis, the Hansen radius provides better
discrimination between high and low performance devices compared with both the initial polymer
concentration and the boiling point. The Hansen radius is a numerical descriptor of solvent–polymer
interaction energy and can be used to reduce the number of design variables when solvent mixtures are
utilized [11,43–45]. As an example, the dissolution of P3HT in a good solvent, followed by the addition
of a poor solvent, was utilized as a processing method by 3 of the 19 papers in the database [43,45,46].
To fully characterize this, two categorical variables (good solvent, poor solvent) and one numerical
variable (volume fraction of poor solvent) need to be specified. By applying the Hansen solubility
model, these three variables can instead be reported as a single numerical value, the Hansen radius,
simplifying the interpretation of the database and extraction of process–property relationships.
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3.1.3. Film Thickness

An analysis of the database suggests that film thicknesses ranging from 25 to 40 nm are desired
in order to obtain high-performing devices. This observation is in general agreement with work by
Joshi et al., which explored the thickness dependence of the charge mobility of low molecular weight
P3HT [47]. In their study, mobility plateaued after a thickness of 15 nm, due to the orientation of
crystalline grains at the transistor oxide-P3HT interfaces. Varying the thickness of the P3HT films
is usually the result of changing another design variable, such as polymer concentration or spin
rate, and is highly dependent on the kinetics of the solution-to-film phase transition [47,48]. Ideally,
an influential design variable should be able to be varied independently from other process conditions.
Recent advances in blade and shear coating techniques, currently not captured by the database, offer a
promising approach to independently control the film thickness to explore its impact on charge carrier
mobility [49,50].

3.2. Case Study 2: Polypropylene–Talc Composite

The polypropylene–talc database was constructed from 22 publications, with a total of 140 data
points. The property of interest that was selected was Young’s modulus. While there are many ways
to quantify mechanical properties (fracture strength, toughness, etc.), Young’s modulus was selected
here, in part because of the importance of stiffness in a mechanical component such as an automotive
part. It is also widely reported in the literature because it is relatively easy to measure. A cutoff value
of 5 GPa was selected for the Young’s modulus, with 11 points (8%) having ‘high’ values above the
cutoff value.

Similar to the P3HT study, the minimum and maximum reported values of 11 continuous
design variables were identified in the full database and the high-performing subset to calculate
rs. The results of this one-dimensional analysis are shown in Figure 6a, using variables scaled to
the minimum and maximum values in the database. Several design variables have an extremely
limited range of values associated with high performance, namely, polymer weight-average molecular
weight, polymer polydispersity, filler surface area, and composite density. In all four cases, this large
reduction in range is due to very low rates of reporting. For example, only 30 data points have
the molecular weight reported, and only two of those points have a ‘high’ performance. Both data
points are from the same publication and have the same molecular weight. Other design variables
have no range reported at all, including mold temperature and composite melt flow index (MFI),
again due to underreporting—none of the high performing points have values for mold temperature
or composite MFI.

In contrast, filler density and melt temperature are reported for most entries. Since the only filler
in the database is talc, there is little actual variation in its reported density, except for one outlier entry
that may be misreported [28]. The melt temperature also extends across most of the range in the
database, although low values (lowest 20% of the reported range) seem to be undesirable since they
are never reported together with a ‘high’ performance.

277



Processes 2018, 6, 79

(c)

(a) (b)

(d)

Figure 6. Representative analysis plots of (a) one-, (b,c) two-, and (d) three-dimensional analysis,
classifying design variables that result in Young’s modulus exceeding 5 GPa. All axis values denote the
full range of values present in the database. Blue squares are data points above the cutoff, red dots
represent points below the cutoff but within the target design region, and the red x markers indicate all
other data points below the cutoff but not within the target design region.

The design variables with intermediate ranges in Figure 6a are polymer MFI, filler particle size,
and filler weight percent. These three design variables contribute the most information to the future
experimental design. It is notable that all three are related to material composition, rather than
processing conditions. The melt flow index correlates inversely with the molecular weight, but is
much more commonly reported in the database, because of the difficulty of dissolving polypropylene
for the characterization of molecular weight by size exclusion chromatography [51]. The database
analysis suggests that high stiffness requires a low polymer MFI, or equivalently, a high molecular
weight. The filler particle size must fall in the lowest third of the reported values, while the filler
weight percent must fall within the upper half of the values reported in the database.

The data can also be viewed in higher-dimensional spaces, as follows: Figure 6b illustrates the
promising design region associated with filler size and weight percent. Note here that original variable
scales are used, rather than the scaled variable ranges of Figure 6a. Future experiments can focus on
this smaller box having low (but not too low) filler size and high filler weight %. The unexplored
region of particle size in the range 35–70 μm could also be tested, depending on the experimental
budget and availability of larger talc particles. Figure 6c again shows a two-dimensional representation,
with polymer MFI and filler weight %. The promising design region contains low values of MFI,
although there is little data available at higher MFIs. Future experiments could attempt to expand this
region into higher MFI values (lower molecular weight), which would also lower viscosity and thus
ease processing.

The calculated metrics, including the relative area of the new design region, are shown in Table 2.
Similar volumetric reductions (rs) in the identified design region are observed for the PP–talc database
compared to the P3HT study. However, similar values of data reduction in the design region (Fs) for
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the PP–talc database suggests that the community has more thoroughly sampled the entire design
region compared with the P3HT community. This could arise from the reduced number of considered
design variables for the polymer composites (14 variables) compared with P3HT for organic electronics
(29 variables).

Table 2. Quantified metrics of two-dimensional analysis for the PP–talc system. MFI—melt flow index.

MFI/Particle Size MFI/Filler wt.% Particle Size/Filler wt.%

rs (%) 10 21 12
Fr (%) 28 14 15

Finally, a three-dimensional representation is shown in Figure 6d. The promising design region is
about 5% of the volume of the full range of design variables reported in the database. Also notable in
Figure 6d is the lack of data points at the high particle size of 74 μm, which were previously plotted in
Figure 6b [52]. Since no value of polymer MFI was reported for those points, they cannot be visualized
in Figure 6d, and more importantly, they cannot be reproduced since the value of the polymer MFI
that was used is unknown. Since Gafur et al. did report the weight-average molecular weight, a model
could potentially be used to estimate the unreported MFI [51,52]. Physically-based correlations provide
a potential route to filling in missing data, which may be more effective than linear imputation when
the relationships between design variables are known and are nonlinear, such as the inverse correlation
between MFI and weight-average molecular weight (Mw). However, since the Gafur et al. data points
have a ‘low’ performance, such modeling would not change the promising region.

The polypropylene–talc database contains 11 continuous design variables, but also incorporates
three categorical variables, namely compatibilizer, talc surface treatment, and the film formation
method. Only 23 data points report a compatibilizer with none of these data points resulting in
‘high’ performance. Twenty-two data points report a surface treatment, but only aminopropyl-
trimethoxysilane (4 data points) resulted in Young’s modulus values above 5 GPa. This categorical
variable presents a seldom-used processing condition to further explore. Films are formed either
through extrusion or compression molding, but only compression molding produced a ‘high’
performance. Better understanding of the mechanistic reasons for improved performance via
compression molding could help identify new processing conditions, but in the short term, compression
molding is the preferred technique.

4. Discussion

Significant advances have been made in applying materials informatics and machine learning
techniques to leverage the combined knowledge of research communities. The advent of large
centralized materials data repositories that are publicly accessible has been a tremendous boon
to accelerated materials discovery and process optimization. However, the curation and use of
materials data that are generated on a day-to-day basis, within a given material system under a
formalized materials informatics lens, is still in its infancy. Smaller, more specific databases relevant
to a particular application will be required to rapidly provide chemical compositions and optimized
processing conditions.

A key challenge seldom addressed in ‘small data’ materials research is how to extract meaningful
process–structure relationships to target desired properties. Small data can be curated in two main
approaches, namely (1) controlled experiments via the design of experiments or high-throughput
methods within a single laboratory, and/or (2) mining the literature to leverage experiments conducted
by the community. The former datasets are often well-structured, allowing process–property
information extraction via material informatics and/or machine learning methodologies [9,11].
The latter approach involves a significantly wider scope of potential design variables, resulting in
an unstructured database rife with missing and noisy data. Missing data limits the applicability of
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materials informatics approaches, including decisions tress, neural networks, and support vector
machines. Instead, we have proposed an approach that uses all available data in a small material
database to identify promising design regions for future experimentation. This approach aims
to provide quantitative guidance to focus experimental work based on the collective work on
the community. Ideally, these future experiments will fully characterize all design variables to
enable regression and machine learning approaches. The metrics, rs and Fr have been proposed
to describe the relative importance of process variable combinations in determining material
performance. Design regions with smaller rs and Fr values should be prioritized for future experiments.
Overall, the analysis presented is general and can be expanded to examine any subset of relevant
design variables.

Several opportunities and obstacles still await the widespread use of literature-guided materials
databases. Once the database has been reduced to a targeted design region that contains the ‘high’
performing data points, justifications for the presence of ‘low’ data points in this region can be
suggested. In the polypropylene-talc case study, the three-dimensional promising region contains
six high performing points, but also nine points with a low performance. Attempts to classify based
on additional design parameters were unsuccessful. The impact factor of the journal was added
as an additional classifier, which did separate the three studies containing high performance from
the three studies containing low performance. With a more complex database, the incorporation of
additional variables has the potential to distinguish and inform more reliable and robust datasets.
A potentially problematic subset of data, termed ‘hierarchical data’, is prominent amongst materials
literature. Hierarchical data is defined here as paired categorial and numerical data, in which the
numerical data is only relevant for that category. An example from the P3HT case study is the spin rate
that is only relevant to spin cast P3HT devices, rather than dip coated devices, which are quantified
instead by the dip rate. Hierarchical data requires special attention to ensure that the numerical data is
not used as a predictor without the associated categorical variables.

The most significant of challenges is the handling of missing data to ensure quality predictors
that reflect all of the relevant publications and not just the most-well characterized. As discussed,
mining data from highly exploratory work can result in unreported data from a lack of standardized
reporting templates, the discovery of new important promising conditions and/or access to various
equipment and characterization techniques. Data imputation techniques have been recently developed
to fill in missing values. These techniques range in complexity from imputing the population mean
value to modified nonlinear iterative partial least squares regression. The latter approach has been
shown to be an effective technique when the missing data is randomly distributed, rather than
in structured blocks [53]. Research by Nelson et al. and Ferrer et al. has shown that principal
component analysis approaches are better suited to structured blocks of missing data that may be more
prevalent when developing literature databases [54,55]. Data imputation has been applied to materials
datasets but, to our knowledge, not been used on literature databases. For example, Verpoort et al.
trained an artificial neural network to identify erroneous values and impute missing data based on
polymer composite properties provided by manufacturers’ datasheets [56]. However, only eight out of
thousands of data points were missing and imputed, a marked difference to the amount of missing
data found in the literature databases. Secondary approaches to handle missing data involve physical
models, where known data serves as the input to an established model to predict the missing values.
In the talc case study, experimental data relating polymer molecular weight to MFI was highlighted
as an example [51]. Relating the spin rate to predict missing film thickness values could serve as an
example for the P3HT case study. However, accurate physical based models may require additional
experiments for validation.

The development of a material database from literature data is still largely a manual process,
with numerous decisions made by the curator [8]. Data must be extracted from text, tables, and graphs,
and must be organized in a meaningful manner. At present, automated data extraction tools are
in their infancy and their implementation presents a major technological hurdle to researchers not
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well-versed in machine learning. Manually extracted data will be instrumental in providing training
sets for the development of such tools. In pursuit of this goal, it is essential that ontologies and schema
remain flexible. Research data does not necessarily cluster into fields with hard boundaries, and as
such, the entries from one field’s database should be adaptable to other fields’ databases.

Finally, experimental databases are dynamic, living documents that should be easily accessible to
the community. To fully utilize an experimental database, new experiments must be added, and the
analysis needs to be updated on a continual basis. The question of who curates and maintains material
databases is still an ongoing question in the materials community. Kalidindi et al. suggested the
National Laboratories as a central entity to create a standardized strategy for materials data analysis,
but this may only be appropriate in the case of big data [1]. The Protein Databank demonstrates
a different model with an independent consortium as the curating body [57]. As small dynamic
experimental databases are essentially quantified in literature reviews, the responsibility may rest on
individual research groups to compile data for review articles, and on publishers for long term curation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/6/7/79/s1,
Talc-Database.xlsx and P3HT-Database.xlsx.
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Abstract: In the field of chemical engineering, mathematical models have been proven to be
an indispensable tool for process analysis, process design, and condition monitoring. To gain
the most benefit from model-based approaches, the implemented mathematical models have to
be based on sound principles, and they need to be calibrated to the process under study with
suitable model parameter estimates. Often, the model parameters identified by experimental
data, however, pose severe uncertainties leading to incorrect or biased inferences. This applies
in particular in the field of pharmaceutical manufacturing, where usually the measurement data
are limited in quantity and quality when analyzing novel active pharmaceutical ingredients.
Optimally designed experiments, in turn, aim to increase the quality of the gathered data in the
most efficient way. Any improvement in data quality results in more precise parameter estimates
and more reliable model candidates. The applied methods for parameter sensitivity analyses and
design criteria are crucial for the effectiveness of the optimal experimental design. In this work,
different design measures based on global parameter sensitivities are critically compared with
state-of-the-art concepts that follow simplifying linearization principles. The efficient implementation
of the proposed sensitivity measures is explicitly addressed to be applicable to complex chemical
engineering problems of practical relevance. As a case study, the homogeneous synthesis of
3,4-dihydro-1H-1-benzazepine-2,5-dione, a scaffold for the preparation of various protein kinase
inhibitors, is analyzed followed by a more complex model of biochemical reactions. In both studies,
the model-based optimal experimental design benefits from global parameter sensitivities combined
with proper design measures.

Keywords: optimal experimental design; global parameter sensitivities; optimal design measures;
robustification; point estimate method

Processes 2018, 6, 27; doi:10.3390/pr6040027 www.mdpi.com/journal/processes285



Processes 2018, 6, 27

1. Introduction

Mathematical models have been proven to be an indispensable tool in chemical engineering
research and design. For instance, model-based and computer-aided concepts are the standard in
process analysis [1–3], process design [4–6], and condition monitoring [7–9]. To gain the most benefit of
model-based approaches, the model-building process itself becomes a crucial step in computer-aided
process analysis and design. When it comes to mathematical modeling and model-based design,
model developers are challenged by the problem of providing meaningful results. The situation is the
same for the computer-aided process design of pharmaceutical processes and active pharmaceutical
ingredients (API) syntheses [10,11]. In addition to a proper model structure determining the
interconnection of involved quantities and species, the most critical part is to identify related model
parameters [12,13]. When assuming a correct model structure, any mismatch of measurement data
and simulation results is mainly attributed to biased model parameters. Optimal tuning of those
model parameters according to the experimental data is an essential step in the process of model
development where model parameters are iteratively adapted until simulation results fit the given
measurement data best [12,14]. Thus, the quality of model-based results depends significantly on the
quality of the parameter estimates. The parameter quality itself, however, depends on the quality
of the measurement data and the conducted experiments, respectively. The operating conditions of
the experiment indirectly determine the sensitivity of the model parameters to the simulation results.
The parameters with a high sensitivity are likely to be reliably identified. Model parameters with low
sensitivity, in turn, can be changed by an order of magnitude with little to no effect. Any attempt at a
manual or algorithmic tuning of such insensitive parameters is error prone by definition. To avoid
this kind of ill-posed parameter identification problem, model-based optimal experimental design
(MB-OED) comes into play [14–17]. The aim of MB-OED is to redesign the experimental setup ensuring
high sensitivities of all parameters over the course of the experimental run. To this end, a dynamic
optimization problem has to be solved, which typically includes the following generic steps; see also
Figure 1 for their interaction. First, the parameter sensitivities of a given model candidate have to be
quantified. Based on the parameter sensitivities, a suitable design measure is defined and evaluated,
which translates parameter sensitivities into algorithmically evaluable quantities. After specifying
potential design variables of the experimental setup, which are practically feasible and allow the control
of the main process states, an optimizer routine adapts the experimental setup iteratively. The resulting
optimal design variables determine the setup of the next experimental run, which is expected to
produce new informative measurement data. These data, in turn, represent operating conditions
at which, in general, the model parameters show an increased sensitivity leading to more precise
parameter estimates. This MB-OED loop is reiterated until the parameter estimates fulfill the needs of
particular modeling tasks. While following the proposed work flow, i.e., (1) sensitivity quantification,
(2) design measure evaluation, (3) dynamic optimization, and (4) running an optimally designed
experiment, the final result depends critically on the sensitivity measure and its proper implementation.
Any improper choice at this point will lead to sub-optimal experimental designs and non-informative
data. Thus, reliable sensitivity measures are mandatory for MB-OED to provide the most informative
data possible. This aspect is particularly relevant for syntheses of active pharmaceutical ingredients,
where typically the number of novel drugs and the number of experimental runs are limited.

In the literature, most implementations of MB-OED are based on local sensitivities as part of
the Fisher information matrix (FIM) [12,14,16,18–20]. Technically, the inverse of the FIM is used
to approximate the covariance matrix of the parameter estimates [12,14,18]. This local approach
assumes a linear relation between parameter perturbations and model responses—at least locally in
the neighborhood of the correct reference parameter values. As the actual parameter values, however,
are typically unknown, their current best estimates have to be inserted instead. Thus, the calculated
local sensitivities may fall short as they do not describe the underlying nonlinearities and because
of biased reference parameters [16,21]. To compensate for biased references, sensitivity gradients
can be evaluated at various but representative parameter values within the given parameter domain
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following a Bayesian experimental design principle [22–24]. Here, the basic idea is to get an improved
approximation of the local sensitivities based on an averaged measure [25]. Nonlinear effects, however,
still remain unaddressed. Most parameter identification problems of practical relevance in the field
of pharmaceutical processes are characterized by nonlinear impacts of model parameters on model
responses [19]. Thus, local sensitivities, in general, might lead to oversimplified inferences, less robust
experimental designs, and an unnecessarily high number of experimental reiterations [21]. This last
point, as mentioned previously, is of critical relevance when analyzing novel but exceedingly rare
drug candidates.

Model
Candidate
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Sensitivities
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rSoA

SoADesign
Measure
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Problem
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Experimental
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Figure 1. Key elements of the model-based optimal experimental design (MB-OED): the parameter
sensitivity approach and the implemented design measure determine the quality of the designed
experiment significantly.

Alternatively, in the last decade, the implementation of global sensitivities for MB-OED has been
introduced in the literature [25–27]. Global sensitivities by definition take into account nonlinear effects
and multivariate parameter dependencies. To the best of the authors’ knowledge, the usefulness of
GSA and its practical implementation for pharmaceutical and (bio)chemical processes have not been
analyzed thus far. This manuscript shows how global sensitivities can be determined efficiently by
a deterministic sampling rule even for complex models with a large number of model parameters,
which makes GSA available for advanced MD-OED strategies.
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The focus of this study is to compare and assess different parameter sensitivity measures, as well
as an analysis of the need for novel design criteria for MB-OED. In particular, local sensitivity
analysis (LSA), robust local sensitivity analysis (rLSA), and global sensitivity analysis (GSA) are
introduced. In addition to state-of-the-art (SoA) design criteria, further alternatives are discussed
in the following. Thus, the paper unfolds as follows. First, the basics of parameter sensitivity
analysis as a key element of optimal experimental design are presented in Section 2. Here, the focus
is also on the efficient implementation of global parameter sensitivities. Based on the derived
sensitivity measures, optimal design metrics are derived in Section 3. In Section 4, the proposed
concept is illustrated by two pharmaceutically relevant processes, the homogeneous synthesis of
3,4-dihydro-1H-1-benzazepine-2,5-dione, a scaffold for the preparation of various protein kinase
inhibitors, and a more complex biochemical synthesis example. The conclusions are given in Section 5.

