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Preface

This Special Issue Reprint of Diagnostics, titled ”Advancements in Artificial Intelligence for

Dentomaxillofacial Radiology”, brings together a curated selection of original research articles and

reviews that highlight current trends, novel methodologies, and emerging technologies in the field

of oral and maxillofacial imaging. The contributions focus particularly on the integration of artificial

intelligence (AI), radiomics, and advanced imaging techniques, which are increasingly shaping the

future of diagnostics in dentistry and maxillofacial care.

This Special Issue aimed to provide a platform for interdisciplinary dialogue between

clinicians, radiologists, computer scientists, and researchers involved in the development and clinical

application of AI-driven tools. As oral health care enters the era of precision diagnostics, it becomes

critical to explore how imaging modalities such as cone-beam computed tomography (CBCT),

magnetic resonance imaging (MRI), and digital radiography can be enhanced through machine

learning and texture analysis to improve diagnostic accuracy, treatment planning, and patient

outcomes.

This reprint is addressed to a diverse audience, including dental practitioners, oral and

maxillofacial radiologists, researchers in dental imaging, as well as data scientists interested in

biomedical image analysis. By compiling these innovative contributions, we hope to support ongoing

research and stimulate new approaches to diagnostic challenges in oral health.

We extend our sincere thanks to all the authors who contributed their work, to the reviewers for

their critical insights, and to the editorial team of Diagnostics for their continuous support throughout

the peer-review and publication process. Their dedication ensured the scientific rigour and high

quality of the articles featured in this issue.

Andre Luiz Ferreira Costa, Kaan Orhan, and Sérgio Lúcio Pereira de Castro Lopes

Guest Editors

vii





Editorial

Closing Editorial: Advancements in Artificial Intelligence for
Dentomaxillofacial Radiology—Current Trends and
Future Directions

Kaan Orhan 1,2,3,*, Andre Luiz Ferreira Costa 4 and Sérgio Lúcio Pereira de Castro Lopes 5

1 Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara 06560, Turkey
2 Department of Dental and Maxillofacial Radiodiagnostics, Medical University of Lublin,

20-059 Lublin, Poland
3 Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara 06000, Turkey
4 Postgraduate Program in Dentistry, Cruzeiro do Sul University (UNICSUL), São Paulo 08060-070, SP, Brazil;

alfcosta@gmail.com
5 Department of Diagnosis and Surgery, São José dos Campos School of Dentistry, São Paulo State

University (UNESP), São José dos Campos 12245-000, SP, Brazil; sergio.lopes@unesp.br
* Correspondence: knorhan@dentistry.ankara.edu.tr; Tel.: +90-(312)-296-5504

Artificial intelligence (AI) continues to redefine diagnostic approaches across medical
disciplines, and its impact on dentomaxillofacial radiology has increased exponentially
in recent years. With advances in deep learning (DL), large annotated datasets, and
computational power, AI has become a powerful tool in analyzing complex craniofacial
imaging data, offering precision, speed, and reproducibility beyond human capacity in
many contexts.

This Special Issue of Diagnostics, entitled “Advancements in Artificial Intelligence for
Dentomaxillofacial Radiology”, sought to capture this dynamic shift by curating original
research and reviews that span the spectrum of AI applications in dental imaging—from
traditional 2D panoramic radiography to 3D CBCT and emerging dental MRI technologies.

A key focus of this Issue was on algorithmic performance in real-world diagnostic
scenarios. Contributions employing YOLOv8 and similar architectures demonstrated the
near-perfect detection of critical anatomical structures, including the mandibular canal,
condyles, and dental implants, across variable image qualities and devices. These studies
reflect a crucial trend toward the development of device-agnostic AI models with clinically
reliable precision. For instance, George et al. (2023) analyzed panoramic dental radiographs
using the YOLOv8 model and examined its effectiveness for diagnosis [1].

Segmentation-based models also featured prominently. U-Net, nnU-Net, and
U2-Net-based frameworks were used to delineate pulp chambers, periapical lesions, and
maxillofacial bones, yielding Dice Similarity Coefficients (DSCs) above 0.90 in most cases.
These models not only enhance reproducibility but also facilitate downstream applica-
tions such as volumetric assessment, AI-assisted treatment planning, and augmented
surgical navigation. For example, Baydar et al. (2023) utilized a U-Net architecture to
evaluate dental bite-wing radiographs, achieving high accuracy in detecting various dental
conditions [2].

Of particular interest are the articles examining explainability—a growing imperative
in AI-driven diagnostics. Black-box models, while powerful, face resistance in clinical
implementation, being without interpretability. Research using Grad-CAM, SHAP, and
attention maps demonstrated how AI can transparently highlight diagnostic cues, thereby
improving clinician trust and legal defensibility. A scoping review by Ghosh et al. (2023)

Diagnostics 2025, 15, 1222 https://doi.org/10.3390/diagnostics15101222
1



Diagnostics 2025, 15, 1222

emphasized the importance of interpretability and explainability in medical AI applications,
highlighting the need for transparent models in clinical settings [3].

Despite these strides, several barriers remain. First, model generalizability is often
limited by dataset homogeneity. Even the most promising models can falter when applied to
imaging protocols or populations not represented in the training data. Second, integration
into clinical workflow requires alignment with standards like DICOM, PACS systems,
and regulatory approval pathways (e.g., CE/FDA clearances). Third, few studies have
addressed longitudinal AI model performance or outcomes-based validation in dental
radiology—critical aspects for widespread adoption [4–11].

Future research should aim to achieve the following objectives:

• Multimodal fusion—combining radiographic, intraoral, and clinical data for holistic
AI-based diagnostics [8].

• Real-time integration—deploying AI tools at the point of care, especially in under-
served areas or during tele-dentistry sessions [9].

• Texture analysis as a valuable technique in dentomaxillofacial diagnosis, provid-
ing an advanced method for quantification and characterization of different image
modalities [10].

• Ethical AI frameworks—ensuring bias mitigation, privacy preservation, and transpar-
ent model auditing across global dental populations [11].

This Special Issue was enriched by contributions from researchers across multiple
continents, reflecting the global relevance of AI in oral and maxillofacial imaging. The
breadth of work underscores both the maturity and future potential of this interdisciplinary
field. We thank all authors, reviewers, and editorial staff for their efforts and encourage
readers to build on the strong foundation laid by this collection.

We hope the studies here serve as a catalyst for translational research and encourage
the deeper integration of AI into dental radiology education, clinical care, and policy-
making [4–11].

Author Contributions: Conceptualization, K.O., A.L.F.C. and S.L.P.d.C.L.; writing—original draft
preparation, K.O.; writing—review and editing, A.L.F.C. and S.L.P.d.C.L.; supervision, K.O.; project
administration, K.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Article

Improving TMJ Diagnosis: A Deep Learning Approach for
Detecting Mandibular Condyle Bone Changes

Kader Azlağ Pekince 1, Adem Pekince 1,* and Buse Yaren Kazangirler 2,3

1 Department of Oral and Maxillofacial Radiology, Karabuk University, Karabuk 78600, Turkey;
azlagkader@karabuk.edu.tr

2 Department of Computer Engineering, Karabuk University, Karabuk 78600, Turkey; buseyaren@uky.edu
or byarenkazangirler@gmail.com

3 Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
* Correspondence: adempekince@karabuk.edu.tr; Tel.: +90-4440478-1201; Fax: +90-370-4187880

Abstract: Objectives: This paper evaluates the potential of using deep learning approaches
for the detection of degenerative bone changes in the mandibular condyle. The aim of
this study is to enable the detection and diagnosis of mandibular condyle degenerations,
which are difficult to observe and diagnose on panoramic radiographs, using deep learning
methods. Methods: A total of 3875 condylar images were obtained from panoramic
radiographs. Condylar bone changes were represented by flattening, osteophyte, and
erosion, and images in which two or more of these changes were observed were labeled
as “other”. Due to the limited number of images containing osteophytes and erosion, two
approaches were used. In the first approach, images containing osteophytes and erosion
were combined into the “other” group, resulting in three groups: normal, flattening, and
deformation (“deformation” encompasses the “other” group, together with osteophyte
and erosion). In the second approach, images containing osteophytes and erosion were
completely excluded, resulting in three groups: normal, flattening, and other. The study
utilizes a range of advanced deep learning algorithms, including Dense Networks, Residual
Networks, VGG Networks, and Google Networks, which are pre-trained with transfer
learning techniques. Model performance was evaluated using datasets with different
distributions, specifically 70:30 and 80:20 training-test splits. Results: The GoogleNet
architecture achieved the highest accuracy. Specifically, with the 80:20 split of the normal-
flattening-deformation dataset and the Adamax optimizer, an accuracy of 95.23% was
achieved. The results demonstrate that CNN-based methods are highly successful in
determining mandibular condyle bone changes. Conclusions: This study demonstrates
the potential of deep learning, particularly CNNs, for the accurate and efficient detection
of TMJ-related condylar bone changes from panoramic radiographs. This approach could
assist clinicians in identifying patients requiring further intervention. Future research may
involve using cross-sectional imaging methods and training the right and left condyles
together to potentially increase the success rate. This approach has the potential to improve
the early detection of TMJ-related condylar bone changes, enabling timely referrals and
potentially preventing disease progression.

Keywords: temporomandibular joint; mandibular condyle; degenerative bone changes;
deep learning; convolutional neural networks; panoramic radiography

1. Introduction

The temporomandibular joint (TMJ) is a pair of joints formed by the articulation of the
mandibular bone with the temporal bones, located symmetrically on both sides of the head.

Diagnostics 2025, 15, 1022 https://doi.org/10.3390/diagnostics15081022
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The space between the condylar process of the mandibular bone and the articular fossa of
the temporal bone is divided into upper and lower joint compartments by the articular
disc. This joint is supported by ligaments.

Due to its anatomical structure, the temporomandibular joint can move in three planes.
This allows the physiological movements of speaking, chewing and swallowing to be easily
performed. These physiological movements are made possible by the combination of the
elevation–depression, protrusion–retraction and lateral translation movements [1,2] of the
TMJ. The TMJs are connected via the mandible, which adds to the complexity of these
movements. Although each TMJ is an independent joint [3,4], they move together and
affect each other’s direction and range of motion.

Exceeding the physiological limits of joint movements, infections, trauma, or biological
factors can cause pain and dysfunction in the chewing muscles and TMJ. This condition is
called temporomandibular disorder (TMD). TMD can progress from disc dysfunction to
osteoarthritis, but this outcome is not always certain. In cases where osteoarthritis does
develop, radiographic findings are often seen in the mandibular condyle and articular
eminence [5].

TMD is a common health problem that significantly reduces quality of life, affecting
an average of 34% (Asia—33%, South America—47%, North America—26%, Europe—29%)
of the world’s population according to a meta-analysis study [6]. Okeson has classified
TMDs into muscle-related disorders, disc displacements, inflammatory joint diseases, and
genetic and acquired anatomical abnormalities. This classification demonstrates that TMD
encompasses a broad spectrum of diverse pathologies and can manifest with a variety
of symptoms.

Temporomandibular joint osteoarthritis, an inflammatory joint disease and a subtype
of TMD, is one of the most frequently observed degenerative joint disorders. Osteoarthritis
is a painful inflammatory condition. Osteoarthritis is defined by clinical symptoms and
radiological signs [7]. It causes changes in the joint surfaces and arises as a consequence of
disc displacement, trauma, functional overload, and developmental anomalies [8]. These
factors contribute to the joint components being loaded beyond their adaptive capacity,
and in some instances, to their exposure to prolonged and destructive loads [9]. This
scenario initiates a physiological process characterized by degenerative changes in the
bones, aimed at accommodating the joint surfaces to the functional demands [10]. As
these processes persist and advance, morphological alterations manifest in the bones. Such
alterations are more prevalent in the mandibular condyle than in the glenoid fossa or
articular eminence [11]. Degenerative bone changes occurring in the TMJ can be observed
as erosion, osteophyte formation, sclerosis and subcortical cyst formation in the mandibular
condyle [8,12].

Often the arthritic condition can become adaptive once the load is reduced, but the
bony morphology remains altered. The adaptive stage is known as osteoarthrosis.

Osteoarthritis and osteoarthrosis are classified as degenerative joint diseases (DJD) of
the temporomandibular joint [5].

Meta-analysis findings revealed that TMJ DJD is observed in 10% of the general adult
population and ranges from 18% to 85% among patients with TMD [13]. Furthermore, a
study of elderly people with TMD found that 70% of elderly people had bone changes in
their temporomandibular joints, and 69.93% of these changes were seen in the condyles [14].

The multifactorial etiology of TMD leads to a diversity of treatment approaches. In
some cases, TMD treatment requires an interdisciplinary approach involving collaboration
among specialists. Correct and early diagnosis of this condition, which affects a large seg-
ment of society, is critical for determining appropriate treatment strategies and managing
the disease.

5
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In some studies conducted to measure the level of knowledge of general dentists about
TMD, it was concluded that the level of knowledge of general dentists was inadequate and
would be insufficient to provide effective care to patients with TMD [15,16].

Artificial Intelligence (AI) is now widely used in every field, bringing convenience
and practicality to every area where it is applied. With the increase in workload and time
requirements, AI has become very useful. Today, the application of AI and especially
computer vision techniques in the medical field is becoming much more widespread [17].
For this reason, a decision support mechanism that will receive support from AI rather
than a determination based on human power is often a preferred solution [18].

Artificial Intelligence (AI), including the development of machine learning tools and
neural networks, has developed rapidly over the last decade. Various medical applications
have been developed with the support of AI to save clinicians’ time during examinations
and to demonstrate the ability to make more objective diagnoses [19,20]. Neural network
cells used for AI are a type of network that makes up artificial neural networks. In particular,
Convolutional Neural Networks (CNN), a type of artificial neural network, are used in
detection and image classification studies for image data. Medical imaging technology
plays a vital role in several critical applications, from early detection of diseases to surgical
planning. Innovative approaches in this field include medical image classification and
detection, allowing for faster and more accurate detection of diseases. While traditional
classification methods are often inadequate for this complex task, deep learning techniques,
especially CNN, have revolutionized this field. These algorithms used by AI can analyze
large amounts of clinical data on different diseases and consequently aim to minimize
diagnostic and treatment errors that are common in standard clinical settings [21]. CNN
are deep learning algorithms for 2D data that take input images and perform convolution
with filters or kernels to extract features. Moreover, CNN networks have been proven
to outperform experts in many image detection studies and tasks [22]. In particular,
CNN algorithms have been chosen for image classification and interpretation, considering
that CNN algorithms are a powerful and effective choice in common literature studies
of researchers. Thus, in this study, deep learning techniques were developed to make
decisions about the clinical condition of patients. As a result, CNNs offer an innovative
approach to medical image classification, providing healthcare professionals with powerful
applications for more accurate diagnosis and treatment planning. This paper will explore
the potential of CNN-based approaches in detecting different condyle degenerative bone
changes in TMJ.

Transfer Learning with Convolutional Neural Networks

One of the main reasons why CNNs are especially preferred in medical image classifi-
cation is the ability to emphasize local features and extract hierarchical features thanks to
convolutional layers [9,23]. Transfer learning is a strategy that allows knowledge learned
in one task to be used more quickly and effectively in another task. CNN-based transfer
learning can improve the model’s performance when working with limited datasets in
image classification [24]. Moreover, by transferring knowledge from a general dataset
to a specialized dataset, transfer learning allows for more specific results in a specific
medical application area. Therefore, using transfer learning for CNN networks saves
time by avoiding the need to re-learn attributes and weights. Thus, it offers the potential
to overcome dataset limitations during the model’s training and learning phase and in-
crease its generalization capability [25]. Farook et al. [26], who presented a comprehensive
review study for the clinical classification of degenerative disorders in TMJ, presented
many approaches to traditional diagnostics obtained from radiographs while addressing
the causes of deformations and included studies in the literature in detail. According to
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the study’s results, neural network models learned through deep learning were found to
diagnose the detection in 2D or 3D radiographs as accurately as clinicians. According to
the research mentioned in the study (depending on the dataset used, types of deformation,
etc.), the top-performing deep learning algorithms are usually pretrained algorithms such
as Random Forest (RF), Multi-Layer Perceptron (MLP), AlexNet, Support Vector Machine
(SVM), Extreme Gradient Boost (XGBoost), LightGBM, Residual Network (ResNet), Visual
Geometry Group Network (VGGNet), etc. However, algorithms such as SVM, RF, XGBoost,
LightGBM, etc., are frequently used in machine learning and leave feature extraction to the
user [27].

Deep learning has revolutionized medical image analysis by enabling more precise
and efficient diagnostic processes. This study aims to leverage deep learning techniques,
particularly CNNs to enhance the accuracy and efficiency of medical image classification
in detecting degenerative bone changes in the TMJ. The selection of pre-trained CNN
architectures was guided by their proven effectiveness in medical image classification tasks
and their architectural diversity. The purpose of this was to facilitate a comprehensive
performance comparison of the models. The models selected for the study were AlexNet,
VGG16, VGG19, ResNeXt (18, 101), DenseNet (121, 169, 201), ResNeXt and GoogleNet. It
is important to note that these models represent different network depths, connectivity
models and parameter efficiencies. The prevailing trend in the field of healthcare towards a
greater reliance on AI-driven decision support systems is the focus of this research. The po-
tential of CNN-based models, including pretrained architectures such as AlexNet, VGGNet,
ResNet, and DenseNet, to improve diagnostic precision will be explored. Furthermore,
transfer learning strategies will be employed to optimize model performance on limited
medical imaging data. The integration of cutting-edge deep learning methodologies is a key
aspect of this study, with the aim of contributing to the advancement of automated diagnos-
tic tools. These tools are expected to reduce human error and provide clinicians with more
objective and reliable assessments. This study uses various proposed CNN architectures
to improve the corresponding system performance while keeping the underlying learn-
ing topologies constant. In this study, the most widely used pretrained CNN algorithms
are AlexNet, VGG16 and VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18,
ResNet101, ResNeXt, and GoogleNet. These algorithms are famous CNN architectures
introduced for object recognition and classification tasks [25,28,29].

Several studies have used different radiological methods and classification systems
to evaluate temporomandibular joint osteoarthritis. One study [30] examined 3514 cone-
beam computed tomography (CBCT) images from 314 patients and classified changes in
condylar structure were divided into three groups: no evidence of TMJOA, indeterminate
for TMJOA, and evidence of TMJOA. Another study [31] using panoramic radiographs
used the same classification system. A separate study [32] of 858 panoramic radiographs
classified the presence of osteoarthritis as “osteoarthritis” or “normal”.

Bony changes observed in the mandibular condyle may show different variations,
ranging from erosion to deformation of the condyle morphology. A detailed classification
of these findings provides the clinician with information about the status of the disease.

Given the progressive nature of TMD, early detection of osseous alterations in the
mandibular condyle, irrespective of etiology, is important.

Because patients frequently present to general dental practitioners as their initial point
of contact, and given the constraints faced by these practitioners in accessing and interpret-
ing CBCT, the significance of panoramic imaging in detecting bone changes is increasing.

Panoramic radiography, which is widely used in routine clinical practice, has the
potential to contribute to the early diagnosis of TMD by allowing the evaluation of the
temporomandibular joint. Based on previous research, this study aims to comprehen-
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sively evaluate the potential of deep learning in detecting and classifying degenerative
bone changes of the mandibular condyle on panoramic radiographs through comparative
analysis of multiple CNN architectures on a large dataset.

2. Materials and Methods

2.1. Selection, Preparation and Evaluation of Images

For the evaluation of mandibular condyle bone changes, 2300 randomly selected
panoramic radiographic images in DICOM format taken between January 2023 and Septem-
ber 2023 from the X-ray archive of Karabük Oral and Dental Health Training and Research
Hospital were examined. These images were obtained using the same panoramic radiogra-
phy device (I-Max touch, Owandy Radiology, Croissy-Beaubourg, France) in accordance
with the manufacturer’s instructions (80 kV tube voltage, 9 mA and 14.4 s).

2.2. Dataset and Preprocessing Steps

Of the panoramic radiographic images examined by the oromaxillofacial radiology
specialist, a total of 725 condylar images were excluded from the study, including 248 with
superposition that impaired the observation of condylar borders, 189 with artifacts, and
288 images from 144 individuals under the age of 18. Given that age and sex are not
matched in the condyle, all models and results presented in this study could be sex and
gender biased. Further research is required to address this limitation in future studies with
balanced data. Furthermore, all experiments were performed in a subject-independent
manner in the study, meaning that images from the same subject were not used in the
training and testing phases. A total of 3875 condylar images from individuals over the age
of 18, in which the mandibular condyles could be clearly observed, without artifacts, were
included in the study. The study included a total of 3875 subjects with 1 image per subject.

The borders of the mandibular condyle are normally straight, continuous, and convex.
Therefore, it is assumed that the outlines of normal condyles should have a convex configu-
ration everywhere and that there should be symmetry between both condyles in the same
individual [33]. However, anatomical variations such as slight flattening or pronounced
convexity on the upper surface of the condylar head may be seen. In this case, the size and
shape of the right and left condylar heads should be compared and the symmetry of both
sides should be evaluated [34].

Another preprocessing step is to make the data compatible with CNN algorithms.
CNN algorithms typically work in 224 × 224 dimensions. These dimensions may increase
and decrease depending on the working structure of CNNs and the feature mapping
technique. The images were automatically cropped for the CNN architectures used, and
the input data were subjected to specific preprocessing steps to normalize them [21].
This will help the network improve learning performance because transfer learning will
be provided with previously learned weights. For the standardization process, normal-
ization was performed using mean values [0.485, 0.456, 0.406] and standard deviation
values [0.229, 0.224, 0.225] [22].

In our study, condyles with regular convex and continuous borders were evaluated
together with their symmetry and labeled as normal. Condyles that did not meet these
criteria, with interrupted borders, straight but not symmetrical or concave borders, were
included in the other class. Condyles with mild flattening or significant convexity were
included in the normal class when they were symmetrical and were included in the other
class when they were unilateral. All condyles with osteoarthritic changes such as erosion
and osteophyte formation, other than significant flattening, were labeled as other. Images
in which the convexity at the outer borders of the mandibular condyles was disrupted in
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favor of flattening were labeled as flattening. Images in which the continuity of the outer
borders of the condyle was disrupted were labeled as erosion.

In addition, while evaluating condylar bone changes in our study, flattening, osteo-
phyte, erosion and images in which two or more of these changes were observed together
were classified as the other group. Images in which condyles with pseudocysts were ob-
served were not evaluated as a separate class because they did not affect the outer borders
of the mandibular condyle observed on the panoramic images.

Classifications were made for the study. Since each group did not contain enough
images for computer learning, two separate approaches were made for the images be-
longing to the condyles with erosion and osteophyte formation. In the first approach,
osteophyte formation and erosion groups were included in the other group and the im-
ages were collected in three groups: normal, flattening and deformation. In the second
approach, osteophyte and erosion groups were removed from the study and grouped as
normal, flattening and other. The deformation group became a more comprehensive group
compared to the other group.

The mandibular condyles were resized to 224 × 224 (width and height) dimensions to
be compatible as input to CNN models. Nonetheless, there was an absence of coordinate
labeling of the condyle images. Instead, the mandibular condyles were categorized into
clusters by an oromaxillofacial radiologist. This approach is informed by the nature of the
study, which is an image classification task. To ensure optimal feature extraction and to
focus on clinically relevant areas, a preprocessing step was implemented before feeding
images into CNN architectures. Since CNN models require a fixed input size, the following
methodology was applied:

Region of Interest (ROI) Selection: Rather than employing full panoramic radiographs,
which comprise a large amount of extraneous background information, radiologists manu-
ally identified the mandibular condyle regions in the images. The ROIs were then cropped
so as to isolate the condylar region. This was performed in order to ensure that the CNN
models focus on the most relevant anatomical structures.

Automated Resizing to Proper Sizes: Following the cropping of the ROI, the im-
ages were resized to 224 × 224 pixels by means of bilinear interpolation. This step is of
paramount importance as it ensures compatibility with pretrained CNN models while pre-
serving critical features necessary for classification. This approach has been demonstrated
to minimize irrelevant variations in input images, thereby improving the data of model
focus on clinically significant patterns and optimizing the learning process. A randomly
selected 25% of the labelled images were re-examined by the same clinician at a different
time to assess intra-observer agreement. The agreement of the results was assessed using
Cohen’s kappa analysis. SPSS (Statistical Package for Social Sciences) for Windows 20.0
was used for the Kappa test. When the obtained κ value (κ = 0.8) was interpreted according
to Landis and Koch, it was found that there was sufficient agreement.

Mandibular condyle changes: mandibular condyle regions in panoramic radiographs
were cropped and labeled by the oromaxillofacial radiology specialist. Mandibular condyle
changes and regions in panoramic radiographs were cropped and labeled. Classifications
were made for the study. Since each group did not contain enough images for computer
learning, two separate approaches were made for condyles with erosion and osteophyte
formation images. In the first approach, osteophyte formation and erosion groups were
included in the other group, and the images were collected in three groups: normal,
flattening, and deformation (N,F,D). The second approach removed osteophytes and erosion
groups from the study and grouped them into normal, flattening, and other (N,F,O) groups.
The deformation group became a more comprehensive group compared to the other group.
A deep learning-based algorithm approach was applied for high-performance detection
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and classification of condyle bone changes in cropped images as normal, flattening, and
other (N,F,O) and normal, flattening, and deformation (N,F,D). The study applied two
different datasets to CNN architecture, and their successes were discussed. To develop the
Artificial Intelligence (AI) approach, two different sets will be separated into different sets
for the training and testing process. In AI applications, randomness should be used as a
basis for applying the data to the training and testing process. The set is divided into 70:30
and 80:20 training tests, respectively, as shown in Figure 1. In the experimental findings
section of the study, this separated set will reveal the differences in the success of CNN
algorithms. Different dataset separations are applied to solve the balance problem.

 

Figure 1. Weighted scatter plot of prepared data classes including normal-flattening-deformation
and normal-flattening-others classes.

In AI applications, randomness should be taken as a basis for applying the data to
the training and testing process. The set was split into 70:30 and 80:20 training–testing,
respectively, as shown in Figure 1. The experimental findings section of the study will
reveal the differences in the success of the CNN algorithms. The different separations of
the data were applied to solve the balance problem.

The processing step was applied separately for training and testing steps Figure 2
is an architectural visualization representing the working structure of the different CNN
architectures proposed for detecting degenerative bone changes in the temporomandibular
joints in panoramic images. First, the size of the input images from the TMJ region should be
standardized for all instances. The figure shows that this standard form is set to 224 × 224
for the example CNNs. For this reason, the TMJ regions cropped by the oromaxillofacial
radiology specialist are scaled to 224 × 224 by a preprocessing step before being fed to the
model. Many different architectures were used in this study to access the experimental
findings for the pretrained CNN algorithms with version 1.13.1 of the PyTorch library.
Therefore, each architecture contains different layers, such as convolution, pooling, etc., in
its internal structure. For this reason, a typical internal architecture structure is depicted in
Figure 2.

In the present study, a range of pretrained architectures was utilized to assess the
efficacy of models. The input data are constituted by an image, upon which sequential
mathematical operations are applied in the context of pretrained CNN algorithms. In CNN
models, these parameters comprise convolution kernels (filters), weights, and biases of
the fully connected layers. For fully connected layers within CNNs, refer to the following
sources: the linear transformation is modeled as W weight matrix, b bias term, and X input
vector in Equation (1).

Y = WX + b (1)
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The image X matrix as an input vector denotes the value of each pixel and typically
assumes the form of a 3D tensor (height, width, number of channels. In this context, the
prediction function of the model is denoted by yˆ = f(X,θ). According to the specified
equation, X denotes the input data received by the model. The class prediction function is
usually expressed as yˆ is the class or probability distribution predicted by the model. In
the context of an image-based AI model, X corresponds to an image matrix. Conversely,
θ encompasses the weights and bias values that the model must learn. Furthermore, the
Rectified Linear Unit (ReLU) function, a widely utilized activation function, is formulated
in Equation (2).

ReLU(x) = max(0,x) (2)

Accordingly, x represents the weighted sum, and the output of the neuron is calculated
by inserting x into the ReLU activation function. As the model undergoes training, the
optimization algorithm updates these parameters to ensure the most accurate prediction.
During the training process, the categorical cross entropy loss function is employed to
minimize the classification error. The optimization process involved the update of model
weights using the SGD and Adamax algorithms. In addition, the Adamax algorithm
has been shown to outperform the SGD algorithm in other models. The formulas for
mean moment estimation, infinite norm estimation, and parameter update are given in
Equations (3), (4), and (5), respectively. It is noteworthy that this algorithm utilizes infinite-
norm estimation; consequently, it provides more balanced updates when the weights are
substantial. According to these equations, β1 is the momentum term for the first-moment
estimate, gt is gradient time step t, and also mt is the first-moment vector. On the other
hand, β2 refers to the decay rate for the exponentially weighted infinity norm, ut is an
infinity norm (maximum absolute value of past gradients), Θt model parameter at time
step t, and also α is a learning rate.

mt = β1 × mt − 1 + (1 − β1) × gt (3)

ut = max(β2 × ut − 1, |gt|) (4)

Θt+1 = Θt − ((α/ut) × mt) (5)

Figure 2 shows a typical internal architecture. The automatically cropped data are
organized into folders according to the selected study. For example, for approach 1,
normal, flattening, deformation; for approach 2, normal, flattening, others. Both datasets
were subjected to the standardization above and normalization for preprocessing. The
convolution layers, especially the first convolution layer from which the input is taken,
use multiple filters to capture various edge and texture information. Then, the activation
function is appropriate for the chosen CNN algorithm. The pooling layer follows to
reduce the dimensionality and preserve important features. Multiple convolutions and
pooling layers are added to increase the depth. This enables capturing more complex
features (e.g., detailed characteristics of degenerative changes). After the convolution and
pooling layers, the resulting feature map is smoothed and fed into multiple fully connected
layers to reach the output layer. In the output layer, the appropriate activation function
is designed to classify different condyle bone changes, and the classification process is
completed depending on the number of classes. Furthermore, CNNs were trained using the
Adam optimizer with a learning rate of 0.001 to provide adaptive learning adjustments to
enhance convergence. To enhance stability during the training process, a step learning rate
scheduler was employed, which reduced the learning rate by a factor of 0.1 every 10 epochs.
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This approach prevented overshooting and ensured gradual refinement of the model’s
parameters. The training process was conducted for 200 epochs, enabling the model to
acquire robust feature representations. The loss function employed was categorical cross-
entropy, a well-suited choice for multiclass classification problems. The hyperparameter
choices were made to balance training efficiency and classification accuracy while ensuring
optimal model performance.

Figure 2. Different CNN architectures are proposed for the detection of morphologies caused by
degenerative bone changes in temporomandibular joints in panoramic images.

3. Results

In this study, the mandibular condyle regions are cropped on panoramic radiographs,
and the approach of artificial intelligence-based algorithms is applied to classify the condyle
bone changes into normal, flattening, deformation, and variants belonging to the normal,
flattening, and other categories for high-performance detection. To achieve the main
objective of the study, which is to detect different condyle degenerative bone changes in
the temporomandibular joint most successfully, various datasets belonging to different
distributions were used and evaluated with different learning techniques. Many different
pretrained CNN algorithms were applied in the study, and their experimental findings
are given in Tables 1 and 2. For the experimental findings in the tables, the accuracy,
precision, recall, and F1-score metrics in Equations (6)–(9), which are frequently used in
object detection and classification studies, were used. These metrics capture not only the
accuracy performance of the model but also the miss rates and successes of negative and
positive classes. In particular, the F1-score metric provides an overall view by obtaining
the harmonic mean of the precision and recall metrics [35]. Thus, it proved why CNN
algorithms are preferred for convolutional filtering and classification of health images.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)
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F1 − Score = 2 × Precision × Recall
Precision + Recall

(9)

Table 1. Performance results for normal, flattening, and other data classes with a certain distribu-
tion range.

Model Distribution
Learning

Rate
Optimizer Accuracy Precision Recall F1-Score

DenseNet121 70:30 0.001 Adamax 64.85% 64.45% 64.22% 63.88%
ResNet18 70:30 0.0001 Adamax 69.23% 65.52% 66.41% 65.65%
AlexNet 70:30 0.0001 Adamax 70.71% 68.74% 68.55% 68.47%

DenseNet169 70:30 0.0001 Adamax 73.43% 71.05% 71.04% 70.66%
GoogleNet 70:30 0.0001 Adamax 86.61% 85.92% 85.60% 85.73%

Table 2. Comparative performance results for normal, flattening, others and normal, flattening,
deformation data classes with different distribution ranges (N: Normal, F: Flattening, O: Others,
D: Deformation).

Model Distribution Dataset Optimizer Accuracy Precision Recall F1-Score

DenseNet169 70:30 N-F-O Adamax 73.43% 73.29% 73.12% 73.20%
GoogleNet 70:30 N-F-O Adamax 86.61% 85.92% 85.60% 85.73%
GoogleNet 80:20 N-F-D SGD 92.65% 92.29% 92.36% 92.33%
ResNeXt 80:20 N-F-D Adamax 94.32% 94.15% 94.07% 94.08%

GoogleNet 80:20 N-F-D Adamax 95.23% 94.89% 95.08% 94.98%

Table 1 presents simple statistical analyses for a single dataset (N, F, O) with different
CNN algorithms. Experiments were performed on equal terms at this stage when using
multiple pretrained neural networks. At the beginning of the experiments, the learning rate
was chosen as 0.001, but it was found that the results were more successful with a learning
rate of 0.0001. For this reason, in the experimental findings, only the best results (lr = 0.001)
for DenseNet121 are included, while the results for the other algorithms (lr = 0.0001) are
compared in the table. Since the analysis sets were divided into 70:30 and 80:20 in the study,
their ratios are given in the table as a distribution. Table 2 shows the results for N-F-O
and N-F-D by applying multiple experimental tests. In addition, Adamax and Stochastic
Gradient Descent (SGD) algorithms, commonly used for CNN architectures, were also
applied for the optimization algorithm.

Considering the many architectures proposed in the study, the GoogleNet algorithm
gave the best results even when different data classes and datasets were considered. It
should be noted that the algorithm performance is high, and the test data are prepared
separately from the training data. Since the GoogleNet algorithm provides high perfor-
mance on the datasets, the results of Adamax and SGD optimizers are given in Table 2.
Accordingly, for the dataset belonging to the 80:20 distribution of N-F-D classes, the accu-
racy value of 95.23% with the Adamax optimizer was the highest compared to other data
classes. For N-F-O with 70:30 data distribution, the GoogleNet algorithm gave the highest
result, 86.61%.

By combining the benefits of the repeated blocks in the GoogleNet algorithm with
transfer learning using pre-trained weights, we improve the model’s test performance.
Based on the Inception architecture, GoogleNet overcomes a major challenge for a neural
network with 22 layers by avoiding feature loss. The performance difference between
the Inception-v3 and the GoogleNet classifier is assumed to be due to Inception modules
allowing the choice between multiple convolutional filter sizes in each block [26]. The
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network includes a 1 × 1 convolutional layer with 128 filters and a 70% dropout of the
neural network cells to prevent over-memorization [36].

Figure 3 shows the performance graphs of the best and worst-performing models of
DenseNet and GoogleNet architectures. Accordingly, following the performance findings
in Tables 1 and 2, the 121-layer model of DenseNet shows the worst result with 64.85%
accuracy for the 70:30 distribution. In comparison, GoogleNet shows the best result with
95.23% accuracy for the 80:20 distribution. Graphs (a) and (c) show the change in total
training time per iteration, while (b) and (d) represent the error (loss) rate of the model per
iteration. When graph (b) is analyzed, we see that the loss value has difficulty approaching
0 and shows a very variable structure.

Figure 3. (a) DenseNet121 graph of worst total training time-epoch, (b) DenseNet121 graph of
worst loss-epoch, (c) GoogleNet graph of best total training time-epoch, (d) GoogleNet graph of best
loss-epoch.

Figure 4 indicates the training, and validation results up to a certain number of epochs.
The blue line (training accuracy) shows a steady rise, reaching about 90%, indicating the
model is learning from the data. The orange line (validation accuracy) is more unstable,
with frequent ups and downs. While it does generally rise, the possible over-fitting is
concerning. The model’s poor generalization capabilities to unseen data are indicated by
the widening gap between the training and validation accuracies. Consequently, it can be
posited that GoogleNet, as opposed to DenseNet, yields optimal outcomes in this study.

This proves that the model cannot learn enough and is not a very desirable situation.
However, in graph (d), the graph starts with a relatively high loss value and gradually
tends to approach 0. This is a very common and desirable situation in classification studies.
If the training is continued with many iterations, the model becomes over-memorized.
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For this reason, it was also concluded that further training is inappropriate using enough
anti-over-memorization probability.

 
Figure 4. DenseNet121 graph of training and validation results for the epoch. (a) DenseNet121
training and validation accuracy values, (b) DenseNet121 training and validation loss values.

The results of the confusion matrices in Figure 5 are visual evidence for inferring the
performance metrics calculated in the equations. When the matrix is examined in detail,
the values on the diagonal represent the TP values. TP values indicate that the class to
be detected is detected correctly. For this reason, the TP values of each class are expected
to be as high as possible. In this case, the relevant TP, TN, FP, and FN values for the
performance metrics in the equations are obtained from this matrix and calculated. For
the confusion matrix, the horizontal axis shows the predicted labels while the vertical axis
contains the actual labels, i.e., oromaxillofacial radiology specialist knowledge. Figure 5
shows the results of the 70:30 dataset distribution for the flattening-normal-others dataset.
Here, three confusion matrices are expressed as a percentage ratio. Accordingly, when
the first left image is analyzed for the GoogleNet model in the confusion matrix, 76%
of correct predictions were made for the “Flattening” class in total. However, 11% of
“Normal” and 13% of “Others” were incorrectly predicted. As the highest TP value, 94%
correct prediction was made for the “Others” class, but 1% “Normal” and 5% “Flattening”
predictions were made.

Figure 6 numerically expresses the results of the 70:30 dataset distribution for
the normal-flattening-deformation dataset. Considering the measurement results in
Tables 1 and 2, the complexity matrix error values in the figures are appropriate. Ac-
cordingly, for the GoogleNet-Adamax optimizer model in the complexity matrix, the
“Deformation” class made 310 correct predictions in total. Seven were obtained as “Flat-
tening” and six as “Normal”. When we examine the “Normal” class, while 227 “Normal”
predictions were made, 7 “Flattening” and 3 “Deformation” results were obtained. Again,
when the matrix is analyzed here, the deformation group was detected with higher success
and the flattening and normal groups were detected with relatively lower success.
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Figure 5. Confusion matrix results obtained with different algorithms for normal-flattening-
others classes.

Figure 6. Confusion matrix results were obtained with different algorithms for normal-flattening-
deformation classes.
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4. Discussion

Mandibular condyle bony changes manifest in a spectrum of variations, ranging
from subtle erosions to gross deformities of condylar morphology. A granular classifi-
cation of these findings furnishes clinicians with valuable insights into disease status.
Discordance may exist between clinical symptomatology and radiographic evidence, and
inflammatory changes within the temporomandibular joint (TMJ) may, at times, follow a
subclinical course.

While ultrasonography and magnetic resonance imaging are the modalities of choice
for evaluating the soft tissues of the temporomandibular joint [37,38], conventional radiog-
raphy and CBCT remain frequently employed for assessing osseous structures.

Panoramic radiography, a conventional radiographic technique utilized for imag-
ing the hard tissues of the temporomandibular joint, offers ready accessibility and cost-
effectiveness for general dental practitioners, coupled with a relatively low radiation dose
compared to CBCT. However, inherent limitations constrain its utility in TMJ imaging.
Panoramic films, acquired with the mandible in a slightly open and protruded position, fail
to accurately depict the condyle’s natural position within the glenoid fossa. Furthermore,
the superimposition of cranial structures onto the osseous components of the TMJ im-
pedes the detection of subtle alterations [39]. As a result of these shortcomings, panoramic
radiographs may prove insufficient for comprehensive condylar and TMJ assessment.

Despite its limitations in accurately evaluating mandibular condyle morphology [40],
panoramic radiography possesses the potential to facilitate early diagnosis of TMD due to
its low cost, low radiation dose, and routine application [41].

