
mdpi.com/journal/electronics

Special Issue Reprint

Advances in Computer  
Vision and Deep Learning 
and Its Applications

Edited by 
Yuji Iwahori, Haibin Wu and Aili Wang



Advances in Computer Vision and
Deep Learning and Its Applications





Advances in Computer Vision and
Deep Learning and Its Applications

Guest Editors

Yuji Iwahori

Haibin Wu

Aili Wang

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Yuji Iwahori

Department of Computer

Science

Chubu University

Kasugai

Japan

Haibin Wu

Heilongjiang Province Key

Laboratory of Laser

Spectroscopy Technology and

Application

Harbin University of Science

and Technology

Harbin

China

Aili Wang

Heilongjiang Province Key

Laboratory of Laser

Spectroscopy Technology and

Application

Harbin University of Science

and Technology

Harbin

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Electronics (ISSN 2079-9292),

freely accessible at: https://www.mdpi.com/journal/electronics/special issues/CV DL.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-4195-0 (Hbk)

ISBN 978-3-7258-4196-7 (PDF)

https://doi.org/10.3390/books978-3-7258-4196-7

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Aili Wang, Haibin Wu and Yuji Iwahori

Advances in Computer Vision and Deep Learning and Its Applications
Reprinted from: Electronics 2025, 14, 1551, https://doi.org/10.3390/electronics14081551 . . . . . 1

Liang Chen and Wei Zheng

Research on Railway Dispatcher Fatigue Detection Method Based on Deep Learning with
Multi-Feature Fusion
Reprinted from: Electronics 2023, 12, 2303, https://doi.org/10.3390/electronics12102303 . . . . . 20

Jian Zhang, Hongda Chen, Xinyue Yan, Kexin Zhou, Jinshuai Zhang, Yonghui Zhang, et al.

An Improved YOLOv5 Underwater Detector Based on an Attention Mechanism and
Multi-Branch Reparameterization Module
Reprinted from: Electronics 2023, 12, 2597, https://doi.org/10.3390/electronics12122597 . . . . . 45

Yongbin Guo, Xinjian Kang, Junfeng Li and Yuanxun Yang

Automatic Fabric Defect Detection Method Using AC-YOLOv5
Reprinted from: Electronics 2023, 12, 2950, https://doi.org/10.3390/electronics12132950 . . . . . 63

Bo Wang, Hongyang Si, Huiting Fu, Ruao Gao, Minjuan Zhan, Huili Jiang and Aili Wang

Content-Aware Image Resizing Technology Based on Composition Detection and Composition
Rules
Reprinted from: Electronics 2023, 12, 3096, https://doi.org/10.3390/electronics12143096 . . . . . 78

Leilei Cao, Yaoran Chen and Qiangguo Jin

Lightweight Strawberry Instance Segmentation on Low-Power Devices for Picking Robots
Reprinted from: Electronics 2023, 12, 3145, https://doi.org/10.3390/electronics12143145 . . . . . 88

Mingju Chen, Tingting Liu, Jinsong Zhang, Xingzhong Xiong and Feng Liu

Digital Twin 3D System for Power Maintenance Vehicles Based on UWB and Deep Learning
Reprinted from: Electronics 2023, 12, 3151, https://doi.org/10.3390/electronics12143151 . . . . . 101

Jiale Li, Haipeng Pan and Junfeng Li

ESD-YOLOv5: A Full-Surface Defect Detection Network for Bearing Collars
Reprinted from: Electronics 2023, 12, 3446, https://doi.org/10.3390/electronics12163446 . . . . . 118

Xianxu Zhai, Zhihua Huang, Tao Li, Hanzheng Liu and Siyuan Wang

YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection
Reprinted from: Electronics 2023, 12, 3664, https://doi.org/10.3390/electronics12173664 . . . . . 138

Hyeseung Park and Seungchul Park

Improving Monocular Depth Estimation with Learned Perceptual Image Patch Similarity-Based
Image Reconstruction and Left–Right Difference Image Constraints
Reprinted from: Electronics 2023, 12, 3730, https://doi.org/10.3390/electronics12173730 . . . . . 159
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Editorial

Advances in Computer Vision and Deep Learning and Its
Applications

Aili Wang 1,*, Haibin Wu 1,* and Yuji Iwahori 2,*

1 Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University
of Science and Technology, Harbin 150080, China

2 Department of Computer Science, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
* Correspondence: aili925@hrbust.edu.cn (A.W.); woo@hrbust.edu.cn (H.W.); iwahori@cs.chubu.ac.jp (Y.I.)

1. Introduction to Advances, Challenges, and Research Trends in
Computer Vision, Deep Learning, and Their Applications

(1) Computer Vision: The field of computer vision is making significant strides in
dynamic reasoning capability through test-time scaling (TTS) [1] technology. TTS optimizes
the robustness and interpretability of models in complex tasks by flexibly allocating com-
putational resources. Multimodal base models, such as CLIP (contrastive language-image
pre-training) [2] and Florence, facilitate the deep fusion of vision and language through
cross-modal alignment techniques. These advancements have significantly improved the
accuracy of visual question answering (VQA) and cross-modal retrieval. Generative AI
technologies, such as Stable Diffusion, have also broken through the limitations of 2D image
generation, enabling the transition to semantics-driven 3D scene models, like neural radi-
ance fields (NeRF) [3]. This shift supports the generation of spatial models with physically
interactive attributes from a single sheet of input, providing a new paradigm for virtual
reality and industrial design. In addition, the introduction of the spatial intelligence [4]
concept allows computer vision systems to simulate physical interactions in 3D space,
driving the development of embodied intelligence and robot navigation.

However, these macroscopic technological frameworks still face several challenges,
including inadequate algorithmic adaptation, high computational costs, and fragmented
cross-modal representations in specific scenarios. While this Special Issue highlights signifi-
cant progress in algorithmic improvements and scene adaptation, two key knowledge gaps
persist. First, much of the current research is centered on the optimization of unimodal
vision tasks, while exploration into multimodal alignment techniques remains relatively
underdeveloped. Second, research on dynamic reasoning capabilities is still in its infancy,
and existing models struggle to meet the real-time adaptive demands of complex phys-
ical interaction environments. In addition, the integration of generative AI with spatial
intelligence remains insufficient, and further breakthroughs are needed to enhance the
simulation of dynamic physical attributes.

Future research should further integrate multimodal a priori knowledge and dynamic
reasoning mechanisms. On the one hand, linguistic descriptions can be embedded into the
industrial defect detection process, and a joint visual-semantic representation space can be
constructed to enhance model interpretability. On the other hand, neural radial field gener-
ation techniques based on physics engines need to be explored to enhance the simulation
of physical interactions within 3D models through the introduction of rigid-body dynamics
constraints. In addition, for incremental SFM and UAV scene reconstruction, developing
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an adaptive computation offloading strategy that combines the characteristics of edge
computing devices will enable real-time 3D closed-loop sensing with cloud collaboration.

(2) Feature Extraction and Image Selection: Self-supervised learning and comparative
learning frameworks, such as SimCLR (Simple Contrastive Learning of Visual Represen-
tations) [5] and MoCo (Momentum Contrast), have become the dominant paradigms for
feature extraction. These frameworks significantly reduce the reliance on labeled data,
especially in the small-sample task of medical imaging. Image selection techniques combine
attention mechanisms with reinforcement learning to optimize dynamic sampling. Inter-
pretability methods, such as the improved version of Grad-CAM++ (gradient-weighted
class activation mapping) enhance the model’s credibility in highly sensitive scenarios, like
remote sensing and security, by visualizing the importance of features.

Compared with current mainstream self-supervised learning and comparative learn-
ing paradigms, the research presented in this Special Issue focuses on feature character-
ization optimization and heterogeneous data fusion in vertical scenarios. However, two
knowledge gaps remain. First, at the level of basic theory, most methods fail to fully
integrate the advantages of contemporary self-supervised comparative learning techniques,
limiting the model’s generalization ability. Second, the dynamic optimization mechanism
has not yet formed a complete closed loop, and existing image selection techniques lack a
dynamic sampling strategy that integrates reinforcement learning, making it challenging
to achieve the synergistic optimization of defective region detection and manual review
efficiency in industrial quality inspection scenarios. In addition, although several studies
have adopted visual feature analysis, interpretability methods still rely on traditional heat
maps. Newer interpretable frameworks, such as the improved version of Grad-CAM++,
have not been introduced, potentially limiting the certification of model credibility in
high-reliability domains like remote sensing and security.

Future research should deepen the exploration of three key areas: First, it is necessary
to establish a deep fusion mechanism between generic feature extraction frameworks and
domain-specific knowledge, and to develop a self-supervised pre-training model that
requires fewer samples for pathological image analysis. Second, there is a need to build
a closed-loop optimization system that is dynamically interpretable, and to form a com-
plete cognitive chain from feature extraction to decision-making validation. Lastly, it is
crucial to break through the intrinsic limitations of two-dimensional visual representa-
tion, and to develop an implicit model based on neural radiance fields (NeRFs), which
represent the most effective approach to visualization. Additionally, exploring the syner-
gistic integration of multimodal large language models with feature extraction networks
will open up new directions for constructing intelligent visual systems with semantic
understanding capabilities.

(3) Pattern Recognition in Image Processing: The widespread adoption of the Trans-
former architecture has revolutionized pattern recognition technologies. Vision Trans-
former (ViT) [6] and its variants, such as Swin Transformer, have surpassed traditional
convolutional networks in image classification and segmentation by capturing long-range
dependencies through self-attention mechanisms. The dynamic sparse attention mecha-
nism further optimizes computational efficiency, enabling real-time video analysis. Mul-
timodal fusion technologies, which integrate multi-dimensional signals such as vision
and speech, are advancing the ability to understand complex scenes in smart security and
human–computer interaction, bringing them closer to human-level cognitive capabilities.

However, several knowledge gaps remain in the research presented in this Special
Issue. First, current improvement strategies are mostly limited to unimodal visual data
and have not yet effectively integrated the latest advancements in multimodal fusion
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technologies. Second, the zero-sample bit-pose estimation method based on the SAM
model represents a breakthrough beyond traditional supervised learning paradigms, but it
fails to fully exploit the potential of self-supervised representation learning. In addition,
lightweight models commonly adopt traditional compression strategies, such as channel
pruning, and there is an obvious lag in the fusion of cutting-edge acceleration techniques
such as dynamic sparse computing.

Future research should focus on achieving breakthroughs in three key areas: exploring
the deep integration of lightweight architectures with Transformer models, and achieving a
dual improvement in computational efficiency and modeling capability through the design
of hybrid attention mechanisms; developing a cross-modal self-supervised pre-training
framework that encodes multimodal signals into a unified representation space, thereby
enhancing the model’s reasoning capability in open environments; and constructing a
theoretical dynamic computation allocation model to enable adaptive tuning of compu-
tational resources using reinforcement learning. These breakthroughs will facilitate a
paradigm shift in pattern recognition technology, moving from specialized improvements
to general intelligence, and will provide stronger technical support for Industry 4.0 and
agricultural intelligence.

(4) Image Processing in Intelligent Transportation: Intelligent transportation systems
rely on multi-sensor synergy technologies, combining vision and LiDAR (light detection
and ranging) [7] point cloud data to build high-precision 3D environmental models, en-
abling all-weather obstacle detection and centimeter-level positioning. The event camera
overcomes traditional frame rate limitations to capture microsecond dynamic changes in
low-light or high-speed motion scenes. Additionally, Huawei’s proposed optical flow-event
fusion network significantly reduces the false detection rate of vehicle tracking at night.
The federated learning framework optimizes global traffic prediction models through cross-
region data collaboration, safeguarding privacy and security while improving city-level
traffic management efficiency.

Despite the significant progress in algorithmic innovation presented in this Special
Issue, there is still potential for further expansion of its technical boundaries. The full
potential of multimodal collaboration has not yet been realized, the federated learning
framework has not been incorporated into the model optimization system, the distributed
training mechanism of lightweight CNN and Transformer modules remains unexplored,
and the bottleneck of real-time performance in dynamic scenarios remains unsolved, among
other issues.

Looking ahead to next-generation intelligent transportation system, the extended
research presented in this Special Issue can be categorized along three axes: first, exploring
the implicit alignment mechanism of multimodal representations by combining the mi-
crosecond dynamic sensing capability of event cameras with the spatial a priori of point
cloud data, thus constructing spatiotemporal continuous environment understanding mod-
els; second, developing a federated learning framework for edge computing that achieves
cross-region collaborative optimization of lightweight models through knowledge distil-
lation and differential privacy techniques, balancing algorithmic efficiency with privacy
and security; third, building an integrated “perception-decision-control” architecture that
utilizes neural symbolic systems to translate deep learning outputs into interpretable traffic
rule constraints. Furthermore, there is an urgent need to establish benchmark test sets
that cover extreme scenarios so as to push the technology from laboratory validation to
industrial-scale deployment. These directions will not only deepen the existing findings
in this Special Issue but may also give rise to core algorithmic paradigms for the next
generation of transportation intelligences.
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(5) Neural Network, Machine Learning, and Deep Learning Directions: Dynamic net-
work architectures, such as Google Pathways, allocate computational resources on demand
through task-adaptive routing mechanisms to maintain accuracy while minimizing energy
consumption. Self-supervised pre-training techniques, such as the Masked Autoencoder
(MAE), dramatically improve generalization capabilities for small-sample scenarios by
reconstructing a high percentage of masked data, thus driving the rapid deployment of
industrial detection. Lightweight models, such as MobileNet-V4, combined with neural
architecture search (NAS) [8], enable real-time 4K video processing on edge devices with a
40% reduction in power consumption.

However, the existing research in this Special Issue still suffers from knowledge gaps
in two areas: First, the adaptive nature of dynamic network architectures has yet to be
seamlessly integrated with a priori knowledge within the field. Second, there is a disconnect
between the architectural innovation of lightweight models and their training strategies.
While most studies focus on structural improvements, they have not revolutionized the
design of the loss function. Although the InnerMPDIoU loss and pixel position adaptive loss
proposed in this Special Issue represent breakthroughs for specific tasks, their theoretical
completeness and ability to generalize across scenarios still need further validation.

Future research should deepen exploration in three dimensions: first, building a dif-
ferentiable formal framework that enables the joint optimization of domain knowledge em-
bedding and dynamic architectural search; second, developing an algorithm-compiler-chip
co-design system for edge computing, enabling the translation of structural innovations—
such as reversible connections in RVDR-YOLOv8—into hardware instruction set-level
optimization; and finally, establishing a cross-modal pre-training-tuning paradigm to ad-
dress the challenge of representation bias and overfitting in small-sample scenarios, by
combining MAE-like self-supervision strategies with GAM attention mechanisms. These
directions will advance neural network research from discrete technological innovations
to intelligent system engineering, facilitating the paradigm shift from a “scene-definition
model” to a “model-enabled scene”.

(6) Hyperspectral Image Processing: End-to-end deep learning models, such as Hy-
bridSN, which combines 3D-CNN and Transformer architectures, enable accurate classifi-
cation in agricultural pest detection by jointly extracting spatial-spectral features. Physical
model-driven unmixing algorithms, such as UnmixerNet, combined with generative adver-
sarial networks (GANs) [9], can reconstruct super-resolution images from low-resolution
data, overcoming hardware acquisition limitations. Field-programmable gate array (FPGA)
hardware acceleration technology, through algorithm-chip co-design, can increase the speed
of hyperspectral imaging to 1000 frames per second, advancing the real-time application of
automated driving.

Although current research has made progress in spatial-spectral feature fusion, physi-
cally driven reconstruction, and hardware acceleration, core challenges remain in robust
modeling, cross-scale information coupling, and end-to-end system reconfiguration for
dynamic and open scenarios. This Special Issue will focus on the following research direc-
tions in the future: Intelligent Algorithmic Innovation: Integrating differential manifold
theory with Transformer architecture, combining radiative transfer equations to construct
regularized networks, and enhancing the physical interpretability of small-sample scenes
in agriculture. Open-Set Reconstruction Theory: Developing probabilistic generative mod-
els for end-element abundance, dynamically updating spectral libraries using variational
self-encoders, and fusing multi-source data, such as LiDAR constraints, to achieve cross-
sensor reconstruction. Collaborative Computing Architecture: Designing reconfigurable
computing units based on neural architecture search, establishing closed-loop feedback be-
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tween spectral fidelity and chip parameters, and optimizing elastic scheduling of hardware
resources. Interdisciplinary Paradigm Breakthrough: Embedding task-aware compression
operators in the optical coding stage, constructing a micropipetable pipeline from opti-
cal modulation to decision-making, and promoting the development of millisecond-level
real-time processing systems.

(7) Biomedical Image Processing and Recognition: Multimodal fusion technology,
such as Transformer-based medical image alignment architecture (UNETR) [10], achieves
sub-millimeter alignment of MRI and CT images and supports precise tumor boundary
localization. Self-supervised pre-training models, such as HistoSSL, require minimal la-
beled data to achieve expert-level pathology diagnosis, significantly reducing healthcare
costs. Generative adversarial networks, such as CycleGAN, solve the long-tailed distri-
bution problem in medical imaging by synthesizing rare case data, thus improving the
generalization ability of the model.

Despite these advancements, several knowledge boundaries remain to be addressed
in this Special Issue. First, while existing work has made significant breakthroughs in uni-
modal tasks, the ability to co-process multimodal images has not yet been fully verified. Sec-
ond, the cross-exploration of frequency-domain feature enhancement and self-supervised
learning has not yet formed a systematic methodology. The current frequency-domain
attention mechanism still relies on artificially designed transform domains, which do not
deeply integrate with the data-driven feature decoupling paradigm. Third, the application
of generative adversarial networks in the synthesis of long-tailed data has not yet been fully
integrated with novel optimization algorithms, resulting in a trade-off between semantic
fidelity and diversity in the generated pathological data.

To address these gaps, the research in this Special Issue focuses on three major di-
rections: constructing a lightweight multimodal joint learning framework that achieves
resource-sensitive interactions of cross-modal features through knowledge distillation and
dynamic routing mechanisms; developing a frequency-domain self-supervised pre-training
paradigm to enhance the feature representation capability of unlabeled medical images by
utilizing frequency-domain sparsity a priori; and designing a joint generative-optimization
model based on physical constraints to incorporate anatomical a priori of biomedical im-
ages into the data synthesis process to achieve semantically controllable image generation
of pathology. These directions will drive the evolution of biomedical image processing
from single-task optimization to systematic intelligent diagnosis.

(8) Speech and Video Processing: Cross-modal alignment models, such as Microsoft
Video-Audio-Text Transformer (VATT) [11], promote the utility of intelligent subtitle gen-
eration and video summarization, utilizing comparative learning to align speech, video
and text features. Spatiotemporal modeling architectures, such as TimeSformer, enable
accurate semantic parsing of long video content by separating spatiotemporal attention
mechanisms. The new generation coding standard, H.266/VVC (Versatile Video Coding),
combines deep learning with optical flow prediction and residual coding, reducing the bit
rate by 50% while maintaining picture quality, thus supporting the popularization of UHD
streaming media.

Future research should focus on the synergistic breakthrough of cross-modal cognition
and neural coding. To address multimodal semantic ambiguity, a fine-grained alignment
framework for knowledge enhancement can be constructed to achieve the conceptual de-
coupling and interpretable reasoning of audiovisual texts. This should include innovating
the spatiotemporal modeling paradigm, developing a dynamic recursive architecture that
incorporates causal reasoning, and analyzing the evolution logic of long video events.
The contributors to this Special Issue advance neural compression technologies, including
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the integration of motion estimation and entropy coding within implicit representation
space. Our authors develop bit rate-quality semantic co-optimization model and explore
SNN-based bionic coding mechanisms. Alongside these innovations, a synchronized con-
struction of a semantic fidelity evaluation system is crucial, which will break through the
limitations of traditional indicators and address security problems, such as depth forgery
caused by generative compression. These efforts will propel audiovisual processing toward
cognitive intelligence and lay the foundation for a semantic engine within the metaverse’s
immersive media.

(9) Image Processing in Intelligent Surveillance: Graph convolutional networks
(GCNs) [12] achieve real-time detection of abnormal events in public places with a low
false alarm rate by modeling the association between individual and group behaviors.
Federated learning frameworks, such as FEDVision, support multi-camera collaborative
training without sharing raw data, facilitating the compliance of cross-border security
systems. Differential privacy (DP) technologies balance security and privacy protection
needs in identification tasks through noise injection mechanisms.

However, the research presented in this Special Issue still suffers from a gap in knowl-
edge at the level of group intelligence analysis and privacy computation. Existing findings
have not effectively incorporated the theoretical advantages the state-of-the-art research
on GCNs in group behavior association modeling, with a particular lack of systematic
exploration of multi-objective interaction relationship modeling and spatiotemporal associ-
ation analysis. Meanwhile, in the integration of federated learning and differential privacy
technology, this Special Issue article focuses on the performance optimization of algorith-
mic ontologies. However, the integration of the data compliance framework and privacy
protection mechanism is still insufficient, which may present a technical shortcoming in
the construction of cross-border security systems.

For future research, intelligent surveillance image processing technology should focus
on multimodal fusion and trusted computing, integrating spatiotemporal graph neural
networks with dynamic adjustable mechanisms at the algorithmic level. This will optimize
group behavior prediction and individual detection of collaborative modeling. Regarding
engineering architecture, edge-cloud collaboration and the federated learning framework
will become mainstream, reducing latency and ensuring data privacy compliance through
distributed computing. Privacy protection technologies will evolve toward scene adap-
tation, combining with interpretable AI to build transparent decision-making systems
that balance security and privacy. Technological breakthroughs in multi-biometric fusion
(such as combining EEG with visual signals) and lightweight digital twins for high-fidelity
real-time mapping via neural radiance fields (NeRFs) [13] will improve detection accuracy.
These trends will drive surveillance systems from passive perception to active cognition,
establishing a new-generation security ecosystem of virtual and real symbiosis.

(10) Deep Learning for Image Processing: Dynamic inference techniques (e.g., adaptive
inference) adjust the depth of the network according to the input complexity, balancing
efficiency and quality in image denoising and restoration tasks. Model compression
techniques (e.g., Tiny-YOLOv7) compress the target detection model to less than 1 MB
through knowledge distillation and quantized perceptual training, which is suitable for
embedded devices. Causal inference adversarial training (e.g., CausalGAN [14]) improves
the generalization ability of image restoration models in occluded scenes by distinguishing
correlation interference from essential feature association.

In this Special Issue addresses several theoretical aspects that require deeper ex-
ploration. Although the aesthetics-guided image scaling technique innovatively inte-
grates composition rules and deep learning, its four preset categories of fixed-composition
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paradigms are prone to rule conflicts when faced with abstract art or composite scenes,
and the cross-domain generalization ability of the classification module has not yet been
verified by diversified datasets. While the incremental SFM framework improves recon-
struction efficiency through the SuperPoint and sliding window strategies, the stability
of the feature extractor under extreme lighting or weak texture conditions is still flawed,
and the local optimization process may fall into sub-optimal solutions. The deeper chal-
lenge is that existing methods mostly adopt a staged optimization strategy; as a result,
the aesthetic rules, geometric constraints, and neural networks fail to form an end-to-end
joint learning framework, which leads to objective function conflicts and information loss
among modules.

Future research should construct an open-domain aesthetic evaluation system, inde-
pendently mine visual laws through the cross-cultural comparative learning framework,
and overcome the limitations of fixed rules. Meanwhile, by integrating the differentiable
rendering characteristics of neural radiance fields, researchers should develop a user-
interactable 3D editing toolchain to enhance the practicability of algorithms. Notably, the
deep integration of dynamic inference technology and neural representation learning will
give rise to scene-adaptive meta-architecture, thus achieving a dynamic balance between
network capacity and rendering accuracy through spatial-aware distillation paradigms. In
addition, extending the aesthetic preservation mechanism to the video timing domain, as
well as constructing cross-frame consistency constraints and motion semantic perception
models, is expected to overcome the technical bottleneck of dynamic digital content gener-
ation and provide a higher dimension of creative freedom for virtual reality fusion scenes.

(11) Deep Learning-Based Image and Video Analysis Methods: Dual-path architec-
tures (e.g., SlowFast [15]) achieve accurate parsing of long video behaviors by separating
spatial detail capture and temporal dynamic modeling. Self-supervised frameworks (e.g.,
VideoMoCo [16]) extract temporal features from unlabeled videos, reducing the reliance on
expensive labeled data. Diffusion models (e.g., Imagen Video) break through the limita-
tions of single-frame compositing to generate coherent, high-resolution videos, driving the
production of automated content in the film and advertising industries.

Future research in this Special Issue will focus on the evolution of cognitively driven
multimodal spatiotemporal inference systems. These systems will break through tradi-
tional architectures to achieve spatiotemporal fusion at the neural dynamics level. The
focus is on constructing differentiable energy field models that encode entity trajectories
and physical constraints into dynamic graph networks, empowering systems with the
ability to derive physical laws. Self-supervised learning requires the development of a
temporal intervention framework to extract spatiotemporal causal maps from disordered
data through counterfactual reasoning. Generative modeling requires the fusion of neural
rendering and symbolic rule systems to embed knowledge graph constraints into diffusion
sampling. The joint video-motion representation space will bridge observational learning
and embodied skill migration to promote digital twins and educational robotics. Ultimately,
supported by quantum-inspired architectures, video intelligence will evolve into cognitive
subjects capable of predictive modeling and creative intervention.

(12) Image Analysis and Pattern Recognition for Robots and Unmanned Systems: The
combination of event cameras and spiking neural networks (SNNs) [17] empowers UAVs
with millisecond-level obstacle avoidance responses. Semantic SLAM (e.g., ORB-SLAM3)
improves navigation accuracy in dynamic environments by jointly optimizing geometric
and semantic information. Multi-robot cooperative systems share local observation data
through a distributed learning framework to multiply the speed of target recognition in
disaster search and rescue scenarios.
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However, the research presented in this special issue still faces gaps in bridging
knowledge with cutting-edge fields. Firstly, current agricultural robotics research has yet to
fully integrate bionic computing architectures, such as pulsed neural networks. Secondly,
the depth of multimodal data fusion is insufficient. For example, although SU-Grasp
introduces depth-normal vector dual-stream coding, it has not yet constructed a cross-
modal spatiotemporal correlation model, limiting its ability to handle synergistic sensing
of dynamic obstacles and manipulated targets in unstructured environments. Furthermore,
existing studies mostly focus on single-unit intelligence enhancement and lack group
collaborative validation under distributed learning frameworks, such as SwarmNet. This
restricts the scalability of the technology in complex tasks like disaster search and rescue.

Future research should focus on three key areas: first, the cross-layer fusion of bionic
computing architectures, exploring the coupling mechanism between SNN pulse timing
encoding and spatial features of convolutional neural networks, and developing neuro-
morphic vision chips for high-speed harvesting in agriculture; second, the construction of
cognitive evolutionary frameworks in open environments, combining federated learning
and online knowledge distillation to realize collaborative semantic maps of multi-robot
systems and incremental updating in dynamic scenarios; and third, the closed-loop val-
idation of physical-digital twin systems, which will break through the generalization
bottleneck of current algorithms in real-world complex contact interactions by constructing
a multi-physical field simulation environment that incorporates illumination, mechanics,
and material properties.

(13) AI-Based Image Processing, Understanding, Recognition, Compression, and Re-
construction: Generative AI (e.g., Stable Diffusion 3.0) supports text-guided local redrawing
and style migration, expanding the possibilities of creative design. Neural compression
(e.g., Neural Image Compression (NIC) [18]) saves up to 40% of bit rate compared to
traditional standards through non-linear transform coding, driving cloud storage efficiency.
Joint visual-linguistic models (e.g., Flamingo) achieve zero-sample cross-modal reasoning
by learning with fewer samples, approaching the level of human cognition in open-scene
understanding tasks. Three-dimensional reconstruction techniques (e.g., NeRF++) combine
ray tracing and depth estimation to generate high-fidelity editable models from a single
RGB image, with applications in digital twins and cultural heritage preservation.

Although this Special Issue demonstrates the advantages of high accuracy in specific
scenarios, its models still have limitations in domain adaptation and real-time performance.
It relies on customized data training for industrial scenarios, and its cross-domain migration
capability has not yet been verified; while the deep quality purification module in RGB-D
salient target detection improves robustness in noisy environments, the two-stage decoder
design increases computational complexity, which may limit its deployment on edge
devices. In contrast, the joint vision-verbal model realizes zero-sample inference in open
scenarios through few-sample learning, demonstrating greater generality. This Special
Issue should strike a better balance between “specialization” and “generalization”.

Future research can explore lightweight multimodal feature encoding based on neural
compression that reduces storage and transmission costs, as well as introduce the meta-
learning capability of generative AI to extend the adaptability of 3D reconstruction to
long-tailed scenarios, such as cultural heritage preservation. On the methodology level, we
should construct a cross-domain transfer learning framework. Regarding ethical and secu-
rity dimensions, the current research is insufficient to regulate AI-generated content. In the
future, we will be able to draw on the transparent inference mechanism of visual-linguistic
modeling and develop traceable deep feature watermarking technology in combination
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with policy specifications. The issue of energy efficiency should also be taken into account
in the technical design stages to promote the development of green AI.

2. Overview of This Special Issue

The articles included in this Special Issue cover advancements in ten research direc-
tions: computer vision, feature extraction and image selection, pattern recognition for
image processing techniques, image processing in intelligent transportation, neural net-
works, machine learning and deep learning, biomedical image processing and recognition,
image processing for intelligent surveillance, deep learning for image processing, robotics
and unmanned systems, and AI-based image processing, understanding, recognition, com-
pression, and reconstruction. I have categorized the 33 articles included in this Special
Issue based on these research directions, with the classification system not only demon-
strating the vertical extension of the technological depth but also embodying the horizontal
coverage of the cross-field applications. The classification system is divided into three
dimensions: the technological layer, the type of task, and the industry. Through this system,
a clear technological lineage of computer vision and deep learning and its application fields
can be constructed. Basic algorithmic innovation provides theoretical support for each
application field, customized optimization in vertical fields promotes the technology on
the ground, and the full-process integration solution further enhances the practicability
and generalization ability of the AI system.

The development of the computer vision field presents a multi-dimensional tech-

nological evolution and has been widely adopted. In this Special Issue, new network

architectures, attention mechanisms, and multimodal fusion technologies continue to

make breakthroughs at the level of basic algorithmic innovation. The related articles

are introduced as follows.

“An Improved YOLOv5Underwater Detector Based on an Attention Mechanism
and Multi-Branch Reparameterization Module” addresses the problem of degradation
in target detection accuracy due to low image quality in underwater environments. A
global attention mechanism (GAM) is introduced into the backbone network to enhance
the interaction between channels and spatial information and improve feature extraction
capability. DAMO-YOLO-based fusion block is used in the neck to strengthen multi-scale
feature aggregation, and the experimental results surpass advanced methods such as ViDT.

“ESD-YOLOv5: A Full-Surface Defect Detection Network for Bearing Collars” pro-
poses an improved YOLOv5 model—ESD-YOLOv5— to address the detection challenges
posed by bearing collars with various types of surface defects and complex backgrounds,
among other issues. A hybrid module combining efficient channel attention (ECA) and
coordinate attention (CA) is constructed to enhance the network’s ability to localize defect
features. Slim-neck is used to replace the original neck structure to reduce the number of
model parameters and computational complexity, while the decoupled head of YOLOX is
introduced to separate the classification and regression tasks.

“Consistent Weighted Correlation-Based Attention for Transformer Tracking” presents
a consistent weighted correlation (CWC)-based attention mechanism for improving the
performance of a Transformer architecture in visual tracking. The traditional attention
computation of Transformer architectures handles each query-key pair independently,
ignoring the consistency of the global context. By introducing the CWC module, the authors
dynamically adjust the weights in the cross-attention block to enhance the consistency of
relevant pairs and suppress the interference of irrelevant pairs.

“MM-NeRF: Large-Scale Scene Representation with Multi-Resolution Hash Grid and
Multi-View Priors Features” proposes MM-NeRF, a large-scale neural radiance field (NeRF)
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method that integrates a multi-resolution hash grid and multi-view a priori features. MM-
NeRF adopts a two-branch structure: one branch utilizes a multi-resolution hash grid
branch to efficiently encode the geometric details of the scene, while the other branch
employs multi-view a priori features to enhance texture information by fusing the cross-
view features. This two-branch structure enables MM-NeRF to solve the problems of detail
loss and high training costs typically associated with traditional NeRF methods when
dealing with large-scale scenes.

“Research on 3D Visualization of Drone Scenes Based on Neural Radiance Fields”
presents a neural radiance field (NeRF) 3D visualization framework for UAV aerial pho-
tography scenes. The framework introduces the spatial boundary compression technique
combined with the ground optimization sampling strategy to reduce the sampling points
in invalid regions. It adopts the multi-resolution hash grid and clustering sampling method
to optimize feature encoding and sampling efficiency, and reduces outliers and blurring
artifacts through L1-paradigm penalties and entropy regularization loss. These features
solve the problems of detail blurring, high computational costs, and cloud artifacts in
large-scale scene rendering.

“Incremental SFM 3D Reconstruction Based on Deep Learning” proposes an incre-
mental structured light motion recovery (SFM) 3D reconstruction method based on deep
learning techniques. This study significantly improves the accuracy and efficiency of 3D
reconstruction by improving key processes, including feature matching, beam leveling (BA),
and depth estimation. Specifically, SuperPoint and SuperGlue are employed for feature
extraction and matching, and a sliding window strategy is used to process high-resolution
UAV images. A BFGS-corrected Gauss–Newton solver is introduced to optimize the BA
process and reduce reprojection error. Finally, a fully convolutional network predicts the
depth map using a sparse point cloud alongside the original image, with fused multi-view
information. This approach addresses the problems of inefficiencies and inaccuracies in
feature matching that are typical of traditional SFM when dealing with complex scenes.

“YOLO-CBF: Optimized YOLOv7 Algorithm for Helmet Detection in Road Environ-
ments” introduces the YOLO-CBF algorithm, built upon the YOLOv7 framework, and
proposes a three-fold optimization for the task of helmet detection in road scenes. First, it
incorporates coordinate convolution (CoordConv) to embed spatial coordinate channels
into the input features, strengthening the network’s ability to perceive target locations and
significantly improving detection accuracy in small target and occlusion scenarios. Second,
the BiFormer dynamic sparse attention mechanism is integrated to filter key regions for
attention computation through a two-layer routing process, which reduces complexity
from O(N2) to O(N) while maintaining global feature capture and computational efficiency.
Third, the FocalConv is improved for helmet detection in road scenarios, and the Focal-
EIOU loss function is further optimized by introducing weight coefficients that focus on
the optimization of low-overlap samples. Additionally, the bounding box error is decom-
posed into multi-dimensional errors—overlap, center offset, and aspect ratio—enhancing
regression accuracy. Through the combination of spatial perception enhancement, dynamic
feature focusing, and an accurate regression mechanism, this model achieves a balance
between lightweight operation and robust detection in complex environments.

Feature extraction and image selection techniques focus on improving data rep-

resentation. These techniques prove most beneficial in the preprocessing stage, pro-

viding quality data input for subsequent classification and detection tasks. The fol-

lowing articles in this Special Issue achieve optimization of feature representation in

specific areas.
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“Research on Railway Dispatcher Fatigue Detection Method Based on Deep Learning
with Multi-Feature Fusion” focuses on the core issues of railway transportation safety—
particularly dispatcher fatigue detection—proposing a multi-feature fusion detection
method that combines facial key points and body postures. Addressing the issue of
traditional single-feature detection being easily affected by occlusion and angle change,
the study constructed a facial key point detection module based on the RetinaFace model
through the HRNet network; this model extracted physiological indexes, such as eye clo-
sure rate and blinking frequency, and analyzed fatigue behaviors, such as head drooping
and table lying. The HOG-PSO-SVM algorithm is introduced to classify eye states and
is combined with the Bi-LSTM-SVM adaptive enhancement model to recognize complex
postures. Finally, fatigue levels are determined by fusing five categories of features using
an artificial neural network.

“Automatic Fabric Defect Detection Method Using AC-YOLOv5” proposes an im-
proved YOLOv5 detection model—AC-YOLOv5—to address the problem of detecting
diverse defects with large-scale differences in the complex textural background of tex-
tile fabrics. This model embeds a void space pyramid pooling (ASPP) module into the
backbone network, allowing for the extraction of multi-scale features by convolutional
kernels with different expansion rates. A convolutional squeezing excitation (CSE) channel
attention module is introduced to enhance the network’s attention to defective features.

“Detection of Fittings Based on the Dynamic Graph CNN and U-Net Embedded
with Bi-Level Routing Attention” addresses the challenges of complex backgrounds, small
targets, and occlusion in power fittings detection by proposing a combined U-Net and
dynamic graph convolutional network (DGCNN) framework. Traditional 2D detection
methods struggle to handle 3D spatial information, while acquiring 3D point cloud data
is expensive. To overcome this, the authors generate pseudo-point cloud data using the
Lite-Mono algorithm, converting 2D images into 3D point cloud representations. DGCNN
is then used to extract geometric features of occluded accessories. Meanwhile, the feature
extraction capability is enhanced by embedding a bidirectional routing attention (BRA)
module within U-Net.

“Multi-Branch Spectral Channel Attention Network for Breast Cancer Histopathology
Image Classification” introduces the Multi-Branch Spectral Channel Attention Network
(MbsCANet), which aims to enhance the accuracy of breast cancer histopathology image
classification. While existing methods based on convolutional neural networks rely on
spatial features, the authors innovatively introduce a two-dimensional discrete cosine
transform (DCT) into the channel attention mechanism. This fusion of the lowest-frequency
features with high-frequency information through a multi-branch structure helps preserve
phase information and enhances the model’s context-awareness ability.

“RS-Xception: A Lightweight Network for Facial Expression Recognition” presents
RS-Xception, a lightweight facial expression recognition network designed to address the
challenges of excessive parameters and low computational efficiency in existing models on
embedded devices. Xception integrates ResNet’s residual connectivity, SENet’s channel
attention mechanism, and Xception’s depth-separable convolution to achieve efficient
feature extraction and classification through a modular design. The study introduces the
SE-ResNet module, which enhances key features through squeeze-excite operations and
reduces computation using depth-separable convolution.

“Robotic Grasping Detection Algorithm Based on 3D Vision Dual-Stream Encoding
Strategy” presents SU-Grasp, a 3D vision-based dual-stream encoding strategy for robotic
grasping detection that integrates the sliding-window self-attention mechanism of the
Swin Transformer with the multi-scale feature fusion of U-Net. This combination enhances
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spatial semantic understanding by processing RGB images and depth images (with normal
vector angle features) through two-way encoders, while SU-Grasp introduces the normal
vector angle images as a spatial a priori, enhancing perception of target objects’ geometries
and surface orientations through cross-modal fusion. This research provides key technical
support for the autonomous operation of robots in unstructured environments.

Pattern recognition techniques are directly applicable to target detection, classifi-

cation, and segmentation tasks, with algorithmic optimization used to address practical

challenges such as occlusion and small targets. The following articles in this Special

Issue highlight task-specific algorithmic improvements.

“Content-Aware Image Resizing Technology Based on Composition Detection and
Composition Rules” proposes a method that combines composition detection and compo-
sition rules image scaling methods to address the lack of aesthetic perception in existing
content-aware image scaling algorithms. By introducing a composition classification
module based on convolutional neural networks, images are categorized into four com-
mon compositions in landscape photography—such as trichotomous and symmetrical
compositions—and the corresponding aesthetic rules are selected to guide the scaling
operation according to the classification results. The graph-based visual saliency (GBVS)
model and collaborative segmentation algorithm are used to generate an importance map,
while the golden ratio and other rules are combined to optimize the positioning of salient
regions, ensuring that the scaled image retains important content while conforming to
aesthetic principles.

“Lightweight Strawberry Instance Segmentation on Low-Power Devices for Pick-
ing Robots” presents a lightweight instance segmentation model tailored for strawberry-
picking robots operating in complex orchard environments. These environments pose
problems such as diverse fruit morphology and severe occlusion. The proposed model,
StrawSeg, adopts MobileNetV2 as the backbone network to extract multi-scale features.
It also designs a feature aggregation network (FAN) to merge different layers of features
through a pixel blending operation, avoiding the computational overhead caused by inter-
polation or deconvolution.

“Application of Improved YOLOv5 Algorithm in Lightweight Transmission Line
Small Target Defect Detection” focuses on the issue of insulator defect detection in UAV
aerial transmission line images. The lightweight, improved Algorithm DFCG_YOLOv5 is
proposed to address challenges such as noise interference, false detection of small targets,
and slow detection speeds in complex backgrounds. This is achieved by introducing a
high-speed adaptive median filtering (HSMF) algorithm at the input stage to effectively
reduce image noise. The Ghost backbone network is optimized by incorporating the DFC
attention mechanism to balance accuracy and speed in feature extraction. The original
CIOU loss function is replaced with a Poly Loss function, which adjusts the parameters to
suppress the loss of insulator defects and addresses the imbalance between positive and
negative samples, especially for small targets.

“A Method for Unseen Object Six Degrees of Freedom Pose Estimation Based on
Segment Anything Model and Hybrid Distance Optimization” presents a method for
six degrees of freedom (6-DoF) pose estimation of unseen objects and complex scenes,
leveraging the Segment Anything Model (SAM) and hybrid distance optimization. The
authors improve the SAM model (CAE-SAM) by addressing boundary blurring, mask
nulling, and over-segmentation problems using a local spatial feature enhancement module,
global contextual labeling, and a bounding box generator, achieving high-quality zero-
sample instance segmentation. Additionally, a point cloud alignment method based on
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hybrid distance metrics is introduced, combining farthest point sampling (FPS) and fast
global registration (FGR) algorithms to reduce dependence on hyperparameters.

“Detection of Liquid Retention on Pipette Tips in High-Throughput Liquid Handling
Workstations Based on Improved YOLOv8 Algorithm with Attention Mechanism” presents
an improved YOLOv8-based detection method for addressing the challenge of liquid
retention on pipette tips in high-throughput liquid handling workstations. The authors
enhance the model’s ability to detect small targets and complex backgrounds by introducing
three key improvements: the global context (GC) attention module, which strengthens
the model’s understanding of global features in the backbone network; the large kernel
selection (LKS) module, which dynamically adjusts the sensory field to accommodate
different backgrounds; and the simple attention (SimAM) mechanism, which generates
attentional weights to optimize feature representation in the network’s neck stage.

“StrawSnake: A Real-Time Strawberry Instance Segmentation Network Based on
the Contour Learning Approach” presents StrawSnake, a real-time strawberry instance
segmentation network based on contour learning. This model addresses the challenges of
low accuracy and insufficient real-time detection of strawberries in complex environments.
The authors design a dedicated octagonal contour that combines the YOLOv8 detection
frame and extreme points to closely enclose the target. Dynamic serpentine convolution
(DSConv) is used to adaptively adjust the sensory field through deformable convolution
kernels, enhancing the perception of boundary curves. The multi-scale feature enhancement
block (MFRB) incorporates a self-attention mechanism, improving the model’s ability to
aggregate multi-scale features.

The field of intelligent transportation relies on technologies such as monocular

depth estimation and lightweight CNN models to promote autonomous driving and

traffic management. The following articles in this Special Issue promote the develop-

ment of technologies in this field.

“StrawSnake: A Real-Time Strawberry Instance Segmentation Network Based on
the Contour Learning Approach” proposes a self-supervised learning-based monocular
depth estimation method that aims to improve model performance by optimizing image
reconstruction loss and left-right disparity image loss. Traditional methods rely on L1 or
SSIM for reconstruction loss, but these approaches have limitations when dealing with
low-texture or long-range regions. The authors introduce LPIPS (learned perceptual image
patch similarity) as a perceptual loss to measure the quality of reconstructed images in a
way that more closely aligns with human visual perception. This is combined with left-right
disparity image loss to align differences between the left and right views, thus reducing
reconstruction distortions caused by factors such as lighting and camera calibration.

“Convolutional Neural Networks Adapted for Regression Tasks: Predicting the Orien-
tation of Straight Arrows on Marked Road Pavement Using Deep Learning and Rectified
Orthophotography” presents a convolutional neural network (CNN)-based regression
model for automatically recognizing the direction of road arrows. Traditional methods
rely on manual feature extraction or single-stage detection, which are difficult to adapt to
variations in arrow direction within complex scenes. The authors designed a customized
lightweight CNN architecture (ad hoc model) and compared it with classical networks,
such as VGGNet and ResNet. The effectiveness of the lightweight network for specific
tasks is demonstrated. In addition, the study explores the impact of data augmentation
and transfer learning on model performance, providing a new solution for automated road
sign recognition.

“Research on the Car Searching System in the Multi-Storey Garage with the RSSI
Indoor Locating Based on Neural Network” designs a neural network-based RSSI indoor
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localization system for a multi-story garage car searching application. The system integrates
YOLOv5 and LPRNet networks for license plate positioning and recognition and combines
BP neural networks with KNN algorithms to construct an indoor localization module. The
localization accuracy achieves 100% within 2.5 m. The A* algorithm is improved, and
spatial accessibility is introduced to optimize path planning, reducing ineffective search
nodes by over 55% and improving operational efficiency by 28.5%. The experimental
results show that the system enables full-process automation of license plate recognition,
indoor localization, and optimal path planning.

“Improved 3D Object Detection Based on PointPillars” proposes an improved method
based on PointPillars to address the problem of insufficient small target detection accuracy
in 3D point cloud target detection. The study redefines the attention mechanism (R-
SENet), which enhances key feature expression through channel and spatial dual attention.
Additionally, dynamic convolution enhances the network’s adaptability to different input
features, optimizes the backbone network, and introduces Transformer-based candidate
frame optimization. The Transformer module further refines candidate frame regression by
modeling global contextual relationships through self-attention.

In addition to the previously mentioned articles, “YOLO-CBF: Optimized YOLOv7 Al-
gorithm for Helmet Detection in Road Environments” also makes important contributions
to the field.

The optimization of neural network architecture design and training strategies

constitutes another important research direction. The following articles in this Spe-

cial Issue balance model efficiency and performance while optimizing networks for

specific scenarios.

“YOLO-Drone: An Optimized YOLOv8Network for Tiny UAV Object Detection”
presents an optimized YOLOv8 network, YOLO-Drone, designed to address the challenges
of detecting small targets and handling complex backgrounds in miniature UAVs. This is
achieved by adding a high-resolution branch to the detection head, which enhances small
target detection capabilities. The redundant layers associated with large target detection
are trimmed to reduce model parameters. SPD-Conv replaces traditional convolution to
extract multi-scale features and retain more detailed information, while the GAM attention
mechanism is introduced in the neck part to strengthen feature fusion.

“Toward Unified and Quantitative Cinematic Shot Attribute Analysis” presents a
unified framework for cinematic shot attribute analysis, designed to process multiple at-
tributes of a shot simultaneously through a motion-static dual-stream network. Traditional
methods usually use independent models for each attribute and lack the ability to exploit
global feature. The authors introduce a learnable frame difference generator to replace the
optical flow network and extract spatiotemporal features by combining Visual Transformer
(ViT) and Multi-scale Visual Transformer (MViT). By dynamically adjusting the weights
of motion and static features through a quantitative fusion module, the model achieves
optimal performance on both the MovieShots and AVE datasets, significantly outperform-
ing existing methods. The study also quantifies the dependence of different attributes on
motion and static features for the first time, providing a theoretical basis for the design of
subsequent single-attribute analysis models.

“Depth-Quality Purification Feature Processing for Red Green Blue-Depth Salient
Object Detection” introduces a depth-quality purification feature processing network
(DQPFPNet) for RGB-D salient object detection. Most existing methods overlook the
impact of depth feature quality on detection accuracy. The authors design a DQPFP
module, which includes depth denoising, quality weighting, and enhanced attention to
filter and fuse multi-scale depth features. Additionally, they introduce a two-stage decoder
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to optimize context modeling. The experimental results demonstrate the importance of
multi-scale feature processing and quality-aware fusion for salient target detection. The
study also incorporates the RReLU activation function and pixel position adaptive loss
(PPAI) to further enhance the robustness and detailed representation of the model.

“RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8”
presents a lightweight weed detection model, RVDR-YOLOv8, based on an improved
YOLOv8 framework and designed to address the issue of limited computational resources
for weeding robots. The study replaces the traditional backbone with a reversible column
network (RevColNet), which reduces computation and improves feature generalization
through reversible connections and a multi-input design. It introduces the C2fDWR
module, which incorporates an expansion residual mechanism to enhance the recognition
of occluded targets. Additionally, GSConv is used in the neck network in place of traditional
convolution, further reducing computational complexity. The study also introduces the
InnerMPDIoU loss function, which fuses the MPDIoU and InnerIoU models to improve
bounding box regression accuracy.

“A Novel Deep Learning Framework Enhanced by Hybrid Optimization Using Dung
Beetle and Fick’s Law for Superior Pneumonia Detection” presents a hybrid optimiza-
tion algorithm-based pneumonia detection framework that integrates the dung beetle
optimizer (DBO) algorithm and Fick’s law algorithm (FLA) to optimize feature selection
and classification performance in convolutional neural network (CNNs). The model is
based on MobileNet V1, which reduces computational complexity through depth-separable
convolution and dynamically balances the exploration and utilization of feature space by
leveraging the global search capability of the DBO and the local optimization property of
the FLA.

In addition to the previously mentioned articles,”YOLO-CBF: Optimized YOLOv7 Al-
gorithm for Helmet Detection in Road Environments” also makes important contributions
to the field.

The following articles in this Special Issue provide technical support for the field

of biomedical image processing, with the aim of improving diagnostic accuracy through

medical imaging-specific algorithms.

“LezioSeg: Multi-Scale Attention Affine-Based CNN for Segmenting Diabetic Retinopa-
thy Lesions in Images” addresses the challenge of segmenting diabetic retinopathy (DR)
lesions by proposing a data enhancement method that combines multi-scale attention and
affine transformations. Traditional models rely on complex networks and have limited
generalization capabilities. The authors design the LezioSeg network, which employs
MobileNet as a lightweight encoder, integrates an ASPP module, and uses gated jump
connectivity (GSC) to enhance feature extraction. Additionally, affine transformations
are used to increase data diversity, and the study demonstrates the effectiveness of affine
transformation for small target segmentation, offering a lightweight solution for medical
image analysis.

The previously mentioned articles “Multi-Branch Spectral Channel Attention Network
for Breast Cancer Histopathology Image Classification”, “RS-Xception: A Lightweight
Network for Facial Expression Recognition”, and “A Novel Deep Learning Framework En-
hanced by Hybrid Optimization Using Dung Beetle and Fick’s Law for Superior Pneumonia
Detection” also contribute to the field to varying degrees.

Image processing techniques for intelligent surveillance scenarios focus on human

behavior analysis and security applications, and the following articles in this special

issue reflect the importance of scenario-based algorithm design.
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“Digital Twin 3D System for Power Maintenance Vehicles Based on UWBand-
DeepLearning” proposes a digital twin system that combines ultra-wideband (UWB)
localization and deep learning to enhance safety monitoring during power maintenance
vehicle operations. The chaotic particle swarm optimization (CPSO) algorithm is used to
improve the TDOA/AOA localization scheme, effectively suppressing non-visual distance
and multipath effects and significantly improving localization accuracy compared to tradi-
tional methods. Additionally, a YOLOv5-based robotic arm state recognition network is
designed, incorporating the long edge definition method, the SIoU loss function, and the
CBAM attention mechanism, achieving an mAP of 85.04%. This system ensures the safety
of electric power operations through enhanced visualization and intelligent monitoring.

“A High-Precision Fall Detection Model Based on Dynamic Convolution in Complex
Scenes” introduces ESD-YOLO, a high-precision fall detection model based on dynamic
convolution, designed to address the insufficient accuracy of YOLOv8 in detecting human
falls in complex environments. By replacing the C2f module in the backbone network with
the C2Dv3 module, the model’s ability to capture target deformation and detail is enhanced.
The DyHead dynamic detection head is integrated into the neck, and a multi-scale attention
mechanism is introduced to improve the detection performance in occluded scenes. The
EASlideloss loss function dynamically adjusts the weights of difficult samples, addressing
the issue of sample imbalance. The experimental results show that ESD-YOLO significantly
outperforms YOLOv8, showing stronger robustness, especially under low light, occlusion,
and complex backgrounds.

“An Efficient Multi-Branch Attention Network for Person Re-Identification” presents
EMANet, an efficient multi-branch attention network designed to address the challenges
of pedestrian re-identification (Re-ID), such as cross-view angles, illumination changes,
and occlusion. A multi-branch structure is designed with global branching, relational
branching, and global contrast pooling branching, which collaboratively extract overall,
local, and background suppression features. The DAS attention module and adaptive
sparse pairwise loss are employed, with depth-separable convolution and deformable
convolution dynamically focusing on salient regions. The adaptive loss function optimizes
sample pair selection, improving the model’s generalization ability.

“A Study of Occluded Person Re-Identification for Shared Feature Fusion with Pose-
Guided and Unsupervised Semantic Segmentation” addresses the challenge of occluded
person re-identification by simultaneously extracting human topological features for pose-
guided and pixel-level semantic features for unsupervised semantic segmentation. The
multi-branch structure employs the multi-scale correlation matching fusion (MCF) module
to achieve feature complementarity. This study provides a robust solution for pedestrian
re-recognition in surveillance scenarios, which is especially suitable for identity matching
tasks in complex occlusion environments.

The previously mentioned article “Research on Railway Dispatcher Fatigue Detection
Method Based on Deep Learning with Multi-Feature Fusion” has also made excellent
contributions to this field.

End-to-end deep learning-based image processing techniques focus on image gen-

eration, reconstruction, and editing, and the aforementioned articles “Content-Aware
Image Resizing Technology Based on Composition Detection and Composition Rules”,
“MM-NeRF: Large-Scale Scene Representation with Multi-Resolution Hash Grid and Multi-
View Priors Features”, “YOLO-CBF: Optimized YOLOv7 Algorithm for Helmet Detection
in Road Environments”, “Research on 3D Visualization of Drone Scenes Based on Neural
Radiance Fields”, and “Incremental SFM 3D Reconstruction Based on Deep Learning” all
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overcome the limitations of traditional image processing and achieve direct mapping from
input to output.

The field of robotics and unmanned systems empowers autonomous operation

through vision algorithms, and the previously mentioned articles “Lightweight Straw-
berry Instance Segmentation on Low-Power Devices for Picking Robots”, “A Method
for Unseen Object Six Degrees of Freedom Pose Estimation Based on Segment Anything
Model and Hybrid Distance Optimization”,”StrawSnake: A Real-Time Strawberry Instance
Segmentation Network Based on the Contour Learning Approach”, and “Robotic Grasping
Detection Algorithm Based on 3D Vision Dual-Stream Encoding Strategy” all contribute to
the field to varying degrees.

AI-driven full-flow image processing technologies integrate compression, analysis,

and generation. The following articles in this Special Issue provide technical support

in this area.

“Improved YOLOV5 Angle Embossed Character Recognition by Multiscale Resid-
ual Attention with Selectable Clustering” addresses the challenges of recognizing small,
mutilated characters and overcoming complex background interference in power pylon
angle character recognition. The study proposes a multi-scale residual attention network
based on the improved YOLOv5 (YOLOv5-R). The authors introduce a multi-scale residual
attention coding mechanism (MSRC) and a selectable cluster minimum iterative center
module (OCMC). MSRC dynamically adjusts feature weights through global pooling and
Softmax to focus attention on detailed features, while OCMC uses IoU as a distance metric
to optimize the anchor frame clustering process and reduce reliance on a priori knowledge.
This approach effectively resolves the challenges of character recognition in industrial
scenarios and provides reliable technical support for automated detection.

In conjunction with the four previously mentioned articles “Toward Unified and
Quantitative Cinematic Shot Attribute Analysis”, “Detection of Fittings Based on the
Dynamic Graph CNN and U-Net Embedded with Bi-Level Routing Attention”, “Depth-
Quality Purification Feature Processing for Red Green Blue-Depth Salient Object Detection”,
and “Improved 3D Object Detection Based on PointPillars”, a comprehensive solution has
been developed, spanning from data preprocessing to application.
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Abstract: Traffic command and scheduling are the core monitoring aspects of railway transportation.
Detecting the fatigued state of dispatchers is, therefore, of great significance to ensure the safety
of railway operations. In this paper, we present a multi-feature fatigue detection method based
on key points of the human face and body posture. Considering unfavorable factors such as facial
occlusion and angle changes that have limited single-feature fatigue state detection methods, we
developed our model based on the fusion of body postures and facial features for better accuracy.
Using facial key points and eye features, we calculate the percentage of eye closure that accounts
for more than 80% of the time duration, as well as blinking and yawning frequency, and we analyze
fatigue behaviors, such as yawning, a bowed head (that could indicate sleep state), and lying down
on a table, using a behavior recognition algorithm. We fuse five facial features and behavioral
postures to comprehensively determine the fatigue state of dispatchers. The results show that on the
300 W dataset, as well as a hand-crafted dataset, the inference time of the improved facial key point
detection algorithm based on the retina–face model was 100 ms and that the normalized average error
(NME) was 3.58. On our own dataset, the classification accuracy based the an Bi-LSTM-SVM adaptive
enhancement algorithm model reached 97%. Video data of volunteers who carried out scheduling
operations in the simulation laboratory were used for our experiments, and our multi-feature fusion
fatigue detection algorithm showed an accuracy rate of 96.30% and a recall rate of 96.30% in fatigue
classification, both of which were higher than those of existing single-feature detection methods. Our
multi-feature fatigue detection method offers a potential solution for fatigue level classification in
vital areas of the industry, such as in railway transportation.

Keywords: intelligent transportation; fatigue testing; multi-feature fusion; dispatcher; HOG-PSO-
SVM

1. Introduction

In recent years, China’s railway industry has developed rapidly, and the country
has entered an era of high-speed, high-density, and heavy-weight railway transportation.
Railway traffic dispatching is critical to ensuring the safe operation of railways. During
active operations, it is necessary to follow the unified commands given by those in charge of
traffic dispatching. A dispatcher organizes relevant personnel to fulfill the train operation
diagram, the marshaling plan, and the transportation schedule, and to meet the transporta-
tion goals. Errors in dispatching can cause traffic delays and service interruptions, and
occasionally, they may lead to severe accidents. Therefore, detecting the fatigued state
of the dispatcher should be the basis for ensuring successful, reliable operations and is
of great significance for the safe operation of railways. Research on the detection of the
fatigue state of dispatchers refers to research on fatigue detection methods for high-speed
rail and car drivers, and it has combined the characteristics of the dispatching work itself
to design fatigue detection methods for dispatchers.
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Many methods for measuring fatigue have been developed and can be divided into
two types: subjective and objective. Subjective detection methods aim to obtain the
fatigue status of personnel with the filling out of questionnaires, subjective evaluations,
and other methods. Evaluation scales include the Karolinska sleepiness scale (KSS), the
morning-type and evening-type questionnaire (MEQ) [1], the mood fatigue scale (POMS-
F), the vitality scale (POMS-V), the NASA task load index (NASA-TLX), etc. Courtney
et al. conducted sleep restriction and deprivation experiments and concluded that all
scales are effective for fatigue detection [2]. Gaydos et al. [3] proposed an approach
not only based on pilots themselves but also their peers’ perspectives. Useche et al. [4]
studied the relationships among fatigue, work-related and stress-related conditions, and
dangerous driving behaviors. Fan, J., et al. [5] studied the correlation between workload
and fatigue but did not consider other factors. When a person is in a state of fatigue,
the body has physiological reactions, such as increased blinking, increased yawning, and
general weakness [6], and these are used to inform detection methods based on human
physiological indicators and behavioral feature detection using image- and voice-processing
technologies. To evaluate a driver’s physiological indicators while driving, the authors
collected drivers’ bio-electrical signals recorded using electro-encephalogram (EEG), electro-
oculogram (EOG), and electro-cardiogram (ECG) tests [7], as well as their physiological
parameters, such as body temperature. Then, a fatigue detection method was applied for
feature extraction analysis in order to determine drivers’ alertness [8,9].

Research on fatigue detection has been focused on fatigue state detection, often using
a single facial feature, for example, monitoring an operator’s eye movements. When
an operator is tired, the body posture changes, and the operator may perform certain
movements or gestures, such as covering the face. It is often the case that people exhibit
more bodily behaviors indicative of fatigue than facial behaviors [10]. Thus, detecting
fatigue based on a single facial feature must be reconsidered. The goal of this study was
to propose a dispatcher fatigue detection method based on the fusion of multi-feature
information. We performed this by combining facial cues and body postures. In this study,
we explored a fatigue detection model based on multi-feature fusion in order to improve
the train dispatcher fatigue detection accuracy. The major contributions of this work are
summarized as follows:

• Fusing multiple features in addition to facial movements, such as body posture: We integrate
facial features and behaviors indicative of a fatigued state, and we use the RetinaFace
model to identify the key indicators of the face. The particle swarm optimization–
support vector machine (PSO-SVM) algorithm of the histogram of oriented gradient
(HOG) feature graph is used to determine the open and closed states of the eyes, and
the LSTM–AdaBoost algorithm, to determine fatigue gestures.

• Differential model robustness: In order to improve the effect of the fusion model, we ex-
plored the RetinaFace network model, optimized the support vector machine method
using particle swarm optimization, and improved the LSTM–AdaBoost algorithm.

• Comprehensive experiments and studies: We conducted detailed ablation studies and com-
prehensive experimentation to evaluate the model’s efficiency and accuracy, and the
behavior classification of the model; an ablation test comparison; and a benchmarking
test against other algorithms’ results.

The abbreviations used in the article are listed in Table 1.
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Table 1. Abbreviations Table.

Abbreviations Full Spelling

KSS Karolinska sleepiness scale
MEQ Morning-type and evening-type questionnaire

POMS-F Mood fatigue scale
POMS-V Vitality scale

EEG Electro-encephalogram
EOG Electro-oculogram
ECG Electro-cardiogram

QRS WAVES Combination of Q waves, R waves, and S waves
MLP Multi-layer perceptron

PERCLOS Percentage of eyelid closure over the pupil over time
LBP Local binary pattern

PSO-SVM Particle swarm optimization–support vector machine
HOG Histogram of oriented gradient
LSTM Long short-term memory
FPN Feature pyramid network
EAR Eye aspect ratio
MAR Mouth aspect ratio
SSM Single-stage multi-task
SSH Single-stage headless face detector

HRNet High-resolution network
NME Normalized mean error
DBN Deep Belief Networks
CNN Convolutional neural network

2. Related Works

Subjective evaluation methods are simple and direct. Participants complete answers
according to an evaluation scale and their own feelings. Objective fatigue detection methods
are feature detection methods based on human physiological indicators, behavioral actions,
and image- and speech-processing technology.

(1) Subjective fatigue measurement methods.

In 2013, Gaydos et al. [3] proposed a new peer fatigue scoring system based on the
subjective evaluation of pilot fatigue in the military. The flight safety office records and
tracks the median and the variance of each pilot’s peer rating. The rating system consists of
a simple 1–10 rating scale, with instructions for each rating to ensure the consistency of the
subjective assessments and accurately determine the level of exhaustion of each pilot. The
scoring system evaluates a pilot’s fatigue state, their relative response, and their degree
of coping from a multi-dimensional, external perspective. Scoring is based on a peer’s
perspective, which could include activities other than work, such as social interactions,
and could also observe the pilot’s service limitations. Based on this approach, fatigue
management is transformed into a more proactive management approach.

In 2017, Useche et al. [4] studied the specific relationships among the fatigue of bus-
rapid-transit (BRT) drivers, their work-related and stress-related conditions, and dangerous
driving behaviors. The trial involved 524 male drivers from four BRT transport companies
in Bogota, Colombia’s capital city. The participants completed three questionnaires on
driver behavior, effort–reward imbalance, and job performance, along with a subjective
fatigue scale. Using a structural equation model (SEM), they found that dangerous driving
behavior is predicated on work stress, effort–reward imbalance, and social support and
that fatigue driving plays a role in the relationship between work stress and dangerous
driving, as well as between social support and dangerous driving.

In 2017, Fan and Smith [5] studied the correlation between workload and fatigue,
and its impact on work performance, particularly in the railway industry. The results
showed that workload is a predictor of fatigue. Furthermore, they applied a combination of
subjective measures and online objective cognitive tests, including self-assessment, a 10 min
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psycho-motor alertness task, a visual search, and a logical reasoning task. SPSS software
was used for the statistical analysis of the data to evaluate the correlations among workload,
fatigue, and performance. The results showed that workload was an important factor that
intensified fatigue and that subjective fatigue could be predicted using an evaluation test.

(2) Objective fatigue measurement methods.

Allam, J.P., et al. [11] proposed a deep learning algorithm based on a convolutional
neural network to automatically recognize the state of drowsiness. Their model uses single-
channel raw EEG signals as the input and then extracts features from the applied EEG
signals. In [1], researchers proposed an algorithm for detecting QRS waves (a combination
of Q waves, R waves, and S waves), T waves, and P waves in ECG data, which could not
only identify the amplitude and intervals of the ECG data but also shorten the long-term
detection and identification time.

In [12], researchers used eight EEG channels to monitor drivers’ state and then applied
a matrix decomposition algorithm to classify the EEG signals collected using wireless
wearable technology. If a driver was determined to be fatigued, an early warning alert
sounded. This method had a high accuracy rate for fatigue detection, but it was more
intrusive and disturbed drivers’ work.

A behavior feature detection method is based on image-/voice-processing technology.
Fatigue detection technology based on image processing and video algorithms is employed
to evaluate facial features, such as head position, the closing frequency of eyes and mouth,
and body posture. Researchers have found with experiments that these features reflect the
fatigue state of the human body. It is generally accepted that eye features have the greatest
correlation with a fatigued state, such as the duration of eye closure, blink frequency, etc.
Human posture and voice characteristics have been used as a supplementary basis for
determining the fatigue state of the human body.

The literature [13] compared human eye detection technologies based on neural
network methods, support vector machine methods, cascade algorithms, etc., according
to images and the PERCLOS (percentage of eyelid closure over the pupil over time, eye
closure time per unit time) principle, and the authors designed a deep learning method to
detect driver fatigue. The authors of [14], however, used a driver’s facial image, which was
collected with a camera, and employed the YOLO-LITE deep learning network and the
Haar-like feature cascade for detection. In addition, they proposed a multi-layer perceptron
(MLP), instead of the PerStat method of the PERCLOS method.

In [15], the authors proposed an eye state recognition network based on transfer learn-
ing, which consists of Gabor features and LBP features that are added to a convolutional
neural network module using transfer learning, and they also used a multi-task cascaded
convolutional neural network to detect a driver’s face and eyes, which classified the fatigue
state of the driver according to the PERCLOS principle. In [16], a machine learning method
was applied; it uses the f-value of the PERCLOS criteria for the longest continuous eye
closure time and the number of mouth-opening instances as the input of the neural network
and then constructs a three-layer BP neural network to identify fatigued states. The authors
of [17] extracted image features based on the improved RetinaFace model as well as the
improved ShuffleNetV2 network model, and they determined the fatigue status using face
detection and the opening and closing of eyes and mouth. In [18], the authors proposed
a multi-feature fusion method that combines the degrees by which eyes and mouth open
and close, along with the eye movement rate, to determine the level of fatigue using a
fuzzy reasoning system. The authors of [19] proposed a two-stream fusion network model
based on upper-body postures to determine the level of fatigue of high-speed rail drivers.
Regarding issues on fairness in facial detection systems, we have referred to the research
findings of the following researchers: The authors of [20] offer a simple and straightforward
recipe for confidence calibration in deep learning that improves the network credibility
judgment. The authors of [21] introduced Fair-Net, a branched multi-task neural network
architecture that improves both classification accuracy and probability calibration across
identifiable sub-populations in class-imbalanced datasets. The authors of [22] presented an
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approach to evaluate the bias present in automated facial analysis algorithms and datasets
with respect to phenotypic subgroups.

3. Features of Dispatcher Fatigue

In this study, we examined several features indicative of dispatcher fatigue: fea-
tures based on eye closure (Section 3.1), blink frequency (Section 3.2), yawn frequency
(Section 3.3), bowing the head and dozing off (Section 3.4), and dozing off on a table
(Section 3.5).

3.1. Eye Closure-Based Features

PERCLOS refers to the percentage of eye closure during a specified time period. It
collects data from videos to realize non-contact fatigue detection without affecting the
normal work of personnel. It measures the amount of time during which the eyes are
at least 80% closed. This proportion of time is expressed as P80 in [23]. In 1998, the U.S.
Federal Highway Administration compared various fatigue detection methods in simulated
driving tests conducted in a laboratory, and the researchers found that the P80 standard
of the PERCLOS method is the most accurate. The measurement principle assumes that
the blink of the eyelid begins at t1 and ends at t4 and that the eye is open at both t1 and t4.
During this blinking process, the pupil is covered for more than 80% of the time period,
which is t2 t3, as shown in Equation (1).

f =
t3 − t2

t4 − t1
(1)

In the video acquisition in this study, the acquisition parameter was 30 fps, that is,
30 frames of images were collected per second. Therefore, the f -value of PERCLOS [24] was
obtained by counting the number of image frames with open versus closed eyes, instead of
the eyelid coverage area, as shown in Equation (2).

f =
M
N

× 100% (2)

where N is the number of image frames collected with the camera within a specified period
of time and M is the number of frames of closed-eye images. The value range of f is
0 < f ≤ 1. Studies have shown that when the human body is more awake, the f -value of
PERCLOS is lower, generally in the range of 0 < f ≤ 0.15, and when the human body is in
a state of fatigue, the f -value exceeds 0.4. When one enters the sleep state and the eyes are
closed for a long time, f is equal to 1.

3.2. Blink Frequency

Blinking is determined according to the state of the eyes in continuous image se-
quences. The process of blinking is defined as transitioning from eye opening to closing to
opening again. The total number of blinks in a unit cycle is the blink frequency, Freqblink,
which has been medically shown to predict the awake state of the human body. In a normal
awake state, the number of blinks per 60 s is 15–30 times, and the duration of each blink is
0.2–0.3 s. While fatigued but not yet asleep, an individual’s blink frequency increases, until
reaching a sleep state, where the blink frequency is 0. Equation (3) is used to calculate the
blink frequency.

Freqblink =
N
T

(3)

where N is the number of eye blinks within time T and T is the specified time period. We
set the time period to 60 s, collected 30 frames of continuous image data per second, and
calculated the number of eye blinks in approximately 1800 frames.
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3.3. Yawn Frequency

For the evaluation of facial movements with no occlusion of the mouth, we assumed
that the mouth has four states: closed, slightly open, talking, and yawning. When the
human body starts to experience tiredness, the frequency of yawning increases. When
yawning, the opening of the mouth is the largest in the upward and downward directions,
and the length between the left and right corners becomes narrower. Therefore, to accurately
identify facial yawning movements, the mouth aspect ratio (MAR) of the upper lip and
lower lips is introduced. The distance value is used as an indicator [25], and the index
value is calculated with the coordinates of key points around the mouth. Since the mouth
movement of yawning could be clearly distinguished from that of speaking, the occurrence
of yawning could be determined using the MAR threshold method.

To evaluate behaviors, such as covering the mouth, that indicate yawning, we assumed
that people have different habits when yawning. When some people yawn, they cover
their mouths with their hands. When this occurred in the image sequences, it occluded
the movement of the mouth, which made the determination of yawning using facial key
points infeasible. To overcome this, we propose a method that identifies key points in the
upper body and uses recognized behaviors to determine yawn occurrence. The schematic
diagram is shown in Figure 1.

Figure 1. Yawning (covering the mouth).

3.4. Bowing the Head and Dozing Off

When the human body experiences tiredness, it physically reflects drowsiness; the
brain response decreases; and the ability to support the head decreases, which is typically
manifested with head drooping and frequent nodding. When a person is assuming a sleep
state, key points of the face may not be viewable on video, so the fatigue state cannot be
determined using the PERCLOS method. At this time, physical behaviors, such as bowing
the head, that could indicate fatigued and sleep states are used instead [26].

3.5. Dozing Off on a Table

When a person experiences drowsiness, they may fall asleep in their current position
or seek out a convenient location, such as a nearby table, on which to lie down and fall
asleep. Therefore, to determine the fatigue of a dispatcher, the fatigue characterization
of “table drowsiness” is included, which is defined according to specified movements
and behaviors.

4. Multi-Feature Fusion Fatigue Detection Method Based on Deep Learning

The flowchart of our fatigue detection model based on the RetinaFace model [27],
HOG-PSO-SVM, and the Bi-LSTM-SVM adaptive enhancement algorithm is shown in
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Figure 2. The technical reasons for using the RetinaFace and HRNet network models are
as follows: RetinaFace is a single-stage multi-task detection algorithm for face detection
that has been characterized as fast, lightweight, having high accuracy, and being capable
of parsing information extracted from multi-level and multi-scale feature maps. Based on
the RetinaFace algorithm, we designed a detection model that could infer the key points
of the eyes and is superior in speed and more suitable for a series of tasks, such as facial
key point detection, on a small industrial computer. Similarly, HRNet is a high-precision
human posture estimation model that was jointly developed and released by University
of Science and Technology of China and Microsoft Research Asia. Compared with the
serial human posture estimation model, HRNet constructs a unique parallel structure.
The parallel connection of high-to-low resolution convolution enables a high-resolution
representation to be maintained at all times; then, multi-scale fusion can be performed
using cross-parallel convolution to enhance the high-resolution feature representation. It
does not rely on the restoration of high-resolution features from low-resolution features,
as other methods do, thus significantly improving the prediction results of key points of
human postures.

The algorithm flow is as follows: First, real-time video images of the dispatcher are
obtained using a video acquisition device. The key points of the eyes and mouth are
extracted using the RetinaFace model, while the key points of the body posture are detected
using the high-resolution network (HRNet). After the point detection model [28] has
extracted these key points, it inputs them into the SVM and the Bi-LSTM-SVM adaptive
enhancement algorithm model to obtain the eigenvalues of the fatigued state, which are
then used as the input of the artificial neural network to calculate the fatigue state using
multi-feature fusion.

Figure 2. Algorithm flow chart of multi-feature fusion fatigue detection method.
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4.1. Face Key Point Recognition Based on RetinaFace

RetinaFace is a single-stage multi-task (SSM) detection algorithm proposed by the
InsightFace team that specifically detects faces. The characteristics of its network model
include single-stage target detection, feature pyramid networks (FPNs), context feature
modules (single-stage headless face detector (SSH)), multi-task learning, an anchor box
mechanism (Anchors), and the use of lightweight backbone networks.

Based on the RetinaFace algorithm, we designed a detection model that can actively
memorize and learn the behaviors of facial key points using data transfer learning [29],
network structure redesign, Gabor feature extraction [30], and other methods.

(1) Face Key Point Design

In the original RetinaFace network, the five key points of the face are originally the
left and right eyes, the left and right mouth corners, and the nose tip. According to the
needs of fatigue detection, 21 key points of the face are implemented, i.e., 6 each for the left
and right eyes, 1 for the tip of the nose, and 8 for the mouth. In this paper, detection points
for the eyes and mouth are used. This model has excellent reasoning speed and is suitable
for completing the task of facial key point detection on a small industrial computer. The
results of facial key point detection using RetinaFace are shown in Figure 3.

Figure 3. Face key point detection based on RetinaFace.

(2) Loss Function Design

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) + λ3 p∗i Lpixel (4)

Equation (4) is the loss function of the RetinaFace network. In Equation (1), (a) Lcls(pi, p∗i )
is the loss function of face classification, and pi is the i-th anchor frame predicted by the
network as a person. The probability of the face, p∗i , is the data label. (b) Lbox(ti, t∗i ) is the
face box regression loss function, and ti, t∗i are the coordinates of the predicted anchor box
and the coordinates of the data label, respectively, including face Box 4 positioning data: tx,
ty, tw, and th. (c) Lpts(li, l∗i ) is the regression loss function of the key points of the face. In
order to improve the computational efficiency, therefore, the dense loss function that is less
related to the regression of the key points of the human eye is removed. We select lambdas
based on the RetinaFace network, which are 0.25/0.1/0.01, respectively. This means that
the loss weights from the detection branch are higher than those from the key point branch.
Our parameter values are still 0.25/0.1. The optimized loss function is Equation (5).

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) (5)
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(3) Network Structure Design

The pyramid structure of the FPN feature map was employed to enhance the detection
of small-sized faces. In the fatigue detection scene of the dispatcher, the face area in the
collected image accounts for a moderate proportion of the original image. Therefore, in
RetinaFace, the P2 and P6 layer structures of the original feature pyramid network of the
model can be removed, which greatly improves the reasoning speed and accuracy of the
model. The feature pyramid network designed in this paper is shown in Figure 4.

Figure 4. RetinaFace network structure designed in this paper.

(4) Image Data Gabor Pre-Processing Design

A Gabor filter is used to extract the feature maps in the directions of 0°, 45°, and 90°
from the original image; then, the three-feature images are mapped into a new three-channel
image; finally, the Gabor feature map is obtained in gray scale.

(5) Pre-trained Model Transfer Learning

RetinaFace includes three tasks: face classification, face frame detection, and facial key
point detection. When using the pre-trained network weighting file for prediction, there is
no need to re-train the model for face classification and face frame detection. We use the
previous freezing of the related weights, as separately training the detection points of eye
key points can not only greatly improve the training efficiency, but it also improves the
accuracy of face detection.

4.2. Eye Opening and Closing Recognition with Support Vector Machine Based on HOG Feature

The extracted features applied for the detection of eye closure include the eye aspect
ratio (EAR), image binarization, local binary patterns (LBPs), and the HOG feature. Among
these, selecting the EAR thresholds that determine whether an eye is opening or closing
is challenging, as people have many different eye sizes [31]. The image binarization
method determines the differences between the black pixels of two consecutive frames.
The disadvantage is that the distance between the human eye and the camera is greatly
affected, and if the subjects continuously close their eyes, the difference between the black
pixels cannot be reflected. The LBP feature extraction method [32,33] is not robust under
complex lighting conditions. Compared with other features, the HOG feature is stable
and less sensitive to changes in lighting conditions. It has better robustness for the feature
description of the target, and the detection effect is relatively stable [34].

The HOG feature extraction process is as follows:

• Calculate the gradient of each pixel in the image.
• Divide the picture into gridded blocks; then, divide each block into multiple small-

cell grids.
• Count the gradient distribution histogram in each cell; obtain a descriptor of each

cell; count the gradient direction distribution of each pixel; then, project it onto the
histogram according to the weighted gradient size.

• Combine N cells into a block, and concatenate the descriptors of each cell to obtain
the description of the block.

• Concatenate the descriptions of each block in the picture to obtain a feature description
of the picture, which is the HOG feature of the picture [35]. Since the pixel size of each
eye photo was 120 × 60, we set the pixel size of the cells to 6 × 6, and each block was
set to 3 × 3.
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(1) Eye Image Cropping

In an actual working environment, dispatchers always look at the control screen from
left to right, so their faces would always be turned away from the camera. Because the
distances between each eye and the camera are different, the positioning errors of the key
points would increase. To solve this problem, we propose a method that selects the eye
closest to the camera as the focus. When the dispatcher’s face is turned away, the eye that
is closer to the camera is detected, as shown in Figure 5. In the figure, fw and fh represent
the width and height, respectively, of the face frame, as detected with RetinaFace. The
positioning point of the tip of the nose is compared with the face and the position of the
center line of the frame in terms of the direction of the picture. If the tip of the nose is on
the right, it detects the left eye in the image (the subject’s right eye); otherwise, it detects
the right eye in the image (the subject’s left eye).

Figure 5. Eye selection method.

Eye cropping is performed on the selected reference eyes. Since the distance between
the upper and lower key points changes greatly when the eyes open and close, while the
distance between the left and right key points generally does not change, a specific ratio
could be used to crop the eye image. Generally, the eye aspect ratio is 1.6 [36]. According
to this, Equation (6) is applied to proportionally crop the eye image.{

wcrop = weyehorizon × 1.02,

hcrop = wcrop ÷ 1.6.
(6)

In Equation (4), wcrop and hcrop represent the width and height of the cropped eye
image, respectively.

(2) HOG Feature Extraction

The cropped image is in a three-channel RGB format that contains the color infor-
mation. The gradient calculation of the image does not require color information, so the
first step is to convert the image into a gray-scale image. The participating dispatchers’
workplace was the dispatching hall of the Railway Bureau with sufficient and uniform
lighting. Because the HOG feature is a local gradient feature, it is not sensitive to light.
Therefore, this study did not consider image-processing methods for scenarios with insuffi-
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cient lighting. When extracting the HOG features, it is necessary to calculate the horizontal
and vertical gradients of each pixel, as shown in Equations (7) and (8).

gx(x, y) = H(x + 1, y)− H(x − 1, y) (7)

gy(x, y) = H(x + 1, y)− H(x, y − 1) (8)

where g represents the gradient; H represents the pixel value of the corresponding point;
and x and y represent the horizontal and vertical directions, respectively. Based on these
calculations, the magnitude and angle of the gradient can be obtained at this point, as
shown in Equations (9) and (10).

g =
√
(g2

x + g2
y) (9)

θ = arctan
gy

gx
(10)

The figure is divided into a large number of cells, and the gradient information of each
cell is counted to form a histogram. The HOG feature map is shown in Figure 6.

Figure 6. HOG characteristic diagram visualization diagram.

4.3. Yawning Recognition Based on Facial Key Points

The extraction of the key points of the mouth also uses the RetinaFace network to
locate the eight key points around the mouth. The key points of the mouth position are
numbered 13 to 20, as shown in Figure 7.

Figure 7. Key points of the mouth when yawning.
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Generally, when yawning, the MAR changes greatly, which is different from the MAR
value when speaking. In order to determine mouth states such as speaking, yawning,
and closed, we used the aspect ratio to evaluate the samples, and the experimental results
are shown in Figure 8. When MAR < 0.3, the mouth is closed or speaking. When 0.4 <
MAR, we determine that the mouth state is yawning. Therefore, we directly use the fixed
threshold method to detect yawning based on facial key points [37]. The changes in the
mouth MAR are shown in Figure 8.

Figure 8. MAR Change Chart.

By recording the MAR value of different subjects when yawning, 0.3 was determined
as the threshold of yawning. When MAR > 0.3, the state is determined as yawning, and
when MAR ≤ 0.3, it is determined as other actions.

4.4. Behavior Recognition Based on Bi-LSTM-SVM Adaptive Enhancement Algorithm

In order to classify the characteristics of a sitting posture when only half of the subject’s
body can be captured with a camera, a human posture classification method based on
a bidirectional long short-term memory neural network and an adaptive enhancement
algorithm is proposed. Based on the HRNet key point detection model of body postures,
multiple key points of the human body were extracted, and by constructing the angle and
length features of human movements, an adaptive enhancement algorithm for movement
recognition based on the bidirectional long-short-term memory neural network (Bi-LSTM)
was built to improve recognition. This improved efficiency, reduced the risk of generaliza-
tion error and recognized a dispatcher’s fatigue behaviors with excellent precision. The
flowchart of the algorithm is shown in Figure 9.

The algorithm is divided into four parts: data acquisition and pre-processing, Bi-LSTM-
SVM neural network, Bi-LSTM-SVM adaptive enhancement algorithm, and dispatcher
fatigue behavior results. Data acquisition and pre-processing extract and normalize the key
points of the human body and allocate them to the training sets and testing sets.

The format of the human posture key point data extracted with HRNet is information
on 17 key points in a row, with each key point including horizontal and vertical coordinates,
as well as confidence. Therefore, there are a total of 54 columns of data in one row. The
pre-processing of data such as denoising mainly includes the following items:

(1) Remove key point data with a confidence level below 0.5.
(2) Remove key point data with obvious errors in location.
(3) Remove key point data with missing data information.

In order to improve the accuracy of human posture detection, it is necessary to extract
features from the data. Based on the differences in behavioral movements with body
changes and the relatively fixed body length ratio, 7 types of angle features and 10 types
of length ratio features are extracted. The seven types of angle features include the angle
between each limb and the trunk, and the angle of the line connecting the head and
shoulders, and the relative position proportion feature mainly extracts the relative position
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relationship between limbs, as well as the limb proportion feature based on the length of
the trunk. The specific features are shown in Tables 2 and 3.

Figure 9. Overall flow chart of Bi LSTM-SVM adaptive enhancement algorithm.

Table 2. Limb angle feature.

No. Angular Feature

1 The angle between the line connecting the midpoint of the nose and the shoulder and the line
connecting the right and left shoulders

2 The angle between the right shoulder–elbow line and the right wrist–leg root line
3 The angle between the right shoulder–elbow line and the right wrist–elbow line
4 The angle between the left wrist–elbow line and the left elbow–shoulder line
5 The angle between the left wrist–elbow line and the left elbow–shoulder line

6 Angle between the line connecting the root of the right leg and the right shoulder and that connecting
the root of the right leg and the right knee

7 Angle between the line from the base of the left leg to the left shoulder and that from the base of the
left leg to the left knee

Table 3. Proportional characteristics of key points’ relative location.

No. Position Scale and Distance Features

1 Nose–shoulder midpoint distance/shoulder midpoint–thigh root midpoint distance
2 Nose–elbow midpoint distance / shoulder midpoint–thigh root midpoint
3 Nose–wrist midpoint distance/shoulder midpoint–thigh root midpoint
4 Distance between nose–thigh root midpoint/shoulder midpoint–thigh root midpoint
5 Distance between the midpoint of the right elbow and the base of the thigh
6 Distance between the midpoint of the right wrist and the base of the thigh
7 Distance between left elbow and thte midpoint of the thigh base
8 The distance between the midpoint of the left wrist and the base of the thigh
9 Distance between right wrist and nose
10 Distance between left wrist and nose
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The Bi-LSTM-SVM neural network uses softmax to first train Bi-LSTM; then, the
trained output of the fully connected layer is used as the input of the SVM network to
complete the training of the Bi-LSTM-SVM network. Next, the Bi-LSTM-SVM adaptive
enhancement algorithm focuses on training the AdaBoost integrated classifier with the
Bi-LSTM+SVM classifier. Dispatcher fatigue behavior is determined and provided as the
output of the Bi-LSTM-SVM adaptive enhancement algorithm. The parameters of the model
are optimized using the orthogonal experimental method to complete the classification and
recognition of human body postures. Human key point recognition is shown in Figure 10.

Figure 10. Human body key point recognition.

This algorithm achieved good results on the scheduling simulation fatigue behavior
dataset. Compared with the optimized single classifier Bi-LSTM-SVM, the classification
ability of the model has been further improved. By building a strong AdaBoost classifier,
the accuracy of human behavior classification has been improved.

4.5. Classification Model of Fatigued State Based on Artificial Neural Network

(1) Selection of Fusion Algorithm

Commonly used fusion algorithms include the fuzzy theory algorithm, Bayesian
inference, the voting method, the weighted-average method, artificial neural networks,
etc. [38]. The fuzzy theory algorithm is suitable for information fusion in uncertain prob-
lems. Bayesian reasoning is suitable for scenarios based on previous knowledge. The
voting method works well in scenarios with multiple classifiers and sufficient features,
while the weighted-average method is suitable for relatively simple goal–result calculations.
However, we adopted an artificial neural network as the fusion algorithm. By training the
artificial neural network, the corresponding relationship between the weight of each charac-
teristic parameter and the fatigue level can be found. An artificial neural network is suitable
for solving nonlinear problems and finding the relationship between the input and output
of different dimensions and features. The accuracy of artificial neural network classification
is high; it has strong parallel distributed processing ability, strong distributed storage and
learning ability, and strong robustness and fault tolerance to noisy nerves, and it is able to
fully approximate complex nonlinear relationships. Based on the previous analysis and
comparison, we adopted an artificial neural network for fatigue state detection.

Before using the artificial neural network to analyze the feature information, it is
necessary to establish the data labels of fatigue detection and the evaluation benchmarks.
For dispatcher fatigue, we used the subjective KSS data of the subjects during the test,
along with expert evaluations, to determine the degree of fatigue.

(2) Network Model Construction

The input of the network includes the f-value of PERCLOS, the blink frequency,
the yawning frequency, and physical behaviors including the bowing of the head (and
potentially falling asleep) and falling asleep on a table. The network structure is a three-
layer fully connected neural network with a dense layer. In order to avoid overfitting,
a dropout layer was set after each layer, and the value was set to 0.25. The activation
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function used was the softmax function, and the relative probability of three classifications
was used as the output. The optimizer used was Adam. The learning rate was 0.001; the
evaluation index was the accuracy rate; and the loss function of the neural network was
the cross-entropy loss function.

There are two significant differences between the proposed method and existing
methods. The first is that existing multi-feature fusion algorithms detect fatigue by only
using facial or posture features. Our multi-feature fusion algorithm considers both features,
ensuring the identification of the level of fatigue even when the face is obscured. The
second is that our multi-feature algorithm is relatively advanced, as we use RetinaFace for
facial feature recognition, and the Bi-LSTM-SVM–AdaBoost model is applied for posture
recognition. Not only is the algorithm small in size, but it is highly effective in fatigue
detection.

5. Results and Discussion

5.1. Experimental Environment

The experimental environment configuration of this article includes the following:
an operating system that used Windows10, a development language based on Python 3.6
and TensorFlow2.7.0, an Intel i7-6500U 2.5 GHz CPU, and 16 GB memory. We also used a
camera (1280 × 720); the GPU was NVIDIA Geforce GTX 1080Ti, and the graphics memory
was 11 GB.

5.2. Experimental Dataset

The source of the experimental dataset was composed of the data of the simulation ex-
periment conducted by volunteers in the simulation laboratory. There were five volunteers
involved in creating the dataset. Each volunteer was in good physical condition and had
no pathological symptoms, such as a poor sleep history.

The ground truth of the dataset was a self-made dataset that used cameras to capture
video data of volunteers conducting simulation experiments in a scheduling simulation
laboratory. There were a total of 5 volunteers in the dataset, and all of them had been
informed of the trial content and purpose in advance and were asked to sign the trial
information form. Their information is detailed in the table below. Each volunteer collected
40 min of video data. The time distribution was 10 min between 9:00 a.m. and 10:00 p.m.,
10 min between 15:00 p.m. and 16:00 p.m., and 20 min between 23:00 and 24:00 p.m. A
total of 200 min of data was collected, including mild-to-no fatigue, moderate fatigue, and
severe fatigue states. Each data sample was collected for 1 min, with a total of 200 samples
of data. After screening, 192 samples of data were available, including 54 severe fatigue
samples, 64 moderate fatigue samples, and 74 mild-to-no fatigue samples. We divided
all data into 138 training data (each number was 36, 46, and 56) and 54 testing data (each
number was 18, 18, and 18). The training data adopted the 5-fold cross-validation method,
and 110 data in the training set were used for training, in turn, while the other 28 data were
used for training verification, as shown in Tables 4 and 5.

Table 4. Dataset Description Table.

Volunteer Age Gender 9:00–10:00 15:00–16:00 23:00–24:00 Time (min)

A 31 male 10 10 20 40
B 37 female 10 10 20 40
C 41 male 10 10 20 40
D 26 female 10 10 20 40
E 34 male 10 10 20 40

Total 200
Available

data 192
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Table 5. Training data and testing data sizes.

Fatigue State Size Training Data Testing Data

Severe 54 36 18
Moderate 64 46 18

Severe 74 56 18

In the process of recording the video of the dispatchers’ simulation work, the sub-
jects were asked to fill in the fatigue self-examination form (KSS) [39–41] every 300 s and
to measure their own fatigue levels during this time period from a subjective perspec-
tive. Therefore, 1–4 points indicated that the participant was awake; a total of 5–6 points
indicated that the participant had mild fatigue; a total of 7–8 points indicated that the
participant had moderate fatigue; and 9–10 points indicated that the participant had severe
fatigue (sleepiness). In addition, the fatigue status of the participants in the video was
further determined using expert scoring. Since the appearance of early intoxication and
mild fatigue are similar, our algorithm does not distinguish between these behaviors and
divides the degree of fatigue into the following categories: mild-to-no fatigue, moderate
fatigue, and severe fatigue. These were validated with the mutual verification of the degree
of fatigue according to the subjective and objective aspects. The sleepiness table is shown
in Table 6.

Table 6. KSS Sleepiness Chart.

Score Degree of Sleepiness

1 Extremely alert
2 Very alert
3 Vigilance
4 A little alert
5 Neither alert nor drowsy
6 Has some signs of drowsiness
7 Drowsiness, but can stay awake
8 Drowsiness, requiring effort to stay awake

9 Very lethargic, requiring great effort to stay
awake, struggling to stay awake

10 Extreme drowsiness, inability to stay awake

5.3. Experimental Procedure

Normally, when the human body reaches a fatigued state, the blink frequency, the
f-value of PERCLOS, and the number of yawns significantly increase. However, if the cycle
of fatigue detection is too long, the fatigued state is difficult to identify within the time
parameters; if the cycle is too short, the fatigue detection error rate increases. In order to
ensure effective detection and efficiency, the fatigue detection period was set to 60 s, and
the video sampling frame rate was 30 fps. Therefore, the most recent 1800 frames of data
were used to calculate the values of various data and the dispatcher’s level of fatigue.

First, we input the collected video data into the RetinaFace model to locate the key
points of the face and obtain the positioning data of human eyes (12 points), mouth
(8 points), and nose tip (1 point), according to the facial key points of each frame of the
image. The key point representing the tip of the nose was calculated to obtain the eye
screenshot for the reference eye and extract the HOG feature, which was then input into the
PSO-SVM classifier to distinguish the eye open or closed state and calculate the PERCLOS
f-value of the latest 1800 frames.

Blinking is a process, and it takes about 0.1 s to blink one time. According to a video
frame rate of 30 fps, the sampling time of one frame is about 0.033 s. Without any occlusion,
at least two images could capture a single blink, so at least two consecutive pictures with
eyes closed were counted as one blink.

35



Electronics 2023, 12, 2303

According to the position data of the eight key points of the mouth, the mouth
aspect ratio (MAR) of each frame image was calculated, and a fixed threshold was used to
determine the occurrence of yawning; then, the number of yawning actions in the most
recent 1800 frames was also calculated. When collecting facial key points for calculation,
the video data were added to the Bi-LSTM-SVM adaptive enhancement model at the same
time, and the frequency of yawning, the number of sleep states (indicated by lying on the
table), etc., were calculated.

The hyper-parameters that affected the classification results of the artificial neural
network fatigue state classification model included the following: the number of network
layers, the number of neurons in each layer, and the number of iterations. At first, we
used an empirical equation to calculate the parameters and determined that the model had
the following: a total of 5 input neurons; a total of 150 iterations; and two hidden layers,
one with 20 neurons and the other with 30 neurons. However, this would have caused
overfitting. As a result, we adopted four methods to reduce and avoid overfitting.

(1) Appropriately reducing model complexity

By reducing the number of neurons in the two-layer network to 10 and 15, we can
reduce the amount of neuron computation and avoid overfitting.

(2) Using an optimizer and an appropriate learning rate

We used the Adam optimizer and selected an appropriate learning rate; we set
0.05 here.

(3) Early stopping

We divided the original training dataset into a training set and a validation set and
only trained using the training set. We calculated the error of the model on the validation
set in each cycle. When the error of the model on the validation set was worse than the
previous training result, we stopped training. After training, the training epoch was stable
at epoch 100. Therefore, 100 was chosen as the number of training epochs.

(4) The batch size cannot be set too large

When training the neural network, we set a smaller batch size, 10.
After the above debugging processes, the network effect was good, and the overfitting

phenomenon was avoided. The training results are shown in Figure 11.

Figure 11. Training history figure.

The data and classification are shown in Table 7.
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Table 7. Dataset Sampling Table.

Number
PERCLOS

f -Value
Blink

Frequency
Yawn

Frequency
Bowed

Head/Asleep
Asleep on

a Table
Fatigued

State

1 0.009 3 0 0 0 0
2 0.073 20 0 0 0 0
3 0.340 18 4 0 0 1
4 0.354 20 0 0 0 1
5 0.531 27 20 0 0 2
6 0.728 20 13 0 0 2
7 0.890 20 5 0 0 3
8 0.300 21 2 0 1 3
9 0.800 10 4 2 0 3

5.4. Analysis of Results

In order to provide a clearer description of the effectiveness of our proposed algorithm,
we conducted ablation and comparison experiments on fatigue detection, facial detection,
and posture recognition. The results are as follows.

(1) Fatigue detection ablation test

Table 8 shows the prediction results of each fatigue state, and the confusion matrix of
the network model is shown in Figure 12.

Table 8. Model evaluation results on self-built dataset.

Fatigue State Accuracy Precision Recall F1-Score

Mild-to-no fatigue 1 0.9 1 0.95
Moderate fatigue 0.89 1 0.89 0.94

Severe fatigue 1 1 1 1
Overall status (weighting algorithm) 0.96 0.97 0.96 0.96

Figure 12. Confusion matrix.

In order to verify the effectiveness of multi-feature selection in this study, the accuracy
of fatigue classification under three different features was selected for comparative analysis:
the PERCLOS method, which is calculated by only using eye key points; only facial features
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(eye key points, mouth key points, etc.); and the algorithm in this paper (facial features and
behavioral features). The results are shown in Table 9.

Table 9. Comparison of results of different methods on self-built dataset.

Method Precision (%) Remark

PERCLOS method only 88.89

Disadvantages: Unable to
recognize facial occlusion

actions such as hand
occlusion, yawning, lying on

the table, etc.

Facial features only
(PERCLOS/Yawn) 92.59

Disadvantages: Unable to
recognize facial occlusion

actions such as hand
occlusion, yawning, lying on

the table, etc.
Multi-feature fusion method
(facial features + behavioral

features)
1

Fatigue can be identified
using both facial features

and body movements

(2) Multi-feature fusion fatigue detection method comparison

A comparison with the algorithms used in previous studies is shown in Table 10. In
this study, the fatigue detection algorithm using multi-feature fusion had better accuracy
than the other models, with a 3.71% higher rate than the next ranked model. The results
are shown in Table 10.

Table 10. Evaluation index results of different models on self-built dataset.

Cited Paper Method Precision (%)

[13] Multi-character 90.74
[15] Multi-character 92.59

Ours Multi-character 96.30
The methods in the cited papers were reimplemented on our own dataset.

In this comparison of the three methods, all were multi-feature fusion methods for
fatigue detection. In reference [12], PERCLOS, eye closure duration, and mouth opening
times are used as fatigue detection characteristics, and the fusion algorithm of the fatigue
decision-making level is a BP neural network. Due to the relatively small number of
features, the accuracy was the lowest among the three. In reference [16], five features, such
as the head, the eyes, and the mouth, are used for fusion, but the fusion method is weighted
with empirical values. The overall effect was better than that of the other three features.
Our algorithm had the best effect, because it uses five features and also considers body
posture characteristics, as shown in Table 11.

Table 11. Different model evaluation results on self-built dataset.

Algorithm Accuracy

BP 0.64
SVM 0.82

LSTM 0.88
Bi-LSTM-SVM adaptive enhancement

algorithm 0.96

We provide a different model of behavioral and facial fusion features for fatigue
state prediction. As shown in Table 8, the overall fatigue prediction effect of the model
is satisfactory, and the evaluation indexes of each fatigued state are above 96%. The
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model made an error in the classification of mild-to-no fatigue and moderate fatigue and
classified moderate fatigue as mild-to-no fatigue. The reason is that in two records, the
subjects did not display behavior changes, such as yawning or eye fatigue, making their
overall characteristics relatively similar. In future research, we will focus on optimizing the
scoring mechanism based on the degree of subjective sleepiness and improve the distinctive
characteristics of eye fatigue.

(3) Facial key point model ablation test

In order to verify the efficiency of the research method proposed in this paper, the
facial key point model was assessed with a testing set composed of a public and a hand-
crafted dataset, and the normalized mean error (NME) was used for evaluation, as NME is
a commonly used evaluation index for facial key point detection:

NME =
N

∑
k=1

||xk − yk||2
d

(11)

where x represents the true position of the key point, y represents the value predicted by
the network, and d represents the Euclidean distance between the two outer corners. The
smaller NME is, the better the prediction results of the model are.

