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Editorial

Towards a Smarter Battery Management System

Zhi Cao, Naser Vosoughi Kurdkandi and Chris Mi *

Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA;
zcao2@sdsu.edu (Z.C.); nvosoughikurdkandi@sdsu.edu (N.V.K.)
* Correspondence: cmi@sdsu.edu

Batteries play a critical role in achieving a sustainable energy future, enabling the
integration of renewable energy sources and supporting electrified transportation and smart
grids [1–3]. Advanced Battery Management Systems (BMSs) are essential in harnessing
the potential of various battery chemistries. BMSs ensure safety, optimize performance,
and prolong battery lifespan through advanced monitoring, state estimation, thermal
management, and fault diagnostics [4,5]. Recent advancements in algorithms, sensors, and
hardware have significantly enhanced the capabilities and intelligence of BMSs, making
them increasingly adaptive and efficient.

The first edition of this Special Issue, “Towards a Smarter Battery Management Sys-
tem”, gained remarkable success, with 11 high-quality papers published, covering essential
topics related to smart BMS solutions. Inspired by these systems’ reception and the contin-
uous developments in the field, this second edition expands upon these critical research
areas to further highlight the latest research and perspectives. It covers diverse topics,
including advanced modeling techniques, state-of-health (SOH) and state-of-charge (SOC)
estimation algorithms, battery balancing technologies, battery durability, second-life ap-
plications, and emerging chemistries such as sodium-ion batteries. The issue attracted
strong interest, receiving 11 high-quality submissions, reflecting ongoing advancements
and diverse research efforts within the BMS field.

Research Papers:

1. Advanced Algorithms for State Estimation

Akram et al. [6] developed a novel SOH estimation model that integrates Distribution
of Relaxation Time (DRT) parameters with a Long Short-Term Memory (LSTM) neural
networks. This hybrid approach enables the capture of both electrochemical dynamics and
temporal trends, significantly improving estimation accuracy and adaptability to various
cycling conditions.

LeBel et al. [7] conducted a detailed analysis on the impact of entropy change in
lithium-ion battery electro-thermal modeling. By incorporating entropy change into ther-
mal prediction frameworks, the study achieved better alignment with experimental tem-
perature profiles and improved the fidelity of battery thermal models.

2. Battery Testing and Durability

Neupert et al. [8] proposed innovative data-driven load cycle generation methods for
battery testing. By leveraging Gradient Random Pulse strategies and advanced Generative
Adversarial Networks (GANs), they produced synthetic profiles that closely resemble
real-world usage, enabling more robust and flexible battery evaluation.

Tian et al. [9] evaluated the degradation behavior of lithium-ion batteries under
frequency regulation conditions. Their findings provided critical insights into how high-

Batteries 2025, 11, 215 https://doi.org/10.3390/batteries11060215
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rate cycling impacts capacity fade and electrochemical stability, which is vital for grid-
supporting applications.

Muresanu and Dudescu [10] investigated the structural integrity of cylindrical lithium-
ion cells under mechanical compression. Through experimental and simulation-based
approaches, they characterized deformation modes and provided recommendations for
mechanical protection design.

3. Hardware Innovations

Song et al. [11] introduced a new inductor-based active balancing circuit capable of
operating efficiently across a wide voltage range. The proposed hardware architecture
reduces balancing time and energy loss, offering practical improvements for high-energy
battery packs.

Martínez-López et al. [12] investigated flow dynamics in organic redox flow batteries.
By introducing electrode obstacles to guide electrolyte movement, they demonstrated
improved concentration distribution and mass transport efficiency, which can boost the
performance and durability of flow battery systems.

4. Second-Life Management

Cao et al. [13] assessed the second-life potential of commercial LiFePO4 battery packs
retired from electric vehicles. Their study evaluated capacity consistency, balancing chal-
lenges, and overall system integration, offering practical strategies for repurposing used
batteries in stationary energy storage applications.

Review Papers:
Andrenacci et al. [14] reviewed battery storage developments within European smart

mobility contexts, discussing performance, safety, regulatory challenges, and sustainability
considerations.

Bača et al. [15] systematically reviewed sodium-ion batteries, presenting a detailed
analysis of their properties, advantages, challenges, and suitability for stationary storage
applications.

Jose et al. [16] provided an in-depth exploration of artificial intelligence applications
in battery recycling processes, emphasizing their role in enhancing recycling efficiency and
environmental sustainability.

These contributions significantly advance the field of smart battery management sys-
tems, providing essential references for future research and practical applications. Future
studies might further address advancements in the software and hardware of intelligent
BMSs, the integration of BMSs with emerging battery chemistries, and standardized ap-
proaches to managing second-life batteries. We encourage researchers to submit their work
to upcoming editions of this series.
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Modelling of a Cylindrical Battery Mechanical Behavior under
Compression Load

Adrian Daniel Muresanu and Mircea Cristian Dudescu *

Department of Mechanical Engineering, Faculty of Automotive, Mechatronics and Mechanical Engineering,
Technical University of Cluj-Napoca, 103–105 Muncii Boulevard, 400641 Cluj-Napoca, Romania;
adrian.muresanu@campus.utcluj.ro
* Correspondence: mircea.dudescu@rezi.utcluj.ro; Tel.: +40-264-401663

Abstract: The extensive utilization of lithium-ion (Li-ion) batteries within the automotive industry
necessitates rigorous measures to ensure their mechanical robustness, crucial for averting thermal
runaway incidents and ensuring vehicle safety. This paper introduces an innovative methodology
aimed at homogenizing the mechanical response of Li-ion batteries under compression load, using
Finite Element Method (FEM) techniques to improve computational efficiency. A novel approach
is proposed, involving the selective application of compression loads solely to the Jelly Roll and its
casing, achieved by cutting the battery heads. Through this method, distinct mechanical behaviors
are identified within the battery force displacement curve: an elastic region, a zone characterized by
plastic deformation, and a segment exhibiting densification. By delineating these regions, our study
facilitates a comprehensive understanding of the battery’s mechanical response under compression.
Two battery models were employed in this study: one representing the battery as a solid volume,
and another featuring the jelly roll as a solid volume enclosed by a shell representing the casing.
The material utilized was LS Dyna MAT24, chosen for its piecewise characteristics’ definition,
and its validation was primarily conducted through the curve fitting method applied to the force–
displacement curve, taking in account the three regions of the compression force behavior. This
approach not only optimizes computational resources but also offers insights crucial for enhancing
the mechanical stability of Li-ion batteries in automotive applications.

Keywords: Li-ion battery; experimental compression test; material models; quasi-static simulation

1. Introduction

Li-ion batteries are used in many consumer electronic devices, such as laptops and
smartphones, as well as in electric vehicles (EVs) and other applications where their high
energy density, low self-discharge, and relatively low maintenance make them a suitable
choice. However, like any type of battery, Li-ion batteries have the potential to fail, which
can lead to hazards, such as thermal runaway, fire and explosion, well documented in [1,2].
One important aspect of Li-ion battery design is crashworthiness, or the ability of the
battery to withstand impact, vibration, and other mechanical stresses. This is especially
important in EVs, where the battery is a critical component of the vehicle and must be
able to withstand the rigors of the road. Crashworthiness is also important in consumer
electronics, where drops and other accidental impacts are common.

In the pursuit of enhancing the crashworthiness and safety of Li-ion batteries, a range
of mechanical loading scenarios are investigated to evaluate their structural response and
potential risks in various conditions. One crucial aspect is the investigation of nail penetra-
tion tests, where external objects puncture the battery casing, simulating potential scenarios,
such as mishandling or manufacturing defects. A safe, time-efficient, and cost-effective
method for studying the nail penetration problem is proposed in [3,4]. Additionally, drop-
ping tests are conducted to simulate accidental falls or impacts during transportation

Batteries 2024, 10, 353. https://doi.org/10.3390/batteries10100353 https://www.mdpi.com/journal/batteries21
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and handling [5]. In the context of automotive safety, Li-ion batteries are subjected to
compression loads that replicate the forces experienced during car crashes; the applied
crush force emulates a vehicle accident, or any external load force that may damage the
battery enclosure and cause its deformation. This subject is discussed extensively in the
safety and regulation review papers of [6,7]. The comprehensive investigations found
in the literature aid in understanding the battery’s behavior under different mechanical
loads, identifying potential failure modes, and designing safety measures to mitigate risks
associated with thermal runaway, short circuits, and containment breaches [8–15]. In [13],
short-circuit criteria are investigated and compared, based on stress, strain, and geometry
in simulations with FEM, demonstrating that a combination of radial and axial geometric
criteria is optimal; furthermore, these criteria are implemented into a post-processing
tool for efficient short-circuit analysis across various loadings and potential mechanical
integration in vehicle crash safety.

A Li-ion battery is composed of several essential structural components that collec-
tively enable its energy storage function. The anode and cathode, or the current collectors,
are fundamental electrodes that store and release lithium ions during charging and dis-
charging cycles. They are typically made of copper or aluminum and exhibit mechanical
properties such as anisotropy, strain hardening, ductile fracture, and rate-dependence. The
separator layer, situated between the anode and cathode, serves as an insulating barrier
to prevent direct contact between the electrodes. This separator often consists of polymer
with orthotropy and elasto-viscoplasticity as mechanical properties. The case shell is made
from steel or aluminum sheet, with such mechanical attributes as anisotropy, strain hard-
ening, and ductile fracture, and plays an important part in the structural integrity of the
battery [16].

The interaction between these layers can affect the battery’s response to mechanical
loading, influencing factors such as deformation, stress distribution, and failure modes.
Simulating the mechanical properties of these components consumes a great deal of the
computing resources in large-scale and complex FEM models. In a detailed model of
the battery, there are more than 100,000 elements [16] and a Tesla Model S, for example,
has about 7000 cells [17] of type 18650, that will count 700 million elements. In [17],
the optimization of the FEM model is investigated by dividing it into beam elements
representing different components with separate mechanical properties and reducing the
computation time by 90%. This paper proposes a further step, with homogenization
of the battery in a simple representative volume for simulations and analyses of the
battery’s behavior under compression loads, and can be used in larger scale vehicle model
safety simulations.

In recent years, computational methods have played an increasingly vital role in in-
vestigating the mechanical properties of complex structures, including Li-ion batteries [18].
Finite Element Analysis (FEA) is a powerful numerical technique that can simulate the
behavior of materials and structures under various loading conditions. LS Dyna version
R11, a commercial software package, is widely employed for such simulations due to its
versatility and accuracy in capturing complex material responses [19]. The focus of this
study is the mechanical homogenization of a Li-ion cylindrical battery under compression
load using LS Dyna Finite Element Analysis [8,20], specifically employing a plastic mate-
rial model within the software. Plastic material models are commonly used to represent
the behavior of materials that undergo large deformation and energy absorption under
compression. Efficient computational methods are paramount in large-scale simulations,
such as Li-ion battery analysis. The homogenization approach adopted in this study offers
a unique advantage by reducing the complexity of the modeling of individual battery com-
ponents, resulting in significant computational savings. This reduction in computational
burden allows for quicker simulations, enabling researchers and engineers to explore a
wider range of scenarios and design options. Although the advantages of the homogenized
model are evident in terms of computational efficiency, there is a limitation, particularly
in accurately predicting jelly roll layer failure. Homogenized models, by simplifying the
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battery’s multi-layered structure, lose some of the granularity required to capture intricate
failure mechanisms such as internal short circuits or localized deformation of layers under
extreme loading. This limitation is mitigated by supplementing the homogenized models
with insights from detailed models or experimental data. In these studies, parameters such
as deformation limits and failure thresholds are derived from high-fidelity models or direct
testing [20]. These values are then applied to set safety margins in the larger computational
models, ensuring that the simulations remain both computationally efficient and reflective
of critical safety conditions. This hybrid approach enables researchers to use homogenized
models for large-scale safety analysis while still addressing the detailed failure modes that
could compromise the integrity of the battery pack under crash conditions.

The specific focus on the mechanical behavior of the homogenization of cylindrical
Li-ion batteries using a plastic material model and its computational benefits remains a gap
in the current literature. The objective of this paper is to address this gap by systematically
studying the mechanical behavior of a Li-ion cylindrical battery under compression load,
using a homogenization approach with a plastic material model in LS Dyna. Through a
comprehensive simulation study, we aim to provide insights into the macroscopic mechani-
cal properties of the battery, enhance our understanding of its behavior under compression
and improve computational efficiency through the homogenization technique, contributing
to the broader knowledge of Li-ion battery mechanics.

2. Physical Experiment Description

2.1. Test Description

In the physical test, 18650 Li-ion batteries sourced from Tesla Model S vehicles were
subjected to compression testing to ascertain their material properties, followed by valida-
tion using Finite Element Method (FEM) modeling. Compression testing offers insights
into the batteries’ response to external forces, generating a force–deformation curve that
unveils pivotal mechanical characteristics. By subjecting the batteries to controlled com-
pression, the material model can be validated against real-world behavior, facilitating
accurate simulations for compression scenarios. The validation of material models for
Finite Element simulation is very important in ensuring accurate prediction of mechanical
behaviors. In this context, the validation of a very simplified model is achieved through
a twofold approach, with the emphasis on analyzing the force–deformation curve and
comparing the overall deformation patterns. The force–deformation curve, obtained from
compression testing, serves as a fundamental benchmark. By comparing the simulation
results with the experimental force–deformation data, the simplified FEM model’s accuracy
in capturing the battery’s response to external loading is assessed. The combined validation
of force–deformation responses and deformation patterns establishes a robust framework
for utilizing simplified FEM simulations as predictive tools for optimizing the design,
safety, and performance of 18650 Li-ion batteries in more complex, pack or full vehicle
safety simulation.

For the 18650 battery the external dimensions are 18 mm radius and 65 mm length.
The main relevant structural composition is the shell case, and in the case of Tesla batteries
two case shells; a robust enclosure enveloping the battery’s core components acts as the
initial line of defense against external impacts, fortifying the battery’s inner workings.
Inside the case shell, there is a jelly roll of the current collectors, anode, and cathode
materials, each performing a distinct yet synergistic role. The current collectors are rolled
more than 20 times with a cylindrical gap in the middle. Nestled between these electrodes
lies the separator, which is rolled together with the current collector (Figure 1a). The
battery’s mechanically relevant components and their thickness are presented in Table 1.
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(a) (b) 

Figure 1. The 18650-type battery: (a) top view inside the battery, (b) battery without the top and
bottom cap.

Table 1. Mechanically relevant battery components.

Component Material Thickness (mm)

Case Steel 0.32
Anode Copper 0.025

Cathode Aluminum 0.025
Separator Polyethylene 0.025

In the pursuit of a more refined understanding of the mechanical behavior of the 18650
Li-ion battery under compression, a deliberate and strategic modification was undertaken.
Specifically, the upper and lower caps of the battery were cut precisely with the lathe to
help ensure precision and a clean cut. The cuts were taken 5 mm from the top, where
the shoulder is, and 2 mm from the bottom, and precision was paramount as mm in
case length could influence the load results. The battery was discharged for the cutting,
but some residual exothermal reaction took place without influencing the main structural
components. This surgical alteration was motivated by the recognition that the composition
of these caps with steel components could significantly skew the resultant compression
forces exerted upon the battery during testing. By adeptly removing this external influence,
the focus of investigation was meticulously narrowed to the intrinsic interaction between
the battery’s jelly roll—housing the anode, cathode, and separator materials—and the
robust outer casing. This strategic excision, while seemingly reductive, was extremely
purposeful, serving to isolate and elucidate the core mechanical response of the battery’s
internal components and casing when subjected to compression. The resulting insights,
untainted by external cap interactions (Figure 1b), foster a more nuanced comprehension
of the interplay between structural elements, furthering the discourse on the battery’s
mechanical dynamics within the ambit of enhanced safety and operational performance.

The uniaxial compression testing campaign was executed on three samples using an
Instron 3366 (10 kN) machine. The compression was executed until a discernible point of
densification was achieved, substantiated by the abrupt and pronounced escalation in the
force profile. Throughout the entirety of the compression process, a vigilant monitoring of
the battery’s voltage was meticulously maintained, as a noticeable drop in the value could
predict a short-circuit, in order to prevent a hazardous situation, but also to make sure that
a short circuit was not taking place before the densification (Figure 2).
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Figure 2. Battery uniaxial compression test performed on universal testing machine.

The uniaxial compression test conducted on the 18650 Li-ion battery resulted in a non-
linear load–displacement curve of important significance, offering valuable insights into
the battery’s mechanical behavior under external pressure. This curve can be distinctively
categorized into three pivotal zones, each revealing distinct mechanical phenomena, shown
in Figure 3. The initial section of the curve, up to an applied load of approximately 2 kN,
shows the curve’s elastic domain. Here, the response of the battery is characterized by
linear elasticity. As force is applied, the battery’s deformation remains reversible upon
unloading, showcasing its ability to withstand external stress while readily returning to its
original shape. This zone illustrates the structural resilience of the battery, encapsulating
its capacity to temporarily store mechanical energy before yielding to plastic deformation.
The deformation in this zone is the smallest, with displacements typically of around
0.5 mm. The elastic module measured is 565, 431 and 551 MPa, respectively, for the three
samples with an average of 515 MPa. As an observation, the knee around 0.2 mm could
be the yield factor in the plastic deformation of the case, the jelly roll remaining in the
elastic domain. Beyond the elastic limit, Zone 2 commences and extends to the onset
of the plateau, signifying a critical juncture in the battery’s response. Here, the applied
load surpasses the battery’s elastic limit, leading to plastic deformation of the structural
components. This plastic deformation is notable, as it occurs without a significant increase
in the load, resulting in a discernible load plateau. This phase suggests that the battery’s
core structure undergoes irreversible changes while the load remains relatively constant.
It is in this zone that the battery’s mechanical integrity begins to be compromised, and
deformations are the most significant, reaching values of around 2.5 mm. Zone 3 represents
the culmination of the load–displacement curve as the battery undergoes a pronounced
densification process. Here, the load increases substantially, reflecting the compression-
induced compaction of the battery layers. The battery’s internal components experience
significant rearrangement and compaction, resulting in a steep rise in the applied load.
This phase signifies a critical point in the test, as it indicates the threshold beyond which the
battery’s structural components reach maximum density. This densification zone unveils
the limits of the battery’s mechanical tolerance, offering insights into its structural behavior
under extreme compression conditions. The test in this zone was stopped at around 7 kN,
because densification at that point became a certainty. In summary, the load–displacement
curve derived from the uniaxial compression test on the 18650 Li-ion battery illuminates the
battery’s complex mechanical response. The distinct zones delineate the battery’s elasticity,
plastic deformation, and ultimate densification, all of which contribute to a comprehensive
understanding of its mechanical characteristics and inform crucial aspects of design, safety,
and performance optimization in various applications.
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Figure 3. Uniaxial compression of the battery Load vs. Displacement curve.

In the same manner the Jelly Roll of the battery was tested (Figure 4), with similar
results as seen in Figure 5. The elastic module measured is 308 and 176 MPa, respectively,
for the two samples, with an average of 242 MPa.

 

Figure 4. 18640 Battery Jelly Roll uniaxial compression test.

Figure 5. Uniaxial compression of the jelly roll Load vs. Displacement curve.

2.2. Densification and Failure

The process of densification observed during the uniaxial compression test on the
18650 Li-ion battery layers is a phenomenon documented in the existing literature, as
corroborated by similar studies [8,20]. This pivotal stage, marked by a pronounced increase
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in load, serves as a pivotal juncture where the structural elements within the battery
experience a remarkable transformation. To delve deeper into this phenomenon, high-
resolution light microscopy was employed, capturing detailed images that elucidate the
dynamic interplay between the battery’s internal layers, while also affirming the presence
of densification (Figure 6).

  
(a) (b) 

 
(c) 

Figure 6. Microscopic pictures of the battery densification: (a) overall section; (b) middle of the
battery section; (c) layers up close.

A visual journey into the densification process of the 18650 Li-ion battery layers was
facilitated through light microscopy after unloading, capturing three key snapshots (a, b, c),
from Figure 6. In picture (a), we gain an overarching perspective, providing an overall
view of the battery section. Transitioning to picture (b), we venture further into the core of
the battery, a region subjected to relentless compression forces. Notably, the middle hole
is conspicuously absent, underscoring the compaction and deformation incurred during
the test. Finally, picture (c) takes us to the heart of the matter—a close-up view that offers
a high-resolution look at the battery’s internal layers. What is particularly interesting in
this image is the absence of visible space between these layers. This tangible evidence
poignantly captures the culmination of the densification process, as the once-distinct layers
now tightly interlock, illuminating the profound structural changes unfolding within the
battery during compression. These micrographic snapshots, when examined collectively,
serve as an invaluable visual record, unraveling the intricate metamorphosis of the battery’s
layers and underlining the significance of the densification phenomenon in the realm of
Li-ion battery mechanics.

In this stage of densification, failures within the battery jelly roll layers were also ob-
served. These failures (Figure 7) shed light on the critical points of mechanical vulnerability,
which, in turn, are intrinsic to understanding the battery’s structural limitations.
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Figure 7. Failure in the Jelly Roll layers.

3. Model and Material Definition

In this simulation conducted with the LS-DYNA solver, the focus was on a volume
representation of an 18650 battery, a widely used cylindrical lithium-ion battery cell, which
was then employed to simulate the behavior of the battery under compression mechanical
loading. This comprehensive simulation aimed to provide a comparable finite element
model with the component test, contributing valuable data for further computing opti-
mization and research into a new method of defining an 18650 battery for large-scale and
resource-consuming simulation.

3.1. Model Definition

The computational model intricately replicates the experimental test scenario, featur-
ing a rigid component exerting pressure on the battery, with a rigid wall serving as fixed
boundary to emulate the lower support plate of the press. The battery geometry is repre-
sented using solid elements within a singular part, characterized by material properties
derived from empirical data obtained during the experimental phase. This singular part de-
sign aims to encapsulate the nuanced and intricate behavior of the battery in a manner that
is both straightforward and comparable. Notably, key parameters, such as the stress–strain
curve and compressive force were crucial for accurately capturing the dynamic response
of the battery. Given the inherent complexity of the actual system, parameters including
density and Young’s modulus underwent optimization through the simulation process to
align the model with the intricate characteristics observed in the real-world scenario.

The simulation model comprises a rigid barrier, defined as a shell part consisting of
eight quadrilateral elements, each assigned an LS Dyna rigid material property. This rigid
barrier is in contact with a battery, which is situated on an LS Dyna rigid wall surface
specifically defined as a flat infinite plane (Figure 8a).

(a) (b) 

Figure 8. FE model of the battery cell: (a) volume model in contact with a barrier; (b) battery model
composed of the jelly roll volume and a case.

The force reading function of the rigid wall is activated to monitor and record the forces
exerted during the simulation. The battery, a solid part, is represented by 2400 hexahedral
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elements, each with dimensions of approximately 2.5 × 1.7 × 1.7 mm. These elements
collectively form a detailed and comprehensive representation of the battery geometry. This
is a homogenization model of the hole battery without the caps. The boundary conditions
are established by the rigid wall surface, and the force reading function allows for the
real-time tracking of the forces applied to the battery during the simulation. This setup,
seen in Figure 8a, enables a thorough examination of the structural behavior and response
of the battery under the influence of the rigid barrier, providing important insights into the
mechanical aspects of the system.

The same simulation set up is done for the Jelly Roll, but with a diameter offset to
match the real dimensions. To add more credibility to the model the case from [21] is added
in a battery model composed of the jelly roll volume and a case (Figure 8b) tied together
with an LS Dyna contact TIED_SURFACE_SURFACE_OFFSET. The thickness of the case
is doubled compared to [21], in order to mimic the usage of the cases in Tesla batterie to
0.64 mm. LS Dyna MAT24 MAT_PIECEWISE_LINEAR_PLASTICITY was used to obtain
robust results.

3.2. Material Defining and Parameters’ Calibration

Utilizing LS-DYNA’s MAT24 material model facilitates a comprehensive analysis
of structural integrity and deformation behavior in the 18650 lithium-ion battery under
compression. MAT24 in LS-DYNA is a versatile material model that combines linear
elasticity with viscoelasticity. It is suitable for simulating the time-dependent response of
materials, making it valuable for analyzing the dynamic behavior of structures. The material
properties in MAT24 are defined in a piecewise manner, meaning that different regions of
the stress–strain curve and Prony series can be specified to accurately represent different
phases of material behavior. The Prony series allows MAT24 to capture the time-dependent
response of the material, essential for simulating dynamic loading conditions. MAT24
uses the Young modulus for the elastic area of deformation but also incorporates a stress–
strain curve, allowing for a detailed representation of the material’s plastic deformation
characteristics. This curve is defined in a piecewise manner, providing flexibility to capture
different phases of material behavior. The material also includes a damping coefficient that
accounts for energy dissipation within the material and density.

MAT24 lacks the capability to define anisotropy. However, this limitation has not been
a central concern in the present study, as cylindrical lithium-ion batteries primarily exhibit
deformation in only two directions. The focus of this paper is specifically on the most
critical direction of the battery, during high-impact vehicle crashes, where lateral forces
dominate. Axial deformation, while important, occurs less frequently in these high-impact
events and is thus outside the scope of this research.

The parameters associated with this material were defined based on the raw testing
data and the numerical fitting of the load curve and deformation of the battery. LS SYNA
MAT24, a plasticity material model, serves as a foundational element in our simulation
framework. This model is adept at simulating the plastic deformation of metals and
provides an isotropic, kinematic hardening plasticity model. A notable feature employed
in this study is MAT_PIECEWISE_LINEAR_PLASTICITY, which allows for the definition
of a piecewise linear stress–strain curve, enhancing the model’s precision in mimicking
nonlinear material responses. It is crucial to highlight that, for this homogenized battery
model, a stress–strain curve derived from hardware tests was utilized as base guideline.
Notably, the piecewise definition was scaled with the method of curve fitting as for the rest
of the parameters, the resulting values shown in Table 2. Additional material parameters
include a Young’s modulus of 400 MPa scaled down from the average 515 MPa measured
by curve fitting in the elastic area, a Poisson ratio of 0.4, and a density of 2 × 10−6 (kg/mm3).
For the Jelly Roll, the same method is used but with a difference in E Modulus: the value
uses is 200 MPa compared with the average measured 242 MPa. The case material, as
also found in [22], uses an E Modulus of 200 GPa. The plastic domain is defined by a
stress–strain curve starting from the yield point of 360 MPa.
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Table 2. Piecewise values for Battery and Jelly Roll volume.

Piecewise
Value

Effective Plastic
Strain

Battery Volume
(mm/mm)

Corresponding
Yield Stress

Values
Battery Volume

(MPa)

Effective Plastic
Strain

Jelly Roll
Volume

(mm/mm)

Corresponding
Yield Stress

Values
Jelly Roll
Volume
(MPa)

1 0.1466388 3.34656 0.077 1.54624

2 0.257 3.34656 0.1904 1.54624

3 0.26 1.34656 0.19247 19

4 0.263 1.34656 - -

5 0.266 18.2952 - -

It is crucial to acknowledge the inherent challenges associated with the homogeniza-
tion of a complex system like a Li-ion battery. While the stress–strain curve parameters
derived from hardware tests, with modifications in stress and strain scaling, were incorpo-
rated into our simulation, it is essential to recognize that these parameters may not possess
direct and easily interpretable physical meanings in the context of the homogenized model.
The intricacies of a Li-ion battery’s internal structure and composition make it inherently
challenging to directly correlate individual material properties from hardware tests with
the behavior of the homogenized model. Therefore, while these parameters provide a
basis for simulation, their direct interpretation may be limited in the broader context of the
complex and multifaceted mechanical interactions within the homogenized Li-ion battery
model. The study aims to navigate these challenges and extract valuable insights into
the overall compression behavior of Li-ion batteries through careful consideration of the
homogenized model and its associated material parameters.

3.3. Discussion

In comparing the experimentally derived load–displacement curve from the uniaxial
compression test on the 18650 Li-ion battery with a simulated counterpart, a comprehen-
sive evaluation can be conducted across the three distinctive zones that characterize the
mechanical response of the battery. The validation regards the three zones of the force
curve described in chapter 2 (Figures 3 and 5). In the elastic domain Zone 1, where the
battery exhibits linear elasticity, the comparison is focused on the level of force applied
and the corresponding displacement. The simulation ideally replicates the reversible defor-
mation observed in this zone, showcasing the battery’s ability to withstand external stress
without undergoing irreversible changes. Moving to Zone 2, which marks the transition
from elastic to plastic deformation, the comparison is centered around the critical juncture
where plastic deformation occurs. The simulation captures the onset of plastic deformation
without a significant increase in load, leading to a discernible load plateau. Attention is
given to ensuring that the simulated structural compromise aligns with the experimental
observations in terms of force level at the displacement of critical points, and the absence
of a proportional increase in load. In the final densification zone, Zone 3, the comparison
is critical in evaluating the simulated battery’s response to compression-induced com-
paction. The focus here is on the substantial increase in load as the battery undergoes
pronounced densification. The simulation mirrors the experimental findings in terms of
force magnitude, displacement characteristics, and the rapid rise in applied load.

Additionally, the rate at which the force increases the stiffness of the battery in each
zone is carefully compared between the simulated and experimental curves. Given that
we are homogenizing a complex model, a pragmatic approach to analysis was taken. We
consider the curve profile to be piecewise, as we are primarily interested in key stiffness
points within the compression phenomenon. These points include the beginning of the
plastic zone, the onset of densification, and the intensity of densification. Discrepancies
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in the stiffness application could indicate an error deviation in the simulated material
properties or structural behavior. This systematic evaluation based on the criteria of force
levels, displacement characteristics, and stiffness across the three zones is pivotal for
validating the simulation model. It ensures reliability in informing design, safety, and
performance optimization considerations across various applications, providing a robust
understanding of the battery’s mechanical behavior.

In the examination of the battery volume deformation, specific focus is directed
towards the compression behavior seen in the alignment of the force curves seen in Figure 9
and the analytical values from Table 3.

Figure 9. Comparison between Battery Volume model MAT24 and real test Load vs. Displace-
ment curve.

Table 3. Battery volume simulation results.

Zone 1 (Elastic)
Zone 2 (Plastic
Deformation)

Zone 3
(Densification)

Force–Disp. Curve Real Mat24 Real Mat24 Real Mat24

Force peak (kN) 2.14 2.14 2.67 2.64 5.5 5.5

Start point (mm) 0 0 0.6 0.6 2.7 2.7

Finish point (mm) 0.6 0.6 2.7 2.7 3.5 3.5

Stiffness (kN/mm) 3.56 3.56 0.98 0.97 1.57 1.57

In the actual response curve in the elastic region, designated as Zone 1, the termination
of elastic deformation occurs at 0.6 mm press displacement after the initial contact with the
battery, registering a force of 2.1 kN and a stiffness of 3.56 kN/mm. Observing Figure 9,
it is discerned that the MAT24 battery volume force curve demonstrates a commendable
alignment with the actual curve, but with a more linear behavior. However, comparative
analysis, as delineated in Table 3, also reveals an analytical view of the elastic region with
no error noted in the values.

Within the plastic deformation zone, denoted as Zone 2, specific metrics characterize
the deformation behavior. The displacement in this region extends to 2.7 mm, resulting in
a maximum end force of 2.67 kN and a stiffness of 0.98 kN/mm. Figure 9 visually indicates
a favorable alignment between the force curve and the MAT24 battery volume model. In
a quantitative assessment, the MAT24 battery volume model exhibits a peak end force of
2.64 kN with a 1.1% error, and a stiffness of 0.97 kN/mm, reflecting a small 1% discrepancy.

In the densification zone, denoted as Zone 3, a controlled displacement limit of 3.5 mm
was imposed to facilitate the calculation of densification rates. Key parameters considered
in this context include the initiation point and the subsequent rate of densification. In the
actual model, densification commences at 2.7 mm, exhibiting a stiffness of 1.57 kN/mm.
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The MAT24 battery volume model indicates a stiffness of 1.57 kN/mm, reflecting no
analytical deviation. The alignment between the curves during the densification phase is
evident in Figure 9.

In the examination of battery Jelly Roll deformation, as in the battery volume model,
specific focus is directed towards the compression behavior observed in the alignment of
force curves (Figure 10) and analytical values (Table 4).

Figure 10. Comparison between MAT24 jelly roll volume and real test, Load vs. Displacement curve.

Table 4. Jelly roll volume simulation results.

Zone 1 (Elastic)
Zone 2 (Plastic
Deformation)

Zone 3
(Densification)

Force–Disp. Curve Real Mat24 Real Mat24 Real Mat24

Force peak (kN) 0.6 0.6 0.99 1.16 4 3.98

Start point (mm) 0 0 0.5 0.5 2.5 2.5

Finish point (mm) 0.5 0.5 2.5 2.5 3.5 3.5

Stiffness (kN/mm) 1.2 1.2 0.39 0.46 1.14 1.13

In the elastic region (Zone 1), termination of elastic deformation occurs at 0.5 mm
displacement, with a force of 0.6 kN and a stiffness of 1.2 kN/mm in the actual model.
Notably, the MAT24 Jelly Roll volume model demonstrates commendable alignment with
the actual curve. However, comparative analysis reveals that the model registers a force of
0.6 kN and a stiffness of 1.2 kN/mm, resulting in a no difference in force and stiffness.

Transitioning to the plastic deformation zone (Zone 2), displacement extends to 2.5 mm,
resulting in a maximum end force of 0.99 kN and a stiffness of 0.39 kN/mm. Figure 10
visually indicates favorable alignment between the force curve and the MAT24 Jelly Roll
volume model. However, quantitatively, the model displays values of a peak end force
of 1.16 kN, a 17% error, and a stiffness of 0.46 kN/mm, a 17.9% discrepancy. A potential
enhancement for future versions of the model would be to introduce more piecewise points
within the densification zone. This would allow for a finer resolution of the material’s
response during this critical phase, leading to better representation of the compaction
process and increased accuracy.

In the densification zone (Zone 3), with a displacement of 3.5 mm, densification com-
mences at 2.5 mm in the actual model, at a peak force of 4, with a stiffness of 1.14 kN/mm.
The MAT24 Jelly Roll volume model has a peak force of 3.98, with a 0.5% error, accompa-
nied by a stiffness of 1.13 kN/mm, reflecting 0.8% deviation. This good alignment of the
curves in Zone 2 and 3 can also be seen in Figure 10.
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When analyzing the Jelly Roll volume alongside the battery case model, particularly
in Zone 1, which denotes the elastic region, distinct areas of elastic deformation become
evident. The battery case exhibits higher stiffness initially, followed by a combination of
Jelly Roll elasticity and case plasticity, as seen in Figure 11. This conclusion is not seen in
the analytical results presented in Table 5 because, in cases of high deformation, the point
of the force and displacement at the beginning of the plastic area is in focus.

 
Figure 11. Comparison between battery models and real test, Load vs. Displacement curve.

Table 5. Jelly roll volume with battery case simulation results.

Zone 1 (Elastic)
Zone 2 (Plastic
Deformation)

Zone 3
(Densification)

Force–Disp. Curve Real Mat24 Real Mat24 Real Mat24

Force peak (kN) 2.14 2.14 2.67 2.9 5.5 5.5

Start point (mm) 0 0 0.6 0.6 2.7 2.7

Finish point (mm) 0.6 0.6 2.7 2.7 3.5 3.5

Stiffness (kN/mm) 3.56 3.56 0.98 1.07 1.57 1.57

The comparison between various modeling approaches for the battery can be eluci-
dated through the examination of Figures 11 and 12.

Figure 12. Comparison between battery models elastic zone and real test, Load vs. Displace-
ment curve.
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Figure 12 suggests that the elasticity of the battery volume model aligns more closely
with the actual curve in the elastic zone. This can be attributed to the simplified definition
of material properties within a homogeneous volume model compared to the complexities
involved in modeling materials for heterogeneous models. The deviations observed in
the plastic region of the model are also influenced by the interaction with the battery case,
though the case tends to reduce these discrepancies to 8.6% and 9.1%, respectively.

3.4. Model Sensibility Test

To ensure the model’s validity and applicability across different configurations, a
sensitivity analysis was performed on a battery model composed of a jelly roll volume and
its protective case. The analysis involved scaling the plastic strain and case thickness to
observe how these modifications affect the densification process and the load curve.

When the plastic strain was scaled down by 10% and 20%, the densification occurred
at lower deformations, as expected. Specifically, the initial point of densification shifted
from 2.7 mm (original) to 2.5 mm and 2.3 mm, respectively. This indicates that reducing
plastic strain sensitivity decreases the deformation required for densification to begin,
altering the material response during high compression loads (Figure 13).

Figure 13. Sensibility test of the Jelly Roll plastic strain piecewise parameters.

For the case thickness, scaling it down to half, which is representative of a thinner,
commercially available Li-ion cell casing, resulted in a nearly halved load curve, reflecting
the lower force resistance of the thinner case. Conversely, doubling the case thickness led
to an exponential increase in force resistance, with the load curve scaling nearly threefold.
This notable effect can be seen in the elastic region, where the increased thickness led to
the elasticity of the case having a higher weight in the elasticity of the battery, as shown
in Figure 14. These sensitivity tests highlight how both plastic strain and casing thickness
directly influence the battery’s overall mechanical behavior under compression.

Figure 14. Sensibility test of the case thickness.
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4. Conclusions

The Finite Element Method (FEM) model is employed in this study of LS Dyna MAT24
(MAT_PIECEWISE_LINEAR_PLASTICITY). Calibration of these materials is achieved
through a meticulous comparison with the force curve obtained from the real-life com-
pression tests. The real-life compression experiments are conducted on three battery cell
specimens, with the cap removed, and two jelly rolls. The force curve obtained from
these experiments delineates three discernible states: an initial elastic response, a plastic
deformation plateau, and a subsequent phase marked by rapid densification. Notably, the
model is represented as a single entity, homogenizing the entire battery structure into solids.
The LS DYNA material MAT24 (MAT_PIECEWISE_LINEAR_PLASTICITY) is calibrated
meticulously to replicate the experimentally obtained force curve. This calibration process
ensures that the FEM model accurately reflects the mechanical behavior observed in the
real-life compression tests.

MAT24 proves invaluable in defining suitable materials for both the entire battery
volume and the Jelly Roll component. The effectiveness of the Jelly Roll model is further
validated by its robust performance when integrated with the battery case, demonstrating
its practical utility. The validity of the model is further strengthened by the predictable
sensibility study of the plastic parameters and the variation of the case thickness.

Suggestions for future work should focus on incorporating more experimental data,
particularly under dynamic load conditions, where the behavior of the elastic, plastic, and
failure zones can vary significantly. Dynamic testing would provide a more comprehensive
understanding of how the material behaves across different strain rates, especially in high-
impact scenarios. Using these experimental insights, the MAT24 material model could
be refined by introducing strain rate-dependent parameters, which would enhance the
accuracy of the battery deformation predictions. Without such adjustments, the model
risks defaulting to worst-case deformation scenarios in case of high-impact simulations.
Another valuable direction would be to reintroduce the battery caps in the model and
investigate load cases from the axial direction to assess anisotropy across the entire battery.
Additionally, integrating the model into a full vehicle crash simulation would allow for
evaluating its performance in a holistic crash environment, providing insights into how
the battery pack responds when subjected to real-world, complex loading, vehicle crash
dynamics. In conclusion, the comprehensive comparison between the experimentally
derived load-displacement curve of a uni-axial compression test on the 18650 Li-ion battery
and its simulated counterparts provides robust insights across three distinct mechanical
response zones. The piecewise approach in analyzing the curves might overlook some
details in the elastic zone; however, the focus of this model is primarily on predicting
behavior under high deformation conditions, plastic zone and densification, which are
more critical for assessing crashworthiness and safety in scenarios involving large impacts
or compressive forces. The overall overlaying of curves, as depicted in Figures 9–11, reveals
a comparable profile between the simulated model and the actual test data.
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Abstract: Battery recycling has become increasingly crucial in mitigating environmental pollution and
conserving valuable resources. As demand for battery-powered devices rises across industries like
automotive, electronics, and renewable energy, efficient recycling is essential. Traditional recycling
methods, often reliant on manual labor, suffer from inefficiencies and environmental harm. How-
ever, recent artificial intelligence (AI) advancements offer promising solutions to these challenges.
This paper reviews the latest developments in AI applications for battery recycling, focusing on
methodologies, challenges, and future directions. AI technologies, particularly machine learning
and deep learning models, are revolutionizing battery sorting, classification, and disassembly pro-
cesses. AI-powered systems enhance efficiency by automating tasks such as battery identification,
material characterization, and robotic disassembly, reducing human error and occupational hazards.
Additionally, integrating AI with advanced sensing technologies like computer vision, spectroscopy,
and X-ray imaging allows for precise material characterization and real-time monitoring, optimizing
recycling strategies and material recovery rates. Despite these advancements, data quality, scalability,
and regulatory compliance must be addressed to realize AI’s full potential in battery recycling. Col-
laborative efforts across interdisciplinary domains are essential to develop robust, scalable AI-driven
recycling solutions, paving the way for a sustainable, circular economy in battery materials.

Keywords: battery recycling; artificial intelligence; computer vision; lithium ion battery

1. Introduction

1.1. Overview of Battery Recycling

Since their introduction in the early 1990s, lithium ion batteries (LIBs) have seen
a significant surge in usage. With projections indicating further growth in the coming
decade, LIBs have become the preferred energy storage technology due to their high energy
density and relatively low cost. Increased LIB production has enhanced manufacturing
efficiencies and reduced costs, further driving demand. LIBs are now widely used in
applications ranging from electric vehicles (EVs) to portable electronics [1,2]. However,
the finite supply of raw materials, such as lithium, essential for LIB production presents a
significant challenge. This scarcity underscores the need for effective recycling strategies to
optimize the use of these critical materials [3,4]. Recycling not only conserves resources but
also minimizes the environmental impact associated with LIB production and disposal [5].

Current LIB recycling methods include pyrometallurgy, electrolytic recycling, and
bioleaching, each offering varying degrees of success. Bioleaching shows considerable
promise, although it remains experimental [6,7]. The global demand for LIB recycling
is increasing, driven by the environmental and health risks posed by battery waste. As
LIBs continue to play a crucial role in reducing reliance on pollutive energy sources,
advancements in recycling technology are essential to mitigate economic and environmental
costs [1].
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The global market for LIB recycling was valued at USD 8.10 billion in 2023 and is
projected to increase to USD 10.26 billion in 2024. As shown in Figure 1, it is anticipated to
grow to approximately USD 85.69 billion by 2033, reflecting a compound annual growth
rate (CAGR) of 26.6% from 2024 to 2033 [8].

Figure 1. LIB recycling market size 2023 to 2033 (USD billion). Adapted from [8].

The economic benefits of LIB recycling are substantial. These include resource con-
servation and the creation of new economic opportunities [9]. Global demand for LIBs is
projected to surge over the next decade, with the required capacity expected to grow from
approximately 700 GWh in 2022 to about 4.7 TWh by 2030 [10]. Europe’s current recycling
infrastructure boasts a recovery rate of over 85% for materials like aluminum, copper, cobalt,
manganese, and nickel and between 35% and 42% for iron and lithium. Hydrometallurgy
has been identified as Europe’s most economically viable recycling strategy, generating
the highest revenue while maintaining the lowest operational costs. However, the existing
infrastructure may struggle to meet the anticipated increase in demand by 2030 [11].

Recycling LIBs also reduces waste generation from used batteries and decreases the
demand for large-scale mining operations. For instance, the Indonesian Ministry of Energy
and Mineral Resources projects a significant rise in EV sales over the next 15 years. The
waste generated by EVs is tied to the lifespan of their batteries, which can last up to eight
years [12]. Recycling these batteries would significantly reduce waste, contributing to
environmental sustainability by cutting greenhouse gas emissions and preventing harmful
materials from contaminating soil and water.

1.2. Role of Artificial Intelligence in Recycling

Artificial intelligence (AI) is rapidly transforming various industries, and its impact
on environmental sustainability is particularly noteworthy. AI’s capabilities extend from
simple tasks like baking cookies to complex programming, offering immense potential to
benefit society. One of AI’s most promising applications lies in recycling, which enhances
the efficiency and accuracy of sorting processes, a critical challenge in waste management.

AI detection systems utilize visual inspection to assess quality, identify defects, and
ensure the correct placement of materials [13]. This technology, already widely used across
multiple industries, is now being applied to address the biggest challenge in recycling:
effectively sorting recyclables from waste [14]. For instance, companies like Waste Vision
have developed AI-driven systems that can be mounted on garbage trucks to detect
overflows and contamination in recycling bins and monitor waste quantities [15]. This
early detection helps prevent improper disposal practices right at the source.
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Later in the recycling process, AI continues to refine the sorting accuracy. Technologies
like Neuron’s deep learning algorithms enable continuous improvement in identifying
and categorizing materials such as paper, plastics, and metals based on color, size, shape,
and brand characteristics [16]. AMP Robotics is already deploying AI systems in recycling
centers to sort recyclable materials more efficiently and accurately, ensuring that different
materials are correctly separated for reuse [14].

The primary advantage of AI in recycling lies in its detection accuracy, which ranges
from 72.8% to 99.95% [17]. This accuracy variability depends on the sensors and camera
capabilities, efficiency of garbage classifying robots, and AI algorithms [18]. This high level
of precision is crucial, given the vast amount of waste generated daily. The average U.S.
resident produces 4–5 lbs. of waste per day, underscoring the need for a recycling process
that is both fast and accurate [19]. AI-driven systems meet these demands and improve
continuously as they process more data, making them an essential tool in advancing
recycling efforts and promoting environmental sustainability.

2. Artificial Intelligence Techniques in Battery Sorting and Identification

2.1. Computer Vision for Battery Recognition

The global shift from a wasteful economy to a more sustainable, circular economy
is increasingly evident, particularly in the rise of EVs. However, the production of EVs
significantly increases the demand for critical raw materials like lithium, cobalt, and rare
earth metals essential for LIB. Projections indicate that the European Union will need
18 times more lithium by 2030 and nearly 60 times more by 2050 [20]. Similarly, cobalt
demand is expected to grow fivefold by 2030 and 15-fold by 2050 [21]. Effective battery
waste (B-waste) recycling is crucial to meet this demand sustainably.

Computer vision (CV) is a branch of AI that enables computers to interpret and
analyze visual data, allowing them to recognize, classify, and understand images or videos
of batteries. Widely used in areas like object detection and industrial automation, computer
vision enhances battery recycling by automating tasks such as battery identification, sorting,
and monitoring in B-waste management [22]. CV is anticipated to transform B-waste
management by significantly enhancing the identification, classification, collection, sorting,
segregation, and monitoring of B-waste [23]. Figure 2 shows the diverse application of
computer vision technology across various sectors.

In 2019, the world generated 53.6 million tons of B-waste, which contains valuable ma-
terials like lithium and cobalt [24]. Addressing this, the RoboCRM System was proposed in
2022. This system uses AI, robotics, machine learning (ML), and optical imaging to identify
devices containing batteries, which are then separated for proper recycling. Utilizing deep
learning, the system can distinguish devices based on a vast database of optical images,
enabling precise sorting at processing or B-waste collection facilities [25].

Effective waste sorting is vital for achieving a circular economy. Currently, sorting
methods include manual and automated processes, using support vector machines (SVMs)
and convolutional neural networks to classify materials [26]. A novel approach involves
Radio Frequency Identification (RFID) technology, allowing contactless identification and
waste sorting [27]. In Finland, ZenRobotics’ ZRR2 robot has demonstrated the potential of
AI in waste management, efficiently categorizing construction waste using deep learning
and computer vision [28].

Integrating AI into B-waste sorting could revolutionize recycling, making a closed
circular economy a tangible reality. By enhancing the efficiency and accuracy of material
recovery, these technologies hold the key to a more sustainable future.
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Figure 2. Broad applications of computer vision across multiple sectors. Reproduced with permission
from [23].

2.2. Machine Learning for Material Composition Analysis

As technology advances, portable electronic gadgets have become integral to daily life.
The invention of the battery revolutionized how we use these devices, enabling portability
without needing a constant connection to a power source. However, the growing demand
for batteries has led to a significant increase in battery waste. Batteries contain hazardous
chemicals and valuable metals, necessitating proper recycling to manage their end-of-life
cycle and recover useful materials safely.

ML has transformed the battery recycling industry by enhancing the accuracy of
material analysis within batteries. AI and ML algorithms can predict the recycling poten-
tial of batteries and optimize resource recovery [29]. By processing large datasets from
experiments and simulations, ML can identify desirable battery properties, such as high
energy density, stability, and conductivity, accelerating improvements in energy storage
capacity and battery life predictions [30].

LIBs, the most commonly used type, involve several key recycling steps. The process
begins with the separation of the metallic shell, copper (Cu), and aluminum (Al) foils,
followed by the collection of the cathode and anode materials [31]. The recovered materials
are then purified to extract valuable elements, regenerate new batteries, or synthesize
other functional materials. ML plays a crucial role in predicting metal recovery from these
batteries. Open-source databases, like the Inorganic Crystal Structure Database and the
Materials Project, provide vital resources on energy bands, crystal structures, and other
physical properties, which researchers can input into ML algorithms for data analysis [32].

ML-guided research has led to significant advancements in the LIB recycling market.
Logistic regression models, for example, offer higher accuracy and faster identification of
materials with high ionic conductivity. ML-assisted robotic systems have been developed
to address the challenge of diverse battery packaging during recycling disassembly. These
systems use ML algorithms to navigate various battery casings efficiently, increasing
the disassembly speed and enhancing recycling efficiency [29]. Additionally, ML can
analyze data from charge–discharge cycles to predict a battery’s remaining life and model
engineering challenges encountered during recycling.

Feature engineering further enhances ML by selecting, transforming, extracting, and
manipulating raw data to create relevant datasets for modeling. In lithium battery recy-
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cling, ML algorithms enable rapid screening and prediction of material properties, such as
electrode voltage and electrolyte conductivity, by establishing relationships between atomic
structures and electrochemical performance. ML can efficiently manage large datasets
from experimental and simulation results, facilitating the discovery of novel materials
for electrodes, electrolytes, and promoters. Moreover, ML improves mesoscale charac-
terizations through image segmentation and labeling, automating the analysis of battery
components’ spatial distribution and morphology. This approach revolutionizes traditional
characterization methods, providing deeper insights into material behavior and enabling
more informed battery design and optimization [32].

The application of ML in battery recycling has significantly improved the accuracy and
speed of material identification. By processing vast amounts of data faster than any human
could, ML accelerates the development of safer, higher energy density, and longer-lasting
batteries, pushing the boundaries of what is possible in battery technology.

3. Intelligent Robotics in Battery Dismantling

3.1. Robotic Systems for Automated Dismantling

As the demand for EVs continues to rise, so does the need for LIBs, which power these
vehicles. The production of these batteries relies on critical materials such as lithium, cobalt,
and rare earth metals—resources in limited supply. Recycling these valuable materials
is essential for sustainable and efficient battery production. Dismantling LIBs in the
automotive industry is largely manual, with robotics playing only a limited role in assisting
human workers or performing simple tasks. These manual processes are slow and require
highly skilled personnel, making them costly and potentially unprofitable, with the added
risk of environmental pollution [33].

In contrast, automated systems offer several advantages over manual disassembly,
including greater efficiency, lower costs, reduced workplace injuries, and the ability to scale
up for higher volumes [34]. However, the primary challenge facing automated dismantling
systems is the significant variation in EV battery designs, which differ not only between
manufacturers but also between car models [35].

One experiment involving a six-degree-of-freedom industrial robotic system demon-
strated the potential for robotics to improve the efficiency of battery disassembly. The
robotic system was evaluated on benchmark tasks such as cutting and gripping to assess its
effectiveness in disassembly. The robot arm cut battery tabs in EV battery modules in one
test. The robot completed the operation in 112 s, nearly twice as fast as trained technicians,
who took 220 s to perform the same task. This demonstrates the robot’s ability to enhance
the speed and accuracy of battery disassembly significantly [36].

Another study explored the feasibility of developing a hybrid human–robot work-
station for dismantling an Audi Q5 Hybrid battery system. The robot was assigned the
task of unscrewing screws located anywhere on the battery. Two approaches were tested:
physical demonstration and camera-based detection. While the physical demonstration
method allowed the robot to detect the fasteners’ locations, it required considerable setup
time. The camera-based detection method showed promise in speeding up the process,
though further development was needed to implement a more efficient algorithm [37].
These studies indicate that while intelligent robotics have made significant strides in battery
disassembly, achieving the optimal balance between human and robot collaboration still
requires further refinement.

AI-assisted decision-making is crucial in dismantling processes across various in-
dustries, from manufacturing to environmental remediation. AI algorithms can analyze
vast amounts of data to identify potential risks associated with dismantling processes,
considering structural integrity, environmental hazards, and safety protocols. This allows
AI systems to help prioritize tasks and allocate resources more effectively. AI can also
create optimized dismantling plans by factoring in various constraints and objectives, such
as scheduling tasks, coordinating equipment and personnel, and minimizing downtime.
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ML algorithms can continuously refine these plans based on real-time data and feedback,
improving efficiency.

AI enhances resource utilization by analyzing usage patterns and suggesting optimal
allocation strategies, ensuring that materials, equipment, and personnel are used efficiently
throughout dismantling. AI-powered predictive maintenance systems can monitor equip-
ment health in real time, detecting potential failures before they occur, thus minimizing
downtime and improving overall efficiency. Additionally, AI can assess the environmental
impact of dismantling processes by analyzing emissions, waste generation, and ecological
footprints, enabling stakeholders to make informed decisions that minimize environmental
harm and ensure regulatory compliance [38].

AI also enhances dismantling safety by monitoring real-time conditions and alerting
workers to potential hazards. For example, computer vision systems can detect unsafe
behaviors or conditions, while wearable devices can provide personalized safety recommen-
dations based on individual risk factors. Furthermore, AI-driven robotics and automation
technologies enable the remote operation of dismantling equipment in hazardous environ-
ments, reducing human exposure to risks such as radiation, toxic chemicals, or unstable
structures [39].

Finally, AI algorithms can analyze data collected during dismantling to identify trends,
optimize workflows, and generate comprehensive reports. This information empowers
stakeholders to evaluate performance, identify areas for improvement, and make data-
driven decisions for future projects. Integrating AI and robotics in battery disassembly
and other dismantling processes holds great promise for improving efficiency, safety, and
sustainability in these critical operations.

3.2. AI-Assisted Decision-Making in Dismantling Processes

Robotic systems have become integral to automated disassembly lines, significantly
enhancing both the efficiency of material recovery and the speed of disassembly. Integrating
AI-assisted decision-making technology has further revolutionized this process, enabling
the automation of complex operations, including the disassembly of batteries. As AI
technology advances, driven by its ability to increase efficiency and reduce costs, its
application in automation has grown substantially. The availability of diverse data sources
has also spurred the development of more sophisticated ML algorithms, making AI-assisted
programs an essential component in optimizing the disassembly of LIBs [40]. These systems
boost production rates, reduce errors, and enhance resource recovery.

Deep learning is one of the key AI techniques that can be leveraged for decision-
making in automated disassembly. Deep learning techniques have proven effective in
improving the efficiency and accuracy of decision-making processes across various fields,
including automation. By incorporating large datasets into deep learning algorithms, AI
systems can identify meaningful patterns, leading to more intelligent decision-making
support [41]. This technology has already streamlined operations in the automation of
vehicles, and its application to battery disassembly promises similar benefits. Deep learning
techniques can be crucial in advancing sustainable practices by optimizing the disassembly
process and recovering valuable materials.

Automated disassembly processes face challenges, particularly due to the variability
of recycling materials, which can complicate the design of efficient automated systems.
This variability introduces uncertainty in the disassembly time for different products. The
disassembly process can be modeled to address these challenges using a multi-objective,
multi-product robotic disassembly line-balancing problem (MMRDP), which helps maxi-
mize profit and minimize energy consumption [42]. Research by Xu et al. [42] demonstrated
the effectiveness of an improved algorithm based on the Pareto rule, Pareto-improved multi-
objective brainstorming optimization (PIMBO), which incorporates a stochastic simulation
approach to solve the MMRDP, resulting in enhanced disassembly efficiency. Similarly, re-
search by Gulivindala et al. [43] highlights the use of genetic algorithms (GA), a common AI
technique, to create optimized disassembly sequence plans. These algorithms, as shown in
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Tech Science Press (TSP) studies, can improve real-time product disassembly by designing
optimized solutions, further enhancing the efficiency of the disassembly process [43].

AI technology also plays a crucial role in error reduction during disassembly. Research
by Li et al. [44]. demonstrated that AI can be used for fault detection in automated systems,
allowing for real-time monitoring of disassembly sequences through distributed informa-
tion systems. This capability not only reduces the occurrence of errors but also provides
timely notifications to users when an error is detected or anticipated, thereby enhancing
system security and reducing maintenance and operational costs. However, challenges
remain, such as ensuring the quality of data input into AI systems and AI algorithms’ preci-
sion [45]. Despite these challenges, AI continues to improve the modeling and execution of
disassembly processes, optimizing material recovery and further increasing the efficiency
of disassembly operations.

Table 1 summarizes AI applications in the battery recycling process, comparing the
challenges of traditional methods.

Table 1. AI Applications in Battery Recycling Processes.

Process Traditional Method Challenges AI-Driven Solutions Benefits

Sorting Labor-intensive, prone to errors Machine learning algorithms for
automated sorting

Higher accuracy, reduced
manual labor

Classification Manual classification,
inconsistent quality

Computer vision and deep
learning models

Improved precision, faster
processing

Disassembly Risky for workers,
time-consuming Robotic disassembly using AI Enhanced safety, efficiency

Material characterization Limited accuracy with manual
testing

AI-driven spectroscopy and
X-ray imaging Precise material identification

Real-time monitoring Lack of adaptability to variable
battery types

AI-based adaptive monitoring
systems

Dynamic adjustment,
increased recovery rate

4. Predictive Maintenance and Process Optimization

4.1. AI-Based Predictive Maintenance for Recycling Equipment

AI-based predictive maintenance is transforming the management of recycling equip-
ment, offering unprecedented insights into equipment health, performance trends, and
maintenance requirements. Recycling facilities face the ongoing challenge of maintaining
diverse equipment that experiences continuous wear and tear due to processing various
materials. Traditional reactive maintenance approaches are costly and disruptive, often
leading to unplanned downtime and operational inefficiencies [46]. However, by utilizing
AI algorithms to analyze sensor data, historical records, and real-time performance metrics,
predictive maintenance can anticipate potential failures, enabling proactive intervention
and significantly reducing downtime.