2. Sensitivity Measures

In the literature, different methods and concepts for parameter sensitivity analysis (SA) exist,
ranging from local to global approaches [28–30]. In the context of MD-OED, sensitivity analysis is an
inherent part of the optimization problem aiming to provide an optimal range of sensitivities over the
course of the experimental run. In the following, we consider nonlinear state-space models of the form

dx(t)
dt

= f (x(t), u(t), θ), (1)

y(t) = h(x(t), u(t), θ), (2)

where x(t) is the vector of model states (x ∈ R
n), u(t) is the vector of system inputs (u ∈ R

r), θ is the
vector of parameters (θ ∈ R

p), and y(t) is the vector of model outputs (y ∈ R
m). Typically, only a

minor subset of the states x(t) can be measured directly or indirectly; i.e., m < n. The proposed
concepts can be extended to more general model types, e.g., differential algebraic or partial differential
equation systems, but are discussed here solely for nonlinear state space models for the sake of clarity.
As the model parameters θ are typically unknown, they have to be identified by minimizing the error
between simulation results, y(t), and measurement data, ydata(t). By following a maximum likelihood
estimation procedure and assuming additive white measurement noise with a standard deviation of
one [14], the parameter identification problem simplifies to

θ̂ = arg min
θ

K

∑
i=1

||ydata(ti)− y(ti)||2, (3)

where K is the number of measurement time points. According to the measurement noise and
the Doob–Dynkin lemma [31], the identified model parameters θ̂ are random variables as well;
for example, measurement uncertainties induce stochastic parameter uncertainties. The resulting
parameter uncertainties, in turn, are determined by the data quality and parameter sensitivities alike.

2.1. Local Parameter Sensitivities

In practice, local sensitivities are the standard for analyzing the effect of parameter variations on
model-based results [28,29,32]. Local sensitivities SLSA are typically expressed by partial derivatives of
the j-th model output, y[j](t), with respect to the i-th model parameters, θ[i], as

SLSA[i, j](t) =
∂y[j](t)

∂θ[i]
(4)

and summarized by the sensitivity matrix SLSA(t) ∈ R
m×p while j = 1, . . . , m and i = 1, . . . , p. In the

field of dynamical systems, the governing equations of the original model (Equation (2)) have to be
extended by sensitivity terms of the states, SLSA

x , which are solved in parallel according to
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ṠLSA
x =

∂ f
∂x

· SLSA
x +

∂ f
∂θ

; SLSA
x (t = 0) = 0n×p. (5)

Thus, the output sensitivities can be expressed as

SLSA =
∂h
∂x

· SLSA
x +

∂h
∂θ

. (6)

Alternatively, the gradients (Equation (4)) can be calculated with various numerical methods,
e.g., automatic differentiation or finite differences. Here, the interested reader is referred to [32,33] and
references therein.

Technically, local sensitivities provide information about the relevance of model parameters
in the neighborhood of a reference point within the defined parameter space, a reference which is
typically unknown for most practical problems. In an ideal world, hypothetically, the reference point
corresponds to the exact model parameters. Moreover, the general idea of local SA measures is
based on linearization principles; i.e., the original, nonlinear model (Equation (2)) is linearized at the
(unknown) reference point. Thus, nonlinear effects are ignored although the analyzed models may
have strong nonlinearities involved [21]. The resulting approximation errors may render the outcome
of such a sensitivity analysis meaningless and difficult to interpret in general. To compensate for
the dependency of unknown reference points, a multi-point averaging approach can be applied as
described in the following sections.

2.2. Robustification: Multi-Point Averaging Approach

As the reference points for the sensitivity gradients are typically unknown, local sensitivities may
provide artifacts; i.e., insensitive parameters are identified as sensitive or vice versa. To avoid this kind
of mis-classification, an averaged version of the sensitivity matrix (Equation (4)) seems to be a more
robust measure [25,34] following a Bayesian experimental design principle [22–24] and is defined as

SrLSA[i, j](t) = E[SLSA[i, j](t)] =
∫

Ω
SLSA[i, j](t)pd fθ[i] dθ[i], (7)

where E[·] is the expected value, Ω is the support domain, and the probability density function (PDF),
pd fθ[i], represents the assumed parameter variation of the i-th parameter. According to Equation (7),
for linear problems, the proposed concept simplifies to the local SA expression [25]. In most practical
scenarios, there exists no analytical solution of Equation (7). Thus, Monte Carlo (MC) simulations are
evaluated instead to solve a discretized approximation resulting in a multi-point averaging approach
equal to

SrLSA[i, j](t) = E[SLSA[i, j](t)] ≈
N

∑
k=1

SLSA[i, j](θk[i], t), (8)

where θk[i] represents the k-th realization of the i-th parameter according to the given PDF. The sample
number, N, determines the total number of function calls of Equation (5) needed to approximate the
averaged sensitivity measure, i.e., for each parameter realization, θk, Equation (5) has to be vectorized
and solved in parallel with the dynamic model (Equation (1)) that is also evaluated for θk. By using
SrLSA instead of the standard local quantities SLSA, the resulting parameter sensitivities are more
representative of nonlinear problems [34–36] and may provide a reliable base for subsequent MB-OED
studies. As standard MC simulations might become prohibitive in terms of computational load,
efficient sample-based approaches are mandatory and will be discussed in more detail in Section 2.4.

The multivariate interaction, however, of the analyzed model parameters is still not taken into
account appropriately by the multi-point averaging concept. Here, the framework of global sensitivities
seems to be more suitable to rank vaguely known parameters and to quantify their interactions.
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2.3. Global Parameter Sensitivities

Global sensitivity measures treat parameters, θ, and model outcomes, y(t), as random variables
and aim to quantify the amount of variance that each parameter, θ[i], adds to the total variance of
the output, σ2(y(t)) [29,37,38]. In detail, the parameter ranking is done by the amount of output
variance that disappears when the i-th parameter θ[i] is assumed to be known, σ2(θ[i]) = 0. For this
particular parameter, a conditional variance, σ

−i
2(y(t)|θ[i]), can be derived. Here, the subscript −i

indicates that the variance is taken over all parameters other than θ[i]. As θ[i], in reality, is a random

variable, the expected value of the resulting conditional variance, E
i

[
σ
−i

2(y(t)|θ[i])
]

, has to be analyzed.

The subscript notation of E
i

indicates that the expected value is taken only over the parameter θ[i] itself.

Finally, the total output variance, σ2(y(t)), can be split into two additive terms [29] equal to

σ2(y(t)) = σ
i

2(E
−i
[y(t)|θ[i]]) + E

i
[σ
−i

2(y(t)|θ[i])]. (9)

Here, the variance of the conditional expectation, σ
i

2(E
−i
[y(t)|θ[i]]), represents the contribution

of parameter θ[i] to the total variance σ2(y(t)). The normalized expression given in Equation (10) is
known as the first-order Sobol sensitivity index [29] and is used in the following to analyze parameter
sensitivities and multivariate parameter interactions, respectively:

SGSA[i](t) =
σ
i

2(E
−i
[y(t)|θ[i]])

σ2(y(t))
. (10)

Similar to the multi-point averaging approach (Section 2.2), the integral terms associated
with σ2(y(t)), E

−i
[y(t)|θ[i]], and σ2(y(t)|θ[i]) are commonly evaluated with MC simulations [39].

For global sensitivity studies of complex models, MC simulations have prohibitive computational
costs. Thus, while implementing an MB-OED strategy based on global sensitivities, highly efficient
methods have to be used. The most relevant concepts in this direction are outlined in the next section.

2.4. Implementation Aspects

Over the last two decades, various methods have been developed to calculate Sobol indices
efficiently. The most frequently used approaches are based on advanced MC simulations and
polynomial chaos expansion (PCE) principles [40]. In comparison to ordinary MC simulations,
advanced sampling concepts aim for a better convergence rate by an improved space-filling sampling
strategy, i.e., to avoid clustering effects, as well as gaps in the p-dimensional sampling space [41].
Please note that p represents the dimension of the random vector, i.e., the number of not perfectly
known model parameters. For instance, so-called quasi-MC methods have a convergence rate
of O((log N)p/N), which for low-dimensional problems can lead to a significant reduction in
computational costs in comparison to O(1/

√
N) for ordinary MC [41]. On the other side, PCE-based

approaches aim to replace the original CPU-intensive model with a handy and easy-to-evaluate
surrogate model first. Then, some characteristics of the derived PCE models are used to express global
sensitivities analytically by using the PCE coefficients directly or to run additional MC simulations at
low computational costs [42]. The parameterization of the PCE model, however, requires a significant
number of reference simulations of the original model. Both concepts, advanced MC methods and
PCE, might be prohibitive for MB-OED problems because of their computational costs. Highly efficient
uncertainty handling methods are needed instead. Here, the point estimate method (PEM) provides a
fair compromise in terms of CPU load and accuracy [43,44].

The fundamental idea of the PEM is to choose sample points, θk, and associated weights, wk,
in accordance with the first central moments of given random variables [43]. However, in comparison
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to MC simulations, these sample points are generated deterministically and not randomly. Assuming a
three-dimensional parameter problem, for instance, the resulting sample set reads as

GF(±ϑ) =

⎡⎢⎣θ[1]
θ[2]
θ[3]

⎤⎥⎦+

⎧⎪⎨⎪⎩
⎡⎢⎣ϑ

0
0

⎤⎥⎦ ,

⎡⎢⎣−ϑ

0
0

⎤⎥⎦ ,

⎡⎢⎣0
ϑ

0

⎤⎥⎦ ,

⎡⎢⎣ 0
−ϑ

0

⎤⎥⎦ ,

⎡⎢⎣0
0
ϑ

⎤⎥⎦ ,

⎡⎢⎣ 0
0
−ϑ

⎤⎥⎦
⎫⎪⎬⎪⎭. (11)

The generator function, GF(±ϑ), creates the sample set by permuting an element θ[i] of the
original random vector θ one by one by the amount of ϑ. Thus, the scaling parameter, ϑ, controls the
spread of the sample points in the p-dimensional parameter space. To calculate the expected value,
the discretized integration problem reads as

E[g(θ)] =
∫

Ω
g(θ)pd fθdθ ≈ w0g(θ) + w1g(GF(±ϑ)), (12)

with w0 = 1− p/ϑ2 and w1 = 1/2ϑ2 assuming a standard Gaussian distribution. Moreover, the overall
precision of the PEM can be increased gradually by considering higher-order central moments of θ.
The more precise approximation scheme [44,45] results in

E[g(θ)] =
∫

Ω
g(θ)pd fθdθ ≈ w0g(θ)+

w1g(GF(±ϑ)) + w2g(GF(±ϑ,±ϑ)),
(13)

where GF(±ϑ,±ϑ) implies the simultaneous variation of two elements of the given parameter vector θ.
Thus, the number of generated sample points, θk, scales quadratically with 2p2 + 1 for a p-dimensional
parameter problem: a good balance of computational load and approximation power.

The four unknown coefficients, ϑ, w0, w1, and w2, can be expressed analytically as

ϑ =

√
μ4

μ2
, (14)

w0 =
−2μ2

2μ4 p + μ2,2μ2
2(p2 − p) + 2μ0μ2

4
2μ2

4
, (15)

w1 =
μ2

2(μ4 + μ2,2(1 − p))
2μ2

4
, (16)

w2 =
μ2

2μ2,2

4μ2
4

, (17)

where μ0 =
∫

1pd fθdθ is the zeroth central moment, μ2 =
∫

θ[i]2 pd fθdθ the second central moment,
μ4 =

∫
θ[i]4 pd fθdθ the fourth central moment, and μ2,2 =

∫
θ[i]2θ[j �= i]2 pd fθdθ a bivariate central

moment. Depending on the PDFs and their central moments, different PEM coefficients are derived.
For instance, specifications of different PDFs and their corresponding PEM coefficients are given in
Tables 1 and 2, respectively. Here, three different PDF types are considered: (i) normal distribution
to represent the uncertainty range of well-known parameter variations; (ii) uniform distribution
for cases where almost no information about the parameter variation is available; and (iii) triangle
distribution to represent expert knowledge of parameter variations; i.e., the most likely parameter
values and plausible upper and lower bounds. Within the individual distribution classes, any desired
realization can be derived with a linear transformation step without loss of approximation accuracy,
while non-symmetric or non-parametric distributions can be represented by iso-probabilistic but
nonlinear transformation rules [42], which might introduce additional approximation errors.
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Table 1. Statistical central moments of the standard normal (N ), uniform (U ), and triangle (T ) distribution.

Distribution μ0 μ2 μ4 μ2,2

θ[i] ∼ N (0, 1), ∀i = 1, . . . , p 1 1 3 1
θ[i] ∼ U (−1, 1), ∀i = 1, . . . , p 1 1/3 3/5 1/9
θ[i] ∼ T (−1, 1), ∀i = 1, . . . , p 1 1/6 1/15 1/36

Table 2. PEM parameters according to the standard normal (N ), uniform (U ), and triangle (T ) distribution.

Distribution ϑ w0 w1 w2

θ[i] ∼ N (0, 1), ∀i = 1, . . . , p
√

3 1 + p2−7p
18

4−p
18

1
36

θ[i] ∼ U (−1, 1), ∀i = 1, . . . , p 3
√

5
5 1 + 25p2−295p

1458
160−25p

1458
25

2916

θ[i] ∼ T (−1, 1), ∀i = 1, . . . , p
√

10
5 1 + 25p2−145p

288
85−25p

288
25

576

Once the deterministic sample points have been derived, the mean and the variance of the model
simulations can be approximated as

E[y(t, θ)] ≈ y(t, θ) = w0y(t, θ0) + w1

2p

∑
k=1

y(t, θk) + w2

2p2

∑
l=2p+1

y(t, θl), (18)

σ2(y(t, θ)) ≈ w0(y(t, θ0)− y(t, θ))(y(t, θ0)− y(t, θ))T+

w1

2p

∑
k=1

(y(t, θk)− y(t, θ))(y(t, θk)− y(t, θ))T+

w2

2p2

∑
l=2p+1

(y(t, θl)− y(t, θ))(y(t, θl)− y(t, θ))T .

(19)

Obviously, Equation (18) can directly be applied to approximate the averaged local sensitivity
measure (Equation (7)), whereas the denominator of the Sobol indices (Equation (10)) is approximated
with Equation (19). The calculation of the conditional variance terms of the numerator in Equation (10)
is given in the following.

The overall set of generated sample points of the PEM provides nested subsets of sample points
representing the conditional variance terms. According to the numerator of Equation (10), the expected
value is taken over all but the i-th parameter; i.e., the ϑ-value of parameter i is set to zero. The variance,
however, is taken exclusively for the i-th parameter; i.e., the corresponding ϑ entry is reset to its original
distribution-dependent value. Only the weights, w0 and w1, have to be adapted to a one-dimensional
problem while leaving the overall PEM samples unchanged, i.e., there is no need for additional costly
simulation runs. Please note the weight w2 is set equal to zero; i.e., sample points generated via
GF(ϑ, ϑ) are not considered at this point. The described procedure is illustrated in Figure 2 assuming a
three-dimensional parameter problem. In Figure 2a, the original sample set generated via Equation (11)
is shown. Next, in Figure 2b, three different expected values are determined for E[y(t)|θ[1]] via the
three differently colored sample subsets and different θ[1] values, respectively. When using these three
derived expected values for θ[1], the conditional variance of θ[1] can be approximated (Equation (10)).
The same procedure is repeated for parameter θ[2] (Figure 2c) and parameter θ[3] (Figure 2d) to
derive the desired Sobol indices. Please note that the derived samples are not used to quantify the
information content [16,46,47], but to quantify the uncertainty of the local sensitivities or to directly
derive global parameter sensitivities. In [48,49], the performance of the PEM for calculating global
parameter sensitivities and uncertainty analysis is discussed in more detail. Here, the PEM provides
appropriate approximations at low computational costs compared to Monte Carlo simulations. In the
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next step, from these sensitivity measures, the most MB-OED-relevant features have to be extracted by
defining proper optimal design measures.
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Figure 2. Parameter subset selection: Starting from an unconditioned parameter sample set (a), subsets
are systematically selected in (b–d) to determine conditioned expectations and variances, respectively.
(a) all sample points used to calculate the unconditioned, total uncertainty σ2(y(t)); (b) sample subsets
for θ[1], θ[1] + ϑ, and θ[1]− ϑ; (c) sample subsets for θ[2], θ[2] + ϑ, and θ[2]− ϑ; (d) sample
subsets for θ[3], θ[3] + ϑ, and θ[3]− ϑ.

3. Optimal Design Measures

The actual optimization step of the MB-OED framework calls for a decision criterion that has
to express the quality of the analyzed experimental configuration regarding parameter sensitivities.
To this end, typically, representative scalar values are chosen for and evaluated with an optimization
routine. In the literature, well-known criteria for local sensitivities exist and are summarized below
followed by more general global design criteria.

3.1. Local Design Measures

The starting point for most local design criteria is an approximation of the parameter (co)variance
matrix, which is defined as

Cθ = E[(θ − E[θ])(θ − E[θ])T ]. (20)

Based on the Cramér–Rao inequality [14] and local sensitivities (Equation (4)), the lower bound of
the parameter (co)variance matrix assuming an unbiased estimator reads as
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Cθ ≥ FIM−1, (21)

where the FIM is given by

FIM =
K

∑
tk

SLSA(tk)
T

C−1
y (tk)SLSA(tk). (22)

Cy represents the (co)variance matrix of the measurement data, which simplifies to a diagonal matrix
assuming uncorrelated data samples. To formulate an optimization problem, a scalar function of the
derived parameter (co)variance matrix Cθ is typically evaluated and minimized. Note that the inverse
FIM is used as an approximation of the parameter covariance matrix in what follows, Cθ ≈ FIM−1.
A common class of these indicators is the so-called alphabetic family of design criteria [14,18] as given
in Table 3. Here, λmax and λmin are the maximum and minimum eigenvalues of Cθ , respectively.

Table 3. Local design measures for MB-OED based on the parameter covariance matrix , where E∗
LSA

refers to the modified E criterion.

Local Design Measures Cost Functions

ALSA—optimal design ΦA = trace(Cθ)

DLSA—optimal design ΦD = det(Cθ)

E∗
LSA—optimal design ΦE∗ = λmax(Cθ)

λmin(Cθ)

Which of these criteria leads to the best optimal experimental design is difficult to predict and
depends on the analyzed problem at hand. Moreover, in many practical situations, the involved
model parameters are highly correlated; for example, credible parameter estimates are challenging and
sometimes impossible to derive for individual parameters. For that reason, dedicated anti-correlation
criteria were proposed, aiming to reduce the parameter correlation while increasing the information
content of the measurement data at the same time [50]. Here, linear parameter correlation is
expressed as

Corr[i, j] =
Cθ [i, j]√

Cθ [i, i] ·
√

Cθ [j, j]
, (23)

with i, j ∈ {1, . . . , p}. The dominating correlation coefficients are selected directly or added as
constraints to parameter variance measures [50], respectively. The basic notation reads as

ΦAC(Corr) = Corr[i, j]2 + Corr[k, l]2, (24)

where Corr[i, j] and Corr[k, l] with i, j, k, l ∈ {1, . . . , p} are the two most dominant correlation
coefficients. As the (co)variance matrix Cθ is derived by the FIM (Equation (21)), these anti-correlation
criteria depend on local parameter sensitivities (Equation (4)), too. As discussed in Section 2.1,
local sensitivities may lead to crude approximation errors and sub-optimal experimental designs.
In principle, the approximation error can be reduced by the multi-point averaging concept as proposed
in Section 2.2 but still ignores nonlinear and multivariate effects as explained below.

While the anti-correlation strategy was successfully demonstrated for chemical and biochemical
processes [50,51], it addresses linear parameter correlation solely, which, however, does not imply
parameter independence [52]. Thus, nonlinear parameter correlations are neglected, but might be of
relevance in MB-OED as well. In Figure 3, parameter dependencies are illustrated showing linear
correlation (Figure 3a) and no correlation (Figure 3b) of two model parameters. In Figure 3c, however,
the linear correlation coefficient (Equation (23)) is zero, but nonlinear interaction patterns are clearly
visible. Ideally, the parameter estimate of one parameter should not impact the estimation outcome
of other parameters. The same holds true for multivariate parameter interactions, i.e., the joint effect
of more than two parameters that are also not considered by the linear anti-correlation measure
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introduced in Equation (24). To address nonlinear parameter correlations and multivariate parameter
interactions properly, global sensitivities and corresponding optimal design measures have to be
analyzed instead.
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Figure 3. Illustrative example of parameter dependencies: (a) linear correlation with Corr[1, 2] = 0.95;
(b) no correlation with Corr[1, 2] = 0; and (c) nonlinear correlation but zero linear correlation
(Corr[1, 2] = 0); here, eight standard Gaussian distributions are superimposed in a circular structure
and properly rescaled providing a multi-modal density function. (a) linear correlated parameters;
(b) linear uncorrelated parameters; (c) nonlinear correlation.
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3.2. Global Design Measures

The additional insight given by global sensitivity measures (see Section 2.3) provides a new
perspective on MB-OED [19,25,26,53]. As shown in Table 4, local design criteria (Table 3) are typically
generalized to hold also for global sensitivities by substituting local sensitivities (Equation (4)) via
global sensitivities (Equation (10)) [26,53].