In order to verify the validity of the classification model proposed in this paper, the
model was evaluated as a classification model, and the accuracy, recall, precision, and
F1-score values are introduced for model classification. The accuracy rate is the proportion
of accurately predicted samples out of all predicted samples; the recall rate reflects the
probability of predicting a positive sample among the actually positive samples; and the
precision rate is the accuracy of the model evaluation and prediction of positive samples.
The F1-score considers both the precision and the recall values of the classification model.
The equations for these calculations are the following:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1Score =
2 × P × R

P + R
(15)

True positive (TP): The sample is positive, and the prediction result is positive.
False positive (FP): The sample is negative, but the prediction result is positive.
True negative (TN): The sample is negative, and the prediction result is negative.
False negative (FN): The sample is positive, but the prediction result is negative.
In this paper, the commonly used public dataset 300 W was used for the quality

assessment of facial key point detection. The environment for this experiment used a
camera (1280 × 720), a GPU NVIDIA Geforce GTX 1080Ti, and a graphics memory of 11 GB.
The training set of this dataset had a total of 3148 images, and the testing set contained
689 images. In this paper, 12 key points of the eyes, 1 key point of the tip of the nose, and
8 key points of the mouth were used.

We conducted a comparative experiment. We compared the prediction accuracy
(NME) of models with Gabor, without Gabor, and with LBPs. As the result show, the model
with Gabor showed better performance. The Gabor filter can extract rich texture features in
face images, making face feature classification and recognition more accurate, as shown in
Table 12.
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Table 12. NME comparison on 300 W dataset.

Method Common Subset Challeng Subset Full Subset

With LBFs 4.95 11.98 6.32
Without Gabor 3.22 5.80 3.73

With Gabor 3.19 5.17 3.58

(4) Facial key point model comparison

The NME results of RetinaFace-based facial key point recognition on the 300 W dataset
are shown in Table 13, and the prediction speeds of the single-frame pictures are shown in
Table 14.

Table 13. NME comparison on 300 W dataset.

Method Common Subset Challenge Subset Full Subset

CPMs (SBR) 3.28 7.58 4.10
Multi-feature fusion
method (facial key

points)
3.19 5.17 3.58

Table 14. Model size and prediction speed on self-built datasets.

Method Model Size (M) Prediction Speed (ms)

Multi-feature fusion method
(facial key points) 1.84 100

As shown in Table 13, RetinaFace-based facial key point recognition performed well
with the comparison algorithm on the 300 W dataset, and it demonstrated good prediction
accuracy on the common subset, challenge subset, and full subset. As shown in Table 14,
the volume of the model was very small, at only 1.84 M, and the prediction cost time was
only 0.1 s, which meets the efficiency requirements of effective and efficient dispatcher
fatigue detection.

(5) Behavioral classification model ablation test

To verify the effectiveness of our proposed algorithm for behavioral features, we
conducted comparative experiments. We compared the accuracy of behavioral posture us-
ing different methods, including LSTM, Bi-LSTM, Bi-LSTM-SVM, and enhanced adaptive
algorithms. As the results show, our algorithm improved the accuracy of posture detection.
The results are shown in Table 15.

Table 15. Evaluation index results of different models on self-built datasets.

Methods Accuracy

LSTM 0.78
Bi-LSTM 0.89

Bi-LSTM-SVM 0.93
Adaboost-Bi-LSTM-SVM 0.96

(6) Behavioral classification model comparison

In order to verify the superiority of model classification, comparison and verification
based on other neural networks were conducted on the same dataset. In this study, the
fatigue detection algorithm based on multi-feature fusion had a higher accuracy than other
models, as shown in Table 16.
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Table 16. Evaluation index results of different models on self-built datasets.

Algorithm Accuracy Precision Recall F1-Score

BP 0.71 0.65 0.71 0.66
SVM 0.78 0.83 0.77 0.76

LSTM 0.84 0.89 0.84 0.82
Bi-LSTM-SVM

adaptive
enhancement

algorithm

0.96 0.97 0.96 0.96

5.5. Discussion

In this study, we show a method for railway train dispatcher fatigue detection using the
multi-feature fusion of facial cues and body postures in a deep learning model. Considering
the unfavorable factors, such as facial occlusion and angle changes, that have limited single-
feature fatigue state detection methods, we developed our model based on the fusion of
body postures and facial features for better accuracy.

First and foremost, this study’s method detects the fatigue status not only by using fa-
cial features but also by using human postures when the face is blocked. The result of model
prediction accuracy was 96.3%, and recall was 96.3%, which indicates the effectiveness of
the model. Second, we used an optimized RetinaFace model to identify eye key points,
obtaining NME of 3.58 and prediction cost of 100 ms, ensuring its prediction accuracy and
speed. Third, we adopted the optimized Bi-LSTM to recognize human posture to identify
human fatigue posture, and the prediction accuracy was 0.96.

The comparison of the findings and those of other studies confirms that this study
presents an objective fatigue detection method that uses non-contact methods to detect
dispatchers’ fatigue status. At present, the features used in multi-feature fatigue detection
include eye closure duration, mouth movements during yawning, and vocal tonality. The
most prominent difference in our study is the use of behavioral actions as fatigue features.
Compared with previous research methods that are based on facial multiple features, the
prediction accuracy has been improved by 5.56% and 3.71%, respectively.

Our study focuses on the accuracy of fatigue state detection during the daily working
time of dispatchers; the fatigue state is a gradual process, and the fatigue state is not an
instantaneous state. Therefore, the real-time requirement for the detection of the fatigue
of dispatchers is not strong. In our experimental environment, we ran it three times,
and it took an average of 311 ms, which meets the research needs in dispatcher fatigue
detection. In order to improve the real-time performance of the algorithm, we will continue
to optimize the face key point recognition algorithm, human key point extraction algorithm,
and feature extraction algorithm. For example, we will continue optimizing the feature
extraction method for human posture, which can reduce the computational complexity of
the algorithm and improve real-time performance.

The generalizability of the results is limited by fatigue detection methods. This study
can add a more accurate technical method for identifying fatigue, such as EEG detection,
and then identify fatigue using multiple feature fusion methods. Due to the fixed-focus
camera used for the method in this study, if the face is far from the camera, it may not be
possible to capture the face, and relying solely on posture recognition is not sufficient to
fully detect fatigue. Therefore, it is more suitable for work positions where the relative
camera distance remains unchanged.

This is an important issue for future research. Fatigue detection can be conducted
on dispatchers to detect their fatigue status in advance, providing human fatigue data
support for railway regulations and operation management and further ensuring railway
operation safety.
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6. Conclusions

Given the complex features of face and body posture, it has been challenging to
accurately predict human fatigue levels at a low computational cost when using traditional
approaches that only consider a single feature. In this study, we developed a new method
by fusing five key point features that comprise the face, as well as identifying critical
changes in body posture.

The main conclusions of this paper are reported below.
The algorithm proposed in this paper uses the f-value of PERCLOS, blink frequency,

yawning frequency, stretching, the bowing of the head (that could indicate sleep state),
falling asleep on a table, and other behaviors as characteristics for determining fatigue.
It can determine fatigue not only by identifying key points of the face but also using
behavioral cues that indicate fatigue levels using feature fusion.

We collected a dataset for this study. There were a total of five volunteers in the dataset,
which included 192 samples of available data. We could control data quality better. By
confirming and verifying the integrity and accuracy of the data, the quality of the data
and the credibility of the study results can be improved. In future work following up on
this study, we will invite more volunteers for data collection and continuously expand
the dataset.

The experimental results on the hand-crafted dataset show that the detection accuracy
of our method reached 96.30%. Compared with the other methods using a single feature
for fatigue determination, our multi-feature fusion algorithm had better accuracy by 7.41%
and 3.71%. At the same time, the method proposed in this paper had higher accuracy than
other existing algorithms even without facial expression data; thus, the effectiveness of
dispatcher fatigue detection was verified.

This study’s method recognizes fatigue based on the facial and posture characteristics
of dispatchers, indicating its application potential. Our next research direction will focus
on improving our model by increasing the size of the experimental datasets and reducing
the complexity of the model. In addition, we expect to apply dropout and regularization
methods to optimize the model. Furthermore, additional research should be conducted to
include other fatigue features and indicators, such as tone of voice and the total amount of
continuous work hours, as integrating these could improve the model’s prediction effect.
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Abstract: Underwater target detection is a critical task in various applications, including environ-
mental monitoring, underwater exploration, and marine resource management. As the demand for
underwater observation and exploitation continues to grow, there is a greater need for reliable and
efficient methods of detecting underwater targets. However, the unique underwater environment
often leads to significant degradation of the image quality, which results in reduced detection accu-
racy. This paper proposes an improved YOLOv5 underwater-target-detection network to enhance
accuracy and reduce missed detection. First, we added the global attention mechanism (GAM) to
the backbone network, which could retain the channel and spatial information to a greater extent
and strengthen cross-dimensional interaction so as to improve the ability of the backbone network to
extract features. Then, we introduced the fusion block based on DAMO-YOLO for the neck, which
enhanced the system’s ability to extract features at different scales. Finally, we used the SIoU loss to
measure the degree of matching between the target box and the regression box, which accelerated the
convergence and improved the accuracy. The results obtained from experiments on the URPC2019
dataset revealed that our model achieved an mAP@0.5 score of 80.2%, representing a 1.8% and 2.3%
increase in performance compared to YOLOv7 and YOLOv8, respectively, which means our method
achieved state-of-the-art (SOTA) performance. Moreover, additional evaluations on the MS COCO
dataset indicated that our model’s mAP@0.5:0.95 reached 51.0%, surpassing advanced methods such
as ViDT and RF-Next, demonstrating the versatility of our enhanced model architecture.
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1. Introduction

With the vast majority of the world’s oceans still unexplored, the ability to accurately
detect and locate underwater targets such as minerals, oil and gas deposits, and marine life
is essential for sustainable and effective resource management. Underwater target detec-
tion technology includes a variety of methods, such as sonar and acoustic imaging [1–3],
magnetic and electromagnetic sensing [4,5], and visual inspection using remotely operated
vehicles (ROVs) and autonomous underwater vehicles (AUVs). These technologies allow
researchers and industry professionals to map the seafloor, identify potential resource
deposits, and locate marine life for conservation or fishing purposes. However, one major
disadvantage of acoustic imaging is that sound waves may be absorbed or scattered by
various obstacles, leading to decreased resolution and difficulty in detecting small or distant
objects. In addition, it may be affected by environmental factors such as water temperature
and salinity, which can further complicate the imaging process. Similarly, electromagnetic
sensing imaging may also be hindered by physical obstacles and the properties of the
materials being imaged. For example, electromagnetic waves may be blocked or distorted
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by conductive materials, leading to incomplete or inaccurate imaging results. Both of these
require specialist and expensive equipment. In contrast, the images obtained through the
visible light band can be of higher resolution and lower cost and are more visual, which
makes it a widely used solution.

Nevertheless, in the challenging underwater environment, the obtained image still
suffers from different degrees of degradation, such as color distortion [6–10], low light
and contrast [11,12], and haze-like effects [11–19]. The original YOLOv5 model is easily
affected by the above problems. It does not have an effective mechanism to protect the
network from these less important or even harmful features. An attention mechanism
could greatly alleviate this problem. The idea behind learning the attention weight is to let
the network narrow and lock the focus area, before finally forming the focus of attention,
which is very important for target detection. This mechanism helps to refine the perceptual
information while preserving its context. In the past few years, many efforts have been
made to effectively integrate various attention mechanisms into the deep convolution
neural network architecture to improve the performance of detection tasks, and these have
proven effective.

The deployment of underwater target detectors is constrained by limited hardware
resources, which requires the detector to achieve high detection accuracy with inadequate
hardware support. YOLOv5 uses the same structure for training and inferencing, which
not only limits its accuracy, but also increases the requirements for the hardware standards
of the model on the inferencing side. Inspired by DAMO-YOLO [20], we believe that
the introduction of reparameterization and a fusible structure is a suitable way to solve
this problem.

Underwater objects present unique challenges to the detector due to their small size,
being hidden from view, or being situated against a complex background. These factors
increase the demands placed on the detector’s regression branch. Traditional IoU loss
functions (i.e., DIoU/CIoU [21], GIoU [22], EIoU [23], and ICIoU [24]) predict the distance,
overlapping area, and aspect ratio of the ground truth box. However, these loss functions
are not effective when the directions of the ground truth box and the predicted box are
inconsistent. This defect causes the position of the prediction box to fluctuate continuously
during the training process, resulting in slower model convergence and lower accuracy.

In this paper, we propose a new underwater target detector based on YOLOv5 to
address the above problems. Our contributions are detailed as follows:

• We added a global attention mechanism (GAM) to YOLOv5 to help the backbone focus
on the key area, avoiding confusion due to the challenging underwater backgrounds.

• Inspired by DAMO-YOLO, we introduced a multi-branch reparameterized structure
to improve the aggregation of multi-scale features, which made our model more
accurate and robust under complex conditions.

• We introduced the SIoU loss function to improve the accuracy and accelerate the
convergence.

• The proposed underwater target detector takes into account the smaller computa-
tional overhead and higher computational accuracy. The experimental results on
the URPC2019 dataset showed that the mAP@0.5 of our model was 1.8% and 2.3%
higher than that of YOLOv7 and YOLOv8, respectively. In addition, supplementary
experiments on the COCO dataset proved that our improvement can also be applied
to land target detection.

2. Related Works

2.1. Object Detection

In terms of structure, target detectors based on deep neural networks can be di-
vided into three parts, namely the backbone, neck, and head. The backbone is used to
extract image features. Common backbones include VGG [25], ResNet [26], CSPNet [27],
and Swin Transformer [28], and lightweight backbone networks include ShuffleNet [29,30],
MobileNet [31–33], and RepVGG [34].
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The neck is designed to make more effective use of the features extracted from the
backbone network and give play to the advantages of multi-scale features. The current
designs tend to use several top-down and bottom-up paths for connection, so as to facilitate
the aggregation of backbone network features at different stages. In the field of underwater
object detection, the SA-FPN [35] fully utilizes the pyramid structure to perceive features at
different scales. Other popular neck networks include the FPN [36], PAN [37], BiFPN [38],
ASFF [39], and RepGFPN [20].

The head is usually divided into one-stage target detectors and two-stage target detec-
tors. Their main difference lies in whether they predict the object category and boundary
box at the same time. Most early target detection models used two-stage target detectors,
such as the famous RCNN model [40] and the subsequent variants Fast RCNN [41], Faster
RCNN [42], and Mask RCNN [43]. Boosting RCNN [44] is the latest underwater target
detector based on the RCNN, with detection accuracy surpassing many previous two-stage
detectors. These two-stage target detectors have the advantage of high accuracy, but it
is difficult for the referencing speed to meet the needs of real-time detection. In contrast,
single-stage target detectors have faster inference speed, and after years of development,
these detectors have also achieved a relatively high accuracy. Popular one-stage target
detectors include SSD [45], RetinaNet [46], and the YOLO series [47–54].

2.2. Attention Mechanism

In the field of computer vision, researchers use attention mechanisms to improve
the performance of networks. Common attention mechanisms can be divided into three
categories: channel attention, spatial attention, and channel and spatial attention.

With the proposal of squeeze-and-excite networks (SENets) [55], efficient channel
attention calculation became an important way to improve the performance of networks.
SENets have a simple structure and remarkable effect. They can adjust the feature response
between channels through feature recalibration. The important components of channel
attention include the global second-order pooling block (GSoP) [56], the style-based re-
calibration module (SRM) [57], the effective channel attention block (ECA) [58], and the
bilinear attention block (Bi-attention) [59].

As for spatial attention mechanisms, the recurrent attention model (RAM) [60] was
the first to incorporate RNNs in its visual attention mechanism, which have since been
adopted by a range of other RNN-based methods. The Glimpse network [61], similar to
the RAM, was based on how humans perform visual recognition, and it proposed that
the network take Glimpse as the input in order to update its hidden state, demonstrating
its effectiveness.

The global attention mechanism (GAM) [62] used in this paper is a channel and spatial
attention mechanism. By utilizing the channel and spatial attention mechanism, the model
can dynamically weigh the importance of different channels and spatial locations of the
input features. This allows the model to selectively focus on the most-significant features
and areas, enhancing its ability to capture relevant information and suppress noise. As a
result, the channel and spatial attention mechanism provides the best of both worlds,
effectively combining the benefits of channel and spatial attention mechanisms to achieve
superior performance on the target detection task.

2.3. IoU Loss

In object detection, the IoU loss is used to measure the overlap between the prediction
box and the ground truth box. It effectively prevents the interference of the boundary box
size in the form of proportion.

The earliest IoU loss [63] had two main disadvantages. First, when the prediction box
and the ground truth box did not intersect, whether the distance between them was near or
far, the calculated IoU was always zero, so the distance could not be measured. Second,
when the intersection ratio of the prediction box and the ground truth box was the same, it
was again impossible to determine their relative locations.
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In order to solve the first problem of the IoU loss, i.e., that when there was no in-
tersection between the prediction box and the ground truth box, the distance could not
be measured, the GIoU [22] introduced the concept of the minimum closure area. This
refers to the smallest rectangular box that can surround the prediction box and the ground
truth box.

For the second problem, the DIoU [21] was proposed. On the basis of the GIoU, it
introduces the distance loss between the center points of the prediction box and the ground
truth box. Based on the DIoU loss, the difference between the aspect ratios of the prediction
box and the ground truth box was introduced as the CIoU loss. This improved the situation
in the following three ways [64]:

• Increasing the overlapping area of the ground truth box and the predicted box;
• Minimizing the distance between their center points;
• Maintaining the consistency of the boxes’ aspect ratios.

However, none of these losses considers the direction of the mismatch between the
prediction box and the ground truth box. This shortfall leads to slow convergence and
low accuracy.

3. Methodology

We retained the overall architecture of YOLOv5 [51] and improved or replaced some
of its modules. In this section, we will introduce YOLOv5 and our improvements to the
backbone, neck, and IoU loss. The overall architecture of our improved YOLOv5 network
is shown in Figure 1.
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Figure 1. Overall architecture of our method. We introduce the network below by describing the
backbone, neck, and head. See Figures 2 and 5 for schematics of the GAM and fusion block.

3.1. Backbone

The basic component of the backbone network of YOLOv5 is the CBS module, which is
a convolution–BatchNorm–SiLu activation function sequence superposition module. These
basic components are stacked together, and C3 modules are inserted in the middle. A C3
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module is a combination of CBS blocks under the guidance of a CSPNet design. Through
the stacking of C3 blocks and CBS blocks, the backbone continuously learns the features
of higher dimensions. At the deepest level of the network, YOLOv5 features an SPPF
module, which can be regarded as an optimized and faster spatial pyramid pooling (SPP)
operation. It converts a feature image of any size into a feature vector of a fixed size, so
that the input size of the network no longer needs to be fixed, thus realizing the fusion of
local and global features.

Our network also included the global attention mechanism (GAM) [62] module after
the SPPF module. This kind of attention calculation deep in the network helped it under-
stand the high-dimensional features and focus on the key objects and key features. The net-
work could retain the channel and space information to enhance cross-dimensional interac-
tion by adding the GAM at an appropriate location in the backbone network. An overview
is shown in Figure 2.

Channel 
Attention

Spatial
 Attention

1F 3F

Figure 2. Overview of GAM; ⊗ stands for elementwise multiplication.

The goal of the GAM was to suppress information reduction and amplify global
dimension interaction features. The combination and arrangement of the three channels
and spatial attention submodules greatly affected the impact of the attention mechanism.
CBAM [65] compared three different combinations and arrangements (sequential channel–
space, sequential space–channel, and the parallel use of two attention modules) and, finally,
proved that the sequential channel–spatial attention mechanism was the best choice. The
GAM followed the arrangement of mechanisms in CBAM and redesigned its submodules.
The GAM is expressed by Equations (1) and (2). For the input feature map F1 ∈ R

C×H×W ,
we could define the intermediate state F2 and the output F3 as:

F2 = Mc(F1)⊗ F1 (1)

F3 = Ms(F2)⊗ F2 (2)

The channel attention submodule applied 3D permutation to maintain the data in
three dimensions. First, the GAM transformed the dimensions of the input feature from
C × W × H to W × H × C. It then magnified the cross-dimension channel–spatial depen-
dencies with a two-layer multi-layer perceptron (MLP). An MLP is a type of encoder–
decoder architecture with a compression rate r. It is simply composed of a linear layer
used to reduce channels, a ReLU activation function, and another linear layer restored
to the original number of channels. Rate r was set to 4 in our experiment. Finally, these
processed features were subject to reverse permutation, and F2 was generated using the
sigmoid function. Figure 3 shows the channel attention submodule.

The GAM employed two convolutional layers to combine spatial information in the
spatial attention submodule. The first 7 × 7 convolution layer reduced the number of input
feature channels to 1/r. In our experiment, r was set to 4. The second layer expanded the
number of feature channels to the original value. Max pooling had an adverse effect, as it
decreased the amount of information. The GAM eliminated pooling to maintain the feature
maps more effectively. Consequently, the spatial attention module led to an expansion in
the parameters in certain cases. Thus, we strongly recommend the use of group convolution
instead of traditional convolution. This could reduce the number of parameters while
hardly affecting the performance. The spatial attention submodule is illustrated in Figure 4.

49



Electronics 2023, 12, 2597

Reverse 
Permutation

MLP

C W H W H C

PermutationC W H Sigmoid

1( )cM F
1F

Figure 3. Schematic of channel attention mechanism.
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Figure 4. Schematic of spatial attention mechanism.

3.2. Neck

The basic component of the YOLOv5 neck is also the C3 module. Following the design
of the PAFPN, the feature maps of different scales in the backbone were deeply fused.
In YOLOv5, the neck eventually outputs feature maps of 80 × 80 × 256, 40 × 40 × 512,
and 20 × 20 × 1024 to correspond to target objects of a small, medium, and large scale.

We replaced the original C3 module with a fusion block, which enhanced the fu-
sion of multi-scale features. Based on the design of efficient layer aggregation networks
(ELANs) [66], fusion blocks can effectively implement rich gradient flow information
at different levels. At the same time, they further improve performance by introducing
reparameterized convolution modules.

The fusion block was based on DAMO-YOLO [20]. An overview of the fusion block
is shown in Figure 5. Its main design goal was to upgrade CSPNet by incorporating a
reparameterization mechanism and ELAN connections. CSPNet and the ELAN both further
improved the performance of the model from the perspective of gradient optimization.
Their design focuses on capturing as much rich gradient information as possible, which is
crucial for the training of deep neural networks.
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Figure 5. Schematic of fusion block; a schematic of RepBlock is shown in Figure 6.
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Figure 6. Schematic of RepConv block. This block had different structures for training and inferencing.

Connecting the output features of all previous layers as the input of the next layer
and maximizing the number of branch paths obviously increased the amount of gradient
information, which had considerable advantages. However, a simple connection can easily
lead to the reuse of the same gradient information and high computing costs. CSPNet
divides the basic input feature graph into two parts and then merges them through a
cross-stage hierarchy structure. This operation divides the gradient flow and spreads it
across different network paths. The gradient information spread presented substantial
correlation differences, thus achieving a richer gradient combination and considerably
reducing the computational load. ELANs utilize a combination of the shortest and longest
gradient paths to improve the learning of neural networks.

Fusion blocks also pay attention to the segmentation and aggregation of gradient flow.
In our model, the four-gradient path fusion block was used. A C × W × H input feature
was first divided into two branches, whose dimensions were reduced to C/4 × W × H
by a 1 × 1 convolution. One of the branches was directly connected to the final output.
The other passed through the CBS and reparameterized the convolution block in sequence.
Additionally, another three gradient paths split off from this branch to connect to the final
output. Thus, the output feature still had the dimensions C × W × H.

The reparameterized convolution block (RepBlock) is shown in Figure 6. This was
another key reason for the increased effectiveness of the fusion block. We switched out
the original structure for a different structure by transforming the parameters into another
set of parameters and coupling them with the new structure, thus altering the overall
network architecture. RepVGG proposed restructuring the parameters to separate the
multiple branches used for training and the single branch used for inference. During train-
ing, the RepConv block used a multi-branch convolution module, including 3 × 3 and
1 × 1 kernels and identity mapping. During inferencing, it adopted a plain architecture
with only 3 × 3 convolution, which greatly reduced the number of parameters and im-
proved the inference speed.

3.3. IoU Loss

The IoU loss was unable to correctly guide the network training without completely
overlapping the prediction box and the ground truth box. In this study, we used the
SCYLLA IoU (SIoU) loss [67] to replace the CIoU loss in order to accelerate the convergence
and improve the accuracy.
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The SIoU function is composed of four loss functions (angle cost, distance cost, shape
cost, and IoU cost), which accurately measure the deviation between the target box and the
true value. The SIoU loss is defined as:

Lbox = 1 − IoU +
Δ + Ω

2
(3)

where

IoU =

∣∣B ∩ BGT
∣∣

|B ∪ BGT | (4)

See Figure 7 for an intuitive understanding of the IoU. We will introduce the remaining
three loss functions and the definitions of Δ and Ω in detail in the following three sections.

B

GTB

GTB BGTB B

Figure 7. Schematic of IoU component definition.

3.3.1. Angle Cost

The loss function considers angles in order to reduce the number of variables in
problems concerning distances. The model directs the prediction towards either the X or Y
axis, whichever is closest, and then progresses along the applicable axis. In detail, it first
tries to minimize α if α � π

4 ; otherwise, it tries to minimize β = π
2 − α. The loss function is

outlined and explained below (Figure 8):

∧ = 1 − 2 ∗ sin2
(

arcsin(x)− π

4

)
(5)

where
x =

ch
σ

= sin(α) (6)

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcy

)2
(7)

ch = max
(

bgt
cy , bcy

)
− min

(
bgt

cy , bcy

)
(8)

Figure 8. The scheme for angle cost.

52



Electronics 2023, 12, 2597

3.3.2. Distance Cost

The distance cost is defined as follows (Figure 9):

Δ = ∑
t=x,y

(
1 − e−γρt

)
(9)

where

ρx =

(
bgt

cx − bcx

cw

)2

, ρy =

(
bgt

cy − bcy

ch

)2

, γ = 2 − Λ (10)

GTB

B

hC

wC

Figure 9. Scheme for the distance between the ground truth bounding box and the prediction box.

As α approaches zero, the impact of the distance cost is significantly diminished. As α
approaches π

4 , the magnitude of Δ’s contribution increases. γ is given time priority over
the distance value as the angle increases.

3.3.3. Shape Cost

The shape cost is defined as:

Ω = ∑
t=w,h

(
1 − e−ωt

)θ (11)

where

ωw =

∣∣w − wgt
∣∣

max(w, wgt)
, ωh =

∣∣h − hgt
∣∣

max(h, hgt)
(12)

The magnitude of θ determines the cost of the shape, and each dataset has its own
value. The cost of the shape is heavily dependent on this term, so it should be given
due consideration.

4. Experiments

In this section, we first present the details of the implementation experiments and the
evaluation metrics. Then, we describe the datasets used for evaluation. Finally, We carried
out ablation experiments and demonstrate the superiority of our method by comparison
with other methods.

4.1. Implementation Details

We built our network based on the widely used open-source project YOLOv5 [51]
developed by Ultralytics. We implemented our network on Ubuntu 18.04, CUDA 10.2.89,
pyTorch 1.10.0, and Python 3.7.13. The hardware environment and hyperparameters we
used for training were different in the two datasets, and we present them separately in
Sections 4.5 and 4.6.

4.2. Evaluation Metrics

In the field of target detection, precision, recall, and mean average precision (mAP) are
the most-widely used indicators to measure the performance of target detection algorithms.
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Precision and recall are defined as:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

The definitions of positive and negative cases are shown in Table 1. The AP is the
measure of the area of the curve enclosed by the precision and recall. The mAP is obtained
by comprehensively weighting the average of the AP detected by all categories when the
IoU is set to a certain value.

Table 1. Positive and negative case judgment.

Reference

Prediction
Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

4.3. Datasets
4.3.1. URPC Dataset

The China Underwater Robot Professional Competition (URPC) is an annual com-
petition that brings together experts and enthusiasts from various fields such as robotics,
engineering, and marine science to showcase their innovations and advancements in un-
derwater technology. The experimental dataset was obtained from the Target Recognition
Group of the 2019 competition. The URPC2019 dataset [68] comprises 3765 training images
and 942 validation images, encompassing five water target categories: echinus, starfish,
holothurian, scallop, and waterweeds in Figure 10. In our experiment, we resized the
images to 416 × 416 pixels.

( )a ( )b ( )c ( )d ( )e

Figure 10. URPC2019 dataset samples, namely (a) echinus, (b) starfish, (c) holothurian, (d) scallop,
and (e) waterweeds

4.3.2. COCO Dataset

The MS COCO 2017 dataset [69] is a widely used benchmark dataset for object detec-
tion, segmentation, and captioning tasks. The images in the MS COCO 2017 dataset were
collected from a wide range of sources and depict everyday scenes in natural contexts. It
has 80 different categories including people, animals, vehicles, household objects, and other
common items. For the object detection task, the dataset were split into training, validation,
and test sets, with roughly 118 K, 5 K, and 40 K images, respectively. As the labels for this
testing set were not public, we evaluated the metrics using the validation set.

4.4. Ablation Experiments

In this section, we conducted ablation experiments to verify the effectiveness and
reliability of the improvements. In the YOLOv5 project, the network was partitioned
into five sizes—N, S, M, L, and X—based on varying widths and depths. Our method
adopted a similar design approach. Since underwater target detectors are frequently
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deployed on mobile platforms with restricted computing power and storage, the S-size
model, which exhibits exceptional performance while maintaining low system overhead, is
highly recommended and practical. Therefore, for all the experiments on the URPC2019
dataset, we used the S-size model. The results can be seen in Table 2. The experimental
results showed that every modification we made was successful. With the improvements
made in the GAM, fusion block, and SIoU, the model achieved respective improvements of
0.9%, 0.8%, and 1.0%. Overall, the three improvements achieved a 4.1% higher mAP@0.5
score compared to the original YOLOv5_s model.

Table 2. Ablation experiments on URPC2019 with S-size model; “�” indicates that we used this module.

Module
mAP@0.5 (%)

GAM Fusion Block SIoU

76.1
� 77.0

� 76.9
� 77.1

� � 78.1
� � 77.8

� � 77.5
� � � 80.2(+4.1)

4.5. Experiments on URPC2019

In this section, we employed our highly recommended underwater target detector,
the S-size model, to conduct experiments on the URPC2019 dataset. Through comparative
analysis with other advanced target detectors, we verified the effectiveness and superiority
of our proposed method. The Experimental configuration is shown in Table 3.

Table 3. Experimental configuration when training on the URPC2019 dataset.

Parameter Configuration

CPU Intel(R) Xeon(R) Gold 5122@3.6 GHz
GPU GeForce RTX 2080

Momentum 0.900
Weight decay 0.0005

Batch size 8
Learning rate 0.01

Epochs 100

We also present the PR curves in Figure 11. This demonstrated our model’s ability to
balance precision and recall, which are two critical performance metrics in target detection
tasks. Our model had a higher area under the PR curve, indicating that it had higher
precision and recall across all decision thresholds, which suggested that it was better at
identifying positive cases while minimizing false positives.

In Table 4, we compare our algorithm with some advanced object detection algo-
rithms with similar parameters. This included the latest one-stage detector YOLOv8 and
two-stage detector Boosting RCNN [44]. Compared with YOLOv7 and YOLOv8, our
method improved the mAP@0.5 by 1.8% and 2.3% respectively. It is worth noting that,
when the reparameterized structure was fused, both the parameters and FLOPs of the
model decreased, and the frames per second (FPS) increased by 25%. These performance
improvements did not affect the accuracy. This demonstrated the unique advantage of the
reparameterized structure in building lightweight networks. These experimental results
demonstrated that our detector achieved a satisfactory level of accuracy with reasonable
parameters and computational resources.
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Figure 11. PR curves for URPC2019 dataset.

Table 4. Scores on URPC2019 compared with other methods. All algorithms had an input res-
olution of 640 × 640, and the image resolution of the dataset was 416 × 416; * indicates that the
reparameterization structure of the model was fused. Bold font represents our best result.

Method
AP (%)

mAP@0.5(%) Param. FLOPs Batch 1 FPS
Echinus Starfish Holothurian Scallop Waterweeds

Boosting
RCNN [44] 89.2 86.7 72.2 76.4 26.6 70.2 45.9 M 77.6 G 22

YOLOv5_S 91.7 88.3 76.0 84.9 39.8 76.1 7.0 M 15.8 G 161
YOLOv7 91.9 89.6 78.3 86.5 45.7 78.4 36.5 M 103.2 G 75

YOLOv8_S 91.0 88.8 76.3 85.2 48.1 77.9 11.2 M 28.6 G 121
Our_S 92.1 88.9 76.2 84.7 59.1 80.2 14.0 M 28.0 G 83

Our_S * 92.1 88.9 76.2 84.7 59.1 80.2 13.7 M 27.3 G 100

Some intuitive detection diagrams are shown in Figure 12. We divided these pic-
tures into two groups. The first group comprised images with small and blurred targets,
captured in unfavorable shooting conditions. Despite the challenging environment, our
model successfully completed the detection task without any missed or incorrect detections.
The second group of images depicted scenes where targets appeared densely, and our model
accurately located and classified all types of objects. In the aforementioned application
scenarios, the original YOLOv5 model experienced disturbances from the environment, re-
sulting in more missed detections. Conversely, our model demonstrated superior accuracy
and robustness.

4.6. Experiments on MS COCO

We further tested our five size models on the MS COCO dataset to demonstrate that
the proposed structure had good applicability. The hardware environment we used for
training and inferencing was an Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz and
Tesla V100 SXM2 32 GB. In order to ensure the stability of the training and facilitate the
comparison, almost all hyperparameters were based on YOLOv5, except for the number of
epochs. Under our experimental conditions, training the YOLOv5_s model for 300 epochs
took over 72 h, which was highly impractical for us. Based on time-saving considerations,
all the experiments in the MS COCO dataset were carried out under the same conditions
with 100 epochs.
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Figure 12. Detected images from URPC2019. The first row shows the ground truth; the second shows
the results of our improved S-size model, and the third shows the results of YOLOv5_s.
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The results in Table 5 show that our methods improved the mAP@0.5 by 7.1%, 2.9%,
4.0%, 3.0%, and 2.3% and the mAP@0.5:0.95 by 6.1%, 4.6%, 4.6%, 3.3%, and 2.7%, respec-
tively, representing substantial improvements. The highest mAP@0.5:0.95 score obtained
by our models was 51.0%. We used this score for the comparisons with other methods to
show the precision level of our model.

With the COCO API, we were able to test the performance of the model for three types
of targets: large, medium, and small. The improvements in small object detection were
noteworthy. For all five model sizes, our models achieved improvements ranging from
1.9% to 3.2% compared with the originals.

Table 5. Experiments on MS COCO; training set was train2017, and test set was val2017. Bold font
represents our model.

Method mAP@0.5 (%) mAP@0.75 (%) mAP@0.5:0.95 (%)

mAP@0.5:0.95
(%)

mAP@0.5:0.95
(%)

mAP@0.5:0.95
(%)

APS APM APL

YOLOv5_N 43.5 27.2 26.3 13.4 30 33.9
Our_N 50.6 (+7.1) 35.2 33.3 (+6.1) 16.6 (+3.2) 36.6 44.7

YOLOv5_S 56.9 39.5 37.0 21.3 41.9 47.8
Our_S 59.8 (+2.9) 44.7 41.6 (+4.6) 23.6 (+2.3) 45.5 55.7

YOLOv5_M 61.2 45.5 42.2 26.5 47.2 53.9
Our_M 65.2 (+4.0) 50.6 46.8 (+4.6) 29.0 (+2.5) 51.4 60.9

YOLOv5_L 65.1 50.2 46.2 30.6 51.3 58.9
Our_L 68.1 (+3.0) 53.6 49.5 (+3.3) 32.5 (+1.9) 54.3 63.2

YOLOv5_X 67.0 52.3 48.3 32.5 53.3 61.0
Our_X 69.3 (+2.3) 55.1 51.0 (+2.7) 34.6 (+2.1) 55.8 64.5

We compared some target detection algorithms, considering both CNN-based and
Transformer-based models. Representative CNN-based models included RF-Next and
YOLOR. The object detectors based on Transformers included the DETR series and ViDT
Swin. The test results are shown in Table 6. The results showed that our model achieved
the highest mAP@0.5:0.95. This proved that our improvement had good generalization
performance. It not only had good accuracy in underwater target detection, but also was
well applied to land general target detection.

Table 6. Scores on MS COCO compared with other methods. Bold font represents our model.

Method Test Data mAP@0.5:0.95 (%)

Sparse-DETR [70] COCO val2017 49.3
DETR-DC5 [71] COCO val2017 43.3

YOLOR-CSP [72] COCO val2017 50.8
ViDT Swin-base [73] COCO val2017 49.2

SQR-Adamixer-R101 [74] COCO val2017 49.8
RF-ConvNeXt-T Cascade RCNN [75] COCO val2017 50.9

Our_X COCO val2017 51.0

5. Conclusions

In this paper, we proposed an improved YOLOv5 underwater object detection method.
By introducing an attention mechanism, a multi-branch reparameterized structure, and a
different loss function, the proposed method achieved higher accuracy in experiments on
the URPC2019 dataset compared with the most-advanced algorithm of the YOLO series
with a smaller number of parameters and calculation, proving its superior performance.
For land target detection under better hardware conditions, we conducted further testing
on the MS COCO dataset using our five models of varying depths and widths. Our experi-
mental results demonstrated that our enhancement continued to yield positive outcomes.
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However, we also faced some problems. With the incorporation of attention modules
and reparameterization modules, in particular the introduction of additional convolutional
and skip connection structures within the reparameterization module, the training time
of the model was extended. In our training setup, the training durations per epoch for
YOLOv5, YOLOv7, YOLOv8, and our model were 56 s, 51 s, 181 s, and 140 s, respectively.
We hope that, in the future, we can further reduce the training time to accelerate the
deployment process.

We should be cautious about the changes to a lightweight underwater detector. Fast
inferencing, low overhead, and high accuracy are always contradictory. Balancing the
relationship between them requires careful adjustment. In the design of future underwater
target detectors, we should first choose technologies that integrate low computing and
memory costs. The attention mechanism is an effective means to improve the detection
ability of underwater targets, but it will cause additional burden on the training and
inference ends. By contrast, using the SIoU is a less-expensive operation and has also been
proven to be effective. It is ideal to use the reparameterized module to reconstruct the
network. The module almost only increases the training time. The single-channel structure
similar to VGG after fusion also makes it more hardware-friendly. If its training structure
can be redesigned to use gradient information more effectively, this will greatly improve
the performance.

6. Discussion

Our model was based on YOLOv5. Considering that YOLOv8 has a similar archi-
tecture to YOLOv5, porting the proposed method to YOLOv8 would be quite feasible.
The improved YOLOv8 may have higher accuracy than our current model, but it will also
face an increase in parameter and computational complexity. Meanwhile, as YOLOv8 does
not have an advantage in inference speed compared to YOLOv5, if our method is directly
extended to YOLOv8, it is likely to lead to a further decrease in the FPS. This may pose a
challenge under the growing demand for real-time performance. All of this needs to be
verified by our future experiments.
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Abstract: In the face of detection problems posed by complex textile texture backgrounds, different
sizes, and different types of defects, commonly used object detection networks have limitations in
handling target sizes. Furthermore, their stability and anti-jamming capabilities are relatively weak.
Therefore, when the target types are more diverse, false detections or missed detections are likely to
occur. In order to meet the stringent requirements of textile defect detection, we propose a novel AC-
YOLOv5-based textile defect detection method. This method fully considers the optical properties,
texture distribution, imaging properties, and detection requirements specific to textiles. First, the
Atrous Spatial Pyramid Pooling (ASPP) module is introduced into the YOLOv5 backbone network,
and the feature map is pooled using convolution cores with different expansion rates. Multiscale
feature information is obtained from feature maps of different receptive fields, which improves the
detection of defects of different sizes without changing the resolution of the input image. Secondly,
a convolution squeeze-and-excitation (CSE) channel attention module is proposed, and the CSE
module is introduced into the YOLOv5 backbone network. The weights of each feature channel are
obtained through self-learning to further improve the defect detection and anti-jamming capability.
Finally, a large number of fabric images were collected using an inspection system built on a circular
knitting machine at an industrial site, and a large number of experiments were conducted using
a self-built fabric defect dataset. The experimental results showed that AC-YOLOv5 can achieve
an overall detection accuracy of 99.1% for fabric defect datasets, satisfying the requirements for
applications in industrial areas.

Keywords: fabric defect; surface defect detection; deep learning; attention mechanism

1. Introduction

During the manufacturing process of textiles, various factors, such as the limitations
of textile machinery, human error, and material quality. can cause defects in the fabric,
such as broken yarns, misalignments, holes, and snags. If these defects are not detected
and corrected in a timely manner, they can lead to a reduction in production efficiency
and product quality, resulting in significant waste. As a result, performing textile defect
detection can improve production efficiency, product quality, reduce production costs and
boost the textile industry.

In the traditional textile industry, defect detection has always relied on manual and
visual inspection. However, manual detection is prone to subjective judgments and is time-
consuming and expensive for large-scale production. Traditional visual methods are also
limited in handling non-structured and highly variable imperfections, and they lack flexi-
bility and adaptability when faced with large amounts of production data processing. With
the development of machine vision and deep learning, automated detection techniques
have become feasible in the industry. However, the main challenge of automatic detection
techniques is to address the problem of high false alarm rates and missed detection rates to
improve the accuracy and stability of textile defect detection.
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Currently, deep learning and machine vision have been applied in various fields.
Machine vision-based defect detection methods primarily include those based on statisti-
cal analysis [1], frequency–domain analysis [2], model-based analysis [3,4] and machine
learning [5]. Deep learning has strong feature expression, generalization, and cross-scene
capabilities. With the development of deep learning technology, defect detection methods
based on deep learning have become widely used in various industrial scenarios, par-
ticularly in solar energy [6], liquid crystal panels [7], railway transportation [8], metal
materials [9], and other fields.

There are relatively high requirements for the detection of fabric defects, most of
which tend to be broken warp, broken weft, warp shrinkage, weft shrinkage, torn holes,
loose warp, and loose weft under 100 microns. Additionally, the exact location of the defect
must be marked to optimize the production process and equipment parameters. A deep
learning classification network [10] can only obtain the coarse positioning of the target,
the positioning accuracy is related to the size of the sliding window and the classification
performance of the network, and the speed is also relatively slow. The target detection
network [11] is the closest network to the defect detection task, and it can obtain the
accurate location and classification information of the target at the same time. The object
detection network is generally divided into a single stage and two stages. The two-stage
network first obtains bounding boxes based on the location of the discovered target object
to ensure sufficient accuracy and recall, then it finds a more accurate location by classifying
the bounding boxes. Two-stage algorithms have high accuracy but slow speed, and include
R-CNN [12], SPP-Net [13], FastR-CNN [14], and FasterR-CNN [15]. Instead of obtaining
bounding boxes, the single-stage network directly generates the categorical probabilities and
position coordinate values of the objects. The final detection result can be directly obtained
through a single detection. The speed of single-phase networks, which include SSD and the
YOLOv3 [16], YOLOv4 [17], YOLOv5 [18], YOLOv6 [19], and YOLOv7 [20] series, is generally
faster than the two-stage network speed, but there is a small loss of accuracy.

YOLOv5 is a single-stage object detection network with excellent performance, en-
abling end-to-end training without interference from intermediate processes and a fast
detection speed that can meet the requirements of real-time fabric detection. However,
fabric texture backgrounds are complex, with different sizes and types of defects. The
features of some minor defects are highly similar to the background information and are
difficult to distinguish with the human eye. Direct application of YOLOv5 to fabric defect
detection poses a significant challenge. Taking into account the optical properties, texture
distribution, defect imaging characteristics, and detection requirements of textiles, therefore
this paper proposes a YOLOv5 defect detection network based on atrous spatial pyramid
pooling (ASPP) and an improved channel attention mechanism. An automatic detection
system for fabric defects is developed, and its industrial application is achieved.

The remainder of this paper is organized as follows: Section 2 presents related work.
Section 3 presents the fabric defect detection system. Section 4 details the detection method,
including the network structure and loss function of AC-YOLOv5. Section 5 presents the
experimental validation of our method. Section 6 concludes our work and discusses the
advantages and disadvantages of AC-YOLOv5 and related future research.

The primary contributions of this study are as follows:

(1) The ASPP module is introduced into the YOLOv5 backbone network. This module
constructs convolution kernels for different receptive fields with different dilation
rates to obtain multiscale object information. When performing feature extraction
on images, it has a large receptive field. At the same time, the resolution of the
feature maps does not significantly decrease, which greatly improves the fabric defect
detection capability of the YOLOv5 network.

(2) A CSE attention mechanism is proposed, wherein a convolutional channel is added
to the SE network and the sum of the two outputs is taken as the result of the CSE
module. The introduction of the CSE module into the YOLOv5 backbone network
can enhance the large defect detection capability.
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(3) Combined with the CSE and ASPP modules, we propose a modified YOLOv5 defect
detection network. With an average detection accuracy of 99.1%, we have achieved
automatic, accurate, and robust detection of fabric defects.

2. Related Work

2.1. Fabric Defect Detection Based on Machine Vision

Liu and Zheng [21] proposed an unsupervised fabric defect detection method based
on the human visual attention mechanism. The two-dimensional entropy associated with
image information and texture is used to model the human visual attention mechanism,
then the quaternion matrix is used to reconstruct the image. Finally, the quaternion matrix is
transformed into the frequency domain using the hypercomplex Fourier transform method.
Experiments have shown that the proposed method performs well in terms of accuracy
and adaptability, but the time cost due to matrix operations still requires optimization.
Additionally, the method cannot be used for defect detection in fabrics with periodic
patterns. Jia [22] proposed a new fabric defect automatic detection method based on lattice
segmentation and template statistics (LSTS). This approach attempts to infer the placement
rules of texture primitives by partitioning the image into non-overlapping lattices. The
lattices are then used as texture primitives to represent a given image with hundreds
of primitives instead of millions of pixels. However, the time requirement of the lattice
partitioning is different for different patterns. Additional template data comparisons may
also slow down the run in order to improve accuracy. Song [23] proposed an improved
fabric defect detection method based on the fabric area membership (TPA) and determined
the significance of the defect area by analyzing the regional characteristics of the fabric
surface defects. This approach requires a large amount of feature extraction and analysis
work, which is difficult and susceptible to environmental factors such as lighting conditions
and the camera used.

2.2. Fabric Defect Detection Based on Deep Learning

Jing et al. [24] proposed a very efficient convolutional neural network, Mobile-Unet,
to achieve end-to-end defect segmentation. This approach introduces deep separable
convolutions, which greatly reduce the complexity cost of the network and model size.
However, as a supervised learning approach, it still requires considerable human effort
to label defects. Wu [25] proposed a wide and light network structure based on Faster
R-CNN to detect common fabric defects and improve the feature extraction capability of
the feature extraction network by designing an extended convolution module. Detection
can be relatively slow when processing large-scale, high-resolution images. The design of
dilated convolutional modules requires a large number of experiments and fine-tuning,
which increases the time and energy cost of algorithm design. Li [26] proposed three
methods—multiscale training, dimensional clustering, and soft nonmaximum suppression
instead of traditional nonmaximum suppression—to improve the defect detection capability
of R-CNN. This approach enlarges or reduces the detailed information, neglecting the
different characteristics of the defect regions at different scales. This can lead to suboptimal
detection results. The YOLO algorithm family has proven to be efficient and accurate in
object detection, but there is still room for improvement. In recent years, improvements
based on the YOLOv3 and YOLOv4 [27,28] algorithms have been continuously proposed.
Training on multiple datasets results in improved accuracy and detection speeds.

2.3. Fabric Defect Detection Based on Machine Vision and Deep Learning

Chen [29] proposed a new method of two-stage training based on a genetic algorithm
(GA) and backpropagation. This method leverages the advantages of the Gabor filter in
frequency analysis and embeds the Gabor core into the Faster R-CNN convolution neural
network model. However, the combination of genetic and backpropagation algorithms
requires significant computational resources and time, which can lead to slow algorithm
processing. To combine the characteristics of single-stage and two-stage networks, Xie and
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Wu [30] proposed a robust fabric defect detection method based on the improved RefineDet.
Using RefineDet as the basic model, this approach inherits the advantages of the two-stage
detector and the first-stage detector, and can detect defective objects efficiently and quickly.
However, the robustness of this approach requires validation on a large number of instance
datasets. If the dataset does not cover all types of imperfections, it may lead to unstable
algorithm performance.

3. Fabric Defect Detection System

The fabric defect visual detection device designed and developed in this paper is
shown in Figure 1. It primarily includes an image acquisition system and an image process-
ing system. The image acquisition system consisted of a 2K area array camera and multiple
light sources. This system can image the fabric produced by the circular knitting machine
with high quality and capture defects such as broken warp, broken weft, warp shrinkage,
weft shrinkage, torn holes, loose warp, and loose weft. The image processing system
consisted of an industrial computer and detection system software to achieve accurate and
real-time detection of various fabric defects.

Figure 1. Fabric defect detection system.

Since there are many kinds of fabric defects, directly using the deep learning network
to detect them will not only increase the structure of the network but also reduce the
accuracy and efficiency of defect detection. Therefore, fabric defects are classified into three
categories in this paper: holes, long strip (L_line) defects, and short strip (S_line) defects,
as shown in Figure 2. And the different defects in the figure are marked with red boxes.

According to the imaging characteristics, texture distribution, and detection require-
ments of fabric defects, the difficulties of fabric defect detection are as follows:

(1) When collecting fabric images, due to the loss of three-dimensional structure informa-
tion for the defects, different types of defects become very similar in appearance.

(2) The fabric defect detection has high requirements. The detection network must be
able to process high-resolution images and extract feature information.
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(3) The fabric defects are complex and diverse. Although the causes of different types of
defects are different, the appearance may not be different, and the size of defects in
the same category may also be different.

(4) The texture and color of fabrics are becoming increasingly diverse, and the complex
backgrounds will pose significant challenges to detection.

   

   
(a) (b) (c) 

Figure 2. Fabric defect dataset. (a) Hole defects, (b) L_line defects, (c) S_line defects.

4. Fabric Defect Detection Method Based on AC-YOLOV5

Yolov5 is composed of a backbone network, a neck network, and a detection head.
The backbone network achieves feature extraction, the neck network achieves feature
fusion, and the detection head outputs prediction results. Yolov5 uses CSPDarknet53
as the backbone network. Combining the feature pyramid network (FPN) [31] and pixel
aggregation network (PAN) [32] as the neck network, it is used to fuse the features extracted
from the backbone network. At the same time, YOLOv5 uses a mosaic data enhancement
method to splice four images by flipping, random clipping, brightness change, and other
methods to enrich the image information and enhance the robustness of the network.
YOLOv5 is comparable to YOLOv4 in terms of accuracy, but it is significantly faster and
easier to deploy than YOLOv4. YOLOv5 is currently one of the most commonly used
single-stage target detection network [33].

YOLOv5 uses a convolution kernel with a size of 3 × 3. Although the deep feature
information can be extracted through multiple downsamplings, it reduces the resolution of
the feature map and leads to the loss of some shallow information. Consequently, it causes
difficulties in detecting small targets and is not conducive to positioning. In this paper, we
propose a modified YOLOv5 defect detection network that combines various spatial pyramid
pooling and channel attention mechanisms. The network structure is shown in Figure 3.

The backbone network consists of Focus, CBS, C3, SPP, and ASPP modules. The
Focus module is used to convert high-resolution image information from spatial latitude to
channel latitude. The CBS module consists of a convolution operation, batch normalization,
and SILU activation function, which is the basic module of the backbone network. The
C3 module consists of one bottleneck module, three outer CBS modules, and one concat
module. In the figure, N in C3-N represents the number of stacked bottleneck modules. The
design idea for the bottleneck module is inspired by the residual network to smooth the flow
of positive and negative gradients. The combination design of three external CBS modules
and concat modules is derived from from CSPNet [34]. The input feature map passes
through two paths. One path involves a convolution of 1 × 1 followed by a bottleneck
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modul, the other path goes through a CBS module, and the number of convolutional
channels is reduced by half. After concatenating the output of the bottleneck module, it
is adjusted to the number of output channels of the C3 module via a CBS module. The
SPP module can increase the translation invariance of the network and output images of
different sizes into a fixed dimension. ASPP is used to obtain multiscale information of the
feature maps and enhance the information extraction capability of the backbone network.

Figure 3. AC-YOLOV5 network structure.

The neck network fuses four layers of feature maps through four concat modules to
fully extract contextual information, which reduces the loss of feature map information
and improves the recognition accuracy of the network. Networks of different depths can
be used to identify objects of different sizes. To adapt to changes in object size during
object detection, it is necessary to fuse the feature information from different depths in
the backbone network. YOLOv5 uses the FPN + PAN network. Both the FPN and PAN
modules are based on the pyramid pooling operations, but in different directions. FPN
facilitates the detection of large objects through top-down sampling operations. PAN
improves the detection rate of small objects by transferring feature information from the
bottom to the top. The combination of the two structures strengthens the feature fusion
capability of the network.

In addition, to further enhance the feature extraction capability of YOLOv5, a CSE
module is proposed in combination with the channel attention mechanism and convo-
lutional module, which is introduced into the backbone network of YOLOv5 to greatly
improve the feature extraction capability of the backbone network.

4.1. ASPP Module

The ASPP module [35] was first proposed in DeepLabv2. Although it was proposed
to improve the performance of the semantic segmentation network, its method can also
be used to improve the target detection network. ASPP uses convolution kernels with
different expansion rates to pool the characteristic images and obtain the characteristic
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images of different receptive fields to extract the characteristic information at multiple
scales without increasing the number of parameters or changing the resolution of the input
image. As shown in Equation (1), r represents the expansion rate. By adding (r − 1) zeros
in the middle of the original convolution core, convolution cores of different sizes can be
obtained. Because zero is added, the parameters and calculations will not be increased. A
value of r = 1 represents the standard convolution.

y[i] = ∑
k

x[i + r·k]w[k] (1)

As shown in Figure 4, ASPP uses a convolution kernel with a size of 3 × 3 to extract
features at four scales from the feature map through the atrous convolution kernel with
expansion rates of 6, 12, 18, and 24. It obtains four feature maps of different receptive fields,
which are spliced together through the concat module to achieve multiscale feature extraction.

Figure 4. ASPP multiscale convolution.

4.2. CBE Module

The attention mechanism can quickly locate the target information within a large
amount of information. Introducing an attention mechanism into the YOLOv5 network
and assigning greater weight to the fabric defect target can make the network prioritize
areas with defects and improve the network’s defect detection ability. The SE network [36]
can determine the importance of each feature channel through self-learning, assign corre-
sponding weights to the channels, increase the learning of target information, and ignore
some interference information. The SE network is shown in Figure 5.

Figure 5. Squeeze-and-excitation networks.

The SE module is regarded as a computing unit, which establishes the convolution
mapping of Ftr : X → U , as shown in Equation (2). * represents the standard convolution
operation, X ∈ RH′×W ′×C′

represents the input, U = [u1, u2, . . . , uc] ∈ RH×W×C represents
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the output, the convolution kernel is V = [v1, v2, . . . , vc], vc represents the cth convolution
kernel, and vs

c represents the 2D convolution kernel on the sth channel.

uc = vc ∗ X =

C′

∑
s=1

vs
c ∗ xs (2)

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (3)

s = Fex(z, W) = σ(g(z, W))σ(W2δ(W1z)) (4)

∼
X = Fscale(uc, sc) = sc·uc (5)

SE consists of three parts: squeeze, excitation, and scale. The specific structure is
shown in Figure 6. First, global average pooling is used to compress the feature maps with
a size of W × H × C to a size of 1 × 1 × C (C is the number of channels). This operation
produces the vector z, as shown in Equation (3), which converts the spatial features of each
channel into global features with a global receptive field. Then, the Z vector is sent into the
two fully connected layers and the ReLU activation function to learn the correlation of the
channel. The first full connection layer reduces the parameters by reducing the number
of channels, and the second full connection layer restores the dimension of the channel
and normalizes the channel weight using the sigmoid function, as shown in Equation (4).
Finally, the obtained weight is scaled to the characteristics of each channel, as shown in
Equation (5). This process adjusts the input feature mapping using the weight to improve
the sensitivity of the network to fabric defects.

Figure 6. SE module structure.

The SE module improves the sensitivity of the network to the channel characteristics
and is lightweight, imposing little burden on network computing. However, the SE block
also has limitations. In the squeeze module, the global average pool is too simple to capture
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complex global information. In the excitation module, the fully connected layer increases
the complexity of the model. Based on this, a CSE module combining the SE attention
mechanism and the convolution module is proposed in this paper. The CSE module can
greatly improve the detection ability of the network for long and narrow defects by adding
the channel-weighted results and the 3 × 3 convolution results. The CSE module structure
is shown in Figure 7.

Figure 7. CSE module structure.

4.3. Loss Function

The loss function is used to measure the difference between the real tag value and
the predicted value of the model. The selection of the loss function affects the network
performance, and the function value is inversely proportional to the network performance.
The loss function presented in this paper includes three parts: boundary box regression
loss, confidence prediction loss, and category prediction loss. The total loss function is
shown in Equation (6):

Loss = ωboxLbox + ωobjLobj + ωclsLcls (6)

where lbox is the positioning error function used to calculate the error of the prediction box
and real box, lobj is the confidence loss function used to calculate the network confidence
error, and lcls is the classification loss function used to calculate whether the classification is
correct. w_box, w_obj and w_cls are weight values, which are 0.05, 0.5, and 1, respectively.

The positioning error function uses the CIOU loss function, as shown in Equation (7):

Lbox = CIOU = 1 − IOU +
ρ2(b, bg)

c2 + αv (7)

α =
v

1 − IOU + v
(8)

v =
4

π2

(
arctan

wg

hg − arctan
w
h

)2
(9)

where ρ2(b, bg) represents the Euclidean distance between the center point of the prediction
box and the center point of the real box, and c represents the length of the minimum closed
box diagonal covering the prediction box and the real box. α as a weight coefficient, as
shown in Equation (8), hg and wg are the length and width of the prediction box, and h and
w are the length and width of the real box.

Both the classification loss function and the confidence loss function adopt the binary
cross entropy loss function, as shown in Equation (10):

Lcls = Lobj = − 1
n∑(yn × lnxn + (1 − yn)× ln(1 − xn)) (10)

where n represents the number of samples entered, yn represents the true value of the
target, and xn represents the predicted value of the network.
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5. Experiment and Analysis

5.1. Fabric Defect Dataset

The self-built fabric defect dataset used in this paper was obtained from the production
line. It was taken by the industrial area array camera, resulting in 400 × 400 resolution
images after cutting processing. The total number of images was 2764. Skilled technicians
then classified and labeled the images. Considering the difficulty of detecting different
types of defects, the number of images was relatively small due to the regular shape of the
holes. More images were collected for the L_Line and S_Line: 1644 and 877, respectively, as
shown in Table 1.

Table 1. Fabric defect dataset.

L_line S_line Hole

Number 1644 877 243

The dataset of the proposed AC-YOLOv5 algorithm consisted of a training set, a
validation set, and a test set. Each type of defect image and label was roughly divided into
70%, 10%, and 20%. The results are shown in Table 2.

Table 2. Dataset training, verification, and test set division.

Training Validation Test Total

L_line 1046 279 319 1644

S_line 567 127 183 877

Hole 155 37 51 243

5.2. Software and Hardware Environment Settings

The hardware environment and software version used in this experiment are shown
in Table 3, and the spectrometer setup is shown in Table 4.

Table 3. Hardware environment and software version.

Hardware and Software Configurations

DESKTOP-7V5KI6L
Operating System: windows 10

CPU:Intel(R) Xeon(R) Gold 6136

RAM:256G

Software version
GPU:NVIDIA Quadro RTX 6000

Pycharm2021 + Python3.8 + CUDNN7.6.05
+ Opencv4.5.2.54 + CUDA10.2

Table 4. Network training parameters.

Training Parameters Value

Batch size 1
Dynamic parameters 0.937

Learning rate 0.01
Cosine annealing learning rate 0.01

Data augmentation 1.0
Input image size 400 × 400

Epochs 100
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5.3. Performance Metrics

To quantitatively analyze the test results, three evaluation metrics are used in this
paper: precision, recall, and mAP.

R =
TP

TP + FN
(11)

P =
TP

TP + FP
(12)

Whenever TP represents a defect on the fabric with a true detection result, FP repre-
sents a defect that is not on the fabric but has a true detection result, and FN represents a
defect that is not on the fabric but has a false detection result.

The specific meanings of TP, FP and FN are listed in Table 5:

Table 5. Confusion Matrix.

Real
Prediction

Positive Negative

True TP TN
False FP FN

Here, “Real” represents the real defects on the fabric, and “Prediction” represents the
predicted results.

The accuracy and average accuracy are calculated as follows:

AP =
∫ 1

0
P(R)dR (13)

mAP =
∑ AP

N
(14)

Here, AP denotes the average detection accuracy of each category, and N denotes the
number of categories in the dataset.

5.4. Ablation Experiment

AC-YOLOv5 improves upon YOLOv5. To verify the validity of the model, ablation
experiments were performed and presented in this paper. The experimental results are shown
in Table 6, which shows that the mAP of the YOLOv5 network was 98.2%. After adding the
ASPP module to the backbone network alone, the mAP was increased to 98.6%, and the recall
was reduced. By adding the CSE module alone, the mAP was increased to 98.8%, but the
detection speed was reduced. With the addition of the ASPP module and the CSE module,
the detection accuracy reached 99.1%, and the detection speed did not decrease.

Table 6. Results of ablation experiment.

Method P R mAP FPS Flops

YOLOv5 95% 95.1% 98.2% 476 15.8
YOLOv5 + ASPP 97.9% 92.6% 98.6% 476 18.5
YOLOv5 + CSE 95.1% 97.5% 98.8% 454 17.7

AC-YOLOv5 97.8% 98.5% 99.1% 476 20.4

5.5. Comparative Experiment

To verify the effectiveness of the proposed model, the AC-YOLOv5 network was
compared with other common object detection networks. The comparison results are
presented in Table 7, which shows that AC-YOLOv5 had the highest average detection
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accuracy, which was 9%, 4.7%, 0.9%, 2.3%, and 1.7% higher than that of Faster-RCNN, SSD,
YOLOv5, YOLOv6, and YOLOv7, respectively. Additionally, the detection accuracy of
AC-YOLOv5 exceeded 99%, meeting the requirements of industrial detection. There were
also advantages in the detection of a single defect types, which were the best among the
four networks.

Table 7. Test results of common networks in the fabric dataset.

Method
AP

mAP FPS
L_line S_line Hole

Faster-RCNN 91.3% 83.5% 95.4% 90.1% 31
SSD 93.6% 92.4% 97.1% 94.4% 86

YOLOv5 96.4% 98.6% 99.5% 98.2% 476
YOLOv6 98.2% 96.6% 95.6% 96.8% 405
YOLOv7 97.7% 96.7% 97.9% 97.4% 250

AC-YOLOv5 98.9% 99% 99.5% 99.1% 476

The method presented in this paper randomly selected three graphs with different
defects to test each network model, and the experimental results are shown in Figure 8.
Compared to the YOLOv5 model, the AC-YOLOv5 model improved the detection accuracy
for all three types of defects, and the AC-YOLOv5 model also showed better performance
compared to the other current mainstream networks.

 (a) (b) (c) 

Figure 8. Test results of common networks on fabric datasets. (a) Hole, (b) L_ line, (c) S_ line.
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5.6. Experimental Results of the Light Guide Plate Dataset

To further verify the validity of the AC-YOLOv5 model, this paper presents exper-
iments carried out on the hot pressure light guide plate dataset (hot-pressed LGP) [37].
The experimental results are shown in Table 8, which shows that, compared to YOLOv5,
AC-YOLOv5 improved the detection accuracy by 1.7%, 0.5%, and 1.1% for white, bright,
and dark lines, respectively, and by 0.7% overall. Moreover, it reduced the complexity of
the network and improved the detection speed.

Table 8. Test results of the hot-pressed LGP.

Method
AP

mAP FPS
White Point Bright Line Dark Line Area

Faster-RCNN 55.0% 95.0% 87.1% 97.2% 83.5% 20
SSD 96.0% 100.0% 96.3% 99.0% 97.7% 71

YOLOv3 67.0% 93.0% 64.0% 42.0% 66.6% 35
YOLOv5 96.4% 98.9% 96% 99.4% 97.7% 625

AC-YOLOv5 98.1% 99.4% 97.1% 98.9% 98.4% 555

6. Discussion

AC-YOLOv5 demonstrated the following advantages in this study:

(1) By adding the ASPP module to the backbone network, AC-YOLOv5 effectively inte-
grated multiscale feature maps and processed objects of different sizes at the same
time. It improved the receptive field and obtained feature maps with rich multi-level
feature expression without loss of resolution, which further improved the feature
extraction capability.

(2) The CSE module increased the weight of important features, increased the learning of
target information, reduced the weight of unimportant features, and ignored some
interference information, making the network more focused on defect recognition
and effectively improving the defect detection ability.

(3) The experiment showed that the mAP of AC-YOLOv5 was improved by 0.9%. For
L_line and S_line, the improvement was 2.5% and 0.4%, respectively, validating the
effectiveness of the model.

There are still some weaknesses in this study and future research directions:
During training, our network model obtained rich feature information without losing

the resolution of the image. However, when the resolution of the collected images was not
sufficiently clear, the details and features of the targets in the images were easily blurred,
leading to missing and false detections. Furthermore, our model was used for real-time
detection of industrial fabrics. Industrial applications tend to favor lighter models; due to
fabric deformation during production, the shape and appearance of defect detection may
change, which may lead to a decrease in the accuracy of the model.

To address these potential limitations, future research could consider incorporating a
regularization term into the network loss function to enhance the robustness of the model.
In addition, model pruning can be applied to reduce the size and computational complexity
of the network, with a focus on minimizing the impact on the detection performance.

7. Summary

In this study, a textile defect detection method based on AC-YOLOV5 was proposed
to address complex textural backgrounds, different sizes, and types of textile defects. The
proposed method first introduces an ASPP module in the backbone network to achieve
multiple feature extraction, which facilitates the fusion of neck features and the acquisition
of more feature information. Secondly, the CSE module was incorporated to analyze the
importance of channel information, highlight defect information, and ignore background
noise to enhance the detection accuracy. In addition, we collected a large number of textile
images via a detection system set up in an industrial environment and established a textile
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defect dataset for extensive experimental validation. The experimental results showed
that the proposed method achieved detection accuracies of 99.5%, 98.9%, and 99% for hole,
L_line, and S_line defects, respectively, and 99.1% overall, indicating its suitability for
practical applications in the industrial sector.
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Abstract: A novel content-aware image resizing mechanism based on composition detection and
composition rules is proposed to address the lack of esthetic perception in current content-aware
resizing algorithms. A composition detection module is introduced for the detection of the compo-
sition of the input image types in the proposed algorithm. According to the classification results,
the corresponding composition rules in computational esthetics are selected. Finally, the algorithm
performs the operations of seam carving using the corresponding esthetic rules. The resized image
not only protects the important content of the image, but also meets the composition rules to optimize
the overall visual effect of the image. The simulation results show that the proposed algorithm
achieves a better visual effect. Compared with the existing algorithms, the proposed algorithm
not only effectively protects important image content, but also protects important structures and
improves the overall beauty of the image.

Keywords: image resizing; content-aware; composition detection; composition rules

1. Introduction

With the improvement in the portability of digital image and video capture devices
and the rapid development of communication network technology, higher requirements
are put forward for displaying and playing digital images and videos on diverse mobile
terminals. The size of the displayed image should be adjusted according to its resolu-
tion and aspect ratio. In addition, adjusting the image size to meet the user’s growing
communication speed makes automatic image adjustment an important research field [1].
Traditional image scaling techniques, such as fixed-window cropping and equal-scale
scaling, focus on geometric constraints, but do not care about the image content and the
overall visual importance. When the image size is adjusted non-proportionally, distortion
is inevitable [2,3]. At present, a variety of end users require image resizing techniques to
preserve both the important content of the image and the overall visual effect of the image.
Content-aware image resizing has become an important field of image research from the
image papers published in important journals at home and abroad.

Avidan first proposed seam carving (SC) technology, in what is also the most repre-
sentative work in the field of content-aware resizing. This algorithm is also known as a
backward carving algorithm [4]. The seam-carving algorithm proposed by Avidan in 2007
has the problem of image distortion due to the limitations of energy function definition.
In addition, when removing or inserting seams, the algorithm needs to use dynamic pro-
gramming to find the minimum energy seam, which results in a slow resizing speed. In
response to its shortcomings, many scholars have proposed various improved algorithms.
Many other forms of improved algorithms based on seam carving have appeared in recent
years. For example, image resizing is performed by fusing saliency features such as depth
of field information [5]. The addition of image saliency information can avoid the deletion
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of important image information. A wall-seam model was proposed [6], which combines
saliency features. This algorithm can avoid the deletion of salient information, but distor-
tion occurs in the background area. In [7], the saliency map of the fusion depth of field
information was proposed; this improves the edge integrity of the salient region. However,
because the depth of field information is not sensitive to the edge, it is easy to destroy the
non-main regional structure information.

Resizing based on image warping is another representative algorithm with good
processing effect in the field of content-aware resizing technology. The algorithm can be
understood as a global optimization problem with constraints. It employs a variety of
constraints to the process of image warping, tries to keep the main area of the image from
deforming or trying to do scaling, so that the deformation, such as stretching, occurs in a
background area with low importance [8]. Although image resizing technology based on
image warping can realize the non-proportional scaling of the image without destroying
the main content of the image, the algorithm introduces the global optimization problem.
Because the calculation amount of the optimization problem is generally large, it needs
to be transformed into the least square solution problem, which makes the algorithm not
suitable for real-time resizing processing [9]. Therefore, the application scope of content-
aware image resizing algorithm based on image deformation is limited, and it is difficult to
achieve wide application.

Through the analysis of content-aware image resizing technology based on seam
carving and image warping, we can see that most of the current content-aware image
scaling algorithms have their own advantages and disadvantages. Therefore, for a single
resizing algorithm, it is difficult to obtain satisfactory visual effects for all types of images.
Many scholars have proposed combining multiple operators to achieve content-aware
image resizing [10–12]. The algorithms proposed above are three main algorithms in the
field of content-aware resizing technology. The adjustment strategies adopted by these
three algorithms for different regions of image importance are different. The main purpose
is to avoid local distortion of the image or destruction of the overall visual effect. Although
these algorithms can better achieve non-proportional scaling of images, there are some
technical defects. When the image resizing is large, it is easy to cause distortion in the
main area of the image or destroy the overall visual effect of the image; when the image
content is more complex, it is particularly easy to cause distortion. Many algorithms need
to go through a large number of iterative operations in the process of resizing, which has
a large computational complexity, takes a long time, and is difficult to use for real-time
processing. Therefore, in view of the technical defects of the above three types of algorithm,
many scholars have introduced new algorithm ideas based on these algorithms and have
proposed some other types of algorithm [13,14]. Therefore, there are different image
resizing methods, depending on the image content, that can achieve change in image size
while preserving the saliency region [15]. For the problem of operation complexity, some
scholars have proposed a fast algorithm suitable for content-aware image resizing [16].

The existing content-aware resizing technology often ignores the overall visual effect
while retaining important areas. In the field of computer vision, high esthetics has always
been the goal of developers. Although there are some algorithms that do consider esthetic
effects, these algorithms are aimed at traditional image cropping. It is difficult to overcome
the shortcomings of traditional image cropping algorithms that easily lose important image
information [17]. In order to improve the overall beauty and visual effect of an image
after resizing, while retaining important areas of the image [18], this paper proposes a
content-aware image resizing technology that integrates computable esthetics, addressing
the problem of the existing content-aware resizing technology’s failure to consider the
influence of image esthetics on resizing results. In order to select the corresponding
composition optimization module, the corresponding composition detection module is
required to detect the composition type of the input image. Only when compositions similar
to the input image are detected can the corresponding optimization methods be selected for
optimization. This paper uses a composition detection network based on a convolutional
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neural network (CNN) proposed in literature [19] to detect the composition type of the input
image. Next, the paper further resizes the image detected by the composition detection
network. According to the image classification results, corresponding image composition
rules are selected to guide the positioning of the significant area in the resizing operation.
The important content of the image can be preserved alongside the image size adjustment.
The resized image content meets the composition rules as much as possible and improves
the visual beauty of the image. Experimental results show that, compared with other
resizing algorithms, the proposed algorithm not only preserves important information
from the image, but also has more esthetic resizing results.

2. Algorithm Description

Since there is no uniform esthetic rule that can be applied to all types of image,
it is necessary to classify images. To introduce computable esthetics into content-aware
resizing technology, different composition rules should be applied for different composition
types to guide subsequent resizing operations. Composition classification is an important
research focus in computable esthetics. If you can know the type of composition before
processing the image, you can select a specific method for subsequent processing of the
image, achieving better results than the general composition rule method. In this paper, the
classification network based on CNN proposed in [19] is adopted. The types of composition
are divided into the following categories: the rule of thirds, central composition, horizontal
composition, symmetric composition, triangular composition, curve composition, vertical
composition, right angle composition and pattern composition. The image content studied
in this paper is mainly aimed at common landscape photography. Among these nine
composition methods, the rule of thirds, central composition, symmetrical composition
and horizontal composition rules are commonly used composition methods in landscape
photography. For other composition rules, there is no general standard definition, and the
composition of visual elements in the image is diversified. Therefore, this paper mainly
studies the four composition rules commonly used in landscape photography.

2.1. Importance Map Generation Method

Content-aware image resizing results have a high dependence on the definition of
image content and importance. It is ideal to select an image importance recognition method
that conforms to the characteristics of the human eye. The graph-based visual saliency
(GBVS) model proposed in [20] obtains an important region that conforms to 98% of the
human eye characteristics, and the model is simple and reasonable. Therefore, the GBVS
algorithm is adopted in this paper as the importance map of horizontal composition and
symmetrical composition type images to improve accuracy of image content recognition,
as shown in Figure 1.

.  
(a) (b) 

Figure 1. The generation diagram of GBVS importance map. (a) Original image; (b) importance map.
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However, it is difficult to accurately extract the position of the foreground object for
the images of the tripartite composition and the central composition. Therefore, this paper
introduces a co-segmentation algorithm when processing the image importance map of the
tripartite composition and the central composition [21], which can obtain the foreground
image position more accurately. The definition of importance is shown in Formula (1):

ET = Egrads + αEseg (1)

A large number of experiments have proved that the value of α is related to the
extraction accuracy in the importance map. When set α = 3 in this paper, the protection
effect of important objects is better, as shown in Figure 2. The importance map obtained by
this method can accurately identify the main area of the image.

(a) (b) 

  
(c) (d) 

Figure 2. The generated schematic diagram of co-segmentation method importance map. (a) Original
image; (b) co-segmentation image; (c) gradient map; (d) importance map.

2.2. Image Resizing Using the Rule of Thirds

For landscape images, the closer the weight ratio of each region in the image is to the
golden ratio, the better the visual balance of the image. In photography, when people pay
the most attention to the focus of an image, if these concerns are located at the intersection
of the three-point line of the image, the image has better visual beauty. In order to attract
the attention of the observer, the photographer will adjust the composition of the entire
image so that the center of the foreground object is as close as possible to these concerns.
Therefore, for a trichotomic composition-type image, S is defined as representing the
Euclidean geometric distance between the center point of the foreground object of the
original image and the trichotomous point of the target image. S can effectively represent
the esthetic value of the type, and the smaller S is, the stronger the image esthetic feeling is.

In order to meet the rules of esthetic composition, the center of the foreground object
should be located on the three-point line of the target image in the process of resizing,
conforming to the rule of thirds to make the image more esthetic. The four intersections
formed by these thirds lines are referred to as “power points”. Suppose that the original
image size is W × H, the target image size is Wt × Ht, the center point coordinates of the
original image are M(xm, ym), and the power point coordinates of the target image are
Ni(xi, yi)(i = 0, 1, 2, 3).
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Taking horizontal resizing as an example, the co-segmentation algorithm is used to ex-
tract the foreground object of the original image, calculate the coordinates of the center point
M(xm, ym) of the object, and divide the left and right regions of the original image accord-
ing to the line X = xm. The Euclidean geometric distance S =

√
(xi − xm)2 + (yi − ym)2

between the center point of the foreground object in the original image and the power point
of the target image is calculated, and the minimum distance S = min{Euclidean(M, Ni)}
is obtained, so as to obtain the power point Ni(xi, yi) of the target image closest to the
center point of the foreground object in the original image. The number of vertical seams
Pl needed to be operated in the left area and Pr needed to be operated in the right area in
the original image are calculated, as shown in Formulas (2) and (3). The seams are guided
to increase or decrease according to the importance map.

Pl = xm − xi (2)

Pr = Wt − W − Pl (3)

Pl and Pr can be positive or negative. When the value is positive, the algorithm copies
the seams, and deletes the seams when it is negative.

2.3. Image Resizing Using Central Composition

Central composition is similar to the rule of thirds. Taking horizontal resizing as
an example, it is assumed that the original image size is W × H, the target image size
is Wt × Ht, the center point of the original image is M(x, y), and the center point of the
target image is M(xc, yc). The foreground object of the original image is extracted by
the co-segmentation algorithm, and the coordinates of the center point of the object are
calculated. The left and right regions of the original image are divided according to the
straight line X = x. The number of vertical seams Pl needed to be operated in the left
area and Pr needed to be operated in the right area in the original image are calculated, as
shown in Formulas (4) and (5). The seams are guided to increase or decrease according to
the importance map.

Pl = x − xc (4)

Pr = Wt − W − Pl (5)

Pl and Pr can be positive or negative. When the value is positive, the algorithm copies
the seams, and deletes the seams when it is negative.

2.4. Image Resizing Using Horizontal Composition

For horizontal composition images, the closer the visual weight ratio of each area is to
the golden ratio 0.618, the better the visual effect of the image is. For this type of image,
the semantic segmentation algorithm is used to obtain the semantic horizontal line of the
original image, y = l; the upper and lower heights are Lu and Ld, respectively. The semantic
horizontal line of the target image is y = lt, and the upper and lower heights are Lut and
Ldt, respectively. The original image and the target image are segmented into upper and
lower regions, respectively. The number of horizontal seams Hu that need to be operated
in the upper region and the number of horizontal seams Hd that need to be operated in
the lower region in the original image are calculated as shown in Formulas (6) and (7). The
increase and decrease of the seam is guided according to the importance map and the
upper and lower height ratio is set to 0.618, which is in line with the golden section ratio,
as shown in Formula (8).

Hu = Lu − lut (6)

Hd = Wt − W − Hu (7)

0.618 =
Lu + Hu

Ld + Hd
(8)
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Hu and Hd can be positive or negative. When the value is positive, the algorithm
copies the seams, and deletes the seams when it is negative.

2.5. Image Resizing Using Symmetric Composition

Symmetric composition is similar to horizontal composition. Taking the vertical
direction as an example, the semantic segmentation algorithm is used to obtain the semantic
vertical line x = k of the original image, and the widths of the left and right sides are Ol
and Or, respectively. The semantic vertical line x = kt of the target image is obtained, and
the widths of the left and right sides are Olt and Ort, respectively. The original image and
the target image are divided into left region and right region, respectively. The number of
vertical seams Hl that need to be operated in the left region of the original image and the
number of vertical seams Hr that need to be operated in the right region are calculated as
shown in Formulas (9) and (10). According to the importance map, the increase or decrease
of the seams is guided, so that the left and right width ratio is 1, which conforms to the
symmetrical ratio 1, as shown in Formula (11).

Ql = Ol − Olt (9)

Qd = Wt − W − Hl (10)

1 =
Ol + Hl
Or + Hr

(11)

Hl and Hr can be positive or negative. When the value is positive, the algorithm copies
the seams, and deletes the seams when it is negative.

3. Simulation Experiment and Performance Analysis

In order to test the performance of the proposed algorithm, the proposed algorithm
was compared with the cutting algorithm based on esthetics [22] and the SC algorithm [4].
In this paper, the simulation experiment was run on the PC platform with Intel(R) Core
(TM) i5-9300H CPU @ 2.40 GHz and 8 GB memory. The composition detection network
trained on a KU_PCP dataset [19] was selected as the composition detection module in
this paper. The composition detection module was used to classify the images in the
data set, and the corresponding esthetic principles were selected to resize the images after
classification. To ensure the effectiveness of the algorithm, we implemented our method
on the image library [23]. We explain the scheme with the case of image reduction. To
make the results more persuasive, the images used in the experiment have significantly
attributed lines/edges, foreground objects, faces/people, texture and geometric structures.

The image resizing with the rule of thirds is shown in Figure 3, and the image size is
reduced from 1024× 683 to 768× 683. It can be seen from Figure 3b that leaf information on
the left side of the image and some fence information on the right side of the image are lost
in the image obtained by the esthetics cutting algorithm. In Figure 3d, the house is located
on the left three-point line of the image, and the main object located on the three-point line
should not be distorted or deformed as far as possible. In Figure 3c, the wall and chimney
on the left side of the house are obviously deformed. Compared with Figure 3c, Figure 3d
is more esthetic and more consistent with the original image information.

The image resizing with central composition is shown in Figure 4, and the image size
is reduced from 1024 × 673 to 512 × 673. It can be seen from Figure 4b that the image
obtained by the esthetic-based cutting algorithm loses part of the information of the car
in the background. Compared with Figure 4c, more information of the background car is
retained in Figure 4d. In Figure 4c, some wheel information is lost and deformed. Figure 4d
retains the relevant information of the wheel as much as possible after resizing, and avoids
distortion. From the perspective of esthetic composition, it is more esthetic and more
consistent with the original image composition.
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(a) 

   
(b) (c) (d) 

Figure 3. Comparison of image reduction using the rule of thirds. (a) Original image; (b) cutting;
(c) SC; (d) proposed algorithm.

 
(a) 

   
(b) (c) (d) 

Figure 4. Comparison of image reduction using center composition. (a) Original image; (b) cutting;
(c) SC; (d) proposed algorithm.

The image resizing with horizontal composition is shown in Figure 5, and the image
size is reduced from 568 × 426 to 568 × 320. It can be seen from Figure 5b that the image
obtained by the esthetic-based cutting algorithm loses the sky information mapped by
the water surface. Compared with Figure 5c, Figure 5d retains the proportion of water
surface and sky of the original image. From the perspective of esthetic composition, the
visual weight ratio of each region is closer to the golden ratio, and the visual balance effect
is better.
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(a) 

   
(b) (c) (d) 

Figure 5. Comparison of image reduction using horizontal composition. (a) Original image; (b) cut-
ting; (c) SC; (d) proposed algorithm.

The image resizing with symmetric composition is shown in Figure 6, and the image
size is reduced from 1024 × 681 to 512 × 681. It can be seen from Figure 6b that the image
obtained by the esthetic-based cutting algorithm loses some information on the right side.
Compared with Figure 6c, from the perspective of esthetic composition, Figure 6d is more
in line with the symmetrical proportion and avoids image distortion under the condition
of maintaining visual balance, as can be seen from the back of the recliner in the picture. In
Figure 6c, the image information is distorted, and the four people on the recliner and the
banner on the pillar are obviously distorted.

 
(a) 

   
(b) (c) (d) 

Figure 6. Comparison of image reduction using symmetric composition. (a) Original image; (b) cut-
ting; (c) SC; (d) proposed algorithm.
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The objective performance of the algorithm proposed in this paper was further verified
using the evaluation indicators proposed in reference [24]. This evaluation metric calculates
the quality of the resized image by combining geometric distortion of and information loss
from the image. Specifically, the size of the information loss value represents the proportion
of visually significant content lost during the resizing process. The size of the geometric
distortion value represents the deformation size of significant objects during the resizing
process. The range of evaluation indicators is [0, 1], and the larger the value, the better
the image quality. Table 1 shows the image quality index after resizing using different
algorithms. Compare the algorithm proposed in this paper with the SC algorithm. The
quality index of the proposed algorithm is higher than that of the SC algorithm, because
the algorithm in this paper can better retain the visually significant part of the image and
reduce information loss, so it can obtain a better quality index.

Table 1. Comparison of different image quality indexes.

Image Size Change SC Proposed Algorithm

Figure 3 25% 0.767 0.788
Figure 4 50% 0.721 0.735
Figure 5 25% 0.812 0.825
Figure 6 50% 0.694 0.722

4. Conclusions

This paper proposes a content-aware image resizing mechanism based on composition
detection and composition rules. The composition detection module is introduced to
detect the composition of the input image types in the proposed algorithm. For landscape
images, the images are divided into four common composition types by classification
method. According to the classification results, the corresponding composition rules in
computational esthetics are selected. Finally, the composition rules in computable esthetics
are used to guide the resizing operation process. The algorithm can improve the overall
visual effect of the image while ensuring that the main content of the image is not distorted,
so that the resized image has a high sense of beauty. The experimental results show that,
compared with similar algorithms, the algorithm proposed in this paper can achieve ideal
results for the scaling of landscape images; it is more esthetic while retaining the important
information of the original image.

The algorithm in this paper also has some shortcomings. It mainly studies four
composition rules commonly used in landscape photography. Applying the algorithm
in this paper to more kinds of image resizing and expanding the applicable scope is the
next research direction. It is not enough to provide subjective evaluations when evaluating
whether a resized image is more esthetically pleasing while retaining important content. In
future research, it is hoped that, based on a given input image, a detailed analysis of the
resized image can be conducted from perspectives such as composition, color, light and
shadow. At the same time, combined with the image text description, based on esthetic
detailed analysis of the image, the content and esthetic attributes of the image can be
described naturally, so as to achieve a detailed evaluation of the image. According to the
results of detailed evaluation, specific optimizations are made to the composition, color,
contrast, and other angles of the image, in order to ensure the content of the image while
enhancing its esthetic appeal.

Author Contributions: Conceptualization, B.W., H.S. and A.W.; methodology, B.W., H.S. and H.F.;
software, H.S. and R.G.; validation, B.W. and M.Z.; writing—original draft preparation, B.W., H.S.
and H.J.; writing—review and editing, B.W. and H.S.; supervision, project administration, B.W. and
A.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Heilongjiang Provincial Natural Science Foundation of China,
grant number YQ2022F014.

86



Electronics 2023, 12, 3096

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Asheghi, B.; Salehpour, P.; Khiavi, A.M.; Hashemzadeh, M. A comprehensive review on content-aware image retargeting: From
classical to state-of-the-art methods. Signal Process. 2022, 195, 108496. [CrossRef]

2. Suh, B.; Ling, H.; Bederson, B.B.; Jacobs, D.W. Automatic Thumbnail Cropping and Its Effectiveness. In Proceedings of the 16th
Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 4 April 2003.

3. Ciocca, G.; Cusano, C.; Gasparini, F.; Schettini, R. Self-adaptive image cropping for small displays. IEEE Trans. Consum. Electron.
2007, 53, 1622–1627. [CrossRef]

4. Avidan, S.; Shamir, A. Seam carving for content-aware image resizing. ACM Trans. Graph. 2007, 26, 10. [CrossRef]
5. Kumari, S.; Kang, H.; Lee, C.; Yura, N.; Myungeun, S. Salient object detection using recursive regional feature clustering. Inf. Sci.

2017, 387, 1–18.
6. Ru, C.; Song, X.; Wang, T.; Xuan, Y.; Xiang, Z.; Taylor, K.E. Optimal bi-directional seam carving for compressibility-aware image

retargeting. J. Vis. Commun. Image Represent. 2016, 41, 21–30.
7. Shafieyan, F.; Karimi, N.; Mirmahboub, B.; Samavi, S.; Shirani, S. Image Retargeting Using Depth Assisted Saliency Map. Signal

Process. Image Commun. 2017, 50, 34–43. [CrossRef]
8. Gal, R.; Sorkine, O.; Cohenor, D. Feature-Aware Texturing. In Proceedings of the 17th Euro Graphics Conference on Rendering

Techniques, Goslar, Germany, 26–28 June 2006; pp. 297–303.
9. Wolf, L.; Guttmann, M.; Cohen-Or, D. Non-homogeneous content-driven video-retargeting. In Proceedings of the IEEE 11th

International Conference on Computer Vision, Rio de Janeiro, Brasil, 14–21 October 2007.
10. Luo, S.; Zhang, J.; Qian, Z.; Yuan, X. Multi-operator image retargeting with automatic integration of direct and indirect seam

carving. Image Vis. Comput. 2012, 30, 655–667. [CrossRef]
11. Zhang, Y.; Sun, Z.; Jiang, P.; Huang, Y.; Peng, J.L. Hybrid image retargeting using optimized seam carving and scaling. Multimed.

Tools Appl. 2017, 76, 8067–8085. [CrossRef]
12. Wu, L.F.; Gong, Y.; Yuan, X.D.; Zhang, X.Z.; Cao, L.C. Semantic aware sport image resizing jointly using seam carving and

warping. Multimed. Tools Appl. 2014, 70, 721–739. [CrossRef]
13. Sheng, G.; Gao, T. Detection of content-aware image resizing based on Binford’s law. Soft Comput. 2016, 21, 1–9.
14. Tan, W.; Yan, B.; Lin, C.; Niu, X. Cycle-IR: Deep Cyclic Image Retargeting. IEEE Trans. Multimed. 2020, 22, 1730–1743. [CrossRef]
15. Zhang, D.; Wang, S.; Wang, J.; Sangaiah, A.K.; Li, F.; Sheng, V.S. Detection of Tampering by Image Resizing Using Local Tchebichef

Moments. Appl. Sci. 2019, 9, 3007. [CrossRef]
16. Sanjay, G.; Ruturaj, G.G.; Debasisha, P.; Kunal, N.C. Fast scale-adaptive bilateral texture smoothing. IEEE Trans. Circuits Syst.

Video Technol. 2020, 30, 2015–2026.
17. Li, D.; Wu, H.; Zhang, J.; Huang, K. A2-rl: Aesthetics-Aware Adversarial Reinforcement Learning for Image Cropping. IEEE

Trans. Image Process. 2019, 28, 5105–5120. [CrossRef]
18. Garg, A.; Negi, A.; Jindal, P. Structure preservation of image using an efficient content-aware image retargeting technique. Signal

Image Video Process. 2021, 15, 1–9. [CrossRef]
19. Lee, J.T.; Kim, H.U.; Lee, C.; Kim, C.S. Photographic composition classification and dominant geometric element detection for

outdoor scenes. J. Vis. Commun. Image Represent. 2018, 55, 91–105. [CrossRef]
20. Harvel, J.; Koch, C.; Perona, P. Graph-based visual saliency. Adv. Neural Inf. Process. Syst. 2007, 19, 545–552.
21. Rubinstein, M.; Joulin, A.; Kopf, J.; Liu, C. Unsupervised joint object discovery and segmentation in Internet images. In

Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition IEEE, Portland, OR, USA, 23–28 June 2013.
22. Liang, Y.; Su, Z.; Wang, C.; Wang, D.; Luo, X. Optimised image retargeting using aesthetic-based cropping and scaling. Image

Process. Iet 2013, 7, 61–69. [CrossRef]
23. Rubinstein, M.; Gutierrez, D.; Sorkine, O. A comparative study of image retargeting. ACM Trans. Graph. 2010, 29, 160. [CrossRef]
24. Achanta, R.; Hemami, F.; Susstrunk, S. Frequency-Tuned Salient Region Detection. In Proceedings of the IEEE Internet Conference

on Computer Vision & Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1597–1604.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

87



electronics

Article

Lightweight Strawberry Instance Segmentation on Low-Power
Devices for Picking Robots

Leilei Cao 1, Yaoran Chen 2 and Qiangguo Jin 1,*

1 School of Software, Northwestern Polytechnical University, Xi’an 710072, China; caoleilei@nwpu.edu.cn
2 School of Artificial Intelligence, Shanghai University, Shanghai 200444, China; ychen169@shu.edu.cn
* Correspondence: qgking@nwpu.edu.cn

Abstract: Machine vision plays a great role in localizing strawberries in a complex orchard or
greenhouse for picking robots. Due to the variety of each strawberry (shape, size, and color) and
occlusions of strawberries by leaves and stems, precisely locating each strawberry brings a great
challenge to the vision system of picking robots. Several methods have been developed for localizing
strawberries, based on the well-known Mask R-CNN network, which, however, are not efficient
running on the picking robots. In this paper, we propose a simple and highly efficient framework
for strawberry instance segmentation running on low-power devices for picking robots, termed
StrawSeg. Instead of using the common paradigm of “detection-then-segment”, we directly segment
each strawberry in a single-shot manner without relying on object detection. In our model, we design
a novel feature aggregation network to merge features with different scales, which employs a pixel
shuffle operation to increase the resolution and reduce the channels of features. Experiments on the
open-source dataset StrawDI_Db1 demonstrate that our model can achieve a good trade-off between
accuracy and inference speed on a low-power device.

Keywords: computer vision; image segmentation; fruit localization; lightweight network; mobile
robots; vision system

1. Introduction

Due to socioeconomic changes of the current society, fewer people are willing to be
engaged in agricultural production [1]. In order to solve the challenge of labor shortage in
the agricultural industry, various robots have been developed for agricultural activities,
e.g., sowing of seeds, irrigating, spraying pesticides, weeding, and harvesting [2]. Among
these activities, harvesting is the most time-consuming and labor-intensive task [2,3]. Con-
sequently, a few commercial harvesting robots have been used to pick fruits and vegetables
in orchards or greenhouses, e.g., apples [4], strawberries [5], grapes [6], tomatoes [7],
and sweet peppers [8]. Strawberries, one of the profitable fruits, are widely cultivated in
the world [3]. Picking a strawberry requires skilled operations, since it is easily bruised.
Training a new picker to have the same skill as an experienced one needs at least one
year [1]. This motivates us to develop an autonomous strawberry-picking robot to reduce
the demand for human labor and improve picking efficiency.

A few companies have developed strawberry-picking robots, e.g., Berry 5 designed
by Harvest CROO, SW 6010 from Agrobot, Dogtooth from Cambridge, and Rubion made
by Octinion [1]. Berry 5 and SW 6010 are designed for picking strawberries cultivated
in large-scale and open-field orchards, which are equipped with large machines with
high costs. Dogtooth and Rubion are small robots designed for picking strawberries
in greenhouses. Designing a picking robot refers to many technologies, e.g., machine
vision, mechanical design, kinematics, path planning, control, and navigation. Among
these, machine vision plays a great role in localizing strawberries in a complex orchard or
greenhouse environment, in which each strawberry needs to be precisely located [1,2]. Due
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to the variety in shape and scale of strawberries and occlusions of strawberries by leaves
and stems, precisely locating each strawberry brings a great challenge to the vision system
of picking robots.

Compared with the bounding box provided by object detection, the segmentation mask
by the instance segmentation technology can provide better localization accuracy, which
avoids the impact of a complex background in the bounding box. Recently, a few methods
and datasets for strawberry instance segmentation have been proposed [5,9,10]. Borrero
et al. [9] released a large-scale and high-resolution dataset of strawberry images, along
with the corresponding manually labeled instance segmentation mask images. In addition,
they proposed a strawberry instance segmentation network based on the framework of
Mask R-CNN [11], which, however, required a large processing power for vision systems
of picking robots. Therefore, they designed a new network based on U-Net [12] to segment
each strawberry in an image with better accuracy and faster inference speed [10]. However,
these methods are still too heavy to run on the vision system of picking robots, which
usually are equipped with energy-constrained supplies and low-compute devices. This
motivates us to develop a novel lightweight network for strawberry instance segmentation
with low latency running on low-power devices of picking robots.

In this paper, we present a simple and highly efficient framework for strawberry
instance segmentation running on low-power devices for picking robots, termed StrawSeg.
Instead of using the common paradigm of “detection-then-segment”, we directly segment
each strawberry in a single-shot manner without relying on object detection. Our network
consists of three parts: backbone, neck, and head. Given an image containing strawberries,
MobileNetV2 [13] is adopted as the backbone to extract multiscale and multilevel features
from the input image, and the multiscale features are aggregated by the neck module.
We design a novel feature aggregation network termed FAN to merge these features
with different scales. Instead of implementing by interpolation or deconvolution layer,
we employ a pixel shuffle operation to increase the resolution and reduce the channels
of features, which can avoid the use of convolutional layers to reduce channels. The
head module directly predicts a fixed-size set of segmentation masks wherein each mask
indicates a target strawberry or background. During training, the predicted masks are
matched to the ground truth by using the bipartite matching strategy. At the inference,
we compute an average pixel value along the spatial dimension for each mask to be its
classification score, and some low-confidence predictions can be dropped. Experiments on
the open-source dataset StrawDI_Db1 [9] demonstrate that our model can achieve a good
trade-off between accuracy and inference speed on the low-power device.

Our contributions are summarized as follows:

(1) We present a lightweight yet effective framework for strawberry instance segmentation
running on low-power devices for picking robots, which can directly segment each
strawberry without relying on object detection.

(2) We design a novel feature aggregation network to aggregate features with different
scales extracted from different levels of the backbone network, which can increase the
resolution and reduce the channels of features.

(3) Experimental results demonstrate that our model achieves a good trade-off between
accuracy and inference speed running on the low-power device.

2. Related Work

2.1. Instance Segmentation

Instance segmentation aims to produce a pixel-wise segmentation mask for the object
of interest in an image. It has been significantly improved with the advancement of
CNNs and Transformers. The conventional methods for instance segmentation follow the
“detection-then-segment” paradigm, which first generates bounding boxes by detectors
and predicts masks by ROIAlign [11] or dynamic convolutions [14]. Mask R-CNN [11],
YOLACT [15], and MEInst [16] are the representative methods. Instead of relying on the
object detectors, SOLO [17,18] directly segmented objects according to the object’s location
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and size. PolarMask [19] employed polar coordinates to represent mask contours. Instead
of directly predicting masks, a few methods try to predict mask embeddings. SOLQ [20]
encoded the spatial binary mask into embeddings, and the network is trained to predict the
embedding for the mask. ISTR [21] predicted low-dimensional mask embeddings. Cheng
et al. [22] proposed a sparse set of instance activation maps as an object representation to
highlight informative regions for each object, which achieves a good trade-off between
accuracy and inference speed.

2.2. Fruit Localization

Recently, a few methods have been developed to improve the performance of machine
vision for fruit or vegetable localization. Yu et al. [5] proposed a method for strawberry
detection and segmentation based on Mask R-CNN. Jia et al. [4] designed a model for the
recognition and segmentation of overlapped apples based on Mask R-CNN. Santos et al. [6]
used Mask R-CNN [11] and YOLO [23–27] to segment and detect wine grapes, respectively.
Instead of using the heavy Mask R-CNN, Borrero et al. [10] designed a new network based
on U-Net to segment each strawberry in an image with better accuracy and faster inference
speed. Ning et al. [8] proposed to combine the convolutional block attention module with
YOLOv4 to recognize and localize sweet peppers. Liu et al. [28] proposed a detection and
segmentation method for obscured green fruit based on a FCOS [29] object detection model.
Zeng et al. [7] proposed a lightweight network based on YOLOv5 to achieve real-time
localization and ripeness detection of tomatoes. Liu et al. [30] proposed a method for
localizing pineapples based on binocular stereo vision and an improved YOLOv3 model.
Kang et al. [31] introduced a LiDAR-camera fusion-based instance segmentation method
for the localization of apples.