The implementation of AI-based predictive maintenance offers several compelling
benefits to recycling facilities. Primarily, it drastically reduces downtime by predicting
equipment failures before they occur, ensuring uninterrupted operations and maximizing
productivity. This proactive approach minimizes the need for emergency repairs, leading
to substantial cost savings that improve recycling companies’ financial sustainability. These
savings can be reinvested in technology upgrades, enhancing equipment performance and
longevity [47].

One of the primary advantages of AI-based predictive maintenance is its ability to
optimize maintenance schedules based on real-time insights into equipment health. AI
algorithms can identify patterns and anomalies that indicate potential equipment failures
by analyzing historical data and current performance metrics. This allows maintenance
teams to prioritize tasks, schedule interventions during planned downtime, and allocate
resources effectively, minimizing operational disruptions. Additionally, AI-driven predic-
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tive analytics provide valuable insights into equipment components’ remaining useful life
(RUL), enabling timely replacements and upgrades to prevent catastrophic failures [48].

AI-based predictive maintenance also contributes to enhanced workplace safety in
recycling facilities. Sudden equipment failures or malfunctions can pose significant risks
to worker safety, leading to accidents or injuries. By proactively identifying potential
failure points and scheduling maintenance tasks accordingly, AI algorithms help mitigate
these risks, creating a safer working environment [49]. Furthermore, reducing the need for
reactive maintenance, which often requires technicians to work under time pressure and in
hazardous conditions, improves overall occupational safety standards.

In addition to reducing downtime and improving safety, AI-driven predictive main-
tenance enhances resource utilization in recycling facilities. Organizations can allocate
workforce, spare parts, and other resources by optimizing maintenance schedules and
identifying critical needs. This reduces inventory costs, minimizes resource wastage,
and improves operational efficiency. Moreover, predictive maintenance enables recycling
companies to extend equipment lifespan, maximize performance, and reduce energy con-
sumption, thereby contributing to environmental sustainability efforts [50].

The integration of AI-based predictive maintenance is poised to revolutionize the
recycling industry. Ongoing advancements in the Internet of Things (IoT) integration, edge
computing, and sensor technologies are transforming the landscape of data collection and
analysis [51]. These developments will improve prediction accuracy and provide actionable
insights that drive operational efficiencies and cost savings. Incorporating digital twins—a
digital replica of a physical entity that maintains a strong connection to the original—will
play a pivotal role in this evolution, allowing for the testing of maintenance strategies
in a risk-free virtual environment and enabling real-time performance optimization [52].
Figure 3 provides a schematic diagram of the workflow of a digital twin system for a
real battery EV with a framework to enable comprehensive battery lifecycle management.
Battery data is digitized in real time and uploaded to a cloud-based database via the IoT,
allowing for online monitoring of their health and operational status using AI. Robots
can assess, screen, and sort incoming batteries by analyzing data from decommissioned
batteries, following a structured management approach to facilitate efficient recycling. The
insights generated by the smart battery design system enable tracking the flow of LIBs,
facilitating more focused recycling initiatives.

Figure 3. Workflow of a digital twin system for comprehensive battery lifecycle management.
Reproduced with permission from [53].
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As AI algorithms evolve, predictive maintenance capabilities will expand even further.
Techniques such as deep learning, reinforcement learning, and predictive modeling are
increasingly being integrated into AI systems, enabling them to analyze complex data
sets, detect patterns, and accurately predict equipment failures. These advancements will
reduce downtime and maintenance costs and extend the lifespan of recycling equipment,
contributing to a more sustainable and efficient recycling ecosystem.

However, several challenges must be addressed to ensure the widespread adoption
and successful implementation of AI-based predictive maintenance in recycling facilities.
Data privacy and security concerns necessitate robust protocols and encryption mechanisms
to protect sensitive information collected from equipment sensors and maintenance records.
Ensuring algorithm transparency and interpretability is crucial for building stakeholder
trust and enabling informed decision-making based on AI-driven insights. Additionally,
scalability issues related to managing large volumes of sensor data, integrating diverse
systems, and deploying AI solutions across multiple sites must be addressed to fully realize
the potential of predictive maintenance in the recycling industry.

In conclusion, AI-based predictive maintenance is set to revolutionize the recycling
industry by driving efficiency, sustainability, and operational excellence. By leveraging
AI algorithms to anticipate equipment failures, optimize maintenance schedules, and en-
hance resource utilization, recycling facilities can minimize downtime, improve safety
standards, and contribute to environmental conservation efforts. With ongoing technologi-
cal advancements and strategic investments in AI-driven solutions, the future of predictive
maintenance in recycling equipment is bright, offering unparalleled opportunities for
innovation and growth in the waste management sector.

4.2. Process Optimization Through AI Algorithms

Recent advancements in AI algorithms are revolutionizing the recycling process, offer-
ing new ways to optimize efficiency and sustainability. As the global population grows, so
does the volume of waste communities generate. To maintain a clean and sustainable envi-
ronment, recycling processes must be modernized better to manage the ratio between waste
and recycled materials. According to the United States Environmental Protection Agency,
75% of solid waste that could be recycled is currently lost or wasted, causing significant
environmental harm that ultimately affects human quality of life [54]. By leveraging AI
algorithms, the accuracy of classifying recyclable materials can be significantly enhanced,
leading to higher recycling rates.

The initial step in recycling is sorting waste items by category, a process that can
greatly benefit from AI-driven automation. ML algorithms can accurately determine and
sort the waste category when paired with sensors using robotic systems [55]. One such
technique is the convolutional neural network (CNN), which utilizes image processing to
classify objects. CNNs have proven successful in training multi-layer network structures
and can be integrated with robotic systems equipped with suction, grippers, and RGB
sensors to sort materials based on their composition. For instance, a CNN-equipped model
has demonstrated an overall classification accuracy of 96%. When applied in recycling
facilities, CNNs improve the rate at which materials are categorized and reduce the costs
associated with the recycling process [54,55].

While effective, manual sorting processes can be costly and pose health risks to
workers in hazardous environments. The physical and mental exhaustion associated with
manual labor can also lead to errors and the loss of recyclable materials. AI-driven sorting
systems, on the other hand, operate without fatigue, ensuring consistent performance.
A case study on the application of AI in a recycling production line found that a CNN-
equipped model trained on video feeds of waste could detect and classify materials in
real-time with an accuracy of 92.43% [54]. This demonstrates the potential of AI to enhance
both the efficiency and cost-effectiveness of recycling operations.

AI-driven recycling systems also have the potential to significantly reduce the amount
of waste that is discarded without being reused. For example, a city in China implemented
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an AI network to manage waste across 20 selected sites. The results were impressive:
the sites saved 357,000 yuan (approximately 50,000 US dollars) per recycling cycle and
could reuse 98.25% of recyclable waste [56]. This case study highlights AI’s economic and
environmental benefits in waste management. Similarly, AI and ML technologies have been
adopted in Latin America and the Caribbean to enhance municipal solid waste generation
prediction, optimize collection routes, and improve resource management [57]. The ML
models identified trends and patterns in waste generation, enabling more informed and
efficient decision-making. This demonstrates how AI can accelerate the transition toward a
circular economy by optimizing resource utilization and minimizing waste.

However, despite the promise of AI in waste management, some challenges need to
be addressed. These include the quality of data, the availability of computational resources,
the integration of AI with existing systems, and the need for expertise and training [57].
ML requires large, high-quality datasets to train systems effectively, but such data can be
difficult to obtain in waste management. Additionally, many small waste management
facilities may lack the financial resources to adopt AI technologies. Integrating AI with
existing systems can also be time-consuming and costly, and many facilities may not have
staff with the necessary expertise in ML.

Despite these challenges, AI’s recycling and waste management benefits are significant.
ML algorithms can predict waste generation, forecast equipment failures, and optimize
operational efficiency, all of which reduce costs. AI can also classify waste into recyclable,
biodegradable, or hazardous categories, improving the recycling rate. Additionally, AI can
enhance waste-to-energy production by analyzing data on waste generation patterns. AI
systems offer tremendous potential to improve the efficiency and sustainability of recycling
processes and waste management.

5. Data Analytics for Lifecycle Assessment

5.1. Environmental Impact Assessment Through Data Analytics

Recycling is a crucial process that significantly reduces the negative environmental
impacts on our planet. While recycling has been practiced for many years, recent ad-
vancements in AI detection have opened new avenues for optimizing this process. AI’s
ability to accurately identify recyclable materials ensures that fewer new materials need
to be produced, as recycled materials can be effectively reused. For instance, AI systems
can recognize plastic water bottles, vegetable waste, cardboard, and black bags with an
accuracy of around 95% [58]. This high accuracy rate means more recyclable materials can
be correctly processed, reducing the need for additional manufacturing and lowering the
overall environmental footprint.

The environmental benefits of recycling extend beyond the reuse of materials; they
encompass the entire lifecycle of the recycling process. Although recycling still involves
remanufacturing and transportation, its environmental impact is significantly lower than
extracting and processing raw materials. For example, the mining industry generates be-
tween 1.9 and 5.1 gigatons of CO2 equivalent (CO2e) of greenhouse gas emissions annually,
with coal mining alone responsible for a significant portion of this pollution [59,60]. In
contrast, the emissions associated with recycling are minimal. We can achieve substantial
environmental gains by excluding the carbon-intensive raw material extraction processes
and focusing on the more efficient recycling lifecycle.

Recycling primarily involves three main steps: collection, processing, and remanu-
facturing into new products [59]. While these steps produce some emissions, particularly
during transportation and remanufacturing, the overall environmental impact is far less
than that of the initial production of materials from raw resources. With AI detection
systems achieving 95% accuracy, the likelihood of non-recyclable materials entering the
recycling stream is minimized, ensuring that most transported items are recyclable. This
streamlines the process and reduces the environmental burden associated with waste
management [61].
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The benefits of recycling are further highlighted when considering the alternative—
landfills and combustion centers. If materials were not recycled and instead had only
one lifecycle, landfills would quickly overflow, combustion centers would have to operate
continuously, and the demand for newly mined materials would increase. Estimates
indicate that greenhouse gas emissions from municipal solid waste (MSW) combustion
facilities in the U.S. range from 10 to 20 million metric tons annually, a small fraction
compared to the nearly six billion tons emitted by fossil fuel combustion [62]. By diverting
recyclables from these facilities, we can prevent significant amounts of pollution from
entering the atmosphere.

However, there are areas within the recycling lifecycle that can be improved. The
most significant opportunities for improvement lie in the transportation and remanufac-
turing stages. In the United States, trucks travel a staggering 93.5 billion miles annually,
contributing nearly 6 million tons of CO2 per year to the atmosphere [63]. Transitioning
to emissions-free vehicles for transportation would have a substantial positive impact on
the environment. Additionally, by enhancing telematics and AI technologies to optimize
routes and reduce the time spent carrying empty loads, we can further decrease the carbon
footprint of recycling logistics [64].

Another key area for improvement is the remanufacturing process. Ideally, recycling
centers should integrate remanufacturing capabilities on-site, allowing materials to be
processed and transformed into new products at the same location. AI detection systems
can facilitate this by efficiently sorting materials and directing them to the appropriate
remanufacturing facilities within the same site. Many recycling centers in the U.S. are
already moving toward this model, as it reduces economic costs and improves emission
control, making the entire recycling process more sustainable.

In summary, while recycling is already a beneficial practice, integrating AI technology
and targeted improvements in transportation and remanufacturing can further enhance its
environmental benefits. By focusing on these areas, we can continue to reduce the negative
impacts of waste on our planet and move closer to a truly sustainable future.

5.2. Economic Analysis and Decision Support

Recent advancements in AI have significantly transformed the economic analysis
of the battery recycling industry, particularly by enhancing data analytics and decision
support systems. These technologies revolutionize battery recycling processes by enabling
more efficient resource allocation, process optimization, and real-time decision-making.

AI-driven data analytics play a crucial role in assessing the lifecycle of batteries, from
production to disposal. With AI tools, stakeholders can analyze vast amounts of data
collected throughout a battery’s lifecycle, including manufacturing processes and recycling
methods. Many companies leverage AI-powered Application Programming Interfaces
(APIs) to streamline production and simplify operations [65]. Continuous data monitoring
through AI analytics provides valuable insights that can lead to more efficient resource
use and improved process outcomes. For instance, Guoan Wei [66] demonstrated that
the application of Building Information Modeling (BIM) technology, combined with AI-
driven Genetic Algorithms, resulted in an optimized scheme that maximized the use of raw
materials while delivering the highest economic benefits to the company. This approach
in construction management reduced the number of processors needed and minimized
working hours, showcasing the economic viability of AI-enhanced processes.

AI algorithms also identify product usage patterns and degradation trends, including
batteries. AI can optimize recycling processes and reduce consumer costs by monitoring
these trends. The ability to perform comprehensive cost-benefit analyses using AI allows
for real-time resource analysis, helping companies optimize resource allocation and max-
imize profitability. For example, BIM has been used in the automated specification of
steel reinforcement in construction, optimizing the efficiency of reinforced concrete (RC)
flat slabs [67]. Eleftheriadis’s research shows that this modeling has improved material
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efficiency and reduced costs, highlighting the financial benefits of AI in assessing new
recycling technologies and expanding existing facilities [67].

A significant advantage of AI-driven economic modeling is its ability to adapt to
rapidly changing markets and regulatory requirements. Unlike traditional economic
models, AI models can continuously analyze market trends and operational data, providing
real-time solutions for complex challenges. Roodsari [68], for example, has demonstrated
the use of system dynamics in financial modeling to simulate and optimize decision-
making under uncertainty, allowing companies to make informed decisions in volatile
environments. This adaptability enhances the efficiency and sustainability of battery
recycling, as AI can quickly respond to market shifts and regulatory changes.

Decision support systems powered by AI offer invaluable tools for recycling facility
managers to optimize operations. AI systems can develop automated solutions for planning
and scheduling key stages of large-scale industrial projects, such as shop fabrication and
on-site construction studies, which have shown that these systems can reduce cycle times
in automated processes by 4.8% to 12% [69]. Applying such AI-driven decision-making
support to battery recycling can further enhance process efficiency. These systems integrate
data from sensor networks, supply chain logistics, and regulatory databases to provide
real-time recommendations and solutions. AI algorithms can optimize various recycling
facility processes, including production planning, predictive maintenance, and quality
control, ensuring reduced costs, high precision, and increased efficiency [70]. Additionally,
AI can quickly analyze incoming materials, accurately identifying recyclable components,
thus improving automation, reducing labor costs, and minimizing waste.

In conclusion, integrating AI into the battery recycling industry revolutionizes eco-
nomic analysis and process optimization. By leveraging AI-driven data analytics and
decision support systems, companies can enhance resource efficiency, reduce costs, and
adapt to changing market and regulatory landscapes, ultimately leading to a more sustain-
able and economically viable recycling industry.

5.3. AI/ML Algorithms and Techniques in Battery Recycling

Rapid growth in battery use, especially in electric vehicles and renewable energy sys-
tems, has created an urgent need for efficient recycling processes that can recover valuable
materials such as lithium, cobalt, and nickel. AI and ML play a transformative role in
optimizing battery recycling by automating workflows, improving material recovery rates,
and minimizing waste. These technologies enable intelligent sorting systems, predictive
maintenance, process optimization, and innovative strategies for resource recovery. This
section explores the various AI/ML algorithms and techniques, their applications in battery
recycling, and their comparative capabilities.

The most conventional approach to machine learning, Supervised Learning, relies on
training models with labeled datasets to predict or classify events or outcomes. Algorithms
such as Random Forests, Neural Networks, and Gradient Boosting Machines have been
applied to battery recycling to predict material recovery rates depending on process pa-
rameters or to classify battery types to optimize recycling strategies [71,72]. While these
approaches provide very high accuracy, they also require well-qualified, labeled datasets to
be available, which may be difficult to obtain in this domain [73].

In battery recycling, Random Forest is a valuable ML tool for predicting material
recovery yields by analyzing parameters like temperature, pressure, and chemical reagents.
It aids in optimizing processes to recover critical materials like lithium, cobalt, and nickel,
supporting the circular economy by enhancing resource reuse and reducing reliance on
virgin materials [74]. Combining multiple decision trees, Random Forest offers robust and
reliable predictions across diverse datasets, helping to identify conditions that maximize
recovery efficiency while minimizing environmental impact. Despite interpretability chal-
lenges, tools like feature importance analysis make it possible to extract actionable insights,
fostering sustainable growth in the battery industry [75].
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Unsupervised learning methods, such as clustering algorithms like K-means, DB-
SCAN, and Principal Component Analysis, are useful in data exploration, especially when
unstructured data is not labeled. These methods can find patterns in battery waste streams,
classify unknown compositions, and detect anomalies in recycling process data. These
techniques are particularly good at data exploration but often require domain expertise to
interpret their results effectively [76,77].

Clustering algorithms like K-means are great for situations where data labels are not
available. These unsupervised methods can automatically group battery waste streams
based on their chemical or physical properties [78]. For example, batteries with different
chemistries—like lithium-ion, lead-acid, or nickel-cadmium—can be clustered together,
making the recycling process more efficient. The simplicity and scalability of K-means make
it especially useful for handling large datasets, allowing for quicker and more effective
organization of recycling tasks [79].

Reinforcement learning (RL) is another promising AI technique that excels in dynamic
and adaptive environments. RL algorithms, such as Deep Q-Networks and Policy Gradient
Methods, have been used to optimize disassembly sequences for maximum material recov-
ery and to adaptively control recycling processes to minimize energy consumption [80].
Although RL offers significant potential, it is computationally intensive and requires careful
parameter tuning [81].

6. Challenges and Ethical Considerations

6.1. Technical Challenges in AI-Driven Battery Recycling

The rapid rise in EVs, renewable energy systems, and portable electronic devices
has driven a corresponding surge in demand for battery technologies [82]. However,
this exponential growth in battery production also presents significant environmental
challenges, particularly in recycling. AI has emerged as a promising solution to enhance
battery recycling processes, but it faces complex technical hurdles that must be skillfully
addressed. This section explores the intricacies of AI-driven battery recycling, examining
the technological challenges it encounters and potential strategies for overcoming them.

Battery chemistries are highly intricate, involving nuanced chemical interactions and
degradation mechanisms that extend beyond superficial differences. For example, LIBs
feature complex electrode materials and electrolyte compositions, requiring advanced AI
algorithms to identify optimal recycling pathways while minimizing resource waste [83].
Similarly, nickel–cadmium and lead–acid batteries introduce unique challenges, such as
managing toxic materials and optimizing recovery efficiencies. AI’s adaptability is crucial
in navigating these complexities, necessitating continuous advancements in data analytics,
ML models, and predictive simulations to effectively address the diverse chemistries
encountered in battery recycling.

The effectiveness of AI models in battery recycling depends heavily on access to
high-quality data for training and inference. However, obtaining comprehensive datasets
encompassing various battery types, states of charge, degradation levels, and recycling
outcomes is a formidable challenge. Furthermore, the lack of data standardization across
different recycling facilities and geographical regions hampers the development of uni-
versally applicable AI-driven solutions, making it difficult to create models that can be
effectively deployed globally [84].

AI-driven battery recycling systems must operate in real-time to optimize efficiency
and minimize environmental impact. Achieving this requires seamlessly integrating AI
algorithms with sensor networks, robotics, and automation technologies [85]. Ensuring
synchronization and reducing latency between data acquisition, processing, and decision-
making presents a significant technical challenge, demanding sophisticated AI architectures
capable of rapid analysis and response.

A critical technical dilemma is balancing operational efficiency with safety and environ-
mental responsibility. While enhancing efficiency is essential for maximizing productivity
and cost-effectiveness, it must not come at the expense of safety standards or environmental
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sustainability. Therefore, AI-driven battery recycling efforts must prioritize the develop-
ment of algorithms and systems that streamline operations while upholding stringent safety
protocols and eco-friendly practices. This delicate balance underscores the complexity of
AI implementation in the recycling industry. It highlights the need for ongoing innovation
and refinement of AI-driven solutions to meet operational and sustainability goals [86].

Handling hazardous materials and chemicals during battery recycling further necessi-
tates the implementation of comprehensive safety protocols and environmental sustainabil-
ity measures. AI-driven systems play a pivotal role in this context by integrating predictive
analytics capabilities. These algorithms enable anticipating and identifying potential safety
hazards, allowing for proactive measures that optimize resource utilization and minimize
waste, thereby reducing the ecological footprint of battery recycling processes.

As the demand for battery recycling grows, AI-driven solutions must demonstrate
scalability and adaptability to accommodate increasing volumes of batteries with diverse
chemistries and conditions. Scalable AI architectures leveraging cloud computing, edge
computing, and distributed processing frameworks can enhance computational efficiency
and meet dynamic operational requirements [87]. Additionally, adaptive ML algorithms
capable of continuous learning and optimization are essential for addressing the evolving
challenges of battery recycling.

The success of AI-driven battery recycling initiatives depends on interdisciplinary
collaboration and the integration of knowledge across domains such as materials sci-
ence, chemistry, engineering, data analytics, and environmental science. Bridging the
gap between domain-specific expertise and AI proficiency requires cohesive teamwork,
effective communication channels, and shared repositories of domain knowledge and best
practices [88]. Facilitating collaboration among researchers, industry practitioners, policy-
makers, and environmental advocates is essential for overcoming technical challenges and
driving innovation in AI-driven battery recycling.

AI-driven battery recycling holds immense potential for addressing the global de-
mand for sustainable energy storage solutions. However, it is not without its technical
challenges. From navigating the complexities of battery chemistry to ensuring regulatory
compliance and ethical integrity, AI-driven recycling systems must overcome multifaceted
hurdles. The path toward efficient and eco-friendly AI-driven battery recycling can be
forged through concerted efforts in data quality enhancement, real-time monitoring integra-
tion, safety optimization, scalability, and interdisciplinary collaboration. Embracing these
challenges as opportunities for innovation and sustainability can propel the advancement
of AI technologies in battery recycling, contributing significantly to a greener and more
sustainable future.

6.2. Ethical Considerations in AI Implementation

Implementing AI technology has revolutionized many industries, offering enhanced
efficiency and innovation. However, while AI can significantly improve recycling processes,
it presents various ethical challenges that companies must navigate carefully. Data privacy
and security stand out as critical concerns in our increasingly interconnected world.

AI systems rely heavily on vast amounts of data to learn and execute tasks effectively.
This dependence on data raises significant privacy and security risks, as AI often gathers in-
formation by tracking and monitoring personal data through IoT devices [89]. For instance,
IoT-enabled products, such as smart shoes, can track users’ locations for remanufacturing
purposes, exposing sensitive geospatial data. In some Circular Economy models, data
sharing among a company’s stakeholders is necessary, but this can lead to security breaches
and compromise personal information.

Another ethical concern is the potential for AI to perpetuate or even exacerbate bias.
AI algorithms learn from existing data, which means that if the input data is biased, the AI
system may replicate and reinforce those biases. A notable example is Amazon’s AI system
used for candidate selection in hiring, which unintentionally discriminated against women
due to biases present in the training data [90,91]. This situation highlights the broader issue
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of algorithmic bias, which can manifest in various ways, such as predictive policing or
university ranking systems, where AI may unintentionally favor certain responses based
on the data it has been trained on.

Moreover, the transparency of AI in decision-making is a growing concern. There have
been instances where AI systems have been accused of manipulating consumer behavior
or influencing voter intentions, raising questions about the ethical use of such technology.
While AI offers tremendous potential, it is still in the developmental stage, and there are
numerous possibilities for ethical violations concerning personal data and privacy [92,93].

As the recycling industry expands alongside population growth, making the process
more efficient is crucial. AI systems could be transformative in this regard, but their
implementation must be performed responsibly. AI’s ability to process vast amounts
of data and make decisions is both its strength and its risk. The accuracy of AI-driven
models depends heavily on the quality of the data on which they are trained. Poor-quality
data—whether due to errors, biases, or misinformation—can lead to flawed predictions
and biased outcomes [94]. Therefore, ensuring data reliability is a critical responsibility in
the development of AI technology.

Good experimental practices like well-designed experiments and procedures are
essential for maintaining dataset reliability. In the context of recycling, AI systems require
accurate information about the types and conditions of waste materials. Unsupervised
ML, in particular, can pose challenges in evaluating model quality and interpreting results,
making human oversight and assessment vital to ensure the quality of the data and the
learning process.

Ultimately, while AI has the potential to revolutionize the recycling industry, compa-
nies must approach its application with caution and responsibility. Ensuring the ethical
use of AI, maintaining data accuracy, and addressing the challenges of algorithmic bias are
essential steps in harnessing AI’s full potential while safeguarding privacy and security.

7. Research Gaps, Opportunities, and Future Directions

The advancements in AI within the battery recycling industry have been remarkable,
yet there is still considerable room for further improvement. As environmental degradation
and climate change concerns intensify, AI presents immense potential to drive sustainable
practices. However, significant gaps remain in our understanding of how AI can be
effectively leveraged to address environmental challenges. Future research must explore
the application of AI in optimizing resource management, enhancing energy efficiency, and
mitigating environmental risks. For instance, the electric double-layer effect, discussed in a
paper by Sikiru [95], offers a promising avenue for improving LIB storage and recycling
methods. This effect involves ions rearranging themselves around charged surfaces in an
electrolyte to form an electric double layer, which differs from the bulk composition of the
electrolyte and varies with electrode voltage. Leveraging this effect, techniques are being
developed to use solvents that break down battery components while preserving the electric
double layer, allowing for potential reuse. In another study, Bhar et al. [96] examined
improved recycling methods that could enhance the quality of recycled batteries. His
research focuses on the pretreatment process of end-of-life batteries, including diagnosis,
sorting, storage, various cell discharge methods, black mass recovery, and mechanical
dismantling. The article emphasized that disassembling battery modules at the cellular
level, combined with AI-based automated segregation, could be highly beneficial. However,
the authors noted that the physical dismantling process is still in its infancy and largely
confined to laboratory-scale experiments. Further research is needed to scale these processes
for industrial applications, which could catalyze unprecedented growth in the portable
electronics and automotive sectors. Given the rapid pace of technological advancement, the
future of AI in battery recycling is difficult to predict. In one study, Lipu et al. [97] explored
how AI can be integrated into advanced battery management systems (BMS) for EVs. The
article discussed enhancing BMS algorithms to optimize battery performance, ensuring
efficient energy use and prolonged battery life. The authors concluded that exploring
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these areas could revolutionize EV technology, significantly improving reliability, safety,
and longevity.

Transitioning toward a circular economy—where resources are reused, recycled, and
regenerated—is essential for sustainable development. AI can be crucial in optimizing
resource flows, designing eco-friendly products, and implementing closed-loop systems.
However, interdisciplinary research is needed to integrate AI with circular economy princi-
ples, driving systemic changes across industries.

The convergence of AI with high-throughput experimentation techniques is set to
revolutionize materials science. Future research will likely see AI and materials discovery
coming together, accelerating the development of next-generation battery materials with
superior performance and sustainability. ML algorithms will be instrumental in predicting
material properties and guiding researchers toward novel compositions and structures.

Automating recycling processes through robotics and AI holds great promise for
improving the efficiency and accuracy of material recovery from end-of-life batteries. Future
trends will likely involve the development of autonomous recycling systems equipped with
advanced sensors, robotics, and AI algorithms for sorting, disassembling, and extracting
valuable materials. These systems will streamline recycling operations and minimize
human intervention, enhancing economic viability and environmental sustainability.

Blockchain technology also offers a decentralized and transparent framework for
tracking batteries’ lifecycles, from manufacturing to recycling. Future research will explore
the integration of blockchain with AI and IoT devices to establish robust traceability
systems for batteries. By recording key information such as origin, usage history, and
recycling pathways, blockchain-enabled traceability can enhance accountability, incentivize
responsible disposal practices, and facilitate the circular economy.

Leveraging AI to orchestrate cognitive recycling networks represents a transformative
trend in battery recycling research. These networks, powered by ML algorithms, will
dynamically optimize battery waste collection, transportation, and processing based on
real-time data and predictive analytics. By allocating resources and coordinating stakehold-
ers intelligently, cognitive recycling networks will enhance battery recycling operations’
efficiency, scalability, and sustainability.

8. The Benefits and Future Potential of AI-Driven Recycling

Extensive research has confirmed that AI-driven recycling offers significant societal,
environmental, and occupational benefits. As we continue to develop and refine AI, its
applications in the recycling industry are becoming increasingly evident. For example, the
total generation of MSW in the United States in 2018 was 292.4 million tons, or 4.9 pounds
per person per day [98]. Approximately 69 million tons of this waste were recycled, and
25 million tons were composted—a study conducted before AI made significant inroads
into the recycling sector [98]. With the advent of AI, these numbers have the potential
to improve significantly as AI enhances the efficiency and accuracy of waste sorting and
processing. One particularly impactful area where AI makes a difference is battery sorting.
Batteries contain toxic elements, including cadmium, lead, mercury, nickel, and lithium,
which can pose serious environmental hazards if not properly disposed of. As batteries
corrode, they leach toxic chemicals into the soil and water systems, with lithium potentially
igniting and emitting hazardous chemicals that can burn underground for years [99]. AI
detection systems can be crucial in identifying and sorting batteries before they contaminate
the environment, providing a significant environmental safeguard. Another key benefit
of AI in recycling is its contribution to environmental life cycles. By accurately detecting
and sorting recyclable materials, AI helps reduce the need for additional manufacturing
by enabling the reuse of materials. For instance, the Life Cycle Assessment of North
American Aluminum Cans found that greenhouse gas emissions from aluminum beverage
can production have dropped by more than 40% since 1991 and 7% since 2012, largely due
to increased recycling efforts [100]. With AI detection, recycling centers can further boost
the number of aluminum cans processed, continuing this positive trend.
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The accuracy of AI in identifying and sorting waste has grown significantly since
its initial implementation, with current systems achieving accuracy rates ranging from
72.8% to 99.95% [47]. This growing accuracy allows AI to be implemented across various
detection areas. In battery recycling, for instance, AI can use image recognition techniques
to identify, localize, and determine the size of waste, with studies showing that container
filling levels can be determined with 99.8% accuracy using advanced classifiers [47]. As AI
continues to evolve, it will improve its ability to detect batteries based on updated shapes,
colors, and other characteristics, further enhancing its positive impact on public health, the
environment, and overall welfare.

Standardizing AI processes in recycling will open new avenues for even more effi-
cient detection methods. As with many machines, proactive maintenance and preventive
problem detection are essential for optimal performance. Improved data collection will
enable researchers to program AI systems to sort through a broader range of examples,
increasing their accuracy and efficiency. Government recycling centers, in particular, stand
to benefit from these advancements as they strive to reduce pollution and promote sustain-
ability [101].

Overall, integrating AI into recycling processes offers tremendous benefits across
multiple sectors. As AI technology evolves and more data become available, its potential
to drive further improvements in recycling and environmental protection will only grow.

Table 2 summarizes the challenges and solutions in AI for battery recycling.

Table 2. Challenges and solutions in AI for battery recycling.

Challenge Description Potential AI Solutions Future Directions

Data quality Inconsistent data from varied
battery sources

Data preprocessing, synthetic
data generation Standardized data collection

Scalability Difficulty in adapting
solutions to large scales

Modular AI systems, scalable
architectures

Cloud-based AI for
distributed applications

Regulatory Compliance Variability in global
regulations

AI-driven compliance
monitoring

Collaboration with regulatory
bodies

Integration with Existing
Systems

Complexity in merging AI
with traditional methods

Hybrid AI systems for
gradual integration

Development of
AI-compatible recycling

systems

Cost High upfront costs for AI
integration

Cost reduction through
automation

Government incentives and
subsidies

9. Conclusions

Integrating AI into battery recycling processes marks a significant leap forward in
addressing environmental challenges and advancing sustainable practices. Recent advance-
ments in AI have demonstrated immense potential in optimizing battery sorting, enhancing
resource recovery, and minimizing the environmental impact of battery waste. By improv-
ing the accuracy and efficiency of waste detection, AI has proven to be a critical tool in
mitigating the risks associated with improper battery disposal, including the contamination
of soil and water by toxic elements. AI-driven systems have increased the precision of
sorting recyclable materials and contributed to reducing greenhouse gas emissions by
enabling the reuse of materials like aluminum. The potential of AI to further revolutionize
battery management, particularly in electric vehicles, underscores its growing importance
in the transition toward a circular economy. AI’s ability to enhance battery management
systems, optimize energy utilization, and extend battery life could significantly boost future
technologies’ reliability, safety, and sustainability. Moreover, as AI technology advances,
its role in automating recycling processes through robotics and predictive analytics will
become increasingly pivotal. The development of autonomous recycling systems equipped
with AI algorithms for sorting, disassembly, and material recovery promises to streamline
operations, reduce human intervention, and improve the economic viability of recycling
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efforts. Integrating AI with emerging technologies such as blockchain and the IoT can
create robust traceability systems, ensuring greater accountability and promoting respon-
sible disposal practices. By facilitating cognitive recycling networks, AI can dynamically
optimize the entire recycling process, from collection to material recovery, enhancing the
scalability and sustainability of battery recycling operations.

In summary, the recent advancements in AI in battery recycling represent a transfor-
mative shift in managing and mitigating the environmental impacts of battery waste. As AI
continues to evolve, its potential to drive recycling and resource management innovations
will be crucial in achieving a sustainable future. The ongoing research and development in
this field will be essential to unlocking new opportunities and addressing the challenges
that lie ahead.
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Abstract: This study examines the impact of incorporating obstacles in the electrode struc-
ture of an organic redox flow battery with a flow-through configuration. Two configurations
were compared: a control case without obstacles (Case 1) and a modified design with obsta-
cles to enhance mass transport and uniformity (Case 2). While Case 1 exhibited marginally
higher discharge voltages (average difference of 0.18%) due to reduced hydraulic resistance
and lower Ohmic losses, Case 2 demonstrated significant improvements in concentration
uniformity, particularly at low state-of-charge (SOC) levels. The obstacle design mitigated
local depletion of active species, thereby enhancing limiting current density and improving
minimum concentration values across the studied SOC range. However, the introduction
of obstacles increased flow resistance and pressure drops, indicating a trade-off between
electrochemical performance and pumping energy requirements. Notably, Case 2 per-
formed better at lower flow rates, showcasing its potential to optimize efficiency under
varying operating conditions. At higher flow rates, the advantages of Case 2 diminished
but remained evident, with better concentration uniformity, higher minimum concentration
values, and a 1% average increase in limiting current density. Future research should focus
on optimizing obstacle geometry and positioning to further enhance performance.

Keywords: organic redox flow battery; numerical model; concentration uniformity; limiting
current density; pressure drop

1. Introduction

The energy scene is transforming into one moving toward a sustainable future. Re-
newable resources such as solar and wind are considered cleaner substitutes for fossil
fuel, yet their intermittency and unpredictability introduce significant challenges toward
grid stability [1,2]. While energy systems are evolving and incorporating increasing shares
of variable renewable energy resources, energy storage solutions will be important to
maintain the balance between supply and demand and ensure reliability to accomplish
a successful energy transition [3,4]. Energy storage will play one of the leading roles in
this transition, allowing energy to be captured and provided later at needed times. Among
the different storage systems developed, redox flow batteries (RFBs) have emerged as one
of the most promising technologies for wide application because of their modular design,
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scalability, and flexibility [5,6]. Unlike traditional batteries, RFBs allow independent scaling
of storage capacity and power output due to the separation of the energy storage and power
conversion components [7,8]. This feature makes them extremely suitable for grid-scale
applications and integration with renewable energy sources.

Among the variants of RFBs, vanadium-based RFBs (VRFBs) are the most commer-
cially developed technology [9]. These VRFBs have demonstrated promising performance
in terms of long cycle life, chemical stability, and grid-scale deployments [10,11]. However,
VRFBs also have their own challenges, such as the energy density being limited by the
solubility constraints of vanadium species, and their reliance on vanadium, a critical metal
with price and supply uncertainties [12,13]. Limitations in the existing systems has led to
researchers exploring other chemistries such as organic redox flow batteries (ORFBs). This
includes using organic active species derived from abundant elements in the Earth’s crust to
reduce some drawbacks in VRFBs. These molecules provide a sustainable solution for the
substitution of inorganic compounds with environmentally more benign materials [14,15].
These systems provide multiple advantages, like higher solubility, tunability, and the po-
tential for cost reduction, and hence, may lead to better sustainability and efficiency in
energy storage [16].

In the area of organic redox chemistry, significant progress has been achieved in alka-
line systems. Lin et al. [17] presented the synergy between 2,6-dihydroxyanthraquinone
(2,6 DHAQ) as a negative electrolyte and ferricyanide ([Fe(CN6)]4−/[Fe(CN6)]3−) as a
positive counterpart. This configuration enabled the achievement of power densities of
0.45 W cm−2 at room temperature and 0.7 W cm−2 at 45 °C. Other researchers have
confirmed the effectiveness of anthraquinones and ferricyanides as excellent alterna-
tives [18–20]. Other chemistries have furthered the state of the art in alkaline RFBs.
Zou et al. [21] reported an S/Fe RFB with a remarkable volumetric capacity of 40.74 Ah L−1

that can achieve 99% coulombic efficiency and maintain an extremely low capacity fade
of 0.0166% per cycle. Recent work has shown that Fe/Mn-based alkaline batteries have
promise for sustainable energy storage. Shen et al. [22] reported a theoretical cell voltage
of 1.43 V with close to ideal coulombic efficiency over 400 cycles; however, there was a
gradual drop in voltage efficiency from 75.3% to 61.4%.

While experimental approaches provide critical insights, their high resource demands
have shifted attention toward computational methods. Within these, computational fluid
dynamics (CFD) has proved capable of modeling electrochemical devices successfully [23].
In this framework, numerous studies have been conducted to enhance mass transport
using numerical simulations [24,25]. Pan et al. [26] applied a gradient decrease from
the inlet to the outlet in channel width. The uniformity of active species was improved,
which translated to higher power density and reduced polarization losses. Martinez-
Lopez et al. [27] investigated the impact of electrode compression in convection using a
2D numerical model. Their findings revealed that applying 50% compression enhanced
velocity profiles by 12.7%. Xu et al. [28] utilized a different distributor within a detailed 3D
model. They evaluated the batteries both with and without a flow field and with serpentine
and parallel patterns. They studied the performance metrics, overpotentials, pressure
drops, and uniformity along the distributor, including a sensitivity analysis on the flow
rate. Xu et al. also gave an overall efficiency metric for each geometry and then concluded
that the serpentine flow pattern had a better performance and efficiency. Chu et al. [29]
introduced a 3D numerical model utilizing 2,6-dihydroanthraquinone and ferrocyanide
electrolytes, focusing on the effects of various electrode geometries, such as rectangular,
trapezoidal, and sector shapes, on performance metrics like voltage, overpotentials, and
efficiency. The sector-shaped electrode configuration showed the best results in mass
transfer and power-based efficiency. Aparicio-Mauricio et al. [30] explored the influence
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of manifold design on electrolyte distribution, showing that uneven flow from dividing
manifolds led to increased shear stress, higher pressure drops, and performance losses,
including elevated voltage and current density deviations. Akuzum et al. [31] investigated
the effects of channel obstructions and ramps on mass transport. They found that a
ramped channel design enhances electrochemical performance by increasing electrolyte
penetration at the electrode–membrane interface. However, adding obstructions worsened
performance due to electrolyte bypassing. Notably, both tapered and obstructed channels
result in lower pressure drops compared to an unmodified flow field. Messaggi et al. [32]
studied the effects of obstruction placement on the flow channels. Results showed that
electrolyte penetration was enhanced when the obstructions were placed on the channel
side, whereas those placed at the electrode interface direct electrolyte better toward the
channel outlet. Biomimetic flow fields inspired by leaf veins were proposed for VRFBs to
improve electrolyte distribution by Liu et al. [33]. Among the designs, circular obstacles
in the main channel achieved the best performance, with enhanced voltage efficiency and
concentration uniformity, offering a promising approach for practical applications. The use
of static mixers along variable compression has also been studied to improve performance
on flow-through configurations [34,35]. The reactant distribution is shown to be enhanced,
translating to cell voltage improvement, reduction of concentration overpotential and
extended capacity.

Previous research has predominantly concentrated on flow-by configuration VRFBs,
and the limited research on organic redox flow batteries has focused on clarifying the influ-
ence of electrode construction and manifold configuration. This works aims to expand the
knowledge on the effects of introducing obstacles on flow-through configuration batteries.
To address this gap, a two-dimensional stationary isothermal model is developed to analyze
obstacle placement compared to a baseline design under different working conditions. The
study evaluates the impact on discharge voltage, limiting current density, concentration
uniformity, and pressure drop across different states of charge (SOC) and flow rates.

2. Model Description

A schematic representation of the ORFB is shown in Figure 1. The electrolytes are
kept in two separate reservoirs. The ([Fe(CN6)]4−/[Fe(CN6)]3−) redox pair is stored in
the posolyte tank, while 2,6 dihydroxyanthraquinone (2,6 DHAQ)/2,6 reduced DHAQ is
stored in the negolyte tank. The electrolyte is circulated to the porous electrodes, which
act as active sites for the electrochemical reactions, via peristaltic pumps during battery
operation. An ion-selective membrane is placed between the electrodes, which allows
only selected ions to flow through while preventing cross-contamination. The following
electrochemical processes are taking place on the cathode and anode surfaces:

Positive: Fe(CN) 3–
6 + e– discharge

charge
Fe(CN) 4–

6 (1)

Negative: 2.6 − DHAQ + 2 e– charge

discharge
2.6 − reDHAQ (2)

A two-dimensional cell model has been developed for this work, which includes
three domains: the cathode, the ion exchange membrane, and the anode. The key as-
sumptions to reduce the complexity of the multiphysics behavior of the battery taken into
consideration are:

• The model is stationary.
• Every property of the electrode and membrane is isotropic.
• It is assumed that the entire cell is isothermal.
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• The electrolyte is considered incompressible.
• There is no modeling of parasitic reactions.
• Infinite dilute approximation is considered.
• The membrane only permits K+ ions to pass through. All other ion crossover is disregarded.

Figure 1. Schematic representation of the numerical model.

The concept of obstacle placement compared to a base case is shown in Figure 2. The
obstacles are rectangular prisms.

Figure 2. Schematic representation of the (a) typical no-obstacle flow-through configuration and
(b) the proposed obstacle configuration.

2.1. Governing Equations
2.1.1. Mass Transport

The conservation of mass for each species i is expressed by Equation (3):

∂

∂t
(εci) +∇ · Ni = −Si (3)

where c denotes the concentration of species i, ε denotes the electrode porosity, and S stands
for the source term of each substance i, provided in Table 1.

Table 1. Source terms of species.

Species Positive Electrode Negative Electrode

[Fe(CN6)]4− ir/F -
[Fe(CN6)]3− −ir/F -

DHAQ2− - 2ir/F
DHAQ4− - −2ir/F
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The Nernst–Planck equation expresses the flux of charged species by diffusion, migra-
tion, and convection, represented as Ni:

Ni = −De f f
i ∇ci − ziuiciF∇ϕl + uci (4)

where De f f is the effective diffusivity, z stands for the charge of species, u indicates ionic
mobility, F represents the Faraday constant, and ϕl is the liquid phase potential. u indicates
the electrolyte velocity. Table 2 provides a summary of electrolyte characteristics.

Table 2. Properties of electrolyte.

Quantity Symbol Value References

Diffusivity of [Fe(CN6)]4− D[Fe(CN)6]4− 8.2 × 10−10 m2 s−1 [36]
Diffusivity of [Fe(CN6)]3− D[Fe(CN)6]3− 8.6 × 10−10 m2 s−1 [36]
Diffusivity of DHAQ2− DDHAQ2− 4.8 × 10−10 m2 s−1 [17]
Diffusivity of DHAQ4− DDHAQ4− 4.8 × 10−10 m2 s−1 [17]
Diffusivity of K+ DK+ 1.96 × 10−9 m2 s−1 [37]
Diffusivity of OH− DOH− 5.2 × 10−9 m2 s−1 [37]

De f f
i is obtained by means of the Bruggemann correlation:

De f f
i = ε3/2Di (5)

The Nernst–Einstein equation is used to calculate ionic mobility:

ui =
De f f

i
RT

(6)

where R refers to the universal gas constant and T is the temperature.
Darcy’s Law is used for the convection term in porous electrodes:

u = −K
μ
∇p (7)

where K stands for the porous electrode permeability, μ is the dynamic viscosity of elec-
trolyte, and p refers to pressure. The following is the Kozeny–Carman equation for
permeability:

K =
d2

f ε3

16kck(1 − ε)2 (8)

where d f stands for the electrode fiber diameter and kck is the Kozeny–Carman constant,
listed with additional electrode parameters in Table 3.

Table 3. Electrode parameters.

Quantity Symbol Value References

Non-compressed electrode porosity ε 0.895 [38]
Non-compressed electrode specific surface area a 3.5 × 104 m2 m−3 Fitted
Non-compressed electrode conductivity σs 66.7 S m−1 [39]
Kozeny–Carman constant Kck 4.28 [40]

Since only K+ ions are permitted to pass through the membrane, the ion flux is
determined by:

NK+ = −σmem

F
Δϕmem (9)

where the potential and membrane conductivity are denoted by ϕmem and σmem, respectively.
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2.1.2. Reaction Kinetics

The electrochemical reactions at the electrode surface are modeled using the Butler–
Volmer model:

ir,pos = i0,posa
[

exp
(
(1 − αpos)Fη+

RT

)
− exp

(
(−αpos)Fη+

RT

)]
(10)

ir,neg = i0,nega
[

exp
(
(1 − αneg)Fη−

RT

)
− exp

(
(−αneg)Fη−

RT

)]
(11)

The positive and negative reaction rates are denoted by the terms ir,pos and ir,neg,
respectively. Specific surface area of the porous electrode is denoted by a, η+ and η− are the
positive and negative overpotential, charge transfer coefficients for positive and negative
reactions are denoted by αpos and αneg, and exchange current density i0,pos and i0,neg are
determined by:

i0,pos = Fkpos(c[Fe(CN)6]3−)
1−αpos(c[Fe(CN)6]4−)

αpos (12)

i0,neg = Fkneg(cDHAQ2−)1−αneg(cDHAQ4−)αneg (13)

where the reaction rate constants for the positive and negative sides are denoted by kpos

and kneg, respectively.
The following formulas can be used to determine the overpotential of the positive and

negative electrodes:
η+ = ϕs − ϕl − Eeq,+ (14)

η− = ϕs − ϕl − Eeq,− (15)

where ϕs represents the solid phase potential, and Eeq,+ and Eeq,− denote open circuit
potentials of positive and negative reactions, respectively. These potentials can be obtained
using the Nernst equation:

Eeq,+ = E
′
eq,+ +

RT
F

ln

(
c[Fe(CN)6]3−

c[Fe(CN)6]4−

)
(16)

Eeq,− = E
′
eq,− +

RT
2F

ln

(
cDHAQ2−

cDHAQ4−

)
(17)

where E
′
eq,+ and E

′
eq,− indicate the standard equilibrium potentials for the positive and

negative side reactions, outlined in Table 4 alongside the other kinetic parameters.

Table 4. Kinetic parameters

Quantity Symbol Value References

Standard equilibrium potential for positive
reaction

E
′
eq,+ 0.33 V [29]

Standard equilibrium potential for negative
reaction

E
′
eq,− −0.71 V [29]

Cathodic transfer coefficient αpos 0.5 [17]
Anodic transfer coefficient αneg 0.5 [17]
Rate constant for positive reaction kpos 6 × 10−7 m s−1 [29]
Rate constant for negative reaction kneg 7 × 10−7 m s−1 [29]

2.1.3. Charge Conservation

The principle of electroneutrality requires that the total charge in the electrolyte equals
zero, ensuring electrical neutrality:

∑
i

zici = 0 (18)
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To satisfy charge conservation, current flow in the solid and liquid phases is coupled
with electrochemical reactions through the following equation:

∇ · il = −∇ · is = ir (19)

which implies that the current leaving the electrolyte, il, matches the current entering the
electrode, is, and collectively equals the electrochemical reaction rate, ir. The solid and
liquid phase currents are expressed as follows:

is = −σ
e f f
s ∇ϕs (20)

il = F ∑
i

ziNi (21)

where σ
e f f
s represents the effective conductivity of the electrode, determined using the bulk

conductivity of the electrode material, σs, and calculated as follows:

σ
e f f
s = (1 − ε)3/2σs (22)

2.1.4. Boundary Conditions

Boundary conditions are defined using the x and y coordinates shown in Figure 1. At
the external boundary of the anode, located at x = x0, the solid potential is set to zero by
grounding this boundary:

ϕs = 0 at x = x0 (23)

At the cell’s lower boundary, y = 0, the species inlet flux is defined based on the flow
rate Q, electrode width we, and electrode thickness te:

n · u =
Q

εwete
at

⎧⎨
⎩x0 < x < x1 and x2 < x < x3

y = 0
(24)

The species concentration at the electrode inlet remains constant:

ci = cin
i at

⎧⎨
⎩x0 < x < x1 and x2 < x < x3

y = 0
(25)

At all other boundaries, the mass flux is zero, with the exception of K+ at the
membrane–electrode interface:

−n · Ni = 0 at

⎧⎪⎪⎨
⎪⎪⎩

y = 0 < y < y = h

f or

x = (x0, x1, x2, x3)

(26)

Here, h represents the height of the cell. At this location, a pressure outlet is defined:

p = pout at

⎧⎨
⎩x0 < x < x1 and x2 < x < x3

y = h
(27)

and the diffusive flux of all species is neglected:

−De f f
i ∇ci · n = 0 at

⎧⎨
⎩x0 < x < x1 and x2 < x < x3

y = h
(28)

At the membrane–electrode interface, charge continuity is maintained by defining the
continuity of the electrolyte current density to the current density in the membrane:
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n · il = n · il,mem at

⎧⎪⎪⎨
⎪⎪⎩

y = 0 < y < y = h

f or

x = (x1, x2)

(29)

The top and bottom edges of both the membrane and electrodes are electrically insulated:

−n · il = 0
{

x0 < x < x3

−n · is = 0 y = 0 and y = h
(30)

A constant current density, controlled by the user, is applied to the external boundary
of the positive electrode:

n · is = iavg at x = x3 (31)

All geometric and operational parameters are provided in Table 5.

Table 5. Geometrical and operation parameters.

Quantity Symbol Value References

Electrode length h 0.04 m [38]
Non-compressed electrode thickness te 0.006 m [38]
Electrode width we 0.04 m [38]
Membrane thickness tm 0.000183 m [38]
Flow rate Q 60 mL min−1 -
Temperature T 298 K -
Outlet pressure pout 0 Pa -
State of Charge SOC 50% -

2.2. Battery Performance Parameters

The concentration of each species is determined based on the user-defined parameter
SOC, with the total concentrations on the positive and negative sides denoted as c1 and c0,
respectively:

creDHAQ = c0 · SOC (32)

cDHAQ = c0 · (1 − SOC) (33)

cFe(CN)4−
6

= c1 · (1 − SOC) (34)

cFe(CN)3−
6

= c1 · SOC (35)

A crucial factor in assessing species distribution is the uniformity factor, which mea-
sures how evenly a species is spread throughout the system. It quantifies the concentration
variation of species i and is calculated as follows:

Ui = 1 − 1
ci,avg

√
1
V

∫∫∫ (
ci − ci,avg

)2 dV (36)

where ci,avg denotes the average concentration of species i, and V represents the volume of
the electrode.

2.3. Numerical Model

The simulation model was created using COMSOL Multiphysics 5.5. For the positive
and negative electrodes, the Tertiary Current Distribution module was utilized, while the
Secondary Current Distribution module was applied to the membrane. The fluid dynamics
equations within the porous electrodes were addressed using the Brinkman equations,
solved via a finite volume method. The PARDISO solver was selected, with a convergence
criterion of 1 × 10−6 relative error to ensure high precision in the results. To optimize
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computational efficiency while maintaining accuracy, a mesh independence study was
carried out, demonstrating that grid refinements beyond 3100 elements did not significantly
alter the outcomes, as shown in Figure 3.

Figure 3. Grid dependency study.

3. Results

3.1. Experimental Validation

To validate the numerical model, the results were compared with experimen-
tal data from Chu et al. [29], using a rectangular electrode with dimensions of
20 mm × 20 mm × 3.5 mm. The flow rate of the circulation pump was set to 60 ml min−1,
with a current density of 40 mA cm−2, and a Nafion 212 cation exchange membrane was
used as the ion-exchange medium. In these tests, the concentration of the positive active
material was 200 mol m−3, while the concentration of the negative active material was
100 mol m−3. Figure 4 presents the cell potential during charge and discharge modes for
both experimental and numerical models. The maximum error, which occurs at the end-
points of the charge-discharge curves, remained below 3.6%, with an average error of 1.45%,
confirming the accuracy and reliability of the numerical model for subsequent analysis.

Figure 4. Results of experimental validation [29].

67



Batteries 2025, 11, 29

3.2. Case Studies

Two configurations were investigated to assess the influence of obstacle placement.
Case 1 serves as the baseline, with no obstacles incorporated, providing a reference for
evaluating the effects of the modified configuration. In Case 2, obstacles are introduced
within the electrode structure. Two obstacles are introduced in each electrode, both ob-
structing 50% of the electrode thickness. One is located at the electrode outer boundary, and
the second is placed at the electrode membrane interface. All obstacles have a dimension
of 1 mm in electrolyte flow direction. The obstacle at the outer boundary is located at
one-third of the electrode length, and the other one at two-thirds of the electrode length.

For both configurations, the concentration of active material in the positive and
negative compartments is set to 400 and 200 mol m−3, respectively. Additionally, the
concentrations of K+ and OH− ions are maintained at 1000 mol m−3 on both sides.

3.3. Effects of SOC

Looking at Figure 5, discharge curves for Case 1 and 2 can be analyzed. The discharge
curves reveal that Case 1 consistently exhibits a slightly higher voltage, 0.18% on average,
compared to Case 2 across the entire range of state of charge. This behavior indicates
that the baseline configuration benefits from a more direct flow path for the electrolyte,
minimizing the hydraulic resistance and associated pressure drop. In contrast, the inclusion
of obstacles in Case 2 leads to additional flow resistance and localized pressure gradients,
which may impede uniform electrolyte penetration. However, when looking at the lower
end of the SOC range, the difference between Case 1 and 2 decreases to 0.07%, see the zoom
in Figure 5. While the obstacle configuration aims to enhance mass transport and mitigate
concentration gradients by promoting better mixing, these potential advantages appear
offset by the increased Ohmic polarization effects.

Figure 5. Discharge curves obtained for a flow rate of 60 mL min−1 and 50 mA cm−2.

Despite the slightly lower discharge voltage observed in Case 2, this configuration
demonstrates significant improvements in terms of concentration uniformity and minimum
species concentration, as depicted in Figure 6a,b. Across the entire SOC range, Case 2
demonstrates a higher concentration uniformity factor compared to the baseline Case 1,
which indicates enhanced distribution of active species within the electrode, see Figure 6a.
For a SOC value of 0.2, Case 1 achieves a value of 88.7%, while for Case 2, this rises to
90.1%. The obstacles actually help spread electrolyte more evenly through the electrode,
which prevents troublesome zones with low concentration. Though the advantage in
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concentration uniformity narrows as SOC increases, the design in Case 2 still provides better
distribution than in Case 1, reinforcing stable electrochemical reactions across varying SOC
conditions. One potential explanation for this trend is that at lower SOCs, the availability
of reactants throughout the electrolyte is significantly limited, leading to pronounced
concentration gradients across the cell. Under these conditions, reactant depletion near
the electrode surface becomes a critical issue, particularly in regions where the flow is less
effective at replenishing the consumed species. This is the operating point where obstacles
can force portions of the electrolyte flow into regions that might otherwise receive minimal
reactant supply, promoting a more uniform utilization of the electrode area. For higher
SOCs, this becomes less critical and obstacles seem to be less effective. Furthermore, the
higher minimum concentration observed in Figure 6b highlights the improved utilization
of active species in Case 2. This suggests that the presence of obstacles mitigates stagnant
regions and optimizes mass transport.

Figure 6. The (a) concentration uniformity factor and (b) minimum concentration of [Fe(CN6)]3− in
the positive electrode for a flow rate of 60 mL min−1 and 50 mA cm−2.

Better electrolyte distribution translates into higher limiting current density, see
Figure 7. This improvement can be attributed to effectively reducing concentration gradi-
ents and mitigating localized depletion of active species. The more uniform concentration
profile in Case 2, as illustrated in Figure 6a, corroborates this observation, as a well-
distributed reactant supply ensures that the electrode regions farther from the inlet remain
reactive even at higher current densities, even at near discharged state.

Figure 7. Limiting current density for a flow rate of 60 mL min−1 and 50 mA cm−2.
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3.4. Effects of Flow Rate

A key consideration in evaluating the effectiveness of electrode design modifica-
tions is the associated pressure drop, see Figure 8, as it directly impacts the pumping
energy required for system operation. In the case of obstacle placement (Case 2), a higher
pressure drop is observed compared to Case 1, by an average of 14%. The increased
hydraulic resistance in Case 2 can be attributed to the obstacles interrupting the elec-
trolyte flow path, creating regions of recirculation, while these flow dynamics improve
electrolyte penetration and mixing, as seen in the higher concentration uniformity and
elevated limiting current density, they simultaneously impose a penalty on pumping ef-
ficiency. This trade-off highlights a challenge on optimizing the electrode structure to
enhance electrochemical performance while minimizing the energy costs associated with
fluid transport.

Figure 8. Pressure drop values for a State of Charge of 50% and 50 mA cm−2 in discharge mode.

Regardless of the increase in pressure drop for Case 2, improvements in other metrics
are obtained. Figure 9a shows the relation between concentration uniformity factor and flow
rate for both configurations. Both curves exhibit a rising trend as the flow rate increases,
reflecting enhanced reactant distribution across the electrode. However, there are notable
differences in their behavior. Case 2 demonstrates a 1.8% improvement in concentration
uniformity for the lowest flow rate of 10 mL min−1, and it maintains higher values across
the studied range. However, this difference shrinks as the flow rate increases, down to 1.0%
for 60 mL min−1. Looking at Figure 9b, benefits in minimum concentration are observed.
Case 2 obtains higher minimum concentration values across the studied range, averaging
a 15% increase, which translates to reduced local reactant depletion. Thanks to reducing
local reactant depletion, limiting current density is raised, see Figure 10, by an average of
1% over the whole range. It is worth noting that when zooming in on Figure 10, even at
lower flow rates, Case 2 consistently outperforms Case 1.
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Figure 9. The (a) concentration uniformity factor and (b) minimum concentration of [Fe(CN6)]3− in
the positive electrode for a State of Charge of 50% and 50 mA cm−2.

