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Experimental and Numerical Study of Behavior of Additively Manufactured 316L Steel Under
Challenging Conditions
Reprinted from: Metals 2025, 15, 169, https://doi.org/10.3390/met15020169 . . . . . . . . . . . . 178

vi



Preface

This Special Issue presents ten original research articles that explore key challenges and

solutions in Additive Manufacturing for metallic applications, including powder reuse, hybrid

modeling, microstructural control, and real-time monitoring. Addressed to professors, scientists,

industrial engineers and experts in metal Additive Manufacturing, the Special Issue aims to highlight

innovations that enhance process efficiency, component performance, and sustainability of these

modern manufacturing processes. The contributions presented in the Special Issue reflect the ongoing

shift toward intelligent and integrated Additive Manufacturing solutions for metallic applications.

Petru Berce and Rǎzvan Pǎcurar

Guest Editors
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Editorial

Challenges and Trends in Additive Manufacturing for Metallic
Applications: Toward Optimized Processes and Performance

Petru Berce and Rǎzvan Pǎcurar *

Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production
Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania;
petru.berce@tcm.utcluj.ro
* Correspondence: razvan.pacurar@tcm.utcluj.ro

1. Introduction and Scope

Additive Manufacturing (AM) for metallic applications continues to redefine how
complex, high-performance components are designed and fabricated across a wide range
of sectors, including the aerospace, biomedical, and automotive fields, etc. [1]. Recent
advancements in materials science, process optimization, and modeling have contributed to
more reliable, efficient, and sustainable manufacturing practices in this area [2]. Despite this
progress, several challenges persist. These include improving machinability and surface
quality, optimizing the process parameters to minimize energy consumption, reusing mate-
rials without quality degradation, and reliably predicting performance outcomes through
accurate modeling [3]. Furthermore, achieving consistent mechanical properties and re-
ducing thermal residual stresses across different AM methods, such as Wire Arc Additive
Manufacturing (WAAM), Laser Powder Bed Fusion (L-PBF), and Direct Energy Deposition
(DED), remain areas that require significant research attention in the future [4–6].

This Special Issue aims to address these knowledge gaps by presenting a collection
of ten original articles covering a spectrum of AM challenges and solutions for metallic
applications—from powder reuse and hybrid modeling frameworks to microstructural
control and other advanced monitoring techniques [7]. Collectively, the articles published
in this Special Issue emphasize not only the performance of manufactured components,
but also the efficiency and sustainability of the AM processes in a wide area of metallic
applications. The contributions presented in this Special Issue emphasize a growing shift
towards integrated, intelligent AM ecosystems for metallic applications that are combining
materials science, machine learning, and process engineering. Looking forward, future
research must focus on standardized benchmarking protocols, environmentally conscious
process design, and advanced post-processing strategies that ensure component reliability
in critical AM for metallic applications.

2. Contributions

This Special Issue presents 10 scientific articles that address key challenges in metal
additive manufacturing, including process optimization, material reuse, stress modeling,
surface enhancement, and real-time monitoring, highlighting current trends and future
directions in the field of AM for metallic applications.

The first contribution of this Special Issue is a review article by Capasso, I. et al., which
presents an extensive overview of the additive manufacturing (AM) technologies used
for metallic applications, with a special focus on the field of construction engineering.
The article thoroughly examines the evolution, principles, and classification of various

Metals 2025, 15, 525 https://doi.org/10.3390/met15050525
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AM processes for metallic applications, including powder bed fusion (SLM, EBM), direct
energy deposition (WAAM, LMD), and binder jetting. It highlights the advantages and
limitations of each method in terms of accuracy, surface finish, material compatibility,
and build volume. Particular attention is paid to the process parameters influencing part
quality, post-processing methods, and the challenges related to scale-up, standardization,
and cost. The review also discusses the integration of topology optimization with AM
for metallic applications and the potential for structural repair in civil infrastructure. By
synthesizing a broad range of the current literature, the study provides valuable insights
for both researchers and practitioners, reinforcing the strategic relevance of AM for metallic
applications in the construction sector while outlining critical areas for future development.

The second contribution of this Special Issue is a research article by Zhang, H. et al.,
which presents a machine learning-based framework for optimizing process parameters
in Wire Arc Additive Manufacturing (WAAM), with an emphasis on energy efficiency.
The study employed three machine learning models—Support Vector Regression (SVR),
Backpropagation Neural Network (BPNN), and XGBoost—to predict the wire feed speed
to welding speed (WFS/WS) ratio based on geometric descriptors such as bead width
(BW), height (BH), and cross-sectional area (BCSA), derived from 3D laser scanning and
point cloud analysis. Among these, SVR demonstrated the highest predictive accuracy,
which was further enhanced by using Particle Swarm Optimization (PSO). The optimized
SVR model enabled the reverse prediction of input parameters from target bead shapes,
reducing reliance on empirical trial-and-error. Experimental validations confirmed the
method’s effectiveness, achieving energy consumption reductions of up to 11.47%. This
data-driven approach offers a practical path to process planning in WAAM, combining
geometric fidelity with sustainable operation.

The third contribution of this Special Issue is a research article by Pereira, J.C. et al.,
which investigates the effects of powder reuse on the microstructural and mechanical
integrity of directed energy deposition (DED) components produced with two different
alloys: cobalt-based Stellite® 21 and super duplex stainless steel UNS S32750. The authors
conducted a comprehensive three-cycle reuse study, evaluating powder morphology, oxy-
gen uptake, and particle size evolution, along with the densification, chemical composition,
and defect formation in the resulting bulk materials. The results revealed that Stellite®

21 can be reused up to three times without significant degradation, while the duplex steel
showed marked declines in phase balance, hardness, and porosity control after a single
reuse. Particularly in the super duplex case, the ferrite content dropped from 50.1% to
37.0% due to increased oxidation, causing microstructural instability and pore formation.
These findings emphasize the critical role of alloy selection and controlled reuse strategies
in maintaining material integrity and process efficiency for DED applications.

The fourth contribution of this Special Issue is a research article by Failla, D.P., Jr. et al.,
which investigates the predictive fidelity of material models for estimating residual stresses
in Laser Powder Bed Fusion (L-PBF)-manufactured components using Inconel 718. The
authors compare a standard elastic–perfectly plastic (EPP) model with a more advanced
internal state variable-based model, the Evolving Microstructural Model of Inelasticity
(EMMI), within a sequentially coupled thermo-mechanical finite element analysis. The
L-shaped geometry used in the study, featuring curved edges and holes, was replicated
from a neutron diffraction experiment to validate the simulation results. While both
models captured the general residual stress distributions, EMMI provided more accurate
predictions at critical free surfaces due to its ability to reflect microstructural evolution
under thermal cycling. However, EPP outperformed EMMI in certain regions, highlighting
the influence of material calibration—EMMI was tuned for wrought IN718 rather than
for AM-specific microstructures. This work emphasizes the importance of selecting and
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calibrating material models appropriately for accurate stress prediction in geometrically
complex AM parts made from metallic materials like Inconel 718.

The fifth contribution of this Special Issue is a research article by Horr, A.M., which
presents a novel hybrid modeling framework for the real-time control and digital twin
integration of additive manufacturing (AM) processes for metallic applications, with a
focus on Wire Arc Additive Manufacturing (WAAM). The study combines reduced-order
modeling (ROM) techniques with machine learning (ML) algorithms to create predictive
and corrective tools for process simulation and optimization. Using a case study based
on aluminum WAAM, the author demonstrates how the integration of singular value
decomposition (SVD) and radial basis function (RBF) neural networks enables fast and
accurate temperature predictions with dramatically reduced computational costs—less
than one second per scenario compared to nearly an hour with full-scale finite element (FE)
simulations. The study further evaluates the performance of several modeling methods
(e.g., SVM, kriging, regression, clustering) and concludes that the SVD-RBF hybrid out-
performs others, especially under high heating rate conditions. This research highlights
the significant potential of ROM-ML frameworks to support adaptive, real-time decision-
making in AM environments, promoting smarter, greener, and more agile manufacturing
systems for metallic applications.

The sixth contribution of this Special Issue is a research article by Yang, J. et al., which
presents a comprehensive strategy to reduce thermal residual stress in topologically opti-
mized automotive brake calipers fabricated via Powder Bed Fusion (PBF). Recognizing the
challenges posed by anisotropic thermal accumulation in irregularly shaped metallic AM
parts, the authors proposed an optimized scan strategy using an island pattern with a 5 mm
hatching length combined with vertical build orientation. Comparative experiments on
residual stress and thermal deformation, supported by X-ray measurements and cantilever
testing, showed that the island scan pattern reduced residual stress and deformation by up
to 8.41% and 8.33%, respectively, compared to traditional patterns. The study also included
finite element analysis and topology optimization of a brake caliper made from Ti-6Al-4V,
leading to a 20% weight reduction while maintaining mechanical integrity under hydraulic
pressure. The manufactured caliper was evaluated via a brake dynamometer using the
JASO C406 procedure, demonstrating comparable or superior performance to commer-
cial aluminum alloy counterparts. The findings validate the effectiveness of combining
strategic scan planning with optimized geometry in PBF for automotive light weighting
applications.

The seventh contribution of this Special Issue is a research article by Ibrahim, M. et al.,
which presents a preliminary evaluation of nickel silicide (NiSi12-wt%) laser cladding
for enhancing the corrosion resistance and mechanical performance of S355 structural
steel. Using laser metal deposition (LMD), the authors successfully applied multilayer
cladding onto S355 substrates and subjected the coated and uncoated samples to acceler-
ated corrosion testing in ferric chloride (FeCl3) solution following the ASTM G48 protocol.
Microstructural analysis via Scanning Electron Microscopy (SEM) and Light Optical Mi-
croscopy (LOM) revealed that the cladding formed a dense, dendritic microstructure with
strong metallurgical bonding. The NiSi12-wt% cladding significantly outperformed the
bare steel in terms of corrosion resistance at both room temperature and 50 ◦C, reducing
pit formation and mass loss rates. Micro-hardness tests confirmed a substantial increase in
surface hardness—from 842 HV in the base steel to 1258 HV in the cladded state—being
maintained even after corrosion exposure. The results emphasized the potential of nickel
silicide cladding as a protective surface engineering solution for steels used in aggressive
marine and industrial environments, offering a promising solution for durability and the
lifespan extension of structural components.
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The eighth contribution of this Special Issue is a research article by Santos, L.J.E.B.
et al., which investigates the integration of electric arc signal analysis with microstructural
examination for anomaly detection in walls produced by the Gas Metal Arc (GMA)-based
Wire Arc Additive Manufacturing (WAAM) process. The authors conducted controlled
contamination experiments using sand, chalk, and oil during the deposition of 316L-Si
stainless steel walls, aiming to evaluate how these contaminants affect both arc stability and
material quality. Real-time voltage and current data were collected during deposition and
metallographic samples were analyzed to detect solidification defects and microstructural
irregularities. The study identified strong correlations between arc signal features—such
as peak counts, average values, and signal deviations—and the presence of microscopic
defects in contaminated regions. The findings suggest that arc signal anomalies can serve
as effective indicators of hidden process instabilities, and that these signals could support
the development of real-time monitoring tools or predictive models for defect detection in
WAAM. This work demonstrates the potential of integrated arc–microstructure monitoring
as a non-invasive approach to improve reliability in AM production environments of
metallic applications.

The ninth contribution of this Special Issue is a research article by Liu, J. et al., which
investigated the microstructure and wear resistance of laser-cladded Ni60/60%WC com-
posite coatings applied to 45 steel substrates. The study aimed to fabricate crack-free,
high-hardness coatings with a thickness exceeding 1 mm using optimized laser cladding
parameters. The resulting coatings exhibited a well-bonded microstructure, with a uniform
distribution of WC particles and the formation of hard phases such as W2C, Cr23C6, and
Fe3.57W9.43C3.54. XRD and SEM analyses revealed the layered distribution of these phases
and localized elemental diffusion near WC particles. The coatings achieved an average
micro-hardness of 1416 HV0.2—over five times greater than that of the base steel—and a
friction coefficient reduced by 43.5%. Furthermore, the wear rate was lowered by 79.13%
compared to the uncoated substrate. The wear mechanisms were characterized as predomi-
nantly abrasive, with WC acting both as a reinforcing phase and as a wear debris source
over time. The results validate the effectiveness of using high-WC composite coatings to
significantly enhance surface durability in high-load applications.

The tenth contribution of this Special Issue is a research article by Kunčická, L. et al.,
which investigated the thermomechanical behavior of AISI 316L stainless steel fabricated
via Selective Laser Melting (SLM) under various strain rates and temperatures to deter-
mine the optimal post-processing parameters. The study combines experimental uni-
axial hot compression tests with finite element modeling to assess the deformation re-
sponse and microstructural evolution of AM-prepared 316L steel across four temperatures
(900–1250 ◦C) and four strain rates (0.1–100 s−1). The results show that high strain rates at
900 ◦C significantly increase the micro-hardness (up to 270 HV) and flow stress (~380 MPa)
due to pronounced sub-structural development, while higher temperatures facilitate dy-
namic recrystallization and grain coarsening, reducing the mechanical strength. Finite
Element Method (FEM) simulations, which have been validated through experimental
trends in strain distribution and force predictions, have confirmed that lower temperatures
and higher strain rates are optimal for strengthening via plastic deformation. This work
provides valuable insights for selecting the post-processing conditions that enhance the
performance of AM 316L components for demanding applications.
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Abstract: Additive manufacturing, better known as 3D printing, is an innovative manufacturing
technique which allows the production of parts, with complex and challenging shapes, layer by
layer mainly through melting powder particles (metallic, polymeric, or composite) or extruding
material in the form of wire, depending on the specific technique. Three-dimensional printing
is already widely employed in several sectors, especially aerospace and automotive, although its
large-scale use still requires the gain of know-how and to overcome certain limitations related to the
production process and high costs. In particular, this innovative technology aims to overtake some of
the shortcomings of conventional production methods and to obtain many additional advantages,
such as reduction in material consumption and waste production, high level of customisation and
automation, environmental sustainability, great design freedom, and reduction in stockpiles. This
article aims to give a detailed review of the state of scientific research and progress in the industrial
field of metal additive manufacturing, with a detailed view to its potential use in civil engineering and
construction. After a comprehensive overview of the current most adopted additive manufacturing
techniques, the fundamental printing process parameters to achieve successful results in terms of
quality, precision, and strength are debated. Then, the already existing applications of metal 3D
printing in the field of construction and civil engineering are widely discussed. Moreover, the strategic
potentiality of the use of additive manufacturing both combined with topological optimisation and for
the eventual repair of existing structures is presented. It can be stated that the discussed findings led
us to conclude that the use of metal additive manufacturing in the building sector is very promising
because of the several benefits that this technology is able to offer.

Keywords: metal additive manufacturing; 3D printing process parameters; 3D-printed metals in
construction; topology optimisation in additive manufacturing

1. Introduction

Metal 3D printing is already widely adopted in a variety of engineering fields, includ-
ing biomedical, aerospace, and automotive. However, there are still very few applications
in the fields of structural and construction engineering, despite the numerous benefits
that this technology can offer, such as raw materials and waste savings, ability to produce
complex and optimised shapes and geometries impossible to achieve with conventional
methods, possibility of producing multiple parts in the same batch reducing time to market,
and minimization of warehouse stocks [1].

Large-scale application is not yet possible due to a lack of in-depth knowledge about,
e.g., the mechanical properties of the materials and printed parts, short- and long-term
performance, geometric accuracy and quality, lead times and costs, and a gap in certification
and standards. Safety, cost-effectiveness, and environmental sustainability of metal additive
methods represent other key aspects to be analysed.

Metals 2024, 14, 1033. https://doi.org/10.3390/met14091033 https://www.mdpi.com/journal/metals7
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Despite their wide diffusion in the last decades, the first application of printing
methodologies can be dated back to 1979, when the first patent concerning a technology
ancestor of modern 3D printing (US4247508A) was filed by Ross Housholder [2]. The
patent proposed, for the first time, the creation of objects using the approach of overlapping
consecutive layers, anticipating the methodology typical of the modern three-dimensional
printing process and rapid prototyping (RP) [2]. In fact, RP, which was developed in the
1980s to create models and prototype parts, can be considered the first form of creating a
3D object using computer-aided design (CAD) layer by layer, and the origins of the current
additive manufacturing (AM) processes can be dated back to it [3,4].

The first machines for 3D printing processes appeared in the late 1970s, when Alan
Herbert and Charles Hull in America and Hideo Kodama in Japan developed, at the same
time, a system for selective solidification of a photopolymer, capable of creating an object
by successive layers.

The fundamental historical milestones for the development of 3D printing machines
are listed below and schematically summarized in Figure 1 [5–9]:

Figure 1. Historical evolution of additive manufacturing technology.

1984: Stereolithography (SLA) was invented and patented.
1987: The world’s first 3D printing machine for stereolithography was produced.
1988: Selective laser sintering (SLS) was patented.
1989: The patent for fused deposition modelling (FDM) technique was filed.
1992: Printers for SLS and FDM were developed.
1995: Selective laser melting (SLM) machines were marketed as an alternative tech-

nologies to stereolithography.
1997: Electron beam melting (EBM) was firstly introduced.
2000: A growing number of companies and specialists became interested in the

possibilities and benefits of 3D printing, leading to a considerable development of printers
and technologies.

2011: The world’s first additive manufactured aircraft and prototype car were released.
2020 to date: Worldwide spread of advanced 3D printing techniques due to signif-

icantly reduced printer equipment costs and production times combined with the wide
range of currently available filaments and materials [10,11].

It is possible to identify a general sequence of eight fundamental steps, schematically
summarized in Figure 2 [12], for the production of a component using AM technology from
design to final part, regardless of the additive manufacturing technique selected.

The production of a digital model of the object is the starting point for any AM process.
The digital model can be created through CAD or by 3D scanning of a real object, and its
quality directly affects the final product, so an accurate virtual representation is essential
for a good result. Many parameters must be taken into account, including geometrical
limitations, support material, and escape hole requirements. Once the CAD file is available,
the following step is to convert the file into a printer-readable format. The first step is
to transform the CAD model into an STL (the acronym can stand for stereo lithography
interface format, standard triangle language or standard tessellation language) file, that
describes the surface of an object using triangles, simplifying the CAD model. The STL file
just created is imported into a slicer software, which converts it into a G-Code file. G-Code
is a numerical control programming language to monitor and manage CNC (computer
numerical control) machines and 3D printers [13]. The slicer programme splits the design
into the several layers that will be required to manufacture the object. It defines also the
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building parameters of the 3D printer by specifying the support layout, layer height, and
orientation of the workpiece.

Figure 2. Process sequence for producing an AM component.

At this point, the three-dimensional object is ready to be printed, according to the
specific printing technology selected. When the additive manufacturing process is complete,
there is the stage of supports removal, which for some methods (mainly the polymer-based
ones) consists only of “detaching” the printed part from the building plate, while for some
others can involve high complex processes for extracting the supports from the printed
part [14].

Several post-processes may be necessary at the end of additive manufacturing, and
they mainly concern the improvement of surface characteristics or the modification of the
mechanical properties of the material [15].

With regard to 3D printing techniques, there are many different types of 3D printers
available, with unique features and capabilities that characterise the main additive man-
ufacturing technologies. In 2015, ISO/ASTM Standard 52900 was introduced to define
a technical terminology and to qualify the various 3D printing methods [13,16]. Seven
macro-categories of production processes were established, each of them characterised
by the possibility to use different materials and to obtain different final features of the
printed element [17,18]. The seven macro-categories include vat polymerization, material
extrusion, material jetting, binder jetting, powder bed fusion, sheet lamination and direct
energy deposition. Each of them includes one or more production techniques [16,19].

Additive manufacturing methods can be classified using several criteria [20]. All the
printing processes presented and analysed below are the most widespread in the industry,
even if there are many other techniques that are still in the development phase or have
limited presence on the market [6,7,15,21,22].

Vat polymerisation comprises all resin-based 3D printing techniques, in which a liquid
photopolymer contained in a vat is selectively cured by a heat source, instead of being
injected by a nozzle. The main technologies belonging to this category are stereolithography
(SLA) and digital light processing (DLP) [22].
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SLA was the first 3D printing method to be developed and marketed. This technology
exploits the photo-polymerisation of light-sensitive resins using a low-power laser [3].

The SLA system consists of a vat, containing the liquid resin, and the printing surface
at the base of it (see Figure 3) [23]. The part of liquid hit by the light polymerizes and
solidifies and, when one layer has solidified, the plate is lowered and the process continues
until the part is completed [24]. The laser is moved over the printing area by a system of
mirrors controlled by galvanometers.

Figure 3. Schematic representations of different types of printers: (a) SLA printer; (b) FDM printer;
(c) MJ printer; (d) SLS printer.

Three-dimensional printing technology based on material extrusion uses a continuous
filament of thermoplastic polymer as starting material, which acts as a tool for rapid and
cost-effective prototyping.

The most widespread material extrusion method is the fused filament fabrication
(FFF), more commonly known as fused deposition modelling, a term coined in the late
1980s and registered in 1990 by the company Stratasys [22,25].

FDM is a process based on the extrusion of remelted material to generate the sub-
sequent layers of the three-dimensional object [22,26]. The materials used in this type of
technology are mainly polymers, but there are also some variants that use other materials
such as ceramic pastes. The polymers are supplied as wire spools, continuously bringing
material to the extruder (moved by computer control), which allows the extrusion of fila-
ments through the nozzle, heating the material to melting. The nozzle moves according
to the layout of the final object to be produced, releasing melted material that cools and
solidifies generating each layer. After finishing a layer, the build plate is lowered and the
process is continued layer by layer until the 3D part is built [27,28].

The 3D printing production technique of material jetting (MJ) is often compared to the
2D inkjet process that print ink on paper.
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Using photopolymers, metals, or wax that solidify when exposed to light or heat
(similar to stereolithography), MJ releases material in the form of very small droplets
from hundreds of small nozzles in the printhead to build the part layer by layer. When
the drops are deposited on the building platform, they are directly polymerised and so-
lidified using UV light [29]. After a layer is produced, the printing platform is lowered
by one layer of thickness and the process is repeated until the three-dimensional part is
built [22]. MJ processes require support structures, which are often 3D-printed simul-
taneously during construction from a dissolvable material and then removed during
post-processing. This manufacturing process allows different materials to be 3D-printed
within the same component.

MJ is one of the most refined additive manufacturing techniques, which allows the
production of very smooth surfaces and printed objects with layer thicknesses of about
16 microns [28]. Moreover, it is considered the most precise method of 3D printing because
deformation and shrinkage are rare due to the absence of heat treatments during the
manufacturing process.

The most popular techniques are material jetting (MJ) and drop on demand (DOD) [25].
Among the powder bed fusion technologies, the technique most commonly used

is SLS, which produces parts starting from polymeric powders [30]. The process begins
heating the container of polymer powder to a temperature just below the melting point
of the material, to minimise both the energy required by the laser and the effects of phase
change. The recoater then deposits a layer of powder on the building plate and the laser
beam, moving through a system of mirrors, begins to scan the working surface according
to the shape of the section, resulting in the solidification of a cross-section of the object
through selective sintering. Following the completion of a layer, the printing platform
lowers to allow the deposition of a new layer of powder and the sintering of the next
section. In this way, the process is repeated until the workpiece is finished [31]. In order
to ensure better bonding between the layers, an initial heating of the powder takes place
before the exposure to laser sintering. In SLS machines, 50% of the non-sintered powder
can be recovered and reused.

Figure 3 shows the schematic representation of the production process of the above-
mentioned non-metallic additive manufacturing methods.

After describing non-metallic additive manufacturing methods, Figure 4 gives an
overview of metallic 3D printing techniques, which will be discussed in detail in the
following sections.

Figure 4. Overview of the metal AM methods.

It is important to emphasise, however, that 3D printing in the civil engineering and
construction sector is revolutionizing the way buildings are designed and built [32]. By
using additive manufacturing techniques, architects and engineers can create complex and
customized structures with greater efficiency [33]. Common methods include extrusion-
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based 3D printing, where material is deposited layer by layer, and binder jetting, which
uses a binder to solidify powdered materials. A wide range of materials can be used,
including concrete, mortar, and even specialized geopolymers [34]. Applications span from
small-scale components like architectural models to full-scale buildings and infrastructure
projects. For instance, 3D-printed houses have been constructed in various parts of the
world, demonstrating the potential of this technology to address housing shortages and
create sustainable communities [35].

In this paper, several of the abovementioned challenges will be investigated, with
a specific focus on metal 3d printing methods and more in detail on selective laser melt-
ing (SLM).

In particular, a detailed overview of metal additive manufacturing technologies is
given in Section 2, focusing on a description of the currently most widely used processes, es-
pecially in the construction engineering sector. Then, the main process parameters inherent
to metal 3D printing methods are discussed in Section 3. Real examples of metal 3D printing
in the construction sector and the potential of metal additive technologies, with a focus on
topological optimisation procedures, are presented, respectively, in Sections 4 and 5.

The aim of this review paper was to collect together the works related to 3D printing
in order to provide readers, both experts and nonexperts, with a comprehensive overview,
divided by topic, that is able to offer a complete knowledge on the topic of metal additive
manufacturing. Of course, the results of the cited studies are also discussed in a general
approach, as they are not the results of the authors’ own research.

2. Metal Additive Manufacturing Technologies

This section will discuss more in detail the metal 3D printing technologies, with a
special focus on selective laser melting.

Powder bed fusion (PBF) 3D printing technologies result in geometrically complex
products with an excellent level of precision, using a heat source to melt the powder
particles layer by layer, producing a solid part. The main difference between the various
processes, lies in the use of different energy sources, mainly laser or electron beams [36].

Within this category, the most popular methods are selective laser melting (SLM) and
electron beam melting (EBM) [7].

The selective laser melting process is very similar to SLS, but it is used for metal parts
fabrication. The range of metals available includes aluminium alloys, steel, titanium, cobalt,
chrome, and nickel [37].

An alternative method to SLM is direct metal laser sintering (DMLS), which sinters
metal powders instead of completely melting them. This method is limited to metal alloys
only and cannot be used for pure metals [38].

SLM involves the complete melting of metal powder, layer after layer, within an inert
environment. This process produces a much more compact and homogenous element than
sintering. A high-power laser beam melts the deposited powder layer according to the
desired geometry. Once a layer is completed, new powder is deposited and the process
continues until the 3D part is created [37,39].

Support structures are essential to limit the effects of possible distortions and the
occurrence of warping and buckling caused by residual stresses developed because of the
high operating temperatures. In addition, supports are required to allow the printing of
projecting parts and to dissipate heat.

The performance of SLM technology printers is strongly influenced by a wide number
of factors, which must be considered during production [40]. Specifically, the quality of the
finished part depends on the diameter of the laser beam, the geometry of the particles, and
the thickness of the layers. For these reasons, SLM printers need to be properly configured,
as they need severe operating, calibration, material management, post-processing, and
maintenance protocols. These specifications result in the demand for highly qualified
operators [41].

12



Metals 2024, 14, 1033

The quality of the surfaces largely depends on the orientation of the part; in fact, the
upper surfaces have a better quality than the lower ones, which are directly in contact with
the printing plate. Anyway, without any surface treatment, a “stepped” appearance due to
overlapping layers is always observable, even in components produced with SLM where
the quality is very high, as can be seen in Figure 5.

 

Figure 5. Specimen manufactured with SLM, in which the stepped surface due to the different
overlapping layers is visible (layer thickness: 50 microns).

Despite the considerable thermal gradients due to the high temperatures developed
during printing, which generate residual stresses in the parts, the dimensional accuracy
achieved is still high.

After the printing of the part, there are several post-processing possibilities. Among
them, there are the removal of supports and residual powder from the build chamber
and heat treatments. The supports, which increase the cost of the component, require
mechanical removal, and the contact surfaces need treatment with files or grinders to
smooth out imperfections (see Figure 6). Heat treatments are essential to relax internal
stresses developed during production or to modify specific mechanical characteristics.
Some heat treatments are useful to change the microscopic structure [40].

Figure 6. The supports in SLM: (a) The printed component on the construction plate with its supports.
(b) Detail of the supports at the bottom of the component. (c) Defects due to nonperfect removal of
supports. Reprinted with permission from refs. [42,43]. Copyright 2023 Elsevier Ltd.
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In addition, further post treatments can be applied to upgrade the surface finish,
including machining, media blasting, polishing, and micromachining. Finally, metal
plating can be applied to enhance part performance (corrosion, strength, and hardness).

The main applications of SLM involve the production of parts where high accuracy
and high customisation are required. SLM is widely employed in the medical and dental
industry, as well as in the aerospace and automotive sectors [44]. A schematic representation
of the SLM process is shown in Figure 7.

 
Figure 7. Schematic representation of an SLM printer.

The operating principle of the electron beam melting is similar to that of SLM. In fact,
EBM is based on the fusion of powder metallic material by means of an electron beam
instead of a laser beam. The electron beam scans a layer of powder, producing local melting
and solidification of a cross-section of the workpiece. Compared to the other powder bed
fusion methods, EBM can guarantee a higher building rate due to the higher energy density
involved. In addition, the minimum elements and particles sizes, the layer thickness, and
the surface finish quality are usually better. Most of the specifications of the SLM method
are equally valid for EBM [44,45]. For the operating scheme, please also refer to Figure 7,
which is indicative of the SLM technique.

Binder jetting (BJ) can be considered as a merger of SLS and MJ as it involves powdered
material and a nozzle that deposits a binding agent to produce three-dimensional objects.
The BJ process operates with metals but also with other materials, including sands and
ceramics [46].

This technology uses nozzles, moving over the building plate, which deposit drops
(approximately 80 μm of diameter) of a binding agent in liquid form on top of the pre-
deposited thin layer of powder. In this way, the powder particles are bonded together to
obtain every layer of the part [47]. When the layer is complete, the powder bed moves
downwards and a new layer of powder is placed on top of the one already formed to restart
the process. The process is repeated until the whole workpiece is completed [48,49]. After
printing, the part remains in the powder to cure and strengthen. Then, the component is
cleared from the powder bed and the unbound excess powder is removed with compressed
air. In BJ, 100% of the unbonded powder can be reused. After printing, parts are in a
“green”, or unfinished, state with weak mechanical properties and may require two further
post-processing sessions before they are ready for use [48].

The printed parts must then be placed in a furnace where the binder is burnt out,
creating voids in the piece. Subsequently, the voids are filled by capillary effect with bronze,
producing parts with both high density and good strength. The last step consists of sintering
in an oven until a high density is reached [50,51]. However, the mechanical performance
offered by metal parts produced with powder bed fusion cannot be achieved [44]. The
main post processes consist of the elimination of excess powder from the workpiece. Metal
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components can be post-processed in the same way as traditionally produced metals, and
heat treatments can be applied to improve mechanical properties. The secondary processes
of infiltration and sintering enable the manufacturing of functional metal parts, thanks to
the wide variety of materials available and the potential to design challenging geometries
that are extremely expensive and difficult to produce conventionally [25].

The quality of the final product is mainly affected by the thickness of the layers, the
size of the droplets dispensed, and the size and geometry of the powder particles. As with
SLS, BJ binder jetting does not require support structures, because the part is sustained
during printing by the surrounding powder. This helps to save both time needed for
post-processing and material waste [50]. Unlike SLS, however, the parts are manufactured
in the absence of heat, which reduces the problems related to temperature differences that
can cause distortions and deformations. Shrinkage may only occur during the sintering
phase [49].

The limited cost and production rate make BJ ideal for the development of casting
models that would be hard to achieve with traditional methods. The principles of the
binder jetting BJ printing process can be seen in Figure 8.

Figure 8. Schematic representation of a BJ printer.

Sheet lamination (SL) and direct energy deposition (DED) are reported in order to
provide a complete overview of additive manufacturing methods, even if they are methods
not widely adopted yet and of minor relevance to the 3D printing industry [19].

The SL manufacturing technique, also known as laminated object manufacturing
(LOM), is based on the deposition of sheets of solid-state material, mainly aluminium foil,
supplied in the form of rollers, which are bonded to each other. They are then cut by a laser
to fit the cross-section of the object and form the object layer after layer. This technique
allows one to obtain very small thicknesses for each individual layer, thus increasing the
resolution of the final product. The most commonly used material is paper sheets with a
thermoplastic coating on one of the two sides [21,52].

Laminated objects are frequently employed for both aesthetic and visual purposes
and are not intended for structural application [21,52].

DED printing technology creates parts by directly melting materials and depositing
them on the part, layer by layer. The operating principle is that of metal welding, so any
material that can be welded could be employed. This additive manufacturing technique
is mostly used with metal powders or wire source materials. In addition to the ability
to build parts from scratch, DED is also capable of repairing complex damaged parts,
such as turbine blades or propellers. The term direct energy deposition can cover several
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technologies which can be categorized according to the way the material is fused. The most
popular are laser engineering net shaping (LENS), laser metal deposition (LMD), and wire
and arc additive manufacturing (WAAM) [21,22].

Among these, the most widely adopted technique is WAAM, in which most printers
are very large industrial machines that require a closed, controlled environment to operate.
The typical WAAM equipment consists of a nozzle mounted on a multiaxis arm (theo-
retically without size limits) within a closed frame, which deposits the molten material
onto the surface of the part, where it solidifies [53]. The process is similar in principle to
the material extrusion printing technique, but with DED, a nozzle can move in multiple
directions, with up to five different axes compared to only three on most FDM printers [54].

LENS is a type of additive manufacturing process specifically designed for metals. It
is a highly precise and versatile technique in which a fine metal powder is continuously fed
into the build chamber and a high-power laser beam is focused onto the powder bed. The
laser beam melts the powder, creating a small molten pool, and a nozzle directs a stream of
inert gas onto the molten pool, preventing oxidation and promoting rapid solidification. As
the building platform moves, the laser beam melts the next layer of powder, fusing it to the
previous one. As with other 3D printing technologies, this process is repeated layer by layer
until the entire 3D part is built [55]. Briefly, the key advantages of LENS are the possibility
to produce parts with very fine feature sizes and excellent mechanical properties, such as
high strength and durability. Also, a wide range of metals can be processed using LENS,
including titanium, stainless steel, and nickel alloys. However, it must be considered that
there may be some drawbacks, such as the need for post-processing, poor surface finish of
the components, and distortion of the components due to residual stresses [48].

LMD is an additive manufacturing process, closely related to LENS, that utilizes a
high-power laser to melt and deposit a metal wire onto a substrate, for the creation of
complex metal components layer by layer. Unlike LENS, which uses metal powder, LMD
employs a continuous metal wire as its source material, with a high-power laser beam
focused on the metal wire. The laser melts the wire, creating a molten droplet that is
deposited on the surface. The molten droplet quickly solidifies, bonding to the previous
layer. The metal wire and laser beam move in a coordinated way to create the desired
component shape. Moreover, a broad range of metal materials can be used, both in wire
and powder form [56].

LMD typically offers a faster deposition rate compared to LENS, making it suitable
for producing larger components, and the surface finish of components produced with
LMD is generally smoother than those produced with LENS. In summary, LMD is another
powerful additive manufacturing technique for metals, offering specific advantages in
terms of deposition rate and surface finish [57,58].

A little-known variant of the LMD is the shaped metal deposition (SMD) method. It
differs from LMD only in the use of a metal wire of circular or profiled cross-section as the
base material. In addition, it offers a higher deposition rate and better component surface
quality than LMD [59,60].

2.1. Materials

When selecting a metal for 3D printing, it is crucial to consider a number of interrelated
factors, including the physical and mechanical properties of the material, the peculiarities
of the AM process, the final application, and the cost of the material, which is an important
economic factor, especially for mass production [61].

Among the material characteristics, it is important to consider:

- The mechanical strength, as yield stress, ductility, wear, and fatigue resistance are key
properties in determining whether the metal can withstand the expected stresses.

- The density of the material, which affects the weight of the finished component and
can be a critical factor in many applications.
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- Thermal and electrical conductivity, important properties for electronic and thermal
applications.

- Corrosion resistance, since if the component will be exposed to corrosive environments,
a resistant metal must be chosen.

- The microstructure of the 3D-printed metal, considering its features, imperfections,
and defects, which can influence the properties of the finished part.

- Biocompatibility, since, for example, for medical applications, the material must be
biocompatible and nontoxic.

As far as the 3D printing process is concerned, it is important to consider compatibility
with the technology, as not all metals are suitable for all metal 3D printing technologies,
layer thickness, which affects the resolution and surface quality of the component, and the
melting speed of the metal, which affects the printing rate and quality of the component.

Then another important aspect is the final application. Assessments must be made
on the type of load the component will have to withstand during its life, the environment
in which the component will be used, and aesthetic requirements, as surface finish and
appearance are important in some areas of application. It must also be considered that
specific certifications and compliance with particular standards are required in certain
sectors or for certain applications.

There are also other factors that must be taken into account, including material avail-
ability, as not all metals are readily available in powder or wire form for 3D printing, and
the type and cost of post-processing, as some metals require post-print heat or surface
treatment. Finally, the environmental impact of the production process and material use
must be considered, as this is an increasingly important factor nowadays [62].

In light of these general remarks, the most commonly used metals in 3D printing
are stainless steels, due to their high corrosion resistance and good mechanical strength;
titanium, because of its high specific strength, biocompatibility, and corrosion resistance;
aluminium for its lightness and good thermal and electrical conductivity; nickel, due to its
high strength and good corrosion resistance; and cobalt-based alloys because of their high
resistance to high temperatures [61].

The world of metallic 3D printing is continuously growing, and with it, also the range
of metallic materials used. Therefore, in addition to the traditional materials, innovative
materials are becoming increasingly attractive and popular. Nickel-based superalloys offer
excellent resistance to high temperatures and corrosion, making them ideal for aerospace
applications, gas turbines, and engine components [63,64]. One of the most widely adopted
is Inconel [65], which is known for its resistance to fatigue and oxidation; it is used in sectors
such as aerospace and automotive. Aluminium alloys include high-strength aluminium,
which offers an excellent strength-to-weight ratio, making them ideal for lightweight
structural components in sectors such as automotive and aerospace [66,67]. Then there are
shape memory alloys (SMAs), among them Nitinol, which are able to change their shape in
response to thermal or mechanical inputs, finding applications in sensors, actuators, and
medical devices, and conductive metals such as copper, silver, and gold, which are used to
create electronic circuits and sensors directly through 3D printing [68–70]. Finally, there
would be high-entropy alloys (HEAs), the use of which in additive manufacturing, despite
their potential, still presents some challenges related to cost, optimisation of printing
parameters, and characterisation of the materials themselves [71,72].

2.2. Overview Remarks

In order to compare the operating principles and the production features of the
different metal printing techniques, the benefits and drawbacks of the main AM methods
(SLM, BJ, and WAAM), widely examined in the previous section, are summarized in Table 1.
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Table 1. Main advantages and disadvantages of the different AM methods.

3D Printing Technique Advantages Disadvantages

SLM-EBM-DMLS

• Production of complex parts with high
level of customization

• Production of geometries impossible to
achieve with traditional methods

• Very high costs of materials and printers
• Build size
• No large-scale production
• High degree of expertise of operators

BJ

• Absence of residual stresses
• Low operating costs
• Ability to print large parts
• Inexpensive binder agents
• Cheaper than PBF methods

• Costs of metal powder
• Poor mechanical properties
• Secondary process always required for

functional parts
• Grainy surface finish

WAAM

• Possibility to print large size components
• Wide range of materials
• Design flexibility
• Stand-alone or integrated solution

• Wide tolerances and low accuracy
• Surface roughness
• Requirement of skilled operators

In terms of surface finish and level of accuracy, it emerges that, among the printing
methods analysed, good results can be obtained through SLM, allowing the production
of smooth surfaces. Surface roughness is a key parameter in assessing the quality of a
3D-printed component, as it affects aspects such as aesthetics, functionality, and corrosion
resistance. The average roughness range can vary significantly depending on the metal
3D printing technology used. SLM generally offers a lower surface roughness than EBM
and WAAM due to the use of a focused laser that precisely fuses the metal powders [73].
However, the roughness can vary significantly depending on the process parameters. For
EBM, the surface roughness is slightly higher than for SLM, mainly due to the higher heat
diffusion of the electron beam [74]. Finally, the surface roughness of WAAM is typically
the highest of the three technologies, due to the nature of the deposition process and the
larger size of the traces left by the wire [75]. However, there are some factors influencing
roughness. These include process parameters, such as laser power/electron beam, scanning
speed, layer thickness, and scanning pattern; material properties, such as the fluidity of
the molten metal; and post-processing, as treatments such as sandblasting or sanding can
significantly reduce roughness. The average roughness of parts produced with metal BJ
technology is a parameter that depends on several factors and can vary significantly from
one component to another. Roughness is highly dependent on the particle size of the metal
powder and the density of the binder, as the metal powder particles are joined by a liquid
binder, forming a porous structure that requires a subsequent sintering process to achieve
the desired density. Therefore, it is hard to give a precise range for the average roughness of
metal BJ-printed parts, as it depends on the factors mentioned above. However, in general,
it can be stated that the average roughness of parts produced with metal BJ is usually
higher than that achievable with technologies such as SLM or EBM [76].

In terms of mechanical properties, the only processes capable of assuring good perfor-
mances are the powder bed fusion methods, i.e., SLM. However, the great disadvantage of
these technologies is the high costs of machines and materials, as well as the need for highly
specialised operators. The WAAM method, which can produce very large components, can
also provide excellent mechanical strength, but at the cost of poor quality. Also, BJ is a very
expensive method due to the elevated costs of raw materials. The widest variety of materi-
als is available for SLM for metallic materials, although the WAAM method can ideally use
any metal suitable for welding. Finally, considering that the size of the workpieces that can
be printed is one of the most limiting factors for large-scale use of additive manufacturing,
the only method that allows the production of larger parts are BJ and WAAM.
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Furthermore, a comparison of the specifications of the main metal additive tech-
nologies under investigation is shown in Table 2. It displays the main characteristics in
terms of operating principles, energy source employed, available materials, print sizes,
resolution, and layer thickness, and fields of application of the most important additive
technologies reviewed.

Table 2. Comparison of the features of the main 3D printing methods.

Solid Based Powder Based

Technology WAAM SLM-DMLS EBM BJ

Working Principles
Material extrusion +

welding Melting Melting Binding

Source Electric arc Laser beam Electron beam Bonding agent

Material Group Metal wires Metal powders Metal powders Metal powders

Main
Available Materials

Titanium
Steel

Nickel
Aluminium

(or any weldable metal)

Stainless steel
Aluminium alloys

Titanium alloys
Nickel alloys

Stainless steel
Titanium alloys

Nickel alloys
Cobalt chrome

Stainless steel
Bronze

Supports Requirement No Yes Yes No

Build Volume
Unlimited build

volume

From 100 × 100 ×
100 mm3 (small sizes)

to
800 × 500 × 400 mm3

(large sizes)

350 × 350 × 450 mm3 Up to 800 × 500 ×
400 mm3

Resolution 1 mm 0.1 mm 0.1 mm 0.2 mm

Roughness 50–250 μm 10–50 μm 15–75 μm variable

Layer Thickness min 1–2 mm 30–50 μm 30–50 μm 100 μm

Applications

Aerospace, energy
sector, research and

development, cladding
and repair components

Medical and dental industry, aerospace and
automotive sectors

Realistic models,
coloured components,
casting models with

complex shapes

From Table 2, it is possible to deduce that there is a further criterion to classify the
printing techniques, the physical state of the raw materials, so there are three categories,
namely, solid-, liquid-, and powder-based. Metal 3D printing techniques all involve
material in powder form. The powder-based methods are SLM, EBM, and BJ. The only
solid-based process is the WAAM, which involves the deposition layer after layer of metallic
wires in the form of weld bead combined with an electric arc used as the heat source, for
the production of components that do not demand any particular aesthetic properties. Wire
and arc additive manufacturing, as we will discuss in Section 4, is the most widely diffused
technology in the field of construction engineering due to the possibility of producing large
elements with excellent mechanical properties.

In addition to Tables 1 and 2, all the characteristics discussed in this section are
graphically summarised in Figure 9.
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Figure 9. Graphical outline of the main features of metal 3D printing methods.

2.3. Features of 3D Printing Methods

Figure 10 aims to provide a useful tool to select the most adequate technique, according
to the requirements for a particular application, classifying the additive technologies as a
function of several parameters, such as the target performance, the raw materials employed,
the specific production process, and the visual appearance of the final product. An overview
of all additive technologies is given, with a focus on metal-based methods.

The selection of the production process may be influenced by the processing principles
or the energy source involved. However, the different technologies have already been
extensively discussed in the previous sections.

Considering the raw materials, the possible options may be polymers, metals, or, more
rarely, sands. Polymers can be found in the form of filaments, as with FDM, powder, as
with SLS, or resin, as with SLA and MJ. Metals can be found in the form of powder, as
in the case of SLM, BJ, LMD, and LENS, or wire, as in the case of WAAM [19]. The only
method that allows the manufacture of materials different from polymers and metals is BJ,
which also allows the 3D printing of sand and silica [21].