2.3. Lightweight Detection and Segmentation

Real-time object detection or instance segmentation is necessary for a model running
on edge devices. Recently, real-time detection and segmentation methods are still being
developed. YOLO series [23–27] have been continuously advanced for faster and stronger
object detection based on efficient architectures and bag-of-freebies. CSL-YOLO [32] pro-
posed a cross-stage lightweight module to generate redundant features from cheap opera-
tions, and the module was combined with YOLO. Cui et al. [33] proposed a lightweight
pinecone detection algorithm based on the improved YOLOv4-Tiny network, wherein Shuf-
fleNet [34] was used as a backbone to extract features. Gui et al. [35] proposed a lightweight
tea bud detection model based on the YOLOv5 network, wherein the Ghost_conv [36]
module was applied to reduce the computational complexity and model size. Li et al. [37]
designed a fast and lightweight detection algorithm based on YOLOv5 for passion fruit
pest detection, wherein the attention module was added to improve accuracy.

3. Methods

Our model, StrawSeg, aims to directly segment instance-level strawberries without
relying on object detection. To this end, we first design a lightweight network to extract
features from the input image, and predict all target masks at once. The model is trained end
to end with a set loss function, which performs bipartite matching between the predicted
masks and ground truth. Finally, a simple inference process is described to acquire final
segmentation masks for strawberries. A flowchart of our method is shown in Figure 1.
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Figure 1. The flowchart of our method.

3.1. StrawSeg Architecture

The overall framework of StrawSeg is shown in Figure 2. This simple network consists
of three parts: backbone, neck, and head modules. The backbone module extracts multilevel
and multiscale features from a given image, and the neck module aggregates features from
the backbone. Finally, the head module directly predicts a set of segmentation masks.

Figure 2. Overall framework of StrawSeg. In the figure, Cat represents the concatenate operation,
and PPM represents the pyramid pooling module [38].

3.1.1. Backbone

To reduce the latency of our network running on low-power devices, we use Mo-
bileNetV2 [13] as the backbone network to extract multilevel and multiscale features from
the input image. Given an image I ∈ R

3×H×W , the backbone extracts the multiscale image
features from the shallow to deep layers of the backbone network, i.e., {S2, S3, S4, S5},
where Si has a resolution of H

2i × W
2i , i = 2, 3, 4, 5.

3.1.2. Neck

To enhance the feature representations, the neck module is employed to aggregate the
multiscale and multilevel features. To further reduce computational complexity and model
parameters, we design a novel feature aggregation network (FAN) to aggregate features
extracted from the backbone. To enlarge the receptive field of the network, we first apply
a pyramid pooling module (PPM) [38] on the feature map S5 to acquire a feature map P5
with global prior representations. For further details on PPM, we refer the reader to [38].
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We then upscale P5 to the same resolution as the feature map S4. Instead of implementing
by interpolation or deconvolution layer [39], we employ a pixel shuffle operation [40] to
increase the resolution and reduce the channels of P5. Pixel shuffle is an operation used
in super-resolution models to implement efficient subpixel convolutions with a stride of
r . Specifically, it rearranges elements in a tensor of shape (∗, C × r2, H, W) to a tensor of
shape (∗, C, H × r, W × r). Suppose P5 has C5 channels; thus, the pixel shuffle rearranges
the feature map P5 of shape H

32 × W
32 × C5 to a higher-resolution feature map of shape

H
16 × W

16 × C5
4 . This higher-resolution feature map is concatenated with the feature map

S4 (of shape H
16 × W

16 × C4) along the channel dimension to form a mixed feature map P4.
Similarly, the feature map P4 is upscaled by the pixel shuffle and concatenated with S3 (of
shape H

8 × W
8 × C3) to acquire a feature map P3. Additionally, P3 is also upscaled by the

pixel shuffle and concatenated with S2 (of shape H
4 × W

4 ×C2) to acquire a feature map P2 of
shape H

4 × W
4 × (C5

64 + C4
16 + C3

4 + C2). Let us take MobileNetV2_0.5 as a backbone network,
and C5 = 160, C4 = 48, C3 = 16, C2 = 16; thus, the feature map P2 has a channel number
of 26. Finally, P2 is attached by a 3 × 3 convolution layer to generate a merged feature
map, which aggregates the multilevel and multiscale feature maps. The input channel and
output channel numbers are the same with P2.

3.1.3. Head

The segmentation head directly predicts N masks by a single 1 × 1 convolution layer
on the fused feature map from the neck module, which are rescaled to the original resolution
of an input image through interpolation: y = {mi|mi ∈ [0, 1]H×W}N

i=1, where N is set to be
significantly larger than the typical number of strawberries in an image.

3.2. Label Assignment and Training Loss

To train our model, a label assignment strategy is needed. The ground truth binary
masks of strawberries in an image are denoted as ygt = {mgt

i |mgt
i ∈ [0, 1]H×W}Ngt

i=1, where
Ngt is the number of strawberries in the image. Since N is different from Ngt and N ≥ Ngt,
we pad the set of ground truth labels with all-zero masks to allow one-to-one matching.
A bipartite matching-based assignment is employed between the predicted masks and
ground truth labels, which searches for a permutation of N elements σ ∈ {1, 2, ..., N} with
the lowest cost [41,42]:

σ̂ = arg min
σ

N

∑
i
Lmatch

(
ygt

i , yσ(i)

)
, (1)

where Lmatch

(
ygt

i , yσ(i)

)
is a pairwise matching cost between ground truth ygt

i and a pre-
diction with index σ(i), which is defined as

Lmatch = λdice

(
1 −Ldice

(
mgt

i , mσ(i)

))
+ λ f ocalLfocal

(
mgt

i , mσ(i)

)
, (2)

where λdice and λ f ocal are hyperparameters, and Ldice and Lfocal denote dice loss and focal
loss, respectively. This optimal assignment is computed with the Hungarian algorithm [41].

Given the optimal assignment σ̂, we define Ngt matched predicted masks and N − Ngt

nonmatched predictions as positive pairs and negative pairs, respectively. The matched
predictions tend to predict the ground truth masks, and the nonmatched predictions aim to
output all-zeros. To this end, we use the Hungarian loss to optimize our network, which is
defined as

LHung =
Ngt

∑
i=1

[
λdice

(
1 −Ldice

(
mgt

i , mσ̂(i)

))
+ λ f ocalLfocal

(
mgt

i , mσ̂(i)

)]
, (3)

where λdice and λ f ocal are hyperparameters, and denote dice loss and focal loss, respectively.
For our experiments, we set λdice = 1, λ f ocal = 20.
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3.3. Inference

The segmentation head of our network directly outputs N masks {mi}N , and we
can compute an average pixel value along the spatial dimension for each mask to be its
classification score of a strawberry. Thus, some low-confidence predictions can be dropped.
Finally, we obtain the final binary masks by thresholding (we set it as 0.5). Specifically, to
achieve better accuracy, we remove some binary masks that have a few parts occluded by
other masks through nonmaximum suppression (NMS) [43].

4. Experiments

4.1. Dataset and Metrics
4.1.1. Dataset

Our experiments are conducted on the StrawDI_Db1 dataset [9] containing 3100 im-
ages taken in strawberry plantations in the province of Huelva (Spain) at different times
during a full picking campaign. The images were taken with a smartphone and rescaled
to 1008 × 756 pixels in PNG format. The dataset is divided into 2800 images for training,
100 images for validation, and 200 images for testing. Each image contains a few strawber-
ries with the number ranging from 1 to 21. Straw DI_Db1 is the only open-source dataset
for strawberry instance segmentation, in which variety in shape and scale of strawberries
exists, as well as occlusions of strawberries by leaves and stems.

4.1.2. Metrics

We evaluate models on accuracy and inference speed on devices. Following the com-
monly used metric in the MS-COCO [44] competition of instance segmentation, the average
precision (AP) metric is used to evaluate the accuracy of predicted masks. Specifically, the
mean average precision (mAP) is computed using 10 IoU thresholds from 0.5 to 0.95. In
addition, we also report the mean average precision for small (mAPS), medium (mAPM),
and large sizes (mAPL) of strawberries as the same criteria as COCO. The value of AP for
IoU = 0.50 (AP50) and 0.75 (AP75) is also reported. For measuring the inference speed, we
report the frames per second (FPS) of the network on a single NVIDIA RTX 3090 GPU and
an edge device, NVIDIA Jetson Nano 2G(Made by NVIDIA Corporate, Santa Clara, CA,
USA). TensorRT or FP16 is not used for acceleration.

4.1.3. Implementation Details

We implement our model in PyTorch and train over one NVIDIA RTX 3090 GPU with
32 images per minibatch and 200 epochs. We adopt an AdamW optimizer with an initial
learning rate of 5 × 10−3 with a weight decay of 0.0005. The backbone is initialized with
the ImageNet-pretrained weights, and other layers are randomly initialized. The standard
random scale jittering between 0.8 and 1.5, random horizontal flipping, random rotating
between −30◦ and 30◦, random cropping, and random color jittering are used as data
augmentation. We use a crop size of 640 × 640 as input for training. We adopt N = 21 for
each image. We report the performance of the original scale inference without horizontal
flip or multiple scales.

4.2. Comparison with State-of-the-Art Methods

Table 1 compares our model, StrawSeg, with some state-of-the-art methods with
respect to accuracy and inference speed. We set a baseline model wherein FPN [39] is
adopted to replace our designed FAN and the other modules are the same. SparseInst [22]
achieves good accuracy and fast inference speed on the MS-COCO dataset for real-time
instance segmentation, which can be applied for strawberry instance segmentation. We
use MobileNetV2 [13] with different ratios as backbones to achieve the trade-off between
accuracy and inference speed. All models are only trained on the StrawDI_Db1 dataset and
evaluated on the testing set. The results show that our model is superior to the baseline
and SparseInst with better accuracy and faster inference speed under the same backbone.
Specifically, our model with MobileNetV2_0.25 has achieved 72.9% mAP, which improves
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the baseline by 4.7% mAP and 15 FPS on RTX 3090 and 4 FPS on Jetson Nano. This verifies
that our proposed FAN can bring improvement on accuracy and reduction on inference
time compared with the commonly used FPN. It is worth noting that our model with
MobileNetV2_0.25 achieves 20 FPS on the edge device NVIDIA Jetson Nano 2G, which has
the right balance of low power and affordability for a picking robot. The inference speed of
our model can be accelerated if using TensorRT or running on more powerful devices (e.g.,
Jetson TX2, Jetson Xavier NX, Jetson Orin NX). Using a heavier backbone does not bring
large improvement on accuracy yet reduces the speed.

Table 1. Performance comparison of our model with state-of-the-art methods on the Straw DI_Db1
testing set. Numbers in bold indicate the best performance.

Backbone Method mAP AP50 AP75 mAPS mAPM mAPL Params FPS (3090) FPS (Jetson)

MobileNetV2_0.25
Baseline 68.2 82.4 74.0 26.8 68.1 94.0 0.18 M 140 16

SparseInst 65.0 80.2 69.0 24.6 66.4 87.2 0.20 M 121 13
Ours 72.9 86.4 78.5 29.1 74.8 94.4 0.15 M 155 20

MobileNetV2_0.5
Baseline 76.2 86.7 79.3 30.1 80.6 96.0 0.65 M 119 14

SparseInst 77.9 89.9 83.0 33.5 81.2 97.3 0.75 M 97 12
Ours 79.7 90.6 84.3 41.0 82.7 96.4 0.53 M 139 19

MobileNetV2_1.0
Baseline 68.2 80.3 71.2 28.9 71.0 88.7 2.50 M 114 12

SparseInst 79.6 89.7 83.8 38.3 83.4 96.0 2.86 M 89 10
Ours 80.0 89.8 83.8 40.9 83.3 97.1 1.97 M 131 17

There are only several published methods based on Mask R-CNN that have been
applied to strawberry instance segmentation on the Straw DI_Db1 dataset. Table 2 compares
our model, StrawSeg, with a few existing methods that have been evaluated on the Straw
DI_Db1 testing set. The results show that our model surpasses the existing methods with
great superiority.

Table 2. Performance comparison of our model with a few existing models that have been evaluated
on the Straw DI_Db1 testing set. Numbers in bold indicate the best performance.

Methods mAP AP50 AP75 mAPS mAPM mAPL

Yu et al. [5] 45.4 76.6 47.1 07.4 50.0 78.3
Perez-Borrero et al. [9] 43.8 74.2 45.1 07.5 51.8 75.9
Perez-Borrero et al. [10] 52.6 69.4 57.8 17.0 65.3 53.3

Ours 80.0 89.8 83.8 40.9 83.3 97.1

Figure 3 shows visualization comparisons of different methods on some images
from the Straw DI_Db1 testing set, wherein we denote the inaccurate predictions by
the red arrows. For the first column, the baseline model mistakenly predicts the leaf as
the strawberry, which occurs at SparseInst. For the second column, the baseline model
and SparseInst miss two and one strawberries, respectively, and SparseInst predicts an
inaccurate mask. For the third column, the baseline model and SparseInst mistakenly
predict the leaf as the strawberry, and SparseInst misses one strawberry in the corner of the
image. The visualization results demonstrate the superiority of our model.
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Figure 3. Visualization comparison of different methods on some images (a–c) from the Straw DI_Db1
testing set. The inaccurate predictions are denoted by the red arrows.

4.3. Ablation Studies

We investigate the effectiveness of our designs through a few ablation studies, includ-
ing the neck module, the feature aggregation network, the scale of an input image, the
number of convolution layers in the neck module, the number of predicting masks by the
head network, the hyperparameters of loss function, and the usage of NMS in the inference
stage. Without losing generality, we use MobileNetV2_0.5 as the backbone and evaluate on
the testing set.

4.3.1. Structure of the Neck Module

The neck module consists of two parts: PPM and FAN. To further analyze the impor-
tance of each component in the neck, PPM and FAN are progressively added into the neck
module to verify their effectiveness. We first set a baseline wherein S5 of the backbone is
directly appended to the head. Table 3 summarizes the results of the investigation on each
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component. It shows that PPM and FAN improve the baseline by 6.2% and 21.5% mAP,
respectively. The combination of PPM and FAN can achieve 79.7% mAP. It is worth noting
that the ASPP [45] module is commonly adopted to enlarge and acquire different scales of
receptive fields for semantic information. The result shows that adding ASPP even drops
0.2% mAP compared with adding PPM and FAN, which only improves 1% mAPM and
0.6% mAPL for medium and large sizes, respectively.

Table 3. Ablation study on the structure of the neck module. Numbers in bold indicate the best
performance.

Module mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

Backbone only 52.5 76.5 55.2 7.3 50.8 82.0 194
+PPM 58.7 80.1 62.4 10.5 58.3 89.1 145
+FAN 74.0 86.8 78.1 37.4 75.8 93.0 152

+PPM+FAN 79.7 90.6 84.3 41.0 82.7 96.4 139
+PPM+FAN+ASPP 79.5 89.8 83.4 37.4 83.7 97.0 108

4.3.2. Stage of Output Feature Maps

In FAN, features with different scales are aggregated progressively, and the feature
map P2 is appended to the head module to predict masks. We investigate the accuracy
and inference speed when using features from different levels, as shown in Table 4. If
the head module directly appends to P5, which means that the scale of the output feature
map is only H

32 × W
32 and the predicted masks are rescaled to the original resolution of the

input image through interpolation, then the model can only achieve 58.7% mAP. Adopting
P4 can improve the model by 13.4% mAP yet reduce the speed by 4 FPS. P3 does not
further improve the model compared with P4. The feature map P2 achieves a good trade-off
between accuracy and speed, which improves to 79.7% mAP and with 139 FPS.

Table 4. Ablation study on the output feature maps. Numbers in bold indicate the best performance.

Stage mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

P5 58.7 80.1 62.4 10.5 58.3 89.1 145
P4 72.3 86.9 76.5 27.4 75.2 94.2 141
P3 72.2 85.4 75.9 28.6 75.0 93.2 140
P2 79.7 90.6 84.3 41.0 82.7 96.4 139

4.3.3. Scale of Input Image

The default input image size is set to 640 × 640; we further analyze the influence of an
input image size. Table 5 summarizes the results of models trained with different input
image sizes. It shows that increasing the input image size does not bring an improvement of
accuracy yet reduces the speed. Decreasing the input image size also reduces the accuracy.
The results verify that an input image size of 640 × 640 is appropriate.

Table 5. Ablation study on the scale of an input image. Numbers in bold indicate the best perfor-
mance.

Scale mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

704 70.1 83.4 74.9 31.5 71.0 92.3 119
640 79.7 90.6 84.3 41.0 82.7 96.4 139
512 74.9 87.1 80.0 32.9 78.2 93.6 141

4.3.4. Number of Convolution Layers in the Neck

In the neck module, we use a single 3 × 3 convolution layer to generate a merged
feature map from P2; now we investigate the influence of the number of convolution layers.
Table 6 summarizes the results of models with different numbers of convolution layers in
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the neck module. It shows that removing or increasing the number of convolution layers
will reduce the accuracy. A single 3 × 3 convolution layer has achieved a good trade-off
between accuracy and inference speed.

Table 6. Ablation study on the number of convolutional layers in the neck module. Numbers in bold
indicate the best performance.

Number of Conv mAP AP50 AP75 mAPS mAPM mAPL FPS (3090)

w/o 71.4 85.9 75.4 33.4 71.4 92.0 144
1 79.7 90.6 84.3 41.0 82.7 96.4 139
2 75.4 84.7 78.8 37.4 77.9 93.9 134

4.3.5. Number of Predicting Masks

In the above experiments, we set the number of predicting masks by the head network
as 21, which is the maximum number of strawberries in the Straw DI_Db1 dataset. Thus,
the model would lose some targets if the testing image contains more than 21 strawberries.
Could we set this number to be larger? We then set N = 30 to investigate how this number
affects the performance of StrawSeg. Table 7 shows that increasing the number of predicting
masks greatly reduces the performance of StrawSeg. According to our statistics on Straw
DI_Db1, the average number of strawberries in an image is only 5.8. Thus, predicting too
many masks causes excessive negative samples when training, which makes the model
hard to optimize the parameters.

Table 7. Ablation study on the number of predicting masks by the network. Numbers in bold indicate
the best performance.

Number of Masks mAP AP50 AP75 mAPS mAPM mAPL

30 68.4 79.9 73.3 33.9 76.8 83.5
21(Ours) 79.7 90.6 84.3 41.0 82.7 96.4

4.3.6. Hyperparameters of Loss Functions

In our experiments, we choose λdice = 1, λ f ocal = 20 in the loss function by evaluating
on the validation set. Table 8 shows the performance variation of StrawSeg on the testing
set when varying the hyperparameters in the loss function. It is obvious that increasing
λ f ocal or λdice can improve the performance of StrawSeg, and a larger λ f ocal brings better
performance. However, λ f ocal = 30 achieves a lower result, which illustrates that setting
λdice = 1, λ f ocal = 20 is appropriate for training StrawSeg on this dataset.

Table 8. Ablation study on varying hyperparameters in the loss function. Numbers in bold indicate
the best performance.

λdice λ f ocal mAP AP50 AP75 mAPS mAPM mAPL

1 1 67.6 81.0 70.7 26.5 69.3 89.8
10 1 72.5 85.1 76.5 31.4 75.7 91.1
1 10 75.1 87.4 79.6 36.8 76.1 95.8
1 20 79.7 90.6 84.3 41.0 82.7 96.4
1 30 77.8 89.6 82.9 36.2 81.2 95.5

4.3.7. Usage of NMS

During the inference stage, we use the NMS process to remove a few binary masks that
have a few parts occluded by other masks. We explore the effectiveness of NMS. Table 9
shows that dropping the NMS process at the inference stage only reduces the accuracy by
3.4% mAP. This demonstrates that NMS is not necessary for our model, yet an effective
trick for improving accuracy.
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Table 9. Ablation study on the usage of NMS at the inference stage. Numbers in bold indicate the
best performance.

Postprocessing mAP AP50 AP75 mAPS mAPM mAPL

w/o NMS 76.3 86.4 80.5 37.7 79.5 94.5
Ours 79.7 90.6 84.3 41.0 82.7 96.4

4.4. Discussion

We develop StrawSeg to segment each strawberry in an image, and this model per-
forms well on the Straw DI_Db1 dataset compared with some state-of-the-art methods.
Theoretically, our model is available for any one-class instance segmentation task. To
investigate how well our StrawSeg generalizes to other more larger-scale datasets, we train
and evaluate models on a person instance segmentation dataset, CIHP [46], which is an
instance-level human-parsing dataset. This dataset includes 28,280 images for training,
5000 for validation, and 5000 for testing. The average and maximum number of persons in
an image are 3.4 and 12, respectively. Thus, we set N = 12 for StrawSeg when training on
CIHP, and MobileNetV2_0.5 is utilized as the backbone. We train models with 50 epochs,
and the other settings are the same with training on Straw DI_Db1. Table 10 shows a
performance comparison of our model with the baseline and SparseInst. The results verify
that our model, StrawSeg, still has superiority over the baseline and SparseInst.

Table 10. Performance comparison of our model with state-of-the-art methods on the CIHP testing set.
Numbers in bold indicate the best performance.

Methods mAP AP50 AP75 mAPS mAPM mAPL

Baseline 44.6 74.7 46.5 2.7 26.5 54.9
SparseInst 44.1 72.9 46.5 2.9 27.2 56.2

Ours 47.7 76.4 50.9 4.4 28.8 58.3

It is worth noting that the head network of StrawSeg only directly predicts masks
without a classification output; thus, StrawSeg can only adapt to the one-class instance
segmentation task. It may be applied to multiple-class instance segmentation by adding a
classification head to represent the probability of belonging to the target class. This can be
our future work to investigate the performance of StrawSeg on the multiple-class instance
segmentation task.

5. Conclusions

In this paper, we present a novel and highly efficient method for strawberry instance
segmentation on low-power devices for picking robots. Our network uses MobileNetV2
as the backbone to extract multiscale and multilevel features from the input image, and
the multiscale features are aggregated by the neck module. We design a novel feature
aggregation network termed FAN to merge these features with different scales. Instead of
implementing by interpolation or deconvolution layer, we employ a pixel shuffle operation
to increase the resolution and reduce the channels of features. The aggregated features
directly output a fixed number of masks to represent strawberries of the input image.
Experimental results demonstrate that our model can achieve a good trade-off between
accuracy and inference speed on a low-power device (NVIDIA Jetson Nano 2G), in which
our model with MobileNetV2_0.50 achieves 79.7% mAP and 19 FPS. In a future work, we
will explore the application of this model to the other fruit or vegetable localization on
different edge devices.
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Abstract: To address the issue of the insufficient safety monitoring of power maintenance vehicles
during power operations, this study proposes a vehicle monitoring scheme based on ultra wideband
(UWB) and deep learning. The UWB localization algorithm employs Chaotic Particle Swarm Opti-
mization (CSPO) to optimize the Time Difference of Arrival (TDOA)/Angle of Arrival (AOA) locating
scheme in order to overcome the adverse effects of the non-visual distance and multipath effects in
substations and significantly improve the positioning accuracy of vehicles. To solve the problem
of the a large aspect ratio and the angle in the process of power maintenance vehicle operation
situational awareness in the mechanical arm of the maintenance vehicle, the arm recognition network
is based on the You Only Look Once version 5 (YOLOv5) and modified by Convolutional Block
Attention Module (CBAM). The long-edge definition method with circular smoothing label, SIoU
loss function, and HardSwish activation function enhance the precision and processing speed for the
arm state. The experimental results show that the proposed CPSO-TDOA/AOA outperforms other
algorithms in localization accuracy and effectively attenuates the non-visual distance and multipath
effects. The recognition accuracy of the YOLOv5-CSL-CBAM network is substantially improved; the
mAP value of the vehicles arm reaches 85.04%. The detection speed meets the real-time requirement,
and the digital twin of the maintenance vehicle is effectively realized in the 3D substation model.

Keywords: power operations; UWB; long-edge definition method; YOLOv5; digital twin

1. Introduction

Irregular operations and a lack of safety awareness are the primary causes of safety
accidents. With the rapid development of artificial intelligence, machine vision and wireless
positioning technology have been effectively applied to the monitoring system, enabling
object recognition, tracking, and safety warning.

Deep learning object recognition networks are currently a popular research topic and
are widely employed in intelligent monitoring systems. Recognition networks can gener-
ally be classified into two categories: two-stage and single-stage targets. The two-stage [1]
network achieves object detection via region box selection and position regression, which
obtains high accuracy through tedious calculations and time consumption. For instance,
Li et al. [2] used fast R-CNN to improve the detection of pedestrians and He et al. [3] used
Mask R-CNN to enhance the detection of rail transit obstacles. Single-stage [4] networks
directly extract the features by regression strategies and determine the location of the target.
The representative algorithms are YOLO [5–8], RFBNet [9], and SSD [10–13]. In applica-
tion, Lu [14] presented a method for detecting pedestrians using multiscale convolutional
features and a three-layer pyramidal network to enhance pedestrian-target detection accu-
racy. Meanwhile, Lin [15] introduced a multi-scale feature cross-layer to improve YOLOv5
and enable the accurate identification of ultra-small targets in remote sensing images.
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Lin [16] proposed a traffic sign detection approach that utilized a lightweight multiscale
feature fusion network, which significantly enhanced the detection performance of small
targets and delivered better real-time results. Yang [17] proposed a YOLO network target
tracking algorithm based on multi-feature fusion to track and localize operators’ helmets.
Recently, Huang [18] utilized Alphapose with ResNet to achieve dressing detection for
power operators, which can play a vital role in regulating their attire.

Ultra Wide Band (UWB) positioning technology [19] utilizes high-frequency radio
pulses for triangulation positioning. It has the advantages of high accuracy, strong anti-
interference performance, stable performance, and low energy consumption. Therefore,
it is a popular choice for object positioning, indoor navigation, tracking, and surveillance
applications. Lin [20] proposed a drift-free visual SLAM technique for mobile robot lo-
calization by integrating UWB, which resulted in a significant reduction in the overall
drift error of robot navigation. Li [21] proposed a pseudo-GPS positioning system for
underground coal mines consisting of noisy UWB ranging to achieve robust and accurate
positioning estimation for CMR applications. Lee [22] proposed a marker-based hybrid
indoor positioning system (HIPS) that performs hybrid positioning by using marker im-
ages and inertial measurement unit data from smartphones, enabling accurate navigation
in subways.

The positioning of power maintenance vehicles and the state of the crank arm are the
main causes of safety accidents. Vehicle supervision relies on manual monitoring, and the
application of intelligent technology in vehicle monitoring is insufficient. Therefore, im-
proving vehicle monitoring by utilizing deep learning techniques and wireless positioning
technologies is an urgent problem.

This paper utilizes UWB to renew the location information of the power maintenance
vehicle in a three-dimensional model of the substation and to determine whether they
are within a prohibited area. Additionally, deep learning is employed to evaluate the
arm status of the vehicle in a safe area, thus creating a digital twin of the vehicle in the
three-dimensional substation model and facilitating safety monitoring. The innovative
work of this paper is as follows:

1. A chaotic particle swarm optimization TDOA/AOA algorithm is proposed to improve
the TDOA/AOA method in order to find the optimal method and improve positioning
accuracy with less UWB stations and antennas.

2. An improved YOLOv5 state recognition network for vehicle arms has been designed.
We used a long-edge definition method (LDM) and a circular smoothing labeling
(CSL) complex model to achieve state recognition of rotating arms. Additionally,
we introduced a CBAM attention mechanism to enhance feature extraction of the
network, while employing the SIoU loss function to reduce loss value and enhance
the nonlinear segmentation ability of the network. Comparative experimental results
demonstrate the superiority of our method in achieving state-of-the-art performance.

3. A three-dimensional digital twin monitoring system is designed; the location of the
vehicle and status of the arm are live updated in the twin monitoring system.

2. Digital Twinning Route

The three-dimensional model of a substation and vehicle is modeled and depicted
in Figure 1. The UWB and deep learning methods are employed separately to locate the
vehicle in the operational setting and evaluate the status of its arm. Virtual vehicle real-time
update via the location and status information in the 3D model. The overall route of the
system is shown in Figure 2.
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(a) (b) 

Figure 1. Electricity operation scene three-dimensional model. (a) Substation model, (b) 3D model of
maintenance vehicle.

 

Figure 2. Overall system roadmap.

2.1. CPSO + TDOA/AOA Algorithm

In UWB, the TDOA/AOA algorithm can improve the localization accuracy with less
base stations. It measures AOA parameters at the base station and TDOA parameters at the
mobile target to estimate target localization. Although positioning results can be obtained
by using only two base stations in the unobstructed environment, actual environments
are affected by non-line-of-sight propagation, multipath, and geometric accuracy, which
can cause location errors. To improve the positioning accuracy, this paper adopts chaotic
particle swarm algorithm to increase precision of TDOA/AOA.

Chaotic Particle Swarm Optimization (CPSO) is a combination of chaotic optimization
algorithm (COA) and particle swarm algorithm (PSA). CPSO can enhance the search ability
of particles and avoids falling into local optimal solutions. The proposed composite scheme
TDOA/AOA with CPSO optimizing is depicted in Figure 3.

When the particles of the traditional particle swarm algorithm search in a complex
environment, the flight directions all point to the global optimal solution. When one
of the particles finds a local optimal solution during the flight, the search speed of the
remaining particles will largely slow down to zero, causing the particles to fall into the
local optimal solution, i.e., premature defects. The Chaotic Particle Swarm Optimization
(CPSO) algorithm is a combination of chaotic optimization and particle swarm algorithm.
Chaotic optimization has the characteristics of randomness and convenience, which can
enhance the search ability of particles for targets at any position in space and avoid the
algorithm optimization process to fall into local optimal solutions.

There are various chaos models, mainly Logistic mapping model, the Henon mapping
model, and the Lorenz mapping model. Among them, the Logistic mapping model has a
simple structure and better ergodicity compared to other mapping models, and the Logistic
mapping model is used as the chaos model in this paper. The logistic mapping model is

Zi+1 = μZi
(

1 − Zi
)

i = 0, 1, 2, . . . . (1)
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where μ ∈ (2, 4] is the control parameter and the value of μ is proportional to the chaotic
occupancy ratio. Zi ∈ (0, 1) is the chaotic domain, capable of generating chaotic sequences
Z1, Z2, . . . , Zn.

 
Figure 3. Flowchart of chaotic particle swarm optimization location algorithm.

The iterative processes of the particle swarm algorithm to find the optimal solution
and the global optimal solution are

Vk
i = ωVk−1

i + c1r1(Pbi
− Xk−1

i ) + c2r2(Gbi
− Xk−1

i ), (2)

Xk
i = Xk−1

i + Vk−1
i . (3)

In Equations (2) and (3), i = 1, 2, . . . , N, N is the number of particles in the particle
swarm. As the value of N increases, the optimization ability of the algorithm gradually
improves, but when the value of N exceeds a certain threshold, the optimization ability no
longer improves and consumes more time. k is the number of current update iterations.
ω is the inertia weight coefficient, and the value of ω is isotropically correlated with the
global search ability of the particle and anisotropically correlated with the local search
ability, which is usually performed by the dynamic ω method. c1 and c2 are learning factors,
highlighting the proportion of “self-cognition” and “social experience” of particles. Usually,
c1 = c2 ∈ [0, 4]. When c1 = 0 the group diversity of the algorithm disappears and the
algorithm will fall into the local optimal solution. When c2 = 0, there is no information
exchange between particles in the algorithm, and the convergence rate of the algorithm
decreases. r1, r2 are random numbers in the range [0, 1]. Pbi

is the individual optimal
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position of the i-th particle, Gbi
is the global optimal position of the particle population at

the k − 1th iteration, and Vk
i and Xk

i are the velocity and position of particle i at the k-th
iteration, respectively.

The iterative process of the CPSO is based on the particle swarm algorithm and is
implemented as follows:

Firstly, related parameters are initialized and processed. r1 and r2 of Equation (2)
are set random values. The initial velocity and direction of each particle are irregular,
some positions will be missed in the search process, which cannot ensure ergodicity and
diversity. CPSO performs a chaotic mapping of the velocities and positions of each particle
in the initial stage, replacing r1 and r2 with the chaotic sequence formed by Equation (1) to
enhance to steadily search for the global optimal solution.

Secondly, update the particle parameters. According to Equation (3), the velocity
and position vector of each particle are updated iteratively, and the range of velocity is
[Vmin, Vmax], and the positions are [xmin, xmax] and [ymin, ymax]. The inertia weighting factor
ω is set dynamically. It is

ω = ωmax −
k(ωmax − ωmin)

kmax
. (4)

where ωmax and ωmin represent the maximum and minimum weight coefficients, respectively,
and k and kmax represent the current and maximum number of update iterations, respectively.

Thirdly, the fitness of each particle is calculated. The CPSO provides the search
direction for the particles by fitness function, and the value of the fitness is anisotropically
related to the particles to the function. In this paper, the fitness function is designed using
the target coordinates to be measured, and its expressions is

Fitness
(

x′, y′
)
= [(di1 − di + d1)

T(di1 − di + d1) +
σ2

ε

n2
β

(
β − arctan

(
y − y1

x − x1

))2
] (5)

where i = 2, 3, 4 . . . N, di1 denotes the distance difference between the target MS (x, y) to
be located and the base station BSi and BS1, di denotes the positioning distance error, nβ

denotes the AOA measurement noise, β is the observation angle between BS1 and MS, σ2
ε

is the variance of the AOA view measurement error.
Fourthly, the value of the historical fitness is updated, and it is judged whether the

particle with updated fitness is in stagnation. If the particle is in stagnation, its chaotic
perturbation is performed using Equation (1).

Finally, when the number of iterations reaches the maximum, the global optimal
position Gb corresponding to the smallest value of the fitness function is determined as the
optimal solution optimized by the algorithm. Otherwise, return to the second step and
continue the iterations.

2.2. YOLOv5-CSL for Vehicle Arm Recognition

A novel YOLOv5-based network for vehicle arms recognition is proposed. The net-
work uses long-edge definition method (LDM) and circular smooth label (CSL) to reduce
cross loss. HardSwish is implanted in the convolutional layer to improve the feature
extraction capability and CBAM built to improve recognition accuracy of the network.

2.2.1. YOLOv5-CSL with Attention Mechanism

The proposed network adopts R-YOLOv5 as backbone network to detect vehicle arm
and calculate arm angle. The structure of modified R-YOLOv5 is presented in Figure 4.
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Figure 4. The structure of YOLOv5-CSL with attention mechanism.

Where BottleneckCSP1_X: CSP1_X structure, BottleneckCSP2_X: CSP2_X structure,
SPPF: fast spatial pyramid pooling module, Upsample: upsampling module, Concat:
connection module, Conv: convolution module, Backbone: backbone network, Neck:
bottleneck network, Prediction: prediction module, CBAM: attention mechanism module.

The Backbone consists of the backbone network CSPDarkNet and the spatial pyramid
pooling SPPF for feature extraction. CSP1_X is applied to CSPDarkNet to enhance the
feature extraction ability of images. Compared with SPP, SPPF adds two CBS modules to en-
hance the training efficiency of the network. The structures are presented in Figures 5 and 6.

  

Figure 5. The structure of CSP1_X.

 

Figure 6. The structure of SPPF.

Where Conv: convolution module, BN: Batch Normalization structure, SiLU: ac-
tivation function, Resunit: residual module; add: tensor summation, Concat: tensor
stitching, CBS: consists of a two-dimensional convolution layer + a Bn layer + a SiLU
activation function.

Where MaxPool: maximum pooling, Cancat: tensor stitching, CBS: consists of a 2D
convolutional layer + a Bn layer + a SiLU activation function.

The Neck part consists of a feature pyramid network and a discriminator. cSP2_X
can enhance the feature fusion capability and make the network extract more detailed
features, and the structure is shown in Figure 7. The prediction part implements the object
detection function for three scales: large, medium, and small. The YOLOv5 network adds
180 angle classification channels in the prediction part to accomplish prediction of object
rotation angle.

Where CBS: composed of a 2D convolutional layer + a BN layer + a SiLU activation
function, Concat: tensor stitching.

The hybrid attention mechanism (CBAM) is a hybrid attention mechanism that com-
bines both channel attention and spatial attention, which is typically represented by the
convolutional block attention module [23]; the network structure is shown in Figure 8.
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Figure 7. Schematic diagram of CSP2_X structure.

Figure 8. CBAM structure diagram.

The channel attention module (CAM) performs pooling operation and compression in
spatial dimensions on the feature map F1 extracted from the backbone network to obtain
two dimensional 1 × 1 × C feature matrices, and then inputs them sequentially into the
Multi-Layer Perceptron [24] (MLP) network, which is processed by the MLP network,
and then inputs the Sigmoid activation function to acquire the channel attention module
associated feature parameter Mc. Finally, Mc is dotted with the feature map F1 to output
the feature map Fc of the CAM.

The spatial attention module (SAM) takes Fc as the new input feature map, pools it
and obtains two feature matrices with same channel, then splices them in channel order to
receive a new feature matrix, convolves them and inputs them into the Sigmoid activation
function to obtain the relevant feature parameters Ms of the SAM. Finally, Ms is then
combined with the feature map F2 and outputs the feature map of the whole CBAM by
performing the corresponding operation.

The CBAM integrates the advantages of CAM and SAM, focuses on both channel
features and spatial features, enhances the attention to important channels and focal regions
of images, and improves the feature expression capability of the network. CAM and SAM
in CBAM are both lightweight modules with fewer internal convolution operations, which
reduce the computational effort and improve the performance of the network with a small
increase in the number of network parameters.

2.2.2. Long-Edge Definition Method with Circular Smoothing Label

The vehicle arm has a large aspect ratio and multiple rotation angle. Data labeling
with the rotating method can reduce the redundant information, improve the detection
accuracy, and increase training efficiency of the network; however, Exchangability of Edges
(EoE) [25] and Periodicity of Angle (PoA) [26] problems occur during network training to
reduce recognition accuracy.

In this study, we adopted a combination of LDM and CSL to solve the boundary
problem of θ. Where LDM tackles the edge variation problem, and CSL settles the angle
period problem.

LDM is a five-parameter labeling method, which is a novel angle definition method
and avoids the edge exchangeability. LDM describes target as ([x, y, w, h, θ]), (x, y) is
the rectangular center coordinate of the rotated box, w and h are the width and length of
the rectangular box, respectively. θ is the angle between the length and the x-axis, where
θ ∈ [−90◦,90◦). The LDM is demonstrated in Figure 9:
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Figure 9. Long-side definition method.

LDM can eliminate EoE. CSL transforms the regression problem of θ into a classi-
fication problem, divides angles in different ranges and categories, and discretizes the
continuous problem to avoid PoA. However, the discretization process inevitably generates
an accuracy loss. To evaluate the loss, the maximum loss and the average loss of accuracy
(obeying uniform distribution) are calculated by the following formula:

Max(loss) = ω/2, (6)

E(loss) =
∫ b

a
x × 1

b − a
dx =

∫ ω/2

0
x × 1

ω/2 − 0
dx =ω/4. (7)

where ω is the width of the rectangular box and the values of a, b are in the interval [−π
2 , π

2 ].
The minimum precision of angle range is 1◦, and the maximum loss and expected

loss were separately set to 0.50 and 0.25. When two rotating rectangular frames with a
1:9 aspect ratio were used for the test, the intersection ratio of the two rotating rectangular
frames decreased by 0.05 and 0.02, the accuracy loss of the method can be acceptable.

In order to make the classification, loss can be used to predict the distance between the
result and the angle label, a One-hot coding method was designed, assuming that the real
angle label is 0◦, and the accuracy loss values were the same when the angle alter 1◦ to 90◦.
The One-hot coding method is in Figure 10. Based on One-hot label, CSL was introduced,
and the CSL is presented in Figure 11.

 
Figure 10. One-hot Lable schematic diagram.

x

Boundary

 
Figure 11. Circular Smooth Label schematic diagram.
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The expressions for CSL are

CSL(x) =
{

g(x) θ − r < x < θ + r
0 otherwise

, (8)

s.t.⎧⎪⎪⎨
⎪⎪⎩

g(x) = g(x + kT), k ∈ N
0 ≤ g(θ + ε) = g(θ − ε) ≤ 1, |ε| < r

0 ≤ g(θ ± ε) ≤ g(θ ± ς) ≤ 1, |ς| < |ε| < r
g(θ) = 1

. (9)

where g(x) is the window function with periodicity, monotonicity and symmetry. The
radius r determines the size of the window. In this study, the Gaussian function is used as
the window function with a radius of 6. The functional expression of g(x) is as following:

g(x) = ae−
(x−b)2

2c2 . (10)

where a, b, and c are constants, and in this paper, a is set to 1, b to 0, c to 4, and x is the
angle parameter.

2.2.3. HardSwish Convolution Module

In YOLOv5 network, Leaky ReLU and SiLU are frequently used activation functions.
Leaky ReLU is updated form of Rectified Linear Unit (ReLU), which introduces a fixed
slope to solve the problem of fixed parameters caused by Dead ReLU, but its performance
is unstable. Sigmoid-weighted Linear Unit (SiLU) and HardSwish are other forms of Swish
activation function. Swish function has no maximum value but a minimum value with
smoothness and non-monotonicity. Its functions are

Swish(x) = x · Sigmoid(βx), (11)

Sigmoid(βx) =
1

1 + exp(−βx)
. (12)

When the β is 1, the Swish function becomes the SiLU function, and it has better
performance and effect than the Leaky ReLU.

HardSwish uses a strong nonlinear function and improves the accuracy of Swish. It is

HardSwish(x) =

⎧⎪⎨
⎪⎩

0 x ≤ −3
x x ≥ 3

x(x+3)
6 others

. (13)

HardSwish has a stronger nonlinear capability. The SiLU of R-YOLOv5 is replaced by
the HardSwish, and the improved network structure is shown in Figure 12.

Figure 12. Schematic diagram of the improved convolution module.

3. Maintenance Vehicle State Identification and Three-Dimensional Reproduction

3.1. CPSO + TDOA/AOA Positioning Experiment

Taylor [27], Chan [28], TDOA/AOA [29], and PSO + TDOA/AOA [30] algorithms were
utilized to conduct experimental comparisons. As presented in Figure 13, the experimental
and computational results were compared in different environments, including various
stations, communication radii, and AOA measurement errors.
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(a) (b) (c) 

Figure 13. Influence of various factors. (a) Shows the Root Mean Square Error (RMSE) of different
algorithms with different number of base stations within a radius 3000 m. (b) Shows the test results
of different algorithms with a radius range of 500 to 3000 m and four base stations. (c) Shows the
variance range of TDOA observation error caused by AOA errors of different algorithms under the
same experimental conditions. From the figure, it can be seen that the TDOA/AOA optimized by the
proposed CPSO has the best performance among all the algorithms.

The results of using the positioning algorithm designed in this paper to locate the
power maintenance vehicle in the three-dimensional model of the substation with UWB
positioning equipment are shown in Figure 14. Figure 14a,b represent the positioning
results of the power maintenance vehicle at different operating positions, and it can be
seen from the figures that the algorithm designed in this paper can accurately locate the
maintenance vehicle.

 

Figure 14. Positioning results map. (a,b) represent the results of the positioning of the power
maintenance vehicle at different working positions, respectively.

3.2. Experiment of Crank Arm State Recognition
3.2.1. Experimental Environment and Evaluation Criteria

The experimental platform is PyCharm and Microsoft visual studio 2017, the computer
operating system is Windows 10, the graphics card model is a NVIDIA TITAN XP with 12
G of video memory, and the deep learning framework is Pytorch.

Objective evaluation index the average precision (AP) of a single category, the mean
average precision (mAP), Frames Per Second (FPS), and error detection rate (EDR) are used
to evaluate metrics for model evaluation.

3.2.2. Experimental Data and Data Processing

We did not find any publicly available data sets related to the power maintenance
vehicle after reviewing the relevant literature, so this paper uses a homemade dataset
approach for the experiments. Firstly, the robotic arms of the power maintenance vehicle
are calibrated in categories, and the upper and lower robotic arms are calibrated as arma
and armb, respectively, as shown in Figure 15.
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Figure 15. Mechanical arm calibration diagram.

Since the rotating target detection algorithm used in this paper refers to the target
detection algorithm in the field of remote sensing, the homemade dataset format refers
to the annotation format of the remote sensing target detection dataset DOTA, and the
RoLableImg annotation software is used to annotate the mechanical arm of the power
maintenance vehicle in the dataset, and the annotation process is described in Figure 16.

 

Figure 16. Mechanical arm annotation diagram.

The labeled results are saved and an .xml file is generated, which contains information
about the position of the rotated rectangular box, converting the .xml file into a .txt file in
the Dataset for Object Detection (DOTA) dataset.

In this paper, the homemade dataset has a total of 1200 images of curved-arm power
maintenance vehicles, and the training set, validation set, and test set are set according to
the ratio of 4:1:1. In the process of training a convolutional neural network, if the number of
samples in the training set is small, the model obtained from the network training is largely
poorly generalized. Therefore, although the sample numbers of category arma and armb
in the dataset are basically in equilibrium, in order to enhance the diversity of the dataset
and prevent the overfitting problem caused by too little data, we augmented the training
and validation sets in the dataset by enlarging, cropping, and adjusting the contrast of the
original images, thereby increasing the diversity of the dataset. The numbers of training
set and validation set images before enhancement are 800 and 200, respectively, and the
numbers of training set and validation set images after enhancement are 2979 and 762,
respectively, and the enhanced images are presented in Figure 17.
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(a) (b) (c) 

Figure 17. Data enhancement result diagram. (a) Original image, (b,c) Image enhancement.

3.2.3. Experimental Pretreatment

During training, the size of the input image was set to 608 × 608, the training period
was 300 epochs, the initial value of the learning rate was 0.001, the optimizer selects Adam,
the number of images per batch iteration batch size was setup to 16, the angle loss parameter
angle loss was 0.8, angle BCELoss positive weight was set to 1.0. The confidence value
threshold was 0.55 for all the inferred images for the experimental algorithm, and the IoU
threshold was 0.45 for the NMS operation.

3.2.4. Experimental Comparison

YOLOv5-CSL-CBAM to perform the recognition. The trained network models are
used for recognizing arms, and the resulting experimental data results are shown in Table 1.

Table 1. Horizontal comparison experiment results.

Network Model
AP/%

mAP/% Parameters/MB FPS Perror/%
arma armb

R-Faster-RCNN 78.62 79.47 79.18 314.0 8.6 38.0
R-Reppoints 87.70 66.60 75.65 280.0 14.1 74.4

RoI Transformer 81.12 80.76 80.94 421.0 6.2 59.2
R-YOLOv5-based 80.55 79.47 80.01 34.5 33.2 21.2
R-YOLOv7-based 88.78 80.25 84.01 42.5 30.5 12.9

YOLOv5-CSL-CBAM 89.88 80.20 85.04 35.2 32.8 13.6

In experiments, the upper and lower vehicle arms were calibrated as arma and armb.
Table 1 shows that YOLOv5-CSL-CBAM has higher AP values for target arma and armb,
with 89.88% and 80.20%, respectively, its mAP value is higher than R-Faster-RCNN, R-
Reppoints, RoI Transformer, R-YOLOv5-Based, and R-YOLOv7-based by 5.86%, 9.39%,
4.10%, 5.03%, and 1.03%. This suggests that YOLOv5-CSL-CBAM has the best recognition
performance for vehicle arm. By examining the parameter quantities of each network
in Table 1, it becomes clear that YOLOv5-CSL-CBAM’s parameter quantity is 35.2 MB.
Compared to R-YOLOv5-Based network, there is a slight increase in the parameter quanti-
ties, yet its complexity is lower than R-YOLOv7-based network. The network’s detection
accuracy has improved, and the inference speed has reached 32.8 FPS, which is sufficient
for real-time detection.

The error detection rate of YOLOv5-CSL-CBAM is 13.6%, whereas the compared
networks have an error detection rate of more than 50%. Therefore, based on the above data,
it is evident that the proposed YOLOv5 vehicle arm state recognition network can accurately
recognize vehicle arms in substations and fulfill the demands of real-time detection.

3.2.5. Ablation Experiments

To further validate the efficiency of our proposed network, we performed ablation
experiments to analyze the longitudinal performance. We pruned and modified the model
using HardSwish, resulting in R-YOLOv5-HardSwish, employed SIoU loss function to
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produce R-YOLOv5-SIoU and integrated CBAM attention mechanism to create R-YOLOv5-
CBAM. Table 2 presents the findings of these ablation experiments.

Table 2. Ablation experiment results.

Network Model HardSwish SIoU CBAM
AP/%

mAP/%
arma armb

R-YOLOv5-Based × × × 80.55 79.47 80.01
R-YOLOv5-HardSwish

√ × × 89.30 79.01 84.16
R-YOLOv5-SIoU × √ × 89.50 80.41 84.96

R-YOLOv5-CBAM × × √
89.79 79.98 84.88

YOLOv5-CSL-CBAM
√ √ √

89.88 80.20 85.04

It shows that the R-YOLOv5-HardSwish network improved by 4.15% compared to the
original network, indicating that the HardSwish can enhance the network’s nonlinearity.
SIoU loss function can lessen the network training loss values and improve network
performance, resulting in mAP of R-YOLOv5-SIoU increased by 4.85%. By introducing
CBAM into the original network, the AP values of the arms in the R-YOLOv5-CBAM
network, respectively, increased by 9.24% and 0.51%, while the mAP increased by 4.87%,
indicating that CBAM can effectively extract image feature information and upgrade the
network’s feature extraction capability. Compared to the original network, the mAP value
of YOLOv5-CSL-CBAM increased by 5.03%. Thus, we can conclude that the YOLOv5-CSL-
CBAM network designed in this paper can accurately detect vehicle arms.

3.3. Vehicle Arm Angle Measurement

To further test the recognition accuracy of vehicle arm angle, the RoLableImg an-
notation software was used to annotate the vehicle arm, and the vehicle arm angles are
predicted by different network models. One of the test pictures is shown in Figure 18 and
prediction results are presented in Table 3.

 

Figure 18. Sample Chart of Angle Prediction.

Table 3. Prediction results from the perspective of each model.

Network Model
θ Predicted Value/o θ Prediction Error/o Average

Prediction Error/oθarma θarmb Δθarma Δθarmb

R-Faster-RCNN 5 28 5 9 7.0
R-Reppoints 12 53 2 16 9.0

RoI Transformer 8 45 2 8 5.0
R-YOLOv5-Based 10 35 0 2 1.0
R-YOLOv7-based 9 36 1 1 1.0

YOLOv5-CSL-CBAM 10 38 0 1 0.5

It is starkly reflected in Table 3, where the average error of the vehicle arm angle is
0.5 predicted by YOLOv5-CSL-CBAM. Compared with other networks, the angle prediction
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error is reduced by 0.5, 0.5, 4.5, 8.5, and 6.5, respectively. These findings demonstrate that
the proposed network achieves the highest prediction accuracy.

3.4. Three-Dimensional Twin Implementation of the Vehicle

The vehicle safety operation monitoring and twin system consists of server, cameras,
UWB base stations, and tags. In Figure 19, the cameras are applied to obtain images of
the vehicle operation. The UWB achieved the location of the vehicle. In the 3D scene, the
server completes the real-time presentation of the location and arm state of vehicle.

Figure 19. Electric power maintenance vehicle safety operation monitoring system.

In the 3D model of the substation, the results of the positioning of the CPSO + TDOA/AOA
method are in Figure 20. From the figure, it can be seen that the positioning algorithm
designed in this paper achieves the real-time and accurate presentation of the position
information of the vehicle. Figure 20a shows the result of the initial position positioning of
the power maintenance vehicle, and Figure 20b shows the positioning result map after the
vehicle position is changed and updated in real time in the 3D twin system.

  
(a) (b) 

Figure 20. Positioning result diagram real-time positioning results. (a,b) are the results of the initial
position positioning of the maintenance vehicle and the positioning results after the real-time change
of the vehicle position in the three-dimensional twin system, respectively.

In order to verify the reconfiguration of the power maintenance vehicle in the sub-
station 3D model, the updated results of the operation status of the power maintenance
vehicle in the substation 3D model in the actual power operation scenario are shown in
Figure 21. Figure 21a shows the actual scene diagram of the operation process of the
maintenance vehicle, and Figure 21b shows the updated results of the operation status of
the maintenance vehicle in the 3D model.

As can be seen from Figure 21, the power maintenance vehicle in the actual operation
power operation scene can realize the operation state update in the substation 3D model,
and the operation state of the maintenance vehicle in the actual operation power operation
scene and the substation 3D model is more matching. Therefore, the algorithm proposed in
this paper successfully realizes the real-time twinning of vehicles in the 3D system.
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(a) (b)
Figure 21. Scene diagram of electric power maintenance vehicle. (a,b) are the actual scene diagram
of the maintenance vehicle operation process and the update results of the maintenance vehicle
operation state in the three-dimensional model.

4. Conclusions

This paper introduces a safety monitoring and digital twin scheme for power mainte-
nance vehicles. The scheme employs UWB technology to acquire vehicle position informa-
tion and machine vision technology to recognize the arm state of the vehicle, then update
the status of vehicles in a 3D scene with the acquired information. In the locating algo-
rithm, CPSO was applied to optimize global search for the initial position of the target and
eliminate interference problems in the TDOA/AOA algorithm and improve positioning
accuracy. CSL, HardSwish, and CBAM models are applied to YOLOv5 network to increase
the accuracy of vehicle arm status. In the substation three-dimensional model, the status of
virtual vehicle is real-time update and safety monitored.

5. Discussion

Our designed positioning algorithm and robotic arm state recognition algorithm have
better positioning effect and recognition effect. However, there are still some shortcom-
ings in the process of monitoring the operation safety of the electric power maintenance
vehicle. Although the detection of the mechanical arm state recognition network of the
electric power maintenance vehicle is more accurate and the detection speed can meet the
requirements of real-time detection, there is still a large space for improving the detection
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speed. In the future, the network can be considered for light weight processing to further
improve the detection speed while maintaining the detection accuracy.
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Abstract: To address the different forms and sizes of bearing collar surface defects, uneven dis-
tribution of defect positions, and complex backgrounds, we propose ESD-YOLOv5, an improved
algorithm for bearing collar full-surface defect detection. First, a hybrid attention module, ECCA,
was constructed by combining an efficient channel attention (ECA) mechanism and a coordinate
attention (CA) mechanism, which was introduced into the YOLOv5 backbone network to enhance
the localization ability of object features by the network. Second, the original neck was replaced by
the constructed Slim-neck, which reduces the model’s parameters and computational complexity
without sacrificing accuracy for object detection. Furthermore, the original head was replaced by
the decoupled head from YOLOX, which separates the classification and regression tasks for object
detection. Last, we constructed a dataset of defective bearing collars using images collected from
industrial sites and conducted extensive experiments. The results demonstrate that our proposed
ESD-YOLOv5 detection model achieved an mAP of 98.6% on our self-built dataset, which is a 2.3%
improvement over the YOLOv5 base model. Moreover, it outperformed mainstream one-stage object
detection algorithms. Additionally, the bearing collar surface defect detection system developed
based on our proposed method has been successfully applied in the industrial domain for bearing
collar inspection.

Keywords: convolutional neural network; ESD-YOLOv5; bearing collar; defect detection

1. Introduction

Bearings are an important component in mechanical equipment that mainly support
the rotation of mechanical components, reduce the friction coefficient during movement,
and ensure the accuracy of rotation. The quality of bearings will significantly affect the
stability of equipment operation. In the production process, bearings are inevitably affected
by factors such as raw materials, processing technology, processing equipment, and external
conditions, leading to defects. These defects can result in reduced service life of the bearings
and even mechanical equipment failure. Therefore, it is necessary to conduct quality
inspections on bearings before they leave the factory.

Currently, defect detection methods are mainly divided into traditional machine vi-
sion detection methods and deep-learning-based detection methods. Traditional machine
vision detection methods rely on manually extracting defect features and require designing
corresponding detection methods for different types of bearing defects. However, bearing
defects are diverse in terms of their types, sizes, shapes, and positions, and therefore,
manually extracted features cannot adapt to all defects. Deep-learning-based detection
algorithms have strong feature expression ability, generalization ability, and cross-scene
ability and thus have been widely applied in the industrial field for defect detection. Exam-
ples of such applications include detecting features of textiles [1], light guide plates [2], wire
and arc additive manufacturing [3], wind turbine gearbox gears [4], and road damage [5].
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The YOLOv5 [6] network is currently one of the most commonly used object detection
frameworks. It builds upon the foundation of YOLOv4 [7] and introduces several en-
hancements such as the SPPF (Spatial Pyramid Pooling Fast) module, the CIOU (Complete
Intersection over Union) loss function, and adaptive anchor boxes. These advancements
contribute to improved detection accuracy and efficiency. YOLOv6 [8] and YOLOv7 [9],
on the other hand, focus more on efficiency improvements. Considering the overall per-
formance, we have selected YOLOv5 as the most suitable choice for defect detection in
bearing collars. Its combination of improved detection accuracy and efficiency aligns well
with the requirements of our study. However, direct use of the YOLOv5 algorithm to
identify bearing collar defects does not yield satisfactory results, mainly because bearing
collar images have complex backgrounds and a wide variety of defect types, shapes, and
sizes. Based on the surface optical characteristics and imaging features of bearing collar
defects, as well as the requirements of industrial inspection, we propose an improved
YOLOv5-based algorithm for detecting surface defects on bearing collars. Based on the
three proposed improvements (ECCA, Slim-neck, and Decoupled head), we have named
this model ESD-YOLOv5. Additionally, a detection system for surface defects on bearing
collars was developed. The primary contributions of this study are listed as follows:

(1) A hybrid attention mechanism ECCA module was constructed by combining the
efficient channel attention mechanism (ECA) [10] and coordinate attention mechanism
(CA) [11], which was integrated into the backbone network of YOLOv5 to enhance
the feature extraction capability of the network.

(2) The Slim-neck module [12], which combines GSConv and VoVGSCSP, was proposed
to replace the Conv and C3 modules in the neck network of YOLOv5. This can
effectively reduce the number of parameters while improving the detection capability
for defects.

(3) The decoupled head from YOLOX [13] was utilized to replace the original head in
order to separate the regression and classification tasks and improve the network’s
ability to distinguish among the defect categories.

With these three improvements, the ESD-YOLOv5 model achieved an mAP of 98.6% on
our custom dataset, which is a 2.3% improvement compared to the original YOLOv5 model.
Furthermore, the ESD-YOLOv5 model demonstrated superior performance compared to
other mainstream one-stage object detection algorithms. In our work, the ESD-YOLOv5
model exhibited high detection accuracy, precise classification, and a low omission rate,
making it highly effective for conducting detection tasks.

The paper is organized as follows: Section 2 reviews the related work; Section 3
presents the composition of the bearing collar defect detection system; Section 4 introduces
the network structure of the detection algorithm; Section 5 describes the dataset and
experiments; and Section 6 concludes the work presented in this paper.

2. Related Work

2.1. Object Detection Algorithms

Object detection algorithms are divided into one-stage algorithms and two-stage
algorithms. Two-stage algorithms generate prediction boxes and then return the location
and category information of the object in the prediction box. Representative algorithms
include RCNN [14], Fast-RCNN [15], Faster-RCNN [16], etc. One-stage algorithms directly
return the position and class information of the targets without generating prediction boxes.
Representative algorithms include SSD [17] and YOLO series [6–9,13,18–21]. Generally,
two-stage detection algorithms have higher accuracy than one-stage algorithms. However,
their detection speed is slower, while real-time detection is usually required in industrial
settings. Therefore, one-stage algorithms are more widely employed in industry.

Typically, an object detection network consists of three main components: the back-
bone, neck, and head. The backbone is responsible for feature extraction, while the neck
fuses the features extracted by the backbone at different scales. The head is responsible
for predicting the location and category information of the objects. Commonly employed
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backbones include VGG [22], ResNet [23], and DarkNet [20], which are based on standard
convolutions and typically have many parameters and computational requirements. To
address this issue, lightweight backbones, such as MobileNet [24–26], ShuffleNet [27,28],
and GhostNet [29,30], have been proposed. For the neck, there are two main structures for
feature fusion and enhancement: the feature pyramid network (FPN) [31] and the path
aggregation network (PAN) [32]. The choice of head depends on whether the model uses
anchor-based or anchor-free methods for object detection. The former generally achieves
higher accuracy, while the latter is more flexible. In addition, attention mechanism modules,
such as SE [33], CBAM [34], ECA [10], and CA [11], can be incorporated to enhance the
performance of the network. Moreover, some semi-supervised learning and unsupervised
learning methods such as Consistent Teacher [35], Efficient Teacher [36], and MGLNN [37]
have also been of great assistance in the field of computer vision.

2.2. Bearing Collar Defect Detection

In recent years, deep learning has gained widespread adoption across various indus-
trial domains. However, there remains a limited body of research on detecting surface
defects of bearings using deep learning techniques. For instance, Zheng et al. [38] proposed
a bearing cap defect detection method based on an improved YOLOv3 algorithm. This
method incorporates attention mechanisms, multiscale feature fusion, anchor box cluster-
ing, and other techniques to enhance the detection performance and robustness of bearing
cap defects. The experimental results showed that the proposed method achieved an
mAP of 69.74%, which is 16.31%, 13.4%, 13%, 10.9%, and 7.2% more than that of YOLOv3,
EfficientDet-D2, YOLOv5, YOLOv4, and PP-YOLO, respectively. However, the confidence
level for certain target categories in this method still requires improvement. Lei et al. [39]
proposed a segmented embedding rapid defect detection method (SERDD) for bearing
surface defects. This method achieved bidirectional fusion of image processing and de-
fect detection, resulting in an accuracy of 81.13% for bearing surface character detection
and 100% accuracy for bearing surface defect detection. Nonetheless, this method is only
effective for a single type of bearing, and further optimization is needed. Xu et al. [40]
proposed an unsupervised neural network based on autoencoder networks, which use
U-net to create an automatic encoder network for predicting outputs. Compared with
the supervised ResNet, this method performed better in detecting defects with limited
training samples. The experimental results showed that the method achieved an AUC of
96.23%, outperforming ResNet’s 85.67%. However, since the unsupervised neural network
is based on the autoencoder network and uses the gradient of unannotated data as labels,
it may introduce noise or inaccurate information. Liu et al. [41] employed two lighting
modes (coaxial light and multisource light) to capture images of bearings, processed the
images using traditional algorithms, and utilized neural networks to detect four common
types of defects. The experimental results showed a detection accuracy of 98.75% with an
average time consumption of detection of 2.11 s/bearing. However, there may be more
types and forms of defects on the surfaces of bearings, so the generalization ability and
robustness of the system need to be improved. Fu et al. [42] proposed a two-stage detection
method based on convolutional neural networks (CNNs) and improved the segmentation
network using attention and spatial pyramid pooling techniques. The experimental results
demonstrated an Intersection over Union (IoU) of 85.81%, which is 2.01% higher than the
original model. However, the speed of the two-stage detection method was slower.

Although the aforementioned methods have achieved a certain degree of automa-
tion and intelligence in bearing surface defect detection, there still exist some gaps and
challenges, such as: (1) the lack of large-scale, diverse, and high-quality bearing surface
defect image datasets, leading to issues of insufficient, imbalanced, and non-representative
training data; (2) the absence of a universal bearing surface defect detection algorithm,
resulting in the problem of algorithm instability under different types of defects, working
conditions, and lighting conditions; and (3) the lack of efficient and practical bearing sur-
face defect detection systems, leading to limitations in real-time capability and accuracy,
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which cannot meet the demands of industrial production. Therefore, in the future, the field
of bearing surface defect detection requires in-depth research and innovation from three
aspects, data, algorithms, and systems, to elevate the level and application value of bearing
surface defect detection.

3. Bearing Collar Defect Detection System

3.1. Bearing Collar Defect Detection Device

The bearing collar defect visual detection device that was designed and developed in
this study is shown in Figure 1. The device mainly consists of three parts: a mechanical
transmission system, an image acquisition system, and an image processing system. The
mechanical transmission system mainly consists of a frame, clamp, and cylinder, to achieve
the movement and flipping of the bearing. The image acquisition system consists of
three area scan cameras, one line scan camera, and multiple angled light sources, which
capture images of the bearing and its defects. The image processing system consists of an
industrial computer, detection system software, and other components to achieve accurate
and real-time detection of various defects of the bearing collar.

 
Figure 1. Bearing collar defect detection device.

3.2. Bearing Collar Defects Imaging Analysis

In this study, the image resolution of the area scan cameras was 5472 × 3648 and that
of the line scan camera was 2048 × 10,000. The network’s detection ability greatly decreases
with excessively high resolutions. Therefore, a sliding window with a size of 640 × 640
and a stride of 0.85 was applied to crop the original image into small images for training
and detection. As shown in Figure 2, bearing collar defects can be roughly divided into
thread, black spot, wear, dent, and scratch defects.
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Figure 2. Bearing collar images of different types of defects. (a) Thread; (b) black spot; (c) wear;
(d) dent; (e) scratch defects.

3.2.1. Bearing Collar Defect Imaging Features

(1) Thread

Thread defects, as shown in Figure 2a, are mainly caused by equipment failure or
improper bearing collar placement during the lathe machining process. These defects
usually appear on the end face and inner side of the bearing collar, manifesting as dense
black curves with prominent features.

(2) Black spot

Black spot defects, as shown in Figure 2b, are mainly caused by missing material or
rust during the bearing collar forging process. These defects appear on all four surfaces
of the bearing collar, with varying sizes and shapes, and are easily confused with the
black background.

(3) Wear

Wear defects, as shown in Figure 2c, are mainly caused by the reduction in the bearing
collar surface gloss due to friction. They appear on the end face and outer side of the
bearing collar and vary greatly in size, shape, and color.

(4) Dent

Dent defects, as shown in Figure 2d, are dents at the edges of the bearing collar,
typically appearing on the end face and with relatively small dimensions.

(5) Scratch

Scratch defects, as shown in Figure 2e, are mainly caused by the improper installation
of the bearing collar, which leads to collisions between the bearing and other objects. These
defects usually appear on the end face and the outer side of the bearing collar, and their
sizes and shapes vary. Scratch defects are relatively shallow, but their longitudinal extent
can be longer than that of other types of defects.

3.2.2. Difficulties of Bearing Collar Defect Detection

Based on the imaging characteristics and detection requirements of bearing collar
defects, there are several main challenges in defect detection:

(1) As the bearing collar is ring-shaped, in this paper, sample images were obtained using
a sliding window approach, which produced a somewhat complex background.

(2) Dust and oil stains can appear on the surface of the bearing collar, and their imaging
characteristics are very similar to those of defects, which can easily lead to misjudgments.

(3) Black spot defects have the same color as the black background and can only be
distinguished by their shape, which can lead to misjudgments.

(4) The sizes of threads, black spots, and wear defects significantly differ, and the detec-
tion model needs to simultaneously have a good detection effect on multiscale targets.
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4. ESD-YOLOv5

4.1. Network Structure of ESD-YOLOv5

YOLOv5 is an object detection network that is composed of three main components:
a backbone, neck, and head. As shown in Figure 3, CSPDarknet53 possesses advantages
such as being lightweight, efficiency, and multi-scale adaptability, making it suitable for
various object detection tasks in different scenarios. Therefore, we select CSPDarknet53
as the backbone network to extract feature information from input images. As shown
in Table 1, the backbone network performs five down-sampling operations on the input
image. The down-sampling module CBS consists of convolution, batch normalization, and
the SiLU activation function. The C3 module is mainly utilized for feature extraction and
is a type of CSP (Cross Stage Partial) structure that is composed of three down-sampling
modules (CBS) and multiple bottleneck modules. The SPPF is a spatial pyramid pooling
module that performs max pooling with different kernel sizes to increase the network’s
receptive field and combines the features for fusion. The neck of YOLOv5 adopts an FPN +
PAN structure, in which the FPN (feature pyramid network) layer passes strong semantic
features from top to bottom, while the PAN (path aggregation network) layer passes strong
localization features from bottom to top. Feature aggregation is performed on different
detection layers from different backbone layers to enhance the feature extraction capability.
The head of YOLOv5, which is a fully convolutional network, was inherited from YOLOv3
and can output three sets of predictions at different scales, each containing the position,
confidence, and class of the detected objects. In addition, YOLOv5 can be divided into four
versions (YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) based on the model’s depth
and width. Generally, larger models tend to achieve higher accuracy, but at the expense
of a slower speed. In this paper, we have selected YOLOv5s, which is the fastest version,
as the base model for improvement. The YOLOv5 backbone network sacrifices some
feature extraction ability, resulting in poor performance in detecting small objects. The
computation and memory consumption of the neck structure are large, leading to a decrease
in the inference speed of the model. The head section needs to simultaneously predict both
regression tasks and classification tasks, which can reduce the convergence speed of the
loss function. Therefore, we propose three improvements to the YOLOv5 architecture; the
improved network structure is shown in Figure 3. The ECCA module is a hybrid attention
mechanism proposed in this study that integrates the ECA and CA mechanisms to enable
the network to focus more on channel and spatial information of features. The CBS module
in the neck structure was replaced with GSConv, and the C3 module was replaced with
VoVGSCSP. GSConv has a lower computational cost and produces better results than
standard convolution in terms of computation. The head of YOLOv5 is replaced with the
decoupled head from YOLOX, which separates the classification and regression tasks and
significantly accelerates the convergence of the loss function.

Table 1. The detailed structure of backbone.

Type Size Stride Filters Output

Convolutional 6 × 6 2 64 320 × 320 × 32

Convolutional 3 × 3 2 128 160 × 160 × 64

C3 - - 128 160 × 160 × 64

Convolutional 3 × 3 2 256 80 × 80 × 128

C3 - - - 80 × 80 × 128

Convolutional 3 × 3 2 512 40 × 40 × 256

C3 - - 40 × 40 × 256

Convolutional 3 × 3 2 1024 20 × 20 × 512
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Table 1. Cont.

Type Size Stride Filters Output

C3 - - - 20 × 20 × 512

ECCA - - - 20 × 20 × 512

SPPF 5 × 5 - 1024 20 × 20 × 512

CBS CBS C3 CBS C3 CBS CBS SPPFC3 C3 ECCA GSConv
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Figure 3. Network structure of ESD-YOLOv5.

4.2. ECCA Module

The attention mechanism is essentially similar to the selective visual attention mecha-
nism of humans. The mechanism adjusts the weights of different regions of an image so that
we can focus more on important areas while disregarding irrelevant information. Attention
mechanisms have been proven to be effective in various computer vision tasks, such as
image classification and object detection. Therefore, incorporating attention mechanisms
can enable the network to focus more on defect regions. The function of the CA module is to
decompose the channel attention into two 1D-feature-encoding processes, which aggregate
features along the H and W spatial directions. This decomposition allows for capturing
remote dependency relationships along one spatial direction while preserving accurate
position information along the other spatial direction. Then, the generated feature maps
are separately encoded into a pair of direction-aware and position-sensitive attention maps,
which can be complementarily applied to the input feature map. The CA module takes
into account both channel relationships and positional information. The module captures
not only channel information but also direction-aware and position-sensitive information,
which enables the model to more accurately locate and recognize object areas. However,
because the CA module needs to simultaneously consider the channel and positional
information of the feature map, training may result in the loss of channel information.
As a lightweight channel attention module, the ECA module can capture cross-channel
interactions and achieve significant performance improvements. The ECCA module was
constructed by combining the CA and ECA modules. The ECA module is utilized to assist
in capturing channel information within the CA module, and the resulting ECCA module
was introduced into the backbone network of YOLOv5 to achieve better feature extraction.
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4.2.1. CA

The CA module is illustrated in Figure 4. First, global average pooling is applied along
the horizontal and vertical directions to obtain two separate position-sensitive feature maps,
where the result of vertical pooling is permuted to swap the second and third dimensions.
Second, the two feature maps are concatenated along the spatial dimension and encoded
with Conv, BN, and hardSwish to capture the spatial information in the vertical and
horizontal directions. Last, the two position-sensitive feature maps are separated and
weighted to be applied to the input feature map.

C×H×1

GAP
C×1×W

C×(H+W)×1

C×H×1 C×1×W

Input
C×H×W

Output

C×H×W

GAP
Concat

Con2d+BN+hardSwish

split

Con2d+
Sigmiod

Con2d+
Sigmiod

Figure 4. Structure of the CA module.

4.2.2. ECA

The structure of ECA is shown in Figure 5. First, the input feature map (C × H × W)
is globally average pooled (G × A × P) to obtain a C × 1 × 1 tensor. Second, fast one-
dimensional convolution with a kernel size of k is employed to capture cross-channel
interaction information, obtaining the weight values of each channel and generating a
C × 1 × 1 feature map through an activation function. Last, the feature map is multiplied
elementwise with the input feature map to obtain the final feature map. The ECA module
avoids dimensionality reduction by adding only few parameters. To better capture cross-
channel interactions, ECA considers each channel and its k adjacent ranges as key indicators.
The kernel size k indicates the coverage of the local cross-channel interactions in terms of
how many adjacent ranges participate in the attention calculation. The value of k can be
adaptively determined based on the number of channels, as shown in Equation (1):

k = φ(c) =
∣∣∣∣ log2(c)

r
+

b
r

∣∣∣∣
odd

(1)

where c is the number of channel dimensions, |t|odd is the nearest odd number of t, r is set
to 2, and b is set to 1.
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C×1×1C×H×W C×H×W

Input Output

Figure 5. Structure of ECA.

4.2.3. ECCA

The defects of bearing collars are complex and diverse and are often affected by
background interference. Some defects cannot be detected using the YOLOv5 model.
However, by incorporating attention mechanisms to focus on the features of the defect
region, the feature extraction capability of the defect detection network can be improved. In
this study, we combined the CA module and ECA module to construct the ECCA module,
which we added before the SPPF module in the YOLOV5 backbone network to enhance
the network’s feature extraction. The structure of ECCA is illustrated in Figure 6.

GAP

C×H×1
GAP

C×1×W
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C×(H+W)×1
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Con2d+
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C×H×1

Output

C×H×W

GAP

Con1d
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C×1×1

C×H×W

Input

C×1×W

Figure 6. Structure of the ECCA module.

The ECCA module weights the channel feature vectors extracted by ECA and applies
them to the two position-aware feature maps of the CA module. These steps are performed
to enhance the cross-channel interaction information obtained from the position-aware
feature maps and to improve the network’s performance, thereby strengthening the feature
extraction process.

4.3. Slim-Neck

In industrial projects, detection accuracy and inference requirements are typically
high. Usually, the higher the number of parameters of a model is, the higher the detection
accuracy. However, the corresponding detection speed may decrease. Therefore, we
introduce the lighter convolutional structure GSConv, which can reduce parameters and
computation complexity without sacrificing feature expression capability. The GSConv
module was embedded in the feature fusion stage to enable the new model to achieve better
performance with significantly fewer parameters. We did not use GSConv in the backbone
network because it would lead to deeper layers, which would increase the resistance to
spatial information flow and affect the inference speed.
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4.3.1. GSConv

Figure 7 shows the structure of the GSConv module. The structure of GSConv consists
of two parts: a standard convolution (SC) layer and depthwise separable convolution
(DSC) [43] layer. The SC layer is responsible for extracting high-level semantic information
from the feature map, while the DSC layer reduces the number of channels and com-
putational complexity of the feature map. The feature information extracted by these
two layers is then concatenated and passed through a channel shuffle operation to obtain
the output feature map. The channel shuffle operation is performed to rearrange channels
after grouped convolution, allowing information exchange between different groups and
improving the network’s performance and accuracy.

Figure 7. Structure of GSConv module.

The convolutional computation is usually defined by FLOPs (Floating Point Opera-
tions). Therefore, the time complexity of SC, DSC, and GSConv is expressed in terms of
FLOPs. Specifically, the time complexity of SC, DSC, and GSConv is denoted as follows:

TimeSC ∼ O(W·H·K1·K2·C1·C2) (2)

TimeDSC ∼ O(W·H·K1·K2·1·C2) (3)

TimeGSConv ∼ O
(

W·H·K1·K2·(C1 + 1)·C2

2

)
(4)

where W and H represent the width and height, respectively, of the feature map; K1 and K2
denote the sizes of the convolutional kernels; and C1 and C2 indicate the number of input
channels and number of output channels, respectively. These three equations indicate that
the time complexity of GSConv is between that of SC and that of DSC.

4.3.2. VoVGSCSP

Based on GSConv, we introduced the GS Bottleneck and VoVGSCSP modules. Figure 8
illustrates the structures of the GS bottleneck and VoVGSCSP modules. Compared with the
bottleneck and C3 modules used in YOLOv5, VoVGSCSP reduces the number of parameters
and computation by using group convolution and channel shuffling, thus improving
the lightweight nature of the model. Furthermore, the model’s accuracy is enhanced by
increasing the feature extraction capability and receptive field via multibranch convolution.
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Figure 8. Structure of the GS bottleneck and VoVGSCSP module.

4.3.3. Slim-Neck

The neck of YOLOv5 is a feature fusion network that merges feature maps of three
different scales extracted from the backbone network to obtain richer feature informa-
tion. To balance model accuracy and speed, we used a Slim-neck feature fusion network
composed of GSConv and VoVGSCSP. Figure 3 illustrates the network structure of the
Slim-neck. In comparison to the neck of YOLOv5, Slim-neck replaces the CBS and C3
modules with GSConv and VoVGSCSP. This replacement enables a reduction in parameters
and computational complexity, while simultaneously improving the speed and efficiency
of the model.

4.4. Decoupled Head

The head section is the detection part of YOLOv5. In the original YOLOv5 algorithm,
a coupled head is utilized, where, after feature fusion, the final detection head is directly
obtained by a convolutional layer. The detection head couples position, object, and class
information. In contrast, in this paper, we used the YOLOX decoupled head, which is
shown in Figure 9. The decoupled head structure consists of a 1 × 1 convolutional layer
that reduces the number of channels, followed by two parallel branches. The first branch is
responsible for classification, while the second branch is responsible for regression. The
output shape of the classification branch is H × W × C, and the regression branch is
further divided into two branches for position and object confidence, with output shapes
of H × W × 4 and H × W × 1, respectively. We still used an anchor-based detection
mechanism in this study, so each output needs to be multiplied by the number of anchor
boxes. As the decoupled head can separately extract classification and regression features,
avoiding interference between features, using a decoupled head can greatly accelerate the
convergence speed of the loss function during training.

Figure 9. Structure of the decoupled head.

4.5. K-Means Algorithm and Loss Function
4.5.1. K-Means Algorithm

YOLOv5 is an anchor-based object detection algorithm that uses anchor boxes to
predict the bounding boxes of objects. The shape and size of the anchor boxes have a
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significant impact on the detection performance, so it is necessary to perform clustering
analysis based on the characteristics of the dataset to obtain appropriate anchor boxes. The
K-means algorithm is an unsupervised clustering algorithm that can divide unlabeled data
into a certain number of different groups. The calculation steps are shown in Table 2.

Table 2. K-means calculation steps.

Step 1 K objects are randomly selected from the data as the initial cluster centers.

Step 2 The distance between each data object and the cluster center is computed, and the
data object is assigned to the cluster corresponding to the closest cluster center.

Step 3 The mean of data objects in each cluster is calculated to obtain new cluster centers.

Step 4 Steps 2 and 3 are repeated until the cluster centers no longer change or until the
maximum number of iterations is reached.

In the anchor calculation of YOLOv5, the bounding boxes are generally considered
2D points (width and height), and the K-means algorithm is used to cluster these points
to obtain K anchor boxes that best fit the size of the true boxes. Since YOLOv5 has three
different scales of feature maps, each scale of the feature map has three anchor boxes. Thus,
we chose to cluster nine anchor boxes. The sizes were (39, 39, 62, 122, 178, 76), (106, 244,
597, 58, 236, 202), and (178, 547, 478, 220, 354, 455), and the anchor boxes of different scales
correspond to different sizes of objects.

4.5.2. Loss Function

The loss function is used to measure the degree of closeness between the predicted
output of a neural network and the expected output. The smaller the loss function value
is, the closer the predicted output is to the expected output. The loss function utilized
in YOLOv5 consists of three parts: position loss, object loss, and classification loss. The
position loss is applied to measure the distance between the predicted position and the
expected position; the object loss represents the probability of the presence of an object,
usually a value between 0 and 1, with larger values indicating a higher probability; and the
classification loss represents the probability that the object belongs to a certain class. The
overall loss function is the weighted sum of the three aforementioned loss functions, as
shown in Equation (5):

Loss = wboxLbox + wobjLobj + wclsLcls (5)

where wbox, wobj, and wcls are 0.05, 0.5, and 1, respectively.
The position loss Lbox is defined as:

Lbox = 1 − IOU +
ρ2(A, B)

c2 + αν (6)

where IOU is the intersection over union between the prediction frame and the real frame,
and a larger IOU indicates that the real frame is closer to the prediction frame; ρ is the
Euclidean distance between the coordinates of the center point of the real box A and
the predicted box B; and c is the length of the diagonal of the smallest closed rectangle
containing the predicted and ground truth bounding boxes, which is utilized for distance
normalization. The weight coefficient α is used to balance the contribution of different loss
components, while ν is applied to measure the consistency of the aspect ratio between A
and B.

IOU is defined as:
IOU =

A ∩ B
A ∪ B

(7)

where A is the real box, B is the prediction box, A ∩ B is the intersection of A and B, and
A ∪ B is the union of A and B.

129



Electronics 2023, 12, 3446

α and ν are defined as follows:

α =
ν

1 − IOU + ν
(8)

ν =
4

π2

(
arctan

wB

hB − arctan
w
h

)2

(9)

In this study, both the object loss and classification loss are calculated using the binary
cross-entropy loss function, which is defined as follows:

Lcls = Lobj = − 1
n∑(yn × ln xn + (1 − yn)× ln(1 − xn)) (10)

where n represents the number of input samples, yn represents the true value of the target,
and xn represents the predicted value of the network.

5. Experimental Verification

5.1. Bearing Collar Surface Defect Dataset

The bearing collar defect dataset employed in this study was collected from an indus-
trial site, and the bearing collar surfaces that need to be inspected include the upper surface,
lower surface, inner surface, and outer surface. The upper, lower, and inner surfaces were
imaged using a planar camera with an image resolution of 5472 × 3648. The outer surface
was imaged using a linear camera with an image resolution of 2048 × 10,000. A total of
1000 defective bearing collar images were collected and cropped using a sliding window
with a size of 640 × 640 and a step size of 0.85. Defect images were then selected, and
the dataset was divided into five categories of defects—thread, dark spot, wear, dent, and
scratch—based on the features of the defect. Due to the differences in the number of each
defect type in actual production, to ensure the rationality of training and balance between
each type of defect, the quantity of each defect type was expanded. After expansion, the
total number of images was 4934, and the number of labels was 5358. The statistical data for
each type of defect after expansion are shown in Table 3. Based on the number of dataset
samples and training rationality, the samples of each type of defect were randomly divided
into a training set, validation set, and testing set at a ratio of 8:1:1.

Table 3. Expanded defect dataset.

Defect Thread Black Spot Wear Dent Scratch Total

Number 926 1152 1218 812 1250 5358

5.2. Experimental Setting

The hardware environment and software versions for the experiments are shown in
Table 4.

Table 4. Experimental environment.

Configurations

Operating system: Ubuntu 18.04
Hardware CPU: Intel(R) Xeon(R) Platinum 8358P

GPU: RTX A5000

Python: 3.9
Software CUDA: 11.1

Pytorch: 1.10.0

5.3. Performance Metrics

To verify the effectiveness of the ESD-YOLOV5 defect detection model, this paper
applied mean average precision (mAP), parameter quantity, computational complexity
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(FLOPs), and frames per second (FPS) as evaluation metrics. “Parameter quantity” refers
to the total number of trainable parameters in the model. These parameters are learned
during the training process to map input data to output results, including weights and
biases, among others. Parameter quantity is an important metric to measure the model’s
complexity and capacity. Generally, a higher number of parameters indicates a stronger
expressive power of the model, but it also means an increase in the computational resources
required for training and inference. FPS represents the number of images the object
detection network can process per second, and the larger the FPS is, the faster the network
processing speed.

The confusion matrix is shown in Table 5.

Table 5. Confusion matrix.

Real
Prediction Positive Negative

True TP FN

False FP TN

In Table 4, TP (true positive) represents the number of samples that are positive and
correctly predicted, FP (false positive) represents the number of samples that are negative
but predicted as positive, and FN (false negative) represents the number of samples that are
positive but predicted as negative. TN (true negative) represents the number of samples
that are negative and correctly predicted.

The precision and recall rates are calculated as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

The definitions are presented as follows:

AP =
∫ 1

0
P(R)dR (13)

mAP =
∑c

n=0 AP(C)
C

(14)

where AP is the area under the (P–R curve) formed by the precision and recall and mAP
represents the average value of AP for each category, which is used to measure the detection
performance of the network model for all categories.

5.4. Ablation Experiments

In this study, we made three improvements to YOLOv5. To verify the effectiveness
of each improvement as well as the combination of the three improvements, ablation
experiments were conducted. The results are shown in Table 6.

As shown in Table 6, the mAP of YOLOv5s was 96.3%. After adding the ECA module,
the mAP increased to 96.7%. Adding the CA module further improved the mAP to 97.0%.
The combination of ECA and CA modules in the ECCA module enhanced the network’s
ability to detect surface defects on bearing collars, resulting in an mAP of 97.8%. When
combined with the Slim-neck, the mAP increased to 98.1%, accompanied by a reduction in
both the parameters and computational complexity. With the addition of the decoupled
head, the highest detection accuracy was achieved with an mAP of 98.6%, indicating
a 2.3% improvement over YOLOv5s. However, it should be noted that the Decoupled
head significantly increased the parameters and computational complexity, resulting in a
decrease in FPS. A total of 269 images were obtained after the cropping process using the
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sliding window on the images captured by the four cameras. Theoretically, the detection
process can be completed within 3 s using ESD-YOLOv5. However, in industrial settings,
the requirement is to complete the detection within 8 s. Therefore, the proposed ESD-
YOLOv5 meets the demands of practical bearing production inspections.

Table 6. Results of ablation experiments.

Method Params (M) FLOPs (G) mAP@0.5 FPS

YOLOv5s 7.03 15.8 96.3% 137
YOLOv5s + ECA 7.03 15.8 96.7% 137
YOLOv5s + CA 7.05 16.0 97.0% 135

YOLOv5s + ECCA 7.05 16.0 97.8% 135
YOLOv5s + ECCA + Slim-neck 6.88 14.1 98.1% 148

ESD-YOLOv5 14.20 54.3 98.6% 91

5.5. Comparison Experiments
5.5.1. Experimental Results of Bearing Collar Surface Defect Detection

To further validate the effectiveness of the improved YOLOv5 defect detection model,
this study compared it with several other single-stage object detection methods, including
YOLOv5, YOLOX, YOLOv6, YOLOv7, and YOLOv8. The training loss and mAP curves
during the training process are shown in Figure 10, and the comparison results with the
other models are presented in Figure 11. The experimental results are summarized in
Table 7.

Table 7. Comparison of related methods on bearing collar dataset.

Model Params (M) FLOPs (G) mAP@0.5 FPS

YOLOv5s 7.0 15.8 96.3% 137

YOLOXs 8.7 26.4 95.8% 124

YOLOv6n 4.6 11.3 93.7% 223

YOLOv7tiny 6.0 13.2 94.8% 204

YOLOv8s 11.14 28.7 96.3% 117

YOLOv5m 20.9 48.3 97.5% 96

Ours 14.2 54.3 98.6% 91

 
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. Training loss and mAP curve of YOLOv5s and ESD-YOLOv5. (a) Position loss; (b) object
loss; (c) classification loss; (d) mAP@0.5.

Figure 11. Test results of the different models on bearing collar defect dataset.
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According to Figure 10, the loss curve of the ESD-YOLOv5 model rapidly converged
within the first 30 epochs and achieved complete convergence after 100 epochs. The
mAP curve also exhibited an increasing trend with the number of epochs. Compared to
YOLOv5s, ESD-YOLOv5 showed faster convergence rates for all three losses, with the
object loss exhibiting the most significant difference. The results also demonstrate that the
ESD-YOLOv5 model achieves a higher mAP compared to YOLOv5s.

In this study, we compared our proposed ESD-YOLOv5 model with other single-stage
object detection methods, including YOLOv5s, YOLOXs, YOLOv6n, YOLOv7tiny, and
YOLOv8s, which have similar algorithm parameters and computational complexity. As
shown in Table 7, both the YOLOv5s and YOLOv8s models achieved an mAP of 96.3%,
which was the highest among all the original models. However, YOLOv5s has a lower
parameter quantity and computational complexity compared to YOLOv8s. Our proposed
ESD-YOLOv5 model achieved an mAP of 98.6%, which is a significant improvement of
2.3%. However, due to the increased parameters and computational complexity, the FPS
of our proposed model slightly decreased. To ensure fairness, we conducted a compar-
ative experiment with YOLOv5m. As shown in Table 6, ESD-YOLOv5 and YOLOv5m
had similar FLOPs, but ESD-YOLOv5 achieved a higher mAP. Therefore, the proposed
ESD-YOLOv5 model demonstrates better overall performance in terms of comprehensive
evaluation metrics.

Five images were randomly selected for testing on each model, and the results are
shown in Figure 11. It was observed that the different models have varying detection
performances on the bearing collar defect dataset. Among all the original models, YOLOv5
and YOLOX had the best detection performance, while YOLOv6 and YOLOv7 had the
poorest performance. All the original models had poor detection performance for black
spots and wear, and the proposed ESD-YOLOv5 model improved the detection capability
for these two defects.

5.5.2. Experimental Results of Hot-Pressed LGP and Fabric Datasets

To further verify the generality of the proposed ESD-YOLOv5 algorithm, we conducted
a comparative experiment on the surface defect datasets of hot-pressed light guide plates
and fabrics using the same experimental method as the bearing collar surface defect dataset
mentioned above. The hot-pressed light guide plate dataset [44] is constructed from images
of defective light guide plates, and the resolution of the sample images in the dataset is
416 × 416, with a total of 4111 images of defective light guide plates. The fabric dataset [45]
is constructed from images of defective fabrics, with a resolution of 400 × 400 pixels for
each sample image. The dataset comprises a total of 2764 images of defective fabrics. The
detection results with networks such as YOLOv5s, YOLOXs, YOLOv6n, and YOLOv7tiny
are shown in Table 8.

Table 8. Comparison of related methods on the hot-pressed LGP and fabric datasets.

Model
mAP@0.5

Hot-Pressed LGP Fabric

YOLOv5s 97.8% 98.2%

YOLOXs 95.3% 98.0%

YOLOv6n 93.2% 96.8%

YOLOv7tiny 93.6% 97.4%

Ours 99.2% 99.1%

As shown in Table 8, our proposed model also achieved the highest detection accuracy
on both the hot-pressed LGP and fabric datasets. These results demonstrate that the
ESD-YOLOv5 model is effective in detecting surface defects in various datasets.
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6. Discussion

In this study, ESD-YOLOv5 had the following advantages:

(1) By incorporating the ECCA module into the backbone network, the model’s capability
to extract features related to defects has been enhanced.

(2) Replacing the original neck of YOLOv5 with a slim neck has reduced the model’s
parameter quantity and computational load, while simultaneously improving its
feature fusion capacity.

(3) The introduction of decoupled heads has significantly accelerated the convergence
speed of the loss function and enhanced the detection accuracy.

(4) The experiment revealed that ESD-YOLOv5 achieved a 2.3% improvement in mAP
compared to YOLOv5s, and it outperformed the current mainstream one-stage object
detection algorithms.

Weaknesses and future research:
The bearing collar dataset used in this study was obtained from an industrial setting,

and we only selected the five most common defect classes for detection, leaving many other
defects undetectable.

Despite ESD-YOLOv5 achieving an mAP of 98.6%, instances of false negatives and
false positives still exist, which are unacceptable in practical applications.

To better address these limitations, future research should focus on designing new
algorithms for detecting uncommon defects. Additionally, for addressing false negatives
and false positives, we should continue in-depth research on the dataset and improve the
deficiencies of the model.

7. Conclusions

This study proposed a bearing collar surface defect detection method based on ESD-
YOLOv5, which addresses the challenges of different shapes, sizes, and positions of bearing
collar surface defects, as well as complex texture backgrounds. First, the ECCA module
was introduced into the YOLOv5 backbone network to enhance the network’s ability to
locate object features. Second, the Slim-neck was used to replace the original neck, reducing
the model’s parameters and computational complexity without sacrificing accuracy. Third,
the decoupled detection head of YOLOX was utilized to replace the original detection
head, separating the classification and regression tasks. Last, extensive experiments were
conducted on collected bearing collar defect images from industrial sites. The experimental
results showed that the proposed algorithm achieved an mAP of 98.6% on the bearing
collar defect dataset, with an overall improvement of 2.3%. In addition, we conducted ex-
periments with our proposed ESD-YOLOv5 model on hot-pressed LGP and fabric datasets.
The results demonstrated that our model also outperformed the current state-of-the-art
one-stage object detection algorithms in terms of accuracy on two specific datasets. This
further validates the superiority and versatility of our ESD-YOLOv5 model across different
datasets and scenarios. Furthermore, the developed bearing collar defect detection system
based on this method has been successfully applied in industrial production inspection.
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Highlights:

What are the main findings?

• An improvement upon the state-of-the-art YOLOv8 model, proposing a high-performance and
highly generalizable model for detecting tiny UAV targets.

What is the implication of the main finding?

• Addressing the small size characteristics of UAV targets, a high-resolution detection branch is
added to the detection head to enhance the model’s ability to detect tiny targets. Simultaneously,
prediction and the related feature extraction and fusion layers for large targets are pruned,
reducing network redundancy and lowering the model’s parameter count.

• Improving multi-scale feature extraction, using SPD-Conv instead of Conv to extract multi-
scale features, better retaining the features of tiny targets, and reducing the probability of UAV
miss detection. Additionally, the multi-scale fusion module incorporates the GAM attention
mechanism to enhance the fusion of target features and reduce the probability of false detections.
The combined use of SPD-Conv and GAM strengthens the model’s ability to detect tiny targets.

Abstract: With the widespread use of UAVs in commercial and industrial applications, UAV detection
is receiving increasing attention in areas such as public safety. As a result, object detection tech-
niques for UAVs are also developing rapidly. However, the small size of drones, complex airspace
backgrounds, and changing light conditions still pose significant challenges for research in this
area. Based on the above problems, this paper proposes a tiny UAV detection method based on
the optimized YOLOv8. First, in the detection head component, a high-resolution detection head is
added to improve the device’s detection capability for small targets, while the large target detection
head and redundant network layers are cut off to effectively reduce the number of network parame-
ters and improve the detection speed of UAV; second, in the feature extraction stage, SPD-Conv is
used to extract multi-scale features instead of Conv to reduce the loss of fine-grained information
and enhance the model’s feature extraction capability for small targets. Finally, the GAM attention
mechanism is introduced in the neck to enhance the model’s fusion of target features and improve
the model’s overall performance in detecting UAVs. Relative to the baseline model, our method
improves performance by 11.9%, 15.2%, and 9% in terms of P (precision), R (recall), and mAP (mean
average precision), respectively. Meanwhile, it reduces the number of parameters and model size by
59.9% and 57.9%, respectively. In addition, our method demonstrates clear advantages in comparison
experiments and self-built dataset experiments and is more suitable for engineering deployment and
the practical applications of UAV object detection systems.

Keywords: UAV; object detection; YOLOv8; deep learning
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1. Introduction

With the advancement of drone technology, drones are widely employed in various
sectors, such as aerial photography, emergency response, and agricultural planning. How-
ever, the development of drones has also brought to the fore a series of management issues.
These include illegal “rogue flights”, the exploitation of drones for criminal and terrorist
activities, and their potential to be transformed into dangerous weapons by carrying ex-
plosive materials [1–3]. Drones have become a new tool for terrorism, posing significant
threats to public safety. In response to the increasingly severe UAV threat, it is urgent to
establish an anti-drone system around restricted areas; thus, illegal UAV detection, as a
critical component of the anti-drone system [4], has become a subject of widespread atten-
tion among researchers. Improving the accuracy and processing speed of detecting enemy
UAV targets, conducting effective early warning detection, and then taking measures to
intercept them is the key to mastering air control and maintaining national security and
social stability. Most of the current early warning detection equipment has the defects of
fixed deployment location, large size, and apparent target exposure, meaning that they
cannot be flexibly distributed in hidden forward positions; therefore, lightweight and
easy-to-deploy large-scale early warning equipment is needed to fill the gap. The following
problems exist in solving the detection of UAV targets: (1) UAVs are characterized by their
small size, the use of “stealth” materials, low-altitude reconnaissance targets, and flexible
take-off platforms; (2) complex airspace environments are often affected by clouds, light,
and object occlusion, so that the use of electromagnetic and other signals to detect UAV
groups are prone to false detection and missed detection [5,6]. With the rapid development
of computer vision technology and neural networks, methods based on video and image
frames have been widely used to extract features such as target contours, colors, and shapes,
enabling the real-time detection of target positions and motion behaviors. This approach
has extensive applications in public security monitoring, intelligent transportation systems,
national defense and security, human-computer interaction systems, and safety produc-
tion. Applying computer vision technology to drone detection opens up a new avenue for
airspace early warnings, offering vast prospects for practical applications [7].

The rest of the paper is structured as follows: Section 2 summarizes the works related
to UAV detection. Section 3 first introduces the YOLOv8 network structure and the details
of its critical modules, followed by an improved tiny UAV target detection model, and
details the structure and roles of each improved module of the model. Section 4 first
introduces the dataset and the experimental environment and then conducts ablation
experiments, comparison experiments on the publicly available dataset TIB-Net, and,
finally, self-built dataset experiments to validate the proposed method’s feasibility fully.
Section 5 summarizes the research results in the full paper and provides an outlook on
future research directions.

2. Related Work

In recent years, improving hardware device performance has enhanced computer
data-processing capabilities, enabling rapid advancements in visual technologies that rely
on deep learning with big data. Object detection based on computer vision technology has
garnered significant attention from researchers. It has evolved from traditional manual
feature extraction [8–10] using convolutional calculations for object detection to leveraging
deep learning to improve recognition accuracy in visual object detection. Compared to
traditional electromagnetic signal detection methods such as radar, laser, infrared, audio,
and radio frequency, object detection using visual sensors, specifically cameras capturing
group videos and image data, offers more intuitive detection and the recognition of groups’
information. It offers advantages such as the real-time and dynamic recording of sequential
images of targets, low cost, fast detection speed, and immunity to interference from low-
altitude clutter [11].

Object detection is an important research area in computer vision and is the foundation
for numerous complex visual tasks. It has been widely applied in industries, agriculture,
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and other fields [12,13]. Since 2014, there has been a remarkable advancement in deep
learning-based object detection techniques. The industry has introduced various algo-
rithms, including Faster R-CNN [14], SSD [15], and the YOLO series [16], to improve object
detection further. With the rapid development of target detection technology, several useful
methods have explicitly emerged for UAV target detection tasks [17–21]. For example, the
authors of [17] argue that convolutional neural networks struggle to balance detection
accuracy and model size. To address this issue, they introduced a recurrent pathway and
spatial attention module into the original extremely tiny face detector (EXTD), enhancing
its ability to extract features from small UAV targets. The model size is only 690.7 kb.
However, this model exhibits a slow inference time and is unsuitable for deployment in
practical engineering scenarios. Ref. [18] proposed a UAV target detection network based
on multiscale feature fusion, which first extracts the target multisensory field features using
res2net, then improves the network performance in terms of both fine-grained multiscale
feature extraction and hierarchical multiscale feature fusion, and finally achieves better
results on a self-built UAV detection dataset. Ref. [19] created a new UAV detection method
that overcomes the limitations of the UAV detection process in terms of parameters and
computational environment to perform realistic detection using web applications. In the
current paper, we first screen an SSD pre-trained model that is suitable for deployment in
this web application to improve detection accuracy and recall. The experimental results
prove that the web application method outperforms the on-board processing method and
achieves better results. Ref. [20] proposes a lightweight feature-enhanced convolutional
neural network that is capable of the real-time and high-precision detection of low-flying
objects. It effectively alerts against unauthorized drones in the airspace and provides
guidance information. Ref. [21] introduces a novel deep learning method called the convo-
lutional transformation network (CT-Net). The backbone of this network first incorporates
an attention-enhanced transformation block, which establishes a feature-enhanced multi-
head self-attention mechanism to improve the model’s feature extraction capability. Then,
a lightweight bottleneck module is employed to control computational load and reduce
parameters. Finally, a direction feature fusion structure is proposed to enhance detection ac-
curacy when dealing with multi-scale objects, especially small-sized objects. The approach
achieves a mAP of 0.966 on a self-built low-altitude small-object dataset, demonstrating
good detection accuracy. However, the FPS is only 37, indicating that there is room for
improvement in detection speed.