CBCT offers tomographic imaging in all planes, eliminating superimposition and
enabling unobstructed visualization of the TMJ region. CBCT demonstrates superior
reliability compared to conventional methods in the evaluation of condylar erosions. Con-
sequently, the application of CBCT is advocated as an effective tool for identifying TMJ
osteoarthritis [39,42–44]. However, CBCT is associated with increased radiation exposure
and cost compared to panoramic imaging. Given these considerations, CBCT should be re-
served as an advanced imaging modality, with panoramic imaging serving as the preferred
initial evaluation to mitigate unnecessary exposure.

These factors impose practical constraints on the widespread adoption of CBCT in
clinical settings, thereby impeding researchers’ ability to attain adequate sample sizes for
robust investigations.

Accordingly, the present study employed panoramic images to assess the concor-
dance between AI-driven diagnostic outcomes and oromaxillofacial radiology special-
ist assessments. Achieving alignment between AI diagnostic capabilities and those of
an oromaxillofacial radiology specialist would streamline clinical workflows for general
dental practitioners.

This study evaluated the agreement between diagnoses rendered by an oromax-
illofacial radiology specialist via panoramic images and those derived from AI analysis.
Future investigations could explore training AI models using diagnoses informed by
both CBCT and panoramic images, enabling a more comprehensive assessment of AI
diagnostic accuracy.

Moreover, the implementation of CBCT, an imaging technique that mitigates limita-
tions inherent to panoramic films, may further reduce the likelihood of diagnostic errors by
oromaxillofacial radiology specialists, potentially enhancing study outcomes.

Prior literature has predominantly focused on patients with osteoarthritis [31,32,45]
and has utilized CBCT imaging [30,45]. The present study sought to classify condylar
alterations resulting from both active symptomatic disease (osteoarthritis) and chronic
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degenerative processes (osteoarthrosis), often used interchangeably, according to features
such as flattening, osteophyte formation, erosion, and deformation.

Within this framework, mandibular condyles were categorized into five groups—normal,
flattening, osteophyte, erosion, and other—and presented to a CNN for evaluation. The
resulting performance was deemed satisfactory.

Notably, the oromaxillofacial radiology specialist incorporated right–left symmetry
considerations into condyle classification, particularly in the presence of subtle flattening or
pronounced convexity. However, in the context of CNN analysis, condyles were cropped
from panoramic images and were not explicitly labeled as right or left. This resulted in a
unilateral evaluation of data otherwise interpreted with symmetry, leading the CNN to
analyze each condyle independently, disregarding this symmetry.

This study focused on evaluating the performance of CNN models in detecting and
classifying mandibular condyle bone changes in panoramic radiographs. As a result of
the necessary research and application of the methods, the study showed that CNN-based
methods were CNN-based methods demonstrated a high success rate in determining the
mandibular condyle bone changes. However, it was concluded that the condyles should be
taught dependently with the prediction that the success rate could be further increased. İt
is posited that CNN performance could be augmented by segmenting condyles within a
single panoramic image and incorporating right–left labeling during training.

Given the limited number of images within the osteophyte and erosion categories,
discrete analysis of these conditions was precluded. We anticipate that augmenting the
sample size for these groups, while ensuring balanced representation within the overall
dataset, would contribute to more robust and accurate findings.

In the present study, a range of deep learning architectures were utilized for the pur-
pose of detecting TMJ-related condylar bone changes using panoramic radiographs. These
architectures included AlexNet, VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201,
ResNet18, ResNet101, ResNeXt, and GoogleNet. The objective of this research is to illus-
trate the potential of AI-driven diagnostic support in dentistry and maxillofacial radiology
specialists. A distinguishing feature of this study is its rigorous classification strategy. The
mandibular condyles were grouped into different categories based on their morphological
characteristics, using a novel classification scheme that considers symmetry for images
with slight flattening or pronounced convexity. Addressing the challenge of imbalanced
datasets is a central tenet of this study, which explores the impact of erosion and osteophyte
formation under varied grouping strategies. This exploration aims to enhance the model’s
generalizability. Furthermore, model performance was systematically examined using
different splits (70:30 and 80:20) to reduce the effects of class imbalance and assess the
robustness of the models across different distributions. This methodological approach en-
sures the reliability and generalizability of the findings. The results show that CNN-based
methods achieve a remarkable level of accuracy in detecting mandibular condyle bone
changes. These results underscore the effectiveness of deep learning models in providing
automated diagnostic assistance that can help clinicians identify patients requiring further
intervention. To further validate our labeling methodology, we performed an intra-observer
agreement analysis using Cohen’s kappa coefficient, which indicates significant agreement.
This step serves to strengthen the reliability of our dataset and classification framework.

Notwithstanding the encouraging outcomes of this study, it is imperative to acknowl-
edge its limitations. First, in our study, panoramic images of individuals over 18 years
of age were used to eliminate morphological changes in the condyle during growth and
development. However, the AI was trained using panoramic images of individuals over
18 years of age, regardless of age and gender. Future studies can investigate the effects
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of age and gender differences on AI training. In this way, it will reveal whether age and
gender factors have a significant effect on the learning process of AI.

Furthermore, the data utilized in this research are modest in size, which may impede
the model’s generalizability. The incorporation of more extensive and varied data could
enhance the robustness and precision of the proposed AI models. Notably, the inclusion of
erosion and osteophyte classes as other classes and training was necessitated by the limited
number of patients. However, the labeling process for annotations and categorization
information, a fundamental component of the supervised learning technique, is subject to
inter-observer variability and potential bias in ground truth annotations due to the reliance
on expert judgment. Ultimately, it is imperative to emphasize that real-world clinical
validation remains a crucial step in the development of AI-assisted diagnostic systems.
Addressing these limitations in future research will contribute to the development of more
robust and clinically applicable AI-assisted diagnostic systems.

5. Conclusions

Early and accurate diagnosis of individuals with TMD and referral to specialists for
appropriate treatment approaches are critical to the prognosis of the disease. Considering
the limited knowledge of general dentists about TMD, the development and integration
of AI-supported neural networks into clinical practice could increase the effectiveness of
panoramic radiographs in TMJ assessment. It is believed that this approach could provide
significant advantages to both general dentists and patients by providing AI-based support
in the diagnosis and treatment processes.

As a result, this study achieved a high success rate by using CNNs to determine the
mandibular condyle bone changes. We think that identifying the changes in this region,
which are difficult to evaluate on panoramic images, with CNN will make it easier for
clinicians to refer patients to physicians who are experts in this field.
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38. Pekince, K.A.; Çağlayan, F.; Pekince, A. The efficacy and limitations of USI for diagnosing TMJ internal derangements. Oral
Radiol. 2020, 36, 32–39. [CrossRef]

39. Walewski, L.Â.; de Souza Tolentino, E.; Yamashita, F.C.; Iwaki, L.C.V.; da Silva, M.C. Cone beam computed tomography study of
osteoarthritic alterations in the osseous components of temporomandibular joints in asymptomatic patients according to skeletal
pattern, gender, and age. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 70–77. [CrossRef]

40. Schmitter, M.; Gabbert, O.; Ohlmann, B.; Hassel, A.; Wolff, D.; Rammelsberg, P.; Kress, B. Assessment of the reliability and validity
of panoramic imaging for assessment of mandibular condyle morphology using both MRI and clinical examination as the gold
standard. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2006, 102, 220–224. [CrossRef]

41. Singh, B.; Kumar, N.R.; Balan, A.; Nishan, M.; Haris, P.S.; Jinisha, M.; Denny, C.D. Evaluation of normal morphology of
mandibular condyle: A radiographic survey. J. Clin. Imaging Sci. 2020, 10, 51. [CrossRef]

42. Abrahamsson, A.-K.; Kristensen, M.; Arvidsson, L.Z.; Kvien, T.K.; Larheim, T.A.; Haugen, I.K. Frequency of temporomandibular
joint osteoarthritis and related symptoms in a hand osteoarthritis cohort. Osteoarthr. Cartil. 2017, 25, 654–657. [CrossRef]

43. Sonnesen, L.; Petersson, A.; Wiese, M.; Jensen, K.E.; Svanholt, P.; Bakke, M. Osseous osteoarthritic-like changes and joint mobility
of the temporomandibular joints and upper cervical spine: Is there a relation? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017,
123, 273–279. [CrossRef]

44. Dumbuya, A.; Gomes, A.F.; Marchini, L.; Zeng, E.; Comnick, C.L.; Melo, S.L.S. Bone changes in the temporomandibular joints of
older adults: A cone-beam computed tomography study. Spec. Care Dent. 2020, 40, 84–89. [CrossRef]

45. de Dumast, P.; Mirabel, C.; Cevidanes, L.; Ruellas, A.; Yatabe, M.; Ioshida, M.; Ribera, N.T.; Michoud, L.; Gomes, L.; Huang,
C.; et al. A web-based system for neural network based classification in temporomandibular joint osteoarthritis. Comput. Med.
Imaging Graph. 2018, 67, 45–54. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

21



Article

Development of an AI-Supported Clinical Tool for Assessing
Mandibular Third Molar Tooth Extraction Difficulty Using
Panoramic Radiographs and YOLO11 Sub-Models
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Abstract: Background/Objective: This study aimed to develop an AI-supported clinical
tool to evaluate the difficulty of mandibular third molar extractions based on panoramic
radiographs. Methods: A dataset of 2000 panoramic radiographs collected between 2023
and 2024 was annotated by an oral radiologist using bounding boxes. YOLO11 sub-models
were trained and tested for three basic scenarios according to the Pederson Index criteria,
taking into account Winter (angulation) and Pell and Gregory (ramus relationship and
depth). For each scenario, the YOLO11 sub-models were trained using 80% of the data
for training, 10% for validation, and 10% for testing. Model performance was assessed
using precision, recall, F1 score, and mean Average Precision (mAP) metrics, and different
graphs. Results: YOLO11 sub-models (nano, small, medium, large, extra-large) showed
high accuracy and similar behavior in all scenarios. For the calculation of the Pederson
index, nano for Winter (average training mAP@0.50 = 0.963; testing mAP@0.50 = 0.975),
nano for class (average training mAP@0.50 = 0.979; testing mAP@0.50 = 0.965), and medium
for level (average training mAP@0.50 = 0.977; testing mAP@0.50 = 0.989) from the Pell
and Gregory categories were selected as optimal sub-models. Three scenarios were run
consecutively on panoramic images, and slightly difficult, moderately difficult, and very
difficult Pederson indexes were obtained according to the scores. The results were evaluated
by an oral radiologist, and the AI system performed successfully in terms of Pederson index
determination with 97.00% precision, 94.55% recall, and 95.76% F1 score. Conclusions: The
YOLO11-supported clinical tool demonstrated high accuracy and reliability in assessing
mandibular third molar extraction difficulty on panoramic radiographs. These models
were integrated into a GUI for clinical use, offering dentists a simple tool for estimating
extraction difficulty, and improving decision-making and patient management.

Keywords: mandibular third molar extraction; oral surgery; panoramic radiography;
Pederson difficulty index; YOLO11

1. Introduction

The frequency of impacted mandibular molars is reported in the literature to be be-
tween 16.7% and 68.6% [1]. The surgical extraction of impacted mandibular third molars is
one of the most frequently performed and challenging procedures in oral and maxillofacial
surgery. Proper evaluation of the procedure’s difficulty before surgery is crucial to estimat-
ing postoperative risks, such as swelling, pain, limited mouth opening, dry socket, and
inferior alveolar nerve injury. Additionally, it is essential to predict the operation’s duration
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and determine the time the patient should allocate for the appointment [1,2]. The difficulty
of extracting impacted third molars varies significantly between cases. In some instances,
the procedure can be relatively straightforward, involving the removal of alveolar bone
and tooth separation. However, extraction may require general anesthesia in more complex
cases where the molar is deeply embedded [2]. Therefore, the operating oral surgeon needs
scientific evidence regarding each case’s estimated surgical difficulty level [1,3]. This way,
the patient will be better informed and mentally prepared before surgery, and the physician
can obtain appropriate informed consent regarding the clinical scenario [4]. Several indices
have been suggested in the literature to evaluate the extraction difficulty of impacted
mandibular third molars preoperatively [4]. The most widely used of these, the Pederson
index [5], is derived from the Winter and Pell and Gregory classifications [2,6,7]. This
evaluates and scores third molar extractions based on radiographic factors, including the
tooth’s position, depth, and its relationship to the mandibular ramus [1]. An important
limitation of the Pederson index is that it does not include clinical judgment. However, due
to its high specificity, the index is reported to be effective in efficiently planning surgeries
by eliminating cases that are unlikely to present significant difficulties [4]. Panoramic
radiographs (PRs), which are routinely taken in the clinic and provide a single view of
the entire jaw structure, provide a clear view for positioning the mandibular third molars.
However, for detailed analysis of the molars, such as their relationship with the inferior
alveolar canal, cone beam computed tomography (CBCT) images may provide higher
diagnostic accuracy [8].

Over the last decade, advancements in artificial intelligence (AI) and its integration
into medicine and dentistry have led to a rapid increase in research on deep learning-based
models for AI-assisted medical diagnosis [9–11]. Studies that were carried out with conven-
tional machine learning for a long time have been replaced by deep learning models because
deep learning models automatically extract and select features across layers. Many feature
extraction and selection methods had to be tried in traditional machine learning methods,
and the best methodology was determined after many trials. Due to these advantages,
many deep learning models have been proposed in recent years [12,13]. Deep learning
studies focused on mandibular third molars in PRs have included the determination of
the eruption potential of mandibular third molars [14], wisdom tooth detection [9,15,16],
segmentation [17,18], age estimation [19], estimation of the time required for mandibular
third molar extraction [20], classification of the developmental stages of third molars in
a fully automated way [21], determination of the anatomical relationship of mandibular
third molars to the mandibular canal [16,22–28], classification of mandibular third molars
with different approaches [24], prediction of Pell and Gregory classes [29–31], determina-
tion of Winter angulation [9,15,29–32], and prediction of extraction difficulty according
to indexes [33–37]. The variety of studies conducted on mandibular third molars clearly
demonstrates the clinical importance of these teeth. AI-based studies have provided
significant advances in many areas such as the detection, classification, segmentation, de-
termination of anatomical relationships, and prediction of the extraction difficulty of these
teeth. However, despite all these developments, manual evaluation of extraction difficulty
is still a common practice [38,39]. These traditional approaches are time-consuming and
prone to human error. Conversely, studies evaluating extraction difficulty with AI-based
methods in PRs are quite limited and their current accuracy rates are still insufficient. This
study aimed to automatically detect, classify, and score the extraction difficulty of impacted
mandibular third molars based on the Pederson index on panoramic radiographs using
YOLO11 state-of-the-art models. YOLO11, the latest version of the YOLO (You Only Look
Once) family, which is popularly used in the literature for object detection, segmentation,
pose estimation, object tracking, and classification, was introduced in October 2024. This
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model has increased feature extraction capabilities with improved spine and neck archi-
tectures and provides higher efficiency, speed, and accuracy values compared to previous
versions and competing models. YOLO11, which can adapt to the environment in difficult
tasks, offers a practical use to researchers with its user-friendly interface and framework
provided by the Ultralytics library (https://github.com/ultralytics accessed on 1 December
2024). Because of its efficiency and ease of integration into different systems, YOLO11
is expected to have many future applications across various industrial sectors, including
healthcare [40]. Many applications to be performed with this algorithm will take their
place in medicine to reduce complications that inexperienced general practitioners may
encounter, increase the patient’s postoperative comfort, and eliminate the need for a jaw
surgeon’s expertise when necessary. At the end of this study, the tooth extraction difficulties
obtained with YOLO11 are automatically printed on the images, a graphical user interface
(GUI) is designed for clinical use, and the results are discussed.

2. Materials and Methods

2.1. Data Collection and Image Preprocessing

This study was performed in accordance with the Declaration of Helsinki and protocol
number 2024/424 obtained from the Ethics Committee of Necmettin Erbakan University
Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, on 25 April 2024. A
total of 2000 PRs of mandibular third molars were collected from patients who visited the
Faculty of Dentistry for dental check-ups between 2023 and 2024. The dataset was obtained
from two different devices: NewTom GiANO HR (Verona, Italy) and 2D Veraviewpocs
(J MORITA MFG corp, Kyoto, Japan). Clear visualizations of the root structure, tooth
positioning, and bone level of the third molars were established as the inclusion criteria,
while cases involving complete extractions, surgical interventions, trauma, cystic lesions,
tumors, or severe maxillofacial deformities were designated as exclusion criteria. All
images were converted to Portable Network Graphics (PNG) format with 8-bit depth and
resized to 1024 × 532 using the bilinear interpolation method.

2.2. Radiological Assessment and Image Annotation

Radiologic evaluations were performed according to the Pederson index [5], which
is widely used in the literature to predict the difficulty of extraction of mandibular third
molars. This index divides the spatial position and depth of the third molars into 3 subcate-
gories according to the Pell and Gregory system [6] and the angulation into 4 subcategories
according to the Winter classification system [7]. Thus, 36 different possibilities were
calculated (Table 1) and extraction difficulty was slightly difficult, moderately difficult, and
very difficult. According to the Pell and Gregory and Winter classification systems, the
following criteria were used for the radiologic evaluation of PRs. Table 1 shows the scores
for each subcategory and total score values.

Table 1. Criteria and scores of the Pederson index [5,41–43].

Criterion Values

Winter Mesioangular 1
Horizontal/Transverse 2
Vertical 3
Distoangular 4

Depth Level A 1
Level B 2
Level C 3
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Table 1. Cont.

Criterion Values

Ramus Class 1 1
Class 2 2
Class 3 3

Score Slightly difficult 3–4
Moderately difficult 5–6
Very difficult 7–10

* Pederson’s original index classified 5–7 scores as ‘Moderately Difficult’ [43].

Angulation (Winter) [7]:
Vertical: There is an angle between 10◦ and −10◦ between the long axis of the

mandibular third molar and the long axis of the second molar, and the tooth is in a
vertical position.

Mesioangular: There is an angle between 11◦ and 79◦ between the long axis of the
mandibular third molar and the long axis of the second molar, and the crown of the tooth
is inclined towards the second molar.

Horizontal: There is an angle between 80◦ and 100◦ between the long axis of the
mandibular third molar and the long axis of the second molar, and the tooth is in a
horizontal position.

Distoangular: There is an angle between −11◦ and −79◦ between the long axis of the
mandibular third molar and the long axis of the second molar and the crown of the tooth is
inclined towards the back of the jaw.

Ramus Relation (Pell and Gregory): Position of the third molar relative to the
mandibular ramus [6].

Class I: The space between the mandibular ramus and the distal root of the second
molar is sufficient for the mesiodistal diameter of the third molar to be located.

Class II: The space between the mandibular ramus and the distal root of the second
molar is insufficient for the mesiodistal diameter of the third molar to be located.

Class III: The third molar tooth is completely located in the mandibular ramus.
Depth (Pell and Gregory): Depth level according to the occlusal plane [6].
Level A: The uppermost part of the third molar (occlusal surface) is at or above the

occlusal plane of the adjacent second molar.
Level B: The uppermost part of the third molar is between the cementoenamel junction

of the second molar and the occlusal plane.
Level C: The uppermost part of the third molar is located apical to the cementoenamel

junction of the adjacent second molar.
Considering these criteria, all PRs were examined by an oral radiologist (MT) with

13 years of experience and prepared for this study. Figure 1 shows the image patches
prepared according to the relevant criteria from the dataset and the class information is
specified. As seen in Figure 1, since the dental anatomical structures of individuals are
different, each patch shows a unique pattern. From the 2000 collected PRs, 1400 datasets
were created separately for class, level, and angulation. Since each scenario needs to be
evaluated independently, a separate AI model should be created for each. The PRs were
doubled by horizontally flipping them. Therefore, a total of 8400 PRs were created from
2800 data for each scenario. PRs were annotated using the bounding box with the browser-
based labeling tool makesense (https://www.makesense.ai/ accessed on 1 December 2024).
In the annotation performed by MT, the inclusion of the third and second molar teeth with
their roots in the bounding box was taken into account as the labeling criterion, and a total
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of 8400 PR images were annotated. Figure 2 shows how an original and a horizontally
flipped image were annotated.

 

Figure 1. Radiological evaluation of mandibular third molar PR patches based on Pell and Gregory
classification and Winter’s angulation.

(a) (b) 

Figure 2. (a) Original annotated PR. (b) Horizontally flipped and annotated PR.

2.3. YOLO11 Sub-Models, Transfer Learning and Fine-Tuning

In this study, the n (nano), s (small), m (medium), l (large), and x (extra-large) sub-
models of the YOLO11 algorithm were trained and tested for three different scenarios. The
library released by Ultralytics was preferred because it offers user-friendly Python scripts
and cloud-based training support. Training and testing operations were performed on
TESLA A100 GPUs using Google COLAB Pro+. Data were divided into 80% training, 10%
validation, and 10% test sets for each scenario. Data augmentation was performed after the
data were separated to ensure that horizontally flipped versions of the original images were
not present in other files. Since the current YOLO models were trained with the COCO
dataset, they can recognize 80 objects. However, to train with specialized datasets, the
capabilities of existing networks can be transferred to the new model using transfer learning
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operations. Among the hyperparameters of these models, the epoch count was set to 600
and the mini-batch size was set to 8, while the other parameters were left at their default
values (optimizer: SGD (lr = 0.01, momentum = 0.9), patience: 100). Due to the structure
of the model, the following mosaic data augmentation operations were applied before
the images entered the network (Blur (p = 0.01, blur_limit = (3, 7)), MedianBlur (p = 0.01,
blur_limit = (3, 7)), ToGray (p = 0.01, num_output_channels = 3, method = ‘weighted_average’),
and CLAHE (p = 0.01, clip_limit = (1.0, 4.0), tile_grid_size = (8, 8)). So, the generalization
ability of the model was increased by using the mosaic data augmentation technique. As a
result of the training, artificial intelligence files with the .pt extension were produced by
the framework. Test data that the system had not seen before were passed through these
models, and the test performance was evaluated separately for three scenarios.

2.4. Performance Evaluation Metrics

The performance of the training and testing processes was evaluated separately for
each scenario. The Ultralytics framework automatically calculates the performance metrics.
The system first calculates TP (True Positive), which indicates instances that the model
predicts as positive, FP (False Positive), which indicates instances that the model predicts
incorrectly, and FN (False Negative), which indicates instances that the model fails to pre-
dict or does not find an essentially positive instance. Based on these values, precision (P),
which indicates the ratio of TP predictions to total positive predictions (Equation (1)),
and recall (R), which demonstrates the ratio of TP predictions to total TPs and FNs
(Equation (2)), are calculated, and the F1 score (F1-S) is acquired with the harmonic average
of these two metrics (Equation (3)). Average Precision (AP) is used to measure the overall
performance of the model at different threshold values (Equation (4)) (k: number of classes).
The mean Average Precision (mAP) value is then calculated by taking the average AP
across all classes (Equation (5)). In particular, mAP@0.5 and mAP@0.5:0.95 metrics are
calculated by taking the average of the 50% IoU (Intersection over Union) threshold and
IoU thresholds ranging from 50% to 95%, respectively. These metrics provide a detailed
analysis of the performance of an object detection model. The results of this study are
supported with graphs showing the performances according to the number of epochs,
confusion matrices, and precision–recall graphs.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 − score = 2 × Precision × Recall
Precision + Recall

(3)

APk =

1∫

0

Pk(Rk)dRk (4)

mAP =
1
k

k

∑
i=1

APi (5)

3. Results

3.1. Training and Testing Performance Results

Evaluating the performance of the models in both the training and testing phases
provides important information about the generalization ability and correct detection
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ability regarding the detection and classification of third molars under three different
scenarios. In this section, the performances will be examined according to the basic
performance measurement metrics of precision, recall, F1 score, mAP, precision–recall,
confusion matrix (CM), and loss graphs obtained during the training and testing pro-
cesses. Table 2 shows the training and testing results for Winter angulation (Img: images;
Ins: instances). As shown in Table 2, the performance values of the YOLO11 models are
close to each other, but they appear to maintain a good balance between precision and recall,
particularly in the Distoangular class. In the “Mesioangular” and “Horizontal” classes,
all models show strong results, while in the “Distoangular” and “Vertical” classes, the
accuracies are relatively lower. The nano model, with its lightweight structure, provides
a balanced performance with high generalization capability, and has more stable results
than other models, especially in the “Distoangular” class. Due to these advantages, the
YOLO11n model (average testing mAP@0.5 = 0.975, mAP@0.5:0.95 = 0.849) was selected
for Winter classification in extraction difficulty index calculations.

Table 2. Training and testing results for YOLO11 sub-models on Winter angulation.

Model Training Testing

YOLO11 Prediction Img Inst P R F1-S mAP@.5 mAP@.5:.95 Img Inst P R F1-S mAP@.5 mAP@.5:.95

nano

Mesioangular 118 160 0.939 0.975 0.957 0.984 0.900 136 174 0.970 0.989 0.979 0.983 0.875
Distoangular 56 62 0.962 0.809 0.879 0.946 0.812 20 26 0.851 0.876 0.863 0.933 0.791
Horizontal 68 88 0.935 0.977 0.956 0.965 0.853 76 92 0.99 0.989 0.989 0.994 0.874

Vertical 124 184 0.811 0.973 0.885 0.956 0.815 148 200 0.949 0.965 0.957 0.988 0.858
All 280 494 0.912 0.934 0.923 0.963 0.845 280 492 0.940 0.955 0.947 0.975 0.849

small

Mesioangular 118 160 0.951 1.00 0.975 0.989 0.899 136 174 0.962 0.977 0.969 0.983 0.872
Distoangular 56 62 0.946 0.742 0.832 0.946 0.836 20 26 0.682 0.769 0.723 0.810 0.685
Horizontal 68 88 0.967 0.977 0.972 0.964 0.86 76 92 0.962 0.989 0.975 0.994 0.884

Vertical 124 184 0.876 0.963 0.917 0.958 0.829 148 200 0.941 0.970 0.955 0.980 0.860
All 280 494 0.935 0.921 0.928 0.964 0.856 280 492 0.887 0.926 0.906 0.942 0.825

medium

Mesioangular 118 160 0.924 0.994 0.958 0.991 0.896 136 174 0.959 0.994 0.976 0.991 0.885
Distoangular 56 62 0.963 0.842 0.898 0.958 0.842 20 26 0.675 0.88 0.764 0.869 0.715
Horizontal 68 88 0.965 0.941 0.953 0.956 0.854 76 92 0.989 0.978 0.983 0.990 0.876

Vertical 124 184 0.893 0.962 0.926 0.949 0.812 148 200 0.950 0.955 0.952 0.986 0.870
All 280 494 0.936 0.935 0.935 0.964 0.851 280 492 0.893 0.952 0.922 0.959 0.837

large

Mesioangular 118 160 0.939 0.981 0.960 0.987 0.89 136 174 0.969 1.00 0.984 0.990 0.869
Distoangular 56 62 0.954 0.666 0.784 0.921 0.804 20 26 0.984 0.769 0.863 0.942 0.769
Horizontal 68 88 0.927 0.977 0.951 0.972 0.868 76 92 0.951 1.00 0.975 0.995 0.880

Vertical 124 184 0.822 0.954 0.883 0.944 0.803 148 200 0.941 0.985 0.962 0.989 0.860
All 280 494 0.910 0.895 0.902 0.956 0.842 280 492 0.961 0.939 0.950 0.979 0.845

extra
large

Mesioangular 118 160 0.949 1.00 0.974 0.993 0.916 136 174 0.967 0.983 0.975 0.990 0.880
Distoangular 56 62 0.914 0.790 0.847 0.917 0.808 20 26 0.749 0.917 0.825 0.905 0.770
Horizontal 68 88 0.935 0.976 0.955 0.971 0.861 76 92 0.979 0.996 0.987 0.995 0.884

Vertical 124 184 0.834 0.973 0.898 0.947 0.809 148 200 0.934 0.984 0.958 0.990 0.870
All 280 494 0.908 0.935 0.921 0.957 0.848 280 492 0.907 0.97 0.937 0.970 0.851

Table 3 shows that Class I and Class II models achieve high precision and recall
values, with their performance outputs exhibiting similar behavior. In Class III, strong
performance is observed despite the relatively low data volume, but its performance
is relatively low compared to the other classes. The YOLO11n model provides similar
accuracy metrics compared to larger models while offering the advantage of lower compu-
tational cost and faster processing. The YOLO11n model (average testing mAP@0.5 = 0.965;
mAP@0.5:0.95 = 0.886) was used to determine the extraction difficulty index because of
its lightweight structure and its effectiveness, especially in dense sample groups such
as Class I and II. In general, all models demonstrated consistency at Levels A, B, and C,
achieving high precision and recall values. In particular, the larger models (large and
extra-large) achieved high accuracy values at all levels, while the smaller models (nano and
small) achieved sufficient accuracy with low computational cost. The YOLO11 medium
model stands out with a balanced performance at all levels and reaches a high value of
0.949 mAP@0.5:0.95 on average, especially on the test data. The YOLO11m model was
preferred for the determination of extraction difficulty because it is advantageous in terms
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of computational cost compared to larger models and has the highest test mAP@0.5:0.95.
When all the results were evaluated, it was decided to use YOLO11n for Winter angulation
(average testing mAP@0.5 = 0.975; mAP@0.5:0.95 = 0.849), YOLO11n for class (average
testing mAP@0.5 = 0.965; mAP@0.5:0.95 = 0.886), and YOLO11m for level (average testing
mAP@0.5 = 0.989; mAP@0.5:0.95 = 0.949) in GUI design and determination of the tooth ex-
traction difficulty index. Figure 3 graphically shows the performance of these three selected
models at the time of training and validation. The fact that the training and validation
losses (box_loss, cls_loss, and dfl_loss) decreased rapidly in all tasks and stabilized before
the completion of 600 epochs with the early stopping operation reveals that the model
performs strong learning in both location estimation and classification. Precision and recall
values above 0.9 indicate that the model performs with high accuracy and low error rate,
while mAP@0.5 values above 0.9 and mAP@0.5:0.95 values above 0.8 in Winter, class, and
level tasks prove that the models perform consistently and successfully at IoU thresholds.
Moreover, the validation losses are in line with the training losses, indicating that there
are no signs of overlearning and that the model has a high generalization capacity across
different datasets. For the nano model, training in the class scenario lasted 1 h and 57 min,
with early stopping applied at the 262nd epoch, while in the Winter scenario, training
lasted 1 h and 31 min, with early stopping occurring at the 204th epoch; for the medium
model in the level scenario, training lasted 3 h and 25 min, with early stopping applied
at the 363th epoch. While 5.5 MB AI files with the *.pt extension were obtained for nano
models, 40.5 MB AI files were obtained for the medium model. For the selected models,
training and testing confusion matrices for level, class, and Winter are given in Figure 4,
and precision-recall plots are shown in Figure 5.
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Table 3. Training and testing results for YOLO11 sub-models on Pell and Gregory.

Model Training Testing

YOLO11 Prediction Img Inst P R F1-S mAP@.5 mAP@.5:.95 Img Inst P R F1-S mAP@.5 mAP@.5:.95

nano

Class I 96 120 0.973 0.983 0.978 0.990 0.913 100 124 0.936 0.950 0.943 0.979 0.901
Class II 226 360 0.954 0.980 0.967 0.991 0.937 200 308 0.899 0.981 0.938 0.976 0.919
Class III 54 60 0.876 0.883 0.879 0.956 0.885 76 96 0.931 0.844 0.885 0.940 0.838

All 280 540 0.934 0.949 0.941 0.979 0.911 280 528 0.922 0.925 0.923 0.965 0.886

small

Class I 96 120 0.959 0.992 0.975 0.995 0.917 100 124 0.910 0.977 0.942 0.974 0.895
Class II 226 360 0.918 0.992 0.954 0.991 0.938 200 308 0.888 0.990 0.936 0.964 0.902
Class III 54 60 0.884 0.892 0.888 0.925 0.872 76 96 0.963 0.808 0.879 0.908 0.831

All 280 540 0.921 0.958 0.939 0.970 0.909 280 528 0.920 0.925 0.922 0.949 0.876

medium

Class I 96 120 0.973 0.992 0.982 0.995 0.927 100 124 0.871 0.984 0.924 0.983 0.913
Class II 226 360 0.929 0.997 0.962 0.982 0.932 200 308 0.804 1.000 0.891 0.968 0.912
Class III 54 60 0.922 0.817 0.866 0.926 0.878 76 96 0.847 0.865 0.856 0.908 0.834

All 280 540 0.941 0.935 0.938 0.968 0.912 280 528 0.841 0.949 0.892 0.953 0.886

large

Class I 96 120 1.00 0.979 0.989 0.994 0.911 100 124 0.931 0.986 0.958 0.982 0.899
Class II 226 360 0.938 1.00 0.968 0.993 0.936 200 308 0.861 0.990 0.921 0.979 0.919
Class III 54 60 0.961 0.816 0.883 0.961 0.870 76 96 0.863 0.771 0.814 0.921 0.817

All 280 540 0.966 0.932 0.949 0.983 0.906 280 528 0.885 0.916 0.900 0.961 0.878

extra
large

Class I 96 120 0.957 0.983 0.970 0.992 0.907 100 124 0.886 0.992 0.936 0.956 0.882
Class II 226 360 0.903 0.994 0.946 0.985 0.927 200 308 0.861 0.974 0.914 0.956 0.901
Class III 54 60 0.866 0.860 0.863 0.935 0.886 76 96 0.920 0.721 0.808 0.888 0.791

All 280 540 0.909 0.946 0.927 0.971 0.907 280 528 0.889 0.896 0.892 0.933 0.858

nano

LevelA 106 146 0.966 0.945 0.955 0.99 0.923 96 134 0.947 0.955 0.951 0.985 0.924
LevelB 130 162 0.818 0.969 0.955 0.973 0.925 106 134 0.967 0.865 0.913 0.976 0.927
LevelC 146 206 0.935 0.990 0.887 0.991 0.923 136 190 0.950 0.958 0.954 0.988 0.931

All 280 514 0.906 0.968 0.936 0.985 0.923 280 458 0.955 0.926 0.940 0.983 0.928

small

LevelA 106 146 0.958 0.930 0.944 0.981 0.924 96 134 0.970 0.963 0.966 0.989 0.933
LevelB 130 162 0.851 0.969 0.906 0.966 0.928 106 134 0.948 0.952 0.950 0.984 0.946
LevelC 146 206 0.959 0.966 0.962 0.992 0.946 136 190 0.959 0.987 0.973 0.990 0.940

All 280 514 0.922 0.955 0.938 0.980 0.933 280 458 0.959 0.967 0.963 0.988 0.940

medium

LevelA 106 146 0.942 0.925 0.933 0.982 0.93 96 134 0.970 0.967 0.968 0.990 0.946
LevelB 130 162 0.833 0.956 0.890 0.96 0.925 106 134 0.955 0.940 0.947 0.985 0.953
LevelC 146 206 0.948 0.969 0.958 0.987 0.939 136 190 0.954 0.992 0.973 0.992 0.947

All 280 514 0.908 0.950 0.929 0.977 0.931 280 458 0.960 0.966 0.963 0.989 0.949

large

LevelA 106 146 0.934 0.971 0.952 0.98 0.923 96 134 0.963 0.975 0.969 0.991 0.951
LevelB 130 162 0.827 0.944 0.882 0.965 0.931 106 134 0.942 0.963 0.952 0.983 0.951
LevelC 146 206 0.944 0.981 0.962 0.981 0.937 136 190 0.974 0.970 0.972 0.985 0.937

All 280 514 0.902 0.965 0.932 0.975 0.93 280 458 0.96 0.969 0.964 0.986 0.946

extra
large

LevelA 106 146 0.934 0.963 0.948 0.976 0.915 96 134 0.93 0.970 0.950 0.977 0.931
LevelB 130 162 0.858 0.935 0.895 0.951 0.916 106 134 0.966 0.925 0.945 0.982 0.949
LevelC 146 206 0.939 0.961 0.950 0.984 0.938 136 190 0.984 0.983 0.983 0.987 0.937

All 280 514 0.910 0.953 0.931 0.970 0.923 280 458 0.960 0.960 0.960 0.982 0.939
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Figure 3. Graphs showing the loss values (box_loss, cls_loss, dfl_loss) and performance metrics
(precision, recall, mAP50, mAP50–95) of the model during the training and validation processes
across epochs: (a) Winter for YOLO11n, (b) class for YOLO11n, (c) level for YOLO11m.
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Figure 4. (a) Training CM for Winter angulation. (b) Testing CM for Winter angulation. (c) Training
CM for class. (d) Testing CM for class. (e) Training CM for level. (f) Testing CM for level.
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Figure 5. (a) Training precision–recall curve for Winter angulation, (b) testing precision–recall curve
for Winter angulation, (c) training precision–recall curve for class, (d) testing precision–recall curve
for class, (e) training precision–recall curve for level, (f) testing precision–recall curve for level.
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3.2. Visual Results

The prediction results in the test images created for Winter angulation, class, and level
were examined by an oral radiologist. It was observed that the second and third molars
were correctly boxed in all images, accurately detecting the corresponding localizations.
Only some class information was occasionally mispredicted in relation to each other. Since
each PR image is personalized and has different anatomical structures, it was observed
that the YOLO11 model gave a high success rate in localizing the relevant region. Figure 6
shows six test images with automatic localization and class prediction.

 

Figure 6. Winter angulation and Pell and Gregory class prediction on six test images using YOLO11
weights. ‘L’ is the left side of the patient.

3.3. Calculation of Pederson Index and Assistant GUI Tool

The Pederson index, a scoring system used to assess the difficulty level of third
molar extractions, is calculated based on the tooth’s position relative to the occlusal plane,
angulation, and the relationship of the tooth to the mandibular ramus. Angulation is scored
as mesioangular (1), vertical (3), horizontal (2), and distoangular (4), with the relationship
to the ramus denoted as Class I (1) Class II (2), and Class III (3), and depth denoted as
Level A (1), Level B (2), and Level C (3). According to the combination of conditions
in the tooth, the values obtained as a result of the total are 3–4 points: slightly difficult;
5–6 points: moderately difficult; 7–10 points: very difficult. Table 4 shows all possible
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combinations (36 different combinations) and total scores based on angulation, ramus
relationship, and depth.

Table 4. All possible combinations and scores for the Pederson index.

Angulation Ramus Depth Score Difficulty Angulation Ramus Depth Score Difficulty

Mesioangular (1) Class I (1) Level A (1) 3 Slightly Vertical (3) Class I (1) Level A (1) 5 Moderately
Mesioangular (1) Class I (1) Level B (2) 4 Slightly Vertical (3) Class I (1) Level B (2) 6 Moderately
Mesioangular (1) Class I (1) Level C (3) 5 Moderately Vertical (3) Class I (1) Level C (3) 7 Very
Mesioangular (1) Class II (2) Level A (1) 4 Slightly Vertical (3) Class II (2) Level A (1) 6 Moderately
Mesioangular (1) Class II (2) Level B (2) 5 Moderately Vertical (3) Class II (2) Level B (2) 7 Very
Mesioangular (1) Class II (2) Level C (3) 6 Moderately Vertical (3) Class II (2) Level C (3) 8 Very
Mesioangular (1) Class III (3) Level A (1) 5 Moderately Vertical (3) Class III (3) Level A (1) 7 Very
Mesioangular (1) Class III (3) Level B (2) 6 Moderately Vertical (3) Class III (3) Level B (2) 8 Very
Mesioangular (1) Class III (3) Level C (3) 7 Very Vertical (3) Class III (3) Level C (3) 9 Very

Horizontal (2) Class I (1) Level A (1) 4 Slightly Distoangular (4) Class I (1) Level A (1) 6 Moderately
Horizontal (2) Class I (1) Level B (2) 5 Moderately Distoangular (4) Class I (1) Level B (2) 7 Very
Horizontal (2) Class I (1) Level C (3) 6 Moderately Distoangular (4) Class I (1) Level C (3) 8 Very
Horizontal (2) Class II (2) Level A (1) 5 Moderately Distoangular (4) Class II (2) Level A (1) 7 Very
Horizontal (2) Class II (2) Level B (2) 6 Moderately Distoangular (4) Class II (2) Level B (2) 8 Very
Horizontal (2) Class II (2) Level C (3) 7 Very Distoangular (4) Class II (2) Level C (3) 9 Very
Horizontal (2) Class III (3) Level A (1) 6 Moderately Distoangular (4) Class III (3) Level A (1) 8 Very
Horizontal (2) Class III (3) Level B (2) 7 Very Distoangular (4) Class III (3) Level B (2) 9 Very
Horizontal (2) Class III (3) Level C (3) 8 Very Distoangular (4) Class III (3) Level C (3) 10 Very

Figure 7 shows the pipeline designed in this study to calculate the extraction difficulty
for a single tooth. The system takes an image and first converts it to 8-bit depth and then
rescales it to 1024 × 532. The image is sent to a YOLO11n model trained for angulation
prediction, a YOLO11n model trained for class prediction, and a YOLO11m model trained
for level prediction, respectively. Each model stores both the prediction results and class
localization in a variable and can provide visualization outputs. This process is performed
separately for the left and right third molars to determine the extraction difficulty score
and grade.