Moreover, if the final performance is the main goal of the specific application, it is
worth noting that if precision of the shape and a high level of detail are demanded, SLA
for polymer-based methods, and MJ and SLM for metal-based technologies, have to be
selected. If, on the other hand, no special features in terms of accuracy are required, metallic
technologies should not be considered, except for WAAM, where mechanical performance
is not matched by adequate performance in terms of detail precision, and, together with SLS
and FDM, could be a proper choice. SLM and WAAM are the only appropriate techniques
if excellent mechanical behaviour is desired, even if good strength can be also guaranteed
by SLA and SLS printed components, always bearing in mind, however, that this involves
plastic materials. If mechanical performance is the main target, in fact, FDM, MJ, and BJ
should not be taken into account [6]. With regard to the size limits of printable objects, only
the WAAM allows for no constraints, as there are no build chambers, but only robotic arms
with potentially any dimension required for the purpose.
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Figure 10. Outline of additive technologies according to different parameters.

Finally, referring to more specific features, products deriving from SLS and SLM are
considered chemically stable, parts from FDM as fire-retardant, and components from SLS,
SLM, WAAM, and SLA as resistant to high temperatures.

It can, therefore, be summarised that in terms of mechanical and structural per-
formance, and of accuracy and precision in finishing, metal 3D printing methods
are unrivalled.

The last parameter that can be analysed is the visual appearance of the printed product.
Considering only plastic materials, smooth or transparent parts can be obtained, with
textured or coloured effects and, depending on whether the marks left by the supports
removal on the surface are acceptable or not, SLA or MJ can be selected, respectively. If
components with a texture similar to other materials are desired, FDM results as the best
choice. A rubber-like finish is offered by MJ products. Finally, if fully coloured parts are
required, MJ and BJ are the leading techniques [15].

3. Printing Process Parameters for Metal AM

The quality of the printed part, both from the surface finish and mechanical points
of view, can depend on several factors, known as process parameters. The presence of a
very large number of process parameters in AM technologies makes it very complex to
find the perfect combination to obtain the optimal result. In fact, specific properties can
be achieved by proper modifications of these parameters, which can be printer-related
or raw-material-related, and they can introduce changes in microstructure, porosity, and
mechanical features. Some process parameters are manageable by the operator, while
others are predefined by the printer manufacturer or powder supplier but, in general,
they mainly concern the laser beam, the scanning process, the feedstock in powder form,
and the operating temperature, as illustrated in Figure 11. Figure 10 shows the process

21



Metals 2024, 14, 1033

parameters of the PBF methods, the focus of this review, which are discussed in detail in
the following sections.

Figure 11. The main process parameters involved in AM processes.

In addition, there are different directions and orientations that can be adopted dur-
ing the printing process, and they can affect the mechanical behaviour of the printed
part, due to the anisotropy generated by the additive manufacturing process. All the
parameters involved in the printing process contribute to define the so-called “scanning
strategy” [77,78].

As far as the WAAM method is concerned, the main process parameters to be consid-
ered for a successful result are current, arc voltage, and welding speed as far as the welding
process is involved, and deposition rate and wire feed rate as far as the material side is
considered [79].

3.1. Laser-Related Parameters

The main parameters related to the laser beam are the output power, the diameter of
the laser spot, the duration of the laser pulse, and its frequency. More specifically, the power
of the laser (see Figure 12) represents the power of the beam directed onto the powder bed
required to melt it to obtain the desired geometry. It indicates the amount of energy per
unit of time and it is, therefore, essential to set the correct speed value in order to assess
the amount of energy affecting a certain area. Thus, a right power value must always be
coupled with a proper scanning speed [80], which depends on the type of printer. It is
worth noting that, when setting the laser power, it should also be taken into consideration
that insufficient power does not ensure the proper heating and fusion of the powder bed,
resulting in a failed remelting of the previous layer and, consequently, in a nonadhesion
of the layers. In addition, higher power increases the degree of particle fusion, reducing
porosity [81,82]. The laser power contributes, together with the spot diameter, scanning
speed and distance between scan track spacing to define the laser energy [83].
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Figure 12. The printing process parameters.

As 3D printers produce parts in three dimensions, it is necessary to consider the
minimum element size of the XY-plane and the Z-axis resolution. The reason for the best
printing quality lies in the resolution of the XY plane, which is defined by the diameter of
the laser beam. The smaller the diameter, the greater the reproducible detail and accuracy.

The laser spot size contributes (see Figure 12), together with the thickness of the layers,
to define the resolution of the printed part. When the laser beam hits the construction
platform, it projects a surface, called a spot, where the powder melting phenomena occur.
The geometric shape is idealised as a perfect circle, although in practice it turns out to be an
ellipse of varying size. In fact, during the printing process, the angle of incidence between
the laser beam and the surface of the powder bed changes continuously. More generally,
it is possible to state that larger spot sizes ensure higher build speeds but result in lower
accuracy and dimensional tolerance of the components produced [78].

Finally, the duration and frequency of the laser pulse are quantities that contribute to
define the laser output energy.

3.2. Scan-Related Parameters

The parameters related to the scanning process of the single two-dimensional ele-
ment layer are scanning speed, scanning time, hatch distance, and scanning pattern (see
Figure 12).

The scanning speed expresses the speed of the laser beam movement and it changes
depending on the material used. It is an important factor as it influences the heating and
cooling rate of each layer and, consequently, the microstructure of the printed product [80].

The scanning time defines the minimum time for scanning a single layer, measured
in seconds. When the scanning of the desired geometry is completed earlier, the machine
waits for the set time to produce the next layer. It can significantly influence the mechanical
properties as it represents the time to ensure cooling of the layer manufactured.

The hatch distance, also called hatch spacing or scan spacing, is the distance between
two consecutive passes of the laser beam (see Figure 12). It is also known as infill percentage,
as it represents the scan density of the geometry to be produced. It is a parameter directly
proportional to the production rate. Obviously, the shorter the hatch distance, the higher
the level of detail and the time required to build the component. On the contrary, if the
scan tracks are too far apart, the powder between them will not be melted and, at the end
of the process, high-porosity zones will result due to lack of fusion. Bremen et al. [84] and
Sefene et al. [78] highlighted that the hatch distance is defined by the diameter of the laser
and proposed an optimal hatch spacing value of 70% of the diameter.
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Finally, the scanning pattern defines the path where the laser selectively fuses the
section on the powder bed and plays a significant role in limiting the presence of defects [78].
The selection of the appropriate scanning pattern influences not only the final density of
the parts, but also the residual stresses occurring [77,85,86]. There are three main possible
configurations of scanning patterns, namely, stripes, chessboard or islands, as illustrated
in Figure 13. In the stripe pattern (Figure 13a), the laser builds the product by scanning
the geometry through horizontal or vertical bands, progressively fused. The chessboard
pattern (Figure 13b) divides the geometry into a series of squares and the white squares
are printed first and then the black ones, as in the scheme of a chessboard. Finally, the
island pattern (Figure 13c) is a random form of chessboard pattern, in which each square
is printed randomly over the whole level, without any particular sequence, until there
is no more not-melted powder remaining. Miao et al. [87] and Sefene et al. [78] showed
that the use of the chessboard pattern, compared to the striped pattern, develops lower
thermal gradients and reduces the number of defects and amount of surface roughness.
Zai et al. [77] confirmed that the scanning pattern can change the thermal history of each
layer, also modifying its porosity and microstructure.

   
(a) (b) (c) 

Figure 13. The three most widely used scanning patterns: (a) stripes, (b) chessboard, (c) islands.

3.3. Powder-Related Parameters

The parameters concerning the characteristics of the powder are the size and shape
of the particles, the powder bed density, and the thickness of the layers. The particle
size represents the size of a single grain of metal powder (in the range of microns), while
the shape represents the final shape of the single grain as a function of the production
technique of the metal powder (most of the powders used in the SLM process are mainly
obtained from gas or water atomisation methods) [88]. It is important to bear in mind that
powders produced by gas atomisation have a higher sphericity. Both size and shape are
considered two key material properties and depend on the nature of the metal alloy. In
fact, smaller particles perform better from the point of view of microstructure compactness
but are prone to have a low flowability; thus, the deposition of a homogenous layer is
harder. Granulometry and morphology of the particles affect the density of the powder
bed, which represents the packing density of the individual layer [81,89–91]. Furthermore,
these characteristics have a significant influence on the final component density, on the
mechanical properties, on the microstructure, and on the surface roughness [78,92,93].

Finally, the layer thickness (Figure 12) represents the thickness of the individual layer
deposited in the z-direction, which can strongly influence the quality and accuracy of
the printed part. Optimal and recommended values are provided by the metal powder
manufacturers. Lower thicknesses guarantee better part quality, but at a lower production
speed. Furthermore, layer thickness has an effect on the mechanical properties of additively
manufactured components [94].
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3.4. Temperature-Related Parameters

The temperature-related parameters include the temperature of the powder bed and
the temperature of the feeding system. The temperature of the powder bed is a function of
the temperature of the building plate, which can vary from room temperature up to 200 ◦C,
to reduce the thermal gradient as much as possible in the post-melting cooling phase; while
the build chamber temperature can reach very high values depending on the material,
the final intended application of the printed component, and the type of printer. Indeed,
the high temperature gradients that can develop during the SLM process can lead to high
levels of residual stress within the additively manufactured metal structure [86]. For this
reason, the temperature within the feeder can also be modified to preheat the powder [95].

3.5. Printing Directions and Orientations

One of the most important aspects to consider in the 3D printing process, often
underestimated by designers, is the orientation of the printing parts (or build orientation).
The way the components are positioned on the build plate, in fact, plays a significant role
in achieving the desired final quality. Part orientation can affect accuracy, production time,
strength, and even surface finish [96,97].

To comprehend how part orientation impacts the accuracy of 3D-printed parts, a
hollow cylinder is examined (see Figure 14). Figure 14 shows the example of a part
produced using FDM, as the layers are thicker and the critical aspects are more visible.
When the workpiece is oriented in the vertical direction, the final cylinder will have a fairly
smooth external surface as the part will consist of a series of overlapping concentric circles.
If the cylinder is oriented horizontally, the part will be built from a series of overlapping
rectangles (of slightly different widths) and the surface of the cylinder that contacts the
build platform will be flat. Therefore, it is evident how different production directions lead
to significant differences in quality of printed products.

 
Figure 14. Two identical pieces printed in vertical (left) and horizontal (right) direction. Reprinted
from ref. [98].

Building direction can also impact strongly on production speed, in particular in case
of parts of large dimensions. The horizontally printed components usually require shorter
printing time than those produced vertically, as the number of layers is reduced [78,95].

Several studies demonstrated the anisotropy of elements produced through 3D print-
ing in terms of mechanical strengths. In fact, as highlighted in Figure 15, parts are usually
stronger in the XY-direction than in the Z-direction, due to the production process of adding
layers, resulting as being much more vulnerable to loads applied perpendicularly to the
production direction than to the longitudinal. Therefore, for functional parts, it is important
to consider the application and direction of the loads [25].
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(a) (b) 

Figure 15. Effects of a tensile load applied in the perpendicular (a) and parallel direction of layer
deposition (b).

Figure 16 shows the most commonly applied printing directions, namely, a vertical
layout with the longitudinal axis perpendicular to the construction plane, and two hori-
zontal layouts with the longitudinal axis parallel to the building plane, flat (xy) and on
edge (xz).

Figure 16. The main printing directions and orientations of the parts: (a) vertical, (b) horizontal flat,
(c) horizontal on edge.

The orientation of the parts affects the thermal history, as it influences the final mi-
crostructure and, consequently, the mechanical behaviour [77,99].

3.6. Effects of Process Parameters on the Properties of 3D-Printed Metals

There are a number of studies in the literature that have examined the effects of
the printing process parameters on the mechanical performance of different metal alloys
produced with SLM. Among the most frequently investigated parameters, there are print-
ing direction and orientation [43,100,101], scanning time [42], layer thickness [102], and
scanning strategy [82,103,104].

However, there are still some aspects that need to be further explored in order to
have a complete knowledge of additively manufactured metals, especially if the material is
intended for structural purposes. Among these aspects is certainly the sensitivity of the
material to certain ranges of strain rates, as knowledge of the mechanical performance of the
material under dynamic conditions may be very important when designing specific devices
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(for example, dampers or in general seismic energy dissipation devices) or structural
components (for example, joints or structural members).

Indeed, the influence of strain rate on 3D-printed metals has been little studied: as far
as we know, the only research works on the effects of strain rate on metals produced by
additive manufacturing are by Mazzucato et al. [65] and Forni et al. [105] concerning the
nickel-based alloy Inconel 718 produced via LMD, and by Brando et al. [106] regarding the
17-4PH alloy steel produced through selective laser melting.

The selection and use of adequate process parameters strongly reduce the formation
of defects such as excessive porosity, presence of incompletely fused areas, and cracks. In
fact, it is important to consider that many problems in PBF techniques in general, and SLM
in particular, are related to the choice of wrong printing parameters.

The number of defects increases as the scanning speed increases. This can be attributed
to the effect of the scanning speed on the energy of the laser beam, as the higher the speed,
the shorter the time for energy transfer. Melting failure occurs because the energy emitted
is not sufficient to completely melt the powder. This leads to the formation of not-melted
particles trapped in the pores (lack of fusion). Other negative consequences can be delami-
nation (separation of adjacent layers due to incomplete fusion of neighbouring layers) and
balling (loss of continuity of the fusion bed). Therefore, the presence of these defects can be
controlled by reducing the scanning speed and increasing the laser power [83].

Residual stresses are another factor closely related to the production process. As
pointed out by Michla et al. [107] and Haghdadi et al. [95], the preheating of the powder
bed or the building plate and, in smaller measure, the type of scanning pattern, can help
to mitigate the temperature gradient and, consequently, the residual stresses. According
to Zhu et al. [108], an energy density increase, which can occur by either enhancing the
power of the laser or reducing the scanning speed, raises the possibility of part shrinkage,
resulting in higher residual stresses in the printed part [82,108]. Furthermore, according to
the studies of Ramos et al. [109], the adjustment of laser power and speed can also influence
residual stresses. In fact, in the spot where the laser melts the powder, a strong temperature
gradient is produced, leading to the development of a localised melt pool in the powder
bed. When the laser moves, the instantaneous heating results in the thermal expansion of
the heated area, which is confined by the already cooled layer below. This phenomena has
been referred to as the “temperature gradient mechanism” by Mercelis and Kruth [85] and
is responsible for residual stresses that can compromise the quality of the finished part and
its mechanical properties. The achievement of fully dense and functional parts is one of
the main challenges in additive manufacturing, especially for applications where adequate
resistance to actions and loads is required. In this regard, Zai et al. [77] point out that the
process parameters to be monitored are laser energy density, scanning pattern, and powder
bed preheating. The volumetric laser energy density E (J/mm3), as also reported by other
studies [78,81], is determined through the following Equation (1):

E =
P

v·h·t (1)

It depends on the laser power P (W), the scanning speed v (mm/s), the hatch spacing
h (mm), and the layer thickness t (mm).

Enneti et al. [110] confirmed that density is a parameter inversely proportional to
scanning speed and hatch distance. According to studies by Klocke et al. [111] and Larimian
et al. [82], a higher energy density is able to increase the density of the final element.
Furthermore, Sefene [78] found that also laser power and scanning speed, which are
parameters useful for achieving complete melting of the powder and high density of
the printed part, as well as a good surface finish, are always inversely proportional. In
conclusion, laser power is the principal energy parameter that strongly influences the final
density of the component. Density increases as the power used in the process rises if no
defects occur during manufacture [82,112].
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4. Metal Additive Manufacturing in Construction

Small metal components are usually produced by AM. Due to their high precision, they
are widely used, especially in the aerospace, automotive, and healthcare industries [21,113].
Up to now, there are few examples in the context of large-scale applications, either in the
literature or in industrial applications [21,33,114,115]. The reason is that, when extending
the scale of the component to be created, there is a loss in the quality of the final parts
(which forces an additional post-processing step), and both costs and production times
increase considerably [6].

The main advantages of using metal AM are the possibility to create elements with
complex geometries and optimised performance related to a more efficient use of mate-
rial [116,117]. This section will review the main examples and applications of metal AM in
the construction field.

4.1. Optimized Structural Node by Arup

An interesting application of metal AM in construction [114,118–120] was realised
by ARUP, a global engineering and design company. To explore the benefits of the com-
bined use of AM techniques and topological optimisation (TO) processes, the ARUP team
redesigned the structural node of a tensegrity structure used for street lighting.

Considering the variability of the inclination and cable attachment points of the origi-
nal structure, the integrated use of AM and TO proved extremely efficient in rationalising
the original geometry.

Starting from the original geometry, a first topological optimization process was
conducted (AM Node 1.0). The optimization analysis was carried out by defining as an
objective function the minimization of the structural weight. Then, the maximum Von
Mises stress and geometric restrictions were imposed as constraints. The result of the
optimization process is shown in detail in the paper [120]. The element was produced by
DMLS with ultra-high-strength steel powders (Maraging steel grade 1.2709). During the
fabrication phase, in order to respect production constraints, changes were applied to the
optimised node (AM Node 1.0) by introducing appropriate self-supporting elements.

After the first TO process, the AM 1.0 node showed a significant weight reduction,
30% less than the original node. The resulting shape fulfils all functional requirements,
providing a better flow of internal forces and a more rational material distribution.

A second version of the optimised structural node (AM 2.0 node) [118] was created to
obtain a more compact and lighter element, maintaining the same functional requirements.

The objective function of the optimisation process was to minimise structural weight.
While Von Mises stresses were set as a constraint and limited to a maximum value of 80%
of the material maximum tensile strength, the AM 2.0 node was produced with the DMLS
technique using 316L stainless steel powder. Although the structural behaviour remained
similar to previous versions, the AM 2.0 node showed a weight reduction of 75% compared
to the initial node. This result highlights how significant savings are possible, both in terms
of material uses and production time, keeping the functional requirements constant.

4.2. MX3D Pedestrian Bridge

The first large-scale application of AM in the field of structural engineering was
the completely functional pedestrian bridge by MX3D (Figure 17), a Dutch company
specialising in robotic metal 3D printing [79,114,116].

For the production of the bridge, manufactured from 308 L grade austenitic stainless-
steel wire, 6-axis robotic welding arms using the WAAM technique were employed. This
demonstrates the enormous potential of the application of multiaxis 3D printing technology.
In the project, the MX3D company worked with various partners such as Arup, Autodesk,
ArcelorMittal, the University of Twente, and Imperial College London.
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Figure 17. The MX3D bridge: (a) The finished 3D-printed bridge, before installation; (b) the bridge
during installation; (c) the bridge after the inauguration on the Oudezijds Achterburgwal canal in
Amsterdam. Reprinted with permission from refs. [79,121]. Copyright 2020 Elsevier Ltd.

The bridge, which measures 12 m in length and was built from a single metal part
weighing 4.5 tonnes, required six years from the design to the final construction. It was
inaugurated in Amsterdam on 21 July 2021, after capacity tests with a 20-tonne load
had been successfully completed (Figure 18). In addition, the partners were involved in
the design, development, and testing of a smart sensor network to monitor the bridge
conditions in real time.

  

Figure 18. Load tests of MX3D bridge at the University of Twente. Reprinted with permission from
ref. [79]. Copyright 2020 Elsevier Ltd. Reprinted from ref. [122].
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4.3. Takenaka Connector

The Takenaka connector was recently created by the collaboration between the Tak-
enaka corporation and MX3D. The structural steel connector (Figure 19) was designed
by MX3D and Takenaka to overcome the limitations of conventional processes and pro-
duce complex components for large structures in the construction industry. The element
has a hollow structure, which is filled with cast mortar through the use of robotic arms
(Figure 19b). The metal part is produced from Duplex stainless steel using the WAAM
technique. The solution of filling the inner core with mortar is to prevent local buckling of
the steel, while the outer steel offers high resistance to bending and tensile forces. The net
weight of the structure is 40 kg, which increases to 45 kg when the inner cavities are filled
with mortar.

Figure 19. The Takenaka connector: (a) Geometry; (b) robotic arm filling the connector with casted
mortar. Reprinted from ref. [123].

The final shape is the result of an optimisation process that led to a very efficient
configuration (Figure 20). The entire process was guided by design constraints as the
position of the element in the structure was known in advance and was taken into account
in the optimisation process.

 
Figure 20. Optimization processes of the Takenaka connector. Reprinted from ref. [123].

4.4. AM Steel Reinforcement for Concrete

Early studies on the production of AM steel reinforcements for concrete [124–126]
show encouraging results. However, their application in the construction industry is still
limited. At this stage, it is essential to continue the research, in particular by investigating
the quality of bars produced with AM, their fatigue behaviour, and their durability in
concrete environments.
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In fact, AM research involving the construction sector has mainly focused on the
production techniques of cement-based materials. Despite the growing interest in the topic,
few indications on the use of reinforcements with concrete 3D-printed elements have been
provided [127].

Recently, some studies [124,125] have explored the potential of AM steel reinforce-
ments as a supplement to 3D-printed concrete. Mechtcherine et al. [124] studied the
mechanical behaviour of bars made using the GMAW (gas metal arc welding) technique.
The samples were subjected to a series of experimental tests to compare their performance
with that of conventional bars. In particular, uniaxial tensile tests were carried out to
determine the tensile behaviour of bars with a diameter of 8 mm at the loaded ends and
7.5 mm in the middle. Pull-out tests were performed with two different bonded lengths
(16 and 32 mm) to determine the interface adhesion forces between 8 mm diameter bars
and fine-grained concrete. Both tests were also conducted on conventional B500B steel bars
with a diameter of 8 mm.

The results obtained from the tensile tests showed that the performance of 3D-printed
bars was significantly lower in terms of yield stress and tensile strength. In terms of
strain capacity, the 3D-printed reinforcement showed significantly higher values than
conventional bars. This result highlights the extremely ductile behaviour of 3D-printed
bars, which can also be observed from the visual aspect of the fracture surfaces.

The results of the pull-out tests showed lower shear stress values for the 3D-printed
bars for both bond lengths than for conventional steel bars. However, in the case of the
bond length of 32 mm, the shear stress–displacement curve exhibited, after the peak, an
approximately constant trend for the 3D-printed samples. A more pronounced softening
phase is observed for conventional bars. For a bond length of 16 mm, no significant
differences in the behaviour after the peak were visible.

The pull-out results did not provide a complete description of the behaviour of the
3D-printed samples, so further investigations are necessary. The low shear stress values
resulting from the pull-out tests for the 3D-printed bars can find partial justification in the
lack of “ribs” on the outer surface. In fact, solutions capable of improving the adhesion
between bars and concrete matrix, such as ribs that prevent mutual sliding between the
two materials, were not considered in this study. Please refer to the paper for details of all
the results described [124].

4.5. Joining Aluminium Profiles

The variety of production allowed by AM also lies in the possibility of using many
different types of materials. In sectors where the use of metal AM is widespread, sev-
eral applications use aluminium alloys [128], titanium alloys [129,130], and nickel-based
superalloys [131]. Regarding the construction field, Baptista et al. [132] proposed the com-
bined use of WAAM and joining by forming to connect hollow aluminium profiles and fix
them to composite sheets. The connection is realised through a “mortise and tenon” joint
(Figure 21).

Figure 21. Schematic representation of the proposed joining process. Reprinted with permission from
ref. [132]. Copyright 2019 Elsevier Ltd.
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Concerning the connection assembly, initially, the hollow aluminium profiles were
coupled, then tenons were made directly on the profiles using WAAM. Finally, through
the compression of the tenons against the mortises, a mechanical joint was generated. To
determine the mechanical performance of the connection system, two destructive tests
were performed: pull-out and shear tests (Figure 22). The results showed the failure due
to a pull-out force of 2 kN recorded after the detachment of the individual components
for a displacement of approximately 0.6 mm. With regard to shear strength, a value of
approximately 3.2 kN was recorded.

 
Figure 22. The mechanical tests on the connection: (a) Scheme of the pull-out test; (b) scheme of the
shear test; (c) results. Reprinted with permission from ref. [132]. Copyright 2019 Elsevier Ltd.

4.6. Future Applications

One of the main innovations introduced with additive manufacturing, which over-
comes most of the limits imposed by traditional production methods, concerns the possibil-
ity of creating innovative types of structures and components [133–135]. Future applications
in the field of structural engineering could involve steel connections and stiffening elements
for steelwork; some interesting examples are shown below [136,137].

A beam-to-column connection, where the suggested solution involves welding a hook
obtained by topological optimisation, printed directly onto the column and connected to a
bolt, is showed in the works of Feucht and Lange [136] and Lange et al. [137]. The main
advantage of this system is the simplicity of construction and the elimination of bolted
connections. The first tests carried out in the laboratory on small components showed
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that direct welding on metal elements, using the WAAM technique, is possible without
observing significant distortions in the welds.

With the aim of ensuring better load transfer within a double-T profile and to avoid
the occurrence of flange buckling phenomena, topologically optimised and additively
manufactured reinforcing elements can be introduced to replace stiffeners. In this case, the
main advantages consist of (1) reduction in material used, (2) reduction in printing time,
as unstressed areas are removed, and (3) possibility of printing directly on the element to
be reinforced, in contrast to conventional production, where unloaded regions are hard to
eliminate, as this requires extra effort and the production of nonreusable waste.

Destructive compressive tests, performed after the production of complete stiffeners
on a double-T beam, showed that, despite the evident distortions of the weld, the stiff-
eners produced with 3D printing can withstand stress levels equal to those of stiffeners
manufactured using traditional techniques.

When rigid connections with an end plate are employed, the moment and tensile
force are transmitted with an eccentricity, as the joint lies outside the flange. The tensile
force is transferred from the flange to the bolt through the bending of the end plate, which
often has large thicknesses to transfer this bending moment. Considering the potential of
additive manufacturing, the geometry can be modified in a way that improves its efficiency:
the use of topology optimisation to find the shape led to a first hypothesis which was also
produced using WAAM. Furthermore, it was proven that only 40% of the mass of the initial
element is required to achieve the same load capacity: this is due to the formation of the
lever arms, for which the greater the length, the higher the eccentric stress transferred.
Further details are provided in the papers [136,137].

In light of the applications just reviewed, it is clear that 3D printing technologies can
be applied directly on metal components and can potentially provide numerous benefits
in the fields of structural engineering and construction. Further developments could
concern the introduction of automated processes for monitoring and maintenance, as
the use of additive manufacturing in the repair of existing structures could introduce
several advantages, which, however, require further research to assess their potential in
real applications. In fact, in the field of construction, one of the greatest opportunities of
additive technology may lie in the repair of existing structures: in some cases, considering
the production costs of high-performance components, it may be cost-effective to repair
worn parts rather than replace them with new ones.

However, studies on the subject are still in their beginnings and are still not significant,
so further investigations are needed to confirm the encouraging results obtained so far.

5. The Potentials of Metal AM in Topological Optimization

5.1. Nonconventional Geometries

Conventional manufacturing techniques have encouraged the development of simple
geometries. In contrast, as was already said in the previous sections, AM allows higher
freedom in designing complex geometries with unique features that difficult or impossi-
ble to achieve with conventional manufacturing methods. Although AM offers greater
flexibility in the design of new shapes and geometries, an adequate level of performance
and safety must be ensured in each application. Several studies in the aerospace [129] and
automotive [138] sectors demonstrated that topological optimisation (TO) processes can
guarantee high levels of performance for projects realised with additive techniques.

In Seabra et al. [129], the complete process (from optimisation to production and
testing) for an aircraft bracket was described (Figure 23). SLM was used to produce the
component, and to improve performance, the printed part underwent hot-isostatic pressing
(HIP) heat treatment and surface treatment.
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Figure 23. Aircraft bracket: (a) Mesh of the original component; (b) 3D-printed optimized shape.
Reprinted with permission from ref. [129]. Copyright 2015 Elsevier Ltd.

Thanks to its manufacturing skills, SLM is adopted for the production of high-precision
end-use parts. Topology optimisation is used to achieve a final design with high stiffness
against an initial volume reduction. In addition, the optimised design is analysed with
FEM to verify the compliance with requirements. Once the previous steps are completed,
the component is created using SLM. However, before construction, an intermediate step is
necessary to consider the limits of the production process adopted (overhangs, support
structures, dimensional limits) to prevent possible problems in the parts destined for
final use.

The final optimised aircraft bracket reduces the material volume by 50% compared to
the original part. Furthermore, tests show a good match between the FE model and the
manufactured part.

In the automotive sector, an interesting example was provided by Walton et al. [138].
The study proposed to redesign a pair of suspension uprights with a view to reducing mass.
Indeed, the final component, manufactured in Ti6Al4V ELI by EBM without additional
surface finishing or heat treatments, exhibited a significant decrease in structural weight
with an improvement in the safety factor (Figure 24).

 
Figure 24. Optimized suspension uprights. Reprinted with permission from ref. [138]. Copyright
2017 Elsevier Ltd.
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Critical considerations about manufacturing cost and raw material use suggested
that the use of TO components via AM is limited to high-performance designs. Indeed,
in these applications, function prevails over production costs. Despite its great potential,
the ongoing growth of AM requires the evolution of design practices to take into account
production limitations and cost considerations [139].

Design methods for AM can be divided into process-driven shape and designer-driven
shape [139]. The former allows the creation of customised parts using TO processes, while
the designer-guided design method uses lattice structures to achieve the required perfor-
mance and reduce support structures. TO and lattice structures are the main strategies for
exploring the potential of AM [140]. Further details are provided in the following sections.

5.1.1. Topology Optimization

In general, optimisation problems can be mainly divided into the following:

- Size optimisation, which considers the variation in size of the elements. In order to
find the optimal solution (weight, stress, etc.), the cross-sectional areas of the beams,
etc., are adjusted (Figure 25a).

- Shape optimisation, which concerns the changing of the structural form. It allows one
to remodel holes in the model, but not to eliminate them (Figure 25b).

- Topological optimisation, which is the general form of structural optimisation. It
allows specific parts to be added or removed in the design domain (Figure 25c).

Figure 25. Types of optimization processes: (a) Size optimization; (b) shape optimization; (c) topology
optimization. Reprinted with permission from ref. [131]. Copyright 2017 Elsevier Ltd.

Topological optimisation (TO) is an iterative process to find the best distribution of
material in a design domain subject to a specific set of constraints. The definition of “best
distribution” takes on different meanings depending on the target of the optimisation.
Usually, with optimisation processes, the lightest or stiffest solution is found by subjecting
the design domain to constraints such as stresses, displacements, or frozen areas.

Mathematically, the problem can be expressed like this [141–143]:

- Minimise/maximise f(x,y).
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The function f(x,y) is subject to

- Behaviour constraints on y.
- Design constraints on x.
- Equilibrium constraints.

In which

- f is the objective function of the optimisation problem, i.e., the target of the process;
typically, it represents the parameter subject to constraints in the design domain.

- x represents the design variables, which describe the geometry and material. Con-
straints can also be set as geometric restrictions on parts of the domain to be con-
strained or on dimensions.

- y represents the state variables, which describe the structural response. They can be
expressed in terms of stresses, displacements or forces.

SIMP method

The most popular numerical FE-based topology optimization method is the solid
isotropic material with penalization (SIMP) [144]. The SIMP method is a density-based TO
method which can be expressed by the following Equation (2):

Eh = ρp·E0 (2)

where

- Eh is the Young’s modulus of the optimized element.
- ρ is the pseudo-density.
- p is the penalization factor (p > 1).
- E0 is the initial Young’s modulus.

Through an appropriate choice of p, the SIMP approach allows intermediate densities
to be penalised. Therefore, a binary solid/void solution is promoted, which guarantees
high efficiency and easy integration with production processes. The choice of p > 1 ensures
that intermediate densities are penalised. In fact, values of ≥3 provide good results in both
the 2D and 3D cases [145].

Initially, in the SIMP method, densities are uniformly distributed over all elements
in the design domain. Once the iterative analysis is started, the equilibrium equations are
solved in the first step, and then, with a sensitivity analysis, the derivatives of the design
variables are calculated. Before updating the element densities in the domain, filtering
techniques are employed to ensure numerical stability. Subsequently, a new FE analysis is
performed until convergence.

Level-Set method

Recently, the use of level-set method (LSM) has been increasing for the topological
optimisation of components and structures. The main advantages of LSM lie both in
leading to efficient computational schemes and in managing topological changes such as
the union and division of connected components. Well-defined boundaries enable the
creation of geometries that also consider production and digitalisation issues. Interesting
examples of using the LSM in optimisation problems can be found in Allaire et al. [146]
and Wang et al. [147].

The application of topological optimization

Thanks to its considerable advantages in many industrial areas, topological optimi-
sation is applied in the production of high-performance components. Nowadays, several
commercial software packages are able to solve specific problems common to a wide range
of industrial applications [140].
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Figure 26 shows the distribution of the most common topological optimisation meth-
ods used in commercial software. The density-based method (50% of the total) is the
most widespread. Furthermore, if hybrid approaches (which consider the density-based
approach with the level-set method) are also evaluated, the coverage reaches over 80%.

Figure 26. The most common methods adopted by topological optimisation software. Reprinted
from ref. [140].

To evaluate the advantages of the combined use of AM and topological optimisation,
Saadlaoui et al. [131] compared the performance provided by different formulations of the
optimisation problem. The investigations were carried out by assessing the numerical and
experimental performance of a cube subjected to uniaxial compression. The commercial
software used in the study were Abaqus and Optistruct.

In detail, the formulations used in [131] are the following:

- Stress-constrained optimisation (SCO). According to this approach, the goal is to
minimise the structural weight for a stress constraint. In this case, stresses are required
to be less than the elastic limit of the material (Inconel 718) divided by a factor of safety.

- Continuous compliance optimisation (CCO). In most optimisation problems, the
structural compliance parameter (to be understood as the inverse of stiffness) is used
as the objective function to be minimised. Usually, in this formulation, the constraint
is represented by an arbitrary value on the volume of the material.

- Discrete compliance optimisation (DCO). The terms of the optimisation problem
follow those of the CCO approach. However, it considers discrete variables that return
the problem to a binary solution: 1 (solid), 0 (void).

No significant discrepancies in terms of displacement and stress were found in the
three formulations examined. However, noteworthy differences were obtained in terms of
reduction in the original volume. The SCO approach resulted in a reduction of approxi-
mately 74%, while CCO was 69% and DCO 61%.

Once the numerical analyses were completed, the optimised geometries were pro-
duced using the SLM technique (Figure 27).

The stress-constrained optimisation (SCO) approach is the formulation with the high-
est computational cost, but the results show the best mechanical performance for the
greatest reduction in structural weight.
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Figure 27. Optimized structures: (a) Sample based on DCO; (b) sample based on SCO; (c) sample
based on CCO. Reprinted with permission from ref. [131]. Copyright 2017 Elsevier Ltd.

5.1.2. Lightweight Components

AM offers great opportunities in the production of lightweight components such as
lattice structures. The term “lattice structures” refers to 3D open-cell structures resulting
from the repetition of a unit cell.

Due to their versatility and mechanical properties, these structures are widely used,
particularly in the aerospace and biomedical sectors [148].

Based on their mechanical behaviour [149], lattice structures are classified into
the following:

- Bending-dominated structures: The design elements are mainly subject to bending
moment. Therefore, these structures exhibit compliant behaviour.

- Stretch-dominated structures: The structures are mainly subject to axial loads. Gener-
ally, this type is stronger and stiffer than the previous one.

The unit cell can be generated from strut-based elements or from surface-based el-
ements. The former is characterised by constructive simplicity, and several examples
are shown in Figure 28a. The latter have several advantages, especially with regard to
production problems (Figure 28b).

For more details on lattice structures, the contribution by Maconachie et al. [148]
is recommended.

In order to also provide insight on manufacturing issues, Panesar et al. [150] compared
different design strategies. In their paper, lattice solutions are generated using discrete
solid/void or greyscale topology optimisation results (Figure 29).

The design strategies considered in [150] were the following:

- Solid: This strategy shows a topologically optimised result using the SIMP method
(Figure 29a).

- Intersected lattice: According to this strategy, the solution is obtained by intersecting a
topologically optimised discrete solid/vacuum result with a uniform lattice structure
consisting of unit cells with constant volume fraction (Figure 29b).

- Graded lattice: The greyscale TO solution is the basis for mapping a lattice with
variable volume fraction (Figure 29c).

- Scaled lattice: The rescaled greyscale TO solution is the basis for mapping a lattice
with variable volume fraction (Figure 29d).

- Uniform lattice: The design domain is filled with a uniform lattice (Figure 29e).

To evaluate the performance of the proposed design strategies, the cantilever beam
scheme shown in Figure 30 was used for the numerical investigation. The strategies pre-
sented were compared according to their mechanical performance in terms of total strain
energy (SE). In addition, the study evaluated the designs, taking into account different man-
ufacturing issues. The criteria analysed were support structure requirements, processing
efforts, and design-to-production discrepancy.
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(a) 

 
(b) 

Figure 28. Examples of lattice structures: (a) Strut-based unit cells; (b) surface-based unit cells.
Reprinted from ref. [150].

The numerical results, in terms of total SE, for the different design strategies applied to
the cantilever beam are shown in Figure 31. The highest value of strain energy is attributed
to the uniform lattice structure, which shows low stiffness.

The solid (SIMP) solution has the lowest SE. While the intersected and graded struc-
tures exhibit the same behaviour and the SE values are about 50% lower than the uniform
lattice structure. The scaled lattice has a lower SE value and a better solution than the
uniform lattice structures.

Regarding the production issues, Figure 32 shows a comparison of different design
strategies. One of the main manufacturing considerations is related to support structures.
These are essential elements to reduce the possibility of failures during the production pro-
cess. However, the use of support structures affects production time, material consumption,
and production efforts.
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(a) (b) 

 
(c) (d) 

 
(e)  

Figure 29. Overview of different lattice strategies considered in [150]: (a) Solid (SIMP) solution;
(b) intersected lattice; (c) graded lattice; (d) scaled lattice; (e) uniform lattice. Reprinted from ref. [150].

(a) (b) (c) 

(d) (e) (f) 

Figure 30. The models employed for the numerical investigation: (a) Solid (SIMP) solution; (b) inter-
sected lattice of D-P; (c) intersected lattice of BCC; (d) graded lattice of D-P; (e) scaled lattice of D-P;
(f) uniform lattice of D-P. Reprinted from ref. [150].
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Figure 31. The total strain energy values for different design strategies. Reprinted from ref. [150].

 
Figure 32. Manufacturing issues: comparison between different design strategies. Reprinted from
ref. [150].

The solid solution is the strategy that requires the widest use of support structures.
In contrast, lattice structures require less support because they make the structure self-
supporting. In particular, both the uniform and scaled strategies require about 40% less
support than the solid solution.

With regard to production efforts, in terms of time and geometric complexity, lattice
structures are less cost-effective than the solid strategy.

Further considerations must be made about the discrepancy between design and
production. For AM components, these deviations may relate to distortion due to residual
stresses, and surface roughness. In particular, the latter is more common in lattice structures.
This defect can lead to a decline in mechanical properties.

5.2. Use of AM in Repair of Existing Structures

One of the greatest potential of AM in construction lies in its use for the repair of
existing structures [121]. In the aerospace industry, the repair of worn parts is of great
interest [151–153]. Indeed, because of the production cost of high-performance components,
it is cost-effective to repair worn parts rather than replace them with new ones.
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The repair process consists of three phases [151]:

• Preparation stage. In the first step, considerations concern the cost-effectiveness of
the repair/reinforcement of the degraded component. Next, a geometric check is
performed between the worn elements and the nominal model. This comparison
generates an error map, which highlights the errors between the two models. Finally,
the repair area can be identified and judgements made on the extent of the damage.

• Production stage. In this stage, the previously identified area is repaired/reinforced
through AM or hybrid manufacturing processes.

• Post-repair stage. In the final step, a geometric inspection is performed to verify the
correct execution. In addition, the restored element can be mechanically characterised
by means of material strength tests.

The same methodology can also be used in construction. Particular attention must be
given to the preparatory stage. Both the choice of the appropriate process for acquiring
geometric data and the judgement of the effectiveness of the repair/reinforcement are
fundamental aspects. The use of objective data makes it possible to highlight the real de-
mand for intervention. Visual inspections, which are strongly influenced by the subjective
judgements of the technician, should, therefore, be avoided.

The use of noncontact digitising systems allows accurate 3D scan data to be obtained.
These can be compared with the nominal model to generate an error map [152]. Therefore,
through the geometry reconstruction method based on reverse engineering, structural
deformations and material defects can be monitored. Subsequently, on the basis of the mea-
surements, repair or reinforcement processes can be carried out through AM techniques.

AM technologies allow products to be printed directly onto metal components [136].
Therefore, the development of in situ stiffeners will be attractive. For example, stiffeners
and components can be printed in areas where the need arises during the preparation stage.
Furthermore, additional developments could concern the implementation of automated
processes for monitoring and repair.

The use of AM in the repair of existing structures can have several advantages. How-
ever, to date, this is an unexplored topic. Therefore, further studies are needed to assess its
potential in real applications.

In fact, compared to other sectors, construction is still lagging in the field of AM. A
fundamental problem lies in the excessive fragmentation of the sector and its production
processes. In the future, through the digitalisation of information related to the entire
process, it will be important to aim at a design oriented towards complex components that
combine several functions. One of the great potentials of AM lies in its ability to produce
customised components and complex geometries without increasing costs and production
efforts. Therefore, simplification consists of the production of complex components that
are optimised to meet multiple functional requirements in order to enable an overall
improvement in performance while reducing manufacturing errors, time, and costs.

6. Conclusions

As already discussed in the introduction, the idea of the authors was to provide a tool
suitable for everyone in which all the studies were divided by topic, in order to find their
way in the world of 3D printing, specifically metal.

Additive manufacturing is an innovative production technique that has been signif-
icantly developed in recent years, especially in specific sectors of engineering. Starting
with rapid prototyping, the advancement of techniques led to encouraging results in terms
of accuracy, precision, and mechanical performance. However, there are still limits to the
large-scale application of 3D printing. They concern the production of large parts, the time
and cost of making parts, the still very high costs of materials and printers, and the lack of
in-depth expertise and knowledge.
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Numerous studies have been recently added to the literature concerning metal additive
manufacturing, which aims to provide a valid alternative to traditional manufacturing
techniques. In this review article, a state-of-the-art of research and literature review on metal
additive manufacturing and an overview of the main examples in the field of structural
engineering were presented. Furthermore, the currently most widespread techniques were
analysed in detail, as well as the process parameters and the factors influencing the quality
and characteristics of the printed components. In this regard, this review referred to articles
dealing with technology from a qualitative and quantitative point of view, investigating
the aforementioned aspects. The performance of printed metal parts, which can have
highly articulate and complex shapes, thanks also to the advanced optimisation algorithms
available to date, also allows for their favourable employment in the construction sector.
Several examples can already be found around the world, including bridges, joints, and
nodes. However, there are still many aspects to be investigated, such as durability in the
long term, defects due to the particular production process, and the real cost-effectiveness
and environmental sustainability of the process. The printing process parameters to be set
in the design and manufacturing stages are also both numerous and complex. The correct
settings ensure the success of the printing process and, consequently, the achievement of
the desired performance.

In conclusion, although there are still many aspects to be studied and explored for a
large-scale application of additive manufacturing of metals in construction and beyond,
the results obtained so far are remarkable and the advantages are clear. Only time and
experience will allow existing limitations to be overcome, making 3D printing a commonly
adopted technology in industry.
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Abstract: Wire arc additive manufacturing (WAAM) has attracted increasing interest in industry
and academia due to its capability to produce large and complex metallic components at a high
deposition rate. One of the basic tasks in WAAM is to determine appropriate process parameters,
which will directly affect the morphology and quality of the weld bead. However, the selection
of process parameters relies heavily on empirical data from trial-and-error experiments, which
results in significant time and cost expenditures. This paper employed different machine learning
models, including SVR, BPNN, and XGBoost, to predict process parameters for WAAM. Furthermore,
the SVR model was optimized by the Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) algorithms. A 3D laser scanner was employed to obtain the weld bead’s point cloud, and the
weld bead size was extracted using the point cloud processing algorithm as the training data. The
K-fold cross-validation strategy was applied to train and validate machine learning models. The
comparison results showed that PSO–SVR predicted process parameters with the highest precision,
with the RMSE, R2, and MAE being 1.1670, 0.9879, and 0.8310, respectively. Based on the process
parameters produced by PSO–SVR, an optimal process parameter combination was chosen by
taking into comprehensive consideration the impacts of power consumption and efficiency. The
effectiveness of the process parameter optimization method was proved through three groups of
validation experiments, with the energy consumption of the first two groups decreasing by 10.68%
and 11.47%, respectively.

Keywords: WAAM; process parameters; machine learning; point cloud; SVR

1. Introduction

Additive manufacturing (AM) technology has gained significant attention in recent
years owing to its notable advantages, including a short lead time, reduced material
waste, and the capacity to produce intricate structures. Metal additive manufacturing
technology can be categorized into laser additive manufacturing (LAM), electron beam
additive manufacturing (EBAM), and WAAM based on the heat sources used. Compared
with LAM and EBAM, WAAM can manufacture large, complex parts at higher deposition
rates and lower costs [1–3].