Although significant progress has been made in UAV detection technology, existing
detection methods still face challenges in balancing detection accuracy, model size, and
detection speed. The YOLO series detection network has solved these problems effectively.
The YOLO series models have undergone eight official iterations and several branch ver-
sions, showcasing remarkable detection accuracy and speed performance. These models
have extensive applications in various fields, including medicine, transportation, remote
sensing, and industry [22]. Scholars have extensively researched using the YOLO series
models for UAV target detection, as evidenced by numerous studies [23–27]. For example,
in reference [23], by incorporating an attention mechanism module into the PP-YOLO
detection algorithm, enhancements were made to improve its performance. Furthermore,
introducing the Mish activation function addressed the issue of gradient-vanishing dur-
ing the backpropagation process, resulting in a significant boost in detection accuracy.
In Ref. [24], a UAV detection algorithm for complex urban backgrounds was proposed,
based on YOLOv3. It employed an FPN for multi-scale prediction, enhancing the system’s
detection performance for small targets. A lightweight Ghost network was also utilized to
accelerate the model, achieving network lightweight status. Experimental results demon-
strated that the algorithm effectively detected small UAV targets in complex scenes and
exhibited strong robustness. In Ref. [25], a lightweight convolutional neural network, Mo-
bileNetv2, replaced the original CSPDarknet53 backbone of the high-performance YOLOv4
model. This substitution aimed to reduce the model’s scale and simplify the computational
operations. Experimental results demonstrated that Mob-YOLO could achieve accurate
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real-time monitoring of UAV targets with smaller model sizes, making it deployable with
onboard embedded processors. In Ref. [26], a YOLOv5-based distributed anti-drone sys-
tem was proposed. This system integrates airport defense capabilities to address UAV
jamming scenarios by incorporating features such as automatic targeting and jamming
signal broadcasting, enabling the interception of illegal UAVs. To cater to the wide no-fly
zone of the airport, the system is deployed around the airport using distributed clustering,
effectively resolving the issues of blind detection and target loss. Experimental results
have demonstrated the high accuracy of automatic targeting based on the YOLOv5 al-
gorithm, with the inference speed and model size meeting real-time hardware detection
requirements. Although the system needs to be more innovative to improve YOLOv5,
the successful application of UAV target detection technology to practical engineering
scenarios is also informative. Ref. [27] proposed the YOLOX-drone, an improved target
detection algorithm for UAS based on YOLOX-S. Based on the YOLOX-S target detection
network, this paper first introduces a coordinated attention mechanism to improve the
image highlighting of UAV targets, enhance useful features, and suppress useless features.
Secondly, for this paper, a feature aggregation structure has been designed to improve the
representation of useful features, suppress interference, and improve detection accuracy.
The improved algorithm performs well on both the publicly available DUT-Anti-AV dataset
and the self-generated dataset, demonstrating its strong obstacle-detection capability.

Combining the improvement ideas proposed in the above-related literature on the
YOLO series, this paper improves on the YOLOv8s model and offers a new model suitable
for tiny UAV object detection, which achieves high detection accuracy and speed on the
challenging small UAV dataset, and dramatically reduces the size of the model and the
number of parameters. This study provides a new approach for model deployment in the
field of tiny UAV object detection.

3. Methods

3.1. YOLOv8 Network Structure

YOLOv8 builds upon the success of previous versions of YOLO and introduces new
features and improvements to enhance performance and flexibility further, achieving top
performance and exceptional speed. YOLOv8 offers five different-sized models: nano,
small, middle, large, and extra-large. The Nano model has a parameter count of only
3.2 million, providing convenience for deployment on mobile and CPU-only devices. In
order to balance detection accuracy and speed, this paper employs YOLOv8s as the model
for UAV detection, which is obtained by deepening and widening the nano network
structure. YOLOv8 is divided into the backbone, neck, and head, which are used for feature
extraction, multi-feature fusion, and prediction output. The design of the YOLOv8 network
is shown in Figure 1.

The feature extraction network mainly extracts individual scale features from images
created by the C2f and SPPF modules. The C2f module reduces the network by one convo-
lutional layer based on the original C3 module, making the model more lightweight. It also
incorporates the strengths of the ELAN structure from YOLOv7, effectively expanding the
gradient branch using bottleneck modules to obtain richer gradient flow information [28].
SPPF reduces the network layers based on SPP (spatial pyramid pooling) [29] to eliminate
redundant operations and perform feature fusion more rapidly. The multiscale fusion
module adopts a combination of an FPN (feature pyramid network) [30] and PAN (path
aggregation network) [31]. By bi-directionally fusing the low-level features and high-level
features, it enhances low-level features with smaller receptive fields and improves the
detection capability of targets at different scales. The detection layer predicts target po-
sitions, categories, confidence scores, and other information. The head part of YOLOv8
switches from an anchor-based to an anchor-free approach. It abandons the IOU matching
or single-side scale assignment and uses the task-aligned assigner for positive and negative
sample matching. Ultimately, it performs multi-scale predictions using 8×, 16×, and
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32× down-sampled features to achieve accurate predictions for small, medium, and large
targets. The detailed modules in the YOLOv8 network are illustrated in Figure 2.

 

Figure 1. YOLOv8 network structure diagram.

 

Figure 2. YOLOv8 network detail structure diagram.

3.2. Improved YOLOv8 UAV Detection Model

YOLOv8 extracts the target features by using a deep residual network. It completes
the multiscale prediction using the PAN structure, but YOLOv8 still performs three down-
sampling iterations when extracting features to obtain the maximum feature map. However,
much of the target feature information is lost, which could be useful for detecting tiny
targets. Therefore, this paper improves YOLOv8 and proposes a network model for UAV
micro-target detection, and the improved network structure is shown in Figure 3. The
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specific improvement schemes are as follows. (1) We enhanced the detection capability of
the model for tiny targets by adding a high-resolution detection branch in the detection
head part; meanwhile, the detection layer and its related feature extraction and fusion
layer for large target prediction were cut, and the model parameters were reduced. (2) The
multiscale feature extraction module was improved by using SPD-Conv [32] instead of
Conv to extract multiscale features. (3) The GAM attention mechanism [33] was introduced
into the multiscale fusion module to enhance the model’s fusion of target features.

 

Figure 3. Improved YOLOv8 network structure diagram.

3.2.1. Improvement of the Detection Head

A. Adding a tiny-target detection head

In this paper, the detection object is a low-flying UAV. When using the camera to
capture the UAV image, in order to prevent the flying UAV from rushing out of the
camera’s field of view, the camera generally maintains a large area of view. Hence, the
proportion of the UAV in the image is usually small. The original YOLOv8 model backbone
network down-samples for a total of five times to obtain five layers of feature expressions
(P1, P2, P3, P4, and P5), wherein Pi denotes a resolution of 1/2i of the original image.
Although multi-scale feature fusion is achieved in the neck network via top-down and
bottom-up aggregation paths, this does not affect the scale of the feature map, and the final
detection head part is detected after passing through P3, P4, and P5. The feature map scales
are 80 × 80, 40 × 40, and 20 × 20, respectively. In the small target detection task, there are
often tiny targets to be detected. The TIB-Net data used in this paper contains many tiny
UAV targets, usually smaller than 10 × 10 pixels in scale. Such marks have lost most of
their feature information after multiple down-sampling and are still challenging to detect
with high resolution by the P3 layer detection head.
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To achieve micro-target identification, as mentioned above, and also gain a better
detection effect, we introduced a new detection head on the YOLOv8 model by P2 layer
features, called the micro-target detection head; the structure is shown in Figure 4. The
resolution of the P2 layer detection head is 160 × 160 pixels, which is equivalent to only
two down-sampling operations in the backbone network, containing richer information on
the underlying features of the target. The two P2 layer features, obtained from top-down
and bottom-up in the neck network, are fused with the same scale features in the backbone
network, in the form of concat, while the output features are the fused results of the three
input features, which makes the P2 layer detection head fast and effective when dealing
with tiny targets. The P2 layer detection head, together with the original detection head,
can effectively mitigate the scale variance caused by the P2 detection head, which, together
with the initial detection head, can effectively reduce the negative effects of scale variance.
The added detection head is specific to the underlying features and is generated from low-
level, high-resolution feature maps, which are more sensitive to small targets. Although
adding this detection head increases the computation and memory overhead of the model,
it significantly improves the detection of tiny targets.

 

Figure 4. Improvement scheme at the head.

B. Removing the large-target detection head

The large target detection header P5 layer is obtained by down-sampling the image
by a factor of 32. When the target size is smaller than 32 pixels, it is likely that, at most,
only one point of the target is sampled or not sampled. Therefore, the YOLOv8 large target
detection layer is redundant when detecting small-sized UAV targets. Based on the above
conclusions, this paper cuts out the large target prediction layer and the related feature
extraction and feature fusion layers from the YOLOv8 network structure. It only retains the
4-fold down-sampling, 8-fold down-sampling, and 16-fold down-sampling feature maps
for UAV prediction. In the improved network structure shown in Figure 3, the 16-fold
down-sampled feature maps of the third C2f layer are directly fed into SPPF for multi-scale
feature extraction. The fused feature maps are then discarded from the Upsample-Concat-
C2f module and directly connected to the next module, and all network layers after the
medium target detection layer are discarded. This improved network structure reduces the
computational bottleneck by removing redundant calculations with guaranteed accuracy.
The improved detection head is shown in Figure 4.
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3.2.2. Improvement of the Feature Extraction Module

When the image shows good resolution, and the detection object is of moderate size,
the image contains a significant enough amount of redundant pixel information that strode
convolution (i.e., stride > 1) can conveniently skip this redundant pixel information. The
model is still able to learn features efficiently. However, in more complex tasks involving
ambiguous images and small objects, the assumption of redundant information no longer
holds, and the current model starts to suffer from a loss of detail, which significantly
impairs its ability to learn features. Small objects are challenging to detect because they are
characterized by low resolution and have limited information about the content needed
to learn patterns. In YOLOv8, the feature extraction module Conv, a stride convolutional
layer, rapidly degrades its detection performance in tasks with low image resolution or
small detection objects. For this reason, the current paper introduces a new CNN building
block, SPD-Conv, in the feature extraction stage to replace the stride convolution layer.
SPD-Conv consists of an SPD (space-to-depth) layer and a non-stride convolution layer and
can be applied to most CNN architectures. In an earlier study [32], the authors introduced
SPD-Conv into the backbone and neck of YOLOv5. They experimentally demonstrated
that the method significantly improved the performance in complex tasks dealing with
low-resolution images and small objects. Combined with the improved ideas of this paper
for YOLOv5, demonstrated experimentally, we only need to introduce SPD-Conv in the
feature extraction module (i.e., backbone) of YOLOv8 to improve the detection of tiny
UAV targets without adding too much redundancy, as shown in Figure 3. The SPD-Conv
structure is shown at a scale = 2 in Figure 5.
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Figure 5. Structure of SPD-Conv.

The SPD-Conv operation consists of two steps. Firstly, the feature map of the input
image undergoes preprocessing from space to depth; subsequently, the preprocessed feature
map is subjected to a standard convolution. Figure 5 illustrates the feature map of a C1
channel, demonstrating the process of slicing up the input feature map. After pruning, four
sets of sub-shaped images are obtained, where each sub-shaped image retains the same
number of channels as the input feature map. As the scale is set to 2, the width and height
of the output feature map are halved compared to the input. The resulting sub-feature
images are combined through a standard convolution, ensuring the preservation of all
sub-feature information due to the use of a standard convolution with a step size of one.

3.2.3. Improvement of the Feature Fusion Module

GAM, an attention mechanism module, is a lightweight, practical, and simple com-
ponent that can be seamlessly integrated into CNN architectures. Its primary purpose
is to enhance the performance of deep neural networks by minimizing information loss
and amplifying global interaction representation within a given feature mapping. The
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GAM module adopts the CBAM attention mechanism, which operates from channel to
spatial order. In an earlier work [33], the GAM module was successfully integrated into
various models across different datasets and classification tasks, resulting in significant
improvements in model performance that underscore the efficacy of the GAM module. As
a plug-and-play module, GAM is widely cited, as in the literature [34], by inserting GAM
into the backbone and head of YOLOv7, enabling the network to extract critical features by
amplifying the interaction of global dimensional features. The GAM structure is shown in
Figure 6.

 
Figure 6. The GAM attention module.

Given the mapping of input attribute F1, intermediate states F2 and output F3 are
defined as follows:

F2 = Mc(F1) ∗ F1 (1)

F3 = Ms(F2) ∗ F2 (2)

Since small targets are small in size and have few and inconspicuous features, adding
the GAM attention module to the feature fusion network can amplify global interaction
and enhance the retention ability of the network for small target features, while directly
improving the feature fusion in the neck part of the network. In the detection task, the
GAM attention module can help the model to extract the attention region effectively and
improve the detection performance.

4. Experimental Preparation and Results

In this paper, we use the public UAV dataset TIB-Net [17] to evaluate the model’s
performance and introduce the dataset, network setup and training, evaluation index,
ablation experiment, comparison experiment, and self-built dataset experiment.

4.1. Dataset Introduction

The TIB-Net UAV dataset comprises 2850 images showcasing various types of UAVs,
including multi-rotor UAVs and fixed-wing UAVs. The images were captured by a fixed
camera on the ground at a distance of about 500 m from the aerial drones, and the resolution
of the collected images was 1920 × 1080 pixels. These scenes cover several low-altitude
scenes (sky, trees, buildings, etc.) from UAV flight images, fully considering samples at
different times of the day and in different weather. It can be seen from Figure 7 that the
UAV occupies only less than 1% of each image. Some of the samples are shown in Figure 8.

4.2. Network Setup and Training

This section details the training process of the TIB-Net dataset on YOLOv8 and the
modified YOLOv8. The hardware configuration used for the experiments is an 8 GB
NVIDIA GeForce RTX 3070 graphics card, the deep learning framework PyTorch 1.13.1,
Python version 3.7.15, CUDA version 11.7, and Ubuntu 22.04 as the operating system.
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Figure 7. Proportion of drone size in the image (darker colors mean more drones).

Figure 8. Display of dataset diversity. (a) multi-rotor drone; (b) fixed-wing drone; (c–f) show several
difficult samples, which contain extreme small drone, blurred drone or complex environment.
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4.2.1. Loss Function Setting

The loss functions of the improved YOLOv8 are consistent with YOLOv8, and both
include rectangular box loss (Lossbox), distribution focus loss (Lossd f l), and classification
loss (Losscls).

Loss = a · Lossbox + b · Lossd f l + c · Losscls (3)

Among them, a, b, and c all represent the weight proportion of the corresponding loss
function in the total loss function. In this experiment, the three weights are a = 7.5, b = 1.5,
and c = 0.5, respectively.

4.2.2. Network Training

Before training, the dataset images and labels are divided into the training set, val-
idation set, and test set in a ratio of 7:1:2. The maximum number of epochs for training
the dataset is set to 150, with the first three epochs used for warm-up training. The SGD
optimization strategy is employed for learning rate adjustment, with an initial learning
rate of 0.01. Considering the presence of numerous tiny objects in the sample images
and the need to balance real-time performance with accuracy in the detection process, the
sample size is normalized to 640 × 640. This size allows the model to be deployed on edge
devices without losing too much helpful information from the images. To ensure fairness
and the comparability of the model’s performance, no pre-trained weights are used in
ablation or comparative experiments. Additionally, all training processes share consistent
hyperparameter settings. The most important parameter settings for the training process
are shown in Table 1.

Table 1. Important parameter setting table.

Parameters Setup

Epochs 150
Warmup-epochs 3

Warmup-momentum 0.8
Batch Size 8

Imgsize 640
Initial Learning Rate 0.01
Final Learning Rate 0.01

Patience 50
Optimizer SGD
NMSIoU 0.7

Momentum 0.937
Mask-ratio 4

Weight-Decay 0.0005

4.3. Evaluation Indicators

To validate the model performance, P, R, AP, mAP, the number of parameters, model
size, and frames per second (FPS) [35] are chosen as experimental evaluation indicators.

(1) Accuracy and recall rates are calculated as follows:

P =
TP

TP + FP
· 100% (4)

R =
TP

TP + FN
· 100% (5)

where TP (true positives) denotes the number of targets detected correctly, FP (false pos-
itives) denotes the number of backgrounds detected as targets, and FN (false negatives)
denotes the number of targets detected as backgrounds.

(2) The average precision and average precision mean are calculated as follows:
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AP =
∫ 1

0
p(r)d(r) (6)

mAP =
1
N ∑N

i=1 APi (7)

where N is the number of categories and AP is the average accuracy of each category. In
our UAV detection task, N = 1.

4.4. Ablation Experiments

For this section, based on the TIB-Net UAV dataset, ablation experiments were con-
ducted to explore the improvement effects of each added or modified module on the overall
model. Starting with the original YOLOv8s as a baseline, the detection head, backbone,
and neck improvements were sequenced. To analyze the performance improvement of
each module, the benchmark Model 1, improved Model 2 (with added tiny-head), im-
proved Model 3 (added tiny-head and cropped large-head), improved Model 4 (with added
tiny-head, cropped large-head, and improved SPD-Conv), improved Model 5 (with added
tiny-head, cropped large-head, and added GAM), and improved Model 6 (with added
tiny-head, cropped large-head, improved SPD-Conv, and added GAM) were defined. The
changes in evaluation metrics for these six models were quantitatively explored, and the
optimal results for each evaluation metric were highlighted. The experimental results of
the models on the TIB-Net dataset are shown in Table 2.

Table 2. Results of the various ablation experiments.

Components 1 2 3 4 5 6

+Tiny-Head
√ √ √ √ √

-Large-Head
√ √ √ √

+SPD-Conv
√ √

+GAM
√ √

P 81.4% 92.2% 91.9% 92.6% 93.1% 93.3%

R 78.1% 91.6% 91.6% 92.8% 92.2% 93.3%

mAP 86.1% 94.4% 93.5% 94.9% 93.6% 95.1%

Parameters/million 11.126 10.852 3.527 4.209 3.785 4.467

Model Size/MB 21.9 22.1 7.3 8.7 7.9 9.2

FPS/f.s-1 285 217 259 232 246 221

Referring to Table 2, it can be seen that:

1. The increase from the tiny detection head improved the model by 10.8%, 13.5%,
and 8.3% for P, R, and mAP, respectively, indicating that the increase from the high-
resolution detection head can effectively enhance the detection ability of tiny targets.
At the same time, it can be seen that after trimming off the large target detection layer,
the parameter amount was reduced by 70.2% and the model size was reduced by
67%, while R remained unchanged, P was reduced by 0.3%, and mAP was reduced
by 0.9%, indicating that the low-resolution detection head made little contribution to
the detection of tiny UAV targets and generated a large redundant network.

2. The experimental results of improving models 3, 4, 5, and 6 show that improving
the SPD-Conv module had a better improvement effect on the recall R of the model,
indicating that improving the Conv module to SPD-Conv in the backbone network can
better retain the features of the minutiae targets and reduce the probability of missing
detection for the minutiae targets; adding GAM had a better improvement effect on
the accuracy P of the model, indicating that adding the GAM attention module in the
addition of the GAM attention module in the neck had a good impact on the feature
fusion of the network and reduced the probability of false network detection. When
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both SPD-Conv and GAM were added, P, R, and mAP were improved, although the
number of parameters and the model size slightly increased.

3. Comparing the experimental results of the improved model 6 (i.e., our model) and
model 1 (i.e., the base model), as shown in Figure 9, we can see that because the
tiny-head, SPD-Conv, and GAM modules added some inference time, the improved
model FPS metric reached 221/f.s-1, which is lower compared to the 285/f.s-1 of the
base model; however, it can still guarantee meeting the real-time requirement in actual
deployment. In addition, our model significantly improved the P, R, mAP, number
of parameters, and model size compared with the base model, with P, R, and mAP
improving by 11.9%, 15.2%, and 9%, respectively. The number of parameters and
model size decreased by 59.9% and 57.9%, respectively, thus proving the effectiveness
and practicality of the improved model.

Figure 9. Comparison graph between our model and the YOLOv8s experiment (parameters, model
size, and FPS are normalized separately).

In order to observe the detection effect of the improved model more intuitively, the base
model YOLOv8s and the improved model in this paper are used for drone detection, and the
effect comparison graphs are shown in Figures 10 and 11, respectively. In Figures 10 and 11,
the detection results of YOLOv8s are shown on the left, and the detection results of the
improved model are shown on the right. The UAV position and confidence level are indicated
by rectangular boxes and text, respectively, and the details of the area where the UAV is
located are shown in the upper right corner or lower right corner of the images, respectively.

In Figures 10 and 11, a comparison reveals that YOLOv8s exhibit instances of missed
detections when the UAVs are very small or have blended into the background, as shown in
Figure 10a,c,e, while false detections as shown in Figure 11a,c,e, highlighted by the yellow
boxes. In contrast, the improved model proposed in this paper accurately detects small UAV
targets against complex backgrounds such as buildings and trees. Additionally, our method
significantly improves the confidence regarding the detected UAVs. As shown in Figure 10b,
the confidence reached 0.96, while, as shown in Figure 11e,f, the confidence increased from
0.27 to 0.82. Therefore, the improved model in this paper effectively addresses the issues of
missed and false detections of small UAV targets against complex backgrounds.
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Figure 10. The left side shows some of the leakage detection results of YOLOv8s, as shown in Figure
(a,c,e). The right side shows the detection results of the improved model in the same image, as shown
in Figure (b,d,f).

4.5. Comparative Experiments

To further verify the advantages of the algorithm used in this paper, the algorithm
in this paper was compared with other YOLO series algorithms for experiments, and
four advanced YOLO series algorithms (YOLOv5-S [36], YOLOX-S [37], YOLOv7 [38],
YOLOv7-tiny) at the present stage were selected on the TIB-Net dataset, taking into account
the lightweight model size and detection performance, respectively. To fully reflect the
model’s superiority in this paper, the TIB-Net [17] model was also selected as a comparison
object in the experiments. The parameters of the comparison experiments were carried out
according to Table 1, and the evaluation metrics were consistent with Table 3. The selected
experimental models are all official versions. The results of the comparison experiments
are shown in Table 3.
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Figure 11. Figure (a,c,e) show the results of the partial error detection of YOLOv8s, as shown in the
yellow box, and Figure (b,d,f). show the detection results of the improved model for the same image.

Table 3. Comparison of experimental results.

Methods P R mAP Parameters/Million Model Size/MB FPS/f.s-1

TIB-Net 87.6% 87% 89.4% 0.163 0.681 5
YOLOv5-s 88.1% 90.9% 91.2% 7.013 14.3 256
YOLOX-s 90.5% 80.6% 88.7% 9.0 62.5 132
YOLOv7 64.2% 56% 52.4% 36.480 74.7 104

YOLOv7-tiny 85% 82.6% 85% 6.007 12.2 227
Ours 93.3% 93.3% 95.1% 4.467 9.2 221

According to Table 3, it can be seen that:

1. Comparing YOLOv7 and YOLOv7-tiny, it can be seen that although the number of
parameters and the model size of YOLOv7 are much higher than the other models, P,
R, and mAP present the worst results. Conversely, YOLOv7-tiny achieves good results
in terms of detection accuracy, with a smaller number of parameters and model size.
The reason for this is that the TIB-Net dataset has a smaller drone size and has fewer
drone features contained in the images, while the more complex YOLOv7 network
structure may learn many useless background features, which, in turn, results in
poorer detection results.

2. The TIB-Net detection network is at the other extreme; it can still maintain better
detection accuracy with a much smaller number of parameters and model size than

152



Electronics 2023, 12, 3664

other models. However, one disadvantage is also apparent; the FPS is only 5, far from
meeting the needs of real-time UAV detection.

3. YOLOv5-s yields the best overall performance except for our model, while the FPS
is 256 ahead of all models, and the P and R values are well balanced. In addition,
the detection of YOLOX is also good, but R and FPS are slightly low compared with
YOLOv5-s, and the model size is too large.

4. The improved model proposed in this paper outperforms other models in terms of P,
R, and mAP. In addition, it is at the top of all the models in terms of the number of
parameters, model size, and FPS, while the number of parameters and model size is
only higher than the TIB-Net network; FPS is slightly lower compared to YOLOv5-s
and YOLOv7-tiny, but it can meet the deployment requirements of real-time detection.
Overall, the tiny UAV detection network proposed in this paper achieves better
detection accuracy, model size, and detection speed and can meet the specifications of
practical engineering applications.

4.6. Self-Built Dataset Experiment

In order to evaluate the generalization performance of the model, this paper used
cameras to collect UAV flight images on different scenes and different periods and collected
a total of 1091 images of low-altitude scenes of various models of UAVs from major video
sites such as YouTube and other web channels to make a new dataset. Figure 12 shows
that most of the drones in the self-built dataset also occupy less than 1% of each image,
compared with Figure 7, where this is larger than for the drones in the TIB-Net dataset. In
addition, many new UAV images taken from high altitudes were added, to increase the
diversity of the dataset. Compared with the TIB-Net dataset, where most of the dataset
images are set against the sky, the background of the self-constructed dataset is more
complex, as shown in Figure 13, where the drone blends in with the mountain or plants.

Figure 12. Size of self-built dataset drones (darker colors mean more drones).

In the self-built dataset experiments, the new dataset was divided into training and
validation sets in the ratio of 7:3. To be consistent with the TIB-Net dataset, the images
were first resized to 640 × 640 for training, and the training parameters were consistent
with those in Table 1. The experimental results are shown in Table 4 and Figure 14.
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Figure 13. Selected sample plots of the self-built dataset. (a–c) show drone imagery from different
time periods; (d–i) show several difficult samples, including very small drones, drones photographed
from a high altitude, or complex environments.

Table 4. Self-built dataset comparison—experimental results.

Model P R mAP

YOLOv8s 88.8% 73.9% 85.2%
Ours 97% 89.5% 95.3%

Figure 14. Comparison graph between our model and the YOLOv8s experiment (self-built datasets).
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As can be seen from Table 4, the P, R, and mAP of the improved model with the new
dataset were 97%, 89.5%, and 95.3%, respectively, which were about 8.2%, 15.6%, and 10.1%
higher, respectively, compared to the pre-improvement period. Comparing Tables 2 and 4,
it can be seen that the improved model improved P by 3.7% in the new dataset because
the UAV target volume in the new dataset was generally larger than that in the TIB-Net
dataset. However, the picture background in the new dataset was more complex. Hence,
the improved model reduced R by 3.8% in the new dataset. Overall, the improved model
still has high detection accuracy and shows that our method has good generalization. The
actual detection results are shown in Figure 15.

 

Figure 15. Actual test chart display.

5. Conclusions and Outlook

To address the problem that tiny UAV targets are challenging to detect, this paper
proposes an improved YOLOv8 detection model that can accurately detect UAV image
targets while satisfying edge device deployment. The model overcomes the adverse
effects of UAV size, airspace background, light intensity, and other factors on the detection
task. Specifically, firstly, in the detection head part, the high-resolution detection head is
added to improve the detection capability regarding tiny targets. In contrast, the large
target detection head and redundant network layers are cut off to effectively reduce the
number of network parameters and improve the UAV detection speed. Finally, the GAM
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attention mechanism is introduced in the neck to improve the target feature fusion of
the model, thus improving the model’s overall performance for UAV detection. Ablation
and comparison experiments were conducted on a complex TIB-Net dataset. Compared
with the baseline model, our method improved P, R, and mAP by 11.9%, 15.2%, and 9%,
respectively. Meanwhile, the number of parameters and model size were reduced by 59.9%
and 57.9%, respectively. In addition, the detection model achieved better results in the
comparison experiments and self-built dataset experiments. In conclusion, our method
is more suitable for engineering deployment and the practical application of UAV target
detection systems.

However, due to adding extra detection heads in the model and using both SPD-Conv
and GAM modules, which increased the model inference time, the FPS decreased compared
to the baseline model. In addition, from the self-built dataset experiments, it can be seen that
R decreases when the airspace background is more complex, i.e., the probability of missing
detection increases. Follow-up work will then be devoted to improving the detection
accuracy in more complex airspace backgrounds while reducing the model inference time.
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Abstract: This paper introduces a novel approach for self-supervised monocular depth estimation.
The model is trained on stereo–image (left–right pair) data and incorporates carefully designed
perceptual image quality assessment-based loss functions for image reconstruction and left–right
image difference. The fidelity of the reconstructed images, obtained by warping the input images
using the predicted disparity maps, significantly influences the accuracy of depth estimation in
self-supervised monocular depth networks. The suggested LPIPS (Learned Perceptual Image Patch
Similarity)-based evaluation of image reconstruction accurately emulates human perceptual mech-
anisms to quantify the quality of reconstructed images, serving as an image reconstruction loss.
Consequently, it facilitates the gradual convergence of the reconstructed images toward a greater
similarity with the target images during the training process. Stereo–image pair often exhibits slight
discrepancies in brightness, contrast, color, and camera angle due to factors like lighting conditions
and camera calibration inaccuracies. These factors limit the improvement of image reconstruction
quality. To address this, the left–right difference image loss is introduced, aimed at aligning the
disparities between the actual left–right image pair and the reconstructed left–right image pair. Due
to the tendency of distant pixel values to approach zero in the difference images derived from the
left and right source images of stereo pairs, this loss progressively steers the distant pixel values
of the reconstructed difference images toward a convergence with zero. Hence, the use of this loss
has demonstrated its efficacy in mitigating distortions in distant regions while enhancing overall
performance. The primary objective of this study is to introduce and validate the effectiveness of
LPIPS-based image reconstruction and left–right difference image losses in the context of monocular
depth estimation. To this end, the proposed loss functions have been seamlessly integrated into a
straightforward single-task stereo–image learning framework, incorporating simple hyperparameters.
Notably, our approach achieves superior results compared to other state-of-the-art methods, even
those adopting more intricate hybrid data and multi-task learning strategies.

Keywords: self-supervised depth; monocular depth estimation; perceptual image reconstruction loss;
left–right difference image loss; LPIPS

1. Introduction

Deep learning-based monocular depth estimation methods have gained significant
attention due to their ability to estimate depth maps from single images without relying on
expensive external sensors such as RGB-D cameras and LiDAR [1–3]. The capability of end-
to-end depth estimation from single images has profound implications for various fields,
including robotics, autonomous driving, virtual reality, augmented reality, and medical
imaging. Deep learning-based monocular depth estimation can be broadly categorized into
supervised learning, self-supervised learning, and semi-supervised learning [2,4]. While
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various supervised learning approaches achieve high-ranking results, they all require a
substantial amount of labeled datasets, which is expensive to obtain using RGB-D cameras
or LiDAR sensors. On the other hand, self-supervised learning is a more cost-effective
approach but requires additional well-designed constraints to maintain geometric con-
sistency for stereo–image data learning and photometric consistency for video sequence
learning. Semi-supervised learning combines supervised and self-supervised approaches
by utilizing a small amount of labeled dataset and the remaining unlabeled dataset.

This study introduces an innovative technique for self-supervised monocular depth
estimation. The proposed approach integrates a loss based on a perceptual image quality
assessment model, with a specific focus on enhancing image reconstruction and addressing
left–right image differences during model training. The proposed loss plays a pivotal role in
the training process, leading to refined precision in monocular depth estimation. Within this
framework, the neural network undergoes training using only paired stereo–images from
the provided dataset, enabling the prediction of depth maps from a solitary image without
reliance on ground-truth data. The primary objective involves minimizing the loss in image
reconstruction, ensuring a close correspondence between the image under reconstruction
and the respective reference image captured from an alternative viewpoint within the
dataset. Through the minimization of this loss, the model strives to establish a notable
resemblance connecting the reconstructed and referenced images. This enhancement serves
to bolster the precision of monocular depth estimation, a key aspect of the evaluation.
Throughout the training process, the network learns to predict the disparity map, which
represents a pixel-wise inverse depth map and is essential for reconstructing an image from
another viewpoint. As the training progresses, the quality of the reconstructed images
improves gradually, leading to an enhanced accuracy of the disparity map.

The image reconstruction process plays a crucial role in this approach, as the quality
of the reconstructed images affects the precision of the predicted disparity maps. There-
fore, a well-designed image reconstruction loss is essential. This loss serves as a guiding
mechanism during training, facilitating effective image reconstruction and enabling the
derivation of an accurate disparity map for the source image. Previous works in the field
have commonly used L1- and SSIM-based [5] image reconstruction loss, as proposed by [3].
While it has shown effectiveness, it may have limitations, especially in challenging areas of
an image, such as low-texture regions, homogeneous regions, and distant areas like the sky,
forest, and road. In such cases, where feature point extraction becomes difficult, the existing
losses may lack sufficient accuracy and robustness. Recently, learning-based perceptual
image quality assessment models like PieAPP (Perceptual Image-Error Assessment through
Pairwise Preference) [6] and LPIPS (Learned Perceptual Image Patch Similarity) [7] have
shown greater effectiveness compared to traditional computer vision-based algorithms
in assessing image quality, especially in images with challenging areas. In this study, we
departed from the conventional use of SSIM and instead integrated a pre-trained LPIPS
model into our image reconstruction loss. Unlike SSIM, LPIPS is a perceptual image quality
assessment algorithm trained to align with human perception based on extensive human
perceptual judgments. By incorporating LPIPS, our aim is to enhance the perceptual sim-
ilarity between the reconstructed and the target images, thus reducing artifacts even in
challenging areas of the reconstructed images. This approach utilizes the power of human
perception to improve the overall quality of the reconstructed images.

Although the integration of LPIPS-based image reconstruction loss shows an enhanced
performance compared to the conventional SSIM-based loss in experiments, it still faces
challenges in effectively addressing distortions caused by variations between the left and
right reference images. Inherent factors such as lighting conditions and camera calibration
errors lead to unavoidable slight variations in brightness, contrast, color, and camera angle
within pairs of stereo–image. These variations constrain the enhancement of reconstruc-
tion quality.

In response to this challenge, we introduce an innovative loss referred to as the “left–
right difference image loss.” Utilizing an auto-encoder network architecture, our proposed
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model primarily reconstructs both the left and right images. These reconstructed images
are also utilized to generate two distinct difference images, each serving a specific purpose:
one originates from the reconstructed left and right image pair, while the other is derived
from the corresponding target pair. The left–right difference image loss combines L1 loss
and LPIPS-based loss. This composite loss facilitates the alignment between the differ-
ence images of the reconstructed pairs and the corresponding ones from the target pairs.
Throughout the training process, it consistently aligns the pixel values of the reconstructed
difference images with those of the target difference images. Considering that pixel values
in distant regions of a reference image pair generally display minor disparities, leading to
minimal visual divergence, the proposed loss steers these remote pixel values within the
reconstructed difference image toward a convergence with zero. As a result, the incorpora-
tion of this loss effectively mitigates distortions arising from variations between the left
and right reference images, while also addressing distortions present in remote regions.

To showcase the efficacy of our proposed losses, we integrated them into a ResNet50-
based network [8]. The model was trained using stereo–image pairs from the KITTI 2015
dataset [9] to generate depth maps for 640× 192 images. Extensive experimentation demon-
strated the notable improvement of our approach. Remarkably, our method outperforms
several state-of-the-art studies employing more complex approaches, such as hybrid data
learning of stereo–image and video sequence, as well as multi-task learning of depth and
semantic segmentation. These results highlight the effectiveness and robustness of our
proposed approach in the domain of self-supervised monocular depth estimation.

2. Related Work

2.1. Monocular Depth Estimation with Stereo–Image Data Learning

Active research has been conducted in the field of supervised monocular depth es-
timation neural networks, which learn using datasets that include depth ground-truth
data since Eigen et al. [1] proposed a technique for inferring depth maps from monocular
color images using deep learning [10–12]. However, the continuous development of super-
vised monocular depth estimation faces challenges in terms of the time and cost required
to create large-scale datasets with depth maps for training [2–4]. To address this issue,
research on self-supervised depth estimation networks that do not rely on ground-truth
depth maps has emerged. These networks use unlabeled stereo–image and/or monocular
video sequence datasets and utilize geometric and photometric constraints between frames
as supervisory signals during the learning process [2,4]. Garg et al. [13] introduced a
self-supervised framework for monocular depth prediction that centers on learning from
stereo–images without necessitating a pre-training phase or annotated depth ground truth.
They adopt the L2 loss between the reconstructed and target images as a straightforward
image reconstruction loss. However, this approach leads to the generation of blurry im-
ages, as it tends to converge to a stable value without achieving precise pixel-level values.
Subsequent research introduced a more sophisticated image reconstruction loss, combining
L1 loss and SSIM-based [5] loss proposed by Godard et al. [3]. They also proposed a
disparity smoothness loss and a left–right consistency loss. SSIM-based loss has since been
widely employed in self-supervised depth estimation networks, including in works by
Pillai et al. [14–16]. Park et al. [17] proposed a self-supervised depth prediction model
using GMSD [18], a conventional IQA algorithm, as the image reconstruction loss in a
symmetric GAN [19] structure. They demonstrated that the GMSD-based loss could effec-
tively improve the accuracy of monocular depth estimation. Park et al. [20] also proposed
a self-supervised model for stereo–image learning. They introduced a specialized image
reconstruction loss based on PieAPP [6].

2.2. Monocular Depth Estimation with Video Sequence Data Learning

Zhou et al. [21] introduced a self-supervised model for depth estimation, focusing
on learning from monocular video sequences. The approach involves the joint training
of two networks on unlabeled video sequences: one dedicated to depth prediction and
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the other to estimating camera poses. L1 loss is employed for image synthesis during
this process. Mahjourian et al. [22] presented a novel self-supervised method for learning
depth and ego-motion from successive video frames. Yin et al. [23] proposed GeoNet,
a comprehensive training paradigm that employs three networks for monocular depth,
optical flow, and ego-motion estimation from consecutive video frames. This is achieved
using a robust image similarity measurement based on SSIM. Wang et al. [24] suggested
an enhancement by integrating the direct visual odometry (DVO) [25] pose predictor
into a self-supervised video sequence learning model, replacing the PoseCNN. This re-
vised model employs a linear combination of L1 loss and SSIM for image reconstruction
loss. EPC++ network [26] was proposed to jointly train three networks based on video
sequences, for depth prediction (DepthNet), camera motion (MotionNet), and optical flow
(OptFlowNet). Li et al. [27] presented a method for jointly training depth, ego-motion,
and a dense 3D translation field of objects relative to the scene, using an SSIM-based
image reconstruction loss. Xiong et al. [28] proposed using robust geometric losses to
align the scales of two reconstructed depth maps estimated from adjacent video frames,
enforcing forward–backward relative pose consistency, and formulating scale-consistent
geometric constraints.

2.3. Monocular Depth Estimation with Hybrid Data and Multi-Task Learning

Godard et al. [15] extended their stereo–image learning model to propose a self-
supervised monocular depth estimation framework that encompasses learning from con-
secutive video frames. Their model incorporated a minimal reprojection loss to address
occlusion, employed a full-resolution multi-scale sampling technique to manage visual
artifacts, and integrated a straightforward auto-masking approach to exclude pixels exhibit-
ing consistent appearances across frames. Rottmann et al. [16] proposed a self-supervised
multi-task learning model that jointly trained semantic segmentation and depth estimation.
They used both stereo–image dataset and video sequence dataset for training and designed
their image reconstruction loss based on SSIM with whole-image input. SGDepth [29] also
adopted multi-task learning for semantic segmentation and depth estimation, with a focus
on dynamic-class objects such as moving cars and pedestrians. They trained their network
only on video sequence data. Similar multi-task learning approaches based on monocular
video sequence data learning were suggested in [30,31]. Guizilini et al. [32] also proposed a
multi-task learning self-supervised monocular depth estimation model with a semantic
segmentation network to guide geometric representation learning. They used a two-stage
training process to automatically detect the presence of a common bias on dynamic objects.
SceneNet [33] proposed a stereo–image multi-task learning-based cross-modal network
model that incorporated semantic information to guide disparity smoothness.

3. Proposed Model

This section presents a detailed description of the network architecture employed in the
proposed self-supervised monocular depth estimation model. Additionally, it provides a
comprehensive explanation of the training losses incorporated into the model’s framework.

3.1. Depth Estimation Network Architecture

The proposed network architecture employs a self-supervised approach for monocu-
lar depth estimation, utilizing stereo–image data for training. As illustrated in Figure 1,
the overall network architecture aims to minimize various losses for multi-scale disparity
maps, including image reconstruction loss, left–right disparity consistency loss, disparity
smoothness loss, and left–right difference image loss. These losses contribute to the effec-
tive training and optimization of the network, facilitating an improved depth estimation
performance. The network learns how to estimate disparity, i.e., inverse depth values
for reconstructing a different view image Îr (right) from a given input image Il (left) in
a self-supervised manner by training on stereo–image pairs. The depth p can be deter-
mined using the formula p = (b × f )/d, wherein b denotes the baseline distance between
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two cameras, f represents the camera’s focal length, and d stands for the disparity map.
Upon completion of the learning process, the network acquires the capability to generate
a precise reconstruction of a distinct view image by leveraging the estimated disparity
map. Consequently, it becomes proficient in estimating the disparity at a pixel-wise level
within a single-source image. This means that the network can effectively infer the relative
distances of objects in the scene based on their corresponding pixel disparities, enabling an
accurate estimation of depth information. Our approach is inspired by Godard et al. [2]
and we deploy a simple ResNet50-based auto-encoder that only trains stereo–image data
of the KITTI dataset.

Figure 1. Proposed network architecture and loss components. The schematic representation of the
proposed network architecture encompasses several key components: Il (the left (input) image), Ir

(the right image), dl (the left disparity map from the input image), dr (the right disparity map from
the input image), w+ (warping to the right), w− (warping to the left), Îl (the reconstructed left image),
Îr (the reconstructed right image), Idi f f (the difference image of left–right reference images), Îdi f f (the
difference image of reconstructed left–right images), Llpips (LPIPS-based image reconstruction loss),
LL1 (L1 image reconstruction loss), Lcon (left–right disparity consistency loss), Lsmoothness (disparity
smoothness loss), and Ldi f f (left–right difference image loss).

In the decoder component of our network, we integrate six up-convolution layers that
facilitate upsampling. This is achieved through bilinear interpolation, with a consistent
scale factor of two applied in each successive layer. This procedure generates four pairs of
left–right disparity maps, each of varying sizes. The right disparity map (dr) is employed to
synthesize a reconstructed right image ( Îr) from a source left image (Il) using the warping
process denoted as w+. Similarly, the left disparity map (dl) is utilized to synthesize a
reconstructed left image ( Îl) from a source right image (Ir) simultaneously, accomplished
through the warping process represented as w−.

By utilizing these disparity maps and the warping processes, the network simultane-
ously synthesizes both left and right images while maintaining consistency between the
disparities of the two. Since the network is trained without access to depth ground-truth
data, it determines optimal parameters by evaluating the similarity between the recon-
structed and target images. This similarity is quantified as the image reconstruction loss.
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Essentially, a strong resemblance between the reconstructed and target images indicates
accurate disparity predictions by the network.

To address this, we take into consideration the relative performance of image quality
assessment (IQA) models. Deep learning-based perceptual IQA models have consistently
demonstrated superiority over conventional computer vision-based models across various
metrics. Therefore, rather than employing the commonly used combination of SSIM and
L1 loss as the image reconstruction loss in previous studies, we opt for a combination of a
pre-trained LPIPS model (Llpips) and L1 loss (LL1) for this particular purpose.

Despite the inclusion of the left–right disparity consistency loss, as suggested in [3], its
effectiveness in addressing concurrent distortions present in both the left and right disparity
maps is found to be insufficient. This limitation arises from the aforementioned varia-
tions and the scarcity of feature points, particularly in challenging regions. To overcome
this, the integration of the left–right difference image loss (Ldi f f ) within our model pro-
vides a valuable mechanism to directly minimize the difference between the reconstructed
difference image and the source difference image. This approach effectively mitigates
the distortions, resulting in improved accuracy and fidelity in the reconstructed images.
Furthermore, this loss plays a crucial role in effectively enhancing the quality of recon-
struction, especially in distant regions, by gradually guiding the distant pixel values of the
reconstructed difference images toward convergence with zero.

3.2. Training Loss

Image Reconstruction Loss: Training of the monocular depth estimation network aims
to generate a disparity map that accurately synthesizes a given input image to resemble
a target image. To achieve this, an image reconstruction loss is employed to measure
the numerical discrepancy between the reconstructed and target images. By minimizing
this loss, the network finds parameters to enhance the overall quality of the synthesized
images and optimize its depth estimation capabilities. In the proposed network, we have
opted to utilize a pre-trained LPIPS [7] model as a component of our image reconstruction
loss (Llpips). This choice is motivated by the algorithm’s ability to effectively address
distortions encountered in challenging regions of the reconstructed images. By leveraging
the capabilities of LPIPS, we can better evaluate and minimize the perceptual differences
between the two images, leading to an improved image reconstruction quality. Additionally,
we integrate L1 loss (LL1) to enhance the quality of the reconstructed images. This is
achieved by minimizing the absolute pixel-wise disparity between the corresponding
reconstructed and target images. As a result, the image reconstruction loss, labeled as Lrec,
can be formulated as follows:

Îr = w+(Il , dr) (1)

Îl = w−(Ir, dl) (2)

Llpips
r = ∑ lpips(Ir, Îr) (3)

Llpips
l = ∑ lpips(Il , Îl) (4)

Llpips = Llpips
r + Llpips

l (5)

LL1
r = ∑ ‖ Ir − Îr ‖ (6)

LL1
l = ∑ ‖ Il − Îl ‖ (7)

LL1 = LL1
r + LL1

l (8)
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Lrec = Llpips + LL1 (9)

Disparity Smoothness Loss: As in [3,15], we include an edge-aware smoothness loss
(Lsmooth) to promote local depth consistency in edge boundary regions. The objective of
this loss is to encourage adjacent pixels in the edge region to have similar depth values,
based on the assumption that they likely belong to the same object or similar locations.
This principle is employed for both the left and right disparity maps generated from the
input. As a result, corresponding smoothness losses (Lsmooth

l and Lsmooth
r ) are formulated.

The disparity smoothness loss is defined as follows:

Lsmooth
r = ∑ |∂xd∗r |e−|∂x Ir | + |∂yd∗r |e−|∂y Ir | (10)

Lsmooth
l = ∑ |∂xd∗l |e−|∂x Il | + |∂yd∗l |e−|∂y Il | (11)

Lsmooth = Lsmooth
r + Lsmooth

l (12)

d∗ = d/d̄ represents the mean-normalized disparity obtained from [24]. The symbol ∂d
corresponds to the gradient of the disparity, while ∂I represents the gradient of the image.
The gradient is calculated for each axis in the given disparity map using partial derivatives
with respect to the x and y axes, as specified by the equation. Due to the steep gradient
variations near the edges, a weight-based exponential scaling is applied to reduce the scale.

Left–Right Disparity Consistency Loss: Furthermore, we incorporated the left–right
consistency loss proposed by Godard et al. [3] into our model. In essence, it evaluates the dif-
ference between the left disparity map and the projected right disparity map, and vice versa.
Therefore, it involves comparing the left-to-right disparity map (dl2r), obtained through the
warping process w+, with the right disparity map (dr), as well as the right-to-left disparity
map (dr2l), obtained through the warping process w−, with the left disparity map (dl). This
process is designed to ensure alignment and consistency between left and right disparity
maps, contributing to the overall accuracy and quality of the depth estimation. This loss is
defined as follows:

dl2r = w+(dl , dr) (13)

dr2l = w−(dr, dl) (14)

Lcon
r = ∑ ‖ dl2r − dr ‖ (15)

Lcon
l = ∑ ‖ dr2l − dl ‖ (16)

Lcon = Lcon
r + Lcon

l . (17)

Left–Right Difference Image Loss: Here, the term “difference image” means simply
subtracting the right image from the left image, providing another hint as to how much a
particular pixel has to move during the reconstruction process. The left–right difference
image loss serves a crucial role in guiding the pixel values of the reconstructed difference
images to closely resemble the corresponding values in the target difference images, which
complements and enhances the image reconstruction loss by further enforcing consistency.
To ensure consistency with the proposed image reconstruction loss, we formulated the left
and right difference image loss by combining L1 loss and LPIPS-based loss. The left–right
difference image loss, denoted as Ldi f f , is defined as follows:

Ldi f f
l1 = ∑ ‖ (Il − Ir)− ( Îl − Îr) ‖ (18)
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Ldi f f
lpips = ∑ lpips((Il − Ir), ( Îl − Îr)) (19)

Ldi f f = Ldi f f
l1 + Ldi f f

lpips (20)

Total training loss: The main purpose of this study is to prove the effect of the proposed
LPIPS-based image reconstruction loss and left–right difference image loss, so each loss
function is designed to contribute to the total loss with the same weight. Thus, the total
training loss, obtained by simply combining all the proposed losses, is the following:

Ltotal = Lrec + Lsmooth + Lcon + Ldi f f (21)

4. Experiments

In this section, we present a comprehensive performance analysis of our proposed
model, which has been trained on the KITTI 2015 driving dataset. To assess the performance
of our model, we conduct a thorough evaluation using standard metrics, encompassing
both quantitative and qualitative aspects. This evaluation entails comparing our model
with a range of existing studies that employ more sophisticated learning approaches, as well
as studies that utilize similar methodologies.

As described in Section 2, the learning model for the self-supervised monocular
depth estimation network is evolving from learning with stereo–image data, advancing
through monocular video sequence data, hybrid data, and recently culminating in the
integration of multi-task learning encompassing depth and segmentation. The primary
purpose of this study is to demonstrate the effectiveness of the proposed LPIPS-based
image reconstruction loss and the utilization of left–right difference image loss. To achieve
a more objective understanding of our study’s performance, we compare it with relevant
studies that employ the aforementioned learning models. This comparative approach
facilitates a more unbiased assessment of our study’s achievements.

To ensure equitable evaluations, we meticulously select models for comparison that
have been trained on the same KITTI 2015 640 × 192 image dataset used in our research.
Additionally, assessments are conducted following the established norm of constraining
depth estimates to a maximum of 80 m. In cases where diverse networks were employed
in analogous studies, we enhance the comparability of the results. When feasible, we
specifically analyze and contrast outcomes derived from the application of the same ResNet
architecture used in our study.

4.1. Experimental Setup
4.1.1. Dataset

• KITTI: The proposed self-supervised monocular depth estimation network is trained
using stereo–image data from the KITTI 2015 driving dataset. The dataset consists
of 61 scenes and includes a total of 42,382 pairs of rectified stereo–images. However,
for our training, we utilize only 22,600 image pairs based on the Eigen split [1].
In addition to the image data, 3D point data are provided for each image, serving
as the ground truth for performance evaluation. To ensure a consistent evaluation
and to enable meaningful comparisons with other approaches, the resolution of the
image data and Velodyne depth map is resized to 640 × 192 during the training
process. This resizing allows us to maintain accuracy and precision while facilitating
fair comparisons in the field.

• CityScapes: To assess the generalization performance of the proposed model, we
evaluate the model on the CityScapes dataset [34]. The dataset consists of a diverse
collection of stereo video sequences recorded from street scenes in 50 different cities. It
includes high-quality pixel-level annotations for 5000 frames, as well as a larger set of
20,000 weakly annotated frames. Although our proposed model is not trained on this
dataset, we solely test it to ensure compatibility with the target studies for comparative
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analysis. This evaluation allows us to gauge the model’s ability to generalize and
perform well on unseen data from real-world street scenes, demonstrating its potential
for real-world applications beyond the training dataset.

4.1.2. Implementation Details and Parameter Setting

The proposed model is implemented using the PyTorch framework [35] and is trained
on two GeForce RTX 3090 GPUs. Throughout both training and testing, the image resolution
employed is 640 × 192 pixels. The training process spans 60 epochs, with a batch size of 14.
To confine the output disparities within a suitable range, the output disparities from the
proposed model undergo a sigmoid activation function, bounding their values between
0 and dlimit. The sigmoid nonlinearity is applied using dlimit, which is set to 0.15 times
the width of the image. This bounding mechanism maintains consistency and enforces
meaningful depth values in the output.

For optimization, we employ the Adam optimizer [36] with specific parameter config-
urations. The values for β1 and β2 are established as 0.5 and 0.999, respectively. The initial
learning rate is set to 0.0001. The learning rate schedule follows a distinct pattern: it is
reduced by half from the 15th to the 29th epoch, halved again from the 30th to the 39th
epoch, and then diminished by one-fifth from the 40th epoch until the training is concluded.
This progressive learning rate schedule facilitates convergence and enables the model to
finely adjust its parameters effectively over the training period.

To counteract overfitting and enhance the richness of the training data, we apply
several data augmentation techniques during the training process. These techniques
introduce variations and augment the model’s robustness. Specifically, the following data
augmentation operations are applied with a 50 percent probability:

• Horizontal flips: Images are horizontally flipped, providing additional variations in
object orientations and viewpoints.

• Gamma transformation: Gamma values of the images are adjusted, altering the overall
brightness and contrast.

• Brightness transformation: The brightness of the images is randomly adjusted within
a range of +/− 0.15, introducing variations in lighting conditions.

• Color transformation: Color transformations are applied to the images, modifying the
color space and enhancing diversity.

The application of these data augmentation techniques in a random manner introduces
diversity into the training data, resulting in a reduction in over-fitting and an improvement
in the model’s ability to generalize to unseen data. To achieve this, the weight values
assigned to different loss components are set as follows: image reconstruction loss 1; left–
right disparity consistency loss 1; disparity smoothness loss 1; and left–right difference
loss 1, contributing to the overall total loss. The process of determining the hyperparam-
eters for the network involved an iterative approach that included the evaluation of the
network’s accuracy using randomly sampled validation data. This iterative process facili-
tated fine-tuning and enabled the identification of optimal values for the hyperparameters.
By randomly selecting validation data, we ensured a diverse and representative sample
that accurately reflected the overall dataset. Through this iterative evaluation process, we
were able to make informed decisions regarding hyperparameter values that maximize the
network’s accuracy and overall performance.

4.2. Evaluation on KITTI Dataset

To ensure fair comparisons with other studies, we have trained the proposed model
using the Eigen split methodology applied to the dataset. The Eigen split offers a standard-
ized and widely accepted data partitioning approach for evaluating the effectiveness of
monocular depth estimation models. Within this partition, a total of 22,600 image pairs
are allocated for training the proposed model, while a distinct set of 697 image pairs is
set aside for testing purposes. During testing, the available depth ground-truth data are
employed to gauge the performance of the proposed model. By adhering to the Eigen split
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and utilizing the provided ground-truth data, the performance of the proposed model can
be objectively assessed and contrasted against other studies in a uniform and fair manner.

4.2.1. Quantitative Analysis

First, we compare test results with those obtained from other models that focus on
single-task learning for depth estimation. These models are trained using either stereo–
image data (S) or monocular video sequence data (M) from the KITTI dataset. The purpose
of this comparison is to evaluate the performance of our proposed model in relation to
other models that employ different network architectures but share the same single-task
learning approach as ours. Through this comparison, we aim to assess how our model
performs compared to alternative models that have a similar learning approach but differ
in their network architectures. Table 1 shows the quantitative results.

For the quantitative analysis, the following standard evaluation metrics are employed.
Here, N, d̂i, and di denote the total number of image pixels, estimated depth, and ground-
truth depth for pixel i, respectively. For metrics (1) through (4), a lower score is indicative
of a better performance, whereas for metric (5), a higher score indicates superior results.

(1) Absolute relative error (Abs Rel):

1
N

N

∑
i=1

||d̂i − di||
di

(2) Squared relative error (Sq Rel):

1
N

N

∑
i=1

||d̂i − di||2
di

(3) Root-mean-squared error (RMSE):

√√√√ 1
N

N

∑
i=1

(d̂i − di)2

(4) Mean log10 error (RMSE log):

√√√√ 1
N

N

∑
i=1

||log(d̂i)− log(di)||2

(5) Accuracy with threshold t, that is, the percentage of d̂i, such that δ = max( di
d̂i

, d̂i
di
) < t,

where t ∈ [1.25, 1.252, 1.253].

The comparison conducted between the proposed model and other single-task learn-
ing models, whether utilizing monocular video sequence data or stereo–image data, clearly
demonstrates the enhanced performance of our model across all evaluated metrics. A no-
table observation in our study is the superior performance of our proposed model compared
to Monodepth2 [15], despite sharing a similar network structure. The key differentiating
factor lies in the inclusion of specifically designed losses introduced in this paper, namely
LPIPS-based image reconstruction loss instead of SSIM-based, and the left–right differ-
ence image loss. This highlights the significant impact of our well-designed losses in
enhancing the performance of stereo–image learning for a self-supervised monocular depth
estimation network.

Table 2 presents a performance comparison between our model, which exclusively
utilizes training on stereo–image data (S), and models trained through a combination
of stereo–image data and monocular video sequence data (S + M). Interestingly, despite
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being trained solely on stereo–image data, our model outperforms the models trained
using the hybrid approach. The outcomes from both Tables 1 and 2 unmistakably illus-
trate the notable performance enhancements achieved by EPC++ [26], Monodepth2 [15],
and Rottmann et al. [16] through the adoption of hybrid training strategies. This observa-
tion implies the potential for further elevating our model’s performance in future iterations
by integrating hybrid training techniques.

Table 1. Comparison with single-task learning models (M: monocular video sequence data learning,
S: stereo–image data learning, ↓: lower is better, ↑: higher is better), our results are the best for
all metrics.

Method Data Type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
GeoNet [23]

M

0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [24] 0.151 1.257 5.583 0.228 0.810 0.933 0.974
EPC++ [26] 0.141 1.029 5.350 0.216 0.816 0.941 0.979
SGDepth [29] 0.117 0.907 4.844 0.196 0.875 0.958 0.980
Li [27] 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Xiong [28] 0.126 0.902 5.502 0.205 0.851 0.950 0.979

Garg [13]

S

0.152 1.226 5.849 0.246 0.784 0.921 0.967
Godard [3] 0.148 1.344 5.927 0.247 0.803 0.922 0.964
SuperDepth [14] 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [15] 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Park1 [17] 0.121 0.836 4.808 0.194 0.859 0.957 0.982
Rottmann [16] 0.119 0.947 5.011 0.213 0.855 0.946 0.974
Park2 [20] 0.112 0.832 4.741 0.192 0.876 0.957 0.980
Ours 0.100 0.756 4.575 0.179 0.894 0.962 0.982

Table 2. Comparison with hybrid learning of stereo–image and monocular video sequence (S: stereo–
image data learning, S + M: hybrid data learning, ↓: lower is better, ↑: higher is better), our results
are the best for all metrics.

Method Data Type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
EPC++ [26]

S + M

0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 [15] 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Rottmann [16] 0.114 0.864 4.861 0.202 0.862 0.952 0.978
Watson [37] 0.105 0.769 4.627 0.189 0.875 0.959 0.982
HRDepth [38] 0.107 0.785 4.612 0.185 0.887 0.962 0.982

Ours S 0.100 0.756 4.575 0.179 0.894 0.962 0.982

Table 3 presents a comparison with various multi-task learning models. In Table 3,
we can observe that our single-task learning model, which focuses solely on depth esti-
mation, achieves a higher performance compared to the multi-task learning models that
simultaneously tackle semantic segmentation and depth estimation. The results showcased
in Table 3 clearly demonstrate the effectiveness of the multi-task learning approach for
monocular video sequence data learning models. However, it is noteworthy that our
model outperforms the multi-task learning models in five metrics: absolute relative error,
squared relative error, root-mean-squared error, Mean log10 error, and first accuracy with
threshold t. This indicates the notable improvement of our model. On the other hand,
our model exhibits a slightly lower performance in the remaining two metrics when com-
pared to [30,32], and in the last metric when compared to [31]. The findings presented
in Tables 1–3 indicate that transitioning from stereo–image learning to hybrid learning
and from single-task training to multi-task learning results in significant improvements in
self-supervised monocular depth estimation performance. An illustrative instance show-
casing the characteristic enhancement in performance resulting from the progression of
learning types, as demonstrated by Rottmann et al. [16], has been depicted in Table 4.
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These findings indicate the substantial potential of our model for further enhancements
and improvements.

Table 3. Comparison with multi-task learning models (STL: single-task learning, MTL: multi-task
learning, M: monocular video sequence data learning, S: stereo–image data learning, S + M: hybrid
data learning, ↓: lower is better, ↑: higher is better), underlined results are better than ours.

Method
Task
Type

Data
Type

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE
Log ↓

δ < 1.25
↑

δ < 1.252

↑
δ < 1.253

↑
SGDepth[29]

MTL
M

0.112 0.833 4.688 0.190 0.884 0.961 0.981
Guizilini [32] 0.113 0.831 4.663 0.189 0.878 0.971 0.983
SAFENet [30] 0.112 0.788 4.582 0.187 0.878 0.963 0.983
Xiao [31] 0.113 0.820 4.680 0.191 0.879 0.960 0.983
Rottmann [16] S + M 0.106 0.778 4.690 0.195 0.876 0.956 0.979
SceneNet [33] S 0.118 0.905 5.096 0.211 0.839 0.945 0.977

Ours STL S 0.100 0.756 4.575 0.179 0.894 0.962 0.982

Table 4. Rottmann’s [16] example of performance improvement through learning-type evolution
(S: stereo–image data learning, S + M: hybrid data learning, S + M + MTL: hybrid data and multi-task
learning ↓: lower is better, ↑: higher is better).

Learning-Type Evolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
S 0.119 0.947 5.011 0.213 0.855 0.946 0.974
S + M 0.114 0.864 4.861 0.202 0.862 0.952 0.978
S + M + MTL 0.106 0.778 4.690 0.195 0.876 0.956 0.979

4.2.2. Qualitative Analysis

Figure 2 displays the predicted depth maps of various studies for multiple images.
The comparative analysis primarily focuses on comparing our model’s results with a series
of Monodepth models that share a similar structure and employ an SSIM-based image
reconstruction loss. Two other relevant studies were also considered in this analysis.

In the first image of the top row, our depth map accurately represents the large bus,
sign, and roadside forest on the left, as well as the grass surrounding the road and the
nearby forest on the right. The second image showcases a clear depiction of a cyclist,
with well-defined boundaries between the road and the trimmed shrubbery and forest in
the distance. Our model’s superiority is evident in the third image, where the boundaries
of roads, guardrails, low shrubbery trees, and the sky are clearly visible in the distance.
The fourth image emphasizes the clear boundaries of large trucks on both sides, while the
fifth image highlights the depth of a long tram on the left and the distinct border between
the road, fence, and surrounding forest on the right. An important point to emphasize here
is the impact of object edge clarity and object geometry correctness in the depth map on
the overall depth performance. In Figure 2, the edges of objects such as cars, traffic signs,
cyclists, trains, and trees in the Monodepth2(MS) images appear clearer than in our images.
However, it can be observed that the shape accuracy of objects in our depth map images
is higher than that of Monodepth2(MS). This difference is linked to the quantitatively
enhanced performance of our model compared to Monodepth2(MS), as shown in Table 2.
This means that the precise image shape of an object generated by LPIPS-based image
reconstruction and left–right difference image loss functions adopted by our model has a
greater impact on depth map accuracy. Evidently, further improvement is also needed to
increase the accuracy of object edges in the depth map images generated by our model.

Moving to the bottom row, the first and second images provide a clearer representation
of cyclists, roadside buildings, traffic lights, and signs. The third image at the bottom further
demonstrates our model’s superiority, with a distinct figure of a cyclist on the left and a
clearly visible outline of a large building far away on the right side of the road. In the
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fourth and fifth images at the bottom, our depth map accurately portrays the signs and
their surroundings, as well as the cars and their surroundings. Visually, it is evident that
our model generates clearer depth maps compared to other studies. Particularly, our model
excels in capturing depth information for composite objects such as cyclists, large structures,
distant shrubbery trees, grassy areas around roads, borders with forests, and long-distance
roads. This superior performance can be attributed to the effectiveness of LPIPS-based
image reconstruction loss and the inclusion of the left–right difference loss in our model.

Figure 2. Qualitative comparison with other studies (M: monocular video sequence data learning,
S: stereo–image data learning, MS: hybrid data learning).

Figure 3 illustrates the impact of our model’s left–right difference image loss on the
generation of depth maps for distant regions. The first depth map, positioned at the
bottom, showcases the substantial improvement achieved when our model incorporates
the left–right difference image loss. The boundary between the road and the guardrail
is significantly clearer, even at greater distances, compared to the depth map generated
by our model without utilizing this loss function. Additionally, there is an improved
definition in depicting the demarcation between the forest surrounding the road and the
distant sky, particularly in remote areas. The second image further highlights the difference.
The model that incorporates the left–right difference image loss demonstrates enhanced
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clarity in distinguishing the spatial variation between the sign and the background, as well
as the structure and the background, in comparison to the model without the application
of this loss function. Furthermore, the third depth map reveals that the model utilizing
the left–right difference image loss effectively establishes a distinct boundary between
the distant forest and the sky. This demonstrates the ability of our model to capture
and represent the depth information accurately, particularly in remote areas. Overall,
Figure 3 emphasizes the significance of the left–right difference image loss in improving
the depiction of depth maps, especially for distant regions, by enhancing clarity, spatial
variation, and boundary delineation.

Figure 3. Qualitative comparison between our models with and without left–right difference im-
age loss.

4.2.3. Ablation Analysis

We have conducted an ablation study with a primary focus on highlighting the efficacy
of LPIPS-based image reconstruction loss and left–right difference image loss, as proposed
in this paper. The ablation study also aims to offer a comparative analysis between the
newly introduced LPIPS-based image reconstruction loss and the conventional SSIM-based
counterpart. The outcomes of the ablation study are summarized in Table 5.

Applying SSIM-based image reconstruction loss results in a noticeable enhancement
in performance compared to using only L1 loss. Notably, the adoption of the proposed
LPIPS-based image reconstruction loss yields substantial performance improvements when
contrasted with the conventional SSIM-based loss. Moreover, the inclusion of the left–right
difference image loss function further contributes to the overall performance enhancement.
Through this comprehensive ablation analysis, we successfully demonstrate the significant
effectiveness of both the proposed LPIPS-based image reconstruction loss and the left–right
difference image loss.

Table 5. Ablation analysis (L1: L1-based image reconstruction loss, SSIM: SSIM-based image recon-
struction loss, LPIPS: LPIPS-based image reconstruction loss, DIFF: left–right difference image loss,
↓: lower is better, ↑: higher is better).

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE Log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
L1 0.178 1.213 5.601 0.250 0.735 0.922 0.970
L1 + SSIM 0.112 0.790 4.687 0.195 0.871 0.955 0.979
L1 + LPIPS 0.106 0.760 4.635 0.187 0.883 0.958 0.980
L1 + LPIPS + DIFF 0.100 0.756 4.575 0.179 0.894 0.962 0.982

4.3. Evaluation on CityScapes Dataset

We extensively evaluated our proposed model using a total of 1525 test images from
the CityScapes dataset. To ensure methodological rigor, we applied a standardized process
of cropping and resizing the lower section of each image, resulting in a uniform resolution
of 640 × 192, mirroring the approach used for the KITTI dataset. The qualitative outcomes
of this evaluation, focusing on the CityScapes test images, are showcased in Figure 4.
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The depth maps generated by our model exhibit remarkable precision in capturing a di-
verse array of objects within these test images, ranging from automobiles, traffic signs,
and pedestrians to trees, bicycles, and road surfaces. This impressive performance under-
scores the model’s robust generalization capabilities, enabling accurate depth predictions
across a wide spectrum of untrained image contexts.

Figure 4. Qualitative results on CityScapes dataset.

5. Conclusions

In conclusion, this paper presented a novel approach for self-supervised monocular
depth estimation by leveraging stereo–image learning. The proposed model incorporates
a perceptual assessment of reconstructed and left–right difference images, effectively
guiding the training process, particularly in challenging conditions such as low-texture
areas and distant regions. These kinds of regions have often posed challenges for methods
utilizing conventional computer vision-based IQA models like SSIM. The adoption of LPIPS
image assessment algorithm as an image reconstruction loss in our model is particularly
advantageous due to its alignment with human perception during the training process. This
characteristic ensures that the reconstructed images are perceptually aligned with the target
images, reducing artifacts even in challenging regions. Consequently, the use of LPIPS-
based loss function enhances the overall quality and visual fidelity of the reconstructed
images, especially in artifact-prone regions. The integration of the left–right difference
image loss primarily aims to mitigate distortions arising from variations in the left–right
images of a stereo pair, caused by factors like lighting fluctuations and camera calibration
errors. Moreover, the application of the left–right difference image loss effectively mitigates
distortions in distant regions of the reconstructed images by guiding distant pixel values
within the reconstructed difference images toward convergence with zero.

The experimental results conducted on the KITTI driving dataset provide compelling
evidence of the effectiveness of our proposed approach. Our model outperforms other
recent studies employing more complex approaches and those utilizing similar approaches.
Despite being trained solely on stereo–image data, our model demonstrates superior
performance compared to networks employing a hybrid training approach involving both
stereo–image and monocular video sequence data. Furthermore, our single-task learning
model trained solely for predicting depth achieves higher performance than multi-task
learning models trained for both semantic segmentation and depth estimation. Through the
process of comparing experimental results, we observed that the hybrid data learning and
multi-task learning approaches significantly enhance the performance of self-supervised
monocular depth estimation. These findings suggest that incorporating these approaches
into our model has the potential to further improve its performance. As a result, our future

173



Electronics 2023, 12, 3730

research endeavors will focus on exploring and implementing these techniques to enhance
the capabilities of our model.
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Abstract: Arrow signs found on roadway pavement are an important component of modern trans-
portation systems. Given the rise in autonomous vehicles, public agencies are increasingly interested
in accurately identifying and analysing detailed road pavement information to generate compre-
hensive road maps and decision support systems that can optimise traffic flow, enhance road safety,
and provide complete official road cartographic support (that can be used in autonomous driving
tasks). As arrow signs are a fundamental component of traffic guidance, this paper aims to present
a novel deep learning-based approach to identify the orientation and direction of arrow signs on
marked roadway pavements using high-resolution aerial orthoimages. The approach is based on
convolutional neural network architectures (VGGNet, ResNet, Xception, and DenseNet) that are
modified and adapted for regression tasks with a proposed learning structure, together with an ad
hoc model, specially introduced for this task. Although the best-performing artificial neural network
was based on VGGNet (VGG-19 variant), it only slightly surpassed the proposed ad hoc model in
the average values of the R2 score, mean squared error, and angular error by 0.005, 0.001, and 0.036,
respectively, using the training set (the ad hoc model delivered an average R2 score, mean squared
error, and angular error of 0.9874, 0.001, and 2.516, respectively). Furthermore, the ad hoc model’s
predictions using the test set were the most consistent (a standard deviation of the R2 score of 0.033
compared with the score of 0.042 achieved using VGG19), while being almost eight times more
computationally efficient when compared with the VGG19 model (2,673,729 parameters vs VGG19′s
20,321,985 parameters).

Keywords: convolutional neural network; regression task; road sign; pavement arrow; orientation
direction

1. Introduction

Arrow signs on roadway pavement are a crucial component of modern transportation
systems that provide critical direction and guidance for drivers. The accurate identification
and analysis of these signs is important for creating comprehensive road maps and decision
support systems that can optimise traffic flow and enhance road safety. Traditional methods
applied to identify arrow signs on the pavement involve manual inspection, which can be
time-consuming and prone to errors. However, recent advances in computer vision and
deep learning (DL) can enable the automation of the process of identifying arrow signs on
roadway pavement using orthophotography (it is important to note that no public dataset
or repository containing road arrow signs is available).

This paper aims to present a novel approach that provides accurate and efficient iden-
tification of arrow signs on roadway pavement, together with their angle orientation and
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direction using aerial orthophotography and DL algorithms. The method can automatically
determine the travel direction of highways or road network lanes that flow in parallel and
associate the predicted information within the scope of cartography production and updat-
ing to facilitate autonomous vehicle navigation. In this regard, the predicted information is
associated with the geometries of the road axes alongside other types of details such as the
number of lanes and speed limits.

Specifically, in the proposed method, convolutional neural network (CNN) archi-
tectures that were adapted for regression tasks were trained to automatically detect the
orientation and direction of straight arrow signs on roadway pavement, using aerial
high-resolution imagery. This approach enabled us to overcome the limitations of tra-
ditional manual inspection methods and provide a more efficient and accurate way of
analysing these traffic signals. To do so, several popular CNNs (VGGNet [1], ResNet-50 [2],
Xception [3], and DenseNet [4]) were adapted for regression tasks and trained with state-of-
the-art techniques. This investigation was experimental and used a quantitative approach,
where we raised a delimited and concrete study problem and processed data collected
by applying standard processing techniques for training artificial neural networks. In
the experimental design, four CNN models that have proven their effectiveness in image
recognition were considered, together with an ad hoc model that was specifically designed
for the task of arrow orientation recognition with the computational efficiency component
in mind (being better suited for real-time applications). Afterwards, quantitative analyses
and a comparison of the performance achieved in the experimental results were conducted
to identify the most suitable model that can serve as a basis for a future improvement in
the performance metrics or be introduced in a road extraction workflow.

The main contributions of this work are summarised as follows.

1. A deep learning-based methodology was developed that can accurately analyse
straight arrow signs on road pavement using orthophotography and predict their
orientation. The proposed approach was based on the adaptation of convolutional
neural networks for regression tasks and was evaluated and implemented on popular
deep learning image recognition models, where it achieved a maximum mean R2

score of 0.993 on the training set and a maximum R2 score of 0.896 on the test set.
2. A benchmark dataset (RoadArrowORIEN) was developed for predicting the orienta-

tion angle of road directional arrows, and the method applied to create it is described.
The dataset can be used for training and evaluating the performance of future model
implementations; it is hosted by the Zenodo repository [5] and can be downloaded
under a CC-BY 4.0 licence.

3. A new artificial neural network architecture was designed to improve the performance
and efficiency in the task of predicting the orientation of arrow signs found on road
pavement that was specifically constructed for faster prediction times. The model
achieved a mean R2 score of 0.987 on the training set and a maximum R2 score of
0.862 on the test set.

The remainder of this article is organised as follows. In Section 2, similar studies found
in the relevant literature are discussed. Section 3 presents the proposed deep learning
method. Section 4 describes the experimental design and the additional algorithmic
implementations considered in this study. In Section 5, the discussion of the obtained
results can be found. Lastly, Section 6 draws the conclusions of this study and mentions
future lines of work.

2. Related Work

During the last decade, there have been significant advances in the DL field, mainly
caused by the progress made in computer vision techniques—the introduced methods have
impacted and affected most areas of science. In the research field related to the analysis
of road pavement markings and signs, several studies have explored the use of machine
learning algorithms for the identification of various road markings, such as stop lines,
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pedestrian crossings, and lane markings [6–8]. These studies have shown promising results
in terms of accurate detection and classification of these markings.

Orthophotography was used in several studies focused on the detection of lane
markings on roads. For example, Soilan et al. [9] use ortho-imagery to identify arrow signs
that were manually segmented as ground truth for an application system using mobile
laser scanning (MLS). Ansarnia et al. [10] use orthophotography from vertically installed
cameras for pedestrian and vehicle detection, and their approach involves the use of DL
for different tasks including image classification (where the YOLO algorithm [11] was
used). Both papers discuss the potential for DL-based approaches to accurately detect
the position of elements on the road transport network. In addition, Pritt et al. [12]
use satellite orthophotography and DL techniques for the identification of traffic objects,
thus overcoming the existing limitations of traditional object detection and classification.
Specifically, this approach made use of an ensemble of deep CNNs for object recognition in
high-resolution, multispectral satellite images.

As Malik and Siddiqi [13] also indicate (who propose a feature point detection and de-
scription algorithm with scale invariance and rotation invariance algorithm called BRISK),
existing approaches for traffic signal extraction (in particular, vertical signals) apply more
classical techniques, such as the scale-invariant feature transform (SIFT) algorithm [14],
to detect and describe local features in digital images, and the Speeded-Up Robust Features
(SURF) [15] computer vision algorithm, to obtain a visual representation of an image and
extract detailed and content-specific information.

Li et al. [16] detect traffic signals over real-time video with YOLO-V4-tiny and YOLO-
MobileNet networks, while Zhou et al. [17] use an improved version of VGG (IVGG) to
detect traffic signals in Germany. Other works identified in the survey carried out by
Sanyal et al. [18] (where different databases are used to test the algorithms for traffic signs
in real-time video) apply different classifiers such as support vector machine [19], Gaussian,
multilayer perceptrons, and convolutional neural networks that feature max pooling and
fully connected layers.

In the field of object orientation detection, works that extend beyond the last decade
can be found. Rybski et al. [20] determine the global orientation of vehicle trajectories
from images by training an ensemble of histogram of oriented gradient (HOG) classifiers
and counting instances of gradient orientation in localised parts of an image. Asad and
Slabaugh [21] use random forest [22] to detect angles in hand positions registered with
images, while Sun et al. [23] propose the BiFA-YOLO model as a bidirectional feature
fusion and angular classification architecture based on YOLO to detect ship orientation on
high-resolution synthetic aperture radar (SAR) images.

Shi et al. [24] propose an object detection method for remote sensing images that is
based on angle classification and uses rotation detection bounding boxes labelled with
angle information. Specifically, they incorporate the neural architecture search framework
with a feature pyramid network module (NAS-FPN) in a dense detector (RetinaNet) and
use a binary encoding method in angle classification. Zhao et al. [25] propose a modification
of the YoloV5 framework to detect the orientation of the bounding boxes of objects and
apply it in the field of electrical insulators on electricity transmission towers.

In a more recent study, Yang and Yan [26] propose the transformation of the regression
problem into a circular classification problem (CSL), for which they develop an object
heading detection module that can be useful when exact heading orientation information
is needed (e.g., for detecting the orientation of ships and aeroplanes). Also, Wang et al. [27]
evidence that using CSL does not work well because of the type of loss function used
and propose the use of classification loss with adaptive Gaussian attenuation on the
negative locations to solve the problem of negative angles and achieve better accuracies in
angle estimation.

Finally, Zhao et al. [28] propose a robust orientation detector (OrtDet) to solve the object
angle problem, since convolutional neural networks do not explicitly model orientation
variation. For this purpose, the authors use the token concatenation layer (TCL) strategy,
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which generates a pyramidal hierarchy of features to address different scales of objects and
define the mean rotational precision (mRP) as a performance metric.

The mentioned studies demonstrate the potential for DL approaches in the analysis of
road markings and road signs, but they tend to focus on the identification of individual
elements in very favourable remote sensing scenes. Therefore, the closest identified studies
(described in this section) generally use YOLO-based networks to identify the orientation
of the enveloping rectangle of the objects (and allow the recovery of the object), but not the
arrow direction. This also implies that these systems are not capable of differentiating the
direction of arrows found in parallel highway lanes oriented in opposite directions.

It is important to note that no methodological proposal was found in the literature
to identify the orientation of a traffic direction arrow in roadways and no studies that
analyse the angle of arrow signs on road pavement were identified (although this source
of information is important for the identification, construction, and updating maps of
the road transport network and road intelligence systems). For these reasons, this study
presents a novel approach for the analysis of directional arrow signs on road pavement
using orthophotography and DL techniques.

3. Method Proposal

The process can be divided into two phases: the dataset generation step and the
comparative study of methods for the model selection step.

The first part of the process is described in Sections 3.1 and 4.1 and concerns the
creation of a custom dataset for the considered task (the detection of arrow orientation in
orthophotos). To obtain the data, a fine-tuned YOLOv5 algorithm (introduced by Redmon
et al. [11] and modified by Jocher et al. [29]) is first used to detect and extract arrows from
the original orthoimages. Afterwards, for each arrow, the rotation angle is identified with
the process explained in Section 3.1. However, it was observed that the arrow recognition
and orientation processes may produce inaccuracies that can be categorised into two
types: (1) arrows with correct angles but opposite directions (rotated by 180 degrees) and
(2) arrows that are undetectable due to potential shortcoming of the YOLO process. For the
first type of error, manual corrections are applied to adjust the rotation angle, while for the
second type of error, the indetectable arrows are removed from the dataset.

The second part of the process begins with the proposal of a learning structure that
enables convolutional neural networks to be used in regression tasks (where the goal is the
prediction of continuous values instead of class probabilities—as described in Section 3.2).
Afterwards, the generated arrow signs dataset is used to train a range of popular CNN
models that were modified with the proposed adaptation for regression tasks, along with an
ad hoc model (described in Sections 3.2 and 4.2). For training, a cross-validation approach is
applied by creating ten random partitions of the dataset. Each combination of partition and
model architecture is trained independently, and the performance metrics are calculated
for each partition and recorded for further analysis (as described in Sections 3.3 and 4.3).

To provide a robust assessment of model performance, a statistical analysis is per-
formed using the bootstrap method. This enables the calculation of mean and confidence
intervals for each metric, providing a comprehensive view of the model’s performance.
Finally, a comparative study on the performance of the considered models is carried out
to identify and select the most suitable one for the task. The process described above is
presented in Figure 1.
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Figure 1. Process diagram showing the workflow applied in this study that includes the generation
of an arrow dataset from orthophotography and the evaluation method to determine the final
selected model.

3.1. Data Generation Procedure: Traffic Lane Arrow Direction and Heading Detection

The procedure for inferring the angles is based on arrow data labelled at the pixel
level and includes an algorithm created to obtain the coordinates of the vertices of the
polygon and perform a clustering of the points into two groups based on proximity. During
labelling, each arrow was represented as a polygon and features two points at the origin
and five points in the part that marks the orientation.

In the first part of the procedure, these points were processed to perform a clustering
operation based on the distance between points, in such a way that from these, two clusters,
Cl1 and Cl2, that contain two and five points, respectively, were generated. The result of
applying the clustering was two classes of points, one with more points (the part of the
arrow) and another with only two points (the centroids of the clusters). Afterwards, the
centroid of both clusters was calculated using the K-means algorithm [30], allowing for two
labelled centroid points, where one was the origin of the vector while the other was the
end. The orientation angle was calculated as the azimuth between Cl1 (the arrow origin)
and Cl2 (the arrow end). The azimuth of the vector formed between the origin and the tip,
i.e., the angle with respect to the Y-axis, was calculated and afterwards used to label the
images. Finally, a sub-image centred on the arrow was extracted from the tile to work with
images that only contain one arrow while maintaining the angle label.

The procedure applied for generating the dataset is presented in Figure 2 and described
as follows.

1. From the input consisting of RGB (red, green, blue) orthoimages, manually labelled
with arrow sign information, create a JSON (JavaScript Object Notation) file containing
the arrow polygon using the capabilities of software specialised in image tagging.

2. Extract the vertices of the generated arrow-shaped polygon.
3. Generate two clusters of nearby vertices, with a minimum cluster size of two ver-

tices, so the origin cluster (Cl1, containing fewer vertices) and the arrow cluster (Cl2,
containing five vertices) are identified.
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4. For the two generated clusters, obtain their centroid (Ce1 and Ce2, respectively),
preserving the information on the number of vertices that define the cluster.

5. Afterwards, generate the vector with origin in Ce1 (of the cluster with fewer vertices)
and with the end in the Ce2 centroid (of the cluster with the higher number of vertices).

6. Next, calculate the azimuth of this vector with respect to the ordinate axis. For
the output, automatically crop the orthoimage with a constant size (for example,
64 × 64 pixels) by taking an extension slightly larger than the area occupied by the
arrow in the scene.

Figure 2. Proposed procedure for generating the dataset containing arrow signs found on pavement
and their corresponding orientation label.

3.2. Proposed CNN Adaptation for Regression Tasks and Ad Hoc Model Architecture

As stated in the Introduction, and described in Section 3, this work aims at implement-
ing a deep learning-based approach to predict the orientation of straight arrows on marked
road pavement.

At its core, a CNN is formed by a feature learning part (or convolutional base), where
convolutional and pooling layers are used to learn and extract characteristics from the avail-
able data that enable correct predictions. Afterwards, the classifier part (generally formed
by fully connected, or FC, layers) is found, where the filters containing the representations
learned are used for class prediction. It is important to mention that the classifier part of
convolutional neural networks features fully connected layers with thousands of units and
is generally prepared for image recognition challenges on large datasets (for example, many
of the popular CNNs were developed to participate in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [31], where the proposal of better learning structures was
incentivised to better predict the 1000 classes featured in the ImageNet dataset that contains
more than 1.2 million images).

The adaptation of CNNs for the regression task (presented in Figure 3) involves
removing the classifier part of a CNN architecture and replacing it with a flatten layer and
four different dense layers with 512, 64, 32, and 1 unit, respectively. It is important to note
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that the final layer features a sigmoid activation function to make it suitable for regression
problems. In addition, to strongly reduce the overfitting behaviour, the regression structure
also features a dropout layer between the flatten and FC layers, with a rate of 0.5 (to
randomly set 50% of the units to zero in each training iteration). This distribution of layers
represents the inference block of the orientation angle and enables the CNN architectures,
originally designed for image classification tasks, to be used in regression tasks (i.e., in this
study, the target value is the angle in degrees relative to the azimuth). This architecture
pivot enables the CNNs, initially architected for image classification, to be repurposed for
regression problems.

Figure 3. The proposed ad hoc architecture is based on CNN learning structures together with the
proposed CNN adaptation for regression tasks.

Unlike expansive CNN architectures common in the literature, the ad hoc model
champions simplicity without sacrificing performance. The design intent was two-fold:
(a) efficiently predict arrow orientations and (b) ensure compatibility with real-time ap-
plications. The novel ad hoc architecture described in Figure 3 is designed to balance the
need for feature extraction with computational efficiency and is intended to be used in a
real-time application.

The ad hoc model can be seen as a CNN-based architecture with a simpler disposition
of layers when compared with popular models existent in the literature (as described
in Section 4.2). The architecture consists of four convolutional blocks featuring a ker-
nel size of 3 × 3 with ReLU [32] activation (chosen for its computational efficiency and
adeptness at introducing non-linearity, which is used after each convolution) to process
the 64 × 64 × 3 RGB image tensor. The four distinct blocks act as the backbone of this
model and process the input image tensor, extracting intricate patterns essential for the
regression task. Each convolutional block ends with a max pooling layer over a 2 × 2
window, ensuring a dimensionality reduction without information loss. Starting with the
second convolutional block, the ad hoc model features normalisation layers to standardise
the input values across the learned features within the same range to ensure more stable
training and a maintain consistent data distribution across learnt features.

In the convolutional blocks, the ad hoc model applied the escalating filter count
strategy, and the number of filters per convolution increases (from 64 to 128, 256, and 512)
across blocks to ensure an optimal balance between basic and advanced feature extraction.
The progression of these blocks—from basic to advanced feature extraction—is deliberate,
mirroring the complexity of the features they are designed to capture.

Regarding efficiency and efficacy, the ad hoc architecture is fine-tuned for both feature
extraction prowess and computational agility. A testament to its streamlined design, the
model boasts a mere 2,673,729 parameters—a stark contrast to traditionally bulky CNNs,
yet without a compromise in performance.
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3.3. Considerations Regarding the Training Procedure

To reliably estimate the error achieved using each model, the training is repeated
N times (in our case, N = 10) with different random partitions in the train/ test data.
This way, N estimates of the metrics (mean squared error, R2, etc.) are obtained, and the
bootstrap technique [33] is applied afterwards to determine a confidence interval for each
metric, without having to assume a normal distribution.

Once the N estimates for the metric of interest are obtained, the statistical estimator
(e.g., the mean) is calculated at a 95% confidence interval. Here, the bootstrap procedure is
applied, which roughly resamples the results obtained M times (in our case, M = 10, 000)
and calculates the estimator for each resampling. By sorting and eliminating the 2.5% of
the values (in our case, 250) at each tail of the sorted list, the confidence interval for the
estimator is obtained. Figure 4 shows the distribution of bootstrapped R2 values for one of
the trained models (a modified VGG19 network).

Figure 4. Example showing the distribution of bootstrapped R2 values for one of the neural networks
trained in this study (the modified VGG19 model).

Another important training aspect is that, although the data augmentation technique
was proven to increase the generalisation capability of the models when the size of the
training set is reduced (features less than 10,000 samples), it is fundamental not to apply
data augmentation in the form of random height or width shifts, vertical and horizontal
shifts, or random rotations to the image tensor in similar studies. Nonetheless, data
augmentation parameters such as changes in brightness and contrast or shifts in gamma
and channel intensities could help in exposing the model to more aspects of the data
(if small parameter values are selected). In addition, the use of transfer learning for the
convolutional base of the considered CNN networks is recommended to take advantage of
their learned feature extraction capabilities.

4. Implementation of the Proposed Method

In this section, the implementation of the method proposed is presented. First, the
dataset is generated by applying the process presented in Section 3.1. Afterwards, the
popular convolutional neural networks considered in this study (for comparison with the
ad hoc model) are described, and the experimental design is presented.
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4.1. Data

The dataset used for training and testing the algorithmic implementations includes
6700 images containing arrow signals found on road pavement. The data were obtained
by analysing satellite orthophotos produced by the Geographical National Institute of
Spain (National Plan of Aerial Orthophotography, or PNOA product [34]) using a YOLOv5
algorithm that was fine-tuned for the task of road arrow symbol recognition.

PNOA provides digital aerial orthophotographs of the entire Spanish territory at a
spatial resolution of 25 cm. The images are obtained every two to four years and are
typically acquired during the summer when lighting conditions are consistent. The or-
thophotos used were previously radiometrically balanced and homogenised and have
corrections applied to minimise the topographic and atmospheric effects. The images also
feature geometric corrections aimed at eliminating distortions caused by the geometry of
the sensors.

Each input in the dataset consists of an aerial image of the road pavement that contains
a directional arrow. The arrow images were initially labelled as polygon-shaped arrows
using LabelMe [35]. During the labelling and revision process, the quality of each arrow
was checked and, if required, specific actions were taken, such as deletion of the sample
if no arrow existed in the image or the direction of the arrow was unclear as well as the
rotation of the arrow angle 180 degrees if the labelled angle corresponded to the opposite
direction. The resulting dataset contains 6701 images of 64 × 64 pixels (examples can be
found in Figure 5), together with their corresponding azimuth as the label (orientation
angle in sexagesimal degrees).

Figure 5. Examples of tiles belonging to the RoadArrowORIEN dataset (used for training and testing
the artificial neural networks), together with their corresponding angular value.
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The expected output for each input image was the rotation angle of the arrow, and
the manual review process described above was essential to ensure the accuracy and
consistency of the dataset. This dataset is expected to provide a significant benchmark
for evaluating the performance of the different models developed for the orientation
recognition of road directional arrows.

4.2. Popular Convolutional Neural Network Architectures Considered

The base networks selected for this study are convolutional neural networks, as other
types of networks are not as suitable for extracting features as intended (for example, the
YOLO model extracts the rotated rectangle that best fits the object [36]).

In addition to the ad hoc architecture described in Section 3.2, we opted for implement-
ing several other architectures from the area of image recognition, namely, VGGNet [1]
(VGG16 and VGG19 variants), ResNet-50 [2], and Xception [3], proposed for its computa-
tional efficiency. In this regard, VGGNet-based variants have demonstrated their efficiency
in image recognition tasks and are widely used in the specialised literature, whereas Xcep-
tion and ResNet-50 feature a more complex structure that enables a better extraction of
complex features from images. It is important to mention that, for training, all the ad-
ditional neural networks presented in this section were adapted for the regression task,
following the CNN adaptation for the regression task proposal from Section 3.2.

4.2.1. VGGNet

The VGG16 and VGG19 variants of VGGNet [1], illustrated in Figure 6, are well-
known, popular CNN models for image classification. The feature learning part of both
networks consists of several convolutional layers containing 3 × 3 convolutional filters
with stride and padding of size one, followed by max-pooling layers with stride of size
two (for the feature learning part). The main difference between the two architectures is
the number of layers, VGG19 features 19 layers in the feature learning part, three more
than VGG16.

 

Figure 6. Illustration showing the VGG-16 and VGG-19 architectures. Note: VGG-16 is equivalent to
VGG-19 but without the “CONV_3-4”, “CONV_4-4”, and “CONV_5-4” layers. Note: for training, the
classifier part (the last three FC layers) was replaced with the inference block of the orientation angle
proposed in Section 3.2.

In the classifier part, at the end of VGGNet (and its VGG16 and VGG19 variants),
two fully connected (FC) layers with 4096 units, together with a final FC layer containing
1000 neurons, can be found (corresponding to the number of classes in the ImageNet
dataset [31]).

4.2.2. ResNet-50

ResNet-50 (shown in Figure 7) is a residual neural network that was introduced by
He et al. [2] in 2016. The main idea behind ResNet-50 is the use of residual blocks, which
allow for the training of very deep neural networks by addressing the problem of vanishing
gradients. This is achieved by adding skip connections that bypass one or more layers and
allow the gradient to be propagated more easily through the network.
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Figure 7. The ResNet-50 architecture consists of 50 layers, including convolutional layers, pooling
layers, residual blocks, and a global average pooling layer. Note: for training, the last FC layer was
replaced with the inference block of the orientation angle proposed in Section 3.2.

4.2.3. Xception

Xception (presented in Figure 8) was introduced in 2015 by Francois Chollet [3] and is
a variant of the Inception [37] model based on separable depth-wise convolutions, which
achieves a significant reduction in computational cost while maintaining the accuracy of
the model. Different from VGGNet, ResNet-50 (presented in Section 4.2.2) and Xception
feature a single FC layer with 1000 units (the number of output classes of the ImageNet
challenge [31]).

 

Figure 8. The Xception architecture consists of a series of convolutional and depth-wise separable
convolutional layers, with skip connections, batch normalisation, and global average pooling. Note:
for training, the last FC layer was replaced with the inference block of the orientation angle proposed
in Section 3.2.

4.2.4. DenseNet

DenseNet (presented in Figure 9) was introduced in 2016 by Huang et al. [4] and
presents a paradigm shift in the construction of CNNs. Unlike the sequential arrangement
of layers found in architectures such as VGGNet, ResNet-50, and Xception (elaborated in
Sections 4.2.1–4.2.3), DenseNet exhibits a dense connectivity feature, where each layer in a
DenseNet block receives inputs from all preceding layers and passes on its own feature-
maps to all subsequent layers. These dense connectivity patterns promote feature reuse
and significantly reduce the computational burden while maintaining or even enhancing
the accuracy of the model. DenseNet can be viewed as a CNN that densely connects layers
featuring the same size of feature maps through the dense block structure to enable the
input of additional information from previous layers while passing the learned feature
maps to subsequent layers found within the same dense block. Similar to its counterparts,
DenseNet features a single FC layer with 1000 units, corresponding to the number of output
classes in the ImageNet challenge.
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Figure 9. A schematic representation showing the DenseNet architecture, illustrating the information
flow through the densely connected layers (based on [4]). Between the three dense blocks, two
adjacent blocks are referred to as transition layers, which change feature-map sizes via convolutional
and pooling layers. Note: For training, the classifier part was replaced with the inference block of the
orientation angle proposed in Section 3.2.

4.3. Training Experiments

The considered ANN architectures were trained using the dataset described in
Section 4.1. The experiments were carried out using a MacBook Pro M1 Max with a
12-core CPU (central processing unit), a 38-core GPU (graphics processing unit) with a
16-core Neural Engine, 32 GB (gigabytes) of unified memory, and 1 TB (terabyte) of SSD
(solid-state drive) storage in TensorFlow [38], installed within a Python environment.

The dataset was randomly split into training and test sets by applying a 90:10%
division criterion. As explained in Section 3.3 (and illustrated in Figure 1), the random
division of the dataset for training and validation involved bootstrapping in the training
so that the division of the dataset and the training/validation were repeated ten times to
reduce the variance and avoid overfitting. This training approach, applied consistently to
all the considered models, involved optimising the mean squared error (MSE) loss function,
defined in Equation (1) (where each predicted value (ŷi) was subtracted from the actual
target value (yi), the differences were squared, the mean of the resulting error array was
the loss to be optimised), using Adam [39] with a learning rate of 0.0001 and a batch size
of 512.

MSE_loss =
1
n

n

∑
i=1

(ŷi − yi)
2 (1)

The models based on popular CNNs, as described in Section 4.2, were trained with
transfer learning until convergence was achieved or until 50 epochs were completed. When
there was no improvement in the loss using the training dataset for the past ten epochs, it
was considered that the point of convergence was reached. The ad hoc model proposed in
Section 3.2 was trained for 500 epochs since it has the disadvantage of starting learning
from scratch.

5. Results and Discussion

To evaluate the effectiveness of the five trained models, a comprehensive set of evalua-
tion metrics was utilised, including the loss value, the R2 score (defined in Equation (2),
where SS represents the sum of squares, with SSres tending to a minimum, ŷi represents
the predicted y, and y is the average of the values, and n is the sample size), and the
mean angular error (defined as the sum of the angle errors divided by the total number
of samples).

R2 score = 1 − SSres

SStotal
= 1 − SUM(yi − ŷi)

2

SUM(yi − y )2 (2)
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Moreover, the consistency of the models in predicting the target variable was analysed
by investigating the standard deviation in the test R2 score of each model (defined in
Equation (3), where xi represents any R2 score value, x is the mean R2 score value, and n is
the total number of training sessions). The performance results obtained are presented in
Table 1.

σ =

√
∑ xi − x

n
(3)

Table 1. Mean performance results on the training and test sets using the five selected CNN architec-
tures trained for the arrow orientation prediction task.

Performance/
Model

Training Set Test Set
Number of
Parameters

Mean Training
Time (s/Epoch)

Mean
Inference
Time (s)Loss

Angular
Error

R2 Score Loss
Angular

Error
R2 Score

Stdev. of the
R2 Score

Ad hoc 0.0011 2.5162 0.9874 0.0136 6.5801 0.8440 0.0325 2,673,729 1.63 2.59
ResNet-50 0.0014 3.2250 0.9807 0.0156 8.6915 0.8045 0.0706 24,671,745 6.85 4.31

VGG16 0.0001 1.3400 0.9984 0.0137 6.6425 0.8320 0.0452 15,012,289 7.40 11.97
VGG19 0.0006 2.1564 0.9926 0.0111 5.5975 0.8683 0.0419 20,321,985 8.56 14.89

Xception 0.0006 3.0064 0.9883 0.0173 9.9843 0.7928 0.0487 21,945,513 11.05 4.87
DenseNet-121 0.0016 8.3155 0.7760 0.0163 10.1833 0.7946 0.0456 8,223,915 7.65 3.08

The results show that the VGG16 and VGG19 variants of VGGNet achieved the best
performance, with mean angular errors of 1.34 and 2.16, on the training set, respectively, and
R2 scores of 0.87 and 0.83, on the test set, respectively. ResNet-50 and Xception performed
slightly worse, with mean angular errors of 3.23 and 3.01, respectively, and lower validation
R2 scores of 0.80 and 0.79, respectively. Meanwhile, DenseNet-121 exhibited a relatively
higher mean angular error of 10.18, with a test R2 score of 0.79, and a standard deviation of
the test R2 score of 0.05.

The proposed ad hoc model displayed a high generalisation capability in predicting
the target variable, achieving a mean angular error of 2.52 degrees on the training set and a
test R2 score of 0.84. These values are remarkable when considering the model’s increased
computational efficiency (the ad hoc model processed and predicted the available informa-
tion from 4.3 times to 6.2 times faster when compared with the other NN candidates). This
indicates its appropriateness for use in similar regression tasks. In addition, the ad hoc
model was the one with the most consistent performance, as its standard deviation of the
test R2 scores reached a minimum of 0.03. Nonetheless, the standard deviations of the test
R2 scores were relatively low across all models, reaching a value of 0.05 for DenseNet-121
and a maximum of 0.07 in the case of ResNet-50.