Using the pipeline developed in Figure 7, the prediction and scoring images of three
test images are given in Figure 8. The pipeline designed in Figure 7 was developed as a
Python script and embedded in a GUI, as seen in Figure 9. In the GUI designed using the
PyQT library, all analysis can be performed with a single button. Thus, dentists will be able
to calculate the third molar extraction difficulty score without being exposed to complex
coding processes.

In the experiments conducted to calculate the Pederson index of a total of 514 mandibu-
lar third molars on 300 test images performed using the GUI, the model detected 507
bounding boxes. Of these detected boxes, 12 were evaluated as FP, and 7 were not detected
at all and were included in the FN category. However, out of the 24 boxes for which the
Pederson index could not be calculated (N/A), 3 were added to FP due to over-detection,
and 21 were added to FN due to under-detection. As a result of these adjustments, the total
number of FPs was determined as 15, the total number of FNs was 28, and the total number
of TPs was determined as 486. When the model’s performance was examined, precision
was calculated as 97.00%, recall as 94.55%, and F1 score as 95.76%. These results demon-
strate that the proposed method based on YOLO11 offers high accuracy and reliability in
the detection of mandibular third molars and the calculating of the Pederson index.
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Figure 7. Flow diagram of the system designed for the automatic determination of the mandibular
third molar extraction difficulty index.
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Figure 8. Analysis of 3 test images in terms of the Pederson index using the pipeline developed in
Figure 7.
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Figure 9. GUI developed for automatic calculation of Pederson index.

4. Discussion

This study developed an AI-assisted clinical tool employing YOLO11 models to predict
the difficulty of mandibular third molar extractions, utilizing the widely accepted and
validated [44] Pederson difficulty index criteria. As a result of the comparison of YOLO11
sub-models, the nano model for class, the medium model for level in the Pell and Gregory
category, and the nano model in the Winter category were preferred for index calculation.
It became evident that the sub-models generally yielded similar results to each other, and
high results were obtained especially in terms of mAP@50 (mean Average Precision at
IoU threshold 0.5) values. High values of mAP@50 indicate that the model performs
well, detects the correct objects in positive predictions in the Pell and Gregory and Winter
categories, and matches them with a high confidence score. YOLO11 weights were applied
sequentially for class, level, and Winter on a PR image and Pederson difficulty index scores
were automatically determined. In the evaluation performed by an oral radiologist on
150 test images, the proposed pipeline performed well, achieving 97.00% precision, 94.55%
recall, and 95.76% F1 score. The developed Python script was integrated into a GUI, making
it a minimal program that dentists can use in the clinic without having to deal with complex
coding processes.

The degree of difficulty associated with tooth extractions can range from minimally
invasive procedures to complex surgical interventions needing general anesthesia. Catego-
rizing the difficulty of tooth extractions and calculating the time required are important for
oral and maxillofacial surgeons [20]. It may also be important for some insurance systems
in Asian countries [4]. According to Parant [45], easy extractions are classified as Grade I
(requiring only forceps) or Grade II (requiring the osteotomy), while difficult extractions
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are classified as Grade III (requiring both osteotomy and coronal section) or Grade IV
(involving complex procedures such as root resection). Kwon et al. [20] introduced a hybrid
model that integrates a convolutional neural network (CNN) utilizing panoramic X-ray
images with a multilayer perceptron (MLP) leveraging patient clinical data to estimate the
extraction time for mandibular third molars. The combined CNN+MLP model achieved a
strong correlation (R = 0.8315) with the test data, predicting extraction times with a mean
error of 2.95 min.

In the literature, some studies detect only Pell and Gregory [29–31] and
Winter [9,15,29–32] categories based on AI; however, articles on determining the extraction
difficulty of mandibular third molars are extremely limited [33–37]. Yoo et al. (2021) [33]
proposed a CNN-based model to predict the extraction difficulty of mandibular third
molars using PRs. A total of 1053 mandibular third molars from 600 panoramic images
were used and labeled according to the Pederson difficulty index by three experts. Zero-
padding was applied to the images for preprocessing. The proposed method utilized a
two-stage process of region-of-interest (ROI) detection and classification. For ROI detection,
a Single-Shot Multibox detector-based object detection model was used and VGG16 acted
as a pre-trained backbone. The detected regions were then sent to the ResNet-34-based
model for the classification of Pederson difficulty scores. Accuracies of 78.91%, 82.03%,
and 90.23% were achieved for C1 (depth), C2 (ramal relationship), and C3 (angulation),
respectively. The RMSE value was calculated as 0.6738 when the model predicted the
PDS scores. The use of only PRs was mentioned in the study as a limitation that may
affect the accuracy of the model. It was emphasized that although PRs extend the range of
anatomical structures in 2D, the possibility of unavoidable distortions in both vertical and
horizontal dimensions, as well as transverse angulation and dilacerations were extremely
difficult to assess. Lee et al. [34] (2022) developed a deep learning approach to predict the
extraction difficulty of mandibular third molars from PRs and the probability of inferior
alveolar nerve (IAN) injury. A total of 8720 mandibular third molars in 4903 PRs were
evaluated by seven dentists. The Retinanet (ResNet-152) model was used for detection,
and the Vision Transformer (R50+ViT-L/32) was used for classification. Preprocessing
of images involved size adjustment, Contrast-Limited Adaptive Histogram Equalization
(CLAHE), and data augmentation. In addition, the ROI was cropped to 700 × 700 pixels
to contain the mandibular third molar, adjacent teeth, and IAN. The proposed method,
instead of Pederson, estimated extraction difficulty in four classes: vertical eruption, soft
tissue impaction, partial bone impaction, and complete bone impaction. It also assessed
IAN injury risk in three levels: low, moderate, and high. For extraction difficulty estimation,
the R50+ViT-L/32 model indicated the highest performance with 83.5% accuracy, 66.35%
F1 score, and 92.79% AUROC, while the ResNet-34 model showed lower performance
with 80.07% accuracy and 63.28% F1 score, and the ResNet-152 model showed lower
performance with 82.18% accuracy and 63.23% F1 score. In the IAN injury risk classifi-
cation, the proposed method gave 81.1% accuracy, 75.55% F1 score, and 90.02% AUROC.
Li et al. [35] (2023) proposed a model combining deep learning and super-resolution (SR)
technologies to estimate extraction difficulty. A total of 608 panoramic images obtained
from two medical centers were used; the mandibular third molar, adjacent teeth, and
inferior alveolar nerve regions as ROIs were cropped to 200 × 200 pixels, and then their
dimensions were normalized to 800 × 800 pixels. High-resolution images were created
from low-resolution images using a GAN-based method for super-resolution, and this
process was performed by training the GAN with low–high-resolution pairs of images with
Gaussian noise added. Feature extraction was performed with 2048 features obtained from
the ResNet152 model, and statistical methods and LASSO regression were used for feature
selection to determine the final features. The features were given as input to conventional
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machine learning models including AdaBoost, Logistic Regression, K-Nearest Neighbor,
MLP, and NaiveBayes. Pederson scores were divided into two categories (≤5 and >5)
and were used as output classes. However, these categories were not named “easy” or
“difficult” in this study; only the scores were used for classification. In the classification
performance of extraction difficulty, the Model-SR Logistic Regression machine learning
algorithm showed the most optimal algorithm performance with an accuracy of 79.8%,
sensitivity of 85.5%, specificity of 60.9%, and AUC of 0.779. The overall AUC of Model-SR
was 0.963, which was found to be superior to expert dentists. Trachoo et al. [37] (2024)
classified the extraction difficulty of impacted mandibular third molars from 1367 PRs
collected retrospectively between 2021 and 2023 as novice, intermediate, and expert, taking
into account the Pederson index, according to the level of dentists who can perform the
surgical intervention. Images were resized to 300 × 600 pixels, and data augmentation
techniques (zooming, resampling, horizontal flipping) were used. In PRs, images were
split in the middle to analyze the right and left teeth separately. The system consisted of
a three-stage model: ResNet101V2 performed binary classification to determine the pres-
ence of impacted lower third molars and achieved 86.71% accuracy; RetinaNet performed
object detection to determine the location of LM3 and showed outstanding performance
with 99.28% mAP; and Vision Transformer (ViT) performed multiclass classification to
estimate surgical difficulty levels (novice, intermediate, expert) and achieved an average
accuracy of 78.99%. Chindanuruks et al. (2024) [36] trained the YOLOv5x model for the
Pernambuco Index with 1730 PRs taken in 2021–2023. The images were in .BMP format,
labeled with LabelImg, and converted to YOLO format. As a preprocess, the images were
resized to 416 × 416 pixels, and a horizontal flip was applied for data augmentation. The
algorithm assessed six radiographic criteria, namely depth (level: 87% accuracy, 85.1%
AUC-PRC, mAP@0.5: 87%), ramus relationship (77% accuracy, 76.8% AUC-PRC, mAP@0.5:
77%), angulation (Winter: 84% accuracy, 89.4% AUC-PRC, mAP@0.5: 84%), root number
(89% accuracy, 88% AUC-PRC, mAP@0.5: 89%), root curvature (dilacerated: 61% accuracy,
72.2% AUC-PRC, mAP@0.5: 61%) and contact with the second molar (contact: 82% accu-
racy, 85% AUC-PRC, mAP@0.5: 82%). Surgical difficulty was classified as low, moderate,
and high by adding age and body mass index (BMI). The YOLOv5x model used was the
version with the highest performance in the series, the overall AUC-ROC score was found
to be 85%, 77%, and 74% for low, medium, and high classes, respectively, and the model’s
agreement with experts was found to be ICC = 0.802.

When the studies in the literature are examined, it can be seen that most of them
perform classification after cropping the images. Additionally, preprocessing steps other
than resizing are also performed. Single-shot models, such as YOLO11, perform both local-
ization and classification by analyzing the image in one pass, consequently reducing the
computational cost. Achieving high results without complex preprocessing and cropping
is one of the prominent advantages of the study. PRs are complex images by nature, with
anatomical structures that vary according to the person. Different anatomical structures
may have various variations such as fillings, missing teeth, screws, plates, wires, artifacts,
and superimposition situations. Despite these disadvantages, the third molar position
was found to be accurate in almost all images. The results obtained with the pipeline
proposed in this study were successful in the automatic calculation of mandibular third
molar extraction difficulty, in comparison with other studies. The high precision, recall,
F1 score, and mAP values obtained in this study showed that YOLO11 outperformed
similar studies with high accuracy and low error rate in Winter, class, and level tasks. In
this study, YOLO11, whose performance was tested for the first time in dental diagnosis
processes, has an optimized structure compared to previous versions. It offers better overall
performance with more parameter control and modern hyperparameter settings [40]. These
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features of YOLO11 make it a superior model with regard to both speed and accuracy, and
it can be favored in AI-supported diagnosis tasks.

Limitations

The fact that this study was conducted only with panoramic radiographs means that
clinical findings and other imaging modalities were not integrated. Various factors influenc-
ing extraction difficulty, including anatomical challenges, root morphology, bone density,
patient age, gender, mouth-opening capacity, body mass index (BMI, kg/m2), proximity to
vital structures, and the surgeon’s expertise, were not comprehensively assessed. In the
future, evaluating these additional parameters using three-dimensional imaging techniques
(e.g., CBCT), and using larger datasets obtained from different centers may increase the
accuracy and generalizability of the model. The limitations of the developed software and
GUI include the possibility of performance degradation in devices with low hardware
capacity due to the high computational power required by the YOLO11 model, and the
fact that it cannot be generalized for other tooth types or difficulty assessment methods
because it focuses only on mandibular third molars and the Pederson difficulty index.

5. Conclusions

This study highlights the effectiveness of YOLO11 models in predicting mandibular
third molar extraction difficulty using panoramic radiographs and the Pederson diffi-
culty index. The YOLO11 nano and medium sub-models demonstrated a strong balance
between accuracy and efficiency. Their integration into a user-friendly GUI allows for
rapid assessment, improving surgical planning and patient management. Future research
should incorporate clinical factors and advanced imaging to enhance model accuracy and
applicability further.
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Abbreviations

The following abbreviations are used in this manuscript:
AI Artificial Intelligence
AP Average Precision
AUC-PRC Area Under the Precision-Recall Curve
AUROC Area Under the Receiver Operating Characteristic Curve
BMI body mass index
CBCT cone beam computed tomography
CLAHE Contrast-Limited Adaptive Histogram Equalization
CM confusion matrix
CNN convolutional neural network
FN False Negative
FP False Positive
F1-S F1 score
GUI graphical user interface
ICC Intraclass Correlation Coefficient
IAN inferior alveolar nerve
Img images
Ins instances
IoU Intersection over Union
MLP multilayer perceptron
mAP mean Average Precision
N/A Not Applicable
PNG Portable Network Graphics
PRs panoramic radiographs
P precision
R recall
ROI region of interest
SR super-resolution
TP True Positive
ViT Vision Transformer
YOLO You Only Look Once
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Abstract: Background/Objectives: Dental age estimation is a vital component of forensic
science, helping to determine the identity and actual age of an individual. However,
its effectiveness is challenged by methodological variability and biological differences
between individuals. Therefore, to overcome the drawbacks such as the dependence on
manual measurements, requiring a lot of time and effort, and the difficulty of routine
clinical application due to large sample sizes, we aimed to automatically estimate tooth age
from panoramic radiographs (OPGs) using artificial intelligence (AI) algorithms. Methods:

Two-Dimensional Deep Convolutional Neural Network (2D-DCNN) and One-Dimensional
Deep Convolutional Neural Network (1D-DCNN) techniques were used to extract features
from panoramic radiographs and patient records. To perform age estimation using feature
information, Genetic algorithm (GA) and Random Forest algorithm (RF) were modified,
combined, and defined as Modified Genetic–Random Forest Algorithm (MG-RF). The
performance of the system used in our study was analyzed based on the MSE, MAE, RMSE,
and R2 values calculated during the implementation of the code. Results: As a result of the
applied algorithms, the MSE value was 0.00027, MAE value was 0.0079, RMSE was 0.0888,
and R2 score was 0.999. Conclusions: The findings of our study indicate that the AI-based
system employed herein is an effective tool for age detection. Consequently, we propose
that this technology could be utilized in forensic sciences in the future.

Keywords: age estimation; dental age estimation; forensic odontology; deep learning;
machine learning; forensics; panoramic radiograph

1. Introduction

Identification of individuals represents a crucial area within the discipline of forensic
sciences [1,2]. The age of the individual in question carries significant weight in the process
of identification [3,4]. In instances of mass disasters, organized crime, and abuse cases, it is
imperative to ascertain the age of suspects and victims to facilitate their identification [5].
In the extant literature, the estimation of age in human history and forensic sciences has
consistently been highlighted as a research topic, with the objective of developing reliable
age estimation techniques for both living and deceased individuals [4].

The term chronological age is used to describe the time that has elapsed since an indi-
vidual’s date of birth. This is calculated by determining the dates of both the individual’s
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45



Diagnostics 2025, 15, 314

birth and death. In the absence of available data regarding the dates of birth and death, the
age of an individual can be estimated by examining the biological age of the individual in
question. The assessment of biological age is based on the physical development stages
of the individual or the changes that occur with aging. This assessment includes the de-
velopment of various systems such as height, weight, hair, skin, eyes, teeth, bones, and
secondary sex characteristics [6–8].

Dental tissues are the most durable part of the skeleton [9]. They are resistant to
extreme conditions and are preserved longer than bone [10]. For this reason, teeth are often
used in forensic science to estimate age [11]. Even in cases of major disasters, when the
victim’s body is so mutilated that it cannot be visually identified, the remains of skull bones,
jaw bones, and teeth have proven to be the most valuable source of identification [4,12].
Radiographic estimation of age and sex from radiographs of the jaw bones is considered
more feasible because it is a simple and less destructive method that can be applied to both
deceased and living cases [4,13].

A variety of methods, including morphological, metric, radio morphological, radio
metric, histological, and biochemical approaches, can be utilized for age estimation in
dental tissues [2,14,15]. However, further research is necessary to ascertain the applica-
bility and reliability of these methods across diverse populations [11]. The classic age
estimation methods rely on manual measurements and observer subjectivity, which are
time-consuming and prone to observer bias, potentially increasing the workload of forensic
experts and introducing subjectivity into the estimation process [16,17].

AI is defined as the capacity of a machine to imitate the cognitive processes and
behaviors observed in humans, enabling the completion of tasks that would otherwise
require human input. In recent years, the rapid development of AI has facilitated numerous
technological advancements that have enhanced the quality of life for many individuals.
Furthermore, AI has advanced rapidly in numerous medical domains, garnering signif-
icant interest in recent years, particularly within the radiology community. To date, the
implementation of AI in dental radiography has demonstrated considerable potential for
a multitude of applications. At this point, it can facilitate critical support for clinicians,
novice physicians, and students in the decision making process [18].

In recent years, studies based on AI have been conducted with the objective of automat-
ing tasks in dentistry. These include caries diagnosis and classification [19–28], automatic
diagnosis of dental diseases and conditions of the teeth [29], diagnostic evaluation and
segmentation in periapical radiographs [30], periodontal bone loss [31,32], implant plan-
ning [33], detection and classification of periapical pathologies [34], cephalometric analysis
and automatic detection of anatomical landmarks [35,36], detection of impacted mandibu-
lar third molars, and [37] to detecting and classifying impacted maxillary supernumerary
teeth [38–42]. Additionally, research has aimed to detect vertical root fractures [43,44],
classify osteoporosis [45–47], improve image quality [48–50], identify and classify odonto-
genic tumors and cysts [51,52], diagnose maxillary sinus pathologies [53–55], identify and
classify lymph node metastases [56,57], diagnose patients with Sjogren syndrome [58], and
detect oral cancer lesions [59].

AI also offers significant potential in the field of forensic sciences for data analysis
and ensuring the proper administration of justice [60]. These models have the potential
to be promising tools when identifying victims of mass disasters and as an additional
aid in medico-legal situations. In the literature, AI-based models have been reported to
show similar accuracy and precision as trained forensic scientists. It has been stated that
these models can be promising tools when identifying victims of mass disasters and as an
additional aid in medico-legal situations [61].
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The advent of deep learning represents a significant milestone in the evolution of AI
algorithms. Deep learning is a group of algorithms based on the structure of artificial neural
networks and defined as a sub-branch of machine learning. Deep learning algorithms offer
significant advantages in processing complex datasets and making sense of problems. These
algorithms simplify complex problems by classifying datasets in a hierarchical manner
through the use of multilayer artificial neural networks. A typical deep learning system
consists of an input layer representing the dataset of the problem, multiple hidden layers,
and an output layer. Hidden layers contain links that help to understand the relationships
in the dataset. This structure provides more effective results in solving complex problems
than classical AI algorithms [62].

Existing classic age estimation methods have been critiqued in the literature for several
shortcomings. Observer subjectivity has been identified as a potential source of error in age
estimation. Furthermore, manual measurement-based methods are time-consuming and
laborious. Additionally, the feasibility of implementing these methods in routine clinical
practice has been questioned due to the limited sample sizes typically used. Considering
the considerations, the present research endeavors to employ DM-based methodologies
for the processing of panoramic radiograph (OPG) images and patient records, with the
objective of estimating the age of individuals with the highest estimation rate.

This study utilized the Deep 2D CNN for feature extraction from OPG images and
Deep 1D CNN for feature extraction from patient records, hence establishing a dual-feature
extraction process resulting in a more robust and comprehensive representation of patient
data. Following that, employing a concatenate strategy to merge features from these two
approaches enhanced the predictive performance of age estimation models. Furthermore,
the study proposes an MG-RF regressor that combines the optimization ability of the GA
with RF algorithm. It can minimize overfitting, enhance the detection rate, and utilize
genetic indications via chromosomes, affording numerous optimal solutions. The study
implemented this innovative methodology specifically for pediatric age estimation, a vital
task in both medical and forensic fields. Regarding these advantages, the present work
considers this AI-based methodology for age estimation.

The primary objectives of this study were as follows:

• To extract pertinent features from OPG images and patient records, employing inno-
vative approach that combines Deep 2D CNN with a Deep 1D CNN. The extracted
features were then concatenated to improve the accuracy of age estimation;

• To achieve the highest coefficient of determination (R2) for age estimation by leverag-
ing an MG-RF regressor;

• To evaluate the efficiency of the proposed methodology with respect to standard
deviation (SD), mean absolute error (MAE), mean square error (MSE), root mean
square error (RMSE), and R2.

2. Related Work

In recent years, AI-based methodologies have been developed with the objective of
overcoming these limitations and automating the age estimation process. These approaches
yield consistent and reproducible results and facilitate reduced processing times. These
approaches are deemed capable of detecting attributes that are not recognizable to human
observers and are not feasible for manual computation. Moreover, the substantial benefits
in identifying intricate relationships between features facilitate more accurate predictions
with diminished error rates [17,63,64]. AI-based approaches in the literature are generally
categorized as machine learning, deep learning, or a combination of these two methodolo-
gies [17]. The objectives of these studies include numerical age regression [16,17,65–71],
staging of teeth [72–74], classification of age groups [75,76], and legal age classification [77].
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Galibourg et al. [66] conducted a study with a machine learning approach for numer-
ical age regression. The researchers employed ten machine learning methods, including
Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Bayesian Ridge
Regression (BRR), K-Nearest Neighbors (KNN), AdaBoost (ADAB), Polynomial Regression
(POLYREG), Multi-Layer Perceptron (MLP), Stacking (STACK), and Voting (VOTE). The
researchers reported that age estimation using machine learning methods yielded superior
results compared to manual methods based on radiographic dental staging from childhood
to early adulthood.

In addition, one study employed Scaled-YOLOv4 to detect dental germs with 8023
panoramic radiographs as training data, achieving MAP, EfficientNetV2, and M classifiers
for the developmental stages of detected dental germs using 18,485 single-root and 16,313
multi-root images. This approach yielded superior outcomes for multi-root classifications.
The MAE between automatic and manual dental age calculations using different methods
was 0.274 for single selection, 0.261 for weighted average, and 0.396 for the expected value,
with the weighted average demonstrating the most optimal performance [78].

Similarly, Tao et al. [67] employed machine learning for numerical age regression. The
researchers employed an MLP for this purpose. It was demonstrated that the proposed
system exhibited superior performance compared to the reference manual methods across
all performance metrics.

A DL model, designated as DentAge, was developed for the automated estimation of
age using panoramic dental X-ray images. This model was trained on a dataset comprising
21,007 images from a private dental center in Slovenia, encompassing subjects ranging in
age from 4 to 97 years. The model attained an MAE of 3.12 years across the test dataset,
thereby substantiating its efficacy in age estimation under varied dental conditions [79].

Shen et al. [68] employed machine learning for numerical age regression, utilizing RF,
SVM, and linear regression (LR). The findings of the study indicated that age estimation
accuracy was superior in machine learning methods compared to traditional methods.

De Tobel [72] employed a deep learning approach for staging teeth, with transfer
learning (Alex-Net) demonstrating the most effective performance for staging.

Boedi et al. [73] employed the Dense Net machine learning algorithm. The objec-
tive of the present study was to ascertain and validate the impact of lower third molar
segmentations on automatic tooth development staging. The study’s findings led to the
conclusion that full tooth segmentation and DenseNet CNN optimization facilitate the
accurate allocation of dental stages.

Banar et al. [74] employed a CNN that was similar in structure to the You Only Look
Once (YOLO) algorithm, in conjunction with the U-Net CNN and the DenseNet201 CNN.
The objective of this study is to automate the staging process in its entirety, utilizing CNN
at each stage of the procedure. The results demonstrate that the proposed fully automated
approach yields promising outcomes in comparison to manual staging.

In their study, Kim et al. [75] employed a deep learning approach, ResNet 152, for
the classification of age groups. The accuracy of the tooth-wise prediction was found to
be between 89.05 and 90.27 percent. The performance accuracy was primarily assessed
through the use of the majority voting system and area under the curve (AUC) scores. The
AUC scores ranged from 0.94 to 0.98 for all age groups, indicating a superior capability.

Dong et al. [76] developed a methodology for identifying tooth maturity stages in fully
permanent dentition. This methodology features a YOLOv3-based tooth localization model
for detecting and numbering teeth, a symmetric ordinal staging network (SOS-Net) that
enhances feature representation while minimizing parameters, and an auxiliary regression
branch with adjacent stage-aware (ASA) loss to reduce misclassification. The efficacy of
this methodology was evaluated using a private OPG dataset comprising subjects between
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the ages of 3 and 14 years. The experimental results obtained demonstrated enhanced
F1-scores, thereby surpassing contemporary state-of-the-art methodologies in terms of
maturity staging and age estimation.

Guo et al. [77] employed the SE-ResNet101 model to ascertain the legal age groups.
It was reported that end-to-end CNN models demonstrated superior performance, with
accuracy rates of 92.5%, 91.3%, and 91.8% for age thresholds of 14, 16, and 18 years,
respectively. To-end CNN models demonstrated superior performance, with accuracy rates
of 95.9%, 95.4%, and 95.4% for age thresholds of 14, 16, and 18 years, respectively.

Čular et al. [69] employed a combination of Deep Learning Active Shape Model (ASM),
Active Appearance Model (AAM), and Radial Basis Network algorithms for the purpose of
numerical age regression. In this study, the researchers proposed a semi-automated system
based on deep learning techniques to predict tooth age by analyzing the mandibular right
third molar tooth on OPGs.

De Back et al. [70] applied deep learning and Bayesian convolutional neural networks
methods for numerical age regression. The system achieved a concordance correlation
coefficient of ccc = 0.91 in the validation set.

A three-step framework for estimating dental age in children aged 3 to 15 was also
developed. This framework includes the following elements: the employment of a YOLOv3
network for tooth localization and numbering, the achievement of a mean average precision,
and the establishment of a novel SOS-Net for accurate tooth development staging based on
a modified Demirjian method. The result of these efforts was an average accuracy of 82.97%
for full dentition. In addition, a dental age assessment was conducted through a single-
group meta-analysis, yielding an MAE of 0.72 years when excluding third molars [80].

Wallraff et al. [71] employed the ResNet18 algorithm. In this study, a supervised
regression-based deep learning method for automatic age estimation of adolescents aged
11 to 20 years was proposed as a means of reducing the estimation error. In an initial
investigation, the proposed methodology demonstrated a mean absolute error (MAE)
of 1.08 years and an error rate (ER) of 17.52% on the test dataset, exhibiting superior
performance compared to the predictions of dental experts.

In their study, Vila-Blanco et al. [65] employed Rotated R-CNN algorithms to propose
a novel, fully automatic methodology for age and gender estimation. The method initially
employs a modified CNN to detect teeth and extract oriented bounding boxes for each
tooth. These boxes are then fed into a second CNN module, designed to produce probability
distributions of age and gender per tooth. Finally, an uncertainty-sensitive approach is used
to aggregate these estimated distributions, resulting in an improvement in the absolute
error rate.

3. Materials and Methods

This study was approved by the Pamukkale University Non-Interventional Clini-
cal Research Ethics Committee (E-60116787-020-202083/26 April 2022). The study was
conducted in accordance with the principles set forth in the Declaration of Helsinki.

In this study, feature extraction is individually performed using the proposed Deep
2D CNN and Deep 1D CNN. In addition, MG-RF is proposed for estimating the age.
The proposed methodologies estimate age through the sequence of processes shown in
Figure 1. Initially, the dataset was loaded. Subsequently, pre-processing was undertaken
to make the data easier to interpret and use. This process also assisted in eliminating
the duplicates or inconsistencies in the data that could otherwise negatively impact the
prediction rate of the model. Preprocessing the data also assisted in ensuring that there
were no missing or incorrect data due to bugs or human error. Following this, feature
extraction was performed for eliminating the redundant data. Deep 2D CNN was used
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to extract the features from OPG images. Simultaneously, Deep ID CNN was utilized to
extract features from patient records. These features were individually extracted and then
concatenated to attain suitably efficient features for better age estimation using MG-RF.
Finally, performance metrics were utilized to validate the effectiveness of the proposed
system in comparison to existing methods.

 

Figure 1. Overall view of the proposed system. Feature extraction is a key step in machine learning
and data analysis, that is colored to emphasize its role on transferring data in between Deep CNN
and Deep 1D CNN. Modified random forest regression is a type of supervised learning algorithm
that employs an ensemble approach to tackle regression tasks.

3.1. Dataset Description

The present study included all systemically healthy patients between the ages of 6
and 15 years who had undergone an OPG in the correct position, yielding an OPG free
of artifacts and distortions that was clearly evaluable, and who did not have any dental
deficiencies and dental restorations. The archive of the Department of Oral, Dental and
Maxillofacial Radiology, Faculty of Dentistry, Pamukkale University, was the source of
the data. The dataset was created between 1 March 2020 and 1 March 2022. The patients’
chronological age was calculated by subtracting the date of birth from the date of the OPGs.

OPGs were obtained with a digital orthopantomograph (OP200D; Instrumentarium
Company, Imaging Unit, Tuusula, Finland) with exposure values between 66 kVp, 2.5 mA,
and 13.4 s and 60 kVp, 6.3 mA, and 14.1 s. The OPGs were subsequently evaluated using
AI algorithms.

The dataset consists of OPGs and corresponding patient records intended for research
purposes and utilized in real-time applications. It includes patients within a specific age
range, as indicated by the average ages of males and females, highlighting a focus on a
particular developmental stage. Both genders are represented, and images are selected
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based on clinical relevance, such as the presence of dental conditions or anomalies, ensuring
that only high-quality OPGs with sufficient diagnostic value are included. The distribution
of images in the dataset, which consists of orthopantomogram (OPG) images and patient
records, is characterized by the features of 275 male and 346 female patients, suggesting a
minimum of 621 images if one image per patient is assumed. Out of 275 male patients, the
average age is 10.94, while out of 346 female, average age is 11.1.

3.2. Preprocessing

The preprocessing pipeline for patient data comprises several essential steps to ensure
high-quality input for DL models. Initially, data cleaning is performed to eliminate any
missing information, followed by the application of a normalization approach, such as min–
max scaling for OPG images and Z-score method for patient records (numeric data). The
min–max technique is applied to adjust the pixel intensity values of images, transforming
the data into a specified range, generally as [0, 1]. The Z-score method is employed to
convert numerical data into a standard normal distribution, thereby facilitating more
efficient analysis. Consequently, this step enhances the quality of the input image, leading
to an improved prediction accuracy.

3.3. Feature Extraction: Deep Two-Dimensional Convolution Neural Network and Deep
One-Dimensional Convolution Neural Network

Recently, DL has gained paramount significance in the medical domain, as it possesses
the capability for handling huge data. Thus, this study employed two Deep CNN models to
perform feature extraction. The Deep 2D CNN model was applied to extract features from
OPG images, while Deep 1D CNN was utilized for extracting features from the patient
records. After extracting individual features, these were concatenated and fed into the
trained model for age estimation.

3.3.1. Deep 2D CNN: Deep Two-Dimensional Convolutional Neural Network

Deep 2D CNN is a standard CNN and has obtained use in extensive application areas
of deep CNN. It has numerous advantages. The CNNs possess the capability to integrate
the feature extraction and classification process into one learning body. It can also learn
to perform feature optimization during the training stage from raw input. Deep CNN
are sparsely associated with connected weights and could process many inputs with high
computational efficacy. These are also immune to trivial conversions in input data inclusive
of translation, skewing, scaling, and distortion. Deep CNNs could also adapt to varied
input sizes. Generally, Deep 2D CNN is employed on images, and its overall architecture
is shown in Figure 2, which comprises numerous layers, such as batch normalization,
maxpooling, dropout, flatten, and dense layers. It is called 2D CNN, with kernel slides
with two data dimensions.

Feature extraction from OPG images is performed by Deep 2D CNN based on the
below procedure.

1. Input Layer

Features from pre-processed data are declared as an input of Deep 2D CNN and are
given by Equation (1).

X = [x1, x2, x3, . . . , xnumF] (1)

In Equation (1), represents the feature count per window after computation. To
enhance the speed of model’s convergence, min–max normalization is used (as shown in
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Equation (2)), by which values in the individual data dimension are linearly converted.
Then, they are normalized to a range of [0, 1].

x =
x − min

max − min
(2)

In Equation (2), represents minimum of individual column, while represents the
maximum of the individual column.

Figure 2. Overall architecture of Deep 2D CNN.

2. Convolution layer

The output from the feature map residing on the unit of the convolution layer is given
by Equation (3).

xl,j
i = σ

(
bj + ∑m

a=1wj
axl−1, j

i+a−1

)
(3)

where represents the bias for feature map, size of kernel is indicated by, indicates the weight
of feature map, represents filter-index, and represents activation function.

3. Maxpooling layer

The pooling layer gives descending aggregation measurements for the adjacent out-
come that could minimize the dimension as well as the output sensitivity, accomplishing
scale invariant feature maintenance. Maxpooling is the pooling function utilized in this
study that divides the convolutional layer’s output features into various partitions and
determines the maximum in the individual partition. The output of this layer is given by
Equation (4).

xl,j
i = maxr

pos=1

(
xl−1,j
(i−1)∗Tps

)
(4)

In Equation (4), indicates pooling stride, and represents the pooling size.

4. Training the model

Deep CNN comprises numerous layers, such as Conv2D, batch normalization, max-
pooling 2D, dropout, flatten, and dense layers. Then, input is mapped into the feature space
of the hidden layer. Finally, the dense layer integrates varied features of local structure
learned from the lower layer for performing final prediction. This study used a single pair
of a convolution layer and a maxpooling 2D layer. Subsequently, the 2D data are flattened
into 1D data; in this way, the overall neural network is completed with a dense layer and is
given by Equation (5).

f(x) = argmaxcls(
exl−1wj

∑N
n=1 exl−1wps

) (5)

In Equation (5), indicates class label, represents features of a sample, indicates layer
index, and indicates the class count. Further, forward propagations are processed in
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accordance with Equations (3) and (5). The information proliferates forward from the input
layer by the hidden layer to the output layer and thereby accomplishes the output of the
overall network. Moreover, an iteration of forward propagation affords the network error
value. Cross-entropy cost function computes the error value as given in Equation (6).

L(y) = − 1
n∑x[ylna + (1 − y)ln(1 − a)] (6)

In Equation (6), indicates sample, represents total training samples, and indicates
actual value, while represents predicted value. The overall algorithm of Deep 2D CNN is
given in Algorithm 1.

Algorithm 1: Deep 2D CNN

1 Input: OPG Images
2 Output: Features
3 STEP 1: Sliding Window Process
4 STEP 2: sef ← Extract Shadow Features
5 STEP 3: Normalize sef using equation (2)
6 regularization feature data, size = 64 Units–128 Units
7 repeat:
8 STEP 4: Forward Propagation
9 cdf ← Convolution2D(sef);
10 mp ← Max_pooling(cdf);
11 fc ← Fully_connected(mp);
12 class label ← relu(fc);
13 STEP 5: Backward Propagation
14 conduct backward propagation with Adam;
15 Until wi convergences;// wi: weight
16 STEP 6: Use the trained network to predict the features

Initially, OPG images are taken as input. Then, the sliding window process is per-
formed. Following this, the shadow features are extracted. Then, these features are
normalized and regularized using Equation (2). Subsequently, forward and backward
propagation is performed until the weight converges. Finally, the trained model is used for
predicting features.

3.3.2. Deep 1D CNN: Deep One-Dimensional Convolutional Neural Network

Deep 2D CNN is an altered version of Deep 1D CNN, which has gained interest in
recent times. It requires minimum computational requirements and is suited for low-cost
and real-time applications. Though mainstream models mostly rely on 2D convolution,
the main idea of 1D CNN is almost the same. The main variation is that 2D convolution
operates with information of the matrix, wherein 1D convolution operates with 1D vector
information and can be expressed by the following:

xl = conv1d(wl−1, xl−1) + bl (7)

In Equation (7), represents the results, and indicates bias.
Non-linear functions are added to fit the actual function in a better way. So, the overall

outcome is indicated as follows:
yl = f(xl) (8)

In Equation (8), represents ReLU activation functions or sigmoid functions.
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In CNNs, there exists a significant concept called receptive fields, which represents the
region where input data could be viewed by features of the CNN. When (3 × 1) kernel size
is utilized, the initial hidden layer can view the three characteristic original data values,
and the subsequent hidden layer can view five characteristic original data values. Thus,
utilizing two (3 × 1) convolution kernels instead of single convolution kernel having size
(5 × 1) could minimize the parameters while confirming that a similar receptive area is
attained. In accordance with this idea, the block below was framed using numerous small
kernels for extracting features.

3.3.3. Feature Concatenation

After features were extracted from OPG images and patient records, they were con-
catenated, and these features were fed into train and test split for age estimation. The
total number of OPG images was 622, and total number of records was also 622. Out of
622 OPG images, 60 images were extracted, while out of 622 patient records, 15 features
were extracted. Upon concatenating, a total of 75 features were obtained.

3.4. Regression-MG-RF (Modified Genetic–Random Forest)

Generally, GA (Genetic Algorithm) is a general-purpose and optimization search
method relying on genetic theory and the natural selection of Darwin in biological systems.
In this algorithm, the population individually is called a chromosome, which relates to a
resolution for a specific issue. The individual chromosome indicates a combination of DT
(Decision Tree), so the length of an individual chromosome indicates total DT, and when DT
possesses a value of 1, DT is retained, while value 0 represents that DT is denounced. On
the other hand, RF adds additional randomness to model while developing trees. Rather
than searching a significant feature during node split, it searches the suitable feature within
a random feature subset. This leads to extensive diversity and a better model. Due to such
advantages, this study considered GA and RF together as MG-RF to estimate age by the
specific, distinct process shown in Figure 3.

Initially, features are normalized, wherein the numeric column values in the dataset
are changed to common form without distorting variations in value ranges. This assists in
solving the learning challenges of a model. After this, feature ranking is performed using
RF for considering important features. Following this, Compact Genetic Algorithm (cGA)
is initialized. Subsequently, multiple RF models are created with chromosomes. Then, the
fitness value is evaluated using the selection, crossover, and mutation processes of GA.
These operations transform the chromosome’s initial population, improving the quality.
The selection represents the process that chooses parents that mate and then reunite for
developing offspring for the succeeding generation. This is vital for the convergence of
GA, based on which it can obtain the best solutions. The selection process uses fitness
for controlling chromosome evolution. Maximum fitness affords more chances to select
optimal solutions, whereas crossover involves the integration of the genetic material as
well as the elite position chosen for the crossover operation. Further, mutation is employed
in a chromosome at the individual position. Finally, the fitness value is assessed, and the
current feature is recorded. Then, the feature subset is evaluated. For a specific issue,
the fitness function improves the chromosome quality as a solution. Hence, it assists in
attaining better age estimation. The overall algorithm of GA is shown in Algorithm 2.
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Figure 3. Overall workflow of Modified Genetic–Random Forest.

Algorithm 2: Genetic algorithm

1 Input: (it, n, GA Parameters)
2 STEP 1: begin
3 STEP 2: Initialize c = 0 and i = 0,
4 STEP 3: Generation: generate random n solutions;
5 STEP 4: Compute Fitness(s) and Generation c;
6 STEP 5: While fitness not reached compute for i iterations do
7 Generation c + 1 evolve(Generation c);
8 STEP 6: fitness computeFitness (s) and Generation c;
9
10
11
12

i = i + 1;
end
return (solution fitness)
end

At first, the parameters are initialized. Then, random solutions are generated. Subse-
quently, fitness and generation are computed. When a suitable fitness value is not found,
iterations are performed until the best fitness solution is attained. After finding this value,
the best parameters are attained through the use of the obtained best fitness value. The
algorithm corresponding to this process is shown in Algorithm 3.