WAAM employs an arc as a heat source to systematically construct three-dimensional
components by depositing metal material layer by layer. The entire component is generally
comprised of numerous weld beads. The weld bead morphology of each layer and each
pass affects the subsequent deposition and the final shape and quality of the component.
In general, the weld bead morphology of each layer is mainly determined by process
parameters [4]. Dinovitzer et al. [5] used the Taguchi method and analysis of variance
(ANOVA) to determine the effects of welding speed (WS), wire feed speed (WFS), welding
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current, and argon flow rate on weld bead shape and size, and they discovered that WFS is
the most significant factor. The quality of the weld bead is mainly determined by process
parameters, including the welding current, welding voltage, and welding time, while the
welding time is mainly related to the welding speed [6]. If the process parameters are
not appropriately chosen, excessive heat input can result in deformation, high residual
stresses [7], poor surface quality, and splatter phenomena [8]. Karlina et al. [9] emphasized
the potential for optimizing process parameters to improve material characteristics. Thus,
choosing the appropriate process parameter based on the deposition trajectory yielded by
the slicing process is a critical step in the WAAM process.

Many researchers have been devoted to quantifying the association between process
parameters and the response variables that characterize the morphology of the weld bead
and optimizing process parameters using different mathematical methodologies, such as
multiple regression analysis (MRA), finite element modelling (FEM), and machine learning.
Sarathchandra et al. [10] evaluated the effects of the WS, welding current, and standoff
distance on weld bead characteristics by response surface method in conjunction with
ANOVA; they used MRA to establish a model between process parameters and weld bead
quality. Le et al. [11] used Grey-Relational Analysis (GRA) and Techniques for Order-
Preferences by Similarity-to Ideal Solution (TOPSIS) methods to determine the optimal
process parameters. FEM-based modelling can investigate how process parameters affect
the dimensional accuracy of the component and optimize process parameters [12,13]. Hanif
et al. [14] employed FEM to study the temperature and thermal stress field in the TIG
welding process and applied the GRA method to obtain the optimal weld bead geometry
by comprehensively considering various factors such as welding current, shielding gas
flow rate, and standoff distance on the weld bead.

Machine learning does not require any physics-based equations and only needs to
use past experimental data to establish the relationship between input variables and
output targets, which can quickly predict output targets. Sharma et al. [15] used three
machine-learning algorithms to investigate the influence of WS, welding current, and
the number of layers on weld bead morphology. Among them, random forest had the
highest prediction accuracy for bead height and width, with 94% and 99% accuracy rates,
respectively. Barrionuevo et al. [16] compared the performance of GPR, XGBR, and MLP
algorithms in predicting melting efficiency by inputting the wire diameter, nominal power,
WFS, and WS variables, finding that GPR had the highest prediction accuracy with an R2

of 0.9190. Yaseer et al. [17] used random forest and multilayer perceptron algorithms to
predict the layer surface roughness in WAAM. Both algorithms could effectively model
and predict layer roughness for the same data sets. Still, the random forest was superior to
the multilayer perceptron algorithm in terms of accuracy and computational efficiency. Xia
et al. [18] compared the performance of different machine learning algorithms in predicting
the surface roughness of weld beads. The results showed that GA–ANFIS had the optimal
prediction performance, with RMSE, R2, MAE, and MAPE values of 0.0694, 0.93516, 0.0574,
and 14.15%, respectively. Wang et al. [19] established an artificial neural network (ANN)
with interlayer temperature, WFS, and WS as input variables to predict the bead width,
height, and contact angle in cold metal transfer welding. The average error rate of the model
was less than 5.1%. Lee [20] used the Gaussian process regression method to model the
process parameters, which improved the productivity of WAAM and the shape and quality
of the deposits. Yadav et al. [21] used MRA, FEM, and Back Propagation Neural Network
(BPNN) to establish models with WFS, WS, welding voltage, and contact tip-to-substrate
distance as input variables. The response surface method guided the experimental design
and generates three geometric response variables. The results showed that BPNN had
higher accuracy than the MAR and FEM methods. Evidently, the data-driven machine
learning model predicted the results much closer to the experimental values than the
physics-driven modelling method.

From the above literature review, it can be seen that the study of weld bead geometry
has generated a great deal of interest in the WAAM field. However, only some researchers
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have undertaken the inverse forecast of process parameters from the desired weld bead
geometry. In the past, the operator had to choose the proper process parameter settings
based on their experience and repeated tests. If the desired weld bead geometry can
directly predict the process parameters in advance, not only can the energy consumption
of the welder be reduced, but the weld bead quality can also be improved [22,23]. Venkata
et al. [24] developed a method with ANN, FEM, and Taguchi-based graph theory to
optimize the process parameters for ensuring dimensional accuracy in AM. Karmuhilan
et al. [25] established an ANN with bead height and width as inputs and welding voltage,
WFS, and WS as outputs. However, the number of response variables exceeds the number
of input variables, which can easily lead to unstable prediction results, and the bead width
and height are not enough to represent the geometric properties of the entire weld bead.
This method of predicting process parameters by reverse modelling is ambiguous because
different process parameters may result in the same weld bead geometry [26].

In order to address the issue of ambiguity in predicting process parameters through
reverse modelling, this paper employed different machine learning algorithms to predict
process parameters for WAAM and determined the optimal process parameters. Initially,
a comparative analysis was conducted to evaluate the performance of different machine
learning models in predicting process parameters. Then, the model with the highest level
of prediction accuracy was utilized to optimize the process parameter. Considering the
influence of power consumption and efficiency, the optimal process parameters were
selected from the predicted values generated by the optimal machine learning model.
Several groups of experiments were conducted utilizing the predicted process parameters
to validate the accuracy of the predicted results and the effectiveness of the optimal param-
eters. This method avoids trial-and-error experiments, greatly shortens the time and cost
expenditure, and has a certain guiding significance for selecting process parameters.

2. Methodology

2.1. Experimental Setup

The experiments were conducted on a WAAM system, as illustrated in Figure 1. It
consists of a six-axis welding robot (ABB IRB1600, ABB, Zurich, Switzerland), a controller
cabinet (ABB IRC5, ABB, Zurich, Switzerland), a MIG welder (SAF-FRODIGIPULS III 420,
SHAF Electric, Shanghai, China), a 3D laser scanner (SR7400, SSZN, Shenzhen, China), and
a control computer. The specifications for the 3D laser scanner are detailed in Table 1. The
depositions were carried out on Q235 substrates with a thickness of 10 mm. Low-carbon
steel materials are commonly used in WAAM due to their affordability and consistent
mechanical properties. For this reason, the steel CHW-50C6 (Hantai Welding Technology,
Changsha, China) with a diameter of 1.2 mm was selected as the filling material, and Q235
steel was used as the substrate. The main components of the welding wire and substrate
are shown in Table 2. The shielding gas was a mixture of 20% CO2 and 80% Ar with a flow
rate of 18 L/min. The elongation of the welding wire was 12–15 mm. The welding voltage
was set to be 22 V, while the welding current changed with the preset WFS.

Table 1. 3D laser scanner parameters.

Model Scan Height Scan X Length Z-Axis Accuracy X-Axis Accuracy Single Line Points

SR7400 200 mm 240 mm 5 μm 90 μm 3200

Table 2. Composition of the used welding wire and substrate (wt. %).

Material
Composition (wt. %)

C Mn Si S P Cu

CHW-50C6 0.08 1.52 0.92 0.015 0.020 0.20
Q235 ≤0.17 ≤1.4 ≤0.35 ≤0.035 ≤0.035 -

52



Metals 2024, 14, 567

Figure 1. Schematic diagram of the experimental setup.

2.2. Experiment Design

Suitable process parameters ensure the geometric accuracy and performance of the
weld. As shown in Figure 2, when the WFS/WS ratio is high, excessive metal materials
are filled into the weld in a short period of time, making the molten pool larger and more
susceptible to collapse. When the WFS/WS ratio is low, the amount of metal materials
filled per unit time is insufficient, resulting in a spheroidization effect that makes the weld
bead discontinuous, and a relatively high welding speed may result in a humped weld
bead [27]. Only when the WFS/WS is in the proper range can the normal morphology of
the weld bead be obtained. The main factor controlling the morphology of the weld bead is
WFS/WS [28]. Hence, all possible combinations of 14 different WFS and 6 different WS
were used in the experiments, as shown in Table 3. In other words, 84 weld beads were
obtained by single-layer single-pass depositions if the process parameter combinations
were reasonable. These weld beads were scanned to provide data sets for machine learning
and subsequent process parameter optimization.

 

Figure 2. The effect of different WFS/WS on the weld morphology.

Table 3. Experiment design.

Parameters Value

WFS (m/min) 3, 4, 5, 6, 7, 8
WS (mm/s) 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

2.3. Data Sets Collection for Machine Learning Models

To provide data sets for predicting WFS/WS, the 3D laser scanner was used to extract
the cross-section profiles of the weld bead, and then the cross-section profiles were modeled
based on the mathematical function curve fitting method, which can obtain the dimensions
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of the weld bead. Bead width (BW) and bead height (BH) are the geometrical variables
used most frequently. However, measuring the BW and BH alone is insufficient to fully
characterize its morphological properties. It is necessary to introduce bead cross-section
area (BCSA) as the third geometric response variable. As a result, all machine learning
models used the BH, BW, and BCSA data as their input set and the corresponding process
parameter WFS/WS value as their output set. Additionally, K-fold cross-validation is used
to reduce the overfitting of all machine learning models.

A total of 84 welds were deposited in accordance with the experimental design.
Figure 3 shows the process of acquiring data sets for machine learning. After each deposi-
tion, the point cloud of the weld bead was obtained with the 3D laser scanner. Then, point
cloud processing and curve fitting were used to obtain the cross-section profiles and the
values of BH, BW, and BCSA. However, certain parameter combinations resulted in unsuc-
cessful deposition with defects such as humps and pits. Those inapplicable combinations
were ruled out, and only 64 weld beads were scanned to provide data sets. The detailed
procedure for extracting the cross-section profiles and curve fitting will be discussed below.

Figure 3. Schematic diagram to obtain machine learning data sets.

2.3.1. Extracting the Cross-Section Profiles of Weld Bead

As shown in Figure 4, the 3D laser scanner emitted laser stripes oriented perpendic-
ularly to the deposition direction, and it employed the triangulation principle to obtain
the coordinate information of the surface points, enabling the reconstruction of the three-
dimensional morphology by the point cloud. The obtained point cloud data were processed
using functions in the open-source Point Cloud Library (PCL) to extract the cross-section
profiles of the weld bead. Firstly, the pass-through filter was used to segment the part of the
weld to be detected. Secondly, the RANSAC algorithm was used to segment the weld bead
from the substrate. Thirdly, sparse points near the weld bead were removed by applying
the statistical filter to get a clean point cloud of the weld bead. Finally, 100 cross-section
profiles were obtained by slicing the weld bead at 100 locations along the length direction.
Generally, if the welding parameter stays constant, the cross-section profiles at different
locations are similar. However, the slicing location should not be in the start and end
areas of the weld bead because the ignition and quenching of the arc lead to unstable weld
bead morphology. Even if not in the start and end areas, the profiles are still likely to vary
slightly due to a variety of factors. Obtaining 100 cross-section profiles can significantly
decrease accidental errors.
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Figure 4. Schematic diagram to extract the cross-section profiles of weld bead.

2.3.2. Curve Fitting of Weld Bead Profiles

The cross-section profiles are generally arc-like curves. In many previous studies, the
profiles were modeled using mathematical functions or geometrical parameters [29–31]. In
this paper, the cross-section profiles of weld beads were modeled based on the methods
of semi-ellipse, arc, and cosine function curve fitting, as shown in Table 4. Based on the
acquired cross-section profiles, the process of curve fitting was carried out using three
different mathematical models. Figure 5a shows that the semi-ellipse model accurately
matched the actual profile on both sides but exhibited a downward tilt at the top, and the
cosine model overshot the actual profile at the top, while the arc model best matched the
actual profile at both the sides and the top.

Table 4. Mathematical model of weld bead profile.

Profile Model Functional Model Bead Cross-Section Area (BCSA)

Cosine y = acos(bx)
∫ w

2−w
2

acos(bx)dx

Arc y =
√

b2 − x2 − a
∫ w

2−w
2
(
√

b2 − x2 − a)dx

Semi-ellipse y =
√

b2 − b2x2

a2

∫ w
2−w
2

√
b2 − b2x2

a2 dx

Figure 5. Weld bead modeling process. (a) One of the cross-section profiles and its fitted curves using
three different functions; (b) calculating BH, BW, and BSCA after curve fitting of the arc function.

As mentioned in Section 2.3.1, 100 cross-sectional profiles with a length of 200 mm
were collected and used for curve fitting to avoid accidental errors. Figure 6 shows the
Root Mean Square Errors (RMSE) of the fitting curves for each profile. The arc model
had the RMSE closest to 0, indicating the highest accuracy in the fitting. The semi-ellipse
model showed the most significant error, particularly at the 22nd profile, where the RMSE
exceeded 0.7. The cosine model’s error was between the arc and semi-elliptical models.
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Thus, the arc function model was chosen as the final curve fitting model to determine the
BH, BW, and BCSA, as shown in Figure 5b. Since 100 cross-section profiles were extracted
for each weld bead, 100 groups of values for BH, BW, and BCSA could be obtained. The
average values of them were used for data sets. As mentioned above, only 64 weld beads
were scanned, and the collected whole data sets are shown in Table 5. When the WS value
remained constant, the BH, BW, and BCSA increased as the WFS increased. Similarly, when
the WFS value remained unchanged, the BH, BW, and BCSA decreased with the increase in
WS, consistent with the experimental findings reported in [6,32,33].

Figure 6. Root Mean Square Error of different mathematical functions.

Table 5. Data sets from experiments for each design.

No.
WFS

(m/min)
WS

(mm/s)
WFS/WS

BW
(mm)

BH
(mm)

BCSA
(mm2)

No.
WFS

(m/min)
WS

(mm/s)
WFS/WS

BW
(mm)

BH
(mm)

BCSA
(mm2)

1 3 3 16.67 7.46 2.63 14.33 33 6 8 12.50 5.82 2.45 10.76
2 4 3 22.22 9.33 2.76 18.35 34 7 8 14.58 6.54 2.78 13.71
3 5 3 27.78 10.08 3.26 23.64 35 8 8 16.67 6.89 2.95 15.36
4 6 3 33.33 11.08 3.43 27.18 36 4 9 7.41 4.04 1.91 5.99
5 7 3 38.89 12.49 3.81 34.01 37 5 9 9.26 4.65 2.21 7.96
6 8 3 44.44 13.56 3.67 35.09 38 6 9 11.11 4.85 2.44 9.30
7 3 4 12.50 6.07 2.42 10.92 39 7 9 12.96 6.09 2.65 12.23
8 4 4 16.67 8.34 2.63 15.76 40 8 9 14.81 6.38 2.81 13.63
9 5 4 20.83 8.84 2.86 18.16 41 4 10 6.67 3.77 1.94 5.77

10 6 4 25.00 9.38 3.13 21.24 42 5 10 8.33 4.68 2.12 7.59
11 7 4 29.17 10.87 3.57 27.93 43 6 10 10.00 4.73 2.19 7.96
12 8 4 33.33 11.40 3.62 29.62 44 7 10 11.67 5.80 2.59 11.46
13 3 5 10.00 4.87 2.30 8.68 45 8 10 13.33 5.98 2.70 12.38
14 4 5 13.33 6.37 2.44 11.49 46 4 11 6.06 3.65 1.93 5.60
15 5 5 16.67 7.45 2.86 15.78 47 8 11 12.12 5.55 2.76 11.99
16 6 5 20.00 7.90 2.77 15.94 48 4 12 5.56 3.34 1.87 5.06
17 7 5 23.33 9.22 3.25 21.87 49 5 12 6.94 3.78 1.98 5.94
18 8 5 26.67 10.09 3.35 24.41 50 6 12 8.33 4.00 1.99 6.25
19 3 6 8.33 4.24 2.17 7.27 51 7 12 9.72 4.95 2.15 8.06
20 4 6 11.11 5.24 2.14 8.38 52 8 12 11.11 5.21 2.49 10.09
21 5 6 13.89 6.48 2.72 13.24 53 5 13 6.41 3.66 1.93 5.63
22 6 6 16.67 7.10 2.75 14.47 54 6 13 7.69 5.42 2.04 8.13
23 7 6 19.44 7.93 3.06 17.99 55 7 13 8.97 4.54 2.14 7.50
24 8 6 22.22 8.97 3.22 21.11 56 8 13 10.26 5.11 2.38 9.37
25 3 7 7.14 3.95 2.05 6.40 57 5 14 5.95 3.37 1.93 5.32
26 4 7 9.52 4.87 2.21 8.26 58 6 14 7.14 4.68 1.89 6.59
27 5 7 11.90 5.69 2.48 10.74 59 7 14 8.33 4.27 2.05 6.80
28 6 7 14.29 6.31 2.57 12.12 60 8 14 9.52 4.76 2.34 8.69
29 7 7 16.67 7.22 2.95 15.92 61 7 15 7.78 4.25 2.07 6.87
30 3 8 6.25 3.57 1.92 5.50 62 8 15 8.89 4.71 2.33 8.60
31 4 8 8.33 4.50 2.10 7.27 63 7 16 7.29 3.86 1.97 6.01
32 5 8 10.42 5.37 2.34 9.52 64 8 16 8.33 4.38 2.25 10.76
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2.4. Process Parameters Optimization Procedure

The procedure for process parameter optimization is illustrated in Figure 7. Three
steps are included as follows:

(1) Prediction of WFS/WS: Firstly, the BH and BW were set up to create the desired
surface morphology, and the BSCA value was then calculated according to the arc
mathematical function. Subsequently, the trained machine learning model was used
to predict WFS/WS. The primary reason for choosing WFS/WS was to ensure the
deposition quality. As discussed in Section 2.2, the morphology and success of the
deposition were highly related to WFS/WS.

(2) Calculation of candidate process parameters: Referring to the welding-feasible region
diagram obtained from the previous experiment (Figure 8), multiple sets of process
parameter combinations were generated by cyclic iteration and taken as candidate
process parameters. Figure 8 demonstrates that even when the WFS/WS value is
identical, the formation quality of the weld bead will have significant variations if the
WFS or WS value is not chosen correctly. Hence, it was crucial to compute the WFS
and WS values based on the summarized range of the welding-feasible area.

(3) Choosing optimal process parameters among candidates: A machine learning model
was established with process parameters as input to forward predict the BW and BH.
The difference between the predicted and preset values was analyzed. If the error
exceeded 5%, the corresponding combination would be removed. Finally, the optimal
parameter combination was selected by maximizing the effective deposition volume
per power (EDVP).

Figure 7. Flow chart of process parameter optimization.

Figure 8. Diagram of a welding-feasible region.
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It is worth mentioning that multiple ML algorithms were used for process parameter
planning. The performances of those algorithms are compared, as presented in Section 4.1.
The optimal algorithm was then chosen to perform the process parameter planning for the
experiments, as shown in Section 4.3.

EDVP is an index regarding the influence of power consumption and efficiency. The
value of EDVP can be calculated based on the following Equations (1)–(5).

Veffective = S × L = BCSA × L (1)

where Veffective, S, and L represent the effective deposition volume of the deposited sample,
the effective area, and the sample effective length, respectively. The effective area is BSCA,
which the arc mathematical function calculates.

Vtotal = WFS × T × π × r2 = WFS × L
WS

× π × r2 (2)

where Vtotal, WFS, and T represent the total deposited volume, the wire feeding speed, and
the duration of each welding cycle, determined by the total length and welding speed. And
r indicates the wire radius, which is 0.6 mm in the experiments. The formula for computing
the effective deposition rate (EDR) is as follows:

EDR(%) =
Veffective

Vtotal
× 100% (3)

The calculation of the effective deposition rate per power (EDRP) is performed using
the following formula:

EDRP(%/W) = EDR/P (4)

where P represents the power of the welding supply. The formula for computing the
effective deposition volume per power (EDVP) is as follows:

EDVP(mm3/W) = EDRP × Veffective (5)

3. Machine Learning Algorithms

3.1. Support Vector Regression

Support vector regression (SVR) is a powerful machine learning algorithm widely
used in regression analysis. Its principle is to use the kernel function to map input data
to high-dimensional space to solve the optimal hyperplane and transform the nonlinear
relationship between input and output variables into a linear relationship for prediction [34].
The expression of the SVR model is as follows:

f (x) =
m

∑
i=1

(αi − α∗i )K(xi, xj) + b (6)

where αi and α∗i are Lagrange multipliers; b denotes intercept; K
(

xi, xj
)

is the kernel
function. In order to improve the nonlinear processing ability of the SVR model, the
Gaussian radial basis function (RBF) is usually used as the kernel function. The RBF
function is as follows:

K(xi, xj) = exp

(
−‖ xi − xj ‖2

g2

)
(7)

In the SVR model, the penalty factor C and RBF function parameter g directly de-
termine the prediction performance of the model. The generalization of the model is
influenced by the parameter C, while the training speed of the model is influenced by the
parameter g. Therefore, it is important to reasonably select appropriate values for these two
parameters. This study employs search ranges of (0.1, 200) for the C and (0.001, 1) for the g.
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3.2. XGBoost

XGBoost reduces the error of the previous prediction by continuously generating new
regression trees, gradually narrows the gap between the true value and the predicted value,
and ultimately improves the model’s prediction accuracy [35]. The prediction function of
XGBoost is as follows:

ŷi =
K

∑
k=1

fk(xi), fk ∈ Γ (8)

where ŷi the predicted output value of the ith sample; K is the total number of regression
trees; fk is the predicted value of the kth model in the ith sample; Γ is the space of the
regression tree. The objective function is as follows:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω
(

f .
k

)
(9)

where Obj is the objective function;
n
∑

i=1
l(yi, ŷi) is the loss function, indicating the fitting

degree of the model; Ω
(

f .
k

)
is a penalty function to reduce the risk of overfitting. The

number of decision trees, the maximum depth of the tree, and the learning rate are the
three key hyperparameters of XGBoost. In this paper, the search range of the number of
decision trees, the maximum depth of the tree, and the learning rate are [50, 100, 200, 400,
500], [3, 4, 5, 6, 7, 8, 9, 10], and [0.01, 0.05, 0.1, 0.15, 0.2], respectively.

3.3. Back Propagation Neural Network

BPNN is a multi-layer feedforward neural network with error back-propagation.
Through the back-propagation of errors, the weights and thresholds of the network are
constantly adjusted to minimize the mean square error of the network [36]. As shown
in Figure 9, the structure of the BP neural network model consists of an input layer, a
hidden layer, and an output layer. In this experiment, the input layer nodes are BW,
BH, and BCSA, respectively, and the output layer nodes are WFS and WS. When there is
information input, the input information is sent to the input node, and after the hidden
layer is processed by the function, it is sent to the output node. When the neural network
has no activation function, the final output result is linear, and nonlinear data prediction
cannot be performed [37]. Thus, it is necessary to add activation functions to the neural
network model. This paper used the sigmoid function, the tanh function, and the ReLU
function as the activation functions of the hidden layer. The neuron nodes of the hidden
layer were in the range of 10–40, and different optimization algorithm solvers (SGD, LBFGS,
Adam) were used to find the optimal weight to minimize the loss function. The number of
iterations was 500.

Figure 9. Back Propagation Neural Network architecture.

3.4. Machine Learning Tools

This paper mainly uses PyCharm software (Community Edition 2022.2.2) to write
machine learning code based on Python. Python is an open-source programming language
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widely used to develop machine learning algorithms. PyCharm software provides powerful
code analysis tools to help developers improve development efficiency and code quality.
The essential libraries, including NumPy, Pandas, Scikit-learn, XGboost, and Matplotlib,
were imported into PyCharm before the machine learning codes and data visualization
were executed.

3.5. Evaluation of Machine Learning Algorithms

To better evaluate the established machine learning model, this paper employs metrics
such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the Coefficient
of Determination (R2) for evaluation and comparative analysis. The MAE is usually used
to weigh the absolute error between the actual and predicted values of the model. The
disadvantage of MAE is that it only considers the average of absolute errors and is not
sensitive to outliers. The RMSE is used to weigh the deviation between predicted and
actual values. The R2 evaluates the prediction accuracy of different models. Among them,
the smaller the MAE and RMSE values, the closer the model predicted value is to the actual
value, the closer the R2 value is to 1, and the better the model fitting performance. The
expression of the three metrics is as follows:

MAE =
1
n∑n

i=1 | yi − ŷi | (10)

RMSE =

√
1
n∑i=1

n (yi − __
y i)

2 (11)

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (12)

where yi, ŷi, y, and n represent the actual value, the predicted value, the average of actual
values, and the total of input data, respectively.

4. Results and Discussion

4.1. Comparing Different Machine Learning Models Prediction Results

Multiple algorithms, including SVR, XGBoost, and BPNN, were employed to predict
the process parameters of WAAM. The K-fold cross-validation method was used to train
and validate the model using the data sets obtained from the experiments. K-fold cross-
validation is a resampling procedure employed to evaluate the precision of models when
dealing with limited data sets [38]. This method randomly divides the original data sets
into K discrete subsets. One of the subsets is designated as the validation data set, while
the remaining K−1 subsets are dedicated to training. This process is repeated K times, and
each subset takes turns as the validation set. In this study, the value of K was selected as 5,
and 80% of the data sets were used for training, while the remaining 20% were reserved
for model regression testing. The prediction results of different machine learning models
were compared, and the model with the highest prediction accuracy was selected to plan
process parameters.

The grid search is used to find the hyperparameters of the above machine learning,
and the results are shown in Table 6. As shown in Figure 10, the predicted value of SVR
was in good agreement with the actual value, while XGBoost had the lowest prediction
accuracy. BPNN displayed signs of overfitting during the training process, resulting in
unstable prediction outcomes. Although most points predicted by BPNN were consistent,
the individual point deviation was relatively substantial, making the overall prediction
accuracy not ideal. As shown in Table 7, the R2 value of the BPNN test set was 0.9170,
while the R2 value of the training set was 0.9961. The R2 value of the test set was lower
than the R2 value of the training set, and there was a potential overfitting phenomenon.
The RMSE values of SVR, XGBoost, and BPNN were 1.8087, 2.0739, and 3.0545, respec-
tively. The SVR achieved a higher prediction accuracy, but it still fell short of meeting the
accuracy requirements for welding process parameter planning. Consequently, there was a
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decision to optimize SVR through hyper-parameter tuning to enhance prediction accuracy
and stability.

Table 6. Optimal hyper-parameters in different machine learning algorithms.

Machine Learning Model Parameter Value Parameter Value Parameter Value

SVR kernel RBF C 100 Gamma 0.0001
XGBoost max_depth 6 learning_rate 0.05 n_estimators 400

BPNN activation tanh Hidden layer sizes 10 solver lbfgs

Figure 10. Predictions of different machine learning. (a) Comparison of the predicted and actual
values of WFS/WS (# represents the corresponding serial number in Table 5); (b) error analysis of
WFS/WS prediction.

Table 7. Performance comparison of training sets and test sets in different machine learning algorithms.

Training Testing

RMSE MAE R2 RMSE MAE R2

SVR 1.5165 0.8077 0.9663 1.8087 1.2413 0.9709
XGBoost 2.6030 1.2569 0.9196 2.0739 1.3916 0.9617

BPNN 0.6478 0.4667 0.9961 3.0545 1.5200 0.9170

4.2. Comparing the Effect of GA and PSO on SVR

The traditional hyper-parameter tuning methods mainly use manual tuning, grid
searching, and random searching [39]. For example, the above three machine learning
models derive their hyperparameters through grid search. However, this method has
corresponding defects, such as a long calculation time, an inability to deal with continuous
parameters, ignoring the correlation between parameters, etc. Grid search is unsuitable
for non-convex optimization problems and may also produce overfitting. Random search
offers higher computational efficiency and broader coverage of the search space than grid
search. However, it still exhibits instability with fewer data samples and cannot ensure a
globally optimal solution exists. As a result, this study employs PSO and GA to optimize
SVR parameters in the training scheme for complicated issues to improve the global search
capabilities of the model and circumvent the local optimum, as shown in Figure 11.
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Figure 11. Scheme of GA–SVR and PSO–SVR algorithm. (a) PSO–SVR; (b) GA–SVR.

The primary parameters of the PSO algorithm include the number of particle swarms,
the maximum number of iterations, the acceleration constants C1 and C2, and the weight
coefficient. The main parameters of the GA algorithm include population size, the maxi-
mum number of iterations, crossover rate, mutation rate, and DNA size. Population size
significantly impacts the performance and effectiveness of GA and PSO. Therefore, this
study observed the performance of PSO–SVR and GA–SVR under different population
sizes using the trial-and-error method, as shown in Table 8.

Table 8. Performance of the model for various population sizes.

Population
Size

PSO–SVR Result GA–SVR Results

RMSE R2 RMSE R2

20 2.0522 0.9614 3.3094 0.9025
30 2.0830 0.9690 3.1986 0.9090
40 1.8269 0.9703 3.0348 0.9180
50 1.8464 0.9697 2.7042 0.9349
60 1.1670 0.9879 2.6308 0.9384
70 1.2653 0.9858 2.5409 0.9425
80 1.5696 0.9781 2.1823 0.9576
90 1.5841 0.9777 2.6461 0.9377

In the PSO–SVR algorithm, it can be observed that the increase in population size
from 20 to 60 corresponded to the decrease in RMSE value. However, when the population
increased from 60 to 90, the RMSE value increased. Therefore, PSO–SVR performed the
best prediction when the population size was 60. In the GA–SVR algorithm, the RMSE
gradually reduced as the population size rose from 20 to 80. When the population was
80, the RMSE value reached its lowest value. As a result, the ultimate population sizes for
PSO and GA were determined to be 60 and 50, respectively. In addition, other parameters
were also determined by the trial-and-error method, as shown in Table 9. The performance
of PSO–SVR and GA–SVR is shown in Figures 12 and 13, respectively. Among them,
PSO–SVR achieved the highest predictive accuracy, with RMSE values of 1.1670. The RMSE
value of GA–SVR was 2.1823. Compared with the normal SVR in Figure 10, PSO–SVR can
obtain better prediction performance. On the contrary, GA–SVR’s prediction accuracy was
lower than the normal SVR’s, which did not play an optimization role.
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Table 9. Model parameters of GA–SVR and PSO–SVR.

PSO GA

Number of particle swarm 60 Population size 80
Maximum number of iterations 220 Maximum number of iterations 700
Cognitive acceleration C1 1.5 Crossover rate 0.85
Social acceleration C2 3 Mutation rate 0.097
Initial inertia weight W1 0.85 DNA size 25

Figure 12. Prediction of PSO–SVR. (a) Comparison of the predicted and actual values of WFS/WS (#
represents the corresponding serial number in Table 5); (b) error analysis of WFS/WS prediction.

Figure 13. Prediction of GA–SVR. (a) Comparison of the predicted and actual values of WFS/WS;
(b) error analysis of WFS/WS prediction.

In order to facilitate a more comprehensive comparison of the results, it was necessary
to calculate the R2 of the prediction model using Equation (12). As shown in Figure 14,
the correlation between the actual WFS/WS and the predicted WFS/WS values generated
using different machine learning models is intuitively depicted. The distance between the
surrounding scattered data points and the fitted line (representing the actual WFS/WS)
shows the degree of correlation between the model-predicted value and the observed value.
During the training and testing of the predictive models using K-fold cross-validation, the
R2 values of SVR, XGBoost, BPNN, PSO–SVR, and GA–SVR were 0.9709, 0.9617, 0.9170,
0.9879, and 0.9576, respectively. The results show that the correlation coefficient R2 value
of PSO–SVR was closer to 1 than that of GA–SVR, SVR, XGBoost, and BPNN. It can be
inferred that among all the applied machine learning models, the PSO–SVR performed
better in predicting the welding process parameters (WFS/WS) in WAAM. In addition, the
PSO–SVR was also used to forward predict the bead height and width.
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Figure 14. Regression plot for different models ‘predictions. (a) SVR; (b) XGBoost; (c) BPNN;
(d) PSO–SVR; (e) GA–SVR.

4.3. Validation Experiment

To assess the efficacy of the process parameter optimization method, this study con-
ducted three sets of verification experiments. The first group consisted of single-layer
single-pass experiments, while the second group involved multi-layer single-pass curve
experiments, and the third group is multi-layer multi-pass experiments. The process param-
eter optimization was performed based on the predicted results of the PSO–SVR algorithm,
which demonstrated the highest prediction performance, as discussed in Section 4.2. In
the experimental verification section, we used the power analyzer to measure the energy
consumption of all candidate processes in the actual deposition process. The percentage of
maximum energy savings can be calculated by comparing the energy consumption of the
optimized process parameters with other parameters. The formula is as follows:

η =
Emax − Eo

Emax
× 100% (13)

where Eo is the actual energy consumption of the optimized process parameters, and Emax
is the largest energy consumption value among other process parameters.

4.3.1. Single-Layer Single-Pass Deposition

Single-layer single-pass experiments used a sample weld with bead dimensions of
11.4 mm in width, 3.6 mm in height, and 180 mm in length to verify the effectiveness of
the process parameter optimization method. The BCSA can be determined as 29.43 mm2

using the arc mathematical function. Firstly, the trained PSO–SVR machine learning
model was utilized to input the BH (3.6 mm), BW (11.4 mm), and BCSA (29.43 mm2)
to obtain a WFS/WS value of 33.008. Secondly, 12 sets of candidate process parameters
can be determined by cyclic iteration based on the welding-feasible region diagram in
Figure 8. Thirdly, these candidate process parameters were input to forward predict the
bead width and height based on the PSO–SVR model and compare the error between the
predicted size and the preset value. If the comprehensive error of the height and width
of the weld bead exceeded 5%, the parameter was removed from the candidate process
parameters. As shown in Figure 15c, the total error of the first set of process parameters
was 7.03%, which did not meet the requirements of the error range. Lastly, considering
the relationship between EDVP and welder energy consumption, the optimal process
parameters were selected from the candidate process parameters by maximizing EDVP. The
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calculation of EDVP can be determined by Equations (1)–(5). As shown in Table 10, it can be
observed that the group labelled No. 7 exhibited the highest value for the EDVP, indicating
that it represents the optimal combination of process parameters. Conversely, the group
identified as No. 2 displayed the lowest value for the EDVP, indicating that it represents
the worst combination of process parameters. Subsequently, experiments were conducted
on individual candidate process parameters, and the welding energy consumption during
the deposition process was measured with a power analyzer to verify the accuracy of the
optimal process parameters.

Figure 15. The comparison of preset the size of weld bead, forward predicted bead size, and actual
measured size. (a) Comparison of weld bead width; (b) comparison of weld bead height; (c) error
analysis between preset value and forward predictive value.

Table 10. Single-layer single-pass experimental design and results.

No.
WFS WS BW BH BCSA EDRP EDVP E

(m/min) (mm/s) (mm) (mm) (mm2) (%W) (mm3/W) (Wh)

1 3 1.5 10.81 3.28 - - - -
2 3.5 1.75 11.16 3.32 26.17 0.005184 24.4178 76.2173
3 4 2 11.09 3.43 27.21 0.005237 25.6443 74.4883
4 4.5 2.25 11.24 3.52 28.34 0.005270 26.8870 72.2443
5 5 2.5 11.58 3.45 28.44 0.005120 26.2076 72.4333
6 5.5 2.75 11.65 3.72 31.13 0.005264 29.4933 70.9679
7 6 3 11.53 3.65 30.19 0.005564 30.2357 68.1638
8 6.5 3.25 11.73 3.52 29.42 0.004829 25.5683 75.4061
9 7 3.5 11.78 3.68 31.04 0.004950 27.6606 71.8503
10 7.5 3.75 11.82 3.77 32.00 0.004961 28.5747 71.3896
11 8 4 11.77 3.75 31.69 0.004654 26.5502 72.3520
12 8.5 4.25 11.58 3.69 30.68 0.004667 25.7723 73.1400

The results of the weld bead deposition utilizing the candidate process parameters
are shown in Figure 16. It can be seen that the actual weld morphology and quality under
different process parameter combinations were similar, aligning with the expected setting.
As shown in Figure 15a,b, the actual measured bead width and height value fluctuated
roughly around the preset value, and the predicted value was mostly close to the actual
value. The power analyzer record indicates that the minimum energy consumption of
the No. 7 group was 68.1638 Wh, while the maximum energy consumption of the No. 2
group was recorded at 76.2173 Wh. The process parameter combination of the minimum
energy consumption index was consistent with the previously planned process parameter
combination. Under the equivalent welding quality and morphology conditions, the
optimized process parameters can save up to 10.68% of energy (Equation (13)).
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Figure 16. Single-layer single-pass deposition diagram (The serial number in subfigure (a) corre-
sponds to Table 10).

4.3.2. Multi-Layer Single-Pass Curve Deposition

Multi-layer single-pass curve deposition was conducted to assess the effectiveness of the
process parameter planning method for complex-shaped components. Firstly, the preset width
of the weld bead was 7 mm, the height of the weld bead was 3 mm, the length of the curve
weld bead was 800 mm, and the number of bead layers was 10. The BCSA can be calculated
to be 15.88 mm2 by the arc mathematical function. The WFS/WS predicted by the trained
PSO–SVR model was 16.42. Secondly, 10 sets of candidate process parameters can be obtained
by cyclic iteration, as shown in Table 11. Thirdly, the optimal process parameters obtained
by the process parameter optimization method were in the No. 4 group. Then, experimental
validation was conducted, whereby distinct candidate process parameter combinations were
utilized for each layer of multi-layer single-pass curve deposition. The outcomes of the
deposition are shown in Figure 17. The measurement results of the power analyzer show that
the lowest energy consumption of No. 4 was 145.73 Wh, which is consistent with the planned
combination of process parameters. In this multi-layer single-pass verification experiment,
the process parameter planning method can save up to 11.95% of energy by Equation (13),
which once again verifies the effectiveness of the process parameter optimization method.

Table 11. Multi-layer single-pass experimental design and results.

No.
WFS WS BW BH BCSA EDRP EDVP E

(m/min) (mm/s) (mm) (mm) (mm2) (%W) (mm3/W) (Wh)

1 3 3 6.64 2.80 13.98 0.005952 66.5557 149.17
2 4 4 7.59 2.57 14.13 0.005833 65.9297 154.56
3 4.5 4.5 7.62 2.60 14.37 0.005871 67.4775 147.13
4 5 5 7.58 2.73 15.14 0.005674 68.7044 145.73
5 5.5 5.5 7.40 2.78 15.16 0.005383 65.2717 155.69
6 6 6 7.36 2.84 15.48 0.004871 60.3053 158.91
7 6.5 6.5 7.25 2.92 15.80 0.004399 55.6153 161.51
8 7 7 7.12 2.90 15.45 0.003946 48.7675 162.53
9 7.5 7.5 7.06 2.97 15.79 0.003848 48.6187 164.14
10 8 8 7.02 3.04 16.18 0.003635 47.0386 165.50

Figure 17. Multi-layer single pass curve deposition diagram.

66



Metals 2024, 14, 567

4.3.3. Multi-Layer Multi-Pass Deposition

To further verify the actual effect of the process parameter optimization method
in this paper, multi-layer multi-pass verification experiments were carried out. Three
100 × 60 × 8 mm3 cuboid components were deposited in the multi-layer multi-pass ex-
periment, and the process parameters #4, #7, and #12 in Table 10 from the single-layer
single-pass experiment were respectively used for the experiment. The process parameters
in #7 are the optimal combination of process parameters after optimization. The process
parameters of the three groups of experiments were predicted by the same size of weld
bead shape. It can be seen that the bead width and height of the actual deposited single
bead were basically the same as the preset value in Section 4.3.1, and the bead height and
width were 3.6 mm and 11.40 mm, respectively. According to the size of the single bead,
to realize the formation of 100 × 60 × 8 mm3 cuboid components, each layer needed to
deposit five welds, the overlap rate between adjacent welds was 60%, and the Z-shaped
reciprocating deposition had three layers, as shown in Figure 18a. During the deposition
process, the power analyzer was used to record the energy consumption and time of each
group of experiments, and each layer was cooled for 3–5 min after the end of the deposition
to avoid excessive heat accumulation. The 3D laser scanner can also be utilized to measure
the geometric size of each layer of weld bead in the cooling period, as shown in Figure 18b.
As shown in Figure 19, it can be found that the surface shape and quality of the weld bead
after deposition of the process parameters of #7 were better than those of the other two
sets of parameters. For example, the surface of the weld bead in Figure 19a was uneven,
and even pores appeared, indicating that the selection of reasonable process parameters
can even play a role in inhibiting defects. As shown in Table 12, the size of the deposited
components of #7 process parameters was closest to the expected size, and the time and
energy consumption of the process were significantly lower than those of the other two
groups of experiments. In terms of energy consumption, #7 was 8.45% and 7.48% lower
than #4 and #12, respectively. It was proved again that the process parameter optimization
method in this paper can save energy consumption, reduce production costs, and achieve
green manufacturing.

Figure 18. (a) Multi-layer multi-pass deposition schematic diagram; (b) the point cloud diagram of
#7 process parameter deposition results measured by the 3D laser scanner.

Figure 19. Multi-layer multi-pass deposition results. (a) #4 process parameter deposition results;
(b) #7 process parameter deposition results; (c) #12 process parameter deposition results.
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Table 12. Multi-layer multi-pass experimental results.

Group
WFS

(m/min)
WS

(mm/s)
Length (mm) Width (mm)

Heigh
(mm)

Processing
Time (min)

E
(Wh)

#4 4.50 2.25 96.96 58.83 8.54 10.53 549.38
#7 6.00 3.00 97.85 63.31 7.52 5.75 502.94
#12 8.50 4.25 100.24 61.37 8.16 5.00 543.62

5. Conclusions

This paper presents a method of process parameter optimization for WAAM based
on machine learning. Different machine learning algorithms were utilized and compared
in terms of performance. With machine learning models, the WFS/WS ratio was first
predicted, and then the optimal process parameters were chosen by taking into account the
impacts on power consumption and efficiency. The following conclusions can be drawn
from this study:

(1) Not only bead width (BW) and bead height (BH) but also Bead Cross-Section Area
(BCSA) were used as geometric response variables in machine learning models. To
calculate BCAS quickly, three mathematical functions were utilized to describe the
profile of weld beads. Among them, the arc mathematical function was the closest to
the actual cross-sectional profile, and the fitting accuracy was the highest, followed
by the semi-elliptic and cosine functions.

(2) K-fold cross-validation was used to assess the prediction performance of the machine
learning models to maximize the use of training data. The results revealed that the
SVR model had the highest prediction accuracy, with an RMSE of 1.8087 and an R2 of
0.9709. Conversely, XGBoost demonstrated the lowest accuracy. Notably, BPNN tends
to overfit when working with small sample data sets, resulting in lower prediction
accuracy for the test set than the training set.

(3) To enhance the performance of the SVR, GA and PSO were applied to optimize the
parameters of the SVR. The results showed that PSO–SVR has the highest prediction
performance among the developed models, with an RMSE of 1.1670 and an R2 of
0.9879. Compared with SVR, the prediction accuracy is greatly improved.

(4) The selection of the optimal process parameter considering the effective deposition
volume per power can reduce the welding energy consumption to some extent. The
optimized process parameters in the first single-layer single-pass experiment can
save up to 10.68% energy. In the multi-layer single-bead validation experiment, the
optimized parameters realized energy savings of up to 11.47%. The third set of
verification experiments further verified the effectiveness of the process parameter
optimization method.

In the future, more machine learning algorithms can be introduced and trained with
larger amounts of data to improve the accuracy and robustness of predicting. By combining
the slicing program with this parameter planning, a fully automatic WAAM system can be
developed to achieve higher efficiency and lower energy consumption.
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Abstract: In this work, the influence of powder reuse up to three times on directed energy deposition
(DED) with laser processing has been studied. The work was carried out on two different gas
atomized powders: a cobalt-based alloy type Stellite® 21, and a super duplex stainless steel type UNS
S32750. One of the main findings is the influence of oxygen content of the reused powder particles
on the final quality and densification of the deposited material and the powder catch efficiency of
the laser deposition process. There is a direct relationship between a higher surface oxidation of
the particles and the presence of oxygen content in the particles and in the as-built materials, as
well as oxides, balance of phases (in the case of the super duplex alloy), pores and defects at the
micro level in the laser-deposited material, as well as a decrease in the amount of material that
actually melts, reducing powder catch efficiency (more than 12% in the worst case scenario) and
the initial bead geometry (height and width) that was obtained for the same process parameters
when the virgin powder was used (without oxidation and with original morphology of the powder
particles). This causes some melting faults, oxides and formation of undesired oxide compounds in
the microstructure, and un-balance of phases particularly in the super duplex stainless steel material,
reducing the amount of ferrite from 50.1% to 37.4%, affecting in turn material soundness and its
mechanical properties, particularly the hardness. However, the Stellite® 21 alloy type can be reused
up to three times, while the super duplex can be reused only once without any major influence of the
particles’ surface oxidation on the deposited material quality and hardness.