Figure 10. Limiting current density for a State of Charge of 50% and 50 mA cm−2.

4. Conclusions

In this work, the effect of placing obstacles in the electrode structure of an organic redox
flow battery on reactant distribution and local depletion is investigated. Two configurations
were studied: Case 1 was designated as the control without obstacles, while Case 2 featured
a design with obstacles to improve mass transport and uniformity.

Analyzing the discharge profiles, it is noted that Case 1 maintained a marginally
higher voltage compared to Case 2 throughout the complete state-of-charge range; the
average difference was about 0.18%. Such a voltage difference can be explained due to
the fact that Case 1 had a simpler flow channel leading to lower hydraulic resistance and
smaller pressure drops. Conversely, the obstacles in Case 2 introduced more resistance to
the flow, which consequently generated localized pressure gradients. Additionally, obstacle
placement means reducing electrode area, which translates to lower electronic conductivity
and increased Ohmic polarization. However, this disadvantage was compensated at lower
SOC values, where the gap in performance between the two configurations narrowed
considerably. Although the discharge voltage was marginally lower in Case 2, there were
marked improvements in the concentration uniformity and minimum concentration of
active species with this configuration. The distribution of reactants became much more
uniform with the obstacles placed in Case 2, especially at low levels of SOC, thereby
preventing areas of low concentration that could damage the cell, while the benefit of
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concentration uniformity decreased with higher values of SOC, Case 2 still showed better
distribution throughout the whole range.

The higher pressure drop of Case 2 is mainly due to the fact that the obstacles block
electrolyte flow. This suggests a trade-off between the electrochemical performance and
energy consumption: while the obstacles improved the mixing quality and reduced lo-
cal depletion, the obstacles also created additional flow resistance that required more
pumping energy.

Looking at the performance of the design with obstructions at different flow rates, Case
2 did better than Case 1, especially with lower flow rates. Although the advantage became
smaller with an increase in flow rate, Case 2 still had better concentration uniformity and
higher minimum concentration values within the studied range. Furthermore, having
obstacles in Case 2 increased the limiting current density by 1% on average. Even at the
lower flow rates, Case 2 showed better performance, indicating that the obstacles may
enhance electrochemical efficiency at different operating conditions.

In conclusion, though the introduction of obstacles in the electrode structure increased
the pressure drop, the enhanced concentration uniformity, limiting current density, and
active species utilization bring huge benefits. It is indicated that obstacle placement could
be a very promising strategy to optimize the performance of redox flow batteries. The intro-
duction of strategically placed obstacles presents a simple yet scalable design modification
that can be adapted to various operating conditions. Furthermore, the insights into the
relationship between flow dynamics and electrochemical performance establish a founda-
tion for future optimization efforts, including refining obstacle geometry and placement to
balance improvements in mass transport with the associated pumping energy costs.
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Nomenclature

List of symbols
a Specific surface area
c Concentration
D Diffusion coefficient
d f Fiber diameter
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E Equilibrium potential
F Faraday constant
h Height
i0 Exchange current density
ir Electrochemical reaction rate
K Permeability
Kck Kozeny–Carman constant
k Reaction rate constant
N Flux of charged species
p Pressure
Q Volumetric flow rate
R Constant of ideal gases
S Source term
T Temperature
t Time
u Mobility
u Velocity
w Width
z Species charge
Greek
α Charge transfer coefficient
ε Electrode porosity
η Overpotential
ϕ Potential
σ Conductivity
μ Dynamic viscosity
Superscripts and subscripts
+ Positive side
− Negative side
′ Standard
avg Average
e Electrode
e f f Effective
i Species
l Liquid
mem Membrane
out Outlet
s Solid

Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational fluid dynamics
RFB Redox flow battery
VRFB Vanadium redox flow battery
ORFB Organic redox flow battery
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Abstract: With the growing interest in reducing CO2 emissions to combat climate change,
humanity is turning to green or renewable sources of electricity. There are numerous issues
associated with the development of these sources. One of the key aspects of renewable
energy sources is their problematic controllability, namely the control of energy production
over time. Renewable sources are also associated with issues of recycling, utilization in
different geographical zones, environmental impact within the required area, and so on.
One of the most discussed issues today, however, is the question of efficient use of the
energy produced from these sources. There are several different approaches to storing
renewable energy, e.g., supercapacitors, flywheels, batteries, PCMs, pumped-storage hydro-
electricity, and flow batteries. In the commercial sector, however, mainly due to acquisition
costs, these options are narrowed down to only one concept: storing energy using an
electrochemical storage device—batteries. Nowadays, lithium-ion batteries (LIBs) are the
most widespread battery type. Despite many advantages of LIB technology, the availability
of materials needed for the production of these batteries and the associated costs must also
be considered. Thus, this battery type is not very ideal for large-scale stationary energy
storage applications. Sodium-ion batteries (SIBs) are considered one of the most promising
alternatives to LIBs in the field of stationary battery storage, as sodium (Na) is the most
abundant alkali metal in the Earth’s crust, and the cell manufacturing process of SIBs is sim-
ilar to that of LIBs. Unfortunately, considering the physical and electrochemical properties
of Na, different electrode materials, electrolytes, and so on, are required. SIBs have come
a long way since they were discovered. This review discusses the latest developments
regarding the materials used in SIB technology.

Keywords: sodium-ion batteries; positive electrode; negative electrode; electrolyte; separator
battery materials

1. Introduction

The collective effort to reduce greenhouse gas emissions, the replacement of fossil
fuels, and the boom in a wide range of different applications, ranging from small portable
devices to electric vehicles (EVs) and large stationary off-grid storage, has led to continuous
developments in the field of battery storage. In the case of portable devices or, for example,
drones, portability and an adequate size and weight are essential. At the same time, safety
and cost are of primary importance for stationary storage, where the power output may be
in the MW range [1].

Historically, the development of batteries began in about the year 1800 with non-
cyclable cells, i.e., primary cells (an illustration of historical development can be seen in
Figure 1). As these cells are non-rechargeable with lower energy density, they have been
used in low-power consumer electronics. Present-day examples of these cells include,
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among others, zinc–carbon cells (Zn/MNO2+C), alkaline cells (Zn/MNO2+C with KOH
electrolyte), silver-oxide cells (Zn-Ag2O) for specific purposes, and lithium batteries (e.g.,
Li/MnO2), with an operating life of several years [2,3].

The first battery of the secondary (i.e., rechargeable) type was invented in the middle
of the 19th century. It is the lead/acid (Pb/acid) battery and it was invented by Gaston
Planté [2]. Since then, the battery has undergone considerable development and its per-
formance has been enhanced. Currently, Pb/acid batteries can reach an energy density
of around 30 to 50 Wh/kg at a nominal voltage of 2.1 V. Their application in stationary
renewable energy sources, however, is cost-ineffective and not environmentally friendly in
terms of their capacity, size, life time, and lead content. Despite these drawbacks, this type
of battery is widely used in the automotive industry. At the end of the 19th century, the
nickel–cadmium (Ni-Cd) battery was invented as another secondary battery type and a
potential competitor to Pb/acid. This battery achieves an energy density ranging from 50 to
75 Wh/kg, has a long life span, and has low self-discharge. However, due to disadvantages
such as expensive processing and Cd storage, these batteries did not enter the commercial
sphere until the mid-20th century. With respect to their environmental and safety proper-
ties, they contain highly toxic Cd and for this reason are subject to regulations in certain
countries [2,4]. As a promising successor to Ni-Cd, nickel–metal hydride (Ni-MH) batteries
were invented around 1975. This type of battery has a higher energy density in the range
of 40 to 110 Wh/kg but has a lower cycling capacity in comparison to Ni-Cd [5].

Since SONY introduced the first LIB battery to the market in 1991, the share of Ni-
MH has been on a decline. LIB research itself started in the 1970s to 1980s, and it was
at this time that the first SIB research also appeared. However, more research on SIBs
followed only in later years, due to the superior properties of Lithium (Li). LIBs have
conquered the market of secondary cells due to their high capacity, energy density, nominal
voltage, the possibility of faster charging, large operating temperature range, lifespan and
nearly absent memory effect [6]. Their capacity has steadily increased over the years and
now exceeds 200 Wh/kg and have become the most widespread energy storage devices
in terms of installed capacity [7]. The main drawbacks of LIBs today are the Li content
itself and, in the case of positive-electrode materials, the presence of cobalt (Co) [3–5,8].
Both of these materials have a very limited supply in the Earth’s crust (Li availability is
negligible compared to Na, which makes up 2.36% of the Earth’s continental crust), and
their extraction is associated with the unethical treatment of workers [1].

SIB batteries are seen as a possible replacement for LIBs. The properties of Na are very
similar to those of Li, and its abundance in the Earth’s crust is a significant advantage (as
of 19 November 2024, sodium price is 15 times lower than that of lithium) [9,10]. Sodium
mining is not nearly as environmentally demanding, and therefore, sodium appears to be
an ideal competitor to lithium. The possibility of using current collectors made of more
cost-effective aluminum is another practical advantage of SIBs. Unlike Li, Na does not form
alloys with aluminum, so there is no need to use more expensive copper on the negative
collector, as is the case with LIBs. This leads to a decrease in the overall battery production
cost, as the price of copper is now at USD 9.1 per 1 kg, while a kilogram of aluminum
now comes to USD 2.5 [11,12]. However, the different properties of Na come into play
when it comes to the use of both positive- and negative-electrode materials. One of the
most significant obstacles is the size of the Na ion (0.102 nm), which is 1.3 times larger
compared to the Li-ion (0.076 nm). The dimensions of Na prevent the use of already known
materials used for LIBs. For instance, when using a negative graphite electrode with a
positive LiCoO2 electrode, intercalation of Li ions into graphite occurs during discharge,
forming LixC6 with a final energy density of about 110 Wh/kg (first LIB) [3]. In 1988, it
was found that unlike Li ions, Na ions are not capable of effecticely forming intercalating
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compounds with graphite. Thus, when the Li ions are substituted by Na ions, they do not
form NaxC6, as this bond is unstable. NaC64 is formed instead, resulting in a reduction in
the theoretical capacity to 35 mAh/g [13]. Using P2-Na0.7CoO2 and graphite as electrodes,
Hasa et al. obtained an energy density of only 60 Wh/kg [14]. Another disadvantage is the
size of the electrodes. Since Na ions are larger, more electrode material is needed in order
to achieve the same capacity as in LIBs. As for the nominal voltage, it is lower in SIBs than
in LIBs. This is due to the higher electrochemical potential of sodium (−2.71 V vs. Standard
Hydrogen electrode, SHE) compared to lithium (−3.04 vs. SHE) [5,8,11–13,15,16]. When
compared to LIBs, SIBs do not exhibit as high specific energy densities (Wh/kg) due to
factors such as the sloped voltage profiles of layered oxide electrodes and narrow voltage
windows of organic electrolytes, and due to different ion sizes [17,18].

The failure of graphite led to the development of alloying (materials forming an alloy
with an alkali metal) and conversion (based on an anionic reaction between a transition
metal and an alkali metal) materials until 2001 when the group of Dahn et al. demonstrated
hard carbon and its properties. By combining Na with a hard-carbon electrode, a reversible
capacity of up to 300 mAh/g can be achieved [19]. Since 2010, carbon-based materials have
been the subject of increased interest in the field of research. Their simple manufacturing
process and high theoretical capacity (up to 500 mAh/g) have been the subject of many
studies to date [20,21].

In 2011, Johnson et al. demonstrated the use of amorphous TiO2 nanotubes as a
negative-electrode material for SIBs, with a theoretical capacity of 150 mAh/g. Sodium
titanate Na2Ti3O7, with a theoretical capacity of up to 200 mAh/g, was introduced by
Tarascon et al. in that same year [22,23]. In 2012, the utilization of elements such as tin
(Sn) and antimony (Sb) to form alloys in negative electrodes was reported. In the case
of Sn, a theoretical capacity of 847 mAh/g can be achieved with the formation of the
compound Na15Sn4; in the case of Sb, a value of 660 mAh/g can be reached with the
formation of Na3Sb [20,24,25]. During the same year, Kim and Park et al. presented a red
phosphorus/carbon composite material with a reversible capacity of 1540 mAh/g in the
formation of the Na3P phase at a ca. 1C rate [26].

In 2014, the negative-electrode material α-MoO3 was discovered by the group of
Hariharan et al. The rocking chair MoO3/Na3V2(PO4)3 cell exhibited a plateau voltage
of 1.4 V and discharge capacity of 164 mAh/g depending on the weight of the negative
electrode [26].

In addition, in 2014, the MXene (transition metal-based carbide, carboxide materials—
2D-nanometer layers) material Ti3C2 with a reversible capacity of ~100 mAh/g was ex-
perimentally developed by the group of Kent and Gogotsi et al. [27]. In 2018, an LSG
(laser-scribed graphene) material was discovered by the group of Alshareef et al. with a
layer width of 3.8 nm in a 002 lattice arrangement, exhibiting high capacitances of up to
425 mAh/g [28].

There has been a steady increase in the number of published research studies on SIBs
over the last decade, as depicted in Figure 2. China is the leading country in terms of the
number of contributions in the materials field. A comparison of the number of publications
over time and the subsequent distribution by individual countries can be seen in Figure 3.

In recent years, in the field of SIB material science, hard carbon-based materials
have been the most promising negative-electrode materials thanks to their satisfactory
electrochemical properties. In the context of positive-electrode materials, the trends point
towards Prussian blue analogs or transition metal oxides (characterized by non-toxicity,
long life/cyclability, safety, etc.). In terms of future SIB development, for example, low-
temperature Na-S and Na-O (still rather theoretical) batteries are being discussed [29].
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Figure 1. Brief history of battery development [2,28,30–35]. Parts of this figure were adapted with
permission from [15,36,37]. Copyright 2020, 2014, 2015 American Chemical Society.

Figure 2. Number of article publications since 2015 according to Web of Science.

79



Batteries 2025, 11, 61

Figure 3. Number of released articles by leading country in each year according to Web of Science.

2. Sodium-Ion Battery Types and Operation Principles

Each part of the SIB cell plays a crucial role in the overall battery performance as the
materials directly impact the battery’s energy density, safety, lifespan, cost, and much more.
The basic cell consists of a positive electrode and a negative electrode, an electrolyte, a
separator, and current collectors, which can be seen in Figure 4. SIBs operate on a similar
fundamental principle to LIBs, meaning they rely on the reversible movement of ions
between the positive and the negative electrodes to either store or release energy. The main
difference is that instead of Li ions, Na ions are used as the charge carriers [29]. During the
discharge process, sodium ions at the negative electrode release an electron, making them
carry a positive charge (Na+). The Na+ ions are then transferred to the positive electrode
through the electrolyte. In the meantime, the released electrons travel through a current
collector and an external circuit, creating a current capable of powering devices. During
the charge, an external voltage is applied, forcing the electrons in the positive electrode to
flow in the opposite direction toward the negative electrode through the external circuit.
At the same time, the Na+ ions travel through the electrolyte back to the negative electrode,
and recombination with the electrons occurs [38].

Figure 4. Principle of the sodium-ion battery. Adapted with permission from [15]. Copyright 2014
American Chemical Society.
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2.1. Room-Temperature Batteries

According to their ideal operating temperature, batteries can be classified as room-
temperature (RT), intermediate-temperature (IT), and high-temperature (HT). Each of
these types has its specific properties related to the materials used, the cell construction,
and the working principle. The research on SIBs primarily focuses on room-temperature
applications due to their similar mechanism to that of LIBs [29].

This review has its main focus on RT SIB and the most used conventional materials
and their combinations, which are discussed in more detail in Chapter 3. Among the
SIBs capable of operating at room temperature are batteries using sodium metal negative
electrodes. The usage of sodium metal as a negative-electrode materials is attractive thanks
to their abundance of sodium, high theoretical specific capacity of 1166 mAh/g, and low
redox potential. Their biggest limitation is their significant volume change while cycling,
leading to the unstable formation of solid electrolyte interphase (SEI) and uncontrollable
formation and growth of dendrites. Another disadvantage is the loss of active material
due to the presence of an irreversible reaction, which leads to fast capacity fading. These
shortcomings become even more serious when paired with a high-capacity sulfur (S) or
oxygen (O) positive electrode. Stabilizing the SEI using chemical and physical methods is
desirable for constructing a stable sodium metal negative-electrode SIB. A few strategies
aiming to overcome this problem have arisen in recent times, such as the utilization of
artificial SEI layers, modification of the electrolyte composition (salts, additives, solvents),
or usage of 3D current collectors (e.g., copper nanowires) to promote a more homogenous
distribution of sodium ions [39].

Na/O2 batteries as well as Na/S batteries use sodium metal as the negative-electrode
material. Na/O2 is usually made with a liquid electrolyte (usually alkali metal salts in
solvents) while using an external O2 electrode. On the battery casing, openings allow
air diffusion on the positive-electrode side, which is also occupied by a porous carbon
matrix gas diffusion layer. Na/S batteries are similar to Na/O2 batteries; however, they
are sealed and make use of sulfur hosted in the porous structure of carbon in the positive
electrode. The cell configurations can be seen in Figure 5. The role of carbon in this case is
to accommodate the large volumetric changes in sulfur during cycling, but also to improve
electron conductivity. Both Na/O2 and Na/S batteries have the potential for fairly high
energy densities; however, their development is in the early stages, and even though a great
deal of research has been performed on these battery types, they are not yet commercially
feasible [38].

Figure 5. Schematic cell configuration of Na/O2 and Na/S batteries [38].
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2.2. High-Temperature Batteries

Na/S batteries, for example, can operate at high temperatures (typically 300 ◦C), in
which case, both the sodium negative electrode and sulfur positive electrode are in a molten
state. In this state, the materials possess high chemical reactivity as well as corrosivity.
As these attributes cause serious safety hazards, inert current collectors, stable solid-state
electrolytes, and proper sealing need to be used, which ultimately increases the costs
of the battery [29,40]. The high reactivity and ion conductivity of molten sodium allow
for high current densities (ca. 2.1 × 107 S/m) [41]. Due to high working temperatures,
inorganic solid electrolytes (ISEs) are frequently employed, among which an inflexible
ceramic material β′′-Al2O3 (beta alumina) is included [40]. HT Na/S batteries have a
life expectancy of over 10 years and have been implemented as test units for stationary
energy storage and part of wind and solar installations in, for instance, Japan and the
United States [42]. For transportation and stationary energy storage applications, Na/S
batteries with organic-based electrolytes seem to be a more suitable option in terms of
safety, manufacturing costs, and energy density [40].

MXene materials, such as Ti3C2Tx, have the potential to be used in elevated tempera-
ture conditions. Seredych et al. evaluated the thermal stability of this material, synthesized
by selectively etching Al layers from the Ti3AlC2 MAX phase. The obtained Ti3C2Tx re-
mained stable until 800 ◦C, at which point it started to degrade, release CO, and transform
into cubic titanium carbide (TiC). They also found that a lower concentration of hydrofluo-
ric acid in the etching agent improves the material’s thermal stability. Its thermal stability
makes Ti3C2Tx a promising material for various applications, such as ceramic and matrix
composites requiring high-temperature processing [43].

3. Materials for Sodium-Ion Batteries

Specific capacity, cycling stability, and operation voltage are all crucial characteristics
of a battery. Among the most important characteristics of the battery is its safety, mainly
the thermal runaway issue. Unlike in LIBs, the Al current collectors in NIBs do not undergo
dissolution at 0 V; therefore, no short-circuit-causing dendrites are formed, which allows
safer storage. However, when discharged to 0 V, SEI in NIBs tends to dissolve and form a
thicker layer when charged again, which can lead to sodium metal plating and rollover cell
failure [44]. The battery characteristics are all determined by the intrinsic electrochemical
properties of the electrode materials, which is why finding suitable electrode materials is
essential [29].

3.1. Negative-Electrode Materials

Negative-electrode materials for SIBs can be categorized by the mechanism by which
they store sodium ions. These are materials based on intercalation mechanisms, alloying
reactions, and conversion reactions. Intercalation-based (also known as insertion-based)
materials allow sodium ions to be repeatedly inserted into their crystal structure with
minimal structural change. An example of such material is hard carbon, or titanium-based
oxides, such as Na2Ti3O7. Materials based on alloying reactions work on the principle of
forming alloys with sodium during the charging process. These materials provide high
theoretical capacities (at the cost of high volume changes) and include tin (Sn), antimony
(Sb), silicon (Si), bismuth (Bi), and others [38]. Conversion-type materials undergo chemical
conversion reactions during cycling between transition metal oxides (TMOs = Cu, Fe, Mn,
Ti. . .) and alkali metals (Li, Na, K. . .) using anions (P, O, S, N). TMs include transition metal
oxides, transition metal sulfides, transition metal nitrides, and transition metal phosphides.
Various storage mechanisms of Na+ are shown in Figure 6. Similarly to alloying materials,
they offer high theoretical capacity with the disadvantage of large volume changes. Another
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drawback is the presence of voltage hysteresis, i.e., large voltage differences between
charging and discharging, which harms the battery’s overall efficiency [45–47].

 
Figure 6. Na+ storage mechanisms [48].

3.1.1. Insertion Materials

Hard carbon
Hard carbon and its modifications have recently been one of the most researched

materials in the negative SIB and LIB electrode fields. Its high reversible capacity of up
to 700 mAh/g (with certain modifications), simple production process, and availability
make hard carbon a suitable candidate for SIBs [49]. Its development in recent years has
mainly focused on biomass processing using the pyrolytic method. The pyrolysis method
relies on heating the biomass precursor to temperatures of up to 1000 ◦C with no air access,
which leads to the release of molecules such as H2O and CO2 from the material. This
release results in high porosity (Brunauer–Emmett–Teller (BET) surface area increase) and
surface inhomogeneity, resulting in low ICE (Initial Coulombic Efficiency) and significant
loss of active material during SEI layer formation. A gradual increase in temperature
beyond 1000 ◦C leads to material carbonization [50,51]. During carbonization, more stable
molecules such as H2 “evaporate” and form graphene nanodomains, which increase the
number of closed HC pores, contributing to increased capacity. For increased hard-carbon
purity, HCl, for example, can be used to remove inorganic compounds such as alkali salts
or transition metals [52].

Wang et al. used this method in the formation of a negative electrode made from
walnut shells, in which the sample carbonized after HCl treatment and firing at 1400 ◦C
showed better electrochemical properties compared to the untreated sample—namely
a reversible capacity of 342 mAh/g with a capacity retention of 91% after 100 cycles at
a current density of 20 mA/g. This represents simple hard-carbon synthesis with high
cyclability. Unfortunately, the use of HCl may be a disadvantage from an environmental
point of view. As far as the electrochemical properties are concerned, a high decrease in
reversible capacity at higher current densities can be observed, which could affect the
utilization of this material in fast-charging batteries [53].

In addition, Kamiyama et al. created a hard-carbon material with MgO nanotubes
using the freeze-dry synthesis of magnesium gluconate and glucose. This material shows
a reversible capacity of up to 478 mAh/g (depending on the material ratios and firing
method) at a current density of 25 mA/g with an ICE of 88% and a reversible capacity of
400 mAh/g at 250 mA/g [54].
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In 2022, Zhou et al. created a rosewood-based material. With a specific chemical
treatment, the material achieves a reversible capacity of 326 mAh/g at 20 mA/g. The
material has the advantage of a reversible capacity of 230 mAh/g at 5000 mA/g. Moreover,
it retains 85% of its capacity after 800 cycles at a current density of 500 mA/g [55]. Since
these materials are relatively new, more extensive research is required in the future.

In order to mitigate the low ICE typical for hard carbon (typically around 60%), preso-
dation of the negative-electrode material may be used. Chemical presodation, involving
the immersion of hard carbon in ether solvents or reductive reagents, seems to provide
the best compatibility with the existing SIB manufacturing process. Man et al. were able
to improve the ICE of hard carbon by nearly 34% by using tetraethylene glycol dimethyl
ether (TEGDME) presodation solution. After pairing the presodiated hard carbon with
Na3V2(PO4)3, an ICE of 91.25% was achieved [56].

In the commercial sphere, Faradion Limited uses its own patented hard carbon, which
has a specific capacity in excess of 330 mAh/g. This material is used in combination with
a positive electrode composed of layered oxides with both O3- and P2-type structures,
achieving a reversible specific capacity of 134.5 mAh/g and an ICE of over 90% [57].

Schütte et al. published a work presenting the first Na-ion battery full cell parametriza-
tion for use in a physico-chemical model (PCM). PCMs are widely used in battery research,
as they can help identify the battery parameters, determine anode potential during fast
charging, predict available battery power, model material degradation during cycling, and
more. The parametrization was performed on a commercial 1.2 Ah 18,650 cell using hard
carbon and layered oxide as electrodes. Their work utilizes already established analysis
techniques for LIBs and acknowledges their transferability to SIB cell analyses. It empha-
sizes the importance of SoC-dependent parameters (such as the diffusion coefficient of
hard carbon), thermal models, aging, and hysteresis models, providing guidance for future
parameterizations and PCMs in the SIB field [58].

Soft carbon
Soft carbon is a type of carbon with arranged layers and a disordered structure charac-

terized by tight spacing between layers. These short distances prevent Na+ intercalation,
as seen in the work of Cheng et al., where the precursor from pyrene and terephthaloyl
chloride is prepared at a ratio of 1:0.5 and subsequently fired at 1300 ◦C, resulting in the
formation of soft carbon with an ordered structure. The C-1:0.5 sample reached a capacity
of only 181 mAh/g at a potential of 0.1 V vs. Na/Na+. The BET area was 8.2 m2/g, the
percentage of closed pores equaled 0, and the d022 plane distance (narrowest interlayer)
was 0.345 nm. A similar sample was formed at a C-1:10 ratio, which resulted in the forma-
tion of hard carbon featuring a capacity of 399 mAh/g at a potential of 0.1 V vs. Na/Na+, a
BET area of 6.4 m2/g, 70% of closed pores, and a d022 layer distance of 0.382 nm [59]. The
difference between the soft- and hard-carbon structures can be seen in Figure 7.

Pendashteh et al. conducted an experiment with soft carbon formed by pyrolysis at
500 ◦C of PVC (polyvinyl chloride), subsequent treatment with ball milling, and repeated
pyrolysis at 800 ◦C. For this material, a reversible capacity of 207 mAh/g was achieved at a
current density of 25 mA/g, a BET measurement area of 5.8 m2/g, and an ICE of 82%. At a
current density of 372 mA/g, this material maintains a capacity of 145 mAh/g, and this
capacity does not drop below 100 mAh/g for the duration of 400 cycles [60].

Soft carbon, despite its less demanding production and good stability, offers low
capacities. This is caused by the aforementioned interlayer distances. Referring to the
Web of Science, lower interest in this material in connection to SIB can be observed (only
75 articles have been published in the last 6 years when searching for “Soft Carbon Na-
ion”) [61]. Thus, the use of soft carbon in SIB batteries and stationary storage systems is a
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question of future development, as today, there are more promising materials in terms of
capacities and current load.

 
Figure 7. Na+ storage mechanism in soft carbon and hard carbon, respectively [59].

Graphene/rGO
Graphene is the most stable allotrope of carbon, consisting of carbon atoms arranged in

a hexagonal lattice which together form a layer with a one-atom thickness. The individual
layers are attracted to each other by van der Waals forces. The interlayer distance of such
layered graphene amounts to 3.35 nm [62].

Graphene exhibits very favorable properties in terms of mechanical strength, electrical
conductivity, and high theoretical surface area. However, when only one layer of graphite
is used in conjunction with Na+, there is a lack of proper absorption of this ion, as it
is energetically disadvantageous for graphite, resulting in a decrease in the theoretical
capacity [62].

In order to use graphene as a negative-electrode material, it needs to be modified using
defects. These defects are meant to disrupt the graphene lattice and create gaps in which
Na+ can then intercalate. Graphene lattice defects can be divided into two groups. The
first group is made up of intrinsic defects, among which are defects caused by vacancies,
Thrower–Stone–Wales defects (change in the rotation of the π-bonds of the C=C carbon
atoms), and other defects not caused by the presence of foreign atoms. The second group
covers extrinsic defects, which are formed by foreign atoms [63,64].

However, these defects also pose the disadvantage of low ICE in the first few cycles.
Ding et al. pointed out the importance of the preparation of graphene layers, where low
firing temperatures of about 600 ◦C lead to the formation of graphene with rGO properties,
while higher temperatures (1400 ◦C) lead to graphene with lower porosity and larger
interlayer spacing. Despite the higher-quality graphene, the ICE still remains low at around
60% [65].

These defects were used by Wang et al. in the fabrication of a 3D-printed Au/rGO
(rGO—reduced graphene oxide) anode by mixing GO with HAuCl4 compound. The
mixture was then washed in deionized water and centrifuged to form an Au/GO ink
suitable for 3D printing. After printing, excess water was removed using the freeze-dry
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method, leading to the formation of the Au/rGO structure. Prior to use, Na deposition was
performed on the material to obtain Na@Au/rGO. Combined with a 3D-printed NVP@C-
rGO cathode, this material exhibited a reversible capacity of 91.2 mAh/g at a current load
of 100 mA/g. Furthermore, the cell exhibited a reversible capacity of 84.95 mAh/g at a
current density of 100 mA/g with high CE (up to 96%) after 205 cycles [66]. This work
provides insight into a new method of 3D-printed materials, which is among the areas of
interest in the production of electrode materials. Unfortunately, the demanding production
of rGO as well as the price of HAuCl4 may affect their large-scale use, for example, in
stationary storage applications.

Sodium titanates
Sodium titanates are of interest due to their stability, material availability, and en-

vironmental friendliness. The most well-known sodium titanate is Na2Ti3O7 based on
the familiar and commercially used LIB negative-electrode material Li4Ti5O12. The basic
structure of Na2Ti3O7 consists of a TiO6 octahedral exhibiting a zigzag layer structure, as
shown in Figure 8. The benefit of this material is the low Na+ insertion potential (0.3 V vs.
Na+/Na), providing a higher SIB operating voltage. The drawback of this material is the
slow diffusion of Na+ ions attributed to the large bandgap voltage of 3.7–3.9 eV [67].

All of this results in low electrochemical activity at higher charging and discharging
currents, which limits the use of Na2Ti3O7 in high-power applications. This shortcoming
has led to efforts to enhance ion diffusion using a range of doping techniques, nanostruc-
tures, fabrication using carbon-based composites, or surface modifications [67,68].

The group of Wang et al. also used nanostructure techniques. To create a negative
electrode, they used carbon nanotubes with a diameter of 270 nm, which were then used
to prepare Na2Ti3O7 nanowires and nanobelts by synthesizing TiO2 (titanium dioxide) in
NaOH (sodium hydroxide). An example of the final structure can be seen in Figure 8. The
material formed by the nanobelts exhibited a surface area of 38.68 m2/g with a capacity
of 239 mAh/g at a current density of 0.1 A/g. Moreover, this material achieved high
cyclability, with over 5000 cycles at a current density of 10 A/g at 100% capacity retention.
Nevertheless, the excellent properties of the negative electrode were diminished by the
relatively complex and energy-intensive production of carbon nanofibers (CNF), as their
synthesis is performed by electrospinning the material at 15 kV followed by firing at
1000 ◦C [67].

Zhong et al. used carbon MXene composite Ti3C2Tx in the preparation of a negative
electrode. Its fabrication utilized a hydrothermal reaction in H2O2 (hydrogen peroxide) and
NaOH solution to form Na2Ti3O7 materials, followed by calcination in Tris-buffer solution
in order to create the Na2Ti3O7@C material. The resulting structure can be observed in
Figure 8. Using the BEL method, an area of 132.93 m2/g was calculated. In addition,
the material shows a voltage window ranging from 0.01 at charge to 3 V at discharge
(vs Na/Na+) at a scan rate of 0.1 mV/s on the CV curve. Na2Ti3O7@C exhibits high
cyclability at a current density of 2 A/g, reaching a reversible capacity of 119 mAh/g while
maintaining 93.5% of its capacity after 200 cycles. While this material fails to achieve the
same capacitance and stability as the material of Wang et al., Na2Ti3O7@C has less energy
and process-intensive production [69].
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Figure 8. (a) Na2Ti3O7 zigzag structure [70]. (b) SEM image of nanobelts/CNF [67]. (c) FESEM (fast
emission scanning electron microscopy) image of Na2Ti3O7@C [69].

3.1.2. Alloying and Conversion Materials

Sn-based materials
The use of Sn involves both alloy and conversion reactions for Na+ deposition. Large

volumetric changes occur in alloy materials during sodation and after desodation. This
leads to a very rapid capacity loss due to cracking of the SEI layer and its eventual restora-
tion, which reduces the active-electrode material. At the same time, the electrode material
undergoes decomposition, manifested by the loss of contact between the electrode and the
collector. This results in disconnection of the material from the potential, and its participa-
tion in current and capacitance reactions is hindered. Other issues with Sn-based materials
are, for example, low ICE and low intrinsic conductivity. These disadvantages result in the
inability to develop SIBs with a long lifetime and good safety, mainly due to the unstable
SEI layer [71].

In order to limit undesirable volumetric changes, a number of material modifications
have been employed, such as nanosizing (modification of and reduction in Sn material
particles), combination with carbon materials (carbon nanotubes, graphene, etc.), defects
(oxygen or sulfur vacancies), or structural modifications [46,71].

Li et al. used the nanosizing method in combination with carbon material to synthesize
Sn-Ni@NC (NC = nitrogen-doped carbon) material. This material exhibited a very high
initial capacity of 537.5 mAh/g when discharged and 319.7 mAh/g when charged with
an ICE of only 59.47%, which was presumably due to the formation of the SEI layer. At
a current load of 0.2 A/g, Sn-Ni@NC maintained a reversible capacity of 264.9 mAh/g
compared to the Sn-Ni material, which only reached 141.8 mAh/g. Furthermore, the
Sn-Ni@NC material exhibited a reversible capacity of 177.4 mAh/g at a current density of
1 A/g, maintaining a capacity of 148.1 mAh/g after 200 cycles [72].
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Sb-based materials
Sb-based materials suffer from the same undesirable properties as Sn-based mate-

rials. They employ similar modifications to achieve higher capacities, lower volumetric
expansion, and higher electrical conductivity. Yu et al. used intermetallic compounds with
antimony (TiSb2 and NbSb2) to synthesize Sb@TiC@C and Sb@NbC@C materials.

The individual materials use amorphous carbon to compensate for volumetric changes.
The different materials achieved very high volumetric capacities, with Sb@TiC@C reaching
746 mAh/cm3 (at a mass of 1.86 g/cm3, the gravimetric capacity reaches 401 mAh/g).
Furthermore, a volumetric capacity of 726 mAh/cm3 was achieved for Sb@NbC@C (at a
mass of 1.93 g/cm3, the gravimetric capacity amounts to 376 mAh/g). This capacity was
retained by the materials even after 100 cycles at a current density of 50 mA/g [73].

Pb-based materials
Lead can be classified as a possible negative-electrode material for SIBs. Lead itself has

a reversible capacity of up to 464 mAh/g, with 98.5% capacity retention after 50 cycles, at a
current density of 13 mA/g. These properties were utilized in an experiment by Pandit et al.
in the construction of a full cell made of Na3V2(PO4)3/C material as a positive electrode
and Pb as a negative electrode. The full cell achieved a reversible capacity of 233 mAh/g at
a current density of 0.1 C with an excellent energy density of 170 Wh/kg [74]. Recycled Pb,
which can be extracted quite successfully from older Pb–acid batteries, could be employed
in negative electrodes. The high toxicity and high density of Pb still represent considerable
disadvantages [75].

MXene-based materials
MXenes are inorganic materials forming 2D structures from transition metals (com-

monly carbides, nitrides, and carbonitrides). Some of the characteristic properties of MXene
include excellent electrical conductivity, an intrinsic layered structure (aiding in the fast
movement of ions), and the possibility of adjusting interlayer distances (allowing for the
deposition of different ions or molecules) [76,77].

Tang et al. focused on the confinement of SnP (Tin monophosphide) into the Ti3C2Tx

MXene structure. By etching the Ti3AlC2 material with highly concentrated hydrofluoric
acid, Ti3C2Tx MXene was prepared (Tx denotes terminal groups H, OH, and F on the surface
and edges). Afterwards, positive NH4

+ ions were introduced into the intergrid spaces
of MXene by electrostatic intercalation, resulting in stretching of the interlayer distances
from 0.96 nm to 1.21 nm. Next, SnO2 nanocrystals were formed in the interlayer spaces of
MXene using a hydrothermal method. Next, the MXene mixture was manually crushed
together with NaH2PO2 and fired in an argon atmosphere, resulting in the formation
of the SnP phase, and enabling the assembly of the M-SnP-in material. This material
achieved a very strong reversible capacity (584.5 mAh/g) at a current density of 0.2 A/g
over 200 cycles and 438.2 mAh/g at a current density of 15 A/g. Furthermore, the material
exhibited excellent cyclability—maintaining a capacity of 436.6 mAh/g at a current density
of 2 A/g for 1500 cycles (the SnPx alloy material lasted for only 600 cycles, with less than
half of its original capacity remaining after 300 cycles). Finally, a full cell was constructed
in combination with the cathode material Na3V2(PO4)3, yielding an energy density of
265.4 Wh/kg [76].

3.2. Positive-Electrode Materials

In the last decade, numerous materials have been studied as potential positive-
electrode materials for SIBs. The options for positive-electrode materials include lay-
ered transition metal oxides, polyanionic compounds (phosphates, fluorophosphates. . .),
Prussian blue derivatives, conversion materials (transition metal fluorides, oxyfluorides,
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sulfides, and selenides), and organic compounds [29]. Among these options, the first three
listed have been shown to be the most promising [78].

Layered Transition Metal Oxides
Due to their high structural compatibility for Na+ insertion and extraction, simple

structure, ease of synthesis, and high operating potential, layered transition metal oxides
(TMOs) are considered to be among the most promising candidates among all considered
materials for positive SIB electrodes. Depending on how the sodium ion and transition
metal layers are stacked, layered transition metal oxides can have a different structures.
P2-type (having higher rate performance and capacity retention) and O3-type phases
(able to achieve high capacities) have been shown to be the most interesting in the SIB
field. The biggest drawbacks of layered transition oxides are large volume changes caused
by phase transitions. Many synthesis methods are used to form layered metal oxides,
such as sol−gel, hydrothermal, solid-state, and coprecipitation [29,47]. For example, the
sol–gel method is very promising, as it offers the desired structural, morphological, and
electrochemical properties, as the homogeneity and purity are easily controlled by selecting
suitable precursors. It consists of dissolved Na in transition metal salts in a solvent with an
added gel-forming chelating agent. Hydrothermal synthesis uses quite low temperatures,
resulting in low energy consumption and ease of synthesis, while solid-state synthesis
has the advantage of ease in achieving the right stoichiometry [79]. Along with the quite
simple coprecipitation method, the synthesis methods in general are not too complicated
and readily attainable [78].

The layered structures are made of edge-sharing TMO6 (M = Fe, Mn, Ni, Co, Cr, Ti,
V, and their combinations) octahedra, forming repeating layers between which Na+ ions
are positioned in the octahedral (O) oxygen environment, which is called O-type stacking.
On top of that, in the case of Na-ion oxides, P-type stacking can occur, where the P-type
refers to prismatic Na-ion coordination. The most studied layered stacking configurations
are the P2 phase (ABBA oxygen stacking) and the O3 phase (ABCABC oxygen stacking),
as seen in Figure 9. P2-type usually provides higher rate performance and good cycling
stability when compared to O3-type analogs due to its greater Na ion conductivity and
better structural integrity; however, its first charge storage capacity is limited due to the
lower initial Na content. It is typical that upon Na ion intercalation and deintercalation
during cycling, the structure shifts between O- and P-types, commonly degrading its cycle
stability. Metal oxides consisting of more elements (especially those including Mn) tend to
provide higher energy densities than those with a single element [80].

Figure 9. Illustration of crystal representative P2-type and O3-type layered oxides [80].
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P2 type Na2/3Ni1/3Mn2/3O2, for instance, stands out for its high capacity of 160 mAh
g−1; however, its capacity quickly fades after reaching 4.2 V due to the P2-to-O3
phase transition. A layer of the NaPO3 surface is able to help improve stabilization
for long-term cyclability, as it is able to suppress oxygen release in the highly deso-
dinated state of the battery. O3-type NaNi0.5Mn0.5O2 is able to provide capacities in
the range of 105–125 mAh/g at 2.2–3.8 V. Zhao et al. prepared a high-entropy O3-
type NaNi0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2 using a solid-state synthesis
method, achieving a reversible capacity of about 110 mAh/g. This material retained 83%
of its capacity after 500 cycles and ~80% capacity retention at a 5C rate, operating in the
voltage range of 2.0–3.9 V, versus Na+/Na [78]. O3-type materials could contribute to
higher energy densities, while P-2 exhibits higher capacity retention and stability. Both
types are promising candidates for low-cost SIB energy storage systems application in
the near future, although further research is needed to enhance the performance of these
materials [47].

Extensive research has been performed on both O3- and P2-type layered struc-
tures. In 2013, Na0.950Ni0.317Mn0.317Mg0.158Ti0.208-O2 material with a typical O3 phase
provided high energy and a good cycle life; however, no further developments were
made at the material level. Eventually, a mixed-phase material was developed, aver-
aging the stoichiometries of O3- and P2-type materials. The stoichiometries used were
Na0.667Ni0.300Mn0.600Mg0.033Ti0.067O2 for the P-type and NaNi0.333Mn0.033Mg0.167Ti0.167O2

for the O3-type (an image of the stacked morphologies can be seen in Figure 10). The
material delivers a capacity of 156 mAh/g at 0.2C in the 4.35–2 V window. It also retains
80% of its capacity after 3000 cycles and allows for charging at 4C without capacity drops
when paired with hard carbon in a pouch cell [57].

 

Figure 10. FESEM images of the combined stoichiometries of the Faradion positive-electrode material.
(a) A zoomed-out image. (b,c) Magnified images showing the stacked O3/P2 phase morphologies of
the primary particles [57].

Polyanion-type materials
Owing to the stability of their crystal structure, thermal stability, adjustable voltage,

and high ionic conductivity, polyanion-type materials seem to be a strong candidate for
positive-electrode materials used in SIBs. The main obstacles with these materials are low
electron conductivity, unsatisfactory theoretical specific capacity, and low energy density.
The structure of these materials is composed of MOx polyhedral (M = metal) and anion
groups (XO4)n− (X = B, C, S, P, Si, As, etc.) or their derivatives connected by a covalent
bond [81]. The most commonly adopted material synthesis methods are the sol–gel and
the solid–solid method. The sol–gel method allows for the synthesis of materials with a
high surface area and allows for properties such as homogeneity and purity to be easily
controlled, but controlling the pore structure and morphology is quite problematic. The
solid-state technique provides many benefits, such as low cost and simple equipment
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requirements; however, it provides minimal control over the morphology and shape of the
material, influencing the final electrochemical performance [82].

Among polyanionic compounds, NASICONs (Na Super Ionic Conductors) are a
subject of interest thanks to their strong 3D framework, high rate capability, long cyclability,
and satisfactory kinetics of sodium-ion mobility, making them suitable for high-power
applications. NASICONs used as positive electrodes are generally phosphates combined
with various transition metals, such as vanadium (V), iron (Fe), and manganese (Mn).
Combinations of these metals may be used as well [29]. Na3V2(PO4)3 (NVP) is a typical
example of a NASICON structure, with a specific capacity of 117 mAh/g and a voltage
plateau at ~3.5 V. Zhao et al. analyzed the Na4MnCr(PO4)3 structure, which retained 85%
of its capacity after 500 cycles at 100 mA/g at a cutoff potential of 4.3 V, meaning the energy
density at the highest potential is over 400 Wh/kg [83]. Hu et al., for instance, constructed
NASICON-type Na3.2MnTi0.8V0.2(PO4)3, with five redox couples ranging from 2.1 to 4.1 V,
showing a capacity of 172.5 mAh/g and quite a high energy density of 527.2 Wh/g [84].

Fluorophosphates, such as Na3V2(PO4)2F3 (NVPF), are the subject of extended studies.
They offer a theoretical capacity of roughly 128 mAh/g and a working voltage of ~3.9 V,
achieving an energy density of ~506 Wh/kg. However, they suffer from capacity fading
at high rates due to low conductivity and insufficient ion diffusivity [39,85]. Gu et al.
prepared a Na3V1.98Mn0.02(PO4)2F3 electrode material using a hydrothermal synthesis
method, which offers a specific capacity of 123.8 mAh/g at 0.1C in the voltage range from
2.0 to 4.3 Vversushigher than Na+/Na, and power density around 400 Wh/kg [85,86].

Plewa et al. synthesized Na2FeM(SO4)3 (M = Fe, Mn, Ni) nanometric size grain
materials through the uncomplicated dissolution of Na2SO4 and transition metal sulfates
in a liquid solution, subsequent solvent evaporation, and annealing. All of the tested
Na2FeM(SO4)3/C cells represented systems of high voltage >3.6 V with a capacity of
110 mAh/g (and therefore an energy density of over 396 Wh/kg) and capacity retention
of 90% after 50 cycles [87]. While polyanion-type materials offer advantages in terms of
voltage, thermal stability, and cycle life, their lower specific capacity might not be suitable
for energy-dense applications. NVPs are, for instance, suitable for high-power batteries
(rather than energy-dense ones) as they exhibit fast electrochemical kinetics at the cost of
quite low specific capacities [45].

Prussian Blue Materials
Prussian blue analogs (PBAs) represent high-entropy electrode materials from the

family of metal–organic frameworks (MOFs). Prussian blue suffers from low Coulombic
efficiency and capacity fading, but offers a high theoretical capacity, and its framework
provides enough space for Na+ insertion and extraction. Thanks to its high rate capability
and satisfactory cycling stability, it can be suitable for high-power applications [29,88].
PBAs exhibit face-centered cubic structures and are described by the molecular formula
NaxM[Fe(CN)6]1−y·*y·mH2O, where M stands for transition metal elements (Fe, Co, Ni,
and Mn). Here, * denotes [Fe(CN)6] defects, where the range of x is 0 < x < 2, and the
range of y is 0 < y < 1. M-based PBs (apart from Ni) show a theoretical capacity of up
to 170 mAh/g; however, the [Fe(CN)6] defects generated during the synthesis process
alongside crystalline water cause lattice distortion and structural collapse during the cycling
process, resulting in a reduction in capacity and cycling performance [89]. In terms of
theoretical capacity, this material can be compared to commercially used positive-electrode
LIB materials, where LiCoO2 has a theoretical capacity of 274 mAh/g (practical discharge
capacity of 173 mAh/g with acceptable reversibility), LiFePO4 shows a theoretical capacity
of 154 mAh/g, and LiMn2O4 achieves 148 mAh/g [90–92]. In general, PBAs are a promising
class of materials for energy storage applications, with Fe-based PBAs standing out as
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the most environmentally friendly option owing to their use of abundant, non-toxic, and
sustainable elements [89].

Hydrothermal, coprecipitation, and electrodeposition methods are the most popu-
lar synthesis techniques employed in electrochemical applications. In the widely used
hydrothermal method, the morphology of PBA is determined by the used precursor struc-
ture. The coprecipitation approach is used by many because of its simplicity and low
cost; however, it does not allow for adjustment of the crystal shape and size as well as the
hydrothermal method. As for the electrodeposition method, the utilized substrate greatly
influences the morphology of the final electrode material [93].

To address the issues of Fe(CN)6 defects, Wang et al. developed a hollow layered Fe-PB
composite using the hydrothermal synthesis method. 1,3,5-benzene tricarboxylic acid (BTA)
was utilized as a chelating and etching agent as its carboxyl groups (-COOH) can chelate
with Fe2

+ ions, so high-quality cubic Fe-PB can be produced by controlling the reaction rate
of Fe-PB formation. The hollow layered structure was shown to significantly reduce the
diffusion path of Na+ ions and limit the volume changes during Na-ion insertion/extraction.
The electrode’s initial discharge capacity equaled 95.9 mAh/g and remained at 73.1 mAh/g
after 500 cycles in the voltage range of 2.0–4.2 V. The full cell paired with hard carbon
provided a considerable energy density of 312.2 Wh/kg [89].

There are many PBA modification methods, among which metal-ion doping (doped
at the M-site or Na-site) is currently one of the most effective modification methods,
with the goal of reducing Fe(CN)6 vacancies. Chen et al. directly prepared a Cu-doped
Fe-PBA using the coprecipitation synthesis method. The resulting material contained
fewer Fe(CN)6 vacancies and low crystal water content. The added Cu contributed to
structure stability, allowing the material to achieve an initial capacity of 127.4 mAh/g
(while undoped Fe-PBA achieved 107.9 mAh/g) at 100 mA/g between 2.5 and 4.2 V. Cu
doping is therefore an effective modification method, improving the overall performance
of PBA positive-electrode materials [94].

PBA-based SIBs can be put between supercapacitors and other batteries (Ni-Cd, lead–
acid, LIBs) in terms of cycle life and power density (up to 1250 W/kg). As they have the
highest cycle number (>40,000 cycles) among all batteries and use abundant, non-toxic
raw materials, they could be an alternative for energy storage in high-power applications,
including backup power for data centers and regenerative braking. An example of the
commercial use of these batteries is the PBA-based pluggable sodium-ion module (four-cell
stacks in series connection) developed by ABB and Natron. The utilized iron-based PB
electrode material can be seen in Figure 11. These cells were subjected by He et al. to
UL 9540A thermal runaway tests, comprising external short-circuit tests, external heating,
and mechanically induced events (e.g., nail penetration). None of these tests triggered
thermal runaway, demonstrating the SIBs’ safety. Their energy density sits quite low
(23 Wh/kg at the cell level), but they show high rate capability and very satisfactory
capacity retention [95]. Another example is SIB prototype cells by Novasis Energies,
Inc., using a PBA positive electrode, commercial hard-carbon negative electrode, and a
nonaqueous (e.g., salts dissolved in non-water-based solvents) electrolyte. This company
was able to construct 0.5–5 Ah capacity high-safety pouch cells with noteworthy rate
capabilities and cycle life [96].
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Figure 11. SEM image of Natron iron-based positive-electrode material NaxMnyFe(CN)6·nH2O [95].

Organic materials
Organic-based positive-electrode materials have attracted considerable attention, as

they are made up of weak intermolecular interactions (e.g., hydrogen bonds and van der
Waals forces), which results in a flexible structure capable of accommodating Na+ ions with-
out significant volume change while allowing their smooth transport. They can be divided
into two groups—carbonyl small molecules (ketones and quinones, anhydride compounds,
imide compounds, and carboxylate compounds) and organic polymers (carbonyl and
conjugated conductive polymers, covalent organic frameworks (COFs), organometallic
compounds, and organic radial polymers). Organic compounds have the advantages of low
toxicity, structural diversity, ease of synthesis, and material abundance tied to sustainability.
They suffer from electrolyte dissolution, low stability, and poor electronic conductivity,
preventing their utilization in practice [97].

To tackle these issues, Kuan et al. reported the use of nitrogen- and carbonyl-rich
highly extended p-conjugated small organic molecule hexaazatrianthranylene (HATA)
embedded quinone (HATAQ). HATAQ molecules create supramolecular graphite-like 2D
layered arrangements in the solid state, promoting charge transfer and helping to improve
structural stability. The material, when combined with Na metal negative electrodes in
a coin cell, demonstrated a 460 mAh/g capacity at 500 mA/g (1C) and retained 99% of
its capacity (138 mA) after 5000 cycles at 60 A/g, which is one of the top reported values
for organic small molecules so far. The estimated gravimetric energy density is estimated
to be 920 Wh/kg, based on the specific capacity obtained at 1C and an average discharge
potential of 2.0 V [97].

Metal–organic polymers (MOPs) have been subjected to many studies on conjugated
carbonyl-derived linkers, as they offer multiple redox centers and are low-cost. Wang
et al. synthesized a flower-like p–d conjugated MOP (copper–tetramino-benzoquinone,
Cu-TABQ) where TABQ serves as an organic ligand and Cu2

+ as a transition metal node.
Both elements act as dual redox centers, allowing the achievement of a reversible capacity
of 322.9 mAh/g at 50 mA/g in the voltage range of 1.0–3.0 V (meaning the average power
density revolves around 645.8 Wh/kg). With an ICE of 75.6%, the electrode material
retained 98.7% of its capacity after 50 cycles. Owing to the stable coordination between
Cu2

+ and TABQ, the positive-electrode electronic conductivity and Na+ redox reaction
were significantly improved, so the capacity reached 198.8 mAh/g even at a high current
density of 4000 mA/g [98].

Due to their structure, organic materials have the potential to be used in applications
where light weight, portability, and flexibility are crucial. If the mentioned limitations can
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be effectively mitigated, organic materials could emerge as promising electrode materials,
especially in renewable and environmentally responsible organic batteries [3].

3.3. Electrolytes and Salts

Electrolyte research is focused on non-flammable electrolytes with applications in
a large temperature range. As for stationary SIB applications, finding electrolytes with
properties that would help reduce additional costs regarding the heating, fire safety, etc.,
of the area where the battery is stored is needed. In addition, such materials must not
significantly increase the battery’s cost [29].

SIBs can be used with liquid or solid electrolytes. The liquid electrolyte is the medium
used to transfer the charge (Na+ ions) from the negative to the positive electrode and
vice versa. The most commonly used liquid electrolytes are electrolytes based on salts
dissolved in organic aprotic solvents (mainly based on ethers, esters, and carbonates). As
for solid-state electrolytes (SSE), polymeric bonds with sodium salts are the most common
type. Furthermore, there are also inorganic solid electrolytes (ISEs) consisting of oxides,
phosphates, sulfates, and hydrates. ISEs are hard, inflexible materials that are mainly used
in high-temperature Na-S systems [29].

Individual electrolytes may differ in terms of their working temperature range, solubil-
ity of sodium salts, and Na+ transfer rate. Du et al. compared ether-based non-flammable
electrolytes (1 M NaBF4 in tetraglyme) with carbonate-based electrolytes (1 M NaClO4

in 1:1 ethylene carbonate (EC)/propylene carbonate (PC)) in HC half-cells in a voltage
range of 0.001–1.5 V. At 0.2 C, the HC achieved a high initial charge capacity of 273 mAh/g,
ICE of 87%, and 99% capacity retention after 50 cycles using 1 M NaBF4 in tetraglyme.
The carbonate-based, 1 M NaClO4 in EC/PC electrolyte only reached 178 mAh/g, and
exhibited lower ICE of 69% and capacity retention of 84%. It is worth noting that the ether-
based electrolyte achieved a considerable charge capacity of 223 mAh/g at a 2C rate. For
this material, Differential Scanning Calorimetry (DSC) showed higher onset temperatures
for the first exothermic peak (SEI cracking), which implies higher thermal stability. The
non-flammable nature of the ether-based electrolyte can reduce the need for extensive
safety measures in battery system storage. Along with the electrolyte’s contribution to
the battery’s long lifespan, the overall costs may be lowered, which is a critical aspect for
battery systems in stationary applications [99].

The development of aqueous SIBs is likely to be limited by their low energy density
and unsatisfying output potential due to the low electrochemical stability window of the
electrolyte (only 1.23 V under thermodynamic conditions). In addition, aqueous electrolytes
suffer from decomposition with hydrogen and oxygen evolution, resulting in poor cycling
stability [100].

SSEs are a non-flammable type of electrolyte, which eliminates the risk of fire hazards
and enhances the overall safety of the battery system. This is due to the high reactivity of
sodium, which could lead to a severe reaction with organic liquid electrolytes. SSEs exhibit
high thermal stability, wide electrochemical stability windows, and exceptional mechanical
properties [1,38]. This means they can withstand higher voltages without decomposing,
leading to increased energy density without compromising safety. Due to their solid
nature, SSEs can act as a more effective barrier against dendrites than porous separators in
liquid electrolytes, as they can be pierced causing a short-circuit in the cell [40]. Although
SSEs are more costly in terms of manufacturing and integration than liquid electrolytes,
their extended lifetime and low maintenance could reduce costs in the long run. This,
among other characteristics, could be advantageous, especially in stationary applications
where the size and weight of the battery are not as critical compared to other fields of
application [1]. SSEs can be divided into multiple types, such as solid polymer electrolytes
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(SPEs), composite solid polymer electrolytes (CSPEs), and inorganic solid electrolytes (ISEs).
All of these types have their unique characteristics and are under active development. In the
present day, ISEs (among which β′′-Al2O3 (beta alumina) and NASICON Na3Zr2Si2PO12

are the most used) are recognized for their high ionic conductivity and are frequently
employed in high-temperature Na/S batteries [29].

3.4. Separators

A wide operating temperature range and non-flammability are among the key qual-
ities of separators. In addition, the porosity and wettability of separators are equally
as important, as they affect the internal resistivity of the battery and affect its general
performance [101].

The most widely used separator materials in SIB applications include polyolefin-based
materials. This group contains, for example, polypropylene (PP), polyethylene (PE), and
glass fiber (GF). These materials are mainly used for their chemical stability and inexpen-
sive large-scale production. The disadvantages of PP and PE include poor wettability and
insufficient electrolyte retention when used with carbon-based electrolytes, e.g., propylene
carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). Another draw-
back is the low temperature range of PP and PE (their melting points are at 165 ◦C and 132
◦C, respectively). The greatest potential danger to the battery is the material’s expansion—
at higher temperatures, PP and PE tend to shrink, leading to internal short-circuits and
other critical issues. As far as GF separators are concerned, the thickness of the material
and its arrangement are not ideal. Due to the high porosity of GF, a larger amount of
electrolyte is needed for filling and poses a risk in the case of dendrite formation [102–105].
Separators based on cellulose can also be found, as it is the most widely used biopolymer
(plant biomass consists of 40–45 wt% of cellulosic content). It represents a very promising
material in the field of renewable materials, with numerous applications, including energy
storage systems. The downsides of cellulose-based separators include their flammability
and moisture content (depending on the manufacturing process); however, they are highly
available and affordable [106].