Algorithm 3: Modified fitness computation

1 Input: Dataset(D), Chromosome
2 Output: MAE of the Random Forests
3 STEP 1: begin
4 STEP 2: Ds—Dataset;
5 STEP 3: Compute kvalues, num_trees, mtry by decoding (Chromosome);
6 Dc—decompose the set as (Ds, kvalues);
7 STEP 4: Fitnessmodel—RF fit(Dc,num_trees,mtry);
8 STEP 5: Rank the feature using RF Regressor
9
10
11

STEP 6: MAE—evaluate(model)
STEP 7: return (MAE);
end
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Initially, the dataset and chromosome are taken as input. Then, they are computed
by decoding. Following this, the sets are decomposed. Subsequently, the fitness model is
determined. After this, the features are ranked using an RF regressor. Finally, the MAE of a
model is assessed. Lastly, the best parameters are attained from GA, as shown in Table 1.

Table 1. Best parameters from GA.

Best Parameters from Genetic Algorithm

max_depth’ [10]
max_features’ [sqrt]

min_samples_leaf’ [4]
min_samples_split’ [10]

n_estimators’ [600]

After extraction of the best parameters, the optimized solution is obtained based
on Algorithm 4.

Algorithm 4: Optimized Random Forest

1 Input: minK, maxK, minNTree, maxNTree, treeIncrement, RF best, RF fit
2 Output: Optimized RF
3 STEP 1: begin
4 STEP 2: Compute computeFitness(s) and Generation c;
5 STEP 3: Evaluate fitness and return fitness,
6 STEP 4: MAE (Fit RF best)
7 STEP 5: Fit RF best = Optimized RF
8 STEP 6: Optimized RF(D) = solution
9 end

At first, the input is considered. Then, the fitness value is computed. Following this,
the fitness value is evaluated and returned. Subsequently, the fitness value is assessed to
determine the solution. After this, the hyperparameters for RF are attained, as shown in
Table 2.

Table 2. Hyperparameters for RF.

Hyperparameters For RF

‘max_depth’ [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None]
‘max_features’ [‘auto’, ‘sqrt’]

‘min_samples_leaf’ [1, 2, 4]
‘min_samples_split’ [2, 5, 10]

‘n_estimators’ [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]

The main stages involved in the outcome of the optimized RF are summarized below.
Step 1: Modified genetic RF

MG-RF is trained, and the fitness value is evaluated with GA. In this phase, the classes
obtained are optimized in accordance with GA, and this attains the input for RF that
calculates the fitness of individual trees in a forest. Iteration continues until the optimized
trees are determined.

Step 2: Fitness calculation

In this stage, the overall fitness of trees is assessed based on the values attained through
decoding the chromosomes. The decomposed class obtained from phase 2 is assessed for
its fitness value with ranked features corresponding to MAE score.
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Step 3: Optimized RF

The optimized RF is attained from integration of GA (with the assistance of selection,
crossover, and mutation processes) and multiple class decompositions.

Step 4: Termination

The operation is terminated after obtaining the optimal RF.
Step 5: Outcome

This stage involves predicted data for estimating age.
Hyperparameter tuning exerts a substantial influence on the performance of deep

learning DL models. The integration of the GA with the RF algorithm not only enhances
the predictive accuracy but also improves interpretability. The GA method was used to
adjust the hyperparameters of the Random Forest to improve its regression accuracy.

Additionally, GA was designed to optimize dental age estimation, and the population
size was set at 20 individuals, allowing for a diverse representation of potential solutions.
The algorithm was run for 50 generations, providing ample opportunity for the population
to evolve and improve over time. The fitness function utilized was the MSE, calculated
on validation data, ensuring that the solutions were evaluated based on their predictive
accuracy. To select individuals for reproduction, tournament selection was employed,
which enhanced the chances of selecting high-quality solutions. The crossover rate was set
at 0.8, thereby facilitating a robust exchange of genetic material between parent solutions,
while a mutation rate of 0.1 introduced variability and aided in the prevention of premature
convergence. This structured approach was designed to effectively navigate the solution
space and achieve optimal results.

The following Table 3 describes the number of layers and size of the kernel utilized in
the Deep 2D CNN and Deep 1D CNN architecture. Accordingly, the Deep 2D CNN analyses
the OPG images with four convolutional layers, with progressively increasing filter counts,
followed by maxpooling and fully connected layers. The Deep 1D CNN processes patient
records with three convolutional layers, each generating a 128-unit feature vector as output.
The output features from each network are then combined in a fusion layer. Following that,
the outcome is fed into an MG-RF regressor to enhance the predictive accuracy.

Table 3. Components in Deep CNN architecture.

Model Component Details

Deep 2D CNN Input Layer Input size: (224, 224, 3) (Resized OPG Images)

Convolutional Layers

Conv1: 32 filters, kernel size (3 × 3), ReLU
Conv2: 64 filters, kernel size (3 × 3), ReLU

Conv3: 128 filters, kernel size (3 × 3), ReLU
Conv4: 256 filters, kernel size (3 × 3), ReLU

Pooling Layers Maxpooling after each convolutional block, pool size (2 × 2)
Fully Connected Layer Dense layer: 512 units, ReLU activation

Output Layer Dense layer: 128 units (feature vector), Linear activation
Deep 1D CNN Input Layer Input size: Variable (Patient Records)

Convolutional Layers
Conv1: 16 filters, kernel size (5), ReLU
Conv2: 32 filters, kernel size (3), ReLU
Conv3: 64 filters, kernel size (3), ReLU

Pooling Layers Global Maxpooling layer after final convolutional layer
Fully Connected Layer Dense layer: 256 units, ReLU activation

Output Layer Dense layer: 128 units (feature vector), Linear activation
Feature Fusion Concatenation Layer Combines 128-unit outputs from both Deep 2D CNN and Deep 1D CNN

Modified Genetic-RF Feature Input 256 features (128 from Deep 2D CNN + 128 from Deep 1D CNN)

Regressor

Random Forest with Genetic Algorithm optimization: -
Number of Trees: 100

Maximum Depth: Optimized by Genetic Algorithm- Split Criterion: Mean
Squared Error
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4. Results

This study utilized the OPG images and patient records within the dataset. A real-
time dataset was considered for this research work. Some sample OPG images from the
dataset are shown in Figure 4. Out of 275 males, the average age was 10.94, while out of
346 females, the average age was 11.1.

 
Figure 4. Sample OPGs from the dataset.

4.1. Performance Metrics

The metrics considered for analysis of the proposed methods are discussed in
this section.

4.1.1. SD (Standard Deviation)

Standard deviation represents the computation of dispersion or variation on a particu-
lar set of values. Minimum standard deviation denotes that values incline to be close to the
mean of set, whereas maximum standard deviation denotes that values are extended on a
wide range, as given by Equation (9).

σ =

√
∑(xi − μ)2

N
(9)

In Equation (9), σ indicates standard deviation, N represents the population size, μ
indicates mean of the population, and xi denotes the individual value from the population.

4.1.2. MAE (Mean Absolute Error)

This is an assessment metric of a model utilized with regression models. The MAE
of a model in terms of the test set could be indicated as the mean of the absolute values
corresponding to the individual errors of prediction upon cases of the test set, afforded by
Equation (10).

MAE(Mean Absolute Error) =
∑n

i=1|predicted value − actual value|
n

(10)

In Equation (10), n represents the overall data points.
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4.1.3. MSE (Mean Square Error)

This explores the closeness of a set of regression lines and points, as given in
Equation (11).

MSE =
1
n∑n

i=1(observed values − predicted values) (11)

4.1.4. R2 (Coefficient of Determination)

The coefficient of determination refers to computation of the goodness of model fit.
In regression, R2 indicates the statistical computation of the degree to which regression
predictions determine the actual data points. When R2 = 1, it means that the regression
estimations perfectly fit the corresponding data, as given by Equation (12).

R2 = 1 − Sum(squares of the residuals)
Total sum of the squares

(12)

4.1.5. RMSE (Root Mean Square Error)

The RMSE is the ideal accuracy calculation that only compares model configurations
or prediction errors of diverse models for specific variables. It is given by Equation (13).

RMSE =

√
∑N

i=1(actual time series observation − predicted time series observation)2

N
(13)

In Equation (13), N represents overall non-missing data-points, and i indicates
the variable.

4.2. Performance Analysis

In this study, the performance of the proposed system was evaluated based on the
mean MSE, MAE, RMSE, and R2 values calculated during the implementation of the code.
The efficacy of a system is gauged by its maximum prediction rate and minimum error
rate. In this regard, the maximum R2 score serves as a measure of the proposed system’s
effectiveness. In this study, the MSE value of the proposed system was 0.00027, the MAE
value was 0.0079, the RMSE value was 0.0888, and the R2 score was 0.999. This is shown
in Figure 5. A comparative analysis of the predicted and actual values is presented in
graphical form in Figures 6 and 7.

Figure 5. Analysis of the proposed system with respect to metrics. In statistics, the mean squared
error of an estimator (of a procedure for estimating an unobserved quantity) measures the average of
the squares of the errors—that is, the average squared difference between the estimated values and
the true value. Mean absolute error is a measure of errors between paired observations expressing
the same phenomenon. R-squared (R2) score is defined as a number that tells you how well the
independent variable(s) in a statistical model explains the variation in the dependent variable.
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Figure 6. Actual vs. predicted values for proposed model.

 
Figure 7. Plot showing variation degree between the actual and predicted values.

Figure 6 presents a scatter plot, which is a graphical representation of the relationship
between actual and predicted values in regression analysis, thereby indicating the perfor-
mance of the model. A model that functions optimally aligns points along the diagonal,
where the predicted value is equivalent to the actual value. This is referred to as “Regres-
sion Performance of Actual vs. Predicted”. The figure includes an x-axis, which represents
actual values, and a y-axis, which represents predicted values. Blue points denote actual
values, while red points represent predicted values. The substantial overlap of red points
with the blue points, indicating strong model accuracy, is evident in the figure. This overlap
is further demonstrated by the majority of red points aligning with the diagonal line y = x
without bias, suggesting a high degree of model accuracy.

5. Discussion

In the field of forensic science, the determination of an individual’s age is of paramount
importance. Consequently, the methodology employed must be both reliable and accurate.
This indicates that the degree of accuracy should be high, and the mean discrepancy
between dental age and chronological age should be as minimal as feasible [66].

An existing study [78] employed a two-stage approach with the efficientNetV2 model
for automatic dental age estimation. It obtained outcomes with MAE 0.274, MSE 0.261,
and expected value 0.396. Similarly, another study [81] implemented the estimation of
age using an ML approach only on OPG images. The model performance was analyzed
with InceptionV4 and achieved MAE metrics of 3.1 and an R2 value of 95.5%. Another
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existing study [79] implemented the DentAge model based on a DL approach for predicting
chorological age. It used a transfer learning strategy for training the model with gradient
descent features. It attained an MAE of 3.12 years and MAE of 1.94 for the age group
between 10 and 20.

However, the current study employed DL models such as Deep 2D CNN for spatial
features from OPG images and Deep 1D CNN for extracting sequential data from patient
records. Moreover, an MG-RF regressor was employed to enhance the predictive accuracy
and obtained a low MAE of 0.0079, RMSE of 0.0888, and R2 of 0.999. Hence, the proposed
model indicates efficiency in automatically predicting dental age estimation and is suitable
for the forensic field.

The age estimation methods that have been documented in the existing literature are
based on the evaluation of specific indicators that assess the stage of dental development
that the individual has reached. The earliest known studies on this subject are dated
to the 19th century [17]. One of the earliest methods based on dental indicators is the
Schour and Massler method, which was developed in 1941. This method involves the
morphological evaluation of tooth development through the use of diagrams that illustrate
the expected developmental stages of deciduous and permanent teeth [82]. Subsequently,
Nolla et al. [83] developed a ten-stage chart for age estimation, which was considered an
important milestone in the field of age estimation, prompting the rapid development of
new methods [11,17,83–85]. Currently, in the literature, the most commonly used methods
for age estimation in children are reported to be the Willems and Demirjian methods [66].

Demirjian et al. [84] developed a method that can be used as a universal tool for
assessing dental maturity and estimating dental age in children. Demirjian’s method is the
first in the literature to provide visualization of the stages of tooth development, descriptive
criteria, radiographic examples of each stage, and selection rules for decision making at
borderline stages. In the Willems method, the stages of tooth development described in the
Demirjian method are used to estimate tooth age by means of maturity tables that provide
the age in years directly [11,84,85].

The classical methods that have been introduced in the literature have been developed
through the analysis of large datasets comprising a large number of participants. How-
ever, these methods have several shortcomings, including the fact that results are often
population-specific and rely on time-consuming manual procedures that are susceptible to
observer subjectivity [16,86].

A further limitation of classical manual radiologic tooth age estimation techniques
is that they lack the requisite number of stages to enable the closest possible monitoring
of the growth process. Another disadvantage is the difficulty in selecting a method that
allows researchers to distinguish teeth that are not sufficiently differentiated in terms of
developmental stage [16].

The objective of the research was to estimate the age of patients from a real-time
dataset comprising patient records and OPG images using AI-based methodologies. This
study employed Deep CNN with 1D and 2D architectures for feature extraction and an
MG-RF method for estimating age. The proposed system was evaluated by examining the
discrepancies between the actual and predicted values. The results demonstrated a strong
correlation between the two variables. Furthermore, the performance of this system was
evaluated in comparison to that of the conventional system in terms of MAE, RMSE, MSE,
SD, and R2 score. The analytical outcomes revealed that the proposed system outperformed
the conventional system, exhibiting an SD rate of 0.0004, an MAE rate of 0.0079, an MSE
rate of 0.00027, an RMSE value of 0.0888, and an R2 value of 0.9999.

The performance of the reference methods and machine learning algorithms utilized
in the study conducted by Galibourg et al. [66] was evaluated with analogous metrics to
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those employed in our study, namely R2, MAE, RMSE, and SD. The researchers reported
that age estimation with machine learning methods demonstrated superior performance
compared to manual methods based on radiographic tooth staging from childhood to early
adulthood. The results of the study are presented in Table 4, along with a comparison to
the findings of our study.

Table 4. Comparison of the findings of Galibourg et al.’s [66] study with the findings of our study.

Methods SD MAE MSE RMSE R2

Demirjian −0.705 1.108 1.981 1.406 0.816
Willems −0.220 0.928 1.418 1.190 0.868

BRR −0.002 0.812 1.030 1.014 0.904
SVM 0.016 0.729 0.901 0.949 0.916
DT −0.012 0.758 0.973 0.985 0.910
RF −0.007 0.731 0.885 0.940 0.918

KNN 0.009 0.738 0.921 0.959 0.915
MLP −0.041 0.742 0.907 0.952 0.916

POLYREG −0.008 0.735 0.913 0.955 0.915
ADAB −0.025 0.796 1.001 1.000 0.907
STACK −0.013 0.733 0.904 0.950 0.916
VOTE 0.068 0.770 0.995 0.984 0.908

The proposed method 0.0004 0.0079 0.00027 0.0888 0.9999

The study of Galibourg et al. [66] was carried out with a methodology based entirely
on machine learning. The Demirjian and Willems methods were used as the explanatory
system in the training of the machine learning system. These methods focus on the left
seven mandibular permanent teeth for age estimation.

Our study was carried out with the aim of performing age estimation on OPG sections
containing the left seven mandibular permanent teeth in a fully automatic manner without
any explanatory system. From the radiographs and patient records that constitute the
dataset of our study, feature extraction was performed using 1D-DCNN and 2D-DCNN
architecture from deep learning methods. In the regression step, RF and GA methods were
modified and combined, and age estimation was performed.

When our study is compared with the study of Galibourg et al. [66], in terms of
performance, it is observed that our study has a superior performance than the manual
predictions and all machine learning approaches evaluated in the related study. In addition,
it was found that the MAE value decreased significantly with the system used in our study.
It is thought that the reason for the decrease in the MAE value may be due to the use of
deep learning algorithms in the feature extraction step of our study due to the perception
by deep learning algorithms of various age-related indicators that cannot be detected by
the human eye, and thus, more information is transferred to the MG-RF algorithm. In
the MG-RF step, the RF algorithm reduces the similarity between individual trees as a
methodology. For this reason, the robustness of the final model was increased by the
selection of the point of departure from a random subset of the input features at each step
in the tree-building process. In addition, in our study, it is thought that the integration
of four different approaches into the system together with the use of machine learning
techniques following deep learning processes resulted in a significant decrease in the error
rate and a significant increase in the performance of the system.

In our study, age estimation was performed completely automatically without using
any explanatory reference system. The fact that our method eliminates the disadvantages of
exposure to human interpretation and the subjectivity of human observers by automating
the age estimation task can be argued as a distinct advantage of our study. In addition, the
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fact that no explanatory system is used and that it is an automatic method makes our study
easy to use, fast, and reproducible.

Tao et al. [67] proposed a machine learning-based approach to improve the accuracy
of tooth age estimation in 2020 using a dataset of 1636 OPGs of 787 male and 849 female
individuals aged 11 to 19 years. In the study, tooth age estimation was considered as a
regression problem.

In the methodology of the study, manual measurements were first performed using the
Demirjian method and the Willems method. The attributes were determined by entering
the real ages of the patients into the system. Then, the MLP algorithm, which is a feed-
forward artificial neural network from machine learning approaches, was trained with these
features, and experiments were conducted. The performance of the proposed system was
evaluated using MAE, MSE, and RMSE metrics. It was reported that the proposed system
outperformed the reference manual methods in terms of all performance metrics [67]. The
findings of the study and the findings of our study are presented in Table 5.

Table 5. Comparison of the findings of Tao et al.’s study [67] with the findings of our study.

Male RMSE MSE MAE Female RMSE MSE MAE

Demirjian 1.596 2.548 1.307 Demirjian 1.677 2.812 1.364
Willems 1.602 2.556 1.291 Willems 1.788 3.196 1.407

MLP 1.332 1.775 0.990 MLP 1.617 2.616 1.261
The proposed method 0.8888 0.00027 0.0079 The proposed method 0.8888 0.00027 0.0079

The findings of our study, as indicated by the RMSE, MSE, and MAE metrics, demon-
strate significantly enhanced performance in comparison to the results obtained for both
female and male groups in the study conducted by Tao et al. [67]. This discrepancy may be
attributed to the fact that the group under examination in our study comprises younger
individuals (6–15 years old) as well as the variations in the age distribution of these in-
dividuals. Given that age indicators of growth and development decline with age, it is a
well-established fact that studies in the field of age estimation obtain more accurate results
with younger study populations [17].

In our study, it is thought that the combination of deep learning and machine learning
methods significantly enhanced the performance. The use of deep learning techniques
allows for the establishment of connections that are not discernible to the human eye,
thereby enabling the inclusion of age indicators that cannot be calculated manually in
the system under study. It can be proposed that this may be the source of the observed
improvement in the system’s performance. Furthermore, we employed an automated
system that is not contingent on any explanatory framework. Therefore, our method has
the advantages of being fast, repeatable, and less susceptible to human interpretation.

In their 2021 study, Shen et al. [68] employed a series of machine learning systems to
estimate age. The dataset utilized in the study comprised 748 OPGs of 356 female and 392
male individuals between the ages of 5 and 13. The study employed a methodology based
on random forest (RF), support vector machines (SVM), and linear logistic regression (LR).
The machine learning models were trained with the manually realized Cameriere method
as an explanatory system and gender information. The target value was set to the subject’s
chronological age. The accuracy of the proposed systems for estimating age was evaluated
based on the following metrics: R2, ME, RMSE, MSE, and MAE. The results were then
compared with those obtained using the European and Chinese formulas of the Cameriere
method, which were employed in the training of the system. The findings of the study and
the findings of our study are shown in Table 6 [68].
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Table 6. Comparison of the findings of Shen et al.’s [68] study with the findings of our study.

Methods MAE MSE RMSE R2

LR 0.553 0.488 0.698 0.909
SVM 0.489 0.392 0.625 0.925
RF 0.495 0.389 0.623 0.928

Cameriere Method
(European Formula) 0.846 0.755 0.869 -

Cameriere Method
(Chinese Formula) 0.812 0.89 0.943 -

The proposed method 0.0079 0.0002 0.0888 0.9999

The performance of the systems proposed in the study is comparable to that observed
in our own study in terms of the R2 value. It is, however, noteworthy that the error rates
of the systems proposed by Shen et al. are significantly higher than those observed in
our study with respect to the other performance metrics evaluated. It is thought that this
discrepancy may be attributed to the utilization of deep convolutional neural networks in
the feature extraction phase of the present study, the incorporation of certain age indicators
that cannot be discerned by the human eye, and the combination of numerous techniques.

In 2017, Čular et al. [69] conducted a study utilizing OPGs of 203 individuals between
the ages of 10 and 25. In this study, the researchers proposed a semi-automated system
based on deep learning techniques to estimate tooth age by examining the mandibular right
third molar on OPGs. The researchers employed two statistical computer vision models,
namely the Active Shape Model (ASM) and the Active Appearance Model (AAM), which
have been extensively utilized in face recognition, gender estimation, and medical image
interpretation and feature extraction in previous studies, to extract the features describing
the right mandibular wisdom teeth selected for this investigation. In the training set, the
images were manually segmented. In the study, the extracted features were presented
as input to an artificial neural network, specifically the Radial Basis Network, and age
estimation was performed as the output. The findings of the age estimation performance
of the study were evaluated using the mean absolute error (MAE) in years. The findings
of that study indicated that the system demonstrated superior performance when AAM
feature extraction was employed. Although AGM was reported to perform better in this
study, it was reported that the age estimation performance of the system was adversely
affected when AAM and ASM were applied together [69].

The researchers noted that the MAE value of less than 3 years represents a promising
preliminary result. Should the prediction error be reduced in future studies, the system
proposed in their study may prove a viable option for use within the scope of forensic
sciences. Furthermore, the researchers indicated that the system proposed in their study
offers two key advantages: minimal user input and the ability to function without the input
of an experienced dentist [69]. The findings of the study and the findings of our study are
shown in Table 7.

Table 7. Comparison of the findings of Čular et al.’s [69] study with the findings of our study.

MAE SD

AAM 2.481 2.148
AGM 2.283 2.168

The proposed method 0.0079 0.0004

A direct comparison between our study and that of Čular et al. [69] is not feasible
due to differences in methodology and age group. As there is a greater number of age
indicators of growth and development in younger individuals within the existing literature,
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the MAE value is typically reported to be lower in studies involving this age group. The
present study focuses on individuals between the ages of 6 and 15. Accordingly, the
lower MAE value observed in our study relative to that reported by Čular et al. is an
anticipated outcome.

In contrast to the present study, the fact that our study does not entail a manual
step such as segmentation over radiographs while estimating age can be demonstrated as
an advantage of the system utilized in our study. Furthermore, as our study employed
OPG sections encompassing the left seven mandibular permanent teeth, the third molars,
which are the most common congenitally missing teeth, were not required, thus conferring
another advantage to our study.

In 2021, Wallraff et al. [71] conducted a study on automatic age estimation to reduce the
estimation error, which is a disadvantage of traditional manual age estimation methods. In
this study, the researchers proposed a deep learning system based on supervised regression
to perform age estimation. The study was conducted on 14,000 OPGs of individuals
between the ages of 11 and 20. The system proposed in the study uses raw OPGs as input.
Images do not need to be pre-processed and cropped. The researchers reported that the
focus of this study was individuals 11–20 years of age, as teeth develop in a predictable
pattern during the first two decades of life. Radiographs in the dataset that were affected by
various external factors, such as low-contrast images, diseases, and jaw malpositions, were
not excluded. In this study, age estimation was considered as a regression problem, and
the ResNet18 algorithm was used as the network architecture in the proposed system. The
MAE of the proposed system was reported to be 1.08, with an SD of +1.41 and an error rate
of 17.52%. The researchers stated that the dataset in their study provided comprehensive
data for the age range of 11–20 years and that individuals aged 0–20 years should be
included in the proposed system in the future [71].

As indicated in the literature, age-related indicators tend to decline as growth and
development progress, resulting in lower error rates in studies that examine younger age
groups. In the study conducted by Wallraff et al. [71], individuals below the age of 11 were
excluded from the analysis. A comparison of our study with that of Wallraff et al. revealed a
significantly lower MAE value for our study. It is postulated that this finding is attributable
to the fact that our study focused on younger individuals.

In their 2020 study, Vila-Blanco et al. proposed a method based on deep learning
algorithms for fully automatic age estimation from OPGs. This method was designed to
overcome the limitations of traditional methods, which are affected by observer subjectivity
and time-consuming manual operations. The study was conducted on OPGs of 2289 indi-
viduals from a Spanish population with an age range of 4.5 to 89 years. Only OPGs of the
requisite quality were included in the study. In contrast to other studies in the literature, this
study did not exclude OPGs with any of the following: orthodontic brackets or appliances,
dentures, implants, restorative materials, fillings, endodontic treatment, foreign bodies
such as caries, missing teeth, residual tooth roots, or earrings and external elements such as
distorted or blurred images. The images in question were identified as defective within the
system. In this study, convolutional neural networks from deep learning algorithms were
employed as the methodology. Two distinct network architectures, namely DANet and
DASNet, were devised for the purposes of this study. These architectures were designed
and trained specifically for the purpose of age estimation in the context of this study [16].

The results of the study indicate a strong correlation between the DANet and DASNet
systems and age. The coefficient of determination was R2 = 0.87 for DANet and R2 = 0.90
for DASNet. In the assessment of the data across all age groups, MAE was found to
be 2.84 years. As the age of the individuals decreased, the MAE value was found to be
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0.78 years for DANet and 0.75 years for DASNet in the group of individuals younger than
15 years.

In contrast to the methodology employed by Vila-Blanco et al. [16], our study utilized
an OPG section encompassing seven left mandibular permanent teeth as the input data for
the system. In the study conducted by Vila-Blanco et al. [16], the raw OPGs were utilized
as the input data, and no exclusion criteria were employed. However, radiographs with
inadequate acquisition quality were designated as defective and submitted to the system.
The present study was conducted using high-quality radiographs of individuals without
any dental or bony pathology. It is believed that this contributed to the success of the
system used in our study.

With regard to the age group under examination, our study encompasses a much
younger population than that considered by Vila-Blanco et al. Given that developmental
age indicators are more prevalent in younger age groups, it may be posited that the superior
performance of the Vila-Blanco et al. study can be attributed to the findings of our study.
Moreover, the integration of deep learning and machine learning methodologies is believed
to be a contributing factor to the enhanced performance of the system in our study.

A series of ablation experiments was conducted to assess the contribution of the
components utilized in our study to the overall model performance and to enhance inter-
pretability. Upon evaluating the method proposed in the current study, it was observed
that the highest performance was achieved with a low mean absolute error (MAE) of 0.0079
and a high R2 of 0.999. These findings underscore the efficacy of the proposed method and
underscore the critical role of feature fusion. Table 8 provides a comprehensive overview of
the performance of various experimental configurations, facilitating a nuanced evaluation
of the proposed work using performance metrics.

Table 8. Ablation experiment result.

Experiment Configuration MAE MSE RMSE R2

Proposed Method (Full) 0.0079 0.0002 0.0888 0.9999
Without Deep 2D CNN 0.0125 0.0008 0.1414 0.9985
Without Deep 1D CNN 0.0113 0.0006 0.1225 0.9989

Without Feature Concatenation 0.0150 0.0012 0.1732 0.9978
Using Only Deep 2D CNN 0.0132 0.0009 0.1500 0.9982
Using Only Deep 1D CNN 0.0148 0.0011 0.1667 0.9979

6. Conclusions

The application of AI methodologies has the potential to significantly reduce the
time required for the resolution of complex problems. Moreover, these systems provide
consistent and reproducible high-performance results.

The proposed systems with deep learning algorithms show exceptional performance
due to their capacity to distinguish features that are imperceptible to the human eye
and to discern the relationships between these features. However, the underlying logic
behind the outstanding performance of these systems has not yet been fully elucidated,
which constitutes a disadvantage for the interpretability of these systems. As in other
studies in this area, interpretability is a limitation in our study. In order to address this
limitation, a series of ablation experiments was conducted with the objective of enhancing
interpretability. To increase interpretability and enhance the efficiency and reliability of real-
world applications, in future work, we will use methodologies such as Class Activation
Maps (CAM) to gain real-time insights into model predictions, interactive dashboards
integrating SHAP and LIME visualizations, and Deep LIFT and Integrated Gradients to
provide more understandable explanations of deep model predictions.
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The present study focuses on individuals aged 6–15 years. In the field of forensic
sciences, accurate age estimation is paramount, particularly in cases involving legal issues
related to age and identification of elderly individuals. This represents a limitation of the
present study. In subsequent studies, efforts will be directed towards the development of
automatic age estimation methods for study populations that include individuals belonging
to older age groups.

In conclusion, contemporary AI-based techniques in the field of forensic sciences
have reached a point where they are capable of providing substantial assistance to human
analysts. It is of significant importance to conduct future studies that will test the poten-
tial of these techniques to supplant human analysts and to elucidate the reasons behind
their performance.
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Abstract: Introduction: Cleft lip and palate patients often present with unique anatomical challenges,
making dental anomaly detection and numbering particularly complex. The accurate identification
of teeth in these patients is crucial for effective treatment planning and long-term management.
Artificial intelligence (AI) has emerged as a promising tool for enhancing diagnostic precision, yet
its application in this specific patient population remains underexplored. Objectives: This study
aimed to evaluate the performance of an AI-based software in detecting and numbering teeth in cleft
lip and palate patients. The research focused on assessing the system’s sensitivity, precision, and
specificity, while identifying potential limitations in specific anatomical regions and demographic
groups. Methods: A total of 100 panoramic radiographs (52 males, 48 females) from patients
aged 6 to 15 years were analyzed using AI software. Sensitivity, precision, and specificity were
calculated, with ground truth annotations provided by four experienced orthodontists. The AI
system’s performance was compared across age and gender groups, with particular attention to areas
prone to misidentification. Results: The AI system demonstrated high overall sensitivity (0.98 ± 0.03)
and precision (0.96 ± 0.04). No statistically significant differences were found between age groups
(p > 0.05), but challenges were observed in the maxillary left region, which exhibited higher false
positive and false negative rates. These findings were consistent with the prevalence of unilateral left
clefts in the study population. Conclusions: The AI system was effective in detecting and numbering
teeth in cleft lip and palate patients, but further refinement is required for improved accuracy in the
cleft region, particularly on the left side. Addressing these limitations could enhance the clinical
utility of AI in managing complex craniofacial cases.

Keywords: artificial intelligence; cleft lip and palate; tooth detection; tooth numbering

1. Introduction

The early detection and accurate classification of dental anomalies in individuals
with cleft lip and palate is crucial for effective treatment planning and improved patient
outcomes. Early identification of dental abnormalities allows for timely intervention and
customized treatment strategies, which can significantly enhance the overall quality of
care and long-term outcomes for these patients. Individuals with cleft lip and palate often
exhibit a range of dental anomalies, including missing teeth, ectopic eruption, and mal-
formed tooth structure [1]. The presence of such anomalies complicates the identification of
teeth, particularly in the cleft region, and can impede the delivery of comprehensive dental
care [2]. Artificial intelligence (AI) encompasses a wide range of computational methods
and technologies designed to mimic human intelligence. Among these, convolutional neu-
ral networks (CNNs) are a specific type of deep learning model that excel in image analysis
tasks [3–5]. Advancements in AI have shown promise in automating and enhancing the
identification and classification of dental features, offering a potential solution to streamline
the diagnostic process [6–8].
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In fixed prosthodontics, AI-based techniques have demonstrated the ability to accu-
rately detect and classify dental margins, a critical step in the design and fabrication of
dental restorations. Similarly, in removable prosthodontics, convolutional neural networks
have been used to classify dental arches, providing valuable insights for treatment plan-
ning [9]. Moreover, AI has been applied in various other areas of dentistry, from diagnostic
dentistry and patient management to orthodontics and radiology, offering improved effi-
ciencies, precision, and patient-centric care. However, the successful integration of AI in
routine dental practice faces several challenges, including limited data availability, lack
of methodological rigor, and practical concerns around the value and usefulness of these
solutions [10].

Nonetheless, the potential of AI-based software to enhance the identification and
classification of dental anomalies in cleft lip and palate patients is promising [11]. By
automating and optimizing the diagnostic process, AI-based tools could ultimately lead
to more personalized, predictive, and preventive dental care, ultimately improving the
quality of life for individuals with this complex craniofacial condition [12–18].

Panoramic radiographs are critical for the initial diagnosis of dental abnormalities in
cleft lip and palate patients. However, interpreting these radiographs can be challenging,
even for experienced clinicians, due to the anatomical complexity and presence of dental
anomalies [15]. Several studies have explored the use of AI-based programs for tooth
detection and numbering on panoramic radiographs, reporting that deep convolutional
neural network systems demonstrate high sensitivity and precision in these tasks [16–18].
To the best of our knowledge, no studies to date have investigated the application of AI-
based software for tooth detection and numbering specifically in individuals with cleft lip
and palate. This study aims to evaluate the performance of an artificial-intelligence-based
application in identifying and classifying teeth in patients with this craniofacial condition.
The null hypothesis of this study is that the performance of the AI-based software in
detecting and numbering teeth in cleft lip and palate patients does not differ significantly
from expert ground truth annotations, irrespective of age or gender.

2. Materials and Methods

This retrospective study examined a set of panoramic radiographs from individuals
in mixed dentition with cleft lip and palate, obtained from the archives of the Yeditepe
University Faculty of Dentistry, Department of Orthodontics, taken from March 2019
to June 2024. A power analysis was conducted using the G*Power 3.1.9.7. (G*Power,
Düsseldorf, Germany) software protocol [19]. Based on sensitivity and specificity values
from a reference study [18], with a 95% confidence level (1 − α), 95% test power (1 − β),
sensitivity of 0.9559, and specificity of 0.9652, the minimum sample size required for this
study was calculated to be 90 participants. Therefore, a total of 100 (52 males, 48 females)
individuals in mixed dentition (mean age 8.18 ± 2.24 years) with unilateral or bilateral cleft
lip and palate were included in this study. To assess the impact of age-related differences
in dental development, these patients were divided into three groups: 6–7 years, 8–9 years,
and 10 years and older. These groups were selected due to the significant dental changes
that occur during the mixed dentition period.

Panoramic radiographs that exhibited artifacts related to metal superposition, position-
ing errors, movement, or image distortion were excluded from the analysis. Radiographs of
patients with additional severe craniofacial anomalies or those who had undergone surgical
interventions affecting dental structures were also excluded. However, radiographs that
displayed typical cleft-associated dental anomalies such as missing, rotated, or supernu-
merary teeth in the cleft region were included to ensure the study’s focus on cleft-related
dental challenges. Ethical approval was obtained from the Non-Interventional Clinical
Research Ethics Committee of Yeditepe University (Approval Number: 202311Y0694). The
study was conducted in accordance with the principles of the Declaration of Helsinki.

All panoramic radiographs were obtained using the Morita Veraviewepocs (Morita
Corp., Kyoto, Japan) and subsequently uploaded to the Diagnocat software (DC, Diagnocat
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LLC, San Francisco, CA, USA, https://diagnocat.com/ accessed on 24 November 2024).
A radiologic report for each radiograph was generated, which served as the basis for the
automatic evaluation (Figure 1). Teeth detection and numbering were performed according
to the FDI notation and analyzed by five different orthodontists. In this study, ground truth
annotations, manual identification, and the labeling of the correct positions and numbering
of teeth, were provided by one orthodontist with 20 years of experience, two with 10 years
of experience, and two with 4 years of experience. These annotations served as the reference
standard for evaluating the performance of the AI-based software.

Figure 1. Teeth detection and numbering by the software.

The commercially available AI system used in this study, Diagnocat, is based on
deep learning methods, specifically CNNs, which are a type of deep learning architecture
designed to process and analyse visual data by identifying patterns and features within
images. In the context of dental imaging, these networks are trained to detect and number
teeth by recognizing anatomical structures in panoramic radiographs. Diagnocat includes
various specialized modules, such as region of interest (ROI) localization and tooth lo-
calization and numeration, which enhance its diagnostic capabilities. These modules are
supported by state-of-the-art CNN architectures trained on extensive datasets of cone beam
computed tomography (CBCT) scans and panoramic radiographs.

To assess the success of the AI model in tooth detection and numbering, the following
procedures and metrics, based on two prior studies in the literature [17,18], were employed:

Initially, the true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) rates were calculated:

• True Positive (TP): The model correctly detects and identifies teeth.
• False Positive (FP): The model detects teeth correctly but assigns the wrong number.
• False Negative (FN): The model fails to detect or incorrectly identifies teeth.
• True Negative (TN): The model correctly identifies areas where no teeth are present.

Using these values, the following metrics were calculated:

• Sensitivity: TP/(TP + FN)
• Precision: TP/(TP + FP)
• F1 Score: 2TP/(2TP + FP + FN)
• False Discovery Rate: FP/(FP + TP)
• False Negative Rate: FN/(FN + TP)
• Error: Instances where the model incorrectly identifies a tooth in an irrelevant anatom-

ical region where no tooth is present.
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Statistical Analysis

The data were analyzed using IBM SPSS version 23.0 software (IBM Corp., Armonk,
NY, USA). The normality of the data distribution was evaluated using the Shapiro–Wilk and
Kolmogorov–Smirnov tests. For comparisons between two independent groups, an inde-
pendent samples t-test was employed for normally distributed variables, while the Mann–
Whitney U test was used for non-normally distributed variables. For comparisons among
three or more groups, one-way ANOVA was applied for normally distributed variables,
with post hoc comparisons performed using Duncan and Tamhane tests. For non-normally
distributed variables, the Kruskal–Wallis test was utilized, with post hoc comparisons con-
ducted using the Dunn test. The results of the analyses are presented as mean ± standard
deviation for normally distributed variables, and median for non-normally distributed
variables. A significance level of p < 0.05 was considered statistically significant.

3. Results

A total of 100 patients with cleft lip and palate (52 males, 48 females) were included in
this study. Among the male patients, 30 (57.7%) had unilateral clefts, with 21 (40.4%) on
the left side and 9 (17.3%) on the right side, while 22 (42.3%) had bilateral clefts. Among
the female patients, 29 (60.4%) had unilateral clefts, with 19 (39.6%) on the left side and
10 (20.8%) on the right side, and 19 (39.6%) had bilateral clefts. Table 1 summarizes the
descriptive statistics for the variables studied across all patients included in the study.

Table 1. The descriptive statistics for the variables studied across all patients included in the study.

Mean ± SD Median (Min–Max)

True Positive 31.78 ± 4.96 33 (20–43)
False Positive 1.17 ± 1.31 1 (0–5)

False Negative 0,81 ± 1.02 1 (0–6)
True Negative 0.51 ± 0.69 0 (0–3)

Errors 1.03 ± 1.08 1 (0–4)
Sensitivity 0.98 ± 0.03 0.97 (0.83–1)
Precision 0.96 ± 0.04 0.97 (0.83–1)
F1 Score 0.97 ± 0.03 0.97 (0.86–1)

False Discovery Rate 0.04 ± 0.04 0.03 (0–0.17)
False Negative Rate 0.02 ± 0.03 0.03 (0–0.17)

SD, Standard Deviation.

3.1. Intraclass Correlation Coefficient (ICC)

The consistency between evaluators was assessed using the intraclass correlation
coefficient (ICC). The ICC values indicated strong reliability, with intra-rater reliability
ranging between 0.96 and 1, and inter-rater reliability ranging from 0.95 to 0.98. To assess
intra-rater reliability, each evaluator randomly selected and re-evaluated 25 panoramic
radiographs 15 days after the initial assessment. This high level of agreement confirms the
accuracy and reliability of the ground truth annotations, which served as the gold standard
for evaluating the AI system’s performance in tooth detection and numbering.

3.2. Sensitivity and Precision Across Age Groups

With the ground truth annotations established as the reference standard, the AI
system’s sensitivity and precision were evaluated across the three age groups (Table 2).
Sensitivity values were consistently high across all groups, with no statistically significant
differences observed between the age groups (p = 0.840). Similarly, precision values showed
no statistically significant differences among the groups (p = 0.172).
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Table 2. Comparison of the AI system’s sensitivity, precision, and specificity across the three
age groups.