As for the proposed ad hoc model, its training process was up to 6.2 times faster
when compared with its well-established counterparts, which indicates an advantage in
applications where the real-time detection of arrow orientation is pursued. One possible
explanation is that it features fewer layers and parameters when compared with well-
established architectures. Moreover, during inference, it consistently performed between
1.2 and 5.7 times more rapidly. This advantage can be significant in real-world applications
where real-time detection of arrow orientation is necessary. Such scenarios might include
high-speed autonomous vehicles or robotics applications where rapid decision-making
is crucial. One possible reason for this speed advantage is that the ad hoc model has
fewer layers and parameters than the more established architectures, mitigating the risk
of overfitting, which is a common issue in deep learning models with large parameter
spaces. This model, therefore, offers a promising solution for applications where speed and
efficiency are key factors. However, it is important to mention that the ad hoc model had to
learn the studied phenomenon from scratch, which may have influenced its capacity to
learn and generalise patterns in the data.

It is also important to note that the loss metric used in our models does not consider the
potential error in arrows that are near 0 degrees, causing the error measurement between
0 and 359 degrees to be much larger than it is. However, given the ability of the models
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to tolerate noise, this is not a significant concern. Nonetheless, future work could explore
alternative loss functions that account for this phenomenon to further improve accuracy.
To gain a better understanding of the values presented in Table 1 and provide a clear visual
representation of how the models compare to each other, the performance of the trained
models is also presented in Figure 10 in terms of the R2 score, MSE, and angular error.

 
(a) (b) 

 
(c) 

Figure 10. Visual representation showing the performance metrics achieved on the test set using the
trained models in terms of (a) R2 score, (b) MSE, and (c) angular error. Note: The intervals represent
the values obtained from applying the bootstrapping training procedure (described in Section 3.3).

According to these results, the first highlighted aspect is that Xception and ResNet-50,
despite generally having a higher feature extraction capability, display a relatively worse
predictive performance for this regression task. Interestingly, the results also suggest that
more powerful architectures, such as Xception and ResNet-50, although pre-trained on
ImageNet, may not always generalise well to other computer vision tasks. Despite their
significant performance on ImageNet, VGG16 and VGG19 outperformed both Xception
and ResNet50 on our task, as measured using the R2 score and angular error. This suggests
that the features learned using these architectures may not be as relevant to our task as
in the case of ImageNet. Thus, while pre-trained models featuring many parameters can
be a useful starting point for many computer vision tasks, they may not always be the
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best choice, and other architectures should be considered depending on the specifics of
the problem. Surprisingly, the VGG16 and VGG19 models, despite their slower processing
times compared with our ad hoc model, outperformed Xception, ResNet-50, and DenseNet-
121 on the approached task. This superior performance could be critically advantageous in
applications where the slightest angular error in arrow orientation prediction could lead to
significant consequences, such as misrouting in navigation systems.

As for overfitting concerns, the appropriate use of regularisation techniques (specifi-
cally, the dropout technique) prevents the model from memorising noise in the training data.
In addition, as explained in Sections 3.2 and 4.3, for higher control of overfitting behaviour,
data augmentation (changes in brightness and contrast or shifts in gamma and channel
intensities) was applied together with the bootstrapping technique for training (so that the
division of the dataset and the training / validation were repeated ten times). The results
obtained using the train and test sets display R2 scores that approach 0.9, and the boxplots
for the performance metrics do not display strong indicators of overfitting behaviour.

Despite the high feature extraction capability of models such as Xception, ResNet-
50, and DenseNet-121, the model did not perform well in the approach regression task.
The real-world implications of these displayed performances are important, especially
in critical applications such as autonomous vehicles or robotics, where even small errors
in determining the direction of an arrow could result in significant deviation. It can be
highlighted that, although VGG16 and VGG19 are slower, they are more accurate than
other models, indicating their potential usefulness in scenarios where the highest accuracy
is needed (such as in navigation systems). Explicitly put, the inference speed of the
ad hoc model may be important in real-world applications, where real-time detection
of arrow orientation is necessary (for example, in high-speed autonomous vehicles, or
robotics applications, where fast decision-making is crucial), making the ad hoc model
more suitable in cases that demand real-time detection and quick decision-making.

In relation to the uncertainties in the models, the quantitative results listed in Table 1
(especially the standard deviation) and the graphical representation of the performance in
the form of boxplots showcasing the distribution of MSE, R2, and angular error metrics (in
Figure 10) report a robust overview of the variability and reliability in the predictions of
the models.

Regarding the interpretability of the models, the challenges associated with deep
learning models are understood. While this work did not use specific techniques for
feature interpretation, the ad hoc model architecture was designed with simplicity in
mind, favouring transparency over complexity. However, six random test scenarios where
the predictions feature high angular errors (more than 30 degrees) are reported in Fig-
ure 11. Higher error rates were generally observed in complex scenes, where several
linear elements (such as lane separation lines, as illustrated in Figure 11a–c) with similar
characteristics are present. Another important source of error is represented by the complex
nature of the tackled task, as the studied arrow elements feature reduced dimensions and
the corresponding samples display blurry, unclear arrows, even when using the highest
available orthoimages with a spatial resolution of 50 cm (as found in Figure 11d,f). Further-
more, obstructions present in the scenes (such as scenes) also seem to have an important
impact on the quality of the predictions; considerably higher error rates are encountered in
such scenarios (as displayed in Figure 11e).

Regarding the robustness of the model in various additional scenarios, the data used
in this study are based on high-resolution orthoimages that were captured by a public
agency under optimal lighting conditions. Consequently, the training data aligns with these
favourable lighting conditions, but it is expected that the trained models display improved
robustness, due to the data augmentation techniques applied to expose the model to a
range of lighting scenarios commonly encountered in real-world settings (that include
variations in brightness and contrast).
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Figure 11. (a–f) Random samples featuring high predicted angular error (superior to 30 degrees) that
were obtained using the ad hoc model.

Overall, the decision over the use of a certain model should be dictated by the specific
application, the level of accuracy required, and the degree of computational efficiency
needed. Future studies should aim to improve the trade-off between these factors for more
robust and versatile computer vision tasks. For example, in a real-world setting, such as an
autonomous vehicle or robotics application, where determining the direction of an arrow is
crucial, the increased error rate in these models could result in a significant misdirection.
In particular, DenseNet-121 showed a significantly higher mean angular error of 10.1833,
along with a test R2 score of 0.7946, reflecting its poorer performance compared with the
other models. This suggests that the features learned using these architectures may not be
as suitable for tasks like ours as they are for ImageNet, leading to the potential overfitting
to ImageNet. Thus, while these pre-trained models can provide a strong foundation for
many computer vision tasks, their application should be carefully considered based on the
specifics of the problem at hand.

6. Conclusions

The proposed approach has the potential to significantly improve the accuracy and
efficiency of road sign identification and ultimately contribute to the development of safer
and more efficient transportation systems. The ad hoc model proposed was trained from
scratch and delivered a high performance, indicating that it may be possible to develop
custom models for specific applications, and it was most consistent in its predictions (lowest
standard deviation on the test set).

The results of this study also demonstrate the importance of carefully selecting and
evaluating CNN models for specific tasks and suggest that CNN architectures modified for
regression tasks can be effective for arrow angle estimation in images. The models based
on VGG16 and VGG19, which were pre-trained using a dataset with more than one million
images, were able to effectively learn and generalise patterns in the data, achieving the
highest performance metrics. However, the achievement of these results might have been
greatly incentivised by applying transfer learning techniques for training.
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Further research is needed to determine the optimal architecture and training method-
ology for CNN models in applications based on regression tasks. Future work could also
explore the performance of these models on larger and more diverse datasets, as well as
investigate the use of ensemble methods for achieving an improved performance.

In addition, a real-world evaluation of the model (in the form of tests to validate the
practical utility and applicability of our approach) is expected in the future, due to the
resource-intensive process that requires specialised equipment to obtain accurate testing
data (aerial orthoimages or image data collected by autonomous vehicles). In parallel,
the addition of the predicted data as a traffic direction attribute, once the road axes are
identified using semantic segmentation and the traffic direction arrow is identified, will
also be explored for real-time use in an on-board driving system.
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Abstract: Cinematic Shot Attribute Analysis aims to analyze the intrinsic attributes of movie shots,
such as movement and scale. In previous methods, specialized architectures were designed for each
specific task and relied on the use of optical flow maps. In this paper, we consider shot attribute
analysis as a unified task of motion–static weight allocation, and propose a motion–static dual-path
architecture for recognizing various shot attributes. In this architecture, we design a new action cue
generation module for adapting the end-to-end training process instead of a pre-trained optical flow
network; and, to address the issue of limited samples in movie shot datasets, we design a fixed-size
adjustment strategy to enable the network to directly utilize pre-trained vision transformer models
while adapting to shot data inputs at arbitrary sample rates. In addition, we quantitatively analyze
the sensitivity of different shot attributes to motion and static features for the first time. Subsequent
experimental results on two datasets, MovieShots and AVE, demonstrate that our proposed method
outperforms all previous approaches without increasing computational cost.

Keywords: shot attribute analysis; shot type classification; unified model; end-to-end architecture;
deep learning

1. Introduction

Frames, shots, and scenes are different entities or units that constitute a movie. A frame
is a still image, the basic unit of a movie; a shot consists of a series of frames displaying
related action or plot; and a scene is a collection of consecutive shots at the same time or
place used to show a coherent movie story line.

Generally, in movie analysis [1], shot segmentation algorithms [2,3] are used to divide
movies into thousands of distinct shots to facilitate understanding at the shot level. Unlike
action recognition [4–6], shot attribute analysis focuses more on common attributes of all
shots, such as scale, movement, and angle, which we refer to as the intrinsic attributes of
movie shots.

By extracting and comprehending intrinsic shot attributes, we can semantically index
and search movie archives based on cinematographic characteristics. This also facilitates
high-level analysis of film styles by identifying patterns in the use of scale, movement,
and angle throughout a film. Furthermore, automatic shot attribute analysis can potentially
enable AI-assisted editing and intelligent cinematography tools that provide suggestions
based on learned film shot patterns and conventions.

In previous shot attribute analysis methods, as shown in Figure 1, each shot attribute
is often treated as an independent classification task, such as shot movement classification [7]
and shot scale classification [8]. These methods utilize task-specific network architectures
tailored for predicting each property. Consequently, they are applicable to single-property
prediction and cannot be easily generalized to other properties.

Moreover, prior research [9] has shown that action cues are critical features of shot
attribute analysis; thus, most methods [1,7,10,11] employ pre-trained optical flow networks
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to extract video optical flow map. However, since the training datasets of optical flow
networks [12–15] are mostly generated in virtual environments, distortions may occur
when extracting optical flow from real movie shots, and the end-to-end training process
cannot be achieved using additional optical flow networks.

Figure 1. Demonstration of the movie shot analysis task. After splitting the movie into shots, several
intrinsic attributes of the shots need to be accurately analyzed.

The above analysis identifies some of the problems in the shot attribute analysis task
and points to our main research motivation: how to design a unified architecture for
multiple shot attribute analysis, and how to capture the motion cues of a shot without
relying on optical flow networks while achieving an end-to-end training process.

Inspired by [6,16], we introduce a learnable frame difference generator to replace
the pre-trained optical flow network, i.e., using frame difference maps as motion cues,
and successfully enable the architecture for end-to-end training. However, certain shot
attributes like shot scale are less sensitive to motion cues; thus, overly relying on motion
cues when analyzing these attributes may affect the performance [1]. Therefore, inspired
by the dual-stream networks, we balance motion and static features and design a motion
and static branch to independently analyze motion cues and static frames, and further
quantify the weights of the motion and static feature in the fusion module. Then, given
the effectiveness of transformers in computer vision tasks [17,18], we attempt to replace
traditional convolutional neural networks with them. However, since transformers require
a large amount of training data, and the sample size of movie shot datasets [19–22] is
usually less than 30 K, we introduce transformer models pre-trained by Kinetics 400 [23],
and design a fixed-size adjustment strategy for the motion branch and a keyframe selection
strategy for the static branch to adapt to fit the input size; meanwhile, this design also
allows our architecture to accommodate shot data inputs at any video sample rate.

We validate our proposed method on two large movie shot datasets, MovieShots [1]
and AVE [24], and compare the performance with all previous methods. Given the sample
imbalance problems of movie shot datasets, we employ Macro-F1 for evaluation in addition
to the regular Top-1 accuracy. The results show that our model performs significantly better
than other methods while maintaining computational efficiency.

Our contributions are as follows:
1. We summarize the main issues in the task of shot attribute analysis. Building

upon these, we propose a unified dual-branch end-to-end architecture capable of analyz-
ing all movie shot attributes, and further quantify the motion/static feature weights of
different attributes.

2. We design a learnable frame difference generator to replace the pre-trained optical
flow network, and through specific strategies make the network compatible with vision
transformer pre-trained models, effectively solving the problem of lacking samples in the
movie shot dataset.

3. Experiments on MovieShots and AVE prove that our shot attribute analysis archi-
tecture significantly outperforms all previous methods in various shot intrinsic attributes,
and exhibits notable advantages in computational efficiency.

2. Related Work

2.1. Two-Stream Architecture

A dual-stream network [9,25–27] consists of two parallel networks: one processes spa-
tial information (spatial stream), while the other handles temporal information (temporal
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stream); this architecture performs well in processing video data and significantly improves
the accuracy of action recognition. Here, we refer to them as the motion branch and static
branch. In the traditional dual-stream network architecture, the motion branch uses optical
flow maps as input to capture dynamic information in videos, such as the movement
path and speeds of objects. The static branch uses video frame inputs to understand the
low-level texture features and high-level semantic information in the video.

In our method, we optimize the two-stream architecture for shot attribute analysis:
(1) We use the frame difference generator instead of the optical flow network to extract
the dynamic information. (2) We choose the visual transformer architecture in lieu of the
traditional convolutional backbone. (3) We select one key frame as input due to the charac-
teristics of the shot analysis task, which significantly reduces the amount of computation.
(4) In the resulting fusion module, we add an adaptive parameter to balance the contribu-
tion weights of the dual branches in different shot attributes instead of concatenating the
two features directly.

2.2. Shot Arrtibute Analysis

The goal of the shot attribute analysis task is to analyze the intrinsic attributes of
movie shots. Traditional methods [10,11,19–22,28,29] rely on hand-crafted low-level fea-
tures (e.g., dominant color regions, camera motion histogram descriptors) as well as
traditional machine learning methods (e.g., support vector machines, decision trees), which
are constrained by the priori hypothesis of the selected features, leading to analysis of the
results with low accuracy and a lack of generalization ability.

In following CNN-based approach [1,7,8,30–33], the baseline SGNet [1], for instance,
employs video frames and optical flow maps as inputs to generate subject maps, which
segment the foreground and background of the video. The foreground and background
are then analyzed using a dual-stream network structure to examine movement and scale
within a unified architecture.

Subsequent approaches like MUL-MOVE-Net [7] analyze shot movement using 1D
angular histograms generated from optical flow maps. Bias CNN [8] introduces vertical and
horizontal pooling methods to analyze shot scale. SCTSNet [30] combines the recognition
of movement, scale, and angle to assist in shot boundary detection.

The CNN-based methods mentioned above achieve much higher accuracy in shot
attribute analysis tasks compared to traditional machine learning methods. However,
due to the local assumption inherent in the design of small convolutional kernels, these
methods might not capture global features adequately. Furthermore, film shot attributes
encompass both strong temporal properties (e.g., movement) and weak temporal properties
(e.g., scale, angle). Vision transformers [17], owing to their absence of inductive bias, can
automatically learn global features across the temporal and spatial dimensions of shot clips
during training. This property potentially makes them more suitable for shot attribute
analysis tasks.

2.3. Movie Shot Dataset

Due to copyright restrictions, most movie shot datasets publicly released, and the
limited number of shot samples [19–21,33], pose a challenge to the advancement of shot
attribute analysis research. MovieShots [1] is the first large dataset to provide multi-category
(movement and scale) shot attribute annotations along with complete video data. It has
been utilized several times in subsequent studies. In this paper, alongside MovieShots, we
additionally incorporate another larger movie shot dataset, AVE [24], and select four shot
attributes - shot motion, shot scale, shot angle, and shot type, for analysis.

Subsequently, we conduct extensive experiments using these two datasets. To our
knowledge, AVE has been employed for the first time in shot attribute analysis tasks.
We believe that compare to previous studies that use non-open datasets or solely rely
on MovieShots, our experiments conducted on two large datasets can demonstrate the
effectiveness of our architecture.
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3. Approach

In this section, we present a unified end-to-end training architecture suitable for
various shot attribute tasks. Despite prior attempts to employ a unified architecture for
analyzing multiple shot attributes, adjustments have been made in the structural design
to cater to distinct classification tasks (e.g., Var Block in SGNet [1]). In our architecture,
as shown in Figure 2a, we conceptualize the analysis tasks as a balance between motion
and static aspects, leading to the design of corresponding feature extraction backbones.

Figure 2. (a) Overview of our movie shot analysis architecture. The motion branch accepts shot
data inputs and employs the frame difference generator to generate difference maps. These maps
are subsequently passed through the fixed size adjustment to resize the features to the dimensions
(16, 224, 224), then outputs the motion feature by passing motion backbone. The static branch selects
the intermediate frame of the shot clip and extracts static feature using static backbone. (b) We
propose three frame difference generation methods, wherein the input and output sizes remain
unaltered except for a reduction in the temporal dimension by one.

In the following four subsections, we first define the lens attribute analysis task with a
formula specification in Section 3.1. Subsequently, we elaborate on the design of the motion
and static branches in Sections 3.2 and 3.3. In Section 3.4, a quantifiable strategy for fusing
motion and static features is introduced.

3.1. Problem Definition

Consider a given shot S = { f1, f2... fn} consists of a sequence of frames, where
fi ∈ R3×H×Wrepresents the ith frame of the shot, and n denotes the number of frames
in the shot. Each frame can be regarded as a 2d image that encompasses the static visual in-
formation of the shot. The objective of shot attribute analysis is to identify a set of functions
Θ = {θ1, θ2...θn}, which can map movie shot S to a pre-defined set of movie shot types
C = {C1, C2...Cm}. Here, cj denotes the jth movie shot attribute, while m signifies the total
number of the attributes (for instance, in MovieShots, C = {movement, scale}). The entire
process can be expressed by the following equation: {C1, C2...Cm} = {θ1(S), θ2(S)...θn(S)},
or alternatively as C = Θ(S).
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3.2. Motion Branch
3.2.1. Drawbacks of Optical Flow

When analyzing motion clues in movie shots, previous shot attribute analysis meth-
ods [1,7,10,11] often employ optical flow maps as the motion cue, which show the dif-
ferences between successive frames through pixel-level displacement vectors. However,
the extraction of optical flow maps requires the introduction of additional optical flow
pre-trained networks [13] and consumes a substantial amount of time for optical flow
calculation, making it unsuitable for the end-to-end architecture. Moreover, we point
out that since the datasets [12,14] used to train the optical flow network are generated in
virtual environments, it might not fully and accurately simulate various complex scenes
and object movements in the real world, especially in dynamic and variable movie shots.
If there is any distortion in the obtained optical flow maps it may affect the accuracy of the
analysis results.

3.2.2. Frame Difference Generator

In the motion branch, we build a unique frame difference generator module. This
module accurately represents the dynamic variations between consecutive frames by
generating frame difference maps. As shown in Figure 2b , we propose three methods
for this module: (1) Frame-Diff: Firstly, we split the input clip into separate frames,
subtract the latter frame from the former frame sequentially, and stitch the result directly.
This method is advantageous as it directly showcases the differences between adjacent
frames. (2) Conv-Diff: This function also entails splitting the input into separate parts,
but the subsequent frame is first passed through a single convolutional layer (kernel
size = 3, stride = 1, padding = 1) before being subtracted from the previous frame. This
process allows the resulting features to represent motion changes while considering local
feature information. (3) Depthwise-Diff: In this method, we first truncate the input data
for transformation and rearrangement, combine the channel dimension with the batch
dimension, and then extract frames 0 to T − 1 and frames 1 to T for the preceding and
subsequent frames, respectively. The latter is processed through a depthwise separable
convolutional [34] layer and then subtracted from the former, followed by one deformation
layer for output transformation.

Among these three methods, we particularly emphasize the Depthwise-Diff method,
and subsequent experimental results in Section 4 have demonstrated the efficiency of
this method. Firstly, in terms of implementation, this method is equivalent to processing
each frame independently through a convolution block with only one convolution ker-
nel. During this process, due to the dimension transformation that has already occurred,
the convolution operation will be performed along the time dimension (dim = 2), which
significantly differs from the typical operation along the channel dimension. This design
allows for the parallel processing of all input frames, resulting in higher computational
efficiency and parameter utilization compared to the other two methods. Additionally, it
provides a more comprehensive way to capture and understand the temporal dependency
features in dynamic motion cues. The entire process can be expressed as D = S − Γ(S),
where D ∈ R(T−1)×3×H×W represents the difference maps and Γ represents the genera-
tion method.

3.2.3. Motion Backbone

For the choice of the backbone in the motion branch, we deviate from the commonly
used ResNet50 [35] in previous methods, and instead opt for introducing the vision trans-
former [36–40] backbone. Initially, we conduct preliminary experiments using several
self-attention blocks on two movie shot datasets. After practical experimentation and
analysis (we elaborate the process in detail in Section 4.3), we choose the Multiscale
Visual Transformer [40] (MViT) with a multiscale feature hierarchies structure as our
motion backbone.
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The MViT backbone is a relatively optimal choice determined after extensive experi-
mentation. Simultaneously, we discover that not all video transformer architectures can
serve as suitable motion backbones. For the task of shot attribute analysis, whether uti-
lizing motion cues as input or directly employing frame sequences as input, the most
critical aspect is the low-level semantic information. This observation might have been
overlooked in prior related studies. Subsequent ablation experiments in Section 4.5 can
further substantiate our conclusion.

The entire MViT Backbone can be represented by the following equation:

Q̂ = DWQ K̂ = DWK V̂ = DWV (1)

Vmotion = So f tmax(P(Q̂)P(K̂)T/
√

d)P(V̂) (2)

where D denotes the frame difference map after fixed-size adjustment; Q̂, K̂, V̂ denote the
query, key and value in the self-attention operator; WQ, WK, WV denote the corresponding
weight matrix; P denotes the pooling attention; and Vmotion denotes the obtained motion
feature vector.

3.2.4. Fixed-Size Adjustment

Training a vision transformer requires a large-scale annotated dataset. in the design
of the motion backbone, movie shot datasets usually have a lack of shot samples (<10 K),
which is insufficient to support training a transformer backbone from scratch. To better
utilize various backbones pre-trained by Kinetics 400, we set t = 16, c = 3, h = 224, w = 224
as the standard backbone input size. Then, we introduce a fixed-size adjustment module to
resize the frame difference map D to this size. Specifically, we used linear interpolation
to adjust D, ensuring that the input size of the motion backbone matches the input size of
the pre-trained model. This process can be represented as D = Finterpolate(D). Additionally,
the fixed-size adjustment module indicates that our architecture can use shot clips of
arbitrary length and sample rate as input.

3.3. Static Branch

Based on practical experience, for some intrinsic attributes of shots, such scale, we
can directly judge whether it is a close-up or a medium shot from any frame of the shot.
Therefore, for the static branch, we believe that using the entire sequence of frames as input,
like a traditional two-stream network, would introduce a significant amount of redundant
information. Instead, it is common to select key frames from the shot as input. However,
we have found that in movie shots, there are rarely meaningless frames; thus, utilizing
one keyframe to represent static information within a shot is a highly intuitive solution.
In our method, we directly select the intermediate frame of the shot as the static input. For
the static backbone, we choose ViT [17] pre-trained by Image21K. The process of the static
branch can be expressed as Vstatic = ViT(S[:,t//2,:,:]), where Vstatic denotes the static feature
outputted from the static branch.

3.4. Quantitative Feature Fusion

Upon obtaining the motion feature Vmotion and the static feature Vstatic, a direct ap-
proach would involve concatenating these two vectors and then passing them through
a classification layer to obtain predictive outcomes. However, we point out that this
could lead to interference between two features (as the weight parameters of the fully
connected layer would be applied to all elements of both vectors simultaneously). In order
to maintain the independence of motion and static information, while also quantitatively
assessing the contribution from the branches, we add a trainable parameter that allows
the network to automatically learn the contribution weights of the branches (refer to re-
sults in Section 4.4). The entire process can be expressed using the following formula:
Ci = Classi f ier(λ ∗ Vmotion + (1 − λ) ∗ Vstatic), where λ denotes the trainable parameter.

200



Electronics 2023, 12, 4174

4. Experiment

4.1. Datasets

In this paper, two large-scale movie shot datasets, MovieShots [1] and AVE [24], are
utilized. MovieShots is the first large public movie shot dataset with complete shot sample
clips constructed by the CUHK—SenseTime Joint Lab. It contains 46 K shots extracted from
7 K movie trailers and is meticulously annotated for scale and movement. AVE is a dataset
constructed by Adobe Research and KAIST for AI-assisted video editing, containing 196 K
shots taken from 5 K movie clips, annotated with shot attributes such as shot size, shot angle,
shot motion, and shot type. Table 1 shows the statistics of both dataset.

Table 1. Statistics of MovieShots and AVE.

Dataset Train Val Test Total Avg. Duration of Shots (s)

Movieshots Num. of movies 4843 1062 1953 7858 ——
Num. of shots 32,720 4610 9527 46,857 3.95

AVE Num. of scenes 3914 559 1118 5591 ——
Num. of shots 151,053 15,040 30,083 196,176 3.81

4.2. Experiment Setup
4.2.1. Data

Following [1,24], we split MovieShots and AVE into training, validation, and test sets
at a ratio of 7:1:2. All scenes are unique across the training, validation, and test sets. Table 1
displays the statistical information of the two datasets.

4.2.2. Implementation Details

Due to the prevalent sample imbalance in MovieShots and AVE (e.g., static shots
account for over 60% in movement and eye-level shots account for over 70% in shot-angle),
we adopt focal loss [41] instead of conventional cross entropy as the loss function for shot
attribute analysis tasks. The focal loss function is defined as:

FL(pt) = −α(1 − pt)
γ log(pt)

pt =

{
p, (y = 1)

1 − p, (y = 0)
(3)

where pt is the predicted probability for the ground truth class, α represents the class
weight, and γ represents the tuning parameter. In our implementation, we set α to 1 and γ
to 2.

To meet our goal of directly applying existing video classification pre-trained models
for shot classification, we favor publicly accessible pre-trained models for the motion
backbone and static backbone without altering model hyperparameters like layer numbers.
After extensive experiments (Tables 2, 3, and 5), we select the MViT-B [40] pre-trained
by Kinetics 400 as the motion backbone, and ViT-Base [17] pre-trained by Image21K as
the static backbone. For the frame difference generator, Depthwise-Diff achieves better
performance than the other two methods in most tasks, so we set it as the default function.
For the Frame Difference Generator, Depthwise-Diff achieves better performance than
the other two methods in most tasks, so we set it as the default. For quantitative feature
fusion, we find that a feature dimension of 768 provides a good trade-off between model
complexity and representational capacity.

Following [24], we uniformly sample 16 frames from a shot clip as input. During the
training process, we configure the batch size to be 8 and employ the mini-SGD optimizer
with a momentum of 0.9. The initial learning rate is set at 0.002, and we utilize an expo-
nential learning rate decay strategy with a gamma value of 0.9. All models are trained for
10 epochs. All experiments are conducted on one RTX4090 and utilizing Pytorch Lightning
to construct the entire shot attribute analysis system.
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4.2.3. Evaluation Metrics

Due to the long-tail distribution problem, in addition to adhering to the practice of
using Top-1 accuracy from previous works, we also adopt Macro-F1 as an evaluation metric.

Top-1 accuracy is defined as the percentage of test examples for which the model’s
top predicted class matches the true label. More formally, given a dataset of N examples
{(x1, y1), (x2, y2), ..., (xN , yN)}, Top-1 accuracy is calculated as:

Top-1 Accuracy =
1
N

N

∑
i=1

I(argmaxcP(y = c|xi) = yi) (4)

where P(y = c|x) is the model’s predicted probability distribution over classes c given
input x, and I(condition) is an indicator function that equals 1 if the condition is true, else 0.

Macro-F1 is the macro-averaged F1 score over all classes. F1 score for a class is the
harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision + recall

(5)

Macro-F1 averages the F1 scores across classes, treating each class equally:

Macro-F1 =
1
C

C

∑
c=1

F1c (6)

where C is the number of classes and F1c is the F1 score for class c.

4.3. Overall Results
4.3.1. MovieShots

Table 2 displays the overall results and computational costs of some methods on
MovieShots [1]. Among them, only MUL-MOVE-Net [7] and SGNet (img + flow) [1] use
optical flow maps as inputs, while other methods solely utilized shot data as input. To better
compare with our designed architecture, we additionally reproduce CNN-based methods
such as R3D [42], X3D [43], SlowFast-Resnet50 [44], and transformer-based methods like
TimeSformer [36], ViViT [38], and MViT [40] (all pre-trained by the K400 dataset). SGNet
(img + flow) is the baseline.

Three traditional methods, DCR [45], CAMHID [10], and 2DHM [11], are strictly
limited in their performance in scale and movement since they use hand-crafted features.
Among the CNN-based methods, we find that I3D-Resnet50, TSN-Resnet50, SlowFast-
Resnet50, and X3D have relatively high accuracy in scale, while R3D have significantly
higher results in movement than the other methods. These results can verify our previous
hypothesis: shots have both strong temporal attributes (movement) and weak temporal
attributes (scale). When undergoing end-to-end training, methods leaning towards strong
temporal attributes tend to perform better in such attributes but worse in weak tempo-
ral ones.

SGNet (img + flow), by using both optical flow maps and shot frames as input, im-
proves significantly by 9.35 in movement over SGNet (img) while maintaining accuracy
in scale. It should be noted that although SGNet, like our proposed architecture, also
uses motion cues as input and utilizes a dual-stream network structure, its emphasis lies
in segmenting movie shots into foreground and background, i.e., analyzing foreground–
background features, which is fundamentally different from our method’s motion–static
features. Following SGNet, Bias CNN and MUL-MOVE-Net w/ flow make some improve-
ments in efficiency and accuracy, but are only suitable for single attribute analysis tasks.
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Table 2. The overall results on MovieShots.

Scale Movement
Models Accuracy Macro-F1 Accuracy Macro-F1 GFLOPs

DCR [45] 51.53 —— 33.20 —— ——
CAMHID [10] 52.37 —— 40.19 —— ——

2DHM [11] 52.35 —— 40.34 —— ——

I3D-Resnet50 [4] 76.79 —— 78.45 —— ——
TSN-ResNet50 [6] 84.08 —— 70.46 —— ——

R3D [42] 69.35 69.76 83.73 42.48 163.417
X3D [43] 75.55 75.88 67.15 20.09 5.091

SlowFast-Resnet50 [44] 70.43 70.99 68.59 32.90 6.998

SGNet (img) [1] 87.21 —— 71.30 —— ——
SGNet (img + flow) [1] * 87.50 —— 80.65

MUL-MOVE-Net [7] —— —— 82.85 —— ——
Bias CNN [8] 87.19 —— —— —— ——

TimeSformer [36] 89.15 89.39 84.21 41.38 380.053
ViViT [38] 74.67 75.05 75.96 35.32 136.078
MViT [40] 87.54 87.84 86.24 43.13 56.333

Ours (depthwise-diff) 89.46 89.73 85.68 43.40 66.570
Ours (conv-diff) 89.00 89.28 86.46 43.18 66.610
Ours (frame-diff) 89.11 89.39 86.25 44.02 66.549

* baseline.

Among the transformer-based methods, we find that TimeSformer improves by 1.65
and 3.56 compared to the baseline, but its computational demand reaches a staggering
380GFLOPs. In contrast, ViTiT decreases by 12.83 and 4.69. We believe a possible reason is
that ViTiT first uses ViT to convert the shot input into high-level semantic features before
performing factorized self-attention. Therefore, it is essential to retain as much of the origin
input (or low-level semantic features) as possible when extracting features for shot attribute
analysis tasks. MViT improves by 0.04 and 5.59 over the baseline, further enhancing
performance in strong temporal attributes. In our designed architecture Ours(depth-

wise-diff), while using MViT as the motion backbone, also has a static branch, effectively
complementing weak temporal attributes. The results show that our method is 1.96 and
5.03 higher than the baseline, and the computational demand is only 1/6 of TimeSformer’s.
Moreover, although our method is 0.56 lower than MViT in Top-1 accuracy in movement, it
is 0.27 higher in Macro-F1.

4.3.2. AVE

AVE [24], compared to MovieShots, has more shot attribute labels. Table 3 shows
the experimental results on AVE. Since the original paper uses both video and audio as
inputs, and the vision backbone is R3D, we also choose to use the reproduced R3D as our
baseline. On AVE, due to the more uneven distribution of shot sample categories compared
to MovieShots, we choose Macro-F1 as the analysis metric.

Among the CNN-based methods, R3D, X3D, and SlowFast-Resnet50 performed far be-
low expectations for the four shot attributes. We believe that in shot attribute analysis tasks,
once the imbalance in shot sample categories becomes too high, using the convolutional
neural network structure can result in the analysis leaning more towards categories with a
higher sample proportion. Among the transformer-based methods, ViViT’s performance in
shot angle and shot motion was 0.62 and 0.11 lower than the baseline, 3.98 and 5.84 higher in
shot size and shot type, respectively. This conclusion, consistent with that on MovieShots,
shows that it is actually not suitable for shot attribute analysis tasks. In contrast, TimeS-
former sees significant improvements over the baseline: 19.55 (shot size), 21.65 (shot angle),
4.02 (shot motion), and 30.99 (shot type). Our proposed method, Ours(depthwise-diff), also
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improves by 19.64, 15.67, 9.09, and 31.57, achieving the best results in three shot attributes:
shot size, shot motion, and shot type.

Table 3. The overall results on AVE.

Shot Size Shot Angle Shot Motion Shot Type
Models Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Naive (V+A) [24] 39.1 —— 28.9 —— 31.2 —— 62.3 ——
Logit adj. (V+A) [24] 67.6 —— 49.8 —— 43.7 —— 66.7 ——

R3D [42] * 67.45 24.97 85.37 19.05 70.18 29.02 55.19 34.43
X3D [43] 65.44 15.82 85.44 18.43 69.41 28.74 46.39 10.56

SlowFast-Resnet50 [44] 66.10 20.38 81.13 19.72 68.17 29.40 52.25 33.55

TimeSformer [36] 72.94 44.52 87.35 40.70 71.16 33.04 75.94 65.42
ViViT [38] 69.30 28.95 85.44 18.43 70.11 28.91 57.96 40.27
MViT [40] 73.54 41.27 87.19 33.04 71.63 36.62 75.82 65.15

Ours(depthwise-diff) 73.39 44.61 86.91 34.72 70.85 38.11 76.28 66.00
Ours(conv-diff) 73.09 40.77 86.55 35.42 70.64 31.93 76.29 66.80
Ours(frame-diff) 73.34 41.32 86.86 30.85 71.35 31.11 74.06 63.52

* baseline.

4.3.3. Analysis of Frame Difference Methods

We further analyze the results of different frame difference methods on both
MovieShots and AVE. For a fair comparison, we only modify the frame difference genera-
tion module in all experiments, keeping the rest of the network unchanged. On MovieShots,
depthwise-diff surpasses conv-diff and frame-diff in Top-1 accuracy and Macro-F1 on scale,
but is slightly lower than frame-diff in movement. On the AVE dataset, depthwise-diff
significantly outperforms the other two frame difference methods in shot size and shot
motion, and is less than 0.1 below the highest Macro-F1 in shot angle and shot type. This
result demonstrates that our proposed depthwise-diff method is more suitable for our
architecture in general compared to the other two methods.

4.4. Quantitative Analysis

In shot attribute analysis tasks, it is intuitive to feel that the motion branch is more
suitable for strong temporal attributes, while the static branch is more suitable for weak
temporal attributes. However, there has been a lack of numerical representation for this
boundary. By visualizing the λ value in feature fusion module, we have quantitatively
analyzed the contributions of motion and static features in the results of each shot attribute,
as shown in Figure 3. We call the result of dividing the contribution percentage of motion
branch by the contribution percentage of static branch Temporal Tendency Coefficient

of Shot Attributes. The higher this value, the stronger the temporal dependency of the
shot attribute. In MovieShots, the tendency coefficients for movement and scale are 2.00
and 1.03, respectively. In AVE, they are 2.01, 1.80, 2.56, and 1.90 for shot size, shot angle,
shot motion, and shot type, respectively. We believe that this value can guide the design of
methods for single shot attribute recognition tasks (e.g., shot motion recognition). Using 2
as a boundary, attributes > 2 can choose to use a temporal model structure, while those <2
can opt for single-frame input and non-temporal structures.
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Figure 3. The quantitative contribution of motion and static feature to each shot attribute.

4.5. Ablation Study

We conducted the following ablation experiments to demonstrate the effectiveness of
our proposed architecture: (1) input length (video sample rate); (2) motion/static branch;
(3) vision backbone; (4) pre-trained models.

4.5.1. The Influence of Different Shot Input Duration

Our proposed fixed-size adjustment strategy allows the model to accept shot input of
any duration. To analyze the impact of shot input duration on the results, we experiment
with different counts of the sample frames . We respectively use 2 (video sampling rate
1/64), 4 (1/32), 8 (1/16), and 16 (1/8) as input duration. Figure 4 shows the accuracy and
Macro-F1 variation curves on two datasets. In most cases, as the input duration increases
(sampling rate decreases), the shot attribute analysis results are better. We find that the
temporal tendency coefficient of lower scale and shot angle do not change significantly with
input duration. Moreover, due to our fixed-size adjustment strategy, the computational
load of the entire architecture does not decrease significantly as the video sampling rate
increases, which is one of the drawbacks of our architecture. We believe that, similar to
action recognition, using a 1/8 sampling rate and 16 frames as input is suitable for most
movie shots.

Figure 4. Accuracy and Macro F1 on MovieShots and AVE with sample # frames.
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4.5.2. The Influence of Motion Branch and Static Branch

Table 4 shows the impact on results when using a single branch. When only the
motion branch is used, there is a slight (<3) decline in results on scale, shot size, shot angle,
and shot type, while there is a very minor increase in accuracy on movement and shot motion,
but a decrease in macro-F1. When only the static branch is used, movement and shot motion
decrease by 13.77 (accuracy)/10.99 (macro-f1) and 12.66/15.46, respectively, while shot type
decrease by 3.78/5.12, and scale, shot size, and shot angle remain essentially unchanged. This
indicates that the motion branch plays a leading role in our architecture and using only the
frame difference map as the input can also achieve good results, while the static branch
complements the low-level semantic information ignored by the motion branch.

Table 4. Ablation study on utilizing single branch.

Scale Movement Shot Size Shot Angle Shot Motion Shot Type
Branch Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

motion 86.88 87.13 86.14 42.82 72.82 34.87 86.32 35.05 71.68 34.37 74.65 63.97
static 89.12 89.42 71.91 32.41 73.43 40.62 86.54 32.47 58.19 22.65 72.50 60.88

4.5.3. The Influence of Visual Backbones

Table 5 shows the impact on results when using different visual backbones. Specif-
ically, we choose R3D [42] as a substitute for the motion backbone and ResNet50 [35] as
a substitute for static backbone. Compared with our benchmark configuration (MViT +
ViT), the results for scale, shot size, shot angle, and shot type declined when using MViT
+ ResNet50, while movement and shot motion increased. A possible explanation is that
ResNet50, due to its convolutional block, tends to extract high-level semantic features of
static images, while ViT, which does not have an inductive bias, is more likely to learn
low-level semantic features of the images. When using R3D + ViT, the computational cost
increases by 113GFLOPs, but the results on all shot attributes show a significant decline.
As with action recognition tasks, after sufficient training, transformer-based methods gen-
erally outperform methods based on the CNN-based method. However, we also point
out that not all transformer-based backbones are effective for shot attribute analysis tasks.
The essence of using the vision transformer is to utilize its lack of inductive bias to make
the structure learn more low-level semantic features during training.

Table 5. Comparison of different motion backbones and static backbones.

Scale Movement Shot Size Shot Angle Shot Motion Shot Type
Motion Backbone Static Backbone Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

MViT ResNet50 86.81 87.02 87.20 43.79 72.98 39.90 87.04 31.08 71.86 31.91 76.05 65.02
R3D ResNet50 73.89 74.13 80.69 39.14 68.43 29.46 84.84 18.93 63.50 26.32 50.11 27.71
R3D ViT 89.30 89.60 80.79 39.84 73.11 35.35 86.51 31.44 68.38 28.23 70.67 57.77

4.5.4. The Influence of Pre-Trained Models

To analyze the importance of pre-trained models in the shot attribute analysis task,
we choose MovieShots representing movie shot datasets with fewer than 30 K shots and
train the network after random initialization for 60 epochs. The results in Table 6 show
that if training starts from random initialization, the results on scale decline by 23.2/22.97,
while the performance on movement only decreases by 2.69/2.62. The statistics from [24]
indicate that most movie shot datasets have a sample size of less than 10 K, which is far
from the requirement for training transformer blocks from scratch. One of the purposes of
fixed adjustment strategy is to make our architecture usable for most models pre-trained
by action recognition datasets.
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Table 6. Ablation study on utilizing pre-trained models.

Scale Movement
Accuracy Macro-F1 Accuracy Macro-F1

With Pretrain (10 epoch) 89.46 89.73 85.68 43.40
From scratch (60 epoch) 66.26 66.76 82.99 40.78

5. Conclusions

In this paper, we first identify two issues in the shot attribute analysis task. Starting
from this, we design a unified, quantified end-to-end architecture. Through the motion-
static dual-branch structure, our method can adaptively learn the feature weights of motion
clues and static keyframes from input shots, thus adapting to various shot attribute classifi-
cation tasks. Experiments on MovieShots and AVE show that our proposed architecture
significantly outperforms all previous approaches. However, the long-tail problem of movie
shot category distribution has not been resolved. In our next step, we plan to improve
training strategies for unbalanced shot samples, so that the architecture can accurately
analyze shot attributes with fewer samples.
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Abstract: Accurate detection of power fittings is crucial for identifying defects or faults in these
components, which is essential for assessing the safety and stability of the power system. However,
the accuracy of fittings detection is affected by a complex background, small target sizes, and
overlapping fittings in the images. To address these challenges, a fittings detection method based
on the dynamic graph convolutional neural network (DGCNN) and U-shaped network (U-Net)
is proposed, which combines three-dimensional detection with two-dimensional object detection.
Firstly, the bi-level routing attention mechanism is incorporated into the lightweight U-Net network
to enhance feature extraction for detecting the fittings boundary. Secondly, pseudo-point cloud
data are synthesized by transforming the depth map generated by the Lite-Mono algorithm and its
corresponding RGB fittings image. The DGCNN algorithm is then employed to extract obscured
fittings features, contributing to the final refinement of the results. This process helps alleviate the
issue of occlusions among targets and further enhances the precision of fittings detection. Finally,
the proposed method is evaluated using a custom dataset of fittings, and comparative studies are
conducted. The experimental results illustrate the promising potential of the proposed approach in
enhancing features and extracting information from fittings images.

Keywords: fittings; automatic inspection; U-Net; DGCNN; attention mechanisms; Lite-Mono

1. Introduction

Power line inspection is a crucial aspect of power line management, as it helps in
identifying issues, mitigating risks, and ensuring the reliability of electricity production.
However, the current approach to inspecting electrical grid facilities heavily relies on man-
ual labor, which poses challenges in terms of time, labor intensity, and safety concerns [1].
Therefore, there is a need to shift towards intelligent inspection methods that are automated
and less reliant on manual efforts. In this regard, the use of computer vision and drone
operations aligns with the requirements of intelligent and automated power grids in the
Industry 4.0 era. Drone line patrol operations exhibit advanced, scientific, and efficient
characteristics, making them an ideal solution for collecting transmission line images. This
approach reduces labor intensity and costs while providing a safer and more reliable means
of inspection [2].

Power fittings serve as metallic attachments used to suspend, secure, and reinforce
conductors or towers, thereby ensuring the dependability of power system. Furthermore,
fittings target detection is a crucial component of transmission line inspection [3]. However,
the accuracy of fittings detection is affected by a complex background, small target sizes,
and overlapping fittings in the images. Additionally, the features extracted by many
detection algorithms exhibit significant redundancy, impacting the accuracy of intelligent
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fittings inspection. Consequently, intelligent fittings detection remains a focal point in
smart grid research [4,5].

Convolutional neural networks (CNN) have attained relatively advanced performance
across various domains, with particular prominence in computer vision [6]. Deep learning
methods are also constantly evolving in the field of the intelligent detection of power
fittings [7]. Many researchers have studied this problem using approaches based on
CNN. Luo et al. [8] introduced an ultra-compact model for detecting bolt defects based
on a CNN, an approach that enables end-to-end detection of bolt defects through a two-
stage detection process. In addition, Wan et al. [9] employed a region-based fully CNN to
integrate fine-grained features and contextual information among fittings, enhancing the
detection accuracy. However, the neural network employed in the above method has a
complex structure with many layers, and its scope of application is uncertain.

In the domain of two-dimensional (2D) detection, RGB images are vulnerable to var-
ious complicating factors, including occlusion, lighting conditions, and weather effects.
In addition, 2D detection cannot determine the three-dimensional (3D) spatial positions
of objects, and extracting features from occluded objects remains a challenging task [10].
Consequently, some methods take advantage of the abundant depth information of point
clouds and the ability to accurately locate the target, forming a 3D detection method based
on 2D data upgrading. Wu et al. [11] introduced a confidence-guided data association
method to address challenges such as occlusion and missed detections of distant objects
in tracking. This method leverages the geometric, appearance, and motion features of
objects in point clouds, associating the predicted and detected states by predicting con-
fidences and aggregating pairwise costs. Chen et al. [12] utilized geometric constraint
relationships to construct an equation system for solving object position information by
incorporating camera intrinsic parameters with object physical dimensions and orientation
information. Wang et al. [13] proposed a 3D multi-object tracking framework, which first
employs PointRCNN [14] and recurrent rolling convolution [15] to separately obtain 3D
and 2D detections of objects. Then a multi-stage depth association mechanism is devised
solely utilizing object motion information to achieve 3D multi-object tracking, focusing on
occluded objects.

Through a review of the existing literature, it appears that the method of converting 2D
data to 3D for processing fittings images has not been previously employed. To address the
challenges in fittings image detection, such as complex image backgrounds and a certain
degree of occlusion among multiple objects, a detection method of fittings based on the
U-shaped network and dynamic graph convolutional neural network (UD-Net) is herein
proposed. The effectiveness of this method is evaluated through several experimental
setups. First, a U-shaped network (U-Net) is employed to augment the extraction capability
of fittings features. Then, the Lite-Mono algorithm is deployed to generate depth maps for
the fittings. Following the fusion of the depth maps with the fittings images, these are fed
into a 3D detection network, thereby optimizing 2D object detection through the leverage
of 3D detection. The contributions of the paper are as follows:

• A fittings inspection image dataset is constructed: The fittings dataset comprises
2563 inspection images that have been meticulously annotated using the LabelImg
tool, encompassing seven distinct fittings component types. This comprehensive
dataset, characterized by its diverse scenarios, ensures robust model training;

• The UD-Net detection network is proposed: First, an improved U-Net serves as the
backbone for initial extraction of fittings features. Then, incorporating the Lite Mono
algorithm and employing the dynamic graph CNN (DGCNN), we aim to detect and
extract obscured fittings feature information;

• Enhanced U-Net: First, to improve the computational efficiency, the width of the
U-Net is narrowed to reduce the parameter volume. Then, four attention modules are
embedded to bolster the model’s feature extraction capability in complex backgrounds,
addressing the issue of diminished target salience resulting from mutual occlusion
among objects;
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• Introduction of 3D-detection-driven 2D detection methods into the fittings detection
field: First, the Lite mono algorithm is used to generate a depth image of the fittings,
and then this depth map is combined with the corresponding RGB images to create
a point cloud dataset. Finally, a 3D detection network is employed to capture fea-
tures that may elude 2D detection algorithms, contributing to the final refinement of
the results.

2. Related Works

2.1. U-Net

The U-Net architecture is designed with a symmetrical encoder–decoder structure,
distinctively exhibiting a U-shaped topology [16]. The design integrates both encoding
and decoding pathways. The encoding pathway, focused on extracting contextual feature
information, consists of convolutional blocks, max pooling operations, and ReLU activation
functions [17,18]. The ReLU function primarily aids in introducing non-linearity within the
model, with the computation given by:

f (x) = max(0, x) (1)

where x represents the input value, and f (x) represents the corresponding output value.
After inputting the image into the network, it undergoes four downsampling op-

erations, resulting in feature maps with twice the number of channels. This procedure
adeptly extracts high-dimensional features while retaining both global and semantic infor-
mation. The decoding path parallels the encoding path, featuring convolutional blocks and
upsampling operations. Transpose convolutions achieve fourfold upsampling to extract
depth information. During the upsampling phase, skip connections merge shallow and
deep information from the encoding and decoding pathways, respectively. Finally, in a
culmination of this procedure, a 2 × 2 deconvolution block is employed to restore the image
resolution, producing the final output.

U-Net [19] is often used in the automatic detection of power system transmission lines.
Its symmetrical encoding and decoding structure offers high detection accuracy paired
with a simple network topology. For example, He et al. [20] proposed a transmission line
and tower segmentation network based on an improved U-Net, which employs a fully
connected backbone structure for feature extraction and a hybrid feature extraction module
to refine semantic features, thus enabling high-precision segmentation. Han et al. [21]
proposed a lightweight U-Net model integrated with GhostNet [22] to enhance the accu-
racy of transmission line segmentation results. Choi et al. [23] introduced a power line
segmentation method based on U-Net. This method involves the combination of visible
images and infrared images of transmission lines using a U-Net embedded with attention
mechanism, resulting in successful segmentation outcomes.

2.2. DGCNN

In recent years, 3D object detection has seen significant advancements, with PointNet [24]
leading the way in combining graph neural networks with point clouds. He et al. [25]
proposed sparse voxel-graph attention network (SVGA-Net), which emphasizes advance-
ments in feature extraction and the establishment of a global graph to bolster performance
in 3D object detection. Notably, SVGA-Net addresses a pivotal concern overlooked in pre-
vious models such as PointNet, ShapeContextNet [26,27], and the PointNet series [28]—the
disregarding of inter-point relationships. Wang et al. [29] proposed DGCNN, a network
designed for learning using point clouds. DGCNN utilizes edge convolution to extract
edge features between points and their neighboring points, effectively capturing the local
geometric structure of point clouds. By employing multiple layers of edge convolution,
DGCNN generates diverse neighborhood graphs that facilitate the propagation of point
information throughout the data. This approach enables the network to select the most suit-
able neighbors in the feature space, thereby improving its classification performance [30].
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Centered around the DGCNN algorithm, Gamal et al. [31] proffered a building segmen-
tation method, which involves the direct segmentation of buildings using light detection
and ranging data and employs the DGCNN algorithm to distinguish buildings from veg-
etation. Xing et al. [32] delineated a technique for extracting geometric features using
DGCNN to ascertain a target sphere position within the fully mechanized mining face.
Liang et al. [33] introduced a medical image segmentation network based on DGCNN. The
approach involves initially employing a dual-path CNN network to segment the boundary
of lesion areas in medical images. Subsequently, the preprocessed medical images are
reclassified using the DGCNN network, enhancing the segmentation capability of the
overall network. The aforementioned methods proposed around DGCNN stand out by
dynamically constructing a graph at every layer, eschewing the need for a pre-constructed,
static graph. This methodology exhibits superior performance in both classification and
segmentation tasks.

3. UD-Net

To enhance the accuracy of fittings target detection, this paper presents a novel fittings
detection method based on UD-Net. The architecture of UD-Net is depicted in Figure 1. As
the figure shows, the BRA-UNet, which is the U-Net embedded with four bi-level routing
attention (BRA) modules, serves as the foundation for extracting fitting features. The Lite-
Mono network is then utilized to reconstruct depth maps for fittings, and the information
derived from these depth maps is merged with the RGB fittings images to produce pseudo
point cloud data. Following this, the preliminary 2D object bounding boxes identified by
the BRA-UNet network are converted into 3D object bounding boxes, which are combined
with the pseudo point cloud data for fitting objects. Finally, the recognition results are
refined using the DGCNN network.

Figure 1. The framework diagram of the UD-Net. The BRA-UNet is used for preliminary feature extrac-
tion, and then combined with the Lite Mono algorithm and DGCNN to refine the recognition results.
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3.1. BRA-UNet

To augment computational efficiency, the number of encoder blocks is reduced from
5 to 4 in the U-Net model, and the number of convolutional channels in each module is halved.
This adjustment balances the increase in parameters resulting from the DGCNN network inte-
gration while maintaining an equilibrium between resource usage and performance efficacy.

When employing the U-Net network for feature extraction, it becomes difficult to
identify the characteristics and contour details of smaller objects, thereby exacerbating
the complexity of fittings detection. Attention mechanisms in deep learning draw inspi-
ration from human visual cognition [34,35]. These mechanisms allow neural networks to
autonomously learn and selectively emphasize essential information during input data
processing, ultimately bolstering model performance [36]. One such mechanism is the
BRA mechanism [37]. Figure 2 depicts the architecture of the BRA mechanism. A fea-
ture map is inputted and a query, key, and value are obtained through linear mapping.
Then, a directed graph is constructed using an adjacency matrix to find the participation
relationship between different key–value pairs. After obtaining the region-to-region rout-
ing index matrix, a fine-grained token-to-token attention mechanism is applied. These
operations involve GPU-friendly dense matrix multiplications, which are advantageous
for accelerating inference on the server-side. Moreover, the BRA mechanism excels at
distinguishing between the background and foreground, capturing a wealth of features,
and expanding the receptive field and contextual information. This substantially boosts the
model’s performance. Therefore, in this work, the BRA mechanism is incorporated into the
upsampling layer of the U-Net network to enhance its feature extraction capability.

Figure 2. BRA attention mechanism structure. The mechanism aggregates key–value pairs and
employs sparse operations to bypass calculations in the less relevant regions, resulting in savings in
terms of parameters and computational resources.

3.2. Depth Map Generation

In the pursuit of improving 2D detection outcomes through the use of a 3D detector, a
major challenge arises from the lack of a comprehensive and accurate fittings depth dataset.
To address this challenge, the Lite-Mono network was introduced [38]. The Lite-Mono
network is a cutting-edge framework designed to tackle the complex task of monocular
depth estimation. This innovative system combines the computational efficiency of CNN
with the sophisticated contextual understanding capabilities of transformer models, all
within a self-supervised learning paradigm.

The Lite-Mono network consists of two key components: DepthNet and PoseNet.
DepthNet is responsible for estimating multiscale depth maps from input images. Within
its encoder section, DepthNet leverages a series of consecutive dilated convolutions (CDC)
modules to augment the receptive field of the initial shallow CNN layers. These CDC
modules employ dilated convolutions for the extraction of local features at multiple scales.
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A suite of dilated convolutions, each with distinct rates of dilation, is strategically embed-
ded along the encoding pathway, facilitating effective multi-scale contextual aggregation.
In the decoding phase, DepthNet utilizes bilinear upsampling layers to expand feature
map dimensions, thereby improving spatial resolution. Simultaneously, convolutional
layers connect features from three encoder stages to ensure seamless information flow
to the decoder. Additionally, varying resolutions of output are achieved by attaching a
prediction head after to each upsampling, which yields inverse depth maps at assorted
scales. PoseNet utilizes a pre-trained ResNet-18 model as its pose encoder, processing pairs
of color images for input. It is designed to assess a camera’s movement across consecutive
frames, culminating in the creation of a reconstructed target image. This methodology
transforms the depth estimation problem into an image reconstruction problem. To op-
timize the model, a loss function is then calculated. The computation process of its loss
function is as follows:

Lp
(

Ît, It
)
= α

1 − SSIM
(

Ît, It
)

2
+ (1 − α)

∥∥ Ît − It
∥∥ (2)

where It is the target image, Ît is the reconstructed image, Lp
(

Ît, It
)

is the loss between the
It and Ît, SSIM is the structural similarity index, and α is 0.85. Additionally, the loss of
minimum photometric Lp(Is, It) is calculated:

Lp(Is, It) = min
Is∈[−1,1]

Lp
(

Ît, It
)

(3)

Lr
(

Ît, It
)
= μLp(Is, It) (4)

where μ represents the binary mask parameter and Lr
(

Ît, It
)

represents the image recon-
struction loss. To ameliorate the smoothness of the generated inverse depth maps, an
edge-aware smoothness loss, denoted as Lsmooth, is computed. Subsequent operations are
then conducted as follows:

Lsmooth = α|∂xd∗t |e−|∂x It | + |∂xd∗t |e−|∂y It| (5)

L =
1
3 ∑

s∈{1, 1
2 , 1

4}
(Lr + λLsmooth ) (6)

where s represents the various scale outputs produced by the depth decoder and d∗t = dt
d̂t

represents the mean-normalized inverse depth. The value of λ is 10−3. Lite-Mono effec-
tively balances network complexity and inference speed. It exhibits strong generalization
capabilities and addresses the challenges mentioned above. Hence, in this work, the algo-
rithm is employed to generate depth maps for fittings RGB images, thereby supplementing
the missing depth information in fittings images.

3.3. 3D Object Bounding Box Prediction

Relying solely on the pseudo point cloud may not yield optimal detection results;
therefore, it is beneficial to map the generated 2D region boxes in the image to their corre-
sponding 3D regions. This process involves converting the 2D coordinate information into
3D coordinate information. It is assumed that the perspective projection of 3D bounding
boxes closely aligns with their 2D counterparts. The 3D bounding box is defined using cen-
ter coordinates C = [cx, cy, cz], dimensions I = [ix, iy, iz], and orientation O(θ, φ, α). Given the
object’s pose (O, C) in the camera coordinate system and the camera’s intrinsic parameters,
the relationship between the 3D point X0 = [X, Y, Z, 1] and the projected point x = [x, y, 1]T

in the camera coordinate system is as follows [39]:

x = K[O, C]X0 (7)
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where K represents the intrinsic matrix.
Presuming that the object’s coordinate system origin is located at the center of the 3D

bounding box and the object’s dimension is known, the eight vertices of the 3D bounding box
can be succinctly expressed as X1 = [ dx

2 , dy
2 , dz

2 ], X2 = [− dx
2 , dy

2 , dz
2 ], . . . , X8 = [− dx

2 , − dy
2 , − dz

2 ].

3.4. Three-Dimensional-Detection-Driven 2D Detection

The implementation of 3D-detection-driven 2D detection mainly relies on the DGCNN
network. In this work, DGCNN is employed to train point cloud data related to fittings.
Figure 3 delineates the architecture of DGCNN. For each point, the edge convolution
(EdgeConv) computes edge features on the layer, and these features are then aggregated for
each point to obtain the EdgeConv computation result. EdgeConv utilizes the connecting
edges to express the amalgamation of feature information within this pair of inmixed
nodes. Following this, a series of non-linear transformations are applied to combine feature
information, effectively expressing the local features from the focal node.

Figure 3. DGCNN architecture. The right-side diagrams represent the spatial transform and Edge-
Conv, respectively. The spatial transform module utilizes the estimated 3 × 3 matrix to map the input
to the canonical space.

As depicted in the EdgeConv module of Figure 3, F stands for the dimensionality of
each point, N denotes the total number of points, and (a1, a2, . . . , an) within MLP signifies
the input and output dimensionality for each layer. K signifies the number of neighboring
nodes. Through subsampling the target point cloud, a point cloud with n points and
F dimensions is obtained. The function of neurons in each layer is predicated on the
preceding layer’s output. Subsequently, a directed graph is established to encapsulate the
local structure of the point cloud. The edges connecting central points and neighboring
points are represented using Equation (8):

eij = hθ(xi, xj − xi) (8)

where eij is the edges connecting central points and neighboring points, xi represents the
central point, xj represents a point adjacent to the central point, θ represents learnable
parameters, and hθ represents an activation function. The output of the central points
is as follows:

x′i = poolingj:(x,y)hθ(xi, xj − xi) (9)

where x′i is the central points’s output.
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By stacking numerous network layers, conventional deep neural network models
have demonstrated remarkable performance on various problems, due to their potent
representational capabilities. In the context of multi-layer EdgeConv in DGCNN, the neigh-
borhood information extracted through edge convolution has the potential to represent
distant regions in the original point cloud space.

4. Results and Discussion

4.1. Implementation Details

This study utilized a self-built dataset consisting of 2563 inspection images of power
fittings, captured during overhead line inspections. A total of 982 of these images featured
rust data and were used for detection. Using the LabelImg annotation tool, seven categories
of power fittings were annotated: shackle, eyelink, damper, thimble, suspension clamp,
clevis, and ball eyes. To address the challenge of limited training samples for certain
fittings, various data augmentation techniques were applied in the object detection task.
These techniques encompassed random scaling, flipping, rotation, and the introduction of
Gaussian noise. The dataset was divided into training, validating, and testing sets with a
ratio of 7:2:1. The final number of power fittings utilized for training is presented in Table
1.

Table 1. Self-built dataset information.

Fittings Training Dataset Validating Dataset Testing Dataset

Shackle 2236 639 320
Ball eyes 1059 303 151

Suspension clamp 1260 360 180
Thimble 1047 299 150
Clevis 1199 342 171

Eyelink 1201 343 172
Damper 1845 338 169

To verify the detection performance of the UD-Net in different scenes, our study also
utilized a dataset provided by a power supply company (PSC Dataset), which contains im-
ages of thimbles, eyelinks, and shackles and is divided into images under green vegetative
scenes and yellow farmland scenes. Among them, there are 726 images in green vegetative
scenes and 581 images in yellow farmland scenes. The images in this dataset all have a size
of 512 × 512 and are carefully labeled.

Details of the hardware and software utilized in this experimental study are given in
Table 2. During the experiments, a training batch-size of 8 was employed, and the training
process transpired over a total of 100 epochs.

Table 2. Details of the Hardware and Software used in the Experimental Study.

Computer Systems Configurations

Hardware
Ubuntu 16.04 operating system

NVIDIA GTX2080Ti with 11GB memory

Software
Python 3.7, PyCharm 2020
CUDA 10.1, PyTorch 1.7.0

4.2. Experimental Results
4.2.1. Comparison with State-of-the-Art Models

A sequence of comparative analyses was carried out to assess the efficacy of the UD-
Net model. The study compares UD-Net with U-Net, FA-UNet, SSD (single shot multibox
detector) [40], Fast R-CNN (fast region-CNN) [41], YOLOv4 [42], and Faster R-CNN [43].
Additionally, it measures UD-Net’s performance against lightweight object detection
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models, including YOLOv3-tiny [44], YOLOX-Nano [45], and YOLOv5s. Table 3 shows
the comparison results. When benchmarked against SSD, UD-Net shows substantial
improvements, with a 17.24% increase in Precision, an 11.85% increase in Recall, and a
14.2% increase in mAP (mean average precision) values. Furthermore, when compared
with R-CNN series algorithms and U-Net series algorithms, UD-Net consistently exhibits
better detection accuracy. When compared with the lightweight models mentioned above,
although YOLOX-Nano has the smallest number of parameters, its detection accuracy is
lower than that of UD-Net. When comparing UD-Net and YOLOv5s models, although the
parameter number of UD-Net is slightly higher than that of YOLOv5s, it performs better in
terms of overall accuracy.

Table 3. Comparison between State-of-the-Art Models and UD-Net.

Models Precision/% Recall/% mAP/% Parameters/Million

SSD 76.01 78.33 75.79 -
Fast R-CNN 78.68 72.77 76.26 -

Faster R-CNN 80.18 78.99 78.56 -
YOLOv3-tiny 72.83 75.69 79.55 8.8

YOLOv4 81.62 82.15 81.08 52.5
YOLOv5s 88.15 89.37 88.26 7.0

YOLOX-Nano 86.59 84.85 85.22 1.8
U-Net 84.98 83.76 86.34 7.7

FA-UNet 90.09 87.81 87.73 19.9
UD-Net 93.25 90.18 89.99 7.2

Figure 4 offers an intuitive representation of the comparison results of various algo-
rithms via a box plot. As the figure shows, YOLOv5s exhibits commendable detection
performance among the YOLO (you only look once) series algorithms. However, a no-
ticeable performance disparity exists when juxtaposed with the UD-Net algorithm. The
UD-Net model showcases reduced variance across multiple experimental runs, highlighting
its consistent and superior performance.

Figure 4. Box plot of comparison results for the different algorithms.

4.2.2. Impact of BRA-UNet

To validate the superiority of embedding the BRA attention module into the UNet
network, experiments were conducted by upsampling on the U-Net network, incorporating
various attention mechanisms including squeeze-and-excitation networks (SENet) [46],
dual multiscale attention network (DMSANet) [47], efficient channel attention networks
(ECANet) [48], convolutional block attention module (CBAM) [49], and the BRA attention
mechanism. We carried out the experiments four times on the shackle dataset and the
results are presented in Figure 5. It is evident that the integration of the BRA mechanism
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into the network enhances detection accuracy and ensures its stability. The inclusion of the
BRA attention mechanism effectively expands receptive fields and contextual information,
thereby substantially enhancing the performance of the U-Net model. As the heatmaps
shown in Figure 6 demonstrate, the regions of interest for the target classifier become more
pronounced, and the high-response zones in the heatmap are focused on target fittings.
These results indicate that the enhanced BRA-UNet effectively focuses on the fittings target.
Furthermore, incorporating the BRA attention mechanism lessens the model’s reliance on
external data and bolsters its ability to discern internal data correlations.

Figure 5. Violin plots of detection results for U-Net networks embedded with different attention
mechanisms.

Figure 6. Comparison of heatmap results before and after embedding the BRA attention mechanism
in U-Net. (a) Represents the heatmap results detected by the original U-Net network, and (b)
represents the heatmap results detected by the U-Net embedding the BRA attention mechanism.

4.2.3. Ablation Analysis

To assess the validity of the UD-Net model, a series of ablation experiments were
conducted on a self-built dataset. Four methods were considered: A, representing the U-
Net model, B, representing the U-Net combined with the DGCNN network, C, representing
the BRA-UNet network, and D, representing the UD-Net. Table 4 provides insights into the
influence of these models on detection performance. By comparing A and C, it is discernible
that embedding the attention mechanism yields a degree of improvement in detection
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accuracy. This indicates that embedding the BRA attention module enhances the model’s
feature extraction capability. This enables the U-Net model to better learn the characteristics
and patterns of various categories during training, thereby improving the reliability of
fittings inspection. Similarly, comparing C and D reveals that the DGCNN algorithm has
a positive effect on U-Net detection. When benchmarked against method A, method D
shows substantial improvements, with a 1.24% increase in Accuracy, a 9.42% increase in
Precision, an 8.27% increase in Recall, and a 6.42% increase in mAP values. This indicates
that method D optimizes the outcomes of method A and refines the detection results of the
original U-Net. Overall, the enhanced UD-Net model demonstrates the highest detection
performance, underscoring the effectiveness of utilizing the DGCNN algorithm to extract
feature information from obscured fittings, thereby further improving accuracy.

Table 4. Ablation study results.

Models Accuracy/% Precision/% Recall/% mAP/%

A 97.88 79.95 84.98 83.76
B 98.41 81.81 85.94 85.23
C 98.46 85.75 87.24 86.37
D 99.12 89.37 93.25 90.18

Figures 7–9 delineate the results of fittings detection under the four different methods,
A, B, C, and D, showcasing the superior recognition proficiency of method D, especially in
scenarios of occlusion and small target fittings. In Figure 7, all four methods demonstrate
the capability to recognize unobstructed and normally sized fittings targets. However, the
target boxes in methods A, B, and C show some inaccuracies. Notably, for objects like
the eyelink in the first row, methods A and B produce false detections, likely because of
the similarity in shape and size between shackles and eyelinks. A shackle is mistakenly
labeled as an eyelink in Figure 7. Conversely, method D predicts the target boxes with
greater accuracy, underscoring its superior recognition capability. The findings indicate
that method D decreases the rates of both missed detections and false detections for fittings.

As depicted in Figure 8, while methods A and B fail to detect the ball eyes among
the small targets, methods C and D successfully identify them. For the shackle, method
A experiences missed detection issues. With methods B and C, even though the targets
are detected, there are inaccuracies in the positioning and dimensions of the target boxes.
Relative to the first three methods, method D not only rectifies the missed detection cases
in small target fittings but also exhibits superior recognition capabilities. For the thimble
that is partially obscured by steel strands, as seen in Figure 9, the detection results in the
first row clearly show that method D adeptly identifies thimble images with occlusion
challenges. In a similar vein, the image of the damper obscured by the cement pole is
uniquely discerned by our proposed method D.

The comparison results of the detection of different fittings are presented in Table 5. It
is evident that the UD-Net network exhibits significant enhancements in both Precision
and Recall metrics for fittings detection. Notably, detection of the suspension clamp saw an
increase of 13.65% in Precision and 2.18% in Recall when compared to the original U-Net
network. Because the suspension clamp has significant differences in shape compared
to other fittings, the model exhibits superior recognition ability for this type of fitting.
In addition, UD-Net significantly outperforms the original U-Net model in recognizing
small target fittings, such as dampers. Compared with the U-Net algorithm, the UD-Net
algorithm shows substantial improvements, with a 10.29% increase in mIoU, a 26.24%
increase in Precision, and a 9.78% increase in Recall. Meanwhile, the enhanced UD-Net
algorithm exhibits superior detection accuracy for fittings prone to occlusion, such as the
thimble and eyelink. This underscores the algorithm’s proficiency in extracting features
from occluded objects, thereby optimizing the results. Overall, UD-Net demonstrates
superior performance across all four evaluation metrics, Accuracy, mIoU, Precision, and
Recall, compared to the U-Net. In terms of algorithm performance, the UD-Net network’s
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average training time increases by a minimum of 12.88% compared to the U-Net. This
suggests that despite the introduction of the DGCNN algorithm, the operation of BRA-
UNet within the UD-Net structure—achieved by reducing both the number of encoder
blocks and the convolution channels—effectively decreases the model’s computational
overhead, thereby enhancing its training speed. Furthermore, UD-Net is more lightweight
than U-Net. This underscores the efficacy of the proposed algorithm in the domain of
electric power fittings detection.

Figure 7. Visual detection results of fittings under various methods. The first row shows images of an
eyelink, the second row shows images of a suspension clamp, the third row displays images of a clevis.
A is the U-Net, B is the U-Net combined with the DGCNN, C is the BRA-UNet, and D is the UD-Net.

Table 5. Detection results for various fittings.

Category

U-Net UD-Net

Accuracy mIoU Precision Recall
Average
Training

Time
Accuracy mIoU Precision Recall

Average
Training

Time

Suspension
clamp 97.69 85.92 81.33 94.18 2.86 99.05 93.47 94.59 96.2 3.4

Ball eye 99.12 84.99 83.5 87.26 2.97 99.47 90.52 86.3 95.14 3.53
Clevis 99.02 61.83 57.24 72.95 2.9 99.22 83.77 85.17 94.39 3.47

Shackle 98.12 79.34 64.37 85.44 2.95 98.9 85.9 89.25 87.35 3.33
Damper 99.33 74.5 63.19 83.06 2.94 99.28 84.85 89.43 92.84 3.35
Eyelink 97.85 62.07 48.63 70.28 2.91 98.92 80.18 83.54 86.43 3.44
Thimble 98.16 70.76 57.26 83.57 3.00 98.46 79.29 78.18 88.92 3.52
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Figure 8. Visual detection results of small target fittings under various methods. The first and second
rows depict the visual inspection results of a ball eye and a shackle, respectively. A is the U-Net, B is
the U-Net combined with the DGCNN, C is the BRA-UNet, and D is the UD-Net.

Figure 9. Visual detection results of occluded fittings under various methods. The first row shows
images of a thimble obscured by steel strands, the second row shows images of a damper obscured
by a cement pole. A is the U-Net, B is the U-Net combined with the DGCNN, C is the BRA-UNet,
and D is the UD-Net.

Figure 10 provides a more intuitive representation of the results through bar charts.
From the comprehensive results depicted in these three bar charts, the enhanced UD-
Net model demonstrates superior detection performance with higher values for mIoU,
Precision, and Recall compared to the U-Net model. As can be observed from Figure 10a,b,
the UD-Net detection algorithm demonstrates significant enhancements in both Precision
and Recall. This improvement is particularly evident for the images of a clevis and an
eyelink, suggesting that the algorithm is better equipped to identify targets within fittings
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images while significantly reducing the rate of missed detections. Figure 10c reveal that the
UD-Net detection algorithm excels in the task of accurately detecting fittings images, while
also minimizing the likelihood of misidentifying intricate backgrounds as fittings targets.

Figure 10. Metrics scores for different fittings. (a) Precision score for different fittings. (b) Recall score
for different fittings. (c) mIoU score for different fittings.

4.2.4. Fittings Detection in Different Scenes

To evaluate the generalization ability of UD-Net in different scenes, we conducted
a control experiment on the PSC Dataset. Figure 11 shows the mAP values for detecting
fittings in green vegetative scenes and yellow farmland scenes. The results indicate that
UD-Net effectively detects three distinct types of fittings across these two varied scenes.
Specifically, in green vegetative scenes, Figure 11a shows that relative to the U-Net algo-
rithm, the mAP values for the detection of shackles, eyelinks, and thimbles by UD-Net
have risen by 6.29%, 5.95%, and 3.84%, respectively. Similarly, in yellow farmland scenes,
Figure 11b shows mAP increases of 6.07%, 6.27%, and 3.16% for these fittings, respectively.
These results indicate that UD-Net not only exhibits excellent performance on the self-built
dataset, but also has good generalization ability when applied to different environments.
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Figure 11. mAP scores for two different scenes. (a) Green vegetative scenes. (b) Yellow farm-
land scenes.

Furthermore, to illustrate the training outcomes of UD-Net more vividly, Figures 12 and 13
display the visualized results of fittings detection in green vegetative and yellow farmland
scenes, respectively. Figure 12 reveal that in green vegetative environments, the bounding
boxes identified by UD-Net are markedly precise. Notably, in the figure’s second col-
umn, featuring thimble images, UD-Net precisely pinpoints the occluded thimble target,
a detail that U-Net overlooks. In Figure 13, UD-Net is able to identify the incomplete
shackle below the first column in yellow farmland environments, while U-Net fails to
do so. The visualization results further confirm the generalization ability of UD-Net in
different environments.

Figure 12. Visual detection results of thimbles under green vegetation scenes. The first row shows
the detection results with U-Net and the second row displays the detection results with UD-Net.

4.2.5. The Detection of Rusted Fittings

In real-world electric power environments, fittings can be impacted by several ele-
ments, rust being a prime example. Rust can cause changes in the surface color, texture, and
shape of the fittings, thus increasing the complexity of their identification. To validate the
robustness of the UD-Net algorithm, we performed training and testing on 982 images of
rusted fittings from a self-built dataset. Figure 14 provides a visualization of these results,
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highlighting rusted fittings with a particular emphasis on rusty ball eyes. Notably, the UD-
Net proficiently identifies rusted ball eyes, even amidst complex field backgrounds. This
proficiency underscores UD-Net’s efficacy in detecting defects in fittings and emphasizes
its significant potential for practical applications.

Figure 13. Visual detection results of shackles under yellow farmland scenes. The first row shows the
detection results with U-Net and the second row displays the detection results with UD-Net.

Figure 14. Visual results of detection of rusted fittings with UD-Net.

5. Conclusions

In addressing the inherent challenges associated with power fittings inspection, partic-
ularly characterized by intricate backgrounds and mutual occlusions amongst fittings, a
detection method based on the novel UD-Net is proposed. First, a U-Net model embed-
ded with BRA mechanisms is used for initial recognition of fittings images to enhance
the model’s feature extraction capability in complex backgrounds. Then, the Lite-Mono
algorithm is utilized for the generation of a depth map for the fittings. This depth map
is subsequently combined with the RGB image of the fittings, resulting in the conversion
into a point cloud representation. The DGCNN algorithm is then applied to enhance the
feature extraction capabilities of the network for fittings targets to fulfill the objective of
3D-detection-driven 2D detection. The simulation results demonstrate that the proposed
methodology holds substantial promise, augmenting feature discernibility and facilitating
the extraction of more pertinent information from images of fittings compared to other
considered methods. The algorithm not only accomplishes the high-precision detection
of power fittings but also harbors the potential to be applied to the automatic detection of
rusted fittings within images.
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Although the current recognition accuracy for shackles and eyelinks satisfies detection
requirements, it is imperative to note that the structural similarity between shackles and
eyelinks may still exert an influence upon recognition outcomes. Consequently, future
endeavors may strategically focus on further optimizing the model for fine-grained object
recognition, particularly pertaining to these two categories of fittings. Moreover, con-
strained by human resources and material availability, this study focuses on the annotation
and identification of seven types of fittings. However, many types of fittings exist in re-
ality. Future work can encompass a broader array of fitting types, enhancing the model’s
detection scope and performance for transmission line fittings.
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Abstract: Attention mechanism takes a crucial role among the key technologies in transformer-based
visual tracking. However, the current methods for attention computing neglect the correlation
between the query and the key, which results in erroneous correlations. To address this issue, a
CWCTrack framework is proposed in this study for transformer visual tracking. To balance the
weights of the attention module and enhance the feature extraction of the search region and template
region, a consistent weighted correlation (CWC) module is introduced into the cross-attention block.
The CWC module computes the correlation score between each query and all keys. Then, the
correlation multiplies the consistent weights of the other query–key pairs to acquire the final attention
weights. The weights of consistency are computed by the relevance of the query–key pairs. The
correlation is enhanced for the relevant query–key pair and suppressed for the irrelevant query–key
pair. Experimental results conducted on four prevalent benchmarks demonstrate that the proposed
CWCTrack yields preferable performances.

Keywords: consistent weighted correlation; vision transformer; attention; transformer tracking

1. Introduction

Object tracking techniques have witnessed extensive interest and research in computer
vision in recent years [1,2]. Given a certain target object in the initial video frame, the
tracking algorithms first extract the features of the target and analyze the region of interest;
then, similar features among the regions of interest are sought in the following frames; and
finally, the tracker pursues the location of the target in the subsequent frames.

In conventional object tracking methods, early Siamese-based trackers [3–6] first
employ two convolutional neural network (CNN) backbones with shared structures and
parameters to retrieve the features of the template and the search regions. Then, the
correlation-based network is adopted to calculate the similarity between the template and
the search regions. However, these CNN-based feature extractions usually solely focus on
local areas, lacking a global understanding of the surroundings of the target object. This
may lead to failure in tracking complex scenarios, such as target occlusion, deformation, or
scaling [5].

Therefore, recent mainstream tracking methods [7–11] have introduced transform-
ers [12] for target tracking. Among them, TransT [7] adopts a framework similar to the
Siamese-based tracker but uses a transformer for feature fusion, thereby achieving suffi-
cient interaction of the target information. A reconstruction patch strategy is proposed
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in [8], which combines the extracted features with multiple spatial dimension elements to
form a new patch, replacing the feature fusion layer in TransT. MixFormer [9] proposed
the mixture attention module (MAM), which allows for the simultaneous extraction of
target-specific features and extensive communication between the target and the search
region. OSTrack [10] connects flat templates with search regions and feeds them back into
a series of self-attention layers for joint feature learning and relationship modeling. A
deformable transformer tracking (D-TransT) is proposed in [11], which uses a deformable
attention module that pre-filters all the prominent key elements in the feature map using a
small set of sampling positions. The module can naturally expand to aggregate multi-scale
features.

The attention mechanism introduces a self-attention process, which facilitates the
model to dynamically explore the correlation between various positions in the image
sequences and focus more on the key regions for the tracking task. There are two kinds
of attention: self-attention enforces the feature representation of the template and search
region, and cross-attention establishes dependencies between the template and search
region for object prediction.

However, the conventional transformer computes the correlation between each query–
key pair independently via the dot product while ignoring the correlation between other
query–key pairs. This may lead to inaccurate correlation calculations. This imprecise corre-
lation may further lead the attention mechanism to excessively focus on the background or
ignore the important target. For example, if the attention mechanism mistakenly associates
a key of an interfering object or background region when paying attention to the target
position, the tracker may produce incorrect results.

To deal with these aforementioned challenges, we propose a consistent weighted
correlation (CWC) module to promote the feature representation ability of the template
and search region. Due to the consistency between the query and its correspondence
key, the correlations between relevant query–key pairs should coincide with each other.
For example, a key has a high correlation with a query, and its adjacent keys will also
have a relatively high correlation with the query. Otherwise, this correlation may be
negative information. We incorporate the CWC module into the cross-attention block
of the transformer to adjust the attention weights according to the consistent weighted
correlations. Take the attention map obtained by multiplying the query and the key as
input, and the new generated (q, k, v) is performed the attention again. The CWC module
consistently adjusts the attention weights to strengthen the correct correlation between
the relevant query—key pair and restrain the incorrect correlation between the irrelevant
query–key pair. More specifically, the weights of the relevant query–key pairs are enhanced
to strengthen the correct consistency, and the weights of the irrelevant query–key pairs
are suppressed to alleviate the incorrect consistency. The CWC module computes the
correlations of each query and all keys, and then the correlation scores are normalized.
Finally, the attention weights are obtained by multiplying the normalized correlations and
the consistent weights of the other query–key pairs.

By introducing the CWC module, we can consider the global context and consistency
information in the attention mechanism to enhance correct correlations and suppress
erroneous correlations. This can moderate the modeling capability for the correlation of the
potential target and the surrounding disturbances, which facilitates the improvement in the
behavior of the tracker. The experimental results indicate that the proposed CWCTrack can
notably improve the tracking capability for both short- and long-term tracking benchmark
tests, such as GOT-10K [13] and LaSOT [14].

2. The Framework of the Proposed Model

The framework of the proposed CWCTrack is shown in Figure 1.
As shown in Figure 1, the proposed CWCTrack is a Siamese network-based framework.

The CWCTrack mainly contains three components: the feature extraction backbone network,
the network for feature fusion (including the attention encoder–decoder), and the prediction
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head. In the tracking process, making use of the shared weights, the features of image
patches from the template and search region are extracted by the feature extraction network,
considering the shared weights. The extracted features are merged into a feature sequence.
Then, the concatenated feature sequences are sent to the encoder of the attention mechanism
and enhanced layer-by-layer. The decoder network creates the final feature maps of the
search regions. Finally, the feature maps are fed into the prediction head network to obtain
the categorization response and the estimated bounding box.

Figure 1. The framework of the proposed CWCTrack.

3. Methods

3.1. Backbone

Feature extraction plays a crucial role in the proposed CWCTrack framework. Similar
to most of the transformer trackers [15,16], the starting frame with ground truth annotation
is cropped as the template image patch (x ∈ R3×Hx×Wx , where Hx = Wx = 128), which,
together with the search region image patch (z ∈ R3×Hz×Wz , where Hz = Wz = 320), are
put into the network. For the extraction of template image patches, a specific area in the
initial frame is selected according to the center coordinate of the potential target. The scope
of this area is twice as long as the length of the local scene around the target. This template
patch not only includes the appearance information of the target but also contains the local
features of the target surroundings. On the other hand, the size of the search region patch
is enlarged to a range of four times as long as the edge length of the central location of
the target in the former frame, with the purpose of covering the potential movement of
the target. To facilitate the following process, the template and search region patches are
reconstructed into squares, from which the features are extracted by the feature extraction
backbone network. Using this manipulation, we can obtain a regular feature representation
suitable for the subsequent procedures, which is favorable for improving the accuracy of
target tracking.

To facilitate our tracking task, an improved version of ResNet50 [17] is adopted. To
maintain high feature resolution and capture more target detail information, the final step
of ResNet50 is abandoned, and the outcome of the fourth step is employed as the ultimate
feature map. Then, the 3 × 3 convolution of the fourth step is replaced by an expanded
convolution with a step size of 2 for the purpose of enlarging the receptive field of the
network. In this way, the perceptual range of features is expanded, enabling the network to
better understand the feature representation of the search region and template. In order
to further facilitate the resolution of features, we rectify the downsampling convolution
step size from 2 to 1 in the fourth stage, thereby obtaining a more detailed feature map.
Finally, the feature maps of the template and search region patches are obtained in the
following form: fx ∈ RC×H

x′ ×W
x′ and fz ∈ RC×H

z′ ×W
z′ , respectively, where (Hx′ , Wx′ ) =

(Hx/s, Wx/s), (Hz′ , Wz′ ) = (Hz/s, Wz/s), Hx′ = Wx′ = 8, Hz′ = Wz′ = 20, C = 1024, and
S = 16.
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3.2. Encoder

Firstly, a 1 × 1 convolution is employed to obtain two low-dimensional feature maps
of fx and fz, where the channel dimension is reduced from C (1024) to d (256). Then,
we generate a feature sequence with length L = Hx′ Wx′ + Hz′ Wz′ and dimension d by
flattening the feature maps and connecting them along the spatial dimension, which is sent
to the encoder of the transformer as the input. The transformer encoder includes N coding
layers, and each layer involves a feedforward self-attention network with a multi-head
block. With respect to the arrangement invariability of the prototype transformer [12],
a sinusoidal positional embedding is combined into the input feature sequence. Finally,
the encoder seizes the feature relationships among all the sequence components and uses
global contextual information to enhance the original features, permitting the model to
easily obtain distinguishing features of the target positioning.

3.3. Consistent Weighted Correlation (CWC) Module

In the transformer, the attention mechanism mainly consists of three components:
query, key, and value. By performing a linear transform on the input sequence, a rep-
resentation of the query, key, and value for each position is obtained. Query is used to
specify the position we want to focus on, while key and value provide information about
all positions in the sequence. Attention weight computing usually involves two steps:
similarity computing between query and key, and normalization of the similarity. Common
calculation methods include additive attention and dot product attention. In dot product
attention, the inner product of query and key represents their similarity; in additive atten-
tion, the similarity is calculated via linear transform and the activation function processing
of query and key. By calculating the attention weights, we can determine the importance
of each position for the query. Then, we multiply and sum the attention weight with the
corresponding position value to obtain the final context vector. This context vector contains
weighted attention to different positions in the input sequence, which will be used for
subsequent manipulations.

Using Q, K, V ∈ RL×d to denote the matrix expression of query, key, and value,
respectively, the attention module can be defined as follows:

Attention(Q, K, V) = (So f tmax(
Q̄K̄T
√

C
)V̄)Wo, (1)

where Q̄ = QWq, K̄ = KWk, and V̄ = VWv represents different linear transform for Q, K,
and V; and Wq, Wk, Wv, and Wo indicates the weight matrix of the linear transform.

As described in [12], by expanding the attention module to a multi-head way, the
model is introduced into a multi-head attention module, which can capture the correlations
and features from different aspects in a parallel way. This is beneficial for improving the
modeling capability for the information in the input sequences. The multi-head attention
mechanism provides a flexible way that permits the model to concentrate on different
key value at the same time, which further enhances the expressive power and overall
performance of the model. The multi-head attention module can be defined as

MultiHead(Q, K, V) = Concat(H1, ..., Hnh)Wo, (2)

Hi = Attention(Q̄W̄Q
i , K̄W̄K

i , V̄W̄V
i )Wo, (3)

where Wo ∈ Rnhdv×dm , W̄Q
i ∈ Rdm×dk , W̄K

i ∈ Rdm×dk , and W̄V
i ∈ Rdm×dk is the parameter

matrix, respectively.
For the typical attention mechanism, the relationship between query and key is in-

dependently computed in the feature association mapping N = Q̄K̄T
√

C
∈ RL×L, neglecting

the connections with other potential query–key pairs. This will deteriorate the informa-
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tion propagation in cross-attention and diminish the identification performance of the
transformer tracker.

To better understand the importance of different pieces of the input information, a
consistent weighted correlation (CWC) module is proposed to compute the correlation
between the query–key pair, which sustains the flexibility of attention weights. By introduc-
ing the CWC module, the correct correlations between the relevant pairs are strengthened
and the incorrect correlations between the irrelevant pairs are suppressed. Both the feature
aggregation and the information propagation are improved when the erroneous correla-
tions are eliminated. This improvement is beneficial to the precision of the attention, thus
greatly promote the tracking ability of the CWCTrack, especially for the complex scenarios.

Specifically, we refine the feature association mapping N = Q̄K̄T
√

C
∈ RL×L in the

cross-attention prior to the softmax step, as Figure 2 illustrates. We treat the columns in
N as a correlation vector sequence, and the internal attention block outputs a residual
correlation map using these columns as query Q

′
, key K

′
, and value V

′
. Considering the

input matrix Q
′
, K

′
, and V

′
, we first obtain the transformed version of query and key, i.e.,

Q̄
′

and K̄
′
, as shown in the left part of Figure 2. More specifically, the scale of Q

′
and K

′

is reduced to L × d (d � L), for the purpose of increasing the computational efficiency.
After normalization [18], a 2-D sinusoidal encoding [19] is added to supply position clues.
Furthermore, the normalized version of value V

′
is produced by a normalization operation,

i.e., V̄
′
= LayerNorm(V

′
). Finally, a residual correlation map of the normalized version Q̄

′
,

K̄
′
, and V̄

′
is derived by the internal attention module via the following equation:

InnerAttn(N) = (So f tmax(
Q̄

′
K̄

′T
√

D
)V̄

′
)(1 + W

′
o), (4)

where W
′
o is the weights of linear transform used to adjust the aggregated correlations

under an identical connection.

Figure 2. The details of CWC module (left) and the example of cross-attention module (right). The
CWC module performs similarity calculation (correlation map) by inserting it into the query and
the key. Add & Norm represents residual structure and normalization. FFN represents feedforward
network. Softmax is an activation function. Residual Correlation Map represents the reconstructed
similarity.

Intrinsically, the CWC module produces the residual correlation vector for each corre-
lation vector of the correlation map N by aggregating the original correlation vectors. Using
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this operation, we can explore the consensus between the correlations in the receptive field.
The proposed CWC attention block can be formulated by the residual correlation map as

CorrAttn(Q, K, V) = (So f tmax(N + InnerAttn(N))V̄)Wo. (5)

The CWC module enables multiple attention heads in parallel to share the same
weighting parameters, which can decrease the count of parameters in the model and
improve its efficiency. This way, the complexity of the tracking model is greatly reduced,
while still maintaining good performance.

3.4. Prediction Head

In the conventional TransT, the prediction head is designed by the ordinary MLP
(Multi-Layer Perceptron) and a ReLU (Rectified Linear Unit) activation function [7]. How-
ever, this kind of design is neither flexible nor robust to many challenges in tracking tasks,
such as occlusion, background clutter, etc. To improve the positioning accuracy of the
tracking box, we employ the probability distribution prediction head of box estimation
in the STARK [16]. Firstly, the feature maps of the search region are picked up from the
output sequences of the Decoder. Then, the similarity of feature between the search region
and the embeddings of the Encoder output is computed. Secondly, to obtain enhanced
features, the search region features are multiplied by the similarity scores element-wisely,
which can strengthen the important areas and suppress the non-discriminative areas. The
enhanced feature sequences are reorganized to a feature map f ∈ Rd×H

z′ ×W
z′ , which is

sent to a simple FCN (Fully Convolutional Network). FCN comprises L piled layers of
Conv-BN-ReLU, from which the probability maps of the upper left and lower right corners
of the object bounding box Ptl(x, y) and Pbr(x, y) are produced separately. In the end, the
coordinates of the potential bounding box (x̄tl , ȳtl) and (x̄br, ȳbr) are obtained by computing
the expectations of the corner probability distribution via the following equation:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x̄tl , ȳtl) = (
H

∑
y=0

W

∑
x=0

x · Ptl(x, y),
H

∑
y=0

W

∑
x=0

y · Ptl(x, y)),

(x̄br, ȳbr) = (
H

∑
y=0

W

∑
x=0

x · Pbr(x, y),
H

∑
y=0

W

∑
x=0

y · Pbr(x, y)).

(6)

3.5. Loss Function for Training

The prediction head takes over the feature sequences and yields a classification result
of binary regression (both the input and output are with size of Hz′ Wz′ ). The feature
sequences that correspond to the pixels located in the realistic bounding box are chosen to
be positive subsets, and the rest are categorized as negative subsets. All elements of the
feature participate in the computation for the classification loss, whereas only the positive
subsets participate in the computation for regression loss. To alleviate the instability
between the positive and negative subsets, we downgrade the loss caused by the negative
subsets to 1/16. Finally, the classification loss adopting canonical binary cross entropy is
formulated as follows:

Lcls = −Σj[yjlog(pj) + (1 − yj)log(1 − pj)], (7)

where yj is the authentic label of the j-th component (yj = 1 indicates the foreground),
and pj is the probability when the learned model concludes that the prediction belongs to
the foreground. The regression loss comprises the linear weighted loss of L1-norm and
LGIoU [20], which is formulated by

Lreg = Σj[λ1L1(bj, b̂) + λgLGIoU(bj, b̂)], (8)

234



Electronics 2023, 12, 4648

where L1 and LGIoU represent the L1 loss and the generalized IoU loss, respectively. λ1L1
and λgLGIoU are the hyperparameters determining the relative impact of the two kinds of
loss functions. bj is the j-th predictive bounding box and b̂ is the normalization of the true
bounding box. In our implementation, the regularization parameters λg and λ1 are set as 2
and 5, respectively.

4. Experimental Results

In this section, we first describe the conduction details of the proposed CWCTrack
conducted on several prevalent tracking benchmarks. Then, the tracking results of the
CWCTrack are depicted and compared with some of the most advanced trackers. Further-
more, we carry out ablation tests to validate the contribution of each component. In the end,
we visualize the tracking results of four typical sequences from the OTB100 dataset [21].

4.1. Implementation Details

The proposed CWCTrack is conducted using Python 3.7 and PyTorch 1.13.0, and the
tracking experiments are implemented on a NVIDIA GeForce RTX 4090 server. The training
data includes GOT-10K [13], LaSOT [14], COCO2017 [22], and TrackingNet [23]. The patch
size of the template and search region is set to 128 × 128 and 320 × 320, respectively, and
the selected box areas of the template and search region are 2 and 4 times enlarged from
the center of the target, respectively. In addition, data augmentations are also employed,
including horizontal flipping and brightness jitter. CWCTrack uses ResNet50 [17] as the
backbone and initializes the backbone with pre trained parameters on ImageNet. The
BatchNorm [24] layer was frozen during training with six encoder and six decoder layers,
consisting of multi-head attention layers (MHA) and feedforward networks (FFN). MHA
has eight heads (with width = 256), while the FFN have hidden units of 2048. The dropout
ratio value is 0.1. The bounding box prediction head is a lightweight FCN, consisting of
five stacked Conv-BN-ReLU layers. The classification head is a three-layer perceptron with
256 hidden units in each layer. The CWCtrack completely trained 500 epochs, and after
400 epochs, the learning rate is downshifted by a factor of 10. The initial learning rates of
the backbone and the rest parts are 10−5 and 10−4, respectively. The network is optimized
using the AdamW optimizer [25] with a weight decay of 10−4.

4.2. Results and Comparisons

We validate the proposed CWCTrack with four commonly used datasets, including
the online object tracking benchmark dataset OTB100 [21] and three large-scale bench-mark
test datasets GOT-10K [13], LaSOT [14], and UAV123 [26].

GOT-10K includes over 10,000 video sequences for moving objects in reality, with
more than 1.5 million handmade bounding boxes, which provides enough scenarios for
large-scale target tracking benchmarks. It covers various challenges such as fast-moving
objects, large-scale changes, cluttered backgrounds, occlusions, etc. It requires the tracker
to only use the training set for model learning. Following this, we retrain the proposed
CWCTrack model only using the training set of GOT-10K. The tracking results are sum-
marized in Table 1. As we can see, the proposed approach gains an advantage over the
former best tracker STARK-S50 [16] by 1.6% for the AO score. Furthermore, the proposed
approach outperforms STARK-S50 by 0.4% for the SR0.75 score. For the SR0.5 score, the
proposed approach has also achieved very close performance compared with the best
tracker TransT [7].

Table 1. Comparisons of the tracking results on GOT-10K.

SiamFC [5] ATOM [27] Ocean [28] STARK-S50 [16] TransT [7] Ours

AO (%) 34.8 55.6 61.1 67.2 67.1 68.8
SR0.5 (%) 35.3 63.4 72.1 76.1 76.8 76.4
SR0.75 (%) 9.8 40.2 4.3 61.2 60.9 61.6

235



Electronics 2023, 12, 4648

LaSOT provides a long-term single object tracking benchmark, which comprises 1550
carefully annotated video sequences with over 3.87 million frames. The tracking results
are depicted in Figure 3. Our method is compared with different variants of STARK [16],
TransT [7], DiMP [29], DaSiamRPN [30], ATOM [27], SiamMask [31], SiamDW [32], and
SINT [33]. As can be seen, our approach outperforms the other competitive trackers.
More precisely, the CWCTrack achieves the highest AUC (area-under-the-curve) score (i.e.,
success rate) of 69.1%, which is 2% higher than the former best tracker STARK-ST101, as
shown in Figure 3a. For precision plotting, the proposed CWCTrack also achieves the
highest score of 74.6%, 2.4% higher than STARK-ST101, as shown in Figure 3b. It should
be noted that the results of the STARK-ST101 are reproduced by our own manipulation,
which will inevitably deviate from the original performance reported by the author.

(a) (b)

Figure 3. Comparisons of the tracking results on LaSOT dataset. (a) Success rate; (b) precision.

Figure 4 describes a comprehensive exhibition of the tracking results with various
scenarios. The proposed CWCTrack attains excellent performances for all scenarios, espe-
cially for background clutter, fast motion, full occlusion, illumination variation, and low
resolution. Table 2 shows the quantitative AUC results from Figure 4 and the precision
results. As can be seen, for both the AUC score and precision, our proposed method
achieves the best performance.

For intuitive comparison, the radar chart in Figure 5 provides an attribute-based
assessment of the tracking results. Our approach succeeds in most of the attribute partitions,
which implies the feasibility and validity of the proposed model.

OTB100 contains a total of 100 sequences with each frame annotated. It introduces
11 challenge attributes for performance analysis. Figure 6 shows the comparisons of the
proposed approach with three state-of-the-art trackers; as one can observe, the proposed
approach attains almost equivalent or even superior performance compared to the reference
models. For the success rate, the CWCtrack is 0.3% and 6.2% higher than the transformer-
based trackers Transt [7] and TCTrack [34], respectively. (The TCTrack is suitable for drone
tracking and may not perform well on small datasets such as OTB100).

UAV123 contains 123 video sequences from the aerial viewpoint. Evaluated by the
success rate and accuracy, respectively, the tracking results of various trackers are shown in
Table 3. As can be observed, the proposed approach attains better performance in contrast
to the competitors both in AUC score (success rate) and in precision.
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Figure 4. The AUC results of the LaSOT dataset under different challenge scenarios. The figures are
best viewed by zooming in. The raw data and high-resolution figures are available upon request.
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Figure 5. Radar chart for attribute-based assessment of the trackers on LaSOT for AUC score.

Table 2. Comparisons of the LaSOT dataset.

AUC (%) Precision (%)

Ours 69.1 74.6
STARK-101 67.1 72.2
STARK-ST50 66.4 71.2
STARK-S50 65.8 69.7
TransT 64.9 69.0
DiMP 56.0 56.3
DaSiamRPN 51.5 52.9
ATOM 49.9 49.7
SiamMask 49.5 46.9
SiamDW 46.7 32.9
SiamFC 34.7 33.9
SINT 31.4 29.5

(a) (b)

Figure 6. Comparisons of the tracking results on OTB100 dataset. (a) Success rate; (b) precision.
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Table 3. Comparisons of the tracking results on UAV123.