Table 4. Generalized local design measures including global sensitivities.

GSA-Based Design Measures Cost Functions

AGSA—optimal design ΦAGSA = trace([SGSATSGSA]−1)

DGSA—optimal design ΦDGSA = det([SGSATSGSA]−1)

E∗
GSA—optimal design ΦE∗

GSA
= λmax([SGSA T SGSA]−1)

λmin([SGSA T SGSA]−1)

Thus, parameter uncertainties are taken into account naturally. Suboptimal results in MD-OED
caused by misspecified reference points for local sensitivities (Equation (4)) can be avoided as much
as possible by analyzing the entire PDF of the analyzed model parameters. Moreover, GSA provides
additional insight into parameter dependencies, which can be included in the experimental design
criteria as well. One attempt in this direction was made recently in [53], where so-called additive
sensitivity indices are introduced as modified Sobol indices. Here, the key idea is to account for
multivariate parameter interactions and dependencies that impact the overall quality of parameter
estimates similar to individual parameter sensitivities. The usage of GSA to express generalized
sensitivity matrices for MB-OED may pose some risk as well: (1) Not all GSA-based measures simplify
to local measures for linear problems [25], which may lead to sub-optimal experimental designs
and counter-intuitive outcomes; (2) including sensitivities of parameter combinations directly in a
generalized GSA measure [53] might increase parameter dependencies; i.e., parameter correlations are
amplified while limiting individual parameter contributions and, therefore, result in more challenging
parameter identification problems; and (3) as the introduced GSA measures are normalized by the total
variance factor, the calculated design may lead to an improved parameter sensitivity spectrum, but of
lower sensitivities for individual parameters. Thus, the individual Sobol indices are optimized just by
decreasing the σ2(t, y(t)) term of Equation (10), meaning worse estimates for all model parameters.

To avoid the workaround of transferring global sensitivities into the local framework, the Shannon
entropy as a general information measure [54] might be a helpful expression to calculate the desired
features for global MB-OED. Intuitively, an optimal experimental design should fulfill the following
features: (1) first, after running an experiment, the derived data have to ensure a balanced sensitivity of
all parameters; i.e., all parameters should be practically identifiable. Thus, the corresponding Shannon
entropy ΦSEall of the parameter sensitivities has to be at its maximum and the given criteria at its
minimum (Table 5); i.e., there is a uniform distribution of the first-order Sobol indices. Note that
SGSA[i] refers to the averaged sensitivities covering all sample time points; (2) at a single time point tk,
however, it is desirable that only a very limited number of parameters contribute at the same time,
i.e., to minimize (nonlinear) correlation effects. Thus, the Shannon entropy covering global sensitivities
at a single time point ΦSEtk

has to be at its minimum; (3) to address multivariate parameter interactions
and to minimize them, the gap between the sum of first-order Sobol indices and its theoretical
maximum value of one is evaluated ΦPD; see Table 5. Here, a sum of first-order Sobol indices close to
one corresponds to low parameter interactions, i.e., a well-posed parameter identification problem;
and, (4) finally, the overall output variance ΦOU has to be incorporated as well: the higher the better.
A high output variance (Equation (19)) indicates a high parameter sensitivity, which is a prerequisite
for credible parameter estimates. Please note that, for consistency, the related cost functions are given
as a minimization problems.
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Table 5. Global design measures for MB-OED based on Sobol indices and Shannon entropy.

Global Design Measures Cost Function

(1) Shannon entropy (entire time horizon) ΦSEall = 1/
p
∑

i=1
SGSA[i]ln(SGSA[i])

(2) Shannon entropy (at single time point, tk) ΦSEtk
=

K
∑

k=1

p
∑

i=1
SGSA

tk [i]ln(S
GSA

tk [i])

(3) Parameter dependency ΦPD =
K
∑

k=1
(1 −

p
∑

i=1
SGSA

tk [i])

(4) Overall output uncertainty ΦOU = 1/
K
∑

k=1
σ2(ytk )

In the next step, MB-OED results based on the proposed global design measures are critically
compared with the outcome of the traditional local sensitivity measures. To this end, various
experimental design conditions are evaluated for two representative case studies in the field of
pharmaceutical manufacturing.

4. Case Studies

4.1. Synthesis of an API–Scaffold (DHBD)

During the early stages of API process development, different properties of the unit operations
involved are analyzed in order to characterize and to optimize the synthesis as well as the downstream
route. Reaction rates are regarded as key descriptors of the synthesis progression as they depend
on, temperature, and time. As a first case study for MB-OED, the homogeneous synthesis of
3,4-dihydro-1H-1-benzazepine-2,5-dione (DHBD) from the enolized 3-oxocarboxylic ester in wet
dimethyl sulfoxide (DMSO) under neutral conditions and at elevated temperatures is presented;
see Figure 4.

 

Figure 4. Synthesis of 3,4-dihydro-1H-1-benzazepine-2,5-dione (DHBD).

DHBD and its derivatives are pharmaceutically relevant scaffolds utilized for the synthesis of
various protein kinase inhibitors and anticancer agents [55–60]. In traditional reaction optimization
studies, isothermal syntheses at various temperatures are carried out one by one, and the syntheses
are analyzed with offline high-performance liquid chromatography (HPLC) in order to determine
reaction kinetics. However, HPLC measurements are tedious in sample preparation and need
increased amounts of reactant, which might not be available in the very early stage of API
development. Alternatively, we implement the fast-sampling and labor free in situ attenuated total
reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in order to quantify the reactant
concentration and, subsequently, to calculate reaction rate constants without the need for manual
sampling. Combined with non-isothermal temperature profiles during the course of the reaction,
temperature-dependent kinetic data, e.g., reaction rate constants at different temperatures and therefore
Arrhenius parameters EA and k0 of the reaction under study, can be derived from a single experimental
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run [61]. The quality of the derived reaction rate constants critically depends on the design of the
applied non-isothermal temperature profile.

In what follows, we assume an Arrhenius rate expression:

k = k0 exp
(
− EA

RT

)
, (25)

where k is the rate constant, T is the absolute temperature, R is the ideal gas constant, k0 is the
pre-exponential frequency factor, and EA the activation energy. Because of the inherent correlation
of the two Arrhenius parameters, k0 and EA, the parameterization of the Arrhenius equation
(Equation (25)) is challenging. That is, independently of the applied experimental setup the correlation
cannot be reduced for the Arrhenius rate [62,63] expression. At best, a parameter transformation might
be applied to mitigate the correlation effect but changes the meaning of the identified parameters
alike [64]. Thus, for this particular MB-OED problem, any anti-correlation criteria, which include the
modified E∗-criterion as well, fail. Only the overall uncertainty of the parameter estimates can be
reduced in principle. For this very reason, we first derive MB-OED results based on local sensitivities
(Equation (4)) and the classical D-criterion (Section 3), which is expected to minimize the volume of
the parameter confidence ellipsoid [14]:

T∗(t) = arg min
T(t)

ΦD, (26)

s.t.

dCDMSO(t)
dt

= −k(T(t))CDMSO(t) (27)

Tlb ≤ T(t) ≤ Tub. (28)

The optimal experimental design problem is described in Equations (26)–(28), where Equation (27)
is the dynamic reaction model with the DMSO concentration CDMSO(t), and Equation (28) is the
temperature constraint. A temperature profile divided into equidistant and constant subintervals
is assumed. For all intervals, upper and lower temperature bounds are given as Tlb =100 ◦C and
Tub =150 ◦C while assuming continuous measurements of DHBD. Technically, the Matlab R© (R2017a)
optimizer fmincon is used to derive an optimal temperature profile; i.e., a profile that provides the
most informative data and lowest parameter variations. The performance of the original and optimal
temperature profile is validated with 2000 Monte Carlo simulations, where for each simulation and
parameter identification, respectively, artificial experiment data are assumed with additive white noise.
In Figure 5a, we show a reference temperature profile of five temperature steps of equal step-size,
which was chosen by educated guessing. The reference profile might already be a good choice to
identify the two Arrhenius parameters as it covers the whole temperature range without any obvious
preferences. In Figure 5b, we see that the estimates are of finite variation, but as expected, they are
strongly correlated. In Figure 5g,j, the individual parameter distributions represent the parameter
uncertainties of EA and k0 from a different angle and represent their individual but finite variation.
In the next step, the D-optimally designed temperature profile is derived numerically and shown in
Figure 5b. Compared to the reference temperature profile, less dedicated temperature steps are visible
over the experimental course. However, the range of the temperature values is lower; i.e., it starts at a
higher temperature of 135 ◦C and ends with the highest possible temperature of 150 ◦C. Assuming the
same measurement imperfections, the uncertainty in the identified Arrhenius parameters can be
reduced by the optimized temperature profile; i.e., the uncertainty of the individual parameters is
lower as indicated by the probability density functions in Figure 5h,k. The parameter correlation,
however, as can be seen in Figure 5e, remains at the same level. As the derived optimal temperature
profile might be difficult to realize due to the small temperature shifts resulting in operability and
control issues, a simplified Ds-optimality temperature profile ignoring temperature shifts that are below

298



Processes 2018, 6, 27

2 K variations (see Figure 5c) could be implemented with almost no performance loss; see Figure 5f,i,l
for clarification. Similar lab-relevant constraints might be directly added to the underlying dynamic
optimization problem [65] but are beyond the scope of this paper.

Initial design D-optimality Ds-optimality

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Performance of the initial setting and MB-OED. Ds-optimality means a simplified temperature
profile in comparison to D-optimality. (a) is the initial; (b) the optimally designed; and (c) the
optimal but simplified temperature profile; (d–f) are the scatter plots for the estimated parameters
assuming simulated noisy data for 2000 MC simulations; (g–l) are the corresponding parameter
probability distributions.

Thus far, only local sensitivities have been studied assuming the given reference Arrhenius
parameters at which the local sensitivities have to be evaluated. The outcome of this local MB-OED

299



Processes 2018, 6, 27

strategy, however, depends critically on the quality of the reference parameters at which the local
sensitivities (Equation (4)) are derived. Any deviation of these parameters from their nominal values
leads to a change in the local sensitivity values and the D-optimality. In Figure 6, the relative change in
the optimized cost function is shown, which is defined as

ΔΦopt
D (k0, EA) =

Φopt
D (k0, EA)− Φopt

D (kref
0 , Eref

A )

Φopt
D (kref

0 , Eref
A )

. (29)

(a) (b)

Figure 6. Effect of parameter variation. Areas close to zero mean no change in the optimized cost
function (Equation (29)) when the Arrhenius parameters are changed. The classical D-optimality shown
in (a) degrades drastically with parameter variations. The robust D-optimality shown in (b) is less
affected by changes in the parameters. (a) D-optimality; (b) Robust D-optimality.

The results show that a misspecification of the applied reference Arrhenius parameters is
likely to result in sub-optimal temperature profiles, less informative measurement data, and higher
parameter uncertainties. Alternatively, when the multi-point averaging approach is used (Equation (8)),
the calculated design is more robust against reference parameter variations; see Figure 6b. The classical
D-optimality shown in Figure 6a degrades drastically with reference variations. The robust
D-optimality, however, shown in Figure 6b is less affected by changing the reference parameters. As the
reference parameters are typically unknown but are needed to calculate local parameter sensitivities,
a robust MB-OED strategy is expected to provide more valuable MB-OED results. Moreover, global
parameter sensitivities are evaluated and used for a more credible D-optimality measure (Table 4).
The resulting parameter errors for the classical D-optimality, its multi-point averaging realization,
and the global sensitivity-based D-design are analyzed. In Figure 7, the multi-point averaging approach
and the GSA-based MB-OED lead to more precise parameter estimates in comparison to the classical
D-optimality as indicated by the density functions. Here, the GSA-based design results in the most
precise estimates; i.e., the probability density functions of Arrhenius parameter have their highest
peak close to the true values. Moreover, the multi-point averaging approach and the GSA-based
design seem to be less corrupted by the misleading second local minima of the parameter identification
problem, which is indicated by the second peak of the probability density functions in Figure 7a,b.
Please note, because the proposed PEM sampling strategy is used, only nine sample points for each
iteration of the optimizations step are needed to calculate the multi-point averaging or GSA measures
in the case of the two Arrhenius parameters.

The applied sensitivity measure has a strong impact on the MB-OED results for the Arrhenius
parameters. The classical MB-OED based on local sensitivities is error-prone and is expected to provide
sub-optimal experimental designs. For novel APIs, which are available only in very small quantities,
each individual experimental run counts. Therefore, MB-OED following a multi-point averaging
approach or GSA principles seems to be preferable. Combined with the proposed non-isothermal
temperature profile strategy, the optimized temperature profiles ensure the best use of the API-scaffold
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DHBD and the most precise estimates of the kinetic rate parameters, k0 and EA. In the next step,
an MB-OED study of a more complex biochemical synthesis problem is presented where the focus is
also on the effect of global design measures.

(a) (b)

Figure 7. The resulting parameter distributions of the two Arrhenius parameters for the discussed
MB-OED strategies. The red circle is the reference value used for MB-OED while the blue triangle is
the true parameter value. (a) Arrhenius parameter k0; (b) Arrhenius parameter EA.

4.2. A Fed-Batch Bioreactor

In the second test case study, a fed-batch bioreactor is analyzed. A lumped version of a generic
biomass-substrate model reads as follows:

dCX
dt

= μ · CX − U
V

· CX , (30)

dCS
dt

= −σ · CX +
U
V

· (CS,in − CS), (31)

dV
dt

= U, (32)

where CX is the biomass concentration, CS is the substrate concentration, V is the liquid volume,
and U is the inlet flow rate. The specific growth rate μ and the specific consumption rate σ follow
Monod expressions

μ = μmax ·
CS

CS + KS
, (33)

σ =
μ

YX/S + m
. (34)

The nominal parameter values in Equations (30)–(34) and the initial conditions for the dynamic
model are listed in Table 6.

Table 6. Parameters as in [66] and initial conditions for the fed–batch bioreactor.

Symbol Parameter Unit Nominal Value

CX0 initial concentration of biomass g L−1 0.25
CS0 initial concentration of substrate g L−1 3
V0 initial volume of the liquid phase L 7

CS,in substrate concentration in the feed g L−1 50
U volumetric feed rate L h−1 0–1

μmax maximum specific growth rate h−1 0.421
KS half velocity constant g L−1 0.439

YX/S yield coefficient of biomass over substrate - 0.777
m maintenance factor h−1 0
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For the experimental setups, the following constraints are considered. The duration of the reaction
is set to 15 h. The biomass and the substrate concentration are measurable with a sample rate of 0.75 h,
which results in a total set of 40 measurement samples. The maximum specific growth rate μmax, the half
velocity constant KS, and the yield coefficient YX/S should be estimated by minimizing the difference
between the measurements and the simulation results. In this simulation study, artificial measurement
data [67] are used with additive measurement noise of N (0, 6.25 × 10−4) and N (0, 1 × 10−3) for Cx

and Cs, respectively. The MB-OED strategy aims at reducing the uncertainty of the parameters by
optimizing the feeding policy of the fed-batch bioreactor. Thus, the inlet profile U is parameterized by
20 constant segments of equal size, which are optimized to provide the most informative experimental
data. The Monod kinetic parameters, μmax, KS and YX/S, are treated as uncertain. Their variations are
expressed by uniform PDFs of different ranges, i.e., μmax ∼ U(0.2, 0.8), KS ∼ U(0.2, 0.8), and YX/S ∼
U(0.4, 1.5), which might have been derived experimentally with a parameter identification procedure.
In addition to μmax, KS, and YX/S, the model parameters are assumed to be given by the literature
without any uncertainty. Thus, please note that only 19 sample points for each iteration of the
optimization step are needed to calculate the multi-point averaging or GSA measures when using the
proposed PEM sampling strategy.

First, we applied the E∗-design to minimize imbalanced parameter sensitivities and uncertainty.
Similar to the previous case study, we compare a default substrate inlet profile (Figure 8c) with the
outcome of the classical E∗-design in Figure 8d–f. The resulting parameter scatter plots based on
the initial profile (Figure 9a–c) show bimodal behavior indicating some severe nonlinearity and a
non-convex optimization problem. For the classical E∗-design, the resulting parameter variations of all
three parameters (Figure 9d–f) could be only slightly improved while the parameter correlation for all
parameter combinations is clearly visible. The multi-point averaging approach of the E∗-design, in turn,
seems to be more appropriate. Applying a low initial substrate concentration (Figure 8g) combined
with an optimized impulse-like feeding rate (Figure 8i), the quality of the parameter estimates can
be improved as illustrated in Figure 9g–i. In particular, the parameter correlations between KS
and YX/S, and μmax and KS are reduced. This effect can even be improved by implementing an
MB-OED strategy based on GSA. A low initial substrate concentration (Figure 8j) but a more complex
feeding rate (Figure 8l) results in more compact parameter scatter plots (Figure 9j–l); i.e., fewer
parameter uncertainties and parameter correlations. Finally, in the Shannon 1 study, we also analyze
the performance of a Shannon-entropy-based (Table 5) multi-objective design using w = [1, 1, 0, 1]T as
a weighting vector for

ΦSE = wT [ΦSEall , ΦSEtk
, ΦPD, ΦOU]. (35)

Please note that the third element w[3] was set to zero as the sum of the first-order Sobol indices

(
p
∑

i=1
SGSA

tk [i]) was always greater or equal to 0.9; i.e., there is no strong multivariate dependency of the

analyzed parameters.
Similar to the E∗-design, the derived initial substrate concentration is high; see Figure 8m. For the

feeding rate, there are two distinct feeding periods as illustrated in Figure 8o. The resulting parameter
estimates, which are summarized in Figure 9m–o, show no significant improvement in the parameter
estimates in comparison to the unoptimized initial experimental setting or the E∗-design. The main
reason here is the tedious tuning of the multi-objective function, i.e., providing an optimal weighting
vector w. For instance, when using w = [1000, 1, 0, 0.1]T in the Shannon 2 study, the quality of
the parameter estimates improves significantly as illustrated in Figure 10. In comparison to the
previous MB-OED results, the Shannon-entropy-based design in combination with a proper weight
vector w leads to improved parameter estimates, i.e., lower parameter variations and correlations
as shown in Figure 10d–f. A low initial substrate concentration (Figure 10a) followed by a gradual
increase in the feeding rate (Figure 10c) provide very informative data and precise parameter estimates,
respectively. This conclusion can be validated by analyzing Figure 11. The relative parameter errors
|θ̂ − θ|/θ clearly indicate the second Shannon-entropy-based design as the most suitable one for the
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parameter identification problem. Please note parameters θ were sampled from their assumed uniform
density functions.

Initial design

(a) (b) (c)

E∗-optimality

(d) (e) (f)

Robust E∗-optimality

(g) (h) (i)

GSA-based E∗-optimality

(j) (k) (l)

Shannon-entropy-based optimality

(m) (n) (o)

Figure 8. MB-OED results showing the evolution of biomass and substrate concentration (left), and
volume of the reactor (middle) based on the optimized feed rate (right).
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Initial design

(a) (b) (c)

E∗-optimality

(d) (e) (f)

Robust E∗-optimality

(g) (h) (i)

GSA-based E∗-optimality

(j) (k) (l)

Shannon-entropy-based optimality

(m) (n) (o)

Figure 9. Performance of the experiments from initial design (a–c), E∗-optimality (d–f), robust
E∗-optimality (g–i), GSA-based E∗-optimality (j–l), and Shannon-entropy-based design (m–o), where
scatter plots are used to present the confidence region for the estimated parameters, which result from
2000 MC simulations.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Evolution profiles for three states ((a) biomass concentration, substrate concentration;
and (b) volume of the reactor) and (c) the feed rate for the adapted Shannon-entropy-based design
with w = [1000, 0.1, 0, 1]T . In (d–f), the resulting parameter estimates are shown.

Figure 11. Error of the parameter estimates of μmax, KS and YX/S. 2000 MC simulations are shown for
the classical E∗-design and Shannon-entropy-based design with w = [1, 1, 0, 1], and w = [1000, 1, 0, 0.1].