Age Group
Test Statistics p *

6–7 Years 8–9 Years 10 and More Years

True Positive
33.86 ± 4.38 31.67 ± 3.51 26.63 ± 5.97

23.810 <0.001 *
35 (22–41) c 32 (24–38) b 25 (20–43) a

False Positive
1 ± 1.27 1.19 ± 1.27 1.56 ± 1.5

1.859 0.395
1 (0–5) 1 (0–4) 1.5 (0–4)

False Negative

0.83 ± 0.85 0.83 ± 1.23 0.69 ± 0.87

0.660 0.7191 (0–3) 0.5 (0–6) 0 (0–2)

36 (25–43) c 33 (28–39) b 27 (20–45) a

True Negative
0.48 ± 0.63 0.57 ± 0.77 0.44 ± 0.63

0.293 0.864
0 (0–2) 0 (0–3) 0 (0–2)

Errors
0.83 ± 0.96 1.26 ± 1.27 0.94 ± 0.68

2.354 0.308
1 (0–3) 1 (0–4) 1 (0–2)

Sensitivity

0.98 ± 0.02 0.97 ± 0.04 0.98 ± 0.03

0.349 0.8400.97 (0.92–1) 0.99 (0.83–1) 1 (0.92–1)

0 (0–0.07) 0 (0–0.12) 0 (0–0.08)

Precision
0.97 ± 0.04 0.96 ± 0.04 0.94 ± 0.05

3.521 0.172
0.97 (0.83–1) 0.97 (0.86–1) 0.94 (0.85–1)

F1 Score
0.97 ± 0.03 0.97 ± 0.03 0.96 ± 0.03

2.727 0.256
0.97 (0.89–1) 0.98 (0.86–1) 0.96 (0.91–1)

False Discovery Rate
0.03 ± 0.04 0.04 ± 0.04 0.06 ± 0.05

3.521 0.172
0.03 (0–0.17) 0.03 (0–0.14) 0.06 (0–0.15)

False Negative Rate
0.02 ± 0.02 0.03 ± 0.04 0.02 ± 0.03

0.349 0.840
0.03 (0–0.08) 0.01 (0–0.17) 0 (0–0.08)

* p = Kruskal–Wallis test; mean ± standard deviation; median (minimum–maximum) a–c: groups with the same
letter have no statistically significant difference.

3.3. True Positive, False Positive, and False Negative Rates

Comparisons of true positive, false positive, and false negative rates between groups
are shown in Table 2. The true positive rates, correctly representing detected teeth, showed
significant variation between the age groups (p < 0.001). The older group exhibited sig-
nificantly lower true positive rates compared to the younger groups, likely due to the
complexity of dental structures in older patients. The false positive rate, which reflects
the incorrect detection of teeth, showed no statistically significant differences across the
age groups (p = 0.395). However, tooth number 21 had the highest false positive rate at
16%, while tooth number 62 had the highest false negative rate at 11%. This finding is
particularly important, as it aligns with the fact that the majority of our patient population
had unilateral left clefts, where the AI system may face more challenges in detecting teeth.
Similarly, the false negative rate was consistent across age groups (p = 0.719).
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3.4. F1 Score and Error Rate

The F1 score, a metric combining sensitivity and precision, was calculated for all
age groups (Table 2). The F1 score remained consistently high across all groups, with no
statistically significant differences observed between the age groups (p = 0.256). Similarly,
the error rate, which reflects instances where the model falsely identifies teeth in non-dental
regions, did not show significant differences between the age groups (p = 0.308).

3.5. Gender Comparisons

Gender comparisons for sensitivity, precision, and F1 score are presented in Table 3,
with no statistically significant differences observed between male and female participants
(p = 0.119, p = 0.441, and p = 0.827, respectively). However, although not statistically
significant, there was a notable difference in the false negative rates between genders
(p = 0.079), with males showing slightly higher values compared to females.

Table 3. Gender comparisons for sensitivity, precision, and F1 score.

Gender

Test Statistics p *Male Female

Mean ± SD
Median

(Min–Max)
Mean ± SD

Median
(Min–Max)

True Positive 31.58 ± 5.21 33 (20–43) 32 ± 4.71 33 (22–41) 1195.5 0.716

False Positive 1.08 ± 1.23 1 (0–4) 1.27 ± 1.4 1 (0–5) 1155.5 0.503

False Negative 1.02 ± 1.21 1 (0–6) 0.58 ± 0.71 0 (0–2) 1013 0.079

True Negative 0.44 ± 0.61 0 (0–2) 0.58 ± 0.77 0 (0–3) 1152 0.448

Errors 1.02 ± 1.06 1 (0–4) 1.04 ± 1.11 1 (0–4) 1246 0.988

Sensitivity 0.97 ± 0.04 0.97 (0.83–1) 0.98 ± 0.02 1 (0.92–1) 1035 0.119

Precision 0.96 ± 0.04 0.97 (0.85–1) 0.96 ± 0.05 0.97 (0.83–1) 1140 0.441

F1 Score 0.97 ± 0.03 0.97 (0.86–1) 0.97 ± 0.03 0.98 (0.89–1) 1216.5 0.827

False Discovery Rate 0.04 ± 0.04 0.03 (0–0.15) 0.04 ± 0.05 0.03 (0–0.17) 1140 0.441

False Negative Rate 0.03 ± 0.04 0.03 (0–0.17) 0.02 ± 0.02 0 (0–0.08) 1035 0.119

* p = Mann–Whitney U test; mean ± standard deviation; median (minimum–maximum); p > 0.05.

3.6. Age and Gender-Specific Performance

The performance of the AI system was further analyzed by dividing the participants
by gender and age groups (Tables 4 and 5). The results indicate that some significant
differences were observed across different age and gender groups:

• The 6–7 years age group: Female participants showed a significantly lower false
negative rate (p = 0.0004) and higher sensitivity (p = 0.0006) compared to males.

• The 8–9 years age group: Male participants exhibited higher precision (p = 0.0036) and
a lower false discovery rate (p = 0.0036) than females.

• The 10+ years age group: No significant differences were observed between males and
females in this age group.
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Table 4. Comparison of variables by gender within each age group.

Age Group

Gender

Test
Statistics

pMale Female

Mean ± SD
Median

(Min–Max)
Mean ± SD

Median
(Min–Max)

6–7 years

True Positive 33.29 ± 4.21 34 (26–39) 34.24 ± 4.54 35 (22–41) 181.5 0.425 *

False Positive 1 ± 0.94 1 (0–3) 1 ± 1.47 0 (0–5) 184.5 0.444 *

False Negative 1.29 ± 0.85 1 (0–3) 0.52 ± 0.71 0 (0–2) 107 0.004 *

True Negative 0.53 ± 0.62 0 (0–2) 0.44 ± 0.65 0 (0–2) 192.5 0.555 *

Errors 0.59 ± 0.71 0 (0–2) 1 ± 1.08 1 (0–3) 172.5 0.270 *

Sensitivity 0.96 ± 0.02 0.97 (0.92–1) 0.98 ± 0.02 1 (0.94–1) 110 0.006 *

Precision 0.97 ± 0.03 0.97 (0.9–1) 0.97 ± 0.05 1 (0.83–1) 189 0.527 *

F1 Score 0.97 ± 0.02 0.97 (0.91–1) 0.98 ± 0.03 0.99 (0.89–1) 140 0.059 *

False Discovery Rate 0.03 ± 0.03 0.03 (0–0.1) 0.03 ± 0.05 0 (0–0.17) 189 0.527 *

False Negative Rate 0.04 ± 0.02 0.03 (0–0.08) 0.02 ± 0.02 0 (0–0.06) 110 0.006 *

8–9 years

True Positive 32.57 ± 3.69 33 (24–38) 30.58 ± 3.02 30 (25–37) 140 0.046 *

False Positive 0.87 ± 1.18 0 (0–4) 1.58 ± 1.3 1 (0–4) 138.5 0.034 *

False Negative 1 ± 1.54 0 (0–6) 0.63 ± 0.68 1 (0–2) 212 0.858 *

True Negative 0.43 ± 0.66 0 (0–2) 0.74 ± 0.87 1 (0–3) 176.5 0.230 *

Errors 1.35 ± 1.3 1 (0–4) 1.16 ± 1.26 1 (0–4) 199.5 0.618 *

Sensitivity 0.97 ± 0.05 1 (0.83–1) 0.98 ± 0.02 0.97 (0.94–1) 218.5 1.000 *

Precision 0.97 ± 0.04 1 (0.86–1) 0.95 ± 0.04 0.97 (0.86–1) 137.5 0.036 *

F1 Score 0.97 ± 0.04 0.99 (0.86–1) 0.96 ± 0.02 0.97
(0.91–0.99) 139.5 0.045 *

False Discovery Rate 0.03 ± 0.04 0 (0–0.14) 0.05 ± 0.04 0.03 (0–0.14) 137.5 0.036 *

False Negative Rate 0.03 ± 0.05 0 (0–0.17) 0.02 ± 0.02 0.03 (0–0.06) 218.5 1.000 *

10 and
more years

True Positive 27.25 ± 6.77 25 (20–43) 24.75 ± 1.89 25.5 (22–26) 22.5 0.854 *

False Positive 1.58 ± 1.62 1.5 (0–4) 1.5 ± 1.29 1.5 (0–3) 24 1.000 *

False Negative 0.67 ± 0.89 0 (0–2) 0.75 ± 0.96 0.5 (0–2) 22.5 0.839 *

True Negative 0.33 ± 0.49 0 (0–1) 0.75 ± 0.96 0.5 (0–2) 18 0.394 *

Errors 1 ± 0.74 1 (0–2) 0.75 ± 0.5 1 (0–1) 19.5 0.543 *

Sensitivity 0.98 ± 0.03 1 (0.93–1) 0.97 ± 0.04 0.98 (0.92–1) 22 0.789 *

Precision 0.94 ± 0.06 0.95 (0.85–1) 0.95 ± 0.04 0.94 (0.9–1) 24 1.000 *

F1 Score 0.96 ± 0.03 0.96 (0.91–1) 0.96 ± 0.02 0.96
(0.93–0.98) 0.166 0.870 **

False Discovery Rate 0.06 ± 0.06 0.05 (0–0.15) 0.05 ± 0.04 0.06 (0–0.1) 24 1.000 *

False Negative Rate 0.02 ± 0.03 0 (0–0.07) 0.03 ± 0.04 0.02 (0–0.08) 22 0.789 *

* Mann–Whitney U test; ** independent samples t-test; mean ± standard deviation; median
(minimum–maximum).
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Table 5. Comparison of variables across age groups within each gender.

Gender
Age Group Test

Statistics
p

6–7 Years 8–9 Years 10 and More Years

Male

True Positive
33.29 ± 4.21 32.57 ± 3.69 27.25 ± 6.77

9.868 0.007 *
34 (26–39) a 33 (24–38) a 25 (20–43) b

False Positive
1 ± 0.94 0.87 ± 1.18 1.58 ± 1.62

1.795 0.408 *
1 (0–3) 0 (0–4) 1.5 (0–4)

False Negative

1.29 ± 0.85 1 ± 1.54 0.67 ± 0.89

4.516 0.105 *1 (0–3) 0 (0–6) 0 (0–2)

36 (30–42) 35 (28–39) 28 (20–45)

True Negative
0.53 ± 0.62 0.43 ± 0.66 0.33 ± 0.49

0.744 0.689 *
0 (0–2) 0 (0–2) 0 (0–1)

Errors
0.59 ± 0.71 1.35 ± 1.3 1 ± 0.74

4.067 0.131 *
0 (0–2) 1 (0–4) 1 (0–2)

Sensitivity

0.96 ± 0.02 0.97 ± 0.05 0.98 ± 0.03

3.805 0.149 *0.97 (0.92–1) 1 (0.83–1) 1 (0.93–1)

0 (0–0.07) 0 (0–0.07) 0 (0–0.04)

Precision
0.97 ± 0.03 0.97 ± 0.04 0.94 ± 0.06

1.853 0.396 *
0.97 (0.9–1) 1 (0.86–1) 0.95 (0.85–1)

F1 Score
0.97 ± 0.02 0.97 ± 0.04 0.96 ± 0.03

2.287 0.319 *
0.97 (0.91–1) 0.99 (0.86–1) 0.96 (0.91–1)

False Discovery Rate
0.03 ± 0.03 0.03 ± 0.04 0.06 ± 0.06

1.853 0.396 *
0.03 (0–0.1) 0 (0–0.14) 0.05 (0–0.15)

False Negative Rate
0.04 ± 0.02 0.03 ± 0.05 0.02 ± 0.03

3.805 0.149 *
0.03 (0–0.08) 0 (0–0.17) 0 (0–0.07)

Female

True Positive
34.24 ± 4.54 30.58 ± 3.02 24.75 ± 1.89

17.548 <0.001 *
35 (22–41) b 30 (25–37) a 25.5 (22–26) a

False Positive
1 ± 1.47 1.58 ± 1.3 1.5 ± 1.29

3.798 0.150 *
0 (0–5) 1 (0–4) 1.5 (0–3)

False Negative

0.52 ± 0.71 0.63 ± 0.68 0.75 ± 0.96

0.566 0.753 *0 (0–2) 1 (0–2) 0.5 (0–2)

36 (25–43) 33 (29–39) 27 (24–30)

True Negative
0.44 ± 0.65 0.74 ± 0.87 0.75 ± 0.96

1.543 0.462 *
0 (0–2) 1 (0–3) 0.5 (0–2)

Errors
1 ± 1.08 1.16 ± 1.26 0.75 ± 0.5

0.160 0.923 *
1 (0–3) 1 (0–4) 1 (0–1)
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Table 5. Cont.

Gender
Age Group Test

Statistics
p

6–7 Years 8–9 Years 10 and More Years

Female

Sensitivity

0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.04

0.943 0.624 *1 (0.94–1) 0.97 (0.94–1) 0.98 (0.92–1)

0 (0–0.06) 0.03 (0–0.12) 0.02 (0–0.08)

Precision
0.97 ± 0.05 0.95 ± 0.04 0.95 ± 0.04

4.822 0.090 *
1 (0.83–1) 0.97 (0.86–1) 0.94 (0.9–1)

F1 Score
0.98 ± 0.03 0.96 ± 0.02 0.96 ± 0.02

7.435 0.024 *
0.99 (0.89–1) 0.97 (0.91–0.99) 0.96 (0.93–0.98)

False Discovery Rate
0.03 ± 0.05 0.05 ± 0.04 0.05 ± 0.04

4.822 0.090 *
0 (0–0.17) 0.03 (0–0.14) 0.06 (0–0.1)

False Negative Rate
0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.04

0.943 0.624 *
0 (0–0.06) 0.03 (0–0.06) 0.02 (0–0.08)

* Kruskal–Wallis test; mean ± standard deviation; median (minimum–maximum) a,b: groups with the same letter
have no statistically significant difference.

4. Discussion

This study evaluated the performance of an artificial intelligence-based system in
detecting and numbering teeth in patients with cleft lip and palate. Overall, the AI system
demonstrated high sensitivity (0.98 ± 0.03) and precision (0.96 ± 0.04), confirming its
reliability in tooth detection across a wide patient cohort. Based on the findings of this
study, the null hypothesis was rejected. While the commercially available AI system,
Diagnocat, demonstrated overall high performance comparable to expert ground truth
annotations, specific challenges were identified, particularly in the maxillary left region.
These findings indicate that the AI-based software requires further refinement to address
limitations in the cleft region.

Several studies have evaluated the use of AI systems for tooth detection and number-
ing, particularly focusing on panoramic radiographs and CBCTs [20–22]. In many of these
studies, AI systems have demonstrated high sensitivity and precision, generally ranging
from 0.90 to 0.95 [23]. These findings align with a growing body of research highlighting
the potential of AI in various dental diagnostic tasks, including tooth identification and
lesion detection [23]. The accuracy and consistency of the AI system presented here suggest
that it can be a useful tool in assisting clinicians with dental numbering and detection, even
in patients with complex conditions such as cleft lip and palate.

Moreover, the AI system’s performance across different age groups was also evaluated,
which is crucial given the developmental changes in dentition, particularly in patients with
cleft lip and palate. Analyzing mixed dentition presents unique challenges for clinicians
due to the rapid developmental changes and variations in tooth eruption patterns [24]. One
of the significant findings of this study is the lack of statistically significant differences in
the AI system’s performance across different age groups. This, consistent with the existing
literature, suggests that the AI model can effectively detect and number teeth in patients
of varying ages, despite the rapid developmental changes that occur during the mixed
dentition period [25]. Notably, in younger age groups, where dental development is still
ongoing, the AI system performed with similar accuracy as in older age groups, such as
those aged 10 and above. These findings highlight the potential applicability of AI systems
in managing mixed dentition cases, where manual tooth detection can be more challenging
due to the transitory nature of the dental arch.
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Additionally, gender-based differences were identified, particularly in the younger age
groups. Female participants in the 6–7 age group showed significantly higher sensitivity
and lower false negative rates compared to their male counterparts. This suggests that
the AI system may be more efficient in detecting teeth in female patients within this age
range. In contrast, the 8–9 age group showed higher precision values for male participants,
although the clinical significance of this remains unclear. These findings point to the
possibility that anatomical or developmental factors, such as tooth eruption patterns or
growth differences, may influence the performance of AI systems in different genders and
age groups [26,27]. Further investigation is needed to better understand these gender-
based disparities and their implications for the clinical application of AI-based dental
imaging technologies.

The AI system’s consistent performance across different age groups aligns with the
findings of Kim et al. [25], who also reported successful AI performance across varying
patient ages. These studies suggest that age-related factors do not significantly affect AI
performance. Our results further reinforce the idea that the AI model is robust in detecting
and numbering teeth across a wide range of ages.

While the AI system demonstrated high overall performance in tooth detection and
numbering, there are potential limitations that warrant further consideration. The study
findings suggest that the AI model may face challenges in accurately identifying teeth in
the maxillary left region, which exhibited higher false positive and false negative rates
across all age groups. This may be attributed to the higher prevalence of cleft anomalies
on the left side, as reported in the literature [28]. Among the individuals included in this
study, unilateral left clefts were more common, consistent with previous research indicating
that cleft lip and palate cases are predominantly unilateral and more frequently affect
the left side [29]. Specifically, tooth number 21 had the highest false positive rate (16%),
while tooth number 62 had the highest false negative rate (11%). These teeth are located in
the regions most affected by cleft anomalies, particularly in patients with left-sided clefts,
further emphasizing the challenges AI faces in accurately detecting and numbering teeth
in these areas.

Additionally, the observed gender-based differences, particularly in the younger age
groups, suggest that the AI system may not be equally effective in detecting teeth across
all patient populations. These findings indicate the need for the further refinement and
customization of AI algorithms to better address the unique dental characteristics and de-
velopmental variations seen in cleft lip and palate patients. While the overall performance
of the AI system is promising, the limitations highlighted in this study underscore the
importance of continued research and validation to ensure the technology can be applied
effectively and equitably across diverse patient demographics [30,31].

The AI system’s consistent performance across different age and gender groups ob-
served in this study may reflect the robustness of Diagnocat’s training process. As a
commercially available tool, Diagnocat has been trained by its developers using diverse
datasets to optimize its accuracy and generalizability. However, since the specifics of the
training data, including demographic distributions, are proprietary, further studies could
explore how variations in training datasets might influence AI performance in populations
with unique anatomical challenges, such as cleft lip and palate patients.

5. Conclusions

This study demonstrates the strong potential of artificial intelligence (AI) to detect
and number teeth in patients with cleft lip and palate, with the AI system showing high
sensitivity and precision overall. The system performed well across various age groups,
proving its robustness in managing the unique dental challenges that these patients present.
Future improvements focused on the cleft area could further elevate its clinical utility,
leading to better diagnosis and management in this population.

81



Diagnostics 2024, 14, 2849

Author Contributions: C.A.: Conceptualization, methodology, supervision, collecting data,
writing—original draft, reviewing and editing the manuscript; N.O.Y.: Collecting data, writing—original
draft; K.K.: Conceptualization collecting data, data analysis; E.S.A.: Writing—original draft, review-
ing and editing the manuscript, D.G.C.: Methodology, data analysis. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Yeditepe University (Approval Number and
Date: 202311Y0694, 11 October 2024).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Shetye, P.R. Update on treatment of patients with cleft—Timing of orthodontics and surgery. Semin. Orthod. 2016, 22, 45–51.
[CrossRef]

2. Zreaqat, M.H.; Hassan, R.; Hanoun, A. Cleft Lip and Palate Management from Birth to Adulthood: An Overview. In Insights into
Various Aspects of Oral Health; IntechOpen: Rijeka, Croatia, 2017.

3. Orhan, K.; Aktuna Belgin, C.; Manulis, D.; Golitsyna, M.; Bayrak, S.; Aksoy, S.; Sanders, A.; Önder, M.; Ezhov, M.; Shamshiev, M.;
et al. Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs.
Imaging Sci. Dent. 2023, 53, 199–207. [CrossRef] [PubMed]

4. Ezhov, M.; Gusarev, M.; Golitsyna, M.; Yates, J.M.; Kushnerev, E.; Tamimi, D.; Aksoy, S.; Shumilov, E.; Sanders, A.; Orhan, K.
Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci. Rep. 2021, 11, 15006. [CrossRef] [PubMed]

5. Estai, M.; Tennant, M.; Gebauer, D.; Brostek, A.; Vignarajan, J.; Mehdizadeh, M.; Saha, S. Deep learning for automated detection
and numbering of permanent teeth on panoramic images. Dentomaxillofac. Radiol. 2022, 51, 20210296. [CrossRef]

6. Hung, K.; Montalvao, C.; Tanaka, R.; Kawai, T.; Bornstein, M.M. The use and performance of artificial intelligence applications in
dental and maxillofacial radiology: A systematic review. Dentomaxillofac. Radiol. 2020, 49, 20190107. [CrossRef]

7. Hiraiwa, T.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. A deep learning artificial intelligence
system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac. Radiol. 2019,
48, 20180218. [CrossRef]

8. Lee, J.S.; Adhikari, S.; Liu, L.; Jeong, H.G.; Kim, H.; Yoon, S.J. Osteoporosis detection in panoramic radiographs using a deep
convolutional neural network-based computer-assisted diagnosis system: A preliminary study. Dentomaxillofac. Radiol. 2019,
48, 20170344. [CrossRef]

9. Hendi KDAl Alyami, M.H.; Alkahtany, M.; Dwivedi, A.; Alsaqour, H.G. Artificial intelligence in prosthodontics. Bioinformation
2024, 20, 238–242. [CrossRef]

10. Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774.
[CrossRef]

11. Kuwada, C.; Ariji, Y.; Kise, Y.; Fukuda, M.; Nishiyama, M.; Funakoshi, T.; Takeuchi, R.; Sana, A.; Kojima, N.; Ariji, E. Deep-learning
systems for diagnosing cleft palate on panoramic radiographs in patients with cleft alveolus. Oral Radiol. 2023, 39, 349–354.
[CrossRef]

12. Ahmed, N.; Abbasi, M.S.; Zuberi, F.; Qamar, W.; Halim, M.S.B.; Maqsood, A.; Alam, M.K. Artificial Intelligence Techniques:
Analysis, Application, and Outcome in Dentistry-A Systematic Review. Biomed. Res. Int. 2021, 2021, 9751564. [CrossRef]
[PubMed]

13. Chen, Y.W.; Stanley, K.; Att, W. Artificial intelligence in dentistry: Current applications and future perspectives. Quintessence Int.
2020, 51, 248–257. [PubMed]

14. Thurzo, A.; Urbanová, W.; Novák, B.; Czako, L.; Siebert, T.; Stano, P.; Mareková, S.; Fountoulaki, G.; Kosnáčová, H.; Varga, I.
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Abstract: Background/Objectives: To assess the impact of a vendor-agnostic deep learning model
(DLM) on image quality parameters and noise reduction in dental cone-beam computed tomog-
raphy (CBCT) reconstructions. Methods: This retrospective study was conducted on CBCT scans
of 93 patients (41 males and 52 females, mean age 41.2 years, SD 15.8 years) from a single center
using the inclusion criteria of standard radiation dose protocol images. Objective and subjective
image quality was assessed in three predefined landmarks through contrast-to-noise ratio (CNR)
measurements and visual assessment using a 5-point scale by three experienced readers. The inter-
reader reliability and repeatability were calculated. Results: Eighty patients (30 males and 50 females;
mean age 41.5 years, SD 15.94 years) were included in this study. The CNR in DLM reconstructions
was significantly greater than in native reconstructions, and the mean CNR in regions of interest
1-3 (ROI1-3) in DLM images was 11.12 ± 9.29, while in the case of native reconstructions, it was
7.64 ± 4.33 (p < 0.001). The noise level in native reconstructions was significantly higher than in
the DLM reconstructions, and the mean noise level in ROI1-3 in native images was 45.83 ± 25.89,
while in the case of DLM reconstructions, it was 35.61 ± 24.28 (p < 0.05). Subjective image quality
assessment revealed no statistically significant differences between native and DLM reconstructions.
Conclusions: The use of deep learning-based image reconstruction algorithms for CBCT imaging of
the oral cavity can improve image quality by enhancing the CNR and lowering the noise.

Keywords: cone-beam computed tomography; deep learning model; image quality; noise reduction;
dental imaging; oral diagnosis

1. Introduction

Cone-beam computed tomography (CBCT) has emerged as a valuable dental imaging
tool because of its ability to provide precise three-dimensional reconstruction of the den-
tomaxillofacial region. CBCT surpasses the limitations of conventional two-dimensional
dental imaging, facilitating accurate insight into the multiplanar details of maxillofacial
bony structures and adjacent soft tissues. A spatial resolution of less than 100 μm signif-
icantly surpasses the imaging capabilities of conventional computed tomography (CT),
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allowing for precise diagnosis and measurements [1–3]. Such precision is desired in im-
plant procedure planning, cephalometry, and endodontics. Although relatively recently
introduced (2000s) for broader commercial use, CBCT has already proven its value in a
wide range of dental applications, including implant planning, periodontology, temporo-
mandibular joint (TMJ) imaging, orthodontics, and oral and maxillofacial surgery [4,5].

However, the application of CBCT as an imaging modality has limitations. Despite the
exceptional image quality achieved in phantom studies, patient studies should be conducted
in accordance with ALADIP (As Low as Diagnostically Acceptable being Indication-oriented
and Patient-specific) principles [6]. This approach, inter alia, aims to prevent excessive tube
setting and thus may lead to a greater number of artifacts and excessive noise. In the case of
CBCT, there is a significant variation in image quality, specifically regarding contrast resolution
and the level of noise, across various CBCT machines and settings used during acquisition,
accompanied by a broad spectrum of radiation doses administered to patients [7]. CBCT
artifacts are induced by discrepancies between mathematical models and actual imaging
processes [8]. Noise, an unwanted disturbance in a signal, can significantly impair the quality
of the images produced by CBCT units. Noise manifests as inconsistent attenuation values in
projection images, causing errors in the computed attenuation coefficient and reducing low-
contrast resolution, affecting the differentiation of low-density tissues [9,10]. Both artifacts and
noise may simulate or obscure pathologies, leading to misdiagnoses and potentially worsening
patient outcomes. Additionally, noise is inherently associated with the dose delivered during
examinations, demonstrating an inversely proportional relationship [11]. Therefore, it is
reasonable to seek noise and artifact reduction, as their application may have an impact on
reducing the radiation dose delivered during CBCT and improving its diagnostic accuracy.

To date, several studies have demonstrated the efficacy of deep learning-based image
reconstruction algorithms in reducing noise and improving image quality in CBCT scans. For
instance, iterative reconstruction (IR) techniques have been shown to significantly enhance
image quality in conventional CT and CBCT imaging [12–18]. Recent advancements in vendor-
specific DLRs, such as TrueFidelity™ by GE Healthcare and AiCE by Canon Medical Systems,
have further improved diagnostic accuracy and reduced radiation doses [19–21]. However,
the limitation of these approaches is their vendor-specific nature, which restricts their use to
specific scanners. Our study explored the potential of a vendor-agnostic DLM to overcome
these limitations. The solution appears to be a vendor-agnostic deep learning model (DLM)
that works in the image postprocessing domain and does not require projection data. The
term vendor-agnostic refers to the fact that the program is not limited to specific CT or CBCT
machine manufacturers and can be applied across different platforms [22]. Previous studies
have already proven that vendor-agnostic DLMs can both reduce image noise and provide
high diagnostic accuracy comparable to vendor-specific DLRs [23–26]. Hypothetically, they
could also positively affect the quality parameters of dental CBCT images, thereby increasing
their diagnostic value for the evaluation of common pathological and dental lesions.

The aim of this study was to assess objective and subjective image quality parameters
of standard dental CBCT and DLM-reconstructed images.

2. Materials and Methods

2.1. Population

The study population consisted of 93 patients (41 males and 52 females aged 15–72 years,
SD 15.8; median 41.2). All CBCT scans were acquired at a single private orthodontic center.
All patients were referred for CBCT scans by orthodontists and dental surgeons between
January and September 2023. The primary indication was suspicion of periapical lesions
on the basis of the OPG and single-tooth X-rays. The main study inclusion criterion was
images obtained using the standard radiation dose and image quality protocol. Images
burdened by motion artifacts were excluded from the study.
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2.2. Image Acquisition and Postprocessing

All scans were performed using a Hyperion X9 PRO 13 × 10 (MyRay, Imola, Italy).
One standard, marked as the “Regular” setting of the apparatus, was used (90 kV, 36 mAs,
CTDI/Vol 4.09 mGy, and 13 cm field of view). All images were reconstructed at a slice
thickness of 0.3 mm. After scanning, the images were anonymized and exported for further
analysis. The deep learning and denoised reconstructions were obtained with the use of
ClariCT.AI software (ClariPI, Seoul, Republic of Korea).

2.3. Objective Image Quality

To assess the objective image quality, a radiologist with 2 years of craniofacial CT
assessment placed square regions of interest (ROIs) at:

1. Periapical region of tooth 15 within the maxillary bone,
2. Periapical region of tooth 33 within the mandible,
3. The spongious bone of the mandible in the mental foramen area,
4. Muscles of the tongue.

The ROIs were carefully placed in homogeneous tissues (spongious bone of periapical
regions, mandible, and tongue musculature) to avoid artifacts and lesions (e.g., cysts, enostoses,
and endodontic materials). The contrast-to-noise ratio (CNR) was evaluated using ImageJ
software v. 1.41 (National Institutes of Health, Bethesda, MD, USA). ROIs were automatically
propagated between the native and DLM reconstructions to maximize the objectivity of the
results. The CNR calculation formula presented by Koivisto [27] was adopted:

CNR = (SR1-3,L − ST)/N

where SR1-3,L is the mean signal at the anatomical landmark or periapical lesion, ST is the
mean signal in the background (tongue), and N is the average standard deviation (SD) in
the anatomical landmark and background ROI (tongue).

The CNRs of the specified anatomical landmarks were compared to evaluate the
effectiveness of the AI denoising tool.

2.4. Subjective Image Quality

Subjective image quality was assessed by a radiologist and two dentists (all readers
with >5 years of experience in craniofacial CT assessment) who were blinded to patient
details and the use of the AI denoising tool. The images were evaluated on a five-point
scale (1 = poor, 5 = excellent), considering factors such as noise, sharpness, and visibility of
anatomical structures as follows:

Level 5—excellent delineation of structures and excellent image quality;
Level 4—clear delineation of structures and good image quality;
Level 3—anatomical structures still fully assessable in all parts and acceptable image quality;
Level 2—structures identifiable with adequate image quality;
Level 1—anatomical structures not identifiable, images with no diagnostic value.
Image quality assessment was performed in the following predefined anatomical

regions: the alveolar recess of the maxillary sinuses, the apical area of tooth 15, and the
apical area of tooth 33.

To enhance the repeatability and objectivity of the qualitative analyses, an illustration
was created to depict representative images evaluated according to the aforementioned
scale (Figure 1). In cases of metal artifacts or missing teeth, the opposite side of the
dental arch was assessed (e.g., severe artifacts in the apical area of tooth 15–tooth 25
were evaluated).
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Figure 1. Qualitative image analysis: (A)—(5 points) excellent delineation of structures and excellent
image quality; (B)—(4 points) clear delineation of structures and good image quality; (C)—(3 points)

anatomical structures still fully assessable in all parts and acceptable image quality; (D)—(2 points)
structures identifiable in adequate image quality; (E)—(1 point) anatomical structures not identifiable,
image of no diagnostic value.

Agreement between all the readers’ ratings of the subjective image quality of the
native and DLM-reconstructed images was assessed.

Subjective image quality analysis was performed on a dedicated console using iRYS
Viewer version 6.2 (MyRay, Imola, Italy) software. The window width and center were
predefined at 1048 and 4096, respectively.

2.5. Error Study

Fifteen randomly selected subjects were re-examined by the same author one month
after the initial analysis. The ICC for subjective image quality analyses was calculated to
assess the agreement between examinations.

2.6. Sample Size Calculation

The post hoc power analysis was conducted to determine adequacy of study sample. A
two-tailed paired-sample t-test was used since CNR measurements were taken from the same
patients under both conditions (native and DLM reconstructions). The effect size (Cohen’s d)
for paired samples was assessed with pooled SD of mean CNR values in DLM and native
reconstructions. Power analysis was conducted with G*Power software (version 3.1) [28]. The
following assumptions were made: α error probability: 0.05, Power (1 − β): 0.80.

2.7. Statistical Evaluation

Inter-rater agreement was assessed using Fleiss’ Kappa. Differences between native
and DLM reconstructions were analyzed using paired t-tests. A power analysis was
conducted to determine the appropriate sample size for detecting significant differences
in noise levels between the two reconstruction methods. Statistical significance was set at
p < 0.05 [27]. Statistical analyses were conducted using R software version 4.3.2 [29].

3. Results

3.1. Population

The authors screened a total of 93 CBCT scans. Out of these, 13 scans were excluded, as
they did not meet the inclusion criteria. Therefore, CBCT scans from 80 patients (30 males
and 50 females; mean age 41.45 years, SD 15.94 years) were included in the final analysis
(80/93 screened patients). The application of eligibility criteria is presented in Figure 2.
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Figure 2. Flow-chart presenting application of eligibility criteria in study material.

3.2. Objective Image Quality

Figure 3 shows the sample ROI position with the corresponding signal and SD values.
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Figure 3. The sample ROI (yellow circle) positions and values in the native (A,C,E,G) and
DLM (B,D,F,H) reconstructions were as follows: (A,B), tooth 15, mean signal 227.748, 227.267 and SD
179.793, 170,854, respectively; (C,D), tooth 33, mean signal 418.06, 417.462 and SD 136.493, 129,878,
respectively; (E,F), mental foramen, mean signal 336.191, 330.893 and SD 111.672, 89.153, respectively;
and (G,H), tongue musculature, mean signal 96.336, 95.785 and SD 38.251, 26.848, respectively.

The average signal measured in the regions of interest (ROIs) in three locations (peri-
apical area of teeth 15 and 33 and spongious bone of the mandible in the area of the mental
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foramen) showed slightly lower mean values in DLM images than in native reconstructions.
However, the difference was not statistically significant (p > 0.05). Table 1 summarizes the
results of the objective image quality assessment. Graphical representation of the mean
signal calculations in Figure 4.

Table 1. Results of the objective image quality assessment.

Parameter Native DLM p

Signal

Tooth 15 341 ± 197.60 339.91 ± 194.93 p = 0.961
Tooth 33 448.33 ± 232.01 452.84 ± 249.1 p = 0.906

Mental foramen 456.15 ± 235.78 454.46 ± 238.97 p = 0.964
Mean ROI1-3 415.3 ± 178.11 415.74 ± 181.75 p = 0.988

Noise 45.83 ± 25.89 35.61 ± 24.28 p = 0.011 *

CNR

Tooth 15 5.62 ± 5.19 8.28 ± 8.25 p = 0.016 *
Tooth 33 8.58 ± 5.45 12.42 ± 8.76 p = 0.001 *

Mental foramen 8.63 ± 5.81 12.29 ± 9.02 p = 0.003 *
Mean ROI1-3 7.64 ± 4.33 11.12 ± 9.29 p < 0.001 *

The signal and CNR are given as the means ± standard deviations. DLM—deep learning model reconstruction;
ROI—region of interest; CNR—contrast-to-noise ratio. *—statistically significant difference.

Figure 4. Results of the mean signal calculations (mean values error bars represent SDs). No
statistically significant differences were found (p > 0.05).

There was a statistically significant difference between noise levels on both types of
reconstructions (p = 0.011). Figure 5 illustrates mean noise levels.

The CNR in DLM reconstructions was significantly higher than that in native recon-
structions across all examined locations (p < 0.05), as shown in Figure 6. The mean CNR in
ROI1-3 in DLM images was 11.12 ± 9.29, while in the case of native reconstructions, it was
7.64 ± 4.33 (Table 1).
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Figure 5. Results of noise calculations in ROIs 1-3 (mean values error bars represent SDs). p values
shown on graphs. There was a statistically significant difference (p = 0.011).

Figure 6. Results of CNR calculations (mean values, error bars represent SDs). p values shown
on graphs.

3.3. Subjective Image Quality

The results of the subjective image quality assessments are summarized in Table 2. The
data in the table represent the mean ratings of all readers. Overall, subjective image quality
was lowest for the apical area of tooth 15 in both the native and DLM reconstructions.
The highest mean scores were given to the apical area of tooth 33 in both the evaluated
reconstructions. The differences between the mean ratings for both types of reconstructions
were slight and not statistically significant (p > 0.05), ICC = 0.753. Figure 7 presents the
results of the subjective image quality assessments.
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Table 2. Results of the subjective image quality assessment.

Region
Native DLM

p
Reader 1 Reader 2 Reader 3 Reader 1 Reader 2 Reader 3

Maxillary Sinus 3.25 3.26 3.36 3.34 3.25 3.55 0.350
Apex 15 3.23 3.25 3.48 3.18 3.25 3.40 0.674
Apex 33 3.49 3.46 3.52 3.55 3.45 3.66 0.529

DLM—deep learning model. p—Wilcoxon paired test.

 

Figure 7. Results of subjective image quality assessments (mean values).

Inter-reader agreement for subjective image quality assessments was evaluated using
Fleiss’ Kappa. The results indicated moderate to substantial agreement among the three
readers, with Kappa values ranging from 0.536 to 0.628 for native reconstructions and
0.540 to 0.628 for DLM reconstructions (Table 3).

Table 3. Inter-reader agreement for subjective image quality assessment.

Region Reconstruction ICC Interpretation

Alveolar recess of maxillary sinus Native 0.536 Moderate Agreement
DLM 0.552 Moderate Agreement

Apex 15 Native 0.628 Substantial Agreement
DLM 0.628 Moderate Agreement

Apex 33 Native 0.541 Moderate Agreement
DLM 0.540 Moderate Agreement

DLM—deep learning model; ICC—interclass correlation coefficient.

3.4. Error Study

Analysis of the repeatability of subjective image quality analysis carried out by the
reader demonstrated excellent concordance (ICC = 0.841).

3.5. Sample Size

A power analysis was conducted to determine the appropriate sample size required
to detect significant differences in noise levels between native and DLM reconstructions.
Pooled SD of mean CNR values of DLM and native images was 7.25. The calculated
Cohen’s d was 0.48.
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The analysis indicated that a sample size of 34 subjects per group was sufficient to
achieve a power of 0.8, with an effect size (Cohen’s d) of 0.48 and a significance level of
0.05. This sample size ensures that the study is adequately powered to detect meaningful
differences in objective image quality parameters.

4. Discussion

The aim of this study was to assess the image quality parameters of standard dental
CBCT images and images reconstructed using DLM algorithms. Our study revealed that
DLM reconstructions had slightly greater mean signal values than native reconstructions,
although this difference was not statistically significant. However, the CNR was signifi-
cantly higher in the DLM reconstructions than in the native reconstructions. Noise levels
were also statistically significantly lower in the DLM reconstructions than in the native
reconstructions. This indicates that the evaluated DLM algorithm improves the contrast
between the anatomical structures in CBCT images. The results of the subjective image
quality analysis performed by three readers blinded to the type of reconstruction showed
no statistically significant differences.

Surprisingly, although the differences were statistically insignificant, the results of
the subjective image quality assessments showed mixed results in the evaluation of the
selected anatomical structures. The mean scores for all readers of the alveolar recess of the
maxillary sinus and the apical area of tooth 33 were both greater for DLM reconstructions
than for native reconstructions. However, the ratings for the apical area of tooth 15
were greater in native reconstructions than in DLM reconstructions. In our opinion, this
indicates a clear convergence in the quality of both reconstructions and high repeatability
of readers in quality assessment. Upon re-evaluation by the readers, after the results of
the analyses were obtained, some of the DLM reconstructions showed poorer delineation
of structures, which might have influenced the image quality ratings of both periapical
areas. However, combined with reduced noise levels, excessive smoothing of the very thin
structures worsened the delineation of structures, for example, the periodontal ligament.
This phenomenon might have an impact on the visualization of critical CBCT-indicated
structures, such as the root canal or alveolar bone, where spatial resolution is key [30–
32]. Similar results were shown by Ylisiurua et al. [33], who reported that deep learning
algorithms enhanced the visualization of soft tissues but degraded the visualization of
bones and teeth. The authors subjectively noted a significant decrease in resolution and
concluded that the images resembled images reconstructed with “soft-tissue kernels” used
with CT scanners. Since CBCT is used mainly in the diagnosis of bones and teeth, such
over-smoothing of the details may compromise diagnostic accuracy. Future studies focused
on evaluating the delineation of such structures may answer the question of whether DLM
algorithms significantly reduce the value of the examination in assessing submillimeter
structures.