Aquion Energy, Inc., a company developing aqueous SIBs as an alternative to LIBs and
other systems for grid storage, uses a fire-safe seawater solution as an electrolyte and a syn-
thetic cotton separator for their batteries. The output potential of each cell would be limited,
however, as cells utilizing aqueous electrolytes suffer from a low electrochemical stability
window [107]. Faradion Limited uses low-viscosity nonaqueous liquid electrolytes along
with commercially widely used polyolenic separators to stay consistent with established
Li-ion cell manufacturing practices [99].

Unfortunately, the development of separators for SIBs has not received nearly as much
attention as the development of separators for LIBs. Although LIBs and SIBs work on the
same principle, different materials are used, as Na+ exhibits different kinetic properties
compared to Li+. It may be beneficial to investigate the suitability of LIB separators in SIBs
in the future, as they operate in similar temperature conditions and may utilize electrolytes
based on similar principles (e.g., salts in solvent—LiPF6 for Li-ion, NaPF6 for Na-ion), etc.

4. Conclusions

SIBs have come a long way since the beginning of their development, and are still
being advanced by introducing new materials, improving existing materials, and reducing
their environmental impact. Their impact is related both to the use of materials associated
with unethical mining practices (e.g., Co) and to materials used in electrodes, such as PVDF
binders (requiring the use of the toxic volatile solvent methylpyrrolidone (NMP) [108].
Fluorine contained in, e.g., PVDF and electrolyte salts poses a significant risk, especially at
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elevated temperatures, where toxic gases, particularly highly toxic hydrogen fluoride, can
be released when the battery catches on fire. For this reason, alternatives to this element
are being actively explored, not limited to the battery industry [109]. The production of
SIBs is cost-effective due to the use of Na, which is the most abundant alkaline element
in the Earth’s crust (2.36% of the continental crust), and also because of the possibility of
substituting Cu used in LIBs ($9.1/kg) with Al (USD 2.5/kg) for current collectors [11,12].

However, there is a limited range of usable materials due to the difficulty of production
and the possibility of scaling up. For example, the 3D-printed Au/rGO negative-electrode
material is very appealing from an electrochemical point of view, but it is not suitable
for mass production. Among the negative-electrode materials with the greatest scale-up
potential, HC can be considered due to its simple pyrolytic production from biological
materials (shells, algae, wood). PB belongs to the category of very promising positive-
electrode materials, with the possibility of hydrothermal synthesis using available materials,
such as Fe, Mn, and Ni. In the commercial sphere, the current development of Na-Ion
batteries is moving towards the use of widely studied HC and PB electrode materials
owing to their high capacities, cycling stability, and environmental friendliness. Regarding
electrolytes, great efforts have been made towards the development of SSEs that allow for
the application of sodium metal electrode materials. To date, however, the most used types
of electrolytes are aprotic solvents (EC/PC or EC/DMC) combined with sodium salts.

The availability and ease of production of electrode and electrolyte materials, along
with the ability to avoid less ideal materials like Co and Au, could pave the way for cheaper
production and the commercial implementation of sodium-ion batteries (SIBs) in stationary
storage facilities, ranging from small- to large-scale. These batteries would help ensure
the stability of power grids while reducing environmental impact. However, this is still a
theoretical near-future development of SIBs (initial prototypes and applications already
exist), as challenges such as the operating temperature ranges, safety, cyclability, and
current loads of battery systems have to be addressed.
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Abstract: Due to the large-scale use of renewable energy generation and its lack of inertia,
the frequency of the grid is extremely unstable. At the same time, with the vigorous
development of new energy vehicles, large-scale power batteries have huge potential
for renewable energy consumption. In this context, the Vehicle-to-Grid (V2G) method
is proposed. Electric vehicles are used as energy storage systems to provide frequency
regulation services as flexible power grid resources. However, when electric vehicles are
invested in large-scale frequency regulation, their own power battery durability will also
be affected. Based on this problem, the pseudo-two-dimensions (P2D) model of the battery
was established in this paper, and the effects of temperature, state of charge (SOC), reported
power, and frequency regulation conditions on battery capacity attenuation and negative
potential distribution were explored through experiments and simulations.

Keywords: pseudo-two-dimensions (P2D) model; state of charge (SOC); negative potential
distribution; battery durability

1. Introduction

The large-scale investment in renewable energy makes the modern power system shift
from the system based on rotary generators to the system based on inverters. Although
this is very beneficial for the collection and utilization of renewable energy, because the
power generation through the inverter does not provide enough mechanical inertia, it
leads to insufficient inertia in the power system [1]. Because the moment of inertia has the
ability to hinder the oscillation of the system and the frequency change speed is related
to the moment of inertia, when the inertia of the system is insufficient, no matter what
degree of power disturbance, it will lead to significant frequency fading and finally the
frequency instability problem. At present, the main method to solve this problem is to add
some virtual inertia into the system and deploy it appropriately to provide enough inertial
response so as to enhance the stability of the system.

When the new energy power generation system is put into the industry on a large
scale, considering the volatility characteristics of photovoltaic and wind power generation,
the battery energy storage system will play a crucial role in the microgrid to maintain the
continuous power supply for electric vehicle charging [2]. If the electric vehicle is charged
without order in the power grid, it will cause the power grid load fluctuation to increase;
that is, the peak value of the power grid fluctuation curve will increase. If the electric
vehicle is charged orderly in the grid, that is, the V2G method, it will make the grid load
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“cut peak and fill valley”. This method is widely used to adjust the frequency stability of
the power grid, that is, through the power grid to regulate the charging and discharging
power of electric vehicles, to provide auxiliary services for the power grid such as peak
regulation, frequency regulation, and promotion of new energy consumption.

Although the power battery is beneficial to the stability of the power grid in the process
of frequency modulation, its own life will also be affected to a certain extent. In the large-
scale application of V2G technology, the study of battery durability is the core scientific
issue of system design and economic evaluation. Because the V2G bidirectional charge and
discharge mode can significantly change the operating boundary conditions of the battery,
the asymmetric cycle condition caused by it will cause the electrochemical system to be
subjected to multi-dimensional stress coupling. The reciprocating insertion/withdrawal of
lithium ions between positive and negative electrodes will aggravate the lattice distortion
of electrode materials and the dynamic reconstruction of the solid electrolyte interface (SEI)
film. Meanwhile, frequent shallow charging and discharge cycles may lead to continuous
loss of active lithium in the local state of charge (SOC) region, accelerating capacity decay.
The random power fluctuation introduced by the grid dispatching demand will deteriorate
the thermodynamic state of the battery, resulting in the accumulation of mechanical stress
induced by temperature gradient. These multi-physics coupling degradation mechanisms
will not only shorten the battery service life but also directly affect the energy handling
capacity of the V2G system and the reliability of grid auxiliary services. Therefore, to
establish a battery durability prediction model based on a cyclic attenuation mechanism,
it is necessary to focus on quantifying the nonlinear relationship between capacity fade
rate and internal resistance rise under dynamic working conditions. By constructing a
state of health (SOH) prediction framework considering the synergistic effect of calendar
aging and cycle aging, the life optimization design of the V2G charging and discharging
strategy is realized. These will provide theoretical support for V2G’s participation in the
power market for battery residual value assessment, energy storage capacity allocation
optimization, and life-cycle carbon footprint calculation, and ultimately achieve the dual
goals of sustainable utilization of battery assets and improvement of grid elasticity in V2G
technology. At present, determining the aging and degradation mechanism of the battery is
the most important and most challenging goal, and the interaction of multiple factors in the
use environment or use mode makes the battery produce different aging effects; that is, the
capacity loss and the increase in internal resistance do not depend on the same variables,
so these processes are not single but complex. This makes understanding battery aging
a difficult task [3]. Over the years, many studies have attempted to explore the effects of
battery aging more deeply.

Li Y. et al. [4] took electric vehicles as reactive power compensation devices to par-
ticipate in voltage regulation of the power grid. The research results show that with the
increase in the number of electric vehicles connected to the grid, electric vehicles can assist
or even replace traditional reactive power compensation devices and obtain better volt-
age control performance. In order to alleviate the huge impact of disorderly charging of
large-scale electric vehicles on the distribution network. Considering that the reduction in
battery life will directly affect the economic benefits and sustainability of the V2G system,
the battery capacity protection research usually quantifies the battery aging generated
during the V2G process by different means and introduces the objective function. There
are also some studies that limit battery aging to an acceptable range by adding constraints.
Li S. et al. [5] pointed out that traditional methods for quantifying battery aging, such as
electrochemical models and artificial intelligence algorithms, can only quantify battery
degradation on a large time scale. Ebrahimi M. et al. [6] considered both cycle aging and
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calendar aging of batteries in the V2G process, but they believed that calendar aging only
had a linear relationship with time.

Because lithium-ion batteries contain a variety of different chemical materials, the
internal structure is very complex, and these materials will produce a variety of complex
side reactions during the battery charging and discharging process, resulting in diversified
aging mechanisms. Different aging modes will affect each other, and the same aging mecha-
nism may lead to multiple aging modes. Battery temperature, SOC, charge/discharge ratio,
depth of discharge, and cycle times are the main factors affecting battery aging [7]. There-
fore, in order to study the durability of batteries, it is necessary to establish a perfect battery
aging model. There are many kinds of battery aging models, and the accuracy, calculation
amount, and application range of different models are different. At present, electrochemical
models, empirical models, and semi-empirical models are commonly used in mainstream
research. In the 1990s, Newman’s group tried to estimate battery performance based on the
Butler–Volmer equation and the theory of porous electrodes. Darling and Newman [8] for
the first time tried to simulate the aging process in an electrochemical model and realized
a simple solvent oxidation reaction, obtained good results, and gave a good conclusion
on the selection of solvents. Dalverny et al. [9] determined the morphology of the LiCoO2

electrode by ab initio calculation. In addition, the phase transition process of lithium iron
phosphate (LFP) active particles was also theoretically studied. Ab initio calculations can
explain battery aging by estimating the energy associated with solvent decomposition
or dissolution of lithium components. Tasaki et al. [10] have linked the dissolution of
lithium salts near the negative solid electrolyte interface (SEI) to calendar aging. As for
empirical models, the aging model based on Arrhenius is the most widely used. Based on
the empirical formula of the relationship between chemical reaction rate constant and tem-
perature, the model can model cyclic aging and calendar aging, respectively, when various
stress factors are comprehensively considered [7]. In recent years, with the development
of artificial intelligence technology, the battery aging model based on a neural network
can accurately reflect the relationship between various factors and capacity decay without
establishing complicated mathematical expressions and updating network parameters
through training [11]. The semi-empirical aging model not only has the simplicity and ease
of use of the empirical model but also makes full use of the basic knowledge of the physical
and chemical characteristics of the battery, which is very suitable for offline analysis. The
Arrhenius formula is used to correct the growth of the SEI film and electrolyte loss during
the initial use of the battery in the electrochemical model, which improved the accuracy
of the model under different environments [12]. Based on the hypothesis that SEI film
growth leads to battery degradation, Ecker M. et al. [13] combined the electrothermal
model with empirical mathematical expressions to establish a semi-empirical aging model
that can analyze battery degradation under different electrothermal environments. The
lithium evolution behavior of lithium-ion batteries is one of the key factors leading to
battery life decay, and the lithium evolution situation of batteries is mainly reflected by the
negative electrode position of the battery, so this study will mainly focus on the analysis of
the negative electrode potential distribution of lithium-ion batteries under the frequency
modulation condition.

Through the above findings, the existing models, mostly based on laboratory-
accelerated aging data, fail to effectively reflect the irregular charge–discharge charac-
teristics brought by the grid demand response in the actual V2G working conditions.
Secondly, the current economic analysis generally adopts a linear attenuation model, ig-
noring key nonlinear factors such as temperature change, charge and discharge rate, SOC,
discharge depth heterogeneity, and calendar aging coupling effect. Third, most studies
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focus on battery degradation but do not establish a dynamic optimization model between
battery degradation and power grid frequency fluctuations.

The goal of this study is to minimize the attenuation of lithium-ion batteries and
maximize the benefits of the grid while controlling the frequency stability of the grid.
Firstly, the typical frequency regulation conditions are obtained in the American PJM
market. Secondly, a P2D model related to lithium-ion batteries was built by studying the
power performance and durability mechanism of lithium-ion batteries, and the above
conditions were input into the model to investigate the distribution of the model’s negative
potential under different SOC, temperature, and reported power, and the results were
analyzed to find out the influence of different factors on the battery. The research route is
shown in Figure 1. In the future, the frequency regulation model will be built according to
the relevant knowledge of the power system, and the P2D model will be built according
to the above results, and the two will be coupled. The coupling model is optimized to
minimize the negative impact on the negative battery potential. At the same time, it is also
necessary to consider that electric vehicles participate in the frequency regulation of the
grid, and the grid gains the most benefits.

Figure 1. Research framework.

2. P2D Electrochemical Model Development

Based on the theory of porous electrodes, the battery P2D model describes the mass
transfer, dynamics, thermodynamics, and other processes inside the battery through a set
of partial differential equations. On the basis of the basic composition, the P2D model
has the following three core assumptions: the electrode material is composed of spherical
particles; the double-layer effect is not considered; and the positive and negative collector
conductivities are very high, so the collector does not change significantly in the y- and
z-axes; in other words, the electrochemical reaction dynamics only work in the x-axis. These
three core assumptions simplify the battery model building process at three levels. The
regular porous structure of spherical particles avoids the complex structure and particle
distribution of active substances in practice, which is the most basic physical simplification
method. Secondly, avoiding the double-layer effect can greatly simplify the distribution
of ions on the electrolyte and electrode surface. Limiting the electrochemical dynamics
to the x-axis further facilitates the mathematical processing. The internal structure of the
battery is roughly shown in Figure 2. To study a battery from a mechanism point of view,
it is necessary to investigate its internal material distribution and potential distribution,
corresponding to the material transfer and charge transfer within the battery, respectively.
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Therefore, in order to quantitatively describe the P2D model, it is necessary to establish
the solid–liquid phase potential distribution, solid–liquid-phase diffusion process, electro-
chemical reaction model of interfacial reaction, and charge conservation as constraints. The
following process is shown.

Figure 2. Battery internal structure diagram.

Solid-phase potential distribution: According to the conductivity of the electrode
material, the relationship between current and potential gradient can be expressed
(Equation (1)) as follows:

−σ
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∂ϕs
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= is (1)

where σ
e f f
s is a solid-phase effective conductivity; ϕs is the potential for solid phase; and is

is the current density. The minus sign in the formula is because the x direction takes the
negative extreme as the origin during modeling, and the field strength and current direction
are opposite; that is, the current inside the battery flows from the negative electrode to the
positive electrode, while the field strength points from the positive electrode to the negative
electrode. The boundary conditions for this equation are expressed as Equations (2) and
(3).
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Liquid-phase potential distribution: According to the liquid-phase conductivity
and particle-specific surface area, the relationship between the potential gradient and
lithium-ion concentration, reaction rate, temperature, and current can be expressed through
Equation (4).
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where σ
e f f
e is the liquid effective conductivity; ϕe is the potential for the liquid phase; jn

is the solid–liquid junction chemical reaction rate per unit area; a is the particle-specific
surface area; F is the Faraday constant; t0

+ is the lithium-ion transference number; R is the
state of the ideal gas constant; T is the battery temperature; and ce is the liquid lithium-ion
concentration. Integrating x on both sides of this equation yields the following equation
(Equation (6)), where the boundary condition is shown.
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Solid-phase ion diffusion: According to the solid-phase diffusion coefficient, the
distribution of lithium-ion concentration over time in the polar diameter direction can be
obtained via the following equation:
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where cs is the solid lithium-ion concentration; Ds is the solid-phase diffusion coefficient;
t is time; and r is the pole size. This equation is a polar form of Fick’s second law and
represents the diffusion process of matter driven only by concentration. In the P2D model,
the lithium ions of the porous electrode are removed or generated from the surface of
active particles, so the lithium ions inside active particles will appear as a concentration
gradient and will only be driven by it; therefore, the diffusion process of lithium ions in
the solid particles can be described by this model. The boundary conditions are shown as
Equations (8) and (9).
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where Rs is the grain boundary radius, and jn is the molar flow rate for ions.
Liquid-phase ion diffusion: Based on the diffusion coefficient and porosity of the

liquid phase, and combined with the reaction process, the distribution of lithium-ion
concentration in the liquid phase with time can be obtained via the following expression:
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where ce is the liquid lithium-ion concentration; De f f
e is the liquid-phase diffusion coeffi-

cient; εe is the electrode porosity; t is time; t0
+ is the lithium-ion transference number; jn is

the solid–liquid junction chemical reaction rate per unit area; and a is the particle-specific
surface area. This is a revision of Fick’s second law, where lithium ions migrate from the
negative active particles into the electrolyte diffusion, and eventually become embedded in
the positive active particles. There is a lithium-ion concentration gradient in the battery
internal electrolyte; this concentration gradient is driven by lithium-ion diffusion, and, at
the same time, by the internal electric field and migration. The boundary conditions are
shown in Equation (11).
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Solid-charge conservation: As a constraint to the P2D model, it describes that the
number of disembedded or generated lithium ions during the reaction is equal to the
number of charge transfer, as shown in Equation (12).

−∂is
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where jn is the solid–liquid junction chemical reaction rate per unit area; a is the particle-
specific surface area; F is the Faraday constant; σ

e f f
s is the solid-phase effective conductivity;

ϕs is the potential for solid phase; and is is the current density. Boundary conditions are
expressed via Equation (13).
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Solid–liquid interface reaction: According to the Bulter–Volmer equation of the electro-
chemical reaction of lithium ions during deintercalation and formation at the solid–liquid
interface, changes in the current of the electrode and changes in the electrode potential can
be described through Equation (14).
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where jn is the current density; i0 is the exchange-current density; αan and αca are migration
coefficients of anions and cations, respectively; ηact is the electrode potential; R is the state
of the ideal gas constant; and T is the battery temperature.

After the mathematical foundation of the P2D model is completed, parameter identifi-
cation of the research object is needed to further calibrate the parameters required by the
P2D model. Finally, a model was built in the COMSOL Multiphysics® ver5.6 simulation
software. The model is shown in Figure 3. To achieve subsequent measurements, 20 probes
were selected at an interval of 1 × 10−5 m and numbered 120 from left to right.

 

Figure 3. P2D model in COMSOL.
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3. Experimental Setup

3.1. Durability Test Design

In this study, a 51 Ah ternary aluminum shell power lithium battery is used, and its
nominal voltage is 3.7 V. The battery is suitable for a charging operating temperature of
20 ◦C to 50 ◦C, a discharge operating temperature from −20 ◦C to 50 ◦C, a charging limit
voltage of 4.2 V, a discharge cut-off voltage of 2.7 V, and a main size of 148 × 27 × 92 mm.

In the battery durability test, the calendar aging of the battery is often ignored, and
only cyclic aging is considered; that is, the battery is continuously charged and discharged,
and the loss of battery capacity is investigated when a certain number of cycles are reached.
In this study, the durability of the battery is explored under the frequency modulation
condition, which can be regarded as the superposition of different pulse conditions, as
shown in Figure 4. The following four test variables were selected for this test: SOC, half-
pulse period, power, and temperature. The corresponding relationship between specific
variables and levels is shown in Table 1.

Figure 4. The superposition of different pulse conditions.

Table 1. Durability test variables.

Level
Factor 1 Factor 2 Factor 3 Factor 4

SOC Half-Pulse Period (s) Power Temperature (◦C)

1 0.2 2 0.1 C*V 0
2 0.5 150 0.5 C*V 25
3 0.8 300 1 C*V 45

According to the factors and levels given in this table, a total of 81 sets of tests are
required, covering all factor combinations. However, the durability test is a time-consuming
test with limited equipment. In order to solve the problem of excessive number of tests
and to cover the influence of various factors on the test results, the orthogonal test method
was adopted in this study to simplify the number of experimental groups. This method
has the characteristics of uniform dispersion and neat comparability. The final orthogonal
test factor combination is shown in Table 2, with a total of 9 groups of tests. In this study,
9 batteries were tested and numbered, the same as the orthogonal test numbers; each cell
corresponds to a set of factor combinations, and its capacity attenuation was measured
after several cycles.

Each durability test consists of approximately 18 h of capacity testing and 50 h of
bidirectional pulse tests. The capacity test mainly includes the following processes: the
battery is placed in a 25 ◦C incubator Ito fully charge; constant discharge is set at 17 A
to 2.5 V, let stand; charge is set at 17 A; constant current is set to 4.2 V to fully charge
and stand; and repeat the process 3 to 5 times. The current capacity of lithium-ion bat-
tery can be obtained by calculating the average of multiple discharge capacities by the
ampere–hour integration method. After the battery capacity is measured, the battery is
tested in a bidirectional pulse condition according to the combination of test factors; each
test lasts about 50 h, and the capacity test is carried out after each bidirectional pulse
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condition test, i.e., a durability test. Three rounds of durability tests were carried out in
this study.

Table 2. Durability test orthogonal table.

No. Factor 1 Factor 2 Factor 3 Factor 4

1 1 1 1 1
2 1 2 3 2
3 1 3 2 3
4 2 1 3 3
5 2 2 2 1
6 2 3 1 2
7 3 1 2 2
8 3 2 1 3
9 3 3 3 1

3.2. Negative Potential Simulation Test Design

In order to explore the influence of multiple factors on the negative battery potential,
the following four factors were selected: SOC, temperature, reported power, and frequency
regulation condition. Each factor is selected according to its characteristics that meet the
actual needs of several levels. Reported power refers to the maximum capacity of the
battery allowed to participate in frequency regulation, calculated by the product of the
maximum current and the average voltage. The average voltage refers to the highest cut-off
voltage and the lowest cut-off voltage, so the reported power can also reflect the full rate
value of the battery participating in frequency modulation charge and discharge current.

As for frequency regulation condition, based on the PJM history instruction frequency
regulation 2020, selected has the following characteristics of six kinds of typical working
conditions: (1) the maximum frequency of full-rate charge and discharge; (2) the minimum
frequency of full-rate charge and discharge; (3) the maximum frequency regulation mileage;
(4) the minimum frequency regulation range; (5) the maximum integral value of current
with respect to time in charge and discharge process; and (6) the minimum integral value
of current with respect to time in charge and discharge process. The corresponding rela-
tionship between specific factors and levels is shown in Table 3. Six points of the frequency
regulation condition correspond to levels 1 to 6 of factor 4, as seen in Table 3.

Table 3. Simulation test variables.

Level
Factor 1 Factor 2 Factor 3 Factor 4

SOC Temperature (◦C) Power Frequency Regulation Condition

1 0.2 −10 0.1 C*V p_1_max
2 0.4 0 0.5 C*V p_1_min
3 0.6 25 1 C*V m_max
4 0.8 45 2 C*V m_min
5 3 C*V int_max
6 int_min

Among them, frequency regulation mileage refers to the absolute value of the differ-
ence between the output value at the end of each control command and the output value
of the command response after it is issued. In this study, it is the absolute value of the
difference between adjacent two-second frequency regulation instructions, and the total
frequency regulation mileage is the sum of frequency regulation mileage in the selected
time interval. In order to make the selected frequency regulation conditions more universal
and consider the complexity of the selection process, this study first selected four typical
days in the whole year—March 1, June 1, September 1, and December 1—that is, one day
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in each of the four seasons. Then, in these four days, with one minute as the step length,
Matlab was used to calculate the full rate charge and discharge frequency. Frequency regu-
lation mileage and the integral value of the current with respect to time in the charge and
discharge process every 5 min were compared in order to obtain six five-minute frequency
regulation conditions.

The same as the durability test, this part adopts the orthogonal test method and
obtains 49 groups of simulation tests according to the above factor levels. The specific
factor colocation is shown in Table 4.

Table 4. Simulation test orthogonal table.

No. Factor 1 Factor 2 Factor 3 Factor 4

1 1 1 1 1
2 1 2 3 4
3 1 3 5 6
4 1 4 5 3
5 1 4 2 6
6 1 4 4 2
7 1 4 5 5
8 2 1 5 5
9 2 2 2 2

10 2 3 4 5
11 2 4 5 1
12 2 4 1 4
13 2 4 3 6
14 2 4 5 3
15 3 1 5 4
16 3 2 1 6
17 3 3 3 3
18 3 4 5 6
19 3 4 5 2
20 3 4 2 5
21 3 4 4 1
22 4 1 3 5
23 4 2 5 5
24 4 3 2 1
25 4 4 4 4
26 4 4 5 6
27 4 4 1 3
28 4 4 3 6
29 4 1 2 6
30 4 2 1 3
31 4 3 1 6
32 4 4 3 2
33 4 3 4 5
34 4 2 3 2
35 3 1 2 4
36 3 1 3 5
37 3 2 3 1
38 3 3 5 4
39 3 4 2 6
40 2 3 4 3
41 2 2 5 5
42 2 1 1 2
43 2 1 2 3
44 2 2 4 6
45 1 3 5 1
46 1 4 1 5
47 1 3 3 1
48 1 2 5 4
49 1 1 4 5
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4. Result and Discussion

4.1. Durability Test Result

The capacity loss data obtained from the three-round durability test were recorded,
respectively, and the corresponding data of the combination of test factors and capacity loss
for each group were obtained, as shown in Table 5. Next, the range analysis method is used
to analyze the capacity loss results. The range analysis has the advantages of simplicity and
intuition and is suitable for screening results with low accuracy requirements. However, it
cannot estimate the size of the error or accurately estimate the importance of the influence
of various factors on the results. The results of three rounds of durability analysis are
shown in Figure 5. The Kavg in this figure is the average value of the test data applied
to a certain level of a factor. In order to obtain the comparison among levels within each
factor, we can compare the impact of each level on capacity loss by comparing the Kavg of
each level.

Table 5. Durability orthogonal test results.

No. Factor 1 Factor 2 Factor 3 Factor 4

Capacity Loss (Ah)

The First
Round

The
Second
Round

The
Third
Round

1 1 1 1 1 0.002646 0.03314 0.201544
2 1 2 3 2 0.00789 0.029742 0.126122
3 1 3 2 3 0.35454 0.38947 0.601268
4 2 1 3 3 0.405462 0.446374 0.66037
5 2 2 2 1 0.233194 0.192172 0.23746
6 2 3 1 2 0.031688 0.008698 0.145326
7 3 1 2 2 0.112026 0.182386 0.210076
8 3 2 1 3 0.12343 0.22568 0.289484
9 3 3 3 1 0.852186 1.10946 0.882492

Compared with factor 1, it can be seen that the impact of each round of SOC on
capacity loss presents a positive correlation trend; that is, the capacity loss increases with
the increase in SOC, and the capacity loss is the smallest when SOC is 0.2. This is because
the battery SOC and the battery voltage are highly correlated, and the battery voltage
can be derived when the battery SOC and current are known. For the battery, the higher
the SOC, the higher the terminal voltage; that is, the lower the negative potential, which
increases the rate of negative side reactions and SEI film thickening, the faster the battery
aging rate and capacity loss.

The decrease in the pulse period indicates that the frequency of charge and discharge
conversion is increasing; that is, the direction of movement of lithium ions in the electrolyte
is constantly changing and the change rate is accelerating, which will lead to the acceleration
of the diffusion rate of lithium ions in the electrolyte. Moreover, this is conducive to
solving the lithium deposition structure, but not conducive to the occurrence of the lithium
evolution reaction, ultimately resulting in reduced capacity loss. When the pulse period is
too small, i.e., the frequency is too high, the internal reaction rate becomes too fast, resulting
in a rise in battery temperature, which is not conducive to reducing capacity loss. This can
be explained by the fact that factor 2 has the smallest capacity loss when the half-pulse
period is 150 s.
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Figure 5. The Kavg of each level of the factor within first, second, and third rounds.
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The reported power is related to the maximum charge and discharge currents—the
greater the reported power, the greater the maximum charge and discharge current and
the current during the charge and discharge process. Although this will accelerate the
main reaction rate, it will also lead to the acceleration of the side reaction rate, which is
conducive to the occurrence of lithium evolution reaction and SEI film thickening, making
the loss of available lithium result in an increased capacity loss (factor 3 at 0.1 C*V) and
minimum loss of battery capacity.

Compared with factor 4, it can be seen that each round of temperature has the smallest
impact on capacity loss at 25 ◦C; that is, low and high temperatures bring greater capacity
loss, which is in line with the appropriate operating temperature of general commercial
batteries, i.e., 10–35 ◦C. This is because the temperature will affect the internal reaction rate
of the battery. A temperature that is too high will speed up the reaction rate and the side
reaction rate, resulting in an increased capacity loss. A temperature that is too low will lead
to an increase in internal resistance, resulting in an intensified polarization phenomenon,
which will lead to additional side reactions, especially at low temperatures. Charging may
lead to the occurrence of lithium evolution, where the available lithium content is reduced
so that the battery is rapidly degraded; the brittleness of the material at low temperatures
will also affect battery life.

4.2. Negative Potential Simulation Test Results

The negative electrode potential refers to the solid–liquid-phase potential difference
on the surface of the negative particle. When it is greater than the equilibrium potential
of the lithium evolution reaction, the lithium evolution phenomenon will occur in the
negative electrode of the battery. The phenomenon of lithium evolution leads to the ap-
pearance of lithium dendrites on the negative electrode surface, further leading to the loss
of available lithium, increased polarization, and thus reduced battery capacity. Moreover,
the longitudinal existence of a lithium-ion concentration gradient causes an uneven distri-
bution of lithium dendrites, which will even puncture the diaphragm, resulting in a short
circuit inside the battery. Therefore, the lithium evolution criterion can be expressed by
Equation (15).

ϕs − ϕl < Ue,2 (15)

where ϕs is the solid-phase potential; ϕl is the liquid-phase potential; and Ue,2 is the lithium
reaction equilibrium potential, usually considered to be 0 V (relative to Li/Li+).

In this paper, the 15th group of test results is selected for display, as shown in Figure 6.
Here, the abscissa of the thickness of the battery is present, the units are meters, and the
diagram is the negative part of the selection, so the range is

[
0.9 × 10−5] m. The ordinate is

simulation time and the units are seconds, with a total of 300 s. The color diagram shows
the negative electrode potential at the corresponding position and time, and the units are
mV. To facilitate the detection of negative electrode potential, the color diagram interval is
adjusted to [−100, 50] mV.

It can be seen from the above-mentioned negative potential distribution results that
some simulation groups have negative electrode potentials during the simulation pro-
cess. Through the factor colocation of these groups, a qualitative conclusion can be
obtained—under different working conditions, high SOC, low temperature, and high
charging rate, negative electrode potential will appear negative. In addition, it can also
be found that along the positive direction of the x-axis, the negative electrode potential
has a decreasing trend; that is, the closer the electrode and the electrolyte interface, the
smaller the negative electrode potential. Therefore, it is not only necessary to consider
the influence of the time dimension on the negative potential, but also to take the x-axis
direction into account. In order to better obtain the degree of influence of various factors
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on this phenomenon, statistical means are used for quantitative analysis. Therefore, in this
study, the part of the negative electrode potential is a double integral for time and the x-axis
direction, which can be briefly written as ϕneg × t × l. The obtained integral value was
analyzed. The specific results are shown in Table 6. In order to express the results easily,
the simulation groups without negative electrode potentials are not included in Table 6;
that is, the integral value of these groups is 0. Although these groups do not appear in
Table 6, they must be included in the data analysis process.

Figure 6. Negative potential distribution results.

Table 6. Negative potential negative integral result.

No. Factor 1 Factor 2 Factor 3 Factor 4 ϕneg × t × l

2 1 2 3 4 0.00067558
8 2 1 5 5 0.4674
15 3 1 5 4 0.9619
22 4 1 3 5 0.3432
23 4 2 5 5 0.3573
35 3 1 2 4 0.1467
36 3 1 3 5 0.2518
37 3 2 3 1 0.8525
41 2 2 5 5 0.1939
43 2 1 2 3 0.7514
48 1 2 5 4 0.2517
49 1 1 4 5 0.1856

Multiple linear regression analysis among factor 1, factor 2, factor 3 and factor 4 were
used as independent variables and dependent variables for multiple linear regression
analyses. The R-square value of the model was 0.355, meaning that factor 1, factor 2, factor
3, and factor 4 could explain 35.5% of the variation of ϕneg × t × l. During the F-test of
the model, it was found that the model passed the F-test (F = 6.049, p = 0.001 < 0.05),
indicating that at least one of the factors (factor 1, factor 2, factor 3, and factor 4) would
have an impact on ϕneg × t × l. In addition, by testing the multicollinearity of the model,
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it is found that the variance inflation factor (VIF) values in the model are all less than 5,
which means that there is no collinearity problem, and the D-W value is near the number
2, which indicates that there is no autocorrelation in the model and there is no correlation
between the sample data. The final analysis results showed that the regression coefficients
corresponding to factor 1, factor 2, factor 3, and factor 4 were 0.021 (t = 0.852, p = 0.399 > 0.05),
−0.110 (t = −4.687, p = 0.000 < 0.01), 0.040 (t = 2.098, p = 0.042 < 0.05), and
−0.008 (t = −0.512, p = 0.611 > 0.05), respectively.

It means that factor 2 has a significant negative correlation with ϕneg × t × l; that
is, it has the greatest impact on the result at −10 ◦C. Factor 3 has a significant positive
correlation with ϕneg × t × l; that is, it has the greatest impact on the result when the
maximum charging rate is 3 C. Factor 1 and factor 4 have no significant correlation with
ϕneg × t × l.

Multiple linear regression analysis in factors: In order to further analyze the internal
influences of factor 1 and factor 4 on ϕneg × t× l, internal multiple linear regression analysis
was used, respectively. Firstly, factor 1 is analyzed, and level 1 is taken as a reference,
and the linear regression coefficients of the four levels are 0.036, 0.081, 0.148, and 0.017,
respectively. Compared with the linear regression coefficients of the other three levels, it
can be seen that the coefficient at level 3 is the largest, so it can be considered that the SOC
of 0.6 in factor 1 has the greatest impact on ϕneg × t × l. Next, factor 4 is analyzed, and level
1 is taken as a reference. The linear regression coefficients of the six levels are 0.122, −0.122,
0.073, −0.014, −0.122, and 0.04. Comparing the linear regression coefficients of the other
five levels, it can be seen that between level 1 and level 2, level 1 is larger; between level 3
and level 4, level 3 is larger; and between level 5 and level 6, level 6 is larger. Therefore, it
can be considered that in factor 4, the maximum integral value of current with respect to
time in the charge and discharge process, the maximum frequency of the full rate charge
and discharge, and the minimum frequency regulation range have the greatest influence
on ϕneg × t × l.

To summarize, the analysis of temperature and reported power aligns with expecta-
tions, indicating that a lower temperature and higher charging rate have a greater impact
on negative potential below 0. However, regarding SOC, this study reveals that the greatest
influence is not observed at SOC of 0.8. This discrepancy may be attributed to the fact
that the orthogonal simulation test conducted in this study did not encompass all possible
factor combinations, resulting in some results being influenced by factor coupling and
thereby affecting the isolated effect of individual factors. Furthermore, improvements
can be made to the test methodology by selecting frequency regulation conditions for
quantitative evaluation across six levels before analyzing the joint influence of three other
factors on the target under investigation.

4.3. Theoretical Analysis

For temperature, there are two main mechanisms to affect the electrochemical system
of the battery, i.e., one is the Arrhenius Equation (16) and the other is the Stokes–Einstein
Equation (17).

k = A · e−
Ea
(RT) (16)

D =
kBT

6πηr
(17)

where A refers to the pre-factor; Ea is the activation energy; R is the gas constant; T is
the absolute temperature; D represents the diffusion coefficient of the molecule; kB is the
Boltzmann constant; η is the viscosity of the solvent; and r is the radius of the molecule. It
can be seen that the increase in electrolyte viscosity at low temperature reduces the diffusion
coefficient of lithium ions, leading to the increase in charge transfer impedance and ohmic
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polarization. Furthermore, the kinetics of lithium embedding into negative graphite are
hindered, and the concentration gradient of lithium ions on the negative surface increases,
which may reduce the local potential to the lithium metal precipitation potential, form
lithium dendrites, consume active lithium, and accelerate the SEI film rupture. At high
temperatures, the side reaction accelerates, the dissolution or regeneration of the SEI film
intensifies, the active lithium becomes continuously consumed, and the positive transition
metal dissolves and migrates to the negative electrode to destroy the SEI film. Therefore, at
low temperatures, the negative polarization increases, the potential distribution becomes
more uneven, and the lithium threshold becomes easily reachable in local areas. At high
temperatures, the SEI impedance decreases, the potential distribution becomes uniform,
and the overall lithium loss accelerates. However, whether it is a high or low temperature,
it will lead to a reduction in the effective lithium inventory, while the active material loss.

State of charge (SOC) directly affects the negative equilibrium potential, according to
the Nernst Equation (18).

ϕeq = ϕ0 +
RT
F

ln

(
csur f

Li+

cmax
Li − csur f

Li+

)
(18)

At high SOC, csur f
Li+ approaches cmax

Li , causing ϕeq to approach the lithium metal deposition
threshold. At this time, the local current density distribution presents significant non-
uniformity. The Butler–Volmer Equation (19) is expressed as follows:

j = j0
[
eαa Fη/RT − eαc Fη/RT

]
(19)

When η > 0 (charging process), the high SOC region preferentially triggers the lithium
evolution side reaction, resulting in irreversible capacity loss.

As for charge and discharge ratio, high ratio will cause third-order polarization
coupling. One is the ohmic polarization, i.e., ΔϕΩ = I · RΩ, which is related to collector
and electrolyte conductivity. The second is the electrochemical polarization, controlled by
the Butler–Volmer kinetics. The third is the concentration polarization, which follows Fick’s
second law. The porous electrode theory shows that the local current density distribution
satisfies Equation (20).

∇ ·
(

σe f f∇φs

)
= as j (20)

It can be seen that a significant concentration gradient is formed inside the pore of the
electrode at a high power rate, leading to lithium deposition, preferentially in the edge
region.

In addition, the half-pulse period affects the dynamic response characteristics of the
electrode, and the characteristic time constant τ_diff is determined by the diffusion process
Equation (21).

τdi f f =
L2

D
(21)

where L is the diffusion characteristic length. When τ < τdi f f , the pulse process causes an
unsteady-state concentration fluctuation, ultimately resulting in an “insufficient relaxation”
effect. When τ > τdi f f , lithium ions can be fully redistributed. The high-frequency pulse
leads to periodic potential oscillation on the surface of the negative electrode, which
aggravates the mechanical stress damage of the SEI film.

5. Conclusions

In this paper, a large number of research studies on power grid frequency regulation,
virtual inertia, and battery durability are investigated. The virtual inertia system and battery
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life estimation models are introduced, and the advantages and disadvantages of each model
are given. Based on the above-mentioned problems, the effects of temperature, SOC, half-
pulse period, and reported power on battery capacity loss were investigated experimentally.
The range analysis method is used to compare the difference in the influence of four
factors on capacity loss; the internal influence of each factor is compared. In addition, in
order to simplify the number of experimental groups, the orthogonal test method was
also introduced.

Since the lithium evolution phenomenon of the battery will lead to the capacity loss
of the battery, and the criterion that directly leads to the lithium evolution phenomenon
states that the negative potential is less than zero, this study explored the influence of
temperature, SOC, reported power, and frequency regulation conditions on the negative
potential distribution of the battery and the degree of lithium evolution from the perspec-
tive of simulation. The P2D model was built according to the dynamic and durability
mechanisms of lithium-ion batteries. The orthogonal test was also used to simplify the
number of simulation groups; the negative electrode potential distribution diagram under
each group of simulations and the qualitative results were obtained. Then, the battery
thickness and simulation time are integrated with the negative electrode potential, and the
integral value obtained is analyzed to obtain certain quantitative results.

Author Contributions: Conceptualization, Y.T. and L.W.; methodology, Y.T.; software, Y.T.; validation,
Y.T.; formal analysis, Y.T.; investigation, Y.T.; resources, L.W.; data curation, L.W.; writing—original
draft preparation, Y.T.; writing—review and editing, G.Y.; visualization, Y.T.; supervision, C.L.; project
administration, L.W.; funding acquisition, L.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by supported by the National Key Research and Development
Program of China (Grant No.2023YFB2504100), the National Natural Science Foundation of China
(52277228), the National Natural Science Foundation of China (52077208), and the Beijing Natural
Science Foundation (L243021).

Data Availability Statement: The original contributions presented in this study are included within
this article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of this study, in the collection, analysis, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

SOC state of charge
P2D pseudo-two-dimensions
V2G Vehicle-to-Grid
LFP lithium iron phosphate
SEI solid electrolyte interface

References

1. Caulfield, B.; Furszyfer, D.; Stefaniec, A.; Foley, A. Measuring the equity impacts of government subsidies for electric vehicles.
Energy 2022, 248, 123588. [CrossRef]

2. Zou, W.; Li, J.; Yang, Q.; Wan, X.; He, Y.; Lan, H. A real-time energy management approach with fuel cell and battery competition-
synergy control for the fuel cell vehicle. Appl. Energy 2023, 334, 120667. [CrossRef]

3. Capacity Degradation Minimization Oriented Optimization for the Pulse Preheating of Lithium-Ion Batteries Under Low
Temperature—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S2352152X20315838
(accessed on 18 January 2025).

117



Batteries 2025, 11, 75

4. Li, Y.; Li, L.; Peng, C.; Zou, J. An MPC based optimized control approach for EV-based voltage regulation in distribution grid.
Electr. Power Syst. Res. 2019, 172, 152–160. [CrossRef]

5. Optimization of Bi-Directional V2G Behavior with Active Battery Anti-Aging Scheduling. Available online: https://ieeexplore.
ieee.org/document/8951120 (accessed on 18 January 2025).

6. Ebrahimi, M.; Rastegar, M.; Mohammadi, M.; Palomino, A.; Parvania, M. Stochastic Charging Optimization of V2G-Capable
PEVs: A Comprehensive Model for Battery Aging and Customer Service Quality. IEEE Trans. Transp. Electrif. 2020, 6, 1026–1034.
[CrossRef]

7. Vermeer, W.; Chandra Mouli, G.R.; Bauer, P. A Comprehensive Review on the Characteristics and Modeling of Lithium-Ion
Battery Aging. IEEE Trans. Transp. Electrif. 2022, 8, 2205–2232. [CrossRef]

8. Darling, R.; Newman, J. Modeling Side Reactions in Composite LiyMn2 O 4 Electrodes. J. Electrochem. Soc. 1998, 145, 990.
[CrossRef]

9. Dalverny, A.-L.; Filhol, J.-S.; Doublet, M.-L. Interface electrochemistry in conversion materials for Li-ion batteries. J. Mater. Chem.
2011, 21, 10134–10142. [CrossRef]

10. Tasaki, K.; Harris, S.J. Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode
in Organic Solvents. J. Phys. Chem. C 2010, 114, 8076–8083. [CrossRef]

11. Chaoui, H.; Ibe-Ekeocha, C.C. State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural
Networks. IEEE Trans. Veh. Technol. 2017, 66, 8773–8783. [CrossRef]

12. Degradation Cost Analysis of Li-Ion Batteries in the Capacity Market with Different Degradation Models. Available online:
https://www.mdpi.com/2079-9292/9/1/90 (accessed on 18 January 2025).

13. Ecker, M.; Gerschler, J.B.; Vogel, J.; Käbitz, S.; Hust, F.; Dechent, P.; Sauer, D.U. Development of a lifetime prediction model for
lithium-ion batteries based on extended accelerated aging test data. J. Power Sources 2012, 215, 248–257. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

118



Article

Inductor-Based Active Balancing Topology with Wide Voltage
Range Capability

Hourong Song *, Branislav Hredzak * and John Fletcher

School of Electrical Engineering and Telecommunications, University of New South Wales,
Sydney, NSW 2052, Australia; john.fletcher@unsw.edu.au
* Correspondence: hourong.song@student.unsw.edu.au (H.S.); b.hredzak@unsw.edu.au (B.H.)

Abstract: With the increasing number of batteries integrated into the grid, the electrifi-
cation of transportation, and the importance of reusing secondary batteries to preserve
natural resources, active balancing techniques are becoming critical for optimizing bat-
tery performance, ensuring safety, and extending their lifespan. There is a demand for
battery management solutions that can efficiently manage the balancing of battery cells
across a wide range of voltage levels. This paper proposes a new inductor-based active
balancing topology that achieves balancing by transferring energy from battery cells to
the battery pack. One of its main advantages over existing designs is that it can operate
over a wide battery cell voltage range. Moreover, multicell balancing with a balancing
current independent of the imbalance level can be achieved by adjusting the width and
interval of pulses. The proposed topology can be implemented using traditional low-side
gate driving integrated circuits, avoiding the need for expensive isolated power modules
and high-side gate drivers. Sample balancer designs for low-voltage battery cells as well as
higher-voltage cells are provided. The presented experimental results verify the operation
of the proposed balancer on a lithium-ion battery pack.

Keywords: battery; energy storage; active balancing; driver circuits; battery management
systems

1. Introduction

Energy storage systems, such as batteries and supercapacitors, are used in various
commercial and consumer applications, such as electric vehicles (EVs), uninterruptible
power supplies (UPS), and distribution systems. To meet the required power demand,
individual cells are interconnected in both series and parallel configurations to achieve the
necessary voltage and power ratings [1].

The automotive industry experienced a significant increase in the demand for lithium-
ion (Li-ion) batteries, rising from 330 GWh in 2021 to 550 GWh in 2022, marking a 65%
increase. This uptick in demand can be attributed to the growing sales of electric passenger
cars, which saw a remarkable 55% increase in new registrations in 2022 compared to 2021 [2].
Unfortunately, this surge in demand will result in the retirement of 100–200 gigawatt-hours
worth of batteries by 2030 as they are no longer suitable for EV use. This will present a
significant challenge, as the toxic content and reactive properties of the batteries are hazardous.

As the demand for batteries escalates with the rise of renewable energy systems and
electric vehicles, there is a growing interest in repurposing retired battery packs. Although
no longer useful for their primary applications, retired batteries still contain a significant
capacity and energy storage capability, which can be utilized in secondary applications such
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as stationary energy storage systems, off-grid solutions, and household PV units [3,4]. As a
result, there has been an increasing interest in repurposing these batteries for secondary
applications to extract more value from these assets and contribute to a more sustainable
and circular economy.

Energy storage systems utilize a variety of different types of cells. For example,
lithium-titanate batteries and supercapacitors are ideal for high C-rate applications in
heavy vehicles and locomotives. Redox flow batteries are a safe alternative for energy
storage facilities. However, their different electrochemical characteristics result in varying
voltage levels of the cells, which makes them incompatible with current commercial battery
management integrated circuits (ICs) designed for lithium-ion cells.

The battery cells capacity inconsistency is one of the main contributing factors to
the imbalance. It also significantly impacts the overall battery pack capacity, with the
smallest capacity cell being the limiting factor [5]. Additionally, as the number of charg-
ing and discharging cycles increases, the capacity disparity can further exacerbate the
system’s performance.

Therefore, developing a practical active balancer that can operate over a wide cell
voltage range and, hence, be compatible with different electrochemistry cell types is of
significant interest.

Research on active balancing methods can be categorized into three major categories:
capacitor-based, inductor-based, and transformer-based [6,7]. The optimal switching
capacitor-based balancer in [8,9] significantly reduced the number of switches required
per cell, improved the balancing speed, and achieved multicell balancing compared to
traditional adjacent cells balancing topology in [10]. This type of balancer has been applied
to some commercial products as it has a simple driving circuit and no control is required,
which simplifies implementation. However, the capacitor-based balancer exhibits three
inherent limitations. Firstly, its balancing speed is contingent on capacitance value, and
uncontrolled balancing currents render it incapable of eliminating inrush currents. Sec-
ondly, the necessity of employing large capacitors with adequate voltage ratings increases
production cost. Lastly, when cell voltage variations are negligible, the balancing current
diminishes to very low levels, which significantly elevates the energy consumption of its
driving circuit in comparison to the actual balancing power utilized.

Transformer-based balancing methods can be classified into two categories: isolated
DC-DC converters and multi-winding transformer-based. Current commercial solutions
offered by companies such as Texas Instruments and Analog Devices typically employ
flyback converters to facilitate energy transfer from individual cells to the battery pack.
These solutions often rely on complex switching matrices utilizing MOSFETs and spe-
cialized integrated circuits, or alternatively, they utilize standalone converters for each
cell. However, these approaches are associated with high costs and are heavily dependent
on specific integrated circuit manufacturers, limiting their scalability and adaptability to
different battery management systems [11,12].

Research advancements have improved balancers utilizing multi-winding transform-
ers, making multicell balancing feasible [13–17]. The iterative refinement of driving and
control methods has simplified their implementation. However, challenges persist in terms
of efficiency, transformer size, automated assembly complexity during manufacturing, and
transformer customization, all of which have significant drawbacks for industrial applications.

Inductor-based balancers [18–23] and L-C balancers [23] present several challenges.
Early-stage designs exhibited low efficiency due to diodes being used in the current path
to a cell and being used in lower voltage applications [18,19]. Additionally, the inductor-
based balancer in [20] was restricted to balancing between adjacent cells only. Other
approaches required a high number of floating MOSFETs, which necessitated expensive
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driving circuits, including isolated power modules and isolated gate driving ICs [21–23].
A high-speed simple topology was proposed in [24], but the cost of the required driving
circuit and uneven charging of other cells while balancing remained significant drawbacks.
Hence, further research and development are necessary to devise new topologies that are
compatible with low-cost driving circuits and offer high operating efficiency.

This paper proposes a novel inductor-based low-cost balancing topology that is com-
patible with various cell voltage ranges, has multicell simultaneous balancing capability,
controllable balancing current, a simple control strategy, and does not require specific
integrated circuits or a controller. Table 1 summarizes the comparison of the proposed
balancer with the existing balancing topologies, which meet more than one out of three
criteria in the left column.

Table 1. Comparison of the proposed balancer with the existing balancing topologies.

References:
[11–17,19] #,

[21,23] *

References:
[1,8–10,18,20,22] **

References:
[24] ***

Proposed

Maintaining a consistent
balancing speed regardless

of imbalance levels
� � �

Eliminating isolated power
modules and gate drivers � �

Avoiding complex control
systems or specific

controller ICs
� � �

* Quiescent current loss, not suitable for cell level balancing, customised magnetic components. ** Slow one-by-one
balancing speed or increased power losses when balancing adjacent cells. *** Bulky power modules, quiescent
current loss. # Although this topology uses only one inductor, the overall cost is high as it requires isolated power
modules and isolated gate drivers.

2. Proposed Balancing Topology Description

The proposed active balancing topology for an n-cell series-connected battery pack
is illustrated in Figure 1. It requires n pairs of switches, n inductors, n pairs of Schottky
diodes, and n dual-output low-side driving ICs.

The operation of the circuit is controlled by a pulse signal, which synchronously turns
on and off the switch-pairs during the balancing process. The operational principle involves
two sequential steps: initially, both switches are closed, facilitating energy transfer from
the cell to the inductor (as indicated by the red arrow in Figure 1a). Subsequently, with the
switches open, the inductor maintains a consistent current flow direction, and the discharge
path of the inductor is redirected by the pair of diodes to the terminals of the battery pack
(as indicated by the green arrow in Figure 1b). Consequently, energy is transferred from
an individual cell to the entire battery pack. Notably, this balancing procedure operates
independently for each cell, enabling the simultaneous discharge of multiple cells. This
topology operates independently of the cell voltage level. As long as a cell can charge
the inductor and the cell’s voltage does not fall below its minimum operating voltage, the
balancing current can be maintained at a desired RMS value.

In low-voltage battery packs, the pair of switches can be implemented by N-channel
MOSFETs and a low forward-voltage Schottky diode to maximize efficiency. A schematic
of the implementation is shown in Figure 2. In a typical low-voltage battery pack, such as a
series-connected 10-cell NiMH battery pack (12 V) or a three- to four-cell series-connected
lithium battery pack (typically 12.6 V to 14.8 V), a low-side driver with a maximum output
voltage range of 20 V to 25 V can activate the high-side switch. This configuration provides
a gate-source voltage between 5 to 10 volts, which is sufficient for MOSFETs that operate at
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a 4.5 V gate-source voltage. The switches are open when the driver output voltage (gate-
ground voltage) is changed to zero. Consequently, both the gate-source and drain-source
voltages for the lower MOSFET will not drop below the negative pack voltage, which
remains significantly lower than the maximum rating. Simultaneously, the source voltage
of the upper MOSFET falls to around −0.5 V due to the discharge current path through the
Schottky diodes. With a gate voltage of approximately 0.5 V, the MOSFET remains inactive.

 
(a) (b) 

Figure 1. Proposed active balancing topology. Cells A, B and D are being balanced, while Cell C is
within the balancing threshold and is not being balanced. Pack+ represents the positive terminal of
the pack. Pack− represents the negative terminal of the pack. (a) Path 1 represents the cells charging
the inductors. (b) Path 2 represents the inductors releasing energy to the battery pack.

Figure 2. Implementation for low voltage cells.

Figure 3 illustrates the necessary modifications to adapt the topology for higher-
voltage battery packs. Typically, commercial BMS front ends support 6–16 series-connected
lithium cells with voltages ranging from 25.2 V to 67.2 V. This results in pack voltages that
exceed the typical maximum operating range of low-side gate drivers, causing multiple
cells to have voltage levels higher than the gate drivers’ power supply.

In Figure 2, the upper switch’s high side and the bottom switch’s low side are con-
nected to the positive and negative terminals of the corresponding cell, thereby providing
a relatively steady voltage level reference to the negative terminal of the pack. To eliminate
the floating source of the MOSFET, P-channel MOSFETs, and N-channel MOSFETs are used
as replacements for the switches in Figure 3. A dual-channel low-side driver drives the
complementary pair of MOSFETs with one inverting output through a bootstrap circuit.
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Figure 3. Implementation for higher voltage cells.

This configuration guarantees synchronous switching on and off simultaneously. Gate
resistors Rg are placed in series on both sides of the bootstrap capacitor to limit peak current
in the driving circuit and inrush current via the bootstrap diode during transient states
when connecting the balancer to the cells. Additionally, optional Zener or TVS diodes with
operating voltage between gate-driving and maximum gate-source voltage provide extra
protection by capping the gate-source voltage within the maximum rating. The gate-source
resistor pulls the gate-source voltage to zero when the driver IC with a push-pull output
shuts down, enhancing safety and robustness in a noisy environment.

In summary, the proposed balancing topology is insensitive to the cells operating
voltage range. Its performance is constrained primarily by the voltage ratings of the selected
components rather than by any inherent topology limitations. In very low-voltage cells
(provided the cell voltage remains above zero), the inductor can still store and transfer
energy effectively. Conversely, in high-voltage cells, one can simply replace the Schottky
diodes and MOSFETs with high-voltage-rated components to maintain functionality.

3. Control Signal Generation and Efficiency Analysis

This section describes the PWM control signal generation and analyses energy transfer
efficiency to assist in selecting suitable operating parameters for the implementation of the
proposed balancing topology. The efficiency calculation does not consider eddy current
losses in the inductor and copper plane below it, MOSFET reverse recovery, diode recovery,
or energy consumed by the driving circuit. All symbols are listed in Table 2.

Table 2. Nomenclature.

Symbol Unit Description

t1 s Interval when signal pulse is set to high
t2 s Interval when inductor is discharging
t3 s Deadtime
RP Ω Resistance of P-channel MOSFET fully on
RN Ω Resistance of N-channel MOSFET fully on
RL Ω Inductor resistance
R Ω Sum of Rp, RN and RL
L H Inductor inductance
n - Number of cells
V V Cell voltage
Vp V Pack voltage
Vf V Diode forward voltage drop
IL A Inductor current
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Table 2. Cont.

Symbol Unit Description

Ipeak A Inductor peak current
ICavg A Average cell current during balancing
IDavg A Average diode current during balancing

EL J Energy stored in inductor
ERloss J Energy loss due to series resistance
EDloss J Energy loss due to diode forward voltage

PWM Signal Generation

In Figure 4, t1 represents the interval when the control signal pulse is high. During
this time, the MOSFET pairs are turned on, allowing the cell to charge the inductor. t2

represents the interval during which the MOSFETs are switched off, enabling the inductor
to release energy to the pack via the pair of diodes. t3 represents the dead time before
the next cycle, allowing for diode reverse recovery and extra time to prevent continuous
current flow through the inductor due to electromagnetic interference or propagation delay
on gate drivers.

Figure 4. Simulated inductor current (A) and PWM signal vs. time (μs).

The peak current through the inductor Ipeak can be expressed as (1), where R is the
sum of the series resistance of the P-channel MOSFET RP, the N-channel MOSFET RN and
the inductor RL; V is the cell voltage, and L is the inductor inductance,

Ipeak =
V
R
− V

R
× e−

R
L ·t1 (1)

For the desired peak current through the inductor, the duration of t1 is obtained from
(1) as (2),

t1 = −
ln
(
− Ipeak R−V

V

)
L

R
(2)

Note: Since t1 � L/R in Figure 4, (1) and (2) could be simplified as Ipeak =
V
L t1 and

t1 =
Ipeak L

V , respectively.
The energy stored in the inductor is given by (3),

EL =
1
2

I2
peakL (3)
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and it is equal to the energy transfer during discharging, given by (4),

EL =
∫ t2

0

(
VP + Vf

)
·
(
− Ipeak

t2
·t + Ipeak

)
dt (4)

Solving (3) and (4), the interval t2 can be found as (5),

t2 =
IpeakL

VP + Vf
(5)

The series resistance loss Rloss while the cell is charging the inductor during one cycle
is given by (6),

ERloss =
∫ t1

0

(
V
R
− V

R
× e−

R
L ·t1

)2
R dt (6)

The diode loss Dloss while the inductor is releasing energy to pack during one cycle is
given by (7),

EDloss =
∫ t2

0
2Vf ·

(
IPeak −

Ipeak

t2
·t
)

dt (7)

The efficiency of the cell-to-pack energy transfer can be estimated by (8), and after
substituting (2) and (5), the simplified expression (9) can be obtained,

E f f iciency =
EL − EDloss
ERloss + EL

× 100%

=

1
2 I2

peakL − ∫ t2
0 2Vf ·

(
IPeak − Ipeak

t2
·t
)

dt∫ t1
0

(
V
R − V

R × e− R
L ·t1

)2
R dt + 1

2 I2
peakL

× 100% (8)

=
I2
peak

(
−Vp + Vf

)
R2

2
(

Vp + Vf

)
V
(

IpeakR + ln
(−Ipeak R+V

V

)
V
) × 100% (9)

Assuming Vp = n·V and using parameters from the datasheets of the components in
Table 3 as an example, (9) can be simplified as (10),

=
0.0008405(V·n − 0.4)I2

peak(
0.041 Ipeak + ln

(−0.041 Ipeak+V
V

)
V
)

V(V·n + 0.4)
× 100% (10)

Table 3. Components parameters for efficiency estimation example.