5. Conclusions

Without a doubt, model-based and computer-aided concepts are valuable tools for translating
promising lab findings into efficient processes. Biased model-based results, however, due to model
misspecification and model parameter uncertainties, are equally probable. This is particularly true
when measurement data are limited in quantity and quality. Thus, in our work, we have successfully
demonstrated the benefit of robustification and GSA concepts for MB-OED to gain the most informative
data and to improve parameter estimates, respectively. The classical MB-OED, which is based on
local sensitivities, is error-prone and is expected to provide sub-optimal experimental designs. For
novel APIs, which are available only in very small quantities, each individual experimental run
counts. Therefore, MB-OED following a multi-point averaging approach or GSA principles seem to be
preferable as demonstrated by the DHBD synthesis problem. Moreover, Shannon-entropy-based design
measures, which can account for global parameter sensitivities easily, provide a new angle in MB-OED.
Assuming a proper weighting factor, it provides low parameter uncertainties and correlations as
illustrated by the biochemical synthesis study.

To ensure the practical relevance, an efficient implementation of the proposed ideas was of
particular interest in this study. The point estimate method framework seems to be an attractive
alternative compared to state-of-the-art Monte Carlo simulations. On the one hand, it significantly
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reduces the computational load for advanced sensitivity analyses. On the other hand, its ease in
implementation ensures a straightforward adaptation for various problems in MB-OED.

Nevertheless, there are still some open issues and potential research questions that have to be
addressed in ongoing research. For instance, there is no systematic analysis under which conditions
global sensitivity or robustification concepts perform best and, therefore, need to be explored in greater
detail. This could lead to best-practice rules and informed decisions in MB-OED for nonlinear and
complex models. An intensive study of tailored design metrics reflecting global sensitivity outcomes
may also help to gain improvements in the model building process. In particular, multi-objective
design concepts have to be explored and validated in the future. Finally, the proposed ideas have to be
systematically extended to incorporate model misspecification as well, i.e., uncertainties related to the
model structure itself in addition to the model parameters.
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Abstract: We report the application of a recently proposed approach for modeling biological
systems using a maximum entropy production rate principle in lieu of having in vivo rate constants.
The method is applied in four steps: (1) a new ordinary differential equation (ODE) based
optimization approach based on Marcelin’s 1910 mass action equation is used to obtain the maximum
entropy distribution; (2) the predicted metabolite concentrations are compared to those generally
expected from experiments using a loss function from which post-translational regulation of enzymes
is inferred; (3) the system is re-optimized with the inferred regulation from which rate constants are
determined from the metabolite concentrations and reaction fluxes; and finally (4) a full ODE-based,
mass action simulation with rate parameters and allosteric regulation is obtained. From the last
step, the power characteristics and resistance of each reaction can be determined. The method is
applied to the central metabolism of Neurospora crassa and the flow of material through the three
competing pathways of upper glycolysis, the non-oxidative pentose phosphate pathway, and the
oxidative pentose phosphate pathway are evaluated as a function of the NADP/NADPH ratio. It is
predicted that regulation of phosphofructokinase (PFK) and flow through the pentose phosphate
pathway are essential for preventing an extreme level of fructose 1,6-bisphophate accumulation.
Such an extreme level of fructose 1,6-bisphophate would otherwise result in a glassy cytoplasm with
limited diffusion, dramatically decreasing the entropy and energy production rate and, consequently,
biological competitiveness.

Keywords: maximum entropy production; mass action kinetics; statistical thermodynamics; metabolism

1. Introduction

A grand challenge in biology is to predict the time-dependent behavior of a system. While there
have been great successes on the atomistic level that have led to the development of multiscale
modeling methods that address phenomena from the femtosecond timescale to the microsecond time
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scale [1–3], prediction of time-dependent behavior from milliseconds up has been hampered by the
lack of rate parameters needed to solve the differential equations governing the behavior.

Many rate parameters have been measured for a few model organisms, but even for those
organisms the rate parameters are determined in vitro and do not reflect the in vivo environment.
A general solution to this challenge was proposed in 1985 by E. T. Jaynes [4]: “to predict the course of a
time-dependent macroscopic process, choose that behavior that can happen in the greatest number of
ways while agreeing with whatever information you have—macroscopic or microscopic, equilibrium
or nonequilibrium.” The approach that Jaynes was advocating was that of maximum path entropy or
maximum entropy production. If one applies constraints to the path, then the method is a variational
method referred to as maximum caliber [4,5]. Maximum caliber maximizes a path entropy, subject
to the imposed constraints. Jaynes, basing his insights on the writings of Gibbs, assured readers that,
“in spite of the conceptual simplicity of the approach, its full mathematical expression does prove to
be elegant and intricate after all”.

Entropy and maximum entropy are often confusing topics, so it is useful to first define the terms
used herein and explicitly state what is meant by maximum entropy. Fundamentally, entropy itself
is a measure of probability while maximum entropy is simply a characterization or description of a
distribution. An increase in entropy is an increase in probability, but to be clear, one should always
explicitly specify the probability distribution being considered.

Entropy production should not be confused with entropy change, although both are associated
with changes of state [6]. An entropy change for chemical systems is often based on a uniform
probability distribution as in the common notion for configurational entropy. Less common in
the chemical literature but more frequent in the physics literature is the expression of entropy
change between two states, J and K for instance, as a function of the system probability densities,
ΔS(K, J) = − log(Pr(J)/Pr(K)) where Pr(J) and Pr(K) are probability density functions based on,
for instance, the multinomial Boltzmann distribution [6]. In both cases, entropy change is a state
function, meaning that the change in entropy due to a change in state does not depend on which
process or path was followed from state to state.

Entropy production, on the other hand, is path-dependent. A maximum entropy production
path is the thermodynamically optimal or most probable path. The probability density in the case of
mass action chemical systems is the multinomial Boltzmann distribution. A change of state due to
following a particular path is related to the thermodynamics odds of each respective reaction i, KiQ−1

i ,
where Ki is the chemical equilibrium constant and Qi is the reaction quotient. Finding the optimal
path for a system is a general problem [7], but is especially important for biology where efficiency
and time-to-replication are critical for natural selection. Finally, maximum entropy production and
maximum caliber are very similar concepts. A maximum entropy production path is the path that
produces a maximal amount of entropy [8,9]. (A minimum entropy production path is a path that
dissipates a minimal amount of heat or entropy to the environment. For the purpose of this paper,
the two concepts are equivalent and ‘least heat’ can be used as a working definition of optimal.)
A maximum caliber method specifically maximizes the entropy of the path subject to constraints on
the system [10]. Either method may be either inferential (applied for the purpose of data analysis) or
predictive (employed in a simulation). For the intents and purposes of this paper, we shall not make a
distinction between the maximum entropy production and maximum caliber, and will use the term
maximum entropy production.

A maximum entropy method is a general term that can refer either to methods that employ
an entropy change, or to methods that employ entropy production; it can refer to either prediction
through simulation or inference from data. Maximum entropy production specifically refers to a
thermodynamically optimal path from one state to another and may be used in the context of either
simulations, descriptions of processes, or for the purpose of inference [4]. Jaynes used the term
MAXENT to emphasize the use of maximum entropy methods for inference. Regardless of whether
maximum entropy is used in the context of inference or prediction, or an entropy change or entropy
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production, a maximum entropy distribution is the most probable distribution according to the
probability density function and boundary conditions.

Maximum entropy production, or more precisely, maximum entropy production rate—the rate at
which the maximum amount of entropy is produced—has a long history in physical biology. Lotka first
wrote about the concept in 1922, explaining that “in the struggle for existence, the advantage must go
to those organisms whose energy-capturing devices are most efficient in directing available energy
into channels favorable to the preservation of the species” ([11,12]; reviewed in [13]). At face value,
Lotka’s statement seems obvious in retrospect, but he went on to advocate that natural selection is
based on the physical principles of thermodynamics. Surprisingly, in his report, Lotka states that
Boltzmann had been talking about these concepts years earlier. More famously Schrodinger in his
1945 monograph What is Life? [14], used the concept of entropy to describe how order, in the form of
high-energy compounds in the environment, drives organization within organisms. Prigogine, who
received the Nobel prize in 1977 for his work, used the related concept of minimization of entropy
production (defined above) to explain the emergence of self-organized systems from non-equilibrium
conditions [15]. Recently, Dewar [16] has examined the maximum entropy production concept in
detail, noting that when the predictions from maximum entropy approaches fail, it is not the principle
that is inadequate but rather the model to which the principle is applied is usually insufficient for the
level of prediction needed. While some view this to be a controversial statement, we have observed
this to be true in our own work.

Previously, we developed and implemented a maximum entropy production approach to evaluate
the dynamics of different versions of the tricarboxylic acid (TCA) cycle found in nature using stochastic
kinetics [17] and have more recently generalized the concept to show how simulations can be carried
out from knowledge of chemical potentials [18]. In the former study, the rate of the processes were
assumed to all occur on the same timescale. In this study, we extend that work to central metabolism
including glycolysis and the pentose phosphate pathway using deterministic kinetics. The challenge
in both approaches is to find the maximum entropy or most probable distribution, according to a
multinomial Boltzmann probability density, consistent with the non-equilibrium boundary conditions.
Since rate parameters (and also transition probabilities) have inherent time dependence, a mathematical
approach to finding the distribution must be capable of circumventing bottlenecks in phase space that
prevent the system from locating the global minima. One solution to this challenge is to widely sample
parameter space using ensemble modeling to find the parameters that agree with known behavior or
observations [19]. The alternative, as suggested by Jaynes, is to “choose that behavior that can happen
in the greatest number of ways”, which is to choose the most thermodynamically probable parameters.

In this report, we show that the most thermodynamically probable concentrations can be
predicted using a modified version of Marcelin’s 1910 equation describing mass action dynamics
using reaction affinities [20]. The first step is to obtain the maximum entropy distribution by finding a
non-equilibrium steady state that is also a thermodynamic stable state, meaning that the net driving
forces on all reactions are equal. When only mass action kinetics are considered in the model and other
considerations such as diffusion are ignored, we find that the resulting maximum entropy distribution
is appropriate only for the mass action model, but not for a more extensive model that would include
diffusion. The discrepancy, as Dewar predicted [16], is not due to the application of the maximum
entropy rate principle but rather to the incomplete nature of the model. However, comparison of
the predicted metabolite concentrations to expected or observed concentrations allows one to infer
points of regulation in the pathways using a loss function similar to that used in machine learning.
Once regulation is accounted for, reasonable metabolite concentrations are predicted, as are reaction
fluxes. From the concentrations and reaction fluxes, rate parameters are inferred, and full-scale mass
action differential equations can be solved, resulting in the time-dependent trajectories of the biological
pathways. In doing so, we have implemented Jaynes’ proposal of using a simple thermodynamic
principle to infer the detailed dynamics of a system without the need to construct the detailed dynamics
or parameters from the bottom up. Finally, we evaluate the dynamics of central metabolism of
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Neurospora crassa, a model organism for studying the multi-scale dynamics of circadian rhythms.
We find that the pentose phosphate pathway can act in a cyclical manner to produce six NADPH
for every glucose consumed instead of the generally expected two NADPH per glucose consumed.
Together with recent findings that the oxidative pentose phosphate pathway and upper glycolysis are
180 degrees out of phase in the circadian cycle [21], suggests that under nitrogen-limiting conditions
when the pentoses are not used for DNA synthesis, the cyclic action of the pentose phosphate pathway
may be used to maximize NADPH production for lipid or carbohydrate production.

2. Theory and Methods

Maximum Entropy Optimization Using the Marcelin Equation. Consider a reversible chemical reaction
with molecular species i ∈ {A, B, C, D} and unsigned stoichiometric coefficients νi,α for each molecular
species i in reaction α ∈ {1,−1} with forward reaction α = 1 and the reverse reaction α = −1,

νA,1nA + νB,1nB
rxn 1�

rxn −1
νC,1nC + νD,1nD (Scheme 1)

where ni is the count or concentration of species i. The extent of each of the reactions is given by ξ1 and
ξ−1, such that when ξ1 = 0, the system is in the state where neither of the nA and nB reactants have
turned into products. When ξ1 = 1, the system is in the state where a stoichiometric amount of the nA
and nB reactants have turned into products such that there are now nC + νC,1 and nD + νD,1 products
and nA − νA,1 and nB − νB,1 reactants. The net extent of each reversible reaction is ξ1 − ξ−1 ≡ ξ1,net

and ξ−1 − ξ1 ≡ ξ−1,net. Consequently, dξ1,net/dt =
.
ξ1,net is the net flux through reaction 1. The mass

action rate law for the reaction in Scheme 1 is,

.
ξ1,net =

dξ1,net

dt
= k1nA

νA,1 nB
νB,1 − k−1nC

νC,1 nD
νD,1 . (1)

where k1 and k−1 are the rate constants of the forward and the reverse reaction, respectively. Using the
signed stoichiometric coefficients γi,1 such that γi,1 = −|νi,1| for reactants and γi,1 =|νi,1| for products,
the time-dependence of any molecular species i is,

γi,1
dni
dt

= k1nA
νA,1 nB

νB,1 − k−1nC
νC,1 nD

νD,1 . (2)

Although kinetics and thermodynamics are alternate formulations of the law of mass action,
Equation (2) is a purely kinetic description in that it does not contain any thermodynamic functions.
Thermodynamics can be introduced into Equation (2) by simply factoring out the opposing rate from
each term,

γi,1
dni
dt = k1nA

νA,1 nB
νB,1
(

k−1nC
νC,1 nD

νD,1

k−1nC
νC,1 nD

νD,1

)
− k−1nC

νC,1 nD
νD,1
(

k1nA
νA,1 nB

νB,1

k1nA
νA,1 nB

νB,1

)
= k−1nC

νC,1 nD
νD,1
(

k1nA
νA,1 nB

νB,1

k−1nC
νC,1 nD

νD,1

)
− k1nA

νA,1 nB
νB,1
(

k−1nC
νC,1 nD

νD,1

k1nA
νA,1 nB

νB,1

)
= k−1nC

νC,1 nD
νD,1
(

K1
nA

νA,1 nB
νB,1

nC
νC,1 nD

νD,1

)
− k1nA

νA,1 nB
νB,1
(

K−1
nC

νC,1 nD
νD,1

nA
νA,1 nB

νB,1

)
,

or,
=

.
ξ−1(t, ni)eA1(ni)/RT −

.
ξ1(t, ni)eA−1(ni)/RT (3)

Equation (3) is the equation for the Marcelin–de Donder representation of mass action
kinetics [22,23]. The first term describes the time-dependent thermodynamic forces acting on reaction
1 and likewise the second term describes the time-dependent thermodynamic forces acting on the
opposing reaction −1. The first term is a product of a purely thermodynamic component, eA1(ni)/RT ,
which is the exponential of the thermodynamic driving force A1(ni) on reaction 1, and a purely
kinetic component,

.
ξ−1(t, ni) which is the time derivative of the extent of the opposing reaction −1,
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.
ξ−1(t, ni) = dξ−1/dt. The thermodynamic factor eA1(ni)/RT is the odds ratio of the forward reaction
to the reverse reaction. The odds are reciprocally related such that eA1/RT = e−A−1/RT . The odds of
reaction 1 then change on a time scale determined by

.
ξ−1(t, ni). That is, the thermodynamic driving

force on the forward reaction has a relaxation time that is the time for the reverse reaction to occur.
Likewise, the second term describes the odds ratio and time dependence of the odds of the reverse
(conjugate) reaction, reaction −1. According to this formulation, positive non-equilibrium forces
(A1(ni) > 0) will be associated with slower changes in the odds of the forward reaction than the odds
of the opposing reaction since the respective relaxation times of the odds are inversely related through
the relation, .

ξ−1(t, ni)eA1(ni)/RT =
.
ξ1(t, ni). (4)

Equation (4) has the same mathematical form of a fluctuation theorem [24] but is an
exact relationship,

eA1(ni)/RT =

.
ξ1(t, ni)
.
ξ−1(t, ni)

.

Generalizing to a large system consisting of Z reactions, the time-dependence of chemical species
i is given by,

dni
dt

=
Z

∑
α

1
γi,α

( .
ξ−α(t, ni)eAα(ni)/RT −

.
ξα(t, ni)e−Aα(ni)/RT

)
. (5)

A convenient thermodynamic optimization procedure can be obtained using the Marcelin
formulation of Equation (5). The Marcelin Equation [20] is obtained by setting each of the functions
.
ξα(t, ni) �= 0 to

.
ξα(t, ni) = cα where cα is a constant,

dni
dt

=
Z

∑
α

cα
1

γi,α

(
eAα(ni)/RT − e−Aα(ni)/RT

)
.

That is, the Marcelin Equation sets each of the relaxation rates of the forward and reverse forces to
the same rate. Assuming the same relaxation rate for each respective force for all reactions α such that
cα = c removes any kinetic bottlenecks in phase space of the system such that the relative dynamics
are governed only by the thermodynamics,

1
c

dni
dt

=
Z

∑
α

1
γi,α

(
eAα(ni)/RT − e−Aα(ni)/RT

)
. (6)

A simulation using Equation (6) will converge to a thermodynamically-optimal steady state,
which will be the lowest free energy state given the boundary conditions. The reason for this is that
the free energy of chemical systems is the negative log of the multinomial (discrete particle counts) or
Dirichlet (continuous particle counts) distribution plus a constant [6]. The multinomial and Dirichlet
distributions are members of the exponential family of distributions, which are log-concave when
counts are always greater than or equal to zero. Since the free energy is the negative of the log of
the distribution, the free energy in this case is a convex surface as a function of the counts. For this
thermodynamically-optimal steady state, the net flux through a reaction α is given by,

.
ξα,net = c

(
eAα(ni)/RT − e−Aα(ni)/RT

)
. (7)

Accordingly, at the thermodynamically-optimal steady state, the net flux through a reaction is
proportional to the net thermodynamic odds. The thermodynamically-optimal steady state is one of
many possible kinetic steady states, but its dynamics are such that the state is both kinetically and
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thermodynamically stable. That is, given a stoichiometric matrix S of M metabolites × Z reactions
and a vector of the net reaction fluxes

.
ξ of length Z, the usual steady state condition applies,

S ·
.
ξ = 0.

The thermodynamic odds of a reaction in Equation (7) are such that eAα/RT = KαQ−1
α where Kα is

the equilibrium constant and Qα is the reaction quotient for reaction α. Given Z by Z diagonal matrices
of forward and reverse equilibrium constants, K+ and K−, and diagonal matrices of the respective
forward and reverse reaction quotients, Q+ and Q−, the thermodynamically-optimal steady state is
the product of the stoichiometric matrix and the net thermodynamic odds of each reaction,

S · ((K+Q− − K−Q+) · 1) = 0.

That is, the system is thermodynamically stable as well as kinetically stable. Furthermore, since
the parameter c in Equation (7) is arbitrary, the maximum entropy production distribution and the
maximum entropy production rate distribution are equivalent. Equation (7) is an important result as
relative rate constants can be determined for each reaction α, as will be shown below.