Keywords: powder reuse; additive manufacturing; directed energy deposition; laser metal deposition;
Stellite® 21 alloy; super duplex stainless steel

1. Introduction

One of the most promising metal additive manufacturing (AM) technologies for large
and multimaterial components is directed energy deposition and blown metal powder
(DED-LB/M powder), whose acronym has recently been established in the ASTM 52900
standard guidelines [1], and which is also known as Laser Metal Deposition (LMD) in the
industrial sector. The main barrier to the adoption of DED-LB/M powder is the efficiency
of the material deposition, because due to the nature and the complex dynamics of the
process, not all of the powder that is dispensed through coaxial and discrete nozzles and
then interacts with the laser beam is melted and transformed into metal after deposition, so
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a percentage of the feedstock material (in this case powder) is wasted. One way to minimize
the impact of the loss of the unmelted material is to study how to confine its disposal in the
manufacturing cell or machine, collect it, dry it, sieve it, and reuse it for further use in a
subsequent manufacturing batch. However, one of the drawbacks in the case where the
process is carried out in an uncontrolled atmosphere (e.g., workstations/cells open to the
atmosphere), is the surface oxidation of the powder and the change of particle morphology,
in which some partially melted particles join other unmelted particles in a non-controlled
manner, and therefore do not have the same size, morphology and flowability as the virgin
particles that have not been used. There is also a shortage of reports in the literature on
how the reuse of the collected post-process powder influences the microstructure, quality
and properties of certain non-common materials deposited with reused powder.

Recently, some research papers have been published showing new methodologies
for the recycling and reuse of powder collected after additive manufacturing by DED-LB,
among which are the studies conducted with austenitic stainless steels by Gutjahr et al. [1]
and Terrassa et al. [2]. Gaining new knowledge on how to reuse metal powder in DED-
LB/M and how its reuse influences the quality of fabrications in SS 316L has also been
studied by Li et al. [3]. Interesting results of the environmental impact assessment and
sustainability of the powder feedstock were studied by Verdi et al. [4] and Joju et al. [5].
In other metal AM technologies like powder bed fusion with laser beam (PBF-LB/M),
more abundant studies are available in the literature [6–8]. A review paper has recently
been published highlighting the main challenges associated with powder recycling, such
as maintaining a uniform particle size distribution and shape for reuse, contamination
management and mitigation of the main degradation effects of repeated powder use, such
as particle deformation, contamination, oxide deposits, fragmentation, wear, sintering,
dealloying, and surface oxidation [9].

In this study, two different alloys were evaluated, Stellite® 21 type alloy and super
duplex stainless steel. According to the literature review, both alloys are not reported in
DED-LB powder reuse studies and scientific reports published. Cobalt-based alloys are
commonly used in the DED-LB process for hardfacing coatings and manufacturing. They
are recommended for applications involving wear, galling or corrosion and retain these
properties at high temperatures. They have a wide range of applications; for example,
Stellite® 6 is a common material for the seat surface enhancement of various control
valves, while Stellite® 21 is often used for valve trims under high-pressure steam and
harsh conditions [10]. Stellite® alloy compositions have also been used to remanufacture
components [11,12], for example, rail components [13]. Due to its good sliding wear and
impact resistance, these alloys have been widely used in the building up and repairing
of forging or hot stamping die components [14]. Stellite® 21 is used in applications that
require high wear resistance, as well as retaining these properties at high temperatures. The
hardness of the material is directly related to its wear resistance. This is why it is important
that the hardness and performance of the material is maintained throughout the different
powder reuse cycles.

On the other hand, the super duplex stainless steels have an austeno-ferritic microstruc-
ture with an average fraction of each phase of approximately 50 wt.%. This duplex mi-
crostructure improves simultaneously the mechanical properties and corrosion resistance.
Welding of these steels is often a critical operation [15]. The second generation of super
duplex stainless steels (SDSS) such as type UNS S32750 (DIN 1.4410/Sandvik SAF2507) is
increasingly being used in oil and gas and petrochemical applications because of its good
corrosion resistance and high strength due to its dual phase austenite/ferrite microstruc-
ture [16]. Recently, a high interest in the DED-LB processing of SDSS has been observed.
Authors like Jiang et al. [17], Iams et al. [18,19] and Brázda et al. [20] have published their
research work with type UNS S32750 super duplex stainless steel and DED processes, giving
their deep analysis and conclusions regarding the austenitic formation mechanisms, duplex
microstructure balance and understanding, mechanical properties obtained, and potential
heat treatments to be applied in this additively manufactured material.

72



Metals 2024, 14, 1031

Both materials addressed in this study are expensive in terms of their cost per kg or
powder and their reuse in the DED-LB process makes good sense, in particular, for metal
AM of medium to large parts. The aim of our research work is to study the influence
of powder reuse on particle morphology, particle surface oxidation, internal defectology,
microstructure and mechanical properties. This was done by collecting unmelted powder
particles after processing with DED-LB (LMD) up to three successive times, with no use of
virgin powder or mixing, and applying a specific methodology for reuse involving sieving
and drying in the same storage canister. In doing so, we aim to provide the scientific
community and industry with detailed technical and practical knowledge of the reuse of
these two very different families of materials processed by laser using DED process.

2. Materials and Methods

This section summarizes all feedstock materials, microstructural characterization
procedures, hardness testing equipment, laser material processing equipment, and methods
that were used in the experimental work conducted.

2.1. Materials Characterization—Equipment and Methods Used in This Work

In this research work, two metal alloys were selected for the study, a cobalt-based alloy
type Stellite® 21 and a super duplex stainless steel. The macro and microstructural analysis
of the Super Duplex samples was carried out using light optical microscopy (LOM) at
different magnifications (from 100× to 1000×) with an Olympus GX51 optical microscope
(Shinjuku City, Japan) with an image acquisition system via digital camera. The chemical
etching in the case of the SDSS was carried out using a manual etching with Beraha’s
reagent (20 mL HCl + 100 mL H2O + 1 g K2S2O5) for 12 s. For more advanced studies in
the microstructure, a field emission scanning electron microscope (FESEM) Zeiss Ultra Plus
model (Oberkochen, Germany) equipped with an X-ray detector from Oxford instruments
(X-Max) (Abingdon, UK) was also used. The area fraction of the main phases (in percentage)
was quantified by making measurements via image analysis from the micrographs. In this
case, five LOM images were taken at 200× magnification of different areas of the central
part of the cubes manufactured, and then the images were binarized to contrast each phase,
and the area represented by each phase was thereafter measured. The method used to
quantify the austenite and ferrite phases is based on determining the volume fraction
by systematic manual counting of points in the analysed area of the cross-section in the
samples studied, following the guidelines of ASTM E562-19 [21]. Microhardness Vickers
measurements were taken in an EmcoTest DuraScan durometer (Kuchl, Austria) using a
load of 100 g (HV0.1 scale).

The metallurgical characterization of Stellite® 21 powder and manufactured samples
was based on light optical microscopy (LOM) using a Leica Microsystems microscope
(Wetzlar, Germany). Microhardness measurements were carried out by a Beortek Future-
Tech FM700 Vickers hardness tester (Erandio, Spain), with a load of 500 g (HV0.5 scale).
To identify the morphology of the powder and microstructure analysis in as-built cube
samples, a Zeiss Ultra Plus FESEM (Oberkochen, Germany) was used for the analysis
and examination. All manufactured samples were cut transversally, ground, polished and
chemically etched with nitro-hydrochloric acid for variable duration (from 5 to 30 min).

For the rigorous chemical composition measurements carried out for each element in
both alloys including the oxygen content, different techniques were employed. Carbon and
sulfur measurements were determined by an Automatic Combustion Analyzer and infrared
detection, using the CS 744 procedure based on ASTM E1019-18 guidelines [22], while
oxygen content was determined using the ON 736 procedure based on ASTM E1019-18 [22]
for both the Stellite® 21 and for super duplex SS. Remaining elements were measured
using the Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES) technique.
This is a multi-elemental analysis technique. The sample must be introduced into the
equipment as a liquid, so it is necessary to perform a prior digestion of the sample using a
Thermo Scientific Icap 7400 V (Waltham, MA, USA). The procedure used is applicable for
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nickel-based and cobalt-based materials like the Stellite® 21 type alloy. For the remaining
elements in super duplex stainless steel, ICP-OES technique was also used but following
the specific procedure indicated in the UNE-EN 10361:2016 standard [23].

2.2. Feedstock—Virgin Powders Characterization

In this work, two commercial gas-atomized powders were used. One was the super
duplex stainless steel type SAF 2507 (UNS S32750) manufactured by Sandvik Osprey®.
Powder particles were sieved after atomisation to achieve a particle size of +45–90 μm
according to the certificate provided by the manufacturer. The chemical compositions
reported by the powder manufacturer are shown in Table 1.

Table 1. Chemical composition of powder batch used in the study (manufacturers certificate).

Powder
Chemical Composition (wt.%)

Co Cr Ni Mo Mn Si Ti Al C Fe P S N Others

SAF 2507 --- 24.8 7.1 3.92 0.80 0.50 0.009 0.015 0.02 Bal. 0.008 0.006 0.3 0.11
Metco 1221A Bal. 27.2 3.13 5.65 0.69 0.74 --- 0.11 0.23 <0.10 --- --- --- 0.017

As a feedstock material quality check procedure, the powder particle batch was
characterized and analysed using LOM and FESEM images. The particles’ morphology is
shown in the FESEM micrographs of Figure 1a, and the calculated particle size distribution
(PSD curve) is shown in Figure 1b. The particles showed a spherical shape, a morphology
commonly obtained from the gas atomization procedure in their manufacturing. After
the image analysis of the particles, the results revealed 10% by volume of the particles
presented a size less than 56.51 μm in diameter; 50% of the particles were less than 77.6 μm
in diameter; and a cumulative 90% by volume of the powder particles had a diameter less
than 94.57 μm. As shown in Figure 1b, the particle size distribution is almost normal, like a
gaussian distribution.

 

(a) (b) 

Figure 1. Characterization of SAF 2507 virgin powder particles. (a) FESEM micrographs (200× and
SE2 mode) and (b) histogram of the particle size distribution (PSD).

The second commercial gas-atomized cobalt-based powder used was a Stellite® 21
type alloy powder from Oerlikon (Schwyz, Switzerland) (Metco 1221A), with a particle
size of +45–125 μm according to the certificate provided by the manufacturer. It is a little
larger in size and coarser than the other powder, and the particle size distribution seems to
have a non-gaussian distribution (see Figure 2b). The chemical composition reported for
this Stellite® 21 type alloy powder is also shown in Table 1.
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(a) (b) 

Figure 2. Characterization of Stellite® 21 virgin powder particles. (a) FESEM micrographs (100× and
SE2 mode) and (b) histogram of the particle size distribution (PSD).

2.3. Laser Material Deposition—Equipment and Experimental Set-Up

The super duplex stainless steel powder was processed by LORTEK using a robotic
LMD cell equipped with a 6-axis Fanuc robot arm and a 2-axis positioner table. A solid-state
5 kW disc laser source (Trumpf TruDisk 6002, Ditzingen, Germany) operated in continuous
wave (CW) mode with a wavelength of 1030 nm was also used. The laser beam is guided
through an optic fibre of 400 μm. The configuration of the LMD robotic station includes a
fixed optic head (Trumpf BEO D70-90◦, Ditzingen, Germany) with collimation/focal length
of 200/200 mm. For powder delivery, the LMD station has a twin powder feeder with two
5 L heated hoppers (Oerlikon-Metco Twin 150, Wohlen, Switzerland) and a 3-jet discrete
nozzle (3-Jet-SO16-F manufactured by FhG ILT, Aachen, Germany). Argon was used as
protective (8.5 L/min) and carrier gas (2 L/min flow at 2 bar) for powder particles delivery.

The manufacturing and study of Stellite® 21 samples were performed in TEKNIKER
(Eibar, Spain) facilities and equipment with an LMD robotized cell, consisting of an optical
head (Precitec YC50, Gaggenau, Germany) with collimation/focal length of 200/200 mm
and a 3-jet powder nozzle cladding head (FhG ILT, Aachen, Germany) attached to an
industrial 6-axis robot arm (ABB, Zurich, Switzerland) and a CW 2 kW laser source (IPG
YLS-2000-CT-Y17, Burbach, Germany). The laser beam is guided through a 600 μm diameter
optical fibre. The powder was fed during the deposition process by means of a powder
feeder (Sulzer-Metco Twin 10C, Wohlen, Switzerland). Argon was used as shielding
(15 L/min) and powder carrier gas (8 L/min flow at 2.8 bar).

2.4. Manufacturing Process, Powder Collection and Reuse Methodology

The very first step is to prepare a series of C45 steel base plates and by grinding
them on both sides, ensuring parallelism and flatness. In this way, all the manufacturing
cycles performed maintain the same distance between the nozzle and the part and the
initial surface finish of the build plate substrate. Subsequently, each cycle consists of
manufacturing a series of prismatic specimens by DED-LB (LMD) in an uncontrolled
atmosphere, under normal conditions of pressure and temperature. The specimens’ sizes
were 20 × 20 × 10 mm3 (16 layers) cubes for super duplex builds and 15 × 15 × 10 mm3

(14 layers) cubes for Stellite® 21 builds, repeating the necessary fabrications to obtain
enough residual powder to manufacture samples in the following cycles with powder
re-used. In addition, a single track is also deposited for each cycle as a reference track for
dilution, height and width measurements.

During the DED-LB process, the non-deposited powder was collected using a col-
lecting tray. This collecting tray is cleaned with isopropyl alcohol before each cycle to
avoid cross-contamination with powder from other cycles. Once collected, the powder is
manually collected and transferred to a suitable hermetically sealed container for storage
(with two silica bags inside) until the next manufacturing and sieving cycle. The sieving of
each cycle is carried out after the manufacturing of all the test specimens. The objective is
to sieve the collected powder to remove impurities, spatter or clusters of adhered particles,
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whereby particles that are too fine or too coarse are separated, adjusting the particle size to
a typical Laser DED distribution +53–150 μm.

A vibrating gravity sieve column is used for this step, which is schematically repre-
sented in Figure 3. The setup consists of two sieves and a container for the collection of
finer powder. At the end of each cycle, the powder is poured out of the top of the column
and the vibrating sieve is activated. The vibration is maintained for at least 20 min to
ensure that the entire powder sample is processed. Once finished, the powder retained on
the finest sieve is collected so that the particle size of the sample is between 0.053 mm (53
μm) and 0.150 mm (150 μm).

Figure 3. Vibrating sieving column scheme.

Next step is the extraction of a powder sample (25 g) for analysis in the FESEM and for
chemical analysis by ICP-OES and oxygen measurement, while the remaining powder is
stored in a hermetic and standard container for the next cycle. Finally, to conclude the reuse
cycle and avoid cross-contamination, all containers are cleaned with isopropyl alcohol and
the sieves are placed into an ultrasonic bath for 20 min. Recycled powders were stored in
containers with two silica bags for drying.

The collected and recycled powder is reused and added to a clean hopper for sub-
sequent builds, so that this powder is not mixed with virgin powder (as is often done in
the reuse methodology of PBF-LB/M powder). The reuse of all collected (and not melted)
powder has been studied, with up to three cycles of use. The full workflow proposed for
the powder reuse methodology including collection and stages for characterization and
analysis is shown in Figure 4.

 
Figure 4. Full workflow methodology proposed for the powder reuse in DED-LB (LMD) process.
This methodology was used for the three cycles of use studied. Green arrows denote process steps
and orange arrows denote characterization, evaluations and analysis steps.

3. Results and Their Analysis

This section describes the main findings after deep material characterization has been
performed on the virgin and reused powders with the methodology previously described.
It also details the manufacturing trials conducted, and geometries selected as coupons, and
the results and analysis regarding chemical composition variation, microstructure, internal
defects, densification and mechanical properties obtained in the materials manufactured
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with both virgin and reused powders, up to three times/cycles for the super duplex and
for the cobalt-based Stellite® 21 type alloy.

3.1. Reused Powders—Chemical Composition and Particle Morphology Characterization

The first study conducted was the compositional element analysis in virgin and
reused powder particles, following the methodologies and using the techniques stated in
Section 2.1. In Tables 2 and 3, the chemical composition measurements are compiled for
Stellite® 21 and super duplex SS, respectively; it is shown that as the number of cycles
increases, so does the oxygen in the powder samples collected. The rest of the chemical
elements maintain stable values despite the reuse of the powder during laser processing.
This effect has been observed in other studies related to the sustainability of the LMD
process, for example using AISI 316L reused powder alloys [2,3].

Table 2. Chemical composition measured (wt.%) in Stellite® 21 powder in virgin state and after three
reuses.

Powder Sample C Si Mn Cr Ni Mo Al Fe O Co

Virgin 0.23 0.74 0.69 27.20 3.13 5.65 0.11 <0.10 0.017 Balance

1 use 0.24 0.74 0.69 27.50 3.16 5.60 0.10 0.19 0.230 Balance

2 uses 0.24 0.74 0.69 27.50 3.15 5.60 0.10 <0.10 0.180 Balance

3 uses 0.24 0.82 0.68 27.70 3.11 5.64 0.12 0.15 0.320 Balance

Table 3. Chemical composition measured (wt.%) in Super Duplex powder in virgin state and after
three reuses.

Powder
Sample

C Si Mn P S Cr Ni Mo Cu V Co O Fe

Virgin 0.017 ±
0.004

0.37 ±
0.03

0.44 ±
0.02

0.023 ±
0.002 <0.005 25.9 ±

0.4
6.49 ±

0.11
3.77 ±

0.08
0.15 ±

0.01
0.053 ±

0.004
0.060 ±

0.005 0.025 Bal.

1 use 0.02 ±
0.005

0.41 ±
0.04

0.53 ±
0.02

0.021 ±
0.002 <0.005 25.7 ±

0.4
6.62 ±

0.12
3.82 ±

0.08
0.12 ±

0.01
0.044 ±

0.003
0.048 ±

0.004 0.120 Bal.

2 uses 0.022 ±
0.005

0.43 ±
0.04

0.55 ±
0.02

0.018 ±
0.002 <0.005 26.0 ±

0.4
6.62 ±

0.12
3.80 ±

0.08
0.12 ±

0.01
0.042 ±

0.003
0.052 ±

0.005 0.330 Bal.

3 uses 0.023 ±
0.005

0.42 ±
0.04

0.55 ±
0.02

0.021 ±
0.002 <0.005 26.0 ±

0.4
6.59 ±

0.12
3.80 ±

0.08
0.12 ±

0.01
0.043 ±

0.003
0.051 ±

0.004 0.660 Bal.

On the other hand, the super duplex stainless steel powder particles are more reactive
than the cobalt-based alloy studied, according to the oxygen content measured in the reused
powder samples.

As a feedstock material quality check procedure, the powder particle virgin batch and
reused samples were characterized and analysed using LOM and FESEM images. Figure 5
shows the FESEM images of super duplex SS virgin powder particles, with one use cycle,
with two use cycles and with three use cycles.

In the case of the Stellite® 21 powder, particles were observed and analysed through
images and semi-quantitative chemical compositions. Figure 6 shows the FESEM images
of the powder particles, with 0 (virgin), 1, 2 and 3 use cycles respectively.

As for the external appearance of the powder particles, when observed in the FESEM,
no significant differences were observed; however, differences in the coloration of these
particles were observed after the visual inspection, becoming darker in the samples with
more than one use, which suggests a burning effect that could lead to surface oxidation of
the same.

77



Metals 2024, 14, 1031

(a) (b) 

(c) (d) 

Figure 5. Micrographs of powder particles by FESEM (200× and SE mode) of super duplex stainless
steel 2507: (a) virgin powder, (b) once-used powder, (c) twice-used powder and (d) thrice-used powder.

(a) (b) 

(c) (d) 

Figure 6. Micrographs of powder particles by FESEM (200× and SE mode) of Cobalt based Stellite® 21
type alloy: (a) virgin powder, (b) once-used powder, (c) twice-used powder and (d) thrice-used powder.
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In terms of particle size distribution and morphology, there is a variation in the
particle size distribution, with the virgin powder having a greater amount of large particles,
measured as equivalent diameter; its particle size frequency distribution is not completely
normal or Gaussian, with a tendency to skew to the right. This result may be due to the
fact that in the direct laser deposition process, the smaller particles tend not to be part of
the molten bath and, after successive uses of the powder, the proportion of small particles
in the powder collected after the process increases compared to the larger ones, shifting the
bias to the left. This can be seen for super duplex stainless steel particles in Figure 7 and for
Stellite® 21 type alloy in Figure 8. The characteristic particle size parameters such as D10,
D50 and D90 have also been calculated for both powders and the metrics derived from the
particle’s morphology study are summarized in Tables 4 and 5, respectively.

Figure 7. Particle size distribution of SS super duplex powder sample analysed with SEM images. (a)
Virgin powder, (b) once-used powder, (c) twice-used powder and (d) thrice-used powder.

Table 4. Particle size distribution (PSD) in μm for materials studied.

Powder
Sample

PSD (μm) for Stellite® 21 Powder PSD (μm) for Super Duplex Powder

D10 D50 D90 D10 D50 D90

Virgin 77.65 103.43 122.44 56.51 77.60 94.57
1 use 72.38 98.39 121.17 55.78 75.29 93.61
2 uses 86.70 109.61 124.36 58.24 76.29 94.54
3 uses 81.67 105.36 122.37 54.76 71.76 93.36

Concerning the morphological analysis of the powder particles, it was observed that
after the collection and sieving process of the particles, the circularity improves (one reuse
powder), but as they are reused again (2nd and 3rd cycles), their circularity decreases. It
has also been observed that the SDSS powder particles are smaller in diameter and more
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circular than the Stellite® 21 particles, which leads to the inference that they will have better
flowability than the latter.

Figure 8. Particle size distribution of Stellite® 21 type alloy powder sample analysed with SEM
images. (a) Virgin powder, (b) once-used powder, (c) twice-used powder and (d) thrice-used powder.

Table 5. Particle morphology study in powder samples studied.

Powder
Sample

Stellite® 21 Type Particles Super duplex Particles

Total Circular
Circular with

Ar < 0.4
% Circularity Total Circular

Circular with
Ar < 0.4

% Circularity

Virgin 2757 2166 1761 63.9 4530 4138 3288 72.6
1 use 2909 2339 1929 66.3 4739 4318 3584 75.6
2 uses 2693 2067 1577 58.6 4452 3961 3266 73.4
3 uses 3291 2539 1854 56.3 5192 4587 3826 73.7

3.2. Manufacturing Trials—Geometry Selected and Process Efficiency

The depositions were applied on a rectangular substrate of grade C45 with dimensions
of 100 × 200 × 30 mm3. Square multi-layer depositions of 15 mm width and 20 mm for
Stellite® 21 and SDSS, respectively, were performed on the substrate, aiming to obtain
10 mm height cubes (see Figure 9), keeping the same deposition process parameters for
each reuse cycle of the powder (nothing was changed in the successive rounds of cube
manufacturing). Bidirectional deposition strategy was used at every layer in alternate
perpendicular directions. The most relevant LMD process parameters employed for cuboids
manufacturing, such as the laser power (P), linear deposition speed (S), powder flow rate
(F), stepover distance (d) and layer thickness (h) are displayed in Table 6. These process
parameters for cube geometries were developed from previously published research work
by the authors [24] for super duplex stainless steel, and from the experience of DED-LB
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process technicians and the literature [11,12] for Stellite 21® type alloy. For the studies
of chemical composition and microstructure analysis in the bulk material (in as-built
condition), the cubes were cut from the substrate, removing the first deposited layers, to
minimize the influence of the substrate material dilution with the additive material. The
dilution effect has not been studied in this work.

 

(a) (b) 

Figure 9. Manufactured LMD Cubes: (a) Example of 15 × 15 × 10 mm3 Stellite® 21 cube manufactured
with virgin powder, and (b) 20 × 20 × 10 mm3 SAF 2507 cubes manufactured with one use (one
cycle) powder.

Table 6. DED-LB process parameters for cubes manufacturing trials.

Process Parameter
Value for Each Material

Stellite® 21 SAF 2507

Laser power (W) 1800 1000
Laser spot diameter (mm) 2.7 2.1

Speed (mm/s) 10 15
Powder feed (g/min) 10 7.4

Stepover distance 1.0 1.3
Layer thickness (mm) 0.71 0.65

Prior to the laser metal deposition process, the build plate substrates were ground
and cleaned with acetone. In addition, the substrates were weighed before and after
production of each manufacturing batch to calculate the amount of material deposited in
each case. The powder catchment efficiency was calculated for each sample to evaluate
process effectiveness. It was obtained by dividing the amount of deposited powder by
the amount of supplied powder during laser-on in the deposition trajectory path. The
above steps were repeated four times to obtain the deposited samples of Stellite® 21 type
alloy and SDSS obtained by LMD after reusing zero to three times. The efficiency of the
catchment process did not exhibit a clear correlation with the number of powder reuse
cycles (Table 7), but seems to be linked to the circularity of the particles and maybe the
flowability index of them. Despite this, the process has not in fact been optimized for
powder catchment efficiency. This was primarily due to the process parameters not being
fine-tuned for maximum efficiency. Additionally, the cube construction process lacked a
control mechanism for a constant layer height, further impacting the stand-off distance and
overall efficiency of the deposition process.

Table 7. Powder catchment efficiency of powders.

Cube Manufactured with
Powder

Process Efficiency (%)

Stellite® 21 SAF 2507

Virgin 40 73.2
1 use 36 58.6
2 uses 45 63.4
3 uses 41 61.1
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3.3. Manufacturing Trials—Bulk Material Densification, Defects and Chemical Composition

After powder reuses, the Stellite® 21 samples did not show significant internal defects.
Actually, no major defects were seen throughout the analysed cross-sections of samples in
the early recycling cycles (see Figure 10). However, in the third reuse, porosity appeared in
the inter-diffusion zone (see Figure 11). Besides the change in geometrical shape, this could
happen due to the increase of the temperature in the part during the process, but more
statistics are needed to test this hypothesis. It is worth noting that the superficial colour of
the deposition darkens when recycled powder is used, as reported by Terrassa et al. with
reused austenitic stainless-steel powders [2].

 

Figure 10. Macrographs of cube cross-sections, manufactured with Stellite® 21 (a) virgin powder,
(b) once-used powder, (c) twice-used powder and (d) thrice-used powder.

Figure 11. Dilution area in manufactured cubes with Stellite® 21 (a) using once-used powder, and
(b) with powder reused three times.

After manufacturing and cutting the bulk cubes obtained by the DED-LB (LMD)
process with the super duplex stainless steel composition grade, and to evaluate their
cross-section, a metallographic preparation of the samples was carried out. It is observed
that the surface appearance of the cubes follows the same trend, with the cubes made
from virgin powder having the best appearance. Figure 12 shows the cross section of the
fabricated cubes, where the level of defects is clearly observed and more evident in the
samples with two and three cycles of powder reuse.
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(a) 

(b) 

(c) 

(d) 

Figure 12. Macrographs of cubes cross-sections, manufactured with SAF 2507 super duplex steel
with (a) virgin powder, (b) once-used powder, (c) twice-used powder and (d) thrice-used powder.

The internal porosity of the DED samples was measured using the LOM image analysis.
Table 8 shows the measured values. In general, higher densification was obtained with
virgin powders, but in the case of SDSS powder this decreased after two cycles of reuse.

Table 8. Densification values in bulk cubes manufactured with SAF 2507 powder.

Cube Manufactured with Powder
Material Densification (%)

Stellite® 21 SAF 2507 Super Duplex

Virgin 99.97 ± 0.03 99.95 ± 0.02
1 use 99.92 ± 0.05 99.80 ± 0.36
2 uses 99.93 ± 0.05 99.42 ± 0.47
3 uses 99.77 ± 0.14 92.99 ± 3.89

The chemical composition of the bulk cubes obtained was analysed in the same way as
the powder samples collected after each manufacturing cycle. The aim was to analyse how
the main elements present vary, but particularly oxygen content. Tables 9 and 10 compile
the results of the measurements obtained.

Table 9. Chemical composition measured (wt.%) in manufactured Stellite®21 LMD cubes.

Powder Type C Si Mn Cr Ni Mo Al Fe O Co

Virgin 0.20 0.70 0.65 27.9 3.13 5.61 0.11 0.14 0.019 Balance

1 use 0.20 0.54 0.52 27.7 3.12 5.63 0.11 0.36 0.042 Balance

2 uses 0.21 0.48 0.49 27.7 3.17 5.56 0.11 0.24 0.052 Balance

3 uses 0.16 0.51 0.52 27.8 3.09 5.59 0.11 0.74 0.051 Balance
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Table 10. Chemical composition measured (wt.%) in manufactured Super Duplex LMD cubes.

Powder
Type

C Si Mn P S Cr Ni Mo Cu V Co O Fe

Virgin 0.018 ±
0.005

0.42 ±
0.04

0.42 ±
0.02

0.022 ±
0.002 <0.005 25.5 ±

0.4
6.53 ±

0.11
3.76 ±

0.08
0.15 ±

0.01
0.051 ±

0.004
0.062 ±

0.005 0.130 Bal.

1 use 0.02 ±
0.005

0.40 ±
0.04

0.55 ±
0.02

0.015 ±
0.002 <0.005 25.1 ±

0.4
6.74 ±

0.12
3.78 ±

0.08
0.10 ±

0.01
0.039 ±

0.003
0.048 ±

0.004 0.150 Bal.

2 uses 0.018 ±
0.005

0.36 ±
0.03

0.45 ±
0.02

0.017 ±
0.002 <0.005 25.2 ±

0.4
6.73 ±

0.12
3.79 ±

0.08
0.11 ±

0.01
0.038 ±

0.003
0.054 ±

0.005 0.320 Bal.

3 uses 0.018 ±
0.005

0.32 ±
0.03

0.42 ±
0.02

0.018 ±
0.002 <0.005 25.1 ±

0.4
6.73 ±

0.12
3.80 ±

0.08
0.12 ±

0.01
0.036 ±

0.003
0.054 ±

0.004 0.490 Bal.

As observed, there is no appreciable volatilization of chemical elements after laser
metal deposition of the materials, perhaps because none of them are light elements. What is
observed is the influence of the use of powder with high surface oxidation in the particles,
i.e., in the SDSS samples there is a higher oxygen content in the bulk material (as-built
condition), which in the case of this super duplex grade composition can have a significant
impact on the formation of oxides and on the balance of austenite/ferrite phases that form
the dual-phase microstructure.

3.4. As-Built Material—Microstructure Analysis

The microstructure of deposited samples is composed of dendrites (see Figures 13 and 14).
As the number of cycles of powder reuse increases, the deposited layers still showed good
metallurgical bonding and adequate adhesion between layers. The dendrite growth direc-
tion is not continuous because of the building strategy, which alternates perpendicularly
between odd and even layers. This strategy alters the thermal dissipation of each layer
that is deposited, thereby inhibiting the continuous growth of columnar crystals. This
behaviour was observed in both materials.

 

Figure 13. Detail of dendritic structure in Stellite® 21 samples manufactured with: (a) Virgin powder
(zero cycles), (b) one-reuse powder (one cycle), (c) two-reuses powder (two cycles), and (d) three-
reuses powder (three cycles).
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Figure 14. Detail of austenite-ferrite dendritic structure (LOM micrograph, 100×, etched) in SAF
2507 samples manufactured with: (a) Virgin powder (zero cycles), (b) one-reuse powder (one cycle),
(c) two-reuses powder (two cycles), and (d) three-reuses powder (three cycles).

In the etched condition for the SDSS sample (chemical etching by immersion in Be-
raha’s reagent) the dendritic microstructure is a bit coarser than the dendritic microstructure
observed in the cobalt-based material. In Figure 14, the optical micrographs are compiled
for SAF 2504 cubes. The microstructure of as-built material is composed of austenite-ferrite
in this case.

The SDSS alloy seems to be more sensitive to the reuse of the powder than the cobalt-
based alloy. At higher magnification, the unbalance of the austenite and ferrite phases is
visible (see quantification values compiled in Table 11) and internal defects appear after
solidification, such as pores and lack of fusion; also, oxides inclusions that usually surround
these defects are more evident in the SAF 2507 samples manufactured with two- and three-
reuses powder (cycles two and three), see the oxides inclusion identification and EDS maps
in Figures 15 and 16, respectively.

Table 11. Phase quantification in the microstructure of bulk cubes manufactured with SAF 2507
powder.

Cube Manufactured with
Powder

Phase Quantification (%)
Ferrite Ratio

Austenite Ferrite

Virgin 49.9 ± 2.8 50.1 ± 2.8 0.50
1 use 53.6 ± 4.3 46.4 ± 4.3 0.46
2 uses 57.4 ± 4.7 42.6 ± 4.7 0.43
3 uses 63.0 ± 6.0 37.0 ± 6.0 0.37
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Figure 15. Detail of Cr-Si rich oxides present in a SAF 2507 cube manufactured with thrice-used
powder (FESEM micrographs at 250× and 1000×, BSE mode, sample polished).

Figure 16. FESEM micrograph (BSE mode, 250×) and EDS maps of Cr-Si rich oxide present in a SAF
2507 cube manufactured with thrice-used powder (three cycles).
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The relation between oxygen content and the stabilization of austenite and Cr-Si rich
oxides formation in the super duplex stainless steel is evident. As can be observed in
Figure 17, the higher the oxygen content in the bulk material (present mainly in the form
of oxides around the pores and fusion faults), the greater the stabilization of the austenite
phase, so that after solidification of the material a lower proportion of the ferrite phase is
obtained. This is because oxygen is itself a gamma-magnetic element, and this promotes
the stabilization of the austenite phase in SS. The ferrite ratio drops from 0.50 using virgin
powder to 0.37 using reused powder in three processing cycles by LMD.

Figure 17. Evolution of oxygen content in powders and cubes and main phases present in the
microstructure of SAF 2507 super duplex stainless steel obtained by LMD (DED-LB) process.

3.5. As-Built Material—Mechanical Properties/Hardness

Vickers micro-hardness measurements of every Stellite® 21 sample was obtained from
the surface of the cube to the interface between the deposited and substrate materials every
1 mm with a load of 0.5 kg. The resulting average micro-hardness value for each sample is
represented in Figure 18. The hardness of the samples decreases as the powder is reused.
This can be caused by the reduction of carbon and manganese and increment of oxygen
content in the cubes manufactured with reused powder, considering that the C content of a
Stellite® 21 alloy determines the volume fraction of carbides precipitated in the alloy and
hence its hardness, as reported previously by Liu et al. [25].

Hardness measurements were also performed in super duplex cubes cross-sections,
making a sweep with indentations from the surface of the cube; the first indentation was
made at 250 μm from the surface and then the following ones separated 500 μm between
them, reaching the first layer. In a similar way, the hardness of SAF 2507 LMD samples
decreases as the powder is reused (see the graph of Figure 18), because the amount of
oxygen increases and more oxides and austenite are formed, lowering the strength due to
reduced ferrite content in comparison with samples produced with virgin powder.
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Figure 18. Average microhardness measured in cross-section of cubes manufactured by LMD with
virgin and reused powder.

4. Conclusions

The main conclusions based on the results obtained and their analysis in this research
work are as follows:

• A methodology has been proposed for the reuse of unmelted metallic powder after
the DED-LB (LMD) manufacturing process. Two different alloys, one cobalt-based
and one iron-based, have been evaluated and processed at two LMD robotic stations
in different locations for the evaluation of the reuse of powders.

• In the present study, cobalt-based alloys such as the Stellite® 21 type are less reactive
and less sensitive to powder reuse in the DED-LB (LMD) process than super duplex
stainless steel type SAF 2507 (similar to UNS S32750/DIN 1.4410). This is because
cobalt-based alloys are a less reactive material and not prone to oxides formation and
austenitic phase stabilisation in their microstructure.

• In general, higher densification was obtained in as-built samples manufactured with
virgin powders, but in the case of SDSS powder the densification decreases after two
cycles of reuse. No loss of densification was observed in the case of Stellite® 21 type
alloy, in fact the densification after three reuses in this powder did not drop below
99.74%.

• The ferrite ratio (proportion of ferrite in the duplex microstructure) drops from 0.50
using virgin powder to 0.37 after three reuse cycles in the case of super duplex stainless
steel. This can have a strong influence on the performance of components manufac-
tured by DED-LB and subjected to corrosion and loading.

• The average micro-hardness of the deposited samples of Stellite® 21 and SAF 2507
super duplex stainless steel decreases as the powder reuse increases due to the fact
that the oxygen content increases, and the reduction of carbon and manganese in the
cobalt-based alloy and the formation of oxides and austenite for the SDSS alloy.

• Powder particles of super duplex stainless steel alloy can be reused only one time
without an increase of internal porosity and oxides formation within deposited layers
in the additive process, while powder particles of the Stellite® 21 type alloy can be
reused up to three times without an increase in internal porosity or lack of fusion in
the deposited material.
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Abstract: Internal state variable models are well suited to predict the effects of an evolving mi-
crostructure as a result of metal-based additive manufacturing (MBAM) processes in components
with complex features. As advanced manufacturing techniques such as MBAM become increasingly
employed, accurate methods for predicting residual stresses are critical for insight into component
performance. To this end, the evolving microstructural model of inelasticity (EMMI) is suited to
modeling these residual stresses due to its ability to capture the evolution of rate- and temperature-
dependent material hardening as a result of the rapid thermal cycling present in MBAM processes.
The current effort contrasts the efficacy of using EMMI with an elastic–perfectly plastic (EPP) material
model to predict the residual stresses for an Inconel 718 component produced via laser powder
bed fusion (L-PBF). Both constitutive models are used within a thermo-mechanical finite element
framework and are validated by published neutron diffraction measurements to demonstrate the
need for higher-fidelity models to predict residual stresses in complex components. Both EPP and
EMMI can qualitatively predict the residual stresses trends induced by the L-PBF local raster scanning
effects on the component, but the influence of the temperature-dependent yield and lack of plastic
strain hardening allowed EPP to perform similar to EMMI away from free surfaces. EMMI offered the
most insight at the free surfaces and around critical component features, but this work also highlights
EMMI as a process–property-dependent model that needs be calibrated to specimens produced with
a similar reference structure for microstructure evolution effects to be accurately predicted.

Keywords: additive manufacturing; thermomechanical modeling; internal state variable models;
residual stress; finite element method; inconel alloys

1. Introduction

Metal-based additive manufacturing (MBAM) is an advanced manufacturing process
by which a component is fabricated through adding metal material to build a component,
rather than by removing or casting material [1,2]. MBAM commonly consists of depositing
material in a layer-by-layer fashion that is then fused together through melting the de-
posited material with a moving heat source. This methodology is executed with a variety
of different mechanisms, including laser powder bed fusion (L-PBF) [3], directed energy
deposition (DED) [1], and wire-arc additive manufacturing (WAAM) [4]. The process of
melting and solidifying between each layer occurs rapidly, which induces residual stresses
that can impact component performance in terms of fatigue life [5] and can cause part
cracking [6] and part deformation [4,7,8]. For example, as the initial layer is deposited,
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it solidifies and achieves mechanical equilibrium via expansion. After the next layer is
deposited and subsequently melted, the surface between the two layers begins to interact.
As the current layer material is melted, heat is conducted through it to the previous layers,
causing them to expand. However, the previously deposited layer and current layer heat to
different temperatures, and therefore have different cooling rates. This mismatch in cooling
rates causes the parts to shrink non-uniformly, which induces a combined tension and
compression state in the component. These effects are further exacerbated by the addition
of more layers and subsequent thermal cycling. These residual stresses are strongly influ-
enced by the machine process parameters used [9–12]. The machine process parameters
include, but are not limited to, laser power, laser scan speed, layer thickness, and scan
strategy [13]. Therefore, designers must perform numerous experiments to determine
optimal machine process parameter sets for a given material for each MBAM technique. To
aid in this endeavor, numerical methods have been developed to model MBAM processing
effects on fabricated components. Amongst the most common methods employed for part-
scale models are finite element (FE) sequentially coupled thermomechanical simulations
that model the response of the part during fabrication [14–17]. For L-PBF, the FE method
can be employed by using a moving heat source to represent the laser combined with an
element birth and death technique [18,19] through a progressive element activation scheme
to mimic the powder deposition for each layer [7]. This allows for the nodal temperature
histories to be used as initial conditions to solve for the thermally induced stresses in the
mechanical model. For material response, a number of modeling efforts employ an elastic-
perfectly plastic (EPP) material model [14] with temperature-dependent properties [20],
while others attempt to account for the inherent anisotropy induced as an artifact of the
MBAM process or stress relaxation in the form of a relaxation temperature [21]. A higher
fidelity material modeling approach can be accomplished through leveraging internal state
variable (ISV) models, which attempts to predict the effects of the lower-length scales on the
continuum scale. However, little research has been done to predict the thermomechanical
effects of the MBAM process with ISV models outside of an implementation of a modified
Bammann–Chiesa–Johnson (BCJ) material model [22] and the Evolving Microstructural
Model of Inelasticity (EMMI) for DED modeling [23].

The cyclic temperature history observed during the L-PBF process results in a contin-
ually changing microstructure. The resultant microstructure and its associated features
such as dislocation movement, phase transformation, and hardening, directly contribute
to the as-built component’s residual stresses, distortion, and mechanical properties. Thus,
accounting for the evolutionary history of a component’s features with a physically based
ISV modeling methodology will better connect the machine process parameters with the
component’s mechanical response compared to modeling approaches that do not account
for the microstructural effects of processing history. The proposed ISV model of interest
in this work is EMMI. Although EMMI was primarily developed to capture the effects of
high strain rate finite deformation of metals [24], the large fluctuations in temperature and
thermal cycling along with resultant distortion and residual stresses make EMMI an ideal
candidate to model the process due to its temperature dependence and ability to capture the
evolution of hardening. While this work focuses on L-PBF, EMMI has been used to model
DED in previous work with success [23]. The primary features of EMMI used in this work
are as follows: (i) the elastic modulus is temperature- and damage-dependent; (ii) plasticity
is described by isotropic and kinematic hardening variables and models both the hardening
and recovery mechanisms that characterize the dislocations and cell structures formed
during deformation.

The constitutive models employed in this work are temperature-dependent EPP
and EMMI to represent low- and high-fidelity modeling approaches, respectively. The
implementation of EMMI in this work evaluates whether more physically informed material
models are needed for more accurate residual stress predictions. The aim for this effort is
to contrast predictions for the residual stresses experienced in an L-PBF produced part of
Inconel 718 (IN718) with complex geometry features such as fillets and holes by contrasting
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with neutron diffraction results [25] for validation to further develop an understanding of
material modeling fidelity limitations and needs for MBAM.

2. Materials and Methods

All simulations leveraged Abaqus/Standard 2019 [26]. The thermal simulation was
conducted on a local machine using a 32-core AMD Threadripper. The thermal results were
then transferred to a Cray CS300-LC cluster, where 3 nodes with 20 threads per node were
used to solve for the mechanical response. No graphical processing unit (GPU) acceleration
was used for these simulations [27]. Both the EPP and EMMI implementations used the
same thermal history input for the FE sequentially coupled thermomechanical framework
to predict the mechanical response for an accurate comparison [28]. The computer aided
designs (CAD) were developed using Solid Edge 2023 [29], and meshing was accomplished
using Coreform Cubit 2022.6 [30].

2.1. L-Shape Geometry

To contrast the efficacy of EMMI with an EPP model, a component with complex
features such as curved edges and holes was needed. The adopted geometry as shown in
Figure 1 is replicated from [25], where neutron diffraction was performed on the beamline
KOWARI with the Australian Nuclear Science and Technology Organization (ANSTO)
to determine internal residual stresses on the L-PBF produced component. To mimic the
L-PBF post-processing, the part was extruded an additional 0.4 mm down to capture the
stress relief and material loss in the part from wire electrical discharge machine (EDM)
removal. The part was modeled on square substrate with a depth of 12.7 mm. The entire
substrate was not modeled to reduce computational costs, and the size was reduced to
a square cross-sectional area of 65 mm × 65 mm to allow for there to be at least 10 mm
all around the component. Both the substrate and the L-shape part were assumed to be
fully dense, and any porosity was assumed to be negligible. The substrate is not shown in
Figure 1 for clarity. The modeled materials for the component and substrate were IN718
and 316 L, respectively. The cross-sections labeled C2 and C3 intersecting the hole shown
in Figure 1 will be of focus for characterizing residual stresses around complex geometries.

Figure 1. Image of L-shape part showing the C2 and C3 cross–sections intersecting the hole of interest
to compare with experimental measurements.

2.2. Mesh

Partitions were made to the geometry along the cross-sections C2 and C3, as shown
in Figure 1, to ensure nodes and element faces were on the cross-sections to match ex-
perimental measurement locations without interpolating. An additional partition was
added between the part and the substrate for sectional property assignments. A non-
uniform mesh with a static adaptive mesh refinement was leveraged for element mesh
generation [31], where the element size increased through the powder and substrate to
reduce computational cost but maintain accuracy for the component. The thermal mesh
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formulated consisted of the part on the substrate surrounded by powder, as illustrated in
Figure 2a, with a total of 688,636 DC3D8 elements. For the mechanical analysis, the element
type was changed to C3D8R, and the elements associated with powder were removed since
the powder will have a negligible contribution to the mechanical response of the part [32].
The edges of the part were seeded at 0.4 mm, whereas the rest of the part had a global seed
size of 2.5 mm using a sweep meshing scheme. The seed size of 0.4 mm was used to allow
for 25 element layers to be progressively activated to represent the L-PBF process. The mesh
consisted of a single part, and therefore, tie constraints between the substrate, part, and
powder were not needed. Furthermore, this approach uses a lumped-mass assumption,
as each element layer represents 10 layers of powder to reduce computational costs [15].
Mesh quality was determined through the aspect ratio as illustrated in Figure 2b.