Condition Typical

Vf Iavg = 3A, 25 ◦C 0.4 V
RP VGS = −10 V <16.5 mΩ
RN VGS = +10 V <9.5 mΩ
RL - 15 mΩ
R - 0.041 Ω

Figure 5 illustrates the efficiency of the balancing circuit. The vertical axis of the 3D graph
represents the efficiency; the horizontal axes show the inductor’s peak current and the cell’s
voltage. It displays six layers from bottom to top, illustrating the relationship between the
pack voltage and balancing efficiency with the number of cells varying from 4 to 9.

The trend indicates that increasing the number of cells, and consequently the pack
voltage, results in higher balancing efficiency.
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Figure 5. Efficiency analysis for various cell voltages, number of cells in a pack, and peak balanc-
ing current.

4. Experimental Setup and Test Results

4.1. Components Selection Guide and Application Note
4.1.1. MOSFET Selection

Based on the operating principle of the proposed balancer, the maximum MOSFET
voltage stress occurs at the top cell’s high side and the bottom cell’s low side; hence, select-
ing MOSFETs with voltage ratings slightly higher than the maximum pack voltage suffices.

In the simplified driving circuit for low-voltage cells (Figure 2), the gate voltage rating
is more critical than the pack voltage. This is because the maximum pack voltage is limited
by the difference between the maximum voltage of the gate and its driver. MOSFETs
typically turn on at around 4.5 V, so selecting components with voltage ratings of 12 V and
25 V establishes pack voltage limits of 7.5 V and 20.5 V, respectively.

For driving circuits designed for higher cell voltages and a wider cell voltage range
(Figure 2), conventional MOSFETs with a maximum gate-source rating between ±15–±20 V
are sufficient for driving ICs operating at a typical voltage of 12 V.

4.1.2. Driver IC Selection

The selection of gate drivers is critical to minimize additional energy loss outside of
the balancing circuitry. A dual-channel low-side driver should be considered during the
design phase. Such a driver ensures consistent internal propagation delay, hysteresis, and
synchronous output while drawing less current than two standalone single-channel drivers.
A pulse output current capability higher than 1 A is sufficient to rapidly turn on small
MOSFETs for balancing applications.

4.1.3. Inductor Selection

The selection of inductors for the proposed topology prioritizes size, balancing speed,
and efficiency. Equation (10) confirms that with a fixed value of series resistance, efficiency
remains independent of inductance. However, (5) and (6) reveal that for a consistent peak
current through the inductor, a lower inductance leads to a shorter cycle period, resulting
in a higher average cell discharging current and improved balancing speed.

Consequently, after calculating the inductance value based on the desired balancing
speed, inductors with low series resistance and fully shielded designs within physical size
constraints are recommended. Furthermore, when employing non-shielded inductors, it is
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pertinent to note that wide copper tracks or planes beneath the surface-mounted inductor
may induce eddy current loss and elevate the current through the inductor.

4.1.4. Diode Selection

Assuming t1 � L/R, the average cell current during balancing (the average value of
the inductor current) ICavg is given by (11),

ICavg =
1
2
·Ipeak·D (11)

The voltage rating of the Schottky should be slightly higher than the pack voltage, and
the average current through the diode IDavg at the PWM duty cycle D when the inductor
releases energy to the pack is given by (12),

IDavg = ICavg· V
Vp

≈ ICavg· 1
n
≈ 1

2n
·D·I

peak
(12)

Since IDavg is significantly lower than ICavg, the required current rating of Schottky
diodes is significantly lower than Ipeak, which is beneficial for cost reduction.

4.2. Experiment Setup

To validate the proposed balancing topology and its low-cost driving circuit, a series
of experiments were conducted. The experimental setup, shown in Figure 6, consists of
a five-cell series-connected battery pack, a five-cell balancer board with the gate driving
circuit shown in Figure 3, and a controller board for cell voltage measurement, PWM
generation, and data logging. Additionally, power supplies for the gate driving circuits
and a bi-directional power supply were directly connected to the terminals of the pack
for balancing tests during both charging and discharging. Table 4 lists the values of the
components used for the balancer board in Figure 6.

Figure 6. Balancing setup.

Table 4. Components specification and design considerations for the proposed balancer board.

Component Value Number 1st Consideration 2nd Consideration

Cells Li-ion INR18650-25R 5 N/A N/A

Analog front-end
Multiplexer MUX507 1 N/A N/A

Op-amp INA826 1 N/A N/A

Controller Microcontroller STM32G0 series 1 ADC resolution Cost
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Table 4. Cont.

Component Value Number 1st Consideration 2nd Consideration

Driving circuit

Dual-output Driver UCC21525 1 * Cost N/A
Capacitor (boot) 1 μF, 25 V 2 * Cost Voltage rating
Resistor (gate) 2.2 Ω 2 * or 4 ** Cost Gate current
Resistor (gate-source) 300 kΩ 2 * Cost N/A
Diode 1N4148 2 * Cost Recovery time
Zener Diode (Optional) 15 V 2 * Cost Voltage rating

Balancing circuit
Power Inductor 10 uH 1 * Current rating Switching time
MOSFET Pair AO4614B 1 * Voltage rating Current rating
Schottky Diode PMEG4030ER 2 * Voltage rating Current rating

* Per cell. ** Rg connected to the driver output and Cboot is optional.

4.3. Balancing Circuit Verification

To verify that the topology and the driving circuit are functioning as expected, the
five-cell series-connected pack was charged to 20.532 V, with the top cell at 4.2062 V and
its negative terminal referenced to the Pack− at 16.327V. The power supply for the gate
driving circuit is 11.25 V, referenced to Pack−. In this case, both the positive and negative
terminals of the top cell have higher voltages than the supply voltage of the gate drivers.

In Figure 7, Channel 4 shows the 3.3 V, 175 kHz PWM control signal with a duty ratio
of 70%, which feeds to the gate driver input and is used as the trigger of the source. Channel
1 and Channel 2 display the DC-coupled gate voltages of the P-channel MOSFET and
N-channel MOSFET, respectively, for the top cell referenced to the Pack-(GND). Channel
3 shows the DC-coupled current through the inductor during balancing. (Two wires are
attached to the inductor and then soldered to the PCB for inductor current measurement.)

 

Figure 7. Experimental measurements (oscilloscope). Ch1: DC coupled gate voltage of P-channel
MOSFET. Ch2: DC coupled gate voltage of N-channel MOSFET. Ch3: DC coupled inductor current
Ch4: PWM control signal, trigger source.

Oscilloscope measurements show that the peak-to-peak voltage of the P-channel MOS-
FET is 11.86 V, with an 8.801 ns fall time and 20.8 ns rise time; the peak-to-peak voltage of the
N-channel MOSFET is 12.06 V, with a 19.199 ns rise time and 14.4 ns fall time. The measured
results validate that the proposed circuit can adequately drive the pair of complementary
MOSFETs on the high side. The gate-source voltages of both MOSFETs are kept over 10 V for
the entire on-time when using an 11.25 V (measured) non-isolated power supply. The rise
and fall times of the gate voltage are short enough to avoid significant switching loss.

The current waveform in Channel 3 shows that when the control signal in Channel 4
rises to high, and the MOSFETs are turned on, the inductor is charged by the cell (between
0 to 4 μs), then releases energy back to the pack when the control signal drops too low,
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and the MOSFETs turn off (between 4 to 4.9 μs). The current ripple between 4.9 to 5.7 μs
represents the diode reverse recovery and oscillation of parasitic components before the
next cycle begins. The measured result matches the simulation result shown in Figure 4.
The slight difference in peak current through the inductor is caused by the difference in cell
voltage between the simulation and the actual test, as well as the tolerance of the inductor.
The additional dead time (t3) mentioned in Figure 4, inserted before the next pulse of PWM,
may vary for each specific battery pack and can be finalized during this stage.

4.4. Control Algorithm

The control algorithm for the proposed active balancer is voltage-based and designed
to ensure efficient and balanced energy distribution among cells in a battery pack.

As outlined in the flowchart Figure 8a, the battery cell balancing process begins
with the system’s initialization and calibration. Then, the system scans the voltages of
all battery cells to identify any variations. If the variation does not exceed the threshold
initially, the system takes no action and waits before repeating the voltage scan. If the
voltage variation exceeds a pre-defined threshold, the system configures the Pulse Width
Modulation (PWM) timer based on the cell voltages. This allows the balancing process to
adapt to the specific conditions of the cells, whether it involves a single cell or multiple
cells requiring balancing. Once configured, the balancing process starts and continues for a
specified duration, during which the system waits to allow the cells with higher voltages to
be discharged and transfer the energy to the pack to equalize. The balancing process could
be performed cell-by-cell or on multiple cells simultaneously. After the waiting period, the
balancing is stopped, and a relaxation phase follows to account for any transient effects for
more accurate measurements of the next scan. This iterative process ensures that balancing
is achieved efficiently across either individual or multiple cells as needed.

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 8. (a) Workflow of cell balancing algorithm; (b) cell voltages and balancing status vs. time for
balancing cell-by-cell (simulation results); (c) cell voltages and balancing status vs. time for balancing
multiple cells (simulation results).
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Figure 8b illustrates the cell voltages (top plot) and the balancing status of each cell
(bottom plot) during the simulation of balancing a single cell. As depicted in the bottom
plot, only the cell with the highest voltage, which exceeds the balancing threshold, is
discharged, releasing energy back to the battery pack. Figure 8c presents the cell voltages
(top plot) and the balancing status of each cell (bottom plot) during the simulation of
balancing multiple cells. As shown in the bottom plot, all cells whose voltages exceed the
balancing threshold are discharged simultaneously, releasing energy to the battery pack.

4.5. Experimental Results

The experiment results presented in Figures 9–12 demonstrate the effectiveness of
battery cell balancing under various operating conditions.

 

Figure 9. Experimental results illustrating cell voltages vs. time (balancing cell-by-cell, 170 min are
required to reduce the cells’ voltages difference to below a threshold of 10 mV).

 

Figure 10. Experimental results illustrating cell voltages vs. time (balancing multiple cells, 100 min
are required to reduce the cell voltage difference to below a threshold of 10 mV).

 

Figure 11. Experimental results illustrating cell voltage vs. time (balancing multiple cells while
charging, 67 min are required to reduce the cell voltage difference to below a threshold of 10 mV).
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Figure 12. Experimental results illustrating cell voltage vs. time (balancing multiple cells while
discharging, 47 min are required to reduce the cell voltage difference to below a threshold of 10 mV).

In Figure 9, the cell voltage variation over time during the cell-by-cell balancing is
shown. In this test, only the cell with the highest cell voltage is discharged and releases the
energy to the pack. Initially, cell 1 had a significantly higher voltage than the other cells. As
the balancing process progresses, the voltage of cell 1 decreases steadily while the other
cells are being charged until its voltage converges with the voltage of cell 2. Now, cells 1
and 2 are the cells with the highest voltage, and subsequently, they are being alternatively
discharged one after the other until their voltages converge to the voltage of cell 5. By
the end of the process, all cell voltages converge to the same voltage within the balancing
threshold. The steady increase in cell voltages indicates that the balancing process does not
discharge the cells but rather evenly charges them.

Cells 3 and 4 have the lowest voltage initially, and since their voltage variation remains
within the balancing threshold, they are only being charged during the whole balancing
process. This proves that the balancer does not introduce additional imbalance within
the pack.

Figure 10 illustrates the result for multiple cell balancing. Except for cell 3, which has
the lowest cell voltage at the beginning of the test, all other cells (1, 2, 4, and 5) are being
discharged and release energy to the pack until their voltages are within the balancing
threshold. By the end of the process, all cell voltages converge, indicating successful
multicell balancing. This test also demonstrates the system’s capability to balance multiple
cells simultaneously, thereby ensuring a faster and more uniform voltage distribution
throughout the battery pack.

Figure 11 shows the result of balancing multiple cells during the charging process.
The imbalanced pack is charged with an external power supply during the test. Balancing
is not enabled for the first 15 minutes, and significant cell voltage differences remain while
charging. Once the balancing is started, the voltage increases of cells with higher voltages
become slower as they are being discharged by the balancer, and the cells with lower
voltages are being charged faster. In this case, the system is not only balancing the cells but
also compensating for the cell voltage increases due to charging. Despite the overall rise
in the cell voltage, the voltages gradually converge, demonstrating the system’s ability to
perform cell balancing in a dynamic charging condition.

Additionally, Figure 12 presents the balancing result while discharging. Similar to the
previous experiments, the system equalizes the voltages of cells while the battery pack is
connected to a discharging load. This showcases the system’s robustness in maintaining
balanced cell voltages under both charging and discharging scenarios.

5. Conclusions

This paper reviewed various existing solutions for active balancing and proposed a
novel, inductor-based, cell-to-pack active balancing topology capable of operating across a
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wide range of cell voltages. Compared to conventional balancers, this topology integrates
the necessary driving circuits, thus reducing overall system costs by eliminating the need
for costly isolated power modules or high-side gate drivers while maintaining a simpler
control structure. The proposed system efficiently transfers energy from individual cells
to the battery pack, enabling multicell balancing with a balancing current that remains
unaffected by the level of imbalance. Furthermore, it employs a straightforward control
algorithm, simplifying implementation. The system’s effectiveness is confirmed by the
experimental results, which demonstrate the convergence of cell voltage during both
charging and discharging operations.

Future work will focus on adapting the circuit design for series-connected pack-
level balancing. Additionally, a simple and cost-effective controller will be developed
to ensure continuous conduction mode (CCM) operation in higher-voltage applications,
thereby increasing average balancing power. Experimental validation will be extended to
larger battery modules and real-world applications, such as PV energy storage systems, to
evaluate scalability and long-term reliability.

Author Contributions: Conceptualization, H.S.; methodology, H.S.; software, H.S.; validation, H.S.;
formal analysis, H.S.; investigation, H.S.; resources, H.S., B.H. and J.F.; data curation, H.S.; writing—
original draft preparation, H.S.; writing—review and editing, B.H.; visualization, H.S.; supervision,
B.H.; project administration, B.H.; funding acquisition, B.H. and J.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ye, Y.; Lin, J.; Li, Z.; Wang, X. Double-Tiered Cell Balancing System with Switched-Capacitor and Switched-Inductor. IEEE Access
2019, 7, 183356–183364. [CrossRef]

2. Global EV Outlook 2023—Analysis. Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 9
January 2025).

3. Wang, H.; Rasheed, M.; Hassan, R.; Kamel, M.; Tong, S.; Zane, R. Life-Extended Active Battery Control for Energy Storage Using
Electric Vehicle Retired Batteries. IEEE Trans. Power Electron. 2023, 38, 6801–6805. [CrossRef]

4. Zhu, J.; Mathews, I.; Ren, D.; Li, W.; Cogswell, D.; Xing, B.; Sedlatschek, T.; Kantareddy, S.N.R.; Yi, M.; Gao, T.; et al. End-of-Life
or Second-Life Options for Retired Electric Vehicle Batteries. Cell Rep. Phys. Sci. 2021, 2, 100537. [CrossRef]

5. Wang, H.; Bai, H.; Fu, Y.; Tao, Z.; Xiao, H.; Si, N.; Bai, H.; Deng, S. The Capacity Effect on Consistency of Energy Storage Batteries.
In Proceedings of the 2018 International Conference on Electronics Technology (ICET), Chengdu, China, 23–27 May 2018; pp. 1–5.

6. Omariba, Z.B.; Zhang, L.; Sun, D. Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in
Electric Vehicles. IEEE Access 2019, 7, 129335–129352. [CrossRef]

7. Izadi, Y.; Beiranvand, R. A Comprehensive Review of Battery and Supercapacitor Cells Voltage-Equalizer Circuits. IEEE Trans.
Power Electron. 2023, 38, 15671–15692. [CrossRef]

8. Ye, Y.; Cheng, K.W.E.; Fong, Y.C.; Xue, X.; Lin, J. Topology, Modeling, and Design of Switched-Capacitor-Based Cell Balancing
Systems and Their Balancing Exploration. IEEE Trans. Power Electron. 2017, 32, 4444–4454. [CrossRef]

9. Shang, Y.; Lu, F.; Xia, B.; Zhang, C.; Cui, N.; Mi, C. A Switched-Coupling-Capacitor Equalizer for Series-Connected Battery
Strings. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30
March 2017; pp. 1425–1429.

10. Ye, Y.; Cheng, K.W.E. Modeling and Analysis of Series–Parallel Switched-Capacitor Voltage Equalizer for Battery/Supercapacitor
Strings. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 977–983. [CrossRef]

11. Lu, J.; Wang, Y.; Li, X. Isolated Bidirectional DC–DC Converter with Quasi-Resonant Zero-Voltage Switching for Battery Charge
Equalization. IEEE Trans. Power Electron. 2019, 34, 4388–4406. [CrossRef]

12. Conway, T. An Isolated Active Balancing and Monitoring System for Lithium Ion Battery Stacks Utilizing a Single Transformer
Per Cell. IEEE Trans. Power Electron. 2021, 36, 3727–3734. [CrossRef]

132



Batteries 2025, 11, 77

13. Li, S.; Mi, C.C.; Zhang, M. A High-Efficiency Active Battery-Balancing Circuit Using Multiwinding Transformer. IEEE Trans. Ind.
Appl. 2013, 49, 198–207. [CrossRef]

14. Lee, K.-M.; Lee, S.-W.; Choi, Y.-G.; Kang, B. Active Balancing of Li-Ion Battery Cells Using Transformer as Energy Carrier. IEEE
Trans. Ind. Electron. 2017, 64, 1251–1257. [CrossRef]

15. Zilio, A.; Fogagnolo, D.; Gallo, E.; Biadene, D.; Mattavelli, P. A Multiport Converter for Flexible Active Balancing in Li-Ion
Batteries. IEEE Trans. Ind. Electron. 2024, 71, 7085–7094. [CrossRef]

16. Al-Smadi, M.K.; Abu Qahouq, J.A. Evaluation of Current-Mode Controller for Active Battery Cells Balancing with Peak Efficiency
Operation. IEEE Trans. Power Electron. 2023, 38, 1610–1621. [CrossRef]

17. Xu, G.; Chen, E.; Liu, F.; Liu, Y.; Xiong, W.; Su, M. Multicell-to-Multicell Equalizer with Hybrid Pulsewidth Modulation and
Phase-Shift Modulation. IEEE Trans. Power Electron. 2024, 39, 4400–4411. [CrossRef]

18. Kutkut, N.H. A Modular Nondissipative Current Diverter for EV Battery Charge Equalization. In Proceedings of the APEC ’98
Thirteenth Annual Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 15–19 February 1998; Volume 2,
pp. 686–690.

19. Park, S.-H.; Kim, T.-S.; Park, J.-S.; Moon, G.-W.; Yoon, M.-J. A New Buck-Boost Type Battery Equalizer. In Proceedings of the 2009
Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009;
pp. 1246–1250.

20. Ding, X.; Zhang, D.; Cheng, J.; Wang, B.; Chai, Y.; Zhao, Z.; Xiong, R.; Luk, P.C.K. A Novel Active Equalization Topology for
Series-Connected Lithium-Ion Battery Packs. IEEE Trans. Ind. Appl. 2020, 56, 6892–6903. [CrossRef]

21. Wang, S.; Yang, S.; Yang, W.; Wang, Y. A New Kind of Balancing Circuit with Multiple Equalization Modes for Serially Connected
Battery Pack. IEEE Trans. Ind. Electron. 2021, 68, 2142–2150. [CrossRef]

22. Phung, T.H.; Collet, A.; Crebier, J.-C. An Optimized Topology for Next-to-Next Balancing of Series-Connected Lithium-Ion Cells.
IEEE Trans. Power Electron. 2014, 29, 4603–4613. [CrossRef]

23. Liu, F.; Zou, R.; Liu, Y. An Any-Cell-to-Any-Cell Battery Equalizer Based on Half-Bridge LC Converter. IEEE Trans. Power Electron.
2023, 38, 4218–4223. [CrossRef]

24. He, Y.; Liu, X.; Liu, X.; Zheng, X.; Su, L. Research on the High Speed Inductor-Based Active Battery Equalization Schemes. In
Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei,
China, 22–26 May 2016; pp. 1389–1393.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

133



Article

Evaluating the Role of Entropy Change in Lithium-Ion Battery
Electro-Thermal Modelling

Félix-Antoine LeBel 1,2, Pascal Messier 1,2, Mathieu Blanchard 2 and João Pedro F. Trovão 1,3,4,*

1 electric-Transport, Energy Storage and Conversion (e-TESC) Lab., Université de Sherbrooke,
Sherbrooke, QC J1K 2R1, Canada; felix-antoine.lebel@usherbrooke.ca (F.-A.L.);
pascal.messier@usherbrooke.ca (P.M.)

2 SysNergie Inc., Sherbrooke, QC J1N 0G2, Canada; mathieu.blanchard@sysnergie.ca
3 Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Department of Electrical and

Computer Engineering, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal
4 Coimbra Institute of Engineering, Polytechnic of Coimbra (IPC-ISEC), 3030-199 Coimbra, Portugal
* Correspondence: joao.trovao@usherbrooke.ca

Abstract: The accurate estimation of lithium-ion cell internal temperature is crucial for the
safe operation of battery packs, especially during high discharge rates, as operating outside
the safe temperature range can lead to accelerated degradation or catastrophic failures.
Heat generation in lithium-ion cells arises primarily from ohmic losses and entropy change
(ΔS), yet the latter remains frequently overlooked in battery modelling. However, the
impact of considering or discarding ΔS from electro-thermal modelling remains subject to
debate. This research highlights the critical role of ΔS in improving the accuracy of electro-
thermal models for lithium-ion batteries, particularly in high-fidelity thermal simulations. It
presents a systematic integration, ΔS, into electro-thermal models, leveraging the energetic
macroscopic representation (EMR) approach to enhance predictive accuracy, a methodology
not previously structured in this manner. This paper addresses this issue by performing a
comparative analysis of an electro-thermal model (ETM) with and without ΔS. The findings
provide clear insights into the role of entropy in electro-thermal modelling, demonstrating
that while entropy change has a minimal impact on electrical behaviour prediction, it plays
a crucial role in accurately capturing temperature dynamics, helping define the conditions
under which it must be considered in simulations. While entropy can be neglected for
coarse heat generation estimation, its inclusion enhances temperature prediction accuracy
by up to 4 ◦C, making it essential for applications requiring precise thermal management.
This study offers a detailed analysis of the conditions under which ΔS becomes critical to
model accuracy, providing actionable guidance for battery engineers and researchers.

Keywords: lithium-ion battery; heat generation; entropic coefficient; electro-thermal model;
electric equivalent circuit

1. Introduction

Lithium-ion batteries (LIBs) are widely used across various applications, from elec-
tric vehicles (EVs) to battery energy storage systems (BESS), where safety, durability,
and reliability are of paramount concern. Temperature is a critical factor influencing the
performance and longevity of LIBs. Temperature directly influences key parameters such
as cell impedance, capacity retention, and permissible charge/discharge rates. Further-
more, temperature accelerates the degradation of electrode materials, a process known as
aging. Several recent events have highlighted the dramatic consequences of the violent
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catastrophic failure of LIBs. Excessive heat buildup is a known failure causing thermal
runaway (TRA), posing significant safety risks [1].

To ensure the safe and reliable operation of LIBs, it is essential to maintain temper-
ature and voltage within specified safe operational windows. The accurate assessment
of temperature dynamics and heat generation across diverse operating scenarios by the
battery management system (BMS) is crucial for preventing accelerated degradation or
TRA [2]. Accurate thermal estimation is particularly vital in the battery pack design phase,
influencing both thermal management strategies and overall system design.

Unlike other types of electrical components, LIBs are non-linear electrochemical sys-
tems in which heat generation cannot be directly inferred from the nominal internal resis-
tance value. Their behaviour and properties are simultaneously influenced by temperature,
the state of charge (SOC), and aging, all of which interact in complex ways. Additionally,
structural changes caused by the intercalation and de-intercalation of lithium ions in the
electrodes during charge and discharge cycles, in turn causing changes in entropy and en-
thalpy that alter both the thermal and electrical properties of the cells. The phenomena has
been studied by [3], and it has been found that the thermodynamics of lithium intercalation
into graphite is governed by a complex interplay of mixing entropy, vibrational entropy,
and lithium–lithium interactions.

In lithium-ion batteries, entropy (S) and entropy change (ΔS) are related concepts,
but they represent different aspects of the thermodynamics within the battery system.
Entropy in the context of a lithium-ion battery refers to the inherent thermodynamic
property that quantifies the degree of disorder or randomness of the battery’s system in a
specific state. Each component and phase of a lithium-ion battery—such as the cathode,
anode, and electrolyte—has a certain entropy value based on its structure and composition.
In general, higher entropy signifies a greater degree of disorder.

Entropy change (ΔS) is a dynamic concept that measures the difference in entropy
between two states, particularly during chemical reactions or physical processes, like
charging and discharging. For LIBs, this is especially relevant because entropy change can
reveal valuable insights into electrochemical processes, like lithium-ion intercalation and
de-intercalation. Entropy change is often calculated for reactions occurring at the electrodes
and can provide information on the energy efficiency and temperature dependence of the
battery’s operation. Entropy is a static property of a given state, while entropy change is dy-
namic, reflecting the shift between two states (e.g., before and after lithium-ion intercalation).

Entropy change impacts thermal management in lithium-ion batteries. During charg-
ing and discharging, changes in entropy contribute to heat generation within the battery.
Understanding these entropy changes is crucial in designing systems to manage tempera-
ture and avoid overheating. Entropy changes can be experimentally measured through
thermodynamic methods and provide insights into how temperature affects the electro-
chemical potential of the battery, which is useful for optimizing operating conditions.

Since the characterization of ΔS is a long and tedious process, it is often overlooked
in system-level models, such as electric vehicle simulation. Omitting this fundamental
behaviour can potentially lead to discrepancies between measurements and model pre-
dictions. This paper investigates whether accounting for entropy change can improve the
accuracy of heat generation and temperature estimations in lightweight electro-thermal
models used in the BMS and system-level performance assessement.

Estimating the various states of an LIB is a critical function of modern BMSs and a key
consideration in LIB design. Contemporary modelling approaches differ in complexity,
with the choice of model depending on the desired balance between accuracy, spatial
resolution, and computational feasibility.
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Physics-based models (PBMs) are designed to improve the accuracy of battery mod-
elling by capturing detailed internal dynamics. The foundation of fully physics-based
lithium-ion battery models is the pseudo-two-dimensional (P2D) porous electrode model,
also known as the Doyle–Fuller–Newman model, named after the researchers who pio-
neered its development [4–6]. This model is based on porous electrode theory, concentrated
solution theory, and the Butler–Volmer kinetic equations.

Variants of the P2D model include the single-particle model (SPM) [7], which simplifies
calculations to reduce computational demands for embedded applications, and the multi-
dimensional multi-physics model (MuDiMod) [8,9], which increases model complexity to
investigate the intricate internal behaviour of lithium-ion cells. PBMs offer insights into
internal battery processes such as lithium-ion diffusion, Ohmic effects, and electrochemical
kinetics. These models enable the exploration of battery degradation mechanisms, the
prediction of the SOC and state of health (SOH) with aging considerations, and the devel-
opment of optimal charging strategies. However, PBMs are composed of numerous partial
differential equations (PDEs), requiring significant computational power to solve. This
inherent complexity makes the real-time integration of PBMs into low-power controllers
found in BMSs impractical [10].

Equivalent-circuit models (ECMs) [11–17] represent LIBs as networks of electronic
components such as resistors and capacitors. These resistor–capacitor networks are used
to capture battery behaviour over various time constants associated with diffusion and
charge-transfer processes [18]. ECMs are based on empirical insights and experimental
data, making them the predominant model for real-time SOC estimation in electric vehicle
BMSs. Their popularity stems from their ability to predict electrical behaviour quickly and
with minimal computational load, as most information can be pre-computed and stored in
lookup tables.

Two main methods are commonly used to determine ECM parameters: electrochemical
impedance spectroscopy (EIS) [19,20] and the galvanostatic intermittent titration technique
(GITT) [21], also known as pulse testing and referred to by various names in the prior liter-
ature [22]. ECMs, however, typically do not account for temperature and heat generation
effects, so they are often coupled with thermal models of varying complexity to address
these factors.

Entropy change (ΔS) represents the heat absorbed or released due to microstructural
changes during lithium intercalation. This reversible heat, which differs from non-reversible
heat generation related to impedance, is traditionally measured using potentiometric
methods [23–25]. However, these measurements are labour-intensive, prompting a common
practice of excluding ΔS in the practical thermal modelling of lithium-ion batteries [26].

Neglecting ΔS is a common engineering practice in the thermal modelling of lithium-
ion cells. For instance, the models found in [26] all neglect entropy. Ye et al. argued that
there is a reversible heat source during discharge at higher currents, thus concluding that
entropy can be neglected in such cases [27].

As battery materials evolve to minimize Ohmic losses and new chemistries are de-
veloped, the consideration of ΔS could become increasingly relevant to improve model
accuracy. This paper aims to offer battery engineers a nuanced perspective on when and to
what extent ΔS should be incorporated into electro-thermal models, considering its impact
on model accuracy under different operational scenarios.

2. Methodology

In this study, a rigorous methodology was employed to investigate the impact of
entropy change. Firstly, a comprehensive model was constructed using MatLab/Simulink,
providing a computational framework for analysis. Subsequently, the model’s parameters,

136



Batteries 2025, 11, 84

crucial for accurate simulation, were determined through various experimental meth-
ods. Parameters such as impedance, open-circuit voltage, the coefficient of convection,
and entropy change were precisely quantified. To validate fidelity and predictive capa-
bility, the model was benchmarked against real-world data obtained from continuous
discharge and actual driving cycles. The accuracy of the proposed model was evaluated
under constant current discharge and dynamic profile scenarios, offering valuable insights
into the importance of considering ΔS. Finally, leveraging the validated model, simu-
lations were conducted to explore various scenarios of continuous currents and power
discharge at different rates. The insights obtained from these simulations are intended to
help guide engineers in their decision process of whether to include entropy change or not
in simulations.

The experimental setup used for this work is pictured in Figure 1. Cells were held in
place and connected by ZKE Battery Rack cell fixtures, which had independent probes for
voltage measurement and current carrying [28]. Each cell holder was connected to one of
the 48 channels of an LBT-2000 (Arbin Instruments, College Station, TX, USA) cell cycler
with the four-wire Kelvin method [29]. The precision of each channel was 0.5 mV. This
equipment is well suited for detailed battery characterization and Coulombic efficiency
studies due to its very high level of precision. The sampling rate of the channels was set to
10 Hz. Throughout all tests, constant ambient temperature in the samples was ensured by
placing the samples inside a CSZ MicroClimate (Cincinnati Sub-Zero, Cincinnati, OH, USA)
test chamber [30]. The temperature of each cell was measured with Type-T thermocouples,
placed midway along the length of the cells, held in place with a thin polyamide film tape.

Figure 1. Experimental setup.

For this work, 3.5 Ah INR18650-MJ1 (LG Chem, Seoul, South Korea) cells composed
of a nickel–manganese–cobalt cathode and silicon–graphite anode were used. The choice
of the INR18650-MJ1 was based on the fact that its behaviour and construction has already
been studied in the prior literature [31–38], so it can be tied to several other publications.

The model developed in this work was composed of a lumped thermal model with
convection and a first-order RC ECM electrical model. Figure 2 shows the basic representa-
tion of the thermal and electrical models. The sign convention used in this work was such
that positive current was considered flowing out of the cell to provide power to the load it
was connected to.

It was assumed that properties and behaviour were homogeneous throughout the cell
body and electrodes. The electrical boundary of the system was the load, and the thermal
boundary was natural convection with the surrounding air. The coupling of the two models
forming the electro-thermal model (ETM) could be visualized conceptually using energetic
macroscopic representation (EMR). Figure 3 illustrates the interactions between the various
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physical behaviours within a lithium-ion cell. Similar representations have been depicted
in prior work [39].

Figure 2. Schematic representation of lithium-ion cell. (a) Thermal. (b) Electrical.

EMR is a systemic representation for modelling multi-physical systems. It is a well-
suited representation for structuring models in a graphical programming environment
such as MatLab/Simulink. The model was implemented in MatLab/Simulink R2021b.

In this representation, the behaviour of the cell is broken down in three main compo-
nents: the electrochemical energy source (designated as Electrodes), the losses (depicted
as a multi-physics coupling block), and the thermal inertia. A load model and a thermal
boundary conditions model (designated as Load/Supply and Air) complete the ETM. In the
model, the electrochemical energy source defines the open-circuit potential of the cell V0. It
is assumed that V0 is the theoretical voltage of the cell without any current flowing through
the cell. The value of V0 was measured in prior work [22] at temperatures, T, ranging from
−20 ◦C to 60 ◦C, at increments of 1% SOC, as shown in Figure 4. Its value was estimated
by bilinear interpolation within the empirical response surface.

Figure 3. Equivalent energetic macroscopic representation (EMR) of lithium-ion cell.

The electrochemical potential V0 of a cell is a function of the amount of lithium ions
present in the electrodes, or SOC. As ions are intercalated in the anode and cathode,
the resulting potential varies accordingly. While the evolution of potential with regard
to the degree of lithiation is somewhat linear, phase changes in the microstructure of the
electrodes may cause fluctuations to the slope at certain specific SOCs [40]. Note that Vcell

and Vop are functions of the cells SOC θ, temperature Tcell , current Icell , and time t, while V0

is not influenced by the current and time. SOC, θ, is defined as the ratio of the remaining
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quantity of electrical charges within the electrodes to the theoretical total amount of useful
charges of said electrodes C0 at the reference temperature (25 ◦C). The remaining quantity of
charges can be computed by the integration of Icell over t. For (1) to be computed correctly,
C0 is expressed in Coulombs (C).

θ =

∫
Icelldt
C0

(1)

A first-order ECM is used to represent overpotentials in this work. The overpotential
voltage of a resistor–capacitor (RC) ECM is given in (2) in the general form where the
electrical network is composed of the entirely resistive component R0 and n RC couples,
designated by Rk and Ck, where k is the couple instance subscript.

Vop(θ, T, t) = R0(θ, T)I(t) +
n

∑
k=1

Rk(θ, T)I(t)e−t/Rk(θ,T)Ck(θ, T) (2)

This translates to the following transfer function in the Laplace domain (3).

Vop(θ, T) = IR0(θ, T) + I
n

∑
k=1

Rk(θ, T)
Rk(θ, T)Ck(θ, T)s + 1

(3)

In the model, Vcell is the difference between the potential and overpotential Vop caused
by the inefficiencies of the various processes (4).

Vcell(θ, T, I, t) = Voc(θ, T)− Vop(θ, T, I, t) (4)

The effective electrical power of the cell, Pcell, is the product of the electrical current
Icell and cell voltage Vcell (5).

Pcell = Vcell Icell (5)

Figure 4. Open-circuit voltage interpolation table.
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The complexity of the non-linear property changes with regard to θ and T can be
difficult to model. Therefore, empirical mapping as described in [22] remains an accurate
and straight-forward approach. Figure 5 shows the response surface for the different
impedance parameters of the model. Impedance characteristics are unique to each lithium-
ion cell model and manufacturer. They are influenced by factors such as the chemical
composition of the electrode’s active materials, as well as numerous design- and production-
induced parameters, including electrode thickness and particle size [41].

Irreversible losses generated by overpotential (Qop) can be expressed by (6)

Q̇op = Vop Icell (6)

However, the total heat generation inside the cell (Q̇gen) is equal to the sum of irre-
versible losses, Q̇op, and reversible losses from entropy change, Q̇ent. While ΔS can be seen
as a variation in temperature caused by a change in potential, the opposite is also true.
Equation (7) describes this relationship, where F is the Faraday constant. Therefore, using
the direct correlation between temperature change and voltage change, one can obtain the
entropic coefficient of a cell by applying a temperature change to a cell, while measuring
the resulting voltage change. This method is known as the potentiostatic method [23–25].

ΔS = F
dV
dT

(7)

In a controlled temperature chamber, Tcell was changed from 20 ◦C to 40 ◦C with an
acclimatization period of approximately 30 min after each temperature change to allow
the full entropic phase transformation. Using the experimental setup described earlier,
two samples were tested along the entire capacity by discharging the cell at a rate of
C/10 and resting at equally spaced intervals of 5% SOCs to perform the test. A similar
methodology was proposed by Geifes et al. [42].

This property is dependent of the degree of lithiation of the electrodes or θ at the
cell level and has been shown to be independent of the temperatures at which it is mea-
sured [25,43]. The entropy change coefficient ΔS is shown in Figure 6.

Assuming linear interpolation between the measurement points, reversible heat flow
due to ΔS was computed with Equation (8).

Q̇ent =
−ITcellΔS

F
(8)

The thermal output of the multi-physics losses model was as is stated in (9).

Q̇gen = Q̇op + Q̇ent (9)

However, as discussed in German et al. [39], losses must be expressed in the flow of
entropy as defined by (10) to respect the principles of EMR.

Ṡ =
Q̇
T

(10)

Therefore, (9) becomes (11).

Ṡgen =
Q̇gen

Tcell
(11)
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Figure 5. Map of parameters of electrical model.

This result was then fed as an input of the thermal inertia model (Thermal Inertia block
in Figure 3). Unless the cell was placed in perfectly adiabatic boundary conditions, heat
would leak out of the cell to its surroundings through radiative, convective, and conductive
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heat transfer. Radiation losses (Q̇rad) were considered negligible under normal operation.
Conduction heat losses (Q̇cond) were also neglected from this work. Only convection
heat transfer (Q̇conv) to the surrounding air was considered. To respect EMR formalism,
convection heat transfer was expressed as entropy flow, Sconv. It was computed by (12).

Ṡconv =
hA(Tcell − Tamb)

Tcell
(12)

Figure 6. Entropic coefficient of cell at different states of charge.

While the surface area of a cell (A) can be estimated from geometry, the convection
coefficient (h) is typically determined experimentally. Its value depends on various param-
eters such as fluid viscosity, surface finish, object shape, and orientation. The total entropy
flow to the environment is given by (13).

Ṡout = Ṡrad + Ṡcond + Ṡconv (13)

Cell temperature for the next iteration step T∗
cell was computed with (14),

T∗
cell = Tcell +

∫
(Ṡgen − Ṡout)dt

m Cp Tcell
(14)

Thermal inertia is the product of the cell mass (mcell) and a specific heat (Cpcell). Ac-
cording to a review by Steinhardt et al., Cpcell of cylindrical cell is between 884 J kg−1 K−1

and 1172 J kg−1 K−1, with a lower median of 912 J kg−1 K−1 [44]. The model assumed a
constant mass, m, in kg and specific heat, Cp, in J kg−1 K−1 in the cell. Assuming a constant
convection coefficient, the value of h and Cpcell could be computed by the least-square
curve fitting of Equation (15).

Tcell(t) = Tambe
−
(

hA
mcp t

)
(15)

The values of h and Cpcell were determined experimentally by heating test samples
to 50 ◦C and then placing them at 23 ◦C, while recording Tcell throughout the cooldown
at 10 Hz until the temperature stabilized to an ambient temperature Tamb. Figure 7 shows
the temperature of the samples during the cooldown test. A value of 31.2 W m−2 K−1 was
found for h and a value of 912 J kg−1 K−1 was determined for Cpcell .

142



Batteries 2025, 11, 84

Figure 7. The cooldown of the samples from 50 ◦C to 23 ◦C compared with the model.

Other characteristics of the lithium-ion cell used in this work are gathered at Table 1.

Table 1. Cell specifications.

Name Symbol Value Unit

Manufacturer - LG Chem -
Model - INR18650MJ1 -
Chemistry - NMC-G -
Nominal voltage Vnom 3.65 V
Capacity C0 3.5 Ah
Energy Enom 12.7 Wh
Weight m 48 g
Specific heat Cp 912 J kg−1 K−1

Convection h 31.2 W m−2 K−1

3. Results

The different parameters of the ETM were measured by a series of independent
characterization procedures. The experimental validation of the model therefore had
to be performed to ensure the proper implementation of the model. The validation of
the model was performed using the same setup as shown in Figure 1 with a constant
current discharge (1 C) and dynamic current conditions. Figure 8 shows the results of the
experiment, benchmarked against the model.

The temperature in the climate chamber for this test was 23 ◦C. The slight fluctuations
in the experimental measurement can be explained by the normal variations in temperature
in the climate chamber. The results show that entropic heating mostly influenced tempera-
ture estimation. Regardless of entropic heating, the voltage error between the model and
experiment was inferior to 10 mV throughout most of the discharge except below θ = 5%.
Without consideration of entropic heating, the error between the model and experiment
was superior to 2 ◦C for most of the discharge. Meanwhile, the measured error between
the experimental and simulated temperatures was within 1 ◦C, while the overall evolution
was preserved much more accurately. Thus, it can be concluded that the effect of entropy
had a negligible effect on the accuracy of the electrical model but had a measurable effect
on the thermal model.
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Figure 8. Constant current validation with and without entropy.

Further validation of the model was performed on a cell using a dynamic cycle from
Messier et al. [45], representative of light electric vehicle drive cycle. The same experimental
setup was used for this test. The vehicle current was scaled down to a cell-level equivalent
current for the experiment. Figure 9 shows the applied current and the resulting voltage
and temperature for the simulation and experiment.

The results show that the voltage error of the model was inferior to 70 mV throughout
most of the discharge, except at θ, where it was inferior to 15%. The temperature error was
inferior to 1 ◦C, with the highest error occurring when cell θ was between 50% and 70%,
which corresponded to a rapid change in the entropic coefficient. It is likely that increasing
the resolution of the entropic coefficient interpolation table could improve the thermal
accuracy of the model.
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Figure 9. Electro-thermal model dynamic simulation.

4. Simulations

Having validated the model, we then explored the impact of the entropic effect in
comparison with Joule losses. Though it is often stated that the entropic effect can be
neglected from models since it is directly proportional to the current, it can be observed
in Figures 8 and 9 that the accuracy of the thermal model was greatly improved when
entropic heating was considered. To test this assumption, a constant current and constant
power discharge were simulated with and without considering entropy.

4.1. Constant Current Discharge

To further our analysis, simulation results for the constant current discharge for C-rates
ranging from 0.5 C to 3 C are shown in Figure 10. The results indicate that the entropic effect
had a negligible effect at low discharge rates and caused a maximum error of 4 ◦C at higher
rates. Figure 11 shows that despite the large error in heat generation seen mid-discharge,
the average losses were nearly identical with and without entropy. When considering
Joule losses, only the heat generation rate was much more stable, as indicated by Figure 11.
Although the heat generation rate did increase at low SOCs from irreversible losses, as one
would expect from the sharp increase in impedance, this rate was increased by 20% when
considering entropic contribution under a constant C-rate. It is important to note here
that simulation allowed us to visualize results, which would be impossible under real
conditions due to the temperature limits imposed on a real lithium-ion cells because of the
risks of TRA. Under real conditions, only a discharge inferior to 2 C would be acceptable.
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Figure 10. Constant current sensitivity analysis.

Figure 11. Sensitivity analysis of impact of C-Rate on thermal model results with and without
consideration of entropic losses.

146



Batteries 2025, 11, 84

4.2. Constant Power Discharge

While galvanostatic discharge is most usual in the field of electrochemistry and the
like, a constant power discharge is more representative of most engineering use cases, such
as EVs. This power can be expressed in the E-rate, or multiples of the nominal energy
of a cell. The nominal energy in a cell, Enom, or energy storage system is equivalent to
the piecewise integral of the constant current discharge curve, as stated by (16). Nominal
capacity Cnom is defined as the total amount of charges, given in Ah, that can be stored in a
cell for the electrochemical reaction to be stable.

Enom =
∫ Cnom

0
V dC (16)

A more practical method to estimate Enom is from the product of Vnom and Cnom,
typically given in product datasheets. Since Voc decreases as the cell becomes depleted,
the current will increase to maintain constant power. Results for discharge with constant
E-rates ranging from 0.5 E to 3 E are shown in Figure 12. The boundary condition and
properties were kept identical. By comparison with results of Figure 10 for a constant
current discharge, the differences caused by the consideration of entropic heat generation
were much less important to the proper estimation of the temperature and total heat
generation. From the simulation results, it can be observed that the maximum power that
could be sustained in these poor cooling conditions was 1.5 E or 19.8 W. At this E-rate,
the losses could reach up to 6.5 W with entropy, while they only reached 5.3 W without
entropy. This difference in heat generation was even greater at higher E-rates. As can be
seen in Figure 12, Qgen could reach up to 12.6 W when considering entropy. However, this
specific case could not be sustained in a real application since the temperature would be
significantly above the safe operational window.

Figure 12. Constant power sensitivity analysis.
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4.3. Discussion About Entropy

The estimation of heat generation is one of the primary inputs for the proper sizing
of thermal management systems. Only a coarse approximation of heat generation can be
made from the nominal internal resistance value. Considering the temperature and SOC
dependence of internal resistance can greatly improve the accuracy of models. Further gains
can be achieved by considering transient impedance instead of constant resistance. While
the link between overpotentials and losses can quite easily be measured, entropy change is
often overlooked due to a lack of understanding of its mechanisms. Since entropic heating
is convoluted with Joule heating, it is less intuitive to measure than impedance. Simulation
allowed us to deconvolute the Joule losses from entropic heating. Due to its reversibility,
entropic heating cannot be considered a loss in energy per se. The exothermic phase
transformation in electrodes during discharge is equally endothermic during recharge.
Thus, only overpotential heating can be classified as a loss from the strict definition of
losses being irreversibly lost to the environment.

The decision to consider entropy or not from thermal models can be motivated by
plenty of factors. The time required to calibrate the lookup tables is one. The measure-
ment of changes in entropy requires time, patience, well-controlled conditions, and high-
precision measurement equipment. ΔS is not dependent on temperature, but it varies with
SOC. Therefore, it is important to characterize this property along the entire depth of the
discharge of a cell, for as many points as time allows. For instance, each data point of
entropy change may take up to 1 day to obtain, simply to allow the full thermodynamic
stabilization of the samples. It took 10 days to obtain the entirety of the entropic coefficient
points presented in Figure 6. However, this procedure could be automated by linking the
climate chamber and cell-cycler. Electro-thermal impedance spectroscopy as introduced
by Schmidt et al. [46] will be considered a path to improve the speed and accuracy of the
characterization of ΔS in future work.

5. Conclusions

With the increasing use of lithium-ion batteries in power-intensive applications and
environments, the estimation of the thermal behaviour of lithium-ion cells through electro-
thermal models becomes even more necessary to design battery packs that are safer, longer
lasting, and more reliable.

This research fills a critical gap in understanding ΔS in electro-thermal modelling,
offering a systematic approach to incorporating entropy change in predictive frameworks.
In this work, the importance of considering ΔS in the estimation of heat generation in
electro-thermal models was addressed. The electro-thermal model used for this work was
structured using the energetic macroscopic representation method. The cell impedance
used in the model was obtained by GITT at temperatures ranging from −20 ◦C to 70 ◦C
along the entire depth of the discharge of the cells, with a resolution of a 1% SOC. The
entropic coefficient was measured at increments of a 5% SOC for the entire range. A lumped
thermal model with convection boundary conditions was used to estimate cell temperature.

The voltage error of the model was found to be inferior to 50 mV, while the temperature
error was inferior to 1 ◦C when considering entropic heating, even with a dynamic drive
cycle. From this validated model, sensitivity analysis was performed at various C-rates
and E-rates to determine the impact of entropic heating on the temperature and total heat
generation. Based on our observations, discarding entropy from the simulations could
yield an error in temperature of up to 4 ◦C. However, the thermal boundary conditions of
the present work were sub-optimal for high-power applications.

However, entropy does not seem to affect total heat generation over a full discharge.
Entropy change predominantly affects the precise tracking of temperature dynamics, of-
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fering critical accuracy enhancements for high-fidelity thermal simulations. It was found
that it plays no significant role on the accuracy of electrical behaviour prediction. While
entropy can be neglected for coarse heat generation estimation, it must be considered when
temperature must be estimated with a greater level of accuracy, such as in high-fidelity
thermal simulations. Future work could focus on automating entropy measurement pro-
cesses and applying the findings to new chemistries or advanced thermal management
systems. Incorporating entropy change into a model hinges on the desired accuracy level,
available laboratory resources, and specific simulation objectives.
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Abstract: The paper presents two approaches to generating load cycles for electrical energy
storage systems. A load cycle is described as the operation of an energy storage system.
The cycles can include different metrics depending on the storage application. Load cycle
analysis using the rainflow counting method is employed to understand and validate the
metrics of the load cycles generated. Current load cycle generation can involve clustering
methods, random microtrip methods, and machine learning techniques. The study includes
a random microtrip method that utilises the Random Pulse Method (RPM) and enhances it
to develop an improved version called the Gradient Random Pulse Method (gradRPM),
which includes the control of stress factors such as the gradient of the state of charge (SOC).
This method is relatively simple but, in many cases, it fulfills its purpose. Another more
sophisticated method to control stress factors has been proposed, namely the Information
Maximising-Recurrent Conditional Generative Adversarial Network (Info-RCGAN). It
uses a deep learning algorithm to follow a machine learning-based, data-driven load cycle
generation approach. Both approaches use the measurement dataset of a BMW i3 over
multiple years to generate new synthetic load cycles. After generating the load cycles using
both approaches, they are applied in a laboratory environment to evaluate the stress factors
and validate how similar the synthetic data are to a real measurement. The results provide
insights into generating simulation or testing data for electrical energy storage applications.

Keywords: loadcycle analysis; load cycle design; simulation; testing

1. Introduction

The number of electrical energy storage applications has increased significantly in
recent years. The push for electric vehicles and stationary systems is enormous. No matter
which application the electrical energy storage system is used for, significant effort is put
into improving the system’s control and enhancing the understanding of the application
and its requirements. For this purpose, the systems are either tested in laboratories,
applying different load cycles, or simulated. Either approach requires adequate knowledge
of the system’s requirements and behaviours during the application. Furthermore, the
appropriate input data are required to represent the given application’s stress factors.

Batteries 2025, 11, 149 https://doi.org/10.3390/batteries11040149
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Recent research by Ref. [1] showed that a varying dynamic discharge profile led to an
increase of up to 38% in equivalent full cycles at the end of life. In Ref. [2], differences
in the degradation were recorded, especially for low temperatures. A review of battery
data in Ref. [3] revealed that dynamic ageing has often been overlooked in degradation
analysis, primarily due to the complexity of assessing ageing mechanisms under dynamic
stress factors and the limited availability of real-world application data for dynamic cycles.
Additionally, degradation studies are frequently accelerated to reduce time and effort. This
underscores the usefulness and necessity of load cycle generation approaches. This work
shows an approach to extracting the required information from measurements and using
them to generate new (simplified) load cycles through load cycle analysis. Two different
methods for load cycle generation are introduced and compared. This work is developed
based on our preliminary work [4], upon which the content is significantly expanded. The
expansion includes the tuning of the two methods introduced and makes it possible to
compare the approaches based on their influences on actual laboratory measurements
instead of relying on comparing synthetically generated load cycles. In particular, the
influence of gradRPM on secondary stress factors, such as temperature and voltage, can be
evaluated and validated through the Info-RCGAN approach. The preliminary work does
not include any validation in a laboratory environment.

Load cycle analysis is necessary to evaluate the data, identify the relevant stress
factors to design a degradation schedul, and validate the load cycles generated. Different
approaches can be found in the literature. Ref. [5] summarised papers utilising various
approaches to load spectrum analysis. The methods included instantaneous value counting,
rainflow counting, range pair mean counting, total charge throughput, and half-cycle
counting. The techniques can be used for different stress factors. Instantaneous value
counting is a method where the appearance of each value belongs to a bin, and the specific
bin counter is incremented. Every value is counted. Charge throughput calculates the
charge that is charged or discharged instead of occurrences. The occurrences do not include
varying sample times. Rainflow counting is more complex and counts stress cycles and
their mean values and ranges. Rainflow counting can be applied to different stress factors
such as SOC, temperature, voltage, and current. The results can be displayed as histograms
or spectra. In Ref. [6], the rainflow counting was extended using a fuzzy logic approach
to address the quantisation error implicit in the histogram generation that could have
introduced incorrect representations of the stress signal. In addition, it has been used as the
basis for battery degradation models to account for temperature and c-rate dynamics, such
as in Ref. [7]. Ref. [8] highlighted the drawbacks of applying rainflow counting to real-time
data and introduced a faster method to approximate the full cycles that a battery endured
during a frequency response application. In Ref. [9], the problem of applying the rainflow
counting approach to real-time data, as well as in an optimisation problem, was addressed
by counting the half cycles generated by each concavity change. In Ref. [10], machine
learning approaches were applied to analyse the stress factors and rank them. The least
absolute shrinkage and selection operator was used for the analysis, and a random forest
approach was employed to perform the ranking. In general, variations of the rainflow
counting method have been widely used as approaches to stress analysis. This method
breaks down complex load cycles into stress cycles, capturing the range and mean of
each cycle. It can easily be applied to multiple stress factors that are critical for battery
degradation processes, such as state of charge, temperature, voltage, and current. Its
representation through histograms or spectra is explicitly useful for the easy comparison
and interpretation of measurement data and the load cycles generated. Due to its versatility,
rainflow counting is used in this work for the analysis of the profiles generated and the
investigation of the stress factors of the measurement data.
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Load cycle generation is often described using driving cycles. In the case of driving
cycles, vehicle kinematics are used to design cycles, which are then run with a simulation.
Afterwards, a battery profile can be calculated. Load cycles generally pertain to the load
profile applied to batteries and battery systems. The literature concerning load cycles
is sparse, whereas there is more literature using different approaches for driving cycles.
Nevertheless, approaches to driving cycle construction can be used for load cycle generation.
In general, cycle generation can be divided into three different categories. Simple methods
based on employing known profiles to generate new variations using, for example, battery
models or vehicle models. In Ref. [11], a battery model was used to generate the synthetic
data of an end-of-line test, which was then used to train a machine learning algorithm.
Clustering methods can be used to help identify features and categorise measurement
data to reduce the data information to a single drive cycle like a standard drive cycle,
i.e., the New European Driving Cycle (NEDC). In Ref. [12], principal component analysis,
clustering, and an optimisation algorithm were used to obtain a driving cycle that was
typical for the data acquired during the case study, whereas in Ref. [13], a relatively raw
clustering approach used principal component analysis to reduce the dimensionality, as
well as clustering to categorise the microtrips. Afterwards, the microtrips were randomly
picked to construct a new cycle. Random microtrip methods include restructuring the
measurement data randomly to new cycles, like in Ref. [14]. In Ref. [15], the generation of
a load cycle for electrical vehicle application was based on the data from a real electrical
vehicle, where different methods were used to classify the uses of the vehicle, including,
for example, K-Means clustering; the dimensionality of the features was reduced using
principal component analysis. For the characterisation of driving cycles in Ref. [16], the
energy consumption per unit of time was used as an indicator to classify the cycles into
semi-urban or semi-highway cycles. The categories were characterised, and probability
functions were designed to represent the categories. Afterwards, the functions were
sampled with a random seed to generate new profiles. In Ref. [17], cycles were generated
for a stationary application. The data were divided into intervals, and twelve different
metrics were calculated to describe the intervals. A dispatch interval matrix was designed
for further analysis. Principal component analysis was used to reduce the dimensions
before unsupervised K-Means clustering was applied for the categorisation. For the cycle
generation, a number of characteristic duty cycles were extracted. Other approaches include
machine learning methods. Sometimes, they are used to improve the existing clustering
methods. In Ref. [18], an autoencoder was added to the clustering method to improve
the generation of a new cycle by half a percent, whereas in Ref. [19], a Time Generative
Adversarial Network was applied to generate more synthetic data on different driving
conditions and operational parameters like varying temperatures for the training of a
state of charge prediction model. So, there are multiple approaches to generating usable
load cycles, from simple to advanced. To reach the goal of creating realistic controllable
load cycles for application in a laboratory environment, two approaches are implemented
during this study. The first approach belongs to the group of approaches that reuses
segments of the original measurement data. The simple algorithm is based on the RPM
from Ref. [14] and was chosen as one of the approaches due to its ease of implementation,
low requirements for computational resources, and the amount of data needed to generate
adequate cycles. These advantages make the RPM a good candidate for straightforward
load cycle generation. Expanding the RPM to include the possibility of controlling different
stress factors leads to the development of the gradRPM. However, not all of the stress
factors can be controlled by the gradRPM; to do so, a parameterised battery model would
be needed to model the voltage and temperature responses to the generated load cycle.
That would increase the complexity and information needed to generate load cycles, which
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is not part of this work for the gradRPM. The second approach is aimed at using the Info-
RCGAN. The Info-RCGAN is used to generate load cycles that resemble the measurement
data as much as possible, with advanced stress factor control for secondary stress factors
such as temperature and voltage. Using a large dataset for training increases adaptability
and flexibility. Furthermore, this approach is able to capture more complex dependencies
between the stress factors than a simple approach. These advantages make it a perfect cross-
comparison for the gradRPM method. Both approaches need a real-world measurement
dataset, where the amount of data may vary. The gradRPM can work even using just a small
amount of data, where the Info-RCGAN needs a larger amount to effectively train the whole
model. By combining a simpler, computationally efficient method (gradRPM) with an
advanced, high-fidelity approach (Info-RCGAN), we aim to provide a more comprehensive
solution for load cycle generation. These methods are tested using real-world data from a
BMW i3 and validated in a laboratory environment.

The paper is structured as follows: First, we describe the dataset used as a reference
and the basis of our study, see Section 2. Next, we present the methodology, which
is divided into two approaches, the gradRPM in Section 3.1 and the Info-RCGAN in
Section 3.3. This is followed by the results of the two approaches and a discussion of the
findings in Section 4. Finally, we conclude the paper with key insights and implications in
Sections 5 and 6.