Agreement with Experimental Measurements. It is possible that the thermodynamically-optimal
steady state may not have metabolite levels at physiologically realistic values. For example, inference
of a steady state model of central metabolism will predict concentrations of fructose 1,6-bisphosphate
in excess of 1 M (see below). If the cell were to produce these large concentrations, the cytoplasm
would become glassy and practically no diffusion would occur. Hence the entropy production rate
would actually approach zero. The issue is that the model assumes that diffusion will remain sufficient
regardless of solute concentrations. This is easily remedied without including diffusion in the model
by comparing predicted concentrations or counts of metabolite i, ñi, to experimentally observed values
ni and reducing the difference between predicted and observed values by optimizing a loss function
for each reaction α. As a loss function, we have chosen the log ratio of the observed values to the
predicted values of the M(α) reaction products of reaction α,

Lα = log
M(α)

∏
i(α)

ñi(α)

ni(α)
. (8)

When the observed and predicted values agree, Lα = 0, and when the predicted values are
greater or less than the observed values Lα > 0 or Lα < 0, respectively. Unfortunately, experimental
measurements of metabolite concentrations are hard to obtain; even when available, metabolomics
data sets are sparse. Part of the reason is that the chemical properties of small molecules vary
widely, so no single experimental design can discriminate and measure each molecular species.
Sparsity is also due to the fact that biologically relevant metabolite concentrations may span several
orders of magnitude, which is often greater than typical instrument dynamic ranges. Instead, one can
simply use rule-of-thumb estimates for metabolite concentrations in place of experimentally observed
values. Based on mass spectrometry estimates of absolute concentrations of metabolites [25],
a reasonable rule-of-thumb for metabolites is that most metabolites will not exceed millimolar
levels. A value of Lα > 0 may indicate that the system needs to be modulated or regulated such
that the metabolite concentrations stay within a physiological range. The desired regulation can
be implemented using any appropriate function, such as a Hill equation, a logistic function or a
hyperbolic function. Parameters for the regulation functions are then estimated and the simulations
and analysis are repeated, adjusting parameters each time, until a physiological level of metabolite
concentrations is achieved. This resulting steady state is thermodynamically optimal conditioned on
the required regulation.
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Rate Constants. From this steady state with reasonable metabolite concentrations and activity λα

of reaction α, the rate constants are inferred for each reaction as follows. The net flux
.
ξα,net is,

.
ξα,net = λα · kα

reactants α

∏
i

ni − λα · k−α

reactants −α

∏
i

ni

= λα · kα

reactants α

∏
i

ni

⎛⎝1 −
λα ·k−α

reactants −α
∏
i

ni

λα ·kα

reactants α
∏
i

ni

⎞⎠
= λα · kα

reactants α

∏
i

ni(1 − K−αQ−1
−α),

where again λα is the activity of the enzyme catalyzing reaction α as a function of the regulation.
For example, solving for the rate constants of reaction α = 1 from Scheme 1 gives,

k1= c

.
ξ1,net

λ1 · nAnB(1 − K−1Q−1
−1)

k−1= c
K1

k1
,

. (9)

since λ1 = 1 (no regulation) in Scheme 1. The usual mass action ODEs using rate constants and
regulation are then solved during a simulation. The kinetically accessible energy surface is not
necessarily convex because of the introduction of the rate constants—each reaction now has its own
time dependence.

Finally, for the readers that are interested in such details, the inference of rate parameters in
this manner meets the criteria that Jaynes laid out for MAXENT: when we make inferences based on
incomplete information, we should draw them from that probability distribution that has the maximum entropy
permitted by the information we do have [26]. Here, we have used the maximum entropy distribution from
the maximum entropy production simulation to infer parameters that we otherwise know nothing
about. However, if one has accurate metabolite measurements or fluxes of the metabolite population
that is free in its biological solution (e.g., cytoplasm), then one can also use this information to infer
experimentally-based in vivo rate constants as well [18].

Power and Conductance. For complex systems such as biological systems, the power is the change
in free energy with respect to time,

P = −dG
dt

.

For a reaction, the rate dependence is due to the net change in the extent of a reaction ξα,net with
time such that the rate

.
ξα,net = dξα,net/dt is the usual mass action rate as exemplified by Equation (1).

The power generated by a reaction can then be expressed in terms of the reaction affinity Aα and the
extent of the reaction ξα,

Pα = − dG
dξα

dξα
dt

= Aα

.
ξα.

This relationship is useful for comparing different chemical processes, as will be seen below.
Likewise, the resistance Rα and conductance Cα of reaction α can be calculated at steady state as,

Rα = ΔGα.
ξα,net

,

Cα = R−1
α .

where ΔGα is the free energy change across the reaction, which is equal in value to the reaction affinity
Aα for a system at steady state with a large number of particles. These latter equations should not be
taken to imply that there is a linear relationship between flux and a change in free energy (or flux and
resistance). A reaction at steady state has high resistance if the change in free energy is large for the
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steady state flux relative to other reactions in the pathway. An example of this will be discussed in
the results section, in which a regulated reaction has the same flux as other reactions at steady state,
but the change in free energy for the reaction is large because the regulation decreases the activity of
the corresponding enzyme.

Implementation, Code, Metabolic Model and Parameters. The equations described above for both
the optimization and simulation were implemented in the language C in a software program called
Boltzmann, which is available as open source code under a Berkeley Software Distribution (BSD) style
license [27]. The ODE solver was an implementation of the MATLAB® ode23tb solver, a trapezoidal
rule and the backward differentiation solver [28].

Chemical potentials were obtained from component contribution methods [29,30] and adjusted
within Boltzmann to the dielectric response ε, ionic strength I, and pH of the cell cytoplasm, assumed
to be ε = 0.78, I = 0.25, and pH = 7.0 [31].

The compartmentalized Neurospora crassa metabolic model originally from Dreyfuss et al. [32]
was updated with new information and used for the optimizations and simulations. The updated
genome-scale model is publicly available [33]. The model used in this work is a subnetwork
of the genome-scale model that includes only central metabolism consisting of upper and lower
glycolysis, the TCA cycle, and the pentose phosphate cycle and is available in the supplemental
notebooks. In this reduced model, there are 20 variables (metabolite concentrations) and 20 equations
(reaction equations).

In order to maintain a non-equilibrium state, boundary concentrations for the initial reactant
glucose 6-phosphate and final product CO2 are set to non-equilibrium values of 2 mM and 0.1 mM,
respectively. Likewise, the cofactors CoA, ATP, ADP, orthophosphate, NAD, NADH, NADP and
NADPH are also fixed boundary species; these concentrations were taken from a mass spectrometry
analysis of absolute metabolite concentrations from Bennett et al. [25] The redox pair employed to
shuttle electrons into the mitochondrial respiratory chain were taken to have equal chemical potentials,
as done in previous modeling of the TCA cycle [17].

Analysis of simulation data is included in supplementary information/computational notebooks
using Python.

3. Results

A metabolic model of Neurospora crassa [32] was used along with chemical potentials to maximize
the entropy production rate of central metabolism. The dynamics of the each species are governed by
the thermodynamic forces acting on each reaction (Equation (6)) and the net flux through each reaction
is determined by the thermodynamic odds of the reaction at steady state (Equation (7)).

A map of the flux through the system is shown in Figure 1. As can be seen, the maximum
entropy production rate optimization predicts that the fluxes

.
ξα,net in lower glycolysis and the TCA

cycle (
.
ξα,net ≈ 6.53) are twice that of upper glycolysis (

.
ξα,net = 3.29), as would be expected since

an intermediate in upper glycolysis corresponds to two intermediates in lower glycolysis and the
TCA cycle due to the splitting of fructose 1,6-bisphosphate by fructose 1,6-bisphosphate aldolase to
effectively two molecules of glyceraldehyde-3-phosphate. The flux values are relative values but can
be calibrated to absolute values by knowledge of just one absolute reaction flux.

The maximum entropy production optimization results in metabolite levels tending towards their
most probable (Boltzmann) distribution such that,

ni
NT

∝
e−μi

0(ε,I,pH)/RT

∑M
j e−μj

0(ε,I,pH)/RT
,

where μ0
i (ε, I, pH) is the standard chemical potential for solute i in an aqueous solution with dielectric

constant ε, ionic strength I, and constant pH. The values of ε, I, pH are chosen to match those
in the cell environment, which in this case are assumed to be ε = 0.15, I = 78 and pH = 7.0.
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The non-equilibrium boundary conditions for the initial reactant glucose and final product CO2, and
with those for the cofactors CoA, ATP, ADP, orthophosphate, NAD, NADH, NADP and NADPH
prevent the intermediates of glycolysis and the TCA cycle from reaching equilibrium.

The resulting maximum entropy production rate concentrations are shown in Figure 2. There are
two important aspects of the results shown in Figure 2. First, the consistency of the concentrations
of each metabolite indicates that steady state has been reached (the time derivatives are provided in
supplementary Notebook S1). Second, the concentrations of metabolites span a range from 10−22M
for mitochondrial oxaloacetate at the low end to 106M for fructose 1,6-bisphosphate and 109M for
mitochondrial acetyl CoA at the high end. While a concentration of 10−22M might be reasonable
in a cell (effectively zero concentration in a typical cell with a volume of 10−15 − 10−12 liters),
concentrations above 10−3M to 10−2M are usually not physiologically realistic [25]. For instance,
if fructose 1,6-bisphosphate had a concentration much above 10−3M, the cytoplasm could become so
glassy that diffusion of even small molecules would decrease below the level at which metabolism
could operate.

However, the issue is not whether the maximum entropy production rate formulation is
appropriate for biological systems, but rather that any model is always a reduced representation
of a real system [16]. In a complete model of cellular metabolism, diffusion would be included and the
maximum entropy production rate solution would balance the rate of diffusion with the tendency for
any chemical species to move towards its thermodynamically optimal distribution.

Figure 1. Map of net odds (Equation (7)) for reactions of glycolysis and the tricarboxylic acid (TCA)
cycle. Values next to each reaction name indicate the net flux through the reaction, and two flux values
are provided for each reaction. The first value (left) is the flux after maximum entropy optimization.
The second value (right) is the flux after the same optimization but including regulation at PFK
(by ATP) and PDHm (by acetyl-CoA). Reaction and metabolite abbreviations are derived from the
BiGG database [34]; full common names are provided as supplementary Tables S1 and S2. The metabolic
pathway visualizations here and in Figure 5 were created with Escher [35].
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This discrepancy between predicted metabolite concentrations and physiological expectations
can be taken advantage of, however, to infer points of post-translational enzyme regulation. To do this,
a loss function is formulated (Equation (8)), similar to that used in machine learning approaches, to
identify nodes in the system (in this case, reactions or enzymes) that need to be adjusted or regulated
in order to match observed results. We applied Equation (8) to the simulation predictions for each
reaction using a rule of thumb that physiological concentrations should not exceed 10−3M. The results
are shown in Table 1. Twelve reactions have product concentrations higher than expected. In choosing
which reactions to apply regulation to, we take a parsimonious approach based on two principles:
(1) regulation of upstream enzymes should have precedence over regulation of downstream enzymes;
and (2) the reactions with the highest loss-function value should be evaluated before those with lower
loss function values. Using these principles, we chose to apply regulation to only phosphofructokinase
(PFK) and mitochondrial pyruvate dehydrogenase (PDHm), which are the two reactions with the
highest loss-function values. These are also the two reactions that are most commonly regulated
in glycolysis.

The loss function does not help to identify how these reactions/enzymes might be regulated.
In experimental studies of Neurospora crassa, PFK in Neurospora crassa is inhibited by high
concentrations of ATP [36]. Early studies on Neurospora PDHm indicated that PDHm is regulated by
acetyl-CoA and covalently by phosphorylation [37,38]. We chose to regulate the PFK reaction by ATP
concentration and the PDHm reaction by acetyl-CoA concentration using Hill equations.

After regulation of PFK and PDHm are applied, the maximum entropy optimization produces
the steady state concentrations shown in Figure 3. Most metabolite concentrations fall within the
rule-of-thumb values (≤ 10−3M) and reanalysis of the loss function for each reaction finds that only
the succinyl-CoA synthetase reaction resulting in the production of succinate has a loss-function
value, L = 3.8 above the expected value of 0.0. Given that succinate is highly soluble, however,
this mild increase of the loss function is reasonable. The predicted concentration of succinate is
3.4 mM. For comparison, the concentration of succinate in exponentially growing E. coli under similar
conditions was estimated to be 0.57 mM [25].

Figure 2. Concentrations as a function of time in maximum entropy optimization without regulation.
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Figure 3. Concentrations as a function of time in maximum entropy optimization with regulation.

Table 1. Product of the reaction product concentrations for the optimization predictions and expected
values, and resulting value of the loss function L (Equation (8)). Full common names are provided as
supplementary Table S2.

Product of Concentrations

Reaction Predicted Expected L

CSm 4.85 × 10−6 1.00 × 10−6 1.58
SUCOASm 6.62 × 10−9 1.00 × 10−9 1.89

ENO 6.65 × 10−1 1.00 × 10−3 6.50
PGM 1.33 1.00 × 10−3 7.19
HEX1 4.26 × 10−2 1.00 × 10−6 10.66
PGI 4.58 × 101 1.00 × 10−3 10.73

GAPD 4.82 × 10−2 1.00 × 10−6 10.78
PYRt2m 8.43 × 102 1.00 × 10−3 13.64

PGK 1.09 1.00 × 10−6 13.90
PYK 5.84 1.00 × 10−6 15.58
PFK 9.21 × 102 1.00 × 10−6 20.64

PDHm 8.66 1.00 × 10−9 22.88

In addition to changes in the metabolite concentrations, application of regulation to PFK and
PDHm results in reduced flux through both glycolysis and the TCA cycle, as expected. In this case,
the flux is reduced by just over 2-fold (6.53/2.86).

With reasonable steady-state metabolite concentrations in hand, rate constants can be inferred
from the simulation using Equation (9). The resulting rate constants are provided in supplementary
Notebook S2. The inferred rate constants are not generally comparable to rate parameters for the
analogous reactions determined from in vitro enzyme kinetic studies, however, since in vitro studies
characterize reactions using Michaelis–Menten equations and the simulation studies reported here
do not explicitly model enzyme kinetics. However, the flux values from the simulation are consistent
with inferred fluxes from metabolic flux analysis studies on the related fungus Yarrowia lipolytica [39],
which has a very similar central metabolism based on genome analysis and modeling [32,40–42].

From the predicted flux values and reaction-free energies, the power characteristics and resistance
of each reaction can be estimated. Shown in Figure 4 are relative values of the (1) reaction free
energies; (2) power at each reaction; (3) reaction resistance; and (4) reaction flux for each reaction of
glycolysis. Since lower glycolysis and the TCA cycle (supplementary Notebook S3) have identical net
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fluxes at steady state and similar reaction-free energies, the power characteristics and conductances
of these reactions are very similar. The power generated at the PFK reaction is 6-fold higher than the
power generated at other reactions of glycolysis. However, while the phosphorylation of fructose
6-phosphate to the highly soluble fructose 1,6-bisphosphate contributes significantly to the overall free
energy change of the combined glycolysis-TCA pathway, if the system were allowed to proceed to
the maximum entropy distribution (that is, without regulation), all reactions would have very similar
power characteristics. It is the applied regulation that keeps the thermodynamic driving force on the
PFK reaction much higher than that for the other reactions. Consequently, the chemical resistance at
PFK is much higher than for other reactions, as well. Due to the regulation, both the flux through
upper glycolysis and the flux through lower glycolysis and the TCA cycle are reduced more than
2-fold. While it has long been stated that PFK is regulated to modulate the flow of material through
glycolysis, the simulations suggest that the more nuanced explanation is that regulation acts as a
potentiometer to modulate both the flow of material through the reaction and the accumulation of
fructose 1,6-bisphosphate in the system. Regardless, flow of material through glycolysis to the TCA
cycle is reduced significantly. However, if the causal explanation for the regulation were solely to
reduce the flux through the pathway, this would unnecessarily reduce the ability of the organisms
using this metabolism to compete since energy production would slowed down significantly, as well,
which is counter to Lotka’s early conjecture.

Rather than simply not extracting this available energy from glucose at a high rate due to already
high levels of ATP, it is reasonable to expect that the energy from glucose is utilized elsewhere.
Proteomics studies on Neurospora show that the enzymes of upper glycolysis and the oxidative
pentose phosphate pathway oscillate with the circadian cycle but are 180◦ out of phase with each
other [21]. Consequently, simulations of glycolysis, the TCA cycle and the pentose phosphate
pathway were carried out following the same steps as described above: (1) maximum entropy
production rate optimization without regulation of the pentose phosphate pathway followed by
(2) inference of regulation and (3) re-optimization with regulation to obtain steady state metabolite
levels. Evaluation of the loss functions for each reaction in the pentose phosphate pathway
predicted that glucose-6-phosphate dehydrogenase and phosphogluconolactonase, the first and second
steps of the pentose phosphate pathway, should additionally be regulated. Glucose-6-phosphate
dehydrogenases are well-known to be regulated by NADP/NADPH, either directly or indirectly,
and by phosphorylation [43]. No literature was found regarding post-translational regulation
of phosphogluconolactonase. Accordingly, we added regulation to the glucose-6-phosphate
dehydrogenase reaction but not to the phosphogluconolactonase reaction. The glucose-6-phosphate
dehydrogenase reaction was again regulated by a Hill equation based on the levels of NADPH.
We evaluated the kinetics of the system (both oxidative and non-oxidative) under three conditions
which differed by the NADP/NADPH ratio. An initial low ratio of NADP/NADPH was taken
from an isotope labeling, mass spectrometry analysis of the exponential growth of E. coli in which
NADP/NADPH = 2.1 · 10−6/1.2 · 10−4 = 0.0175 [25]. This ratio results in a mild driving force
on the NADP/NADPH-dependent reactions of the oxidative branch of the pentose phosphate
pathway (enzymes glucose-6-dehydrogenase and phosphogluconate dehydrogenase) of ~−2.7 KJ/mol.
A moderate ratio of NADP/NADPH was taken to be NADP/NADPH = 1, resulting in driving
forces on the latter reactions of ~−3.6 KJ/mol. A high ratio was taken to be the observed values for
NAD/NADH in the E. coli study such that NADP/NADPH = 2.6 · 10−3/8.3 · 10−5 = 31, resulting in a
driving force of ~−31.2 KJ/mol on these same dehydrogenase reactions.
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Figure 4. Energetics of glycolysis reactions. Columns from left to right indicate: (G) −ΔGrxn, (P) power,
(R) resistance, and (F) flux. Red indicates high values and blue indicates low values. Values are
in arbitrary, relative units but the specific values are provided in supplementary Notebook_S3.
The phosphofructokinase reaction has dramatically different characteristics than the other reactions
because feedback regulation of ATP turns it into a potentiometer. The metabolic pathway visualization
was created with Pathway Tools [44].

As expected, the flow of material increases through the pentose phosphate pathway as the
NADP/NADPH ratio increases, as shown in Figure 5. At relatively low to moderate ratios of
NADP/NADPH, the flow of material is mostly through the non-oxidative branch of the pentose
phosphate pathway, while at high ratios of NADP/NADPH, flow through the oxidative branch is
maximized, with an average of three cycles through the oxidative pentose phosphate branch for each
glucose utilized (the simulation conditions are under non-growth conditions, so pentose phosphates
are not drawn off for biosynthetic purposes). That is, rather than acting as a linear pathway from
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glucose-6-phosphate to glyceraldehyde-3-phosphate, the pentose phosphate pathway acts cyclically
to maximize production of NADPH. The overall reaction of the pentose phosphate pathway at high
ratios of NADP/NADPH is,

Glucose 6 − phosphate + 6 NADP+ + 3H2O �
glyceraldehyde 3 − phosphate + 6 NADPH + 3CO2.

Figure 5. Reaction flux through upper glycolysis and the pentose phosphate pathway as a function
of the NADP/NADPH ratio. (Left) Low values of the ratio combined with high values of ATP result
in approximately equal flow of material through upper glycolysis and the non-oxidative branch of
the pentose phosphate pathway, minimizing the production of fructose 1,6-bisphosphate; (Middle) a
NADP/NADPH ratio of 1 results in flow through each of upper glycolysis, non-oxidative and oxidative
pentose phosphate pathways, with the oxidative pentose phosphate pathway containing approximately
65% of the flow of material; (Right) a high value of the ratio results in the cycling of flow iteratively
through the oxidative pentose phosphate pathway while flow through upper glycolysis is minimal.

4. Discussion

The maximum entropy principle can be used to predict concentrations, obtain optimal rate
constants, and calculate the characteristics of biological circuits including energy, power, flux and
resistance for individual reactions and entire pathways. In the model of central metabolism used here,
enzyme kinetics are represented as the summary reaction of the catalytic process. Dobovišek et al.
have shown that the maximum entropy production principle can be used to evaluate enzyme kinetics,
as well [45,46]. In this study, for convenience the enzyme catalysts are not explicitly represented
in the model except for regulation. It is entirely feasible to do so, however, even without the use
of the assumptions built into Michaelis–Menten model that the system be at steady state and far
from equilibrium.

The calculated rate constants are optimal for the growth conditions used in the simulation.
Similarly, organisms will have rate constants that are optimal for the conditions to which they
have adapted. Ideally, to compare predicted metabolite concentrations to those from a wet lab
experiment, the organism should be cultured over many generations to ensure adaptation to the
laboratory conditions.