SiamFC [5] ATOM [27] Ocean [28] TransT [7] Ours

AUC (%) 49.2 61.7 62.1 68.1 68.2
Precision (%) 72.7 82.7 82.3 87.6 88.3

4.3. Ablation Analysis

To examine the significance of each constituent part in the proposed CWCTrack,
ablation tests are executed on the testing set of LaSOT. The ablation experimental results are
illustrated in Table 4. For simplicity, the encoder, decoder, consistent weighted correlation
module, and position coding is abbreviated by Enc, Dec, CWC, and Pos, respectively. The
blank indicates the component is adopted by default; on the other hand, ⊗ indicates that
the component has been deleted. #1 indicates that when the encoder is erased from the
tracker, the success rate is reduced by 5.9%. This indicates that the intensive interaction
between template features and search regions plays a crucial role for the tracking task.
When the decoder is erased, the success rate decreases by 3.7%, as shown by #2. This
decrease is much less than that of erasing the encoder, indicating that the encoder is of
more important significance than the decoder. When we delete the CWC module, the
success rate decreases by 2.7%, indicating that the CWC module facilitates the attention
of the decoder to some extent, as shown by #3. Finally, as shown by #4, the success rate
only decreases by 0.4% when the position coding is removed, so we can conclude that the
position coding is not as important as the other components in the proposed tracker.

Table 4. Ablation tests on LaSOT.

# Enc Dec CWC Pos Success (%)

1 ⊗ 63.2
2 ⊗ 65.4
3 ⊗ 66.4
4 ⊗ 68.7
5 69.1

4.4. Visualization of the Tracking Results

To evaluate the validity of the proposed CWCTrack, we depict some tracking results
conducted on OTB100 dataset in Figure 7, together with three other representative trackers.
As can be seen, the tracking results of CWCTeack conducted on four typical video sequences
surpass that of the other trackers.

Figure 7. Visualization of the tracking results on four sequences from the OTB100 dataset.
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5. Discussions

In the context of our proposed CWCTrack framework for transformer-based visual
tracking, our experimental results on four widely recognized benchmarks have provided
valuable insights and demonstrated promising outcomes. Our results indicate that in-
corporating the CWC module into the cross-attention block significantly improves the
performance of transformer-based visual tracking. The CWC module addresses the issue
of neglecting correlations between queries and keys, resulting in more accurate attention
mechanisms. This finding aligns with the importance of attention mechanisms in visual
tracking, as demonstrated by previous studies. Our approach provides a novel solution
to enhance feature representation in both the search and template regions, contributing to
better tracking accuracy.

The implications of our work can be extended beyond the specific task of visual
tracking. Attention mechanisms are fundamental in various fields, including natural
language processing and computer vision. Our proposed CWCTrack framework highlights
the potential of attention mechanisms to be further fine-tuned and adapted to specific
application domains, enhancing their robustness and accuracy. This suggests that our
research can inspire advancements not only in visual tracking but also in other domains
where attention mechanisms are applied.

It is essential to notice the limitations of our study; while CWCTrack demonstrates
promising results, it is not without constraints. One limitation is that our approach may
require additional computational resources due to the additional complexity of the CWC
module. Furthermore, the generalization of our framework across various tracking scenar-
ios and datasets needs further investigation. Moreover, we recognize that the performance
improvement may not be substantial in all cases.

Future work includes how to optimize and speed up the CWC module to improve
the real-time performance of the model. First, it is crucial to optimize the computational
efficiency of the CWC module without compromising the tracking accuracy, which makes it
more practical for real-time applications. Second, exploring the adaptability of CWCTrack
to different tracking scenarios and datasets can help uncover its full potential abilities.
Furthermore, there is room for exploring hybrid models that combine attention mechanisms
with other techniques to further enhance tracking performance. Finally, investigating the
transferability of the CWC module to other computer vision tasks beyond tracking is an
intriguing direction.

6. Conclusions

This paper introduces a consistent weighted correlation (CWC) module to refine the
attention mechanism, which is crucial in transformer-based visual tracking. By inserting the
CWC module into the cross-attention block of the transformer, we eliminated the issue of
the independent computing of the correlations in existing methods. The consistent principle
is adopted to enhance the correct correlations and suppress the erroneous correlations. By
considering the global context and consistent information, the CWC module can capture
the correlations between the object and surroundings more accurately and improve the
distinguishing capability of the model for the relationship between the target and the
disturbance. Conducted on four popular tracking benchmarks, the tracking results reveal
that the proposed CWCTrack attains promising performance compared to the state-of-the-
art tracking models.
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Abstract: Diagnosing some eye pathologies, such as diabetic retinopathy (DR), depends on accurately
detecting retinal eye lesions. Automatic lesion-segmentation methods based on deep learning involve
heavy-weight models and have yet to produce the desired quality of results. This paper presents a
new deep learning method for segmenting the four types of DR lesions found in eye fundus images.
The method, called LezioSeg, is based on multi-scale modules and gated skip connections. It has
three components: (1) Two multi-scale modules, the first is atrous spatial pyramid pooling (ASPP),
which is inserted at the neck of the network, while the second is added at the end of the decoder
to improve the fundus image feature extraction; (2) ImageNet MobileNet encoder; and (3) gated
skip connection (GSC) mechanism for improving the ability to obtain information about retinal eye
lesions. Experiments using affine-based transformation techniques showed that this architecture
improved the performance in lesion segmentation on the well-known IDRiD and E-ophtha datasets.
Considering the AUPR standard metric, for the IDRiD dataset, we obtained 81% for soft exudates,
86% for hard exudates, 69% for hemorrhages, and 40% for microaneurysms. For the E-ophtha dataset,
we achieved an AUPR of 63% for hard exudates and 37.5% for microaneurysms. These results show
that our model with affine-based augmentation achieved competitive results compared to several
cutting-edge techniques, but with a model with much fewer parameters.

Keywords: image segmentation; deep learning; medical image analysis; diabetic retinopathy; affine
transformation augmentation

1. Introduction

Diabetes is a widespread chronic disease that affects many people worldwide. It is a
major human health problem related to microvascular abnormalities. As a consequence,
diabetic retinopathy (DR) is one of the most severe chronic diseases affecting the human
eye. It is caused by damage to the blood vessels of the light-sensitive tissue at the back
of the eye, i.e., the retina, and can lead to blindness [1]. Luckily, early identification and
effective treatment can prevent many new cases from emerging [2]. Fundus images of the
human eye have been widely used for early screening and detection of various diseases,
including DR and glaucoma. Different signs of retinal eye lesions, such as hard exudates
(EX), microaneurysm (MA), hemorrhages (HE), and soft exudates (SE), can be found in
fundus images, indicating the presence and severity of DR. Figure 1 shows some examples
of these lesions. MA and HE appear in a fundus image as abnormal red lesions and indicate
the early stages of DR, whereas EX and SE appear as light lesions, indicating advanced
stages of DR disease [3].
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Figure 1. An example of a fundus image showing EX, MA, HE, and SE retinal lesions.

The manual detection and segmentation of small objects, like lesions, in fundus images
is a painstaking process that consumes ophthalmologists’ time and effort [4]. Furthermore,
it is difficult for ophthalmology professionals to recognize lesions effectively and analyze a
large number of fundus images at once, due to the complicated structure of lesions, their
varied sizes, differences in brightness, and their inter-class similarities with other tissues [5].
Moreover, training new workers on this kind of diagnosis based on these complicated
images requires significant time, to build knowledge through regular practice [6].

Different computer-aided diagnosis (CAD) systems utilizing artificial intelligence
models have been proposed in the last two decades to deal with these challenges, where
lesion detection and segmentation are performed automatically [7,8]. Deep learning
techniques have recently become the core of CAD systems, due to their high accuracy
compared to other traditional machine learning and computer vision methods. Several
deep learning-based CAD systems have been proposed for segmenting retinal eye lesions
based on an encoder–decoder network method, which is widely used in medical image
segmentation [3,9].

However, most of the deep learning-based CAD systems proposed in the literature,
such as [3,10–12], did not reach sufficient segmentation accuracy and employed heavy-
weight deep learning models, which made them less reliable and computationally expen-
sive during the training and testing phases. Additionally, many methods may perform
well with one type of retinal lesion and fail with others [3,13], or they work well with some
datasets but not with others [14].

Therefore, there is still a need to develop a deep learning-based segmentation model
that performs well in all eye lesion segmentation tasks (i.e., EX, MA, HE, and SE segmenta-
tion), while having a reasonable computational cost.

Driven by the aforementioned discussion, in this paper, we propose an efficient deep
learning method for segmenting the different kinds of retinal lesion. Specifically, we
propose two multi-scale modules to enhance deep-learning segmentation model perfor-
mance [15], for extracting relevant features from fundus images. Additionally, we integrate
data augmentation techniques based on affine transformations. These methods mimic
the actual deformations happening in the human eye, addressing the challenge of mis-
classification of tiny objects by generating a more realistic synthetic training dataset. The
contributions of this paper can be listed as follows:

1. Proposing an effective multi-scale attention (SAT) module in the decoder, to capture a
wider range of lesion-relevant features by mixing low- and high-resolution data from
different decoder layer sources. The goal is to enhance the concentration towards the
small objects that might be lost during the image reconstruction in the decoder block;

2. Integration of a gated skip connection (GSC) mechanism in the decoder layers to help
the network focus on retinal lesion features coming from the encoder;
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3. Application of affine transformations as data augmentation for generating geomet-
ric distortions or deformations that occur with non-ideal image angles, leading to
enhancing the performance of the segmentation model;

4. Considering the same method for segmentation of the four different types of lesion of
the retina. Experimentation was conducted on well-known public datasets: IDRiD
and E-ophtha. For the four retinal lesions, our model achieved an acceptable and
competitive performance compared to state-of-the-art methods;

5. Generalization capability of the LezioSeg segmentation model with a low-resolution
DDR fundus dataset. Our model achieved a competitive performance compared to
state-of-the-art results without training the model on the dataset.

The rest of this paper is organized as follows: Section 2 reviews recent studies on
eye lesion segmentation in fundus images. Section 3 presents the proposed retinal lesion
segmentation model. Section 4 provides the results and discusses them. Finally, Section 5
gives the conclusions and future work.

2. Related Work

Retinal lesion segmentation in the human eye has been tackled using various deep
learning-based automated techniques. The task remains challenging due to the diverse
characteristics of lesions, including the variations in size, shape, location, color, and texture
in fundus images. Several methods based on convolutional neural networks (CNNs) have
been developed to address these challenges.

A widely adopted architecture for lesion segmentation is UNet [16], leveraging its
ability to automatically learn representative high-level features. For instance, in [11], the
authors proposed GlobalNet and LocalNet networks, employing an encoder–decoder
architecture similar to UNet for MA, SE, EX, and HE segmentation. However, their method
relies on two encoders, demanding significant computational resources and resulting in
resource consumption issues.

CARNet [17] introduced a multi-lesion segmentation approach based on ResNets
networks [18]. Despite acceptable results on the IDRiD, E-ophtha, and DDR datasets, the
use of two heavy ResNets encoders poses a resource-intensive challenge.

EAD-Net [3] proposed a CNN-based system incorporating an encoder module, a dual
attention module, and a decoder. While achieving acceptable results on the ophtha_EX
dataset, it struggled with MA and SE segmentation on the IDRiD dataset, reporting AUPR
scores of 24.1% and 60.8%, respectively.

In [19], a scale-aware attention mechanism with various backbones was introduced,
achieving good results on the IDRiD and DDR datasets for some lesions. However, simulta-
neous success on the same dataset was limited, with low AUPR scores of 41.5% and 19.33%
for MA on the IDRiD and DDR datasets, respectively.

Methods utilizing VGGNet networks, known for their heavyweight, have also been
explored. For example, L-Seg [12] proposed a unified framework based on a modified
VGG16 [20] encoder, achieving favorable results on the IDRiD dataset for all lesions.
However, the performance dropped on the E-ophtha and DDR datasets, particularly for
MA, with AUPR scores of 16.8% and 10.5%, respectively.

In [10], the authors employed the HEDNet edge detector with a conditional generative
adversarial network based on VGGNet for semantic segmentation of retinal lesions. While
achieving an AUPR of 84.1% for EX, the performance for other lesions, such as MA, HE,
and SE, fell below 50% on the IDRiD dataset.

Furthermore, several works in the literature have shown that combining deep learn-
ing architectures with a multi-scale attention mechanism shows promise for enhancing
feature representational strength and target localization for medical image classification
and segmentation [21–23].

Hence, the current work aimed to develop an accurate lesion segmentation method for
fundus images using lightweight backbone architectures within a single network model,
incorporating scale-aware attention and gated skip connections. This approach significantly
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reduces computational costs compared to methods relying on heavy backbone architectures
like ResNets and VGGs or those dependent on multiple backbone encoders.

3. Methodology

This section explains in detail the architecture of the proposed method, LezioSeg,
which is composed of three parts, as shown in Figure 2. First, the encoder network (i.e., the
backbone) encodes the input image and generates feature maps. Second, we insert an atrous
spatial pyramid pooling (ASPP) [24] layer after the encoder network (i.e., the neck) that
can capture contextual information at multiple scales, to generate better representations
of the small lesions of the retinal eye. Third, the decoder network (i.e., the head) contains
four blocks, each having a GSC mechanism [25] to encourage the model to learn eye-lesion-
relevant features. Finally, a multi-scale attention (SAT) mechanism is connected with each
decoder block as an additional lesion segmentation, to enhance learning efficiency by
combining low and high-resolution data from different sources. After presenting these
three parts of the method, we focus on the loss function and propose the use of an affine
transformation for data augmentation.
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Skip Connec ons
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384 × 256 × 3

ASPP

Input Image

384 × 256 × 64

384 × 256 × 1Summa on

MobileNet Encoder

Decoder Block

Output Layer

SAT
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DecOut2

DecOut3

DecOut4

GSCs

GSCs

GSCs

GSCs
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Figure 2. Architecture of the network for lesion segmentation in fundus images.
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3.1. Encoder Network

In this study, we employ an ImageNet pretrained MobileNet [26] encoder as a back-
bone. MobileNet was selected because it is a lightweight deep neural network with effective
feature extraction capabilities and a cutting-edge foundation for many computer vision
tasks [27,28].

MobileNet uses depth-wise separable convolution, comprised of two layers: depth-
wise convolution, and point-wise convolution. The depth-wise convolution layer applies a
single filter to each input channel. The point-wise convolution layer combines the output
depthwise using a 1 × 1 convolution to create new feature maps. Furthermore, MobileNet
has two different global hyperparameters, to reduce the computational cost-effectiveness:
the width multiplayer, and the resolution-wise multiplayer.

The backbone in our suggested model includes four layers. It aims to encode the input
eye fundus image and extract abstract information about retinal lesions at various levels
of generality.

3.2. Neck of the Network

The LezioSeg architecture includes an atrous spatial pyramid pooling (ASPP) module,
to aid in the extraction of multi-scale feature maps and to maximize the capture of contex-
tual data of the small lesions. ASPP includes four parallel atrous convolutions with varying
atrous rates. It combines atrous convolution with spatial pyramid pooling. ASPP [29] is
expressed as follows:

y[p] =
K

∑
k=1

x[p + r · k] f [k] (1)

Atrous convolution is applied to the input x for each pixel p on the output y and filter
f with length k, where the rate r determines the stride of sampling of the input image.
The input x is convolved with the filters produced by inserting r − 1 zeros between two
consecutive filter values in atrous convolution. We can change the filter’s receptive field by
adjusting the rate r. The ASPP module in this study is made up of one 1 × 1 convolution
and three parallel 3 × 3 convolutions with rates of 6, 12, and 18, respectively, as well as an
image-level feature produced through global average pooling. The features of the branches
are concatenated and upsampled to the input size. The output of ASPP is the concatenation
of the results of multi-scale feature maps passed through another 1 × 1 convolution. The
decoder network follows the neck block of the network.

3.3. Decoder Network

The decoder network comprises four layers, a SAT mechanism, and an output layer
that produces the final mask. Each decoder layer employs the GSCs mechanism followed
by double convolution layers, batch normalization, and a rectified linear unit activation
function. Below, we introduce the GSC and SAT mechanisms.

3.3.1. Gated Skip Connections (GSCs)

The LezioSeg method uses four GSC blocks to boost feature map production and
improve discrimination between the lesion and background pixels in retinal eye lesion
segmentation. All four decoder blocks share the same GSC architecture, represented in
Figure 3.

Each GSC decoder block receives feature maps expressed as S1 from the corresponding
Mobilenet encoder block, which are concatenated with the feature maps produced by the
previous block (either the ASPP neck block or a previous decoder block, expressed as S2).
These feature maps can be expressed as S1 ∈ Rh×w× f and S2 ∈ Rh/2×w/2×2 f , where h, w,
and f stand for height, width, and the filter’s number of features. Then, to produce feature
maps Ŝ2, the S2 is fed into an UpSampled2D transposed convolution layer with a kernel
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size of 2 × 2. After that, a concatenation is performed of the same width and height of Ŝ2
and S1 as follows:

C = ϕ1×1([S1||Ŝ2]) (2)

where ϕ1×1 indicates the kernel size of the 1 × 1 of convolution operation and || signifies
the concatenation function. A sigmoid activation function is performed on the C feature
maps to generate the weights ϑ, which enhances the discrimination process between the
lesion pixels and background pixels for the segmentation of retinal eye lesions. As a result
of D, the generated weights ϑ(C) are multiplied by the summation of A, where A indicates
summation of Ŝ2 and C, as follows:

A = Ŝ2 + C (3)

D = ϑ(C)× A (4)

After that, D enhanced feature maps are fed into double convolution layers, followed
by batch normalization and a rectified linear unit activation function. Finally, the output of
each decoder layer is fed into the second multi-scale block, as explained in Section 3.3.2
(Figure 3), where a binary image will be generated as a final mask.

Input from ASPP neck or
from previous decoder block

Skip Connec ons from
MobileNet Encoder

Conv2D 1 × 1

Conv2D 1 × 1

Layer Output

Concat

Conv2D 3 × 3, BatchNorm, Relu

UpSampling2D
2 × 2

Conv2D 3 × 3, BatchNorm, Relu

Summa on

Sigmoid

Mul plica on

C

S1

S2

A

D

Figure 3. The architecture of the GSC mechanism.

3.3.2. Multi-Scale Attention (SAT) Mechanism

The multi-scale mechanism used to capture a wider range of relevant features with
attention helps the model to maintain the multi-scale nature of each decoder block output,
to consider features from the four decoder blocks. Figure 4 shows the SAT block. In SAT, we
first collect the four different copies of the features from the different stages of the decoder,
to extract features and to reduce the dimensions of features from coarser stages to the finest
scale. Then, we unify the different scales using a 1 × 1 convolutional with a Kernal of 64.

Next, we upsample each scale size to the original size of the input image using
UpSampled2D transposed convolution with different strides, to make four upscaled feature
copies of the output features of the decoder blocks. SAT can be expressed as follows:

SAT = ϑ(
3

∑
k=1

↑ (ϕ1×1(Lk))
2×k + ϕ1×1(L4))× L4. (5)
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Figure 4. Structure of the SAT block.

In this expression, L indicates the decoder network layer output, ϑ stands for the
sigmoid activation function, ↑ indicates the UpSampled2D transposed convolution layer
with a kernel size of 3 × 3, and ϕ1×1 stands for the convolution operation with a kernel
size of 1 × 1, where the ϕ1×1(Lk) feature maps pass to a ↑ by 2 × k stride k = (1, 2, 3) and
fuse them. Next, the fusion feature results are added to ϕ1×1(L4) and passed to sigmoid
activation function weights, which help to improve the discrimination between the lesion
pixels and background pixels. Then, the sigmoid results are multiplied by L4. After that,
we use another fusion to improve the model performance in lesion segmentation by adding
the SAT result to the final decoder network output, which is fed into 1 × 1 convolutional
with 64 kernals, to be balanced with SAT output as follows:

Z = ϑ(
3

∑
k=1

↑ (ϕ1×1(Lk))
2×k + ϕ1×1(L4))× L4 + ϕ1×1(Dout) (6)

where Dout stands for the final output of the decoder network.
Finally, the output layer of the model takes Z to generate the predicted mask for

lesion segmentation.

3.4. Loss Function

To optimize the performance of our method in segmenting retinal lesions, we trained
the network with cross-entropy loss, which is the most commonly used loss function
in classification problems [9,16,30]. The binary cross-entropy loss LBCE [31] function is
defined as follows:

LBCE(y, ŷ) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (7)

where y, ŷ ∈ {0, 1}, and ŷ indicate the predicted value, while y indicates the ground
truth label. LBCE returns the average loss across all pixels based on minimizing the pixel-
wise error.

3.5. Affine-Based Augmentation

It has been proven that advanced data augmentation techniques, such as affine-based
methods and generative adversarial network (GAN)-based augmentation, can play a key
role in enhancing the generalization of models, while mitigating overfitting challenges,
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especially in tasks like small object segmentation, such as of retinal eye lesions. Unlike
conventional augmentation approaches, these methods not only expand the scale of small
datasets but also create synthetic samples with diverse variations by mimicking the actual
deformations occurring in the human eye [32–34]. Therefore, for correcting geometric
distortions or deformations that occur with non-ideal camera angles, we use an affine-
based transformation technique (also known as affinity) [35]. There are many types of
affinity, such as rotation, translation, and shear.

In this study, we apply rotational affine transformation to the training data of fundus
images and their labels with many angles, to increase the robustness and accuracy of
the deep learning model [36,37]. This transformation may give better results than other
traditional augmentation methods, such as flipping, brightness, and simple rotation, due to
a greater flexibility and capability to perform a broader range of geometric modifications
and corrections, specifically in cases of small and irregular objects, such as retinal lesions.

Figure 5 shows some affine transformations applied to fundus images.

Split image orignal

Affine transformed images

Figure 5. Sample of split fundus image before affine transformation (left), and after (right).

An affine transformation can be expressed as follows:

⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(θ) − sin(θ) sx

sin(θ) cos(θ) sy
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (8)

where θ indicates the angle of rotation, x′ and y′ are the new points of x and y after rotation,
sx stands for scaled x axis, and sy stands for scaled y axis.

4. Experimental Results and Discussion

In this section, we describe the experiments conducted to evaluate the performance
of the proposed model, including a description of the datasets, experimental setup, and
evaluation metrics, as well as an analysis of the results.

4.1. Dataset, Preprocessing, and Experimental Setup

To demonstrate the efficacy of LezioSeg, we employed three public and well-known
datasets, namely the Indian Diabetic Retinopathy Image Dataset (IDRiD) [38], E-ophtha [39],
and DDR [40]. Table 1 shows general information, and Figure 6 shows an example of an
image from each of these datasets, with the corresponding ground truth for exudates, EX.

The IDRiD dataset includes 81 high-resolution retinal fundus images sized 4288× 2848.
This dataset has images with at least one labeled mask for each of the four types of DR
lesion: EX, SE, MA, and HE. The dataset was split into 2/3 for training (distributed as
54, 54, 54, and 26 for EX, HE, MA, and SE, respectively) and 1/3 for testing (distributed as
26, 27, 27, and 14 for EX, HE, MA, and SE).
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Table 1. Number of images in the experimental datasets for each lesion.

Dataset EX HE MA SE Total Country

IDRiD 80 81 81 40 81 India

E-ophtha 47 - 148 - 195 France

DDR 171 194 124 42 225 China

The E-ophtha dataset contains 47 images with masks for exudate lesions and 148
images with microaneurysms. We randomly divided the dataset into two parts: 80% of
images for training and 20% for testing. From the DDR dataset, we only used the test set to
examine the model generalization.

In
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IDRiD E-ophtha DDR

Gr
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nd
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th

Figure 6. Samples of images and the ground truth from the three datasets.

To increase the amount of data and improve the regularity of the model, we employed
the following training pipeline (including some data augmentation techniques) to process
the images in the training set.

First, as shown in Figure 7, each image was divided into four non-overlapping sub-
images with corresponding sub-masks. Negative sub-images (i.e., sub-images with only
a background mask) were discarded. To reduce the GPU memory limitation, we resized
the sub-images and sub-masks to 384 × 256. We applied cubic interpolation to the images,
whereas for the masks, we used the nearest neighbor. Then, to enhance the generalization
of the LezioSeg model, we applied standard augmentation techniques, such as horizontal,
flipping, and simple rotation. Additionally, we utilized affine augmentation methods with
different angles, such as 15◦, 60◦, 135◦, −35◦, and −75◦, because of its ability to perform
a broader range of geometric modifications and corrections for the 12 repetitions of each
dataset used.

Figure 7. Samples of a split image.

Each model was trained on a single RTX 3080 Ti GPU (Nvidia Corporation, Santa
Clara, CA, USA) with 12 GB RAM for 50 epochs, with an Adam optimizer, batch size of
4, and learning rate of 0.001, while binary cross-entropy was used as a loss function. To
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save the best checkpoint for the trained models, we sampled a subset (20%) of the training
set as a validation set. During the inference phase, we only resized the input image to
768 × 512 and utilized an entire image segmentation process (i.e., no image splitting or
image augmentation was used in the testing phase).

4.2. Evaluation Metrics

In this study, we used the following evaluation metrics to assess the performance of
our segmentation model [41,42]:

• Area under precision-recall curve (AUPR) is recognized as a realistic measure of lesion
segmentation performance, such as for eye lesions;

• Pixel accuracy (ACC) is the percentage of pixels in an image that are correctly classified.
It is formally defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

• Intersection-over-union (IOU), also known as the Jaccard index, is a method for
calculating the percentage overlap between the predicted mask and the ground truth
mask. It can be expressed as follows:

IOU =
TP

TP + FP + FN
(10)

• Recall (Re) stands for the percentage of real lesion pixels classified as lesion pixels.
Formally, it is defined as follows:

Recall =
TP

TP + FN
(11)

• Precision (Pre) is the total number of positive predictions divided by the number of
true positive lesions. It is described as follows:

Precision =
TP

TP + FP
(12)

• F1-score is defined as the harmonic mean of precision and recall, as follows:

F1 =
2 · Precision × Recall

Precision + Recall
(13)

The term TP refers to the true positive (the pixels were labeled as foreground, i.e.,
retinal lesion pixels, and correctly classified); FP stands for false positive (the pixels were
labeled as background and misclassified as foreground); TN is true negative, referring to
healthy pixels correctly classified by the network; and FN is a false negative representing
lesion pixels misclassified as healthy pixels.

4.3. Ablation Study

In this section, we assess the performance of the proposed architecture with an ablation
study, using the testing images of the IDRiD and E-ophtha datasets. We separately con-
ducted five experiments for each retinal lesion with the different architectures: Baseline (in-
dicates the Unet model with MobileNet backbone encoder), Baseline + GSCs, Baseline + SAT,
Baseline + GSCs + SAT (i.e., LezioSeg method), and the LezioSeg + Affine methods.
Tables 2 and 3 present the performance of the EX, SE, HE, and MA retinal lesion seg-
mentation models on the IDRiD dataset. Similarly, we conducted the same five experiments
on the E-ophtha dataset for the EX and MA retinal lesions (see Table 4).
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Table 2. IDRiD dataset experimental results for the EX and SE. Value ± (standard deviation). Bold
highlighting values denote the highest results.

Method
EX SE

IOU F1 AUPR IOU F1 AUPR

Baseline 78.13 ± 0.025 72.44 ± 0.039 80.93 ± 0.15 74.02 ± 0.07 65.13 ± 0.18 67.48 ± 0.31

+GSCs 80.37 ± 0.016 75.94 ± 0.024 83.85 ± 0.15 75.68 ± 0.07 68.06 ± 0.18 69.97 ± 0.27

+SAT 78.98 ± 0.015 73.77 ± 0.024 82.95 ± 0.17 75.18 ± 0.07 67.17 ± 0.17 73.56 ± 0.21

LezioSeg 80.27 ± 0.013 75.77 ± 0.020 84.54 ± 0.17 78.52 ± 0.08 72.78 ± 0.19 77.64 ± 0.24

LezioSeg + Affine 81.62 ± 0.011 77.81 ± 0.016 86.03 ± 0.18 80.10 ± 0.08 75.28 ± 0.19 81.05 ± 0.24

Table 3. IDRiD dataset experimental results for MA and HE. Value ± (standard deviation). Bold
highlighting values denote the highest results.

Method
MA HE

IOU F1 AUPR IOU F1 AUPR

Baseline 57.03 ± 0.008 24.81 ± 0.026 32.56 ± 0.12 69.15 ± 0.028 56.20 ± 0.052 62.53 ± 0.21

+GSCs 60.02 ± 0.007 33.96 ± 0.020 33.69 ± 0.12 67.63 ± 0.019 53.01 ± 0.038 58.56 ± 0.22

+SAT 61.41 ± 0.004 37.28 ± 0.010 35.79 ± 0.10 68.03 ± 0.022 53.85 ± 0.044 60.58 ± 0.22

LezioSeg 60.57 ± 0.009 35.03 ± 0.023 37.06 ± 0.11 70.82 ± 0.019 59.50 ± 0.035 65.76 ± 0.19

LezioSeg + Affine 63.50 ± 0.011 42.65 ± 0.026 40.04 ± 0.12 72.65 ± 0.019 63.01 ± 0.031 69.11 ± 0.18

Table 4. E-ophtha dataset experimental results for EX and MA. Value ± (standard deviation). Bold
highlighting values denote the highest results.

Method
EX MA

IOU F1 AUPR IOU F1 AUPR

Baseline 69.43 ± 0.018 56.13 ± 0.039 62.84 ± 0.10 60.09 ± 0.015 33.6 ± 0.038 30.01 ± 0.17

+GSCs 69.69 ± 0.022 56.67 ± 0.050 58.25 ± 0.11 60.43 ± 0.013 34.57 ± 0.033 29.6 ± 0.21

+SAT 68.75 ± 0.027 54.72 ± 0.063 58.74 ± 0.14 62.29 ± 0.015 39.49 ± 0.034 32.24 ± 0.19

LezioSeg 70.62 ± 0.018 58.57 ± 0.037 61.98 ± 0.10 63.37 ± 0.020 42.21 ± 0.045 36.30 ± 0.20

LezioSeg + Affine 71.74 ± 0.018 60.8 ± 0.037 63.04 ± 0.10 64.12 ± 0.020 44.06 ± 0.043 37.50 ± 0.19

4.3.1. Experiments on the IDRiD Dataset

As we can see from Tables 2 and 3, the LezioSeg model achieved the best results for
all metrics of the EX, SE, HE, and MA retinal lesions on the IDRiD dataset; specifically with
the AUPR metric, a popular metric used for the IDRiD dataset challenge. Merging the GSC
and SAT techniques generally increased the results’ robustness; since the GSCs help filter
the results produced from the encoder block and SAT helps filter the results produced by
the decoder blocks. Moreover, a significant improvement in the segmentation results was
achieved when we added affine to the LezioSeg, obtaining AUPR values of 86.03, 81.05,
40.04, and 69.11% for EX, SE, HE, and MA, respectively.

The mean ± standard deviations of the evaluation metrics for the test dataset of
the IDRiD dataset are reported in Tables 2 and 3, and the results of our LezioSeg and
LezioSeg + Affine models were within the range of the means ± one standard deviation.
These effects revealed that LezioSeg, with or without Affine, presented a more precise and
robust segmentation.

Figure 8 shows the boxplots of the F1 metric of the Baseline, +GSCs, +SAT, LezioSeg, and
LezioSeg + Affine models on the IDRiD dataset for SE, EX, HE, and MA retinal lesions. From
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the figure, among the tested models, we can see that the LezioSeg + Affine model had the
highest mean and median for all lesions. In addition, it had the smallest standard deviation
of EX and HE, and the outliers were in the top whisker, which were positive outliers for EX,
HE, and MA. Using the boxplots, we can see that the LezioSeg + Affine provided the best
performance for all lesions, while achieving the best mean and median values.

Figure 8. Box plots of F1 for EX, SE, HE, and MA segmentation results for the IDRiD dataset (green
dashed lines indicate the mean, and the oranges indicate the median). Outliers are values that fell
outside the whiskers, denoted by the (◦) symbol.

Moreover, it is helpful to refer to the statistical significance of the differences in
performance between the proposed LezioSeg + Affine and the Baseline model in terms of
the F1 and IOU for each lesion. To accomplish this, we used Student’s t-test (significance
level < 0.05) to reveal the distinction between F1 values. At the same time, we used this
to specify the distinction between IOU values. The p-values for F1 and IOU terms were
less than 0.05, indicating statistical significance for EX, HE, and MA, and higher than 0.05
for SE with the IDRiD dataset. Table 5 displays the average increase in percentage δ%
as each component was added to the Baseline model for the AUPR metric. As we can
see, merging the GSCs and SAT into the Baseline model notably enhanced the results. In
addition, adding affine to them resulted in a huge performance improvement.

Table 5. IDRiD dataset ablation studies for the different experiments. This table displays the AUPR,
mean AUPR (mAUPR), and average increase percentage over Baseline ↑. Bold highlighting values
denote the highest results.

Method EX HE MA SE mAUPR δ%

Baseline 80.93 62.53 32.56 67.48 60.88 -

+GSCs 83.85 58.56 33.69 69.97 61.52 ↑ 0.64

+SAT 82.95 60.58 35.69 73.56 63.20 ↑ 2.32

LezioSeg 84.54 65.76 37.06 77.64 66.30 ↑ 5.38

LezioSeg + Affine 86.03 69.11 40.04 81.05 69.06 ↑ 8.18
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4.3.2. Experiments on the E-Ophtha Dataset

We conducted the same five experiments used on the IDRiD dataset on the E-ophtha
dataset for EX and MA (the only lesions given in the E-ophtha dataset), to show the
impact of introducing LezioSeg and LezioSeg + Affine. As shown in Table 4, the LezioSeg
model achieved the best segmentation results for MA for all metrics, with IOU = 63.37%,
F1 = 42.21%, and AUPR = 36.30%. At the same time, it achieved the highest values for EX
segmentation, with an IOU and F1 of 70.62 and 58.57%. On the other hand, LezioSeg +
Affine significantly enhanced the results of all metrics for MA and EX. For MA segmentation,
it obtained an IOU, F1, and AUPR of 64.12, 44.06, and 60.8%, respectively, and it obtained
an IOU, F1, and AUPR of 71.74, 60.8, and 63.04%, respectively, for EX segmentation.

The results of the LezioSeg and LezioSeg + Affine models for the mean ± standard
deviation of the evaluation metrics for the test dataset for the E-ophtha dataset were within
the range of the mean ± one standard deviation, as shown in Table 4. These results show
that the LezioSeg and LezioSeg + Affine data augmentation could provide a more precise
and robust segmentation. In Figure 9, we show the boxplots for the F1 metric on the
E-ophtha dataset for EX and MA retinal lesions for the Baseline, +GSCs, +SAT, LezioSeg,
and LezioSeg + Affine models. From the figure, among the tested models, we can see that
Ex had the highest mean and median, and smallest standard deviation when using the
LezioSeg + Affine model. The LezioSeg + Affine model also gave the smallest standard
deviation and the second-best mean and median. In comparison, the LezioSeg + Affine
outliers were on the positive side (top whisker) of MA and higher than the bottom whisker
of all related models in the case of EX.

Using the boxplots, we can see that the proposed method, LezioSeg + Affine, achieved
the best performance for EX, while achieving the second-best performance for MA, consid-
ering the F1 evaluation metric.

Figure 9. Box plots of F1 for EX, SE, HE, and MA segmentation results on the E-ophtha dataset (green
dashed lines indicate the mean and the oranges indicate the median). Outliers are values that fall
outside the whiskers, denoted by the (◦) symbol.

Finally, the Student’s t-test for statistical differences in performance between the LezioSeg
method and the Baseline model for the terms F1 and IOU clearly showed that p-values less
than 0.05 indicated statistical significance for EX and MA with the E-ophtha dataset.

4.3.3. Visualization

To show the influence of the LezioSeg and LezioSeg + Affine segmentation models
compared to the Baseline model, we show realistic segmentation cases from the IDRiD and
E-ophtha datasets. Figure 10 shows samples from the IDRiD dataset for EX, SE, HE, and
MA segmentation. In addition, Figure 11 shows samples from the E-ophtha dataset, to
demonstrate the segmentation efficacy of EX and MA. The blue color illustrates the false
positives, whereas the green color indicates the false negatives. From the cases shown,
LezioSeg + Affine worked well on small and large lesions.
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Figure 10. Sample of the segmentation results of SE, EX, HE, and MA on the IDRiD dataset (blue and
green indicate FP and FN).
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Figure 11. Sample of the segmentation results for EX and MA on the E-ophtha dataset (blue and
green indicate FP and FN).
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4.4. Comparison with Existing Lesion Segmentation Methods

To ensure the proposed method’s efficacy, we compared LezioSeg + Affine and some
state-of-the-art methods using the AUPR metric of the IDRiD and E-ophtha datasets.
The comparison of IDRiD included the top-3 IDRiD challenge teams [43], L-Seg [12],
CASENet [14], DeepLabV3+ [13], HEDNet + cGAN [10], CARNet [17], EAD-Net [3], PMC-
Net [44], and PBDA [33].

Table 6 shows that the LezioSeg + Affine model achieved a significant improvement
in performance in segmenting retinal lesions. It achieved the best AUPR of SE (81.05%) and
the second best for HE (69.11%). In addition, LezioSeg + Affine obtained a high average
value for the mean of area under precision-recall (mAUPR) over all lesions, with a value of
69.06%, only surpassed by PBDA.

Table 6. Comparison with existing methods for lesion segmentation on the IDRiD dataset. (-) stands
for ‘not reported’. Bold highlighting values denote the highest results.

Method EX HE SE MA mAUPR

VRT (1st) [43] 71.27 68.04 69.95 49.51 64.69

PATech (2nd) [43] 88.50 64.90 - 47.40 -

iFLYTEK-MIG (3rd) [43] 87.41 55.88 65.88 50.17 64.84

L-Seg [12] 79.45 63.74 71.13 46.27 65.15

CASENet [14] 75.64 44.62 39.92 32.75 48.23

DeepLabV3+ [13] 71.18 47.72 59.12 15.14 48.29

HEDNet + cGAN [10] 84.05 48.12 48.39 43.92 56.12

CARNet [17] 86.75 63.89 71.25 51.48 68.34

EAD-Net [3] 78.18 56.49 60.83 24.08 54.90

PMCNet [44] 87.24 67.05 71.11 46.94 68.08

PBDA [33] 86.43 71.53 73.07 53.41 71.11

LezioSeg + Affine 86.03 69.11 81.05 40.04 69.06

Furthermore, for the E-ophtha dataset, the comparison included CASENet [14],
L-Seg [12], PMCNet [44], DeepLabV3+ [13], and PBDA [33]. Table 7 shows that
LezioSeg + Affine surpassed most of the previous works by a considerable margin. We can
also observe that it was slightly better than PBDA for the two types of lesion available in
this dataset.

Table 7. Comparison with existing methods for lesion segmentation on the E-ophtha dataset. Bold
highlighting values denote the highest results.

Method EX MA mAUPR

CASENet [14] 17.15 15.65 16.40

DeepLabV3+ [13] 55.12 0.45 27.78

L-Seg [12] 41.71 16.87 29.29

PMCNet [44] 51.20 30.60 40.90

PBDA [33] 62.32 35.68 49.01

LezioSeg + Affine 63.04 37.50 50.27

From the results on these two datasets, we can see that LezioSeg + Affine performed
fairly comparably to PBDA for the IDRiD dataset and was superior to it for the E-ophtha
dataset, by 0.92, 1.82, and 1.26% for EX, MA segmentation, and mAUPR, respectively.
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4.5. Evaluating the Generalization Capability of LezioSeg + Affine

It was also meaningful to study the generalization capability of the methods over vari-
ous domains and imaging conditions. We used our models pretrained on the IDRiD dataset
to verify their effectiveness and generalization ability with the low-resolution test data of
the DDR fundus image dataset. The comparison included DeepLabV3+ [13], CASENet [14],
L-Seg [12], and PMCNet [44]. LezioSeg + Affine obtained a performance for EX, SE, HE,
and MA with the AUPR metric of 56.12, 28.62, 22.21, and 33.81%, and an mAUPR of 35.19%,
as shown in Table 8. Furthermore, LezioSeg + Affine outperformed all state-of-the-art
approaches for segmenting MA and EX without training, which was much better than the
PMCNet and L-Seg models, by 2.27 and 0.66% for MA and EX, respectively, and it also
achieved the second-best result for SE and mAUPR.

Table 8. Performance comparison of the generalization of the different methods. Bold highlighting
values denote the highest results.

Method EX HE MA SE mAUPR

DeepLabV3+ [13] 53.49 38.94 2.23 21.20 28.97

CASENet [14] 27.77 26.25 10.05 13.04 19.28

L-Seg [12] 55.46 35.86 10.52 26.48 32.08

PMCNet [44] 54.30 39.87 19.94 31.64 36.44

LezioSeg + Affine 56.12 33.81 22.21 28.62 35.19

4.6. Computational Complexity

To confirm the efficacy of our network, we examined different models on the IDRiD
dataset, in terms of parameters, flop, test time, and mAUPR. In comparison, we achieved
the second-best average value for the AUPR metric. However, our model achieved the best
computing parameter with 10.7M and the best test time of 0.17 s, which were significantly
lower than the models using dual networks and a cascade architecture, such as CARNet [17]
and PBDA [33], and those models based on ResNet or VGGNet encoders, such as L-Seg [12],
and CARNet. Furthermore, our model obtained the best value compared to the reported
models’ flop values, with 177.8 G. As shown in Table 9.

Table 9. Computational complexity of the different lesion segmentation models on the IDRiD dataset.
(-) stands for ‘not reported’. Bold highlighting values denote the highest results.

Method Parameters (M) Flops (G) Time (S) mAUPR

L-Seg [12] ≈14.3 - - 65.15

DeepLabV3+ [13] ≈41.1 621.6 0.32 48.29

CARNet [17] ≈22 - 0.2 68.34

PBDA [33] ≈24.6 1554.11 0.26 71.11

LezioSeg ≈10.7 177.8 0.17 69.06

5. Conclusions

The automatic segmentation of the retinal lesions in fundus images (SE, EX, HE, and
MA of the human eye) was performed in this paper using a new deep-learning architecture.
The new model, called LezioSeg, comprises four main elements: two multi-scale modules,
an ASPP at the neck of the network and a SAT unit after the decoder of the network, a
MobileNet backbone encoder, and a modified UNet decoder block using several GSCs. It
is worth highlighting that, in terms of parameters, LezioSeg is much lighter than those
models that depend on ResNets or VGGNets backbones and those models that use dual
networks or a cascading architecture.
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The extension of the proposed model with affine transformations improved the seg-
mentation performance of retinal eye lesions for the IDRiD and E-ophtha datasets. Ex-
tensive experiments showed that LezioSeg + Affine had a competitive performance with
the other state-of-the-art models, achieving the top performance for segmenting SE and
second-best for HE of over 81.0 and 69.11% for AUPR and the second-best mAUPR of
69.06% with the IDRiD dataset. Moreover, with the E-ophtha dataset, LezioSeg showed a
high performance of 63.04 and 37.50% for segmenting EX and MA for AUPR and achieved
the best mAUPR of 50.27%. LezioSeg showed a competitive performance when it was
generalized on the DDR dataset, which had images taken in different conditions and in a
different population.

LezioSeg + Affine proved that it is a reliable and robust method for lesion segmentation
of fundus images, which may prove an excellent help for ophthalmologists in detecting
diabetic retinopathy. One of its main features is that it can be applied to real-world color
fundus images taken with different camera settings, which is often a handicap of other
techniques. This new architecture may also be applied to other medical images where the
identification of small objects is needed.

In future work, we plan to use the presented lesion segmentation model to create
an integrated application for retinal eye illnesses such as DR, glaucoma, and age-related
macular degeneration.
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Abstract: With the advances in deep learning technology, Red Green Blue-Depth (RGB-D) Salient
Object Detection (SOD) based on convolutional neural networks (CNNs) is gaining more and more
attention. However, the accuracy of current models is challenging. It has been found that the quality
of the depth features profoundly affects the accuracy. Several current RGB-D SOD techniques do
not consider the quality of the depth features and directly fuse the original depth features and Red
Green Blue (RGB) features for training, resulting in enhanced precision of the model. To address this
issue, we propose a depth-quality purification feature processing network for RGB-D SOD, named
DQPFPNet. First, we design a depth-quality purification feature processing (DQPFP) module to filter
the depth features in a multi-scale manner and fuse them with RGB features in a multi-scale manner.
This module can control and enhance the depth features explicitly in the process of cross-modal
fusion, avoiding injecting noise or misleading depth features. Second, to prevent overfitting and
avoid neuron inactivation, we utilize the RReLU activation function in the training process. In
addition, we introduce the pixel position adaptive importance (PPAI) loss, which integrates local
structure information to assign different weights to each pixel, thus better guiding the network’s
learning process and producing clearer details. Finally, a dual-stage decoder is designed to utilize
contextual information to improve the modeling ability of the model and enhance the efficiency of
the network. Extensive experiments on six RGB-D datasets demonstrate that DQPFPNet outperforms
recent efficient models and delivers cutting-edge accuracy.

Keywords: red green blue-depth salient object detection; convolutional neural network; cross-modal
fusion; dual-stage decoder

1. Introduction

Visual saliency refers to a human visual simulation system that uses algorithms to
simulate human visual features and locate prominent areas in an image. Salient Object
Detection (SOD) is designed to find the most appealing features of an image. It has rapidly
developed and is widely used in many fields, including object tracking [1], object detec-
tion [2,3], object segmentation [4,5], and other computer vision tasks for pre-processing [6].
Deep learning has advanced considerably over the past few years, and many SOD methods
have been proposed. However, the majority of current models for SOD can only handle
RGB images.

Park et al. proposed a unique surface-defect detection method [7] that utilizes a deep
nested convolutional neural network (NC-NET) with attention and guiding modules to seg-
ment defect regions from complicated backgrounds precisely and adaptively refine features.
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To overcome the inherent limitations of convolution, SwinE-Net [8] effectively combines
EfficientNet, driven by a CNN, and the Vision Transformer (VIT)-based Swin Transformer
for segmentation. This combination preserves global semantics while maintaining low-level
characteristics, demonstrating specific generalization and scalability. CoEg-Net [9] employs
a shared attention projection technique to facilitate fast learning from public information,
utilizing vast SOD datasets to significantly enhance the model’s scalability and stability.
DRFI [10] autonomously integrates regional saliency features of high dimensionality and
selects the most discriminative cues. This inevitably creates challenges for SOD in intricate
scenes, for example, backdrops with cluttered or low-contrast areas where color provides
few clues.

To address the aforementioned problem, combining RGB and depth features for RGB-
D SOD has received increasing attention. To learn the transferable representation of RGB-D
partition tasks, Bowen et al. [11] proposed an RGB-D framework, DFormer. DFormer
encodes RGB and depth information through a series of RGB-D blocks. The model is
pre-trained on ImageNet-1K, so DFormer has the ability to encode RGB-D representa-
tions. To build a better global long-range dependence model with self-modality and
cross-modality, Cong et al. [12] introduced the transformer architecture to create a new
RGB-D SOD network called point-aware interaction and CNN-induced refinement (PICR-
Net). The network explores the interaction of characteristics under different modules,
alleviates the block effects, and details the destruction problems caused by the transformers.
Wu et al. [13] designed HiDAnet, which includes a granularity-based attention strategy to
enhance the fusion of RGB and depth features. Note that the accuracy depends greatly on
the quality of the depth of information, as suggested by the previous work. Cong et al. [14]
suggested a method for assessing the dependability of depth maps and utilizing it to mini-
mize the impact of inferior depth maps on salient detection. DPA-Net [15] can recognize
the potential value of depth information through a learning-based approach, preventing
contamination by accounting for depth potentiality. Although BBS-Net [16] employs a
module with improved depth to selectively extract informative regions of depth cues from
both channel and spatial viewpoints, the quality of the depth features is still not great,
resulting in the prediction accuracy not achieving adequate results. Although the above
models consider the quality of depth features, they only perform single-scale filtering and
fuse RGB and depth features at the coarsest filtering level without considering the mode of
multi-scale filtering and fusion. This may lead to the roughness of features and the lack of
feature utilization and fusion. In addition, Cong et al. [14] adapted a top-down UNet [17]
architecture, which performs well in extracting and integrating local information, but it
cannot effectively capture global information and has some limitations.

The above facts indicate that multi-scale filtering of depth features and multi-scale fu-
sion with RGB features can improve feature utilization and fusion rates, thereby enhancing
a model’s accuracy. In addition, a decoder that can capture both global and local informa-
tion has a significant impact on the performance of a model. Based on this, we propose a
depth-quality purification feature processing (DQPFP) network for RGB-D SOD in this pa-
per. Figure 1 shows the overall network architecture. The DQPFP module consists of three
key sub-modules, namely a depth denoising module (DDM), depth-quality purification
weighting (DQPW) module, and depth purification-enhanced attention (DPEA) module.
The DDM filters multi-scale depth features through a channel attention mechanism and
a spatial attention mechanism to achieve the initial filtering of the depth features. The
DQPW module supplements the color features with purified depth features in a residual-
connected manner to enhance feature characterization and then learns the weight factor α
from the depth features and RGB features; By assigning smaller weights to poor-quality
depth features, we obtain different weight factors on different scales. The DPEA module
learns the global attention maps β from the purified depth features, which enhances the
quality of the depth features from a spatial dimension. Then, α and β are integrated to
obtain the final high-quality depth features. Then, the high-quality depth features and RGB
features are fused in a multi-scale manner, and the final saliency map is generated through
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a two-stage decoder. In addition, after experimental analysis, we utilize the Randomized
Leaky Rectified Linear Unit (RReLU) activation function to prevent overfitting and avoid
neuron inactivation, which introduces randomness into the neural network training pro-
cess. Furthermore, we introduce the pixel position adaptive importance (PPAI) loss, which
integrates local structure information to assign different weights to each pixel, thus better
guiding the network’s learning process and resulting in clearer details.

Figure 1. The overall structure of the proposed DQPFPNet.

Our contributions can be summarized as follows:

• We propose a DQPFP module, consisting of three sub-modules: DDM, DQPW, and DPEA.
This module filters the depth features in a multi-scale manner and fuses them with
RGB features in a multi-scale manner. It can also control and enhance the depth
features explicitly in the process of cross-modal fusion, avoiding injecting noise or mis-
leading depth features, which improves the feature utilization, fusion, and accuracy
rates of the model.

• We design a dual-stage decoder as one of DQPFPNet’s essential elements, which can
fully utilize contextual information to improve the modeling ability of the model and
enhance the efficiency of the network.

• We introduce the RReLU activation function to prevent overfitting and avoid neuron
inactivation, thereby introducing randomness into the training process. Furthermore,
the pixel position adaptive importance (PPAI) loss is utilized to integrate local structure
information to assign different weights to each pixel, thus better guiding the network’s
learning process and resulting in clearer details.

• Extensive experiments on six RGB-D datasets demonstrate that DQPFPNet outper-
forms recent efficient models.
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The remainder of this paper is structured as follows. The related research on general
RGB-D SOD, effective RGB-D SOD, and depth-quality analysis in RGB-D SOD is covered
in Section 2. Section 3 describes the proposed DQPFPNet in detail. Section 4 presents
the experimental results, performance evaluation, and ablation analysis. Finally, some
conclusions are provided in Section 5.

2. Related Works

For many years, researchers have been investigating the use of RGB-D data for SOD.
Considering the objective of this paper, this section reviews common techniques for RGB-D
SOD and the previous works on valid methods and depth-quality analysis.

2.1. Common RGB-D SOD Techniques

The effectiveness of traditional methods [18,19] mostly relies on how well made
the hand-crafted features are. The first traditional RGB-D SOD method was proposed
in 2012. Recently, deep learning-based techniques [20–24] have made great progress,
gradually becoming mainstream, with the first deep learning-based RGB-D SOD starting
in 2017. To investigate whether and how visual saliency is influenced by depth features,
Lang et al. [18] presented the first RGB-D SOD work in 2012, where seven experimenters
performed eye-movement experiments on 500 images, recording observation points. A
Gauss mixed model was used to simulate the distribution of depth-induced saliency and
observe the relationship between 2D saliency and 3D saliency. To investigate the efficacy
of global priors for RGB-D data, Peng et al. [19] developed a multi-background contrast
model, including local, global, and background contrast, to detect salient targets using
depth maps. In addition, the first substantial RGB-D dataset for SOD was provided by
this work. In order to accelerate inference speed and improve model training efficiency,
GSCINet [21] was proposed with a series of carefully designed convolutions of different
scales and attention-to-weight matrices, introducing a cyclic cooperation technique to
reduce computing costs while optimizing compressed features, thereby achieving rapid
and precise inference for Salient Object Detection. To explore how to combine low-level
salient cues to generate master salience maps, DF [20] was created with a new convolutional
neural network (CNN) that aggregates many low-level saliency indicators into hierarchical
features to effectively find saliency regions in RGB-D images. Published in 2017, it was the
first model to incorporate the deep learning technique into RGB-D SOD tasks. In order
to make better use of complementary information in multi-modal data and reduce the
negative effect of ambiguity between different modes, A2TPNet [24] was proposed to fuse
cross-modal features, employing a cooperative technique that combines channel attention
and spatial attention mechanisms to lessen the interference of irrelevant information and
unimportant aspects in the interaction process. To apply uncertainty to RGB-D Salient
Object Detection, UCNet [22], a probability-based RGB-D SOD network that simulates the
uncertainty of human annotations through conditional variational automatic encoders, was
proposed. In order to fully mine the information of cross-modal complementarity and cross-
level continuity, ICNet [23] was proposed, offering a transformation of the information
module for interactive high-level feature transformation.

As this research direction has flourished, other encouraging skills have recently been
used in RGB-D SOD tasks, for instance, the use of RGB images, bottom-up and top-down
depth maps of the multi-modal integration framework [25], co-attention mechanisms [26,27],
model compression [28,29], shared networks [30], weak semi-supervised learning [31,32],
and self-mutual attention modules [33]. A relatively comprehensive RGB-D SOD survey
report can be found in [34].

Although the above-mentioned RGB-D SOD methods can improve detection accuracy,
most of the models do not consider the impact of multi-scale depth quality on model accuracy.
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2.2. RGB-D SOD Depth-Quality Assessments

As depth quality often affects the performance of a model, some researchers have
considered using the RGB-D SOD depth mass to lessen the impact of depth at low mass.
To forecast a hint map, in EF-Net [35], a module of a color hint map using RGB pictures
was initially employed. The issue of poor-quality depth maps was then resolved, and the
saliency detection process was improved thanks to the use of a depth-enhanced module.
After removing the depth stream’s feature encoder and creating a lightweight model, the
authors of SSN [36] employed the depth map directly to guide the pre-fusion of RGB and
depth features. The authors of A2dele [37] used network prediction and attention methods
as conduits for transferring depth data from the depth stream to the RGB stream. In JL-
DCF [30], depth adjustment and fusion mechanisms were used to explicitly solve depth
quality issues. Based on this, the adjusted depth map was able to estimate the original
depth map. Using hyperpixels of components created by SPSN [38], component prototypes
were created from the input RGB picture and depth map. In addition, a reliability selection
module was proposed to detect the quality of RGB feature maps and depth feature maps
and weigh them adaptively according to the quality of the feature maps.

3. Proposed Method

3.1. Overview

Figure 1 presents the proposed DQPFPNet structure, consisting of the encoder, de-
coder, and supervision module. Our encoder adopts the architecture in [16], where the
RGB module is in charge of both cross-module fusion between RGB and depth features
and feature extraction for RGB to achieve great performance. To create the final saliency
map, the decoder performs a dual-stage fusion, namely the first fusion and second fusion.
The encoder itself is made up of an RGB-related module, whose backbone network is
MobileNet-v2 [2]; a depth-related module, which is an efficient backbone; and the pro-
posed DQPFP. The depth module and RGB module comprise five feature hierarchies, each
with an output stride of 2, with the last one having an output stride of 1. The depth
features are extracted within the given hierarchy, passed through the DQPFP threshold,
added to the RGB module through simple element additions, and then sent to the next
hierarchy. Moreover, a PPM (pyramid pooling module [39]) is introduced toward the end
of the RGB module to acquire multi-scale semantic data. In practical coding, the DQPFP
threshold consists of two operations: depth-quality purification weighting (DQPW) and
depth purification-enhanced attention (DPEA). In order to facilitate a better understanding
of the overall workflow of the network, Figure 2 shows the pipeline of the entire network.

Figure 2. The pipeline of the network architecture.

The features extracted from the five depths/RGB hierarchies are represented as f i
n(n ∈

{rgb, dep}, i = 1, . . . , 5), the fusion features are represented as f i
u(i = 1, . . . , 5), and the

features from the PPM are represented as f 6
u . This multi-modal feature fusion can be

written as:

f i
u = f i

rgb + (αi ⊗ βi ⊗ f i
dep) (1)

where αi and βi are calculated by DQPW and DPEA, respectively, to control the fusion
of the depth features f i

dep. ⊗ indicates element-by-element multiplication. After the

encoding process shown in Figure 1, f i
u(i = 1, . . . , 5) and f 6

u are transferred to the next
decoder module.
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3.2. Depth-Quality Purification Feature Processing (DQPFP)

DQPFP includes two crucial modules: DQPW (depth-quality purification weighting)
and DPEA (depth purification-enhanced attention). These two modules calculate αi and
βi in Equation (1), respectively. αi ∈ R

i is a scalar that determines “how many” depth
features are used, whereas βi ∈ R

s×s (s is the feature size for level i) is a spatial attention
map, determining "which regions" to focus on within the depth characteristics. The internal
structures of the DQPW and DPEA modules are described below.

3.2.1. Depth-Quality Purification Weighting (DQPW)

The paired color features and depth features in the RGB-D features are two different
forms of the same object. Color images provide visual cues, and depth images provide
3D information. Considering the inadequate quality of depth maps, this paper proposes a
depth de-noising module (DDM). The DDM first purifies the depth features using the atten-
tion mechanism, then complements the color features through a residual connection [40],
and uses the shortcut connection section to retain more of the original color cues.

In the DDM, as shown in Figure 3, the RGB features are merged with the depth features
and transmitted to the channel attention module to obtain the attention channel mask,
which is employed to purify the depth features. Subsequently, the purified depth features
are input into the spatial attention module to produce the attention space mask, purifying
the depth features on a spatial level. This process can be represented as:

Fr
i = f d

i × SA( f d
i × CA(Cat( f d

d , f r
i ))) + f r

i (2)

where f r
i and f d

i , respectively, represent the low-level color and depth features; Cat(·)
represents the concatenation and subsequent convolution operations; CA(·) and SA(·) are
channel and spatial attention operations proposed by CBAM [41], respectively; “×” de-
notes the element-wise multiplication operation; and “+” denotes the element-by-element
addition operation. This process purifies poor-quality depth features and then merges
them into RGB features to produce a more accurate representation Fr

i .
In Figure 4, the low-level features f 1

rgb and f 1
dep first obtain f 1

rgb_en through the DDM,

and DQPW adaptively learns the weighting term αi from the features f 1
rgb_en and f 1

dep. We

apply convolution to f 1
rgb_en/ f 1

dep to obtain the transformed features frt′/ fdt′ , which are
anticipated to obtain more activators associated with the edge:

frt′ = BRRConv1×1( f 1
rgb_en), fdt′ = BRRConv1×1( f 1

dep) (3)

where BRRConv1×1(·) represents a 1 × 1 convolution with BatchNorm layers and the
RReLU activation. To be able to assess the alignment of low-level features, the alignment
feature vector VBA, encoding the alignment between frt′ and fdt′ , is computed as follows,
given the edge activations frt′ and fdt′ :

VBA =
GAP( frt′ ⊗ fdt′)

GAP( frt′ + fdt′)
(4)

where GAP(·) means the global average pooling operation aggregating element-level
details and ⊗ represents the element-level multiplication.

Additionally, to make VBA robust to minor edge movements, this paper calculates VBA
on multiple scales and concatenates the results to produce the strengthened vector. Figure 4
shows that this multi-level computation is realized by downsampling the original features
frt′/ fdt′ by max-pooling with a stride of 2, and then V1

BA and V2
BA are calculated in the

same way as in Equation (4). Assuming that VBA, V1
BA, and V2

BA are aligned eigenvectors
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calculated from the three scales shown in Figure 4, the strengthened vector Vms
BA is calculated

as follows:

Vms
BA = [VBA, V1

BA, V2
BA] (5)

where [· ] represents a channel cascade. Then, two completely linked layers are used to
calculate α ∈ R

5 from Vms
BA in the manner shown below:

α = MLP(Vms
BA) (6)

where MLP(·) represents a two-level perception with the Sigmoid function at the end.
Then, αi ∈ (0, 1)(i = 1, 2 . . . , 5) is one of the elements of the vector α that is obtained. Note
that this paper uses different weighting factors for different levels, and the effectiveness of
this multivariable approach is verified in Section 4.4.

Figure 3. The structure of the DDM.

Figure 4. The organization of the DQPW module. The red arrows show the Equation (4) calculation
process. The dashed lines indicate max-pooling with a stride of 2.

3.2.2. Depth Purification-Enhanced Attention (DPEA)

The DPEA enhances the depth features in the spatial dimension by deriving a global
attention map βi from the depth channel. As shown in Figure 5, the purified features
f 5
dep_en are first obtained from f 1

rgb and f 5
dep through the DDM to locate the coarse-grained

salient areas (with supervision cues shown in Figure 1). In order to simplify the next
pixel-by-pixel processes, f 5

dep_en is compressed and then sampled up into fdht in the same

dimension as f 1
rgb/ f 1

dep, as shown in the following formula:

fdht = F8
UP(BRRConv1×1( f 5

dep)) (7)
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where F8
UP(·) represents 8 × bilinear upsampling. fdht is then re-calibrated with the

primary RGB and depth features. Like the calculation in DQPW, this paper first transfers
f 1
rgb/ f 1

dep to frt′′/ fdt′′ . The result is that element-level multiplication generates the features
fec, which somewhat emphasizes the general activation properties linked to the edge.
The max-pooling operation and dilated convolution operation are used to rapidly expand
the receptive field to simulate better long-term relationships between low- and high-level
information (i.e., fec and fdht) while preserving the effectiveness of the DPEA. This re-
calibration process is represented as:

Frec( fdht) = F2
UP

(
DConv3×3

(
F2

DN( fdht + fec)
))

(8)

where Frec(·) is the input of the re-calibration process; DConv3×3(·) represents the 3 × 3 di-
lated convolution with a stride of 1 and a dilation rate of 2, followed by BatchNorm layers and
the RReLU activation; and F2

UP(·)/F2
DN(·) indicates the bi-linear upsampling/downsampling

operation to 2/( 1
2 ) times the initial dimensions. To achieve a balance between functionality

and effectiveness, the following two re-calibrations are performed:

f ′dht = Frec( fdht), f ′′dht = Frec( f ′dht), (9)

where f ′dht and f ′′dht are the features re-calibrated once and twice, respectively. Finally, f ′′dht
is combined with fec to obtain global attention maps:

β = BRRConv3×3( fec + f ′′dht). (10)

Be aware that the RReLU activation in BRRConv3×3 is replaced with the Sigmoid
activation to achieve the attention features of β. Eventually, By downsampling β, five depth
global attention maps β1, β2, . . . , β5 are obtained, using spatial enhancement factors for the
depth levels. Generally, background clutters that are unrelated to the depth features can be
prevented by multiplying them with attention maps β1 ∼ β5.

Figure 5. The structure of the DPEA (depth purification-enhanced attention) module.

3.3. Dual-Stage Decoder

This work suggests a simpler two-phase decoder that comprises first fusion and
second fusion stages to further increase efficiency, in contrast to the well-known UNet [17],
which uses a hierarchical top-down decoding technique. Hierarchical grouping is used,
denoted in Figure 1 as “G”. The first fusion aims to cut down on the feature channels and
hierarchies. Based on the outputs of the first fusion stage, the low-level and high-level
hierarchical structures are further aggregated to generate the final salient map. Note that in
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our decoder, instead of ordinary convolutions, separable depth-wise convolutional filters
are mainly used with many input channels.

3.3.1. First Fusion Stage

This paper first uses a 3 × 3 depth-by-depth separable convolution [42] with Batch-
Norm layers and the RReLU activation, represented as DSConv3×3(·), to reduce the en-
coder’s features during compression ( f i

u, i = 1, 2 . . . 6) into an integrated channel of size
16. Then, the popular channel attention operator [43] FCA(·) is used to improve the charac-
teristics through channel weighting. The procedure described above can be expressed as:

c f i
u = FCA(DSConv3×3( f i

u)), (11)

where c f i
u represents the features from the compression and enhancement processes. This

work, which is motivated by [16], splits the six feature hierarchies into both high-level and
low-level hierarchies, as follows:

c f low
u =

3

∑
i=1

F2i−1

UP (c f i
u), c f high

u =
6

∑
i=4

c f i
u, (12)

where Fi
UP is i times the original size of the bilinear upsampling.

3.3.2. Second Fusion Stage

Since the number of channels and hierarchies have been reduced in the first fusion
phase, the high-level and low-level hierarchies are directly concatenated in the second
fusion phase and then provided to a prediction head to acquire the ultimate full-resolution
prediction map, which is expressed as follows:

Sc = Fc
p

(
[c f low

u , F8
UP(c f high

u )]

)
, (13)

where Sc represents the final salient features, and Fc
p(·) represents the prediction head

consisting of two 3 × 3 separable depth-by-depth convolutions (followed by BatchNorm
layers and the RReLU activation function): a 3 × 3 convolution with Sigmoid activation
and a 2× bilinear upsampling to restore the original input dimension.

3.4. RReLU Activation Function

The activation function plays an important role in computer vision tasks such as object
segmentation, object tracking, and object detection. An important aspect of neural network
design is the selection of the activation functions to be used in the different layers of the
network. The activation function is used to introduce nonlinearity into the neural network
calculation, and the correct selection of the activation function is very important for the
effective performance of the network.

Common activation functions, such as Sigmoid, Tanh, and so on, have good properties,
but with the advent of deep neural architectures, it is difficult for researchers to train very
deep neural networks because they are saturated with activation functions. To solve this
problem, the ReLU activation function was utilized, as shown in Figure 6. Although ReLU
is not differentiable at zero, it is unsaturated, and it can keep the gradient constant in the
positive interval. This method effectively alleviates the problem of gradient disappearance
in the neural network, thereby speeding up the training of the neural model. However,
when the input is negative, ReLU will have dead neurons, resulting in the corresponding
weights not being updated, which may result in the loss of model information.
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Figure 6. The ReLU activation function.

To address the problems with the ReLU activation function, in Section 4.4, we conduct
a number of experiments to determine the optimal activation function to use in this model:
RReLU. As shown in Figure 7, RReLU is a variant of ReLU that prevents overfitting
by introducing randomness during model training while helping to resolve the issue of
neuronal inactivation. When the input is positive, the gradient is a positive value, and when
the input is negative, the gradient is a negative value. However, the slope of the negative
value is randomly obtained during training and fixed in subsequent tests.

Figure 7. The RReLU activation function.

The beauty of RReLU is that during the training process, aji is randomly drawn from
a uniform distribution of U(l, u), which helps increase the robustness of the model and
reduce the dependence on specific input patterns, thereby mitigating the risk of overfitting.
By introducing randomness, RReLU allows the activation values of neurons to vary within
a range, even with negative inputs, thus avoiding complete neuronal inactivation.

3.5. Pixel Position Adaptive Importance (PPAI) Loss

Despite having three flaws, binary cross-entropy (BCE) is the most popular loss
function for RGB and RGB-D SOD. First, it disregards the image’s overall structure and
calculates each pixel’s loss separately. Second, the loss of foreground pixels will be less
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noticeable in photographs where the backdrop predominates. Third, it gives each pixel the
same treatment. In actuality, pixels in cluttered or constrained locations (e.g., the pole and
horn) are more likely to result in incorrect predictions and require additional effort, whereas
pixels located in places like roadways and trees require less focus. So, this paper introduces
the pixel position adaptive importance (PPAI) loss, which consists of two components,
namely the weighted binary cross-entropy (wBCE) loss and the weighted IoU (wIoU) loss.
The wBCE loss is shown in Equation (11)

Ls
wbce = −

∑H
i=1 ∑W

j=1
(
1 + γαij

)
∑1

l=0 1
(

gs
ij = l

)
log Pr

(
ps

ij = l | Ψ
)

∑H
i=1 ∑W

j=1 γαij

(14)

where 1(·) is the indicator function and γ is a hyperparameter. The symbol l ∈ {0, 1}
denotes two types of labels. ps

ij and gs
ij are the prediction and the ground truth of the pixel

at location (i, j) in an image. Ψ shows all the parameters of the model, and Pr(ps
i,j = l | Ψ)

represents the predicted probability.
In Ls

wbce, each pixel is given a weight α. A hard pixel corresponds to a larger α, whereas
a simple pixel is assigned a smaller weight. α, which is determined based on the disparity
between the central pixel and its surrounds, can be used as a measure of pixel significance,
as shown in Equation (15).

αs
ij =

∣∣∣∣∣
∑m,n∈Aij

gts
mn

∑m,n∈Aij
1

− gts
ij

∣∣∣∣∣ (15)

where Aij denotes the area around the pixel (i, j). For all pixels, αs
ij ∈ [0, 1]. If αs

ij is big,
the pixel at (i, j) is significant (e.g., an edge or hole) and stands out significantly from its
surroundings. Therefore, it warrants extra attention. In contrast, if αs

ij is small, the pixel is
just an ordinary pixel and not worth attention.

Ls
wbce increases the emphasis on hard pixels compared to BCE. Meanwhile, the local

structural information is encoded into Ls
wbce such that a greater receptive field rather than a

single pixel is the model’s primary focus. To further make the network focus on the overall
structure, the weighted IoU (wIoU) loss is introduced, as shown in Equation (16).

Ls
wiou = 1 −

∑H
i=1 ∑W

j=1

(
gts

ij ∗ ps
ij

)
∗
(

1 + γαs
ij

)
∑H

i=1 ∑W
j=1

(
gts

ij + ps
ij − gts

ij ∗ ps
ij

)
∗
(

1 + γαs
ij

) (16)

In the segmentation of images, the IoU loss is frequently employed. It is not affected
by the uneven distribution of pixels, and the optimization of the global structure is the goal,
which overcomes the limitation of a single pixel. In recent years, it has been included in
SOD in order to address BCE’s deficiencies. However, it still treats each pixel equally and
ignores the differences between pixels. In contrast to the IoU loss, our WIoU loss gives
harder pixels a higher weight to indicate their significance.

The pixel position adaptive importance (PPAI) loss is shown in Equation (14). It
combines the information on local structures to assign different weights to each pixel
and provide pixel restriction (Ls

wbce) and global restriction Ls
wiou, thus better guiding the

network learning process and resulting in clearer details.

Ls
ppai = Ls

wbce + Ls
wiou (17)

Eventually, the ultimate loss Ls
c−ppai and deep supervision for the loss of the depth

branch Ld make up the total loss L, which is formulated as follows:

L = Ls
c−ppai(Sc, G) + Ld(Sd, G), (18)
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where G represents the ground truth (GT) and Ls
c−ppai and Ld denote the PPAI loss and the

standard BCE loss, respectively.

4. Experiments and Results

This section introduces the datasets and metrics, the details of the implementation,
and comparisons to SOTAs. The experiments include both quantitative and qualitative
experiments. Ablation experiments are also conducted to demonstrate the effectiveness of
our proposed module.

4.1. Datasets and Metrics

Experiments were performed on six public datasets, including LFSD [44] (100 sam-
ples), NJU2K [45] (1996 samples), NLPR [46] (1023 samples), RGBD135 [47] (142 samples),
SIP [48] (910 samples), and STERE [49] (1000 samples).

Meanwhile, for evaluation, four widely used metrics were employed, including the
S-measure (Sα) [50], maximum F-measure (Fm

β ) [51], maximum E-measure (Em
ε ) [52,53],

and mean absolute error (MAE, M) [48]. A higher Sα, Fm
β , and Em

ε and a lower M mean
better performance.

4.2. Details of the Implementation

The experiments were carried out on a personal computer equipped with an Intel
(R) Xeon (R) Gold 6248 CPU and an NVIDIA Tesla V100-SXM2 32GB GPU. DQPFPNet
was implemented in Pytorch [54], and the RGB and depth features were both scaled to
256 × 256 as input. To extend the network to the limited training examples, following [16],
this paper adopted a variety of data enhancement techniques, such as horizontal flipping,
random cropping, color enhancement, etc. DQPFPNet was trained on a single Tesla v100
GPU for 300 epochs. The Adam optimizer’s [55] initial learning rate was set to 1 × 10−4

with a batch size of 10. A multiple learning rate strategy was used, with the power set
to 0.9.

4.3. Comparison to SOTAs

A total of 1700 samples from NJU2K and 800 samples from NLPR were used for
training, and tests were performed on STERE, SIP, NLPR, LFSD, NJU2K, and RGBD135.
The results of DQPFPNet were compared to those of 16 state-of-the-art (SOTA) mod-
els, including C2DF [56], S2MA [33], JL-DCF [30], CoNet [57], UCNet [22], CIRNet [58],
SSLSOD [59], cmMS [60], DANet [36], DCF [61], ATSA [62], DSA2F [63], PGAR [64],
A2dele [37], MSal [65], and DFMNet [66], as shown in Table 1. The salient maps for the
other models were derived from their released predictions, if available, or produced from
their public code.

As shown in Table 1, DQPFPNet outperformed some existing efficient models in
terms of detection accuracy, e.g., MSal [65], A2dele [37], and PGAR [64]. Additionally, it
is evident that DQPFPNet achieved SOTA performance, indicating that the method of
filtering the depth features in a multi-scale manner, fusing the filtered depth features with
RGB features in a multi-scale manner, and finally, obtaining the salient graph through
a two-stage decoder is of practical significance, thereby proving the effectiveness of our
model. Validation of the functionality of each module is performed in Section 4.4. Figure 8
presents a visual comparison of the results of our proposed method and those of the SOTA
methods, and our results are closer to the GT.
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Figure 8. Qualitative comparison of DQPFPNet with SOTA RGB-D SOD methods.

4.4. Ablation Experiments

Thorough ablation experiments were performed on six classical datasets, including
STERE, SIP, RGBD135, NLPR, LFSD, and NJU2K, by changing or deleting parts of the
DQPFPNet implementation.

4.4.1. Effectiveness of DQPFP

DQPFP is made up of two essential components: DQPW and DPEA. Table 2 displays
several configurations with DQPW/DPEA disabled. Specifically, configuration #1 repre-
sents the baseline model with DQPW and DPEA removed from DQPFPNet. Configurations
#2 and #3 each introduce one of the components, whereas configuration #4 represents the
complete model of DQPFPNet. It can be seen from Table 2 that merging DQPW and DPEA
into the baseline model resulted in consistent improvements on almost all datasets. Mean-
while, when comparing configurations #2/#3 to #4, it can be seen that using DQPW and
DPEA together further improved the results, demonstrating a synergistic effect between
DQPW and DPEA. The possible reason is that although DPEA can enhance potential salient
areas in the deep dimension, it is inevitable that certain errors (for example, emphasizing
the wrong areas) will occur, especially in the case of poor depth quality. Fortunately, DQPW
mitigates some of these mistakes because it allocates lower global weights to the depth
features in this case. Hence, the two elements can cooperate to increase network resiliency,
as mentioned in Section 3.2.

Figure 9 shows visual examples of configuration #3 (without DQPW) and configuration
#4. Figure 9a,b illustrate that combining DQPW contributes to improved detection accuracy.
In the first example of good quality (row 1, Figure 9a), in the RGB view, it is challenging
to discern between shadows and people’s legs, but this is simple to do in the depth view.
The addition of DQPW enhances the depth feature and makes it easier to distinguish the
full human body from the shadow. In the first example of bad quality (row 1, Figure 9b),
although the boy on the skateboard boy much more blurry in the depth view, the impact of
the incorrect depth is lessened, and precise detection of the entire object is still possible.
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Figure 9. Visual examples of configuration #3 (without DQPW) and configuration #4 (with DQPW)
for good (a) and bad (b) depth-quality cases.

Table 3 presents the results of the modular ablation experiments, demonstrating the
positive effect of each module on detection accuracy. The baseline is the original model,
with its precision as the benchmark. The modules are presented in order from the second
to the fourth columns, with all other conditions remaining unchanged. In addition, all
the experimental parameter configurations remained the same. Based on the detection
outcomes, it is evident that the combination of the DQPFP module, RReLU activation
function, and PPAI loss can greatly increase the model’s detection accuracy.

Table 3. Quantitative module results. ↑/↓ for a metric denotes that a larger/smaller value is better.
The best scores are shown in red.

Metric Baseline Baseline + DQPFP Baseline + DQPFP + RReLU Baseline + DQPFP + RReLU + PPAI

SIP
Sα ↑ 0.8732 0.8751 0.8796 0.8850
Fm

β ↑ 0.8779 0.8816 0.8874 0.8960
Em

ε ↑ 0.9191 0.9249 0.9372 0.9425
M ↓ 0.0552 0.0515 0.0506 0.0460

NLPR
Sα ↑ 0.9233 0.9265 0.9277 0.9311
Fm

β ↑ 0.9074 0.9078 0.9111 0.9300
Em

ε ↑ 0.9562 0.9577 0.9583 0.9612
M ↓ 0.0258 0.0249 0.0244 0.0221

NJU2K
Sα ↑ 0.9041 0.9042 0.9051 0.9066
Fm

β ↑ 0.9052 0.9061 0.9075 0.9100
Em

ε ↑ 0.9456 0.9458 0.9455 0.9467
M ↓ 0.0418 0.0411 0.0406 0.0364

RGBD135
Sα ↑ 0.9321 0.9325 0.9340 0.9411
Fm

β ↑ 0.9241 0.9262 0.9277 0.9423
Em

ε ↑ 0.9690 0.9715 0.9738 0.9761
M ↓ 0.0207 0.0205 0.0202 0.0190

LFSD
Sα ↑ 0.8639 0.8654 0.8700 0.8710
Fm

β ↑ 0.8645 0.8652 0.8663 0.8710
Em

ε ↑ 0.9026 0.9032 0.9055 0.9063
M ↓ 0.0708 0.0734 0.0684 0.0654

STERE
Sα ↑ 0.8986 0.8994 0.9011 0.9042
Fm

β ↑ 0.8916 0.8922 0.8937 0.9013
Em

ε ↑ 0.9426 0.9425 0.9427 0.9472
M ↓ 0.0439 0.0433 0.0427 0.0403
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4.4.2. DQPFP Threshold Strategy

As described in Section 3.2, a multivariable strategy was used for αi and βi. To verify
this strategy, it was compared to the single-variable strategy that uses the same (only one)
αi and βi. Table 4 shows the results, and it is evident that the multi-factor approach used
in this paper is better because it adds flexibility to the network, enabling it to render at
different levels with different quality heuristic weights and attention maps.

4.4.3. Effectiveness of Loss and Activation

The loss function is one of the core components of deep learning, measuring the
difference between the predicted results of the model and the true labels. By minimizing
the value of the loss function, the model can gradually improve its performance during
the training process. The loss function provides a clear optimization objective for neu-
ral networks and is an important bridge connecting data and model performance. It is
necessary to choose a suitable loss function. Thus, we utilized the DQPFPNet to conduct
comparative experiments on six datasets using the widely used BCE with the Sigmoid loss,
MSE loss, Hinge loss, BCE loss, and PPAI loss to validate the effectiveness of PPAI loss,
and the results are shown in Table 5. All other experimental settings remained the same,
with only the loss function transformed each time. From the experimental results, it can
be seen that the detection accuracy of the model was improved to some extent after using
PPAI loss. This indicates that the PPAI loss can accelerate the convergence of the model
and drive it toward better performance.

The activation function plays an important role in the backpropagation of neural
networks. It introduces nonlinearity into the network, enabling it to learn complex patterns
and make accurate predictions. Some activation functions have the problem of gradient
disappearance during training, which leads to slow convergence and hinders the learning
process. Therefore, the performance and training speed of neural networks can be greatly
affected by choosing the appropriate activation function. We conducted ablation experi-
ments and trained the DQPFPNet model using the ReLU, Sigmoid, Tanh, ELU, and RReLU
activations, and the results are presented in Table 6. All other experimental configura-
tions remained the same, with only the activation function changed for training each time.
The experimental results show that compared with other activations, the RReLU activation
enables the model to achieve higher accuracy. This may be related to the introduction
of randomness in RReLU, which reduces the occurrence of neuronal “death” through a
certain proportion of negative values, improves the stability of the network, and enhances
its rich nonlinear expression ability.

4.4.4. Effectiveness of Dual-Stage Decoder

In Table 7, we present the results of ablation experiments on the decoder, where we
used a single-stage decoder and a dual-stage decoder. All other conditions remained the
same, with only the decoder architecture changing each time. Based on the outcomes of the
experiment, it is evident that the resulting metrics when using the dual-stage decoder are
better compared to the single-stage decoder across all six datasets, proving that the two-
stage decoder is practical and effective. This may be due to the architectural advantages
of the dual-stage decoder itself. The first fusion stage reduces the feature channel and
hierarchical structure, and the second fusion stage further aggregates the low-level structure
and the high-level structure to produce the final salient graph. This two-stage design can
make full use of the context information and improve the modeling ability of the model.
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5. Conclusions

This paper proposed DQPFPNet, an RGB-D SOD model with high efficiency and
good performance. The method models an efficient RGB-D SOD framework and DQPFP
processing, greatly improving detection accuracy. DQPFP consists of three sub-modules:
DDM, DQPW, and DPEA. The DDM filters multi-scale depth features through a channel
attention mechanism and a spatial attention mechanism to achieve the initial filtering of
the depth features. The DQPW module weights the depth features based on the alignment
between the enhanced RGB features of the DDM module and the depth features, whereas
the DPEA module focuses on the depth features spatially using multiple enhanced attention
maps originating from the DDM-enhanced depth features refined with low-level RGB
features. Additionally, the framework is built on a dual-stage decoder, which helps further
increase efficiency. The pixel position adaptive importance (PPAI) loss is utilized to better
explore the structural information in the features, making the network attach significance to
detailed areas. In addition, the RReLU activation is used to solve the problem of neuronal
”necrosis”. Experiments conducted on six RGB-D datasets demonstrate that DQPFPNet
performs well in terms of both metric values and visualizations. A limitation of the current
model is that in the comparison experiments with existing models, it did not achieve the
best performance across all metrics and datasets, indicating that the network structure
needs to be improved. Furthermore, the behavior of the model in mobile or embedded
devices is unknown. Hence, we will continue to explore new network architectures to
optimize performance on common datasets in the future. In addition, we will attempt to
deploy the DQPFP in embedded/mobile systems that handle RGB-D and video data and
continue to optimize the model based on its performance metrics.
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Abbreviations

The following abbreviations are used in this manuscript:

Deep learning DL
Red Green Blue RGB
Red Green Blue-Depth RGB-D
Salient Object Detection SOD
Convolutional neural network CNN
Depth-quality purification feature processing DQPFP
Rectified Linear Unit ReLU
Random ReLU RReLU
Pixel position adaptive importance PPAI
Depth-quality purification weighting DQPW
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Depth purification-enhanced attention DPEA
Consumer Electronics CE
Software-Defined Networking SDN
Pyramid pooling module PPM
Depth de-noising module DDM
Channel attention CA
Spatial attention SA
Binary cross-entropy BCE
Intersection over Union IoU
Weighted binary cross-entropy wBCE
Weighted IoU wIoU
Ground truth GT
State of the art SOTA
Mean-square error MSE
Hyperbolic tangent function Tanh
Exponential Linear Unit ELU
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Abstract: With the development of UAV automatic cruising along power transmission lines, intelli-
gent defect detection in aerial images has become increasingly important. In the process of target
detection for aerial photography of transmission lines, insulator defects often pose challenges due to
complex backgrounds, resulting in noisy images and issues such as slow detection speed, leakage,
and the misidentification of small-sized targets. To address these challenges, this paper proposes an
insulator defect detection algorithm called DFCG_YOLOv5, which focuses on improving both the
accuracy and speed by enhancing the network structure and optimizing the loss function. Firstly,
the input part is optimized, and a High-Speed Adaptive Median Filtering (HSMF) algorithm is
introduced to preprocess the images captured by the UAV system, effectively reducing the noise
interference in target detection. Secondly, the original Ghost backbone structure is further optimized,
and the DFC attention mechanism is incorporated to strike a balance between the target detection
accuracy and speed. Additionally, the original CIOU loss function is replaced with the Poly Loss,
which addresses the issue of imbalanced positive and negative samples for small targets. By adjusting
the parameters for different datasets, this modification effectively suppresses background positive
samples and enhances the detection accuracy. To align with real-world engineering applications,
the dataset utilized in this study consists of unmanned aircraft system machine patrol images from
the Yunnan Power Supply Bureau Company. The experimental results demonstrate a 9.2% improve-
ment in the algorithm accuracy and a 26.2% increase in the inference speed compared to YOLOv5s.
These findings hold significant implications for the practical implementation of target detection in
engineering scenarios.

Keywords: defect detection; YOLOv5; noise reduction network; DFCG_YOLOv5

1. Introduction

According to the 2023 National Supply and Demand Analysis Report, the electricity
consumption of society as a whole from 2023 will increase by 6% year-on-year compared to
the previous year, and the safe and reliable transportation of transmission lines will be of
great significance for the stable operation of the power grid. With the rapid development
of drone cruise technology [1], the power industry has achieved a high level of intelligence
of drone trajectory tracking in terms of transmission lines [2], but in terms of image
recognition and target detection, the degree of intelligence is still relatively low. Power
staff need to analyze and screen massive aerial images, which is slow and inefficient, so
research on image recognition and target detection is important for the development of the
power industry.

In recent years, research efforts for target detection and image recognition algorithms
have been increasing both domestically and internationally. The focus has mainly been on
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the use of convolutional neural networks (CNNs) to achieve target detection. With further
advancements in research, improved CNN algorithms are becoming more applicable to
the defect detection of transmission lines. Reference [3] proposes the utilization of the
R-CNN algorithm, which combines region partitioning and a high-capacity CNN algorithm.
This approach has been applied to the PASCAL VOC dataset and has shown significant
performance improvement. Building upon the R-CNN algorithm, Fast R-CNN [4] and
Faster R-CNN [5] have been proposed, offering better performance and faster speed. These
algorithms have gained wide acceptance in the industry, although they have not yet fully
met the requirements for accurate transmission line defect detection. In reference [6], a
joint training method combining Faster R-CNN and Mask R-CNN was used for road crack
detection. Although this approach greatly improved accuracy, the combination of the
two algorithms increased the complexity of network training and had an impact on edge
effectiveness. Consequently, this algorithm is not suitable for generalization. Reference [7]
proposes the combination of a Region Partitioning Network (RPN) and Faster R-CNN to
form an attention mechanism, further enhancing the detection accuracy. However, the
network complexity is relatively high, resulting in a GPU frame rate of only 5fps and a poor
inference speed. In reference [8], the improved network structure ResNet-v2 is utilized
for feature extraction and parameter optimization. The accuracy is significantly improved
for the insulator dataset captured by humans, but it lacks practical significance. From the
current development trend, the R-CNN algorithm is evolving towards lightweight solutions.
However, the dual-phase algorithm’s limitations, such as increased model complexity and
slower inference speed, make it unsuitable for real-time monitoring projects with a large
batch of pictures and limited hardware conditions.

Continuous updates to target recognition algorithms have led to the emergence of
both two-stage algorithms based mainly on R-CNN and single-stage algorithms based
mainly on YOLO. The relative simplicity of the model [9] and its fast inference speed [10]
make single-stage algorithms increasingly applicable in the industry. Reference [11] uses
the YOLOv3 feature pyramid and an improved loss function for transmission line detec-
tion, resulting in obvious accuracy improvements compared to YOLOv3 and YOLOv4.
However, due to increased model complexity, the reasoning speed is slow, and the quality
of the dataset and aerial images can vary significantly, making it unsuitable for widespread
use. In reference [12], the YOLOv5 algorithm is improved to address model complexity
issues by utilizing a MobileNetv5 lightweight backbone network and pruning the neck
part, which significantly improves the inference speed. When deployed on the Android
system, it has good applicability. However, it still struggles with detecting the direction of
small targets, and additional improvements are needed for transmission line promotion.
Reference [13] presents a subversive improvement to convolutional neural networks by
separating the training and inference processes into different architectures, decoupling
the two processes through a re-referentialization structure. This approach increases the
speed of the backbone by 83% relative to ResNet-50, reaching an industrial-grade standard
for inference speed and achieving a relative balance between accuracy and speed. How-
ever, subsequent deployment on transmission lines did not meet the expected accuracy
standards. Meanwhile, reference [14] addresses the challenge of detecting small targets
by adding a small target detection predictor head in the head part for defect detection in
photovoltaic panels. The introduction of BottleneckCSP templates improves the depth of
feature extraction, and the Ghost convolutional network simplifies the model. However,
the dataset used was physically manipulated and amplified, and its industry deployment
ability cannot be verified.

The current trend in improving the YOLOv5 algorithm is gradually moving towards
industrialization and lightweight design. In reference [15], a lightweight backbone is used,
and an attention module is added to enhance the feature extraction of small target insulators.
When applied to artificially processed datasets, it shows promising results. However, there
is a significant quality gap when compared to aerial datasets, and the existence of a serious
imbalance between the positive and negative samples in the small target detection process
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is not taken into account. Deployment in real-world engineering still needs to be verified
using actual datasets. In reference [16], the Ghost module is introduced into both the
Backbone and Neck parts of YOLOv5 to reduce the model complexity. The CABM Attention
Mechanism module is also introduced, resulting in an accuracy rate of 91.6%. However,
the dataset used is artificially enlarged and may not directly reflect its applicability to aerial
images. Furthermore, relying solely on the accuracy rate and neglecting the inference speed
is insufficient to verify the effectiveness of the algorithm. The problem of false detection
caused by numerous small targets is also overlooked, indicating that further verification
is required. In reference [17], improvements are made to the residuals of the Backbone to
segment its attention network, and multi-scale fusion is used to enhance feature extraction,
leading to significant improvements in the results. However, it fails to consider the impact
of small targets on the loss function, and timely defect segmentation in the detection process
is not addressed. Thus, further improvements are necessary for the algorithm.

The balance between accuracy and speed in the YOLO algorithm is mainly determined
by the feature extraction performance of the backbone network and the degree of lightness.
Reference [18] combines the YOLOv5 target network with features, adds an attention
module and a small target detection layer, achieving an accuracy of 92.69% on persimmon
detection. However, the resulting model is too complex for widespread industrial use.
Reference [19] replaces the backbone of the SSD algorithm with MobileNet, which is
currently a more advanced lightweight network. However, it fails to reflect the speed
increase in characterizing the results and does not compare it with the YOLO family of
algorithms, leaving its engineering applicability yet to be demonstrated. In reference [20],
an improved RetinaNet network is combined with a graph convolutional network to
solve geometric problems, achieving a detection accuracy of 83.83%. However, it is only
compared with the SSD algorithm, which is insufficiently illustrative. Reference [21]
uses the Dilated Feature Enhancement Model (DFEM) to expand the sensory field of
CenterNet and applies the CIOU loss function to converge on the anchor frames. It is
then applied to defect detection in steel with a significant effect, proving the importance of
the feature extraction network performance for engineering. However, it is not compared
with the latest algorithms and hence further verification is necessary. On the other hand,
reference [22] improves the ShuffleNet base network by adding the SA attention module
to the ShuffleNetV2 backbone network, significantly improving the accuracy in insulator
detection. However, it ignores the fact that adding the attention mechanism complicates
the network. In reference [23], the Ghost feature extraction network replaces the Backbone
part of YOLOv5 and a bidirectional pyramid feature network (BiFPN) is added, achieving
76.31% accuracy in tea branch bud detection. Although it provides theoretical possibilities
for this paper, the accuracy is still insufficient to meet engineering needs.

According to the transmission branch line defect report, the number of defects involved
in insulators in transmission lines accounts for more than half of the total defects. Therefore,
the use of YOLOv5 for insulator defect detection in massive machine patrol images has
strong engineering practicality. (1) Addressing the issue of current algorithmic models
overly pursuing accuracy and neglecting the complexity of the model, this paper designs a
new type of minimalist network structure that avoids deep networks and complex models.
This makes it easier to directly deploy the model in engineering reality. (2) Focusing on
the problem in which current aerial image detection places too much emphasis on feature
extraction while neglecting external environmental factors, internal current fluctuations,
and incidental noise, this paper proposes a combination of adaptive filtering noise reduction
network and YOLOv5 image detection algorithms to achieve the intelligent preprocessing of
aerial images. (3) Considering the challenge of the small target size for defective insulators
on transmission conductors and the severe imbalance between positive and negative
samples, this paper improves the original loss function of YOLOv5 and proposes a method
that suppresses positive samples to enhance convergence. (4) Addressing the limitation
that many algorithms’ datasets for aerial image detection in transmission lines are limited
to publicly available basic datasets or artificially synthesized datasets due to the high
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confidentiality of aerial images, this paper derives its dataset from aerial images captured
by the unmanned aircraft system of the transmission company. This facilitates the validation
of the algorithm’s effectiveness.

2. Algorithm Principle

2.1. YOLOv5 Algorithm

YOLOv5 is a target detection algorithm further optimized and improved on the basis
of YOLOv4. The YOLOv5 algorithm designs five different models for the depth and
width of the module and the complexity of the model: YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x, respectively, and the accuracy of the target detection of the five
models is increased as the order of model complexity is sequentially increased. Among
them, the complexity and accuracy of the YOLOv5s model is more balanced, so this paper
chooses to use YOLOv5s as the basis for insulator defect detection.

The YOLOv5 target detection process has four parts, including the Input part, Back-
bone part, Neck part, and Head part, and the structure is shown in Figure 1.

n

 
Figure 1. YOLOv5 target detection network architecture.

When an input image with a pixel size of 640 × 640 is fed into the model, the Input part
is enhanced with Mosaic data. The four insulator defect images are randomly cropped and
stitched together to form a single image. The image is then preprocessed using adaptive
anchor frame computation and adaptive image scaling operations.

The backbone network of YOLOv5 is CSPDarknet53, which contains the Focus module,
CBL module, CSP1-x module, and SPP module [24]. This network primarily extracts
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target features by gradually reducing the size of the insulator defect map from 640 to 20.
Additionally, the Focus and other modules slice the feature map, increasing the network
depth and improving the effect of target feature extraction.

The Neck part primarily serves the purpose of feature extraction. The process of
up-sampling and down-sampling is achieved through the use of an FPN (Feature Pyramid
Net) and PAN (Path Aggregation Network) [25]. As shown in Figure 1, three sizes of
feature maps, namely 2020, 4040, and 80 × 80, are obtained to facilitate the fusion of
multiscale features.

The Head part receives the feature maps of different scales passed by the Neck part.
It utilizes non-maximal value suppression to filter the target boxes and achieve the better
recognition of multiple target checkboxes, thereby improving the prediction accuracy of
the model.

2.2. Lightweight Backbone GhostNet

Although Backbone, the basis of YOLOv5, can efficiently extract target feature infor-
mation, the network structure is too complex to be directly deployed on the Windows side,
so the lightweight backbone network is the main direction for improvement at present.
The GhostNet network model generates more feature maps using a smaller number of
parameters, which is a clear advantage for the defect detection of targets [26]. The feature
extraction process is shown in Figure 2.

c h wX R × ×∈

h w mY R ′ ′× ×′∈

Φ

Φ

sΦ
h w nY R ′ ′× ×∈

Figure 2. Ghost net feature extraction process.

The three parts of feature extraction can be analyzed based on the structure diagram:
The internal feature map is first obtained by regular convolution Yw′∗h′∗m.

Y′ = X ∗ f ′ (1)

in which ∗ represents the convolution operation, Y′ ∈ R
h′×w′×m is the output feature map

with m channels, X denotes the input feature image, f ′ ∈ R
c×k×k×m is the convolution ker-

nel used. h′ and w′ represent the height and width of the output feature map, respectively,
k × k represents the number of kernels of the convolutional kernel, and f ′ represents the
number of kernels.
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Each individual channel of the Y′ output is then represented by y′i, and the Φi,j opera-
tion is employed to generate the Ghost feature map yij; this process is as in Equation (2).

yij = Φi,j
(
y′i
)
, ∀i = 1, . . . , m, j = 1, . . . , s (2)

where y′i is the Y′th original feature map in i, and Φi,j in the above function is the jth
linear operation for generating the jth Ghost feature map yij, y′i may have one or more
Ghost feature maps

{
yij
}s

j=1, and by Φi,s preserving a constant mapping of the original
feature maps.

Finally, the final feature stitching result is obtained by stitching (identity join) the
ontology feature map with the Ghost feature map obtained in the second step.

Meanwhile, the principle of the Ghost module is utilized to design the Ghost Bottle
neck layer, which is connected to the layer using the BN layer and nonlinearly activated
using the ReLu activation function. For both Stride = 1 (left) and Stride = 2 (right) steps,
the corresponding structures are represented in Figure 3.

Figure 3. Structure of Ghost Bottleneck layer.

3. DFCG_YOLOv5

When YOLOv5 is used for transmission line defect detection, there are issues such
as slow algorithmic reasoning, a high misdetection rate for high-resolution images, and
low accuracy when dealing with a large number of images and relatively small targets.
To address these problems, this paper builds upon YOLOv5 and utilizes Ghost as the
prototype for the backbone network. The backbone network is then improved. A network
model called DFCG_YOLOv5, which combines joint denoising and lightweight target
detection, is proposed. The overall detection process is illustrated in Figure 4.

3.1. High-Speed Adaptive Median Filtering Algorithm HSMF

Based on the image quality transmitted by the UAV, it can be concluded that the quality
of the image captured by the UAV will be affected by internal factors such as mechanical
jitter and current instability, as well as external factors such as lighting conditions and
weather. These factors can introduce incidental noise into the captured image. Therefore, it
is necessary to add a noise reduction network to the Input part of YOLOv5 [27] to improve
the preprocessing quality of the image. The most widely used filtering method for this
purpose is the adaptive median filtering algorithm. The main process is as follows: firstly,
according to the initial gray value, it can be divided into two processes: A and B; the pixel
window corresponding to the pixel coordinate point (i, j) of the image is set as X(i, j),
and the maximum size corresponding to the pixel window is set as Mmax; Zmax , Zmin,
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and Imed are set as the maximum, minimum, and median values of the corresponding
window grayscale, respectively, and Z(i, j) as the actual corresponding grayscale value of
the coordinates. The A and B processes satisfy the following equation:

ZA1 = Imed − Zmin (3)

ZA2 = Zmax − Imed (4)

ZB1 = Z(i,j) − Zmin (5)

ZB2 = Zmax − Z(i,j) (6)

Figure 4. DFCG_YOLOv5 target algorithm detection flow.

When the noisy image is transmitted to the filtering network, whether the image gray
value is in the median range is analyzed, as in Equations (3) and (4). When the conditions
are met, ZA1 > 0 and ZA2 > 0, the gray value is analyzed again and whether the gray value
is in the threshold range of the set window gray value, if the gray value satisfies ZB1 > 0
and ZB2 > 0, then the pixel is judged as a pixel point. If it is not a non-noisy pixel point it
will output the actual gray value Z(i, j), or else it will output the median gray value Imed.

However, in actual model detection, the traditional median filtering algorithm can-
not meet the speed and effect demands of processing massive aerial images due to the
high resolution and large number of pixels involved. To address this problem, this paper
proposes a high-speed adaptive median filtering algorithm called HSMF. This algorithm
classifies pixels into two categories: normal pixels and suspected noise pixels, based on
the extreme value characteristics of noise. The algorithm retains normal pixel points while
applying the high-speed adaptive median filtering algorithm to the suspected noise pixel
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points. It judges whether they are noise points according to the set median value, dy-
namically changes the window size of the median filter, and finally obtains the processed
grayscale value.