2. Dataset

The dataset used as the basis for this data-driven pulse generation comprises logged
data from a BMW i3 (BMW AG, Munich, Germany). It includes data recorded over 4 years,
with shorter trips in most cases. The BMW i3 belongs to the Fraunhofer Institute for
Transportation and Infrastructure Systems (Dresden, Germany) and is regularly used as a
passenger car. Consequently, the gathered data closely resemble the driving patterns of a
private BMW i3 owner. Figure 1 displays a summary of the dataset for the range of SOC per
trip, its mean SOC, and the mean temperature. The colours, starting from yellow to violet,
in the scatter plot indicate the time of acquisition, where yellow is the oldest measurement,
i.e., the cell had a higher SOH at this point. In general, the trips are shorter, with an
SOC range of up to 20%, and they mostly cycled around an SOC of 75%, which is rather
high. Over the ageing of the battery, the mean SOC decreases. The temperature typically
remains between 20 °C and 30 °C, with brief deviations occurring only at cold or hot
ambient temperatures immediately after vehicle startup. Therefore, the temperature is not
displayed here. Each measurement includes voltage, current, SOC, time and temperature.
The Fraunhofer Institute for Transportation and Infrastructure Systems provided the data
for the joint research project “Field Data-Based Battery Diagnosis and Lifetime Prediction
(FeBaL)”. The project goal was the utilisation of field data to improve battery assessment
by learning the ageing behaviour, including stress factors and interactions, examining
the ageing without a capacity test, and understanding the usage patterns for application-
specific lifetime predictions.
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Figure 1. Diagram of the dataset visualising the SOC range and the mean SOC of every trip.

3. Methodology

The methodology is subdivided into three different parts. Load cycle analysis is the
first part, the improved random pulse method is the second, and the third is the machine
learning-based approach to cycle generation. To compare and validate the generation
of the profiles with the measurements, there needs to be a way of analysing the profiles
generated. Some approaches have been mentioned in Section 1. In this work, the rainflow
counting method is used to analyse all the generated and measurement data concerning the
stress factors, SOC, temperature, voltage, and current or C-rate. Regarding the generation,
the only analysable factor is the C-rate because, for example, the RPM (Section 3.1) only
generates a C-rate profile. On the other hand, the machine learning approach (Section 3.3)
can generate profiles for the different stress factors, but in the end, only the C-rate profile
is applied.

3.1. Gradient Random Pulse Method (gradRPM)

The Random Pulse Method (RPM) is highly dependent on the measurements and
the number of measurements within the dataset used to extract information on the ap-
plication. In Ref. [14], the method was introduced to construct driving schedules for
high-performance batteries used in racing applications on specified racing tracks. Ref. [14]
described segmenting the dataset into smaller parts of the dataset. A segment’s start
and end were defined by the current direction change, either from the discharging to the
charging direction or vice versa. Therefore, the data were analysed for zero crossings and
split into segments. The segments were then saved to a database, and the charging and
discharging databases were subdivided. Furthermore, the databases could be arranged into
racetrack-specific segments. Then, the databases were analysed considering predefined
target parameters, where applicable. The target parameters described different charac-
teristics of the data. They included the mean power discharge and charge, as well as the
mean absolute power and net discharge power. In addition, they considered parameters
describing the fraction of charging or discharging of the pulse. Different duration metrics
were included in the target parameters and the overall duration. Some parameters were not
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calculated for the segments since they did not make sense, like the fraction of charging or
discharging. Because of the segmentation, a segment was either a charging or discharging
pulse. The target parameters were the criteria for the load cycles constructed to decide
whether they were helpful. The databases of the charging and discharging segments were
sorted by the duration of the segments. The generation of the profile used by Ref. [14]
started with generating a random number within the range of the number of segments
in the discharging database. The corresponding discharging and charging segments with
similar durations were added to the cycle. The reason for adding both a discharging
and charging segment with similar durations was to have real profiles and to avoid the
occurrence of a short discharge pulse followed by a long charging pulse that may lead
to overcharging. When the target duration for the duty cycle was reached, the cycle was
evaluated in relation to the target parameters. The error of the target parameters had to
be below 10% in the case of Ref. [14]. About 200 iterations were needed to generate 10
candidates using the 10% margin [14]. The cycle was stored as a candidate if the target pa-
rameters were within the intended range. The procedure was repeated until ten candidates
were stored. The overall error for each candidate was calculated, and the candidate with
the lowest error was accepted. The general approach of the RPM is displayed in Figure 2a.

Based on the explained method utilised by Ref. [14], the RPM was improved to reduce
the number of iterations and enhance its controllability. This approach is called gradRPM,
is based on the RPM, and is tested in this paper. Controllability is especially important to
generate load cycles that are used for dynamic ageing in laboratories. Because in ageing
tests, the degradation is planned for specific stress factors. The stress factors that are
investigated include the SOC range, the mean SOC or mean voltage, and the current
rates for cyclic degradation. Target parameters and control parameters are used to control
the stress factors. A minimum and maximum C-rate is included to maintain at least the
boundaries of the current rates. Furthermore, an SOC gradient and range are part of the
parameters used to control the mean SOC and range. The target parameters include the
SOC range, that describes the maximum change of the SOC over the load cycle and the
maximum duration of the load cycle.

The parameters are distinguished into control and target parameters because the
process of the RPM has been altered. The new process of the SOC gradient-oriented RPM
starts with filtering the database for pulses that are within the boundaries given by the
parameters CRatemax, CRatemin and within ±5% of SOCgradient. The information concerning
the control parameters was already calculated when the segmentation of the actual data
was performed, and they were saved to the pulse database as additional information, which
is helpful for the generation of the load cycle. The database filtering reduces the pulses to
usable ones to generate the load cycle for the given parameters. Then, a random number is
generated in the range of the filtered database. A single segment is chosen. The segment
could either be in the charge or in the discharge direction. The SOC gradient is calculated
for the current load cycle and extracted from the database’s chosen segment. If the current
gradient of the load cycle differs from the control parameter, only a segment that improves
the gradient in the direction of the control parameter is accepted.Therefore, the resulting
cycle has a gradient around the set SOC gradient by construction. The generation is finished
if the candidate load cycle exceeds the requested SOC range or duration. The process of
the basic RPM utilised by Ref. [14] and the adapted gradient-based approach are depicted
in Figure 2.

The described approach of the gradRPM can generate more complex gradients as
long as the database provides the required data. So, complex load cycles containing
multiple segments with different SOC gradients can be generated by providing a sequence
of parameters. An example is displayed in Figure 3. As expected, the higher the gradient,
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the higher the number of pulses with higher currents that reach the desired gradient for
the load cycle.

(a) (b)

Figure 2. The figure displays the flowchart of the general RPM and the introduced gradRPM. (a) RPM
scheme by Ref. [14]. (b) gradRPM.

Figure 3. Generated profile using the gradRPM and the corresponding change in the SOC within a
sequence of control parameters.

3.2. Process of Analysing Dynamic Load Cycles

The analyses of dynamic data and actual driving data are carried out through the
following steps:
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• Preprocessing,
• Downsampling,
• And the analysis.

Preprocessing manages the analysis’ noise, outliers, and unimportant segments. Unim-
portant segments can be, in the case of a driving schedule, a prolonged time of data logging
after the car is parked. In this work, another approach is used, combining preprocess-
ing and downsampling. A unique sampling approach, a so-called importance sampling
method, is used. In this specific case, it is the Largest-Triangle-Three-Bucket approach
(LTTB). The reason for the use of an importance sampling approach is, on the one hand, to
reduce the amount of data and thus shorten the calculation time of the analysis and, on the
other hand, not lose essential segments of the data, like the peaks and valleys. These peaks
are significant in identifying the stress factors of the C-rate. The LTTB sampling refers to
the use of a shifting window over the data that is meant for downsampling. It divides the
window into three buckets containing a predefined number of samples. A sample is chosen
for each centre bucket. For the right bucket, a temporary point is calculated as the mean
of the samples in that bucket. The left bucket is the old centre bucket with a previously
chosen sample. These three samples form a triangle, and the LTTB aims to maximise the
area of this triangle by selecting the sample for the centre bucket accordingly. Afterwards,
the window shifts for one bucket size. The schematic in Figure 4a visualises the steps of
the LTTB approach [20]. By applying the LTTB to the BMW data, the data are compressed
by a factor of 100.

(a) LTTB scheme (b) Example after LTTB

Figure 4. Schematic of LTTB (a) and an example of output after downsampling (b).

After preprocessing using the LTTB, the data concerning the stress factors can be
analysed. There are different approaches for evaluating the data. They are divided into the
following two categories: one-parametric and multi-parametric analysis. One-parametric
analysis investigates the signal for only one parameter, like the mean or peaks. Multi-
parametric analysis investigates the signal, for example, for both the mean and the range,
visualising more signal information. For example, there is instantaneous value counting,
where the signal is segmented into specified bin sizes, and every value of the signal is
assigned a bin so that it is counted, resulting in a histogram. If the signal is sampled
with one specified frequency, each bin count represents the time spent in this stress factor.
Multi-parametric approaches, in many cases, consider two parameters because of the
ability to be visualised. An example is rainflow counting, which analyses the reversals of
signals to identify the stress cycles. It counts the cycles and categorises them based on their
mean and range, considering two parameters [5]. Sometimes, another similar approach
is mentioned, half-cycle counting, which is, in fact, part of a typical implementation of
rainflow counting because during rainflow counting, the signal is analysed for peaks and
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valleys, where a half cycle is from one valley to one peak or vice versa. This half cycle is
also counted as a half cycle in typical rainflow counting. During this work, instantaneous
value counting and rainflow counting are applied to analyse the load cycles generated and
the measurement data.

3.3. Data-Driven Approach (Info-RCGAN)

A machine learning approach for the generation of battery load profiles considering
multiple stress factors is proposed in this work. Not only are the generated load pro-
files of the model expected to have the same fundamental properties as the real ones,
but certain features of the generated profiles can also be regulated through the model’s
conditional input.

3.3.1. Data Preprocessing

The sampling period of the original data is 0.01 s; however, the samples are usually
not even, which means there could be no samples for a period that is longer than the
sampling time. Sometimes, the device is also shut down for a longer time, during which
the batteries are charged. In order to obtain independent load profiles, the load profiles
that include long stand-by periods are segmented into separate profiles; otherwise, the
increase in voltage, state of charge, and temperature will be considered as a part of the
individual load profile. The segmented profiles are then interpolated. Downsampling
is applied to improve the efficiency of the training, with a sampling rate of 1 Hz. Since
different features have different scales, the input features are normalised into the same
range. Research has also shown that data normalisation is able to improve the performance
of various networks [21]. The normalisation approach applied is min–max normalisation,
with the expected data range as [−1, 1]. The equation for the transformation is given in
Ref. [22].

3.3.2. Sequence Processing

Recurrent Neural Networks (RNNs) [23] are commonly used for the processing of time
series [24,25]. However, a vanilla RNN suffers from the problem of a vanishing gradient,
which can be solved by the refined RNN model, Long Short-term Memory (LSTM) [26].
LSTM introduces a gate mechanism to control which information the LSTM units should
remember and which information they should forget to learn the sequences’ long-term
dependencies. Because of its strong capability to capture temporal features, it has become
one of the most used architectures in time series analysis [27]. Therefore, LSTM is utilised
as a basic unit for sequence processing in this work.

3.3.3. Generative Model

As one of the basic types of deep learning models, generative models aim to generate
synthetic data by learning the data distribution throughout the space. In this work, a
Generative Adversarial Network (GAN) [28] is utilised as the overall framework for load
profile generation.

As shown in Figure 5, GAN consists of two components—the generator (G) and the
discriminator (D). The generator takes random noise z as input and produces synthetic
data xfake. Given that the prior probability distribution of the input noise vector z is pz(z),
the generator aims to learn the distribution pg(z) such that its output resembles the ground
truth data x. The transformation from noise space to data space is defined by the function
G(z; θg), in which G represents the generator’s neural network with the parameter θg [28].
The discriminator, on the other hand, receives either actual data xreal or fake data xfake and
outputs a probability indicating the likelihood that the input belongs to the ground truth.
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This mapping is represented by the function D(x; θd), where D denotes the discriminator’s
neural network with the parameter θd [28].

Figure 5. Generative Adversarial Network.

The generator and discriminator engage in a two-player minimax game and are jointly
trained. The discriminator aims to maximise its accuracy in distinguishing between the
real and generated data. In contrast, the generator aims to minimise the discriminator’s
ability to identify the generated data as fake [28]. The value function V(G, D) of the game
is as follows:

min
G

max
D

V(G, D) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (1)

To incorporate conditional constraints into the load profile generation, the extended
framework known as the Conditional Generative Adversarial Network (cGAN), introduced
by Mehdi Mirza et al. [29], is utilised. In this framework, the naive GAN is modified to
include conditional information y, which is provided as additional input to both the
generator and discriminator. This conditioning information alters the value function of the
two-player minimax game as follows:

min
G

max
D

V(G, D) = Ex∼pdata(x)[logD(x|y)] +Ez∼pz(z)[log(1 − D(G(z|y)))] (2)

There are different approaches to embedding conditioning information into inputs,
such as conditioning by concatenation [29], conditioning using an auxiliary classifier [30],
and conditioning with projection [31]. After conducting several experiments, the condi-
tioning approach by concatenation is chosen for this work. The inputs into the LSTM unit
at each moment, both in the generator and the discriminator, are concatenated with the
respective additional information.

The methods used in previous research, such as C-RNN-GAN [32] and RCGAN [33],
have focused on generating continuous sequences using GANs by implementing the
generator in a synchronous sequence-to-sequence manner [34]. In these models, the length
of the generated sequence can be controlled by specifying the sequence length of the input
noise. Building on this concept, Figure 6 illustrates the schematic diagrams of the generator
and the discriminator. At each time step, the inputs into the LSTM unit in both the generator
and the discriminator are concatenated with the corresponding additional information. To
highlight the difference, the generator’s conditional input is denoted as c, while the actual
data’s condition labels are denoted as y.

Most conditional GANs (cGANs) predominantly focus on categorical conditions [35].
In contrast, this work deals exclusively with continuous conditions, considerably complicat-
ing the learning process. Additional strategies are required to enhance learning outcomes.
InfoGAN [36], initially designed for the unsupervised learning of disentangled representa-
tions, inspired the approach presented in this work. Specifically, the idea of strengthening
the learning of additional information by integrating an auxiliary network and imposing
extra penalties on condition reconstruction is adopted. By shifting the auxiliary model’s
learning process to a supervised manner, controlling which specific information the auxil-
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iary network extracts becomes possible. In this work, the auxiliary model is referred to as
the conditioner. Its schematic diagram is depicted in Figure 7.

(a) Generator scheme (b) Discriminator scheme (c) Conditioner scheme

Figure 6. The schematic diagrams of the three submodels: (a) generator scheme with synchronous
sequence-to-sequence implementation; (b) discriminator scheme with sequence-to-class implementa-
tion; (c) conditioner scheme with sequence-to-class implementation.

Figure 7. Overall architecture of Info-RCGAN.

Figure 7 presents the overall architecture of the deep learning model utilised, Info-
RCGAN. This work uses the following desired features as the conditional input c:

• ΔSOC: the change in SOC after applying the load profile;
• ΔT: the change in temperature of the battery pack;
• min(C-rate): the minimum C-rate within the load profile;
• max(C-rate): the maximum C-rate within the load profile;
• min(ΔU): the minimum voltage change throughout the load profile;
• max(ΔU): the maximum voltage change throughout the load profile.

Since validating desired features unrelated to the current on the dataset with a single
generated C-rate output is challenging, the generated sequence is expanded to include
three features: [C-rate, ΔU, ΔT]. This approach allows better insights into how temperature
and voltage vary with the load profile under different conditional inputs.

3.3.4. Loss Function Design

Since the architecture of the Info-RCGAN has multiple submodels, the proper design
of loss functions also plays an essential role in this work. The loss functions that are used
include Binary Cross Entropy (BCE) and Mean Squared Error (MSE).

The discriminator is expected to not only distinguish the generated fake data from
the actual ground truth data but also to learn the condition information for distinguishing
the different data types. To achieve this goal, the loss functions of the discriminator are
as follows:
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• Fake loss BCE(D(xfake, c), 0): to distinguish fake data with the respective conditional
input as fake;

• Real loss BCE(D(xreal, yreal), 1): to distinguish real data with the respective real labels
as real;

• Unmatched loss BCE(D(xreal, yfake), 0): to distinguish real data with the unmatched
labels as fake.

The following applies to the above-mentioned functions:

xfake = G(z, c) (3)

The conditioning input of the generator c is chosen to be the ground truth labels yreal

from the same batch, and yf ake are some randomly generated labels.
The conditioner aims to reconstruct the regression labels of the input sequence data.

It is expected to learn specific desired features, as mentioned before, so the conditioner is
trained on the ground truth data and its respective label in a supervised manner.

• Regression loss MSE(C(xreal), yreal): to reconstruct the ground truth labels from the
ground truth sequence data.

The generator is designed to achieve the following two goals: generate fake data that
can fool the discriminator’s output into a “real” outcome, as well as generate data in which
the condition input c can be reconstructed by the conditioner. The loss functions used to
train the generator are as follows:

• Generation loss BCE(D(xfake, c), 1): to generate data that can fool the discriminator;
• Condition loss MSE(C(xfake), c): to generate data from which the input conditions

can be reproduced by the conditioner.

The training of the generator is indirect performed through both the discriminator and
the conditioner.

3.3.5. Training of the Model

GANs are notoriously difficult to train. We applied the hyperparameter optimisation
framework Optuna [37] to search for the best learning rates for the generator, the discrimi-
nator, and the conditioner, respectively. Figure 8a shows the total training loss curves of
the generator, the discriminator, and the conditioner. The training loss of the discriminator
decreases rapidly in the beginning of the training process and then starts to decrease more
gradually. The loss of the generator stays relatively steady throughout the whole training
process. As for the conditioner, there is no obvious improvement in performance in the
first half of the training; in contrast, the loss value drops significantly and stays stable at a
low level in the second half of training.

Figure 8b shows the loss values directly related to the competition between the gener-
ator and the discriminator, namely the generation loss of the generator, as well as the sum
of the fake loss and the real loss of the discriminator. The two curves are strongly related to
each other in an adverse way but, in general, both stay relatively steady throughout the
whole training, which is a direct indication of the competition between the two submodels
that both parties are learning to improve their own abilities but neither can prevail. A
detailed demonstration of the real and fake losses of the discriminator is shown in Figure 8c.
Real loss displays a decreasing tendency overall, while fake loss displays an increasing
tendency, which is another indication that both the discriminator and the generator are
improving during the training process; the generator gets better at fooling the discriminator
and, in spite of this, the discriminator still manages to get better at distinguishing the
real data.
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The learning of conditions can be evaluated by Figure 8d and Figure 8e. The un-
matched loss of the discriminator, shown in Figure 8d, quickly decreases in the early stages
of training and converges throughout the training process. It indicates an improvement
in the discriminator’s learning of the extra conditioning information. Figure 8e shows the
condition loss of the generator and the loss of the conditioner. Although, in general, the
condition loss of the generator only decreases slightly with high oscillation, the significant
decrease in the conditioner’s loss indirectly indicates an improvement in the generator’s
ability to generate data using the extra conditioning information.

(a) Toal losses of the model (b) Loss of competition

(c) Real loss and fake loss of discriminator (d) Unmatched loss of discriminator

(e) Condition loss of the generator and the loss of the conditioner

Figure 8. Loss curves during the training processes: (a) total losses of the generator, the discriminator,
and the conditioner; (b) generation loss of the generator and the sum of fake loss and real loss of the
discriminator; (c) real loss and fake loss of the discriminator; (d) unmatched loss of the discriminator;
(e) condition loss of the generator and the loss of the conditioner.

After the joint training of the three submodels, the generator is utilised for load profile
generation on demand, since it has learned to generate data with a similar distribution as
the ground truth dataset, with the imposed extra conditioning information considered.
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4. Results

The testing and validation of the approaches are performed in two steps. First, the
generated load cycles of both methods are compared with two standard stress tests, the
Federal Urban Driving Schedule (FUDS) and the Dynamic Stress Test (DST). Afterwards,
load cycles are designed to represent the stress from driving the BMW i3 (BMW AG, Munich,
Germany). These cycles are used as inputs for an Arbin battery tester (Arbin Instruments,
College Station, TX, USA), with 5 V channels and up to ±10 A during the simulation
part of the testing schedule. The lithium-ion battery cell used is a cylindrical Panasonic
NCR18650GA (Panasonic, Kadoma, Japan); its characteristics are stated in Table 1.

By designing the representative cycles of the BMW i3 dataset shown in Figure 1, the
areas that were very common in the dataset become easy to identify. After investigating
the range and mean of the SOC, it was decided that the profiles should consist of three
dynamic parts. Two parts described the behaviour up to 90% SOC but with different
discharge depths down to 70% SOC, while the other part was in the range of 85% to 75%
SOC. Based on the plot of the BMW data, it can be seen that, while driving, the battery was
mainly in the upper range of the SOC. Furthermore, the general schedule was designed to
achieve about three full cycle equivalents per day to have an increased number of cycles
because if the data were used for battery cell degradation in a laboratory, it would need
to be designed to lead to faster degradation. Otherwise, the measurements would take
too long. In addition to the number of cycles per day and the three dynamic parts, the
parts were assigned weights. These weights described how large this part’s share was
in the overall scenario. The weights were assigned in decreasing order, starting from the
shallowest to the deepest parts, regarding the depth of discharge. Given a C-rate of 1 C for
charging the cell, the expected duration, the number of repetitions, and the SOC gradient
can be estimated. The calculations are just estimations and do not consider the coulombic
efficiency or if the cut-off voltage is reached during charging, for example.

The same ranges of the SOC are used for the FUDS- and DST-based cycles. Instead of
repeating the standard schedules from full charge to the discharge cut-off voltage, they are
stopped upon reaching the specified SOC range. Figure 9 displays the generated cycles
and the cycles based on the DST and FUDS.

The generated load cycles show some differences. Overall, no load cycle exceeded
the boundaries for the C-rates in the charging or the discharging directions. The counts
of the different C-rates were normalised to be comparable. Furthermore, the DST- and
FUDS-based load cycles had repetitive sequences in the cycle, whereas the two introduced
approaches did not. Despite the repetitions in the FUDS, the gradRPM-based load cycle
and the FUDS were similar concerning the general structure of the pulses, which were
often short at about 1 s, and the height. The DST mainly involved the constant currents at
specific C-rate heights that were lower than the others and repeated the identical pulses.
Figure 9 displays the histogram of the different types of cycles concerning the C-rates.
Specifically, this plot demonstrates the repeated constant current of the DST load cycle
with high peaks in the histogram. The histogram shows that the Info-RCGAN-generated
profile consists primarily of discharging pulses and only small charging currents. The
discharging C-rates are very similar to those of the gradRPM. Overall, the different load
cycles have different SOC gradients. The gradRPM method allowed for the desired gradient
of −0.28 SOC/h. The other load cycles have a gradient of −0.5098 SOC/h, −0.5136 SOC/h,
and −0.1823 SOC/h for FUDS, DST, and the Info-RCGAN, respectively. Therefore, the
FUDS- and DST-based load cycles would lead to faster discharging of the battery cell and
shorter dynamic parts, as well as to more full cycle equivalents per day. On the other
hand, the load cycle by the Info-RCGAN is slower, although it does not include that many
charging pulses, as can be seen in the histogram. Concerning the Info-RCGAN, various
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experiments with different parameter settings were conducted. The results indicate that
the conditional inputs are highly entangled, and the model’s learning of the conditional
information is focused on the common scenarios of the ground truth dataset, which is why
the model cannot deal with the circumstances of abnormal input conditions well.

The generated load cycles are assembled to form a schedule to be tested on the NCRGA
lithium-ion battery cell. There is one schedule each for the gradRPM and Info-RCGAN
approaches, where each cycle is repeated as stated in Table 2. If necessary, each repetition is
interspersed by a constant current and constant voltage charging that charges the lithium-
ion battery cell with the same amount of charge discharged during the dynamic load cycle.
The discharged charge is logged during the load cycle and saved to a variable that is
accessed during the charging step.

The schedule consists of approximately seven cycles, each equivalent to three full cycles.
Figure 10 compares the BMW measurement data with the results of the laboratory

measurements of the gradRPM and the Info-RCGAN approaches. The first row contains
the analysis results based on the voltage, the second row includes the analysis of the C-
rates, and the third comprises the temperature analysis. The graph displays the load cycle
spectra extracted using the rainflow counting approach. It is two-parametric; it extracts the
detected cycle’s range and mean and counts all the appearances within the dataset. The
darker the colour, the higher the count. The voltage’s load cycle spectra display the typical
battery behaviour connected to the maximum voltage. The maximum voltage leads to the
line reaching higher mean values because the higher the voltage, the lower overpotentials
are allowed, and the lower the currents, especially in the charging direction, lead to shallow
voltage ranges. Overall, the BMW data show a homogenous area in the load cycle spectra
because the amount of data is high, and the noise is higher than in the laboratory. The
voltage spectra of the two approaches are similar to the spectra of the BMW concerning
the covered area but not as homogenous. That is based on the SOC range and repetitions
of the three load cycles designed. In the voltage spectra of the two approaches, there is
one outlier. This outlier is connected to a full charge and discharge during the cycling to
estimate the change in the capacity over cycling. Because the BMW data provided do not
contain single-cell voltages, the pack voltage is rescaled to a single cell for comparison,
assuming that the series connections are equal. The C-rate spectra show the most significant
difference from the BMW data. Firstly, the BMW spectra are homogenous, likely due to
the noise and the amount of data. In addition, the spectra display straight lines, which
may result from regulating the currents, leading to more consistent means and ranges.
One of the lines is also visible in the spectra of both approaches. However, neither the
gradRPM spectra nor the Info-RCGAN spectra include as many charging currents as the
actual measurement data. Furthermore, the Info-RCGAN focuses entirely on the line with
only minor deviations. A reason for the spectra obtained with only the few charging
currents is that the load cycles are, in general, designed to show accelerated ageing, so the
gradient of the SOC is steeper than in the actual data to reach the specified equivalent of
three full cycles per day, leading to more discharging segments in the load cycle designed.
In addition, the C-rate spectra of the load cycles designed, especially for the gradRPM,
differ from the laboratory measurements. The charging segments are missing. That is not
the case for the Info-RCGAN, which suggests that the charging current is regulated for the
gradRPM because the battery cell reaches its voltage limit. Meanwhile, the Info-RCGAN
does not include high-charging segments during the dynamic load cycles because, during
training, the model learned to focus mainly on the most predominant feature of the training
set. The temperature spectra are expected to be different from the BMW data because
the car was used outside and experienced low temperatures, as we began recording the
data in winter. In contrast, the laboratory measurements were taken out in a controlled
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environment, within a thermal chamber with a constant temperature of 25 ◦C. Therefore,
the BMW spectra are broader and focus on the area between 18 ◦C and 25 ◦C; for both
approaches, the temperature is always near to 25 ◦C ± 1 ◦C.

(a) gradRPM DLC3

(b) Info-RCGAN DLC3

(c) FUDS DLC3

(d) DST DLC3

(e) Histogram of C-rates of the different cycle types

Figure 9. The figure displays the cycles generated based on (a) the gradRPM method, (b) the Info-
RCGAN, (c) the FUDS and (d) the DST. Subfigure (e) displays the histogram of C-rates of the different
cycles with normalised counts.
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Table 1. Panasonic NCR18650GA.

Characteristic Value

Rated capacity 3.3 Ah
Typical capacity 3.45 Ah
Nominal Voltage 3.6 V

Charging cut off voltage 4.2 V
Charging current 1.475 A

Discharging current 10 A

BMW gradRPM Info-RCGAN

Figure 10. The figure displays the different spectra of each dataset (in the columns from left to right)
of the BMW i3, the gradRPM, and the Info-RCGAN. In the rows, the analysed parameters (from top
to bottom) are the voltage, the C-rate, and the temperature. Note the difference in the scaling of the
BMW spectra and the gradRPM and the Info-RCGAN spectra.
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Table 2. Design parameters extracted and calculated for the generation of dynamic load cycles (DLCs)
and the overall scenario based on the equivalent of three full cycles per day and a C-rate for the
constant current charging of 1 C.

Dynamic Load
Cycle ID

SOC Start SOC End
Percent of the

Scenario
Repetitions

Load Cycle
Duration

SOC per h

DLC1 0.9 0.7 0.4 12 2520 s 0.286 SOC/h
DLC2 0.85 0.75 0.5 30 1260 s 0.286 SOC/h
DLC3 0.9 0.5 0.1 2 5040 s 0.286 SOC/h

5. Discussion

The experiments show that both the gradRPM and the Info-RCGAN approaches
successfully generate very dynamic load cycles capable of replicating the stress factors
identified in a given dataset. In addition, the experiments show that a more significant
spectrum of stress factors can be covered when dynamic load cycles are used. However, it
is always a challenge to balance between realism and usefulness.

A highly realistic load cycle can be generated if the controlling parameters are set,
respectively. Still, a very realistic profile might be helpful for short-term testing like state of
charge algorithm validation, where ageing effects are not the primary concern. However,
it can prove disadvantageous when used for long-term investigations like degradation
measurements. When used for long-term investigations, there is a tendency to focus on the
usefulness of the load cycle designed to reach a specified goal of the degradation of the
battery cell in a given time while maintaining relevance to the real-world conditions.

If the goal is to create the most realistic cycles, using tools like the KIT DRIVING
CYCLE TOOL might be more suitable for designing real driving profiles. Furthermore, the
load cycle must include many resting phases when targeting automotive applications to
be realistic with regard to stress factors during degradation. The BMW i3 was driven for
about 1 h per day, with the vehicle remaining parked for the rest of the time. As the aim
was to generate load cycles representing similar stress factors that were still controllable
to fulfill a degradation schedule, for example, the gradRPM and the Info-RCGAN proved
to be valuable tools. At this point, although the Info-RCGAN shows great potential in
conditional battery load profile generation with versatile regulations over the target features,
the gradRPM approach has proven to be more straightforward to use with good results
because the Info-RCGAN has some critical problems, like the entanglement of conditional
inputs and its excessive focus on certain predominant features of the training set.

6. Conclusions

Based on the experience with the algorithms, there are different steps to take to im-
prove the performance. For the gradRPM, changing the segmentation from zero crossing
to other methods, like clustering the data to specific behaviours, especially for automo-
tive applications, might be helpful. However, it might not be that controllable anymore
because of the length of the segments. As for the Info-RCGAN, future work regarding the
entanglement of the conditional inputs, the tracking of the predefined conditions, and the
validation of the features related to the voltage and temperature would be beneficial to
improve the quality of the load profiles generated and the control over specific features for
studying stress factors. It would be helpful to further investigate how the model learns the
data distribution by designing innovative evaluation metrics for the training process.

In general, it is worth investigating how dynamic a load cycle has to be to show
degradation behaviour similar to that of a dynamic load cycle, as a dynamic load cycle
takes some effort to run without issues. In addition, they lead to a high amount of data
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because the load changes every second; to measure the response of the battery, the sampling
rate must be at least 500 ms.
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Abstract: Lithium-ion batteries are extensively utilized in modern applications due to
their high energy density, long cycle life, and efficiency. With the increasing demand for
sustainable energy storage solutions, accurately estimating the State of Health (SOH) is
essential to address challenges related to battery degradation and secondary life manage-
ment. Electrochemical Impedance Spectroscopy (EIS) is a widely used diagnostic tool
for evaluating battery performance due to its simplicity and cost-effectiveness. However,
EIS often struggles to decouple overlapping electrochemical processes. The Distribution
of Relaxation Times (DRT) method has emerged as a powerful alternative, enabling the
isolation of key processes, such as ohmic resistance, SEI resistance, charge transfer resis-
tance, and diffusion, thereby providing deeper insights into battery aging mechanisms.
This paper presents a novel approach for estimating the State of Health (SOH) of batteries
by leveraging DRT parameters across multiple State of Charge (SOC) levels. This study
incorporates data from three lithium-ion batteries, each with distinct initial capacities,
introducing variability that reflects the natural differences observed in real-world battery
performance. By employing a Long Short-Term Memory (LSTM)-based machine learning
model, the proposed framework demonstrates a superior accuracy in SOH prediction
compared to traditional EIS-based methods. The results highlight the sensitivity of DRT
parameters to SOH degradation and validate their effectiveness as reliable indicators for
battery health. This research underscores the potential of combining a DRT analysis with
AI-driven models to advance scalable, precise, and interpretable battery diagnostics.

Keywords: electrochemical impedance spectroscopy; distribution of relaxation times
parameters; long short-term memory; state of health estimation

1. Introduction

Lithium-ion batteries (LIBs) have become indispensable in modern technological
advancements, powering applications ranging from portable electronics to electric vehicles
and large-scale renewable energy storage systems [1–3]. Their popularity stems from
their high energy density, extended lifespan, and operational efficiency, which collectively
address the growing demand for sustainable energy solutions [4,5]. However, with the
increasing deployment of LIBs, accurately estimating their State of Health (SOH) has
become crucial for ensuring safety, optimizing performance, and extending their service
life [6]. Beyond first-life applications, the SOH estimation is also critical for assessing a

Batteries 2025, 11, 183 https://doi.org/10.3390/batteries11050183
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battery’s suitability for second-life uses, such as stationary energy storage or backup power
systems [7]. An effective SOH estimation promotes the sustainable utilization of resources,
reduces waste, and enhances the overall lifecycle value of lithium-ion batteries.

Electrochemical Impedance Spectroscopy (EIS) is widely regarded as a fundamental
technique for evaluating battery health by analyzing the impedance response of a cell across
a range of frequencies. This diagnostic approach captures key electrochemical properties,
including internal resistance, charge transfer behavior, and capacitive dynamics, which
are directly linked to the aging mechanisms of the battery. Despite its utility, EIS has
notable limitations when analyzing overlapping electrochemical processes. EIS encounters
limitations when overlapping processes share similar characteristic frequencies leading
to merged semicircles in the Nyquist plot, the ambiguous mapping of circuit elements
in equivalent circuit modeling, single-frequency-based representation rather than a more
revealing time-domain breakdown, susceptibility to measurement noise and constrained
frequency resolution, and ultimately an ill-posed parameter estimation process make it
difficult to accurately isolate and interpretate the electrochemical mechanism of the battery
systems [8,9].

The Distribution of Relaxation Times (DRT) has emerged as an advanced technique
to refine the impedance analysis and overcome its limitations [10]. By deconvoluting
impedance spectra, the DRT provides a higher resolution of distinct electrochemical pro-
cesses and their timescales, enabling a deeper understanding of the internal dynamics that
influence battery performance. Integrating EIS with the DRT allows for a more detailed
analysis of the internal chemical behavior of the battery and contributes to improving the
Equivalent Circuit Models (ECMs) traditionally developed using EIS methods, as high-
lighted in the recent literature [11], thereby creating a robust framework for assessing
battery health. Also, ref. [12] apply a full-spectrum DRT-CNN with Grad-CAM and achieve
better accuracy, and ref. [13] employs static regression on multiple DRT features from
both cycling and calendar-aging datasets, while our approach focuses solely on the most
aging-related information peak parameters across the SOC intervals and feeding them into
a LSTM, demonstrating that accurate, dynamic SOH estimations can be achieved with far
less and simpler data and a more generalized model. This study leverages both methods to
improve the accuracy of SOH estimations in lithium-ion batteries, particularly focusing on
applications for second-life usages [3,10].

This paper utilizes the DRT method to analyze EIS data, aiming to extract key parame-
ters that reflect detailed internal processes within lithium-ion batteries. The charge transfer
peak, a prominent feature in the DRT spectrum, is utilized to train a Long Short-Term
Memory (LSTM) model for estimating the SOH of Galaxy S9+ battery cells. By integrating
DRT-derived features into an AI-based model, this approach establishes an advanced frame-
work to enhance the accuracy of SOH estimations, supporting data-driven strategies for
monitoring the long-term performance of lithium-ion batteries. For comparison, our model
was quantitatively validated against an ECM-based neuro-fuzzy model, and the notably
lower Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) highlight the
superior accuracy and robustness of the proposed DRT-based LSTM approach in capturing
complex, overlapping electrochemical processes in battery degradation.

The overall framework for the proposed methodology is summarized in Figure 1,
which outlines the key steps involved in the process. First, lithium-ion batteries undergo
cycling tests and EIS measurements to evaluate their degradation behavior. The EIS data
are then processed using the DRT method, which deconvolutes the impedance spectra to
isolate critical processes, particularly the charge transfer peak. Key DRT parameters are
extracted as quantitative features reflecting the charge transfer resistance and associated
aging mechanisms [14]. These features are analyzed and subsequently used as inputs to a
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LSTM model, which is trained to predict the SOH of the batteries. Finally, the performance
of the LSTM model is evaluated using prediction results and error metrics, confirming the
accuracy and robustness of the approach. This integrated framework demonstrates the
effective combination of an advanced electrochemical analysis with AI-based modeling for
accurate SOH estimations.

Figure 1. Overall framework of SOH estimation by LSTM.

2. Data Acquisition Method

The battery aging test was conducted on three lithium-ion batteries extracted from the
Galaxy S9+ smartphone to evaluate their performance degradation over 1000 charge–discharge
cycles, and specifications are shown in Table 1. Capacity and impedance spectra mea-
surements were performed at intervals of every 20 cycles using EIS. The aging tests were
conducted in a controlled environment using a HYSCLAB chamber to maintain a constant
temperature of 25 ◦C, ensuring consistency throughout the experimental duration. WonAT-
ech WBCS3000 M2 equipment was used to perform the charge–discharge cycling, while
ZIVE MP2A was employed for EIS measurements. The charge and discharge profile, as
illustrated in Figure 1, included distinct phases designed to simulate real operating condi-
tions. During the charging phase, a constant current (CC) of 2 A (0.57C) was applied until
the battery reached its termination voltage of 4.4 V, at which point the process transitioned
into constant voltage (CV) charging [3]. In the CV phase, charging was completed when the
current decreased to 0.02C (70 mA). Discharging was performed at an accelerated rate of
1.35C (4.71 A), and the process terminated when the voltage dropped to 2.8 V. To stabilize
the battery before initiating the next cycle, a 1 h rest period was introduced after each
discharge phase.

Table 1. Specification of Samsung Galaxy S9+ lithium battery.

Property Value

Chemistry Lithium-ion polymer (NMC cathode/graphite anode)
Nominal Capacity 3500 mAh
Nominal Voltage 3.85 V

Maximum Voltage 4.4 V

Impedance spectra measurements were taken every 20 cycles, as shown in Figure 2, at six
State of Charge (SOC) intervals (0%, 20%, 40%, 60%, 80%, and 100%) to capture the evolution
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of the battery impedance under varying states. In galvanostatic mode, a small perturbation
voltage of 100 mA was applied across a frequency range from 0.1 Hz to 4 kHz to ensure
accurate and reliable impedance measurements [8]. After completing EIS measurements at
a 100% SOC, the battery was fully discharged at a current of 0.2C until the voltage reached
2.8 V, and the next cycle of charge–discharge testing commenced. The decision to perform EIS
measurements at 20-cycle intervals strikes a balance between obtaining sufficient impedance
data for analysis and minimizing the additional stress imposed on the battery during testing,
which could independently accelerate battery degradation. This strategy ensured that the
aging behavior of the batteries remained representative of real-world usage conditions without
excessively extending the testing duration.

Figure 2. Data acquisition network. (a) CCCV charge discharge profile, (b) EIS tests framework.

The results of the 1000-cycle aging test revealed distinct trends in capacity retention
across the three battery cells. Coulombic counting was used to calculate the initial and
remaining capacities relative to the nominal capacity of 3500 mAh. As presented in Figure 3,
the capacities of all three batteries declined gradually over the test duration, with variations
between the cells. After completing 1000 cycles, the remaining capacities for Battery 1,
Battery 2, and Battery 3 were recorded as 90.76%, 93.76%, and 90.34%, respectively, as
shown in Figure 3. These results demonstrate a consistent aging pattern while highlighting
minor variations in capacity fading, likely due to intrinsic differences between the cells
despite their identical specifications.

Figure 3. Capacity retention of three lithium-ion cells with cycling.
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3. Analysis of Electrochemical Impedance Spectroscopy and Distribution
of Relaxation Times

EIS is a fundamental technique for analyzing the internal dynamics of the battery by
measuring impedance and observing electrochemical processes over a range of frequencies.
In this study, EIS measurements were performed every 20 charge–discharge cycles at six
State of Charge (SOC) levels (0%, 20%, 40%, 60%, 80%, and 100%) to monitor and evaluate
changes in the internal processes of the three lithium-ion cells as they aged over 1000 cycles.
The resulting impedance data are visualized using Nyquist plots, which are crucial for
understanding the progression of the battery degradation by identifying and analyzing
distinct electrochemical phenomena, such as ohmic resistance, Solid Electrolyte Interphase
(SEI) layer resistance, charge transfer resistance, and diffusion processes [14].

Figure 4 displays the Nyquist plots of the impedance spectra at 100% SOC for all three
cells across the cycling duration, from 0 cycles to 1000 cycles. These plots illustrate the
progressive changes in impedance, which reflect the internal degradation mechanisms. The
high-frequency intercept on the real axis, representing ohmic resistance, remains relatively
stable during the early stages of cycling but gradually increases as cycling progresses. An
increase in ohmic resistance, or contact resistance, indicates reduced electrical conductivity,
often stemming from electrolyte consumption and decomposition. Similarly, the semi-
circular arc in the high-to-mid-frequency range, associated with the SEI layer resistance,
demonstrates a gradual increase in the diameter with cycling. This trend highlights the
continuous formation and thickening of the SEI layer, which increases the internal resistance
and impacts performance.

The second semi-circular arc observed in the mid-frequency region, linked to charge
transfer resistance, shows a more pronounced evolution compared to other components.
As cycling progresses, the charge transfer resistance increases significantly, indicating
slower electrochemical reactions at the electrode–electrolyte interface [15]. This is a critical
marker of aging, as it reflects the deterioration of active materials and the growing difficulty
in facilitating ion transfer during charge and discharge processes. The diameter of this
arc expands over time for all three cells, suggesting that charge transfer resistance plays
a dominant role in the observed capacity fade and performance decline. Despite the
detailed insights provided by the Nyquist plots, the low-frequency tail of the spectra,
indicative of diffusion processes or Warburg impedance, is not fully captured due to the
limited frequency range of the measurements. Additionally, overlapping semi-circular
arcs with similar reaction time constants obscure the clear separation of electrochemical
processes [16], complicating the interpretation of battery aging mechanisms solely from
EIS data.

To overcome these limitations, the DRT analysis was employed for a more precise
deconvolution of the impedance spectra. In our study, we adopt a Tikhonov Regularization
(TR) approach with Gaussian basis functions for the DRT inversion of the Electrochem-
ical Impedance Spectroscopy (EIS) data. Unlike Nyquist plots, the DRT analysis breaks
down the impedance response into distinct peaks, each corresponding to a specific internal
process, such as ohmic resistance, SEI layer resistance, charge transfer resistance, and diffu-
sion [17]. This enables a deeper and more detailed insight into the individual contributions
of various electrochemical processes over time.

As shown in Figure 4 (right), in the DRT spectrum, the peaks moving left to right cor-
respond to the ohmic resistance, Solid Electrolyte Interphase (SEI) layer resistance, charge
transfer resistance (the primary focus of this work), and diffusion (Warburg impedance)
at low frequencies. The charge transfer peak, which is the most dynamic feature of the
spectrum, exhibits several clear trends with the cycling across all three cells. Firstly, the
peak shifts to longer relaxation times (τ), indicating slower charge transfer processes as
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the battery ages. This shift reflects the growing resistance at the electrode–electrolyte inter-
face and the declining efficiency of the ion transport. Secondly, the peak height increases
noticeably, confirming a steady rise in resistive behavior due to material degradation and
structural changes in the electrodes. Additionally, the FWHM (Full Width at Half Maxi-
mum) of the charge transfer peak widens over the cycling duration, suggesting increased
heterogeneity in the electrode reactions and reduced uniformity in the material properties.
The overall area under the charge transfer peak also increases significantly, underscoring
the critical role of charge transfer resistance in the aging process and its direct correlation
with battery degradation.

Figure 4. Nyquist (left) and DRT (right) plots of Galaxy S9+ Battery at 100% SOC.

Other peaks observed in the DRT analysis, such as those corresponding to ohmic resis-
tance and SEI layer resistance, show comparatively minor changes during the 1000-cycle test.
The ohmic resistance peak remains stable for the initial cycles but increases slightly as the
aging process progresses, reflecting a growing internal resistance. The SEI layer resistance
peak also demonstrates a modest increase in magnitude, which is consistent with the gradual
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thickening of the SEI layer [18]. The diffusion-related processes, which manifest at longer
relaxation times, are observed but remain less pronounced due to the limited frequency range.
However, their presence highlights the cumulative effects of aging on ion transport and mass
diffusion, even if these mechanisms are less dominant compared to charge transfer resistance.

Overall, the DRT analysis reveals that charge transfer resistance is the most significant
indicator of battery aging across all three cells. The progressive changes in the charge
transfer peak provide critical insights into the mechanisms underlying the capacity fade
and performance degradation. By enabling a clearer separation and quantification of elec-
trochemical processes, the DRT analysis serves as a valuable tool for accurately assessing
battery health and improving SOH estimation models. In summary, the enhanced clar-
ity offered by the DRT is particularly useful for identifying key aging mechanisms and
evaluating their impact on the battery performance over time.

4. Correlation of Aging and DRT Parameters Evolution

Figure 5 shows the evolution of key DRT-derived parameters, including the peak
area, FWHM, center relaxation time, and peak height for the charge transfer peak in the
DRT plots of Cell 01 over 1000 cycles at six different SOC levels. These parameters were
extracted through the Gaussian fitting of the charge transfer peaks, ensuring a precise
quantification. The results reveal consistent trends influenced by both the cycle number
and SOC, reflecting the progression of battery aging mechanisms. As the battery ages, the
charge transfer resistance, which dominates the mid-frequency region of the impedance
spectrum, increases significantly.

Figure 5. Variation in DRT parameters at different SOCs over 1000 cycles for Cell 01.
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This resistance is indicated by the widening of the FWHM, the gradual increase in
peak area and height, and the shift in the center relaxation time to longer values. The
changes become more pronounced at both ends of SOC levels, where aging effects tend to
accelerate, signaling slower reaction kinetics and reduced transport efficiency. These trends
suggest that the charge transfer process becomes increasingly complex and heterogeneous
over time, making it a key factor in understanding battery degradation [19].

Furthermore, the observed consistency across all three cells reinforces the robustness
and reliability of the analysis. By monitoring DRT parameters at multiple SOC levels, a
comprehensive understanding of internal battery processes and their evolution over time is
achieved, offering critical insights for developing accurate battery state estimation models.

In order to clarify the links between these variables, a heatmap was created using
the correlation matrix in Figure 6 using the Spearman correlation matrix. The Spearman
correlation coefficient (ρ) is a non-parametric measure that evaluates the strength and
direction of these relationships [20] and is calculated using below equation.

ρ = 1 − 6∑ d2
i

n(n − 1)
(1)

where di is the rank difference between the corresponding values of two variables, and n is
the total number of observations. The analysis reveals a strong positive correlation among
the DRT-derived parameters, indicating their collective representation of the same underly-
ing charge transfer relaxation process. As the battery ages, these parameters demonstrate
consistent trends, reflecting the gradual increase in the charge transfer resistance. In con-
trast, the correlation between the DRT parameters and SOH exhibits a consistent negative
trend, with correlation coefficients ranging from −0.49 to −0.55. This negative relationship
highlights the sensitivity of the charge transfer relaxation process to SOH degradation—as
the SOH declines, the charge transfer resistance peak becomes more prominent, further
emphasizing its importance as a reliable indicator of battery health.

 

Figure 6. Spearman correlation matrix.

The findings from the Spearman correlation analysis confirm the strong interdepen-
dence among the DRT-derived parameters and their inverse relationship with the SOH,
establishing them as effective indicators for tracking battery degradation. By incorporating
these parameters into machine learning-based models, such as LSTM, for a SOH prediction,
the predictive accuracy can be significantly enhanced.
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5. LSTM Model for SOH Estimation

5.1. Architecture

The Long Short-Term Memory (LSTM) model is a type of neural network designed for
sequential data, with a unique memory feature that enables it to retain and update relevant
information over time [21–23]. The architecture of an LSTM cell, as shown in Figure 7,
comprises four key gates, the forget gate, input gate, cell state update, and output gate,
which work together to manage the flow of information.

Figure 7. The cell structure of LSTM.

The forget gate decides how much of the previous cell state Ct−1 should be retained
or discarded. It uses the previous hidden state ht−1 and the current input xt, along with a
weight matrix Wf and bias bf, to compute the forget vector ft using a sigmoid activation
function [21]. The sigmoid σ ensures the output ranges between 0 and 1.

ft = σ
(

Wf ·[ht−1, xt] + b f

)
(2)

The input gate determines what new information should be added to the cell state.
It involves two components: the input gate vector it, which determines the proportion of

new information to incorporate, and the candidate cell state
∼
Ct which holds potential new

values for the cell state [24]. While it is computed using a sigmoid function,
∼
Ct is calculated

using a tanh activation function to scale its output between −1 and 1.

it = σ(Wi·[ht−1, xt] + bi) (3)

∼
Ct = tanh(WC·[ht−1, xt] + bC) (4)

The cell state update combines the outputs from the forget gate and input gate to update
the cell state Ct. The forget gate scales down the previous cell state Ct−1, while the input gate

determines how much of the candidate cell state
∼
Ct should be added. This enables the model

to selectively retain old information and incorporate new information effectively.

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (5)

The output gate determines what information from the updated cell state Ct should be
passed forward as the current hidden state ht. The output gate vector ot is calculated using
a sigmoid function, while the updated cell state is scaled using a tanh function to produce
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the final hidden state. This hidden state serves as both the output of the LSTM cell and the
input for the next time step [25].

ot = σ(Wo[ht−1, xt] + bo) (6)

ht = ot ∗ tanh(Ct) (7)

5.2. Model Training

In this study, the LSTM model is trained as described in Figure 8. The process begins
with the selection of key electrochemical features as input parameters, which include DRT
parameters along with the SOC to cover the different state of charge applications. In
the data processing stage, the input data undergo two critical preprocessing steps. First,
any missing values are handled typically when the Gaussian fitting produced outliers
that interrupted the smooth trend parameters, ensuring that the dataset is complete and
reliable. Second, the data are normalized to bring all input features to a consistent scale
between 0 and 1, which helps improve the convergence of the model during training. After
preprocessing, the dataset is split with the ratio of 80% and 20% as a training set to train
the model and a testing set to evaluate its performance, respectively.

 

Figure 8. SOH estimation framework based on LSTM model.

The model training process involves an LSTM model with two hidden layers, each
consisting of 200 units. To prevent overfitting and improve generalization, L2 regularization
and a dropout rate of 0.4 are applied. A dense output layer predicts the SOH values.
The model is trained using the Adam optimizer, which efficiently adjusts weights to
minimize the prediction error. The Mean Squared Error (MSE) loss function guides the
training process over 250 epochs with a batch size of 32 [26]. Additionally, hyperparameter
optimization is performed using Random Search to identify the optimal values for the
configuration of the model.

5.3. Model Performance

Once the final trained LSTM model is obtained, it is used to predict the SOH values
for the testing set. The performance of the model is evaluated using metrics such as the
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), which measure the
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accuracy of the predictions by quantifying the difference between the predicted and actual
SOH values.

The LSTM model was employed to predict the State of Health (SOH) of three lithium-
ion batteries across 1000 cycles. The results demonstrate the ability of the model to accu-
rately capture the degradation trends of the batteries using key DRT parameters (FWHM,
Height, Center Relaxation Time, and Area) and the SOC as input features. The analysis
was performed using four datasets: (a) Battery 1 and Battery 2, (b) Battery 1 and Battery 3,
(c) Battery 2 and Battery 3, and (d) a combined dataset including all three batteries.

Figure 9 presents a comparison of the actual SOH and predicted SOH for these datasets.
The results indicate that when the LSTM model was trained and tested with datasets from
Battery 1 and Battery 3, the prediction accuracy was the highest. This can be attributed
to the fact that the initial capacity difference between Battery 1 and Battery 3 is minimal,
approximately 1%, resulting in smaller deviations and a closer alignment between the
predicted and actual SOH. The performance metrics for this dataset were particularly
impressive, achieving a Mean Absolute Error (MAE) of 0.58% and a Root Mean Squared
Error (RMSE) of 0.70%.

Figure 9. SOH estimation performance of DRT trained LSTM model. (a) Results with dataset of
battery 1 and 2 (b) Results with dataset of battery 1 and 3 (c) Results with dataset of battery 2 and 3
(d) Results with combined dataset of three batteries.

In contrast, when the model was trained and tested with datasets from Battery 1
and Battery 2 or Battery 2 and Battery 3, the prediction errors were slightly higher. The
combined dataset (all three batteries) captured a wider range of capacity variations, leading
to a comparatively higher error. However, the combined dataset provides a more realistic
representation of real-time scenarios by incorporating diverse aging patterns across dif-
ferent batteries. Despite the slightly increased error, the LSTM model still outperformed
traditional EIS-based ECM methods using the same dataset for a predictive battery health
estimation using neuro-fuzzy [8]. The Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), as defined below, were used to evaluate the performance of the model [27].

MAE =
1
N

N

∑
I
|ei| (8)
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RMSE =

√√√√ 1
N

N

∑
i
(ei)

2 (9)

where N is the total number of data points, and ei represents the error for each prediction.
To validate our method, we compared our proposed DRT-based SOH estimation method
with an EIS-based Equivalent Circuit Model (ECM) approach by [8]. The Table 2 below
presents the comparative quantitative error metrics, Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE), for the four battery datasets.

Table 2. Comparison of estimation errors.

Battery Dataset

EIS Based ECM Parameters
Method [8]

Proposed DRT Parameters
Method

MAE (%) RMSE (%) MAE (%) RMSE (%)

Battery 1 and Battery 2 1.518 1.676 1.16 1.38
Battery 2 and Battery 3 1.645 1.69 1.37 1.46
Battery 1 and Battery 3 1.023 1.043 0.58 0.70

Combined (Battery 1, 2, 3) 1.43 1.525 1.28 1.41

The results demonstrate that the proposed method achieves lower error metrices
across all the datasets, which clearly highlights the improvement and accuracy of the
method. The inclusion of data from three cells with different capacities essentially averages
out the differences across these varying capacities. It indicates that the LSTM model
converges toward stable and reliable predictions by including more data. Although the
higher capacity retention of Battery 2 influences the combined dataset, the model shows a
better estimation capability when applied to a range of battery behaviors. Since batteries
with the same chemistry share similar trends, collecting data across multiple cells ultimately
leads to a more generalized model for the SOH estimation. In turn, this kind of broad
coverage ensures the model can handle real-world variability and deliver a consistent
performance, even when faced with different capacities within the same battery chemistry.

6. Conclusions

This study highlights the effectiveness of integrating a Distribution of Relaxation Times
(DRT) analysis with EIS to achieve an advanced and accurate SOH estimation for lithium-
ion batteries. By systematically analyzing DRT peak parameters (Area, FWHM, Center
Relaxation Time, and Height) over 1000 cycles at six distinct SOC levels, the developed
LSTM model demonstrated its capability to capture the complex temporal dependencies
associated with battery aging. The model achieved an MAE of 1.28% and an RMSE of
1.41% when tested with combined datasets from three batteries, underscoring its robust
prediction capability for real-time SOH estimations across varying cell capacities. The
highest predictive accuracy was observed when using datasets from batteries with minimal
initial capacity differences, such as Battery 1 and Battery 3, where the model achieved an
MAE of 0.58% and an RMSE of 0.70%. These values underline the strength of the proposed
methodology in accurately predicting the SOH while accommodating variations in battery
aging trends. Comparatively, the LSTM model trained with DRT parameters outperformed
the traditional ECM parameters-based estimation model by achieving a higher accuracy
across different combinations of datasets.

This work establishes a reliable and scalable framework for enhancing battery health
monitoring and prediction across diverse real-world applications, including portable elec-
tronics, electric vehicles, and energy storage systems. The integration of DRT parameters
with advanced machine learning techniques like LSTM not only improves the accuracy of
SOH estimations but also highlights the potential of leveraging electrochemical features
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for long-term battery performance monitoring. As this research is limited to the standard
testing conditions and same kind of battery cells, future work directions will focus on
analyzing the dataset of different battery chemistries and various testing scenarios to reflect
real-world conditions. It will also focus on incorporating more detailed electrochemical
parameters, such as those representing other processes, to provide a more comprehensive
understanding of battery degradation mechanisms.
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Abstract: Batteries are central to the global energy system and fundamental elements for
energy transition and future mobility. In particular, the growth in electric vehicle (EV)
sales is pushing up demand for batteries. Most of the battery demand for EVs today
can be met with domestic or regional production in China, while the share of imports
remains relatively large in Europe and the United States. Boosting the industrial base for
battery production is therefore a key task for the EU. To make its battery supply chains
secure, resilient, and sustainable, the EU’s approach consists of improving cooperation
among stakeholders, providing the sector with funding, and establishing a comprehensive
regulatory framework. In this paper, an accurate review of the state-of-the-art of automotive
batteries is provided, including the performance, safety, sustainability, and costs of the
different battery technologies. The significant challenges the EU battery sector must face,
such as dependencies on third countries and high energy and labor costs, are discussed.
An overview of the present European regulation and of future trends is provided.

Keywords: batteries; electric vehicles; automotive sector; European market; European
regulation

1. Introduction

Road transport is responsible for around a quarter of anthropogenic CO2 emissions
in Europe [1]. Vehicle electrification is a viable means to mitigate these emissions, and
batteries play a key role in the success of this strategy. Electric mobility is transforming
our daily travel experiences, driven by advancements in electric storage systems. Access to
batteries is particularly important for ensuring the competitiveness of the automotive sector,
as batteries are the most critical component of electric vehicles (EVs) and represent around
25–40% of the total cost of an electric vehicle. In fact, the growth in EV sales is pushing
up demand for batteries. According to a Joint Research Center report [2], road transport
accounts for 86% of all battery usage, primarily in personal cars, light-duty commercial
vehicles, and buses. Automotive batteries need to provide high performance in power,
energy storage capacity, and durability, while maintaining low weight, volume, and cost.
Additionally, they must comply with automotive safety standards and be recyclable and
environmentally sustainable. It is widely believed that an affordable and appropriately
sized battery is crucial for the success of electric mobility, and EV manufacturers are actively
working toward this goal [3].