One could calculate experimentally based in vivo rate constants for many reactions, as well,
following the same procedure outlined above but using experimentally measured concentrations of
metabolites free (unbound) in the cytoplasm [18]. But this population is challenging to measure [47]
or even estimate as a trend [25]. If such metabolite measurements were available, the hypothesis of
maximum entropy production for steady states of evolutionary optimized systems is testable [48].
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Park et al. have recently argued that one can calculate free energies of reaction from the respective
whole cell concentrations because most cellular metabolites are in free form [49]. The argument
is that the total measured metabolite concentration is approximately 300 mM, whereas the protein
concentration is approximately 7 mM, and that this suggests that most metabolites are free in solution.
However, this argument can be turned around to argue the opposite as well. For example, if three
metabolites have concentrations of 100 mM and other species are 1 nM–1 μM, then the pooled
concentration of all metabolites may be ~300 mM, depending on the number of other metabolic species.
Further suppose that the total pooled protein concentration was 7 mM. In this case, only the three
former species may have a significant population free in the cytoplasm. In order to determine the
concentration of each free or unbound metabolite experimentally, we need either new experimental
isolation technologies or to use predictions such as those discussed herein, but on the genome scale,
as prior information in the data analysis. Measured whole-cell population of metabolites can be used
to set bounds on reaction-free energies, however.

Using measured whole-cell concentrations of metabolites as the upper bound for metabolites
free in solution can also be employed to infer regulation rather than using a rule-of-thumb (e.g., that
metabolite concentrations should not exceed 1 mM), as was done here. The experimentally determined
concentrations would give more precise estimates of regulation, although the rule-of-thumb values
worked well in this study for demonstration purposes.

It is assumed that any predicted concentrations far away from the data are due to the
incompleteness of the model and not the maximum entropy production principle. In the cases studied
here, it is clear that the predicted high levels of some metabolites would reduce the ability of molecules
to diffuse in the cell. In cases such as this, regulation may be inferred by comparison to experimental
data or expectations. But it can also be expected that branching reactions for metabolites that are not
included in a model may impact the predictions. Branching per se at the point where the metabolite is
an intermediate does not necessarily impact metabolite concentrations because the metabolite level is
a function of the inward and outward flux producing and consuming the metabolite. The total inward
and outward flux may not change when there is a branching reaction if the boundary conditions have
not changed; in this case, the output flux splits but the total outward flux may be conserved.

Likewise, changing the boundary conditions would change the overall flux through all pathways.
Figure 5 shows the effect on flux through the pentose phosphate pathway as a function of the boundary
conditions for NADP and NADPH. The flux through the pentose phosphase pathway changes by
55-fold (12.5/0.224). However, the fluxes in this case are modulated by regulation at the first step in the
pathway, the reaction for glucose 6-phosphate dehydrogenase. The corresponding simulations without
regulation would change the flux by much more. Small changes in boundary conditions can result
in significantly greater flux through pathways because the boundary conditions in this case include
internal metabolites as well as external nutrients/waste products. Because the internal metabolites such
as NADP/NADPH, NAD/NADH and ATP/(ADP+Pi) may be used in many reactions, the impact on
flux can be multiplicative.

The ability to completely characterize each individual reaction with regard to flux,
energy dissipation, power and resistance can also lead to a more complete characterization of biological
circuits, as is done for electrical circuits, and even allow for the use of sophisticated control theory
analyses of the operations of a cell. Such developments could be extremely useful for synthetic
biology, in that the addition to a cell of an engineered circuit often results in decreased growth and
other unintended consequences. Being able to fully characterize the impact of the new circuit before
implementing it in the laboratory could dramatically change the design process and success rate.

For example, in an effort to increase the production of fatty acids in Yarrowia lipolytica,
Wasylenko et al. used 13C-metabolic flux analysis (MFA) in a control strain and an engineered strain
to understand where NADPH was primarily being produced, which turned out to be the oxidative
pentose phosphate pathway [39]. MFA is a valuable but relatively costly experimental analysis.
In comparison, this study used predictive simulations and found that the oxidative branch can act in a
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cyclical manner to iteratively produce high levels of NADPH. Routinely carrying out modeling studies
such as this is promising for bringing more predictive rational design into the development cycle.

Finally, there is a need for faster optimization methods to reach the steady state.
While optimization using Equation (6) will find the optimal (least heat dissipation) steady state,
the ODEs can become particularly stiff when regulation is not applied. In this case, it is possible for
the range of concentrations to vary by many orders of magnitude, leading to very stiff ODEs and long
time-to-solution. This may be important as these methods are used to model secondary metabolism as
well as to scale up to a genome-scale model, which we plan to do for Neurospora crassa.

Scaling up to a genome-scale model will likely bring new challenges. The time scale of metabolism
spans the range from milliseconds for individual reactions to on the order of an hour for secondary
metabolites to reach steady state. The assumption in Equation (6) that cα is reaction-independent
allows one to find the maximum entropy production distribution at a non-equilibrium steady state.
However, one concern is that this would imply that all reactions in the eventual simulation would
occur on the same timescale. If all the processes are represented at the same level, for instance that
of elementary reactions, then the inferred rates will likely be sufficiently representative of the true
processes. However, if one mixes elementary reactions and summary reactions (that represent larger
processes) in the model, then it could be the case that there is not a realistic separation of time scales.
Summary reactions representing larger processes, for instance, could be rescaled by ncα instead of cα,
where cα represents the average transit time through a reaction at the faster scale and n is the number
of elementary reactions represented by the summary reaction. Multi-scale simulations can be used in
which fast and slow processes are run independently based on the assumption that the fast processes
reach steady state quickly on the time scale of the slow processes. If the processes to be represented
are scaled appropriately, for instance by ncα, the processes do not need to be run independently but
can be run together using computational singular perturbation methods [50] or other approaches that
automatically separate the fast and slow degrees of freedom [51]. Further developments in the methods
for inferring regulation, however, will likely be required. Including biomass formation in the form of
replication will be challenging, as it will require a chemical potential for biomass to be estimated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/6/6/63/s1,
Notebook_S1.pdf (Neurospora_no_regulation-supplementary), Notebook_S2.pdf (Neurospora_regulation-
supplementary), Notebook_S3.pdf (Neurospora_no_ regulation_rate_constants-supplementary), Table S1.
Metabolite Names; Table S2. Reaction Names. The computational notebooks and simulation files are also
available at https://github.com/wrcannon/SupplementaryMaterial_Processes2018.
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Abstract: A model predictive control (MPC) framework, exploiting both feedforward and feedback
control loops, is employed to minimize large disturbances that occur in military water networks.
Military installations’ need for resilient and efficient water supplies is often challenged by large
disturbances like fires, terrorist activity, troop training rotations, and large scale leaks. This work
applies the effectiveness of MPC to provide predictive capability and compensate for vast
geographical differences and varying phenomena time scales using computational software and
actual system dimensions and parameters. The results show that large disturbances are rapidly
minimized while maintaining chlorine concentration within legal limits at the point of demand
and overall water usage is minimized. The control framework also ensures pumping is minimized
during peak electricity hours, so costs are kept lower than simple proportional control. Thecontrol
structure implemented in this work is able to support resiliency and increased efficiency on
military bases by minimizing tank holdup, effectively countering large disturbances, and efficiently
managing pumping.

Keywords: energy; water; military; control

1. Introduction

Large perturbations in municipal water systems are not unique to military bases, but the need to
rapidly and accurately correct for disturbances is critical to base resiliency and safety. Resiliency on
military bases is vulnerable to deficiencies in water systems created from a variety of disturbances:
fires, terrorist activity, large leaks, or loss of chlorination at the inlet. Fires or large breaks in water lines
caused by terrorist activity or other natural disasters, create an immediate and unpredicted demand
that, without compensation, will quickly deplete water inventory. A large mechanized unit returning
from training that requires intensive cleaning and maintenance could also put a similar stress on the
water system. Figure 1 shows the physical location of perturbations used in this study at the inlet, or
point where water is introduced to the system, and at the demand, which is modeled as a concentration
of residential and industrial (military unit) consumers. Figure 2 shows plots of the relative disturbances.
This study simulates a disturbance on demand, similar to the ones mentioned above, in the middle of
the day when demand is already high. In the event of an extensive demand event, the flow of water
required in the system would look more like the disturbance line in the upper plot of Figure 2. The line
labeled “normal" depicts a standard day without excessive disturbances and a pattern of use that
supports both residential and military operational needs. Typical system inlet chlorine concentration
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in this study ranges from 0.7–1.0 mg/L. The lower plot of Figure 2 shows a substantial disturbance on
inlet concentration that, if not compensated for, would degrade water quality throughout the system
and require extensive flushing that creates wasted water and energy. Such an event is a risk to the
overall resiliency and security of base operations. Although these perturbations are only a fraction of
the possibilities, they were chosen for this study to show the rigor of the proposed model predictive
control (MPC) framework because they are large and occur when the system is under the most stress.

Figure 1. Locations of perturbations used in this study for demand and inlet concentration to
demonstrate the effectiveness of model predictive control (MPC).

Figure 2. Simulated disturbances used in this study for demand and inlet concentration. The red
dotted line at 0.2 mg/L signifies the lower limit of system chlorine concentration allowed to ensure a
potable water supply.

1.1. Motivation and Scope

The cost of providing potable water is mostly sensitive to tank water level. Tank water level
does drive cost in most, if not all, water systems because pumping water into the system is the only
manipulated variable (MV) available. When chlorine concentration decreases below the minimum
level because of residence time or a disturbance on inlet concentration, the only MV to manipulate
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in water systems to increase the controlled variable (CV), or chlorine concentration at demand, c,
is pumping flow, q. Especially when disturbances are excessive, a possibility on military bases,
manipulating q as the only MV to change c will inevitably lead to excess water introduced into
the system. The implication of introducing water in excess of demand is that it will most likely be
wasted, or purged, after the chlorine concentration descends below the minimum level allowed by
law. An alternate framework that will specifically target the prospect of disturbance variables (DV) of
inlet concentration and demand while meeting the goals of the optimization layer is introduced here.
The objectives of this work are to: (1) implement local regulatory control loops for tank water level
(feedback) and inlet concentration (feedforward), (2) develop a nonlinear multi-input multi-output
(MIMO) nonlinear model predictive controller (NMPC) to regulate the CVs with adequate MVs,
(3) compare the performance of the MIMO MPC controller to regulatory control alone, (4) integrate
chlorine injection as a manipulated variable, and (5) demonstrate the effectiveness of feedforward
control on large scale disturbance rejection while minimizing cost and tank water level.

This work proposes a MPC supervisory layer, depicted in Figure 3, to minimize the impact of
large, unpredicted disturbances while maintaining the strict constraints and resiliency requirements
of military water systems. MPC is a tool used effectively in various process applications throughout
the manufacturing and chemical industries [1]. If a reasonably accurate model is available, MPC is
a suitable choice to provide supervisory control over processes like water networks where multiple
inputs and outputs exist and strict inequality constraints must be met. Previous work by the
authors demonstrates accurate nonlinear modeling of military water systems based on the work
of Rossman et al. [2,3]. MPC implemented in this work will solve an optimal control problem under
constraints with a specified prediction and control horizon. The controller will calculate control moves
over the entire control horizon, but only implement the first move before repeating at the next time
interval. At each time interval after implementing the first control move, the controller is providing
inputs to change the trajectory of the controlled variables to their desired set points [4]. This work’s
goal is to demonstrate the effective use of MPC on a military water system to reduce cost, water use,
and ensure sufficient water inventory is maintained to establish resiliency in the system during times
of stress on the system (large, unpredicted disturbances).

Figure 3. Hierarchy of process control in this work [4].

1.2. Literature Review

Led mainly by Mietek Brdys over the past two decades, a relatively small number of researchers
have attempted to model and implement MPC on municipal water systems. MPC was successfully
applied originally to minimize the cost of pumping [5–8]. Others took a more general approach using
MPC, gaining good optimization and control of water quality and quantity in municipal systems as a
whole [9–14]. An excellent feature article was published in 2002 providing an overview of feedback
control as it applies to water quality [15]. A couple of key papers expand on the application of
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MPC to water systems by making improvements to the controllers or reducing uncertainty in the
algorithms [16–18].

Even fewer researchers have used feedforward compensation in efforts to control water networks.
The literature shows that the only mention of feedforward control action implemented with model
predictive control in water networks is by Sandison [19]. Sandison implemented feedforward
compensation on single loop systems with good results, but it is unclear how well the framework
would perform under the stress of large inlet disturbances.

A knowledge gap exists in the literature in three areas that will be addressed here: (1) NMPC
for the reduction of system volume and storage holdup, (2) feedforward integration to minimize
disturbances, and (3) applying NMPC to reduce cost, electricity consumption and increase system
resiliency under the unique constraints of military water systems.

2. Research Methods

2.1. System Identification

There are two models employed in this work. The dynamic nonlinear process model used in the
real time optimization block of Figure 3 is outlined as [2,3]:

∂ct,k,i

∂t
=

−qt,k

Ak

∂ct,k,i

∂x
− θct,k,i, (1)

where ct,k,i = chlorine concentration in the pipe bulk flow at time t, in pipe section k, and pipe
segment i; qt,k = volumetric flow rate; Ak = cross sectional area of specific pipe sections. The term
on the left side of Equation (1) represents the change in chlorine concentration in pipe segments
throughout the water distribution network with respect to time. The first term on the right describes
the change in concentration axially along the length of each pipe segment, multiplied by the quotient of
volumetric flow rate and cross sectional pipe area. It is this term that introduces nonlinear behavior to
the model as the flow rate and concentration are changing simultaneously. The second term on the right
describes the reaction kinetics multiplied by the chlorine concentration. Theta represents the reaction
kinetics of chlorine degradation as a function of time and temperature, outlined by Rossman et al. [2].
Further details regarding this model can be found in previous work by James et al. [3]. A series of
perturbations were then used with this model and outputs were measured to generate a simpler model
for control that would be both efficient and accurate.

A multi-input, multi-output (MIMO) transfer function model was identified to accurately predict
tank water level, L, and chlorine concentration at demand, c as a function of four inputs: (1) pumping
action, (2) chlorine injection, (3) demand flow, and (4) inlet chlorine concentration and be employed for
control purposes in this work. Step changes were made in each input in the aforementioned distributed
model and the results of the system identification is depicted in Table 1.

Table 1. Individual step-response models for the identified water system in Figure 5 with four inputs
and two outputs. The two blank plots represent no influence from inputs on CVs (CV: controlled
variable, MV: manipulated variable, DV: disturbance variables).

Tank Holdup, CV Demand Chlorine Concentration, CV

Pump, MV G11 = 0.5067
s+0.00022 G21 = 4.4×10−7s+2.7×10−7

s2+0.61s+0.003
Chlorine Injection, MV G22 = −0.1568s+0.31

s2+0.12s+6.6×10−10 e−4s

Demand, DV G13 = −0.5341s+0.0005
s2+0.0009s+4.3×10−9 G23 = −1.0×10−5s2−1.4×10−6s+4.3×10−6

s3+15.5s2+10.66s+0.01

Initial Concentration, DV G24 = −0.07s+0.51
s2+4.4s+0.96

The System Identification ToolboxTM in the MATLAB R© software package (version R2017A,
MathWorks, Natick, MA, USA) was used to identify transfer function models for each input/output
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combination. The relationship between each input and output was captured with at least a 74%
fit, so the transfer function models were used in the development of a model predictive controller.
The positive result of system identification is evident in Figure 4 where the distributed model and
transfer function model describing tank level are very similar. A common practice in MPC development
is to use step-response models instead of transfer functions, particularly in highly nonlinear cases [4].
This work did not yet explore the use of step-response modeling to describe the water system and, to
the author’s knowledge, this technique has not been used in water system modeling.

Figure 4. Comparison of tank water volume predicted by the distributed modeling (solid) and the
transfer function models shown in Table 1 (dashed). The solid red line, referenced to the right y-axis,
depicts scheduled and unscheduled pumping by the controller.

2.2. Nonlinear Disturbance Controller Development

If a disturbance can be detected before it enters the process and the process model is sufficiently
accurate, feedforward MPC can often provide better disturbance rejection than feedback MPC
alone [20]. Most feedforward systems use feedback trim as a means to compensate for errors in
modeling and feedforward control discrepancies. However, self-regulating systems that do not require
set point tracking, like chlorine concentration in water systems in the presence of large disturbances,
can be controlled adequately with feedforward control alone [21].

This section outlines a NMPC based on a dynamic system model, illustrated by the process
flowsheet in Figure 5 and the block diagrams in Figures 6–8 that utilize two control loops to reject large
process disturbances: (1) a feedback loop that rejects large disturbances on demand, maintains tank
holdup above the minimum resiliency constraint, and minimizes the amount of water inventory on
hand and (2) a feedforward loop that rejects large disturbances on inlet concentration to ensure that
downstream chlorine concentration remains at acceptable levels.

The “control calcuations” block in Figure 6 is made up of the feedforward and feedback loops in
Figures 7 and 8. The optimization/scheduling layer provides set points to the control loops based on
the model’s prediction and inputs on the system such as electricity prices, predicted demand, and inlet
concentration. Furthermore, the optimization/scheduling layer provides predictive pump scheduling
for the system, which is shown as an input to the feedback control loop in Figure 8.
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Figure 5. MPC framework with feedforward and feedback structure for disturbance compensation.
LC and FFC are level and feedforward controllers, respectively. LT, FT, and CT are transmitters for
level, flow, and concentration, respectively. Lsp is the tank level set point and Csp is the inlet chlorine
concentration set point.

Figure 6. Block diagram for model predictive control with feedforward disturbance compensation,
modified from Seborg et al. [4].
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Figure 7. Block diagram for feedforward control. The control action is a portion of the “control
calculations” block in Figure 6., modified from Seborg et al. [4].

Figure 8. Block diagram for feedback control with included planned pumping from the
optimization/scheduling layer. The control action is a portion of the “control calculations” block
in Figure 6, modified from Seborg et al. [4].

The nonlinear nature of the model requires that the NMPC problem be formulated using a
two-phase approach: estimation phase and control move calculation phase [20]. The estimation phase
is stated here as a nonlinear sub-problem:

min
x0,pe ,de

p

∑
l=0

ÊT
k+1(k + 1)QÊk+1(k + 1), (2)

subject to:

x(t − P) = x0,

dx
dt

= f (x, u, pe, de, t),

y = g(x, u, pe, de, t),

ym
k−P+l = measured value of y when t = tk−P+l ,

Êk+1 = y(tk−P+l)− ym
k−P+l ∀t, k,

(3)

where x represents the controlled states, namely tank water level and chlorine concentration at demand,
pe and de represent estimated system parameters and disturbances, respectively, and y(tk−P+l) and
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ym
k−P+l represent predicted and measured output, respectively. The prediction horizon, P, is 24 h in

this study due to the accessibility of day ahead electricity pricing.
Similar to a linear case, the control move calculation phase is used to calculate the current control

action, uk, plus additional control action and minimize the calculations over the control horizon, M.
This work uses two control loops to calculate control moves: a feedback loop to control tank water
holdup and a feedforward loop to control chlorine injection in an effort to minimize the effects of large
disturbances on inlet chlorine concentration. The feedback loop utilizes a simple proportional control
method to allow for averaging level control. Proportional control is also adequate in this case because
offset from the set point is allowed:

Pb = p̄ + Pp + Kbe. (4)

In Equation (4), p̄ represents the steady state value, Pp is the scheduled pumping action passed
from the optimization/scheduling layer, and Kb is the proportional gain for the feedback loop [4].
The error, e is defined as:

e = Ysp − Ym, (5)

where Ysp is either the tank level set point, Lsp or the inlet chlorine concentration set point, Csp and Ym

is the measured corresponding output values. The feedforward portion of the control phase is treated
as “perfect” feedforward control, where the control action is designed to keep the controlled variable
exactly at the set point despite dynamic effects from the system [4]:

Gf = − Gd
GtGvGp

. (6)

The dynamic effects of the transmitter and valve, represented by transfer functions Gt and Gv,
respectively, are neglected in this study and then Gf is estimated as a lead–lag unit accounting for
process and disturbance dynamics, Gp and Gd, respectively. A lead–lag unit is used to estimate the
dynamics of the disturbances and process and their effect on the control action. Attempting to use the
transfer functions outlined in Table 1 leads to a physically unrealizable controller:

Gf = −
K f (τ1s + 1)
(τ2s + 1)

. (7)

K f , τ1, and τ2 are adjustable parameters in Equation (7). The adjustable parameters were tuned
using the steps outlined in Seborg et al. [4]. Due to the dynamics in this system, offset is not a concern
and K f was adjusted until a reasonable control response was achieved. The optimal value used for K f
in this work was determined to be 0.35. τ1 and τ2 were set to zero while a trial and error approach
was used to establish an appropriate value for K f . The controlled variable responds faster to the
manipulated variable in this system due to its location upstream of the disturbance variable, so the
heuristic approach of τ1/τ2 = 0.5 was used to set an initial value for these two parameters. τ1 and τ2

were then slightly fine tuned to .01 and .025, respectively, as the disturbance value was adjusted to
establish the controller so that it would minimize large disturbances effectively. The controller action,
Pf f , is then defined as Gf multiplied by the disturbance in inlet chlorine concentration, Dc:

Pf f = −
K f (τ1s + 1)
(τ2s + 1)

Dc. (8)

The NMPC control law in Equations (2)–(8) is a multi-variable, proportional control law utilizing
a receding horizon approach and a dynamic process model. It is based on predicted error generated by
the optimization/scheduling layer shown in Figure 6. The controller tuning parameters are shown in
Table 2. To ensure that the slowest dynamics in the system were adequately compensated for, this study
used the settling time (ts) of the demand chlorine concentration control response. It was determined to
be 13 h. Heuristics outlined in Seborg et al. were then used to determine values for the control (M) and
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prediction (P) horizons in Equation (9) [4]. All outputs are weighted equally, so the diagonal elements
(qii) of the output weighting matrix (Q) are assigned a value of unity:

ts
�t

3
< M <

ts
�t

2
,

P =
ts

�t
+ M.