Figure 2. (a) The mesh used for the thermal model was partitioned into three sections for applying
different materials models to each: the part, the powder, and the substrate. The elements associated
with the powder were removed for mechanical analysis. (b) Mesh element aspect ratio contour to
illustrate quality of mesh from the top-down view. Element density was coarsened in the powder
and substrate since they were not the area of interest, but were still needed to capture their effects on
the part.

The average aspect ratio for the L-shape part was 1.04, while the average aspect ratio
was allowed to change and deviate more for the powder and substrate, as shown in Table 1.

Table 1. Mesh quality metrics.

Aspect Ratio L-Shape Powder Substrate

Average 1.04 1.64 2.29

Minimum 1.00 1.00 1.00

Maximum 1.66 4.52 5.61

2.3. Loads and Boundary Conditions

For the thermal model, an initial and two heat-transfer simulation steps were defined
for the printing and cooling processes. As outlined in Table 2, the substrate was assigned
an initial temperature to mimic the heated chamber, while the elements associated with the
deposited material were initialized to room temperature upon activation. The deposited
material represents both the L-shape part and the un-melted powder, as illustrated in
Figure 2a.

For the mechanical model, the bottom surface nodes of the substrate were fixed and
the elements associated with the powder were removed to reduce computational time. As
each layer of elements was activated in the mechanical model, a relaxation temperature
of 750 ◦C [33] was assigned to all elements, and then each element was prescribed a set
of nodal temperatures as determined from the output of thermal analysis. Following the
cooling step in the mechanical model, a cut removal step via *MODEL CHANGE in Abaqus
was leveraged to remove the elements that made up the additional 0.4 mm of thickness
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added to separate the part from the substrate. Separate steps were used to mimic actual
post-processing conditions. The mechanical output at the end of each step is shown in
Figure 3.

Table 2. Thermal loading steps and boundary conditions.

Thermal Loading and Boundary Conditions

Step Description 316L steel substrate IN718 L-Shape and Powder

1 Initialization Substrate initialized to 200 ◦C Deposited material progressively initialized to 23 ◦C

2 Material Deposition/Printing Nodes on substrate bottom
surface fixed to 200 ◦C

Constant convection and radiation applied to
exterior surfaces with sink temperature of 200 ◦C

Concentrated moving heat source dictated by event
series applied to L-shape part

3 Cooling Nodes on substrate bottom
surface fixed to 23 ◦C

Constant convection and radiation applied to
exterior surfaces with sink temperature of 23 ◦C

Figure 3. The mechanical simulation showing von Mises stresses consists of 4 steps: (a) initialization
of substrate and initial boundary conditions, (b) predictions of stresses as a result of the layer-wise
printing, (c) stress relaxation predictions from cooling, (d) predictions of stress as part achieves
equilibrium after being removed from the substrate.

Automatic incrementation was used to determine the stable time increment [26] with
the maximum for the thermal and mechanical models set to 20 s and 50 s, respectively,
during printing. The minimum stable time increment was set to 1 × 10−5 s for both
the thermal and mechanical modes. In addition, the thermal simulation used an output
time series based on the generated event series to force Abaqus to adjust the increment
size to solve for the temperatures at key event times during the printing process [34].
These key event times were defined as before element layer activation, immediately before
raster scanning, at 5 interval time points during the raster scanning, and at the end of
raster scanning. The output cycle was repeated for all layers during the thermal model
and was used to provide the key points of the thermal history to the mechanical model.
This significantly reduced the computational time of using a specified increment size and
allowed for a larger time increment to be used.
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2.4. Thermal Modeling

The governing equation for the transient heat conduction that drives and dominates
the thermal model is portrayed in Equation (1):

ρCp
∂T
∂t

= ∇·(−κ∇T) + Q (1)

where ρ is the material density; Cp is the specific heat capacity; T is the temperature; t is
the time; κ is the thermal conductivity; and Q represents the thermal load from the heat
source. The thermal load consists of the heat contributions from the conduction via the
concentrated moving heat source, convection, and radiation. The convection heat transfer
is determined using Newton’s law of cooling as illustrated in Equation (2):

qconv = h(TS − T∞) (2)

where h is the convection heat transfer coefficient; TS is the surface temperature of the
part; and T∞ is the sink temperature. The convection heat transfer coefficient for the whole
model was assumed constant at 15 W/m2K from [5]. The radiation effects are accounted
for with the Stefan–Boltzmann law as shown in Equation (3):

qrad = σε
(

T4
S − T4

∞

)
(3)

where ε is the emissivity and σ is the Stefan–Boltzmann constant. The emissivity for the
whole model was assumed constant at 0.3 from [5]. A concentrated moving heat source is
used to represent the conduction from the laser. This strategy was implemented over other
models such as a Goldak Ellipsoidal model [35] due to the elements being much larger than
the laser spot size and for computational efficiency [36]. This assumption is reasonable due
to the high speed of the laser with respect to the size of the elements and the overall size
of the part, and the cross-section in the build-direction has minimal variance throughout
the build [10]. The laser process parameters for laser power and speed were 200 W and
900 mm/s for the infill and a 100 W and 450 mm/s for the contour, respectively, to reflect
the build from [25]. The scan strategy, or heat source path, via the event series selected
was meander. The original component was printed using a stripe scan strategy, but due
to event series generation limits, meander was used. The difference in the effects of these
scan strategies for this component are then assumed to be negligible. The CAD file used for
mesh generation was also used to develop a g-code file via Slic3r [37] as shown in Figure 4.

 
Figure 4. Thermomechanical modeling flow showing transition from CAD to mesh and process
parameters and from CAD to g-code to the AMPES-generated event series to create inputs for the
thermal and mechanical models.
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The machine process parameters derived from [25] alongside the g-code files generated
by Slic3r were provided as inputs to AMPES [34], a Python event series generation pre-
processing tool that uses a RepRap flavored g-code file to create print-path event series for
use with numerical solvers. The resulting input power and theoretical volumetric energy
density, as estimated from the generated event series are shown in Figure 5a and Figure 5b,
respectively. The input volumetric energy density was approximated using Equation (4)
from [13].

EDest =
P
(

1
hatch·v

)
t

(4)

where EDest is the estimated input volumetric energy density; P is the input power; hatch is
the hatch spacing; v is the laser speed; and t is the layer thickness. The meshed files
designed in Cubit paired with the generated event series were used as the input to
Abaqus to implicitly simulate the thermal and mechanical response of the component.
See Appendices A and C for thermal material constants for IN718 and 316L, respectively.
Approximating an interlayer dwell time [38] of 180 s with 347 layers, the total step time for
printing was computed by AMPES to be 73,249 s, or 20.3 h, which is assumed to be close to
how long the L-shape parts from [25] took to fabricate with the selected L-PBF machine
process parameters.

 

Figure 5. (a) Power and (b) theoretical input volumetric energy density plotted in 3D space as
estimated by the generated event series with associated machine process parameters from [25].

2.5. Mechanical Modeling—Elastic–Perfectly Plastic

The EPP model assumes that no hardening occurs in the material system shown in
Equation (5):

ε =

{ σ
E

εel + εpl + εth

σ < σy
σ ≥ σy

(5)

where ε is the total strain; εel is the elastic strain contribution; εpl is the plastic strain
contribution; εth is the thermal strain contribution; σ is the nominal stress; σy is the yield
stress of the material; and E is the Young’s Modulus. Though the actuality of a material
foregoing any form of strain hardening or thermal softening is unrealistic, the amount
of hardening can be small enough in ductile metals for the use of the EPP model as an
approximation. For the purposes of demonstrating the robustness of EMMI to capture
flow stress, the limitations of EPP serve to stress the need for a physically based ISV. The
mechanical strains are interpreted from the prescribed nodal temperatures via thermal
expansion given as:

εth = α
(
T, fβ

)(
T − T0

)
− α

(
TI , f I

β

)(
TI − T0

)
(6)

where α thermal expansion coefficient; fβ are the current values for the predefined field
variables; T0 is the reference temperature; TI is the initial temperature; f I

β are the initial
value of the of the field variables [26]. These strains are related to stress via Hooke’s law:

σ = Cε (7)
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where C is a rank four material stiffness tensor. Mechanical properties for IN718 and 316L
are listed in Appendices B and D, respectively.

2.6. Mechanical Modeling—Evolving Microstructural Model of Inelasticity

EMMI was developed to predict the inelastic response of metals in environments
containing high strain rate and large fluctuations in temperature. Thus, EMMI is an ideal
candidate to model the L-PBF process due to the aforementioned rapid thermal cycling
observed. EMMI is a dislocation mechanics-based ISV model and is the successor to
the widely used BCJ plasticity model [39]. Relevant updates to EMMI from BCJ include
updated equations representing changes to strain rate effects and recovery mechanisms.
These updates position EMMI as more physically based than BCJ, particularly in the
formulation of plasticity. Furthermore, as an ISV model, EMMI captures state variables
to track the cyclic temperature history, hardening, and recovery effects observed in the
L-PBF process. The version of EMMI used in this work was modified to include the
relaxation of deviatoric stresses, hardening variables, and plastic strains above 80% of
the melting temperature of the metal [23]. The assumption that justifies this modification
lies in the physical basis of increased dislocation motion that occurs above 80% of the
melting temperature resulting in annihilation of work hardening which is caused by the
metal behaving as a linear viscous material [40]. Furthermore, the implemented version of
EMMI was based upon three features: (i) the temperature dependence of yield strength and
Young’s Modulus; (ii) isotropic and kinematic hardening variables to track the evolution of
plasticity; and (iii) hardening and recovery mechanisms that represent the cell structures
and dislocations created under deformation.

The finite strain deformation gradient, F, is multiplicatively decomposed into the
following: (i) the thermal deformation gradient, Fθ , (ii) the deviatoric plastic deformation
gradient, Fp, (iii) the volumetric deformation gradient, Fd, and (iv) the elastic recoverable
deformation gradient, Fe [24]. Thus, the total deformation gradient is shown in Equation (8).
Damage is neglected in this implementation due to the relatively small strain nature
of L-PBF.

F = FeFdFpFθ (8)

The plastic strain is represented by three equations: (i) the inelastic flow rule,
(ii) isotropic hardening, and (iii) kinematic hardening. The inelastic flow rule is shown
in Equation (9), where σeq is the equivalent stress, κs is internal stress due to isotropic
hardening, Y(θ) is the temperature-dependent yield function, and f (θ) is a temperature-
dependent material parameter. The strain rate due to isotropic hardening,

.
εs, is shown

in Equation (10), where H is a hardening material constant, RD(θ) is a dynamic recov-
ery constant, and Rs(θ) and Qs(θ) are temperature-dependent static recovery constants.

The strain rate due to kinematic hardening,
.
β, is shown in Equation (11), where h is a

hardening material constant, rd(θ) is a temperature-dependent dynamic recovery constant,
and β is isotropic hardening. The calibration constants used in this study can be found
at reference [41]. Further documentation for EMMI can be found in Marin et al. [24]. See
Appendix E for EMMI material parameters used.

.
ε

p
= f (θ)

[
sinh

(
〈 σeq

κs + Y(θ)
− 1〉

)]n
(9)

.
εs = [H − RD(θ)εs]

.
ε

p − Rs(θ)εssinh[Qs(θ)εs] (10)

.
β = hFeTdpFe − rd(θ)

.
ε

√
2
3

∥∥β
∥∥β (11)

3. Results

The computational resources used for the thermal model and mechanical models
with each material model are listed in Table 3. The total runtime for all jobs was about

98



Metals 2024, 14, 1210

100 h, or just over 4 days. This framework then offers significant computational time
savings over using a smaller increment size and no initial temperature in the mechanical
model. Through preliminary runs using a fixed time increment size of 0.4 s with similar
mass lumping assumptions, the thermal model was estimated to have taken 3 to 4 months
to finish, which was not feasible. This also did not account for the mechanical model
predictions, which usually take much longer on account of the added degrees of freedom.
It is also important to note that the thermal model took longer to solve due to its much
smaller time increment scheme, as noted in Section 2.3. This resulted in the thermal model
having 3191 increments, as opposed to the EPP and EMMI mechanical model predictions
having 498 and 504 increments, respectively. Despite having fewer degrees of freedom, the
smaller increment size combined with fewer computing threads resulted in a much higher
runtime than the mechanical model predictions. Lastly, the thermal predictions were solved
on a different thread count than the mechanical predictions due to resource availability.

Table 3. Computational resources used.

Thermal EPP EMMI

Thread Count 32 60 60

Element Count 688,636 540,176 540,176

Runtime (h) 62.6 17.2 20

Figure 6 shows the moving heat source at the final increment of the final layer. The
expected thermal gradation outlined in the literature is qualitatively present [42], as shown
in Figure 6a, and the laser radiation penetration depth is shallow, as expected for IN718
being printed with L-PBF [43], as shown in Figure 6b. The temperatures experienced by
the part due to the heat source were approximately 350 ◦C, and it provided those thermal
histories around the hole. This is the rationale for using an initial temperature of 750 ◦C [33]
in the mechanical models as a relaxation temperature [21]. This approach provides more
information on the local raster scanning effects on residual stresses at complex features
than just layer heating by combining the initialized temperature in the mechanical model
with the lower temperatures from the local raster scanning at key time points.

Figure 6. Predicted thermal history dictated by moving heat source at final increment of a layer
during printing of (a) top view and (b) front view cross-section.

3.1. Mechanical Model Results—Surface C2

The mechanical models show the general qualitative trend of AM produced parts,
with tensile stress states at the free surfaces and compression internally, as shown in the
literature [25,44]. Contrasting EMMI with EPP, EMMI tends to yield much higher residual
stresses as opposed to EPP in Figure 7, with the greatest deviation being along the sides of
the hole in the build direction.
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Figure 7. Predicted EPP and EMMI residual stress contours for stresses in (a) XX, (b) YY, and (c) ZZ
directions for cross–section C2.

By observing the residual stresses along the line of measurement in Figure 8 on cross-
section C2, it is determined that both EPP and EMMI capture the inflection of tensile to
compressive to tensile again for all principal stress directions, showing that both models
can qualitatively capture the stress response. However, the compressive stresses predicted
by both EPP and EMMI are much stiffer than the experimental observation by as much as
200 MPa. Lastly, both models show higher extrema closer to free surfaces, but due to the
implementation of the neutron diffraction measurements not approaching the free surface,
these simulation points cannot be validated.

 

Figure 8. The predicted EPP and EMMI residual stresses (dashed lines) contrasted with the experi-
mentally measured (EXP, solid lines) residual stresses [5] in the (a) XX, (b) YY, and (c) ZZ along the
line of measurement on cross–section C2.

3.2. Mechanical Model Results—Surface C3

Similar findings can be found with cross-section C2 for cross-section C3 when con-
trasting EPP and EMMI in Figures 9–11. The stress extrema predicted by EMMI are higher
for both tensile and compressive states, with the stresses in the YY and ZZ at the surface of
the hole being the most notable.
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Figure 9. Predicted EPP and EMMI residual stress contours for stress in XX for cross–section C3.

Figure 10. Predicted EPP and EMMI residual stress contours for stress in YY for cross–section C3.

Figure 11. Predicted EPP and EMMI residual stress contours for stress in ZZ for cross–section C3.

Qualitatively, both models yield a similar stress contour to the neutron diffraction
results. Interestingly, EPP outperforms EMMI for the stress measurements along the line
of measurement from Figure 12 for both the YY and ZZ principal stress directions, high-
lighting that there is artificial hardening being induced by EMMI for the stress predictions.
Furthermore, based on the performance of EPP and the minimal plastic stresses observed,
it would show that temperature dependent yield is what drives the residual stresses in the
selected L-PBF component produced with the given machine process parameters.
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Figure 12. The predicted EPP and EMMI residual stresses (dashed lines) contrasted with the experi-
mentally measured (EXP, solid lines) residual stresses [5] in the (a) XX, (b) YY, and (c) ZZ along the
line of measurement on cross–section C3.

3.3. Modeling Limitations

Due to the size of the mesh and nature of the L-PBF simulation process, an h-refinement
was not feasible for this effort, and the mesh became dependent on aspect ratio for quality
assurance. Furthermore, due to the lack of experimental in-situ thermal history data,
quantitative thermal model validation via heat source spot size or thermal gradation
through the build height was not possible. Also, due to larger time increments used,
the peak temperatures above melt expected from L-PBF are not captured in the thermal
predictions and far-field temperatures are used. Lastly, both the L-shape part and substrate
were assumed to be fully dense since information on part density was not provided with the
neutron diffraction data from [5]. However, from the literature characterizing similar IN718
L-shape parts [45] and determining that porosity was present, it is likely that the referenced
L-shape part modeled in this effort also had porosity throughout. By not accounting for this
porosity in the current work, stress predictions are likely to over-predict where porosity is
dense in the L-shape part due to the inability of the L-shape part to carry a high load in
these regions.

4. Conclusions

A comparison between neutron diffraction experimental results and numerical pre-
dictions produced through FE methods leveraging EMMI and EPP material models of the
induced residual stresses from L-PBF was made. Key takeaways from the comparison are
as follows:

• Leveraging lower raster scanning temperatures at key event points with an initialized
temperature equivalent to the relaxation of the given material in the mechanical model
provides a reasonable amount of far-field thermal history information to predict
residual stresses accurately.

• Stresses were the highest at the free surfaces, shown both experimentally and
numerically.

• The localized stresses at regions of complex features such as holes demonstrate the
need to account for local raster scanning effects in numerical models.

• Plastic hardening appears to have little effect on the L-PBF response away from the
free surfaces of the L-shape part, as determined experimentally.
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• Both EPP and EMMI qualitatively agree with the neutron diffraction measurements
for stress on the C2 and C3 surfaces.

• The residual stresses in the L-shape part are strongly influenced by the temperature-
dependent properties of the IN718 material.

• The influence of the temperature-dependent yield on the solution and lack of plas-
tic strain induced hardening in areas away from free surfaces allowed for EPP to
more closely match the neutron diffraction measurements than EMMI in some cases,
specifically on the cross-section C3 for XX and YY.

• Though not validated by experimental data due to neutron diffraction depth penetra-
tion limitations, the stresses at the hole surfaces predicted by EMMI are as much as 67%
higher than EPP, which could be attributed to plastic hardening at the free surfaces.

• Both EMMI and EPP struggled to predict maximum compressive stresses in the XX,
YY, and ZZ directions on the C3 surface from 45 mm to 52 mm. One explanation for
the deviation could be the presence of porosity between the hole and the free surface.

It can be concluded that both EMMI and temperature-dependent EPP material models
can provide accurate predictions of residual stresses for complex geometries on the part-
scale. However, for both this geometry and material, EPP outperformed EMMI in most
cases. One theory for the difference in EPP and EMMI results is attributed to EMMI being
calibrated to wrought IN718 [41] as opposed to MBAM-produced IN718 specimens, which
have different microstructures. This work therefore highlights the need for future-work
where microstructurally sensitive ISV models are calibrated to a reference condition of the
selected material system to determine if this could enable EMMI to better predict the effects
of the L-PBF process–structure relationship on the desired component. Lastly, the presence
of such low experimentally measured maximum stresses from [25] that this study is based
on could indicate high amounts of porosity [46,47]. Novel scan strategy work completed
for this same L-shape part printed out of IN718 in a different orientation and with different
scan strategies [45] further supports this theory. This would also explain why both the
EPP and EMMI predictions trended to higher maxima at some locations than the neutron
diffraction measurements in Figures 8 and 12, since porosity was assumed to be negligible.
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Appendix A. IN718 Thermal Material Properties

Temperature-dependent conductivity and specific heat in Table A1 were derived
from [5], which were adapted from [48]. Density was taken as 8193 kg/m3 assumed
to be constant and was derived from [49]. The latent heat of fusion of 210 J/g, solidus
temperature of 1260 ◦C, and liquidus temperature of 1336 ◦C were derived from [50].
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Table A1. Temperature-dependent thermal properties of IN718.

Temperature (◦C) Conductivity (W/mK) Specific Heat (J/kgK)

20 11.4 427
100 12.5 442
300 14 482
500 15.5 522
700 21.5 562
727 21 -
900 - 602
927 25 -

1227 30 -
1350 - 692

Appendix B. IN718 Mechanical Material Properties

Temperature-dependent Young’s modulus, yield strength, and coefficient of thermal
expansion in Table A2 were derived from [5], which were adapted from [48]. Poisson ratio
was taken as 0.3 from [48] and assumed constant.

Table A2. Temperature-dependent mechanical properties of IN718.

Temperature (◦C)
Elastic Modulus

(GPa)
Yield Strength (MPa)

Coefficient of
Thermal Expansion

21 208 1172 -
93 205 1172 1.28 × 10−5

204 202 - 1.35 × 10−5

316 194 - 1.39 × 10−5

427 186 1089 1.42 × 10−5

538 179 1068 1.44 × 10−5

649 172 1034 1.51 × 10−5

760 162 827 1.60 × 10−5

871 127 286 -
954 17.8 138 -

Appendix C. 316L Thermal Material Properties

Temperature-dependent conductivity and specific heat in Table A3 were derived
from [14]. Density was assumed to be constant and taken as 8.0 kg/m3 from [20]. The
latent heat of fusion was taken as 207 J/g [51] and the solidus temperature of 1375 ◦C and
liquidus temperature of 1400 ◦C were derived from [52].

Table A3. Temperature-dependent thermal properties of 316L.

Temperature (◦C) Conductivity (W/mK) Specific Heat (J/kgK)

0 12.76 4.40 × 108

159 14.94 5.10 × 108

317 17.18 5.45 × 108

476 19.3 5.60 × 108

634 21.48 5.85 × 108

793 23.66 6.20 × 108

951 25.84 6.50 × 108

1110 28.02 6.80 × 108

1268 30.2 7.13 × 108

1377 - 7.34 × 108

1387 - 6.19 × 109

1417 - 6.19 × 109

1427 32.38 7.44 × 108
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Appendix D. 316L Mechanical Material Properties

Temperature-dependent Young’s modulus, yield strength, and coefficient of thermal
expansion in Table A4 were derived from [14]. Poisson ratio was taken as 0.294 from [20]
and assumed constant.

Table A4. Temperature-dependent mechanical properties of 316L.

Temperature (◦C)
Elastic Modulus

(GPa)
Yield Strength (MPa)

Coefficient of
Thermal Expansion

0 200.8 529 1.51 × 10−5

159 188.9 402.04 1.61 × 10−5

317 176.3 322.69 1.70 × 10−5

476 163.1 280.37 1.77 × 10−5

634 149.1 232.76 1.83 × 10−5

793 134.6 179.86 1.87 × 10−5

951 119.3 137.54 1.91 × 10−5

1110 103.4 89.93 1.92 × 10−5

1268 86.8 47.61 1.92 × 10−5

1427 69.5 0.001 1.92 × 10−5

Appendix E. IN718 EMMI Parameters

The EMMI parameters used were derived from [41] and were used as calibrated. As
mentioned before, damage was neglected in this work, and all associated parameters were
set to 0. The constants driving the EMMI response in MBAM IN718 are the m1, m2, m3, m4,
and m5 constants used for the temperature dependent yield function for IN718 from [41]
and listed in Table A5.

Table A5. EMMI parameters for temperature-dependent yield function.

Material m1 m2 m3 m4 m5

IN718 1.2321 0.4508 0.14395 11.49 0.67071
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Abstract: The use of digital twin and shadow concepts for industrial material processes has intro-
duced new approaches to bridge the gap between physical and cyber manufacturing processes.
Consequently, many multidisciplinary areas, such as advanced sensor technologies, material sci-
ence, data analytics, and machine learning algorithms, are employed to create these hybrid systems.
Meanwhile, new additive manufacturing (AM) processes for metals and polymers, based on emerg-
ing technologies, have shown promise for the manufacturing of sophisticated parts with complex
geometries. These processes are undergoing a major transformation with the advent of digital
technology, hybrid physical-data-driven modeling, and fast-reduced models. This study presents a
fresh perspective on hybrid physical-data-driven and reduced order modeling (ROM) techniques
for the digitalization of AM processes within a digital twin concept. The main contribution of this
study is to demonstrate the benefits of ROM and machine learning (ML) technologies for process
data handling, optimization/control, and their integration into the real-time assessment of AM
processes. Therefore, a novel combination of efficient data-solver technology and an architecturally
designed neural network (NN) module is developed for transient manufacturing processes with high
heating/cooling rates. Furthermore, a real-world case study is presented, showcasing the use of
hybrid modeling with ROM and ML schemes for an industrial wire arc AM (WAAM) process.

Keywords: additive manufacturing; real time modeling; machine learning; hybrid physical-data-
driven modeling

1. Introduction

The role of real-time ROM technology, along with hybrid and smart ML schemes, has
already revolutionized many industrial processes. The development of digital twin and
digital shadow concepts has optimized process control and design. The introduction of
the process-data paradigm and the use of ML technologies have significantly modernized
process control concepts, enabling real-time prediction and correction for better control of
industrial processes. Live sensor and remote sensing data, offline experimental and litera-
ture data, and numerical simulation predictions are all part of this processing paradigm,
where data acquisition, handling, and training can greatly influence the manufacturing
process. Furthermore, hybrid and smart data-handling technologies can help assess the
performance of final parts regarding their service life. However, the introduction of these
new technologies has not rendered conventional analytical, experimental, and numerical
modeling redundant; rather, it has made their use smarter by integrating their results into
evolving databases. Thus, dynamic and evolving databases can be accumulated for model
training using data generated from analytical, experimental, and further offline detailed
numerical simulation studies [1–3].

The systematic integration of these new technologies into AM processes can help es-
tablish faster and more accurate predictive models, avoiding long and expensive additional
experimental and numerical efforts. Therefore, appropriate ROM techniques have been
developed to enhance the digital twin and digital shadow concepts [4,5]. In this study, a
combination of hybrid physical-data-driven and ROM techniques, along with ML modules,
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is employed for the WAAM deposition process. Additionally, a numerical simulation
framework is set up to provide sufficient data for the ROM and ML schemes. Furthermore,
a snapshot matrix is generated for the deposition process using various input variables
(e.g., initial temperature, deposition speed, and torch power) to examine their effects on the
final component. To ensure the ROM predictive model works effectively, some of the data
are used to derive the reduced model (including its training), while the rest of the data are
used to validate the performance of the ROM.

2. Simulation of AM Processes—Methodology

Different modeling techniques have been employed for the simulation of AM pro-
cesses, considering many inherent thermal and mechanical characteristics. Although vari-
ous AM processes have been developed for metallic and non-metallic components, many
of the process functionalities are similar in terms of numerical modeling approaches [6–8].
The finite element (FE) method has been extensively used for simulating processes like
AM, where different approaches have been developed to address the dynamic nature of
these processes [9–12]. As AM parts are deposited and built up layer by layer, conventional
FE methods, with their fixed domain size, can only simulate the final geometry without
considering the progressive development of the layered structure. Although many alterna-
tive FE techniques have been developed to alleviate these shortcomings through dynamic
mesh generation, deactivation/activation, and hybrid techniques, accurately modeling
deposition processes remains a challenging task [13–16].

2.1. Dynamic FE Techniques

The application of alternative FE methods for dynamic manufacturing processes
like casting and AM has recently been promoted to simulate progressively generated
parts using both fixed-size and variable-size numerical domains. Since these processes
inherently involve multi-physical thermal, fluid, and solid features and may also include
multi-scale microstructural evolution phenomena, the proposed dynamic FE methods need
to handle the different physical and dimensional aspects of these processes. This poses
challenges for conventional FE methods, where geometries of domains are prepared and
discretized at the start of the simulation, and all system matrices are initially assembled to
calculate the full system responses. To alleviate these numerical complications, different
simulation strategies, including deactivation and activation methods and novel dynamic
mesh-generating frameworks, have been proposed [9,17].

For the so-called Deactivation and Activation Technique (DAT) for AM processes,
the common practice is to deactivate almost all of the mesh related to the finished part at
the start of the simulation (except initial base elements) and re-activate it (layer by layer
or block-wise) as the simulation progresses [16,18,19]. Although this helps simulate the
dynamic nature of the process using conventional FE methods, the deactivation process
does not remove elements from assembled matrices; rather, it reduces their numerical
impact to very small values (e.g., using very small multipliers). Additionally, any changes
in material properties and system boundaries during the process cannot be simulated, as the
system matrices are assembled at the start of the simulation. This means the solver needs
to solve full system matrices from the start, which is computationally inefficient. Hence,
dynamic mesh techniques (DMTs) have recently been proposed to overcome obstacles
related to DAT by generating or splitting mesh during the simulation, where new mesh
blocks or layers can be adapted into mainstream FE techniques for AM applications [4,12].
These techniques treat the progressive generation of AM parts during the simulation by
generating and appending mesh blocks in a predefined or calculated manner, which are
then attached to the main numerical domain.

2.2. Evolving Domain Technique

One of the recent DMT frameworks proposed for AM processes is the evolving domain
technique. This technique considers the transient nature of the numerical domain and its
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continuous expansion throughout the processing time. The new technique, along with its
accompanying block-mesh scheme, has been developed to address the numerical issues
associated with domain expansion and the dynamic discretization of evolving domains.
The expansion of the numerical domain is managed using a dynamic zone, where new
layers of mesh (or mesh blocks) can be appended to the existing domain in a tempo-spatial
manner. The spatial directions for the expansion of the numerical domain can be defined
using a predefined path (e.g., material deposition direction) or by calculating the required
growth during the transient simulation. This technique eliminates the need for generating a
steady-state mesh with birth and death features and also removes the necessity for splitting
element layers at the deposition front.

For AM process simulations, continuous deposition processes in various spatial di-
rections can be simulated using a mesh evolution technique at the deposition front. In
this research, an in-house code was developed to control and implement dynamic mesh
generation and insertion (in Python) as follows:

� First, the initial geometry of necessary components, including the baseplate, is gener-
ated and meshed.

� In the second step, the initial thermal and mechanical boundaries are considered, and
the initial system matrices are assembled.

� The first time-steps/iterations are subsequently solved using a thermal–mechanical
solver, and the deposition front coordinates are updated.

� The domain geometry and mesh are later adapted by inserting a mesh block based on
the deposition direction and speed.

� In the next step, the domain matrices are updated with new mesh entries, and the
extra input energy is disseminated amongst the domain using the mapping technique.

� In the final step of the loop, after achieving thermal energy balance, the previous
converged solution is used as a first step for a newly updated domain, and the
simulation scheme continues with the new geometry/mesh till the next evolution
step is triggered.

The computational performance of the technique for industrial casting applications
has already been examined, and extensive numerical investigations have revealed that
higher speed and accuracy can be achieved using the evolving domain technique [16].
Figure 1a,b show the flowchart for the evolving algorithm and a comparison study of
the numerical performance of this technique versus conventional methods (for horizontal
casting cases). Figure 1c illustrates the mesh-insertion technique for simulating the WAAM
deposition process, where new meshes are appended to the existing domain to match
the material deposition process [12]. More comprehensive discussions about the evolving
domain technique can be found in [20].

(a) (b) (c)

Figure 1. (a) Flowchart for evolving algorithm, (b) CPU time comparison for DAT and DMT for
horizontal casting case using different numbers of computational cores. Reprinted from Ref. [12],
and (c) dynamic WAAM deposition and its numerical mesh-insertion technique for DMT. Reprinted
with permission from refs. [16]. 2020, ELSEVIER.
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3. Methods for AM Reduced Models

Cyber–physical modeling, along with the new concepts of digital twins and shadows,
has already found its way into industrial processes, revolutionizing optimized design and
control through digitalization schemes. Cyber manufacturing processes, often described as
the combination of physical and cyber tools/digital replicas and twinning systems, are well
known. However, in this research, only the aspects of digital replicas and twinning systems
were considered, with physical testing and design of experiments (DOEs) conducted
solely for model calibration. Sensing technologies, data gathering, data filtering, and
data-processing schemes, along with reduced-order models (ROMs) for fast predictive–
corrective analyses, form a crucial part of the digitalization framework for a process-
data paradigm. ROM technologies have also been rapidly evolving to achieve fast and
reliable real-time predictions using new analytical and mathematical concepts. Although
conventional reduced modeling techniques have been employed over the last fifty years to
limit computational time and resources for detailed process simulations, they are unable to
provide real-time predictions during processes. Consequently, recent attention has focused
on the new generation of ROMs, which enable fast predictions and corrections in real-time
during AM processes.

3.1. ROM Techniques for AM Processes

The increasing demand for real-time simulations of complex manufacturing processes
has spurred numerous research activities aimed at developing fast ROMs using novel
mathematical and analytical concepts [21,22]. Despite the exploitation of various techniques
to create suitable ROMs for both transient and steady-state processes, challenges related to
accuracy, speed, and solution stability remain unresolved for many multi-physical aspects
of industrial processes. Consequently, numerous mathematical decomposition, projection,
and dimensional reduction techniques have been developed to mitigate the extensive
computational efforts required for modeling the multi-physical nature of these processes. In
AM processes, detailed thermal–mechanical and/or fluid–thermal–mechanical simulations
are routinely performed to optimize power, material delivery, deposition speed, heating,
and cooling. However, the reduced versions of these simulations are cumbersome due to
the transient nature of AM processes and their continuous domain expansion, which are
difficult to predict using any simplification scheme.

The concepts of characteristic equations, eigenvalue analyses, and matrix factorization
have been employed in this research to create a fast ROM framework for transient AM
processes. This framework enables real-time predictive and corrective measures using
previously measured or calculated data. To begin, let us consider a conventional second-
order differential equation as follows:

[K][u] + [M]
[ ..
u
]
= 0 (1)

where [K], [M], and [u] are the stiffness, mass, and displacement matrices of the system.
The simple solution, along with the eigenvalue model representation for the system, can be
written as

u(t) = Aeiωt → {[K]− ω2[M]}[u] = 0 (2)

where ω and A are eigenvalues (natural frequencies) and a constant multiplier, respectively.
If the tempo-spatial characteristic of the system is decomposed, the characteristic equation
of the system along with its solution for a point in space can then be written as

(
ω2

)N
+ c1

(
ω2

)N−1
+ c2

(
ω2

)N−2
+ ......cN = 0 u(x, t) = ∑n

“un(x, ωn)eiωnt (3)

where ωn and “un are the system’s natural frequencies and Fourier coefficients, respec-
tively. The characteristic equation of the system is calculated using properties such as
geometry, material properties, and boundaries. However, solving the system equations
using conventional time and frequency domain solvers requires substantial computa-
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tional time and effort. This makes the calculation of system characteristics for engineering
problems and processes lengthy and costly, rendering it unsuitable for real-time digital
twinning. Consequently, much research has been conducted to reduce computational time
and effort by developing specialized types of reduced-order models (ROMs) for industrial
processes [3,23,24]. One interesting alternative technique, also used in the current research,
is to estimate the characteristic equation of systems and processes using smart data-driven
techniques instead of calculating them directly.

This ROM technology is initially based on the same mathematical concepts of eigenval-
ues and orthogonal eigenvectors to find the characteristic equation of the process. However,
instead of using system properties to formulate the system matrices, it relies on calculated
or measured responses of the system across a range of variables. If the responses of the
system under varying parameters are known, a matrix of system responses under changing
variables can be constructed, which holds the basic characteristic information about the
system. The estimation of the system’s characteristic equation is then performed using
mathematical decomposition techniques traditionally used for eigenvalue analyses. To
understand the basis of the mode decomposition technique for estimating the characteristic
equation, let us consider the governing equation for a vibrational problem as follows:

[K][u(x, t)] + [M]
[ ..
u(x, t)

]
= 0→ (

[K]− ω2[M]
)
.[u(x, t)] = 0 → [Kd]

−1.[u(x, t)] = 0 (4)

where [Kd]
−1 = [K]− ω2[M] is called the dynamic stiffness matrix. Now, we can consider

the alternative governing equation for the response of the system as

[Y(x, t)] = [C]. [X(x, t)] (5)

where [Y(x, t)] can be interpreted as the desired response at specific values for variables,
[C] is the estimated system characteristics (using data techniques), and [X(x, t)] is the input
values. In this research work, Singular Value Decomposition (SVD) is used to decompose
the system response matrix, which gives the optimal expansion of the matrix as

[Y(x, t)] = U∑ VT (6)

where U represents the spatial eigenvector decomposition, ∑ is the singular value diagonal
matrix (e.g., eigenvalues), and VT represent temporal decomposition for transient system
responses. The SVD technique is a popular reduction method based on linear algebra that
can reduce the size of predictive models in terms of dimensions and time. A more detailed
mathematical description of the SVD method can be found in [25,26]. Using these reduced
models, the transient responses of the system can be estimated in real-time using a database
of previous responses.

3.2. Hybrid ROM-ML Techniques

The advancement of ROM techniques for industrial process simulations has encoun-
tered challenges related to the accuracy of data extrapolation and rate dependency (e.g., for
high cooling/heating rates). In many of these processes, the limited amount of available
data, combined with the large number of influential parameters, has promoted the use of
integrated ROM-ML hybrid schemes, where further data training can be performed. To
establish a foundation for such a hybrid framework, appropriate ML and ROM techniques
must be employed to enhance the predictive power of these models. This combined ROM-
ML technique can facilitate the development of agile and efficient models for transient
thermal–mechanical and/or fluid–thermal–mechanical WAAM process modeling.

For data training in this research, a neural network (NN) ML scheme was implemented
using in-house code. This NN scheme can employ either Multi-Layer Perceptron (MLP) or
Back-Propagation Neural Networks (BPNN) for training system response data. For data
interpolation and extrapolation, data extracted from experimental and detailed simulations
were stored in a file. During each exemplar epoch, a certain number of data points were
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selected randomly without repeating any learning vector. Since batching concurrent inputs
is computationally more efficient than sequential inputs, epochs and total computation of
errors were used as follows:

Eepoch =
1

nepoch
∑

nepoch
n=1 ∑U

u=1

(
tu − yu)

2 (7)

where tu and yu are desired and model outputs, and the network error is computed based on
the RMS standard formulation, where it is propagated into the network until convergence
is reached. In the back-propagating networks, the modification of weights is proportional
to error differential ∂E with respect to weight ∂w as

Δwij ∝ −∂Eepoch

∂wij
(8)

After data training, the resulting ROM-ML models can further update themselves
using the NN scheme, enhancing thermal and mechanical predictions for AM processes.
Additionally, these hybrid models can be used for modeling sub-processes such as heating
and cooling during AM processes [4].

3.3. Case Study: Reduced Models for WAAM Process

Digital twin and cyber–physical modeling, along with real-time prediction and cor-
rection concepts, have already been employed in some AM industrial processes. The
optimization and active control of these processes are among the main goals of twinning
technology, where sensing technology, data generation, and data-processing schemes can
be combined for greener production. In this case study, attention is focused on the WAAM
process, a type of directed energy deposition (DED) scheme. In this technique, single or
multiple plasma or electric arc torches are used to weld layers of wire feedstock onto a
predefined geometry. The heat generated by the moving torch melts the wire, allowing
layers of material to be built up through an inter-layer fusion process.

Although various sophisticated transient and steady-state numerical simulations of
WAAM processes have already been developed, their use in digital twinning is limited
due to the substantial computational time and resources required. Therefore, for real-time
predictions and corrections, the predictive power of ROM and ML can be employed. We
can consider Equation (6) to predict temperature (and stress) responses during a WAAM
process as follows:

[Y(x, t)] = U∑ VT → Tk(x, y, z, t) = Uk∑k VT
k σk(x, y, z, t) = Ukσ∑kσ

VT
kσ (9)

where Tk σk are temperatures and stresses at process time t, and the snapshot results can be
interpolated using the radial basis function (RBF) or adaptive redial basis function (ARBF)
as follows [27,28]:

f (T) = ∑k
i=1 ai ϕ(||T − Ti||) (10)

where ai and ϕ are the weighting coefficient for the RBF. Here, the temperature at the
any location can be predicted during the WAAM process using a sum of k radial basis
functions, which are weighted by appropriate coefficients. For the RBF definition of WAAM
processes with their high heating rate (passing of a torch over a measuring point), the
artificial network architecture developed earlier can be employed, where an input, hidden,
and output layer can be defined as

ϕi = e

(
− ||T−Ti ||2

2μ2
i

)
(11)

where T, Ti, μ, and ϕi are the temperature input vector, ith neuron sample vector, ith neuron
bandwidth, and ith neuron output, respectively. The innovative combination of SVD and
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the neural network RBF for implementing a reduced model for WAAM can produce fast
and reliable predictions, even in zones with high-gradient data (e.g., high heating rates). To
investigate the accuracy and reliability of this reducing technique, a WAAM case study was
conducted to simulate the welding of a single layer on top of a thermally pre-conditioned
wall. The wall, with dimensions of 100 mm × 50 mm × 6 mm, was welded with aluminum
6061 alloy using a plasma technique. For the initial verification study, experimental work
was conducted using thermocouples to measure the temperature at selected locations. The
results of these studies were then compared to thermal–mechanical FE simulations for
verification and calibration. After completing the initial verification study, a snapshot
matrix was built using varying process parameters, such as torch power, deposition speed,
and initial temperatures [5]. A series of FE simulations were then performed using these
scenarios to generate a database for building the reduced model. Nine scenarios were
initially used to build the model, while three DOE cases were later carried out for the
validation of the reduced models. Figure 2 shows the snapshot matrix along with the FE
mesh and its typical temperature contour results during the torch passage.

(a) (b)

Figure 2. (a) Snapshot matrix for WAAM scenarios with varying process parameters; (b) FE mesh
with selected measuring points and representative temperature contour during passage of torch.
Reprinted with permission from ref. [5].

For data interpolation and training of the reduced models, two different techniques
are used: genetic algorithm symbolic regression (GASR) and neural networks. The GASR
technique is capable of data processing, handling, and fitting, which can be performed using
available computer codes. Specifically, the academic code HeuristicLab, described in [29],
was used in this research for data handling and training. GASR is a type of regression
analysis that searches multi-dimensional space for mathematical expressions and operators
using a genetic algorithm to find the most suitable model. For the RBF neural network,
convergence is achieved using dynamic node creation [30] and an overlapping scheme for
the test and training data. These techniques enhance the network’s ability near the search
space boundaries and even beyond (i.e., extrapolation). Since the RBF technique proved
to be more practical and yielded more accurate results for this study, the main reduced
model was built using a combination of SVD and RBF techniques. Figure 3 shows the
neural network architecture and the GASR tree-like diagram, while Figure 4 illustrates
their convergence and data training plots.
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(a) (b)

Figure 3. (a) NN architecture for RBF interpolation; (b) tree-like GASR diagram for genetic algo-
rithm fitting.

(a) (b)

Figure 4. (a) NN convergence of networks with different number of hidden layers, and; (b) scatter
plot for training process of GASR.

In the final part of the study, the performance of the SVD-RBF reduced model was
evaluated by comparing its results with other popular model-building techniques. Five
different techniques—kriging, regression, support vector machine (SVM), clustering, and
inverse distance (InvD)—were used to create alternative WAAM reduced models using the
available data [31–33]. The performances of these reduced models were then compared to
the trained SVD-RBF model using the results from three additional DOEs. Temperature
time histories for the deposition process were collected for specific nodes along the wall,
and the history results were compiled for the entire simulation time. The performances of
these reduced models were then compared with the SVD-RBF model by calculating the
normalized error histories.

4. Discussion

The development of accurate and real-time reduced models for metallic and poly-
meric AM processes, with their multi-physical aspects, is challenging and requires careful
consideration of data training and testing. In this study, the eigen-based SVD technique
was enhanced with the interpolation and training power of RBF and neural networks
to establish an efficient and accurate reduced model. The verification of the proposed
reduced model showed that it can reliably produce real-time predictions of temperature
and stress/strain time histories. However, due to space constraints, only the temperature
results are presented here, excluding mechanical deformations, stress, and strain results.
At first glance, these models appear capable of predicting responses even with small and
limited-size databases and a large range of process parameter variations. However, several
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challenges in generating and training these types of reduced models need to be addressed
before they can be solidly employed within digital twin concepts, namely:

� For WAAM processes with thermal–mechanical and multi-physical aspects, reduced
models need to cope with rapidly changing data, especially for processes with a high
cooling and heating rate.

� The size and variation of data within the snapshot matrix can significantly affect the
prediction power of these models. Different sampling techniques should be employed
to cover the entire multi-dimensional search space (e.g., Sobol and Latin Hypercube).

� To carefully verify the performance of these models, a rigorous validation criterion
is required, examining performance maps at internal, near-boundary, and extreme
conditions (extrapolation) of the search space.

� Although the use of neural network and GASR techniques can greatly increase the
predictive power of reduced models, customized training schemes are necessary for
proper data interpolation and fitting.

Figure 5 shows the estimated time history temperature for a computational node
along the deposited wall for the FE simulation, trained SVD-RBF, and SVD-Kriging
reduced models.

(a) (b)

Figure 5. Comparison of temperature time histories for FE versus ROMs along with their normalized
errors for (a) SVB-RBF trained, and (b) SVD-Kriging ROM techniques.