The noise detection stage is first carried out by first setting the pixel gray value
extremes of the image to represent the noise, using Maxgray and Mingray to represent the
maximum and minimum gray values corresponding to the noise, where Maxgray = 255
is set and Mingray = 0 to indicate the gray value corresponding to the suspected noise
pixel point.

Noise(i, j) =
{

0, x(i, j) = [δ, 255 − δ]
1, otherwise

(7)

In Equation (7), Noise(i, j) = 1 indicates that the point is a suspected noise pixel point,
while Noise(i, j) = 0 indicates that the point is a normal pixel point; δ represents the gray
scale deviation, which is generally 1. In addition to the pixel points containing noise in the
suspected noise pixel points, there are still some remaining normal pixel points with a gray
value of 255 or 0, so it is still necessary to process the suspected noise points. The main
process is as follows:

Use the initial 3 × 3 filtering window to perform median filtering on the suspected
noise pixel points, and determine whether there are any remaining suspected noise pixel
points; if not, the noise filtering is over; if so, proceed to the next step.

Continue the filtering process by applying median filtering to the remaining pixel
points from the previous step using the 5 × 5 filter window.

The suspected noise pixel points remaining after filtering in the previous step 5× 5 are
median filtered using the filtering window of 7 × 7. It is judged whether the filtered noise
still exists as suspected noise pixel points; if not, the noise filtering ends; if existing, it is
classified and processed according to whether the image has a black and white background.
If the image has a black and white background, the suspected noise points are considered
to be the background part of the image, and the filtering process ends. If there is no black
and white background, the remaining suspected noise pixel points are subjected to noise
filtering in the 7 × 7 filtering window. The overall process is shown in Figure 5.

3.2. Decoupling the Fully Connected Attention Mechanism

Although the Ghost backbone network has met the requirements of the engineering
deployment process in terms of a lightweight model, half of the spatial feature information
is captured by the 3 × 3 depth-wise convolution module and the remaining by the 1 × 1
convolution module due to the oversimplification of its convolution structure. It cannot
fulfill the practical application needs when dealing with high-resolution images like aerial
images. Aiming at the current problem, this paper designs a decoupled fully connected
attention mechanism (DFC Attention).

Assuming that the total number of features for a given image input is number
Z ∈ R

H×W×C (H, W, and C denote the image size as well as the number of channels,
respectively), it can be viewed as HW zi ∈ R

C,Z ∈ {z11, z12, . . . , zHW}. So, the fully con-
nected layer (FC layer) with weights can be used to generate the attention feature map with
global sensory field in the manner shown in Equation (8).

ahw = ∑
h′ ,w′

Fhw,h′ ,w′ � zh′ ,w′ (8)

where � represents the multiplication of features and weights, F is the FC layer learning
weights, and A = {a11, a12, . . . , aHW} is the generated attention feature map, but the
computational complexity is quadratic with the image resolution O

(
H2W2), which is not

290



Electronics 2024, 13, 305

suitable for aerial high-definition images. Therefore, this paper proposes to extract features
from horizontal and vertical directions, respectively, as shown in Equations (9) and (10).

a′hw =
H

∑
h′=1

FH
h,h′w � zh′w, h = 1, 2, · · · , H, w = 1, 2, · · · , W (9)

ahw =
W

∑
w′=1

FW
w,hw′ � a′hw′ , h = 1, 2, · · · , H, w = 1, 2, · · · , W (10)

In Equations (9) and (10), FH and FW are the weights, and the input original features
are Z. When the feature extraction part is carried out, Equations (9) and (10) are applied to
the feature map in order to obtain the correlation from two directions, respectively, as in
Figure 6.

 

Figure 5. HSMF overall filtering flowchart.

Figure 6. Horizontal and vertical FC capture feature information process.
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This attention mechanism aggregates pixels at different locations according to hori-
zontal and vertical directions, respectively, sharing a portion of the weights, which saves
most of the inference time, and in order to be applicable to a variety of resolution images,
the filter is decoupled from the size of the feature map, i.e., two deep convolutions of
kernel sizes 1 × KH and KW × 1 are performed sequentially on the input features, which
theoretically turns the complexity into O(KH HW + KW HW).

The Ghost module is augmented with the DFC attention mechanism to obtain the
dependency of pixels in different spaces. When the image with feature X ∈ RH×W×C is
input, it is divided into two partial branches, one part of the feature branch passes through
the Ghost module and produces the output feature Y, and the other branch passes through
the DFC attention module and produces the attention matrix A. The input X is converted
into the input of the DFC attention module through the 1 × 1 convolution Z, and the final
output of the product of the two branches is shown in Equation (11). The fusion process of
the branch feature information is shown in Figure 7. The product is converted to the input
of the DFC attention module, and the final output of the product of the two branches is
shown in Equation (11). The fusion process of the two-branch feature information is shown
in Figure 7.

O = Sigmoid(A)� V(X) (11)

Figure 7. Information fusion process of two modules.

The Backbone structure uses DFC Attention branching in parallel with the Ghost
branching module to enhance the extended features, which are then input to the second
Ghost module to produce the output features. This is because the captured feature infor-
mation is in different spatial locations and has dependency on each other, so the model’s
expressive ability is greatly enhanced, and the structure is shown in Figure 7.

3.3. Loss Function Improvement

YOLOv5 mainly uses bounding box regression for target localization, which utilizes
a rectangular bounding box to predict the position of the target object in the image, and
refines the position of the bounding box in the process of continuous training. The bounding
box regression uses the overlapping region between the predicted bounding box and the
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true bounding box as the loss function, which is called the IOU (Intersection over Union)
loss function [28], as in Equation (12).

IOU =
A ∩ B
A ∪ B

(12)

In Equation (12), A represents the area of the predicted bounding box and B represents
the area of the real bounding box, IOU can measure the degree of overlap, but the rest
of the target information cannot be judged, and there is no convergence effect in the case
where the predicted box does not intersect with the real box with an area of zero. Later,
GIOU Loss was introduced to solve this problem [29], but the computational volume is
relatively large and the convergence speed is slow. DIOU Loss utilizes the distance between
the real bounding box and the predicted bounding box as the convergence index of the
loss function, which improves the detection effect [30]. CIOU Loss introduces the aspect
ratio of the real bounding box to the predicted bounding box and achieves relatively good
convergence results [31], but it is not applicable to target detection for datasets such as
UAV aerial images, and there is no targeted strategy for the serious imbalance of positive
and negative samples present in small targets. There is no targeted strategy.

In this paper, we propose a loss function, Poly Loss, which can be adjusted to the
positive and negative sample coefficients for different datasets. Firstly, the commonly used
two types of loss functions (Cross Entropy Loss Function and Focal Loss) are expanded by
Taylor Decomposition, as shown in Equation (13).

Σ+∞
j=1αj(1 − Pt)

j (13)

In Equation (13), αj ∈ R+ represents the weight coefficients of the polynomial and Pt
the probability of target label prediction. Its engineering applicability is mainly reflected
in the application to different scenarios and the fact that different datasets can make the
loss function more suitable for the target recognition task by adjusting the polynomial
coefficients, αj.

And it can be concluded from the calculation that the effect of adjusting the first
polynomial coefficient of the Taylor expansion polynomial term, Poly_L1, has been superior
to that of the cross-entropy loss function with the Focal Loss, which is expressed as in
Equation (14).

LPoly_L1 = (1 + ε1)(1 − Pt) + 1/2(1 − Pt)
2 + . . . = − log(Pt) + ε1(1 − Pt) (14)

To address the problem of positive and negative sample imbalance in small target
datasets, one approach is to adjust the polynomial coefficients of the positive samples
suppression. This tuning parameter is simple to adjust and can be flexibly modified for
different datasets, thereby improving the model’s effectiveness.

The overall network structure diagram of the improved DFCG_YOLOv5 algorithm is
presented in Figure 8. By optimizing the C3 module in the YOLOv5 Backbone using the
enhanced DFC_Ghost network structure, the feature map utilization is increased while
interference from irrelevant information is reduced, leading to the improved accuracy and
robustness of the network. To provide a more detailed illustration of the network architec-
ture, this paper includes simplified code for the target detection process in Appendix A. In
the first step, the insulator defect image is uniformly cropped to a size of 640 × 640 × 3
through preprocessing. Different sizes of anchor frames are then generated, and the image
is input into the improved DFC_Ghost backbone network to produce three feature maps
with varying scales. These feature maps are used to predict whether each grid cell contains
a target, the class of the target, as well as the target’s location and size. The cross-entropy
loss is then computed using the Poly Loss function to obtain the accurate probability of
insulator defect small target predictions. Additionally, the Poly term is introduced to
amplify the penalty for incorrect probabilities and enhance the contribution of correct
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probabilities. Subsequently, bounding boxes with confidence below a certain threshold are
eliminated, and the non-maximum suppression algorithm is utilized to remove overlapping
bounding boxes. The final results are then generated. In references [32–34], the improved
Ghost network is also combined with the YOLO algorithm and applied to industrial defect
detection, resulting in enhanced accuracy. This further validates the effectiveness of the
algorithm proposed in this paper.

 
Figure 8. DFCG_YOLOv5 network structure.

4. Experimental Results and Analysis

4.1. Experimental Environment and Evaluation Indicators
4.1.1. Experimental Environment

In order to ensure the engineering applicability of the algorithm, the datasets used
in this paper were all downloaded from the unmanned aircraft system of Yunnan Power
Supply Company, Jinghong, China. The images were all taken by the UAV at a height
of 3–4 metres from the transmission line, with a maximum resolution of 8688 × 5792,
and 1864 insulator defect images were selected after screening, including four types of
defects: insulator breakage, insulator self-detonation, insulator fouling, and insulator tie
line loosening, and the defect labels are set as “jyzps, jyzzb, jyzwh, and jyzzxst”, respectively.
For each class of defects, 75 images are selected as the validation set and the remaining
are used as the training set. According to previous manual screening experience, the ratio
of normal insulator images to defective insulator images is about 10:1, so in this paper, in
order to be more in line with the actual application scenarios, the remaining 3124 normal
insulator images are also added to the validation set, and the number of defects in each
class and the distribution of the training and validation sets are shown in Figure 9.
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Figure 9. Number of insulator defect datasets for each type of insulator.

The YOLOv5s architecture was employed to train the model via basic training, with
a batch size of 32 and 300 training batches. The initial learning rate was set to 0.01, the
momentum factor was set to 0.937, and the weight decay coefficient was set to 0.0005. The
stochastic gradient descent (SGD) method was utilized for optimization. The experimental
platform environment is illustrated in Table 1.

Table 1. Experimental platform environment configuration.

Environmental Configuration Parameter

operating system Window10
GPU NVIDIA Quadro P4000(8 G)
CPU Intel(R) Core (TM)i9-9900K

deep learning model framework Pytorch 1.7.1
GPU acceleration environment CUDA 11.0.2

programming language Python3.8

4.1.2. Evaluation Index

In order to quantitatively judge the image denoising effect from an objective point of
view, this paper selects the mean square error (MSE) and the Peak Signal to Noise Ratio
(PSNR) as the quantitative evaluation indexes. PSNR is an objective evaluation method
in the field of an image, which is usually defined by the mean square error (MSE) of the
image, as shown in Equation (15).

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

‖I(i, j)− K(i, j)‖2 (15)

where m, n represent the height and width of the image, respectively, I(i, j) and K(i, j)
represent the pixel values with coordinates (i, j) before and after the image is filtered,
respectively. The signal to noise ratio is defined as in Equation (16).

PSNR = 10 · log10

(
MAX2

I
MSE

)
(16)

In the formula, MAX represents the maximum pixel value of the image and MSE is
the mean square error value.
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And Precision, Recall, and mAP are used as the relevant indexes to evaluate the
performance of the target detection model. Precision is used to measure the accuracy of
the classification detection of the model and is denoted as P. Recall measures whether
the model detects comprehensively or not and is denoted as R. The area under the curve
plotted by Precision and Recall is the value of AP. MAP represents the average value of AP
for each category. The mAP value is generally calculated at IOU = 0.5, i.e., mAP@0.5, as in
Equations (17)–(20).

Precise =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

AP =
∫ 1

0
P(r)dr (19)

mAP =

C
∑

i=1
APi

C
(20)

where TP denotes correctly predicted positive samples as positive, FN denotes incorrectly
predicted positive samples as negative, and FP denotes incorrectly predicted negative
samples as positive; and C represents the type of target detection.

4.2. Comparison of Ablation Experiments
4.2.1. Input Section to Add HSMF Noise Reduction Network Effect

In order to verify the effect of the UAV aerial images on target detection, this exper-
iment adds pretzel noise with noise densities of 0.1, 0.3, 0.5, and 0.7 to all the datasets,
respectively, and verifies the effect of noise on the detection results, as shown in Table 2.

Table 2. Effect of different levels of noise on YOLOv5 detection.

Noise Density (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

0 0.856 0.743 0.805 0.596
0.1 0.821 0.740 0.759 0.571
0.3 0.814 0.732 0.747 0.570
0.5 0.803 0.721 0.736 0.567
0.7 0.801 0.703 0.729 0.561

According to Table 2, it can be concluded that the unprocessed incidental noise images
have a significant impact on image detection. When the image is subjected to a pretzel
noise density of 0.1, the overall accuracy of all the types of defects decreases by an average
of 3.5%, and the overall performance decreases by 0.46. Additionally, with every increase
of 0.2 in the noise density, the overall accuracy decreases by an average of about 1%, and
the overall performance decreases by approximately 0.01. The results of when the noisy
image is processed using HSMF (High-Speed Median Filtering) are depicted in Figures 10
and 11.

After processing the aerial images with a pretzel noise density of 0.1, 0.2, 0.3, and 0.4,
respectively, using HSMF algorithm, the target detection experiments are re-conducted and
the results are shown in Table 3.

The experimental results in Table 3 verify that there is a significant improvement in
the image detection after processing by the HSMF filter module, with an average increase
in accuracy of about 2.5% and a 0.03 growth in the overall performance mAP, which verifies
the necessity of the improvement of the image preprocessing part.
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4.2.2. Improvement of the Loss Function

Before verifying the effect of the Ploy Loss function, the hyperparameter ε1 needs to
be adjusted to make it more compatible with the number set constructed in this paper, so as
to improve the convergence of the model. The ablation experiments are shown in Table 4.

 
Figure 10. Mean square deviation after processing noisy images by different algorithms.

 
Figure 11. Peak signal-to-noise ratio after image processing by different algorithms.

Table 3. Noise reduction effect of different densities.

Noise Reduction Rating (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

0.1 0.849 0.742 0.789 0.589
0.3 0.840 0.730 0.778 0.584
0.5 0.836 0.732 0.769 0.583
0.7 0.825 0.726 0.760 0.581

Table 4. Detection performance for different parameter values.

ε1 Parameter Value (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

1 0.862 0.772 0.749 0.605
3 0.874 0.765 0.754 0.609
5 0.883 0.756 0.769 0.612
7 0.877 0.739 0.762 0.607
9 0.869 0.755 0.754 0.604

Based on the ablation experiments, it can be concluded that the loss function is more
compatible with the dataset when the hyperparameter ε1 = 5. At this time, the probability
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penalty for prediction error is moderate, the positive and negative sample balance is
optimal, and the loss function converges best.

In order to verify the applicability of Poly Loss engineering, the experiment conducted
with YOLOv5 comes with better performance loss functions: CIOU Loss and EIOU Loss [35]
as well as Focal Loss [36] and CE Loss (Cross Entropy Loss) [37] for adapting small targets
for ablation experiments, respectively. The experimental results are shown in Table 5,
Figures 12 and 13.

Table 5. Graph of detection effect of different loss functions.

Type of Loss Function (all) P (all) R (all) mAp@0.5 (all) mAp@0.5:0.95

CIOU Loss 0.856 0.743 0.751 0.596
EIOU Loss 0.851 0.731 0.742 0.592

CE Loss 0.862 0.736 0.759 0.599
Focal Loss 0.859 0.742 0.752 0.592
Ploy Loss 0.883 0.756 0.769 0.612

Figure 12. Convergence effect of loss function.

 
Figure 13. Accuracy of different loss functions.

By examining the chart, it can be observed that YOLOv5’s own loss functions, namely
CIOU Loss and EIOU Loss, have a relatively low accuracy for small target detection and a
poor overall performance. On the other hand, Ploy Loss performs better in addressing the
imbalance between the positive and negative samples in an image, and achieves higher
accuracy and better overall performance compared to Focal Loss and CE Loss. Additionally,
Ploy Loss has a more prominent convergence speed and effect, making it more applicable
to engineering.
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4.2.3. DFCG_YOLOv5 Overall Detection Effect

In order to verify the effectiveness of the improved overall algorithm as the back-
bone network of DFC Ghost, the improved algorithm is compared with the more widely
used target detection algorithms such as the basic networks YOLOv5s and YOLOv5m,
YOLOv5-Ghost, YOLOv3 [38], SSD-VGG [39], YOLOv6m [40], and the newest algorithms
YOLOv7 [41] and YOLOv8 [42], etc., and the results are shown in Table 6. The comprehen-
sive performance comparison of each type of algorithm is shown in Figure 14, the accuracy
of each type of algorithm as well as the convergence effect is shown in Figures 15 and 16,
and finally, Figure 17 is used to indicate the degree of balance between the accuracy and
speed of each type of algorithm (the gap between YOLOv5m and YOLOv6m is relatively
small, and is not shown in the figure).

Table 6. Comparison of target detection performance.

Method (all) P (all) R (all) mAp@0.5 FPS (Hz)

YOLOv3 0.734 0.628 0.666 109
SSD-VGG 0.728 0.636 0.651 159
YOLOv5s 0.856 0.743 0.751 139
YOLOv5m 0.863 0.721 0.779 102

YOLOv5-Ghost 0.803 0.692 0.727 218
YOLOv6m 0.871 0.716 0.791 112
YOLOv7 0.879 0.738 0.792 155
YOLOv8 0.885 0.741 0.801 183

DFCG_YOLOv5 0.899 0.748 0.822 207

Figure 14. Comprehensive performance of different algorithms.

Figure 15. Accuracy of different algorithms.
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Figure 14 clearly demonstrates the superior overall performance of the DFCG_YOLOv5
algorithm compared to other algorithms (mAP). In addition, Figures 15 and 16 show that
DFCG_YOLOv5 achieves the highest accuracy and most robust convergence under com-
plex conditions. Finally, Figure 17 visually demonstrates the superiority of DFCG_YOLOv5
in terms of speed and accuracy compared to other algorithms.

Furthermore, in terms of effectiveness, the algorithm proposed in this paper exhibits
fewer false and missed detections in the detection of 300 insulator defect maps compared
to other algorithms. This feature makes it more suitable for engineering applications.
Examples of various types of defect detection are shown in Figure 18.

Figure 16. Convergence effect of different algorithms.

 

Figure 17. Speed case of different algorithms.

  
(a) Insulator breakage test results

Figure 18. Cont.
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(b) Insulator fouling test results

  
(c) Insulator tie wire loosening test results

  
(d) Insulator tie wire loosening test results 

Figure 18. Selected test cases.

5. Discussion

Based on the analysis of the experimental results in Figure 13, the algorithm
DFCG_YOLOv5 (0.822) proposed in this manuscript shows superior overall performance
(mAP) compared to the benchmark network YOLOv5-Ghost (0.727) and the base algo-
rithms YOLOv5s (0.751) and YOLOv5m (0.779). Not only is it superior to the traditional
algorithms YOLOv3 (0.666) and SSD (0.651), but in addition, compared to the latest algo-
rithms, the algorithm’s performance is improved by 3.9% compared to YOLOv6m (0.791),
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3.7% compared to YOLOv7 (0.792), and 2.6% compared to YOLOv8 (0.801), validating
the DFCG_YOLOv5 algorithm’s advantages. In terms of accuracy, the algorithm in this
paper not only far outperforms YOLOv3 (0.734) and SSD (0.728), but also outperforms the
benchmark algorithms YOLOv5s (0.856) and YOLOv5m (0.863), as well as the benchmark
network, YOLOv5-Ghost (0.803), which demonstrates a clear advantage. Its accuracy is
3.1%, 2.2%, and 1.6% higher than the latest algorithms YOLOv6m, YOLOv7, and YOLOv8,
respectively. In terms of speed, based on Figure 16, it can be concluded that the algorithm
proposed in this paper has a significant advantage with an improvement of 84% compared
to YOLOv6m, 33.5% compared to YOLOv7, and 13.1% compared to YOLOv8. This is
visually depicted in Figure 17, which clearly illustrates that the algorithm proposed in this
paper achieves an excellent balance between accuracy and speed.

According to the actual verification set results, 300 insulator defect images and 279 de-
fects were detected, with a leakage rate of 7%, and 101 out of 3124 normal insulator images
were misdetected as images containing defective insulators, with a misdetection rate of
3.2%, which is fully in line with the application requirements of actual industrial scenarios.

6. Conclusions

Building upon the YOLOv5 algorithm with the lightweight Ghost network as its
foundation, this study introduces the DFCG_YOLOv5 algorithm, which combines adap-
tive median filtering for noise reduction and lightweight target detection. To enhance
the filtering capability for aerial images of varying quality, an optimized version of the
traditional median filtering algorithm called HSMF (High-Speed Median Filtering) is pro-
posed. Furthermore, in order to balance accuracy and speed, structural improvements are
made to the lightweight Ghost backbone network, ensuring improved accuracy without
compromising inference speed, thus better addressing the complexities of practical applica-
tion scenarios. To enhance the detection of small targets, the Poly Loss classification loss
function is employed to tackle the issue of imbalanced positive and negative samples by
adjusting the parameters and suppressing positive samples. Finally, the dataset utilized in
this research consists of machine patrol images obtained from the power supply company’s
UAV system, thus providing a more robust validation of the algorithm’s applicability to
real-world projects.

In the future, the focus will be on two main areas. Firstly, the limited availability of
the transmission line defects dataset due to confidentiality concerns hinders further model
optimization. To address this, a plan is in place to design an interface using pyqt5 and
package it as an application for deployment in the power supply bureau. This will enable
the iterative optimization of the model. In addition, there will be further optimization of
the network structure to incorporate targeted strategies for detecting small targets. This
optimization aims to improve detection performance, achieving the real-time and efficient
identification of transmission line defects.
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Appendix A

Algorithm A1: DFCG_YOLOv5

Input: input_size = (640, 640) num_classes = 80
# Define the size and number of anchor boxes
anchors = [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)]
num_anchors = len(anchors)
# Defining the network structure
def yolov5(input): // Backbone x = Conv(input, 32, 3, stride = 2)
1: x = DFC_GhostBottleneck (x, 64, 3, n = 1)
2: x = DFC_GhostBottleneck (x, 128, 3, n = 3)
3: x = DFC_GhostBottleneck (x, 256, 3, n = 15)
4: out1 = x x = DFC_GhostBottleneck (x, 512, 3, n = 15)
5: out2 = x x = DFC_GhostBottleneck (x, 1024, 3, n = 7)
6: out3 = x // Head x = Conv(x, 512, 1) x = SPP(x) x = Conv(x, 1024, 1) out4 = x
7: # Output multi-scale feature map after DFC_Ghost network processing
8: output1 = Conv(out1, num_anchors * (num_classes + 5), 1)
9: output2 = Conv(out2, num_anchors * (num_classes + 5), 1) output3 = Conv(out3, num_anchors
* (num_classes + 5), 1)
10: output4 = Conv(out4, num_anchors * (num_classes + 5), 1) return output1, output2, output3,
output4
def poly1_cross_entropy_torch(logits, labels, class_number = 3, epsilon = 1.0):
11: # The predicted probability is calculated using softmax and multiplied with the one-hot coded
true labels and summed to obtain the predicted probability of the correct category for each sample.
12: poly1 = torch.sum(F.one_hot(labels, class_number).float() * F.softmax(logits), dim = −1)
13: # Calculate the cross-entropy loss for each sample
14: ce_loss = F.cross_entropy(logits, labels, reduction = ‘none’)
15: # Adding a Poly1 term to the cross-entropy loss to increase the penalty for incorrect predictions
16: poly1_ce_loss = ce_loss + epsilon * (1-poly1)
17: return poly1_ce_loss
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Abstract: Deep-learning-based breast cancer image diagnosis is currently a prominent and growingly
popular area of research. Existing convolutional-neural-network-related methods mainly capture
breast cancer image features based on spatial domain characteristics for classification. However,
according to digital signal processing theory, texture images usually contain repeated patterns and
structures, which appear as intense energy at specific frequencies in the frequency domain. Motivated
by this, we make an attempt to explore a breast cancer histopathology classification application in
the frequency domain and further propose a novel multi-branch spectral channel attention network,
i.e., the MbsCANet. It expands the interaction of frequency domain attention mechanisms from a
multi-branch perspective via combining the lowest frequency features with selected high frequency
information from two-dimensional discrete cosine transform, thus preventing the loss of phase
information and gaining richer context information for classification. We thoroughly evaluate and
analyze the MbsCANet on the publicly accessible BreakHis breast cancer histopathology dataset.
It respectively achieves the optimal image-level and patient-level classification results of 99.01%
and 98.87%, averagely outperforming the spatial-domain-dominated models by a large margin,
and visualization results also demonstrate the effectiveness of the MbsCANet for this medical
image application.

Keywords: convolutional neural network; channel attention; frequency domain; breast cancer;
histopathology image classification

1. Introduction

Breast cancer is the leading cause of morbidity and mortality among female cancers.
In 2020, 19.29 million new cancer cases were reported worldwide, and 2.29 million of
them were breast cancer cases [1]. Meanwhile, breast cancer accounts for 15.5 percent
of the 4.4 million female cancer-related deaths. While early diagnosis and treatment are
particularly vital to improve the survival rate of cancer patients, biopsy analysis is the
gold standard in the diagnosis of breast cancer. However, manual biopsy analysis is
time-consuming, and the results are generally influenced by subjective factors. With the
increasing number of cancer patients, computer-assisted breast cancer biopsy analysis has
become more and more popular.

Recently, deep learning has made tremendous progress in a variety of computer vision
and medical image analysis tasks. Consequently, convolutional neural network (CNN)-related
models are attracting much attention in breast cancer histopathology image classification [2–4]
and display obvious superiority to previous methods with accuracy that is nearly simi-
lar to or better than human experts. These works above indicate that computer-assisted
technologies based on CNNs are helpful for diagnosing cancer and thus deserve further
exploration. Until now, the intention of various CNN-based models has been to extract
deep convolutional features, as CNNs pretrained on large-scale datasets [5,6] provide more
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general features despite not being trained on corresponding, specific breast cancer datasets
from scratch. However, naive feature extraction from CNNs without extra personalized
modeling usually omits useful, related responses from the regions of interest. The char-
acteristics of potential regions of interest, such as nuclei, mitotic cells, and glands, are
significantly critical for judging the degree of malignancy of tumors. Therefore, ignoring
these features (parts of the potential region of interest) may change the final diagnostic
results. This has motivated researchers to introduce attention mechanisms into computer
vision systems for improving their performance by highlighting vital features. In vision
systems, the attention mechanism can be thought of as a dynamic selection process that is
implemented by adaptively weighting features according to the importance of the input.
Hu et al. [7] first introduced the concept of channel attention and proposed the SENet built
upon CNN models. SENet utilizes a means to represent each channel via global average
pooling (GAP) and adaptively captures the potential key channel features according to
the importance among all channels using fully connected layers and a sigmoid activation
function. CBAM [8] and ECANet [9] are representative works of this kind of attention.
CBAM extends SENet by introducing extra global max pooling to the channel direction to
represent the associated channel. ECANet improves SENet from the view of efficiency, and
a one-dimensional convolution layer with negligible parameters is adopted to replace the
fully connected one to reduce the redundancy. The most recent works [10–14] employing a
vision transformer (ViT) [15] also follow the attention mechanism.

In the field of histopathology image classification, hematoxylin and eosin (H&E) is
a common staining method for biopsy images to detect the microstructure of the image
to grade and stage the tissue [16], but such images have the problems of low contrast
and highly variable appearance [17]. At the same time, the noise, brightness, and texture
changes in high-resolution images make the depth learning model face challenges in image
classification. Thus, frequency analysis, as a strong tool in the signal processing field, may
be an effective and potential solution to this task in practical applications. In addition, some
works exploring applications for frequency analysis in various tasks emerge as well. In [18],
the authors train CNNs by JPEG encoding and decompress a blockwise frequency represen-
tation to an expanded pixel representation. Ehrlich et al. [19] propose a model conversion
algorithm to convert the spatial-domain CNN models to the frequency domain and show
faster training and inference speed. In [20], the discrete cosine transform (DCT) domain (or
frequency domain) is incorporated into CNNs, which can reduce the communication band-
width and better preserve image information. Dziedzic et al. [21] constrain the frequency
spectra of CNN kernels to reduce memory consumption. Spectral diffusion [22] is also
proposed for image generation tasks, where spectrum dynamic denoising is performed
with the wavelet gating operation and thus enhances the frequency bands.

The studies above introduce frequency domain analysis into CNN-related models, but
the effects on different frequency domain components are not taken into account, especially
when combined with the effective channel attention mentioned above (e.g., SENet). Gener-
ally speaking, more valuable information will be more concentrated in the low-frequency
area. Previous work [23] points out that GAP is mostly utilized in the existing channel at-
tention methods, such as SENet and ECANet, to compactly compress channels so that they
can be merely equivalent to the lowest frequency components of discrete cosine transform
despite their motivations not being formulated from this view. Due to the effectiveness and
competitiveness of channel attention, in addition to the lowest frequency components, com-
ponents from other unexplored frequencies deserve further excavation and attention. As
the first work introducing frequency analysis into channel attention, the frequency channel
attention network (FcaNet) [23] represents channels using discrete cosine transform (DCT)
instead of the lowest frequency component, i.e., GAP. Given a feature map, FcaNet splits it
into many parts along channel dimension and mines multiple frequency components of 2D
DCT to represent channels in each part. Lai et al. [24] introduced a novel mixed attention
network (MAN) for hyperspectral image denoising. This approach overcomes previous
limitations by simultaneously addressing inter- and intra-spectral correlations and feature
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interactions. Utilizing a multi-head recurrent spectral attention mechanism, progressive
spectral channel attention, and an attentive skip connection, MAN outperforms existing
methods in both simulated and real noise conditions, with efficiency in parameters and
running time. Therefore, we advocate the channel attention mechanism that guides the
network to focus on different frequency domains of the images, rationally distributing
attention to low-frequency and high-frequency information. In this way, the network will
learn the underlying patterns and will focus its attention on the valuable components in
the frequency domain, thus obtaining rich context.

Further, we reexamine the existing frequency attention mechanism and propose a
new multi-branch frequency attention mechanism from the frequency perspective. Our
work designs a novel multi-branch spectral channel attention network, i.e., the MbsCANet,
which consists of stacked MbsCA blocks. Its overall pipeline is shown in Figure 1. The
proposed MbsCA block extends the original channel attention structure in SENet and
FcaNet from a single branch to multiple branches, whose structure is illustrated in Figure 2.
In each branch, we mine one frequency component of DCT and utilize it to represent all
channels. Then, the frequency component is passed through fully connected layers to
predict the weights of channels, and such weights are used to scale the corresponding
channels. In all branches, different frequency components are considered to represent
channels and predict channel weights for scaling. There are significant differences between
ours and SENet or FcaNet. SENet is a single-branch structure and only employs the lowest
frequency components (i.e., GAP) to represent channels. It is a special and simple case of
ours. As for FcaNet, it is a single-branch structure as well. It uniformly divides channels
into groups and each single grouped channel is represented by one frequency component.
Differently, ours does not need to group channels, and each channel is represented by the
multiple frequency components of DCT via a multi-branch structure. And the experiment’s
results demonstrate that our method achieves better performance against both of them.

Figure 1. The architecture of the proposed MbsCANet is shown in the upper part (a). MbsCANet
is built on ResNet and stacks lots of MbsCANet modules. Each MbsCANet module is comprised
of a basis block in ResNet and a multi-branch spectral channel attention (MbsCA), as shown in the
bottom part (b). See text for more details.
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Figure 2. Structure diagram of our multi-branch spectral channel attention module (MbsCA).

The paper makes the following contributions:

(1) We analyze the characteristics and attention mechanism of pathological tissue images
of breast cancer from the perspective of frequencies. Following this view, we design a
new channel attention network, the MbsCANet, in the frequency domain.

(2) We propose a multi-branch channel attention structure to fulfill MbsCANet, in which
three kinds of frequency components are mined to compress and represent channels.

(3) In comparison to existing well-known spectral-based channel attention techniques
(SENet and FcaNet), our model performs well and also achieves competitive or better
results against state-of-the-art methods on the breast cancer histopathology image
dataset.

The remainder of this paper is structured as follows: Section 2 describes the given
method, which includes the related background of DCT and spectral channel attention.
Experiments and comparisons are conducted in Section 3. The conclusions are presented in
Section 4.

2. Methodology

In this section, we first briefly review the formulation of DCT, and the related spectral-
channel-attention-based SENet and FcaNet are reviewed in Sections 2.1 and 2.2. Then, we
extend SENet and FcaNet and propose a multi-branch spectral channel attention network,
i.e., the MbsCANet, in Section 2.3.

2.1. Discrete Cosine Transform (DCT)

The compression of channels should be of a high data compression ratio with high
quality. In signal processing, e.g., digital images and videos, discrete cosine transform
(DCT), similar to the discrete Fourier transform, is a widely used data compression tech-
nology to compress JPEG, HEIF, MPEG, and H.26x. It can transform a signal or image
from the spatial domain to the frequency domain. As DCT possesses the good properties
of compaction and being differentiable, it naturally becomes a suitable choice for channel
attention to compress a channel to only a scalar that can be integrated into CNNs for
end-to-end learning.

The DCT [23,25] represents an image as a sum of the cosines of varying magnitudes
and frequencies. For a typical image, most of the visually significant information about the
image is concentrated in just a few coefficients of the DCT. The basis function of 2D DCT
can be written as:
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where H and W are the height and width of the two-dimensional image. Therefore, Bi,j
h,w is

a fixed value. For a given two-dimensional feature map X with a spatial size of H × W, its
2D DCT can be defined by multiplying and summing X and Bi,j

h,w, which is defined as:
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where Fh,w with the same spatial size of H × W is the frequency spectrum of 2D DCT, also
called the DCT coefficients of X. The DCT is an invertible transform; we can obtain the
expression of 2D DCT of X according to Equation (2) as follows:

Xh,w =
H−1

∑
h=0

W−1

∑
w=0

Fh,wBi,j
h,w (3)

s.t. i ∈ {0, 1, . . . , H − 1}, j ∈ {0, 1, . . . , W − 1}

Intuitively, via the inverse DCT, any input of size H × W can be written as a sum of HW
basis functions. The DCT coefficients Fh,w can be regarded as the weights applied to each
basis function. For simplicity, some constant normalizations are removed in Equations (2)
and (3).

In Equation (2), 2D DCT can be viewed as a weighted sum of inputs. Typically, global
average pooling (GAP) is a commonly used, simple but effective compression method
along the channel dimension in channel attention. Through the formulations above, when
both h and w are 0, we have:
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= HW × GAP(X)

For a certain feature map, HW is a fixed constant. It is not difficult to see from
Formula (4) that the lowest frequency component F0,0 in 2D DCT is proportional to the
GAP in SENet. Thus, we can say that GAP is actually a special case contained in 2D DCT.

2.2. Spectral-Channel-Attention-Based SENet and FcaNet

In the context of CNNs, channel attention [7–9,23,26–28] is widely used for various
tasks and the basic principle is to use a scalar to represent and evaluate the importance
of each channel. Since a single, whole channel is represented using a scalar only, the
necessary compression method is needed to compress the input feature map X with the
size of C × H × W into a C-dimensional vector to represent C channels in X. After the
compression (or squeeze) operation, the attention map (attm) is formulated by

attm = sigmoid( f c(compression(X))) (5)
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where f c are two fully connected layers for mapping. The sigmoid function is for trans-
forming entries in attm ∈ R

C to numbers between 0 and 1, and each entry refers to the
importance of the corresponding channel.

Then, each channel of the input X is scaled by the corresponding attention value to
produce the attentive channel. It is achieved by

X̃i = attmiXi, s.t. i ∈ {0, 1, . . . , C − 1} (6)

where attmi and Xi denote the i-th entry in attm and i-th channel in X, respectively. X̃ is
the final attentive output of channel attention with same size of input X, which enables
such a channel attention module to be inserted into any layer in CNN models.

SENet [7] and FcaNet [23] are two well-known spectral-channel-attention-based net-
works which are closely related to ours. SENet is formulated as the squeeze (Fsq) and
excitation (Fsq) operations shown in Figure 3. The squeeze in SENet, generating global
description, is achieved by GAP; i.e., the compression function in Equation (5) is equal
to GAP. The excitation shares the similar calculation process in Equations (5) and (6). As
proved above, GAP is the component of the lowest frequency in 2D DCT. Naturally, SENet
explores the spectral correlation in channel attention. Going beyond SENet and following
the same design philosophy, FcaNet uniformly groups all channels, and channels in the
same group are compressed by the same frequency component of 2D DCT, and the channels
in other groups are compressed by different frequency components. Thus, FcaNet is a
multi-spectral channel attention network. Based on these works, a new channel atten-
tion network, the MbsCANet, is proposed, incorporating frequency components into the
multi-branch structure described next.

Figure 3. Structure of squeeze and excitation in SENet.

2.3. Multi-Branch Spectral Channel Attention Network (MbsCANet)

In this section, we first present the general structure of the proposed MbsCANet for
the histopathological image classification task for breast cancer. Then, the core module
of the multi-branch spectral channel attention (MbsCA) in the MbsCANet is illustrated
in detail.

2.3.1. General Structure

The overall structure of the MbsCANet is shown in Figure 1a, and its key component
MbsCANet module is illustrated in Figure 1b, in which a multi-branch structure of the
MbsCA is displayed in Figure 2. We utilize ResNet18 as the basic network to form our
MbsCANet, which can be efficiently trained for fast inference. Each MbsCANet module in
the MbsCANet consists of a basic block in ResNet18 and an MbsCA. The MbsCA is inserted
into the end of a basic block and does not change its topological structure. Such a design
enables us to reuse the weights of ResNet18, avoiding training a network from scratch
that is prohibitive due to insufficient breast cancer histopathological images. The network
is more inclined to the interaction with high- and low-frequency information. Using the
channel attention mechanism, the network can learn more meaningful information and
reduce the influence of worthless information. Because the main information of one image
is concentrated in the low-frequency region [7,20,22,23] and the texture image has a complex
distribution of high and low frequencies, we thus propose to use a multi-branch network to
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selectively interact with the part of the low-frequency information with the channel features
of the input images. Our model can be trained end-to-end while slightly increasing a few
parameters and takes into account the advantages of the characteristics of the frequency
information and the rich context of simple operations. Notably, our MbsCANet structure is
very flexible and interchangeable. It is a plug-and-play attention module. Our attention
module can be inserted anywhere in the basic CNN network by simply setting the number
of output channels. The number of output channels is the same as the number of output
channels of the previous layer instead of being instantiated in ResNet18 and applied to
other medical image classification tasks.

2.3.2. Multi-Branch Spectral Channel Attention Module

SENet actually exploits only the lowest frequency information, while the information
of other frequencies is discarded completely. Although FcaNet explores the multiple
frequency components of 2D DCT, the individual frequency component is merely used to
represent part of channels in a feature map. Each single channel represented by multiple
frequency components is more reasonable and deserves further exploration, but that is not
modeled in FcaNet at all. Therefore, the multi-branch spectral channel attention module is
proposed to solve this limitation.

Figure 2 gives an overview of the multi-branch spectral channel attention module
(MbsCA). In the MbsCA, each branch attention focuses on highlighting important features
of the input from a different frequency perspective. More generally, such a branch can
be a channel attention, spatial attention, and other dimensions to achieve cross-latitude
interactive computation. Here, our purpose is to achieve spectral channel attention fol-
lowing the similar computation process in SENet. Each branch employs an individual
frequency component and any two branches capture different frequency components. In
accomplishing this, multiple frequency components are explored, solving the problem of
the incomplete utilization of the frequency information in the image, and the interaction
between multiple frequency components is realized through the multi-branch structure.

As shown in Figure 2, the MbsCA redesigns the input stream and weight struc-
ture. The input X ∈ R

H×W×C is first copied K times to obtain K identical X, denoted as
{X0, . . . , XK−1}. In each branch, we assign a corresponding frequency component of 2D
DCT. First, the 2D DCT for the input Xk is expressed as

Freqk = 2DDCTΩk (Xk) =
H−1

∑
h=0

W−1

∑
w=0

XkBΩk
h,w (7)

s.t. k ∈ {0, 1, . . . , K − 1}

where Freqk ∈ R
C is the spectral vector in the k-th branch, i.e., Freqk = compression(Xk) in

Equation (5). The 2DDCT represents the frequency component of the 2D DCT correspond-
ing to Xk. Ωk is the frequency component 2D indices.

Then, Freqk is used to predict the weights of all channels in Xk and scale them subse-
quently. It goes through FC layers for adaption, and a sigmoid function is adopted to map
entries to the range of 0 to 1. The scaled new features Xk in this single branch are obtained
by

attmk = sigmoid( f c(Freqk)) (8)

Xk = attmkXk (9)

Equations (8) and (9) are responsible for predicting weights attmk and scaling input Xk,
respectively.
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For all K branches in the MbsCA, we repeat Equations (7)–(9) above, obtaining channel
attentive features {X0, . . . , XK−1}. The attentive features obtained on the all branches are
averaged as the final output of our MbsCA module, which is computed as

Y = AVG
({

X0, X1, . . . , XK−1
})

(10)

where AVG is an average pooling to fuse Xk, allowing different frequency components on
each single channel to interact. The output Y has the same shape with input X, enabling
our MbsCA to be flexibly plugged into any layers of the basic network without changing
its topology that can share its pretrained weights. Regarding the selection of the frequency
components on the K branches (K = 3 in our experiments), we conduct ablation experi-
ments to evaluate the importance of several frequency components individually and then
select Top-K frequency components with the highest performance based on the results.

In contrast, although FcaNet also introduces different frequency components to enrich
features, only one frequency component is used in each part of the channel features. It
fails to represent a single channel via different frequency components and thus ignores the
interaction between frequency components, resulting in insufficient channel modeling. As
for SENet, it does not make use of multiple frequency components at all and is a special case
of ours. Among them, our MbsCANet exhibits better experimental results (see Section 3).

3. Experiments

In this section, we first elaborate on the relevant details of our experiments in
Section 3.1. Next, ablation experiments are carried out to demonstrate the effectiveness
of the proposed MbsCANet in Section 3.2. Then, comparisons with state-of-the-art meth-
ods are given in Section 3.3. Finally, visualization results and corresponding analysis are
provided in Section 3.4.

3.1. Implementation Details
3.1.1. Dataset

We utilize the BreakHis dataset to evaluate the proposed MbsCANet. It is one of the
first (2016) publicly available large-scale non-full-field breast cancer histopathology image
datasets (online at http://www.inf.ufpr.br/vri/databases/BreaKHis_v1.tar.gz (accessed
on 15 October 2020)) and provides a good benchmark for this medical application. A total of
7909 medical imaging samples are contained, including 2480 benign tumors (fibroadenoma,
adenoma, tubular adenoma, and trichomes tumors) and 5429 malignant tumors (lobular
carcinoma, ductal carcinoma, papillary carcinoma, and mucinous carcinoma). Each sample
image is 700 × 460 pixels in size and is displayed directly on the pathological area of
the breast tumor in RGB color. Each sample is divided into four different magnification
factors: 40×, 100×, 200×, and 400×. Figure 4 shows a typical sample of breast cancer
histopathology images from the BreakHis dataset at different magnifications.

Figure 4. Typical histopathological images with four different magnifications.
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3.1.2. Evaluation Metrics and Setting

In this work, the commonly used metrics of the image-level recognition rate and
patient-level recognition rate are adopted to evaluate our method. In addition to both,
according to the recommendations of the study on processing binary balanced data [29],
the following performance criteria are also provided to measure the image-level diagnostic
performance of the benign and malignant categories: Accuracy, Precision, Recall, and
F1-Score.

For the hyperparameters of network training, the initial learning rate is set to 0.001,
and the decay of the learning rate reduces to half of the current learning rate for every five
iterations. We use random shuffling for the dataset to prevent the chance of learning from
the ordered training set data. The SGD optimizer with momentum set to 0.9 is employed,
which prevents the loss function from falling into a local optimum solution and thus
controls the loss function to a global minimum. All models are trained with cosine learning
rate decay and label smoothing within 100 epochs. All experiments are performed on a
server equipped with an NVIDIA RTX 3090 GPU using the Pytorch [30] deep learning
framework.

3.2. Ablation Study

In this section, we first provide an ablation study on the individual frequency compo-
nents in image-level recognition in Section 3.2.1. Other metrics of the MbsCANet under
Accuracy, Precision, Recall, and F1-Score are given in Section 3.2.2. We make comparisons
with our key counterparts in Section 3.2.3.

3.2.1. Ablation on Individual Frequency Components

In our MbsCANet, we need to select the appropriate frequency components on breast
cancer pathology images. Here, ablation experiments on these are performed on the
BreakHis dataset to select K (=3) such frequency components.

The basic network of ResNet18 used to instantiate our MbsCANet is pretrained on
ImageNet, where its last feature map is of spatial size of 7 × 7. Following FcaNet [23],
there are 49 experiments to individually evaluate one single frequency component, because
for a 7 × 7 matrix, it has 49 basis functions, meaning that the whole 2D DCT frequency
space is divided into 7 × 7 parts. As samples in the BreakHis dataset have four different
magnification factors, each such ablation experiment is conducted on four subdatasets of the
BreakHis dataset. Figure 5 illustrates the corresponding accuracies. In all four subdatasets,
the lowest frequency component (i.e., GAP in SENet) is the optimal component. It can be
concluded that the neural network is more inclined to low-frequency information, which
is consistent with previous works [7,20,22,23]. Further, other frequency components also
encode useful information to represent the channels, which cannot be ignored completely.
And the high-frequency component in the image spectrum is closely related to texture,
so a single channel compressed by different frequency components is more reasonable
and helpful for boosting performance. Based on the experimental results in Figure 5, we
first sort the components according to their importance in each subdataset. Then, the K
frequency components that perform well on the four subdatasets are selected to form the
final branch structure.

In order to verify that our three-branch multi-spectral combination is optimal for
breast cancer pathology images, we offer comparison results for different combinations
of quantitative components at 400× magnification, as shown in Figure 6. Among them,
Top-{2,4,8,16} are the combination of the relevant number of components used in FcaNet.
Top-1 in the horizontal axis refers to SENet, where only the lowest frequency component is
explored to compress channels. For the case of FcaNet, we try our best to tune it with the
official code for achieving better image-level performance. As the default setting, Top-16
in FcaNet gains the best performance in ImageNet classification, while in terms of breast
cancer pathology image classification, this setting may not be the best one. Instead of using
the default setting of Top-16, after our careful evaluation, Top-8 in FcaNet is the best setting
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(96.7%). In contrast to FcaNet, our three-branch structure MbsCANet (marked with an
orange star) represents each single channel with three components instead of one in both
FcaNet and SENet and achieves better results. As the main counterparts of our MbsCANet,
we will make individual comparisons with both in the next section.

Figure 5. Image-level experimental results for the four subdatasets of BreakHis using individual
frequency components.

Figure 6. Comparison of different quantitative component combinations at 400× magnification.
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3.2.2. Accuracy, Precision, Recall, and F1-Score Results

In order to further verify the robustness and generalization ability of the MbsCANet,
four other typical evaluation metrics (i.e., Accuracy, Precision, Recall, and F1-Score) are
utilized to evaluate it. The results are listed in Table 1.

Table 1. Precision, Recall, F1-Score, and Accuracy results (%) achieved by MbsCANet on BreakHis
dataset.

Magnification Accuray Precision Recall F1-Score

40× 97.66 97.79 94.65 96.19
100× 97.92 97.35 95.83 96.58
200× 99.01 99.40 97.08 98.22
400× 96.89 95.24 94.67 94.95

From Table 1, all four metrics of the MbsCANet are higher than 97% for the 200×
dataset, and Accuracy and Precision results even exceed 99%. What is more is that the
results under any metrics achieved by any magnification factors in the BreakHis dataset
reach over 94%, each of which is a high score. These satisfied performance under the
four metrics and can verify the powerful robustness and generalization capability of the
MbsCANet from different views.

3.2.3. Comparisons with Counterparts

As FcaNet and SENet are two main counterparts, we compare both in terms of
image-level recognition and patient-level recognition, respectively. Additionally, a baseline
method is also provided as a reference that the vanilla ResNet18 is directly used in recog-
nition without any channel attention. The comparison results for the four magnification
factors of the BreakHis dataset are shown in Tables 2 and 3, respectively.

Table 2. Experimental results (%) of each model at the image level.

Method 40× 100× 200× 400×
Baseline 96.16 95.84 97.35 93.77
SENet 97.50 97.92 98.84 95.79
FcaNet 97.49 97.12 98.18 96.70
MbsCANet 97.66 97.92 99.01 96.89

Table 2 reports image-level recognition. From it, we can see that the MbsCANet
achieves recognition rates of 97.49%, 97.12%, 98.18%, and 96.52% on 40×, 100×, 200× and
400× magnification, respectively. FcaNet is a multi-spectral channel attention model as
well, where each grouped channel is compressed of a frequency component of 2D DCT,
and channels from different groups are compressed by different frequency components.
Essentially, one single channel is compressed by a single frequency component. By contrast,
our MbsCANet represents a single channel with three components and outperforms FcaNet
in terms of all magnification factors. As a special spectral channel attention model, SENet
only focuses on the lowest frequency component, i.e., GAP. Unexpectedly, its performance
is lower than both FcaNet and MbsCANet. The baseline model, i.e., vanilla ResNet18,
draws the worst results. All three spectral channel attention models significantly surpass it
by a large margin. These comparisons conclude that spectral channel attention is effective
and can improve basic networks, and our multi-branch structure design of the MbsCANet
to explore multiple frequency components is more reasonable and reports the best results.
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Table 3. Experimental results (%) for each network at the patient level.

Method 40× 100× 200× 400×
Baseline 95.99 96.29 97.59 94.33
SENet 96.82 96.03 98.19 96.69
FcaNet 96.76 97.47 98.46 96.17
MbsCANet 97.17 97.98 98.87 97.06

Similarly, at the patient-level recognition shown in Table 3, our MbsCANet obtains
97.17%, 97.98%, 98.87%, and 97.06% recognition rates on the four subdatasets, respec-
tively. Compared with the baseline, performance improvements are 1.18%, 1.69%, 1.28%,
and 2.73% in Accuracy. In contrast to FcaNet and SENet, MbsCANet yields average im-
provements of 0.41% and 0.84%, respectively. These comparisons consistently prove the
conclusion above again and meet our claim.

3.3. Comparisons with State-of-the-Art Methods

To demonstrate the advanced performance of the MbsCANet for breast cancer pathol-
ogy image classification, we further compare it with several representative CNN-based
methods from the past five years. The comparison results are shown in Table 4.

In Table 4, all comparisons are also from image-level recognition and patient-level
recognition on four magnification factors in the BreakHis dataset. Among comparison
methods, Zhou et al. [31] report better performance at image-level recognition with 94.43%,
98.31%, 99.14%, and 93.35% on 40×, 200×, 200× and 400× magnification. However, it
exploits the complicated multi-scale dense network as the backbone, while ours only
employs the lightweight ResNet18 as the backbone. Even so, our MbsCANet still exceeds
it, especially for the 400× magnification, for which the gain is 3.54%. For patient-level
recognition, Zhou et al. [31] also show good results of 96.16%, 97.91%, 98.83%, and 92.64%
for the four magnification factors. Similarly, MbsCANet is superior to it as well and the
gain is over 4% for the 400× magnification. Additionally, in contrast to other previous
methods, the improvements are much larger in terms of both image-level recognition and
patient-level recognition. The extensive comparisons in Table 4 demonstrate the superiority
of our MbsCANet and show great potential for employing frequency characteristics in
deep models for breast cancer pathological image classification scenarios.

AMin et al.’s [32] paper achieved good results at 40× magnification, but MbsCANet
outperformed their method at other magnifications, especially at 100× magnification,
where the image-level and patient-level gains were 8.28% and 8.72%, respectively. Overall,
the MbsCANet outperforms their method.

At the same time, in order to show that the MbsCANet model has good results in
breast cancer pathology image classification tasks, we also conducted experiments on the
BACH dataset (ICIAR2018_BACH_Challenge) and compared it with the basic model. From
the experimental results, we can see that the MbsCANet model has a good effect on breast
cancer pathology. Image classification accuracy has been significantly improved. Table 5
shows the experimental results.
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Table 5. Experimental results on BACH dataset.

Method Accuracy

Baseline 75%
MbsCANet 86%

3.4. Visualization Results

We give visualization results to further demonstrate the effect of our network, as shown
in Figure 7. In Figure 7, we randomly choose images with four magnification factors in
the BreakHis dataset that are misclassified by the backbone network ResNet18 but can be
correctly classified by the proposed MbsCANet. Heat maps visualize the areas of interest for
different networks for a given category in the same image. By analyzing the feature details
in this section, we discuss the reasons for the misclassification of the backbone model.

It can be seen that from the breast cancer pathology images, the texture of breast
cancer pathology tissue sections is more complex. Therefore, the backbone network is
affected in feature extraction when images have insufficient features and there is a bias in
the region of interest of the features, leading to misclassification. Differently, the proposed
network takes advantage of the information of the multiple frequency components for the
features and achieves interaction between them simultaneously. Its feature extraction and
modeling capability are significantly enhanced to focus on the key feature regions that
are not highlighted by the backbone network. Thus, our model has stronger classification
ability than the vanilla backbone and the other simple channel attention models of SENet
and FcaNet.

Figure 7. The first row and the second row are the thermal distribution of the area of concern for the
feature in the classification of the backbone network and MbsCANet model, respectively.

We also randomly choose a pathological image of breast cancer, and the DCT spectrum
distribution at 40×, 100×, 200×, and 400× magnification is shown in Figure 8. These
graphs visualize the frequency components of the images, where the ‘Z’ axis represents
the amplitude of the DCT coefficients, and the ‘H’ and ‘W’ axes correspond to the two-
dimensional spatial frequency components. It can be seen that in the pathological images
of breast cancer, although the models are mainly concentrated in the low-frequency region,
the high-frequency region still contains some characteristic information. Among the four
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magnification factors, 40×, 100×, and 200× images contain more information in the high-
frequency region than the 400× images. To this end, the reasonable use of both low- and
high-frequency components is necessary and should be considered deeply and in line with
practical applications. This analysis also demonstrates the underlying reason why the
MbsCANet attains better results using multiple frequency components for breast cancer
pathological image classification.

Figure 8. DCT spectrum of the same tissue section at four magnifications.

4. Conclusions

In this paper, we emphasize the importance of frequency domain analysis in breast
cancer histopathology image classification, introducing our advanced MbsCANet model. This
model innovatively processes different frequency components of 2D DCT in a multi-branch
framework, enabling a more nuanced understanding of the frequency characteristics inherent
in histopathology images. The multi-branch approach allows the MbsCANet to effectively
capture and integrate a wide range of frequency information, from low-frequency components
that represent the general patterns and shapes in the images to high-frequency components
that capture finer details and textures. This comprehensive frequency analysis ensures a
robust and detailed interpretation of histopathology images, contributing to the model’s high
accuracy in classification. The MbsCANet model is more suitable for images with high image
contrast and clear edges. Low-resolution images with blurred edges are not well recognized.
Our results for the BreaKHis dataset, with image- and patient-level recognition accuracies of
97.87% and 97.77%, respectively, demonstrate the potential of frequency domain analysis in
enhancing the accuracy and efficiency of medical image classification, paving the way for its
application in clinical settings for rapid and precise cancer diagnosis.

In future work, we plan to further optimize the MbsCANet by combining feature
distribution and frequency components and introducing a spatial attention mechanism
to improve model performance. In addition, we will explore the potential of MbsCANet
in other medical image application fields and expand its application scope in the field of
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medical imaging and diagnosis. This will not only test the versatility of MbsCANet but
also make an important contribution to the field of medical image analysis.
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Abstract: Six degrees of freedom pose estimation technology constitutes the cornerstone for precise
robotic control and similar tasks. Addressing the limitations of current 6-DoF pose estimation methods
in handling object occlusions and unknown objects, we have developed a novel two-stage 6-DoF pose
estimation method that integrates RGB-D data with CAD models. Initially, targeting high-quality
zero-shot object instance segmentation tasks, we innovated the CAE-SAM model based on the SAM
framework. In addressing the SAM model’s boundary blur, mask voids, and over-segmentation issues,
this paper introduces innovative strategies such as local spatial-feature-enhancement modules, global
context markers, and a bounding box generator. Subsequently, we proposed a registration method
optimized through a hybrid distance metric to diminish the dependency of point cloud registration
algorithms on sensitive hyperparameters. Experimental results on the HQSeg-44K dataset substantiate
the notable improvements in instance segmentation accuracy and robustness rendered by the CAE-
SAM model. Moreover, the efficacy of this two-stage method is further corroborated using a 6-DoF
pose dataset of workpieces constructed with CloudCompare and RealSense. For unseen targets, the
ADD metric achieved 2.973 mm, and the ADD-S metric reached 1.472 mm. This paper significantly
enhances pose estimation performance and streamlines the algorithm’s deployment and maintenance
procedures.

Keywords: 6-DoF pose estimation; zero-shot object instance segmentation; point cloud registration

1. Introduction

In modern robotics, computer vision, and automation, the target six degrees of freedom
(6-DoF) pose estimation has been a significant topic of interest [1,2]. Pose estimation
determines an object’s location and orientation within a three-dimensional space, typically
represented as Euler angles, quaternions, or transformation matrices [3,4]. This issue holds
pivotal importance in numerous applications, such as industrial automation, unmanned
aerial vehicle navigation, robotic manipulation, and virtual reality. Accurate 6-DOF pose
estimation is crucial for achieving precise control and navigation, object tracking, and
environmental modeling tasks [5].

Recent years have witnessed notable advancements in machine vision systems in 6-DoF
pose estimation. According to the input data type, these methods can be summarized into
several typical method types: RGB-based [6–13], depth-based [14,15], RGB-D-based [16–22],
and point cloud-based [23–25]. RGB-based methods primarily estimate the pose of an object
by analyzing color images, benefiting from high-resolution and rich texture information.
They use traditional feature-matching techniques or modern deep learning architectures to
extract features, employing Perspective-n-Point (PnP) or least squares algorithms for pose
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estimation. However, the performance of these methods can be limited when dealing with
objects with scarce textures, repetitive patterns, or varying lighting conditions. Depth-based
methods, employing depth information acquired by 3D sensors, allow direct estimation of
an object’s pose from three-dimensional geometric data. These methods are often combined
with Iterative Closest Point (ICP) algorithms [26] or model-based registration techniques,
offering strong resistance to interference. RGB-D-based methods merge the advantages of
color images and depth information, aiming to utilize the complementarity of these two
data modes to enhance the accuracy and robustness of pose estimation. The application of
deep learning in this field is increasingly prevalent, especially in networks designed for
multimodal fusion capable of learning the most effective way of feature extraction from
both types of data. Point cloud-based methods directly process data from 3D scanners or
stereoscopic vision systems. Although point cloud data provide direct information about
the object’s surface geometry, its unstructured nature and the computational demands for
processing are the primary challenges that these methods must overcome. In the paper
progress of these methods, using Computer-Aided Design (CAD) models has become a
vital technique. Not only can they assist in generating annotated data, but by integrating
with actual images or point cloud data, they enhance the accuracy and reliability of pose
estimation. Additionally, CAD models support the generation of a substantial amount of
synthetic training data, which is particularly crucial for training deep learning models to
achieve better generalization performance.

Despite certain advancements in the field of 6-DoF pose estimation achieved by various
methods, these technologies still need to overcome several pervasive challenges. These
include handling object occlusions in complex scenes and the generalization capabilities of
models for unseen objects. Furthermore, many existing 6-DoF pose estimation algorithms
rely on precise target masks, which are often provided by publicly available datasets in
academic research. However, in real-world scenarios, masks must be obtained through
supervised learning methods from manually annotated data, which is both time-consuming
and costly. With the continuous emergence of new environments and unknown objects,
there is a constant need for data collection and re-annotation. On the other hand, the
robustness of 6-DoF pose estimation algorithms dramatically depends on the accuracy of
mask prediction, which is a highly challenging task in complex scenarios.

The advent of the Segment Anything Model (SAM) model [27] offers a new approach
to the problem of target instance segmentation in new scenes, enabling segmentation of any
object in a scene without the need for zero-shot training. Considering the widespread use of
consumer-grade RGB-D cameras and the availability of CAD models in industrial settings,
this paper explores a 6-DoF pose estimation algorithm based on RGB-D data and CAD
models. We employ an enhanced SAM model, allowing for high-quality segmentation
of targets without predefined category labels. Furthermore, point clouds generated from
depth information are directly geometrically registered with pre-existing CAD models,
eliminating the need for any feature learning, complex preprocessing steps, or additional
hyperparameter settings. This strategy reduces the algorithm’s dependence on large-scale,
high-quality training sets and speeds up the convenience of algorithm deployment and
maintenance.

To summarize, the main contributions of this work are as follows:

• A two-stage method for 6-DoF pose estimation of stacked and unknown objects,
independent of annotated data requirements.

• A high-quality, zero-shot instance segmentation method based on the SAM architecture.
• A point cloud registration method optimized using a hybrid distance metric, which

does not require setting sensitive hyperparameters.

2. Related Work

2.1. Pose Estimation with RGB-D Data

The 6-DoF object pose estimation based on RGB-D data uses images amalgamating
color and depth information to precisely infer an object’s location and orientation in three-
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dimensional space. The DenseFusion framework [28] processes RGB and depth data through
a heterogeneous structure, employing a dense fusion network strategy. It extracts dense
feature embeddings at the pixel level, significantly enhancing the accuracy of object pose
estimation. Building on this, He et al. introduced the Full Flow Bidirectional Fusion Net-
work (FFB6D) [18], incorporating bidirectional fusion at various encoder–decoder layers to
accommodate more complex scenes, particularly improving performance under occlusion
and cluttered backgrounds. Diverging from methods that directly regress pose parameters,
He et al.’s 3D keypoint voting network PVN3D [29] detects an object’s 3D keypoints through
depth-based Hough voting and estimates the 6-DoF pose using the least squares method,
a strategy crucial for robust keypoint detection. In the realm of category-level 6-DoF pose
estimation, Wang et al. [30] devised a joint relation and cyclic reconstruction network strategy,
delving into the intricate relationships between instance RGB images, point clouds, and cate-
gory shape priors. Through iterative optimization, this approach precisely matches 3D models
with observational data, offering innovative avenues for robotic manipulation and augmented
reality technologies. Lin et al. employed a self-supervised Depth Prior Deformation Network
(DPDN) [31] for estimating category-level 6-DoF object poses and dimensions to address
the challenge of labeling data in practical applications. They focused on the transition from
synthetic to real-world data, the so-called Sim2Real domain gap, achieving unsupervised
domain adaptation through deformation feature matching with category shape priors. The
6IMPOSE framework [32], integrating a synthetic RGBD dataset generated by Blender with
a target detection network based on YOLO-V4 and a lightweight pose estimation network,
has propelled the advancement of real-time pose estimation. Despite these developments,
6-DoF object pose estimation based on RGB-D data still confronts numerous challenges. These
include effectively integrating multimodal data, bridging the gap between synthetic and real
data, enhancing robustness against occlusions and complex backgrounds, and achieving rapid
and accurate real-time pose estimation. Additionally, newly introduced modules like the
Depth Fusion Transformer (DFTr) [33] leverage cross-modal semantic associations to integrate
globally enhanced features, offering fresh perspectives for resolving cross-modal feature
fusion issues. In summary, while 6-DoF pose estimation with RGB-D imagery has made
significant strides in technological breakthroughs and practical applications, further research
and development are imperative for its widespread deployment in real-world applications.

2.2. Unseen Object Instance Segmentation

Accurately identifying and segmenting previously unseen objects is a complex yet
crucial challenge. Back et al. [34] proposed a method that integrates synthetic data with
RGB-D fusion technology within the Mask R-CNN framework, focusing on extracting
shape information. They employed a domain randomization strategy to process textures,
enhancing the algorithm’s adaptability to diverse environments. Innovatively, they also
incorporated a confidence map estimator to utilize depth information effectively. UOAIS-
Net [35], through its unique hierarchical occlusion modeling scheme, has significantly
improved the recognition and segmentation of objects in complex environments, such
as on desktops, indoors, and in trash bins, showing remarkable performance, especially
in handling occlusions and cluttered backgrounds. This approach effectively deals with
different parts of occluded objects, addressing a significant challenge in traditional object
segmentation methods. Lu et al.’s work [36] combines multi-object tracking and video
object segmentation techniques, offering a new perspective for robotic systems to handle
unseen objects in dynamic environments. The key lies in generating segmentation masks
through long-term interaction with objects and adapting to changes in object positions
and environments in dynamic settings. “Side Adaptation Network” (SAN) [37] marks a
significant open vocabulary semantic segmentation innovation. SAN achieves category
recognition and segmentation by effectively integrating a frozen CLIP model, enhancing
accuracy and network structural efficiency. Xiang et al.’s method [38] applies features from
learned synthetic data to real-world images. Employing a metric learning loss function and
mean shift clustering algorithm, their approach effectively distinguishes different objects
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at the pixel level, particularly in cluttered scenes. Xie et al. developed UOIS-Net [39],
utilizing synthetic RGB-D data to effectively handle unseen object segmentation in desktop
environments through a two-stage network architecture. Initially, the Depth Seeding
Network (DSN) uses depth information to generate preliminary masks for object instances,
followed by the Region Refinement Network (RRN) which refines these masks further by
integrating RGB data. While these studies have achieved significant accomplishments in
enhancing segmentation precision and dealing with complex environments, they still face
challenges in practical applications, such as handling highly dynamic settings, extreme
occlusions, or complex backgrounds. Most research remains limited to laboratory settings
and synthetic data, and its generalizability to real-world environments requires further
validation.

Recent advances in instance segmentation algorithms for unknown targets have been
groundbreaking. The SAM, inspired by zero-shot learning from large language models,
aims to develop a promptable, highly generalizable image segmentation model. SAM
integrates a robust image encoder, a prompt encoder, and a lightweight mask decoder
to achieve zero-shot transfer to new image distributions and tasks, often matching or
surpassing fully supervised outcomes. The research team developed a data engine to
enhance its generalizability, collaboratively creating the model and dataset with model-
assisted dataset annotations. The resulting dataset, SA-1B, includes over one billion masks
and eleven million images, characterized by high quality and diversity. SAM generates
high-quality masks and handles various downstream tasks, including edge detection, object
proposal generation, instance segmentation, and text-to-mask prediction. Recently, many
scholars have researched and improved SAM from different perspectives. For instance,
FastSAM [40] focuses on enhancing SAM’s operational speed for real-time applications.
Zhang et al. developed MobileSAM [41] to reduce the model’s size, making it suitable for
resource-limited mobile devices. Addressing the issue of SAM producing rough boundaries
for complex structured objects, HQ-SAM [42] retains zero-shot capabilities while producing
higher-quality masks. The instance segmentation model used in this article builds upon
SAM, targeting optimization for issues like boundary blurriness, mask holes, and excessive
segmentation of the same target in SAM, thereby elevating mask quality.

3. Materials and Methods

This paper introduces an innovative two-stage method, leveraging RGB-D data for
object instance segmentation and 6-DoF pose estimation. Given an RGB-D image IRGBD and
the target CAD model {Mj}, our objective is to employ the color and depth information
provided by each pixel of the RGB-D image, along with the three-dimensional point sets of
the CAD models, to estimate the 6-DoF pose {Pj} of each object within the image. Each
pose {Pj} comprises a rotation matrix Rj ∈ SO(3) and a translation vector tj ∈ R

3. We aim
to ascertain an optimal set of {Pj} that aligns each CAD model as closely as possible with
its corresponding object in the RGB-D image.

The process of our method, as depicted in Figure 1, initiates with the first stage
employing a zero-shot instance segmentation method based on the enhanced SAM model
to discriminate and extract the mask of each component from the RGB image. Subsequently,
we crop out the point clouds of the components from the depth map aligned with the RGB
image. The second stage involves registering the cropped component point clouds with
the point clouds derived from CAD, optimizing to attain the corresponding 6-DoF pose
for each target. The methodologies of zero-shot instance segmentation and point cloud
registration are expounded in detail in Sections 3.1 and 3.2.

3.1. Context-Aware Enhanced SAM

The Context-Aware Enhanced SAM (CAE-SAM) method framework proposed in
this paper is illustrated in Figure 2. We have meticulously integrated and repurposed
the existing SAM structure to maintain the SAM’s prowess in zero-shot transfer. This
approach aims to preserve the original model’s robust generalization capabilities while
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avoiding model overfitting or catastrophic forgetting that might result from direct fine-
tuning of SAM. Specifically, our enhancements encompass three main aspects: Firstly, we
have incorporated a convolutional neural network-based local spatial-feature-enhancement
module within the image encoder. This module extracts local spatial context information
from images, bolstering the model’s ability to handle image details and complex structures.
Secondly, in the prompt encoder, we introduced global context tokens that engage in spatial
dot-products with the fused global–local features, generating higher-quality masks. This
enhancement elevates the model’s spatial understanding and segmentation precision. Lastly,
we have implemented the Grounding-DINO [43] technique to generate target prompt boxes
automatically, enhancing the model’s automation level and and segmentation accuracy.

Depth Image

Masks

Zero-shot Object
Instance

Segmentation

Croped Point Clouds

CAD Point Clouds

Stage 1 Stage 2

Point Cloud
Registration

RGB Image 6D Pose Estimation Results

Figure 1. Workflow of a two-stage target 6-DoF pose estimation method integrating zero-shot instance
segmentation and point cloud registration.

Image
Embedding

Image
Encoder Mask Decoder

Prompt Encoder

Bounding Box
Generator

RGB Image Output masks

SAM Architecture

Figure 2. CAE-SAM framework. We utilize the existing SAM architecture to preserve the zero-shot
transfer capability of the SAM. We optimize the image encoder and mask decoder to enhance the
capability of extracting local spatial features. Additionally, a bounding box generator has been
incorporated to increase the model’s level of automation and the accuracy of its segmentation.

3.1.1. Image Encoder

Accurate segmentation necessitates image features endowed with a rich tapestry of
global semantic context and intricate local boundary details. A Vision Transformer (ViT) [44]
is employed as the image encoder in the original SAM. Thanks to its self-attention mech-
anism, ViT is adept at grasping the global context within images, decoding the intricate
relationships among various image regions. This capability renders ViT particularly effec-
tive at interpreting the overall structure and relationships in images containing unknown
information or novel targets, and ViTs pretrained on extensive datasets generally demon-
strate superior generalization abilities. Despite ViT’s proficiency in understanding global
structures, it may not capture local detail features as efficiently as CNNs, especially when
processing images with subtle variations or obscure detail information. Inspired by recent
research [45,46] indicating that convolution can enhance a Transformer’s ability to grasp
local spatial information, and considering that the global information provided by ViT
can direct CNNs to more precisely capture vital local features, this article combines CNN
with ViT, forging a bidirectional complementary mechanism. Building on the original SAM
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decoder, a CNN-based spatial prior extractor is introduced to model the local spatial context
of images, generating a feature pyramid that effectively supports dense prediction tasks.
Then, in tandem with a multi-scale attention fusion module, the ViT features are leveraged
further to fortify the local spatial attributes of the input images.

As depicted in Figure 3, the enhanced image encoder primarily comprises two compo-
nents. The first is the foundational ViT encoder, consisting of an image block embedding
layer and a sequence of Transformer encoders, as shown in Figure 3a. The second compo-
nent is the novel local spatial-feature-enhancement module proposed in this paper, which
includes (1) a spatial prior extraction module designed to model spatial contextual features
from the input image and (2) a series of multi-scale attention fusion modules, purposed for
merging and updating features across multiple scales, as illustrated in Figure 3b.

Patch
Embedding Encode Stage 1 Encode Stage 2 Encode Stage 4

(a) Vision Transformer (ViT)

Spatial Priori
Extraction

Multi-scale
Attention Fusion

Multi-scale
Attention Fusion

Multi-scale
Attention Fusion

(b) Local Spatial Feature Enhancement Module

…

…

c Spatial Priori Extraction

Multiscale Deformable
Attention FFNQuery

d Multi-Scale Attention Fusion Module

Key/Value

Figure 3. Enhanced image encoder. (a) Classical Vision Transformer (ViT), where the encoder layers
are segmented into N stages (N = 4). (b) The added local spatial-feature-enhancement module,
dedicated to optimizing local spatial features, incorporates two pivotal designs: (c) the Spatial Prior
Extractor, which extracts spatial contextual features from the input image, and (d) the Multi-Scale
Attention Fusion Module, designed for merging and updating multi-scale features.

The input image is represented by a tensor X, with dimensions B × C × H ×W, where
B, C, H, and W, respectively, signify the batch size, number of channels, height, and
width. For the ViT encoder, the initial step involves passing X through an image block
embedding layer, which segments the image into a series of non-overlapping blocks of
size 16 × 16. These blocks are subsequently flattened and mapped to a high-dimensional
feature space of dimension D through a linear transformation, adjusting the feature dimen-
sions to B × H

16 × W
16 × D. Following this, these high-dimensional features are fused with

corresponding positional encodings to introduce spatial location information. After that,
the features undergo processing through L consecutive Transformer encoder layers, each
incorporating self-attention mechanisms and feed-forward networks, thereby facilitating
the extraction of single-scale features. To fully exploit the captured image information at
various levels, the Transformer encoders of ViT are divided into N (where N = 4) uniform
encoding stages, each composed of L/N encoder layers. For the i-th encoding stage, the

output features are denoted as Fi
global ∈ R

(B× HW
162 ×D).

The initial step for the local spatial-feature-enhancement module involves passing the
input image X through the spatial prior extraction module, as depicted in Figure 3c. To
maintain the richness of spatial information, this extractor adopts the backbone architecture
of ResNet [47], employing a series of 3 × 3 convolutions with a stride of 2 to expand the
number of channels while reducing the size of the feature map. Subsequently, a 1 × 1
convolution is used to project the feature map into a D-dimensional space. To accommo-
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date the ViT model’s requirement for multi-scale information, we gather intermediate,
varying-scale spatial features {F1, F2, F3} from this sub-network, where F1 ∈ R

(B× H
8 ×W

8 ×D),
F2 ∈ R

(B× H
16×W

16×D), and F3 ∈ R
(B× H

32×W
32×D). Finally, to merge these multi-scale spatial

features, we flatten and concatenate the resulting feature sets along the channel dimension,

forming a comprehensive local spatial prior F1
local ∈ R

(B×( HW
82 + HW

162 + HW
322 )×D), which is then

inputted into subsequent multi-scale attention fusion modules.
Further, N sparse attention and feed-forward networks are used to update the spatial

features Fi
sp, with the generated F(i+1)

sp serving as the input for the next multi-scale feature
fusion module, as shown in Figure 3d. Here, the sparse attention employs multi-scale
deformable attention operations, aiming to enhance the model’s sensitivity to multi-scale
information without increasing computational complexity. The process can be formulated as:

F̂i
local = Fi

local + Attention(norm(Fi
local), norm(F(i+1)

global)),

F(i+1)
local = F̂i

local + FFN(norm(F̂i
sp)),

(1)

where Fi
global and Fi

local together serve as the input for the i-th multi-scale feature fu-

sion module. Fi
global ∈ R

(B× HW
162 ×D) acts as the key and value vectors, while Fi

local ∈
R
(B×( HW

82 + HW
162 + HW

322 )×D) serves as the query vector. This combination ensures that each step
of feature updating is based on current and higher-level information, enhancing the model’s
capability to handle size variations and complex details. In Equation (1), Attention( · )
denotes multi-scale deformable attention, and norm( · ) represents LayerNorm used for
normalizing features, providing a uniform input for the attention layer and subsequent
feed-forward network (FFN), thereby ensuring the stability and efficacy of feature updates.

Finally, this paper merges the output features Fi
global from each stage of the ViT with the

final Fi
local obtained from the local spatial-feature-enhancement module. This integration

produces a multi-scale encoded result from the image encoder. This multi-scale encoded
result is then further combined with the mask features in the subsequent SAM’s mask
decoder, culminating in a global–local feature set used for mask prediction.

3.1.2. Global Context Token

To correct mask errors in the SAM output and fully leverage the local spatial features
extracted by the local spatial-feature-enhancement module, a global context token and a
new mask prediction layer are introduced for high-quality mask prediction. This paper
reuses and fixes SAM’s mask decoder, introducing a new learnable global context token
Tgc ∈ R

(1×256), which is concatenated with SAM’s output token To ∈ R
(4×256) and prompt

token Tp ∈ R
(Nprompt×256). The concatenated result Ta ∈ R

(1+4+Nprompt)×256 serves as the
input to SAM’s mask decoder. Similar to the original output token computation process,
the global context token first undergoes self-attention with other tokens, followed by
bidirectional cross-attention with the image to update its features. After passing through
two decoder layers, global image information contained in the global context token, critical
geometric information in the prompt token, and hidden mask information in the output
token are obtained. Finally, a new Multilayer Perceptron (MLP) is added to generate
dynamic weights from the updated global context token, which are then spatially dotted
with the global–local features to produce high-quality masks.

3.1.3. Bounding Box Generator

The original SAM model utilizes 32 × 32 pixel points as prompt tokens for the “seg-
ment anything” mode, which encounters several issues in practical applications. Firstly,
point prompts may lead the model to over-focus on local details while neglecting the
overall context of the target. This can result in excessive segmentation, mistakenly dividing
a single target into multiple regions, as illustrated in Figure 4. Moreover, this approach
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might incorrectly classify background pixels as part of the target, especially in situations
lacking sufficient segmentation information. These limitations impact the accuracy of
segmentation and may also reduce the model’s generalizability across targets of varying
sizes and complexities.

To overcome these segmentation challenges, this paper introduces a bounding box
generator based on Grounding DINO. Trained through self-supervised learning, Grounding
DINO can understand and locate targets in images from textual descriptions, generating
precise candidate frames for targets. These candidate frames, used as inputs for the prompt
encoder, serve as segmentation cues, assisting the model in differentiating foreground
targets from the background. Consequently, this reduces the misclassified background
pixels in segmentation, enhancing overall accuracy. With this improvement, the CAE-SAM
model is more effectively equipped to handle complex visual scenes, thereby elevating the
performance of image segmentation tasks.

Figure 4. SAM over-segmentation illustration.

3.2. Point Cloud Registration

Deep learning-based point cloud registration methods utilize intricate neural network
architectures to learn and extract deep features from data autonomously. They are adept
at processing point clouds with complex geometric structures and maintain stability in
environments with high noise levels and data heterogeneity. However, the effectiveness of
these methods is highly contingent on the quality and diversity of the training data and
typically requires significant computational resources for model training and optimization.
Additionally, many deep learning-based point cloud registration methods still rely on tradi-
tional optimization techniques like the ICP algorithm for final fine-tuning and optimization
after achieving preliminary registration. Thus, traditional point cloud methods continue to
play a vital role in point cloud registration tasks.

Considering that traditional methods are generally easier to deploy and maintain,
and their updates and iterations are more straightforward, requiring less frequent model
retraining when data distributions change, this paper follows the thought process of
traditional point cloud registration methods, as illustrated in Figure 5. Initially, the source
and target point clouds undergo preprocessing to extract key feature points. Subsequently,
in the coarse registration phase, feature histograms are used to describe each feature point.
These features facilitate the preliminary alignment of the source point cloud with the target
point cloud, resulting in a roughly matched point cloud. Finally, based on the coarse
registration, this paper proposes a point cloud registration method optimized using a
hybrid distance metric to achieve fine registration of the point clouds.

3.2.1. Data Preprocessing

In point cloud preprocessing, we primarily perform point cloud downsampling. Given
a point cloud set P = {p1, p2, . . . , pn} comprising n points, we select m representative
points, resulting in a sampled subset S = {s1, s2, . . . , sm}. Inspired by the approach of
PointNet++ [25], we employed the Farthest Point Sampling (FPS) [48] algorithm for point
cloud downsampling. This algorithm iteratively selects the farthest point from the existing
sampled point set as the new sample point, ensuring uniform distribution and broad
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coverage of the sample points across the dataset, thereby enhancing the representativeness
of the sampled set. Secondly, its algorithmic simplicity makes FPS easy to implement and
integrate into various data processing workflows, offering adaptability and flexibility. An
illustrative diagram of the FPS algorithm execution is shown in Figure 6, with red points
representing the chosen sample points. The steps of the FPS algorithm are as follows:

1. Randomly select an initial point from the dataset as the first sample point.
2. Compute the Euclidean distance from each point in the dataset to the already se-

lected sample points, providing necessary distance information for selecting the next
sample point.

3. In each iteration round, select the point with the maximum distance to the nearest
point in the current sample point set as the new sample point. This selection process
is based on the farthest point criterion, aimed at maximizing the distance between the
new sample point and the existing sample point set.

4. After each new sample point selection, update the shortest distance from each point
in the dataset to the nearest sample point, ensuring that the most representative point
relative to the current sample point set is chosen in each iteration.

5. Repeat the above iteration process until the predetermined number of sample points
is reached or other stopping criteria are met.

Source Point
 Cloud

Target Point
 Cloud

Fine Registration

Data 
Preprocessing

Data 
Preprocessing

Feature Extraction

Feature Extraction

Source Point Cloud FPFH Descriptor

Source Point Cloud FPFH Descriptor

Coarse Registration
 Result

Coarse Registration

Fine Registration Result

Iterative OptimizationSource Point Cloud
Feature Points

Target Point Cloud
Feature Points

Figure 5. Point cloud registration workflow. The source and target point clouds undergo data prepro-
cessing and feature extraction, where their Fast Point Feature Histograms (FPFH) features are computed
separately. Subsequently, the Fast Global Registration (FGR) algorithm is utilized for coarse point cloud
registration. The process culminates with fine point cloud registration, employing the hybrid distance
metric optimization-based point cloud registration method proposed in this paper.

Figure 6. Schematic diagram of the FPS algorithm. A point is randomly selected from the point set
as the first sample point s1. The point furthest from s1 within the remaining point set is chosen as
the second sample point s2. Among all points not yet selected as sample points, the point with the
largest nearest distance to the already sampled points is selected as the new sample point s3.

For the target objects in this paper, Figure 7 illustrates the effect of the FPS algorithm
in point cloud downsampling. The figure includes the original point cloud and the down-
sampling results at four different sampling rates (80%, 60%, 40%, and 20%). It can be
observed from the figure that the FPS algorithm can effectively retain the critical structural
features of the point cloud even at lower sampling rates. As the sampling rate decreases,
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the number of points reduces, but the main shape and structure of the original point cloud
are still discernible.

Original 80% Sampling 60% Sampling 40% Sampling 20% Sampling

Figure 7. Comparison of point cloud downsampling effects on a target workpiece at different
sampling rates.

3.2.2. Point Cloud Feature Extraction

The 3D point cloud feature extraction aims to precisely extract geometric and topologi-
cal critical features from the extensive point cloud data, providing the necessary information
foundation for registration. This paper selects the Fast Point Feature Histogram (FPFH)
method for feature extraction due to its significant advantages in processing efficiency, ro-
bustness, adaptability, and rotational invariance. FPFH dramatically enhances the efficiency
of feature extraction through a simplified computation process and demonstrates robust
performance when dealing with noisy or unevenly sampled point cloud data. Moreover, it
adapts well to point clouds of varying densities and possesses rotational invariance, which
is crucial for point cloud registration in the real world with varying viewpoints.

The core steps in calculating the point cloud feature descriptors using FPFH [49]
mainly include defining a local coordinate system and feature extraction. Initially, for
each point p in the point cloud P = {p1, p2, . . . , pn}, its neighborhood point set Np is
determined, usually comprising all points within a certain neighborhood radius r. To
enhance the adaptability and robustness of the FPFH algorithm in processing point clouds
of different densities and distributions, we adopt a neighborhood radius strategy adaptive
to the local density of the point cloud. This strategy allows the neighborhood radius to
automatically adjust according to the actual local density of the point cloud, thereby more
effectively capturing local features in noisy or unevenly sampled point clouds. By reducing
the need for manual parameter tuning, this adaptive neighborhood radius strategy not only
improves user-friendliness but also helps more accurately describe the point cloud’s local
structural information. Specifically, the radius calculation formula is defined as follows:

r = k
1
n

n

∑
i=1

min
pj∈P,j �=i

∥∥pj − pi
∥∥

2, (2)

where k is a scaling factor, which can be varied to control the size of the neighborhood,
adapting to different characteristics of point cloud data. It represents the statistical Euclidean
distance between a sample point pi and its nearest point pj in the point cloud P.

Further, for each point p in the point cloud and its neighboring points, a local coordinate
system is constructed, as shown in Figure 8. The UVW coordinate system is defined as
follows:

u = nPc ,

v =
Pn − Pc

‖Pn − Pc‖2
× u,

w = u × v,

(3)

where nPc is the normal vector of the point Pc. Based on the UVW coordinate system, the
Simplified Point Feature Histograms (SPFHs) for each point are calculated by computing
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the angular variations of the normal vectors of points Pc and Pn in the local coordinate
system. This typically includes three key angles:

α = vs. · nPn ,

φ = u · Pn − Pc

‖Pn − Pc‖2
,

θ = arctan(w · nPn , u · nPn),

(4)

These angles describe the local surface geometry of the point. Subsequently, these angular
values are used to update the SPFH of the point. Next, the FPFH feature of point Pc is generated
by weighted averaging of its own SPFH with the SPFH features of its neighboring points, as
indicated in Equation (5). This weighted averaging approach takes into account the distances
between neighboring points, allowing for a broader capture of local geometric features.

FPFH(Pc) = SPFH(Pc) +
1
n

n

∑
i=1

1
‖Pn − Pc‖2

× SPFH(Pn), (5)

where n is the number of points in the neighborhood of Pc.

Figure 8. The FPFH calculation range and the uvw coordinate system. The query point Pc and each
neighbor within its vicinity are connected to calculate SPFHs (Simplified Point Feature Histograms)
for each one. Every direct neighbor then connects with their respective neighbors to calculate their
SPFH. Finally, these are collectively weighted to form the FPFH of the query point.

3.2.3. Point Cloud Coarse Registration

Point cloud coarse registration involves aligning two point cloud datasets at a macro
level, providing an approximately correct starting point for fine registration. This is
particularly effective when there is a significant initial discrepancy between the source
and target point clouds, as it enables the identification and matching of similar regions in
different point clouds, thus achieving preliminary alignment of the two point clouds. This
paper employs the Fast Global Registration (FGR) algorithm [50] for the coarse registration
of the source point cloud P and the target point cloud Q. Initially, the FPFH features of
each point in the two point clouds are constructed, represented as F(P) = {F(p) : p ∈ P}
and F(Q) = {F(q) : q ∈ Q}. Then, correspondences between point pairs are established
based on Equation (6), and these correspondences are not recalculated throughout the
optimization process.

(p, q) = arg min
(p,q)

‖F(pi)− F(qi)‖2, (6)

That is, for each point p in point set P, find the nearest neighbor feature F(q) in point set Q,
and vice versa. Further, the objective function for optimization is defined as follows:

E(T) = ∑
(p,q)∈K

ρ(‖q − Tp‖2), (7)
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where E(T) represents the total distance after optimization, K is the set formed by point
pairs (p, q), T is the rigid transformation to be solved, and ρ is a robust penalty function,
employing the scaled Geman–McClure function. This function is used to minimize the
distance between corresponding points while automatically weakening the impact of
incorrect matches, as defined in Equation (8). The optimization goal is to adjust the
transformation T such that the value of the objective function E(T) is minimized, thereby
achieving optimal alignment between point sets P and Q.

ρ(x) =
μx2

μ + x2 , (8)

3.2.4. Point Cloud Fine Registration

The ICP algorithm holds a central position in traditional point cloud fine registration
due to its efficiency, simplicity, broad application scope, and time-tested stability. The
maximum correspondence distance is a crucial parameter in the ICP algorithm, defining
the maximum allowable distance between point pairs considered during the search for
nearest-point correspondences. The ICP algorithm identifies the nearest point in Q for each
point in P during each iteration. If pi is a point in P and qi is the nearest point to pi in Q,
then the maximum correspondence distance dmax is used to filter the point pair (pi, qi).
If distance(pi, qi) ≤ dmax, then (pi, qi) is considered a valid corresponding point pair;
otherwise, the pair is not considered for registration computation. Therefore, setting the
maximum correspondence distance impacts the performance of the ICP algorithm. Setting
the distance threshold too high may cause the algorithm to consider distant point pairs
as correspondences, introducing erroneous matches and leading to a result that deviates
from the true value. Furthermore, including more potentially irrelevant point pairs may
make the results unstable. Erroneous matches could also interfere with the algorithm’s
convergence process, leading to convergence to an incorrect configuration or even failure
to converge in some cases. Conversely, setting the threshold too low might exclude many
point pairs that should match, potentially requiring more iterations for the algorithm to
achieve a satisfactory registration result, or it may not reach an ideal registration state.
Additionally, a more restrictive threshold might easily cause the algorithm to become
trapped in local optima. Figure 9 demonstrates the situations where an incorrect setting
of the maximum correspondence distance leads to non-convergence of the algorithm and
trapping in local optima.

Figure 9. Examples of registration failures in the ICP algorithm due to inaccurate settings
of hyperparameters.

To address the issues above and improve the registration accuracy and robustness of
the algorithm, we propose a point cloud registration method optimized based on a hybrid
distance measure. This method eliminates the need to set sensitive hyperparameters like
the maximum correspondence distance, offering a more flexible and accurate approach to
processing point cloud data.

Finding the Nearest Point. To organize point qj for rapid retrieval, a KD-tree of the
target point cloud Q is constructed. For each point pi in point cloud P, the nearest point
qnearest(i) in Q in terms of Euclidean distance is found in the KD-tree, represented as follows:

qnearest(i) = arg min
qj∈Q

‖pi − qj‖2. (9)
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Hybrid Distance Measure Calculation. The hybrid distance measure combines point-
to-point and point-to-plane distances. Given a set of transformation parameters θ and
weight parameter α, the hybrid distance from P to Q is computed as follows:

D(pi, θ, α) = αdpt-pt(pi, θ) + (1 − α)dpt-pl(pi, θ), (10)

where dpt-pt(pi, θ) is the point-to-point distance, defined as follows:

dpt-pt(pi, θ) = ‖T(θ)pi − qnearest(i)‖2. (11)

dpt-pl(pi, θ) is the point-to-plane distance, defined as follows:

dpt-pl(pi, θ) = |(T(θ)pi − qnearest(i)) · nnearest(i)|, (12)

where α is a learnable parameter used to balance the weights of the two types of distances.
T(θ) is the transformation matrix defined according to the set of transformation parameters θ.

To reduce the sensitivity of the hybrid distance measure to extreme outliers and to
improve numerical stability during the optimization process, we introduce the Huber loss,
defined as follows:

L(r) =

{
1
2 r2, if |r| ≤ δ

δ(|r| − 1
2 δ), otherwise

(13)

where r is the residual, and δ is a threshold. In this paper, the transformation parameters θ
and the weight parameter α are optimized by minimizing the total hybrid distance, with
the optimization problem formulated as follows:

min
θ,α

|P|
∑
i=1

L(D(pi, θ, α)), (14)

where |P| denotes the total number of points in the point cloud P.
To solve this problem, we employed the Levenberg–Marquardt (LM) algorithm, a

widely used nonlinear minimization method suitable for solving large-scale nonlinear
least-squares problems. In each iteration, the LM algorithm updates θ and α by solving
Equation (15).

(JT J + λdiag(JT J))Δ = −JTr, (15)

where J is the Jacobian matrix of the objective function, Δ represents the step length of the
parameter update, r is the residual vector, and λ is a tuning parameter, controlling whether
the algorithm leans more towards gradient descent or the Gauss–Newton method. If the
residual decreases, λ is increased; otherwise, it is decreased. Based on the definition above,
we know that

ri(θ, α) = L(D(pi, θ, α))

The Jacobian matrix J is defined as follows:

J =

⎡
⎢⎢⎣

∂r1
∂θrot1

· · · ∂r1
∂θtrans3

∂r1
∂α

...
. . .

...
...

∂rn
∂θrot1

· · · ∂rn
∂θtrans3

∂rn
∂α

⎤
⎥⎥⎦

Finally, the optimal set of parameters, including the transformation parameters θ (compris-
ing rotation and translation parameters) and the hybrid weight parameter α, is obtained
through iterative optimization.

4. Results

In Section 4, we conducted evaluations of the zero-shot instance segmentation algo-
rithm CAE-SAM and the point cloud registration-based target 6-DoF pose estimation.
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4.1. CAE-SAM Experimental Results and Analysis

Dataset. The instance segmentation in this paper was trained and evaluated on the
HQSeg-44K dataset. This dataset amalgamates six high-quality image datasets, encom-
passing over 1000 diverse semantic categories. It includes 44,359 images for training and
1537 images for testing.

Training Details. During the training process, we adopted a strategy of keeping the
pretrained SAM model parameters unchanged while updating parameters solely in the
local spatial-feature-enhancement module, Global Context Tokens, and their associated
three-layer MLP, as well as in the convolutional layers used for fusing global and local
features. Additionally, the bounding box generator based on Grounding DINO was utilized
in the point cloud registration inference process but was not involved in the training
stage. Gaussian noise and large-scale jitter techniques were introduced to augment the
data to enhance dataset diversity. Random noise was introduced in the real mask’s edge
areas to simulate imperfect edge scenarios that might occur in the real world. Large-scale
jitter technology was employed for random scaling of images, aiding the model in better
adapting to objects of varying sizes. The model was trained using the Adam optimizer, with
an initial learning rate of 0.001, and the StepLR strategy was used to reduce the learning
rate every 5 epochs, with a total of 14 epochs in the training process.

Validation Metrics. To comprehensively assess the performance of the proposed CAE-
SAM model, two key metrics were used, mask Intersection over Union (mIOU) [31,37,38]
and boundary Intersection over Union (mBIOU) [42,51], to evaluate the improvement
in mask quality quantitatively. mIOU is a widely applied mask-based segmentation
metric in semantic, instance, and panoramic segmentation tasks and dataset evaluations.
It is assessed by calculating the area intersection over the union between two masks.
However, as mIOU treats all pixels equally, it reduces sensitivity in assessing the boundary
quality of larger objects. Therefore, to evaluate the quality of boundary segmentation more
precisely, the mBIOU metric was introduced. mBIOU focuses on assessing the segmentation
performance of boundary regions and can more intricately reflect the model’s capability in
handling edge details. The specific formulas for these metrics are as follows:

mIoU =
1
N

N

∑
i=1

|Gi ∩ Pi|
|Gi ∪ Pi|

, (16)

mBIoU =
1
N

N

∑
i=1

|(Gid ∩ Gi) ∩ (Pid ∩ Pi)|
|(Gid ∩ Gi) ∪ (Pid ∩ Pi)|

, (17)

where N represents the number of images, Gi is the true mask region of the i-th image, Pi is
the predicted mask region of the i-th image, Gid is the true boundary mask region of the
i-th image, Pid is the predicted boundary mask region of the i-th image, and d is the pixel
width of the boundary region.

In this paper, comparative tests were conducted on SAM, HQ-SAM, and CAE-SAM
models across four test subsets of the HQSeg-44K dataset (DIS, COIFT, HRSOD, ThinObject),
with quantitative results presented in Table 1. The CAE-SAM model demonstrated superior
performance in all test sets. Specifically, regarding the mIoU metric, the CAE-SAM model
performed markedly better than both SAM and HQ-SAM across all test sets. Compared
to the SAM model, the HQ-SAM showed average gains of 0.096 and 0.107 in mIoU and
mBIoU metrics, respectively. However, the gains of the CAE-SAM model relative to the SAM
model were even more significant, reaching 0.117 and 0.135, respectively. This substantial
improvement underscores CAE-SAM’s leading position in overall performance and reflects
its significant advancements in mask accuracy and edge segmentation quality. Additionally,
the consistency of the CAE-SAM model across different datasets demonstrates its robust
generalization ability for various image types. Its performance in the ThinObject test set is
particularly noteworthy. CAE-SAM achieved a mIoU score of 0.934, significantly surpassing
both SAM and HQ-SAM models and showcasing its exceptional capability in handling
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delicate and complex objects. Similarly, on the mBIoU metric, CAE-SAM reached 0.845 in the
ThinObject test set, highlighting the model’s precision in boundary detail processing.

Table 1. Comparison of SAM, HQ-SAM, and CAE-SAM models on DIS, COIFT, HRSOD, and
ThinObject test sets, evaluated using the metrics of mIoU and mBIoU.

Model
DIS COIFT HRSOD ThinObject Average

mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU

SAM 0.620 0.528 0.921 0.865 0.902 0.831 0.736 0.618 0.795 0.711
HQ-SAM 0.786 0.704 0.948 0.901 0.936 0.869 0.895 0.799 0.891 0.818
CAE-SAM 0.813 0.733 0.956 0.913 0.946 0.891 0.934 0.845 0.912 0.846

Figure 10 displays qualitative experimental results of the SAM, HQ-SAM, and CAE-
SAM models on the HQSeg-44K dataset and their segmentation ground truths. From the
first and second images in the figure, it can be seen that in scenarios where the foreground
object occupies a more significant proportion of the image area, SAM and HQ-SAM, which
solely utilize ViT for extracting image encoding features, may not adequately capture all
local information of the target instance due to ViT’s fixed-size image blocks. This limitation
could result in the final segmentation results focusing more on the background areas and
overlooking the foreground object. On the other hand, the third image demonstrates the
CAE-SAM model proposed in this paper, exhibiting higher finesse in segmenting local
edge details. Furthermore, the fourth image reveals deficiencies in SAM and HQ-SAM’s
handling of the overall integrity of targets within prompt boxes. In contrast, the CAE-SAM
model proposed in this paper shows superior segmentation performance, even when there
is significant color variation among different target parts.

Figure 10. Comparative qualitative experimental results of SAM, HQ-SAM, and CAE-SAM on the
HQSeg-44K dataset.

4.2. Pose Estimation Experimental Results and Analysis

Experimental Configuration. The inference process of the CAE-SAM instance segmen-
tation method and the subsequent target 6-DoF pose estimation based on segmentation
results were both executed on a host equipped with an Intel(R) Core(TM) i5-12490F and
NVIDIA GeForce RTX 3060. In the 6-DoF pose estimation, the point cloud fine registration
component, utilizing a point cloud registration method optimized by a hybrid distance
measure, obviates the need for setting hyperparameters. Key parameter settings include
the normal estimation radius, FPFH feature estimation radius, and the FGR algorithm
distance threshold. These three hyperparameters were set based on the average distance
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radius from Equation (2), respectively, set to 3r, 5r, and 3r. Additionally, the maximum
number of iterations for the FGR algorithm was set to 20, and the maximum number of
corresponding points was set to the quantity of the target point cloud. The number of
points sampled from the CAD-derived point cloud was set to 10,000.

Dataset. To comprehensively evaluate the point cloud registration method, this paper
constructed a high-quality test dataset using CloudCompare software (v2.13.alpha), com-
prising 100 sets of workpieces, covering various states of the workpieces, such as laid flat
and stacked. To ensure data accuracy, Aruco markers were avoided in determining target
poses. The dataset construction involved two main steps: First, color and depth images
of the workpieces were captured using a Intel RealSense D455 camera, with the image
resolution set to 1280 × 720. Further, leveraging the camera’s intrinsic parameters, RGB-D
point clouds were generated and imported into CloudCompare. Secondly, in CloudCom-
pare, we manually aligned CAD-derived point clouds to the positions of the workpieces
in the RGB-D point clouds, matching the actual locations of the workpieces in the images.
Specifically, annotated examples are illustrated in Figure 11.