(9)

Table 2. MPC model parameters (MPC: model predictive control).

Parameter Value Units

M 5 h
P 24 h
qii 1

�uc
lb 0 L/h

�uc
ub 3.79 L/h

�uv
lb 0 L/h

�uv
ub 113, 562 L/h

Kc
c −0.35 mg/L2

Kv
c 15 h

3. Results

3.1. Averaging Level Control

The storage tanks in water systems are operated as surge tanks to not only damp out oscillations in
the inlet stream, but to provide a constant and predictable pressure to customers. Where downstream
flow rates change gradually, water levels can be maintained within specified upper and lower limits,
and steady-state mass balances can be satisfied at all times, averaging level control is appropriate and
is often employed successfully when conditions warrant [4,21].

Using averaging level control in this system contributes greatly to the systems’ ability, guided
by robust control and optimization, to minimize large disturbances. Figure 9 shows the results of
averaging level control on the model system, giving the controller flexibility to hold inventory when
predictions require it.

Figure 9. Average level control of tank holdup. Red dotted lines represent upper and lower constraints
on tank holdup.
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The NMPC controller described in the previous section was implemented using the General
Algebraic Modeling System (GAMS) and the MATLAB Simulink environment. GAMS performed the
optimization and scheduling of pumping action based on the system model. The remainder of this
section is dedicated to presenting the results of this work.

3.2. Closed Loop Controller Response

Figure 10 shows the control action affecting tank water holdup under large disturbances.
The controller provides an immediate and accurate response to a large demand load on the system
beginning at hour eight and continuing to hour fifteen. Although there is approximately one hour of
delay in the system’s reaction to the demand, the effect of the large demand on the CV is minimal
and the critical tank holdup is maintained. The input curve at the top of Figure 10 shows two large
control actions: (1) scheduled pumping during non-peak hours (night) that was completed to avoid
pumping during the peak hours of the day and (2) un-scheduled pumping during peak hours due to
closed-loop control attempting to maintain the system within constraints during a large disturbance
event. When compared to closed-loop proportional control under the same conditions, MPC is the clear
choice to ensure the effect of disturbances is minimized. Figure 10 shows the proportional controller
recovering the system to the set point, but the response is delayed for approximately eight hours and it
allows the tank holdup level to decrease well below the lower constraint of 1.42 × 106 L. The military’s
need for aggressive adherence to the lower constraint on tank holdup for resiliency purposes means
that regulatory control alone is insufficient.

Figure 10. Controller action to minimize disturbance on tank holdup. In the bottom plot, MPC is
compared to proportional control on tank holdup under the same conditions.

Large disturbances on inlet concentration pose a unique challenge to military water systems.
Due to the size of water systems, the distance between the inlet and the CV of concern is usually
extensive. Distance and chlorine reaction kinetics combine to create a time delay on the demand
chlorine concentration. If a large disturbance on inlet concentration were to occur currently, the majority
of the water system would be contaminated before the disturbance was detected. Feedforward control
shown in Figure 11 demonstrates an effective solution to large disturbances. Because the disturbance
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is recognized immediately by the controller as well as the plant, control action begins to compensate
immediately after the disturbance occurs. The CV continues to decrease for at least two hours after
compensation due to the system time delay, but the CV remains well within constraints. Conversely,
the CV decreases below the lower chlorine concentration constraint when model based control with
feedforward action is not employed. Without feedforward control, the system time delay dominates,
ensures that the concentration descends below the lower constraint, and spends at least twelve hours
re-establishing the steady state.

While conserving water and electricity are motivations for this work, reducing costs to the military
while maintaining resiliency receive priority when inefficiencies are concerned.

Figure 11. Feedforward control response to large disturbances on inlet chlorine concentration and the
effect on demand chlorine concentration.

3.3. Robustness Analysis

Effective control systems are required to adequately counter process disturbances while also
providing satisfactory performance for a wide range of process conditions and a reasonable degree
of model inaccuracy [4]. The ability to control the system under a variety of conditions is known as
robustness. Figures 10–13 shown earlier in this section demonstrate the performance of the control
hierarchy in this work. Analysis was conducted on the control hierarchy to determine if it was effective
beyond the scope of the figures earlier in this section. Figure 14 shows great control system response
in terms of its ability to rapidly and smoothly compensate for a range of unpredicted demand events.
The demand events are arrayed between a normal operation status with no large demand events and a
disturbance to the system of 151,000 L. In all cases, resiliency within the system is shown by a rapid
response and the ability to maintain the tank water level well above the lower safety threshold of
1,400,000 L.

Figure 15 demonstrates, with respect to the controlled variable of demand chlorine concentration,
that the control hierarchy is capable of efficiently handling a wide range of disturbances. Under normal
conditions in this model system, an inlet concentration that ranges from 0.7 mg/L to 1.0 mg/L will
lead to a demand chlorine concentration of approximately 0.5 mg/L. If large disturbances on inlet
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chlorine concentration were allowed to persist without compensation, contamination and water waste
will result. Figure 15 shows that the control system will inject chlorine to adequately compensate
for substantial losses in inlet chlorine ranging from 0 mg/liter to 0.4 mg/L. Each disturbance is
smoothly compensated for and the overall result is the entire model water system maintaining a
chlorine concentration above the minimum safe level of 0.2 mg/L.

Figure 12. Comparison of pumping controlled by proportional control alone and model predictive
control and how those strategies react to large disturbances.

Figure 13. Cost of pumping over a 24 h period when proportional control and model predictive control
are employed on the water system.
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Figure 14. Controller response to a range of demand disturbances in order to maintain tank water level.

Figure 15. Controller response to a range of inlet chlorine concentration disturbances to ensure
downstream demand chlorine concentration remains above the safe limit of 0.2 mg/L.

4. Discussion

Since the majority of the cost of providing potable water to installations is related to pumping
water to fill tanks, it follows that any efforts to minimize cost should begin there. As shown in Figure 12,
the MPC framework outlined earlier in this paper attempts to pump in a pattern that avoids the more
expensive times of the day based on day ahead electricity pricing. Figure 12 shows the action of MPC
with and without large disturbances present. Without disturbances, the controller will ensure that
pumping is accomplished in the most inexpensive manner possible and will only pump during the
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unfavorable hours of the day if it needs to in order to maintain critical system constraints. Safety and
resiliency are prioritized by the controller. Regulatory control alone will also effectively manage
tank holdup in the absence of disturbances, but does not discriminate against higher prices in the
afternoon, leading to excessive cost. Because of its predictive nature, MPC has the effect of having
water inventory on hand when large disturbances occur that allow it to respond in a more efficient
and inexpensive manner. Regulatory control alone with no predictive capability is at a disadvantage
and does not perform as well because it did not store an additional amount of inventory during the
more inexpensive times of the day. Figure 13 shows the cost comparison of regulatory control and
MPC with no disturbances present. A 12% decrease in cost is realized when MPC is implemented.
This decrease is realized because the controller manipulates the pumping action based on the cost of
electricity and regulatory control does not.

5. Conclusions

In conclusion, large disturbances within military water systems can be adequately controlled
using nonlinear model predictive control. Due to distance, time delays, time scales, and reaction
kinetics, multiple types of control (feedback, feedforward, etc.) should be employed in the regulatory
layer to compensate for disturbances effectively while maintaining constraints for safety and resiliency.
Water system modeling is hindered by the existence of different time scales of phenomena within the
system. The solution of this controller follows the process control hierarchical structure in Figure 3,
employing the regulatory control layer to manage the fast dynamics of the system while the supervisory
controller developed in this paper effectively managed the slow dynamics [22]. The NMPC framework
outlined lowers costs and reduces waste, while improving resiliency and safety.
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Abstract: The increasing demands for water and the dwindling resources of fresh water create a
critical need for continually enhancing desalination capacities. This poses a challenge in distressed
desalination network, with incessant water demand growth as the conventional approach of
undertaking large expansion projects can lead to low utilization and, hence, low capital productivity.
In addition to the option of retrofitting existing desalination units or installing additional grassroots
units, there is an opportunity to include emerging modular desalination technologies. This paper
develops the optimization framework for the capacity planning in distressed desalination networks
considering the integration of conventional plants and emerging modular technologies, such as
membrane distillation (MD), as a viable option for capacity expansion. The developed framework
addresses the multiscale nature of the synthesis problem, as unit-specific decision variables are
subject to optimization, as well as the multiperiod capacity planning of the system. A superstructure
representation and optimization formulation are introduced to simultaneously optimize the staging
and sizing of desalination units, as well as design and operating variables in the desalination
network over a planning horizon. Additionally, a special case for multiperiod capacity planning
in multiple effect distillation (MED) desalination systems is presented. An optimization approach
is proposed to solve the mixed-integer nonlinear programming (MINLP) optimization problem,
starting with the construction of a project-window interval, pre-optimization screening, modeling
of screened configurations, intra-process design variables optimization, and finally, multiperiod
flowsheet synthesis. A case study is solved to illustrate the usefulness of the proposed approach.

Keywords: desalination; multi-effect distillation; membrane distillation; process integration;
optimization; scheduling

1. Introduction

In arid regions of the world, thermal desalination technologies, such as multiple effect distillation
(MED), are mainstream for producing desalinated water for both residential and industrial sectors.
Desalination technologies, in general, and thermal desalination technologies, specifically, are generally
characterized by their high capital intensity. For example, fixed cost charges in MED typically account
for 40–50% of the unit cost of production, while it is 30% in RO systems. When examining the capacities
of desalination projects in arid areas, such as the Gulf countries, one cannot help but notice the
widespread use of large capacity desalination projects. Large desalination plants were justified in
the past to cope with the booming population in the area. For example, the population growth rate
in Saudi Arabia has increased incessantly from 3% in 1960 to over 6% in 1982 [1]. However, it has
plateaued since then, at around 2%. Despite that, the trend of installing large desalination projects
has continued in recent years. In 2014, Saudi Arabia built one of the world’s largest desalination
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plants, with a design capacity of 226 million imperial gallons per day (MIGD), using multistage flash
(MSF) and reverse osmosis (RO) [2]. The country is expected to spend $27 billion in the next 20 years
towards desalination projects. Hence, planning for capacity expansion of desalination systems in such
situations poses a great multiperiod multiscale optimization opportunity.

Large investments are typically justified by the economies of scale associated with large projects
and, in some cases, additional technological and operational limitations. However, as many
technological and operational limitations diminish with the maturity of desalination technologies,
the design capacity of future desalination projects is primarily an economic optimization problem.
The downside of large investments lies in the higher fixed operating cost associated with larger
underutilized systems and lower capital productivity.

The optimization of the capacity planning problem has been widely studied from different vistas.
In the field of operational research, it is studied under the problem formulation of “Time-Capacity
Optimization”. The essence of this field is to optimize the size of future investment, taking advantages
of the economies of scale exhibited by larger investments and at the same time, minimizing cost
associated with money value of time. In a temporal order, Manne [3] was among the first to develop
an analytical solution for the case of constant linear demand growth with an infinite horizon in his
book “Investment for Capacity Expansion”. Scarato [4] and Shuhaibar [5] explored the time-capacity
expansion problem using Manne’s framework in urban water systems and MSF desalination systems,
respectively. Both studies have contended that the cost function is flat near the optimum point.
Other papers have examined the problem in other applications, such as in the planning of hydroelectric
projects [6], waste treatment systems [7], and power systems [8,9]. The problem was reconstructed
by Neebe and Rao [10] for discrete technology selection with fixed capacities. Several studies [11–14]
in the field of PSE (e.g., process systems engineering) address the capacity planning optimization
for both deterministic and stochastic problems, and at various applications and solution techniques.
In water desalination network design, process synthesis techniques have been employed for the
design of desalination units of a specific technology. Example research in the synthesis of reverse
osmosis networks includes the work by El-Halwagi [15] and subsequent research contributions,
e.g., [16,17]. Design and optimization techniques have been developed to assess several configurations
of MSF systems for various criteria [18,19]. Druetta et al. [20] evaluated the detailed design of MED
seawater desalination systems for the minimization of total cost, where mixed-integer nonlinear
programming (MINLP) model is employed to determine the nominal optimal sizing of system’s
equipment. Gabriel et al. [21] used linearization techniques to achieve global solutions of the design
of MED systems. Several research contributions have been made in the area of optimizing the
synthesis of MD networks for various applications [22–25]. Other research has focused on the synthesis
of hybrid desalination systems. Bamufleh et al. [26] developed the framework for synthesis of a
MED–MD desalination system that is thermally coupled with industrial process. Al-Aboosi and
El-Halwagi [27] developed an approach for the optimization of the design of RO–MED hybrid systems
using a water-energy nexus approach. Huang et al. integrated multiple desalination technologies with
combined heat and power in industrial and power plants [28]. Kermani et al. [29] provided a review
of water-heat nexus with a meta-analysis of network features.

Notwithstanding previous research in the field, to the extent of the authors’ knowledge,
no optimization framework has been established for the multiscale optimization of capacity planning
in water desalination systems taking into consideration mass and heat integration opportunities with
emerging desalination technologies. This paper aims at developing an optimization formulation for
the capacity expansion planning that systematically extracts the optimal process design over time from
numerous alternatives while considering retrofit options of existing desalination units and heat and
mass integration between desalination systems. It will also simultaneously optimize the intra-process
design and operating variables. This work seeks to answer the following questions in the context of
capacity planning of desalination systems:
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• What is the optimum staging/sizing of the new desalination units that optimize the selected
objective function? Which technologies should be selected for water demand satisfaction?

• What are the optimum design and operating variables (i.e., evaporator’s area, top brine
temperature, etc.) for the existing and newly installed desalination units over the
planning horizon?

• How shall existing and new desalination units in each planning interval be integrated (i.e., mass
and heat integration) for the optimization of the objective function?

2. Problem Statement

The multiscale capacity planning problem in desalination network may be stated as follows:
Given is a water desalination system subject to capacity expansions within a planning horizon
of Nt years. The horizon is discretized to annual counterparts, INTERVAL = (t|t = 1, 2, . . . , Nt) ,
where t = 1 represents the initial time of the planning horizon, satisfied by the initial desalination
system. Expansion projects commence at t = 2. In each interval, the total water desalination capacity
of the system is denoted Dt, while the water demand at a given period is denoted dt. Desalinated
water price, Prt, may vary in each interval.

The set CONFIG = (i|i = 1, 2, . . . , Ni) of desalination configurations are considered to
meet the water demand increase. Two subsets for each configuration exist. The set
INLETi = (m|m = 1, 2, . . . , Nmi ) represents the inlet nodes for ith configuration. The set
OUTLETi = (n|n = 1, 2, . . . , Nni ) represents the outlet node for ith configuration. For example, the
configuration of MED–RO desalination depicted in Figure 1a has two inlet nodes and four outlet nodes,
while the one depicted in Figure 1b has one inlet node and three outlet nodes.

 
(a) (b) 

Figure 1. Example configurations for water desalination (a) with two inlet nodes and four outlet nodes,
(b) with one inlet node and three outlet nodes.

The initial design of the system is fixed with a known distillate capacity of Dt = D1. Due to
distillate demand growth in the horizon, expansion of the desalination system is required to meet
the planning horizon water demand. Saline water feed, Fsw

t , with a fixed salinity, xsw, is available as
a feedstock to new desalination units. On the overall system’s level, a constraint exists on the total
brine reject flowrate Breject

max from the system, while the salinity of the system’s brine and distillate are
constrained by xb

max and xd
max, respectively.

In the context of this study, the objective is to maximize the net present value (NPV) of capital
investment portfolio in the system accounting for annual revenue, fixed and operating cost, and book
values. However, the formulation may be adjusted to target other objectives such as other economic,
environmental, and reliability objectives. At a given minimum rate on investment (r), the objective is
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to determine the optimal planning for the desalination system capacity that maximizes the total net
present value (NPV) while fulfilling water-demand forecast.

Figure 1 is a schematic representation of the multiperiod capacity planning problem in a
desalination system. The superstructure shows the multiperiod interactions between the potential
configurations in each interval.

3. Synthesis Approach

The representation in Figure 2 typifies the synthesis approach for the system. The change in the
system’s distillate capacity is measured by the added capacity at each interval, ΔDt. It is assumed
that the inherited system design from a preceding interval is fixed, and changes in the system are
limited to the selected configuration added at the current interval and its design variables. Nonetheless,
all intervals’ designs will be solved simultaneously. In each interval, all possible configurations are
evaluated, each named a SUBSYSTEMi,t. For example, the first configuration in the second interval
holds the notation SUBSYSTEM1,2.

Figure 2. Multiperiod superstructure of the desalination capacity planning problem.

The multiperiod superstructure is rich enough to embed many potential designs of interest in the
desalination system. For example, hybridization of desalination configurations can be done across
intervals. However, the complexity of the superstructure can be prohibitive for a feasible mathematical
optimization. For example, there is a total of 9,765,625 possible designs for a 10-interval horizon, and 5
five considered desalination configurations.

Our approach for a feasible optimization is shown in Figure 3. A pre-optimization screening
of configurations is carried out on the system. The extensive list of desalination configurations is
screened based on characteristic data of the system and knowledge on the commerciality, maturity,
and economic efficacy of each configuration. In this step, unfeasible configurations, either economically
or technically, based on parameters such as feed water salinity, distillate quality, range of distillate
capacity, and minimum required recovery are, first, identified. The pre-optimization screening can be
done in one of two ways:

• Complete elimination of configurations as a possible element of the optimal policy. This is
applied on configurations with no hope of making it in the optimal flowsheet of the water system.
For example, previous research and experience indicates the efficacy of RO in desalinating low-
and medium-salinity water feed (i.e., brackish water) compared to MED. However, reliability
and performance issues hinder its application for high-salinity water desalination. Hence,
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knowledge of the feed-water quality enables the elimination of some desalination technologies and
configurations. Other factors for the screening of candidate configurations are listed in Figure 3
that include, but are not limited to, their ability to achieve product quality (e.g., boron separation),
meet a system constraint (e.g., brine salinity), and achieve an acceptable level of commerciality.

• Disjunction of configuration’s selection based on the problem’s parameters. For example,
the selection between simple MED and MD desalination configurations can be modelled by
a disjunctive inequality based on the targeted design capacity, Equation (1). Assuming previous
knowledge of the technical and economical feasible capacity range for each configuration,
the disjunction can be reformulated using common disjunctive inequality solution techniques,
such as convex hull or big-M reformulation.⎡⎢⎣ yMD

Dmin
MD ≤ Dsubsystem ≤ Dmax

MD
...

⎤⎥⎦ ∨

⎡⎢⎣ yMED
Dmin

MED ≤ Dsubsystem ≤ Dmax
MED

...

⎤⎥⎦ (1)

Next, key intra-process design variables are screened. Candidate design variables for the
application of Bellman’s principle of optimality are locally optimized within the configuration.
In the cases where the design variable’s optimality depends on the design capacity of the potential
desalination configuration, a profile of the design variable’s optimal policy with the design capacity
is developed. The outputs from the disjunction, configurations’ modelling, and intra-process design
variables optimization are entered into the overall system optimization model. In the next section,
the general formulation of the problem is presented, followed by a discussion on the special case of
optimizing multiple effect distillation (MED) desalination systems.