The computational time for the FE simulation is approximately 2880 s per scenario
(i.e., wall clock time), whereas the reduced models take only about 0.72 s to estimate the
time history responses. Figure 5a compares the temperature predictions and normalized
error graphs (relative to verified FE results) for the proposed SVD-RBF method across
the three verification DOEs. Figure 5b presents these results for the popular SVD-Kriging
reduced model. The Kriging method is one of the best interpolation techniques, using a
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limited set of sampled data points to evaluate spatio-temporal variables over a continuous
search space.

At first glance, the calculated errors show that during periods of high heating rates
(when the torch is passing over the measuring point), the proposed SVD-RBF-trained
model exhibits lower error margins, indicating almost no data rate dependency. In con-
trast, the popular SVD-Kriging model shows higher error margins during these times
but maintains a consistently lower error margin throughout the rest of the time history
results. Further investigation of the data rate dependency for these two techniques is
shown in Figure 6a,b, where the correlation of normalized error time histories with the rate
of temperature changes (heating rate) is plotted for both techniques. Figure 6c,d illustrate
the accumulated normalized error over the entire time history and the Pearson correlation
index for both techniques.

(a) (b)

(c) (d)

Figure 6. Rate of temperature changes (heating rate) versus normalized errors for (a) SVD-RBF
trained, (b) SVD-Kriging, (c) accumulated normalized errors for SVD-RBF and SVD-Kriging, and
(d) Pearson correlation index for heating rate with respect to normalized error for both techniques.

As these results indicate, while the SVD-RBF model predictions are more accurate
in high-heating-rate zones (i.e., almost rate-independent), the SVD-Kriging normalized
error results show strong heating rate dependency. However, the SVD-Kriging technique
produces about 1% lower error margin after the torch passes over the measuring point, indi-
cating better data fitting at low temperature changes. Therefore, due to their effective sam-
pling and interpolation schemes, both SVD-RBF and SVD-Kriging techniques are suitable
for WAAM processes with moderate heating/cooling rates. For high-heating/cooling-rate
processes, it is recommended to use the trained SVD-RBF technique for model-building
procedures. To demonstrate the superiority of these techniques for real-time modeling, the
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final part of the study is dedicated to showing the performance of other popular reduced
model techniques for WAAM processes. Figure 7 presents the time history temperature
predictions along with normalized error plots for clustering, regression, InvD, and SVM
model-building techniques.

(a) (b)

Figure 7. Comparison of calculated temperature time histories for FE versus ROMs along with their
normalized errors for (a) clustering and regression and (b) InvD and SVM techniques.

As clearly demonstrated in Figure 7, most of these popular reduced model techniques
exhibit either heating rate dependency or an inability to fit the predefined initial conditions
of the process (initial base temperature). The sampling rate for the thermal calculations
of all these WAAM scenarios is half a second (2 Hz), with heating rates of up to 200 K/s,
which may increase the error margin for real-time predictions. Furthermore, the heating
rate dependency and deviation of initial temperatures are shown in Figure 8a, where the
average maximum errors (over three DOEs) and the deviation of initial conditions (in
percentages) are plotted for all six methods (including trained SVD-RBF and SVD-Kriging
methods). Figure 8b shows the time history of the average normalized errors (over three
DOEs) with the calculated heating rates for the four popular model-building techniques
(for the first 25 s of the WAAM process).

As shown in these figures, the predictions based on these techniques exhibit either
some degree of heating rate dependency or significant deviation in predicting the initial
thermal conditions. Both trained SVD-RBF and SVD-Kriging models demonstrate superior
overall performance, with low maximum errors and limited or zero deviation in the initial
thermal conditions. Besides these two techniques, the best performance is achieved by the
regression method, which shows relatively low rate dependency and no deviation in the
initial conditions.
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(a) (b)

Figure 8. (a) Average maximum errors (over three DOEs) and deviation of initial conditions (in
percentages) for six ROM techniques; (b) correlation of heating rates with normalized errors for
clustering, regression, InvD, and SVM techniques.

5. Conclusions

The reduced models and their fast and real-time prediction potentials can introduce
opportunities for further developments toward the digitalization of additive manufac-
turing processes. In this study, different reduced model-building techniques were ex-
amined to evaluate their performance for optimizing and controlling WAAM processes.
Initially, a brief description of the numerical simulation techniques for these dynamic
processes was presented, along with some technical aspects of the new evolving-domain
and dynamic-mesh technique. Furthermore, a brief mathematical description of popular
reduced model-building techniques was provided, and the impacts of hybrid ML-ROM
trends on the accuracy and reliability of the reduced models were discussed. In the fol-
lowing sections, the ROM description of a practical case study for the WAAM process was
elaborated, examining its critical aspects of accuracy, heat rate dependency, and thermal
initial boundary conditions.

There are challenges related to the accuracy of ROM techniques for industrial process
modeling, including data extrapolation, initial boundary fitting, and rate dependency (e.g.,
for high cooling/heating rates). Additionally, for many of these processes with a large
number of input parameters, the quality and size of the database can greatly influence the
accuracy of predictions. The results presented here indicate that for the two developed SVD-
RBF and SVD-Kriging methods, both the issues of heating/cooling rate dependency and
modeling of initial boundary conditions can be partially resolved. However, with further
ML training (e.g., NN data training), even better results can be achieved for high-gradient
heating/cooling processes, where almost no rate dependency is observed in the predictions.
Detailed investigations into the best performance “solver-interpolator” combinations have
shown that some well-known solvers (e.g., SVD, POD) can produce more accurate results
when used with the right interpolating schemes. Furthermore, there is potential to use ML
for training and improving data representations within the hybrid ROM-ML framework to
achieve superior accuracy and agility. This will promote the advancement of more adapted
MOR-ML technologies for AM processes, where the features of both ML and MOR can be
combined for more accurate reduced models.

As a final statement, this study aims to encourage the use of ROM-ML schemes for
the real-time modeling of dynamic material processes like WAAM. Although these hybrid
reduced models are not intended to replace other experimental or detailed numerical
process simulations, they can be valuable assets within the digitalization framework for
control and optimization. The opportunity to apply the hybrid modeling scheme to
other multi-physical aspects of these processes, such as mechanical stress/strain and
deformation/warping, will be explored in future publications.
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Abstract: This study investigates the reduction in thermal residual stress during the powder bed
fusion (PBF) process in a non-standardized shape generated by topology optimization method in
lightweight automotive part of brake caliper. While the caliper of the braking system for reducing the
CO2 consumption in vehicle systems undergoes a redesign to increased strength and reduced weight,
challenges arise due to biased melting area ratios in the topologically optimized design, causing the
thermal deformation. To address this, our research proposes an efficient PBF scan strategy aimed at
minimizing anisotropy and residual stress—a critical consideration for successful manufacturing. The
effectiveness of the laser scan strategy is validated through testing on a brake dynamometer, following
the JASO C406 test procedure, an authorized standard for commercial brake calipers. Furthermore, a
comparative analysis between the conventional product and the proposed brake caliper highlights
superior performance, particularly under lightweight conditions. This comprehensive approach
contributes valuable insights to the field, offering a potential solution for overcoming manufacturing
challenges associated with topologically optimized designs in automotive components.

Keywords: additive manufacturing (AM); powder bed fusion (PBF); topology optimization; brake
caliper

1. Introduction

Additive manufacturing (AM) process technology developed rapidly in recent years,
and the powder bed fusion (PBF) process is utilized in industrial applications for metal
parts among AM processes [1–3]. The PBF process, which is primarily used in industrial
applications, manufactures more sophisticated and complex geometries than conventional
machining processes such as casting, forging, and rolling [4–6]. In addition to the ad-
vantages and significant potential of PBF process, including design freedom, it enables
the manufacture of complex shapes and safety-critical products. In particular, structural
lightweight design through topology optimization is applied to defense, aerospace, and
automotive products [7–10]. The high degree of design freedom enables topology optimiza-
tion to achieve optimized lightweight structures that not only fulfill specified requirements,

Metals 2024, 14, 1277. https://doi.org/10.3390/met14111277 https://www.mdpi.com/journal/metals122



Metals 2024, 14, 1277

but can also be optimally manufactured, making them attractive for automotive applica-
tions where lightweight components for CO2 reduction are required [11–14]. The braking
system included in the unsprung mass serves as a safety component, and all vehicles
are equipped with their own safety devices for stopping them, and it also affects the
drive comfort, road holding, and acceleration [15–17]. Efficient topology optimization via
PBF process is vital to meet heightened demands for lighter materials, enhanced brake
performance, and lightweight calipers, especially in complex structures and tight spatial
constraints [18–20].

Certainly, the PBF process is not devoid of potential drawbacks to apply the automo-
tive field; it possesses the capability to produce an array of product defects, encompassing
surface inconsistencies, porosity, residual stress, cracks, and thermal deformations [21–24].
Especially, the thermal deformation defects that occur during the PBF process are caused by
residual stress resulting from thermal accumulation [25]. Energy density and scan pattern
can be applied to control the magnitude of residual stress and thermal accumulation [26].
Since the directionality of residual stress is generated according to the direction of the laser
scan, when the laser scan is used for a long time in one direction, an anisotropic characteris-
tic is generated, and a melted area with a long aspect ratio also causes anisotropic residual
stress [27]. The chessboard scan strategy demonstrates a reduction in anisotropic residual
stress compared to the strip pattern [28]. More research of the PBF scan pattern is needed
for effective reduction in residual stress and for achieving isotropic characteristics.

In this study, an effective PBF process was analyzed to reduce anisotropic residual
stress caused by irregular aspect ratio melting areas generated from a topology optimiza-
tion brake caliper of an automotive part. The PBF scan strategy that reduces residual stress
and ensures isotropic properties was analyzed and applied and this PBF scan strategy
was used to successfully fabricate complex shapes with varying melting area ratios. To
manufacture a high-strength, lightweight brake caliper, a high-strength lightweight model
was designed using Ti-6Al-4V material and topology optimization. The stiffness of the
proposed model was analyzed using the FEM simulation. The thermal deformation simu-
lation was conducted to evaluate and improve manufacturability by analyzing the build
direction that minimizes thermal deformation during the additive manufacturing process.
The new brake caliper model, which has been precisely additively manufactured using the
effective PBF process, can reduce weight while improving maximum stiffness and brake
performance compared to the commercial product.

2. Laser Scan Strategy for Reducing Thermal Stress and Residual Stress

2.1. Material and Equipment

The conventional brake caliper is made from aluminum alloy. While performing
topology optimization with aluminum alloy can result in a lighter design, it also leads
to a reduction in stiffness, necessitating the use of high-strength materials. To produce a
high-strength, a lightweight brake caliper, Ti-6Al-4V, known for its high stiffness-to-weight
ratio, was used and manufactured through PBF process. Typically, the PBF process involves
layer-by-layer manufacturing and can easily manufacture complex shapes with internal
structures [29]. The PBF process repeats the transfer of powder from the powder platform
to the plate via a recoater and melting the powder with a laser. In addition, since laser
melting is applied in the PBF process, repeated overheating and rapid solidification result
in high thermal stress. Process analysis is required to reduce excessive thermal residual
stress. In this study, DMP Flex 350 (3D SYSTEMS, Rock Hill, SC, USA) was used with a
printing volume of 275 mm × 275 mm × 420 mm. We used a laser power of 140 W, a scan
speed of 1000 mm/s, a hatch spacing of 80 μm, and a layer thickness of 30 μm as the PBF
process conditions. Argon gas was used as the shielding gas during the PBF process. The
spherical powders with an average diameter of 32 μm were randomly distributed in the
PBF process.
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2.2. PBF Scan Strategy Method to Reduce Residual Stress

The topology optimization model has an irregularly shaped region, and different
melting regions occur in each layer, which may lead to excessive thermal deformation de-
pending on the residual stress characteristics. The effective laser scan strategy is required in
the PBF process to reduce thermal residual stress. In this chapter, the residual stress of parts
manufactured using the laser scanning process was analyzed using X-ray measurement
(μ-X360 portable, Pulstec Industrial Co., Shizuoka, Japan). As shown in Figure 1, 20 × 20
× 20 mm3 specimens were fabricated with strip, hexagonal and island pattern (Figure 1a).
The residual stress in a specimen deposited on the plate tends to increase with height, with
the highest residual stress typically measured at the top surface if part cutting was not
performed [30]. The hatching length of the scan strategy was compared at 5 and 10 mm
and the residual stress was averaged by measuring 16 points on the top surface.

Figure 1. Measurement of residual stress, (a) laser scan strategies; and (b) measurement of residual
stress according to scan pattern and hatching length.

Given the residual stress along scan directions, measurements were taken in both the
X and Y directions of the specimen and then the residual stresses in the two directions were
averaged. As shown in Figure 1b, the X direction of residual stress of 192.8, 183.3, and
178.8 MPa, the Y direction of residual stress of 249.4, 244.2, and 236.1 MPa, and average
residuals stress of 221.1, 213.8, and 207.4 MPa were measured for the strip, hexagon, and
island patterns in the hatching length of 5 mm cubic specimens. In addition, the X direction
of the residual stress of 241.1, 238.2, and 234.5 MPa and the Y direction of residual stress of
289.2, 277.9, and 264.1 MPa and average residuals stress of 265.1, 257.8, and 249.3 MPa were
measured for the strip, hexagon, and island pattern in the hatching length of 10 mm cubic
specimens. The error bars of residuals stress are caused by the difference in thermal stress
values according to position. This is due to the localized heating that induces a rapidly
thermal gradient along the laser track, generating thermal stress in the subsequent track and
layer. In the case of the laser scan pattern, the boundaries of overlapping hatching lengths
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lead to local heat accumulation, which affects the size of the error bars. Consequently,
residual stresses with deviations, as indicated by the error bars, arise at certain points. The
residual stress values were averaged to effectively compare the differences in error values
that occurred for each scan pattern. By averaging the measurements, the average residual
stress of the island pattern was found to be lower than other scan strategies such as strip
or hexagon patterns. The residual stress was lower at a 5 mm hatching length than at a
10 mm hatching length. In the case of strip and hexagon, the anisotropic residual stress
was high because they had a scan pattern in only one direction pattern. Furthermore, as
the hatching length increases, the resulting residual stress tends to be higher due to the
increasing anisotropic property of the part.

Figure 2 shows the measurement of the residual stress and cantilever deformation
to analyze the isotropic properties according to scan strategy. As shown in Figure 2, the
residual stress and thermal deformation characteristics were analyzed using specimens
with sizes of 30 × 30 × 20 and 40 × 40 × 20 mm3 and a cantilever with a size of 12 × 72 ×
9 mm3.

Figure 2. Measurement of residual stress and thermal deformation, (a) image of specimen model
and measurement of residual stress; and (b) image of specimen model and thermal deformation
of cantilever.

The X direction of the residual stress of 260.1 and 241.2 MPa, and the Y direction of
residual stress of 312.7 and 283.5 MPa, and average residuals stress of 286.4 and 262.3 MPa
were measured for the strip and island pattern in 30 × 30 × 20 mm3 specimens. The
X direction of residual stress of 282.2 and 263.8 MPa, and the Y direction of residual
stress of 332.7 and 317.3 MPa, and average residuals stress of 307.4 and 290.6 MPa were
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measured for the strip and island pattern in 40 × 40 × 20 mm3 specimen (Figure 2a). After
additive manufacturing the cantilever, the bottom surface was cut using wire cutting, and
the height from the bottom surface was measured to compare the thermal deformation.
The deformation of the cantilever when using the strip and island patterns was 1.92 and
1.76 mm, respectively (Figure 2b). As the area of the specimen increases, the cumulative
heat capacity of the part increases and the residual stress increases. By applying the island
pattern, the residual stress was reduced by 5.47–8.41% in 30 × 30 × 20 mm3 and 40 × 40 ×
20 mm3 specimens. In addition, the island pattern can reduce the cantilever deformation
by 8.33%, reducing the anisotropic property.

2.3. Mechanical Property According to Build Orientation

The mechanical strength produced varies based on the build direction, owing to the
layer-by-layer additive manufacturing process. When additively manufacturing a product,
it is necessary to select the build direction considering the mechanical properties. The effect
of melting area and cooling rate, thus the effect of the microstructure of additively manu-
factured specimens, affect the strength and strain [31,32]. Usually, the fabricated Ti–6Al–4V
specimens using the PBF process have high ultimate tensile strength and lower elongation
due to rapid cooling rate compared to conventionally produced titanium alloy [32,33]. As
a low elongation rate can lead to the formation of cracks or defects within components
during the PBF process, it is imperative to enhance the elongation rate corresponding to
the build orientation. As shown in Figure 3a, in order to determine the build direction of
the model (horizontal (0◦), diagonal (45◦), and vertical (90◦) orientation.), improving the
machinability and structure property, as-built specimens were manufactured according
to the build direction and evaluated using tensile tests. The manufactured specimen was
machined based on the ASTM E8 standard (Standard Test Methods for Tension Testing
of Metallic Materials [34]), and a tensile test was performed. As shown in Figure 3b and
Table 1, the tensile strength and elongation measured from 1333 MPa and 5.8% in the
horizontal direction structure, 1289 MPa and 5.4% in the diagonal direction structure, and
1307 MPa and 6.7% in the vertical direction specimens.

Figure 3. Stress–strain graph and tensile specimens along different directions. (a) direction of
manufactured specimens; and (b) stress–strain curve.

Based on these experiments, low-ductility tensile strength was highest in horizontal
orientation and elongation was highest in vertical orientation. The PBF process in the
vertical direction with high elongation can effectively reduce defects attributed to low heat
accumulation of a small melting area and thermal deformation.
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Table 1. Result of tensile experiment according to building direction.

Parameters Tensile Stress (MPa) Elongation (%)

Horizontal orientation 1333 ± 23 5.8 ± 0.3

Diagonal orientation 1289 ± 27 5.4 ± 0.4

Vertical orientation 1307 ± 30 6.7 ± 0.4

3. Additive Manufacturing Strategy of Brake Caliper Model

3.1. Topology Optimization of Brake Caliper Model

The weight of the brake caliper model was reduced via topology optimization to
determine the full potential of AM. The topology optimization was performed according to
the following processes. First, the design domain was constructed based on the dimensions
from the reference design (size of 300 × 174 × 110 mm3, Woosin Industries Corporation,
Gimhae-si, Republic of Korea) shown in Figure 4a. Oil channels and assembling holes were
set as non-design areas, and unnecessary areas for machining and bolting were removed
in advance. The main bridge of the reference design was replaced by bolting assemblies,
and two side bridge areas were added to determine a new load path. Second, loading and
boundary conditions were set for performance evaluation during the topology optimization.
A hydraulic pressure of 13.7 MPa was applied to the inner wall of the oil channel of the
non-design domain, and the jig-fixing regions of the two cylinder shapes were fixed,
excluding the cylindrical rotation degree of freedom. Additionally, a force in the braking
direction was applied to each center of the oil cylinder to consider the braking condition.
Third, an optimization problem was formulated to minimize the weight while satisfying
the deformation constraints of the reference design. The average deformation values of
both inner and outer surfaces extending the oil cylinder centerlines were constrained for
hydraulic pressure, and the average deformation values of both oil cylinder centers were
constrained for the braking force. Finally, topology optimization design was performed
with the solid isotropic material with penalization (SIMP) model using Altair OptiStruct [35]
based on the material properties of Ti–6Al–4V. The strength was not directly constrained
during topology optimization; however, the maximum stress was maintained within the
allowable range because the deformation conditions were dominant.

Figure 4. Brake caliper model; (a) reference model; and (b) topology-optimized model.

The result obtained from topology optimization shown in Figure 4b and the model
has a structural shape that cannot be made by conventional fabrication methods such as
casting or milling. Despite using titanium material, which has a 38% higher density than
aluminum, a weight reduction of 20% was obtained while satisfying both deformation and
stress conditions.

The topology optimized design shown in Figure 4b was smoothed using the OSSmooth
function and exported to Altair Inspire for further modification. The PolyNURBS function
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in Inspire was used to modify the shape comprehensively. Extremely thin branch structures
were removed or thickened, and the jig-fixing area was reinforced. Small holes were filled
in to improve the AM quality but were eventually removed via the machining process.

The topology optimization method significantly impacts weight reduction in parts,
but it can create a weak area due to thinning in unexpected places. To prevent this weak
point, verification through FEM analysis is required. FEM was performed on the brake
caliper components to evaluate the mechanical properties of the topology-optimized model
using ABAQUS software (V6.5.1, Dassault Systemes, Vélizy-Villacoublay, France) [36].
The 3D CAD data, mesh type, complexity, mesh optimization, analysis reliability, and
contact between caliper components were considered when constructing the FEM models.
The FEM analysis of the topology-optimized model is shown in Figure 5. The boundary
conditions were defined as shown in Figure 5a. The bolting position was fixed, and pistons
in the caliper were applied at 13.7 MPa, which is the pressure level for the leaking test of
the caliper. The contact between the pad faces and disc, as well as the contact between
the plate of the outboard pad and caliper, were defined as surface-to-surface contact with
friction-tangential behavior. The properties of Ti–6Al–4V material were applied to the
topology optimization of the brake caliper model.

Figure 5. Boundary conditions and results of FEM analysis. (a) Topology-optimized model and
boundary conditions; (b) result of stress; and (c) result of deformation.

The stress and deformation results of the brake calipers generated in the brake system
are shown in Figure 5b,c, respectively. Regarding the topology optimization of the brake
caliper, when a hydraulic pressure of 13.7 MPa was applied, the maximum stress was
566.5 MPa, which was 54.9% of the yield strength, and the maximum deformation was
0.88 mm in the end of caliper. As a result of FEM analysis, the yield strength of the brake
system was lower than the yield strength of Ti–6Al–4V material, and the maximum stress
generated was half of the yield strength. In addition, the topology model fabricated using
titanium alloy has a higher mechanical strength than the existing caliper fabricated using
aluminum alloy owing to its material characteristics; additionally, it is advantageous in
terms of safety [37].
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3.2. Design and Additive Manufacturing of Brake Caliper

The thermal conduction Ti–6Al–4V is lower than that of conventional materials. There-
fore, Ti-6Al-4V material exhibits low heat dissipation, leading to heat accumulation, thermal
deformation, and residual stress in the PBF process. To prevent excessive thermal defor-
mation, the melt area must be divided and patterned through the PBF process strategy to
reduce residual stress [38]. As shown in Figure 6, residual stress and melting area were
analyzed according to the vertical and horizontal brake caliper model to reduce the thermal
deformation of the PBF part. To analyze deformation caused by thermal stress during
PBF, the thermal stress and deformation based on the building direction was compared via
numerical analysis of the Amphyon in 3Dxpert software (V24.1.1, 3D Systems, Rock Hill,
SC, USA) [39]. The material’s mechanical properties and material characteristics suited to
laser scanning were considered when constructing the thermal deformation simulation.
As shown in Figure 6a, in order to analyze the thermal deformation of only additively
manufactured part, the no-support design was generated, and the numerical analysis was
performed. As a result of numerical analysis, the maximum thermal stress and deformation
were 1124, 1034 MPa, and 13.7, 7.8 mm in the horizontal and vertical directions, respectively.
As shown in Figure 6b, the vertical and horizontal melting areas are uneven, and in the case
of the horizontal direction, the melting area per layer is higher. Despite the additional 33.5 h
required for manufacture, the thermal stress and deformation in the vertical direction were
5.9 mm, 43.1% less than in the horizontal direction, due to the difference in the melting area
of orientation.

Figure 6. Considerations for AM orientation (a) thermal deformation of horizontal and vertical
orientation (b) melting area on build direction according to orientation.
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In the previous contents, the PBF process of reducing anisotropic residual stress and
thermal deformation was analyzed. For high-quality manufacturing of additive manu-
facturing parts, a topology optimization brake caliper was manufactured by applying an
island pattern with a hatching length of 5 mm and vertical orientation of the model. As
shown in Figure 7a, the support design was carried out. To prevent excessive thermal
deformation, the parts where thermal deformation is high in the analysis were designed
with cone supports to prevent thermal deformation. As shown in Figure 7b,c, the topology
optimization of the brake caliper was manufactured and the supports, which were manu-
factured alongside the brake caliper, have been processed, and the additively manufactured
part has been finalized (part mass of 2.59 kg).

Figure 7. Additive manufacturing process of topology-optimized brake caliper. (a) Support design;
(b) additively manufactured brake caliper; and (c) removing the support.

During the AM of large components, such as brake calipers, heat accumulation occurs
owing to the large area involved, which causes thermal deformation [38,40]. Therefore, the
manufactured caliper must be scanned and then compared with a CAD file to verify the
dimensional error of the product. As shown in Figure 8, the error rate was analyzed by
overlapping the two models based on the origin coordinates of the model scanned with
the brake caliper using t Surveyor ZS-3040 (Laser Design Inc., Golden Valley, MN, USA)
scanning equipment and CAD data for topology optimization. As a result of comparing
the topology optimization model and scan data (additive manufacturing part), the max-
imum error rate was 97 μm and the topological brake caliper of the precise shape was
manufactured using the effective PBF process.

Figure 8. Evaluation of dimensional error via CAD modeling and scan data comparison.
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3.3. Evaluation of Topology Optimized Brake Caliper

The performance of the topology-optimized brake caliper was evaluated based on
comparison with the commercial product. As shown in Figure 9a, the topology-optimized
brake caliper and the reference brake caliper were mounted on the disc. The test procedure
of the brake caliper was evaluated based on the JASO C406 (Japanese Automobile Standards
Organization C406) test procedure using a brake dynamometer [41]. The sequence of the
JASO C406 test procedure is as follows: burnish, first effectiveness, first reburnish, first
fade, recovery, second reburnish, second fade, and recovery. The effectiveness test was
performed at three different braking speeds (50, 80, and 100 km/h) and eight different
decelerations (0.1–0.8 g). The fade and recovery steps were a series of tests for evaluating
the effects of brake systems changed by continuous braking. In the first step of fade and
recovery, 0.3 g deceleration was performed 10 times for 35 s at 100 km/h, and the same
conditions were repeated 15 times in the second step of fade and recovery. As shown in
Figure 9b, the temperature, frictional force effectiveness, and pressure were analyzed via
brake dynamometer experiments of the topology-optimized and reference models.

 

 

Figure 9. Dynamometer experiments (JASO C406), (a) topology-optimized brake caliper and com-
mercial product (casting product); and (b) test results of dynamometer test.

131



Metals 2024, 14, 1277

In terms of temperature, both models showed values within 15 ◦C. However, a tem-
perature gradient appeared because the thermal conductivity of titanium is lower than
that of aluminum, therefore, heat accumulation occurred in the fade experiment. In terms
of the frictional force effectiveness, the friction effect of topology-optimized model was
as high as 0.01~0.03 in the initial brake dynamometer of each step. However, continuous
experimentation with a topological brake caliper can result in performance degradation due
to heat accumulation in the Ti-6Al-4V material, attributed to its low thermal conductivity.
Nevertheless, it maintains frictional performance similar to that of the commercial product.
Based on the results of JASO C 406, the performance of the additively manufactured brake
caliper using the effective PBF process is comparable to that that of the commercial product.

4. Summary and Conclusions

The topology optimization brake caliper model with lightweight and high-strength
characteristics is precisely manufactured. Based on the numerical analysis and the experi-
mental results of topological model, the following conclusions can be inferred:

• The residual stress was reduced by 5.47–8.41% and the thermal deformation of the
cantilever by 8.33% compared to the strip process by applying an island pattern with
a hatching length of 5 mm.

• The topology-optimized brake caliper is built with a vertical orientation that minimizes
the melting area that causes thermal deformation and residual stress. With an effective
PBF process, a topology model and a precise brake caliper with an error of up to 97 μm
were fabricated.

• The brake performance of the topology-optimized brake caliper was evaluated based
on JASO C406. The brake performance of the topology-optimized model equals or
surpasses that of the commercial product.

As a result of this study, it is possible that additive manufacturing parts applicable
to the automotive industry can be manufactured through an effective PBF process. In
addition, through a new topology-optimized brake caliper, fuel efficiency can be improved
and showed the possibility of using it as a commercial automobile brake system.
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Abstract: S355 construction steel, a commonly used mild steel due to its exceptional strength, is prone
to environmental degradation, especially pitting corrosion in highly corrosive marine environments.
To address this vulnerability, applying a surface layer of nickel silicide (NiSi) cladding on such
components could offer a solution, given that NiSi-based alloys are known for their high corrosion
resistance and exceptional mechanical properties. Thus, the present study has investigated the
corrosion resistance and microhardness of the NiSi12-wt% cladding deposited onto substrates of
S355 steel using laser metal deposition. An accelerated ASTM G48 corrosion test and a Vickers
microhardness test were conducted in a solution of 6% ferric chloride (FeCl3) solution at room and
elevated temperatures to represent marine environments, with uncladded sheet substrates exposed to
the same test environments as a reference. All exposed S355 steel samples, with and without cladding,
underwent microhardness testing and were characterized using light optical microscopy (LOM) and
low-voltage field emission scanning electron microscopy (LVFESEM). The findings indicate that the
NiSi12-wt% cladding significantly enhances the corrosion resistance and mechanical properties of
the S355 steel samples, showcasing its potential for use in marine and industrial environments where
corrosion and mechanical wear are expected.

Keywords: nickel silicide; surface engineering; corrosion behavior; ASTM G48; laser surface
modification

1. Introduction

Steel is a widely used material in the construction of offshore installations and equip-
ment, onshore infrastructure, and buildings, both commercial and residential, due to its
strength and stability for load-bearing components in elements such as beams, columns,
and shells at a low cost. Its strength-to-weight ratio is particularly suitable for spanning
long distances while maintaining structural integrity, making it a fundamental material in
construction projects [1,2]. Among structural steels, S355, defined under the European stan-
dards [3], is particularly valued for its yield strength of 355 MPa, which makes it suitable
for high load-bearing structures. However, steel’s susceptibility to corrosion, accelerated
under harsh environmental conditions, presents significant challenges [4]. Factors such
as industrial pollution, coastal atmospheres, and acid rain accelerate corrosion through
electrochemical mechanisms involving moisture and oxygen [5].

Moreover, corrosion becomes a concern in industrial areas with high levels of pollu-
tants like sulfur dioxide (SO2) and nitrogen oxides (NOx). These pollutants, upon reacting
with atmospheric moisture, form acidic compounds that accelerate the deterioration of
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nearby structures [6]. This makes the development of protective measures, such as effective
cladding techniques, crucial for extending the lifespan of steel structures. Enhancing cor-
rosion resistance and mechanical properties of steel through cladding can provide robust
protective layers against aggressive environments.

Microhardness, a fundamental mechanical property, directly influences a material’s
ability to withstand wear, deformation, and damage under various loads and environmental
conditions. It is approximately proportional to the material’s yield stress [7,8].

1.1. Cladding Techniques

Cladding enhances steel’s mechanical and corrosion-resistant properties by forming a
robust protective layer. It involves adding a thick layer of material, often several millimeters
thick, to protect the metal from corrosion and improve surface strength [9]. Laser cladding,
a precision surface engineering technique, creates a metallurgically bonded protective layer
with excellent adherence and tailored properties, enhancing resistance to wear, corrosion,
and other forms of degradation [10]. It involves the focused application of a high-energy
laser beam to melt and fuse a powdered or wire-form cladding material onto a substrate
surface, particularly in challenging environments [9].

Additive manufacturing (AM) techniques offer a promising solution to enhancing
the low-temperature ductility of different materials by providing precise control of the
microstructure and porosity of the final product. Through AM, materials can be deposited
layer by layer, optimizing grain size, shape, and orientation, thereby improving the ductility
of the substrate material. Furthermore, integrating AM with advanced modeling and
simulation techniques enables the optimization of manufacturing processes, identification
of potential failure modes, and enhancement of material properties.

Laser-based direct energy deposition (DED), also known as laser metal deposition
(LMD), is an AM technique for high-speed laser cladding [11]. LMD has gained popularity
due to its ability to deposit brittle materials using the gradient laser power deposition
method, in which the laser power is reduced layer by layer to obtain a dendritic microstruc-
ture [12,13].

1.2. Nickel Silicide (NiSi)

Various nickel silicide (NiSi) based alloys have demonstrated superior corrosion resis-
tance compared to low-alloyed construction steels [14]. This enhanced resistance is due to
silicon in key phases such as Ni3Si, which promotes the formation of a protective, thin oxide
layer on the surface of the nickel silicide when exposed to corrosive conditions [15]. How-
ever, nickel silicide-based alloys often have inadequate room-temperature ductility [16],
limiting their practical use. This challenge can be overcome by applying them as protective
thin films or thicker claddings.

Nickel silicide-based alloys can be deposited onto construction steel surfaces through
various techniques, each with advantages and drawbacks depending on desired thickness,
substrate adherence, and specific properties needed for corrosion protection. In processes
like sputter deposition, precursor gases containing nickel-based compounds will react with,
for example, a silicon surface to form a nickel silicide-based coating [17]. This technique
allows for precise control of the film thickness and can produce uniform claddings. Addi-
tionally, nickel silicide-based alloys can be deposited on surfaces using plasma or thermal
spraying techniques [18], as well as different AM techniques [19]. AM or laser cladding
could be considered an effective technique for applying a nickel silicide-based coating to
S355 steel due to its precise control of cladding parameters. By leveraging the small laser
spot diameter, the thickness, surface roughness, and layer interface of the cladding layer
can be finely optimized, ensuring superior coating performance and adhesion [20].

The present study’s novelty lies in its application of a nickel silicide-based alloy as a
cladding material for S355 steel, an approach not widely explored. This approach leverages
the exceptional corrosion resistance and mechanical strength of NiSi12-wt%, offering a
significant improvement over traditional coatings and cladding materials.
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1.3. Objective

As S355 steel is prone to localized pitting corrosion in harsh environments, its use
in construction can be challenging. To address this, the present study investigates the
effectiveness of NiSi12-wt% cladding in enhancing the corrosion resistance and mechanical
properties of S355 steel. Specifically, the pitting corrosion behavior and microhardness of
both unprotected and NiSi12-wt% cladded S355 steel samples are examined. All samples
were exposed to an accelerated corrosion test (ASTM G48) at room and elevated tempera-
tures for different durations to assess pitting corrosion rates. Vickers microhardness tests
were also performed to evaluate the cladding’s influence on the steel’s mechanical prop-
erties. This initial assessment will serve as a foundation for further, more comprehensive
investigations into the long-term corrosion behavior and protective mechanisms offered by
the NiSi12-wt% cladding.

2. Experimental Procedure and Analyses

2.1. Raw Material, Gas-Atomization, and Analysis

The raw materials used were nickel (sourced as crowns, 99.8% purity) and silicon
(99.995% purity). The NiSi12-wt% powder was produced using a gas atomizer and used
for cladding S355 steel samples through LMD. The raw materials were provided for the
trials by ELKEM Silicon AS (Kristiansand, Norway).

The amount of nickel and silicon powders needed to produce NiSi12-wt% was intro-
duced into a 75 kW induction furnace, and the resulting melt was cast into sheets with
a thickness of 10 mm. Subsequently, the sheets were cut into smaller pieces suitable for
loading into an atomization crucible. LECO analysis was performed on the metal pieces
produced using a combustion testing unit (Model: RC612), revealing 0.2 wt% carbon con-
tamination. The metal pieces were later used in a VIGA-type gas atomizer with a batch
capacity of 10 kg of steel equivalents at the INSTM research unit (National Interuniversity
Consortium of Materials Science and Technology) of the Polytechnic University of Turin
(Alessandria, Italy) to produce the desired NiSi12-wt% powder. Low-voltage field emission
scanning electron microscopy (LV-FESEM, Supra 55VP, Zeiss, Oberkochen, Germany) was
used to investigate the morphology of the atomized powders using secondary electron
imaging. The accelerating voltage was 15 keV, and a working distance of 11 mm was
maintained for all samples.

2.2. Laser Metal Deposition (LMD) and Sample Preparation

The gas-atomized powder, falling within the size range of 60–120 μm, was utilized for
cladding sheet samples of S355 steel. The LMD technique (LT 65 3D hybrid, DMG MORI
AG, Pfronten, Germany), housed at the Mechatronics Innovation Lab (MIL) situated at
the University of Agder (UiA, Grimstad, Norway), was used for this purpose. The unit,
equipped with a 2500 W fiber laser operating at a wavelength of 1020 nm, deposited five
layers of NiSi12-wt% powder particles onto the sheet samples. The dimensions of the
samples were 28 mm × 28 mm × 6.5 mm (L × W × H). The LMD laser power, scanning
speed, and deposition rate were systematically adjusted and analyzed to identify the
optimal parameters for achieving crack-free multi-layer claddings at a single-layer height
of 0.3 mm. To prevent excessive heat accumulation and subsequent warping of the clads,
a 30 s delay time was introduced between successive layers, as well as a laser power
reduction of 100 W. The deposition speed and feeding rate were kept constant at 1 m/min
and 10.5 g/min, respectively. The laser powers used are summarized in Table 1.

Table 1. Laser power for the 5-layer cladding of the NiSi12-wt% alloy onto a sheet sample of S355
steel using the LMD technique.

Layers Laser Power (W)

1 layer 2350

2 layers 2250
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Table 1. Cont.

Layers Laser Power (W)

3 layers 2150

4 layers 2050

5 layers 1950

The same SEM apparatus, detector, accelerating voltage, and working distance were
used to analyze the atomized powder and check the quality of the claddings.

2.3. Corrosion Sample Preparation

To prepare the produced claddings for the ASTM G48 test, a grinding machine
(SAPHIR 200, ATM, Mammelzen, Germany) and silicon carbide grinding paper with
progressively finer grain sizes, ranging from 200 μm to 15 μm, were used. Following
grinding, the samples were polished to achieve a uniform surface using a DiaPro Dac
3 μm diamond suspension solution on a standardized polishing machine (Tegramin-30,
Struers, Copenhagen, Denmark). After grinding and polishing, the cladding thickness was
1.96 mm.

2.4. ASTM G48 Test

Samples were prepared for preliminary pitting corrosion testing using the ASTM G48
test in ferric chloride (FeCl3) solution at room and elevated temperatures. After testing,
ethanol was sprayed on the sample surfaces to prevent further corrosion. Weight loss
analysis was performed to facilitate mass loss measurements.

Four samples, each measuring 2.8 cm × 1.5 cm (L × W), were prepared, i.e., two
consisting of the unprotected S355 steel sheet sample and two NiSi12-wt% cladded sheet
samples. The solution for immersing the samples was prepared from 100 g of ferric
chloride hexahydrate (FeCl3·6H2O) dissolved in 900 mL of deionized water, resulting
in a ferric chloride concentration of 6% by mass. The temperature of the solution was
adjusted according to the requirements of each test. Specifically, two samples were placed
in individual glass beakers and immersed in solutions maintained at 25 ± 2 ◦C for 24
and 72 h, respectively. The other two samples, also placed in separate glass beakers, were
immersed in solutions heated to 50 ± 2 ◦C for 24 and 72 h, respectively. A thermometer
was used to verify and monitor the temperature of the solutions during the tests. Figure 1
illustrates the ASTM G48 test setup [21].

Figure 1. A schematic of the ASTM G48 corrosion test setup.
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At the termination of each test, ethanol was sprayed onto the sample surfaces to
prevent further corrosion. Additionally, each sample was weighed to the nearest 0.001 g to
facilitate weight loss analysis.

2.5. Analysis of the Sheet Samples of the S355 Steel

Light optical microscopy (LOM) was used to characterize the localized corrosion pits
on the surface of the NiSi-12 wt% cladded samples. Multiple images of the sample faces
were secured using an inverted optical microscope (Model: Axiovert A1, Zeiss, Oberkochen,
Germany) unit equipped with the Zeiss Axiovision Image Analysis Software (Release 4.1).
For LOM analysis, the polished samples were exposed to 30% iron (III) chloride (FeCl3)
solution for 10 s as a final step of the metallographic preparation. Stereo microscopy (Stemi
508, Zeiss, Oberkochen, Germany) was used to image the complete deposited clad.

Microhardness testing was performed using a Viker’s microhardness tester (VMH
MOT Vickers, Leica, Wetzlar, Germany) under a load of 2.94 N for 15 s. For each sample, five
separate measurements were taken to ensure reliability and accuracy, with the indentations
being sufficiently large to represent the microhardness of the samples. The average value
of these five measurements was calculated and reported for each condition.

3. Results and Discussion

3.1. Microstructural Analysis

The surface of unprotected S355 steel samples and the NiSi12-wt% cladded samples
were analyzed using LOM and SEM. The NiSi12-wt% cladding exhibited directional grains
and dendritic structures resulting from cooling during solidification. As seen in Figure 2a,
the microstructure of the base material reveals a ferritic matrix and pearlite made of
alternating lamellas of ferrite and cementite. The ferrite layers in the pearlite appear darker
in the LOM images due to their faster reaction with the FeCl3 solution during etching.
Figure 2b presents the more complex structure of the NiSi12-wt% cladding, revealing
directional grains formed by the LMD process, aligning parallel to the direction of the
moving heat source.

 

Figure 2. LOM images of the microstructure of the (a) unprotected S355 steel sample and (b) NiSi12-
wt% cladding surface comprising multiple layers of NiSi12-wt% deposited onto an S355 steel sample.

SEM images were obtained for further clarity, see Figure 3. As seen in Figure 3b,
the structure comprises dendritic grains resulting from rapid cooling during the LMD
process [10,22]. Additionally, carbon contamination is evident in the microstructure, mani-
festing as carbon-rich regions along the grain boundaries. This contamination potentially
influences the corrosion behavior by creating preferential sites for corrosion initiation.
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Figure 3. (a) Five layers of the NiSi12-wt% cladding deposited onto an S355 steel sample using the
LMD technique. (b) The microstructure of the NiSi12-wt% cladding secured using SEM.

3.2. Corrosion Behavior

The ASTM G48 test showed superior corrosion resistance of the NiSi12-wt% cladded
samples compared to the unprotected S355 steel samples. The test evaluated the resistance
of both sample types against corrosion in a 6% FeCl3 solution. Figure 4 shows the polished
samples before exposure to the corrosive environment. The LOM and SEM micrographs in
Figures 5 and 6 illustrate the corrosion patterns after exposure at room temperature (25 ◦C).
As can be seen from the figures, the base material exhibits extensive pitting corrosion
(highlighted by arrows), characterized by pits or holes from the dissolution of iron ions [23].
In contrast, the NiSi12-wt% cladded sample demonstrates minimal signs of corrosion,
indicating effective protection.

Figure 4. (a) Polished unprotected S355 steel sample and (b) polished NiSi12-wt% cladded sample.

 

Figure 5. LOM images of the samples after the ASTM G48 test at 25 ◦C for 72 h. (a) Unprotected S355
steel sample, and (b) NiSi12-wt% cladded sample.
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Figure 6. LV-FESEM images of the samples after the ASTM G48 test were performed at 25 ◦C for 72 h.
(a) Unprotected S355 steel sample, and (b) NiSi12-wt% cladded sample.

Further investigation into the impact of temperature on corrosion behavior involved
subjecting the samples to the 6% FeCl3 solution at elevated temperatures. The LOM
and SEM micrographs in Figures 7 and 8 illustrate the corrosion patterns at 50 ◦C. As
can be seen from the figures, the corrosion damage to the base material intensifies with
increasing temperature, leading to a more pronounced pitting corrosion. Although some
corrosion is observed on the NiSi12-wt% cladded sample, it remains localized, indicating
continued protection.

 

Figure 7. LOM images of the samples after the ASTM G48 test were performed at 50 ◦C for 72 h.
(a) Unprotected S355 steel sample, and (b) NiSi12-wt% cladded sample.

 

Figure 8. LV-FESEM images of the samples after the ASTM G48 test at 50 ◦C for 72 h. (a) Unprotected
S355 steel sample and (b) NiSi12-wt% cladded sample.

The reaction of Ni3Si and Ni2Si in the presence of FeCl3 solution would depend on the
specific conditions and temperatures involved. When exposed to an oxidizing agent like
FeCl3, they can undergo oxidation reactions. The chloride ions (Cl−) present in the FeCl3
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solution may interact with the metal ions (Ni2+ and Fe2+) produced during the oxidation
of Ni3Si and Ni2Si. In the presence of excess chloride ions (Cl−) from the FeCl3 solution,
Ni2+ and Fe2+ ions can form soluble chlorides like NiCl2 and FeCl2. These chlorides would
remain in solution due to their solubility in water [24], increasing the ionic strength and
conductivity of the solution. This is also the mechanism for using FeCl3 as an etchant
of nickel alloys [25]. Nickel usually exhibits thermodynamic reactivity and theoretically
should dissolve readily in dilute mineral acids while releasing hydrogen gas (H2 (g)). Still,
it often demonstrates a surprising degree of inertness towards the dilute acids. This is
mainly due to nickel readily undergoing “passivation”, resulting in a highly adherent oxide
layer that presents significant kinetic resistance to further chemical reactions [26].

3.3. Corrosion Rate Measurements

At ambient temperature (25 ◦C), the unprotected S355 steel exhibited significantly
higher mass loss rates compared to the NiSi12-wt% cladded samples, particularly during
the first 24 h, as shown in Table 2. This observation highlights the S355 steel’s lack of
inherent resistance to corrosion, which is exacerbated by its initial exposure to the cor-
rosive FeCl3 environment. The NiSi12-wt% cladded samples, in contrast, demonstrated
consistently lower mass loss rates, attributed to the formation of protective nickel- and
silicon-based oxide layers that effectively mitigate corrosion.