Our findings suggest that although the quantitative improvements are noticeable,
the qualitative assessment of these changes may require a higher threshold to achieve
significance. We must emphasize that the evaluated DLM was not designed for CBCT
imaging. The purpose of the program was to reduce additional image noise in CT images.
Therefore, the results of our study should be regarded as a scientifically driven attempt
to explore the impact of this tool on a domain similar to CT. The results are similar to
our previous study evaluating the effects of applying the same vendor-agnostic DLM to
CBCT images of TMJs [34]. The study showed significantly better objective image quality
of DLM reconstructions compared to native images (CNR levels; p < 0.001). However, the
results of subjective image analysis showed no significant differences in image quality
between the reconstruction types (p = 0.055). Moreover, the assessment of degenerative TMJ
lesions was not affected by the type of reconstructions assessed (p > 0.05). We concluded
that the analyzed DLM reconstruction notably enhanced the objective image quality in
TMJ CBCT images, but did not significantly affect the subjective image quality or DJD
lesion diagnosis. Our studies provide new insights into the efficacy of the selected DLM in
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this specific context, separate from its general approval and usage. Therefore, we caution
against the generalization of our results beyond this specific context. However, our findings
indicate that the use of AI denoising algorithms designed for CT imaging may improve
the objective image quality parameters of CBCT images. Further studies, including a
larger number of examinations performed using various devices and different diagnostic
protocols, could demonstrate greater differences in the results of qualitative and quanti-
tative image assessments. It is likely that the results would be similar to those published
on qualitative analyses of studies performed using low-dose protocols in standard CT
examinations [22,31,35–39]. Compared with standard and iterative reconstructions (IRs),
deep learning reconstructions have already proven to have the potential for radiation dose
reductions between 30% and 71% while maintaining diagnostic image quality owing to
improved noise reduction [40]. Nevertheless, the trend toward improved image quality
with the use of DLM algorithms in CBCT is promising.

Recent studies [41–43] have assessed the effectiveness of generative AI in reducing
noise and metal artifacts in dental CT images. Hegazy et al. (2020) [41] evaluated the image
quality of low-dose dental CT images reconstructed with a generative adversarial network
using the Wasserstein loss function (WGAN). The authors achieved both quantitative
and qualitative improvements in image quality; however, interestingly, they encountered
the problem of over-smoothing small image details. In a 2021 study [43], Hegazy et al.
evaluated the impact of variations in the WGAN and U-WGAN on the image quality of half-
scan dental CTs. Both the noise levels and qualitative image parameters were significantly
improved in the AI-reconstructed images. Another notable study by Hu et al. [42] proposed
a WGAN to decrease the level of noise and metal artifacts in low-dose dental CT images.
The results of the study showed that the proposed WGAN algorithm effectively removed
artifacts and noise from low-dose dental CT images and outperformed other methods,
such as general GANs and convolutional neural networks, in terms of image quality and
artifact correction.

The literature concerning noise optimization in dental CBCT examinations, as opposed
to conventional CT, is limited. In a recent study by Ramage (2023) [18], the authors assessed
the effect of standard filtered back projection (FBP) and iterative reconstruction (IR) on
CBCT image noise. They found that compared with FBP, IR significantly reduced image
noise (99.84 ± 16.28 and 198.65 ± 55.58, respectively). The authors concluded that the
additional processing time for IR reconstruction was clinically acceptable. A study by
Choi et al. [44] investigated the efficacy of a novel, self-supervised convolutional neural
network in projection noise reduction. The phantom study revealed that the peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM) significantly improved
compared to those of uncorrected images—27.08 and 0.839 vs. 15.68 and 0.103, respectively.
A similar phantom study by Han and Yu evaluated the efficacy of a novel self-supervising
denoising method based on Bernoulli sampling [45]. The results showed that the pro-
posed method outperforms conventional denoising methods by at least 4.47 dB in PSNR.
Brendlin et al. [46] investigated the efficacy of deep-learning denoising (DLD) techniques
in mitigating the trade-offs related to the radiation dose and noise of CBCT during inter-
ventional procedures. The results showed that the application of DLD enabled significant
radiation dose reduction combined with enhanced objective image quality parameters
(higher CNR and lower noise). Two studies evaluated the effectiveness of DLD techniques
in maxillofacial CBCT [33,47]. Kim et al. confirmed that the use of DLD techniques im-
proved the diagnostic accuracy of readers in diagnosing sinus fungal balls and chronic
rhinosinusitis [47]. Ylisiura et al. [33] compared iterative and DLD techniques for effective
noise reduction in dentomaxillofacial applications. Their study demonstrated that the
proposed method enabled image enhancement comparable to that of the iterative method,
but with faster processing time. However, despite promising results, the readers preferred
iterative reconstruction over DLD images in hard tissue evaluation. However, none of
these studies evaluated commercially available noise reduction methods, and the evaluated
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techniques were available only to narrow groups of scientists. Therefore, the possibility of
comparing different DLD techniques is an exciting topic for further research.

The findings of this study suggest that the application of a DLM to dental CBCT
images can improve the CNR without compromising diagnostic quality. These findings
are supported by the objective measurements of the CNR, which showed a statistically
significant improvement in the DLM-reconstructed images compared with the native
reconstructions. It is important to note that while confidence intervals provide an estimate
of the range within which the true parameter lies, they do not preclude the possibility of
statistically significant differences between groups. Our findings of significant differences
in CNR, despite overlapping confidence intervals, underscore the importance of hypothesis
testing in statistical analysis. Compared to commercial software such as TrueFidelity™
by GE Healthcare and AiCE by Canon Medical Systems, our vendor-agnostic DLM offers
several advantages. Unlike vendor-specific solutions, the vendor-agnostic DLM can be
applied to scans from various manufacturers, enhancing its versatility in clinical settings.
Although some studies have revealed that while the noise reduction capabilities of our
DLM are comparable to those of commercial software, it excels in maintaining image
quality across different imaging systems [48]. This flexibility could streamline workflows
and reduce the costs associated with acquiring multiple software licenses.

However, this study has several limitations. The sample size, although adequate for
a pilot study, was relatively small. Larger studies with more diverse patient populations
are needed to generalize these findings. Moreover, the subjective nature of image quality
assessment, even for experienced readers, can be influenced by individual biases. Although
the study used predefined scales and illustrations to aid in the assessments, these evalua-
tions are inherently subjective and should be interpreted with caution. Notably, this study
focused on a specific DLM algorithm and CBCT scanner. Further research is required to
evaluate the generalizability of these findings to other DLM algorithms and CBCT scanners.
Additionally, we evaluated images acquired only with a “regular quality” preset; therefore,
our findings cannot be extrapolated to other protocols, especially low-dose protocols.

5. Conclusions

Overall, the results of this study support the potential of DLMs to objectively improve
CBCT image quality by increasing CNR and reducing image noise. However, some is-
sues with the delineation of small bony structures were noted, although no statistically
significant differences in subjective image quality ratings were found. Our results could
have significant implications for patient care by reducing the radiation dose required for
diagnostic-quality images and potentially improving the diagnostic accuracy of dentomax-
illofacial pathology. Further research is warranted to fully understand the clinical impact
of DLMs on CBCT and to explore their integration into standard practice.
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Abstract: This study aims to investigate the effect of using an artificial intelligence (AI) system
(Diagnocat, Inc., San Francisco, CA, USA) for caries detection by comparing cone-beam computed
tomography (CBCT) evaluation results with and without the software. 500 CBCT volumes are scored
by three dentomaxillofacial radiologists for the presence of caries separately on a five-point confidence
scale without and with the aid of the AI system. After visual evaluation, the deep convolutional neural
network (CNN) model generated a radiological report and observers scored again using AI interface.
The ground truth was determined by a hybrid approach. Intra- and inter-observer agreements are
evaluated with sensitivity, specificity, accuracy, and kappa statistics. A total of 6008 surfaces are
determined as ‘presence of caries’ and 13,928 surfaces are determined as ‘absence of caries’ for ground
truth. The area under the ROC curve of observer 1, 2, and 3 are found to be 0.855/0.920, 0.863/0.917,
and 0.747/0.903, respectively (unaided/aided). Fleiss Kappa coefficients are changed from 0.325 to
0.468, and the best accuracy (0.939) is achieved with the aided results. The radiographic evaluations
performed with aid of the AI system are found to be more compatible and accurate than unaided
evaluations in the detection of dental caries with CBCT images.

Keywords: dental caries; cone-beam computed tomography; machine learning; decision support
systems
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1. Introduction

Dental caries is a multifactorial chronic disease that causes mineral loss in tooth hard
tissues. The disease, which has evidence in fossil samples, has a high prevalence today [1–3].
Symptoms such as pain, swelling, and abscess may be seen depending on the stage of the
disease [4–8]. Caries diagnosis is a clinical decision regarding the presence of caries, while the
detection of caries is a result of the clinical and radiographic evaluation of caries signs. Dental
probes used for tactile feedback during visual inspection may damage weakened tooth
tissues. Although bitewing radiographs are successful in showing the posterior approximal
surfaces, they require attention to the rules of projection geometry in the production of
images [1,7–9]. Cone-beam computed tomography (CBCT) is a volumetric imaging tool
which require less patient dose than the medical CTs but more when compared to other plain
imaging methods in dentistry. The SEDENTEXCT Panel in 2011 concluded that evaluating
dental caries is not an indication for CBCT. However, dental caries findings in volumetric
data taken for other reasons should be evaluated [10–12].

Digital radiology provides number-based images, paving the way for the development
of a clinical decision support system (CDSS) to be integrated into clinical workflows [13–16].
Moreover, such systems can be developed using artificial intelligence (AI) techniques
on subjects such as acute care management, drug ordering, clinical oncology, and many
more [17–23]. AI tools can be developed using a machine learning approach, mainly based
on supervised learning, unsupervised learning, semi-supervised learning, and reinforced
learning. In supervised learning, data are labeled by experts, while in unsupervised learning,
features are extracted by algorithms. In semi-supervised learning, a combination of these two
approaches is applied, while in reinforcement learning, the model is developed by giving
reward or punishment according to its outputs [24–26]. Deep learning, generally combined
with the transfer learning approach, is a popular technique used in the automation of tasks
such as lesion detection, segmentation, and classification in radiographic data [27–29].

The potential of using CBCT volumes for caries detection has been evaluated in several
studies [11,30–32]. Some researchers proposed AI models for the detection of dental caries
with different imaging modalities such as periapical, panoramic, or bitewings [33–35]. Lee
et al. developed a convolutional neural network (CNN) for dental caries detection and
diagnosis using periapical images. A total of 3000 periapical radiographs were labeled
as dental caries and non-caries based on medical records and expert evaluation (equal
in numbers), then the images were cropped to show one tooth per image and resized to
299 × 299 pixels. The dataset was split into training and testing subsets with the ratio of
4:1, randomly, and the training dataset was augmented 10 times using rotation, width and
height shifting, zooming, shearing, and horizontal flipping. The model was based on a
pre-trained GoogLeNet Inception v3 CNN network and trained using transfer learning. The
model had 9 inception modules, including an auxiliary classifier, two fully connected layers,
and softmax functions. The data were given in batches of 32, and 1000 epochs were run at
a learning rate of 0.01; the model was fine-tuned by optimizing the weights. The diagnostic
performance of the developed model was reported between 82.0–89.0% according to
anatomical regions, while AUC values varied between 845 (95% CI 0.790–0.901) and 0.917
(95% CI 0.860–0.975) [33]. Bui et al. proposed a computer-aided diagnosis (CAD) system
to detect dental caries in panoramic radiographs. The dataset consisted of a total of 533
single-tooth images (229 caries and 304 non-caries) which was manually segmented from
panoramic radiographs. The system was based on two modules: feature extraction and
classification. In the first module, the pre-trained CNN models such as Alexnet, Googlenet,
VGG16, VGG19, Resnet18, Resnet50, Resnet101, and Xception were used to extract the deep
activated features. The extracted features were optimized using mathematical descriptors,
such as mean and STD, and texture features such as Haralick’s features; the results of the
deep networks and geometric features were optimized mainly based on a Support Vector
Machine (SVM) model, prior to being fed into the second module. The fusion features
were tested using SVM, Naïve Bayes, k-nearest neighbor, decision tree, and random forest
classifier models, and the authors reported that the proposed method achieved 91.70%,
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90.43%, and 92.67% accuracy, sensitivity, and specificity, respectively [34]. Devito et al.
proposed an artificial multilayer perceptron neural network for the diagnosis of proximal
dental caries using bitewing radiographs. The tooth surfaces were divided as sound
and dental caries (non-cavitated) by visual evaluation, and a total of 40 pre-molar and
40 molar-extracted teeth were embedded in silicone models to develop 20 tooth models,
including canines for proximal contact. The neural network was based on a one-hidden
layer perceptron model with a back-propagation algorithm and had 25 neurons in the input
and the hidden layer, and 1 in the output layer. Samples were divided into training, testing
and cross-validation subsets with the ratio of 2:1:1, and the initial weights of each “synapse”
was determined using the Nguyen–Windrow algorithm. A total number of 160 tooth
surfaces were scored by 25 examiners (from 1 to 5), each with over 20 years’ experience, and
each result was given as inputs. The training was optimized by analyzing the reduction in
the mean square error. The golden standard was obtained by histopathological evaluation of
the samples after the radiographic acquisition. The area under the ROC curve was reported
to be 0.884, and the developed model performed 23.3% better than the best examiner
and 39.4% better than the mean human performance [35]. Cantu et at. developed a fully
CNN model based on U-Net architecture to detect caries lesions with varying radiographic
stages on bitewing radiographs. A total of 3686 bitewings were labeled by three expert
dentists in a pixel-wise fashion, and a fourth expert dentist reviewed and revised the
process. Each annotation was further classified into four categories by two independent
dentists according to the radiographic stage. All images were resized to 512 × 416 pixels,
and the data were divided into a training (3293), validation (252), and test dataset (141).
Researchers initialized the current model’s weights using the data obtained in a previously
developed model for caries segmentation on panoramic radiographs (unpublished) and
then applied data augmentation techniques based on geometric level (image flipping,
center cropping, xy-translation, and rotations) and pixel level (gaussian-blur, sharpening,
contrast, and brightness) random transformation techniques to improve the generalization
of the previous model. Several models were trained with different training strategies, loss
functions, and combinations of the parameters to improve the performance. First, they
started with 10 epochs with a constant encoder weight and a learning rate value of 5e−3.
Then, the training was further improved for 190 epochs by allowing the optimization of
weights in all layers, with a batch size of two and an initial learning rate of 5e−4. The results
of each epoch were saved and improvements in the mean Intersection-over-Union (IoU)
were analyzed. After adjusting the optimal weights, the outputs were converted into binary
results by determining a cutoff threshold using Adam optimizer. Further, the system’s
results were compared with a cohort of seven dentists with 3–14 years of experience. The
authors reported a higher accuracy (0.80) in results of the model when compared to the
dentists (0.71) and significantly more sensitivity when compared to the dentists (0.75 versus
0.36). The specificity of the model (0.83) was found to be lower than the dentists (0.91);
however, the results were not significant [36].

This study aims to investigate the effect of using a CDSS (Diagnocat, Inc., San Francisco,
CA, USA) with caries detection function to enhance CBCT evaluations in terms of detecting
dental caries by comparing the results of the observers with and without the aid of the
software. For this purpose, volumetric data that met the criteria such as absence of gross
artifacts and presence of sufficient teeth were collected among CBCT volumes obtained
for other clinical reasons; this study does not support the justification of the use of CBCT
only for caries diagnosis. According to the literature review conducted on Pubmed and
Google Scholar using the keywords of “caries” or “dental caries” and “cbct” or “cone beam
computed tomography” or “cone-beam computed tomography” and “artificial intelligence”
or “AI” or “machine learning” or “ML”, no other study was found on this subject other than
the Diagnocat system. Hence, this study contributes to the literature in terms of evaluating
the performance of an AI model developed for the evaluation of secondary diagnoses using
CBCT images obtained in real clinical conditions.
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2. Materials and Methods

Using retrospective data from our faculty, a power analysis (Power and Precision
software, Biostat, Englewood, NJ, USA) was conducted which indicated that detection
of differences between the observers with and without the aid of the software could be
obtained with 432 CBCT volumes and at least 1098 caries at a power of 0.8 (alpha = 0.05).
Thus, this study conducted 500 CBCT volumes retrospectively and all caries lesions were
included in the CBCT volumes of the patients between 18 and 64 years of age selected from
a Jordan Technological University Hospital’s database.

Patients with fixed prosthetics, implants, caries lesions, missing, or restored teeth were
included, while edentulous patients and volumes with exceeding artifacts were excluded.
This study was approved by the Institutional Research Board of Jordan Institute of Tech-
nology with the protocol number of 792-2019. Informed consent was obtained from all
individual participants included in the study. CBCT volumes of the patients were acquired
by CS 8100 3D (Carestream Health, NY, USA) CBCT machine in a standing position during
imaging. The scanner offers multiple fields of view (FOVs), allowing the dentist to select
the optimum scan on a case-by-case basis. Digital radiographs were acquired with the
imaging parameters of 80 kVp, 6 mA (6300 μA), 15 s of imaging time, and 8 × 9 FOV
(0.150 mm3 voxel size) with isotropic voxels. All cases were selected from the database to
be examined by the decision of a dentomaxillofacial radiology consultant with more than
10 years of experience. The radiographic data were anonymized (except gender and age)
and CBCT volumes were exported in DICOM format. The dataset was split into encrypted
compressed files and distributed to independent observers for radiographic evaluation
using the cloud service.

Three observers in dentomaxillofacial radiology evaluated CBCT volumes for dental
caries signs, without and with the Diagnocat system. An online conference was conducted
prior to evaluations for the calibration of the observers with different levels of experience.
The results of aided and unaided evaluations were collected in a template document to
ensure standardization among observers. The template with dedicated columns for ‘tooth
condition’, ‘mesial surface’, and ‘distal surface’ for each tooth was prepared to collect
the responses in an organized manner. Tooth conditions were saved as ‘intact’, ‘missing’,
‘restorated’, ‘support’ and ‘excluded’. Mesial and distal surfaces of the tooth were scored
by independent observers separately for the presence of caries on a five-point confidence
scale: (1) caries definitely absent, (2) caries probably absent, (3) unsure, (4) caries probably
present, and (5) caries definitely present. Primarily, the dataset was imported to Sante
DICOM Viewer Pro (Santesoft Ltd., Nicosia, Cyprus) by each observer independently
(version 11.6.2 for Windows, 2.0.1 for macOS), and unaided evaluations were performed
without any restriction and saved (Figure 1). After a month-long time interval, the dataset
was uploaded to the Diagnocat system, and CBCT volumes were analyzed to generate a
radiological report. Observers were granted access to the web-based system (Figure 2) to
re-evaluate the samples with the aid of the Diagnocat system, and the results were saved
using new duplicates of the template.

 

Figure 1. Interface for unaided evaluations in the multiplanar reconstruction view (Sante DICOM
Viewer Pro for macOS). In multiplanar (MPR) reconstruction mode, the purple frame indicates the active
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plane (axial in this case), while the blue frames represent other dimensions which follow the actions in
the active plane. The green lines represent the intersection point in all three planes, which demonstrate
an approximal dental caries in the distal surface of the tooth number 36. Thus, findings in the active
frame are evaluated together with other axes.

 

Figure 2. Interface for aided evaluation (Diagnocat). On the left side, at the top, the synthetic–panoramic
image produced from the CBCT volume is provided for an overall view, while underneath, there is a
dental chart that provides information about the condition of each tooth. The colors of white and purple
represent a healthy and treated tooth, while the red means an unhealthy or missing tooth. On the right,
the predictions of the system for the relevant tooth are provided by image slices in different axes.

2.1. Model Pipeline

The Diagnocat system generates a radiological report based on a pipeline of multiple
pre-trained fully CNN and algorithmic slice extraction. A radiological report includes a
panoramic reformat of a CBCT and a section with slices and evaluations for each tooth
(Figure 3). Predictions crucial for signs of caries evaluation include only voxel-perfect
segmentations of teeth, although segmentations of different anatomy elements are also
used for other evaluations (e.g., orthodontic aid).

Figure 3. Diagnocat system model pipeline.

The tooth volume was cropped from a CBCT using a boundary box of a tooth segmen-
tation mask extended by 3 mm from each side of the box. It was rescaled to have isotropic
voxels and a 0.25 mm voxel size and resized to a fixed shape of 96 × 64 × 64. The tooth
volume was fed to a caries localization model, and the model prediction was rescaled to
the original voxel size and resized to an initial tooth volume shape. During the first step
of post-processing of the caries localization model, the predicted caries lesion mask was
labeled by connected components, resulting in a set of separate predicted lesions situated
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inside the tooth. Lesions with a volume less than 0.3 cm3 were ignored. The magnitude
of volume threshold was derived from the training dataset lesion volume distribution.
During the second step, predicted probability from the classification head of the model was
rescaled in a way that a probability value of 0.5 corresponded to the maximum score based
on sensitivity and specificity. The last step of post-processing the caries localization model
was an intersection of a segmentation mask of the tooth of interest with a predicted caries
lesion mask. This step was used to eliminate from final prediction caries lesion predictions
situated inside neighboring teeth. The intersection was conducted with a morphological
operation of binary dilation of a tooth segmentation mask and a multiplication of boolean
masks of a tooth and caries lesions. The final prediction masks were used as visualizations
of caries lesion locations via imposition of lesion masks on the tooth volume in axial,
mesiodistal, and frontal views (Figure 4).

 

Figure 4. Extended slice section of aided evaluations (Diagnocat) showing separate predicted caries
lesion masks (red) in axial, mesiodistal, and buccolingual views of tooth 37.

2.2. The Architecture of the Deep CNNs

The Diagnocat system exploits a set of pre-trained semantic segmentation networks
based on internally modified fully convolutional 3D U-Net architecture from Isensee
et al. [37] to obtain voxel-perfect segmentation masks of teeth, caries lesions, and anatomical
elements. As well as the original U-Net, the modified architecture consists of a contrac-
tion path (the encoder) that encodes abstract representations of the input, followed by a
symmetric expanding path (the decoder) that takes into consideration these features with
high dimensional feature representations to precisely localize regions of interest. Blocks
of the encoder were connected by 3 × 3 × 3 convolutions with stride 2 to reduce the
resolution of the feature maps. Nearest neighbor interpolation was used to up-sample
the low-resolution feature maps. Blocks of the decoder consisted of 3 × 3 × 3 convolution
followed by 1 × 1 × 1 convolution which halves the number of feature maps. Features
at each up-sampling level were concatenated with the features from the corresponding
level of the encoder. Additionally, in the localization pathway, we integrated segmentation
layers at different levels of the network and combined them via element-wise summation
to form the final network output.

Additive attention gates were used at each up-sampling level to highlight salient
image regions and preserve only the activations relevant to the main task. In such a gate, a
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single scalar attention coefficient (in range from 0 to 1) was obtained for each pixel vector
which corresponds to the number of feature maps at the current layer of the model. Finally,
after the last step of the up-sampling pathway, the classification block was added to predict
the probability of the input being pathological in conventional classification fashion.

Leaky ReLU non-linearities were used as an activation function throughout the archi-
tecture. Additionally, traditional batch normalization was replaced with instance normal-
ization due to small batch sizes of 3D volumes.

All networks were not initialized with any pre-trained weights and were trained
from scratch. The combination of Jaccard loss and cross-entropy loss was utilized for
segmentation tasks. The anatomical elements were labeled separately, while all signs of
caries were labeled as a single class and further assigned to specific teeth.

2.3. Statistical Analysis

The results of the observers on the five-point confidence scale were transformed into
binary categories (score 1, 2, and 3 as ‘absence of caries’, score 4 and 5 as ‘presence of caries’),
and the ground truth was determined by calculating the consensus of the observers. After
cleaning the data, in case three observers scored the same, the result was considered ground
truth, and conflicting surfaces were identified in online sessions under the supervision of
senior dentomaxillofacial radiologists.

After a two-month-long time interval, 50 randomly chosen samples were evaluated
again to calculate the intra-observer agreement for both aided and unaided evaluations.
Consistency between the aided and the unaided results of the observers were evaluated
by kappa statistics (95% Cl) for the assessment of intra- and inter-observer agreement. In
addition, Fleiss kappa was used to demonstrate the agreement among all observers in their
aided and unaided evaluations, regardless of the ground truth. Consistency between the
binary results and the ground truth was analyzed with sensitivity, specificity, accuracy,
and kappa statistics. Sensitivity, specificity, and accuracy values were calculated using
Equation (1):

Sensitivity = TP⁄(TP + FN)
Specificity = TN⁄(TN + FP)

Accuracy = (TP + TN)⁄(TP + FP + TN + FP)
(1)

(TP: True positive, FP: False positive, TN: True negative, FP: False positive)
Statistics were calculated using SPSS (Version 25). A p-value of less than 0.05 was

determined as the threshold for statistical significance.

3. Results

The kappa and weighted kappa coefficients are interpreted as described by Viera
et al. [38] in Table 1.

Table 1. Interpretation of Kappa statistics [38].

Kappa Agreement

<0 Less than change agreement
0.01–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–0.99 Almost perfect agreement

1 Perfect agreement

Intra-observer agreements of each observer are demonstrated by kappa coefficients
in Table 2. For Cohen’s kappa coefficient values, Observer 3’s repeatability for the five-
point scale scoring increased from substantial agreement to almost perfect agreement with
software support.

105



Diagnostics 2023, 13, 3471

Table 2. Intra-observer agreement for unaided and aided evaluations.

Cohen’s Kappa Weighted Kappa

Five-Point Scale Binary Scale Five-Point Scale Binary Scale

Unaided Aided Unaided Aided Unaided Aided Unaided Aided

Observer 1 0.820 0.903 0.926 0.939 0.938 0.958 0.926 0.939
Observer 2 0.903 0.923 0.932 0.945 0.962 0.968 0.932 0.945
Observer 3 0.735 0.911 0.865 0.939 0.849 0.937 0.865 0.939

Consistency between the observer’s aided and unaided evaluations is shown in Table 3.
For binary results, Cohen’s kappa coefficients were found to be almost perfect agreement,
substantial agreement, and moderate agreement for Observer 1, Observer 2, and Observer
3, respectively.

Table 3. Consistency between each observer’s aided and unaided results.

Score Kappa Observer 1 Observer 2 Observer 3

Multiple Weighted 0.749 0.713 0.607

Cohen’s 0.438 0.349 0.308

Binary Cohen’s 0.816 0.683 0.410

The distribution of absence or presence of caries in binary scores is demonstrated in
Table 4. The ratio of absence/presence of caries in ground truth was found to be approxi-
mately 2.32.

Table 4. Distribution of absence or presence of caries for binary scores.

n Absence Presence

Observer 1
Unaided 15,302 4634

Aided 14,225 5711

Observer 2
Unaided 14,756 5180

Aided 14,253 5683

Observer 3
Unaided 11,604 8332

Aided 13,584 6352

Ground Truth 13,928 6008

The areas under the ROC curve of Observers 1, 2, and 3 were found to be 0.855,
0.863, and 0.747 for unaided and 0.920, 0.917, and 0.903 for aided (Figure 5) evaluations,
respectively.

Figure 5. The ROC curves of aided and unaided evaluation of each observer.
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The general consensus among all observers in binary scores is shown in Table 5.
Agreement among the three observers for the presence of caries changed from substantial
agreement (Fleiss Kappa: 0.612) to almost perfect agreement (Fleiss Kappa: 0.829) in the
aided results. Overall agreement changed from moderate agreement (Fleiss Kappa: 0.443)
to substantial agreement (Fleiss Kappa: 0.757) in the binary results.

Table 5. General consensus among all observers in binary scores.

Fleiss Kappa Coefficient Binary
Tooth Condition Unaided Aided

1. Absence of caries 0.831 0.928

2. Presence of caries 0.612 0.829

Overall Consensus 0.443 0.757

The general consensus among all observers on the five-point confidence scale is
shown in Table 6. Overall agreement changed from fair agreement (Fleiss Kappa: 0.325) to
moderate agreement (Fleiss Kappa: 0.468) on the five-point confidence scale.

Table 6. General consensus among all observers in multiple scores.

Fleiss Kappa Coefficient Multiple
Tooth Condition Unaided Aided

1. Definitely not 0.534 0.581

2. Probably not 0.494 0.628

3. Not sure 0.420 0.330

4. Probably yes 0.305 0.709

5. Definitely yes 0.561 0.668

Overall Consensus 0.325 0.468

The accuracy of the observers’ aided and unaided responses in determining the
presence or absence of caries according to the ground truth along with kappa coefficients
is shown in Table 7. The difference in accuracy between aided and unaided responses of
the Observer 3 were found to be the highest, while Observer 1 achieved the best accuracy
(0.939) in the aided results.

Table 7. The sensitivity and specificity of unaided and aided evaluations of each observer.

TP TN FP FN Sensitivity Specificity Accuracy Kappa

Observer 1
Unaided 4377 13,671 257 1631 0.729 0.982 0.905 0.759

Aided 5248 13,465 463 760 0.874 0.967 0.939 0.852

Observer 2
Unaided 4609 13,357 571 1399 0.767 0.959 0.901 0.756

Aided 5210 13,455 473 798 0.867 0.966 0.936 0.846

Observer 3
Unaided 4588 10,184 3744 1420 0.764 0.731 0.741 0.446

Aided 5299 12,875 1053 709 0.882 0.924 0.912 0.793

FN: False negative, FP: False positive, TN: True negative, TP: True positive.

The agreement between the observers is shown in Table 8. The highest agreement
was found between the aided results of Observer 1 and Observer 2, with substantial to
almost perfect agreement for different types of kappa coefficients (five-point confidence scale
quadratic results, weighted kappa: 0.859 and kappa: 0.664; binary results, kappa: 0.810).
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Table 8. Pairwise agreement among observers.

Observer
Five-Point Confidence Scale Binary Score

Weighted Kappa Cohen’s Kappa

1 2 3 Unaided Aided Unaided Aided Unaided Aided

X X 0.557 0.859 0.332 0.664 0.583 0.810
X X 0.406 0.578 0.355 0.420 0.388 0.740

X X 0.435 0.574 0.317 0.373 0.408 0.724

4. Discussion

CBCT has become a very important radiographic technique in dentistry. The use of
CBCT in dental procedures has gained popularity in recent years due to its low cost, fast
image production rate, and lower radiation dose in comparison to medical CT [39]. However,
CBCT machines are operated at milliamperes that are roughly one order of magnitude below
the medical CT machines. Noise is defined as an unwanted disturbance of a signal that
tends to obscure the signal’s information. Despite the reduction in the radiation dose, a
high noise level or lower signal-to-noise ratio is expected in CBCT images. Noise reduces
contrast resolution and affects the ability to segment low-density tissues effectively [40,41].
Artifact is any distortion or error in the image that is unrelated to the subject. Image artifacts
are one of the drawbacks of the clinical use of CBCT. Artifacts may obscure or simulate the
pathology of the head and neck region, including dental caries [39,41].

Scatter is caused by those photons that are diffracted from their original path after
interaction with matter. The scattered photons are captured by the sensor and simply added
to the primary intensity. The geometry of the detector is an important factor for this image-
degrading effect of scattered radiation; as the sensor gets larger, the probability of catching
a scattered photon is raised. Scatters reduce soft-tissue contrast and affect the density of
all tissues [40]. The streak artifacts caused by scatter are very similar to those of beam
hardening [40,41]. Beam hardening is one of the most common sources of artifacts. As the
beam passes through the object, a highly absorbing material in the object, such as metal,
can function as a filter to absorb the lower energetic photons more rapidly than the higher
energetic photons. Hence, the beam spectrum becomes rich in high-energy photons and the
mean energy increases. When the spectrum of the captured beam contains relatively more
higher energetic photons than the emitted ray, the beam becomes ‘hardened’ and an artifact
is induced, resulting in dark streaks [39,40]. Artifacts are related to several factors such as
the object, material type, FOV, imaging device, and parameters [42,43]. The effectiveness of
metal artifact reduction algorithm has been investigated by several authors [44–46]. Xie et al.
proposed a deep CNN to reduce scatter artifacts for CBCT in an image-guided radiation
therapy system [47].

Several authors investigated the potential of using CBCT instead of plain radiographs
in detecting dental caries. Studies on this issue have reported varying results, perhaps
due to differences in methodology. Young et al. evaluated the CBCT images in detecting
proximal and occlusal caries by mounting 146 non-restored extracted human teeth in plaster.
Caries lesions are categorized according to location and depth, and practicing dentists are
found to be more successful in CBCT images with the average sensitivity of 0.61 when
compared to plain radiographs but with not occlusal caries [48]. Kayipmaz et al. investigated
the use of CBCT in detecting occlusal and approximal caries using 72 extracted human
teeth. In their study, CBCT was reported to be superior in detecting not the approximal
but the occlusal caries, when compared to plain radiographs [49]. Krzyzostaniak et al.
conducted a study using 135 extracted human posterior teeth, and the accuracy of detecting
non-cavitated proximal caries with CBCT unit was reported to be (0.629) inferior to other
intra-oral radiography techniques. However, the CBCT system is reported to be slightly
better for detecting occlusal carious lesions [50].

Unlike researchers that included occlusal caries, some studies excluded this location,
as we have, and focused on approximal caries detection. Zhang ZL et al. evaluated 39 non-
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cavitated and unrestored human permanent teeth for approximal caries. The mean ROC
values for two different CBCT devices were reported to be 0.528 and 0.525 (p = 0.763). The
performance of CBCT was reported to be a little better than chance when compared to
plain radiography [51]. Valizadeh et al. embedded 84 extracted human teeth in blocks, and
the area under the ROC curve, sensitivity, specificity, accuracy, and positive and negative
predictive values of CBCT images were reported to be 0.568, 0.835, 0.637, 0.714, 0.598, and
0.856, respectively. Afterall, CBCT images did not enhance the detection of proximal caries
in comparison with plain radiography [52]. Wenzel et al. mounted 257 non-filled human
teeth in plaster to be evaluated and found that CBCT was more accurate than intra-oral
radiography in detecting approximal caries [53].

Several studies are performed with the motivation that the artifacts caused by restora-
tive materials may affect the diagnosis of caries. Charuakkra et al. compared CBCT and
bitewing radiographs in detecting secondary caries using 120 cavity slots with different
restorative materials. The mean ROC values for the CBCT system were reported to be 0.995,
and 0.978, making CBCT superior to bitewing radiographs [54]. Melo et al. evaluated the
use of CBCT in detecting recurrent caries-like lesions by creating artificial caries lesions
under restorative materials. In their study, CBCT and intra-oral radiography were found
to be similar in detecting demineralization under restorations [55]. In addition, not all
CBCT machines are duplicates due to the adoption of different production technologies.
Considering that differences in production technology may affect the diagnosis of dental
caries, Qu et al. investigated the effect of two different detector types employed in five
CBCT systems on the diagnostic accuracy of approximal carious lesions by evaluating
78 approximal surfaces. According to the results of this study, the differences between five
different CBCT devices and two different detector types were not found to be statistically
significant [56].

In this study, the areas under ROC curves (0.747–0.863 for unaided, and 0.903–0.920 for
the aided evaluations) were found to be better than those in Zhang ZL et al. (0.525–0.528)
and Valizadeh et al. (0.568) and close to the Charuakkra et al. (0.978–0.995) [51,52,54].
Sensitivities (0.729–0.767 for unaided, 0.874–0.882 for aided evaluations) were found to be
better than the research of Young et al. (0.61) and similar to the study of Valizadeh et al.
(0.835) [48,52]. Higher coefficients in Table 2 can provide evidence to the higher repeatability
of observers for evaluations without the CDSS support (Sante DICOM Viewer Pro) and with
the software support (Diagnocat), separately. Repeatability values for all observers were
found to be almost perfect, except for one variable. Unaided results of Observer 3 on the
five-point scale evaluation were found to be in substantial agreement (0735) with Cohen’s
kappa coefficient; however, the same observer reached almost perfect agreement (0.911) in
the observations made with DiagnoCat system. The results of Table 3 may represent the
magnitude of the decision changes before and after using the Diagnocat system, inversely.
Kappa coefficients of Cohen’s and weighted were calculated in the range of fair agreement
(0.438) and almost perfect agreement (0.816) for Observer 1, fair agreement (0.349) and
substantial agreement (0.713) for Observer 2, and fair agreement (0.308) and substantial
agreement (0.607) for Observer 3. Accordingly, the decision changes made with the use
of the Diagnocat system were found to be minimal in Observer 1, while the magnitude
of the decision changes in Observer 3 was found to be slightly greater than in Observer 2.
According to Table 7, in unaided evaluations, Observer 1 achieved the lowest sensitivity
(0.729) and highest specificity (0.982). While sensitivity values were calculated similarly
for Observer 2 (0.767) and Observer 3 (0.764), the lowest specificity value was found in
Observer 3 (0.731). In aided evaluations, sensitivity values were increased to 0.874, 0.867,
and 0.882 for Observer 1, Observer 2, and Observer 3, respectively. Specificity values were
improved in both Observer 2 (0.966) and Observer 3 (0.924), while there was some loss
in Observer 1 (0.967). Afterall, accuracies of all observers were improved when using
the Diagnocat system. Kappa coefficients for Observer 1 were changed from substantial
agreement (0.759) to almost perfect agreement (0.852) for Observer 2, they were changed
from substantial agreement (0.756) to almost perfect agreement (0.846); and for Observer
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3, they were changed from moderate agreement (0.446) to substantial agreement (0.793)
before and after using the Diagnocat system. According to the results, it can be thought
that Observer 1 was more cautious in caries scoring than Observer 3. This difference may
be due to the difference in approach in distinguishing artifacts from caries findings. The
results of our research show that the impact of the Diagnocat system on clinicians’ decisions
varies in magnitude and nature. Based on the findings, it can be suggested that Observer 3
is the one most affected by software support. The general consensus was improved from
moderate agreement (0.443) to substantial agreement (0.757) using the software (Table 5),
and the pair-wise agreements were improved (Table 8). While the findings of our research
show that there is a general improvement in the evaluations made with Diagnocat, the slight
decrease in the specificity of Observer 1 reminds us that these systems are not mistake-free
and are auxiliary tools, and the importance of the final decision remains with the clinician.

Cardoso et al. defined gold standard data or methods as something that has already
been checked (histologically, microscopically, chemically, etc.) and presents the best accuracy
(sensitivity and specificity). Ground truth was reported as data and/or methods related
to a consensus or more reliable values/aspects that can be used as references but were not
or cannot be checked [57]. Experiments with extracted teeth allow for histopathological
evaluation, and the lack of histopathological inspection can be considered as the limitations
of this study. In our study, not the golden standard but ground truth was obtained and not
for caries diagnosis but for radiographic caries detection. To address this point, a consensus
was obtained among observers, similar to previous studies [58–61]. Thus, by using real
patient images, there was no need to simulate conditions such as artifacts in translating the
experimental results to clinical environment. Artifacts seen in CBCT imaging, especially
those associated with metallic restorations, may affect the effectiveness of caries detection [32].
The lack of a distinction for restorations in our study can be considered as a limitation. In
the meantime, samples with gross artifacts were not included in our study, and we aimed
to overcome this situation by keeping the number of samples surplus. Thus, we aimed to
reflect a realistic clinical situation by avoiding the bias caused by the distinction between
images with and without artifacts. Evaluating the effect of artifacts due to restorations may
be the subject of future studies. Caries identification by CBCT is a controversial topic and
beyond the scope of this study. The developed system analyzes the volumetric data already
saved and presents the dental caries signs to the operator. Further clinical review and final
decision rests with the clinician. We suggest that machine learning tools, such as the system
in our study, may be useful in detecting secondary findings, rather than for the primary
imaging purpose, for better diagnosis and treatment planning.