Figure 3. Optimization approach for the multiperiod capacity planning problem.
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4. General Formulation

The objective function, presented later in the formulation, is subject to the following constraints:

4.1. System’s Distillate Capacity

The capacity of the system shall meet or exceed water demand at any tth interval, as expressed in
Equation (2), where Dt is the interval system total capacity, and dt is the interval’s water demand.

Dt ≥ dt ∀t (2)

The total distillate capacity can change across the multiperiod horizon. The total system’s capacity
at a given interval is the summation of the total distillate capacity from the previous interval and the
added distillate capacity, ΔDt, at the interval, as given by:

Dt = Dt−1 + ΔDt ∀t (3)

The added capacity at any interval consists of the distillate capacity of the subsystems, Di,t,
installed in the interval.

ΔDt = ∑
i

Di,t ∀t (4)

4.2. Subsystem’s Mass Balance

The mass balance on each subsystem (i.e., configuration) is given by:

∑m Ftotal
mi,t

− ∑n Ftotal
ni,t

− Di,t = 0 ∀t ∀i, (5)

where Ftotal
mi,t

is the mass flowrate to the mth inlet node of a given subsystem. The mass flowrates in
all inlet nodes constitute the total inlet feed to the subsystem. Conversely, Ftotal

ni,t
is the mass flowrate

for the mth outlet node of the subsystem. The mass flowrates in all outlet nodes from all subsystems
constitute the interval’s brine reject, as in Equation (6), where Bi,t and Bt are the brine flowrate of a
subsystem and the interval, respectively.

Bi,t = ∑
n

Ftotal
ni,t

∀t ∀i (6)

Bt = ∑
i

Bi,t ∀t ∀i (7)

4.3. Subsystem’s Inlet and Outlet Nodes

Given Fmi,t+1
ni,t denotes the flow from nth node in SUBYSYSTEMi,t to the mth inlet node in

SUBYSYSTEMi,t+1, the split of nth outlet node is modelled as follows:

Ftotal
ni,t

= ∑m Fmi,t+1
ni,t ∀t ∀i. (8)

The mixing in mth inlet node in any subsystem is given by:

Ftotal
mi,t

= Fsw
mi,t

+ ∑n Fmi,t
ni,t−1 ∀t ∀i, (9)

where Fsw
mi,t

is the fresh water (i.e., seawater) mass flowrate to the inlet node. Similar to Equation (3) for
distillate capacity, the total seawater flowrate at any interval increases over intervals as in Equation (10).

Fsw
t = Fsw

t−1 + ∑
m

Fsw
mi,t

∀t ∀i (10)
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4.4. Subsystem’s Modeling Equations and Constraints

Each desalination configuration is described by a distinct vector of modelling equations and
constraints that characterize the performance and limitations of the subsystems employing the
configuration. In addition to the design capacity and compositions, a configuration is characterized by
the vectors DVi,t for design variables, OVi,t for operational variables, and SVi,t for state variables.

φi(Di,t, xd
i,t, xb

i,t, DVi,t, OVi,t, SVi,t) = 0 ∀t ∀i (11)

φi(Di,t, xd
i,t, xb

i,t, DVi,t, OVi,t, SVi,t) ≥ 0 ∀t ∀i (12)

Key constraints for desalination configurations include the design capacity as in Equation (13),
and limits on some design variables (i.e., membrane area), as in Equation (14).

Dmin
i ≤ Di,t ≤ Dmax

i ∀t ∀i (13)

DVmin
i ≤ DVi,t ≤ DVmax

i ∀t ∀i (14)

In some cases, the limitation on the design variable extends across intervals, for example,
the maximum RO modules in series, or a constraint on the maximum number of evaporative effects in
series across all intervals. Such constraints may be captured by the following:

∑t DVi,t ≤ DVmax
i ∀t ∀i. (15)

One key constraint for the system, to be met in all intervals, is the salinity constraint in both the
brine and distillate. The following provide the component mass balances for the system’s distillate
and brine, respectively:

xd
t Dt = xd

t−1 Dt−1 + ∑i xd
i ΔDt ∀t ∀i, (16)

xb
t Bt = ∑i xb

i Bi,t ∀t ∀i. (17)

Given a fixed maximum salinity on the brine, xb
max and the distillate xd

max, the respective
constraints are given by

xb
t ≤ xb

max ∀t, (18)

xd
t ≤ xd

max ∀t. (19)

4.5. System’s Costing and Objective Function

The total capital investment of each subsystem is correlated with the design variables and design
capacity. Total operating cost correlates with the actual distillate production at the interval, as well as,
all design and operating variables of the constituent subsystems.

TCIi,t = f c
i (Di,t, DVi,t) ∀i ∀t (20)

TCIt = ∑
i

TCIi,t ∀i ∀t (21)

AOCt = f o
i (dt, DVi,t, OVi,t) ∀i ∀t (22)

The proposed objective function is the maximization of the net present value (NPV) as an economic
metric of the desalination system as given by Equation (23). Thus, other economic metrics, such as
internal rate of return (IRR), may easily be used instead. The terms Vt, AOCt, and TCIt represent the
revenue, annual operating cost, and total capital investment at tth interval, respectively. All cash flows
are properly discounted with the underlying assumption of the cash flow’s realization at the beginning
of the year. A linear depreciation model with no salvage value is assumed to estimate the system’s
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book value, BVt, at the end of the planning horizon. The service life, SL, is assumed constant for all
units in the desalination system.

Maximize NPV = ∑
t

REVt − AOCt − TCIt

(1 + r)(t−2)
− BVt

(1 + r)(H−1)
∀t (23)

BVt = TCIt × argmax
(

0, 1 − H − (t − 1)
SL

)
∀t (24)

REVt = Dt × Prt ∀t (25)

To model the project-window intervals stipulated in synthesis approach (e.g., Figure 2), a new
constraint is introduced on the allowable intervals for plant’s installation. It is unlikely for capacity
expansion projects to sequence in annual or biannual basis for economic and other considerations (i.e.,
safety, reliability, project management, etc.). Assuming a fixed period between project windows, τ,
the constraint is enforced by assuming zero added desalination capacity for potential desalination
plants in between project-permissible intervals, as given by

ΔDt = 0 ∀t ∈ INTERVAL : t �= τ, 2τ, . . . , nτ. (26)

5. MED Special Case Formulation

Characterized by large design capacity and its capacity for integration with other desalination
technologies, seawater multiple effect distillation (MED) desalination systems are good candidates
for the presented optimization formulation. In this section, a shortcut method is proposed for the
modelling and optimization of capacity expansion planning in MED desalination system. A set
of three technologies are considered as modifications in the network to meet water demand.
The conventional option is installing a new grassroots MED unit. Alternatively, existing MED units
may be retrofitted with additional evaporative effects for additional water recovery or integrated with
MD for brine treatment.

Next, a step-by-step application of the synthesis approach in Figure 2 on MED desalination
systems for capacity expansion is carried out to develop a shortcut method for the special case.

5.1. Desalination Configuration Screening

A strategy of screening unfeasible desalination technologies and technologies that do not integrate
with the existing system is adopted. MED and MD are the two technologies considered, forming three
distinct configurations: new standalone MED unit, new evaporative effects to existing MED units,
and MD unit for brine treatment. MD desalination of fresh seawater is eliminated based on previous
techno-economic analysis and research on MD [26].

5.2. Capacity Disjunctive Modelling

In this step, the search space for the optimal flowsheet is reduced by applying the predetermined
knowledge on the optimality of each screened configuration. For the retrofit configuration (EE),
a capacity range, Dlow

EE and Dhigh
EE is determined in which retrofit is part of the optimality policy.

The decision is based on three distinct features of this configuration: limited distillate production,
higher energy efficiency, and modest capital investment. The disjunction is expressed mathematically
as follows:

IEE,t Dlow
EE ≤ Dt ≤ IEE,t Dhigh

EE ∀t, (27)

IEE,t Dhigh
EE ≤ Dt ≤ IEE,t Dmax

MED ∀t, (28)
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where Ii,t is a binary variable for each desalination subsystem. In the case where one configuration is
allowed in each interval, the sum of the binary variables at any given interval must not exceed one.

∑
i

Ii,t ≤ 1 ∀t ∀i (29)

5.3. Configuration’s Modeling

Various models were evaluated for use in the special formulation for the MED
configuration [21,30–32]. A modified version of the MED model presented by El-Halwagi [32] is
used here. The modification intends to make the model suitable for capacity expansion optimization
applications, in which retrofitting the system with additional effects is considered. All the above
mathematical models target a grassroots design. Hence, the implication of adding additional effects on
an existing MED unit on water production, steam consumption, and capital and operating cost are not
easily inferred.

For a given MED system with a variable number of effects, Ne f f , the total MED distillate
production is given by

DMED = ∑
Ne f f
n=1 Dn, (30)

where n is the evaporative effect number. D is the distillate water mass flowrate. The heat load of each
evaporator, Qevp,n is estimated by the heat of vaporization, λn, at the temperature of the evaporator:

Qevp,n = λnDn. (31)

Several types of evaporators may be used, including falling film, rising film, and forced circulation.
Assuming a horizontal-tube falling film evaporator (HTFFE), the evaporator’s design (i.e., area) is
given by

Qevp,n = UHTFFE,n AHTFFE,nΔTLM,n. (32)

For a conceptual design of a water system, like the one treated in this paper, the following
simplifying assumptions are deemed acceptable, reducing the MED distillate capacity equation to
Equation (35):

• The log-mean temperature difference may be assumed equal to the temperature difference
between the vapor temperature in the tubes and the evaporator’s temperature, Equation (33).

• The temperature difference between all effects are equal. Therefore, the MED temperature profile
is estimated by Equation (34).

• All evaporators are identical in size.

ΔTLM,n = Tn−1 − Tn (33)

ΔTLM,n =
(Ts − Tc)

Ne f f + 1
(34)

DMED =
AHTFFE (Ts − Tc)(

Ne f f + 1
) Ne f f

∑
n

UHTFFE,n

λn
(35)

Several correlations exist for UHTFFE and λ with temperature, examples of which are presented
in Equations (36) and (37). Assuming a linear correlation of both parameters with temperature,
the summation term of the U/λ ratio may be correlated to three design variables: Ts, Tc, and Neff.
Numerical analysis of the term shows a linear correlation of the term with Ne f f at a fixed Ts and Tc

values. Therefore, Equation (35) can be rewritten as

UHTFFE,n = 0.8552 + 0.0047 Tn, (36)

352



Processes 2018, 6, 68

λn = −2.7532 Tn + 3278.8, (37)

DMED =
AHTFFE(Ts − Tc)(

Ne f f + 1
) (

αMED Ne f f

)
. (38)

αMED is a design parameter, estimated from the steam and cooling water temperature available at
the facility. It is linearly estimated by Equation (39), where as and ac are two scalar values.

αMED = αsTs + αcTc (39)

Hence, Equation (35) may be rewritten as follows:

DMED = αMED (Ts − Tc)

(
Ne f f

Ne f f + 1

)
AHTTFE. (40)

The new equation correlates, conveniently, the unit’s total water production with the area and
number of evaporative effects. Gained output ratio, GOR, is a useful estimate of the unit’s thermal
efficiency. It is defined by Equation (40) and empirically estimated by Equation (42).

Ms =
D

GOR
(41)

GOR = Ne f f (0.98)Ne f f (42)

Combining Equations (39)–(41), the total steam consumption is given by

Ms =
αMED(Ts − Tc)AHTTFE(

Ne f f + 1
)
(0.98)Ne f f

. (43)

It is reckoned that Equations (40) and (43) are very useful in modeling the second configuration,
the evaporative effects retrofit (EE). Figure 4 shows the distillate capacity and steam consumption
incremental change with the increase or decrease of an evaporative effect, based on the above model.

Figure 4. Net change in distillate production and steam consumption with e increase in number of
evaporation effects.
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5.4. Intra-Process Design Variables Optimization

In the special case, three design variables within the considered configurations are investigated:
top brine temperature (TBT) in MED, number of effects in MED, and bulk feed temperature (TBF)
in MD. The optimization TBT and TBF variables are associated with a tradeoff between operating
and capital cost in their respective units, and have no association with the inter-process design of the
system (i.e., subsystem capacity). Therefore, they are locally optimized, and inferred as a constituent
of the global optimization solution.

The optimization of MED number of effects must be solved simultaneously with the multiperiod
planning optimization. Alternatively, an optimal policy of the effect’s number and the subsystem
capacity is generated, and fed to the system multiperiod optimization.

6. Case Study

6.1. Case Study Description

The case study considers the capacity planning of an industrial water desalination system with
five identical MED units, each consisting of 6 evaporative effects capable of producing 300 kg/s of
distilled water. All the units are currently fully exhausted by the water demand. Due to a planned
expansion in the industrial facility, water demand in a horizon of 30 years is expected to drastically
increase in the next 20 years, followed by slim increases in the remaining 10 years. The demand curve
is shown in Figure 5.

Figure 5. Water demand curve for the case study.

Seawater feed and brine parameters, as well as cost parameters, are shown in Table 2. The price
of water product is fixed throughout the planning period at $1.5 per m3. Project windows are assigned
every 5 years (i.e., τ = 5). Additional parameters are listed in Table 1.

For MD, a polypropylene hollow-fiber membrane MD020CP2N manufactured by Microdyn
is used. The hollow fibers have a length, inner diameter, and outer diameter of 0.45 m, 1.5 mm,
and 2.8 mm. Remaining details on the membrane can be found in [33]. MD design and costing model
was adopted from Elsayed et al. [34]. For this case study, membrane permeability, Bw, is assumed
constant at 1.92 × 10−7 kg

m2·s·Pa . Annualized fixed cost and annual operating cost for MD system is
given by [33]

TCIMD = 459 Am + 13, 117(1 + γ)FMD (44)
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AOCMD = cHU

(
Jw Hvw

ηm

)
+ (1411 + 43(1 − ξ) + 1613(1 + γ))FMD, (45)

where cHU is cost of heating utility, ξ is water recovery, γ is ratio of MD recycle flowrate to feed
flowrate. Design and costing equations for MED are adopted from El-Halwagi [32]. Assuming a
Lang-factor of 3.5, the total capital cost is given by

TCIMED = 24, 600 Ne f f A0.6
HTFFE. (46)

It is desirable to synthesize the expansion of the system for the planning horizon of 30 years,
considering the three desalination configurations listed for the MED special case. The objective is to
develop an optimal investment strategy to maximize net present value of the system. A minimum rate
on investment for stakeholders is 15% (e.g., hurdle rate). In scenario #2, an environmentally-driven
limitation of 3600 m3

hr on the seawater mass flowrate is considered.

Table 1. Design basis for the case study.

Parameter Symbol Value Unit

Seawater feed temperature Tsw 298 K
Seawater salinity xsw 30,000 ppm

MED brine maximum salinity xb
MED 75,000 ppm

Steam temperature Ts 373 K
Cooling water temperature Tc 298 K

Steam price cHU 2.5 $/MJ
MED minimum capacity Dmin

MED 50 kg/s
MED maximum capacity Dmax

MED 350 kg/s

6.2. Solution

The horizon was discretized to annual intervals, Nt = 30, with allowable expansion windows
every 5 years. The optimization formulations are solved using the software LINGO® [35]. The problem
is formulated as MINLP with 1337 variables, and solved on Intel Core i7-6700 CPU with 16 GB RAM
in 274 s. A summary of the optimization results for all the scenarios are shown in Table 2.

Table 2. Summary of results for the case study.

Units Base Case Scenario #1 Scenario #2

NPV 106 $/year −7.1 10.5 6.9
New MED Units (MED) 1 3 3
Retrofitted effects (EE) 0 1 1

Total MD area (MD) m2 0 0 10,800
MED top brine

temperature K 358 358 358

MD feed temperature K 363 363 363

As a benchmark for the case study results, the results of a base case scenario of installing one
MED system capable of handling the full capacity required for the planning horizon is presented.

First, two intra-process design variables are optimized locally: the TBT and TBF temperature.
Within specific design limits, both involve a tradeoff between capital and operating cost. Higher top
brine temperature in MED, for example, yields higher thermal efficiency, (i.e., lower specific latent
heat of vaporization) and lower specific evaporative area (i.e., higher heat transfer coefficient). On the
other hand, higher unit cost of steam as well as reliability and operability issues (i.e., scaling) may
be incurred. The optimum TBT and TBF temperatures for all the scenarios are 358 K and 363 K,
respectively. Additionally, the optimal policy for MED number of effects vs MED capacity is developed
and presented in Table 3.
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Table 3. Number of effects optimal policy for various MED capacities.

Number of Effects Min. Capacity Limit (kg/s) Max. Capacity Limit (kg/s)

6 30 55
7 55 94
8 95 150
9 151 270

Scenario #1. The optimization formulation is solved without any constraints on the seawater
mass flowrate or water recovery. The solution is shown by Figure 6. Three MED units are installed
in interval 1, 10, and 15. In the period of sluggish demand increase (e.g., year 20–30), retrofit of the
largest MED unit with two additional effects was included in the solution. This exploits the advantage
of the retrofit option: modest increase in production with positive gain in thermal efficiency.

Scenario #2: MED units are limited in water recovery by the maximum salinity in brine. Hence,
with the introduction of a constraint on seawater feed, MD became a constituent of the optimal
flowsheet to satisfy the required water demand with the limited fresh feed through brine treatment.
MD was introduced to the flowsheet at year 15 with a total area of 10,800 m2 producing a total of 54
kg/s. The total MD capital investment is estimated to be $9.87 millions. The solution is shown by
Figure 7.

Figure 6. Results for Scenario #1.
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Figure 7. Results for Scenario #2.

7. Conclusions

This paper has introduced a multiperiod optimization approach for the capacity-expansion
planning of water desalination systems to satisfy a forecasted demand growth over a given time
horizon. The approach was illustrated in a general formulation, and in a special case for the
capacity expansion in MED desalination systems, where three options were considered for capacity
expansion: grassroots MED, existing MED retrofits, and MD desalination. The presented formulation
simultaneously optimizes design capacities, period of installation, as well as technology-specific design
variables, such as the number of MED effect, TBT, and MD feed temperature. A case study has been
solved for three different scenarios to illustrate the merits of the presented approach. The results
have illustrated the impact of considering alternative options for capacity expansion on the optimal
design. Notwithstanding the economic challenges facing emerging technologies, alternative options
to meeting demand growth, such as MD, provide advantages to the system by providing valuable
flexibility and modularity in the design stage to maximize economic return.
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Nomenclature

AHTFFE area of MED evaporators, m2

Am area of MD module, m2

AOCt annual operating cost at tth interval
Bi,t brine flowrate of a subsystem, kg/s
Bt system’s brine flowrate, kg/s
BVt end-of-horizon book value of investments at tth interval
cHU unit price of heating utility
Dt system total distillate capacity at an interval, kg/s
Di,t subsystem’s water capacity, kg/s
dt water demand at an interval, kg/s
ΔDt added distillate capacity at an interval, kg/s
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DVi,t design variables of a subsystem
Ftotal

mi,t
mass flowrate to the mth inlet node, kg/s

Ftotal
ni,t

mass flowrate for the nth outlet node, kg/s
Fmi,t

ni,t mass flowrate from nth outlet node to mth inlet node, kg/s
Fsw seawater mass flowrate, kg/s
GOR gained output ratio
Hvw water heat of vaporization
Ii,t binary variables for the existence of ith configuration at tth interval
Jw water mass flux in MD, kg/(s m2)
Ms MED steam mass flowrate, kg/s
NPV net present value
Ne f f number of evaporative effects
OVi,t operating variables of a subsystem
Qevp heat duty of MED evaporative effect, W
REVt revenue at tth interval
r minimum rate of return
SVi,t state variables of a subsystem
SL average subsystem service life
TCIt total capital cost of tth interval
Ts temperature of heating steam in MED, K
Tc temperature of cooling medium in MED, K
UHTFFE overall heat transfer coefficient of horizontal-tube falling film evaporators, W/(m2 K)
xd

i,t distillate salinity from a subsystem
xb

i,t brine salinity from a subsystem
xd

t overall distillate salinity of the system
xb

t overall brine salinity of the system
Indices
i index for desalination configuration
m index for configuration’s inlet node
n index for configuration’s outlet notes or number of effects
t index for hourly time interval
Greek
η thermal efficiency
α MED temperature-dependent design parameter
γ ratio of MD recycle flowrate to fresh feed
ξ MD water recovery
λn heat of evaporation at a given MED effect, W
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