Batteries 2025, 11, 185 https://doi.org/10.3390/batteries11050185
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In this context, it is not surprising that investments in batteries have been increasing
in the last few years. In particular, global investments in EV batteries have increased
eightfold since 2018, rising to USD 115 billion in 2023 [4]. Stationary storage accounts for
USD 40 billion, for a global battery demand of 850 GWh. China accounts for more than
half of this spending, followed by the EU and the USA, while the rest of the world invested
only 10% of the global market.

Most venture capital investments focused on innovative battery chemistry and com-
ponent manufacturers, highlighting a significant interest in alternatives to lithium technolo-
gies. An increasing share of investment has also been directed towards battery recycling
and reuse, as is evident from Figure 1a. Early-stage investments in lithium technology
dominate the market, although non-lithium technologies have been attracting increasing
interest in recent times (Figure 1b). These non-lithium batteries include emerging technolo-
gies such as metal–hydrogen, solid-state, or sodium-ion, but also more mature solutions,
such as redox flow batteries [4].

Figure 1. Distribution of venture capital investments per year in battery start-ups (a) by technologies;
(b) by chemistry. Reproduced from [4] under CC BY 4.0 terms.

Under current policy settings, battery demand for electromobility is projected to
increase 4.5 times by 2030 compared to 750 GWh of LIBs installed in vehicles worldwide in
2023 [5], and more than seven times by 2035, with EV batteries accounting for more than
4.3 TWh [6], as shown in Figure 2. If countries fully meet their announced climate and
energy commitments, demand could rise fivefold by 2030 and ninefold by 2035. In a Net
Zero Emissions (NZE) scenario by 2050, demand is expected to grow seven times by 2030
and twelve times by 2035 [7].

According to Bloomberg New Energy Finance (BloombergNEF) [8], LIB pack prices
dropped 20% from 2023 to a record low of USD 115 per kWh in 2024, although prices may
vary significantly across different countries and applications. Battery pack costs in the USA
and Europe were 31% and 48% higher than in China, where prices already dipped below
USD 100 per kWh in 2024, mainly due to higher manufacturing costs and lower volumes.
LIB prices are projected to drop in the next five years, potentially reaching cost parity with
internal combustion engine vehicles (ICEVs) in the mid-to-late 2020s [9]. Several factors
are contributing to the decline in prices, including overcapacity in cell manufacturing,
economies of scale, and reduced prices for metals and components [10]. However, the
downward price trend may be halted due to the current very low profit margins of battery
producers and possible shortages in the material supply chain. Figure 3 illustrates the
price trends of battery packs and cells over the past few years, along with projected prices
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extending to 2030. These forecasts are averaged from estimates of reference [9], utilizing
the average price ratio of packs to cells from the past five years.

Figure 2. Battery demand growth under different decarbonization scenarios: Current, Announced
Pledges Scenario (APS), and Net Zero Emission (NZE).

Figure 3. Pack and cell price trend from 2018 to 2024 [8]. The pack-to-cell price ratio is represented by
the red line. Forecasted prices are reported for the 2025–2030 period.

Among LIB technologies, lithium iron phosphate (LFP) batteries are expected to be-
come more affordable sooner than nickel–cobalt-based batteries, reinforcing LFP’s position
in the market [11,12].

Historically, the decrease in prices for cathode materials and improvements in cell
energy density have led to lower battery costs. However, in the future, the main driver of
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cost reductions is likely to shift toward optimizing the manufacturing process and mini-
mizing waste [13]. Transitioning from small-scale battery materials research to large-scale
production is crucial, particularly regarding material quality control, raw material procure-
ment, electrode processing, and component design [14]. Advanced characterization tools
and AI-based data analytics can significantly enhance quality control, process optimization,
and cost reduction [14–20]. Reducing scrap rates will become a crucial factor in improving
overall efficiency and affordability in the production of lithium-ion batteries [9]. Indeed,
raw materials, such as lithium, cobalt, nickel, and graphite, represent the most relevant cost
in batteries. Even though the actual share depends on cell chemistry, Argonne National
Laboratories estimated that cell materials represent 63% of the 2024 NMC811-graphite
battery pack cost, with cathode and anode materials accounting for 52% and 14% of all ma-
terials cost, respectively [21]. The supply and extraction of raw materials are concentrated
in specific geographic areas, which poses significant risks to both supply and pricing. In
response to this, there are ongoing efforts to decrease the demand for critical raw materials,
leading to the development of new battery technologies. Additionally, recycling will be
vital in the next decade for reclaiming materials from manufacturing scrap. By 2035, the
number of discarded EV batteries will surge, making battery recycling important for re-
ducing critical mineral demand [18,19,22–26]. Effective scaling of recycling could lower
raw lithium and nickel demand by 25% and raw cobalt demand by 40% by 2050, while still
meeting climate targets [7].

While expected to remain dominant, especially due to the growing BEV market,
lithium-ion technology faces potential challenges, mainly due to concerns about lithium
supply constraints and changing policy landscapes [6]. This situation highlights the need
for research and investment in batteries that use more abundant raw materials. Sodium-ion
technology, also known as sodium-ion battery (SIB), is a promising alternative. According
to IdTechEx, at present, only pilot plants are operational, along with a few smaller factories
that produce limited quantities of SIB batteries [27]. Nonetheless, several manufacturers
have disclosed plans that indicate total capacities will surpass 100 GWh by 2030 [27,28].
Their cost and safety advantages make them suitable for specific applications, including
two- and three-wheeled vehicles, smaller passenger cars, and certain stationary industrial
applications, thus complementing lithium-ion technology. Early commercialization of SIB
battery-powered EVs is happening in China [29,30].

In Europe, despite ongoing efforts, the battery industry faces significant challenges
that need to be addressed to ensure its long-term success and competitiveness, such as
dependencies on third countries, high energy and labor costs, strong competition from
Asia, fluctuating demand for EVs, regulatory uncertainties, and difficulties in ramping
up production.

Additionally, the battery industry is entangled in geopolitical tensions between China
and the USA, which impacts investments in gigafactories [31]. Developing battery recy-
cling or implementing more sustainable value chains could help address some of these
challenges. Initiatives like BATTERY 2030+ are set up to promote the development of
next-generation batteries. This program encompasses various projects focused on creating
ultra-high-performance, durable, safe, sustainable, and affordable batteries for practical
applications [32]. Emerging technologies, such as solid-state lithium batteries, promise
extended vehicle ranges, shorter charging times, and reduced costs [33].

To make its battery supply chains secure, resilient, and sustainable, the EU adopted
three approaches: improve cooperation among stakeholders, provide the sector with
funding, and establish a comprehensive regulatory framework.

In this paper, an accurate review of the state-of-the-art of batteries for the automotive
sector is provided, including performance, safety, sustainability, and costs, with a focus on
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the European context. The paper is organized as follows: in Section 2, an overview of the
EU regulation framework is given; Section 3 illustrates the state-of-the-art and the future
developments of battery technologies for the automotive sector; Section 4 is devoted to the
sustainability issue. Promising innovations and regulation improvements are discussed in
the Conclusions, in particular from the European perspective. Appendix A illustrates the
methods and search results of the literature review.

2. The European Legislative Framework

The European Union has implemented policies to decarbonize industries and the
energy system, significantly boosting battery demand. In particular, the global commitment
to decarbonizing the transport sector has resulted in continuous growth in the EV battery
market. The United States and Europe experienced the fastest growth among major EV
markets, reaching more than 40% year-on-year, closely followed by China at about 35%.
As a consequence, demand for EV batteries reached more than 750 GWh in 2023, up 40%
relative to 2022 [34]. As aforementioned, one of the EU’s approaches to support the EU
battery sector is to establish a comprehensive legislative framework. Key initiatives include:

• RePowerEU: This initiative seeks to make Europe energy independent from fossil
fuels by 2027, prioritizing clean technologies like battery energy storage.

• Fit for 55 Package: This package aims to reduce greenhouse gas emissions by 55% by
2030 and accelerate the electrification of various sectors, increasing battery demand.

• Net-Zero Industrial Act (NZIA): This act aims to increase clean-tech industrial capacity,
including battery manufacturing.

• Critical Raw Materials Act (CRMA): This act enhances the collection and recycling of
waste products to secure the supply of critical raw materials for batteries.

• EU Battery Regulation: This regulation promotes the circular economy, resource
efficiency, and sustainability of batteries throughout their lifecycle. Key points in the
Battery Regulation are the following:

◦ Mandatory sustainability and safety requirements for the placing of batteries
on the European market, including restrictions on certain substances, carbon
footprint requirements, performance and durability requirements, etc.;

◦ Recycled content requirements;
◦ Traceability through labelling, marking, and information requirements, notably

with the creation of the digital battery passport;
◦ Mandatory implementation of due diligence policies;
◦ Extended producer responsibility;
◦ Targets for the collection of waste batteries, and provisions regarding the

treatment, reuse, and recycling of batteries, notably materials recovery targets;
◦ Green public procurement.

The new regulation aligns closely with the European Union’s climate neutrality ob-
jectives. These policies collectively create a favorable environment for battery innovation,
manufacturing, and deployment in Europe, contributing to the EU’s goal of achieving
climate neutrality.

The regulatory strategies for batteries vary significantly across the EU, China, and the
US, reflecting different priorities regarding environmental protection, industrial policy, and
consumer safety. The EU’s approach emphasizes environmental sustainability, resource
efficiency, and developing a circular economy for batteries. The EU aims to establish
harmonized standards that apply across all member states. China’s regulatory approach
prioritizes the safety and reliability of batteries, especially given the rapid growth of
the electric vehicle (EV) sector. In contrast, the regulatory landscape in the US is more
fragmented. It focuses on transportation safety and on battery recycling through federal
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guidelines and state-level initiatives. Additionally, there is a growing emphasis on domestic
battery production supported by economic incentives. However, the US currently lacks
the comprehensive, life-cycle-based approach that is characteristic of the EU. Table 1
summarizes the main regulation aspects for different countries.

Table 1. Main regulatory framework in different countries.

Country Main Regulations Main Focus Main Action References

EU Batteries Regulation
(2023/1542)

Sustainability; safety;
labeling, collection,
and recycling of all

battery types

Substance restrictions, carbon
footprint declarations, recycled

content requirements, and
battery passports for traceability

[35]

China
EV battery safety

standards
(GB38031-2025)

Safety; promotion of
technological

standards

Prevention of fire and explosion
after thermal runaway [36]

US

Mercury-Containing
and Rechargeable

Battery Management
Act; Inflation
Reduction Act

Recycling; battery
collection and

labeling guidelines;
safety; domestic

battery production

Multi-faceted approach
involving federal and state

regulations, as well as
voluntary standards

[37,38]

3. State-of-the-Art of EV Battery Technologies

The review focuses on battery technologies for automotive applications, from material
to battery pack levels. Therefore, the main aspects considered are life duration, fast charge,
energy density, cost and market aspects, safety, raw materials, and process sustainability.
For this reason, we excluded documents with keywords referring to vehicle and charg-
ing technologies, or referring to recycling and post-use applications, or non-automotive
purposes. We also excluded reviews focused on battery modeling approaches, as well as
those on battery management systems (BMS) and thermal management systems (BMTS).
Although these topics are crucial for battery performance and safety, they encompass a
broad area of research beyond the scope of this paper and deserve a dedicated review.

Based on the literature review, the current battery technologies for EVs have been
identified and are described in the following section, along with the battery requirements
for EVs applications and the research developments.

3.1. Lead–Acid Batteries

Lead–acid batteries are a well-established technology that is commonly used in vehi-
cles to power electrical systems. Lead–acid batteries can be configured in large systems
without complex management. In automotive applications, six 2 V cells are connected
in series to create a 12 V battery. These batteries are known for their low cost per kWh.
Available designs include flooded (vented) and enhanced flooded batteries (EFBs), valve-
regulated lead–acid (VRLA) batteries, and Absorbent Glass Mat (AGM) batteries [39].
Bipolar lead–acid batteries, a relatively recent development, feature a sandwich construc-
tion that reduces internal resistance and increases power density due to their lighter weight,
allowing for possible applications in hybrid vehicles [40]. The bipolar electrodes concept
has also been extended to other rechargeable battery technologies [41]. Lead–acid batteries
excel in recycling, with 99% of active materials being recycled and over 90% efficiency [42].
This supports a circular economy and boosts Europe’s reliance on domestic raw materials.
Further research is needed to enhance secondary lead utilization and refine the recycling
process to reduce impurities. Lead–acid technology is expected to maintain a stable market
presence, primarily focused on 12 V starter batteries and industrial applications [43].
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3.2. Nickel-Based Technologies

Nickel oxide electrodes serve as the positive plates in various types of rechargeable
batteries, including nickel–iron (Ni–Fe), nickel–cadmium (Ni–Cd), nickel–hydrogen (Ni–
H2), nickel–metal hydride (Ni–MH), and nickel–zinc (Ni–Zn) batteries. All nickel-based
batteries are recognized for their long lifespan and their ability to operate effectively
across a wide temperature range [44]. Notably, Ni-Cd batteries are celebrated for their
durability; they do not suffer from “sudden death syndrome”, and their gradual aging
can be monitored effectively. However, they show that the so-called “memory effect”,
which occurs as soon as a battery is partially charged and discharged, causes their available
capacity to degrade suddenly. Furthermore, the cadmium in this battery makes it unfriendly
to the environment.

Ni-MH batteries, on the other hand, offer a higher energy density and are generally
well-suited for applications with high current consumption [45]. However, this technology
requires a BMS for optimal operation, which introduces some vulnerability. Ni-MH bat-
teries are frequently employed as a backup energy source in hybrid EVs like the Toyota
Prius [46].

The nominal voltage of Ni-Cd and Ni-MH is 1.2 V, which limits their employment in
large battery packs.

3.3. Lithium Batteries

Electrified vehicles with traction motors require higher power and energy capacities
than lead–acid batteries can provide. LIBs have proven to be the most suitable alternative
for this application. Automotive LIBs demand increased by about 65% to 550 GWh in 2022,
from about 330 GWh in 2021, primarily because of growth in electric passenger car sales,
with new registrations increasing by 55% in 2022 relative to 2021 [47]. These batteries have
a nominal voltage range from 2.3 to 3.85 volts (https://www.grepow.com/lihv-battery/
lihv-battery-3-85-v.html accessed on 31 March 2025) and offer significantly high energy
density, exceeding 150 Wh/kg [48], reaching 250 Wh/kg [49], surpassing those of lead–acid
and Ni-MH batteries, which are 40–60 Wh/kg and 40–110 Wh/kg, respectively. Thanks to
their higher energy and power densities, and consequently smaller and lighter cell designs,
with respect to other existing battery technologies, LIBs are dominating the automotive
battery market.

3.4. Sodium-Based Technologies

High-temperature sodium batteries use liquid sodium electrodes and a solid elec-
trolyte, typically an ion-conducting ceramic. The most common types are sodium–nickel
chloride (NaNiCl) and sodium–sulfur (NaS) batteries [50].

NaNiCl, or ZEBRA batteries, operate between 270 ◦C and 350 ◦C. This molten state
allows high conductivity for sodium ions, providing a specific energy of about 120 and a
nominal voltage of 2.3 V to 2.6 V. They are often used in small electric vehicle fleets and
stationary energy storage [51,52].

NaS batteries operate in an optimal temperature range between 300 ◦C and 340 ◦C.
During discharge, sodium oxidizes to Na+, allowing ions to enter the solid electrolyte and
release electrons. The voltage during operation is around 2 V. NaS batteries have stable
internal resistance, making them ideal for grid storage applications over 1 MWh [50].

NaS and NaNiCl batteries both exceed 4500 cycles and have efficiencies of 75% to
86%. However, they require heating to maintain temperature, which decreases their overall
efficiency. NaNiCl batteries have high nickel demand and complex insulation, leading
to greater energy and environmental impacts. In contrast, NaS batteries use recyclable
materials like steel and aluminum, resulting in a lower environmental footprint [43].
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In addition to high-temperature applications, advancements in NaS battery systems
for intermediate (100–200 ◦C) and ambient (25–60 ◦C) temperatures are promising [53].
Room-temperature sodium-ion batteries (SIBs) are often compared to lithium-ion batteries
because both operate on the “rocking chair” principle, where ions move between two
host materials at the electrodes [54]. SIB technology is appealing since it is based on an
abundant material, its specific energy is comparable to LFP [55], while power density,
low temperature performance, and safety are superior [56,57], even though some issues
regarding performance stability and safety remain [58,59]. Nevertheless, sodium-ion
batteries have reached the market (technological readiness level (TRL) 9) [5]. The producer
leader is China, which advances quickly, building the whole supply chain, scaling up
production, and testing the first commercial products in real applications [28,29].

3.5. EV Batteries Requirements

Electromobility necessitates advancements in battery technology to compete with con-
ventional vehicles [60]. The focus is on the advancement of LIBs and emerging chemistries.
Battery technologies can be categorized into “generations” based on their chemical compo-
sition and performance. However, this classification is not officially defined and lacks a
single source. In Table 2, we present a widely accepted classification of battery generations,
along with their TRL, and typical technologies used for the cathode, anode, and electrolyte.
We also add sodium-based technologies, as some batteries based on this chemistry are in
TRL 9, and their performance evolution is of interest for automotive applications. However,
we did not include them in the battery generation classification, which we use to refer only
to LIB technologies.

Key areas for improvement include cell performance advancements and system-level
enhancements like standardization, flexible manufacturing, battery swapping capabilities,
and vehicle–grid integration for bidirectional charging [61].

At the system level, improving the thermal management of batteries is essential.
This involves developing advanced cooling systems and utilizing digital twin models to
enhance our understanding of battery performance, which can help to minimize capacity
loss and performance degradation. In the short term, research should focus on developing
advanced BMS with sensors for diagnostics and failure prediction, supporting remote
upgrades while ensuring cybersecurity [62,63]. In the mid-term, the emphasis will be on
battery reparability and refurbishment, exploring second-life applications, dismantling and
recycling of battery components, and tracking data to meet Battery Regulation and Battery
Passport requirements [64].

Table 2. Battery technology maturity. From [2,65,66].

Generation TRL Anode Cathode Electrolyte

1 9 Carbon/Graphite LFP, NCA, LCO Organic liquid

2a 9 Carbon/Graphite NMC111 Organic liquid

2b 9 Carbon/Graphite NMC532,
NMC622 Organic liquid

3a 9 C/Si (5–10% Si) NMC622,
NMC811 Organic liquid

3b 5–9 Si/C (>10% Si) HE-NMC Organic liquid

3b 4 Si/C (>10% Si) HV-LNMO Organic liquid

3a 5–6 1 Si/C (>10%) LCO, NMC, LMO,
NCA Solid state
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Table 2. Cont.

Generation TRL Anode Cathode Electrolyte

4b 5–6 2 Li metal LCO, NMC, LMO,
NCA Solid state

4 4 Li metal Li2-S Solid state

5 4 Li metal O2 Different
possibilities

- 9 Hard-carbon PBA 3 Organic liquid

- 4 Na-metal, Tin alloys
layered oxides,

polyanion
compounds

Different
possibilities

1 TRL 9 is achieved only in specific market segments (e.g., earbuds, wearables) or special operation conditions.
2 TRL 9 is achieved for some niche applications (e.g., space, military). 3 Prussian blue analog.

High gravimetric energy densities are crucial for increased payload and cost-efficiency,
especially for commercial and heavy-duty vehicles, alongside considerations of cycle life
and total cost of ownership under diverse operating conditions [67]. Given that battery
materials comprise a significant portion of cell cost, research and innovation in this area
are essential to achieve cost-effective batteries with high energy density, long cycle life, and
rapid charging [67].

Figure 4 reports the evolutionary roadmap for lithium-based chemistries from 2023 to
2030 with reference to both gravimetric and volumetric energy density. Actual values can
vary depending on specific cell design, operating conditions, and manufacturing processes.
Projected values can vary substantially depending on ongoing research and development.

Figure 4. Evolutionary roadmap of lithium-based chemistries 2023–2030.

At the cell level, the objective in the short term is to enhance the energy density
performance of cells while eliminating the use of critical materials like cobalt. This approach
aims to reduce costs and concentrate on Generation 3b technology [68]. In the mid-term,
solid-state Generation 4 LIBs are anticipated to become increasingly significant [65,69]. It
is essential to ensure automotive-grade safety, including crash safety and the adoption of
flame-retardant materials, as well as to focus on cyclability, lifespan, sustainability, and
recyclability [64]. Addressing challenges related to safety, sustainability, and raw material
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criticality is also paramount for EU competitiveness [70]. This necessitates exploring
sustainable materials, including bio-based and bio-mimetic options, and considering raw
material abundance and cost in developing new battery chemistries [64]. Current research
focuses on advanced materials for higher energy/power density, including high-nickel
NMC cathodes, silicon-based anodes, and stabilized electrolytes. Efforts are also focused
on reducing inactive materials. “Design-to-cost” approaches, like manganese-rich high
lithium manganese (HLM) and improved LFP cathode, are also being pursued [71–73].

While LIBs have seen significant progress in energy/power density and cost reduction,
further improvements are needed in material cost competitiveness, fast charging capabili-
ties, ecological and social footprint reduction, high-energy anode and cathode synthesis,
supply security, and cycle life enhancement to meet the demands of the automotive market.
The industry has identified key battery targets for essential cell and pack characteristics
to be achieved in a short-term period to meet mobility needs. In Table 3, we report some
parameters’ target values elaborated from the European Council for Automotive R&D
(EUCAR) [74] and the United States Advanced Battery Consortium (USABC) [75] for cell
performance expected goals. We also included the requirements identified in the Batteries
Europe Roadmap [64], as well as from the literature [76]. These parameters depend on the
application; thus, a range of values has been given instead, which includes high-power
applications, such as plug-in hybrid EVs (PHEVs), and high-energy implementations, such
as BEVs.

Table 3. Battery cell requirements for automotive applications. The value intervals are determined,
including BEV and PHEV future needs and projections. Data from USABC have been estimated for
the BOL assuming EOL condition is 80% of the initial capacity.

Parameters at Cell Level
Current

2020–2025
2030–2035 Source

Specific energy 160–290 275–450 [64,74–76]

Energy density Wh/l 450–730 750–1000 [55–57]

Continuous specific
power—discharge W/kg 340–750 800–1750 [74,76]

Continuous power
density—discharge W/L 1000–1500 2000–3850 [74,76]

Charging rate C (1/h) 2–3 6–3.5 [55–57]

Cost EUR/kWh 60–200 40–100 [74,76]

Hazard level <=4 <=3 [74,76]

At the pack level, it is anticipated that the cell volume per battery pack will increase
from 60% to 75%. Additionally, the cell weight per battery pack is expected to rise from
70% to 80%. The lifetime expectation should be comparable to that of a car, reaching up to
150,000 km. Furthermore, the cost of the battery pack should be approximately 15% to 20%
higher than the cost of the individual cells. For PHEVs, the specific energy and density
goals are somewhat less stringent than for BEVs, but peak power requests are generally
higher. Key parameters are summarized in Table 4.

It should be noted that all USABC goals are written in terms of end-of-life (EOL),
battery-pack-level values, whereas researchers and cell developers often highlight
beginning-of-life (BOL), cell-level performance. A comparison of the USABC and EU-
CAR goals, reported on EOL values, on specific energy, calendar life, and cycle life, shows
a good degree of alignment.
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Table 4. Battery pack requirements for automotive applications. The value intervals are determined,
including BEV and PHEV future needs and projections. Data from EUCAR have been estimated
based on their actual and foreseen cell-to-pack integration.

Parameters at Pack
Level

Current
2020–2025

2030–2035 Source

Specific energy Wh/kg 90–180 190–360 [74,76]

Energy density Wh/l 250–400 450–750 [74,76]

Continuous specific
power—discharge W/kg 525 800–1400 [74]

Continuous power
density—discharge W/L 900 1650–2600 [74]

Cost EUR/kWh 90–286 65–120 [74,76]

3.6. Life Duration

Battery durability is a critical requirement for EVs. Many vehicle original equipment
manufacturers (OEMs) offer warranty periods that extend for many years and hundreds
of thousands of miles. A study by P3 and Aviloo [77], analyzing data from over 7000 EVs,
reveals promising insights into battery longevity. It shows that while battery capacity
initially declines, it stabilizes over time. Specifically, capacity drops to about 95% after
the first 30,000 km and around 90% at 100,000 km. Even after 300,000 km, most batteries
retain about 87% of their original capacity. These findings exceed many original OEMs’
predictions, which often anticipate a decline to 70–80% for the same distance range.

Efforts to improve battery life involve different levels of the storage system, from
materials and cells to battery pack management. The cell’s main components are the
electrodes, where redox reactions occur during charge and discharge. The cathode—
the electrode with the higher potential—is usually made of a lithium transition metal
(TM) oxide material. The anode is typically an intercalation material like graphite or a
graphite hybrid material, or sometimes lithium titanate oxide (LTO). Between the electrodes
is a porous separator that prevents short-circuiting while allowing ion migration. The
electrolyte plays a fundamental role in the battery, ensuring the transmission of ions and
maintaining the reaction balance of the battery. During battery operation, or even during
storage, the components may undergo physical and chemical changes that can alter the
battery’s performance [78]. These degradation mechanisms are not directly observable
during normal battery operation, but they affect the battery performance, specifically with
the reduction in the usable capacity of the cell (capacity fade) and the decrease in the cell’s
deliverable power (power fade) [79].

Degradation mechanisms can be categorized into distinct degradation modes, which
reflect their impact on cell performance [80–82]. A commonly used classification identifies
three main degradation modes:

1. Loss of Lithium Inventory (LLI): This mode includes mechanisms that reduce the
amount of cyclable lithium available for transport between the electrodes.

2. Loss of Active Material (LAM): This encompasses mechanisms that lead to a decrease
in the material available for electrochemical activity. LAM is often further divided
into losses at the anode and losses at the cathode.

3. Conductivity Loss (CL): Also known as impedance change, this mode groups the
mechanisms that affect the kinetics of the cell.

Figure 5 provides a simplified graphical representation of the relationships between
battery components, degradation mechanisms, and degradation modes. The correlations
between these phenomena are much more complex because all battery components are

197



Batteries 2025, 11, 185

closely interconnected, and the details of specific degradation mechanisms depend on their
composition and structure.

Figure 5. Schematic of degradation mechanisms and modes for different battery components.

Despite the oversimplification, Figure 5 highlights some of the issues the researchers
are focusing on to improve battery life performance. Reducing the solid electrolyte interface
(SEI) modification or growth during cycling is of particular interest. The SEI is a layer
that forms on the electrode–electrolyte interface during the first few cycles. This layer
protects the electrolyte material from further depletion and prevents corrosion of the anode.
However, during cycling, irreversible side reactions can lead to unwanted growth of the
SEI layer on the anode, which significantly reduces the capacity and power rate [83]. This
mechanism has a particular impact on intercalation anodes, such as graphite and silicon-
based ones, which undergo large volume changes during lithiation and delithiation [84],
but it also occurs with other anode materials and at the cathode, where it is usually referred
to as cathode electrolyte interface (CEI). The addition of binders, coating, and doping at
the electrode can help reduce this degradation mechanism [20]. However, the mechanisms
behind SEI growth are still not well understood, and further research is needed to address
the issue [85].

In Table 5, we summarize various degradation mechanisms and mitigation strategies
for several cathode and anode materials that are currently attracting research interest.

External factors such as operating current, voltage conditions, state of charge, and tem-
perature all play complex roles in influencing the battery degradation mechanisms [86–89].
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Table 5. Degradation mechanisms and mitigation strategies for some advanced electrodes.

Type of Electrode Degradation Mechanisms Mitigation Strategies Source

Ni-rich layered cathode

Microcracks,
lithium–nickel

hybridization and
irreversible phase

transitions, anisotropic
lattice deformation, and

surface degradation

Elemental doping, coating
modification, electrolyte

modification, construction of radial
concentration gradients in

polycrystalline secondary particles,
fabrication of rod-shaped primary

particles, single-crystal
high-nickel cathodes.

[90–93]

Lithium-rich manganese
oxide cathode

Irreversible oxygen loss,
structural degradation of

the material, particle
fragmentation, and

transition metal migration

Surface coating, ion doping,
component regulation, single

crystal structures.
[94,95]

Li-metal anode Dendrite growth

Coating artificial protective films,
surface morphology control, high

electrolyte concentration,
electrolyte additives.

[85]

The commercially available LIB temperature operating range is usually around −20 to
55 ◦C, even though the optimal range is generally 15–35 ◦C [96]. While using the batteries
outside their operating range can lead to safety issues, operating outside the optimal range
accelerates aging. Generally, low temperatures favor the deposition of metallic lithium
on the anode, high temperatures enhance the rate of side reactions and the kinetics of the
battery, accelerating the decomposition of SEI and electrolyte consumption [81,82].

Batteries have a specific operating voltage range that depends on the potential of the
electrodes. The voltage of a battery is related to its state of charge (SOC); higher voltage
indicates a higher SOC, while the low voltage cut-off marks a depleted capacity. It is
important to note that the voltage operating windows remain stable throughout the aging
process, whereas the SOC values can change, as the available capacity decreases over time
relative to the nominal initial capacity.

When cells are overcharged, lithium deposition can occur. An increased cutoff
voltage can lead to electrolyte decomposition and uneven degradation of the negative
electrode [80–82], and the battery may experience significant volume expansion, as well as
increases in temperature and internal resistance, which raises the risk of thermal runaway.
Conversely, discharging at low voltages can result in the dissolution of the copper current
collector, increasing charge transfer resistance, and leading to micro-short circuits [81,82,96].
Low voltages accelerate the growth of SEI and CEI films, causing changes in the microstruc-
ture of the cathode and resulting in faster capacity fade [80,90,96,97].

Table 6 presents an overview of the primary degradation mechanisms caused by
various usage-related stresses. It is important to note that, in practical applications, these
stress factors often occur simultaneously, amplifying their effects on the battery.

To accurately predict battery aging, it is essential to consider the intricate relationship
between external factors related to working or storage conditions, chemical and material-
level degradation modes, and aging mechanisms [98–100]. To effectively predict the
degradation curve up to the EOL conditions, it is necessary to continue testing until the
batteries reach EOL or rely on advanced diagnostic models able to extrapolate early-stage
data into predictions for long-term degradation based on observed processes [99,101].
The results are used in BMS to maximize battery performance and duration through
diagnostic and prognostic analysis [63,102–105]. Diagnostics assesses how much a battery’s
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performance deviates from its optimal or reference state, a concept known as state of health
(SOH). SOH is not linked to a single index, and its definition can vary depending on the
perspective from which the battery’s performance is evaluated [106–108]. Prognostics
estimate how long the device can continue to operate based on its current SOH and usage
patterns [99]. Their implementations can be broadly classified into model-based and data-
based approaches. Model-based methods, such as physics-based, equivalent circuit, or
empirical models, are effective when battery behavior is well understood and require
extensive laboratory tests for the accurate identification of model parameters [96,108–110].
In contrast, data-driven approaches are increasingly popular, especially for applications
where battery behavior is highly nonlinear and difficult to model precisely [86,96,111,112].
These methods can use real-world usage data to gain insights without relying on specific
mathematical equations [87,113]. However, they demand high-quality training data that
reflects a wide range of battery behaviors [99,114].

Table 6. Overview of the main degradation mechanisms induced by operating conditions.

External Stress Induced Degradation Mechanism Aging Effect

Low temperature Lithium plating and dendrites formation Conductivity loss/capacity
fade/short circuit

High temperature Electrolyte and binder decomposition
SEI film growth and decomposition Capacity/power fade

Low voltage/SOC

Corrosion of current collectors
Transition metal dissolution

Loss of electric contact
Lithium plating and dendrites formation

SEI and CEI growth

Conductivity loss/capacity
fade/power fade

High voltage/SOC

Electrolyte and binder decomposition
SEI film growth and decomposition

Graphite exfoliation
Lithium plating

Capacity/power fade

High current

SEI film growth and decomposition
Graphite exfoliation

Structural disordering and particle cracking
Loss of electric contact

Conductivity loss/capacity
fade/power fade

Digital twins and AI analytics can be effectively integrated into a BMS to enable
advanced predictive maintenance, moving beyond traditional rule-based or statistical
methods [115]. A digital twin is a dynamic virtual representation of a physical battery or
battery pack. This model incorporates various elements, including the battery’s design
specifications, material properties, electrochemical characteristics, thermal behavior, and
operational history [116]. The BMS continuously streams real-time data from various
sensors embedded in the physical battery to the digital twin [117]. AI algorithms within
the digital twin framework continuously process this real-time data to update the virtual
model, accurately reflecting the current state and operational conditions of the physical
battery [118,119]. AI algorithms, especially machine learning techniques like neural net-
works, clustering, and statistical process control, can analyze real-time data to identify
deviations from typical operating patterns. These anomalies may serve as early indicators
of potential faults or degradation. When an anomaly is detected, AI can analyze historical
data, failure modes, and the current context within the digital twin to diagnose the potential
underlying cause of the issue [120]. By learning from historical degradation patterns, usage
profiles, and environmental conditions of similar batteries—both real and simulated within
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the digital twin—AI models can predict the RUL of individual cells and the entire battery
pack. This capability allows for proactive maintenance planning. Furthermore, the digital
twin, enhanced by AI, can simulate various future operating conditions (such as different
charging profiles, temperature extremes, and load cycles) to predict their impact on battery
health and performance. This enables the optimization of battery usage and the evaluation
of different maintenance strategies. However, implementing AI and digital twins in BMS
faces challenges such as poor data quality, integration issues, and high initial costs. AI
struggles with data context and reliability, while digital twins require continuous updates
and deal with model complexity and scalability. Both technologies also raise concerns
about data security and organizational readiness [121–123]

To estimate the SOH of batteries, methods can be categorized as either direct
or indirect [124]. Direct methods involve measuring indicators such as capacity and
impedance, while indirect methods analyze data to gain insights into battery aging mecha-
nisms [105,112,125,126]. Examples of direct methods include Coulomb counting, open cir-
cuit voltage (OCV) measurements, impedance assessments, and the acoustic emission tech-
nique [127–130]. Advanced sensors help to determine direct SOH measurements [131–133].
Indirect methods rely on voltage and current values, which are much easier to measure
than battery capacity. They derive the degradation state from models based on the number
of cycles performed or through numerical approaches [130,134–137].

Battery thermal models describe the generation and transfer of heat in a battery to
predict its temperature. A crucial step in ensuring the efficiency and accuracy of these
models is determining and extracting the model parameters [138]. Thermal models are
particularly important for ensuring the safe and reliable use of batteries, as temperature
levels outside of operating limits can shorten battery life, degrade performance, and
increase safety risks [114,139–143]. These models are integrated into the BMS to predict
and mitigate thermal risks. Battery thermal management system (BTMS) includes running
additional components such as liquid cooling systems or phase-change materials that are
employed to keep the temperature settings [142,144–148].

3.7. Fast Charge

Charging time is a significant concern for customers who frequently take long-distance
trips and for those who do not have access to private charging. Direct current fast charging
(DCFC) equipment can charge a BEV to 80% in just 20 min to 1 h. However, there is
still a desire for charging speeds that can approach those of internal combustion engine
vehicles (ICEVs).

Key areas for improving fast charging include enhancing the diffusion rate of lithium
ions (Li+) in the electrodes, optimizing transport in the electrolyte, and improving charge
transfer kinetics at the electrode/electrolyte interface [149–153]. Research opportunities
exist at both the cell and battery levels [150,154–156], focusing on the areas described in
the following.

3.7.1. Electrode

Optimizing the design and structure of electrodes to enhance their conductivity and
surface area significantly improves charge transfer rates. Reducing electrode thickness
can improve ion diffusion but lower energy storage capacity. To balance capacity and fast
charging with thicker electrodes, it is vital to optimize porosity and design, such as adding
electrolyte channels or using a 3D grid porous electrode with vertically aligned pores for
better ion transport [156].

Fast charging capability depends on the cathode’s crystal structure. Layered oxides al-
low for high ionic mobility and quick charging due to minimal diffusion barriers. However,
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they can become structurally unstable during deep delithiation, but this can be contrasted
with element doping or synthesizing layered Li transition-metal oxides with single-crystal
(SC) [157,158]. As to polyanionic oxides, surface modification and coating improve their
poor ionic conductivity [153,159,160]. Conversion-type cathode materials show poor per-
formance upon cycling [161–163]. However, a composite cathode of FeF2 nanoparticles
embedded into a polymer-derived carbon (PDC) matrix showed a high capacity retention
after 500 cycles at a high rate of 60C [164].

Carbon-based materials are the most widely used anode materials, but high current
densities impact their performance. Graphite materials with porous structures, expanded in-
terlayer spacing, or ordered alignment of graphite flakes perpendicular to the current collec-
tor are among the strategies proposed to enhance fast charging performance [153,165–167].
Transition-metal oxide anodes, like LTO, are better suited for fast charging but struggle
with low intrinsic conductivity and slow Li+ diffusion kinetics. These challenges can be
mitigated through surface modification, doping, and morphology control [149,168,169].
Silicon anodes face issues of large volume changes and low conductivity. To improve
their rate and cycling performance while capitalizing on their high specific capacity, tech-
niques such as particle size reduction, new microstructure design, and surface coatings are
utilized [151,170–173].

3.7.2. Electrolytes

Important characteristics of electrolytes for fast charging include high conductivity,
a high Li+ transference number, low desolvation activation energy, strong reductive and
oxidative stability, good electrode compatibility, and a stable SEI layer [150,156,174]. Addi-
tives in electrolytes can contribute to the formation of a stable SEI layer, while the use of
low-viscosity co-solvents can enhance ion mobility [175,176]. Flame-retardant additives
can help reduce flammability and minimize side reactions [177–179]. In contrast, solid
electrolytes are intrinsically non-flammable but tend to exhibit low ionic conductivity and
high interfacial resistance. Recent advancements in garnet-type and sulfide-based solid
electrolytes have demonstrated ionic conductivities that are comparable to those of liquid
electrolytes [180,181].

3.7.3. Battery Engineering

The design of the battery cell is essential for ensuring mechanical stability and thermal
safety. For instance, a high impedance ratio between the cathode and anode can help
minimize lithium plating on the graphite anode and improve the distribution of current
density on the collector, thus reducing the risks associated with fast charging [182,183]. At
a broader system level, an effective thermal management system is vital for maintaining
the performance, longevity, and safety of LIBs, especially in extreme conditions [184–186].
Additionally, implementing safer and more efficient charging strategies can significantly
enhance battery performance, stability, and prolong battery lifespan [153,187–189].

3.8. Energy Density

There is an increasing market demand for batteries with higher energy density, driven
by the need to extend the range of EVs and boost their adoption rates. Enhancements in bat-
tery energy density can be achieved at both the system level and the cell level [48,190,191],
e.g., by improving the capacity of electrode materials and raising the operating volt-
age [192].

3.8.1. Anode

The dominant chemistry used nowadays in EV applications for the anode is graphite,
thanks to its relatively low cost, abundance, high energy density, power density, and long
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cycle life [193]. Graphite consists of layers of single atomic hexagonal carbon atoms that
provide enough interstitial sites to store lithium, with a 10% volume deformation during
charge and discharge. However, limited capacity, degradation during cycle life, and low
potential of graphite versus Li require the search for new anode materials [194]. For carbon
anodes, many solutions have been investigated to meet the demand for stable and high-
energy anodes. Anodes with different dimensionalities, such as nanotubes (1D), graphene
nanosheets (2D), and various spherical structures (3D), have been developed to mitigate
the effects of volume change during lithiation [194–196]. Fullerene derivatives (0D) have
been investigated for their high charge capacity (861 mAh/g for carboxyl C60) and stable
structure at a molecular level. Fullerene proved also useful to suppress dendrite formation
on li-metal anodes [197].

Lithium titanate (LTO) is another alternative for the commercialized cells’ anode.
LTO-anode batteries show a lower nominal voltage (around 2.4 V) and lower specific
energy compared to graphite anode batteries. On the other hand, LTO supports fast-
charging and shows a remarkable lifespan [198,199]. However, degradation mechanisms
are still under investigation, with gassing phenomena representing a potential hazard for
safety [200,201]. Along with higher cost, these characteristics prevented the broad adoption
of LTO lithium batteries in automotive applications, even though niche market applications
are viable [198,202]. A series of titanium- and niobium-based intercalation materials have
been developed as potential replacements for LTO, showing excellent electrochemical
performance in terms of reversible capacity and electric conductivity [203]. However,
most have high operating potentials above 1.5 V relative to Li/Li+. New titanium- and
vanadium-based materials have emerged, capable of stable lithium storage below 1 V
relative to Li/Li+ [204,205].

Both graphite and LTO work on the principle of intercalation: this process involves
the storage of mobile ions in vacant sites or within interlayer spaces of a host lattice [206].
Among intercalation-type materials, MXenes—a new family of two-dimensional metal
carbides or carbonitrides—have gained significant attention as anodes [207,208]. MXenes
consist of graphene-like transition metal–carbon or nitrogen compounds. Their high
conductivity and excellent surface chemistry make them particularly promising [209].
Unfortunately, the intercalation-type anode has a low rate capacity and a low specific
capacity [206].

Alloy-based anodes are of great interest for their theoretically high specific capacity
and increased energy density compared to graphite. Silicon anodes are particularly in-
teresting alternatives to graphite anodes due to their high theoretical capacity of nearly
4200 mAh/g [210–212]. Silicon is appealing due to its abundance in the Earth’s crust and
the capacity of a single silicon atom to bond with four lithium ions. However, like all
anode alloy materials, silicon anodes suffer from severe deformation during lithiation and
de-lithiation, with a change of 300% of volume, which causes problems such as buffering,
pulverization of the material, electrolyte consumption, and loss of contact [194,213]. The
combined use of Si and graphite has become an appealing choice for high-energy anodes in
LIBs [212,214,215]. This integration can also be achieved through the use of Si nanoparticles,
Si suboxides, and Si-Graphite composites [216]. Silicon nanocrystals and nanotubes can
reduce volume fluctuations during charging and discharging, improving the diffusion and
conductivity of electrons and lithium ions [217]. However, cycling can cause agglomeration,
increasing surface area and potentially leading to side reactions and reduced Coulombic
efficiency [218]. Silicon suboxides (Si-Ox) materials have less volume expansion during
lithium insertion compared to crystalline silicon. However, Si-Ox electrodes typically
achieve a Coulombic efficiency of around 70% or lower, despite having a reversible capacity
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of about 1500 mAh/g [218]. The addition of specific binders and the use of tailored liquid
electrolytes can help overcome those critical aspects [213,219].

Besides silicon, alloy metals such as tin (Sn), aluminum (Al), and antimony (Sb) have
been intensively investigated. Sn-alloy anodes have a high onset voltage above Li/Li+,
which can help prevent lithium deposition and dendrite formations while reducing inter-
facial resistance [211,220]. However, they usually suffer from high-volume deformation
during cycling. Nanoscale synthesis of metals, such as nanoparticles and nanotubes, holds
promise for addressing volume change during lithiation [194,221].

Transition metal oxides (TMOs) are of significant interest as anode materials for LIBs
due to their favorable properties, including being non-toxic, having high power density, and
being inexpensive [222–224]. They are based on the conversion reaction, which involves
the formation and breaking of chemical bonds during lithiation and delithiation [206]. In
LIBs, they can suppress the dendrite growth, increasing the battery’s safety [194]. Notably,
iron oxide (Fe3O4) has a theoretical capacity of about 926 mAh/g, making it a promising
anode material. However, it suffers from rapid capacity loss and poor cycling stability
due to the pulverization of active materials during operation, along with lower electrical
conductivity compared to graphite [222–224].

Table 7 reports a comparison of some characteristics of these anode materials.
Other conversion-type transition metal compounds, such as transition metal chalco-

genides, oxalates, carbides, nitrides, aluminum niobates, phosphides, and hydroxides, are
also being explored as alternative anode materials in lithium-ion batteries [162].

Metal–organic frameworks (MOFs) are an emerging area of research and are consid-
ered promising materials for LIBs [225]. Their advantages include a high surface area,
well-defined pore structures, and controllable chemical compositions. The unique porous
structures of MOFs enhance electrolyte penetration and ion transport, support active
materials, and selectively screen ions, making them ideal for use in battery separators,
electrolytes, and electrodes [226]. Additionally, MOFs have several beneficial properties for
battery applications, such as significant hygroscopic adsorption capabilities, high thermal
stability, excellent electrochemical stability, and substantial mechanical robustness [227].

Table 7. Comparison of some electrochemical characteristics for some anode materials.

Composition
Gravimetric

Capacity (mAh/g)
V vs. Li/Li+

Volume
Change

Reference

C (graphite) 372 0.3 V 10% [194,228]

Li4Ti5O12 175 0.87 V 1% [194,199]

Li22Si5 (Li4.4Si) 4200 0.1 V 310% [210,211]

Li15Si4 3570 50–60 mV 280% [179]

Porous
carbon–iron

oxide
(PC–Fe3O4)

926 0.8V 200% [222–224,229]

Other emerging candidates for anodes are metal hydrides, like MgH2 and TiH2, which
are made from abundant elements and offer low voltage hysteresis and high specific
capacity. However, their capacity degrades after around 1000 to 2000 cycles, and they
exhibit poor Coulomb efficiency. Metal phosphides are promising anode materials for
lithium-ion and sodium-ion batteries due to their high specific capacity, safe operating
potential, and excellent thermal stability. Improving long-term cycling performance is
essential for hydrides to become viable for battery applications [206].

204



Batteries 2025, 11, 185

Finally, lithium metal is a promising anode material due to its high theoretical specific
capacity (3860 mAh/g), low electrochemical potential (−3.04 V vs. SHE), and low density
(0.59 g cm−3). However, it faces challenges like lithium dendrite formation and continuous
solid electrolyte interface (SEI) development, which can cause safety hazards, low Coulom-
bic efficiency (CE), and reduced cycle life. Another challenge is the price of lithium metal
itself and the expenses associated with refining the preparation process [222].

3.8.2. Cathode

Lithium battery cathodes use various technologies, each with specific advantages and
disadvantages related to cost, safety, and performance. Lithium cobalt oxide (LCO) is the
main cathode chemistry used in consumer electronics. In the past, lithium nickel oxide
(LNO) was the second most common choice due to its lower cost and higher capacity, but
its thermal instability limits its applications.

Recently, the automotive sector has moved to alternative cathode chemistries like
lithium nickel cobalt aluminum oxide (NCA), lithium iron phosphate (LFP), lithium nickel
manganese cobalt oxide (NMC), and lithium manganese oxide spinel (LMO) due to their
better performance and safety compared to LCO [193]. According to the IEA [47], in 2022,
NMC market share was 60%, followed by LFP (about 30%), and NCA with a share of about
8%. Cobalt-based technologies (NCA and NMC) are among the favorites for automotive
applications due to their higher energy density, reaching 260 Wh/kg, and specific energy
compared to LMO and LFP batteries. However, they suffer from thermal instability, which
leads to a shorter cycle life than NMC [10]. NMC was originally formulated in the 1:1:1
ratio, which resulted in high energy density, power density, durability, and safety. However,
NMC111 cost and value chain sustainability become critical, due to the growing demand
for cobalt and its poor ecological and political sustainability [230]. NMC532 and NMC622
have recently become the dominant battery in EV applications, with NMC811 gaining
market share [2], and higher-nickel content chemistry such as NMC955 emerging. However,
increasing nickel content requires more complex production processes [4]. Moreover, cobalt
guarantees the stability of the cathode.

On the other hand, LFP technology is expected to gain traction in automotive appli-
cations due to its stable and safe performance. LFP batteries have life cycles exceeding
2000 cycles, a wide operating temperature range, and costs that are over 20% lower than
NMC batteries [4,13,231]. However, LFP batteries typically have an energy density that is
20–30% lower than that of high-nickel chemistries. A growing number of EV manufacturers
are adopting LFP technology, including Tesla, Ford, Opel, and Citroën [232,233]. This trend
is bolstered by researchers’ successes in increasing the energy and power density of LFP
batteries. In 2024, Zeekr announced an upgrade to its electric vehicle LFP battery, which
can support ultra-fast charging at a rate of 5.5 C [234]. Meanwhile, SAIC-GM revealed the
production of a 6 C charging LFP battery in collaboration with CATL [235]. Additionally,
Geely introduced its latest generation of the self-developed Aegis LFP blade battery, which
boasts an energy density of 192 Wh/kg [236].

Researchers have also developed a new iron and manganese form of LFP, termed
LMFP, which was commercialized in 2024 [12] According to producer Gotion, the LMFP can
reach an energy density of 240 Wh/Kg, has a volumetric energy density of 525 Wh/L, and
a lifespan of 4000 cycles at room temperature and 1800 cycles at high temperatures [237]. A
volumetric cell to pack (CPT) ratio of 76% allows for an LMFP battery pack energy density
of 190 Wh/kg, surpassing the commercial NMC performance. The Chinese OEM BYD
reached a 40% increase in cell-to-pack integration efficiency, reaching an energy density
pack of 140 Wh/kg, using elongated LFP battery cells (blade cells), which are as long
(600–2500 mm) as the pack [238].
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In Table 8, we compare different lithium-ion technologies in terms of some electrical
parameters and performance parameters.

Table 8. Comparison among some lithium-ion battery technologies for automotive applications. Data
were processed from [100,194,199,203,238–244].

Cathode Anode
Operating

Voltage (V)

Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Fast-Charging
Lifespan
(Cycles)

LFP C or Si-C 2.5–3.6 90–190 247 3 C 2000–4000

NMC C or Si-C 3–4.2 130–280 300–800 0.7–1 C 1000–2000

NMC LTO 1.5–2.8 70–90 2200 10 C 3000–10,000

LMO C or Si-C 3–4.2 100–185 925 0.7–1 C 300–1000

LMO LTO 1.5–2.8 70–90 3600 5 C 3000–7000

NCA C or Si-C 3–4.2 175–300 670 0.7–2 C 500–1000

3.9. Safety

Battery safety encompasses a broad range of investigations aimed at understanding
and mitigating the hazards associated with lithium-based batteries. It is of paramount
importance, since the ageing process, abusive use, or battery defects can compromise
performance and lead to dangerous consequences like fires or explosions [245–247].

Among the objectives of fault diagnosis, there is understanding the failure mechanisms
by investigating the root causes of battery failures, including thermal runaway, internal
short circuits, over-charging, over-discharging, and mechanical damage, and analyzing
the chemical and physical processes that lead to these failures [248]. The risk assessment
comprises determining the likelihood and severity of potential hazards, such as fires, ex-
plosions, and the release of toxic gases, and quantifying the risks associated with different
battery chemistries, designs, and operating conditions. Reliability assessment employs
experiments (accelerated aging, in situ diagnostics, failure analysis), computational models,
and model or data-driven methods [109]. Experimental techniques include accelerated ag-
ing to simulate long-term degradation and in situ diagnostics for real-time monitoring [249].
Understanding thermal runaway is critical, especially in relation to operating conditions
such as extreme temperatures, overcharging/discharging, and fast charging [250]. Thermal
runaway is a critical failure mode where internal battery temperature rapidly increases
due to exothermic reactions, leading to potential fires or explosions [248,251–254]. External
factors like mechanical stress [249,255–257] and environmental conditions [84,258] can
damage batteries, necessitating robust designs for diverse real-world use.

Risk management and safety assessment must take a comprehensive approach that
considers both material and cell risks to evaluate the safety of battery systems effec-
tively [247]. Indeed, the material choices for cathode, anode, electrolyte, and separator
directly impact thermal stability and safety, with stable SEI layer formation and separator
integrity being crucial [85,259–261]. Ongoing research is devoted to improving the intrinsic
safety of battery components. Fire retardants, tailored solvents, and solid or quasi-solid
state electrolytes are possible solutions to enhance battery safety [177,178,262,263]. Ele-
ment doping, surface engineering, nanostructure, single-crystal design, and concentration
gradient structure are strategies proposed to stabilize high-nickel cathodes [264–268].

Safety concerns are particularly critical for batteries used in automotive applications.
As power and energy levels rise, the risk of vehicle fires and potential harm to people and
property increases. For instance, in NCM-type batteries, a higher nickel (Ni) content results
in increased specific capacity but reduced thermal stability.
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The thermal runaway process is a complex chain reaction that consists of multiple
steps, with its outcome influenced by various factors. The different components of the
cells—such as electrolytes, electrodes, binders, and separators—affect both the sensitivity to
thermal runaway and the severity of its consequences. LIB electrolytes typically consist of
organic solvents and participate in several exothermic reactions during thermal runaway.

One critical reaction is the breakdown of the SEI, which is exothermic and starts
at temperatures between 51 ◦C and 69 ◦C, depending on the electrolyte, particularly in
the presence of carbonaceous anodes like graphite. Research has demonstrated that LTO
anodes exhibit better safety performance due to their higher thermal stability [269].

The decomposition of the cathode, aside from being influenced by its chemistry, also
depends on the electrolyte employed. For example, in an ethylene carbonate/diethyl
carbonate (EC/DEC) solvent, the onset temperatures for the decomposition of LCO, NCM,
and LFP are approximately 150 ◦C, 220 ◦C, and 310 ◦C, respectively.

Another crucial factor in assessing the safety of the cathode is the heat released during
its decomposition and the rate of that heat release. Generally, the thermal reactivity of the
cathodes can be ranked as follows: LCO > NCA > NMC > LMO > LFP. For more detailed
information on the safety performance of various lithium-ion batteries (LIBs), readers are
encouraged to refer to the analyses presented in specific research papers [270–272].

The unique nonlinear characteristics of lithium-ion batteries can render traditional
reliability models ineffective [273]. Early fault diagnosis is vital for preventing compo-
nent breakdown and improving overall EV reliability and safety [274]. Designing and
evaluating safety features, such as thermal management systems, protection circuits, and
flame-retardant materials, is fundamental to ensure safety [246]. Finally, manufacturing
quality must be consistent to prevent defects like contamination and misalignment, requir-
ing rigorous testing [249]. Utilizing data from real-world applications can be extremely
beneficial. Recognizing this, many large companies have developed cloud-based platforms
for monitoring and analyzing EV batteries in real-world settings [109,111,275].

Policies are essential for improving battery safety throughout their lifecycle, from
manufacturing to disposal [276]. Regulations can enforce quality control measures, such as
mandatory testing for defects and thermal stability, and require the use of safer materials.
They also establish guidelines for the safe transport and storage of batteries, particularly
lithium-ion ones, which present fire risks, and mandate safety features in battery-powered
devices, like thermal management and overcharge protection. Effective recycling and
disposal systems are crucial to prevent environmental contamination and fire hazards from
damaged batteries, with regulations promoting responsible practices and traceability in
production to identify defects and their origins.

The EU Battery Regulation [35], which includes the battery passport, aims to enhance
sustainability and safety in battery use. The battery passport provides transparency and
traceability by recording essential information about each battery’s composition, perfor-
mance, and lifecycle. This system allows for better tracking of batteries throughout their
lifespan, making it easier to identify and recall defective batteries. Additionally, the battery
passport offers detailed information about a battery’s condition and history, which can help
prevent misuse and promote safe handling practices.

Table 9 reports a résumé of the main performance characteristics reported for LIB
technologies with respect to automotive applications.
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Table 9. Summary of the main performance index for LIB batteries.

Battery
Chemistry Cost

Energy
Density Specific Power Lifespan Safety

Thermal
Stability

Overall Suitability for
EVs

LFP Low to Med Moderate Good Excellent Excellent Very Good

Good for mass-market
EVs, especially where
cost and longevity are
prioritized.

LMFP Medium
Moderate to
High

Good to Very
Good

Very Good to
Excellent Good

Good to Very
Good

Promising for
mid-range EVs,
potentially bridging the
gap between LFP and
NMC.

LMO Low to Med
Low to
Moderate High Moderate Good Good

Niche applications
(e.g., some hybrids,
power-focused EVs if
lifespan is acceptable).

LMNO High High
Good to Very
Good

Potentially
Good Moderate Moderate

Potential for future
high-performance EVs
if safety and cost
challenges are
overcome.

LCO High High Moderate Moderate
Poor to
Med

Poor to
Moderate

Limited suitability for
EVs due to cost, safety
concerns, and lifespan.

NCA
Medium to
High Very High High Good Moderate Moderate

Well-suited for
premium, long-range
EVs where
performance is a
key factor.

3.10. Current Trends and Future Developments in EV Batteries Research

Lithium-ion batteries (LIBs) alone cannot meet the increasing demand for batteries in
the coming years, creating opportunities for more affordable and sustainable alternatives.
Continuous advancements in Li-ion technology raise the performance standards for new
technologies. However, improvements in one area, like energy density, can sometimes com-
promise safety or drive up costs. Therefore, emerging technologies must balance enhance-
ments in range, safety, charging time, and sustainability to offer transformative solutions
for EVs. Below, we highlight several promising battery technologies at various TRLs.

Research is focused on many other technologies, such as aqueous batteries [277–279]
and dual-ion batteries [278,280]. Even though these technologies show promising per-
formances, it is not yet proven that these batteries can be competitive in transportation
applications, as they are still in the early stages of development.

3.10.1. Solid State LIBs

Lithium-ion solid-state batteries (SSBs) are among the most promising technologies
for the near future. They are composed of the same cathode and anode of today’s LIBs, but
instead of a separator soaked with liquid electrolytes, they use a solid-state electrolyte (SSE).
Since liquid electrolytes constitute one of the main safety concerns of LIBs due to the high
flammability of the organic solvents they are made of, solid-state LIBs may reduce the risk
of venting and fire [20]. In addition to improved safety, SSEs broaden the electrochemical
window up to 6 V compared to lithium metal, allowing the use of high-voltage cathode
materials [281]. Furthermore, SSEs could facilitate the adoption of lithium metal as anode
resulting in an increased energy density thanks to its high theoretical specific capacity
(3860 mA h/g), its low electrochemical potential (−3.04 V vs. the standard hydrogen
electrode, SHE) and its low density (0.53 g cm−3 at room temperature) [282,283].
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In comparison with traditional organic liquid electrolytes (OLEs), SPEs are lighter,
non-flammable, and have lower cost, superior mechanical and processing properties, good
flexibility, and uniform lithium deposition. Despite the considerable advantages offered by
solid-state batteries, several challenges and limitations currently hinder their widespread
adoption in the automotive industry. One of the primary hurdles is the increased electrical
resistance of many solid electrolytes compared to liquid electrolytes [284]. This higher
resistance can lead to difficulties in achieving the fast charging speeds that are highly
desired for EVs. It can also contribute to a gradual degradation of the battery’s performance
over extended periods of use [285]. To be of interest, solid electrolytes must meet the
following requirements [286]:

(1) Room temperature conductivity ≥10−4 S cm−1;
(2) Electronic insulation <10−10 S cm−1 (Li+ migration number is approximately 1);
(3) Wide electrochemical window (>5.5 V vs. Li/Li+);
(4) Good compatibility with the selected electrode material;
(5) Good thermal stability and mechanical properties, wet environment resistance;
(6) Low cost and low environmental impact raw materials;
(7) A simple synthesis method.