5. Conclusions

In this study, radiographic evaluations performed by three observers were found
to be more compatible and accurate with the aid of the AI system, when compared to
the evaluations without the AI system, in detecting dental caries on CBCT images. Our
study does not recommend justifying the use of CBCT imaging for caries diagnosis but
suggests that once the volumetric data are acquired, machine learning tools can be helpful
in detecting the caries signs. As technology advances, the integration of similar tools into
the digital radiology workflow can assist clinicians in evaluating radiographic data.
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Abstract: Background and Objectives: The availability of multiple dental implant systems makes it
difficult for the treating dentist to identify and classify the implant in case of inaccessibility or loss of
previous records. Artificial intelligence (AI) is reported to have a high success rate in medical image
classification and is effectively used in this area. Studies have reported improved implant classification
and identification accuracy when AI is used with trained dental professionals. This systematic review
aims to analyze various studies discussing the accuracy of AI tools in implant identification and
classification. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed, and the study was registered with the International Prospective
Register of Systematic Reviews (PROSPERO). The focused PICO question for the current study was
“What is the accuracy (outcome) of artificial intelligence tools (Intervention) in detecting and/or
classifying the type of dental implant (Participant/population) using X-ray images?” Web of Science,
Scopus, MEDLINE-PubMed, and Cochrane were searched systematically to collect the relevant
published literature. The search strings were based on the formulated PICO question. The article
search was conducted in January 2024 using the Boolean operators and truncation. The search was
limited to articles published in English in the last 15 years (January 2008 to December 2023). The
quality of all the selected articles was critically analyzed using the Quality Assessment and Diagnostic
Accuracy Tool (QUADAS-2). Results: Twenty-one articles were selected for qualitative analysis based
on predetermined selection criteria. Study characteristics were tabulated in a self-designed table. Out
of the 21 studies evaluated, 14 were found to be at risk of bias, with high or unclear risk in one or
more domains. The remaining seven studies, however, had a low risk of bias. The overall accuracy of
AI models in implant detection and identification ranged from a low of 67% to as high as 98.5%. Most
included studies reported mean accuracy levels above 90%. Conclusions: The articles in the present
review provide considerable evidence to validate that AI tools have high accuracy in identifying
and classifying dental implant systems using 2-dimensional X-ray images. These outcomes are vital
for clinical diagnosis and treatment planning by trained dental professionals to enhance patient
treatment outcomes.

Keywords: artificial intelligence; deep learning; dental implant; convolutional neural network;
machine learning; implant classification; implant identification; implant fixture

1. Introduction

Advancements in science and technology have influenced people’s lives in various
fields, including dentistry. With the introduction of precise digital machines, dentists can
provide high-quality treatment to their patients [1,2]. Various studies have shown that these
computer-aided machines help dentists in various ways, from the fabrication of prostheses
using CAD/CAM [2–5] to the use of robots in the treatment of patients [6–8]. The intro-
duction of AI has taken dentistry to the next level. These tools help/act as supplementary
aids to guide dentists’ diagnosis and treatment planning. Artificial intelligence involves
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developing and training machines through a set of data so that they are capable of decision
making and problem solving, mimicking the human brain [9–11]. Machine learning (ML),
a segment of AI, involves using algorithms to perform tasks without human intervention.
Deep learning (DL), e.g., convolutional neural network (CNN), is an element of ML that
creates a neural network capable of identifying patterns by itself, which enhances feature
identification [11–13].

AI functions on two levels. The first level involves training, in which data are used
to train and set the parameters. The second level is the testing level, in which AI per-
forms its designated task of problem solving or decision making based on the training
data. The training data are generally from the pool of collected data of interest [14–17].
Currently, AI is widely used in dentistry, which involves caries detection [18,19], periapical
lesion detection [20], oral cancer diagnosis [21,22], screening of osteoporosis [23], working
length determination during endodontic treatment [24,25], determination of root morphol-
ogy [26,27], forensic odontology [28], pediatric dentistry [29], and implant dentistry for
identification [30–32], diagnosis, and treatment planning [33,34]. Studies have shown that,
in general, AI helps dentists in diagnosis and treatment planning, as it provides logical
reasons that aid in scientific assessment.

Dental implants are commonly used for replacing missing teeth. Studies have reported
a high long-term success rate with a ten-year survival rate above 95% [35–38]. With
constantly increasing demands, dental implant manufacturers are developing different
implant systems to increase the success rate [39]. With the increase in the use of dental
implants, an increase in complications has also been reported. These complications may
be related to prosthetic or fixture components or may be biological in nature [40–43]. To
manage these complications, the treating dentist should know the type of implant system
used so that he or she can provide the best possible treatment outcome [44]. The data
related to the implant system can be retrieved easily from the patient’s previous records.
However, in case of inaccessibility or loss of previous records due to any reason, it becomes
difficult for the dentist to identify and classify the implant system using the available
X-rays and clinical observation [45]. Dentists with vast experience in implantology may
also find this task challenging. AI is reported to have a high success rate in medical image
classification and is effectively used in this area. AI has been used to manage the problem
of implant system identification and classification [30–32,46–63]. The AI tool is trained
using a database of implant images and is later used to identify and classify the implants.
Studies have reported improved implant classification and identification accuracy when
AI is used with trained dental professionals [51,53,60,62]. This systematic review aims
to analyze various studies discussing the accuracy of AI tools in implant identification
and classification.

2. Materials and Methods

2.1. Registration

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [64] were followed to systematize and compile this systematic review. The
study was registered with the International Prospective Register of Systematic Reviews
(PROSPERO registration No.: CRD42024500347).

2.2. Inclusion and Exclusion Criterias

The details of inclusion and exclusion criteria are given in Table 1.

2.3. Exposure and Outcome

In the current study, the exposure was the identification of the type and classification
of an implant system using an artificial intelligence tool. The outcome was the accuracy
of identification. The focused PICO (Population (P), Intervention (I), Comparison (C),
and Outcome (O)) question for the current study was “What is the accuracy (outcome) of
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artificial intelligence tools (Intervention) in detecting and/or classifying the type of dental
implant (Participant/population) using X-ray images?”

P: Human X-rays with dental implants.
I: Artificial intelligence tools.
C: Expert opinions and reference standards.
O: Accuracy of detection of the dental implant.

Table 1. Selection criteria.

Inclusion Criteria Exclusion Criteria

Literature in English language Literature in a language other than English

Human clinical studies

Animal studies, cadaver studies, technical reports, case
reports, posters, case series, reports, commentaries, reviews,
unpublished abstracts and dissertations, incomplete trials,
and non-peer reviewed articles

Articles published between January 2008 and December 2023 Articles published prior to January 2008
Studies evaluating the diagnostic accuracy of artificial intelligence
tools in the identification and classification of dental implants

Studies evaluating the accuracy of artificial intelligence tools
in identification of other dental/oral structures

Studies in which three or more implant models were identified Studies having only the abstract and not the full text
Studies in which less than three implant models were
identified
Studies discussing artificial intelligence tools under trial

2.4. Information Sources and Search Strategy

Four electronic databases (Web of Science, Scopus, MEDLINE-PubMed, and Cochrane)
were searched systematically to collect the relevant published literature. The search strings
were based on the formulated PICO question. The article search was conducted in January
2024 using the Boolean operators and truncation. The search was limited to articles pub-
lished in English in the last 15 years (January 2008 to December 2023). Studies performed
on animals were not included. Details about the search strategy are mentioned in Table 2.
Minor changes were made in the search strings based on the requirements of the database.
Grey literature was searched, and bibliographies of selected studies and other review
articles were checked manually to ensure that no relevant articles were left.

2.5. Screening, Selection of Studies, and Data Extraction

Two reviewers, M.S.A. and M.N.A., independently reviewed the titles and abstracts
obtained by the electronic search. Duplicate titles were eliminated. The remaining titles
were assessed based on the preset selection criteria and the PICO question. Full texts
of the selected studies were reviewed independently by two reviewers, R.S.P. and W.I.I.,
and relevant articles were shortlisted. Any disagreements were resolved by discussion
between them and with the third reviewer, M.N.A. Articles that did not meet the selection
criteria were discarded, and the reason for exclusion was noted. The inter-examiner
agreement was calculated using kappa statistics. W.I.I. created a data extraction chart
and collected information related to the author, year of publication, country where the
research was conducted, type and name of the algorithm network architecture, architecture
depth, number of training epochs, learning rate, type of radiographic image, patient data
collection duration, number of implant images evaluated, number and names of implant
brands and models evaluated, comparator, test group, and training/validation number
and ratio. Accuracy reported by the studies, author’s suggestions, and conclusions were
also extracted. These data were checked and verified by a second reviewer (M.S.A.).
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Table 2. Strategy and search terms for the electronic databases.

Database Combination of Search Terms and Strategy
Number of

Titles

MEDLINE-
PubMed

(((((((dental implants[MeSH Terms]) OR (dental implantation[MeSH Terms])) OR (dental implant*))
OR (dental implant system*)) OR (Dental Implant System Classification)) OR (dental implant fixture))

OR (dental implant fixture classification)) AND ((((((((((((((dental diagnostic imaging) OR (dental
digital radiography[MeSH Terms])) OR (dental radiography[MeSH Terms])) OR (oral digital

radiography) OR (dental Digital radiograph))) OR (Panoramic image*)) OR (panoramic
radiography[MeSH Terms])) OR (Periapical images)) OR (dental radiology)) OR (periapical
radiograph*)) OR (dental X-ray image)) OR (synthetic dental X-ray image)) OR (OPG)) OR

(Orthopantomogram)) OR (Intro oral radiograph) AND ((((((((((((((((artificial intelligence[MeSH
Terms]) OR (machine learning[MeSH Terms])) OR (neural networks computer[MeSH Terms])) OR

(algorithms[MeSH Terms])) OR (deep learning)) OR (supervised machine learning)) OR (Automated
deep learning)) OR (Object detection)) OR (Yolov3)) OR (object detection algorithm)) OR

(convolutional neural network*)) OR (Deep Neural Network*)) OR (multi-task learning)) OR (deep
convolutional neural network)) OR (Transfer Learning)) OR (attention branch network)) OR

(Ensemble Deep Learning) AND (((((((((sensitivity and specificity[MeSH Terms]) OR (Accuracy)) OR
(sensitivity)) OR (specificity)) OR (Positive Predictive Value*)) OR (Negative Predictive Value*)) OR

(Precision)) OR (Recall)) OR (F1 score)) OR (Area under receiver operating characteristics curve)
Filters: Humans, English, from 1 January 2008 to 31 December 2023

119

Scopus

(“dental implants” OR “dental implantation” OR “dental implant*” OR “dental implant system*” OR
“Dental Implant System Classification” OR “dental implant fixture” OR “dental implant fixture
classification”) AND (“dental diagnostic imaging” OR “dental digital radiography” OR “dental

radiography” OR “oral digital radiography” OR “dental Digital radiograph” OR “Panoramic image*”
OR “panoramic radiography” OR “Periapical images” OR “dental radiology” OR “periapical

radiograph*” OR “dental X-ray image” OR “synthetic dental X-ray image” OR “OPG” OR
“Orthopantomogram” OR “Intro oral radiograph”) AND (“artificial intelligence” OR “machine

learning” OR “neural networks computer” OR “algorithms” OR “deep learning” OR “supervised
machine learning” OR “Automated deep learning” OR “Object detection” OR “Yolov3” OR “object

detection algorithm” OR “convolutional neural network*” OR “Deep Neural Network*” OR
“multi-task learning” OR “deep convolutional neural network” OR “Transfer Learning” OR

“attention branch network” OR “Ensemble Deep Learning”) AND (“sensitivity and specificity” OR
“Accuracy” OR “sensitivity” OR “specificity” OR “Positive Predictive Value*” OR “Negative

Predictive Value*” OR “Precision” OR “Recall” OR “F1 score” OR “Area under receiver operating
characteristics curve”) AND PUBYEAR > 2008 AND PUBYEAR <2023 AND (LIMIT-TO (SUBJAREA,
“DENT”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND

(LIMIT-TO(SRCTYPE, “j”))

205

Web of
Science

#1 (P)
TS = (‘dental implants’ OR ‘dental implantation’ OR ‘dental implant*’OR ‘dental implant system*’
OR ‘Dental Implant System Classification’ OR ‘dental implant fixture’ OR ‘dental implant fixture

classification’ OR ‘dental diagnostic imaging’ OR ‘dental digital radiography’ OR ‘dental
radiography’ OR ‘oral digital radiography’ OR ‘dental Digital radiograph’ OR ‘Panoramic image*’

OR ‘panoramic radiography’ OR ‘Periapical images’ OR ‘dental radiology’ OR ‘periapical
radiograph*’ OR ‘dental X-ray image’ OR ‘synthetic dental X-ray image’ OR ‘OPG’ OR

Orthopantomogram OR ‘Intro oral radiograph’)
#2 (I)

TS = (‘artificial intelligence’ OR ‘machine learning’ OR ‘neural networks computer’ OR algorithms
OR ‘deep learning’ OR ‘supervised machine learning’ OR ‘Automated deep learning’ OR ‘Object

detection’ OR ‘Yolov3′ OR ‘object detection algorithm’ OR ‘convolutional neural network*’ OR ‘Deep
Neural Network*’ OR ‘multi-task learning’ OR ‘deep convolutional neural network’ OR ‘Transfer

Learning’ OR ‘attention branch network’ OR ‘Ensemble Deep Learning’)
#3 (O)

TS = (‘sensitivity and specificity’ OR Accuracy OR sensitivity OR specificity OR ‘Positive Predictive
Value*’ OR ‘Negative Predictive Value*’ OR Precision OR Recall OR ‘F1 score’ OR ‘Area under

receiver operating characteristics curve’)
#3 AND #2 AND #1

Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan
= January 2008 to December 2023

and English (Languages)

8
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Table 2. Cont.

Database Combination of Search Terms and Strategy
Number of

Titles

Cochrane
Library

#1 MeSH descriptor: [Dental Implants] explode all trees
#2 MeSH descriptor: [Dental Implantation] explode all trees
#3 dental implant*
#4 dental implant system*
#5 Dental Implant System Classification
#6 dental implant fixture
#7 dental implant fixture classification
#8 dental diagnostic imaging
#9 MeSH descriptor: [Radiography, Dental, Digital] explode all trees
#10 MeSH descriptor: [Radiography, Dental] explode all trees
#11 oral digital radiography
#12 dental Digital radiograph
#13 Panoramic image*
#14 panoramic radiography
#15 Periapical images
#16 dental radiology
#17 periapical radiograph*
#18 dental X-ray image
#19 synthetic dental X-ray image
#20 OPG
#21 Orthopantomogram
#22 Intro oral radiograph
#23 MeSH descriptor: [Artificial Intelligence] explode all trees
#24 MeSH descriptor: [Machine Learning] explode all trees
#25 MeSH descriptor: [Neural Networks, Computer] explode all trees
#26 MeSH descriptor: [Algorithms] explode all trees
#27 deep learning
#28 supervised machine learning
#29 Automated deep learning
#30 Object detection
#31 Yolov3
#32 object detection algorithm
#33 convolutional neural network*
#34 Deep Neural Network*
#35 multi-task learning
#36 deep convolutional neural network
#37 Transfer Learning
#38 attention branch network
#39 Ensemble Deep Learning
#40 MeSH descriptor: [Sensitivity and Specificity] explode all trees
#41 Accuracy
#42 sensitivity
#43 specificity
#44 Positive Predictive Value*
#45 Negative Predictive Value*
#46 Precision
#47 Recall
#48 F1 score
#49 Area under receiver operating characteristics curve
#50 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
#51 #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR
#20 OR #21 OR #22
#52 #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR
#35 OR #36 OR #37 OR #38 OR #39
#53 #40 OR #41 OR #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49
#54 #50 AND #51 AND #52 AND #53

6

* truncation. P, population; I, intervention; O, outcome.
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2.6. Quality Assessment of Included Studies

The quality of all the selected articles was critically analyzed using the Quality As-
sessment and Diagnostic Accuracy Tool (QUADAS-2) [65]. This tool is used for studies
evaluating diagnostic accuracy (Table S1). This tool assesses the risk of bias and appli-
cability concerns. The risk of bias arm has four domains that primarily focus on patient
selection, index test, reference standard, and flow and timing. Meanwhile, the applicability
concern arm has three domains focusing on patient selection, index test, and reference
standards.

3. Results

3.1. Identification and Screening

After an electronic search of the databases, 561 hits were displayed. A total of
36 articles were found to be duplicates and were removed, and the titles and abstracts of
525 articles were reviewed and checked for eligibility based on inclusion and exclusion
criteria. Twenty-eight articles were selected for full-text review. Out of these twenty-eight
articles, six were rejected, as they discussed the use of AI in diagnosis and treatment plan-
ning of dental implants, and one was rejected because it discussed the diagnostic accuracy
of AI in evaluating the misfit of abutment and implant. Eventually, twenty-one articles
were included in the study. No relevant articles meeting the selection criteria were found
during the manual search of the bibliographies of the selected studies and other review
articles (Figure 1). During the full-text review phase, Cohen’s kappa value was found to be
0.89 for two reviewers (R.S.P. and W.I.I.), which is an excellent agreement.

Figure 1. Flow chart illustrating the search strategy.

3.2. Study Characteristics

Table 3 displays the characteristics of studies involved in the review. All the in-
volved studies were published in the last four years (2020: six; 2021: four; 2022: five;
2023: six) (Figure 2). Out of selected 21 studies, 12 were conducted in the Republic of
Korea [31,48,51,53–55,57–62], four in Japan [30,47,50,52], and one each in Brazil [49], In-
dia [56], France [46], South Africa [32], and the United States [63] (Figure 3). Some of
the included studies were conducted by the same research groups (Kong et al. [31,61],
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Park et al. [48,62], Sukegawa et al. [30,50,52], and Lee et al. [51,53,54]). Each of them shared
common funding sources and grant numbers, respectively, but the studies by Kong et al. [31,61]
also shared a common research registration number. The number of algorithm networks evalu-
ated for accuracy varied in the selected studies. Ten studies [46–49,51,53,57,58,60,62] evaluated
the accuracy of one algorithm network; three evaluated two algorithm networks [32,59,61];
two tested three algorithm networks [31,54]; one tested four algorithm networks [56]; three
tested five algorithm networks [50,52,55]; one study each tested six [30] and ten [63] al-
gorithm networks. All the included studies evaluated the accuracy of tested AI tools in
implant detection and classification, whereas four studies [51,53,60,62] also compared this
to trained dental professionals.

Figure 2. Year-wise distribution of published studies.

Figure 3. Country-wise distribution of published studies.
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More than 431,000 implant images were used to train and test the selected AI tools’
implant detection and classification accuracy. Eight studies [30,31,47,50,52,56,60,61] used
cropped panoramic X-ray images, and six studies [49,55,57–59,63] used cropped periapical
X-ray images, whereas another six studies [46,48,51,53,54,62] used both periapical and
panoramic implant images. In one study [32], artificially generated X-ray images were
used to test AI accuracy. In most of the selected studies, the test group to training group
ratio was 1:4. The learning rate of the AI algorithm ranged between 0.0001 and 0.02, the
number of training epochs ranged from 50 to 2000, and the architecture depth varied from
3 to 150 layers. Also, the number of implant brands and models identified and classified
varied from N = 3 to N = 130.

3.3. Quality Assessment of Included Studies

The QUADAS-2 tool was used to assess the risk of bias in diagnostic tests. Out of
the 21 studies evaluated, 14 were found to be at risk of bias, with high or unclear risk
in one or more domains. The remaining seven studies, however, had a low risk of bias.
All the included studies utilized photographic data as input to AI, resulting in a low risk
of bias in the data selection domain across all studies. The results from the risk-of-bias
arm demonstrated that 80.95% of the studies had a low risk, 14.28% had an unclear risk,
and 4.76% had a high risk in the index test domain. In contrast, in the reference standard
domain, 47.62% of the studies had a low or unclear risk of bias, while 4.76% had a high risk
of bias. As the data feeding in AI technology is standardized, the final output will not affect
the flow or time frame. Therefore, all studies regarded both aspects as low-risk categories
(100%). Based on the risk-of-bias arm of the QUADAS-2 assessment tool, applicability
concerns generated similar results. (Table S1 and Figure 4).

Figure 4. Presentation of the risk of quality assessment summary of risk bias and applicability
concerns for included studies according to the QUADAS-2 tool.

3.4. Accuracy Assessment

The overall accuracy of deep learning algorithms (DLA) in implant detection and
identification ranged from a low of 67% [56] to as high as 98.5% [52]. Most included studies
reported mean accuracy levels above 90% [30,46,50–55,58,59,63]. The accuracy of the latest
finely tuned versions of DLAs was reported to be higher when compared to basic DLAs.
Six studies [46,48,51,53,54,62] used both periapical and panoramic implant images to test
the DLA models. Four studies reported higher accuracy when periapical radiographs were
used [46,51,53,54,62]. One study reported higher accuracy with panoramic radiographs [48],
whereas one study did not provide these details [46]. Four studies compared the accuracy
of DLAs with dental professionals [51,53,60,62]. All four reported higher accuracy for
DLAs when compared to dental professionals. A study by Lee et al. [60] reported that the
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board-certified periodontists with the assistance of DLA reported higher accuracy when
compared to automated DL alone.

4. Discussion

The current systematic review involved all the recently published studies evaluat-
ing the accuracy of AI in implant detection and classification [30–32,46–63]. Overall, the
outcome of this review revealed that the application of AI in implant detection and clas-
sification is a reliable and accurate method and can help dentists manage cases with no
previous data related to the type of implant. With the advancements in AI, the accuracy
levels may improve to a great extent.

However, the outcomes of this review should be inferred with caution because there
was a significant variation between the numbers of implant models evaluated for testing
the accuracy in the included studies. These ranged from as low as three [49,51,56,59] to
as high as one hundred and thirty [61]. In general, the lower the number, the higher the
accuracy rate of identification and classification, generally. There was a large variation in
the sample size in the selected studies, which varied from 300 [57] to more than 150,000 [62].

The included studies have variations in the annotation process. PA images were used
for training and testing the AI tool in six studies [49,55,57–59,63] and panoramic images in
eight studies [30,31,47,50,52,56,60,61], whereas both PA and panoramic images were used in
six studies [46,48,51,53,54,62]. One study used simulated images generated artificially [32].
In the studies where both PA and panoramic images were used, four studies reported that
the accuracy of identification and classification was higher with PA images as compared to
panoramic images [51,53,54,62], whereas one study reported that the accuracy was higher
with the panoramic images [48].

The dental professionals involved in image selection, cropping, image standardization,
training, and validation varied in areas of practice from periodontists and prosthodontists
to oral and maxillofacial surgeons [30,48,51,53,54,63]. In contrast, other included studies
were lacking in this information. One study validated the collected data with the help of
board-certified oral and maxillofacial radiologists [48] and periodontists [53]. To reduce the
heterogeneity and standardize the outcomes, the validation of the selected X-ray images
should be performed by a trained radiologist. There was variation in training epochs,
which varied from 50 to 2000, and the architecture depth varied from 3 to 150 layers. These
parameters can affect the accuracy outcomes of the included studies. The accuracy of
identification and classification also depends on the generation of Dl architecture used.
There was a difference in the tested algorithms in the selected studies.

In their study, Sukegawa et al. [52] trained a CNN algorithm to analyze the implant
brand and treatment stage simultaneously. The AI tool was annotated for both parameters.
The classification accuracy of the implant treatment stage was reported as 0.996, with a
large effect size of 0.818. The accuracy of single-task and multi-task AI tools were found to
be comparable. Lee et al. [54] trained and tested the accuracy of AI tools to identify and
classify fractured implants. They reported an implant classification accuracy varying from
0.804 to 0.829. They reported higher accuracy levels when DCNN architecture used only
PA images for identification.

All the included studies evaluated the accuracy of tested AI tools in implant detection
and classification, whereas four studies [51,53,60,62] also compared this to the trained
dental professionals. Lee et al. [51,53,60] and Park et al. [62] compared the accuracy
of the tested DL algorithm in implant detection and classification with trained dental
professionals. All the studies reported that the accuracy performance of the DL algorithm
was significantly superior when compared to humans. The accuracy reported by Park
et al. [62] for DL was 82.3% and for humans varied from 16.8% (dentist not specialized in
implantology) to 43.3% (dentist specialized in implantology). Lee et al. [60] reported mean
accuracy of 80.56% for the automated DL algorithm, 63.13% for all participants without
DL assistance, and 78.88% for all participants with DL assistance. They reported that the
DL algorithm significantly helped in improving the classification accuracy of all dental
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professionals. Lee et al. [53], in another study, reported an accuracy of 95.4% for DL and
between 50.1% to 96.8% for dentists. Another study by Lee et al. [51] reported a similar
accuracy rate with DL at 97.1% and periodontists at 92.5%.

Most of the currently reported AI models use two-dimensional X-rays (periapical or
panoramic). In contrast, three-dimensional X-rays like cone-beam computed tomography,
widely used in implantology, were not evaluated. Also, the studies included have limi-
tations in the type of implant systems evaluated. Thus, there is a need for more studies
with a vast database that can include most of the commonly used implant systems and can
utilize all forms of radiographic techniques.

The DL algorithm’s identification and classification abilities in all the selected studies
were limited to the implant models the authors trained. There is a need to include more
implant systems and models and create a vast database to help identify a wider variety of
implant models and their characteristics. A comprehensive search strategy and rigorous
selection strategy are the strong points of this systematic review. All articles mentioning AI
and dental implants were assessed based on pre-set selection criteria, thus ensuring that
every relevant article was reviewed.

4.1. Inferences and Future Directions

The field of AI is growing exponentially. There is vast literature discussing the ad-
vancements of AI in the healthcare field. Most of these AI tools focus on identification,
diagnosis, and treatment planning and ways to improve them to help healthcare profes-
sionals provide the best possible treatment to their patients. All the included studies used
two-dimensional images (periapical or panoramic) to identify and classify the implant
systems. Three-dimensional imaging techniques like CBCT are considered a gold-standard
imaging technique in dental implant planning and treatment. Thus, there is a need to
develop AI tools that can use these 3D images to identify and classify the implant systems.
Additionally, with the availability of newer generations of AI tools, there is a need for
constant up-gradation to increase the accuracy levels of these tools.

4.2. Limitations

The current systematic review has a few limitations. This review included studies pub-
lished only in English. The search period was limited to the last 25 years only (2008–2023).
As AI is a recent and advancing field, the authors believed that conducting a search before
this time may provide studies in which the technology is in an immature stage. Lastly, a
meta-analysis was not feasible due to the lack of heterogeneity among the selected studies.

5. Conclusions

To conclude, it can be stated that the articles in the present review provide consider-
able evidence to validate AI tools as having high accuracy in identifying and classifying
dental implant systems using 2-dimensional X-ray images. These outcomes are vital for
clinical diagnosis and treatment planning by trained dental professionals to enhance patient
treatment outcomes.

Supplementary Materials: The following supporting information can be downloaded at:
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Abstract: Background: The purpose of the study was to investigate the behavior of hard dental
structures of the teeth with abfraction lesions when experimental occlusal loads were applied.
Methods: A 65-year-old patient came to the dentist because she had painful sensitivity in the
temporomandibular joints and the lower right premolars. The patient was examined, and cone-beam
computed tomography (CBCT) of the orofacial area was indicated. The data provided from the CBCT
were processed with Mimics Innovation Suite 17 software to create the desired anatomical area in
3D format. Then, the structural calculation module was used in order to perform a finite element
analysis of the lower right premolar teeth. A focused review of articles published between 2014
and 2023 from specialty literature regarding the FEA of premolars with abfraction lesions was also
conducted. Results: The parcel area and the cervical third of the analyzed premolars proved to be
the most vulnerable areas under the inclined direction of occlusal loads. The inclined application of
experimental loads induced 3–4 times higher maximum shears, stresses, and deformations than the
axial application of the same forces. Conclusions: FEA can be used to identify structural deficiencies
in teeth with abfractions, a fact that is particularly important during dental treatments to correct
occlusal imbalances.

Keywords: mandibular premolars; abfraction lesions; FEA; experimental forces; evaluation

1. Introduction

The complex formed by periodontal tissues (cementum, ligaments, and bone) confers
the characteristic flexibility of the tooth root in the alveolar socket, flexibility necessary
for dispersing the occlusal forces [1–3]. Irreversible structural defects that are located in
the cervical area at the level of the enamel–cement junction on the buccal/labial surface of
the teeth are named non-carious cervical lesions (NCCLs) [4]. In the area of the enamel–
cementum junction, the enamel prisms have a horizontal orientation [5]. The volume and
composition of enamel and dentin contribute to the development of NCCLs [6].

The term “abfraction” nominates stress-induced NCCLs in the cervical region of the
dental crowns that determine the progressive damage to mineralized dental tissues because
of flexion [7,8]. Micro-fractures of hydroxyapatite (HA) crystals of enamel, cementum, and
dentine thus appear in the zone of stress concentration. Abfraction lesions are located at
the site of the least resistance in the cervical region, at the enamel–cementum junction [7–9].
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The etiology of abfraction lesions remains disputable, and current evidence shows that
the apparition of NCCLs is multifactorial, and that the degrees of tooth hard tissue vary
and may differ from patient to patient [7,10–13]. Correct diagnosis and treatment decisions
require in-depth knowledge regarding the multifactorial etiological conditions of abfraction
lesions. The therapeutic possibilities for these lesions currently vary; therefore, clinicians
need to be informed regarding the major etiological factors and the clinical particularities
that differentiate them [7,14].

Computational modeling is a computer-based method that studies the behavior of
complex systems through computer simulations. It can be used to resolve mathematical
models that characterize physical phenomena but also to make predictions of the system’s
behavior under different conditions [15,16]. Finite element analysis (FEA) is a numerical
technique that slices the structure of the analyzed object into several elements; later, the
elements are reconnected at points called nodes [17]. FEA has reformed scientific modeling
in engineering methods and can also be used in the analysis of the components of the
orofacial system [18–22].

The detection of non-carious abfraction lesions in the cervical area of dental hard
tissues by the clinician is an alarm signal that can predict the patient’s need for occlusal
balancing therapy in the future. The originality of this study consists in carrying out an
experimental FEA study (which is a non-invasive repeatable method that does not require
the presence of the patient, realized in accordance with data from the patient’s CBCT),
and determining how the obtained results can represent a first step in the phasing of the
dental treatment applied by the clinician to patients with abfraction lesions. Later, various
occlusion analysis systems can be used to record detailed data regarding the existence
of excessive occlusal forces (including the use of a T-Scan digital device), but these types
of analyses can only be performed in the presence of the patient. The aim of the present
study was to assess, using FEA, the behavior of hard dental tissues at the level of the lower
premolar with abfraction under perpendicular and 45-degree inclined experimental forces.

2. Case Description

A 65-year-old female patient came to the dental practice for the treatment of dental
pain. The patient complained of dental sensitivity to cold, hot, sweet, and sour agents in the
lower right premolar area. Anamnesis revealed that the patient was not under treatment
for chronic diseases. According to what was stated in the anamnesis, the patient had not
previously undergone orthodontic treatments and had no traumatic injury. The patient
also complained of the signs and symptoms of bruxism (teeth grinding or clenching loud
enough to wake up the sleep partner, jaw and face soreness, tired or tight jaw muscles, and
a dull headache in the temporal area). The patient declared that she did not drink fruit
juices and other acidic drinks, that she has no digestive diseases (reflux and/or vomiting),
that she uses a soft-bristled toothbrush and toothpaste containing fluoride, that her teeth
are brushed gently, and that she does not wear a mouth guard or occlusal splint.

During the extraoral examination, it was observed that the masseter muscles presented
with hypertonicity, especially on the left side, and painful sensitivity in the temple area.

The intraoral examination revealed that the patient presented with multiple simple
odontal lesions that were partially treated, correctly and incorrectly. A simple carious lesion
affected the right upper first premolar (1.4) (Figure 1). Wear areas were also observed in the
incisal and occlusal regions of the right lower canine and premolars, as well as abfractions,
with exposed dentine, located in the buccal cervical zone of the mandibular right premolars.
The aspect of abfractions was mixed-shaped (wedge and saucer), located in enamel and
dentine, without prepared cavities, and without any bacterial deposits. The abfraction
lesions were 1.2 mm in depth. The most commonly used index that categorizes tooth wear
in the cervical region is the Tooth Wear Index by Smith and Knight [23]. The abfraction
lesions of the lower right premolars were determined to be 3rd class (defects ranging from
1 to 2 mm deep).
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Figure 1. Intraoral aspects and CBCT image of patient.

The cervical margin of the patient’s abfraction lesions were located at the level of the
free gingival margin. No gingival recessions were detected at the level of the cervical area
of the two premolars. During the anamnesis and the clinical examination of the patient as
well as later during the treatment and monitoring, no changes of periodontal tissues were
detected (e.g., inflammation, gingival bleeding, the apparition of periodontal pockets, or
dental mobility).

These mandibular right premolars presented with painful tooth sensitivity. The teeth
appeal revealed the absence of 1.8, 1.6, 2.6, 3.5, 3.6, 4.6, and 4.8 teeth (after the FDI two-digit
notation system). Cone-beam computed tomography (CBCT) of the orofacial area was
indicated as a complementary examination. The patient’s missing teeth were already
prosthodontically rehabilitated when she came to the dentist, through dental implants.
She told us that these were short Bicon dental implants (facts confirmed by analysis of the
CBCT images) with the superstructure made of hybrid ceramics.

After the professional prophylactic cleaning of both dental arches, the patient was
trained regarding the proper toothbrushing technique in order to abolish any eventual
horizontal movements with excessive force during toothbrushing.

The specific dental treatment started with the desensitization of abfraction areas (with
GLUMA desensitizer, KulzerGmbH, Mitsui chemical group, Hanau, Germany) and the
manufacturing of a thermoformed polyethylene occlusal mouth guard (of Sof-Tray Sheets,
Ultradent Products Inc., South Jordan, UT, USA). The mouth guard had a thickness of
1.5 mm and was inserted on the lower dental arch. The patient was instructed on how to
use the mouth guard to control the bruxism parafunction.

3. Finite Element Analysis (FEA) of Mandibular Right Premolars

The data provided by the CBCT were also used for performing the finite element
analysis (FEA).

The FEM analysis in the presented case represented the first step in clarifying the
stages of applied dental treatment in future sessions, especially since these experimental
studies did not require the presence of the patient. By performing finite element analysis
(FEA), it was possible to identify the harmful direction of forces as well as the actual and
future structural deficiencies in the lower right premolar teeth with abfractions.

To carry out the numerical analyses, we selected the clinical case of a 65-year-old
patient who presented with abfractions at the level of the lower right premolar group. The
patient underwent a CBCT at an imaging center, and the information provided by the
computed tomography was processed with dedicated software and subsequently subjected
to finite element analysis. The processing of the information provided by CBCT, and the
numerical study, were carried out at the University POLITEHNICA of Bucharest.

Tomographic information was imported into the software package Mimics Innova-
tion Suite 17, © Materialise NV. It has two components: Mimics and 3-matic. In Mimics,
information from the CBCT was read in axial incidence whereupon the program immedi-
ately calculated the other two incidences, coronal and sagittal. The area of interest in the
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study was selected by applying the filters corresponding to predefined areas of Hounsfield
units (grayscale masks). The mask was limited in its expansion by cropping. The desired
anatomical area was created in a 3D format (Figure 2).

 

Figure 2. The stages in obtaining the desired anatomical area in 3D format.

From the desired anatomical zone, the area of interest for the study was delimited
through specific sectioning operations in order to be able to analyze the region of the two
premolars affected by abfraction (Figure 3a,b).

 
(a) (b) 

Figure 3. Sections to preserve the area of interest: (a) distal section; and (b) mesial section.

By replicating the “crop” function, we managed to isolate the area of interest, where
the presence of the abfraction at the bundle level is visible on the buccal faces of the two
premolars (Figure 4a). The phenomenon is similar to the compression cracking produced
in the case of cold plastic deformation of metallic materials (Figure 4b). The “editing” of the
premolars is a laborious operation in the case of processing images obtained from CBCT.
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The Mimics program is being developed for studies based on images without artifacts.
The elimination of artifacts (Figure 4c) was effectuated “pixel by pixel” on each slice of
the tomography.

   
(a) (b) (c) 

Figure 4. (a) Highlighting of abfraction areas; (b) compression fracture for cast iron and aluminum:
“classic” fracture surface at 45◦; and (c) selecting artifacts for removal.

After the complete separation of the area of interest from possible artifacts, the data
obtained with Mimics was further processed in 3-matic, the second component of the suite
(Figure 5a). In 3-D, the anatomical components of interest were separated step by step so
that, finally, the premolars were visualized as separate 3D objects (Figure 5b). To reach this
stage, for each of the three objects (mandible, first and second premolar), we need to go
through several stages of “repairing” their surfaces to be able to move from an external
surface to 3D objects with volumetric consistency, which allows performing complex
mechanical analyses with finite elements. It can be seen that the 2nd premolar presents a
more extensive area of abfraction in surface and depth, which is why all calculations were
subsequently performed only on this anatomical element. To perform a relevant analysis,
cementum and enamel were separated in Mimics. This was done using density filtering
of the original CBCT information (Hounsfield units), and then separate 3D objects were
generated (Figure 5c).

   
(a) (b) (c) 

Figure 5. (a) Introducing data into 3-matic; (b) the steps for separating the anatomical components of
interest in the 3-matrix; and (c) separation of cementum from enamel.

After the stage of obtaining an error-free 3D object, the recalculation of the trian-
gulation mesh follows in order to move from the triangles that define the outer contour
to tetrahedral elements through which the outer contour acquires an inner, volumetric
“consistency”. The recalculation of the triangle mesh can be conducted in several ways,
and it is even possible to reduce the number of tetrahedral elements to reduce the duration
of the numerical calculation procedures. Figure 6a shows the situation after recalculation
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with a gradient mesh (procedure called gradient remesh). If the previous steps have gone
correctly, the creation of the volumetric mesh can proceed (Figure 6b), and if the volumetric
meshes has been calculated successfully, the anatomical objects processed in this way can
be exported to numerical analysis programs with finite elements, in this case ANSYS ©
ANSYS Inc. (Houston, TX, USA) (Figure 6c).

 
 
 
 
 

 

 
 
 
 
 
 
 
 

 

(a) (b) (c) 

Figure 6. (a) Gradient remesh procedure; (b) creating the volumetric network; and (c) volumetric
mesh export in ANSYS.

After importing the volumetric meshes into ANSYS, the structure of the module was
selected for calculating the effects of the applied stress (Figure 7).

 

Figure 7. The structure of the module for calculating the effects of applied stress.

In the analyzed case, we selected the Static Structural calculation mode, within which
the objects that, through their geometry, constitute the model and the properties of the
materials involved in the calculations (Engineering Data) were defined. Next, the definition
of the Support (support of the volumetric element) and the means of applying mechanical
stress (Force) were determined. In the Solution section, the mechanical elements that re-
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quired calculation by FEA were determined. The adjacent diagram shows the requirements.
Then, the program started to find results in the Solution section. In the case of the second
premolar, the support area A inside the alveolus (blue area) and the area B for applying the
pressure force to the occlusal surface (red areas) were defined (Figure 8).

 

Figure 8. Definition of support area and force application areas.

In the Engineering Data (Figure 9), the material constants characterizing the tooth
required for performing the analysis with finite elements were entered. A force of 400 N at
35 ◦C was used in two positioning variants: perpendicular to the tooth crown and inclined
at 45◦, to simulate mastication (the first variant) and stress due to bruxism (the second
variant).

 

Figure 9. Material constants used in calculations.

The elastic properties of cementum and enamel, entered into the software to perform
the numerical simulations, are presented in Table 1.

Table 1. Elastic properties of dental cement and enamel.

Elastic Properties of Cement Elastic Properties of Enamel

Young’s modulus, MPa 18,600 84,000
Poisson’s ratio 0.31 0.3
Global Modulus, MPa 16.316 70.000
Transverse Modulus, MPa 7099.2 32.308

Table 2 shows the characteristics of the two meshes (enamel and cement).
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Table 2. Characteristics of dental components.

Material Condition
Statistics

Nodes Elements

Cement
Built mesh

2685 1402

Enamel 2578 1316

Figure 10 shows the enamel–cement assembly, the two layers that cover the crown
and the root.

 

Figure 10. Enamel–cement assembly.