Table 2. Mass loss rates for the unprotected and NiSi12-wt% cladded S355 steel samples after the
ASTM G48 test in a 6% FeCl3 solution at 25 ◦C and 50 ◦C for 1 and 3 days.

Sample Name Time (Days) Mass Loss (mg/mm 2/Day)

Unprotected S355 steel sample (25 ◦C)
1 4.41 ± 0.25

3 1.78 ± 0.15

NiSi12-wt% cladded sample (25 ◦C)
1 4.12 ± 0.11

3 1.60 ± 0.06

Unprotected S355 steel sample (50 ◦C)
1 4.36 ± 0.37

3 3.98 ± 0.13

NiSi12-wt% cladded sample (50 ◦C)
1 4.30 ± 0.16

3 3.10 ± 0.17

Over the 72-h test period, both materials exhibited a reduction in corrosion rates.
This decrease is likely due to the buildup of corrosion products on the surface, which
acted as partial and chemical barriers to further attack. The protective effect was more
pronounced for the NiSi12-wt% cladded samples, emphasizing their superior performance
in corrosion-prone environments.

At higher temperatures (50 ◦C), corrosion rates increased for both materials, high-
lighting the role of temperature in accelerating electrochemical and diffusion-controlled
reactions. The unprotected S355 steel showed a pronounced rise in mass loss rate, par-
ticularly during the first 24 h, as seen in Figure 9. This rapid degradation reflects its
susceptibility to temperature-induced material breakdown. In contrast, the NiSi12-wt%
cladded samples maintained significantly lower corrosion rates at 50 ◦C, demonstrating
their enhanced resistance to high-temperature conditions. Notably, the corrosion rate of the
cladded samples after 72 h at 50 ◦C was comparable to that observed at 25 ◦C, underscoring
their thermal stability and effectiveness in prolonged exposure scenarios.

The temperature-dependent trends observed also shed light on the dynamic nature
of corrosion processes. Initial rates were higher due to active surface reactions and rapid
electrochemical activity. However, the gradual decline in rates over the 72-h period indi-
cates stabilization mechanisms, such as the formation of denser oxide layers or the reduced
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availability of active corrosive species. This behavior underscores the material’s ability to
self-passivate, particularly in the case of the cladded samples.

Figure 9. Graphical visualization of the mass loss rates for the unprotected and NiSi12-wt% cladded
S355 steel samples after the ASTM G48 test in a 6% FeCl3 solution at 25 ◦C and 50 ◦C for 72 h.

The LV-FESEM images in Figure 8 further validate these observations. The unprotected
S355 steel sample (Figure 8a) shows extensive surface damage after the ASTM G48 test
at 50 ◦C for 72 h, with clear evidence of pit formation and widespread material loss. In
contrast, the NiSi12-wt% cladded sample (Figure 8b) retains a relatively intact surface
morphology, indicating the effectiveness of the cladding in mitigating both localized and
uniform corrosion.

3.4. Mechanical Properties

Microhardness measurements were performed both before (control samples) and
after performing the ASTM G48 test at 25 ◦C and 50 ◦C for 72 h to evaluate the impact
of the cladding process on the mechanical properties. Microhardness measurements
showed a significant increase for the NiSi12-wt% cladded sample compared to the base
material, indicating enhanced mechanical properties. Table 3 summarizes the measured
microhardness values of the control sample, as well as for the unprotected and NiSi12-
wt% cladded S355 steel samples. The results are further visualized in Figure 10. As
seen in the figure, a significant increase in microhardness is demonstrated for the NiSi12-
wt% cladded sample compared to the base material. This result indicates that a 1.5 mm
NiSi12-wt% cladding enhances the mechanical properties of the base material. The high
solidification rates associated with the LMD technique contribute to the observed increase
in microhardness [21]. The enhancement offers several advantages, including improved
resistance to wear, impact, and deformation, making the NiSi12-wt% cladding well-suited
for applications requiring high mechanical strength and durability.

Table 3. Microhardness, measurements of the unprotected and NiSi12-wt%, cladded S355 steel
samples before and after the ASTM G48 test in a 6% FeCl3 solution at 25 ◦C and 50 ◦C for 72 h.

Sample Microhardness (HV)

Unprotected S355 steel sample—Control 842 ± 25.3

NiSi12-wt% cladded sample—Control 1258 ± 18.9

Unprotected S355 steel sample (25 ◦C) 385 ± 11.5

NiSi12-wt% cladded sample (25 ◦C) 1116 ± 16.7

Unprotected S355 steel sample (50 ◦C) 353 ± 10.6

NiSi12-wt% cladded sample (50 ◦C) 913 ± 13.7
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Figure 10. Graphical visualization of microhardness variation of the unprotected and NiSi12-wt%
cladded S355 steel samples before and after the ASTM G48 test in a 6% FeCl3 solution at 25 ◦C and
50 ◦C for 72 h.

3.5. Key Considerations

Understanding the kinetics and thermodynamics of oxidation reactions involving
nickel silicide phases under different temperatures and solution conditions is essential
for evaluating the long-term performance of the NiSi12-wt% cladding. The unique mi-
crostructure of the NiSi12-wt% cladding, characterized by dendritic grains, influences its
mechanical strength [27]. Furthermore, the interaction between the clad material and the
corrosive environment, particularly the oxidation reactions involving the nickel silicide
phases Ni3Si and Ni2Si, requires further investigation. Gaining insights into these reactions
under different temperatures and solution conditions can provide valuable insights into
the long-term performance of the NiSi12-wt% cladding material in practical applications.

4. Conclusions

The NiSi12-wt% alloy was successfully deposited onto S355 steel samples using LMD,
enhancing both corrosion resistance and mechanical properties. Preliminary results from
the ASTM G48 pitting corrosion test and the Vickers microhardness test indicate that
the NiSi12-wt% cladded samples exhibit superior corrosion resistance and mechanical
properties compared to the base material. Initial SEM and LOM analysis showed minimal
signs of corrosion on the NiSi12-wt% cladded samples, with only minor localized effects,
while widespread surface pitting was observed on the base material.

Furthermore, the unprotected S355 steel samples experienced greater mass loss than
the NiSi12-wt% cladded samples, highlighting the protective nature of the NiSi12-wt%
cladding. Moreover, corrosion rates were more pronounced at higher temperatures, likely
due to the increased kinetics and the highly acidic nature of the 6% FeCl3 solution.

Overall, the preliminary results from the present study highlight the potential of
the NiSi12-wt% cladding technology to specifically enhance the corrosion resistance and
mechanical properties of structural materials such as S355 steel. By mitigating corrosion and
improving mechanical strength, this cladding material offers a viable solution for extending
the service life and durability of components subjected to harsh operating conditions. These
findings provide a foundation for further, more detailed investigations and underscore
the potential of the NiSi12-wt% cladding for improving the longevity of construction steel
components in challenging environments.

5. Future Work

In future studies, MP-AES will be utilized to analyze both soluble and insoluble
corrosion products to provide a more comprehensive understanding of the corrosion mech-
anisms. This approach will allow for the quantification of soluble ions in the solution and
the characterization of insoluble corrosion products released during the corrosion process.
Investigating the kinetics of corrosion, the formation of corrosion products, and the influ-
ence of different environmental factors can provide important insights into the corrosion
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process. Exploring the adhesion strength and integrity of the NiSi12-wt% cladding under
mechanical stresses, including cyclic loading and thermal cycling, can offer valuable infor-
mation about its mechanical robustness. Additionally, examining the long-term durability
and performance of the NiSi12-wt% cladding in real-world environments, considering
factors such as exposure to varying temperatures, humidity levels, and corrosive agents
over extended periods, will be beneficial.

Furthermore, it is crucial for practical implementation to explore potential methods
for optimizing the cladding’s application process, including deposition parameters and
improving the uniformity and adhesion of the NiSi12-wt% cladding to the substrate mate-
rial. Investigating methods to enhance the cladding’s mechanical robustness and long-term
durability under real-world conditions will further improve its effectiveness.
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Abstract: Wire Arc Additive Manufacturing (WAAM) is a process for fabricating metal
parts known for its high productivity and material flexibility. However, defects such as
overheating, residual stresses, distortions, porosity, and a non-homogeneous microstruc-
ture limit its commercial applications. Therefore, the present study aims to analyze the
correlation between electrical sensing anomalies in the Gas Metal Arc (GMA) during
WAAM and the occurrence of microscopic defects caused by external contamination. To
achieve this, experiments were conducted to fabricate walls using WAAM with controlled
contaminant introduction. Simultaneously, electrical arc data, specifically voltage and
current, were segmented and acquired during the wall deposition process. Metallographic
analysis confirmed the presence of microscopic defects or changes in the solidification
patterns in regions with contaminant inclusion, distinguishing them from other areas of
the analyzed samples. Similarly, the contaminations were proven to cause anomalies in
attributes associated with the electrical arc. Therefore, this approach confirms the criticality
of electrical arc monitoring in WAAM, as it demonstrates that anomalies in the electrical
arc could lead to microstructural consequences.

Keywords: wire arc additive manufacturing; gas metal arc; electrical signals; contamination;
features; defects

1. Introduction

In recent years, the industry has presented itself in an innovative way, encompassing
a broad system of advanced technologies that drive progress in production methods and
business models on a global scale [1,2]. As a result, there has been significant development
in the field of Additive Manufacturing (AM), as the use of this technology is linked to the
reduction of production steps, as well as contributing to shorter product delivery times,
thus adding value to distribution, storage, and production processes [3–5].
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The AM process is defined as a material joining process for manufacturing components
by depositing layer by layer from a 3D model, differing from conventional subtractive
manufacturing (machining) [6,7]. Additionally, this process can be applied to various
materials, such as polymers, ceramics, composites, and even metals [6,7]. In Metal Additive
Manufacturing (MAM) processes, material deposition can be performed by melting a metal
wire onto a substrate [8], using energy sources like a laser, electron beam, or even an electric
arc, as well as by the fusion/sintering of metals in powder form [9–11].

Laser and electron-beam-based additive manufacturing processes are common, but
their high cost and low efficiency greatly limit their application in the production of
large metallic components [12]. On the other hand, Wire Arc Additive Manufacturing
(WAAM) utilizes the heat generated by an electric arc, which melts the metal material
(wire) that is continuously deposited, overcoming the described obstacles [13]. Regarding
its terminology, according to ISO/ASTM 52900:2021 [14], the WAAM process is classified
as a direct energy deposition of metals with an electric arc (DED-Arc) process. The electric
arc used in WAAM can be a Gas Metal Arc (GMA), Gas Tungsten Arc (GTA), or plasma
arc (PA) [15]. Arc-based techniques, such as GMA and GTA, offer energy efficiencies of up
to 90% [16] and allow nearly all of the wire material to be used in the component. These
methods are more affordable and suitable for wire-fed additive manufacturing processes
compared to laser and electron beam techniques [17].

However, one of the major limitations associated with WAAM is the defects resulting
from improper process parameter settings, environmental disturbances, and process insta-
bility [18]. These can lead to serious issues, affecting product performance, durability, and
even causing safety incidents [19]. Similarly, connections have been identified between data
collected during the manufacturing process and the emergence of defects in the produced
parts, enabling the application of methodologies for monitoring control parameters [20,21]
or other types of responses [22–24].

Recent studies have explored different monitoring methods for defect analysis in Wire
and Arc Additive Manufacturing (WAAM) processes. Ramalho et al. [20] investigated
the use of acoustic emissions to detect contaminations during the additive manufacturing
of 316L stainless steel, highlighting its application in fault identification. Similarly, Chen
et al. [24] developed an optical spectral-physics-informed attention network for condition
monitoring in WAAM, demonstrating the potential of optical signal-based techniques for
predictive defect analysis. These works emphasize the variety of approaches employed to
enhance defect detection and quality control in the WAAM process.

Among the monitoring techniques in WAAM, the electrical sensing method is based
on the perspective that electric arc signals are closely related to droplet transfer and arc
ignition [25]. While these methods have advanced the understanding of WAAM monitoring,
their focus often remains on macroscopic defect detection or signal-based assessments,
without direct exploration of the microstructural implications of anomalies. In this context,
Lupo et al. [26] analyzed microstructural images captured between powder layers to assess
how the quality of the powder layer in the Selective Laser Sintering (SLS) process affects
defects in the final product.

Furthermore, this study bridges this critical gap by integrating electric arc signal analy-
sis with microstructural investigation for anomaly detection in WAAM. Unlike prior works,
which primarily concentrate on process monitoring or defect prediction, this research exper-
imentally validates the correlation between electric arc characteristics and microstructural
changes in austenitic stainless steel 316L-Si walls. Through a controlled experimental
design, electric arc data (voltage and current) are acquired during the deposition process,
with conditions tailored to induce specific defects. The subsequent microstructural analysis
evaluates how these defects manifest at the microscopic level, confirming the legitimacy of
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using electric arc signals for anomaly detection in WAAM. This novel approach ensures a
deeper understanding of the relationship between process parameters, arc instability, and
material integrity, offering critical insights for improving defect detection and ensuring the
industrial reliability of WAAM components.

2. Materials and Methods

In this work, C-Mn plates (Aço Brazil, Campina Grande, Brazil) with dimensions of
18 × 160 × 170 mm were used as the substrate. For the filler metal, austenitic stainless steel
wire ER 316LSi (Avesta ER316Si/316L Si®, from Avesta, Sweden) with a nominal diameter
of 1.2 mm was used, and commercially pure argon (99.98% Ar) was used as the shielding
gas. Table 1 presents the nominal chemical composition of the wire used, as specified by
the AWS A5.9 classification and measured by X-ray fluorescence (XRF).

Table 1. Nominal chemical composition of filler metal AISI 316L-Si.

C% Cr% Ni% Mo% Mn% Si% Creq/Nieq * FN

AWS 0.03
Max. 18.0–20.0 11.0–14.0 2.0–3.0 1.0–2.5 0.65–1.0 Varied 5–8 **

XRF 0.02 18.04 12.11 2.67 2.20 0.96 1.62 5
* Calculated based on the WRC 1992. ** Estimated FN interval provided by the filler wire manufacturer
(Avesta ER316Si/316L Si®).

The walls produced by WAAM were made by depositing 5 weld beads, each 100 mm
in length, using a zig-zag strategy in the manufacturing direction to achieve a more uniform
wall height [27,28]. The process used was GMAW with controlled short-circuit transfer
mode (GMAW-CCC) [29]. For this, an IMC Soldagem (Palhoça, Brazil) power source, model
Digiplus A7, was used along with the STA 20-D wire feeder model, from IMC Soldagem.
The torch displacement system was a CNC robotic mechanism with three-axis movement
(X, Y, and Z), controlled by MACH3 CNC software version 3.043, from the ArtSoft company
(Hood River, OR, USA), with G-code language. The deposition parameters were chosen to
ensure minimal dimensional stability and mechanical properties of the deposits, according
to the literature related to the material [30], as presented in Table 2.

Table 2. Deposition parameters for the WAAM manufacturing of 316L-Si steel walls.

Parameter Unity Value

Peak current A 250
Base current A 50
Torch speed mm·min−1 300

Interpass temperature ◦C 80
CTWD mm 10

Wire feed rate m·min−1 5
Gas flow rate l·min−1 18
Shielding gas - Commercial Argon (99.98%)

To investigate defects and arc instability due to the influence of contaminants during
layer deposition, three types of contaminants were used: sand, oil, and chalk [20,31]. Thus,
two walls were manufactured for each contaminant, with intercalation in the deposition of
the contaminants, represented by strategies P1 (Figure 1b) and P2 (Figure 1b). This pattern
was applied to all three contaminants, deposited in the layers and locations indicated, as
shown in Figure 1a.
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Figure 1. (a) Schematic diagram of contaminant insertion during layer deposition by MADA, according
to strategies (b) P1 and (c) P2. The red dots indicate the exact locations of contaminant introduction.

The fundamental parameters determining the CCC waveform shape included the peak
current (1), peak current time (2), current drop rate (3), current rise rate (4), short-circuit
wait current (5), and background current (6), as depicted in Figure 1.

For better visualization and future reference for results and discussions, acronyms
were adopted to identify the walls according to the contamination strategy and the intro-
duced contaminant. This standardization is presented in Table 3.

Table 3. Nomenclature of the fabricated walls.

Strategy/Contaminant Chalk Oil Sand

P1 W2 W4 W6
P2 W3 W5 W7
- W1 (Reference)

For metallographic preparation, samples were taken from the walls where contami-
nants were introduced into the deposits. After cutting, 5 mm-thick samples were embedded,
ground to a 2400 grit, polished with 1 μm and 0.5 μm alumina, and subjected to electrolytic
etching using 10% oxalic acid for 50 s at 2 V. Digital photographs were obtained using an
Olympus (Tokyo, Japan) optical microscope, SC30 model, with 5× magnification. These
images were taken in all interpass regions of the three samples removed transversely
from the contamination areas for each manufactured wall. This was done to compare the
appearance of microscopic defects in the contamination regions with the others, as well as
to distinguish the microstructural morphology of an interpass region with and without the
presence of external contaminants.

2.1. Data Labeling

Before analyzing the electric arc data to investigate the effect of contaminant introduc-
tion on defect occurrence in the walls, it is necessary to perform a preprocessing step to
remove irrelevant data. Some data are considered useless for analysis; for example, when
both current and voltage levels are zero before and after the start and end of the electric
arc due to delays in communication between the welding and robotic systems, or when
only the current levels are zero due to delays between the start and end of data acquisition
and the start and end of the electric arc. After this data cleaning, the welding current and
voltage datasets are normalized using the Min-Max technique.
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All preprocessed files were labeled to enable the correlation between raw or feature-
extracted electric arc data and electric arc anomalies, which were categorically assessed.
This categorical label was assigned according to the type of electric arc disturbance and
could assume the following values: 0 for no disturbance; 1 for disturbance associated with
the start of the arc; 2 for disturbance associated with contamination; and 3 for disturbance
associated with the end of the arc.

2.2. Feature Selection and Extraction Process

Next, a rolling window is used to divide the normalized data into sections containing
100 samples each. There is overlap between neighboring windows in this work. If the last
data window contains fewer than 100 samples, the script will re-sample this last window
to 100 samples using data from the previous window. This windowing process aims to
calculate features related to the electric arc (voltage and current).

Based on a complete cycle of the events occurring during the CCC metal transfer,
eleven statistical features can be extracted for both current and voltage data, similarly to
what was proposed by Shi et al. [12] and Li et al. [13]. Another selected feature was the
IVcc (Vilarinho Index of Regularity) for CCC metal transfer, based on the short-circuit
and arc burn time intervals. This feature was chosen considering domain knowledge
that reflects the understanding that electric arc anomalies caused by contaminants can
effectively lead to irregularities in the electric arc during metal transfer. For calculating
IVcc, the electrical voltage and current data were acquired at a rate of 5 kHz and 22 V for
short-circuit voltage. The acquisition and storage of the electric arc data were performed
using the data acquisition system SAP V4 from IMC Soldagem.

To determine the IVcc, as previously done in other works [27,32,33], a dedicated script
developed in Python 3.12 was used, through which the short-circuit time values and their
respective standard deviations are calculated numerically [27,28], as shown in Equation (1).

IVsc =
σtsc

tsc
+

σtarcing

tarcing
, (1)

where σtsc is the standard deviation of the mean short-circuit time, σtarcing is the standard
deviation of the mean arc burn time, tsc is the mean short-circuit time, and tarcing is the
mean arc burn time. In this context, the regularity index IVcc takes into account both the
mean values and standard deviations. Thus, a lower IVcc value indicates greater stability
of the arc for short-circuit transfer [21].

Thus, knowing that all selected features are calculated for both voltage and current
data, except for IVcc, there are a total of 23 electric arc features calculated for each data
window. These features are listed in Table 4 below.

Table 4. Features related to acquired electric arc data.

Time Domain Frequency Domain

Average Average peak width
Standard deviation Number of peaks
Maximum/Minimum Standard deviation of peak width
Curtose/Skewness Average distance between neighboring peaks
IVcc Standard deviation of the distance between neighboring peaks

To concatenate the extracted features with the labels, which did not undergo the data
windowing process, the labels were also windowed, with the most frequent value (mode)
calculated for each window.
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3. Results

3.1. Visual Inspection of the Walls

The walls were manufactured according to the manufacturing parameters of the
WAAM process and the contaminants—chalk, sand, and oil—indicated in Table 3. The
visual characteristics of the walls are shown in Figure 2.

(a) (b)

100 mm

(c) (d)

100 mm

100

Figure 2. Fabricated walls: (a) W2, (b) W3, (c) W4, (d) W5, (e) W6, (f) W7, and (g) W1.

Visual inspection revealed distinct characteristics on the surface of wall W1 (Figure 2g)
compared to those where contaminants were introduced (Figure 2a–f). It was observed
that the walls contaminated with sand (W6 and W7) were the most geometrically incon-
sistent, showing lateral deformations along the entire length of the layers, as indicated
in Figure 2e,f. This can be justified by the physical interference with arc stability, as sand
particles may create points of low adhesion between the deposited layers, compromising
material cohesion and leading to geometric deformations. This is also described by Meier
et al. [34], who noted that the presence of sand particles can interfere with deposition
continuity in the metal powder bed fusion process, resulting in irregular surfaces and inad-
equate adhesion. Roy et al. [35] highlighted that interparticle cohesion can result in layer
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structures with variable density, creating low-density areas susceptible to adhesion failures
between subsequent layers. Additionally, it’s possible to infer chemical contamination
due to undesirable reactions. Sand, primarily composed of silicon dioxide (SiO2) [36,37],
might react with elements present in the stainless steel 316L-Si and these reactions can form
compounds that alter the material properties of the deposited layers and compromise their
geometric integrity. This is also discussed by Mouayd et al. [38], who concluded that the
presence of silica or silicon dioxide delays scale growth by creating a barrier at the metal
interface due to the low diffusivity of iron in silica.

Another perspective for justifying the greater deformations in the walls contaminated
with sand (Figure 2e,f) is the thermal effects of this inclusion. Sand may alter thermal
distribution during the deposition process, causing differences in thermal contraction and
expansion along the wall, which leads to deformations in the piece. This is also discussed by
Meier et al. [34]. Additionally, sand particles can act as nucleation points for solidification,
accelerating the cooling of molten metal in specific areas and creating thermal stresses,
which also cause deformations. This effect can be compared to the behavior observed in
metal welding processes, where contaminants can result in microcracks and structural
failures due to accumulated residual stresses, as described by Roy et al. [35].

Additionally, the walls W4 and W5, contaminated with oil, also exhibited the same
discontinuities as those contaminated with sand, but to a lesser extent, along with the
presence of lateral spatter in the same direction as the layer deposition. This is due to the
interference with the electric arc caused by the inclusion of oil. The presence of oil on the
surface of the molten metal can alter the surface tension of the metal, causing spatter and
irregularities in the deposition. As the oil vaporizes, it can create small explosions that
disperse the molten metal, resulting in lateral spatter, as discussed by Li et al. [39], who
investigated the effects of oxides on the surface tension of molten metal and arc behavior
in the GTAW process.

In addition, oil can create a thin layer between deposits, reducing cohesion between
the deposited layers and resulting in smaller, yet still present, discontinuities. This is similar
to the discussion by Yoo, Lee, and Kim [40], who indicated that oil contamination can lead
to fusion and adhesion problems, creating weak points in the WAAM-produced piece. It
should also be noted that the introduction of oil can reduce the wettability of the deposited
metal, hindering proper fusion of successive layers and resulting in discontinuities. This
is consistent with discussions by other authors, who emphasize the critical nature of oil
contamination during additive manufacturing, creating physical barriers that prevent
adequate fusion between layers, resulting in structural defects [41,42]. This problem is
particularly significant in DED-AM processes, where layer adhesion is directly related to
the quality of the final product.

The walls contaminated with oil (Figure 2c,d) exhibited reductions in width towards
the end of their length. Additionally, the walls contaminated with chalk (W2 and W3)
showed excessive surface oxidation in the layers where the contaminant was introduced,
significantly compromising arc stability when evaluated layer by layer, as also discussed
by Bevans et al. [31]. As a preliminary assessment in the context of investigating defects
and arc stability in walls manufactured by WAAM from 316L-Si stainless steel, visual
inspection was complemented by quantitative and experimental indicators, as shown in
the following sections.

3.2. Metallographic Analysis

The metallographic characterization of the samples, strategically taken from the lo-
cations where contaminants were introduced into the walls manufactured according to
the contamination strategies P1 and P2, can be seen in Figures 3–8. To demonstrate the
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effects of contaminant insertion on the microscopic aspect of the material, images from the
contamination regions (lower and upper zones) and other interpass regions of the sample
(middle zone) were selected for each of the three samples taken per wall for comparative
purposes. Beyond the scope of this study, Figures 3–8 display the typical microstructure
of austenitic stainless steel manufactured by WAAM, consisting of austenite dendrites,
visualized in yellowish regions, with ferrite at the boundaries, visible in darker regions of
the figures [43–45]. The results for the walls with contaminants, W2 to W7, are shown in
Figures 3–8, in sequence.

From Figure 3, the microstructure of the W2 sample can be observed. In the analysis of
Figure 3, regarding the upper zone, the start/contamination sample showed a relatively ho-
mogeneous microstructure with a darker region prominently highlighted, possibly related
to the accumulation of chalk during deposition. In this region, the middle/contamination
sample also showed a relatively homogeneous microstructure with elongated grains in
the direction of solidification. The end/contamination sample exhibited a more evenly
distributed microstructure, but with a highlighted area of material accumulation resulting
from the buildup of chalk in that location.

For the lower zone, the start/contamination sample displays a more irregular solidi-
fication pattern, characteristic of the interpass regions in the WAAM process, and a dark
region prominently highlighted, possibly associated with residues from the chalk accumu-
lation. The middle/contamination sample shows the characteristic solidification structure,
revealing a different solidification pattern at the edges of the sample, related to the natural
cooling gradient of the deposit to the environment. Similarly, the end/contamination
sample displayed the characteristic solidification pattern of the WAAM process but with a
region of solidification typical of the sample edges, where there is greater contact with the
environment. This is featured in the physical characteristics of the chalk, which can act as a
thermal insulator, affecting heat and mass transfer in the contamination regions and their
surroundings, leading to a heterogeneous distribution of microconstituents.

In the samples shown in Figure 4, there is no significant differentiation compared
to what was observed in Figure 6, except for a drastic reduction in the identification of
contaminant accumulation, which is only present in the highlighted section of the upper
zone of the start/contamination sample. It is noted that the middle zone of all samples, as
illustrated in Figures 3 and 4, shows a more uniform and fine structure compared to the
upper and lower zones, possibly due to a lesser influence from the contaminants introduced
in the other zones during the process. The microstructural and solidification patterns of the
other zones in the samples are characteristic of the WAAM process, indicating that there
was no significant influence of chalk insertion for this wall. Alternatively, the imperfections
in the deposit, as shown in Figure 2, especially at the edges, may have affected the precision
of sample extraction. This could justify why a sample does not necessarily reflect the
intended manufacturing/contamination conditions.

The presence of inclusions, highlighted in Figures 3 and 4, located in the interpass
region and exhibiting irregular morphology, is featured in the contamination by chalk and
the reduction in the activity of the electric arc caused by this type of contamination during
the metal deposition. This finding aligns with the discussions by Wang et al. [46], who
developed a strategy for detecting porosity in WAAM, and Li et al. [47], who established
an internal system for tracking defects in WAAM.

Figures 5 and 6 illustrate the microstructures of the interpass regions for the walls
W4 and W5, respectively, when contaminated with oil. From the analysis of Figure 5,
which displays the microstructure of sample W4, it is observed that in the upper zone, the
initial/contaminated sample has a heterogeneous microstructure with elongated dendrites,
originating from a prominent dark region featuring the effect of oil vaporizing during depo-
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sition. In the same region, the medium/contaminated sample exhibits a more homogeneous
microstructure with fewer visible disturbances, but still with some indications of solidifica-
tion anomalies compared to other regions of the sample. Similarly, the end/contaminated
sample also shows a more homogeneous distribution of microconstituents, with signs of
solidification anomalies in specific locations.
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Figure 3. Microstructure of wall W2 at 50× magnification. The white circles indicate noticeable
microstructural defects.
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Figure 4. Microstructure of wall W3 at 50× magnification. The white circle indicates noticeable
microstructural defects.
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Figure 5. Microstructure of wall W4 at 50× magnification. The white circles indicate noticeable
microstructural defects.
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Figure 6. Microstructure of wall W5 at 50× magnification.
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Figure 7. Microstructure of wall W6 at 50× magnification.
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Figure 8. Microstructure of wall W7 at 50× magnification.

Regarding the lower zone, the initial/contaminated sample shows a marked segrega-
tion in the microstructure, characterized by faster solidification, with elongated dendrites
originating from a prominent fissured region. In contrast, the medium/contaminated and
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end/contaminated samples display a microstructure and morphology characteristic of the
WAAM process.

Figure 6 shows similar behavior in the microstructural characteristics of the oil-
contaminated samples, as previously analyzed in Figure 5. In both the upper and lower
zones, the initial/contaminated and end/contaminated samples exhibited irregular solidi-
fication patterns, deviating from the typical WAAM process characteristics. This suggests
that the presence of oil during deposition caused irregular metal solidification due to
gas generation. In contrast, the upper and lower zones of the medium/contaminated
sample reveal a more homogeneous microstructure with a finer grain size, which could be
attributed to the lower influence of oil in this part of the deposit or to the imprecision in
sampling from the wall.

Similar to Figures 3 and 4, it is noteworthy that the middle zone of the samples illus-
trated in Figures 5 and 6 shows finer and more uniform granulation. This is featured to the
proper selection of deposition parameters and the reduced influence of oil in the subsequent
layers after its introduction, considering that it vaporizes shortly after deposition.

The presence of voids and cracks in the samples extracted from walls W4 and W5 can
be featured to the evaporation mechanism of this contaminant, which is absorbed by the
molten pool and subsequently generates pores upon solidification. This phenomenon was
discussed when examining the influence of different types of contamination on the acoustic
spectrum in WAAM, as demonstrated by Huang et al. [48] and Li et al. [47].

Figures 7 and 8 illustrate the microstructure of the interpass regions for walls W6 and
W7, respectively, when contaminated with sand. As observed in Figure 7, in the upper zone,
the initial/contamination and end/contamination samples show pronounced dark areas
and unusual solidification patterns in the interpass region. This indicates that the sand
interacted with the material during solidification, compromising its fusion and the typical
annealing process in the interpass region of WAAM. The middle/contamination sample
shows a more uniform microstructure but still has some areas of irregular solidification, sug-
gesting a lesser effect of the sand in this region. In the lower zone, the initial/contamination
sample displays a large dark region associated with rapid solidification patterns in its vicin-
ity, indicating that the concentration of the contaminant in this region may have acted as an
anchor for internal metal solidification. The middle/contamination and end/contamination
samples in the lower zone showed solidification patterns similar to those observed in the
contaminant accumulation area in the initial/contamination sample, indicating that sand
caused internal metal solidification differences, although not explicitly identified in the
images, as illustrated in the initial/contamination sample of the lower zone.

Based on Figure 8, both the upper and lower zones exhibit microstructural characteris-
tics and solidification conditions considered suitable for the process. When compared to
other samples from walls contaminated with sand in these zones, this would be unusual
as there are no evident effects of the contaminant. This can be featured as inaccuracies in
sample removal from wall W7, given the geometric imperfections at the wall’s edges. The
middle zones of the samples presented in Figures 7 and 8, similar to previous ones in this
region, show fine and homogeneous grain structure, reflecting the lesser direct influence
of contaminants in this area. The irregularities in the microstructure observed in sand-
contaminated samples, as presented in Figures 7 and 8, were also noted by Wang et al. [46]
and Li et al. [47].

3.3. Feature Extraction

The routines for extracting features related to the electrical arc, outlined in Section 2.2,
were applied to the original datasets collected during the manufacturing of the walls. In
this study, only anomalies related to contamination of the deposit in the middle region of
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the wall (AC), or at the start (ONC) or end (OFC) of the electrical arc are targeted. Some
of these anomalies identified in the electrical arc data are represented in Figure 9. It is
preliminarily estimated that the average values of the electrical arc signals (Figure 9d), along
with their respective standard deviation values (Figure 9a), minimum values (Figure 9b),
and the number of peaks (Figure 9c), provide good indicators for distinguishing between
normal and anomalous behavior of the electrical arc under the current set of experimental
conditions related to manufacturing anomalies.

AC AC

OFC

ONC

AC

OFC

OFC

ACONC

(a) (b)

(c) (d)

Figure 9. Examples of the features extracted from the electrical arc data: (a) standard deviation
values, (b) minimum values, (c) number of peaks, and (d) average values. The dotted red squares
indicate regions of the oscillogram where some type of electric arc anomaly occurred, marked by the
acronyms ONC, AC, and OFC.

3.4. Correlation Between Features and Target Parameter

The feature extraction routines were aggregated into the datasets with labeled re-
sponses, along with the electric arc data collected during the fabrication of the walls,
through the application of the rolling window technique. The same parameters were
applied to the labeled data to adjust the dimensionality of the data matrices resulting
from both scripts. By combining the feature dataset with the original labeled dataset, it
was possible to observe the correlation matrix between the features and the categorical
responses of the label, represented by the feature ‘Anomaly’, as shown in Figure 10.

Figure 10. Correlation matrix between electric arc features.
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Based on the results for electric arc features presented in Figure 9a, which displays
the correlation matrix between the features and the response (‘Anomaly’) as a heatmap, it
can be observed that the features ‘voltage_max_values’ (0.52) and ‘current_means’ (0.66)
showed moderately strong correlations with the response. This indicates that higher voltage
values and current averages may be associated with the occurrence of electric arc anomalies.
Additionally, the features ‘voltage_peak_counts’ (−0.34) and ‘current_peak_counts’ (−0.34)
exhibited moderate negative correlations, suggesting that a lower frequency of voltage and
current peaks may be related to anomalous characteristics in the electric arc, considering
CCC metal transfer.

In addition, the feature IVCC has a low correlation with ‘Anomaly’ (0.01), suggesting
that this feature does not have a significant influence on the target parameter, or at least does
not establish a linear relationship with the target parameter, given the multi-complexity of
the metal transfer process in WAAM, as the correlation matrix uses Pearson’s coefficient.
Furthermore, there are strong positive correlations between variables related to electrical
current, such as ‘current_max_values’ and ‘current_std_peak_widths’ (0.81), which is
expected since both parameters are related to peak analysis in current waveforms. A
similar behavior is observed between voltage variables, such as ‘voltage_max_values’ and
‘voltage_std_peak_distances’ (0.87), suggesting an intrinsic relationship between voltage
peak characteristics and their statistical variations.

4. Conclusions

The presented study revealed significant discussions regarding arc analysis techniques
for anomaly detection in walls fabricated by Wire Arc Additive Manufacturing (WAAM)
using the GMA process. The following conclusions were highlighted based on the visual
inspection of the walls, microstructural analysis of cross-sectioned samples, and analysis of
arc-related features:

(1) The controlled introduction of contaminants, such as chalk, oil, and sand, led to
observable geometric and microstructural changes due to their effect on the molten
pool’s solidification and the appearance of microscopic defects;

(2) The analysis of arc-related features, selected based on the controlled short-circuit
transfer mode, identified strong correlations between variations in arc features—such
as mean, minimum, standard deviation values, as well as the number of peaks—and the
occurrence of anomalies in the WAAM process, as confirmed by metallographic analyses;

(3) The study of features indicated that applying machine learning techniques for defect
prediction could be enabled through the collected data. This expands the resources
for controlling and mitigating anomalies in metal additive manufacturing processes;

(4) The study confirmed that arc analysis can effectively detect anomalies in additive
manufacturing processes, suggesting that such techniques could be refined to improve
the reliability and quality of fabricated components.

All the evidence presented in this work highlights the significant potential of integrated
methods to advance monitoring and quality control in additive manufacturing processes.
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Abstract: In this study, Ni60/60%WC composite coatings were fabricated on 45 steel by
laser cladding. The optimum process was selected through high throughput optimization
experiments which had a laser power of 2400 W, scanning speed of 8 mm/s, and powder
feeding rate of 20 g/min. The single-layer multilayer coatings were prepared without any
cracks and pores, and the thickness of the coatings was 1.52 mm. The coating and the
substrate were found to have an effective metallurgical connection. WC was distributed rel-
atively uniformly throughout the coating, which involved the γ-(Fe, Ni), WC, W2C, Cr23C6,
and Fe3.57W9.43C3.54 phases. The average microhardness of the coating was 1416.14 HV0.2,
approximately 5.47 times that of the substrate, and the average coefficient of friction of the
coating was 0.5144, which was 43.5% lower than that of the substrate. The wear rate was
reduced by 79.13%.

Keywords: laser cladding; WC; microstructure; wear resistance

1. Introduction

An exemplary specimen of carbon structural steel is 45 steel. It is distinguished by a
multitude of advantageous qualities, including its low cost, high strength, good plasticity,
and excellent wear resistance, among others [1–4]. These properties render it a material
of choice in numerous industrial applications. Its applications encompass a diverse range
of mechanical components, such as rolls, bearings, gears, and bushings [5,6]. However,
when subjected to harsh environments characterized by high loads and extended periods of
operation, the wear resistance of 45 steel falls short of meeting requirements. To address this
limitation, scholars have resorted to laser cladding technology, a process which involves
the modification of 45 steel’s surface to enhance its wear resistance.

Laser cladding, a surface modification technology, has attracted significant attention
from researchers due to its low dilution rate, small heat-affected zone, and good metallurgi-
cal bonding, among other advantages [7,8]. Among the materials commonly used for laser
cladding, Ni-based alloys are notable for their excellent wettability, self-melting, and good
mechanical properties [9,10]. An exemplary Ni-based alloy of note is that of Ni60, which
exhibits exceptional hardness and wear resistance [11]. Lu et al. [12] have demonstrated the
preparation of Ni60 coatings through the utilization of laser cladding techniques, yielding
coatings that possess an average microhardness of 499.4 HV0.5, which is approximately
2.4 times that of 45 steel. This process has also been shown to lead to a substantial reduction
in wear, measuring at 68.3% less than that of 45 steel. Furthermore, Shen et al. [13] utilized
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high-speed laser cladding to prepare Ni60 coatings on the substrate of 45 steel, and the
maximum microhardness of the coatings was measured at 800 HV, representing a signifi-
cant enhancement compared to the substrate. In a similar study, Zhang et al. [14] employed
laser cladding of Ni60A coatings, resulting in an average microhardness of 580 HV, which
was a substantial enhancement compared with that of 45 steel. The mean microhardness of
the Ni60A coating was found to be 580 HV, which is approximately 2.6 times higher than
that of the 45 steel. The wear rate of the coating under load (2.94 N) was determined to be
approximately 1/6.2 of that for the 45 steel. However, the Ni60 coating is inadequate in
resisting wear under high loads of up to 20 N. To enhance its wear resistance, the coating is
typically strengthened by adding ceramic reinforcing phases, such as WC [15], TiC [16],
and SiC [17], among others.

WC has the advantage of high hardness, a high melting point, and good wettability
with Ni-based materials [18], so it is used in large quantities in Ni60 coatings to enhance
the wear-resistant properties. The type, size, and amount of WC added are all significant
factors in Ni60/WC composite coatings. Zhang et al. [8] investigated the impact of three
distinct categories of WC, including spherical, profiled, and flocculent WC, on the mi-
crostructure and wear-resistant characteristics of Ni60/WC composite coatings. In these
coatings, spherical WC exhibited the highest microhardness of 2000HV0.05 and the lowest
coefficient of friction of 0.2. In addition, flocculent WC demonstrated the most homoge-
neous distribution in these coatings. In the study by Chen et al. [19], the wear resistance of
Ni60 coatings with added micron, nanometer, and micron/nanometer WC, respectively,
was compared. The results demonstrated that nanometer WC had the most significant
effect in refining the coating structure and exhibited the highest microhardness of 890.8 HV.
Conversely, micron/nanometer WC exhibited the optimal wear resistance, exhibiting an av-
erage friction coefficient of 0.41. Hu et al. [20] investigated the wear resistance of Ni60/WC
composite coatings with variable WC contents and determined that an increase in WC
content results in a corresponding enhancement of the hardness and wear resistance of
the coating. Shen et al. [21] established that when the WC addition exceeded50 wt.%, the
coating microhardness exhibited a substantial increase, while the coating cracking behavior
underwent a marked deterioration. In their study, Meng et al. [22] examined the forming
characteristics and wear resistance of Ni60/WC composite coatings with compositions of
(65/35), (50/50), and (35/65). The composite coatings exhibited extremely high levels of
wear resistance as the WC content increased. However, it was also observed that when
the WC content was increased, the thickness of the coating layers was found to be limited,
and the composite coating exhibited a more pronounced tendency to crack. The maximum
thickness of the single layer of the Ni35/WC65 coating was found to be 0.26 mm, and
the thickness of eight layers was 2 mm. Liu et al. [23] prepared single-layer Ni/60% WC
coatings at various powder feeding rates. The coatings had an average microhardness
of 2066 HV0.5 and a thickness of 600–900 μm, with just a few holes. Additionally, Wang
et al. [24] created Ni60/50% WC coatings with a coating thickness of 0.12 mm and an
average microhardness of 1053.5 HV0.2, which is around 4.04 times greater than that of the
substrate Q345.

Therefore, in-depth research on the cracking issues commonly encountered during
the preparation of coatings with high WC is of significant academic value and practical
importance. In this paper, the focus is on the preparation of a crack-free high-WC coating
with a single-layer thickness exceeding 1 mm on a 45 steel substrate by laser cladding, with
a subsequent investigation of its microstructure and wear resistance.
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2. Materials and Methods

In this experiment, the substrate material chosen was 45 steel, measuring
150 mm × 100 mm × 10 mm. The substrate surface was polished to an average rough-
ness (Ra) of 1.2 μm using 240-grit SiC sandpaper (Yuying Abrasives Co., Ltd., Foshan,
China) to ensure good metallurgical bonding and subsequently cleaned with anhydrous
ethanol. The cladding materials were 53–106 μm Ni60 powder (Liaoning Guanda New
Materials Technology Co., Ltd., Anshan, China) and 53–150 μm WC powder (WEL Trading
Co., Ltd., Shanghai, China), which were mixed according to the weight ratio of 4:6, and
the powder was mixed by a mechanical ball mill with a rotational speed of 100 rpm and
a mixing time of 3 h. Table 1 showed the chemical composition of Ni60 and WC. The
mixed powder was dried at 120 ◦C for 2 h to remove the moisture before the laser cladding
experiments. Figure 1 shows the particle size distribution of the mixed Ni60/60% WC
powder after mixing. The results of the mixed powder morphology and EDS surface
scanning are shown in Figure 2.

Table 1. Chemical composition of Ni60 and WC powder (wt.%).

Material

Element
C Si B Cr Fe W Ni

Ni60 0.8 3.4 3.4 17 15.2 - Bal.
WC 6 Bal.

 

Figure 1. Distribution of Ni60/60% WC powder particle size.
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Figure 2. SEM morphology and EDS elemental distribution of powder after combining.

The laser cladding tests utilized a GWLASER 6 kW fiber laser cladding system (GW
Laser Tech, YLIS-6000-W, Wuhan, China), employing a flow rate of 20 L/min of 99.9% pure
argon as the shielding gas, alongside a coaxial powder feeder for delivery of the cladding
powder. Initially, laser power, scanning speed, and powder feeding rate were identified
as the three variables for the design of the single-pass laser cladding experiment. The
single-pass organization was observed using a metallurgical microscope (Olympus Corpo-
ration, GX71, Tokyo, Japan) and the height of the single-pass cladding layer was measured
using ImageJ 1.45 The optimum parameters were selected on the basis of unidirectional
experiments with the aim of maximizing the coating thickness. The laser cladding process
was optimized with a laser power of P = 2400 W, a scanning speed of v = 8 mm/s, a powder
feeding rate of 20 g/min, and a 50% overlap rate during the multi-pass trials. As shown in
Figure 3, the multi-pass laser coating experiment was shown as a simplified diagram. The
coating was inspected for cracks using liquid penetrant defect detection after the cladding
layer was cooled to 25 ◦C.

Figure 3. Multi-pass laser cladding experiment schematic diagram.

Using electrical spark wire cutting, the worn specimen and the Ni60/60%WC coated
metallographic specimen were machined into blocks sized 10 mm × 10 mm × 12 mm. For
the purpose of better observing the microstructure, the specimens were polished, ground,
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and etched. Etching was carried out with a 10% oxalic acid solution and a direct current of
0.02 A at a voltage of 5 V. It took 15 to 20 s to electrolytically etch. An X-ray diffractometer
(Shimadzu XRD, Kyoto, Japan, 20 keV, 20 mA, scanning range 20–90◦, 4◦/min) was used to
determine the phase composition. The microstructure was analyzed using a field emission
scanning electron microscope (Thermo Fisher Scientific Apreo2C, Waltham, MA, USA),
while the composition was analyzed using an energy dispersive spectrometer (Oxford
Instruments, Ultim Max, Oxford, UK). Under the test conditions of a 1.96 N load and a 15 s
loading period, the microhardness of the coating cross-section was assessed using a micro
Vickers hardness tester (Shanghai Hengyi Precision Instrument, MH-500, Shanghai, China).
The wear resistance of coatings was tested using a friction and wear testing machine (Bruker
Corporation, UMT-02, Billerica, MA, USA). A 5 mm diameter Si3N4 ball was used as the
counter material, and the wear pattern was linear reciprocating wear at room temperature
with a load of 20 N, an amplitude of 8 mm, a frequency of 2 Hz, and a duration of 60 min.
The wear trace was measured using a 3D laser confocal microscope (Olympus Corporation,
LEXT OLS4100, Tokyo, Japan) and the wear rate W (mm3·N−1·m−1) was calculated using
Equation (1).

w =
v

L × F
(1)

where V represents the wear volume in mm3, L represents the sliding distance in m, and F
represents the applied load in N.