SSEs have excellent elasticity and flexibility that result in good interface contact
properties [287]. Especially in the presence of electrodes with high volume expansion and
contraction during charging and discharging, they can maintain good contact, reducing the
interface impedance and assuring the stability of the SSB [288].

The SSEs investigated in the last few decades are generally grouped in three categories:
solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and organic–inorganic
composite solid electrolytes (CSEs) [289,290]. Common polymer matrix materials used for
SPEs include poly-ethylene oxide (PEO), polyacrylonitrile (PAN), poly-vinylidene fluoride
(PVDF), and poly-methyl methacrylate (PMMA) [286,291], while the following lithium salts
are generally used: lithium hexafluorophosphate (LiPF6), lithium bis(fluorosulfonyl)imide
(LiFSI), [292] and Lithium Bis(Trifluoromethanesulfonyl)Imide (LiTFSI) [293]. Generally,
the ionic conductivity for SPEs varies from 10−4 and 10−5 S cm−1. Sun et al. [294] de-
veloped a polymer bi-phase SSE with an excellent ionic conductivity of 1.9 mS cm−1 at
room-temperature, a high oxidation potential of 4.9 V (vs Li/Li+) and a lithium transference
number (tLi+) of 0.56, by using in situ thermal cross-linking of 2-ethyl cyanoacrylate (CA),
polyethylene glycol methyl ether acrylate (PEGMEA), succinonitrile (SN), and fluoroethy-
lene carbonate (FEC) additives. They coupled an 11 μm bi-phase SPE with an NCM811
cathode and a 30 μm lithium metal anode, obtaining a discharge capacity of 208 mAh/g
with a cut-off voltage of 4.5 V, resulting in an energy density of 400 Wh/kg.

ISEs, on the other hand, show the highest ionic conductivity, reaching 10−2 S cm−1,
which is comparable to that of liquid electrolytes at the operating temperature [295]. The
ISEs can be grouped into three types: oxide, sulfide, and halide electrolytes.

Solid oxide electrolytes have a high electrochemical oxidation voltage and chemical
and mechanical stability, while the disadvantages are mainly the high resistance at the
electrode–electrolyte interface and the high synthesis temperature [284]. Among them,
the garnet-type SSEs have the highest ionic conductivity (10−4–10−3 S cm−1), a good
oxidation stability (6 V vs. Li/Li+), and a high stability allowing compatibility with lithium
metal anodes. The most promising garnet-type SSE is the Li7La3Zr2O12 (LLZO) with a Li+
conductivity of 1 mS cm−1 [296].

Sulfide ISEs have the highest ionic conductivity, comparable to that of organic liquid
electrolytes [297]. Most sulfide ISEs have a conductivity that exceeds 1 mS cm−1, and
some can reach 20 mS cm−1. They also have good flexibility that allows good contact with
the electrodes. On the other hand, sulfide ISEs have low oxidation stability, and they are

209



Batteries 2025, 11, 185

sensitive to air and decompose in the presence of toxic gases in the air, constituting a safety
problem [298].

The third type of ISEs, halide solid electrolytes, are not inherently stable with lithium
metal anodes, but they can be stabilized through various methods [299]. They offer high
mechanical strength and good cycling performance in high voltage windows, but they
suffer from low ionic conductivity, which in a few cases can reach 10−3 S cm−1, and poor
air stability [300,301].

To overcome the low ionic conductivity of SPEs and the high interfacial resistance
of ISEs, organic–inorganic composite solid electrolytes (CSEs) were developed. They
are composed of both a polymeric matrix with lithium salt and an inorganic filler. The
polymeric matrix reduces the interface resistance with the electrode materials, bringing
toughness and elasticity, while the inorganic filler improves the ionic conductivity by
reducing the crystallinity of the polymer matrix while bringing mechanical strength [302].
Several types of polymeric matrix and lithium salt described before are used in CSEs, as
well as several types of ISEs described before are used too. The resulting ionic conductivity
for the different CSEs lies between 10−4 and 10−3 S cm−1 [303,304].

Maintaining a stable and effective interface between the solid electrolyte and the solid
electrodes (anode and cathode) is crucial for efficient ion transport. However, achieving
good and consistent contact at these solid-to-solid interfaces, while also ensuring electronic
insulation to prevent short circuits, has been a persistent technical difficulty, due to high
interfacial resistance, poor interface contacts, interface instability, and side reactions be-
tween solid-state electrolytes and electrodes. To address these challenges, surface coating
is often used [305,306]. Another way to improve the electrode–electrolyte interface is the
adoption of bilayer heterostructure composite electrolytes where poly-vinylidene fluoride-
hexafluoropropylene (PVDF-HFP) and oxidation-resistant PAN were used for the contact
with the cathode (LiFePO4), and PVDF-HFP and reduction-resistant PEO were used for
the contact with the anode (metal lithium) [305,307]. Another strategy is the adoption of
laser-ablated geometrical structures [308].

Some types of solid electrolytes, particularly ceramics, can exhibit sensitivity to tem-
perature and pressure. Their performance might degrade at low temperatures, and some
designs require the application of high pressure to maintain adequate contact with the
electrodes [309]. Additionally, ceramic electrolytes can be brittle, making them susceptible
to cracking under mechanical stress [310], which is a concern in the demanding environ-
ment of an electric vehicle. While solid electrolytes are generally expected to suppress
the formation of lithium dendrites, this problem can still occur in solid-state batteries that
utilize lithium metal anodes [311], potentially leading to short circuits and battery failure.

The current state-of-the-art of these SSBs, developed by enterprises worldwide, has
achieved a specific energy of over 250 Wh/kg, generally about 370 Wh/kg (peaking at
417 Wh/kg), an energy density of over 900 Wh/L, a capability of 4 C fast charge, and cycle
life greater than 500 cycles and even up to 4000 cycles [193,286,298].

Based on the current state of development and the timelines announced by various
companies, the initial commercialization of solid-state batteries in electric vehicles is antici-
pated in the late 2020s, with some manufacturers targeting the period between 2026 and
2029 for their introduction in higher-end or limited production models [312]. However,
widespread adoption across a broader range of electric vehicle segments is more likely to
occur in the early to mid-2030s as the technological and manufacturing challenges are effec-
tively addressed and the production costs are significantly reduced to make the technology
economically viable for the mass market [313]. Semi-solid-state batteries, where liquid and
solid electrolytes are used together to enhance electrode–electrolyte interface performances,
may serve as a transitional technology in the interim.
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3.10.2. Sodium-Ion Batteries

Non-lithium metal-ion batteries have attracted increasing interest in the last four years,
as shown in Figure 6.

Figure 6. Trend in number of publications regarding non-lithium batteries in the last years. Repro-
duced from [314] under CC BY 4.0 terms.

The main requirement that alternative chemistries must satisfy is the use of more
abundant and easier-to-recycle raw materials. In fact, besides comparable (or at least not
significantly worse) performance in terms of energy density, power density, and cycle life,
alternative chemistries should have improved safety and environmental sustainability.

Sodium has a low cost and is highly abundant. SIBs function on a very similar principle
to LIBs but utilize sodium ions (Na+) as the charge. The fundamental construction of a
SIB closely mirrors that of a LIB, making it a promising alternative [315,316]. The main
disadvantage of sodium compared to lithium is the higher density, which, combined with a
less negative standard electrode potential (−2.71 V of sodium versus −3.040 V of lithium),
results in a lower energy and power density than LIBs, making SIBs less attractive for the
transportation sector.

The anode is often made of a disordered carbon material known as hard carbon (HC),
which has been shown to effectively intercalate sodium ions. Graphite-based anodes are not
compatible with sodium-ion, mainly because of the larger ionic diameter of sodium (1.06 Å)
versus lithium (0.67 Å) that results in a less ionic diffusivity and causes structural distortion
of the active electrode material during intercalation. The use of HC materials in SIBs has
already been commercialized, and extensive research is focused on enhancing their rate
capability and overall performance. Specifically, research groups are exploring strategies
such as heteroatom doping to create porosity and introduce defects on the surface, which
can increase the number of active sites [317,318].

Other intercalation materials suitable as anodes in SIBs are titanium-based materials.
Among them, titanium-based oxides exhibit considerable potential, due to the various
crystalline phases, significant structural stability, and high abundance [319].

Transition metal chalcogenides (TMCs) are also explored as potential negative elec-
trodes for SIBs, since they can provide high capacity [320].

Regarding electrolytes, the most common for SIBs are organic carbonate-based elec-
trolytes and ether-based electrolytes. Carbonates generally use fluoroethyl carbonate (FEC)
as an additive to improve the SEI formation [321], and are suitable for high-voltage cath-
odes since they are more stable than ethers at high voltage. However, in cells with hard
carbon as an anode, ethers show better long-term cycling stability. The latter are also more
suitable for low-temperature applications [314,322].
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A promising solution to increase the energy density of sodium-ion batteries (SIBs)
involves replacing the insertion-type anodes with ultra-thin metallic sodium, which has a
density of 1166 mAh/g [323]. The metallic sodium anode can be used in the form of a foil
deposited on the electrode. However, this foil may contain excess metal, which can decrease
the overall energy density. Additionally, metallic sodium is highly reactive to air, and its
softness and stickiness complicate the manufacturing process. In an alternative method, the
anode is formed during the initial charging process using sodium sourced from the cathode
material. This approach benefits from the absence of air during production, eliminating
concerns about excess sodium [324]. However, this method may reduce the total capacity
that the cathode can provide due to the formation of SEI. Li et al. [325] developed AFNBs
that used a layered oxide-based cathode (Na[Cu1/9Ni2/9Fe1/3Mn1/3]O2) and an aluminum
current collector coated with graphitic carbon on the anode side, reaching an energy density
of 200 Wh/kg with a cycle life of 260.

Typical SIB cathode materials are layered transition metal oxide (LTMO), polyanionic
compounds, Prussian blue analogs (PBAs), and organic polymer.

In LTMO, Na+ ions intercalate between the layers through the trigonal prismatic or
the octahedral vacancies, and their formula is generally represented as NaxTMO2, where
0 < x < 1 and TM represents 3D transition metals [314]. The use of these cathode materials,
already developed for LIBs, could reduce the initial investment required for SIBs production.
However, the large size of sodium-ions leads to a great volume expansion during cycling,
resulting in reduced stability and lower cycle life, especially at high C-rate. Strategies
such as structural modifications can improve LTMO performance [326]. Wang et al. [327]
synthesized a transition-metal oxide cathode based on P2-NaxMnO2 doped with potassium:
Na0.612K0.056MnO2 to reinforce the Mn-O bonds and reduce the phase transition during
cycling. When coupled with a presodiated hard carbon, they reached a full cell energy
density of 314.4 Wh/kg (based on the total mass of active anode and cathode materials),
with a specific capacity of 230.6 mAh/g. Sathiya et al. [328] gradually replaced manganese
with a non-transitional metal ion, Sn4+, into a NaNi0.5Mn0.5−γSnγO2 cathode (γ = 0–0.5) to
reduce cathode phase transition and increase cycling performance. When coupled with
a hard carbon anode, the energy density of materials decreases from 335 Wh/kg for the
lightest NaNi0.5Mn0.5O2 to 270 Wh/kg when substituting all the Mn with Sn. However,
with a γ between 0.3 and 0.5, they improved the cycling stability of the cell. Zheng
et al. [329] synthesized a Mn-based layered oxide cathode with a high-temperature thermal
shock strategy (NMO-HTS) to suppress Mn ion vacancy within transition material layers.
The average discharge is 2.65 V, and the rate capability is 180 mAh/g at 1C and from 28 to
67 mAh/g at 20 C. The full cell, with NMO-HTS cathode and hard carbon anode, reached
an energy density of 248 Wh/kg based on the weight of both electrodes.

Among polyanionic compounds, the sodium superionic conductors (NASICON) are
among the most promising materials due to their significant structural stability and high
ionic conductivity [330,331]. The NASICON molecular formula is generally represented as
NaxMM’ (XO4)3, where M or M’ = V, Fe, etc., X = P or S, x = 0–4. Deng et al. [332] optimized
a Na3V2(PO4)2F3 (NVPF) cathode, obtaining an electrode energy density of 446.4 Wh /kg
at 1 C with a high reversible capacity (120.8 mAh/g at 1 C), good rate capability (89 mAh/g
at 30 C) and long cycle life (81.3%@10 C after 1700 cycles). The presence of vanadium can
pose a challenge, since this metal is scarce in the EU, with China being its primary producer.
Zhang et al. [333] developed another NASICON-type Na4MnCr(PO4)3 cathode with an
excellent energy density of 566.5 Wh/kg (greater than that of LiFePO4 ≈ 530 Wh/kg), a
reversible capacity of 160.5 mAh/g.

PBA compounds are of interest for their three-dimensional open framework, ad-
justable structures, and chemical composition, and recent advancements have demon-

212



Batteries 2025, 11, 185

strated promising enhancements in electrochemical performance and synthesis efficiency.
PBAs have a typical structure of a double perovskite framework with (C≡N)− anions
bridging MN6 (M = Fe, Mn, Co, Ni, Cu, Zn, and Ti) and FeC6 octahedra, while Na+ ions
and H2O occupy the interstitial sites [334]. Within PBAs, sodium manganese hexacyano-
ferrate (NaxMnFe(CN)6) is one of the most promising, thanks to its high energy density,
non-toxicity, and abundance of its metal components, Mn and Fe. Tang et al. [334] synthe-
sized the cubic and monoclinic structures of (NaxMnFe(CN)6). The cubic structure achieves
better electrochemical performances, with a specific capacity of about 120 mAh/g at 3.5 V
vs. Na+/Na, and a capacity retention of 70% over 500 cycles. PBAs are already used in pro-
duction SIB cells fabricated by the company Novasis Energies, Inc., providing cell-specific
energy between 100 and 130 Wh/kg and volumetric energy density of 150–210 Wh/L [335].
The interstitial water presence is one of the main drawbacks since it compromises the cell
performance, and it is difficult to remove [325].

Organic polymers are seen as potential cathode materials for SIBs due to their
lightweight nature, flexibility in design, and potentially lower cost compared to tradi-
tional inorganic materials [336]. Examples of aromatic functional groups that can be used
include imides, quinones, conjugated polymers, and aromatic carboxylates. The design
flexibility includes the possibility to modulate the material’s physical properties, such as
flexibility and electronic conductivity [337]. These materials can achieve a higher capacity
than metal oxides and polyanions, but this comes at the cost of a lower voltage range and
reduced stability [316].

Table 10 presents the specific energy and capacity of various non-commercial SIBs
based on the composition of the anode and cathode, demonstrating performance compara-
ble to LIBs.

It is noteworthy that several studies confirmed that the construction of high-
performance SIBs shows a low dependence on cobalt [338]. The main technical challenge
with SIBs is their limited reversibility, which results from unstable electrode materials
during cycling and uncontrollable side reactions at the electrode/electrolyte interface. Re-
search shows that capacity fading and poor cycling stability are linked to these issues [339].
Additionally, the formation of the SEI layer is still not fully understood. The dynamic
process of SEI formation and its chemical composition are critical for ion mobility and the
stability of the electrolyte and electrodes, significantly influencing the cells’ electrochemical
performance [340,341].

The safety performance of SIBs is still under investigation. If future research confirms
that sodium batteries are indeed safer than LIBs, their commercialization could increase
significantly since one of the key motivations for developing batteries beyond lithium is
the potential to enhance safety features. However, sodium, like other alternative ions, is
unstable in ambient air and reacts vigorously with water.

Among the components contributing to the overall stability of the cell, electrolytes play
a particularly important role in ensuring cell safety. Since organic electrolytes commonly
used in SIBs are inherently flammable, it is crucial to thoroughly evaluate the safety aspects
associated with them. Yue et al. [342] compared the risk of thermal runaway in SIBs
and LIBs, finding that the hazard associated with sodium-ion batteries using transition
metal cathodes was lower than that of NCM LIBs but higher than that of LFP batteries.
Buthia et al. [343] reported in their review the onset and maximum temperatures related
to thermal runaway in both LIBs and SIBs with various chemistries. They noted that
all SIB chemistries exhibit a lower maximum temperature compared to LIBs, although
their onset temperatures are similar. Additionally, the authors emphasize that the risks of
thermal runaway in SIBs can vary depending on the cathode material used. Specifically,
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cathodes made from layered oxides present a greater risk than those made from Prussian
blue analogs, while polyanionic compounds are considered less risky.

Table 10. Electrochemical properties of some non-commercial SIBs.

Cathode Anode
Specific

Energy [Wh/kg]
Specific

Capacity [mAh/g]
Source

Na0.612K0.056MnO Presodiated HC 314.4 230.6 [327]

NaNi0.5Mn0.5-γSnγO2 HC 335–270 with γ = 0–0.5 - [328]

NMO-HTS HC 248 180 [329]

Na3V1.8(CrMnFenAl)0.2(PO4)3 HC 202 - [344]

NaxMnFe(CN)6 TiO2 111 120 [334]

PBA HC 100–130 - [335]

Na[Cu1/9Ni2/9Fe1/3Mn1/3]O2 Anode Free 200 - [325]

3.10.3. Potassium-Ion Batteries

Potassium has garnered significant scientific interest due to its membership in the
same group as lithium and sodium. It exhibits a standard electrode potential of −2.931 V,
which is more negative than that of sodium (−2.71 V). Additionally, potassium is one of
the most abundant elements in the Earth’s crust. However, the diffusion of potassium ion
batteries (PIBs) is hindered by the larger ionic radius compared to sodium, which leads to
an increased volume expansion during ion intercalation in the electrode materials.

The larger radius of K+ implies a smaller charge density, which corresponds to a
weaker solvent shell, also compared to Na+, and consequently to a minor solvation energy.
Since in the intercalation mechanism, the ion desolvation is a key feature, PIBs could show
high-rate capability and high power [314].

A common cathode used in PIB full cells is the organic compound perylenetetracar-
boxylic dianhydride (PTCDA), which is compatible with common organic electrolytes.
Other cathodes include LTMO, polyanionic compounds, and PBA.

Regarding the PBAs, similarly to sodium ion, the interstitial water presence gives
rise to unwanted reactions such as thermal instability and capacity decay during cycling.
Liao et al. [345] focused on a cathode of metal hexacyanoferrates (HCFs), because of their
low cost and high energy density, and developed a method to obtain nanoplate of (100)
face-oriented potassium magnesium hexacyanoferrates (KMgHCF) with low [Fe(CN)6]
vacancies, high crystallinity and no crystal water. When coupled with an anode composed
of graphite and dipotassium terephthalate (K2TP), they obtained a full cell with a 3.45 V
average discharge voltage, with a specific capacity of 83 mAh/g, and an energy density of
214.8 Wh/kg.

Research on anodes for PIBs primarily focuses on carbon-based materials, including
graphitic carbon, soft carbon, and hard carbon. Although Na+ cannot intercalate in graphite,
K+ can. This phenomenon is related to the enthalpy of formation rather than simply the
size of the ions [346].

In general, electrolytes used in PIBs include carbonate or ether-based electrolytes,
while aqueous electrolytes are not common due to the limited electrochemical stability window.

Zhang et al. [347] reported the carbonaceous anodes as a bottleneck of PIBs capacity,
so they focused on the development of a carbon anode, doped with nitrogen, that possesses
a 3D framework (3D-NTC), to enhance the electrode capacity. Also, Wang et al. [348]
focused on the anode development, using a facet growth mechanism with (BiO2)CO3

nanocrystal and amorphous iron oxide obtaining outstanding results. Ji et al. [349] found
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that a magnet, the KFeC2O4F, can be used as a cathode in PIBs, with a discharge capacity
of 112 mAh/g and an excellent capacity retention of 94% after 2000 cycles. The reported
results are summarized in Table 11 for the full cells.

Table 11. Electrochemical properties of some PIBs.

Cathode Anode
Specific

Energy [Wh/kg]
Specific

Capacity [mAh/g]
Authors

PTCDA 3D-NTC 187 241 [347]

PTCDA (BiO2)CO3 732.8 - [348]

KFeC2O4F Soft Carbon 235 112 [349]

KMgHCF Graphite and
K2TP 214.8 83 [345]

3.10.4. Magnesium-Ion Batteries

Magnesium is one of the ten most abundant elements on Earth (1000 times more
abundant than lithium), and it is the third most used metal in industry. It has a good
specific density (2205 mAh/g of Mg vs. 3861 mAh/g of Li), a high density per unit of
volume (3833 mAh/mL of Mg vs. 2062 mAh/mL of Li), and a discrete redox potential
(−2.372 V of Mg/Mg2+ vs. SHE). These advantages, together with the reputation of
dendrite-free plating of Mg onto Mg metal [350], make magnesium ion batteries (MIBs) of
interest. Nevertheless, many challenges must be faced to achieve a satisfactory performance,
and research is still at an early stage.

The main drawbacks of MIBs are the sluggish kinetics of Mg ions and the difficulty
in finding electrolytes compatible with both electrodes and SEI formation when using
common solvents. The magnesium ion, Mg2+, has a smaller ionic radius than Li+ and a
double valence state that results in a higher charge density and therefore in slow diffusion
inside the electrodes and high desolvation energy in the electrolytes [322,351].

As a result, the chemistry of the magnesium ion battery is different and more com-
plicated than that of other alkali metals already used for secondary batteries, and the TRL
is still low [352]. Uncommon electrolytes are used in MIBs, the two best performing elec-
trolytes are the “All Phenyl Complex” (APC) from Aurbach et al. [353] and the “Magnesium
Aluminum Chloride Complex” (MACC) by Doe et al. [354]. Also aqueous electrolytes
are used, but, similar to the common organic electrolytes, they tend to passivate pure Mg
anodes [355].

The most common cathodes are inorganic oxides, polyanionic, and sulfide compounds.
Metal oxides can store Mg2+ ions both by intercalation and by conversion [316]. Within the
sulfide compounds, the benchmark is the Chevrel-phase Mo6S8 [356,357].

For anodes, the principal materials under investigation are metallic magnesium,
alloy-based, and carbon-based materials. Metallic magnesium could allow the high energy
density that MIBs promise. While alloy-based materials, mainly bismuth, tin, and antimony,
are used to avoid the passivation layer formed from Mg metal in the presence of a common
electrolyte [358,359]. In Table 12, we summarize some electrochemical properties of MIBs.

Table 12. Electrochemical properties of some MIBs.

Cathode Anode
Specific

Energy [Wh/kg]
Specific

Capacity [mAh/g]
Source

NaV2O2(PO4)2F @rGO Mg0.79NaTi2(PO4)3/C 76 - [360]

Te @CSs Mg metal 337 387 [361]

Mg0.75V10O24·4H2O PTCDA 67 - [362]
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Dominko et al. [353] calculated the performance between various cathodes, consider-
ing as anode either a Mg foil or an alloy (Mg2Sn) and taking into account many parameters
such as conductive additive, binder, current collectors, porosity of electrodes and separator,
etc. All combinations based on insertion cathodes have an operating voltage below 2 V,
and their performance is lower than that of LIBs (~685 Wh/L and 180 Wh/kg). Organic
materials can increase gravimetric density up to 250 Wh/kg, but only the sulfur conversion
cathode can have an energy density comparable to LIBs. Wang et al. [361] developed
an intercalation cathode based on tetragonal NaV2O2(PO4)2F reduced graphene oxide
(rGO) obtained by a electrochemical desodiated method, that shows an average work-
ing voltage of 3.3 V vs. Mg2+/Mg and 30.3 mAh/g at 5 mA/g. When coupled with a
Mg0.79NaTi2(PO4)3/C anode material to build a full cell, they obtained a 76 Wh/kg energy
density with a power density of 1300 W/kg, with a working voltage between 0.3 and 2.2 V.
Chen et al. [362] developed a conversion-type cathode based on Tellurium (Te) encapsu-
lated on carbon spheres (CSs). When coupled with Mg metal anode, the electrode capacity
is up to 387 mAh/g with an energy density of 337 Wh/kg. Ma et al. [363] developed a
lamellar Mg0.75V10O24·4H2O (denoted as MVOH), which contains abundant lattice H2O
that led to fast Mg2+ migration through a complex shuttle mechanism. When coupling
this cathode with a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) anode in an
aqueous solution electrolyte, they achieved a 67 Wh/kg energy density with a cycle life of
5000 cycles and a maximal power density of 2 kW/kg.

3.10.5. Lithium–Sulfur Batteries

Lithium–sulfur (LiS) batteries represent another promising emerging technology that
utilizes a lithium metal anode and a sulfur-based cathode. LiSs potential for exceptionally
high energy density, which can be two to five times greater than that of current LIBs, makes
them a remarkable candidate for automotive applications [363]. Another major benefit is
the potential for lower costs. Sulfur, a primary component of Li-S batteries, is an abundant
and inexpensive material compared to the cobalt and nickel used in many lithium-ion
batteries. Furthermore, Li-S batteries are considered to be potentially more environmentally
friendly due to the abundance of sulfur and the less resource-intensive processes associated
with its extraction compared to some of the metals used in traditional batteries [364].

Like conventional lithium-ion batteries, they typically employ a liquid organic elec-
trolyte to facilitate the movement of ions. The generation of electrical energy in an LiS
battery occurs through an electrochemical reaction where lithium at the anode is oxidized,
releasing lithium ions that then travel through the electrolyte to the sulfur cathode. At the
cathode, elemental sulfur undergoes a complex, multi-step reduction process. This process
involves the formation of various intermediate compounds known as lithium polysulfides
(Li2Sn), which have different chain lengths (with n ranging from 3 to 8). The discharge
process continues until the sulfur is fully reduced to lithium sulfide (Li2S). During charging,
this reaction is reversed, with lithium sulfide being oxidized back to elemental sulfur,
and lithium ions returning to the anode [365]. This chemical transformation involves a
multi-electron transfer process, resulting in a significantly high theoretical energy density
estimated to be between 2500 and 2600 Wh/kg [366]. Intermediate lithium polysulfides are
soluble in the electrolyte, allowing them to diffuse between the cathode and anode. This
polysulfide shuttle creates performance challenges, leading to a decrease in battery capacity
and Coulombic efficiency [367]. Additionally, the cycle stability of LiS batteries is com-
promised by the poisoning of the lithium metal negative electrode, which hampers their
practical application [368]. Other issues include the low conductivity of active materials,
significant volume changes during redox cycling, and the formation of dendrites [365].
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Table 13 summarizes the performance metrics reported in several recent research
articles and company announcements concerning LiS batteries in 2023 and 2024. It high-
lights the advancements in energy density, capacity density, and voltage achieved through
various materials and experimental conditions.

Table 13. Electrochemical properties of some LiS batteries.

Energy Density
(Wh/kg)

Capacity Density (mAh/g)
Average Discharge

Voltage (V)
Cell Characteristics Source

395 - - 9.5 Ah pouch cell [369]

>550 (pack), up to
700 (cell) - -

Low
electrolyte-to-sulfur

ratio pouch cells
[370]

- >250 (pouch cell),
>3 mAh/cm2 -

Catholyte, sulfur-free
carbon nanofiber

cathode
[371]

2500 (theoretical) 1672 (theoretical) ~2.1 Theoretical values [372]

~542.7 (estimated
All-solid-state) - ~2.0

All-solid-state, 90%
sulfur utilization,
60 wt% sulfur in

cathode

[373]

2400 (theoretical
with Li anode)

1675 (theoretical cathode),
3860 (theoretical anode) - Theoretical values [374]

Analysis of the data reveals a clear trend towards achieving higher energy densities in
practical LiS battery cells. These advancements are often associated with specific material
choices and cell designs, such as the use of pouch cell formats and optimized electrolyte-to-
sulfur ratios. While theoretical values for energy and capacity density remain much higher,
the gap is gradually being narrowed by ongoing research. The average discharge voltage for
LiS batteries remains consistently around 2.0–2.1 V, as dictated by fundamental chemistry.
The table underscores the dynamic nature of the field, with continuous improvements
being reported through innovative approaches.

To improve LiS performance in terms of cell cyclability, rate capability, safety, and
lifespan, electrolyte additives can be used [375]. Material engineering is actively studied
to prolong the lifespan of LiS [365], along with different protection strategies for the
anode to avoid dendrite formation [376]. Other research areas include the development
of nanostructured sulfur cathodes [377,378], the creation of protective coatings [379], the
use of MXene to anchor polysulfides [380], and the advancement of all-solid-state LiS
batteries [368].

While lithium–sulfur batteries hold significant promise, their widespread commercial-
ization in electric vehicles is still some years away.

3.10.6. Zinc-Based Batteries

Zinc-based batteries (ZBs) represent a diverse category of electrochemical energy
storage systems that utilize metallic zinc as the primary negative electrode material. Zinc
is an abundant, inexpensive, and non-toxic material, making it a more sustainable and
cost-effective option compared to lithium and other critical battery materials [381].

Unlike lithium-ion batteries, which primarily rely on the intercalation of lithium ions
into electrode materials, zinc-based batteries often operate through different mechanisms,
such as the dissolution and deposition of zinc metal or oxygen reduction reactions, de-
pending on the specific type of zinc battery. There are several main types of zinc-based
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batteries being explored for various applications, including zinc-ion batteries (ZIBs), which
typically use aqueous electrolytes and involve the reversible shuttling of zinc ions be-
tween the zinc anode and a cathode made of materials like manganese oxide or vanadium
oxide [382]. Aqueous electrolytes are non-flammable and eliminate the risk of thermal
runaway associated with the organic electrolytes used in LIBs.

Another prominent type is zinc–air batteries (ZABs), which are open-system batteries
that utilize zinc as the anode and oxygen from the ambient air as the cathode. These
batteries generate energy through the reaction of zinc with oxygen and can be recharged
either electrically or by physically replacing the spent zinc anode [383,384]. They have a
very high theoretical energy density, potentially exceeding that of LIBS.

Despite their promising attributes, zinc-based batteries face several challenges that
currently limit their widespread use in electric vehicles. To enable large-scale practical appli-
cations, several challenges must be overcome, including limited discharging capacity, low
operating voltage, low energy density, short cycle life, and complex energy storage mecha-
nisms, which require methodologies that depend on the specific redox mechanism [385,386].
ZIBs generally have a lower energy density compared to high-performance lithium-ion bat-
teries, which could restrict the driving range of EVs powered solely by ZIBs. A significant
technical hurdle for both ZIBs and ZABs is the zinc anode, which is susceptible to corrosion,
the formation of dendrites (needle-like zinc structures that can cause short circuits), and
hydrogen evolution reactions, all of which can severely compromise the battery’s Coulom-
bic efficiency and cycling stability, hindering their broader adoption [382,387]. ZABs have
faced challenges related to their rechargeability, often requiring physical replacement of
the zinc anode [388], and can suffer from slow discharge rates [389]. For the same energy
capacity, ZB packs can also be bulkier compared to lithium-ion packs [381]. Additionally,
some ZBs chemistries have a lower nominal voltage compared to lithium-ion batteries [390].

ZBs are already utilized in various niche applications, including hearing aids and
some stationary storage systems. Commercialization for electric vehicles, particularly
zinc–air batteries, is expected to begin within this decade, potentially targeting smaller
vehicle segments like two- and three-wheelers initially [391].

Figure 7 depicts a maturity roadmap of lithium-ion alternative battery chemistries
presented in this section.
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Figure 7. Maturity roadmap for some lithium-ion alternative battery chemistries.

4. The Sustainability Issue

Batteries are one of the key enablers for sustainable development, green mobility,
clean energy, and climate neutrality. For the widespread adoption of electric power across
industries like transportation, sustainable battery practices are vital. To truly benefit
from a low-carbon economy driven by electrification, we must tackle the environmental
burdens of battery manufacturing, specifically CO2 output, resource scarcity, and ethical
material procurement. Achieving sustainable consumption and production necessitates a
swift transition to well-engineered batteries that are clean, circular, and long-lasting [392].
Accordingly, a harmonized regulatory framework governing the entire lifecycle of batteries
placed on the market ought to incorporate the following sustainability stipulations:

• Minimizing the carbon footprint across the entire value and production chain;
• Ensuring ethical and responsible raw material acquisition;
• Fostering a circular design that incorporates recycled content and enables reuse,

repurposing, remanufacturing, and final recycling;
• Providing transparent communication and tracking of performance and mate-

rial/chemical contents for end users and supply chain stakeholders.

From the perspective of EU environmental policy, batteries are considered highly
valuable and strategic products. According to the recent Battery Regulation [35], batteries
must be designed and manufactured to optimize performance, durability, and safety while
minimizing their environmental impact. Specific sustainability requirements have been
established for EV batteries, as this market segment is expected to grow significantly in the
coming years.
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A “battery passport” is mandated by the Regulation to increase transparency through-
out battery supply and value chains for all stakeholders. This passport will monitor and
trace batteries and disclose vital information such as the carbon footprint of their produc-
tion, the origin of their components, potential for repair and repurpose, and dismantling
instructions. It will also detail the treatment, recycling, and recovery pathways for batteries
at the end of their usable life.

The battery passport also presents challenges that could lead to drawbacks if left
unmitigated [393,394]. The regulation requires actors to collect, integrate, and certify
extensive data throughout the battery lifecycle. This requires transparent and efficient
communication between actors to ensure everybody along the supply chain can provide
the information needed. Passport issuers are expected to face mainly technical and system
challenges, thus requiring industry collaboration, investment in emerging technologies, and
support from authorities to ensure standard enforcement. Conversely, small- and medium-
sized enterprises are anticipated to encounter primarily capability and resource challenges,
necessitating early internal alignment, standardized requirements, and financial aid.

The involvement of numerous supply chain actors makes it difficult to access data on
aspects like the metallic composition of batteries and the specifics of their manufacturing
processes. Moreover, determining the state of health of batteries can also be complicated.
Adding to these challenges, companies are unwilling to disclose data unless they have
assurances through non-disclosure agreements. Although these unresolved issues might
lessen the overall effectiveness of the passport, its benefits are still expected to be greater
than its drawbacks.

4.1. Life Cycle Emissions

Encompassing all greenhouse gas (GHG) emissions produced across the supply chain’s
diverse phases, the life cycle emissions of batteries originate with the mining and processing
of ores. This initial step yields precursor materials crucial for creating the battery’s active
components: cathode and anode materials. Subsequently, these active materials, along
with other elements like the electrolyte, separator, current collector, and casing, are utilized
in battery cell production. Ultimately, individual cells are assembled into battery modules
or packs, which also incorporate vital components such as battery management systems,
electronics, and cooling systems. Notably, the carbon footprint of batteries (CFB) stands as
one of the sustainability metrics that must be calculated and communicated, as detailed in
Article 7 of the EU Regulation [35].

Quantifying the overall greenhouse gas impact of a battery over its anticipated service
life, the CFB is expressed in g CO2 equivalent per kWh of total energy output. The
Regulation mandates CFB declaration for specific battery types placed on the Union market:
rechargeable industrial batteries with a capacity over 2 kWh, light means of transport
(LMT) batteries, and EV batteries. Subsequently, these CFB declarations will be utilized
to establish CFB performance classes and the CFB thresholds that batteries must adhere
to when entering the European market. A CFB model is constructed from processes that
combine elementary flows with their associated characterization factors, along with activity
data connected to the respective life cycle inventory or carbon footprint of the process.
Notably, both activity data and elementary flows can originate from processes and their
constituent sub-processes, with information potentially being company-specific or derived
from secondary sources like databases.

Figure 8 represents the system boundaries of the carbon footprint of a generic EV
battery. Each square represents a process, while each arrow represents activity data. The
different colors indicate in which life cycle stage each process belongs, while red arrows
and red borders indicate if a process/activity data shall be company-specific.
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Figure 8. System boundaries of the carbon footprint of a generic EV battery. PWB: printed wiring.
CAM: cathode active material, AAM: anode active material. Reproduced from [395] under CC BY 4.0.

Resulting from extensive discussions and representing a consensus among numerous
stakeholders on how to calculate the carbon footprint of EV batteries, the CFB rules aim to
be broadly applicable. Although methodological guidelines for determining the CFB of
EVBs have been proposed, aligning with the Product Environmental Footprint Categories
Rules for Batteries (PEFCR) [395], these guidelines also maintain a general approach. This
generality would enable the application of the CFB rules not only to batteries currently
available but also to those potentially entering the market in the near future.

According to the PEFCR for batteries, the benchmark value for climate change (mea-
sured in kg CO2eq) for e-mobility lithium-ion batteries (excluding the use phase) is 0.42 kg
CO2eq/kWh [396].

Life cycle emissions from batteries are significantly determined by their chemical
composition. In the case of NMC batteries, the prevalent chemistry in the US and EU, the
processing of critical minerals is the largest emission contributor, accounting for 55% of the
total. This contrasts with LFP batteries, the primary type in China, where critical mineral
processing represents about 35% of emissions. This difference results in NMC batteries
having greater overall life cycle emissions than LFP batteries, primarily due to the higher
emissions from critical mineral processing. A key factor in the elevated emissions of NMC
batteries is the use of nickel, an element absent in LFP batteries. Notably, half of all nickel
is currently mined in Indonesia, and about two-thirds undergoes refining in Indonesia and
China, utilizing energy-intensive methods that predominantly rely on coal.

Given the diversity of battery chemistries, effective emission reduction in the supply
chain necessitates targeted strategies. For NMC batteries, the most impactful approach
would be to minimize emissions from critical mineral processing. This could involve several
actions, such as sourcing less carbon-intensive nickel, improving the carbon efficiency of
existing nickel processing, increasing the proportion of recycled materials in batteries, or
even reducing the nickel content in NMC batteries while preserving high energy density
through the adoption of high-manganese NMC chemistries.

While LFP battery cell manufacturing currently contributes the most to their lifecycle
emissions—nearly 50% compared to just 15% for NMC—future trends suggest a decrease
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in overall battery emissions. This anticipated reduction stems from progress in areas like
increased battery pack energy density, the ongoing decarbonization of electricity grids, and
a greater supply of cathode active materials derived from recycling. Notably, strategies for
reducing LFP battery emissions should therefore focus on lowering the carbon footprint
of cell production through enhanced electrification and the use of low-emission power.
Additionally, the steam utilized in many cell manufacturing plants presents an opportunity
for emissions reduction by sourcing it from low-carbon alternatives, such as waste heat
from nuclear or other industrial facilities, or renewable fuels like biogenic waste.

Furthermore, as the volume of end-of-life EV batteries suitable for recycling increases
after 2035, recycling is expected to become an even more crucial factor in decreasing battery
emissions, offering advantages for material-intensive chemistries such as NMC.

4.2. Recycling

The increasing demand for batteries is driving a heightened need for critical raw
materials. Specifically, the global need for raw materials used in batteries—such as
nickel, graphite, and lithium—is projected to rise significantly by 2040, with anticipated
increases of 20 times for nickel, 19 times for graphite, and 14 times for lithium, compared to
2020 levels, as shown in Figure 9. This rising demand is primarily due to the rapid growth
of EVs and, to a lesser extent, energy storage applications. Therefore, as the demand
for batteries grows, so does the need for effective battery recycling to ensure a sustain-
able and competitive industry. In this regard, the battery passport introduced by the EU
Regulation [35] constitutes a key instrument.

Figure 9. Forecast of battery demand globally from processed raw materials (kt) [397].

Globally, according to a recent study of the Battery Pass consortium [398], the recy-
cling pre-processing and treatment costs could be reduced by ~10–20%, as a result of the
combination of the following factors:

• Access to detailed battery composition and chemistry information eliminates costly
sampling procedures, allowing for more efficient and lower-cost sorting while mini-
mizing contamination risks. Sampling costs could potentially decrease by 50% to 80%.

• A detailed dismantling manual can reduce disassembly time and costs of battery packs
by 20–40%.
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• Additionally, dismantling manuals can facilitate the automation of parts of the disman-
tling process, particularly for heavy and hazardous operations, resulting in a further
20–30% reduction in dismantling costs.

• Optimizing the recycling treatment process and potentially reducing material and
processing costs by 10–20% could be achieved through a homogenous battery recycling
feedstock. This consistent input, pre-processed to eliminate unwanted materials,
would streamline the feed-in process (batch sequencing) and allow for finer control
over process parameters.

Improved recycling efficiency offers a dual advantage: not only does it reduce costs
associated with pre-processing and treatment, but it also enables the retrieval of additional
active materials, thereby lowering carbon emissions.

In particular, the production of cathodes is identified as a significant contributor to the
overall environmental impact of LIBs [399].

The proportion of mined lithium allocated for EV batteries has quadrupled in the past
five years, reaching 60% in 2022. That same year, demand for lithium exceeded supply,
even with a remarkable 180% increase in production since 2017. Similarly, the shares of
cobalt and nickel used for electric vehicle batteries have also risen in the same period,
increasing from 10% and 2% to 30% and 10%, respectively [47].

Essential for the clean energy transition, both cobalt and lithium are unfortunately
vulnerable to supply shortages and present considerable risks to their supply, although
these risks are rooted in somewhat different circumstances. Figure 10 offers a geographical
perspective on the reserves and supply chain of both cobalt and lithium, encompassing all
stages [400].

Figure 10. An overview of the geographical location of cobalt and lithium reserves and supply.

While secondary supply through recycling offers an alternative source of materials, its
impact on overall supply is expected to be quite small by 2030. Looking ahead, the recycling
of LIBs, particularly from electric vehicles, will be crucial for unlocking substantial volumes
of recycled cobalt and lithium. Figure 11 presents the projected annual production capacity
for lithium and cobalt, factoring in this secondary supply stream.
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Figure 11. Annual lithium (a) and cobalt (b) supply growth by 2030. Source: Benchmark Mineral
Intelligence (https://www.benchmarkminerals.com/ accessed on 31 March 2025).

Given the complexity of the battery ecosystem, to analyze the actual economic and
environmental impacts derived from the implementation of the battery passport digital
framework requires advanced simulation tools, for instance, based on Agent-Based Model-
ing. The latter is a relatively contemporary approach when compared to System Dynamics
and Discrete Event Modeling. By means of these advanced tools, the entire lifecycle of LIBs,
including end-of-life strategies such as reuse, remanufacturing, and repurposing, can be
explored and evaluated.

As a result of the introduction of the battery passport, it is estimated that European
recyclers could recover between ~4 and 8 kilotons of additional cathode active materials
each year, starting in 2045 [398].

Compared to other battery technologies, such as lead–acid or sodium–nickel chloride
batteries, LIBs generally have a lower environmental impact over their life cycle, especially
for their superior performance in practical applications [401,402] although the results
depend on the life-cycle assessment method applied [403,404].
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Among LIBs, LFP batteries stand out because they use iron and phosphorus instead of
the nickel, manganese, and cobalt found in NCA and NMC batteries. This shift also offers
both cost and long life, although the overall environmental impact could be higher than for
other LIB technologies [405]. Additionally, the presence of phosphorus in LFPs, which is
also used in food production, could lead to competing demands for this resource as battery
demand continues to rise.

Adopting batteries that require fewer critical minerals may be beneficial to mitigate
the demand for critical raw materials and enhance sustainability, resilience, and supply
chain security. Additionally, supporting the development of vehicle designs with optimized
battery sizes and battery recycling practices could help address these challenges [22,406].
Therefore, there is a rapidly growing focus on the necessary technological and knowl-
edge advancements in the field of EV battery recycling. The total recycling amount of
copper, lithium, nickel, and cobalt by 2040 could decrease the demand for the extraction of
mentioned minerals from their primary resources by approximately 10% [61]. Moreover,
enhancing circularity along the battery value chains has the potential to decrease the EU’s
supply dependency. It is estimated that by 2040, recycling could contribute to up to 51%
and 42% of cobalt and nickel EU demand, respectively [397].

Since the volume of EOL batteries, in particular LIBs, is projected to increase dramat-
ically, robust recycling solutions are needed. China is at the forefront of global battery
recycling, holding approximately 80% of pretreatment capacity and nearly 85% of material
recovery. By 2030, if all planned initiatives are realized, North America and Europe are
expected to contribute 10% and 5% to global recycling capacity, respectively. South Korea
aims for a recovery capacity of nearly 600 kilotons, which would account for over 5% of
global material recovery.

The trend of reusing EOL batteries significantly helps reduce their environmental
impact [61]. This process involves disassembling and repurposing spent EV batteries,
which still retain 80–85% of their original energy capacity, for use in renewable energy
technologies. After the reuse phase, these batteries can ultimately be recycled.

There are various types and combinations of recycling processes for LIBs. Currently,
hydro- and pyrometallurgical processes dominate the global industrial landscape for
recovering valuable metals [407]. Hydro-metallurgical processes are complex and involve
high costs for chemicals and wastewater treatment, although they achieve high recovery
efficiency. On the other hand, pyrometallurgical processes have disadvantages, such as
high-energy consumption and toxic gas emissions, but they are the most used methods.
Novel technologies are being developed, such as the direct repair and regeneration of
cathode and functional materials. However, their actual costs and environmental impacts
still require thorough evaluation.

5. Conclusions

While LIBs have improved energy density, the driving range of current EVs remains a
concern for consumers. Many potential buyers experience “range anxiety”, fearing their
vehicle will run out of charge before reaching a destination, especially during long trips
or in areas with limited charging infrastructure, and recharging an EV battery still takes
significantly longer than refueling a gasoline car. The maximum theoretical energy density
of conventional LIBs using graphite anodes is nearing its limits, indicating the need for
alternative technologies for further range improvements.

The high cost of LIBs contributes significantly to the price of electric vehicles. This
is primarily due to expensive materials like cobalt and nickel, as well as the complex
manufacturing processes involved. Additionally, conventional LIBs use flammable liquid
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electrolytes, posing risks of thermal runaway and associated safety concerns. These issues
necessitate complex safety systems that increase the overall cost and weight of EVs.

Moreover, the production of LIBs relies on critical materials that are geographically
concentrated, raising ethical and environmental concerns. This creates vulnerabilities in
the supply chain, potentially leading to price fluctuations and geopolitical risks. Therefore,
there is a pressing need to diversify battery chemistries and reduce reliance on these
essential materials. For emerging technologies to gain traction in the market, they must
offer clear and significant advantages in key areas such as cost efficiency, improved safety,
and superior performance.

Transitioning from an established technology like lithium-ion requires substantial
investment in new manufacturing processes and the development of robust supply chains
for new materials. Therefore, any emerging battery technology aiming to capture a signif-
icant share of the automotive market must provide a compelling value proposition that
surpasses the existing advantages and infrastructure associated with lithium-ion batteries.

Based on the current state of development and the projected timelines from various
companies and research institutions, the future of electric vehicle (EV) batteries is likely
to feature a diverse range of technologies. Lithium iron phosphate (LFP) batteries, a
cobalt-free variant of lithium-ion batteries, are gaining significant traction due to their
cost-effectiveness and safety benefits.

In the near to medium term, silicon anode technology is expected to be integrated into
existing lithium-ion batteries, which could incrementally improve their energy density and
charging speeds. However, addressing the challenge of silicon’s volume expansion during
charging and discharging cycles is crucial.

Solid-state batteries hold significant promises for improved energy density, safety, and
charging speeds in the long term, particularly for high-performance EVs. The potential
lower cost, improved sustainability, and lower lifespan compared to LIBs can help the
EU achieve its EU2030 targets [408]. Nonetheless, further breakthroughs in cost-effective
manufacturing and solutions to technical challenges such as scalability and interfacial
resistance are necessary. While LIBs will likely dominate the EV market in 2030, SSBs are
expected to move beyond the pilot and demonstration phases. Market forecasts suggest
that the solid-state battery market could reach a significant value by 2030 [409]. If European
companies can become leaders in SSB technology development and production, it could
significantly boost the EU’s competitiveness in the global battery market and contribute to
job creation within the EU.

Sodium-ion batteries are also emerging as a vital option for the lower-cost and
standard-range EV segments, especially as their energy density improves. Additionally,
these batteries utilize abundant and sustainable materials, which helps reduce the European
Union’s dependence on critical raw materials with concentrated supply chains. This aligns
well with the goals of the Critical Raw Materials Act (CRMA) and promotes a secure and
resilient battery value chain. The potentially lower cost and enhanced safety can boost
the adoption of EVs. The commercialization of SIB technology is still in its early stages
compared to LIBs. However, given the increasing focus on supply chain diversification and
cost reduction, SIBs are expected to gain a notable foothold in the EU market by 2030 [410].
The development of a strong domestic SIB manufacturing industry within Europe will be
key to realizing the full potential of this technology [411].

Table 14 reports a short comparison of relevant parameters for emerging technologies.
The overall outlook for the adoption of these emerging technologies in the automotive

sector is positive, though it requires ongoing investment in research and development. This
investment should focus on addressing the key limitations of each technology to accelerate
their commercialization.
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Table 14. Comparison among emerging battery technologies.

Technology
Energy
Density
(Wh/kg)

Energy
Density
(Wh/L)

Power
Density
(W/kg)

Charging
Speed
(Typical)

Cycle Life
(Typical)

Safety
Characteristics

Estimated
Cost (per
kWh)

Estimated
Commercial-
ization
Timeline for
Automotive

Solid-State 200–500+ 400–800+ Up to 1000+ 10–30 min 1000–5000+

Non-flammable
solid electrolyte,
reduced thermal
runaway

Higher
Late

2020s–Mid
2030s

Silicon
Anode
(Li-ion)

250–400+ 500–800+ Up to 1000+ 10–30 min 300–1000+ Similar to Li-ion Similar Late 2020s
onwards

Sodium-Ion 100–160 200–300 Up to 500 30–60 min 2000–5000+

Lower thermal
runaway risk,
better low-temp
perf.

Lower 2025
onwards

Lithium-
Sulfur 300–600+ 300–500+ Up to 500 Varies 100–500+

Lithium metal
anode poses
dendrite risk

Lower 2030 and
beyond

Government funding for battery technology development has increased across all
major global economies, though their strategic approaches and specific goals differ sig-
nificantly [412]. China initially focused on its domestic EV market demand, but has
shifted towards a supply side strategy to solidify its global market leadership. Japan,
a former battery technology leader, is now expanding lithium-ion production while ex-
ploring advanced technologies like fluorine shuttle batteries. South Korea aims to spear-
head the international battery industry through substantial R&D investment focused on
near-term commercialization.

The United States employs a balanced strategy combining supply- and demand-
side measures with an open technological approach, aiming for R&D leadership and
independence from China by targeting cost and sustainability performance. In contrast,
the EU prioritizes supply side policies with ambitious sustainability and recycling targets
to become a leading provider of sustainable battery technologies and ensure supply chain
resilience. Initiatives like the European Battery Alliance and the European Green Deal aim
to establish a competitive and sustainable European battery ecosystem. The Automotive
Skills Alliance supports the reskilling of European automotive workers for the sector’s
future needs.

Developing a robust European battery supply chain is crucial for reducing reliance
on external suppliers and securing supply for future mobility and energy demands. Ad-
dressing the sustainable, ethical, and diversified sourcing of raw materials is critical due
to increasing global demand and competition, where Europe faces strong Asian compe-
tition and higher production costs. Europe’s nascent battery production sector offers a
competitive edge, allowing for the immediate adoption of advanced technologies to build
a state-of-the-art supply chain without extensive industrial retrofitting.

Europe could achieve battery cell self-sufficiency by 2026 and largely meet its demand
for key components and lithium by 2030. However, over half of European gigafactory
plans still face delay or cancellation, necessitating stronger government intervention. Key
industrial policy should ensure investment, provide EU-level funding, and favor best-in-
class “made in EU” projects. Finland, the UK, Norway, and Spain have the most at-risk
capacity, while France, Germany, and Hungary have shown the most progress in securing
it [413].

Maintaining competitiveness requires emphasizing efficiency and innovation, along-
side training a skilled workforce across the battery value chain, including material chem-
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istry, production, recycling, and data management. Continuous investment in R&D is
essential for the rapid integration of innovations into European production processes.

Establishing common European standards is vital to ensure battery quality, safety, and
sustainability, while also facilitating recycling, reuse, and repair processes to promote a
circular economy. In particular, the battery passport, recently introduced by EU Regulation,
supports the collection and sharing of product-related data among supply chain actors, ad-
dressing existing information gaps for products and components throughout global supply
chains, thus becoming a key enabler for circular business models. Europe’s leadership in
setting high environmental and social standards can provide a competitive advantage in
developing more sustainable batteries and recycling methods.
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Abbreviations

The following abbreviations are used in this manuscript:

3D-NTC Three-dimensional nitrogen-doped turbostratic carbon
AFNB Anode free sodium batteries
APC All phenyl complex
BEV Battery electric vehicle
BMS Battery management system
BOL Begin of life
BTMS Battery thermal management system
CA Cyanoacrylate
CS Carbon sphere
CSE Composite solid electrolytes
EOL End of life
EUCAR European Council for Automotive R&D
EV Electric vehicle
FEC Fluoroethylene carbonate
HC Hard carbon
HCF Hexacyanoferrates
HE-NMC High-energy lithium nickel manganese cobalt oxide
HLM High lithium manganese oxide
HTS High temperature thermal shock
HV-LNMO High-voltage lithium nickel manganese oxide
ISE Inorganic solid electrolyte
KMgHCF Potassium magnesium hexacyanoferrates
K2TP Dipotassium terephthalate
LCO Lithium cobalt oxides
Li+ Lithium ion
LIB Lithium-ion battery
LiS Lithium–sulfur
LMO Lithium manganese oxide
LFP Lithium iron phosphate
LLZO Li7La3Zr2O12

LTO Lithium titanate oxide
MACC Magnesium Aluminum Chloride Complex
MIB Magnesium ion battery
MF Muffle furnace-sintered
MOF Metal–organic framework
MVOH Mg0.75V10O24·4H2O
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NaNiCl Sodium–nickel chloride
NaS Sodium–sulfur
NASICON Sodium superionic conductors
NaxMnFe(CN)6 Sodium manganese hexacyanoferrate
NCA Lithium nickel cobalt aluminum oxide
Ni-Cd Nickel–cadmium
Ni–Fe Nickel–iron
Ni-H2 Nickel–hydrogen
Ni–MH Nickel–metal hydride
Ni–Zn Nickel–zinc
NMB Sodium metal batteries
NMC Lithium nickel manganese cobalt oxide
NMO Sodium manganese oxide
NVP Na3V2(PO4)3

OEM Original equipment manufacturer
OLE Organic liquid electrolyte
PAN Polyacrylonitrile
PBA Prussian blue analog
PEGMEA Poly-ethylene glycol methyl ether acrylate
PEO Poly-ethylene oxide
PHEV Plug-in hybrid electric vehicle
PIB Potassium ion battery
PTCDA Perylenetetracarboxylic dianhydride
PMMA Poly-methyl methacrylate
PVDF Poly-vinylidene fluoride
PVDF-HFP Poly-vinylidene fluoride-hexafluoropropylene
rGO Reduced graphene oxide
SC Single crystal
SE Solid electrolyte
SEI Solid electrolyte interphase
SN Succinonitrile
SHE Standard hydrogen electrode
SIB Sodium-ion battery
SOC State of charge
SOH State of health
SPE solid polymer electrolyte
SSB Solid state battery
SSE Solid state electrolyte
TiO2 Titanium dioxide
tLi+ Lithium transference number
TM Transition metal
TMC Transition metal chalcogenides
TMO Transition metal oxide
TRL Technological readiness level
USABC United States Advanced Battery Consortium
ZB Zinc-based battery

Appendix A

This appendix details the review searching criteria and analyzes the results.

Appendix A.1. Review Methods

Searching on Scopus with the string “review AND battery AND (automotive OR
“electric vehicle” OR “electric vehicles”)” in the fields of “article, title, and keywords”
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yields 3730 documents published between 2019 and 2025 (as of 12 February 2025). The
distribution of the publications year by year is shown in Figure A1. In contrast, using the
same search criteria in Google Scholar returns 18,600 papers when searching “everywhere
in the article”. However, limiting the search to the title results in only 176 records. Given
that the search options in Google Scholar are either too broad or too narrow for our needs,
we will focus on the results from Scopus. We refined our search to focus on the specific
topics relevant to our current work, adding new criteria to our previous search string (see
Table A1 and Figure A2).

Figure A1. Articles on EV batteries published between 2019 and February 2025 and registered
in Scopus.

Table A1. Literature search results with additional criteria.

Additional
Criteria

Safety
Life OR

Lifespan OR
Cyclelife

Cost OR
Market

Energy OR
Power

Sustainability

No. of articles
from 2019 883 984 1331 3039 256

No. of articles
from 2023 487 536 672 1550 178

Appendix A.2. Search Results

From Figure A1, it can be concluded that most of the research reviews concentrated
on energy and power performance. The second most common topic was battery cost and
market aspects, followed by battery life performance and safety. Sustainability is the least
explored aspect.

By limiting the search from 2023 up to today, we found 1924 reviews related to battery
and automotive topics on Scopus. The trend of topic interests, illustrated in Figure A2,
remains mostly the same over the two periods.

Among the results from Scopus, 156 articles discuss the “state of the art”, while 269
records meet the search criteria “review AND battery AND automotive AND (emerging
OR ‘future development’)”. When we combined the two criteria, we retrieved a total of
402 documents. The percentage distribution of subject areas and the number of articles per
country are illustrated in Figures A3 and A4, respectively.
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Figure A2. Percentage distribution of articles by topics since 2023.

Figure A3. Percentage distribution of article subject areas in the last year (until February 2025).

Figure A4. Distribution of articles among countries in the last year (until February 2025).
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Most review articles are categorized under engineering and energy, reflecting the focus
on automotive applications (Figure A3). The authors of these studies predominantly come
from China and India (Figure A4), while the contributions from all European countries
exceed those from the United States.
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