Figure 11 shows the application of the experimental force perpendicular to the occlusal
surface. Figure 12 presents the applying of the inclined force. In both figures, the root zone
where the support in the alveolus was defined is marked in blue.

 

Figure 11. The force applied perpendicular to the occlusal surface and the support in the alveolus.
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Figure 12. The force applied at an angle and the support in the alveolus.

Table 3 present the distribution of the experimental forces applied perpendicularly
and inclined at 45◦ on the 3 axes OX, OY, and OZ.

Table 3. The distribution of the applied experimental perpendicular load and 45◦ load.

Experimental Load Applied Perpendicularly Experimental Load Applied Inclined at 45◦

Type Load Type Load

X component −78 N (slope) X component −55 N (slope)
Y component −78 N (slope) Y component −253 N (slope)
Z component −385 N (slope) Z component −305 N (slope)

Resultant 400 N Resultant 400 N

Tables 4 and 5 show the centralized maximum and minimum values of the stresses and
deformations produced as a result of the experimental solicitations applied perpendicularly
and at a 45◦ inclination to the occlusal surface of the premolar.
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The total deformation (Figure 13a,b) is apparently distributed similarly regardless
of the direction of the experimental forces, except when the perpendicular forces are
applied, when a value approximately three times than the effect produced after the inclined
application of force is observed.

  
(a) (b) 

Figure 13. (a) The total deformation when the experimental force is applied perpendicular to the
occlusal surface; and (b) the total deformation when the experimental force is applied at 45◦ on the
occlusal surface.

A small contraction (~−2 × 10−3 mm) was recorded in the X direction (Figures 14 and 15)
in the area bordering the abfraction. If the greatest contraction is manifested buccally at
the enamel–cementum junction and lingually in the coronal region, a low elongation occurs
(~3 × 10−4 mm).

  
(a) (b) 

Figure 14. Deformation in the X direction when the experimental force is applied perpendicular to
the occlusal surface: (a) mesio-buccal aspect; and (b) buccal aspect.

  
(a) (b) 

Figure 15. Cont.
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(c) 

Figure 15. Deformation in the X direction when the experimental force is applied at 45◦ on the
occlusal surface: (a) bucco-lingual section; (b) mesio-buccal aspect; and (c) mesio-buccal section.

As for the deformation in the Y direction, the behavior was similar (Figures 16 and 17),
but it was found that the inclination of the force causes 3–4 times larger deformations.

  
(a) (b) 

Figure 16. Deformation in the Y direction when a perpendicular experimental force is applied to the
occlusal surface: (a) mesio-buccal aspect; and (b) section.

  
(a) (b) 

Figure 17. Deformation in the Y direction when a 45◦ experimental force is applied on the occlusal
surface: (a) mesio-buccal aspect; and (b) section.

In the Z direction (Figures 18 and 19), the deformation was also greater in the case of a
45◦ angle in the experimental force direction on the occlusal surface.
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(a) (b) 

Figure 18. Deformation in the Z direction when the experimental force is applied perpendicular to
the occlusal surface: (a) mesio-buccal aspect; and (b) section.

  
(a) (b) 

Figure 19. Deformation in the Z direction when the 45◦ experimental force is applied on the occlusal
surface: (a) mesio-buccal aspect; and (b) section.

In the case of perpendicular force application, the affected area of the abfraction
lesion manifested relatively moderate values of the equivalent stress (80 MPa) (visible in
Figure 20a). Higher maximum stresses (~3 times) developed in the case of inclined force
application (Figure 20b), but it can be seen that the stress transmission was only superficial.

  
(a) (b) 

Figure 20. Equivalent stress when the experimental force is applied: (a) perpendicular to the occlusal
surface (mesio-buccal aspect); and (b) at 45◦ on the occlusal surface (section).

On the lower flank of the abfraction area, a normal compressive stress on the X axis
appears, with a value of −35.6 MPa, visible in Figure 21a,b. An almost similar situation,
but with stresses that were three times higher, occurred in the case of the inclined force
application (Figure 22a,b).
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(a) (b) 

Figure 21. Localizations of normal stress X when a perpendicular experimental force is applied on
the occlusal surface: (a) mesio-buccal aspect; and (b) section.

  
(a) (b) 

Figure 22. Localizations of normal stress X when an experimental force at 45◦ is applied on the
occlusal surface: (a) mesio-buccal aspect; and (b) section.

In the Y direction, relatively high compressive stresses (~−20 MPa) appeared in the
parcel area, which also propagated to the section of the affected area. The recorded values
were 3–4 times higher when the force was applied in an inclined direction (Figures 23 and 24).

  
(a) (b) 

Figure 23. Localizations of normal stress Y when a perpendicular experimental force is applied on
the occlusal surface: (a) mesio-buccal aspect; and (b) section.
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(a) (b) 

Figure 24. Localizations of normal stress Y when an experimental force is applied at 45◦ on the
occlusal surface: (a) mesio-buccal aspect; and (b) section.

In the Z direction, the same tendency was maintained (Figure 25).

  
(a) (b) 

Figure 25. Localizations of normal stress Z when experimental forces are applied to the occlusal
surface: (a) perpendicular forces (mesio-buccal aspect); and (b) a 45◦ force is applied to the occlusal
surface (aspect).

The maximum principal stress registered maximum values in the package area, both
when the experimental force was applied perpendicular to the occlusal surface (Figure 26a)
and when it was applied at an angle of 45◦ (Figure 26b).

  
(a) (b) 

Figure 26. Mesio-buccal aspect of maximum principal stress when experimental force is applied to
the occlusal surface: (a) perpendicularly; and (b) at 45◦.

If, in the apical 2/3 of the root and in the coronal area of the tooth, the minimum
main stresses were tensile around the abfraction zone, when the applied experimental force
was perpendicular to the occlusal surface, in the cervical 1/3 of the root, these stresses
changed and became compressive, as depicted in Figure 27a. In accordance with previous
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observations, the behavior was similar when a 45◦ experimental force was applied to the
occlusal surface, like in Figure 27b.

  
(a) (b) 

Figure 27. Maximum principal stress when experimental forces are applied to the occlusal surface:
(a) perpendicularly; and (b) at 45◦.

The tangential stresses in the XY, YZ, and XZ directions were manifested in the
same way on the higher values, corresponding to the inclined application of the forces
(Figures 28 and 29).

  
(a) (b) 

Figure 28. Mesio-buccal aspect of tangential tension XY when the experimental force is applied to
the occlusal surface: (a) perpendicularly; and (b) at 45◦.

  
(a) (b) 

Figure 29. Mesio-buccal aspect of tangential tension YZ when the experimental force is applied to
the occlusal surface: (a) perpendicularly; (b) at 45◦.

The tangential stresses in the YZ plane were compressive (~−20 MPa), while the rest
of the tooth was predominantly subjected to slightly higher but tensile stresses. Moderate
compressive stresses were manifested in the XZ plane, but also precisely in the affected
area (Figure 30).
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(a) (b) 

Figure 30. Mesio-buccal aspect of tangential tension XZ when the experimental force is applied to
the occlusal surface: (a) perpendicularly; and (b) at 45◦.

Figure 31 presents the mesio-buccal aspects of the maximum tangential stress when
the experimental force was applied to the occlusal surface perpendicularly (a) and at 45◦
(b). The developed maximum tangential stress was tensile, and in the affected area it had a
moderate value.

  
(a) (b) 

Figure 31. Mesio-buccal aspects of the maximum shear elastic strain when applying the experimental
force to the occlusal surface: (a) perpendicularly; (b) in 45◦.

When determining elastic relative deformation (Figure 32a,b), normal elastic relative
deformation X (Figure 33a,b), Y (Figure 34a,b), Z (Figure 35a,b), the relative tangential
elastic deformation XY (Figure 36a,b), YZ (Figure 37a,b) and XZ (Figure 38a,b), the cervical
third of the root around the abfraction area always behaves differently than the other areas
of the tooth.

  
(a) (b) 

Figure 32. Mesio-buccal aspects of the maximum principal elastic strain when applying the experi-
mental force to the occlusal surface: (a) perpendicularly; and (b) at 45◦.
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(a) (b) 

Figure 33. Mesio-buccal aspects of the normal elastic strain X when applying the experimental force
to the occlusal surface: (a) perpendicularly; and (b) at 45◦.

  
(a) (b) 

Figure 34. Mesio-buccal aspects of the normal elastic strain Y when applying the experimental force
to the occlusal surface: (a) perpendicularly; and (b) at 45◦.

  
(a) (b) 

Figure 35. Mesio-buccal aspects of the normal elastic strain Z when applying the experimental force
to the occlusal surface: (a) perpendicularly; and (b) at 45◦.

  
(a) (b) 

Figure 36. Mesio-buccal aspects of the shear elastic strain XY after the application of an experimental
force to the occlusal surface: (a) perpendicularly; and (b) at 45◦.
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(a) (b) 

Figure 37. Mesio-buccal aspects of the shear elastic strain YZ after the application of an experimental
force to the occlusal surface: (a) perpendicularly; and (b) at 45◦.

  
(a) (b) 

Figure 38. Mesio-buccal aspects of the shear elastic strain XZ after the application of an experimental
force to the occlusal surface: (a) perpendicularly; and (b) at 45◦.

As in the case of the other determinations, the inclined application of the forces
will lead to the development of more important deformations than in the case of the
perpendicular application of the occlusal stresses.

The experimental FEA research of the forces exerted on the lower premolars with
abfraction lesions was carried out in order to demonstrate the fact that the axial over-
stressing forces and those applied at an angle of 45 degrees possibly induce the appearance
of unwanted effects on the dental hard tissues in their cervical areas.

The patient was assessed during further dental visits every month for 3 months. She
continued to complain about the signs of bruxism, but without experiencing the painful
sensitivity in the lower right premolars with abfraction. For this reason, it was indicated
that the patient should continue wearing the custom-made mouth guard.

After 8 months of wearing the customized thermoformed mouth guard, the patient
agreed to participate in the recording of dynamic occlusal measurements using a digital
T-Scan device. This device determined the levels of occlusal loads on the teeth of both
dental arches, especially on the lower mandibular premolars that had abfraction lesions.
In this way, the subsequent dental therapy necessary to obtain a stable occlusion of the
patient’s teeth could be established.

4. Literature Review

To accomplish this systematic literature review, a bibliographic survey was carried
out in national and international scientific journals indexed in medical databases such as
EBSCO, Medline, Google Scholar, PubMed, SciELO, Scopus, Web of Science. The keywords
included “noncarious cervical lesion (NCCL)”, “abfraction”, “premolars”, “finite element
method (FEM)”, and “finite element analysis (FEA)” in the title or abstract.

These searches included English-language articles published between January 2014
and December 2023, tracking original research with full access. All identified articles were
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chosen according to their relevance and objectivity in relation to the topic under study.
Data collection involved the study’s selection and data extraction. The article selection for
review was undertaken separately by two reviewers towards their possible inclusion after
their eligibility criteria were determined. In the first phase, 198 articles and abstracts were
chosen.

The inclusion criteria were as follows: the presence of the keywords applied for search-
ing, articles with the search terms in the title or abstract, and original articles published
between the years 2014 and 2023.

The exclusion criteria were as follows: non-English language specialty literature;
case reports; abstracts; editorial letters; laboratory and animal studies; studies based on
questionnaires; treatment management studies; literature reviews, citations, patents, books,
dissertation theses, reference books, print-ahead articles, articles that were outside the
theme researched for the review, and published before 2014 or after 2023.

Thirty-four articles were eliminated as not related to the research topic. The remaining
29 articles were screened to exclude duplicates and irrelevant papers. Eighteen articles
published before 2014 or after 2023 were discarded after reading and analysis according to
the exclusion criteria.

In the next stage, references in the included articles were also read in order to identify
additional relevant literature. Three researchers extracted the data, and the other three
validated it. The eligibility of the articles included in the review was resolved by consensus,
with no disagreements. After applying all the selection criteria (derived from the inclusion
and exclusion criteria), only eleven articles remained in the study for this review.

A brief description of the included articles in this study is presented in Table 6, and
the results and conclusions related to those articles are shown in Table 7 [24–34].

Table 6. Brief description of included articles in the study [24–34].

Author,
Reference No.,

Year

Title
of Article

Aim of Study Methodology/Data Analyzed with FEM
Values, Location

of Load

Jakupović S.
et al.
2014
[24]

Analysis of the
abfraction lesions
formation
mechanism by the
FEM

The authors
evaluated stress in
the lower premolar
under static
solicitations.

The intact tooth was scanned with a μCT 1076 SkyScan
scanner (Kontich, Belgium). The images were
reconstructed with the Nrecon (Skyscan) program into
trans-axial sections. The additional reduction of input
data was implemented, and the reconstruction of the 3D
model was realized. Analyses of μCT section data were
performed with the CTAn program (Skyscan), by using a
3D CAD tooth model (Matlab, Creo Parametric 1.0) with
the Ansys Workbench 14.0 program.

200 N
Paraxial 40◦

Soares P.V. et al.
2015
[25]

Loading and
composite
restoration
assessment of
different
non-carious cervical
lesions
morphologies—3D
FEA

The impacts of
various occlusal
loadings on
premolars with
NCCLs (unrestored
or restored with
composite resins)
were studied with
3D FEA.

The intact tooth was set in a contact scanner (MDX-40,
Roland Co., Osaka, Japan). The 3D models of FEA were
manufactured by simulating an intact tooth model,
models with NCCL morphologies, and restored models of
all types of lesions. For creating the volume of external
and internal shapes of hard and soft tissues of tooth, the
STL files were exported to CAD (Computer Assisted
Design; Rhino3D 4.0, Rhinoceros, USA) software. NCCL
morphologies and their restorations were obtained
through Boolean operations. The models were examined
with the biomechanical analysis software ANSYS 12.0
(Ansys Workbench 12.0.1, PA, EUA), with STEP format
software, for pre-processing, processing, and
post-processing. After the conversion mesh test, the solid
quadratic tetrahedral components with ten nodes were
utilized.

100 N
Vertical

Paraxial 45◦
buccal and palatal

loading
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Author,
Reference

No.,
Year

Title
of Article

Aim of Study Methodology/Data Analyzed with FEM
Values,

Location of
Load

Zeola I.F. et al.
2015
[26]

Influence of
non-carious
cervical lesions
depth, loading
point application
and restora-tion
on stress
distribution
pattern in lower
pre-molars: A 2D
FEA

The authors
investigated the
biomechanical
behavior of lower
premolars (the
NCCL depth, load
type, and
restoration status)
using FEA.

The intact extracted lower premolar scan images were studied
with two-dimensional FEM. The scan data were exported to
computer-aided design software (Autodesk Mechanical Desktop
6; Autodesk Inc., San Rafael, CA, USA) to generate the external
contours of tooth structure and the polyether/polystyrene
cylinder. The polyline module of CAD software was used for
defining the tooth shapes, points, and line associations. The
generated 2D FEA models were the healthy tooth, the three sizes
of NCCL (small, medium, and deep), and the restored lesions.
The obtained data were exported to CAE (computer-aided
engineering) software (ANSYS 12.0, ANSYS Inc., Houston, TX,
USA), using the *.IGES format. In the pre-processing phase,
eight-noded isopara-metric plane elements were utilized
(PLANE 183). The quantitative examination of strain (MPa) was
determined at the enamel surface (on its upper wall), dentin (at
the bottom wall), and dentin (on the lower wall) of the NCCLs.

100 N
Oblique loads
on buccal cusp:

on internal
occlusal surface;
on outer buccal

cusp surface

Jakupović S.
et al.
2016
[27]

Biomechanics of
cervical tooth
region and
non-carious
cervical lesions of
different
morphology three
dimensional finite
element analysis

The authors
examined, through
3D FEA, the stress
distribution and the
biomechanical
behavior of two
types of occlusal
charging of hard
dental tissues of the
lower first premolar
with abfraction.

Three-dimensional models of the lower first premolar with
wedge-shaped lesions and saucer-shaped lesions (U lesions)
were realized. Microcomputed tomography (μCT) X-ray images
were obtained. A scanner (type SkyScan 1076 Kontich, Belgium)
was used. The images were rebuilt into transaxial sections by
using Nrecon and CTAn program software (SkyScan). A total of
570 horizontal sections were selected for the making of the 3D
models. MATLAB program packages (MathWorks, Inc., Natick,
MA, USA) and Creo Parametric 1.0 CAD software were used for
obtaining the volumetric 3D CAD tooth model of the lower first
premolar with abfraction lesions. FEM analysis of strain under
functional and nonfunctional occlusal charging was realized
with CTAn program 1.10 and ANSYS Workbench version 14.0.

200 N
40◦

Zeola L.F.
et al
2016
[28]

Effects of
non-carious
cervical lesion
size, occlusal
loading and
restoration on
biomechani-cal
behaviour of
premolar teeth

Investigation of the
influence of NCCL
dimensions, of
restorations, and of
occlusal loading
direction on
biomechanical
behavior, as well as
load tests and
fracture toughness
tests in the
mandibular
premolars, by FEA.

The intact extracted lower premolar scan images were studied
with 2D FEM. The scan data were exported to computer-aided
design software (Autodesk Mechanical Desktop 6; Autodesk
Inc., San Rafael, CA, USA) to generate the external contours of
tooth structure and the polyether/polystyrene cylinder. The
polyline module of CAD software was used for defining the
tooth shapes, points, and line associations. The generated 2D
FEA models were the healthy tooth, the three sizes of NCCL
(small, medium, and deep), and the restored lesions.
The obtained data were exported to CAE (computer-aided
engineering) software (ANSYS 12.0, ANSYS Inc., Houston,
USA), using the *.IGES format. In the pre-processing phase
PLANE 183 program was utilized. The quantitative
examination of strain (MPa) was determined at the enamel
surface (on its upper wall), dentine (at the bottom wall), and
dentine of the NCCLs (on the lower wall).

100 N
Loads on

outer and inner
slopes of buccal

cusp

Costa L.S.V.
et al
2017
[29]

Influence of the
occlusal contacts
in formation of
abfraction lesions
in the upper
premolar

The authors used
FEA to observe the
repartition of the
stress over the
upper premolar,
applying centric
contact, working
contact, and
balancing contact
occlusal loading, to
realize a
biomechanical
comparison of these
contacts with
increased potential
to induce NCCLs.

In the 3D model, a first maxillary premolar was used, along
with their specific oral tissues (enamel, dentin, a periodontal
ligament), and the fixation cylinder. The file was acquired with
CAD software in STL format (Rhinoceros 5.0 McNeel, North
America, OH, USA). The anatomic contours were designed
using the Biocad method. Analysis software ANSYS 15.0,
ANSYS Inc., Houston, TX, USA, was used. The meshes were
generated by applying the tetrahedral elements and the
convergence test. The mechanical properties were taken from
the specialty literature and then inserted into the software for
the static structural analysis. Axial and paraxial loads (40◦) were
reproduced for central occlusion, laterality on the occlusal slope
of the oral working cusp, and interference contact to balance
movement on the occlusal slope of the facial cusp. The shapes of
dental elements were examined through the colorimetric scale
for the determination of qualitative similarity in the simulated
occlusions. The stress distribution over the course of the
loadings was displayed by colorimetric graphs.

Axial loads
Paraxial 40◦
loads on oral

and buccal cusp

155



Diagnostics 2024, 14, 788

Table 6. Cont.

Author,
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Year

Title
of Article

Aim of Study Methodology/Data Analyzed with FEM
Values,

Location of
Load

Machado, A.C.
et al.
2017
[30]

Stress-strain
analysis of
premolars with
non-carious
cervical lesions:
influence of
restorative
material, loading
direction and
mechanical
fatigue.

The purpose of the
study was to
evaluate the stress
and strain
dispersion in upper
pre-molars affected
by NCCLs in
accordance with
factors such as
restorative
technique, direction
of occlusal loads,
and mechanical
fatigue.

A 3D finite element analysis linear elastic investigation was
conducted using the anatomical shape of the hard
periodontal tissues of the tooth (pulp, dentin, enamel,
periodontal ligament, and cortical and medullar bones). The
14 models were generated by Rhinoceros 3D software
(Rhinoceros, Miami, FL, USA) and simulated the sound
tooth, unrestored buccal saucer-shaped NCCLs, and
restored NCCLs with different types of dental materials
(resin-modified glass ionomer, flowable composite resin,
conventional nanofilled composite resin, lithium disilicate
glass ceramic, and conventional nanofilled composite resin
core associated with a 0.5-mm lithium disilicate glass
ceramic laminate). With the processing analysis software
(ANSYS 12.0, Ansys Workbench 12.0.1, Canonsburg, PA,
USA) and the Standard for the Exchange of Product Data
(STEP) format, the preprocessing, processing, and
postprocessing analyses were performed. A strain gauge
was connected to the buccal surface of the analyzed tooth
for the registration of tooth strains before and after cyclic
loading (200,000 cycles, 50 N).

150 N
Axial loads on

both cusps
Paraxial loads
at a 45◦ angle

on palatine cusp

Stănuşi, A. et al.
2019
[31]

Effects of occlusal
loads in the
genesis of
non-carious
cervical
lesions—a finite
element study

The size and
repartition of stress
in a maxillary first
premolar of a
14-year-old patient
suspected of having
normal and heavy
occlusal loads was
studied.

A 3D model of the upper first premolar was realized
through the CT images. Eight scenarios for the vertical
loads and eight scenarios for the horizontal loads were used.
To obtain the 3D model, the scanned images were converted
by the MIMICS program and then processed in
Abaqus/CAE so that they could be studied with FEA. The
3D virtual model contained the upper right first premolar
tooth (enamel, dentine, and pulp) and their alveolar bone.
The tooth was not presented rigidly in the bone, and
between them existed the periodontal ligament with a 0.069
GPa elastic modulus. The FEA model presented tetrahedral
elements (47,548 elements and 68,504 nodes). MIMICS
Program and Abaqus/CAE were used. The 3D virtual
model represented by the maxillary right first premolar and
their alveoli were considered a parallelepiped.

180 N
and

532 N
Horizontal

loads
Vertical loads

Vuković, A.A.
et al.
2019
[32]

Occlusal Stress
Distribution on
the Mandibular
First
Premolar—FEM
Analysis.

The purpose of this
paper was to realize
an FEM
investigation of the
dispensation of
stress and of the
deformation in a
lower first premolar
by applying two
types of loads.

Microcomputed tomography (μCT) and a scanner (SkyScan
1076 Kontich, Belgium) were used on an intact premolar
tooth under two types of loading. So a volumetric 3D CAD
tooth model was obtained by the utilization of MATLAB
(MathWorks, Inc., Natick, MA, USA) program packages and
Creo Parametric 1.0 CAD software. On the tooth model, a
wedge-shaped abfraction lesion was formed, and then the
models were transferred to the FEA software ANSYS
Workbench (14.0). A FE-mesh of models was implemented.
The properties of the tooth tissues were utilized. The model
was fixed to simulate the periodontal ligament movement
under 300μm loads and the contact points with neighboring
teeth.

200 N
Axial
load

Paraxial load

Stănuşi, A. et al.
2020
[33]

Analysis of stress
generated in the
enamel of an
upper first
premolar: a finite
element study.

The aim of this
article was to
present the
distribution and
dimension of stress
that appeared in the
enamel of a
maxillary first
bicuspid tooth after
exerting normal and
excessive occlusal
loadings.

A virtual model of the maxillary first premolar without any
lesion was utilized to realize five models with distinct
degrees of dental occlusal abrasion. The CT images of the
maxillary premolar were transformed into 3D data by the
MIMICS program (Materialise NV, Leuven, Belgium, 1992),
and FEA was applied to study the resulting stresses. The
scenarios obtained for occlusal loading of the 3D virtual
model (14 in number) were investigated using the
Abaqus/CAE program (ABAQUS Software, S.A.R.L.,
Versailles, France, 1994). The loads were exerted in the
vertical and horizontal directions. The 3D models were
tetrahedral elements with an average size of around 0.5 mm
per surface.

180 N
and

532 N
Horizontal load

Vertical load
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Title
of Article
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Peres, T.S.
et al.
2022
[34]

Influence of
non-carious
cervical lesions,
bone attachment
level, and occlusal
load on the stress
distribution
pattern in
maxillary
premolars: finite
element analysis.

The purpose of the
study was to
analyze the stress
distribution design
by using 3D FEA in
upper premolars
with and without
NCCL prior to and
after rehabilitation
with composite
resin. The impact of
different occlusal
loads on various
bone attachment
levels and tooth
structure was also
evaluated.

Nine CAD models were obtained after the intact models,
through Rhinoceros 3D software (Rhinoceros, Miami, FL, USA).
The design of the cervical area varied (intact tooth,
wedge-shaped NCCL, restored NCCL with composite resin, but
also normal level of bone, or with vertical and horizontal bone
loss). For each model, vertical, buccal, and palatal loads were
simulated. The analysis software ANSYS 12.0 (Ansys
Workbench 12.0.1, Canonsburg, PA, USA). The Standard for the
Exchange of Product Data (STEP) format was used, with
preprocessing, processing/data calculation, and
post-processing/analysis of stress dispersation. Stress values
were collected after processing the models (maximum principal
stress and minimum principal stress).

100 N
Vertical load
Buccal load
Palatal load

Table 7. Description of included articles in the study (results and conclusion) [24–34].

No.

Author,
Reference No.,

Year of
Publishing

Main Results and Conclusions

1 Jakupović S. et al. [24]
2014

The action of occlusal loads (especially paraxial one) induces considerable stress in the cervical
sub-superficial stratum of enamel.
The stress values of the cervical area due to the paraxial loads are about five times higher in
comparison with the superficial enamel layer.

2 Soares P.V. et al. [25]
2015

The morphology of NCCLs presented reduced consequences for the stress distribution design.
The loading type and existence of composite resin restorations affected the biomechanical
comportment of the maxillary premolars.

3 Zeola I.F. et al. [26]
2015

The depth of NCCLs is related to the intensification of the magnitude and the expansion of strain
concentration. The application of loads on the external slope of the buccal cusps in mandibular
premolars created a higher possibility of fracture in comparison with the application on the
internal slope.
Resin composite restoration of lesions augments the structural integrity and the biomechanics of
roundabout NCCLs close to the healthy teeth.

4 Jakupović S. et al. [27]
2016

The exposure to occlusal loadings induces the progression of abfraction lesions. The type of
action of these loadings impacts the stress intensity in the cervical area of teeth.
The shape of abfraction lesions represents a major factor in the dispersal of internal stress.
Underneath occlusal loads, V-shaped abfraction lesions presented notably higher stress
accumulation in comparison with U-shaped abfraction lesions.

5
Zeola L.F.
et al [28]

2016

The exposure to occlusal loadings induces the progression of abfraction lesions. The type of
action of these loadings determines the stress intensity in the cervical area of teeth. The eccentric
occlusal loads induced excessive calculated stress values in all hard tissues of the tested tooth
models. The shape of the abfraction lesions also impacts the partition of internal stress in the
hard tissues of the tooth.

6
Costa L.S.V.

et al [29]
2017

For the quantitative comparison, the results appear in a table. The maximum values, which
represent the concentrations of higher stress, are located in the enamel rather than the dentine.
Eccentric contacts also present a higher possibility of progressing the abfraction lesions in the
cervical area of the teeth and thus developing the size of tensile and shear stresses.

7 Machado, A.C. et al. [30]
2017

The presence of NCCLs associated with paraxial loads determined a higher stress concentration
in the cervical area of the tooth.
The paraxial load represented the major factor that impacted the biomechanical behavior of teeth
affected by NCCLs. The restored NCCLs with composite resin alone or with ceramic laminates
appears to be the optimum manner of direct rehabilitation since their biomechanical behaviors
were almost identical with those of the sound teeth.
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Table 7. Cont.

No.

Author,
Reference No.,

Year of
Publishing

Main Results and Conclusions

8 Stănuşi, A. et al. [31]
2019

The highest values of stress were situated in the oral cervical area, but may appear in other tooth
regions too, where NCCLs are not commonly found.
This fact implies that the genesis of cervical noncarious lesions is multifactorial.

9
Vuković, A.A.

et al [32]
2019

Under the action of occlusal paraxial loads, the strain values were greater and more notable in
the cervical area. In an abfraction lesion, under a paraxial load, the measured stress values were
extremely high. Exposure to the stress of V abfraction lesions will determine their deepening.
The deformation of the tooth below the paraxial load was approximately 10 times greater than
below the axial load.

10 Stănuşi, A. et al. [33]
2020

Compressive stress predominated in the simulations of premolar models with horizontal
occlusal abrasion. Both compressive and tensile stresses appeared in the simulations of the
affected tooth models with oblique occlusal abrasions. The exceeding vertical and horizontal
loads were prejudicial, regardless of their magnitude.

11 Peres, T.S. et al. [34]
2022

The presence of NCCL intensified the tensile stress concentration in the cervical third of the
buccal surface. The tensile stress concentrations were the same in healthy and restored models.
The stress level at the periodontal bone level was not affected by the presence or absence of
NCCL, but it was associated with the occlusal load. The existence of NCCL contributed to the
apparition of an excessive stress concentration in the tooth model cervical area, particularly
when the oblique occlusal loads acted.

5. Discussion

Dental enamel, the densest calcified tissue in the body, contains, by weight, 96%
inorganic material (represented by hydroxyapatite, HA), 1–2% organic material (proteins),
and water. [35–37]. HA crystal orientation confers the notable mechanical properties of
enamel [38]. The cement–enamel junction (CEJ) is a very sensitive zone in the cervical
area of teeth, and the physiologic biomechanics of enamel and CEJ functions are difficult
to study [39,40]. In the lateral areas of dental arches with interferences, the existence of
parafunctional forces can influence the normal morphology of the CEJ. The amount of
the organic phase at the interface influences the deformation of dental hard tissues at
the enamel–dentine junction. The repeated parafunctional forces can generate excessive
compressive or shearing pressure, which induces the apparition of microcracks in the HA
crystals. The crack propagation in the enamel is less due to its rigid structure, and most
cracks appear near the external coat of the enamel. In time, the microcracks can extend until
the enamel and dentin are degraded and determine the deformation of that area [41–43].
The deformation differs at the enamel–dentine (EDJ) and cement–dentine (CDJ) junctions.
The propagation of cracks is due to the rigid structure of the external layer of enamel,
where the majority of microcracks are located [43,44]. The ability to maintain, through
fluid percolation, the crystalline integrity in the hydroxyapatite of enamel and dentin
under occlusal loads is limited [37,43]. Exposure to repetitive mechanical loads results
in cumulative fatigue damage. The dysfunctional and excessive action of masticatory
forces applied non-axially to malpositioned or bruxing teeth causes flexion of the teeth’s
crystalline structure, which induces destruction of the prismatic architecture of HA and
the apparition of the specific shape of abfraction lesions due to the low packing density of
the Hunter–Schreger band (HSB) in the cervical area [8,10,11]. The highest occurrence of
abfractions is found in the mandibular premolars, followed by the maxillary premolars, and
then by the molars, canines, and incisor teeth. This fact is probably induced by the presence
of the furcation in the area adjacent to the cervical coronal area, the cervical constriction
of the crown, and its small volume [7,8,10]. Chewing cycle loads can cause significant
bending and flexural loads on the cusps of posterior teeth in the time of functional and
parafunctional occlusal movements [45,46]. These occlusal loads can theoretically cause the
occurrence of the horizontal force component too, which can determine the accumulation
of tensile stress and further, the apparition of cracks in the inter-crystalline space [46,47].
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The knowledge of the etiological factors in abfraction lesions and in all types of NCCLs
is of major significance in order to conduct a proper diagnosis and, therefore, to realize
accurate therapeutic management of NCCLs. The utilization of virtual investigations, like
finite element analysis (FEA), represents an actual tendency in dentistry. Through FEA, it
is possible to examine the stresses and strains of intricate systems like the orofacial system.
This involves the mathematical conversion and analysis of the mechanical parameters of
an object [19,21,22,35]. FEA allows for the simulation of possible clinical situations that
may be encountered in practice in order to estimate the behavior of some dental structures
under conditions of maximum stress [21,33,48].

Abfraction lesions represent a demineralization of the human body and can occur in
association with pathological wear of the tooth due to the interaction of chemical, biological,
and behavioral factors [36]. The biomechanics of abfraction lesions can also be indirectly
evaluated by using the FEA method [10,19]. In our FEA study, 400 N extrinsic forces were
applied perpendicularly and tilted at 45◦ on three axes, XY, OY, and OZ, which were high
enough to induce the breakdown of cement and dentine HA crystals.

Tanaka et al. [49] realized an analysis of stress on a maxillary central incisor and
mandibular first molar by using the two-dimensional finite element method (FEM) and
applying the elasto–plastic deformation theory. They observed that the oblique loading
spreads on the enamel surface near the CEJ and provokes plastic distortions, which in
time can lead to the apparition of NCCLs. Stănus, i et al. [31] observed that the values and
distribution of strain were not favorable in the application of excessive horizontal loads on
the studied undamaged tooth. They also pointed out that the tooth that was undamaged
was the most affected by stress, regardless of the force used. In another FEA study with
occlusal loads in a maxillary first premolar, the zones with an excessive concentration
of forces were highlighted. The authors observed that in all models (with horizontal or
oblique wear on intact tooth), stress was situated especially in the cervical area of the
buccal surface of the tooth, and that the most harmful effects were caused by the excessive
intensity of applied forces [33]. In conformity with the results of our FEA study, the inclined
application induced stresses and deformations that were three to four times higher than in
the case of the perpendicular application of experimental forces.

The dental cracks can be understood as predecessors to the formation of NCCLs,
and many researchers have reported an interrelationship between occlusal loads and
stress and the development of NCCLs [12,30,33,48,50–52]. Research by Donovan et al. [53]
indicated that excessive vertical occlusal loads are associated with the progression of all
types of NCCLs. The results of our study are in accordance with their findings, and
the investigations also showed that the inclined application of the forces will lead to
the development of more important deformations than in the case of a perpendicular
application of occlusal stresses. Our study revealed, also, that there is a correlation between
perpendicular and 45◦-inclined occlusal loads and the occurrence of stress in the buccal-
cervical area of the tooth.

After the research conducted by Poiate et al. [54], FEA has become appropriate for
quantitative stress analysis and provides important results related to stress and displace-
ment that are fundamental to planning preventive and restorative approaches in abfractions.
Vuković A. et al. [32] used the FEA method to evaluate the distribution of stress and de-
formation on the lower first premolar by applying 200 N axial and non-axial loads. The
stress values situated in the cervical area of the intact tooth were higher in the region of the
EDJ, and the deformation values of the tooth under para-axial loads were approximately
10 times higher than the value of the deformation under an axial load.

The FEA study performed by Yang et al. [55] indicated that the developed stress
appeared in axial and non-axial occlusal charges according to the level of periodontal
bone support, which was induced by the hard and soft tissues of a mandibular premolar.
The applied stress of 90 N was on the same buccal cusp occlusal slope, both axially and
non-axially (at 45◦). The stress in both the radicular dentine and the periodontal bone
ridge was unevenly distributed due to the non-axial forces that were used. There was
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a significant increase in cases of severe bone reduction (≥50%). The authors also found
that the decrease in periodontal bone support can induce the apical expansion of the tooth
defect. Our analysis reported that the occlusal stresses’ perpendicular solicitations lead to
less significant deformations than in the case of the inclined application of the forces.

Excessive loads exerted on teeth can induce the development of periodontal disorders.
In their research, Luchian et al. studied, through FEM, the occurrence of periodontal
damage to mandibular incisors under the action of different degrees of orthodontic forces
and the potential risks for the development of periodontal diseases, although these effects
were still not clinically recognized. They concluded that the anatomical particularities
should be taken into consideration in the application of orthodontic forces to incisors with
damaged periodontal tissues [56].

Many authors consider that, although time-consuming, FEA analysis helps us to
explain the occurrence of a series of unwanted phenomena at the level of some teeth,
implants, direct or indirect restorations, and the dental materials used, and can indicate
the vulnerable areas where maximum stresses and deformations are developed [57–62].
Jakupović A. et al. [63] found that the type of tooth loading has the greatest influence on
the intensity of stress. The values of the obtained stresses in the restorative material and
dental tissues differ due to the different mechanical properties of the materials. Restoration
of NCCLs significantly reduces extremely high stress values at their bottom. Dam Van
et al. [64] underlined that FEA is an important tool in implant dentistry to study the stress
distribution on the adjoining bone, the biomechanics of dental implants and bone, the
implant and bone interface, and their fatigue behaviors. Other authors concluded that since
the experimental capabilities in implant dentistry are greatly limited by the ethical aspects
of research on human subjects, FEAs are useful procedures for understanding the micro-
displacements of dental implants and the mode of transmission of stresses, strains, and
deformations at the bone level, with direct implications for the involved tissues [19,65–70].

Finite element analysis is appropriate for quantitative static stress analysis and pro-
vides important results for both stress and displacement. These are fundamental to plan-
ning preventive and restorative approaches in NCCLs [69–71]. Although this FEA study
has useful results for establishing correlations with clinical data, it still has limitations,
which should be considered.

The controversial etiology and questionable diagnosis of NCCLs have often led to
an erroneous approach to their therapeutic management. Through FEA results, the stress
distribution values of dental hard tissues, which are appreciably impacted by their prop-
erties, like the elastic modulus and surface properties, can be highlighted [72]. FEA also
enables the evaluation of the fracture risk of a tooth or dental implant in accordance with
the distribution and orientation of stress [62,64].

Our study is limited in that it examined a single case. Longitudinal studies in enlarged
samples will make it possible to assess the development of abfraction lesions due to occlusal
loads and interferences and test the efficiency of dental materials and restorative treatments.
Another limitation of the study is that FEA is a computerized investigation realized after
patient data were input from CBCT, which means that the clinical conditions may not have
been totally reproduced. FEA studies should always be completed with a personalized
clinical evaluation. The exactitude and the material properties of the data utilized in the
model influence the FEA predictions [19]. Currently, the involvement of occlusal forces in
the formation of structural defects in abfractions is beyond question.

The detection of non-carious abfraction lesions in the cervical area of the dental hard
tissues by the clinician (especially at the level of the upper canines and the maxillary and
mandibular premolars) indicate that the patient will require occlusal balancing therapy in
the future. Various ulterior occlusion analysis systems can be used to record detailed data
regarding the existence of excessive occlusal forces (including the T-Scan digital device),
but these types of analyses can only be performed in the presence of the patient.

This study recognized the relationship between the morphology of the studied teeth
and the effect of axial and inclined forces on the apparition and advancement of NCCLs.
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The clinical relevance of the study is that it reinforces the use of FEA to realize scientific
validation of the biomechanical features regarding hard dental structures, their supporting
tissues, and the dental biomaterials used in direct and indirect oral rehabilitation.

The results of this study may not be postulated to the general population because the
cause of abfraction lesions is multifactorial and, at the same time, each patient presents
individual characteristics that conventionally cannot be generalized.

The implications of this study for current dental practice should be emphasized. When
examining a patient for the first time, the presence of abfraction lesions located in the
cervical area of the teeth can indicate, to the clinician, possible overloading of the occlusal
forces, which is why the clinician must perform a detailed history of the disease, a thorough
anamnesis, and a complete examination of the patient. Future applications should focus
on strategies for decreasing or eliminating paraxial loads in the optimization of temporo-
mandibular joint models, teeth, dental implants, dentures, orthodontic appliances, etc., for
proper dental therapeutic management.

The diagnosis and correction of occlusal imbalances are easier to achieve with inter-
disciplinary collaboration. In this manner, the choice of treatment should be realized in
accordance with other clinical and complementary examinations in order to increase the
patient’s quality of life, because oral health is a major critical factor for general health and
wellbeing.

6. Conclusions

The realized FEA demonstrated that the most vulnerable areas, where shears, stresses,
and maximum deformations occurred, were in the cervical areas of the abfraction lesions.

The stresses occurred regardless of the ways in which the force was applied (perpen-
dicular or inclined at 45◦). In all cases, the inclined application led to a three-fourths higher
development of stresses and deformations than in the case of the perpendicular application
of the experimental forces.

Using computer simulations in imaging analysis and mechanical efforts through FEA
can provide valuable information and offer solutions for a better understanding of the
mechanisms involved in the masticatory stresses and strains on teeth.
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Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin,
and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers 2023, 15, 1637. [CrossRef]

62. Schmid, A.; Strasser, T.; Rosentritt, M. Finite Element Analysis of Occlusal Interferences in Dental Prosthetics Caused by Occlusal
Adjustment. Int. J. Prosthodont. 2023, 36, 436–442. [CrossRef]
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