3. Results

3.1. Ni60/60%WC Coating Process Optimization

In Figure 4, the synopsis of the single-pass cross-section with varying process pa-
rameters is illustrated, and the thickness of each single-pass fused cladding layer was
determined using ImageJ-Pro. The shedding of spherical WC during the grinding and
polishing procedure may have resulted in the holes that are noted in Figure 4g,h. The
single-pass layer thickness of (m) in Figure 4 was 0.961 mm, which is the maximum thick-
ness in Figure 4. The process parameters of (m) were laser power 2400 w, scanning speed
8 mm/s, powder feeding rate 20 g/min. Consequently, the optimal parameter was selected
for the subsequent experiments. Figure 5a showed that the surface quality of Ni60/60%WC
coatings created using the optimal parameters was excellent, with no holes or cracks, as
evidenced by the results of penetration flaw detection in Figure 5b.

Figure 4. Metallographic summary of single-pass laser cladding cross-section.
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Figure 5. (a) Multi-pass Ni60/60%WC coating surface morphology; (b) results of penetration flaws.

3.2. Phase Analysis

Figure 6a shows the XRD results of the laser clad Ni60/60%WC coating, which
consisted mainly of γ-(Fe, Ni), WC, W2C, Fe3.57W9.43C3.54, and Cr23C6 phases. The γ-
(Fe, Ni) phase was the matrix phase of the coating, with the appearance of the hard phases
of WC, W2C, and Cr23C6. Figure 6b shows the local zoomed-in region in Figure 6a. It could
be found that the diffraction peaks of the two phases of γ-(Fe, Ni) and Cr23C6 were not
overlapped. In the laser cladding process, some of the WC was melted, which let elements
diffuse into the melting pool and mix with other alloying elements., resulting in the W2C,
Cr23C6 hard phase.

 
Figure 6. (a) XRD spectrum of the Ni60/60%WC coating, (b) magnified area of the dashed part.

3.3. Microstructure Analysis

The coating in this study’s metallographic image is displayed in Figure 7. The height
of the Ni60/60%WC coating was determined to be 1.52 mm. There were no pores or
cracks seen in the covering, which had WC dispersed equally throughout. The middle and
lower strata exhibited a propensity for WC accumulation, which is in accordance with the
research conducted by Ortiz et al. [25].

Figure 7. Metallographic diagram of Ni60/60%WC single layer coating.
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In Figure 8, the microstructures of various regions of Ni60/60%WC coatings are
illustrated. The microstructures and partial magnification pictures of the coatings’ top
part are displayed in Figure 8a,b. The top part of the coatings contained smaller equiaxial
crystals, but there were still some WC particles present, and melting also took place around
the WC particles. According to measurements, the diffusion zone’s thickness was between
1 and 2 μm. Figure 8c shows the microstructure of the middle portion of the coating,
dendrites were found. In Figure 8c, partially melted WC and W2C are depicted. W2C was
generated as a result of the decarburization of WC during the laser cladding process [26].
The middle portion of Figure 8d was partially magnified, revealing the thermal collapse and
partial decomposition of the WC spheres. Elemental analyses of the two points of Figure 8d
were performed, and the elemental compositions are shown in Table 2. Combined with the
data in Table 2, it was observed that Point 1 was primarily composed of the γ-(Fe, Ni), while
the main composition of the dendrite at Point 2 was likely W2C. The microstructure of the
bottom of the coating was depicted in Figure 8e, where a melting line between the coating
and the substrate was obviously apparent. The growth of columnar crystals at the bottom
of the coating, perpendicular to the melting line, is consistent with the rapid solidification
properties of laser cladding [27] as the addition of WC effectively organized the grain
growth, reduced the grain size, and refined the grain. Figure 8f showed a magnified section
of the microstructure at the bottom of the coating, where a diffusion zone of approximately
3–5 μm thickness was observed around the WC particles, with melting occurring in the
surrounding area.

Figure 8. The cross-sectional microstructure of the Ni60/60%WC composite coating by laser cladding.
(a) Top microstructure, (b) enlarged area of top microstructure, (c) middle microstructure, (d) enlarged
area of middle microstructureand point EDS position, (e) bottom microstructure, (f) enlarged area of
bottom microstructure.
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Table 2. EDS point-scan results of microstructure in the middle of the coatings (wt.%).

Position

Element
C Si Cr Fe Ni W

Point 1 7.84 1.11 0.79 37.67 46.53 6.06
Point 2 8.70 - 0.88 9.12 8.41 72.90

Comparing the melting of WC particles in the three sections reveals that the middle
of the coating has the most severe melting, followed by the bottom and the top. With a
melting temperature of roughly 2870 ◦C, WC was more difficult to dissolve during the
laser cladding process and absorbed more heat, which lowered the melt pool’s mobility.
The density of WC (15.63 g/cm3) differed from that of the γ-(Fe, Ni) substrate (7.53 g/cm3),
and the heavier WC particles were more likely to be dispersed by gravity in the middle and
lower coating layers [28]. Consequently, there was a greater chance that WC in the coating’s
bottom portion melted and created a secondary phase. The top portion of the coating
exhibited the highest cooling rate, resulting in less WC melting in that area. In Figure 9,
the EDS line scan of the bottom part of the coating reveal the melting of WC particles
and elemental diffusion; the surrounding C and W elemental content increased, and the
elemental content of Fe increased at the bottom of the coating and the elemental diffusion
substrate. Figure 10 depicts the surface scanning results of the WC on top of the coating.
The results indicated that there was a minor amount of melting and elemental diffusion in
the vicinity of the deconstructed WC. The distribution of W elements was clearly visible in
the spectra, and C elements were enriched in their periphery. The appearance of carbides
accelerated nucleation and refined the surrounding equiaxial crystal grains.

Figure 9. (a) Section morphology and line scan region (yellow line), (b) EDS line scan result.

Figure 10. SEM morphology and EDS elemental distribution of the top portion of the coatings.
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3.4. Microhardness Analysis

Figure 11 illustrates the cross-sectional hardness distribution of the Ni60/60%WC
coating utilized in this investigation. The 45 steel substrate had an average microhardness
of 259 HV0.2, while the laser-clad Ni60/60%WC coating had an average microhardness
of 1416.14 HV0.2, which was approximately 5.47 times that of the substrate. The addition
of WC significantly increased the number of WC, W2C, and Cr23C6 hard phases in the
coating, which significantly contributed to increasing the coating’s hardness. The uniformly
distributed WC particles in the coating allowed the coating to reach a maximum hardness
of 2697.5 HV0.2. Furthermore, WC encouraged grain refinement to serve as a fine grain
strengthening agent, the Hall–Petch connection stated [29]. Combined with the indentation
plot in Figure 11, the microhardness fluctuations in the curve were due to the indenter
coming into contact with the WC in the coating. The coating and substrate had different
levels of hardness in the fusion zone, and the microhardness gradually dropped. The
microhardness of the coating near the substrate decreased in comparison to the middle
and upper portions due to the mutual dilution of the coating and the substrate, which was
exacerbated by the absence of WC reinforcement in this area. This is further supported by
the line scan results in Figure 9. In comparison to the middle and top portions, the coating’s
microhardness diminished in the vicinity of the substrate.

 

Figure 11. Microhardness diagram of Ni60/60%WC coating in cross-sectional direction.

3.5. Wear Behavior

Typically, the coefficient of friction and wear rate served as the primary reference in-
dices for assessing the coating’s wear resistance, which was a crucial criterion for assessing
the coating’s dependability and real service life. Figure 12a displays the friction coefficients
of Ni60/60%WC coating and substrate 45 steel over time. The coating’s average friction
coefficient was 0.5144, while the substrate’s was 0.9103. The coating’s friction coefficient
was 43.5% lower than the substrate’s. The presence of a significant amount of WC also
improved the wear resistance by lowering the coating’s coefficient of friction. According to
Figure 12a, the friction coefficient fluctuated a lot during the break-in period and tended
to steadily stabilize after 600 s. When the friction coefficient between the coating and the
substrate was compared during the stabilization stage, it was evident that the coating’s
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fluctuation was significantly greater due to the presence of WC and other hard phases on
its surface. This resulted in intense friction when the coating came into contact with the
wear material Si3N4. In Figure 12b, the substrate and coating are compared in terms of
their wear rates. The mean wear rate of the substrate was 3.848 × 10−6 mm3·N−1·m−1,
while the wear rate of the coating was 8.031 × 10−7 mm3·N−1·m−1. The wear rate of
the coating was reduced by 79.13% compared to the substrate. Figure 13 illustrates the
abrasion morphology and depth map. According to Figure 13a, the substrate’s abrasion
width was approximately 1200 μm with a depth of 12 μm, and the coating’s abrasion width
was approximately 600 μm with a depth of 4 μm. In comparison to the substrate, the
coating’s depth was reduced by 66.7%, and its width was significantly diminished by 50%.
When viewed in conjunction with the laser confocal images in Figure 13b,c, it is evident
that the substrate had noticeable wear markings, while the coating’s wear marks were
extremely shallow.

 
Figure 12. (a) Coating and substrate coefficient of friction with time, (b) comparison graphs of coating
and substrate wear rates.

Figure 13. (a) Abrasion profile curves of coating and substrate, (b) 3D morphology of coating abrasion,
(c) 3D morphology of substrate abrasion.

3.6. Wear Mechanisms

The microscopic wear morphology of Ni60/60%WC is depicted in Figure 14a. At
this point, the type of wear is abrasive wear, and the wear marks contain abrasive debris,
scratches, and some plow grooves. Figure 14b,d shows the microscopic wear morphology
and local magnification of a 45-steel substrate. After the surface was worn, a lot of delami-
nation and plowing grooves appeared, as well as a tiny amount of abrasive debris. The
substrate wear this time was characterized by abrasive particle wear and adhesive wear.
A partial enlargement of the coating wear and elemental analysis is shown in Figure 14c.
The findings of the local zoom region elemental analysis are shown in Table 3. It was
found that Points 1 and 2 are abrasive debris. Point 1 has a Si and O content of 11.87% and
29.39%, respectively, and Point 2 has a Si and O content of 21.32% and 29.68%. Point 2 has
a higher Si and O content than Point 1. This may be because Si3N4 friction vice produces a
lot of heat during the abrasion process of the wear process for a short time. Due to poor
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thermal conductivity, oxidation reactions occur in the local area of contact, resulting in the
formation of SiO2 oxide film and broken WC particles. The softer substrate γ-(Ni, Fe) is
the first to wear, exposing WC particles, which gradually break and fall out of the wear
track. The WC particles decompose and detach in the wear track over time. The W2C and
Cr23C6 hard stages that are made in the coating also make chip cutting less effective. The
friction subsurface’s surface experiences some abrasion from the WC particles shed in the
wear track, and the broken SiO2 turns into abrasive debris that builds up on the coating’s
surface as it moves.

Figure 14. Microscopic morphology of wear marks, (a) micro-morphology of coating wear marks,
(b) microscopic morphology of 45 steel wear marks, (c) localized zoomed-in area of coating and point
EDS position, (d) localized zoomed-in area of 45 steel.

Table 3. EDS results for different locations on the coating surface after wear (wt.%).

Position

Element
C W O Si Cr Fe Ni

1 6.21 31.13 29.39 11.87 0.93 4.39 16.08
2 15.06 15.52 29.68 21.32 0.51 3.66 14.25
3 15.41 82.96 1.64 - - - -
4 3.75 2.81 0.37 1.39 1.55 18.29 71.83

Figure 15 illustrates the wear mechanism of Ni60/60%WC coatings. The WC was
more evenly distributed in the coating, and there was more of it. Partially melted WC
increases the strength of the γ-(Ni, Fe) matrix, and unmelted WC acts as both a solid
solution reinforcement and a reinforcing phase to make the coating stronger and more
resistant to wear. Figure 15a illustrates the wear scenario at the early stages of wear, when
there was little contact area between the coating and the anti-wear material Si3N4, and the
friction coefficient rose quickly. The process of reaching the stable stage of wear is depicted
in Figure 15b. As the wear intensifies and the contact area was greater, the organization’s
coating became more involved. The WC particles eventually lost their ability to withstand
wear, ruptured, shed, and transformed into abrasive particles. While the coating surface
wore at the same rate on the wear material Si3N4, the wear process was influenced by
two forces, the applied load and relative sliding. The WC particles grinding on the wear
material Si3N4 caused the surface of the tiny bumps to overlap and deform until they fell
off as abrasive debris. Figure 15c shows the abrasive debris that was created by the details
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of the schematic diagram. It was the abrasive material’s movement that caused the coating
surface to wear. As the wear went on, the contact area between the coating surface and the
abrasive material gradually grew. Eventually, the friction coefficient reached a stable level.

Figure 15. Coating wear mechanism (a) early wear stage, (b) wear stabilization stage, and (c) localized
detail of debris generation.

4. Conclusions

The microstructure and wear resistance properties of Ni60/60%WC composite coat-
ings were investigated, and the following conclusions were obtained:

1. Laser cladding effectively produced a Ni60/60%WC composite coating with a single
layer thickness of up to 1.52 mm, exhibiting no pores or cracks on a 45 steel substrate.

2. The microstructure of the coating mostly consists of columnar and equiaxial crystals,
the incorporation of WC contributes to grain refinement and solid solution strengthen-
ing. However, some elemental diffusion and WC particles appear in varying degrees
of diffusion zones.

3. The composite coating contains γ-(Fe, Ni) as the matrix phase, as well as unmelted WC,
which generates W2C, Cr23C6, and Fe3.57W9.43C3.54 hard phases through elemental
diffusion. These hard phases significantly affect the coating’s microhardness, with an
average microhardness of 1416.14 HV0.2, which is approximately 5.47 times that of
the substrate.

4. The average friction coefficient of the Ni60/60%WC coating is 0.5144, which is 43.5%
lower than that of the substrate, and the wear rate is decreased by 79.13%, indicating
good wear resistance. Wear resistance of the Ni60/60%WC coating is improved by
the combination of the hard phase produced during the laser cladding process and
the WC in the coating.
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1 Department of Metallurgical Technologies, Faculty of Materials Science and Technology, VŠB—Technical
University of Ostrava, 17. listopadu 2172-15, 708 00 Ostrava, Czech Republic

2 Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering,
VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic

* Correspondence: lenka.kuncicka@vsb.cz; Tel.: +420-596-991-265

Abstract: AISI 316L stainless steel, widely used in numerous industrial fields, can be
fabricated by conventional methods, but also by additive manufacturing. As materials
prepared by additive manufacturing typically feature various printing defects deteriorating
their mechanical and utility properties, post-processing by plastic deformation is able to
enhance their performance. The determination of optimized post-processing conditions can
advantageously be performed by combining experimental work and numerical simulations
using the finite element method. The presented research focuses on investigating the
deformation behavior of AISI 316L stainless steel prepared by additive manufacturing
under a variety of thermomechanical conditions (temperatures of 900–1250 ◦C, strain rates
of 0.1–100 s−1). Together with the deformation behavior of the steel, the kinetics of the
occurring softening processes is also discussed. The experimentally acquired data are
further used for numerical simulations to predict the expected magnitudes of force and
imposed strains during prospective post-processing. Observing the microstructures and
mechanical properties reveals that the prospective post-processing of AISI 316L stainless
steel, prepared by additive manufacturing, via plastic deformation is the most favorable
when performed at the temperature of 900 ◦C and using high strain rates. The flow
stress/microhardness generally increase at lower temperatures and higher strain rates,
as a result of the development of a substructure. On the contrary, higher temperatures
support the recrystallization of grains and their coarsening, which consequently decreases
the mechanical properties.

Keywords: additive manufacturing; 316L stainless steel; finite element method; microstruc-
ture; flow stress

1. Introduction

Additive manufacturing (AM) represents a manufacturing trend whose popularity is
still increasing [1,2]. It has also found application in the (small-scale) production of metallic
materials. The AM of metals involves two main technological solutions—direct energy
deposition (DED), e.g., [3,4], and (laser) powder bed fusion (L-PBF), e.g., [5,6]. The L-PBF
technologies include several methods such as Direct Metal Laser Sintering (DMLS) [7],
Electron Beam Melting (EBM) [8], Selective Laser Sintering (SLS) [9], and Selective Laser
Melting (SLM) [10,11]. SLM has been used to process a wide range of metallic materials,
such as aluminum alloys [12,13], titanium alloys [14,15], stainless steels [16–19], high-
entropy alloys [20,21], and even non-conventional materials and composites [22,23]. The
primary advantage of AM techniques is their ability to create dimensionally complicated
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products, the production of which would be difficult, or even impossible, when using
conventional processing methods. Nevertheless, AM-prepared materials typically feature
specific disadvantages, including surface roughness [24], internal porosity and voids [25],
the inhomogeneous distribution of residual stress [26], and a limited product size [27].
The post-processing of AM-prepared materials typically includes heat treatments [28,29].
However, the sole application of heat is not sufficient to completely eliminate residual
porosity, although it is rather effective for the homogenization of residual stress [30].
Regarding the elimination of residual porosity, combinations of high temperatures and
high pressures are much more efficient. On the other hand, the Hot Isostatic Pressing (HIP)
method, which enables the application of temperatures up to 2000 ◦C and pressures up to
200 MPa [31], is favorable for the overall densification of AM-prepared materials [32–34].

The properties and overall performance of AM-prepared materials can advantageously
be improved by combining AM with post-processing using methods such as intensive plas-
tic deformation (IPD, e.g., rotary swaging [35–37], incremental forming [38,39]), or severe
plastic deformation (SPD). The greatest advantage of the IPD and SPD methods is that they
predominantly feature compressive stress states, which contributes to the homogenization
of residual stresses and the reduction/elimination of residual porosity [40,41]. For example,
room temperature rotary swaging was previously shown to successfully eliminate residual
porosity within stainless steel workpieces prepared by SLM [40]. The most commonly used
SPD methods, which could also be used to process AM-prepared bulk metallic materials,
involve Equal Channel Angular Pressing (ECAP) [42–44] and its modifications, such as
ECAP with (Partial) Back Pressure [45,46] or Twist Channel Angular Pressing, TCAP [47,48].
Similar to SPD methods, the IPD method of rotary swaging features a predominantly com-
pressive stress state and can thus provide various composite, powder-based, and even
AM-prepared workpieces with all the aforementioned benefits [49–51]. The method is
suitable for the processing of any metallic material. However, contrary to SPD methods,
rotary swaging features very high strain rates. Examining the effects of high strain rates on
AM-prepared materials, to be prospectively processed by methods like rotary swaging, is
therefore of high interest.

The AISI 316L austenitic stainless steel features a variety of advantageous properties,
such as favorable tensile and fatigue strengths, as well as excellent corrosion and oxida-
tion resistances, even at elevated temperatures [52,53]. Its high stability makes the steel
favorable for applications experiencing extreme temperature fluctuations, including those
in corrosive environments, as the steel is also resistant to corrosion in salt water and nu-
merous chemicals [54,55]. It is commonly used to fabricate durable parts and components
within various industrial fields, including bioengineering [56,57], power engineering [58],
construction [59], or transportation [60]. Given its austenitic structure, the 316L steel is
hardly hardenable by heat treatments. On the other hand, its mechanical properties can
be (substantially) improved by deformation processing, typically by cold working, or by
implementing other (innovative) processing techniques, such as combinations of AM [61]
and deformation or thermomechanical post-processing [62,63]. Maamoun et al. [64] applied
the SPD method of Friction Stir Processing to refine grains, reduce the residual stress and in-
crease the microhardness of a AlSi10Mg AM-prepared workpiece. Similar favorable effects
of FSP were observed by Rubino et al. [65] and Zhao et al. [66] for AM-prepared Ti6Al4V
workpieces. On the other hand, Hönnige et al. [67] used rolling to efficiently reduce the
residual stress within an AM-prepared Al-based alloy wire, and Xu et al. [68] used rolling
to thermomechanically post-process AM-prepared Inconel 718 to increase its ultimate
strength to almost 400 MPa (compared to 220 MPa acquired for the AM-prepared state).
The surfaces of AM-prepared materials can also be treated, for example, by shot peening,
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laser shock peening, or abrasive flow machining [69], and high-strain-rate processing [70],
to improve the mechanical properties and wear behavior.

The primary motivation for this study was to find the most suitable conditions for
the prospective post-process thermomechanical treatment of AM-prepared AISI 316L steel
in order to enhance its performance and eliminate printing defects. The study was thus
primarily focused on the characterization of the deformation behavior of AM-prepared AISI
316L steel samples by uniaxial hot compression tests performed under varying thermome-
chanical conditions. The first part of the study presents details of the experimental research
and gives details on the performed numerical simulations, too, whereas the following
part focuses on presenting the results of microstructure analyses and investigations of the
mechanical properties, i.e., flow stress and Vickers microhardness measurements. The
study concludes with the validation of the acquired experimental data with the numer-
ically predicted results. Several studies investigating the high-temperature behavior of
AM-prepared AISI 316L steel have been published (e.g., [71,72]); however, the works only
discussed considerably lower strain rates (0.001 s−1). As far as the authors’ knowledge
reaches, no study similar to the one presented herein has been published so far.

2. Materials and Methods

2.1. Experimental Works

The initial workpieces were an SLM-prepared stainless-steel powder, with a particle
size varying between 15 and 45 μm using an AM400 3D printer (both powder and printer
by Renishaw plc., Wootton-under-Edge, UK). The maximum possible dimensions of the
components produced by the AM400 printer by Renishaw were 250 × 250 × 300 mm3;
the machine has the laser power of up to 400 W and enables the production of up to
20 cm3/h of material volume, according to the actual setting. The original workpieces with
circular cross-sections and a 10.5 mm diameter and 160 mm length were built from left
to right, with the vertical direction parallel to the building substrate, using the meander
printing strategy [40,73]. The printing was performed in an inert argon (purity of 99.998%)
atmosphere with an applied laser power of 200 W. The AM-prepared 316L steel workpieces
were machined into a total of sixteen individual cylindrical test samples that were 10 mm
in diameter and 15 mm in length. These samples were then subjected to uniaxial hot
compression tests using a Gleeble 3800 thermal–mechanical simulator equipped with a
Hydrawedge II Mobile Conversion Unit (both machine and equipment by Dynamic System
Inc., Poestenkill, NY, USA). The tests were performed under the combined conditions of
four testing temperatures (900 ◦C, 1000 ◦C, 1100 ◦C, and 1250 ◦C), and four strain rates
of 0.1 s−1, 1 s−1, 10 s−1, and 100 s−1. The temperatures and strain rates were selected
to cover the widest range of possible forming conditions. Hot forming usually starts at
relatively high temperatures, which can progressively decrease during the forming process,
depending on the selected technology. The aim of this research was to find the lowest
possible temperature enabling the successful forming of the AM-prepared steel without
crossing the cohesion limit. Regarding the selection of strain rates, both low and high
values were investigated. Low strain rates were investigated due to the prospective future
processing of the AM-prepared steel on hydraulic presses, whilst high strain rates were
investigated to characterize the development of flow stress during impact forming, such
as hammer forging or rotary swaging. The test samples were heated by direct electric
resistance heating up to the required deformation temperature with a heating rate of
10 ◦C·s−1, and then deformed by uniaxial compression up to a true strain of 1.0. After the
sample had been heated to the required temperature, a time dwell of 300 s was applied to
homogenize the temperature throughout the sample. A time of 300 s was selected based on
our experience, as it is sufficient for the temperature distribution throughout the sample to
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homogenize, and, at the same time, not too long to negatively influence the microstructure.
Figure 1a shows an example of a sample before and after testing, and Figure 1b depicts the
scheme of the testing sample with dimensions. Temperature measurement was performed
using a pair of thermocouple wires (R-type (Pt-13%Rh (+) and Pt (−)) for 1250 ◦C, and
K-type (Ni-Cr (+) and Ni-Al (−)) for 900–1100 ◦C) welded onto the surface of a sample,
along its middle length (thermocouples by OMEGA Engineering, Norwalk, CT, USA).
The testing chamber was held under vacuum to reduce oxidation, and the sample–anvil
interfaces were treated with a tantalum foil coated with a nickel-based high-temperature
grease to protect the anvils and reduce friction.

(a) (b)

Figure 1. Examples of samples before and after deformation (a); schematic depiction of testing sample
with dimensions (b).

In order to assess the effects of different processing conditions on the microstructures
and mechanical properties of the AM-prepared steel, scanning electron microscopy (SEM)
and Vickers microhardness analyses were implemented. As for the SEM, Tescan Fera device
equipped with an electron backscatter diffraction (EBSD) detector (equipment by Tescan
Orsay Holding a.s., Brno, Czech Republic) was used. For the analysis and measurements,
four samples subjected to the highest and lowest applied strain rates and temperatures
were selected. To evaluate the microstructures on longitudinally (vertically) cut and pro-
cessed samples, the EBSD method was used in particular. For the AM-prepared material
state, a scan step of 2 μm was used, as the expected grain size was large. The processed
material states, on the other hand, were scanned with a scan step of 0.1 μm, as they were
expected to exhibit (highly) refined grains. For the evaluation of the data, the low- and
high-angle grain boundaries (LAGBs and HAGBs) were defined using values of 5◦ and 15◦.
The microhardness was measured with a load of 1000 g (i.e., HV 1) on comparable longi-
tudinal (vertical) sections of the deformed samples (as also further depicted graphically
in Section 3.2), with an indent distance of 1 mm (FM ARS 900 equipment by Future Tech,
Spectrographic Limited, Leeds, UK).

2.2. Numerical Simulation

In order to complete the mapping of the formability of the AM-prepared AISI 316L
steel, numerical simulations using the finite element method (FEM) were performed. The
simulated task consisted of a hot compression test performed at a strain rate of 0.1 s−1

and all the four deformation temperatures of 900 ◦C, 1000 ◦C, 1100 ◦C, and 1250 ◦C. The
simulations were performed using the Forge® software (NxT version, by Transvalor S.A.,
Biot, France). The geometric assembly of the process consisted of three objects, as depicted
in Figure 2: the upper die, billet, and lower die. The dimensions of all the components
corresponded to those used in the real Gleeble experiment, i.e., the test specimen diameter
and height were 10 mm and 15 mm, and the anvil diameter and height were 19 mm and
6.4 mm, respectively. The anvils were considered as rigid tools. The FEM volume mesh of
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the billet consisted of 6315 nodes, i.e., 29,656 tetrahedron elements in total, and the mesh
size was 0.53 mm. The lower and upper anvils were surface-meshed, the mesh consisted of
1008 nodes (2012 elements) for each anvil. A finer mesh with a size of 1 mm was applied in
the contact area with the test specimen, as shown in Figure 2, while the other areas of the
anvils were meshed with a mesh size of 2 mm.

Figure 2. FEM assembly for simulation of the hot compression test.

The behavior of the AM-prepared steel necessary for the FEM simulations was charac-
terized via the Hensel–Spittel rheology law (Equation (1), e.g., [74–76]),

σ = A · em1·T · εm2 · .
ε

m3 · em4/ε · (1 + ε)m5·T · em7·ε · .
ε

m8·T · Tm9 (MPa) (1)

where ε (−) is the equivalent strain,
.
ε (s−1) is the equivalent strain rate, T (K) is the

temperature, and A, m1, m2, m3, m4, m5, m7, m8 and m9 are regression coefficients (−),
the values of which are the following: A = 3949.693 MPa, m1 = −0.00292, m2 = −0.01398,
m3 = 0.07648, m4 = −0.00854 and m5 − m9 = 0.

The Hensel–Spittel rheology law mathematically describes the experimental data
obtained using the above characterized set of uniaxial hot compression tests. In other
words, it describes the flow stress response of a material formed in a uniaxial stress state,
i.e., a material characteristic independent of the specific applied forming technology. During
FEM simulations of real forming processes, this material flow stress response can thus be
used as a starting point to predict the material behavior during a selected forming process.

As for the properties of the examined material, they are summarized in the material
file containing the aforementioned constants of the Hensel–Spittel equation, as well as
the coefficients necessary to define the thermal properties of the studied material. In
the case of the herein examined AM-prepared steel, the following constant values were
considered: density ρ (7350 kg·m−3), thermal conductivity λ (33.5 W·m−1·K−1) and specific
heat capacity c (678 J·kg−1·K−1). The considered value of emissivity E was 0.88 (selected
based on our previous experience [77]). Also, to simulate the hot compression test and
reliably predict the results, it is crucial to properly set the boundary conditions related
to the experiment. The hot compression test was characterized by two main conditions.
The first one was that the temperature during the test had to be kept constant, with the
only allowable temperature change being related to the development of deformation heat.
Therefore, the thermal exchange conditions between the anvils and the test specimen were
defined as adiabatic, i.e., no heat transfer was considered. The second condition was that
during the compression test, the displacement of the anvil was controlled to ensure a
constant strain rate. The anvil feed rate during the simulations was therefore defined by
Equation (2) [78],

v = h0
.
εexp

(− .
εt
)

(2)
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where v (mm·s−1) is the anvil feed rate, h0 (mm) is the initial sample height, and t (s) is time.
Regarding the friction conditions on the anvil–billet interface, the nickel-based lu-

bricant applied during the real compression test featured a friction coefficient μ of 0.15.
This coefficient was thus set in the simulation, too, along with a friction factor m of 0.3
(based on the combined Coulomb–Tresca friction law). The friction condition was selected
based on our previous experience, with the values used corresponding to the nickel-based
high-temperature grease, which was applied during the experimental hot compression test.

3. Results and Discussion

3.1. Microstructure
3.1.1. AM-Prepared State

The original microstructure of the AM-prepared workpiece was characterized via
the orientation image map (OIM) depicted in Figure 3a and the grain size chart depicted
in Figure 3b. The grain size was evaluated using the max. feret diameter parameter in
μm [79,80]. The OIM image shows that the original as-printed microstructure featured
a characteristic grains morphology (melt pools), and that the grains’ orientations were
more or less random, i.e., no prevailing texture was formed during the 3D printing (as was
expected, see e.g., [81]). The microstructure also exhibited the presence of localized pores.
The mean grain size of the AM-prepared workpiece was 32 μm; however, the sizes of the
largest grains exceeded 130 μm. Figure 3a also shows that the microstructure was charac-
terized by a dominant fraction of HAGBs, which is typical for additively manufactured
steels, see e.g., [82].

(a) (b)

Figure 3. Results of microstructure analysis of AM-prepared workpiece: OIM (a), grain size (b).

3.1.2. Deformed States

The results of the microstructure examinations of the samples subjected to hot com-
pression testing are presented via OIM images and grain size charts, as follows: Figure 4a,b
depict the OIM and grain size chart for the sample subjected to testing at 1250 ◦C and
0.1 s−1, Figure 4c,d depict the OIM and grain size chart for the sample subjected to testing
at 1250 ◦C and 100 s−1, Figure 4e,f show the OIM and grain size chart for the sample
subjected to testing at 900 ◦C and 0.1 s−1, and, finally, Figure 4g,h depict the OIM and grain
size chart for the sample subjected to testing at 900 ◦C and 100 s−1. As can be seen from the
OIM images, the majority of the grains within all the deformed samples exhibited random
orientations. In other words, the deformed microstructures did not exhibit any dominant
textures. All the examined samples also generally featured higher fractions of HAGBs
than LAGBs. However, higher fractions of HAGBs were observed within the samples
deformed at the higher temperature of 1250 ◦C, especially for the highest strain rate of
100 s−1, as shown in Figure 4c. For the highest strain rate, the fraction of HAGBs within

183



Metals 2025, 15, 169

the sample deformed at 1250 ◦C was almost 20% higher than the HAGB fraction within the
one deformed at 900 ◦C.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Results of microstructure analyses for samples subjected to hot compression test: 1250 ◦C
and 0.1 s−1, OIM (a), grain size chart (b); 1250 ◦C and 100 s−1, OIM (c), grain size chart (d); 900 ◦C
and 0.1 s−1, OIM (e), grain size chart (f); 900 ◦C and 100 s−1, OIM (g), grain size chart (h).

The results of the grain size analyses (max. feret diameter in μm) showed that the
microstructure of the sample subjected to the highest deformation temperature and lowest
strain rate of 0.1 s−1 featured the largest mean grain size, at 21.5 μm. This finding shows
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that even the processing conditions allowing for the most substantial development of
recrystallization, i.e., a high temperature and low strain rate [83], resulted in grain refine-
ment compared to the original microstructure of the AM-prepared steel. Nevertheless, the
sizes of the largest grains within the deformed sample still exceeded 120 μm, as shown in
Figure 4b. For the sample deformed at a temperature of 1250 ◦C and the highest strain rate
of 100 s−1, the grain refinement was even more significant; the mean grain size decreased
to 10.5 μm. The largest grain size for this sample also decreased, to approximately 50 μm,
as shown in Figure 4d. The grain refinement occurred due to the increased strain rate,
which did not allow sufficient time for the grains to recrystallize. On the other hand, the
(very) high temperature caused grain growth from the start of the test, which negatively
affected the final grain refinement.

The lower deformation temperature of 900 ◦C led to significant grain refinement for all
the applied strain rates. The mean grain size for the sample deformed at a temperature of
900 ◦C and strain rate of 0.1 s−1 was 2.6 μm, as shown in Figure 4f. The strain rate of 100 s−1

applied at 900 ◦C then resulted in the most substantial grain refinement, reducing the mean
grain size down to the value of 1.3 μm, as shown in Figure 4h. However, deviations from the
mean grain size were higher for the samples deformed at 900 ◦C than for those deformed at
1250 ◦C. The grains’ morphology was evidently different for the samples deformed at 900 ◦C
and 1250 ◦C, too. The samples deformed at 1250 ◦C evidently featured great fractions of
(recrystallized and) grown grains, whereas the samples deformed at 900 ◦C featured more
developed substructures with frequent occurrences of fine recrystallized grains. While the
grains within the samples deformed at 1250 ◦C were more or less equiaxed, the samples
deformed at 900 ◦C featured evident necklace-like structures consisting of combinations
of the original deformed grains and small recrystallized grains. A higher processing
temperature of 1250 ◦C provided the microstructures with increased (accumulated) energy,
which not only initiated and supported the development of dynamic recrystallization,
but enabled also subsequent grain growth [83,84]. A lower temperature of 900 ◦C, on the
other hand, was sufficient to initiate recrystallization, but the accumulated energy was
not sufficient for subsequent grain growth, and thus the microstructures of the samples
deformed at 900 ◦C exhibited combinations of compressed elongated original grains, as
well as small refined recrystallized grains. This hypothesis also corresponds to the fact
that (i) the mean grain size for the samples deformed at 900 ◦C was substantially smaller
than that for those deformed at 1250 ◦C, and (ii) the fractions of HAGBs were lower for the
samples deformed at 900 ◦C than for those deformed at 1250 ◦C.

3.2. Microhardness

The results of the measurement of the Vickers microhardness for the samples subjected
to testing at temperatures of 900 ◦C and 1250 ◦C and strain rates of 0.1 s−1 and 100 s−1

are summarized in Figure 5a. Figure 5b then shows a sample with a line drawn across its
cross-section, along which the microhardness measurements were carried out. The average
Vickers microhardness for the AM-prepared workpiece was 218.1 HV1. The HV1 values did
not exhibit any decreasing/increasing trend across the workpiece cross-section, only local
decreases which could be attributed to the localized porosity, as seen in Figure 3a. Figure 5a
then shows that both the samples deformed at 1250 ◦C exhibited comparable microhardness
values, with no visible increasing/decreasing trend across the cross-sections; the average
microhardness value for both the samples was 171.4 HV1. For the sample deformed at a
deformation temperature of 900 ◦C and strain rate of 0.1 s−1, the average microhardness
increased and reached the value of 243.5 HV1, and the highest microhardness of 269.7 HV1
was acquired for the sample deformed at a temperature of 900 ◦C and strain rate of 100
s−1. The microhardness ranged from 140 HV1 to 190 HV1 at a deformation temperature of
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1250 ◦C, and from 230 HV1 to 280 HV1 at a deformation temperature of 900 ◦C. Forming
at lower temperatures thus obviously resulted in higher microhardness values. It is also
evident that the strain rate significantly affected the microhardness at a deformation
temperature of 900 ◦C, while its effect was negligible at a temperature of 1250 ◦C. The
acquired results thus confirm the results of the microstructure observations discussed above.
Both the samples deformed at a temperature of 900 ◦C exhibited increased microhardness,
which corresponds to the observed substantial grain refinement and presence of ultra-fine
grains within the microstructure [85–87]. Processing at 1250 ◦C substantially supported
softening via dynamic recrystallization, the formation of relaxed grains and consequent
grain growth, which contributed to decreased microhardness. Despite the fact that the
grains were refined after processing at 1250 ◦C, the grain size was not small enough and
the dislocation density was not high enough to increase the microhardness. The highest
value of microhardness was acquired for the sample deformed at 900 ◦C and the highest
strain rate of 100 s−1, which corresponds to the hypothesis that combinations of lower
deformation temperatures and higher strain rates tend to lead to substantial substructure
development and work hardening [84].

(a)

(b)

Figure 5. Vickers microhardness of examined samples (a); sample with depiction of location of
microhardness measurement (red line across diameter) (b).

3.3. Flow Stress

Figure 6a–d depict the flow stress curves characterizing the development of material
flow stress in the AM-prepared steel through the entire range of applied temperatures
at strain rates of 0.1 s−1, 1 s−1, 10 s−1, and 100 s−1, respectively. The figures show that
the achieved maximum flow stress generally increased with decreasing temperature and
increasing strain rate, which is rather typical, see e.g., [88–90]. A higher strain rate in
combination with a higher deformation temperature generally favorably influenced the
formability. This finding was supported by the fact that the stress–strain curves acquired
during testing at the highest strain rate, as shown in Figure 6d, did not exhibit any signs
of dynamic recrystallization occurring. The initiation of dynamic recrystallization could
be most notably seen at the curves acquired for the lowest deformation temperature.
Figure 6a–c clearly show that the critical (peak) imposed strain necessary to initiate dy-
namic recrystallization decreased with an increase in the strain rate applied. In other
words, a lower applied strain rate supported the development of dynamic recrystallization,
when considering identical deformation temperatures. The maximum acquired flow stress,
achieved for the sample deformed at 900 ◦C and 100 s−1, was approximately 380 MPa. The
acquired results can be compared, for example, with those acquired by Liu et al. [71] and
Khodabakhshi et al. [72], similarly investigating AM-prepared AISI 316L steel samples.
The researchers observed similar trends regarding the flow stress behavior, and reported

186



Metals 2025, 15, 169

that dynamic recrystallization within the AM-prepared AISI 316L steel occurred to higher
extents at high processing temperatures, while lower processing temperatures decreased
formability and led to the increased occurrence of cracks. Evidently, high strain rates com-
bined with high deformation temperatures minimize surface cracking during processing
due to the occurrence of dynamic recrystallization to a sufficient extent.

(a) (b)

(c) (d)

Figure 6. Experimental flow stress curves for four strain rates combined with each examined
temperature: 0.1 s−1 (a); 1 s−1 (b); 10 s−1 (c); 100 s−1 (d).

Considering that the original AM-prepared AISI 316L steel is subjected to post-
processing via hot rotary swaging, which is characterized by (very) high strain rates,
optimized combinations of processing conditions based on this research will most probably
offer a satisfactory solution to the reduction/elimination of the aforementioned disadvan-
tages of AM technologies and result in the fabrication of AISI 316L steel components with
enhanced performance.

3.4. Numerical Prediction
3.4.1. Deformation Forces

Figure 7 shows a comparison of the experimentally acquired and predicted depen-
dencies of deformation force on the testing time for the examined samples (dashed curves
depict the experimental results, while solid curves depict the predicted ones). Considering
the maximum force, the predicted curves obviously exhibited trends comparable to the
experimentally acquired ones, i.e., the maximum force increased as the testing temperature
decreased. The highest force, both experimental and numerically predicted, was acquired
when testing at 900 ◦C; the maximum experimentally measured force at 900 ◦C was ap-
proximately 65 kN. Nevertheless, the experimentally acquired curves generally featured
higher force values compared to the predicted ones, and the difference between these two
curves decreased towards an increasing processing temperature.
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Figure 7. Comparison of experimental and numerically predicted forces for examined samples at
strain rate of 0.1 s−1.

The differences observed between the experimentally acquired and numerically pre-
dicted force values can most probably be attributed to the defined boundary conditions (e.g.,
differences in the friction conditions on the contact surfaces between the anvils and sample,
etc.). The numerical simulation considered the constant condition of perfect lubrication
during the entire test. In the experimental conditions, on the other hand, the lubricant was
gradually squeezed out and, in addition, partially lost by evaporation due to high testing
temperatures, which could result in higher friction forces, i.e., higher overall deformation
forces measured in the experimental conditions. Another important factor influencing
the deformation force is the homogeneity of temperature distribution, which evidently
played a non-negligible role during testing at all the deformation temperatures. As can be
seen from Figure 7 (and stated above), the difference between the experimentally acquired
and predicted curves, especially towards the end of the test, decreased with increasing
processing temperature. Regarding the influence of strain rate on the mechanical properties,
there are two aspects. From the viewpoint of the mutual fit between the experimentally
obtained and predicted curves for compression force under an identical temperature, there
are only negligible differences with increasing strain. On the other hand, the curves gained
an increasing character with an increasing strain rate. This made the individual curves
steeper, i.e., there was a faster increase in the deformation force and overall higher values at
all the testing temperatures. The reasons for the similar behavior is the shorter time needed
for the activation and development of dynamic softening processes and the dynamic work
hardening being faster, based on the very intensive accumulation of dislocations.

3.4.2. Equivalent Strain

Last but not least, the results of the predicted distributions of equivalent strain for the
testing temperatures ranging from 900 ◦C to 1250 ◦C and strain rate of 0.1 s−1 are shown
in Figure 8. For clarity, three distinct locations, characterized as location 1 (top surface
of a sample), location 2 (axial region of a sample), and location 3 (lateral edge surface
of a sample), are used for the samples. As can be seen in Figure 8, the distribution and
magnitudes of the imposed strain were comparable for all the testing temperatures. The
highest imposed strain within the bulk of all the samples (approximately 1.8) was observed
in location 2, while location 1 generally exhibited the lowest strain values (≤0.4). This
corresponds to the effect of friction forces hindering the material plastic flow in the vicinity
of the anvil-sample contact surfaces. In location 3, the imposed strain reached a value of
approximately 1 for all the samples. The figure also shows that the temperature did not
have any major effect on the distribution and magnitude of the equivalent strain. However,
the maximum strain at higher temperatures was slightly lower, which was most probably
related to the different nature of the material plastic flow (as discussed in the previous
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sections). The lower strain value can most probably be directly related to the previously
mentioned occurring dynamic softening of the AM-prepared AISI 316L.

Figure 8. Equivalent strain at four temperatures at a strain rate of 0.1 s−1, numbers 1, 2, and
3 correspond to location 1, location 2, and location 3.

4. Conclusions

This study focused on the experimental and numerical characterization of the defor-
mation behavior of AM-prepared AISI 316L stainless steel in order to find the most suitable
conditions for prospective thermomechanical post-processing. The most prominent results
are the following:

- Higher deformation temperatures, especially in combination with lower strain rates,
supported recrystallization and grain growth, while lower deformation temperatures
supported grain refinement and the development of a substructure, resulting in
work hardening;

- The deformation force and flow stress increased with a decreasing processing tem-
perature, with maximum values of approximately 65 kN and 380 MPa, respectively,
being acquired at 900 ◦C;

- Deformation at 900 ◦C and 100 s−1 resulted in the smallest mean grain size of 1.3 μm
and highest average microhardness of 270 HV1;

- Despite a decrease in microhardness due to recrystallization and subsequent grain
growth, deformation at 1250 ◦C resulted in grain refinement to a mean size of 21.5 μm.

The primary novelty of the presented research lies in the fact that the most favorable
conditions for the prospective deformation (thermomechanical) post-processing of AM-
prepared 316L stainless steel were given, and that it considered various viewpoints. Such
post-processing will be the most favorable when performed at a temperature of 900 ◦C,
from the viewpoint of mechanical properties, and higher strain rates, from the viewpoint
of formability. The proposed combinations of higher temperatures and strain rates seem
to be optimal for forming processes featuring high strain rates, such as rotary swaging.
Nevertheless, the performed study confirmed that processing at the relatively low forming
temperature of 900 ◦C is still feasible, and can provide favorable results. Future research,
during which the acquired results will be applied, will be focused on the experimental
post-processing of AM-prepared stainless steel workpieces using industrial processing
methods and the verification of the acquired results under real conditions.
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