…

+

RGB-D Point Cloud CAD-Derived Point Cloud

Alignment per Target

Figure 11. Data annotation process and annotation example. Each CAD-derived point cloud is
individually aligned with the RGB-point cloud, and the transformation matrix resulting from this
alignment is used as the ground truth.

Evaluation Metrics. In this section, we employ two metrics, ADD (Average Dis-
tance of Model Points) and ADD-S (Average Distance of Model Points for Symmetric
objects) [18,29,32,33] to assess the accuracy of 6-DoF pose estimation. The ADD metric
quantifies the average Euclidean distance between corresponding points in the point cloud
under the actual and predicted poses, calculating the mean discrepancy of each point’s
transformed location in the point cloud. On the other hand, given the rotational symmetry
of the target workpieces in this study, we also utilize the ADD-S metric, designed explicitly
for symmetric objects. As symmetric objects can have multiple visually indistinguishable
valid poses, ADD-S computes the mean of the shortest distances between all possible
corresponding points under the predicted pose and the actual pose points. The formulas
for calculating ADD and ADD-S are as follows:

ADD =
1
m ∑

v∈V

∥∥(Rv + T)− (R′v + T′)
∥∥

2 (18)

ADD − S =
1
m ∑

v1∈V
min
v2∈V

∥∥(Rv1 + T)− (R′v2 + T′)
∥∥

2 (19)

where m is the number of points in the CAD-derived point cloud V, R and T, respectively,
represent the rotation and translation matrices of the actual pose, R′ and T′, respectively,
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represent the rotation and translation matrices of the predicted pose, and v1 and v2, respec-
tively, represent the closest points under the actual and predicted poses.

Given that current deep learning-based 6-DoF pose estimation algorithms necessitate
tuning on datasets, we streamlined our operations by solely comparing our results with the
optimized ICP algorithm available in Open3D, employing the CAE-SAM proposed in this
paper for target segmentation. During the computation of ADD and ADD-S metrics, we
tallied the number of points across various distance scales, as depicted in Figure 12. The
verification results of the ICP algorithm for ADD and ADD-S were 6.437 mm and 2.844 mm,
respectively, while for our proposed algorithm, they were 2.973 mm and 1.472 mm, respec-
tively. Whether ADD or ADD-S, our method demonstrated superior precision compared to
the ICP algorithm. Notably, the RealSense D455 camera used in this paper has millimeter-
level accuracy, and achieving an ADD-S metric of 1.472 mm indicates that our method
effectively enhances the performance of pose estimation in target stacking scenarios, even
under relatively lower hardware precision conditions. This underscores our approach’s
practical value and technical superiority in addressing pose estimation challenges in real-
world applications.

(a) Validation Results of ICP

(b) Validation Results of the Proposed Method

Figure 12. Comparison of ADD and ADD-S metrics between ICP and the pose estimation algorithm
proposed in this paper. (a) Bar chart of ADD and ADD-S results evaluated by the ICP algorithm, with
scores of 6.437 mm and 2.844 mm, respectively. (b) Bar chart of ADD and ADD-S results evaluated
by the algorithm proposed in this paper, with scores of 2.973 mm and 1.472 mm, respectively.

Figure 13 presents a qualitative demonstration of the two-stage target pose estimation
method proposed in this paper. For input images, the CAE-SAM is initially used for
target instance segmentation, followed by point cloud registration to estimate the target’s
6-DoF pose. It is observable that, compared to the SAM segmentation effects shown
in Figure 4, the segmentation results using the instance segmentation method of this
paper rarely exhibit over-segmentation. It is important to note that the first three rows in
Figure 12 display examples of successful matches, while the last row shows an example of
a failed match. Due to the similarity in target colors, the presence of shadows, and other
factors, missegmentation may still occur in stacked arrangements, leading to erroneous
segmentation of the stacked components, which might further lead to the ineffectiveness
of the point cloud registration method. Therefore, our next objective is to research further
how to enhance the segmentation capability of the instance segmentation algorithm in
situations where the targets are of uniform color and stacked upon each other.
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Inpput Image Pose Estimation ResultsInstance Segmentation Results

Figure 13. Qualitative results of pose estimation experiments. The three columns in the image
represent, respectively, the input RGB image, the segmentation result of CAE-SAM, and the pose
estimation result. The first three rows display successful matching examples, while the fourth row
shows an example of an unsuccessful match.

5. Discussion

This paper introduces an innovative two-stage method for 6-DoF pose estimation that
addresses the challenges of recognizing stacked and unseen objects. By integrating RGB-D
data and CAD models, the method enhances the accuracy and generalizability of pose
estimation. It suits new scenarios and simplifies the model’s deployment and maintenance.

In the first stage, we utilize a zero-shot instance segmentation algorithm based on
SAM. Enhancements in local spatial features and the introducing of global context tokens
significantly improve the model’s ability to process detailed imagery and complex struc-
tures. Moreover, the incorporation of Grounding DINO technology further advances the
model’s automation and user-friendliness. Experimental results on the HQSeg-44K dataset
demonstrate our method’s superiority in mIoU and mBIoU metrics over existing methods,
proving its effectiveness in image segmentation.

The second stage focuses on point cloud registration. Initially, the FPS algorithm is
used for optimizing the distribution of sampling points, followed by coarse registration
with the FGR algorithm. We propose a point cloud registration method based on hybrid
distance metric optimization to circumvent the local optima issues common in traditional
methods due to improper parameter settings. This approach is more flexible and precise,
eliminating the need to set sensitive hyperparameters. Compared with the optimized ICP

340



Electronics 2024, 13, 774

algorithm in Open3D, our method exhibits a clear advantage in the ADD and ADD-S
metrics for unseen targets.

In summary, the two-stage pose estimation method proposed in this paper not only
improves performance but also simplifies the deployment and maintenance of the algo-
rithm, particularly in industrial applications requiring rapid adaptation to new scenar-
ios. With advancements in computing capabilities and further algorithm refinement, this
method is expected to demonstrate even more significant potential in more complex and
dynamic environments.
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Abstract: Reconstructing large-scale scenes using Neural Radiance Fields (NeRFs) is a research
hotspot in 3D computer vision. Existing MLP (multi-layer perception)-based methods often suffer
from issues of underfitting and a lack of fine details in rendering large-scale scenes. Popular solutions
are to divide the scene into small areas for separate modeling or to increase the layer scale of the
MLP network. However, the subsequent problem is that the training cost increases. Moreover,
reconstructing large scenes, unlike object-scale reconstruction, involves a geometrically considerable
increase in the quantity of view data if the prior information of the scene is not effectively utilized. In
this paper, we propose an innovative method named MM-NeRF, which integrates efficient hybrid
features into the NeRF framework to enhance the reconstruction of large-scale scenes. We propose
employing a dual-branch feature capture structure, comprising a multi-resolution 3D hash grid
feature branch and a multi-view 2D prior feature branch. The 3D hash grid feature models geometric
details, while the 2D prior feature supplements local texture information. Our experimental results
show that such integration is sufficient to render realistic novel views with fine details, forming a more
accurate geometric representation. Compared with representative methods in the field, our method
significantly improves the PSNR (Peak Signal-to-Noise Ratio) by approximately 5%. This remarkable
progress underscores the outstanding contribution of our method in the field of large-scene radiance
field reconstruction.

Keywords: NeRF; scene representation; view synthesis; hash grid feature; multi-view prior

1. Introduction

With the development of deep learning technology, learning-based neural networks
are beginning to replace traditional methods in various industries, such as medicine
[1], finance [2], manufacturing [3,4], etc. However, accurate modeling of 3D scenes has
always been a challenging problem. In recent times, the succession of methods employing
Neural Radiance Fields (NeRFs) [5] for the representation of large-scale 3D scenes [6–9]
has achieved notable success. These studies have greatly promoted the development of
the meta-universe, virtual reality, animations, and more. Existing methods mainly use a
progressive update scheme [6,7] to construct the final 3D representation or divide the scene
into multiple partitions, each represented by a multi-layer perception (MLP) model [8,9].
However, these methods based on MLP architecture have the problem of losing details
when simulating large and complex scenes due to the limited model capacity and can
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only generate blurry renderings [6,8,9]. Furthermore, the MLP model learns from zero
knowledge, lacking some prior information input. This results in each scene requiring a
large amount of view source data [6,8], further limiting their application in the real world.

Lately, we noticed that some NeRF variants [10–12] offer insights that may address
the aforementioned challenges. Specifically, some methods focusing on accelerating object-
scale NeRF optimization propose storing local features in a three-dimensional dense voxel
grid [10,11] or hash grid [12]. Grid features make it easy to fit local scene content with
explicitly and independently learned features, replacing extensive MLP computations
with fast feature interpolation. However, using a dense voxel grid to represent large-scale
scenes, the number of parameters will grow cubically as the scene increases, so existing
methods [11] often use smaller resolutions during the optimization process. The multi-
resolution hash grid is another structure that has been used, which applies a hash function
to randomly map three-dimensional points into a hash table. The resolution can be set to a
larger number. However, a failure to provide additional information can lead to suboptimal
results in the presence of hash collisions.

Another distinctive variant that motivated us is the generalizable NeRF [13–16], which
aims to give NeRF the ability to model general scene structures by inputting additional
information from images. Existing methods [13–16] usually employ a pipeline of an image
encoder to embed multi-view images into a prior z and a NeRF as the decoder input 3D
position conditioned on z to generate the target view image. These variants perform well in
object-scale scenes, requiring only a few (e.g., three [13,14]) camera views to synthesize new
views without any retraining. We try to transfer the capabilities of the generalizable NeRF,
using the image encoder to provide scene priors for large-scale scenes, thereby reducing the
dependence on the number of views. Simultaneously, the priors information can serve as a
supplement to the hash grid to solve the suboptimization problem under hash collisions.

To summarize, we integrate the multi-resolution hash grid feature with the gener-
alizable NeRF encoder–decoder pipeline and apply it to large-scale scenes, proposing a
high-resolution refined neural representation method that does not require a large number
of multi-views, called MM-NeRF. Our major contributions can be summarized as follows:

• We propose a new optimization NeRF variant, called MM-NeRF, that is specifically
designed for large-scale unbounded scene modeling.

• We introduce a new pipeline that integrates complementary features from 3D hash
grids and scene priors to achieve efficient and accurate large-scene modeling.

• Our MM-NeRF achieves good scene synthesis representation without requiring a large
number of views, indicating the superior performance of our model.

2. Related Work

2.1. NeRF

NeRFs [5] represent 3D scenes as a radiance field approximated using multi-layer
perception (MLP). The MLP takes the position and viewing direction of 3D points as input
to predict their color and density. Combined with volume rendering [17], NeRF achieves a
photo-realistic rendering quality and has attracted considerable attention. Many follow-
up methods have been developed to improve the quality of synthesized views [18–20],
training and inference speed [12,21–23], explore model generalization based on sparse
views [13,14,24,25], and pose estimation [26–28]. Further, some recent works have de-
veloped NeRF for more complex tasks, such as dynamic scenes [29,30], controllable edit-
ing [31,32], multi-modality [33], etc.

2.2. Large-Scale Scene NeRF

Although the vanilla NeRF [5] was designed only to handle object-scale scenes, scaling
up NeRFs to large-scale scenes such as cities will enable a wider range of applications.
NeRF-W [34] was the first attempt to apply NeRF to outdoor scenes. BungeeNeRF [6] and
NeRFusion [7] propose a progressively updated reconstruction scheme to reconstruct large
indoor and outdoor scenes, respectively. Mega-NeRF [8] and Block-NeRF [9] adopt a divide-
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and-conquer strategy to handle large-scale scenes, decomposing the scene into multiple
regions, each of which is represented by a single NeRF. However, these methods merely
consider the reconstruction results of large scenes, and there is insufficient improvement in
the model framework. Therefore, like most MLP-based NeRFs, the loss of details and a
large number of views in these methods when dealing with large and complex scenes are
still challenging problems to be solved.

2.3. Grid-Based NeRF

NeRFs use MLP to approximate implicit functions for representing 3D scenes, with the
benefit of occupying minimal memory. However, each sampling point in the space needs
to undergo forward calculation by MLP, resulting in a very low efficiency. Instant-ngp [12]
introduces a hash encoding strategy that utilizes hash searches to obtain 3D features and
then connects the NeRF pipeline to achieve rendering output. Hash searches are much
faster than MLP calculation, greatly speeding up NeRF. Plenoxels [10] and DVGO [11]
take a more aggressive approach by directly substituting a dense voxel grid for MLP and
performing volume rendering on the interpolated 3D features. However, both of these
approaches have their limitations. Specifically, hash encoding may encounter issues with
search conflicts, while the representation using only voxel grids becomes memory-intensive
as the scene scale increases. Therefore, in NeRFs of large-scale scenes [35,36], grid-based
features are often used as one of the multiple branching features. Our method also adopts
a similar strategy.

2.4. Generalizable NeRF

Pioneer works [13–16] mix the 2D features independently extracted from each input
view and inject them into the MLP, providing an intuitive mechanism to adapt NeRF.
However, these methods struggle to handle complex scenes effectively due to the lack of
explicit geometric awareness encoding in the features. Following methods [24,37,38] verify
that introducing geometric priors can improve generalization. Particularly, MVSNeRF [24]
constructs a cost volume and then applies a 3D CNN to reconstruct a neural encoding
volume with per-voxel neural features. GeoNeRF [37] further enhances the architecture by
using a cascaded cost volume and incorporating attention modules. NeuRay [38] calculates
a visibility feature map with the cost volumes or depth maps to select whether the 3D point
is visible. All these geometry priors based on cost volumes are sensitive to the choice of
the reference view. In contrast, we introduce a matching-based strategy to incorporate
geometric priors without requiring cost volumes or 3D CNNs.

3. Methods

To effectively represent large-scale scenes, we propose MM-NeRF, which combines
the expertise of grid representation-based methods and prior feature-based methods. We
leverage multi-resolution hash grids to capture as much 3D detail as possible, then we let
the views encoder supplement the missing prior information and finally produce high-
quality renderings with NeRF.

Figure 1 illustrates our overall pipeline. Our method comprises two branches, namely
the multi-resolution hash feature branch and the multi-view priors feature branch. First,
we sample 3D points along rays cast from pixels. Second, the sampling points undergo
the multi-resolution hash branch to obtain multi-resolution grid features with geometric
significance. Simultaneously, they pass through the multi-view prior branch to obtain prior
features. These features, along with position encoding (PE), are then fed into the decoder,
which predicts density σ and color values c. Finally, the image colors can be computed
through volume rendering.

In Section 3.1, we describe the feature branch of multi-resolution grid representation.
In Section 3.2, we introduce the prior feature extraction branch based on the image encoder
and attention mechanism. Finally, Section 3.3 provides detailed insights into how NeRFs
implement the rendering output.
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Figure 1. Overview. Our method involves two branches: a multi-resolution hash grid feature branch
and a multi-view prior feature branch, the output of which is combined with position encoding (PE)
and is fed into in the decoder to predict density σ and color value c.

3.1. Multi-Resolution Hash Grid Feature

Recall that NeRFs predict point density and color by passing point coordinates’ posi-
tion encoding (PE) [5] into an 8-layer MLP. The compact model encodes the entire scene
content in an MLP that takes PE embeddings as input, but it is difficult to expand the scene
due to the limitation of the model capacity. In contrast, the multi-resolution hash grid [12]
is an efficient data structure, which divides space into closely adjacent small cubic cells,
similar to a voxel grid. However, the features of each unit area are not stored on the cube’s
vertices but instead stored centrally in the form of a hash table. And the space is repeatedly
divided at different resolutions. Therefore, unlike mapping 3D points to a fixed-size voxel
grid, a multi-resolution hash grid does not significantly increase the number of parameters
when dealing with an increase in the scale of the scene.

The number of parameters of the multi-resolution hash grid is bounded by L · T · F,
where L is the number of resolutions and T and F are the hash table size and feature
dimension of each resolution. We set L = 16, T = 219, and F = 2 to balance the trade-
off between capacity and efficiency, so the total number of parameters is 224. Figure 2
illustrates the steps for obtaining features for our multi-resolution hash grid. For a given
input coordinate x, first, obtain the indices V = {(pi)

8
i=1 | pi ∈ R

3} of surrounding
voxel vertices under the grid at different resolutions (red and blue in Figure 2 represent
two different resolutions). According to the hash function h : V → Y, fetch the features
from the hash table and perform linear interpolation based on the relative position of x

in different resolution grids. Then, we concatenate the results of each level together to
form multi-resolution hash features y of point x, as one of the branch inputs of NeRFs.
For a vertex p = (px, py, pz), we adopt the hash function and resolution settings used in
Instant-ngp [12]:

h(p) = (⊕ piπi) mod T, i = x, y, z, (1)

where ⊕ represents the bitwise XOR operation and πi is the unique large prime number,
πx = 1, πy = 2,654,435,761, and πz = 805,459,861, respectively. The resolution of each
level is chosen to be a geometric progression between the coarsest and finest resolutions
[Nmin, Nmax]:

Nl =
⌊

Nmin · bl
⌋

, (2)

b = exp(
ln Nmax − ln Nmin

L − 1
). (3)
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Figure 2. Illustration of multi-resolution hash features. For a given input coordinate x, we locate
surrounding vertices at different resolution levels and fetch their F-dimensional feature vectors in a
hash table then linearly interpolate to obtain the features of x. The features of the vertices are updated
via the gradients returned by the MLP.

Some works [12,36] have shown that multi-resolution hash grid representation is sig-
nificantly better than dense voxel representation when dealing with scene scale expansion.
However, due to collision issues in hash mapping, the interpolated features inevitably
contain information from multiple distinct surface points, limiting the performance of
the NeRF model. An intuitive solution is to increase the hash table size T to achieve im-
provements, at the cost of a significant increase in the number of parameters and a longer
optimization time. This result prompted us to introduce an effective strategy to enhance
the hash grid features for large-scale scenes by introducing prior information.

3.2. Multi-View Priors Feature

Previous generalized NeRF [13–16,24,37,38] methods typically used the CNN+MLP
architecture. The CNN serves as an encoder for extracting 2D features from input views.
These features are then aggregated in various ways and propagated backward [13–16] or
used to construct an intermediate product [24,37,38] (e.g., a cost volume). MLP works
as a decoder to output color and density. Our goal is to develop a similar architecture,
but, different from others, we propose to use the Transformer for cross-view interactions
for CNN features, followed by projecting 3D points onto them for interpolation. The
lower branch in Figure 1 shows the specific details of our framework, which consists of an
encoder fθ consisting of a CNN and a Transformer to extract cross-view aligned features.
The decoder gφ adopts the structure of IBRNet [14], including MLP and the Transformer,
which predict color and density, respectively, for volume rendering.

Regarding the encoder, we first use a weight-shared CNN [39] to extract down-
sampled convolutional features {Fc

i }N
i=1 from N input views {Ii}N

i=1. Features between
different views are interacted with through a Transformer with cross-attention to further
enhance the feature quality. The process can be described as follows:

T : (Fc
1, Fc

2, · · · , Fc
N) → (F1, F2, · · · , FN), (4)

where T represents the Transformer. For its structure, we followed GMFlow [40]. The
convolutional features {Fc

i }N
i=1 are input to the Transformer through shift windows. To

mitigate the impact of noise, we perform a summation followed by averaging on the
Transformer features. As shown in Figure 3, for a given 3D point position x, we first
project it onto the 2D Transformer features {Fi}N

i=1 of the views {Ii}N
i=1 using the camera

parameters {Mi}N
i=1 and then perform bilinear sampling to obtain features {fi}N

i=1. We
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divide the feature vectors {fi}N
i=1 into G groups along the channel dimension and then sum

and average the features of each group:

z =

G
∑

g=1

N
∑

i=1
f
(g)
i

N · G
, (5)

where z represents the cross-view feature of 3D point x, which is used as a prior in our
method to capture view-consistent matching information.

Figure 3. The encoder generates 2D features for cross-view interaction on N input images. Project 3D
points onto 2D feature planes for bilinear sampling. Aggregating the sampled features of different
views in the channel direction forms a prior fed to the MLP.

3.3. NeRF Render Network

For the original input of the render network, we are the same as the vanilla NeRF [5],
which involves hierarchical sampling and positional encoding (PE). Building upon this,
we added the grid feature y from Section 3.1 and the prior z from Section 3.2 as additional
inputs to the decoder gφ for predicting the color and density of 3D point x. y and z represent
the features in 3D space and the features of the 2D view, respectively. By fusing these two
features we are able to not only capture the three-dimensional structure in space but also
obtain prior information in the 2D perspective. The input–output representation of the
decoder can be expressed as follows:

gφ : (d̃, x̃, y, z) → (c, σ), (6)

where x̃ and d̃ represent the high-frequency encoding results of the 3D point and the
viewing direction, y denotes the multi-resolution hash-grid features, and z is the prior
capturing view-consistent information. The output is a pair of color c and density value σ.

Considering the limited decoding capabilities of a simple MLP, we construct a render-
ing network including both MLP and a Transformer, following the previous work [14]. As
shown in Figure 1, the Transformer can introduce cross-point interactions by fusing the
rendered information along a ray, predicting the density σ. And the MLP predicts color
c. Using the predicted color c and volume density σ from the decoder, a new view can be
synthesized via volume rendering. Volume rendering calculates the color C for a pixel by
accumulating colors according to the density for all sampling points on the corresponding
rays passing through the pixel:
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C =
K

∑
i=1

Ti(1 − exp(−σiδi))ci, (7)

Ti = exp(−
i−1

∑
j

σiδi), (8)

where ci and σi refer to the color and density of the i-th sampled 3D point on the ray. Ti is
the volume transmittance, and δi denotes the distance between adjacent points. K is the
total number of 3D points sampled on a ray.

We train the model end-to-end using only the photometric loss function, without
requiring any other ground-truth geometric data:

L = ∑
p∈P

‖Cp − C̃p‖2
2, (9)

where P denotes the set of pixels within one training batch and Cp and C̃p refer to the
rendered color and the ground-truth color of pixel p, respectively.

Algorithm 1 shows the pseudocode of our proposed algorithm to better understand
our method and implementation process.

Algorithm 1 Optimization process of MM-NeRF.

Input: multi-view images {Ii}N
i=1, camera poses {Mi}N

i=1, system initialization parameters
S

Parameter: number of sampling points N, max frequency for PE Mf , angle threshold of
the reference view θ, hash parameter L, T, F, grid resolutions range Nmin, Nmax

1: {Nl} ← Nmin, Nmax � Formulas (2) and (3)
2: {o, d, t} ← {Mi}N

i=1 � Ray parameters
3: for iter=1,2,. . . do
4: {x} ← {o, d, t} � Sampling points
5: V ← x � Surrounding voxel vertices
6: FV ← hash(V) � Formula (1)
7: y ← FV � Grid Feature
8: (I j, M j)

K
j=1 ← ({Ii}N

i=1, {Mi}N
i=1, θ) � Reference views

9: {Fc
j}K

j=1 ← CNN({I j}K
j=1)

10: {F j}K
j=1 ← T ({Fc

j}K
j=1) � Formula (4)

11: z ← (F j, M j)
K
j=1 � Priors feature

12: d̃, x̃ = PE(d, x) � Position encoding
13: c, σ ← (d̃, x̃, y, z) � Formula (6)
14: I′i ← (c, σ) � Formulas (7) and (8)
15: L ← ({Ii}N

i=1, {I′i }N
i=1) � Formula (9)

16: S ← S +∇SL
17: end for
Output: {I′i}N

i=1

4. Results

4.1. Data

To evaluate our proposed method, we used the public large-scale dataset provided
by BungeeNeRF [6]. The dataset was synthesized using Google Earth Studio, capturing
multi-scale city images from drone to satellite height using specified camera positions. And
the data quality is sufficient to simulate real-world challenges. We used two of these scenes
for experiments.

To further verify our method’s generalizability in the real world, we conducted experi-
ments on three real-world scenes of the UrbanScene3D dataset [41]. In addition, we also
created our dataset, which includes multi-view images of four architectural scenes, each
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taken at a different height range. Please see Table 1 for details. We employed COLMAP [42]
to obtain the initial camera pose.

Table 1. Details of the real-world scene dataset we created: all four scenes were captured at various
heights from the drone perspectives, and then the video was framed to obtain a certain number of
views. Finally, we used COLMAP to estimate camera poses.

Scene 1,2 Building
Height (m)

Viewing
Height (m)

Number of
Views

Aerospace Information Museum, Jinan 21 20–30 65
Yellow River Tower, Binzhou 55.6 10–80 153

Meixihu Arts Center, Changsha 46.8 60–80 81
Greenland Xindu Mall, Hefei 188 100–200 169

1 In the following, AIM, YRT, MAC, and GXM are used to refer to the Aerospace Information Museum, Yellow
River Tower, Meixihu Arts Center, and Greenland Xindu Mall, respectively. 2 AIM is derived from our drone
collection, while YRT, MAC, and GXM are sourced from internet videos.

4.2. Evaluation

To assess the effectiveness of our method, we employed three metrics: the PSNR,
SSIM [43], and LPIPS [44]. The results are presented in Tables 2–4. We first compared
our method with the classical NeRF [5] and Mip-NeRF [18]. As expected, these general
methods, not specifically optimized for large scenes, fall short compared to ours.

We then compared it with large-scale NeRF variants (BungeeNeRF [6], Mega-NeRF [8]).
Compared to these purely MLP-based methods, our method brings sharper geometry and
finer details. In particular, due to the inherent limitations in the capacity of MLP, it of-
ten fails to simulate rapid and diverse changes in geometry and color, such as building
exterior walls with multiple textures. Although dividing the scene into small regions (Mega-
NeRF [8]) or increasing the structure size of MLPs (BungeeNeRF [6]) can be somewhat
helpful, the rendered results still appear overly smooth. In contrast, guided by the learned
grid features, the sampling points are effectively compressed close to the scene surface and
coupled with multi-view priors, providing rich geometric and surface information and
supplementing the missing scene details in grid features.

In addition, we also extended the comparative analysis to a wider range of non-NeRF
methods [11,45] to verify the superiority of our method. The results are shown in Tables 2–4.

For Google scenes, as shown in Table 2, our method outperforms other methods
in PSNR, LPIPS, and SSIM. Specifically, our method achieves 24.963 dB and 24.778 dB
values for the PSNR for 56Leonard and Transamerica, respectively, which is an average
improvement of 2.5 dB compared to the optimal method. The rendering results presented
in Figure 4 indicate that our method produces more refined novel views. For large urban
scenes with either a distant (top row in Figure 4) or a closer view (bottom row in Figure 4),
the results from other methods could exhibit blurriness, while our method ensures detail
preservation, resulting in clearer, less noisy outcomes that excel in overall quality and detail.

For real-world scenes, Tables 3 and 4 outlines the metrics for our method and others.
We still outperform others across three metrics. Specifically, our method achieves an
average PSNR of 24.296 dB. There is an average improvement of 1 dB compared to the
optimal method. In Figures 5 and 6, we present the rendering results for real-world scenes,
showcasing the notable superiority of our method in terms of details compared to other
methods. As shown in the figures, BungeeNeRF and Mega-NeRF generate blurry textures
and smooth boundaries. In contrast, our method can synthesize novel views with finer
textures and clear boundaries that are very close to the ground truth.
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Table 2. Quantitative comparison on Google scenes dataset. We report PSNR (↑), LPIPS (↑), and SSIM
(↓) metrics on the test view. We highlighted the best and second-best results.

56Leonard (Avg.) Transamerica (Avg.)

PSNR↑ 1 LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

NeRF [5] 21.107 0.335 0.611 21.420 0.344 0.625
Mip-NeRF [18] 21.642 0.299 0.695 21.820 0.331 0.687

DVGO [11] 21.317 0.323 0.631 21.467 0.337 0.606
TensoRF [45] 22.289 0.310 0.658 22.023 0.303 0.664

Mega-NeRF [8] 22.425 0.372 0.680 22.546 0.283 0.707
BungeeNeRF [6] 23.058 3 0.245 0.736 23.232 0.232 0.721
MM-NeRF (ours) 24.963 2 0.182 0.814 24.778 0.197 0.802

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better. 2 Bold indicates the best results. 3 Underlined indicates the second-best results.

Figure 4. A qualitative comparison between our method and others. The MLP-based methods
(BungeeNeRF and Mega-NeRF) suffer from severe blurring in different distances of views. Our
method achieves a photorealistic quality at novel views compared to ground-truth images.

Table 3. Quantitative comparison on UrbanScene3D dataset. We report PSNR(↑), LPIPS(↑), and
SSIM(↓) metrics on the test view. We highlighted the best and second-best results.

UrbanScene3D-Campus UrbanScene3D-Residence UrbanScene3D-Sci-Art
PSNR↑

1 LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

NeRF [5] 21.276 0.357 0.579 20.937 0.415 0.528 21.104 0.456 0.580
Mip-NeRF [18] 21.322 0.298 0.607 21.193 0.394 0.585 21.284 0.418 0.542

DVGO [11] 22.105 0.254 0.643 21.919 0.344 0.628 22.312 0.427 0.629
TensoRF [45] 22.683 0.228 0.689 22.563 0.270 0.680 22.425 0.337 0.618

Mega-NeRF [8] 23.417 3 0.171 0.751 22.468 0.243 0.673 22.861 0.244 0.711
BungeeNeRF [6] 22.917 0.189 0.722 22.342 0.285 0.598 22.632 0.308 0.620
MM-NeRF (ours) 24.126 2 0.158 0.807 23.514 0.164 0.757 23.965 0.166 0.802

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better. 2 Bold indicates the best results. 3 Underlined indicates the second-best results.

We compared MM-NeRF with other methods in the mentioned scenes. Unlike other
NeRF methods that lack 3D grid features for explicit geometry learning, MM-NeRF avoids
local geometric deformation issues. For instance, in row 2 of Figure 4, BungeeNeRF and
MegaNeRF exhibit misaligned building exterior walls. This error is even more noticeable in
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the enlarged view of a street lamp in row 3 of Figure 6. In addition, due to large-scale scenes
with limited views and substantial view differences, methods without a priors feature input
struggle to synthesize new view RGB values, resulting in numerous artifacts, especially in
complex texture areas (e.g., Figure 5, rows 2 and 3).

Figure 5. Qualitative comparison shows that our method achieves better visual quality and is more
photorealistic in three UrbanScene3D scenes.

Table 4. Quantitative comparison on our real-world scenes dataset. We report PSNR(↑), LPIPS(↑),
and SSIM(↓) metrics on the test view. We highlighted the best and second-best results.

AIM (Avg.) YRT (Avg.) MAC (Avg.) GXM (Avg.)

PSNR↑ 1 LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

NeRF [5] 21.390 0.259 0.666 21.577 0.223 0.603 22.580 0.193 0.701 20.976 0.279 0.523
Mip-NeRF [18] 22.257 0.202 0.696 21.624 0.241 0.650 22.518 0.199 0.710 22.976 0.183 0.714

DVGO [11] 22.190 0.227 0.629 21.997 0.242 0.655 23.140 0.188 0.723 23.428 0.177 0.760
TensoRF [45] 22.374 0.211 0.729 22.224 0.189 0.715 23.304 0.177 0.731 23.576 0.169 0.784

Mega-NeRF [8] 22.612 0.172 0.769 22.641 0.209 0.677 23.381 0.174 0.726 24.316 0.156 0.807
BungeeNeRF [6] 22.955 3 0.185 0.716 23.525 0.147 0.774 23.465 0.167 0.742 24.119 0.161 0.814
MM-NeRF (ours) 24.125 2 0.152 0.834 24.872 0.150 0.801 24.322 0.133 0.884 25.149 0.137 0.844

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better. 2 Bold indicates the best results. 3 Underlined indicates the second-best results.

Contrastingly, MM-NeRF’s grid features focus on geometry learning, while the prior
feature branch encodes texture space. Utilizing both as additional inputs ensures accurate
and consistent rendering, yielding precise geometry and detailed texture colors. Row 2
of Figure 6 illustrates MM-NeRF’s ability to restore detailed information in distant, dense
buildings, significantly enhancing the rendering quality for complex areas.
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Figure 6. Qualitative comparisons show that our method still performs best on the four real-world
scene datasets we created.

4.3. Ablation

To validate the effectiveness of our network, we conducted ablation experiments on
Google scenes. First, we proved the impact of the resolution hash grid (Table 5). Further,
we studied the effect of the hash grid resolution parameter L (Table 6). Then, we analyzed
the impact of multi-view prior features (Table 7). In addition, we also explored the effect of
the number of reference views on multi-view prior features (Table 8).

In Table 5, we performed ablation experiments on multi-resolution hash grid features.
Figure 7 clearly shows that our proposed multi-resolution hash grid branch can match local
scene content explicitly and accurately. Experiments show that NeRFs can benefit from
the local features encoded in grid features, and the PSNR is improved by about 1 dB. This
result confirms the effectiveness of our multi-resolution hash features in improving the
quality of radiation field rendering.

Table 5. Comparison with and without multi-resolution grid feature on Google scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

Without multi-resolution grid feature 22.947 0.261 0.599
With multi-resolution grid feature 23.879 0.205 0.735

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.
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Figure 7. Visualization of branches with/without multi-resolution grid. Adding multi-resolution
grid can render more details.

To enhance the stability of multi-resolution hash grids, we explore the impact of
different resolution grids on the results. Table 6 illustrates the impact of the grid resolution
on rendering results. We find that a higher grid resolution does not necessarily lead to
better results, as convergence issues may arise with an increasing resolution. During our
experiments, the optimal resolution was L = 16, which can better balance the rendering
quality of the training time.

Table 6. Impact of different hash resolution grid settings on Google scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

L = 2 22.866 0.301 0.563
L = 4 22.890 0.289 0.616
L = 8 23.496 0.253 0.688
L = 16 23.879 0.205 0.735

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.

To effectively utilize the features existing in multi-view images, we designed a multi-
view prior feature branch. Experimental results confirm the benefits of adding multi-view
prior features. The quantitative comparisons provided in Table 7 strongly support the
superior performance achieved by integrating multi-view prior features into our method.
There is a gain of approximately 1.5 dB in the PSNR.

Table 7. Comparison with and without multi-view prior feature on Google scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

Without multi-view prior feature 22.518 0.288 0.629
With multi-view prior feature 24.079 0.193 0.791

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.

Further, we explore the performance of the network under different numbers of
reference views. Table 8 presents the quantitative results of this experiment, demonstrating
that the more reference views within a certain angular range, the better the performance.
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Table 8. Impact of different number of reference view settings within 120◦ viewing angle on Google
scenes.

PSNR↑ 1 LPIPS↓ SSIM↑

n = 1 23.264 0.279 0.702
n = 2 23.613 0.255 0.691
n = 3 23.892 0.223 0.727
n = 4 23.950 0.214 0.751

1 The upward arrow indicates that the higher the metric, the better. The downward arrow indicates that the lower
the metric, the better.

5. Discussion

Previous NeRF methods [6–9] have certain limitations in large scene view synthesis,
including insufficient detail and the need for a large amount of view source data. To
address these challenges, we introduce a multi-resolution hash grid feature branch and a
multi-view prior feature branch into the classic NeRF framework. The multi-view prior
feature branch maximizes the ability to extract as much information as possible from 2D
images and then uses multi-resolution grids with geometric properties for modeling, which
improves the overall representation ability of large scene NeRF.

Our method can be applied well in real-world scenes. For example, in terms of
virtual tourism, by creating realistic digital twins of attractions, users can learn about the
destination through a virtual travel experience without actually going there. In the dataset
we created, YRT is a tourist attraction, and using our method can generate realistic views
from any angle, allowing users to freely tour the virtual environment. Furthermore, our
method can be applied to the metaverse. Based on the current local area modeling, it can
be expanded to the city level in the future to build a three-dimensional model of the entire
city as a digital map of the metaverse.

In addition, since the multi-resolution hash grid stores explicit geometric information
and texture feature characteristics, the mesh and texture can be generated by combining
classic algorithms (e.g., Marching cubes [46]) and 3D tools (e.g., Xatlas [47]), which can
integrate well with existing 3D rendering pipelines, expanding their use in downstream
applications.

6. Conclusions

The method we propose, MM-NeRF, represents an advancement in the field of large-
scale scene modeling for NeRF. Previous methods of handling large-scale reconstructions
often employed divide-and-conquer strategies or increased the network size. In contrast,
we propose a novel architecture that integrates efficient hybrid feature input based on the
NeRF architecture, including 3D mesh features based on explicit modeling and scene priors
obtained from multi-views. The injection of these mixed features into the NeRF network
brings supplementary information, which makes up for the limitations of the general NeRF,
such as low fitting and insufficient refinement due to the sparsity of large scene views. We
addressed several key challenges and made several contributions:

(1) We combined an MLP-based NeRF with explicitly constructed feature grids and
introduced a multi-resolution hash grid feature branch to effectively encode local and
global scene information, significantly improving the accuracy of large-scale scene
modeling.

(2) We noticed that previous NeRF methods do not fully utilize the potential of multi-
view prior information. We designed a view encoder to extract and integrate features
from multiple views to obtain better results.

Despite the fact that our proposed method improves the rendering quality to a certain
extent, our model inherits some limitations of NeRF-based methods:
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(1) A slow training phase: although hash mapping is faster than MLP queries, the entire
system requires more training epochs (about 200–300 epochs for different scenes)
since the other feature branch has a more complex encoder structure.

(2) Handling a large number of high-resolution images: we adopt the existing mixed-ray
batch sampling method for training, which is very inefficient without distributed
training.

In conclusion, we propose a new variant of optimized NeRF, MM-NeRF, specifically
designed for large-scale scene modeling, which takes a step forward in solving the chal-
lenges of the large-scene NeRF. MM-NeRF combines a multi-resolution hash grid and
cross-view prior feature acquisition to solve the problems of previous methods that are
not precise enough in large scenes and rely on a large number of views. But MM-NeRF
can be further explored and improved. For example, by capturing and modeling dynamic
objects in a scene or exploring the use of prompts to enable controllable view synthesis,
these studies could help improve the overall usability of NeRF in large scenes.
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Abstract: To solve the problem of reverse car searching in intelligent multi-story garages or parking
lots, the reverse car searching method based on the intelligent garage of the PC client and mobile
client APP was studied, and the interface design and function development of the system’s PC and
mobile client APP were carried out. YOLOv5 network and LPRNet network were used for license
plate location and recognition to realize parking and entry detection. The indoor pedestrian location
method based on RSSI fingerprint signal fusion BPNet network and KNN algorithm was studied,
and the location accuracy within 2.5 m was found to be 100%. The research on the A* algorithm
based on spatial accessibility was conducted to realize the reverse car search function. The research
results indicate that the guidance of the vehicle finding path can be completed while the number
of invalid search nodes for the example maps was reduced by more than 55.0%, and the operating
efficiency of the algorithm increased to 28.5%.

Keywords: intelligent garages; license plate positioning; license plate recognition; improved A*
algorithm; path planning

1. Introduction

In the 21st century, as the most important mode of travel in modern society, the
automobile has brought many conveniences to people’s lives in the aspect of dynamic traffic.
Resulting problems are issues of automation and intelligent updates during vehicle parking
management in urban static traffic management [1–3]. In the development of automatic
measuring technology and intelligent controlling algorithms of parking management [4–6],
due to indoor positioning of GPS signals not being applied, the bottleneck is the problem of
accurate location within the garage or indoor parking lots [7,8], the setting up and updating
of indoor maps [9], the path optimization algorithm [10], and other key issues [11] in
parking guidance and reverse car searching. Therefore, this is one of the positive means
and practical technical problems to be solved in the field of measurement and control
management for static traffic to explore the reverse car searching technology of intelligent
parking garages.

With the rapid development of computer vision, measurement and control technology,
and embedded technology, the measurement and control mode of garage management is
constantly being updated, society-wide demand of users for parking guidance and reverse
car searching functions continue to rise for large and medium-sized garages or parking
lots. In this research background, to meet social needs, it is of great practical significance
to promote the development of static traffic automation to study vehicle access intelligent
management and control technology in time [12].

Take China, for example, according to the latest statistics released by the 2023 Police
Department [13], by the end of September, the total number of Chinese automobiles in 2023
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had exceeded 430 million. The number of people who own cars had passed 520 million,
with drivers accounting for 480 million. Nationwide, there are more than 2 million cars
within 43 cities, while there are more than 3 million within 25 cities. Car ownership in
booming cities such as Beijing has topped 6 million [14]. However, with the rapid growth
of commercial vehicles and passenger vehicles, the pressure of motor vehicle parking
management is gradually rising. The increase in the number and scale of parking lots
is to ease the parking problem; the accompanying problem is that it is difficult to find
a car in a large or medium-sized multi-story garage all having a similar structure and
passageways [15,16]. At the same time, due to the intelligent management level being
low in current large- or medium-sized garages, it might cause users to wander around in
parking lots with hundreds or thousands of parking spaces, wasting the valuable time of
car owners, and perhaps cause hidden dangers to traffic safety in the garage or indoor
parking lots [17].

Therefore, in areas such as hospitals, supermarkets, and shopping centers, where
there is a higher frequency and density of population movement, integrated services
such as convenient parking guidance and reverse car searching are provided. While
meeting the needs for convenient transportation, they are important means to increase the
passenger flow and improve the satisfaction degree, and has reached consensus in many
countries of the worldwide [18]. At present, the possibility can be provided of realizing
automation and intelligence management for parking lots within garages following the fast
development of machine learning, big data, image recognition, edge computing, and other
technologies [19,20]. Nowadays, parking guidance and automatic charge management
have been realized to a certain extent for automatic parking management systems, but the
reverse car searching system has not been popularized in most garages. In the problem of
finding a car with the reverse car searching system, there are still some technical problems
to be improved such as vehicle identification, indoor location, path planning, and software
development, etc. To explore the indoor location technology and path planning algorithm
for management of large- or medium-sized multi-story parking lots, to design a reverse car
searching system based software service, simple and, easy to operate, are effective ways to
fill up the gap of people’s demand for car services in the Parking Guidance and Information
System (PGIS) [21]. Therefore, this paper focuses on system design, user locating in indoor
parking lots within a garage, map setting, the route optimization algorithm, and other
linking problems, as well as the design of an applicable intelligent garage reverse car
searching system, to overcome the weak condition restriction of the GPS signal in large- or
medium-sized or underground parking scenarios, in order to meet the needs of car owners
for parking in garages and finding intelligent guidance.

2. Scheme Design

The schematic diagram of the car searching system in the multi-story garage is shown
in Figure 1.

The reverse car searching system was improved based on the existing intelligent
parking management system [22]. The image captured by the surveillance camera is stored
in the local video storage device of the garage, and the license plate image is uploaded to
the central server of the reverse car searching system for recognition.

The user terminal processing logic diagram is shown in Figure 2. The PTZ (Pan Tilt
Zoom Camera, Model: DS-2DE3Q122MY-T/GLSE, Hikvision, Hangzhou, China) device is
used to monitor the parking space in the garages in real-time, and the monitoring video
images are uploaded to the local server for storage and reported to the system center server
for vehicle data processing.
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Figure 1. The schematic diagram of the car searching system.

Figure 2. The processing logic diagram of the user terminal.

When the server recognizes the status update of the vehicle entry, it updates the
binding status of the vehicle license plate information and the parking space in the database.
When the user enters the target vehicle information in the car search terminal, the user
initiates a data retrieval request to the server to query the coordinate information of the
parking space of the vehicle. At the same time, the terminal sends the WIFI signal source
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information within range to the server, and uses the RSSI fingerprint information for
positioning [23,24]. The point information of the client and the target parking space is
planned [25,26], the optimal path information is returned to the client, and the data are
refreshed in real-time to achieve the effect of real-time positioning.

3. Method Research

The multi-story parking lot of a large- and medium-sized underground garage was
selected as a subject to study the intelligent reverse car searching methods. The key
technologies to be solved include parking location detection [27], license plate image
location [28,29], license plate recognition [30], indoor location [31–34], indoor mapping
simulation [35], path planning [36], etc.

3.1. Parking Vehicle Detection and Identification Module

The module consists of hardware parts such as a camera and power supply. The
algorithm processes the parking monitoring data collected by the hardware, locates the
license plate information by using the YOLOv5 algorithm, and obtains the license plate
location information from the video images of the camera. According to the binding
information between the camera and the parking space recorded in the database, the point
range of the hot spot area is obtained, and whether there is a vehicle parked in the hot spot
area of the parking space is determined in the monitoring image of the camera. LPRnet is
used to identify the license plate of parked vehicles and write the license plate information
into the database for license plate parking space binding [37–39].

3.1.1. YOLOv5 Network

The license plate location algorithm uses the YOLOv5 algorithm, which has the
advantages of high recognition accuracy and fast response speed. Its principle structure
diagram is shown in Figure 3.

Figure 3. Schematic structure diagram of the YOLOv5 algorithm.

YOLOv5 is a bottleneck composed of Focus, bottleneck, bottleneck CSP, and SPP.
The Focus layer is similar to the pass through layer of YOLOv3, converting information

from width and length to channel dimensions, and then separating different features by
convolution. The Focus layer is used for downsampling (downsampling in neural networks
is mainly used to reduce the number of parameters, reduce the dimension, and increase
local sensitivity). Compared with the convolution layer and pooling layer whose step
size is less than 2, the Focus layer can effectively reduce the information loss caused by
subsampling and reduce the calculation amount.

The structure of the bottleneck identifies the features of the image through 1 × 1
and 3 × 3 convolution, where the convolution process first halves and then doubles the
number of channels. Therefore, the number of channels does not change before and after
the Bottleneck module is passed.
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On the input side, YOLOv5 did not change much compared with YOLOv4, and
Mosaic data enhancement was used in both cases. Mosaic was proposed in 2019, and the
data enhancement method of CutMix was used to improve it. The previous two images
were randomly cut, combined, and assembled into four images. In this way, many data
containing small targets are obtained which enrich the data set, and improve the detection
ability of small targets.

3.1.2. License Plate Correction Module Design

After passing the YOLOv7 target detection network, the four vertex coordinates of the
license plate are obtained. To obtain a more accurate license plate image, it is necessary to
use perspective transformation for processing. Perspective transformation, also known as
projection mapping, works by remapping an image onto another visual plane, as shown in
Figure 4.

Figure 4. Perspective transformation diagram.

Perspective transformation can convert a rectangle into any quadrilateral, or convert
any quadrilateral into a rectangle. Perspective transformation is crucial for obtaining
accurate license plate images. This process involves remapping an image onto another
visual plane, which is essential for license plate recognition systems [40]. The calculation
procedure can be referred to as in Formula (1):

[x, y, w] = [u, v, w]

⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ (1)

Perspective transformation before and after the relationship between the angular
point hypothesis is as follows: (0, 0) → (x0, y0), (1, 0) → (x1, y1), (1, 1) → (x2, y2),
(0, 1) → (x3, y3). The transformation matrix is derived as shown in Formula (2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = a31
x1 = a11 + a31 − a13x2
x2 = a11 + a21 − a13x2 − a23x2
x3 = a21 + a21 − a23x3
y0 = a32
y1 = a12 + a32 − a13y1
y2 = a12 + a22 + a32 − a23y2 − a23y2
y3 = a22 + a32 − a23y3

(2)

According to perspective transformation, the rotationally distorted image is corrected
to the front-facing image after perspective transformation, as shown in Figure 5.
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Figure 5. The image is changed by perspective transformation.

According to the result of the correction, perspective transformation can effectively
correct the image. The corrected license plate image provides input for subsequent charac-
ter recognition.

3.1.3. Design of License Plate Recognition Module

LPRnet is an end-to-end LPR (license plate recognition) algorithm without
pre-segmentation of characters, demonstrating effectiveness in complex scenarios, such
as recognizing Chinese license plates, a testament to the advancements in deep learning
applied to computer vision tasks [41]. Convolutional neural networks emphasize their
effectiveness and advantages in computer vision tasks such as image classification, object
detection, and semantic segmentation.

The LPRnet architecture does not use an RNN real-time recognition system, and the
lightweight LPRnet network still has better performance when detecting relatively complex
Chinese license plates. The LPRnet backbone network receives the rawest RGB image
as input and computes the spatial distribution of a large number of functions. The wide
convolution (1 × 13 convolution core) replaces the LSTM-based RNN neural network with
a context structure of local characters, thereby removing the reliance on RNNS. The output
of a subnetwork can be viewed as a sequence with probabilities representing the likelihood
of corresponding characters, the length of which is only equal to the width of the input
image. Since the decoder output does not correspond to the length of the target sequence, a
CTC loss function is introduced without the need for segmented end-to-end training. The
CTC loss function is a widely used method to solve inconsistencies between input and
output sequences.

A raw RGB image is an RGB image with a source network that is used as input to a
CNN and to extract image features. The context-associated 1 × 13 is used to connect the
kernel instead of LSTM-based RNNS. The output of the backbone subnet can be a sequence
representing the corresponding character probabilities, the length of which is related to the
width of the input image. Because the network output code is not equal to the length of
the license plate, this experiment adopts the CTC loss method for end-to-end training. In
addition, CTC converts the probability of each time step into the output probability.

3.1.4. Model Results and Analysis

The positioning results of the license plate using the YOLOv5 model for the video
image are shown in Figure 6.

 
Figure 6. The positioning results of the license plate using the YOLOv5 model.
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The main parameters of theLPRnet network model are shown in Table 1. It is run
on Windows of the LPRnet model, with an CPU of Intel(R) Core™ i5-12490F, GPU of the
GTX3060Ti, and Python version 3.9.

Table 1. Parameter list of the LPRnet model.

Key Value

img_size [94, 24]
max_epoch 200

dropout_rate 0.5
UnFreeze_Epoch 300

learning_rate 0.001
lpr_max_len 8

train_batch_size 64
test_batch_size 64
weight_decay 2e−5

lr_schedule [20, 40, 60, 80, 100]

The recognition results using the LPRNet model are shown in Figure 7.

 
Figure 7. The recognition results of the LPRNet model.

3.2. Indoor Positioning Service Module

In the study, an indoor location method based on RSSI fingerprint identification
technology was chosen to locate car-seeking users in the parking lot [42]. A simulated un-
derground parking lot is selected to draw and simulate a map under the off-line conditions.
By collecting off-line WIFI fingerprint data and using the BP neural network-based depth
learning method for location regression prediction, the position information of floor and
plane coordinates can be obtained [43]. Then, the KNN nearest neighbor location algo-
rithm [44] is used to locate K known data points near BP neural network prediction points.

3.2.1. WIFI Fingerprint Database Positioning Technology

The WIFI fingerprint positioning technology is an effective method for indoor position-
ing in complex garage layouts, leveraging RSSI values for precise location mapping [45,46].
The layout of the indoor garages is complicated. With the different settings of the spatial
facilities of the building structure, various physical environmental factors have an impact
on the RSSI value during the WIFI signal propagation. Therefore, in the same space, each
RSSI value of each location is different, and the location fingerprint positioning method
takes advantage of this feature to use each different RSSI value of each location to represent
the RSSI database of different locations, which is divided into offline stage and online stage
according to the operating mechanism [47].

(1) Off-line phase

The indoor environment is divided into small areas of the same shape and size,
and RSSI data information received by the AP nodes in each small area and the location
coordinates of samples located in the small area are collected. Then all indoor location
sample points are collected to build the location fingerprint database of sample data.

(2) On-line phase

In the study, after obtaining the unknown sample information, RSSI data transmitted
by all AP nodes in the room are collected in real-time, and the location coordinates located
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in the small area are matched with the location fingerprint data generated in the offline
stage for fingerprint positioning. The location area and its coordinates are obtained through
data comparison.

The KNN algorithm has a good positioning effect for indoor positioning, but the accu-
racy of this algorithm strongly depends on the density of the sampling points. To reduce
the difficulty of RSSI fingerprint sampling in large-scale garages, BP neural network was
introduced in this study to reduce the cost of the offline RSSI fingerprint sampling process.

The operation diagram of the RSSI fingerprint positioning module is shown in Figure 8.

End

Mobile devices receive WIFI signals

Start

Through the HTTP protocol to transmit data

Build an RSSI fingerprint

Bpnet forecast

Get the predicted result (x,y,z)

Prediction by KNN algorithm, k=4

The prediction result of KNN algorithm is obtained

Figure 8. Flowchart of the indoor positioning algorithm.

3.2.2. BP Neural Network

The BP neural network, a multi-layer feedforward network, is integral in optimiz-
ing the indoor positioning process, contributing to more efficient and accurate location
determination [48–50].

(1) Network structure and principle

In forward propagation, the input information passes through the input layer through
the hidden layer, and is processed layer by layer and transmitted to the output layer.
The loss function in the forward propagation process is passed into the backpropagation
process, and the partial derivative of the loss function concerning the weight of each
neuron is obtained layer by layer, which is used as the gradient of the objective function
concerning the weight. According to this calculated gradient, the weights are modified,
and the learning of the network is completed in the process of weight modification. When
the error reaches the expected value, the network learning ends, and the network structure
is shown in Figure 9.

Figure 9. Structure of the BP neural network.

(2) Model hyperparameters

The neural network uses layers composed of mathematical structures, and each layer
has many units, which are simulated biological neurons, and each neuron is connected.
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The number of hidden layers of the neural network model is three, and the number of
neurons in each layer is 96, 256, and 512. In the hidden layer, the ReLU function is used as
the activation function. The epoch is set to 8000 in the study. The model parameters are
shown in Table 2.

Table 2. Parameter list of the BP neural network model.

Parameter Settings

Batch 64
Epochs 8000

Optimizer Adam
Initial Learning rate 0.01

Learning Rate Decreasing Step Size 0.01
Weight decay 0.0005

3.2.3. KNN Algorithm

When a new wireless signal strength x appears (x is not in the fingerprint database)
during the operation of the car searching system, it is not feasible to match the location
of the wireless signal strength x only by relying on the fingerprint database. The KNN
proximity algorithm is used to compare x in the fingerprint database with the filter items
that meet the conditions, i.e., data in the circle domain within a certain limited range, and
then the K adjacent nodes that are closest to x are obtained, as shown in Figure 10. The K
adjacent nodes are located by the weighted average method [51].

Figure 10. Design diagram of the KNN algorithm.

In Figure 10, the symbols with different colors are represented the different match
results in the fingerprint database using the KNN adjacent nodes. The points within the
red circle represent the results closest to x, that x is the wireless signal strength.

3.2.4. Simulation Map Generation

In the study, the plane layout of the three-story example garage is shown in Figure 10.
The actual map size is 80 m × 60 m, and the comparison scale is 1:850. There are
150 standard parking spaces of 2.5 m × 5.0 m in the garage, and there are four walk-
ing stairways, one driving exit, three sides of interference signal wall, and two elevator
shafts. Among them, WIFI through the wall will cause 15% signal attenuation, and around
the strong magnetic field will cause about 30% signal attenuation. According to the above
conditions, the WIFI signal source location is arranged, and to ensure the relative accuracy
of positioning, a WIFI signal transmitter is arranged every 10 m on the map. According to
the WIFI signal attenuation formula, RSSI information of WIFI signal strength at every 5 m
interval in the garage is calculated, and the calculation formula is shown in Formula (3):

RSSI = A + 10 ∗ n∗ log10d (3)
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In the above equation, A is the signal strength at a distance of 1 m from the transmitting
end, n is the environmental attenuation factor, d is the distance between the transmitting
end and the receiving end, and RSSI is the WIFI signal strength value.

The three-dimensional effect of the three-layer map used in the study is shown in
Figure 11.

Figure 11. Three-dimensional map of the three-story garage.

3.2.5. Simulation Result and Analysis

Python language was used to conduct algorithm programming and prediction on the
simulation map, and the prediction results were obtained as shown in Figure 12.

Figure 12. The prediction results of the RSSI fingerprint database location.

The relationship between prediction error and accuracy of global map points is shown
in Figure 13. From Figure 13, it can be seen that when the allowable error is 2.5 m, the
predicted positioning accuracy is close to 100%.
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Figure 13. The relationship between prediction distance error and accuracy.

3.3. Path Planning Service Module

To design the path planning method followed by users’ needs, it is necessary to
consider the standardization of parking space characteristics and the subjective initiative of
users. Considering that the A* algorithm in the previous scheme of the research group has
some invalid search behavior, and is inspired by the Chebyshev distance, Euclid distance,
and Manhattan distance, the A* algorithm is improved based on the spatial accessibility
of car-seeking users. By improving the A* path planning method, invalid search behavior
may be abandoned, which forces the A* algorithm to approach the endpoint of the target,
thus improving the efficiency of the algorithm.

3.3.1. Improved A* Algorithm

The traditional breadth-first algorithm in the path planning problem is based on
two-dimensional coordinates, each time to point up, down, left, and right in four directions
of traversal search, until the endpoint is found. Because people can travel in a diagonal
direction, the eight squares of the current point are searched for. In the worst case, the
algorithm needs to traverse all the points on the whole map, which greatly reduces the
efficiency of the search. The A* algorithm introduces the concept of cost, and the total cost
of the actual search point is composed of two parts, namely, the estimated cost and the
current point cost. The current cost is the actual search distance from the starting point
to the current point, while the estimated cost is the Manhattan distance. When the search
node generates results with the total cost during the search process, the direction with the
minimum total cost is always chosen to search until the search reaches the endpoint, in
which case the search efficiency of the algorithm is greatly improved [52,53].

However, the A* algorithm still has many invalid search ranges in the parking lot
or garage scene with a large number of semi-closed spaces. In the following, a typical
35 × 35 network topology legend is set to discuss the solution to the problem. In the
2D planar map of size 35 × 35 in Figure 14, green grids are all invalid search paths, and
for the case in Figure 14, it can be explained that the improved A* algorithm is based on
spatial reachability.

In Figure 14, the green invalid search area in the invalid search space is called the
semi-closed structure space. When there is a semi-closed interface in the two-dimensional
space formed by the point and the end point of the search neighborhood, the nodes in the
semi-closed structure are marked as unreachable points.

The inaccessible point is defined as whether there is an inaccessible building or another
non-passable road, that divides the rectangular area into at least two parts with the target
point and the current node as the vertices, and the target point and the current point
belonging to different areas, as shown in Figure 15.
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Figure 14. Invalid space-searching diagram.

Figure 15. Inaccessible area diagram.

In Figure 15, in the process of searching from the starting point (22, 5) to the target
point (13, 32), the neighborhood passing point (17, 11) of a certain point in the rectangular
area formed by the neighborhood passing point and the target point, there is a building wall,
(13, 19) to (17, 19), to divide the rectangular area into left and right parts. The neighborhood
pass points (17, 11) and the target points (13, 32) are divided into two unconnected areas in
the rectangular area, then the spatial accessibility of the pass points in the rectangular area
is updated and marked as unreachable, that is, the light green nodes in Figure 15.

The process, after introducing unreachable nodes into the A* algorithm, is shown in
Figure 16.
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Figure 16. Flowchart of improved A* algorithm.

3.3.2. The Correction of Path

The sliding window is a kind of double pointer algorithm; the basic idea is to maintain
a window, and then traverse the elements from front to back for calculation. The sliding
window algorithm is shown in Figure 17.

Figure 17. Schematic diagram of sliding window algorithm.

In Figure 17, it represents the sliding window of the pink rectangle region during
execution of the algorithm for the correction of path.

In the sliding window algorithm, a series of judgment conditions are selected to
optimize the A* algorithm results. The judgment logic in the algorithm is as follows.

1. Initialize the window with length 1 and contain only the first node in the A* re-
sult path.

2. In the current window, whether there is an element with the same horizontal and
vertical coordinates as the first element in the window.

3. If so, whether the nodes between two nodes with equal horizontal and vertical
coordinates are all reachable.

(1) If all can be reached, update the result path in the window according to the
straight line on the left of the horizontal and vertical, move the position of the
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window, and take the rightmost position of the current window as the starting
position of the next window

(2) If an unreachable point exists, maintain the original path and go to Step 4.

4. If no, expand the window backward and repeat steps 2 and 3.
5. When the starting node of the sliding window is the end point of the A* algorithm,

the algorithm is cut off and the path update is completed.

3.3.3. Simulation Results

In this study, two groups of network topology maps with different sizes were selected
for simulation experiments. For a 2D planar map of size 35 × 35 in Figure 18, and a 2D
planar map of size 41 × 50 in Figure 19, the 8-direction neighborhood search A* algorithm
with better performance Manhattan distance formula as the heuristic function is compared
before and after the improved scheme based on spatial accessibility. The results are shown
separately in Figures 18 and 19.

Figure 18. Results before and after using the improved A* algorithm for the map of 35 × 35 size.

Figure 19. Results before and after using the improved A* algorithm for the map of 40 × 51 size.

It can be seen that in Figures 18 and 19, the blue area in the algorithm search process is
significantly reduced, and the yellow final output path is more consistent with the logic of
pedestrian walking. In terms of the result performance of the algorithm, the improved A*
algorithm combined with the sliding window correction greatly reduces the invalid search
area, and the optimal path is finally shorter.

The data description of the algorithm evaluation indexes is shown in Tables 3 and 4.
In Tables 3 and 4, the results are separately the average of three experiments performed.
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Table 3. Detailed table of algorithm evaluation in 35 × 35 size of improved A* algorithm.

Old New Increase Rate

Length of the shortest path 45 45 0%
The size of the search space 387 174 55.0%

Running time 0.07 s 0.05 s 28.5%

Table 4. Detailed table of algorithm evaluation in 40 × 51 size of improved A * algorithm.

Old New Increase Rate

Length of the shortest path 74 74 0%
The size of the search space 1526 493 67.0%

Running time 0.93 s 0.70 s 24.5%

As can be seen from the results in Table 3, before and after using the improved A*
algorithm for the map of 35 × 35 size, the size of the searching space for invalid nodes was
reduced by 55.0%, and the operation efficiency was improved by 28.5%. It can also be seen
from the results in Table 4, that before and after using the improved A* algorithm for the
map of 40 × 51 size, the size of the searching space for invalid nodes was reduced by 67.0%,
and the operation efficiency was improved by 24.5%.

The experimental and analytical results show that the improved A* algorithm based
on reachability is feasible in the path planning of the reverse car-seeking system.

4. System Design

The design and implementation of an intelligent reverse car-seeking system include
three parts: Web management, PC client, and App Mobile. Web management is mainly
responsible for the generation of parking lot maps and the binding of monitoring equipment
and parking spaces. As a fixed navigation device in the parking lot, the PC terminal
provides users with the function of finding a car at a fixed location. The mobile side is
embodied in the App phone application, which supports the user to locate the indoor
parking lot through the WIFI function module, by inputting the vehicle information to look
for, such as the license plate number, the parking space number, etc., and complete the
route guidance, with real-time location update and route planning adjustment function.

4.1. Management Side Design

The design of car searching Web management is based on a web browser, with HTML,
CSS, and JS as the front-end basic language, using VUE. JS Progressive JavaScript frame-
work provides a declarative, component-based programming model for performing effi-
cient user interface development.

The main functions of the intelligent reverse car search system management end
include the following: editing garage maps, inputting monitoring equipment, and binding
monitoring equipment to parking spaces. The above functions correspond to different
pages on the management end, and the page design is shown in Figures 20–23.

The parking lot model map is a proportional parking lot map with vector coordinates.
It is the foundation of the following indoor location and reverse car searching to realize the
function of path planning. The standard parking model map should scale the real map to
the same scale, and the scale function is the requirement of measuring the map’s precision.

To make the map model general, the elevator well, walking ladder, column, wall, etc.,
which are set in the example parking lot as shown in Figure 20, need to be represented in
the model in proportion.
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Figure 20. Editing page of the map on the admin side.

Figure 21. Associated page of the stair.

Figure 22. The binding page of the monitoring device and parking space.
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Figure 23. The management page of the monitoring device.

The relationship between different floors of the parking lot is related by the passage
such as the stairs, and the relationship between the stairs is added or removed by the Add
function key in the relation menu in Figure 21.

In the reverse car searching system, the acquisition of BIT information depends on
the monitoring equipment. Considering the improvement of the indoor parking lot, the
existing equipment is compatible, and the deployment cost is minimized. In the binding,
the spot area of the parking space in the image of the monitoring device area is identified.
According to the corresponding example of the garage situation, here, the optimal ratio is
set to 1:3 in the software development. The sketch of the image acquisition equipment and
parking space binding module is shown in Figure 22.

In Figure 22, in the image acquisition device screen, the box selects the specified
quadrilateral area as the parking space monitoring area. Under the condition that the
ratio of collecting equipment and parking space is 1:3, a maximum of four areas can be
generated. After binding the image acquisition equipment and parking space relationship
are listed as shown in Figure 23.

In Figure 23, when the license plate information appears in the image area, the license
plate information recognition service is called, and the vehicle information is bound to the
parking space and uploaded to the database.

4.2. Client Side Design

The PC client software system of an intelligent reverse car search system mainly
involves the query interface, search result interface, and path navigation interface. Query
interface users can choose license plate search or parking spot search according to their own
needs. According to the different input information of the user, the MySQL database query
language is used reasonably to speed up the data processing process, the data processing is
carried out in the server, the queried vehicle information is displayed on the result interface,
and the relevant path guidance interface is designed to facilitate the user’s reverse car
search requirements. The overall operation flow of the PC client is shown in Figure 24.

4.2.1. PC-Client Design

Note The PC-client is a fixed PC installation device. Therefore, one only needs to record
the actual IP address of the current PC to plan paths. Since the fixed position cannot be
updated with the user’s movement, you need to add the download and guide of the mobile
APP on the PC client to guide the user to use the mobile APP for real-time positioning and
navigation while traveling. PC-client design takes into account the needs of users looking
for cars, divided into two schemes according to license plate positioning and according to
parking space positioning. The page to achieve license plate input, parking space input
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search, parking information display, and other functions is shown in Figures 25–27 which
show the content on the page.

Figure 24. The flow diagram of the PC client.

Figure 25. Searching criteria entry page of the PC client.

Figure 26. Feedback page of the vehicle information of the PC client.
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Figure 27. Path navigation page of the PC client.

In Figure 27, it represents the parking space of the orange rectangular block, and it
represent the car searching path of the blue line.

4.2.2. Mobile Design

The interface design of the mobile App is shown in Figure 28.

Figure 28. Overview of the feature of the Mobile terminal APP.

The mobile App interface is mainly divided into the car search function and the “Mine”
account setting function. The search method is divided into license plate search and parking
space search. In the design, the incorrect license plate input or the current search license
plate that is not in the current garage is fully considered, and the user can be supported to
search through the parking number when the user knows the parking number.

The mobile App interface design is shown in Figures 29–33. After debugging and
running, the corresponding basic functions can be realized.

378



Electronics 2024, 13, 907

Figure 29. Home page of the reverse car searching App.

Figure 30. Search interface according to license plate of the reverse search App.
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Figure 31. Search interface according to parking space of the reverse car searching App.

Figure 32. Path navigation interface of the reverse searching App.
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Figure 33. “Mine” interface of the reverse searching App.

In Figure 32, it represents the current position of the user of the orange point, it
represent the optimal path of the blue line, and it represents the destination parking space
of the red rectangular block.

5. Conclusions

In this paper, a reverse search method for the multi-story intelligent parking lot
of a garage was presented with the implementation scheme. Vehicle parking location
detection, license plate image recognition, pedestrian indoor positioning, and path planning
algorithms were researched. In connection with the above, an intelligent reverse car
searching system was designed, which provides Web-site management, fixed-point use in
the parking lot of PC clients, and real-time location function of App mobile clients.

In the detection phase, through the building of the Yolov7 target detection network,
the function of parking position detection was realized. The experimental results show that
the detection accuracy of three-target or four-target license plate images is about 98.80%. On
this basis, the LPRnet network can be used to recognize the license plate of the vehicle in the
parking space. To improve the recognition accuracy of the network model, a 3D perspective
transform was introduced to correct the rotation of the input image. Experimental results
on the CCPD dataset demonstrate the competitive performance of our method. The overall
recognition accuracy achieved 99.75%, with also good generalization ability for the dark,
remote, and spatial rotation distortion license plate data sets.

In the indoor location phase, based on RSSI fingerprint database location technology
of the WIFI signal source, the BPnet network was used to carry out regression prediction,
increase the running speed of KNN nearest neighbor location algorithm, and revolve the
strong dependence problem of the WIFI fingerprint database data acquisition accuracy for
the KNN network during the off-line stage. The accuracy of the final model is about 100%
under the allowable error of 2.5 m.

In the path planning phase, based on the A* algorithm and spatial accessibility, the
algorithm was further improved to solve the problem that the A* algorithm produces a
large number of meaningless nodes in the process of finding a path. The result of Python
simulation shows that the improved A* algorithm based on spatial accessibility reduces the
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range of searching nodes by more than 55.0%, and improves the running speed to 28.5%
compared with the A* algorithm.

In the system design phase, an intelligent reverse car searching system based on Web
management, PC client, and App client was designed. In the design, the management of
parking space, the management of monitoring equipment, the binding of the relationship
between monitoring equipment and parking space, generating a module of a parking map,
and the binding module of floor relationship were considered, and the client PC and APP
car searching function design were completed.

This paper involved the study of the indoor pedestrian location method based on
RSSI fingerprint; it combined the BPNet network with the KNN network; and proposed
an improved A* path planning algorithm based on spatial accessibility. It is of positive
practical significance for research methods to realize car searching guidance in intelligent
garage management. The design scheme of the car searching management system proposed
in this paper is easy to implement and has scalability. It can meet the market’s requirements
for practicality and low cost of smart parking. The research work of this paper can provide
a software deployment scheme for the construction of static traffic management. However,
the location accuracy of the indoor positioning methods proposed in this paper needs to be
further improved, and the related research will be continued in the future.
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Abstract: Falls can cause significant harm, and even death, to elderly individuals. Therefore, it
is crucial to have a highly accurate fall detection model that can promptly detect and respond
to changes in posture. The YOLOv8 model may not effectively address the challenges posed by
deformation, different scale targets, and occlusion in complex scenes during human falls. This paper
presented ESD-YOLO, a new high-precision fall detection model based on dynamic convolution that
improves upon the YOLOv8 model. The C2f module in the backbone network was replaced with
the C2Dv3 module to enhance the network’s ability to capture complex details and deformations.
The Neck section used the DyHead block to unify multiple attentional operations, enhancing the
detection accuracy of targets at different scales and improving performance in cases of occlusion.
Additionally, the algorithm proposed in this paper utilized the loss function EASlideloss to increase
the model’s focus on hard samples and solve the problem of sample imbalance. The experimental
results demonstrated a 1.9% increase in precision, a 4.1% increase in recall, a 4.3% increase in mAP0.5,
and a 2.8% increase in mAP0.5:0.95 compared to YOLOv8. Specifically, it has significantly improved
the precision of human fall detection in complex scenes.

Keywords: complex scenarios; YOLOv8; deformable convolution; fall detection

1. Introduction

Individuals are susceptible to falls due to instability in their lower extremities and
limited joint mobility during daily activities [1]. The likelihood and severity of falls are
particularly high in individuals over the age of 65, with 30–40% experiencing at least one
fall per year. These falls can result in fractures or other long-term health issues, which can
cause significant physical and psychological injury [2–4]. Injuries sustained by older adults
from falls depend not only on the injuries incurred but also on the time interval between
the onset of the fall and the receipt of help and treatment. Medical research has shown that
timely assistance or treatment after a fall can reduce the risk of sequelae from later falls as
well as accidental death [5]. Providing timely assistance and treatment services for elderly
individuals who live alone and have fallen at home is of significant social and practical
importance. This ensures the safety and security of the elderly.

Currently, there are several methods for detecting human posture [6] which can
also recognize and detect falls. Wearable technology development can integrate sensors,
wireless communication, and other technologies into wearable devices. These devices
support various interaction methods, such as gesture and eye movement, to capture human
body movement and posture information. They use multi-information data fusion to
achieve the detection of human falls, resulting in high detection accuracy and real-time
detection [7–10]. However, older people may forget to wear them after charging, which
hinders prolonged detection due to the need for frequent recharging. Placing sensor nodes
in a specific area to monitor changes in the human body’s center of gravity, movement
trajectory, and position can provide valuable information about the body’s posture and

Electronics 2024, 13, 1141. https://doi.org/10.3390/electronics13061141 https://www.mdpi.com/journal/electronics385



Electronics 2024, 13, 1141

overall situation [11–14]. However, deployment costs are high, and external environmental
limitations and interference can be a challenge.

The utilization of cameras or other imaging devices for real-time acquisition of image
information in a monitoring area, coupled with the application of deep learning techniques
to analyze the acquired image data and determine human body movement postures,
represents a current research focus [15,16]. Deep learning methods for analysis can be
broadly categorized into two directions: two-stage and one-stage [17]. Prominent examples
of two-stage algorithms include R-CNN, Mask R-CNN [18], R-FCN [19], and Faster R-
CNN [20]. These approaches offer advantages such as high detection rates and low memory
usage [21,22]. On the other hand, one-stage algorithms like the YOLO series [23–25] and
the SSD series perform candidate frame generation and classification in a single step. By
dividing images into grids, these algorithms directly predict target categories and anchor
frames on the images before obtaining final results through filtering and post-processing.
Due to their lower computational requirements, one-stage algorithms are more suitable for
real-time detection projects. Furthermore, recent advancements in the YOLO series have
significantly improved target detection accuracy, establishing the one-stage algorithm as
the mainstream choice for practical applications. Therefore, this paper selects YOLOv8 as
its foundation to enhance fall detection in complex scenes.

The YOLOv8 model represents the latest advancement in the YOLO series, incorporat-
ing novel enhancements derived from YOLOv5 to optimize performance and flexibility,
thereby rendering it more suitable for diverse target detection tasks. Comprising three key
components—the backbone, neck network, and detection head—this model leverages the
C2f module within its backbone network to effectively merge the C3 and ELAH structures,
facilitating superior feature transfer and enhancing information utilization efficiency. No-
tably, the YOLOv8 detection head adopts a decoupled head approach by eliminating the
objectness branch while retaining only classification and regression branches. This sim-
plification significantly streamlines the model architecture. Additionally, an Anchor Free
strategy is employed which eliminates reliance on predefined anchors; instead enabling
adaptive learning of object size and position. Consequently, these advancements contribute
to improved accuracy and robustness in object detection.

Lijuan Zhang et al. proposed DCF-YOLOv8, which leverages DenseBlock to enhance
the C2f module and mitigate the influence of environmental factors [26]. Haitong Lou et al.
introduced DC-YOLOv8, employing deeper networks for the precise detection of small
targets [27]. Gui Xiangquan et al. incorporated the DepthSepConv lightweight convolution
module into YOLOv8-L, integrated the BiFormer attention mechanism, and expanded
the small target detection layer to achieve efficient detection of small targets [28]. Cao
Yiqi et al., in EFD-YOLO, substituted EfficientRep as a backbone network and introduced
the FocalNeXt focus module to address occlusion issues to some extent while enhancing
detection accuracy [29].

To address the issue of low detection accuracy of the YOLOv8 algorithm in com-
plex environments with target deformation, large changes in target scale, and occlusion,
this paper proposes the ESD-YOLO model based on the YOLO algorithm. The model
incorporates dynamic convolution, a dynamic detection head, and an exponential moving
average to enhance the accuracy and robustness of fall detection in complex scenarios.
This paper presents research on improving the YOLOv8 backbone network’s ability to
capture target details and cope with target deformations. The proposed C2Dv3 module
was incorporated into the network for this purpose. Additionally, the feature extraction
ability of the detection model was improved by replacing the original detection head in the
Neck section with the DyHead module. The proposed EASlideloss loss function aims to
improve the model’s ability to handle hard sample problems. ESD-YOLO performed better
in dim and blurred environments, with informative pictures, large-scale transformations,
and occlusions, improving the accuracy and robustness of the fall detection model.
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2. Materials and Methods

2.1. Overall Structure of ESD-YOLO Network

This paper proposed ESD-YOLO, a high-precision fall detection model for complex
scenarios. It effectively addressed the problem of low detection accuracy caused by fall
target deformation, occlusion, and high environmental overlap. Figure 1 shows the overall
structural model of ESD-YOLO.

Figure 1. Structure of ESD-YOLO model.

The ESD-YOLO model combined the C2f module in the YOLOv8 backbone with the
DCNv3 module. The dynamic convolutional layer replaced the convolutional layer in the
Bottleneck in C2f, enhancing the backbone network’s ability to extract pose information of
a falling character in a complex scene. The DyHead module was incorporated into the Neck
section to consolidate multiple attention operations, resulting in improved performance
of ESD-YOLO in complex fall detection scenarios. Additionally, EASlideloss, a slide loss
function based on exponential moving average, was proposed to replace the original loss
function of YOLOv8. This function dynamically balances the model’s attention to hard
samples, thereby enhancing the model’s accuracy and stability.

2.2. C2Dv3 Module Design

Detecting falls in complex environments and a wide variety of poses presents a
significant challenge. The C2f module in YOLOv8, which integrates low-level feature
maps with high-level feature maps, encounters difficulties in recognizing falls under
these circumstances. The C2f module may not effectively capture the intricate details of
falling targets due to variations in human body postures, resulting in substantial changes
in target size and shape. Moreover, the module is limited to sensing features within a
fixed range and lacks the adaptability to adjust the sampling position of the convolution
kernel dynamically, making it arduous to capture crucial information about falling targets
comprehensively. Consequently, this led to decreased accuracy for target localization in
complex environments and increased the likelihood of false detections.

To address the limitations of the C2f module in detecting falls with significant varia-
tions in scale and high environmental similarity, we introduced DCNv3 during the feature
extraction stage. DCNv3 effectively captures comprehensive information surrounding the
fall target within the sensory field and adapts to diverse sizes and shapes by dynamically
adjusting convolution kernel shapes and positions [30]. The deformable convolution opera-
tion in DCNv3 employs a learnable offset to govern the shape of each convolution kernel,
thereby facilitating adaptive adjustment of the convolution operation based on diverse
image regions and enhancing its perceptual capability. This enhancement enables a more
precise capture of fall target details and features, thereby improving both the accuracy
and robustness of our fall detection model. Consequently, it led to enhanced precision in
detecting fall targets and increased reliability of the model even in complex scenarios.
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The DCNv3 model enables adaptive modification of the convolution kernel shape
based on the target content in the image. This flexible mapping enhances the coverage of
the detected target appearance and captures a more comprehensive range of useful feature
information [30]. Equation (1) represents the expression for DCNv3.

y(p0) =
G

∑
g=1

K

∑
k=1

wgmgkxg

(
p0 + pk + Δpgk

)
(1)

Equation (1) defines G as the number of groups, wg as the projection weights shared
within each group, and mgk as the normalized modulation factor of the Kth sampling
point of the Gth group. DCNv3 exhibits superior adaptability to large-scale visual models
compared to its counterparts in the same series, while also possessing stronger feature
representation and a more stable training process.

DCNv3 has negligible impact on the number of parameters or computational com-
plexity of the model. However, excessive utilization of deformable convolutional layers
can significantly increase computation time in practical applications. To ensure optimal
performance without compromising functionality, only the standard convolutional lay-
ers within the Bottleneck of the C2f module in the backbone network were substituted
with DCNv3 deformable convolutional layers, forming a compliant bottleneck module
(Dv3_Bottleneck), as depicted in Figure 2.

Figure 2. DCNv3 replaces Standard Conv.

As illustrated in Figure 3, the C2f module has been reconstructed using Dv3_Bottleneck,
which comprises of convolution layer, separation layer, and Dv3_Bottleneck. The incorpo-
ration of C2Dv3 into the backbone network enhances its ability to capture crucial target
features, thereby elevating target detection performance.

Figure 3. C2Dv3 model based on Dv3-Bottleneck.

2.3. DyHead Module

To better integrate the diversity of feature scales resulting from variations in falling
target scale and capture the inherent spatial relationships across different scales and shapes,
this study replaced the original detection head of YOLOv8 with a dynamic detection head
called DyHead (Dynamic Head). DyHead incorporates scale-aware attention, spatial-aware
attention, and task-aware attention simultaneously [31]. It employs a dynamic receptive
field design that adaptively adjusts the convolution kernel size based on the size of the
falling target. The DyHead model possesses the capability to integrate multiple attention
mechanisms, thereby enabling the fusion of diverse information and mitigating the adverse
effects caused by occlusion. This ensures effective detection of targets with varying scales
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and shapes while enhancing overall detection capability and optimizing computational
efficiency. The calculation formula is presented in Equation (2).

W(F) = πC(πS(πL(F)·F)·F)·F (2)

The attention function is represented by the symbol W, and the feature tensor F is a
three-dimensional tensor with dimensions of L × S × C. Here, L represents the level of
the feature map, S represents the width-height product of the feature map, and C represents
the number of channels in the feature map. The scale-aware attention module πL(·), space-
aware attention module πS(·), and task-aware attention module πC(·) are, respectively,
applied to each dimension of L, S, and C. Figure 4 illustrates the structure of a single
DyHead block.

Figure 4. Structure of DyHead model.

The computational processes for each of the three attention modules are represented
as follows:

πL(F) · F = σ

(
f

(
1

SC ∑
S,C

F

))
· F (3)

πS(F) · F =
1
L

L

∑
l=1

K

∑
j=1

wl,j · F
(
l; pj + Δpj; c

)
· Δmj (4)

πC(F) · F = max
(

α1(F) · FC + β1(F), α2(F) · FC + β2(F)
)

(5)

In Equation (3), the linear function f (·) is approximated using a 1 × 1 convolution
operation. Herein, σ(x) = max(0, min(1, (x + 1)/2)) serves as an activation function
for this approximation process. Before introducing K as representing the number of sparse
sampling positions in Equation (4), we explain that these positions enable focusing on
discriminant locations through determining movable position pj + Δpj based on self-
learning spatial displacement Δpj. Moreover, we introduce Δmj, denoting a self-learning
importance scalar at position pj which can be learned from input features at middle
level F. Subsequently defined in Equation (5), FC refers to the feature slice of channel C
while

[
α1, β1, α2, β2]T

= θ(·) represents a superfunction employed for learning control
activation threshold values. Sequentially applying these three attention mechanisms allows
them to be stacked multiple times to form DyHead blocks, as depicted in Figure 5.
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Figure 5. Connection scheme of DyHead blocks.

2.4. Loss Function EASlideloss Design

The elderly population is more susceptible to falls in complex environments, and
the fall detection model encounters challenges such as obscured fall objects, low ambient
lighting, high environmental overlap, and diverse fall postures. These data present hard
samples with a lower number of fall instances compared to non-fall instances, resulting in
an imbalanced dataset. Without an appropriate loss function, the performance of the fall
detection model in the target category is compromised, thereby affecting its accuracy and
reliability in practical applications. YOLOv8′s original BCEwithloss (BCE) loss function
solely focuses on accurate label prediction without addressing sample balancing when
tackling the sample imbalance issue. Consequently, the model prioritizes non-fall instances
over effectively identifying falling actions. To address this limitation, Slideloss incorporates
a sliding window mechanism that adaptively learns threshold parameter μ for positive
and negative samples. By assigning higher weights near μ, it amplifies relative loss for
hard-classified samples while emphasizing misclassified ones [32]. The implementation
principle is illustrated by Equation (6).

f (x) =

⎧⎪⎨
⎪⎩

1 x ≤ μ − 0.1
e(1−μ) μ − 0.1 < x < μ

e(1−x) x ≥ μ

(6)

The proposed EASlideloss in this paper is based on Slideloss, which integrates the
exponential moving average (EMA) with the original Slideloss. By applying the exponential
moving average method to weigh the value of the time series, we aim to mitigate the
impact of sudden changes in adaptive threshold on loss and enhance both the accuracy and
reliability of our model. Additionally, we gradually reduce the weight assigned to difficult
samples, thereby diminishing the model’s attention towards them and preventing excessive
interference caused by these challenging instances throughout the training process. The
implementation principle is illustrated in Equations (7)–(9).

di = β
(

1 − e−
i
τ

)
(7)

μ = di · μi−1 + (1 − di) · θi (8)

f (x) =

⎧⎪⎨
⎪⎩

1 x ≤ μ − 0.1
e(1−μ) μ − 0.1 < x < μ

e(1−x) x ≥ μ

(9)

In Equation (7), the attenuation factor 0 < di < 1 represents the weight distribution
control for historical and latest data when calculating the average value, where β denotes
the attenuation coefficient. The variable i represents the current training round, while τ is a
hyperparameter. In Equation (8), μi−1 signifies the previous time’s average index value,
and θi represents the current time’s data.
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2.5. Model Evaluation Metrics

The evaluation metrics employed in this study to assess the performance of the fall
detection model include Precision (P), Recall (R), and Average Precision (AP). AP quantifies
the detector’s performance within each category, while the mean average precision (mAP)
is obtained by averaging these AP values. mAP serves as a pivotal metric for evaluating the
overall accuracy of object detection models and a reliable indicator of their performance.

3. Experiment and Results

3.1. Datasets

Fall events are relatively uncommon in daily life. Although existing public fall detec-
tion datasets attempt to simulate the complex and authentic nature of falls, they still suffer
from limitations such as simplistic experimental environments and an inability to accurately
replicate real-life falls. In this study, we comprehensively utilized the UR Fall Detection
Dataset, the Fall Detection Dataset, and images of human falls collected from real-world
scenes on the Internet to gather data encompassing different illuminations, angles, object
similarities, and occlusion scenarios. A total of 4976 datasets were obtained through this
process. Subsequently, we employed the open-source tool LabelImg to uniformly label
these data images in Yolo format and generate corresponding labels for a total of 5655
samples depicting various poses. The dataset was then divided into a training set (70%), a
test set (20%), and a validation set (10%) following a 7:2:1 ratio format. Figure 6 illustrates
some representative scenes from our dataset that can serve as references for evaluating the
performance of ESDv3-YOLO under realistic conditions.

Figure 6. Typical dataset presentation.

3.2. Experimental Process

The test platform is configured with a 6-core E5-2680 v4 processor and an NVIDIA
GeForce RTX 3060 GPU. The operating system used is Windows 11, along with PyTorch
version 2.0.1 in the development environment of PyCharm 2022.2.3 and Python version
3.10.12. The model takes input images of size 640 × 640 pixels for training purposes, while
the training parameters consist of a batch size of 32, a total of 200 iterations, momentum set
to 0.937, initial learning rate at 0.001, and an attenuation coefficient value of 0.9.

The YOLOv8s and ESD-YOLO models share the same dataset and training param-
eters, as depicted in Figure 7. Following 20 iterations, both models exhibit a gradual
decline in loss value, with the error reaching stability after 75 iterations. Experimental
findings demonstrate that compared to the original model, ESD-YOLO showcases ac-
celerated convergence speed, reduced loss value, and significantly enhanced network
convergence capability.
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Figure 7. Loss curves are trained by three models.

3.3. Experimental Results and Analysis

To validate the performance of the ESD-YOLO model, we conducted two sets of
comparative experiments. The first set aimed to compare the accuracy and performance of
the improved fall detection model with YOLOv8s. The second set further compared the
differences between the improved model and both YOLO series models and mainstream
object detection algorithms. Through these comprehensive comparisons, we can thoroughly
evaluate the accuracy and performance of our improved fall detection model in comparison
to other relevant algorithms.

3.3.1. Ablation Experiment

The ablation experiment aims to validate the optimization effect of each enhanced
module. In this study, we conducted an ablation analysis on ESD-YOLO, where specific
enhancements were incorporated into the YOLOv8s model, namely C2Dv3, DyHead, and
EASlideloss denoted as YOLOv8s_1, YOLOv8s_2, and YOLOv8s_3. As depicted in Table 1,
each module exhibited varying degrees of improvement in the accuracy of ESD-YOLO.

Table 1. Ablation experiments with different design strategies.

Modules C2Dv3 DyHead EASlideloss P (%) R (%) mAP0.5 (%) mAP0.5:0.95 (%)

YOLOv8s 82.3 78.4 84.4 59.7
YOLOv8s_1

√
84.7 80.2 86.4 62.5

YOLOv8s_2
√

85.9 78.2 86.1 61.8
YOLOv8s_3

√
76.8 83.7 84 60

ESD-YOLO
√ √ √

84.2 82.5 88.7 62.5

After incorporating the C2Dv3 module to enhance the backbone network, there is a
noticeable improvement in precision (2.4%), recall (1.8%), mAP0.5 (2%), and mAP0.5:0.95
(2.8%). These findings demonstrate that the C2Dv3 module effectively enhances the feature
extraction capability of the backbone network, enabling it to accurately capture intricate
details of falling human bodies and effectively handle target deformations. Moreover, this
module exhibits superior accuracy in recognizing positive samples and enhances its ability
to identify genuine positive instances, thereby enhancing overall detection performance.

After incorporating DyHead into the Neck component, the accuracy, mAP0.5, and
mAP0.5:0.95 witnessed a respective increase of 3.6%, 1.7%, and 2.1%. This observation
substantiates that replacing the original detection head of YOLOv8 with DyHead effectively
enhances adaptability towards scale transformations and shape variations in detected
objects, thereby augmenting model perception ability and accuracy.
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By replacing the original BCEwithloss function in YOLOv8 with EASlideloss, a signifi-
cant improvement of 5.3% in recall rate and 0.3% in mAP0.5:0.95 was observed, indicating
that the utilization of EASlideloss enhances fall detection accuracy and reliability, thereby
augmenting the model’s ability to accurately detect falls.

The results of the ablation experiment demonstrate that all three enhanced modules
contribute to improved accuracy of the overall model, indicating a strong coupling between
these refined methods. Consequently, ESDv3-YOLO exhibits a significant performance
enhancement in comparison with the original YOLOv8s.

3.3.2. Contrast Experiment

In order to assess the accuracy of various high-performance models for fall detection,
we selected 11 representative network models, namely YOLOv4-tiny, YOLOv5s, YOLOv5-
timm, YOLOv5-efficientViT, YOLOv5-vanillanet, YOLOv7, YOLOv7-tiny, YOLOv8s,
YOLOv9s, SSD, and Faster R-CNN for comparative testing with ESD-YOLO. All models
were trained and tested using the same dataset.

The fall detection results of different models are presented in Table 2. It is observed
that the ESD-YOLO model achieves the highest accuracy, mAP0.5, and mAP0.5:0.95 values
among the aforementioned 11 models, with respective scores of 84.2%, 88.7, and 62.5%. In
comparison to these 11 network models, the ESD-YOLO model demonstrates improve-
ments in mAP0.5 by 10.2%, 3.2%, 6.7%, 4.4%, 5.5%, 10.8%, 3.2%, 6.8%, 4.3%, 2%, 12.6%, and
7.9%. In addition, Map0.5:0.95 improves by 6.9%, 2.6%, 3%, 3.9%, 5.6%, 2.9%, 2.1%, 4.2%,
2.8%, 1.1%, 8.6%, and 5.8%, respectively. The ESD-YOLO algorithm exhibits significant
performance advantages when compared to mainstream algorithms due to its comprehen-
sive consideration of spatial transformation and shape information, enabling it to perform
well even under conditions involving large-scale transformations and occlusions of falling
targets. Therefore, in contrast to other algorithms, ESD-YOLO demonstrates superior
adaptability for fall detection tasks.

Table 2. Comparative experiments on fall detection results of high-precision models.

Modules P (%) R (%) Map0.5 (%) Map0.5:0.95 (%)

YOLOv4-tiny 75.9 77.4 78.5 55.6
YOLOv5s 82.3 79.9 85.5 59.9

YOLO5-timm 81.2 78.9 82 59.5
YOLOv5-efficientViT 83.1 78.5 84.3 58.6
YOLOv5-vanillanet 78.3 77.5 83.2 56.9

YOLOv5-ShuffleNetv2 78.1 83.1 77.9 59.6
YOLOv7 80.2 80.6 85.5 60.4

YOLOv7-tiny 78.2 82.2 81.9 58.3
YOLOv8s 82.3 78.4 84.4 59.7
YOLOv9s 84.3 79.2 86.7 61.4

SSD 76.2 71.8 76.1 53.9
Faster R-CNN 80.7 77.8 80.8 56.7
ESDv3-YOLO 84.2 82.5 88.7 62.5

3.4. Scene Test

A comprehensive visual comparison between YOLOv8s and ESD-YOLO algorithms
was conducted in various scenarios, encompassing scenes with significant scale changes
of falling targets, dense crowds, high environmental similarity, and target occlusion. The
detailed comparison is presented in Figure 8.
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Original images YOLOV8s detection results ESD-YOLO detection results

(a)

(b)

(c)

Figure 8. Cont.
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(d)

Figure 8. Test in real scenarios. (a) Detection targets with large-scale variations; (b) intensive fall
detection targets; (c) identify difficult scenes; (d) target occlusion.

In Figure 8a, the person’s size in the image is either too large or too small, resulting in
missed detections and incorrect box selections. In comparison to YOLOv8s, ESD-YOLO
demonstrates improved capability in identifying more detection targets and accurately
selecting boxes with higher confidence. This improvement can be attributed to the integra-
tion of the C2Dv3 module, which enhances network receptive field and feature extraction
abilities. Consequently, ESD-YOLO effectively focuses on detecting targets, significantly
enhancing prediction box positioning accuracy while minimizing missed detections. As a
result, it achieves superior prediction accuracy for fall detection tasks.

The people in Figure 8b are densely packed with complex spatial positions, resulting
in missed detection by YOLOv8s. By replacing DyHead as the detection head, ESD-YOLO
can better capture spatial information and identify more monitoring targets than YOLOv8s,
while also exhibiting higher confidence in detecting falling figures.

In Figure 8c, there exist objects resembling the falling target, and due to a significant
overlap between the falling target and its surroundings, fall detection becomes considerably
more challenging. By incorporating EASlideloss and C2Dv3 into ESD-YOLO, our approach
effectively focuses on difficult samples and captures crucial information regarding the
relationship between the falling target and its environment. This leads to a reduced
probability of false detection and improved accuracy in detecting falls.

The falling target in Figure 8d is evidently obstructed, leading to a failure of YOLOv8s
in identifying the target and resulting in false detection. In contrast, ESD-YOLO places
greater emphasis on challenging samples and effectively addresses the issue of difficult
identification caused by blockage by leveraging spatial position information encompassing
the detection target’s surroundings.

Based on the aforementioned experimental analysis, it is evident that ESD-YOLO
exhibits superior performance in intricate environments.

4. Conclusions

The present study introduces ESD-YOLO, a high-precision algorithm for human fall
detection in complex scenes. In comparison to the YOLOv8s model, it exhibits enhanced
capabilities in addressing challenges encountered during fall tasks, including large target
scale transformations, crowded environments with multiple individuals, and high levels
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of environmental fusion and occlusion. The main contributions of this paper can be
summarized as follows:

The C2Dv3 module is proposed to redesign the backbone network of YOLOv8s,
enhancing its feature extraction ability and enabling it to better capture details of falling
human bodies and process complex features of falling targets.

DyHead replaces the original detection head of YOLOv8s, allowing the model to focus
on potential position relationship features of falling targets in different scales and shapes in
spatial positions.

EASlideloss loss function replaces the original BCE loss function of YOLOv8s, improv-
ing accuracy while ensuring stability by focusing on difficult fall samples and gradually
reducing attention to them.

The experimental results on the self-constructed dataset demonstrate that ESD-YOLO
achieves an accuracy of 84.2%, a recall of 82.5%, a mAP0.5 of 88.7%, and a mAP0.5:0.95 of
62.5%. In comparison with the original YOLOv8s model, ESD-YOLO exhibits improve-
ments in accuracy, recall, mAP0.5, and mAP0.5:0.95 by 1.9%, 4.1%, 4.3%, and 2.8%, respec-
tively. The comprehensive fall detection experiments validate that ESD-YOLO possesses
an efficient architecture and superior detection accuracy, thereby meeting the real-time fall
detection requirements effectively. Furthermore, when compared to existing fall detection
models, ESD-YOLO offers enhanced detection accuracy for various complex fall scenarios.
In summary, ESD-YOLO enhances the accuracy of human fall detection and enables real-
time identification and alerting of falls. It facilitates timely detection of elderly individuals
experiencing falls and transmits alarm information to their caregivers through various
communication channels, thereby enabling prompt intervention. Future research directions
should focus on reducing model parameters to facilitate its deployment on mobile devices,
making it applicable in real-world scenarios.
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Abstract: Neural Radiance Fields (NeRFs), as an innovative method employing neural networks
for the implicit representation of 3D scenes, have been able to synthesize images from arbitrary
viewpoints and successfully apply them to the visualization of objects and room-level scenes (<50 m2).
However, due to the capacity limitations of neural networks, the rendering of drone-captured scenes
(>10,000 m2) often appears blurry and lacks detail. Merely increasing the model’s capacity or the
number of sample points can significantly raise training costs. Existing space contraction methods,
designed for forward-facing trajectory or the 360◦ object-centric trajectory, are not suitable for the
unique trajectories of drone footage. Furthermore, anomalies and cloud fog artifacts, resulting from
complex lighting conditions and sparse data acquisition, can significantly degrade the quality of
rendering. To address these challenges, we propose a framework specifically designed for drone-
captured scenes. Within this framework, while using a feature grid and multi-layer perceptron (MLP)
to jointly represent 3D scenes, we introduce a Space Boundary Compression method and a Ground-
Optimized Sampling strategy to streamline spatial structure and enhance sampling performance.
Moreover, we propose an anti-aliasing neural rendering model based on Cluster Sampling and
Integrated Hash Encoding to optimize distant details and incorporate an L1 norm penalty for outliers,
as well as entropy regularization loss to reduce fluffy artifacts. To verify the effectiveness of the
algorithm, experiments were conducted on four drone-captured scenes. The results show that, with
only a single GPU and less than two hours of training time, photorealistic visualization can be
achieved, significantly improving upon the performance of the existing NeRF approaches.

Keywords: neural radiance fields; neural networks; implicit representation; drone-captured scene;
feature grids

1. Introduction

In recent years, neural network-driven implicit representation methods [1–5] have
demonstrated exceptional performance in applications such as high-precision 3D recon-
struction, thereby attracting extensive attention from researchers in the field of computer
graphics. This approach takes the coordinates of a spatial point as input to predict the at-
tributes of an object at that point. Compared to traditional explicit representation methods
(such as point clouds, voxels, and meshes), the neural network-based implicit representa-
tion allows for the fine sampling of 3D objects at any spatial resolution. This results in the
seamless reconstruction of scenes with rich geometric texture details and realistic visual
effects that better meet the demands for authenticity.

One of the most notable works in this area are Neural Radiance Fields (NeRFs) [6].
NeRFs achieve an end-to-end process of scene modeling and rendering, enabling highly
realistic reconstructions of scenes from just a set of multi-view photos, and allowing the
viewing of 3D scenes from arbitrary angles. This method has developed rapidly in recent
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years and has broken through the limitations of explicit data structures in previous 3D
surface models, with a particular focus on enhancing the ability to capture the details of real
scenes. It is characterized by a high degree of automation, efficient training and rendering
processes, and high fidelity in rendering effects. Notably, it addresses common issues in
photogrammetry such as texture distortion and loss. Despite drawbacks such as significant
computational demand and insufficient geometric precision, the technology is continually
being optimized and has shown immense potential for application in various fields, includ-
ing virtual reality (VR) and augmented reality (AR) [7], autonomous driving [8], robotic
vision [9], large-scale scene generation [10], and film production [11].

While NeRFs and their derivative algorithms have shown their potential as power-
ful and easily optimizable 3D scene visualization algorithms, they face significant chal-
lenges when dealing with scenes captured by drones. For open scenes, the vanilla NeRF
compresses the forward-unbounded scenes into a unit cube, while Mip-NeRF 360 [12]
encapsulates 360-degree unbounded scenes within a bounded spherical space. However,
these two methods of spatial compression are only suitable for camera trajectories that
are either fixed in orientation or rotate 360 degrees, and not for the multi-loop circling
shots typical of drones. Furthermore, to precisely locate surfaces in larger scenes, NeRFs
needs to sample more points along the light ray. Although DoNeRF [13] and Mip-NeRF
360 [12] have optimized the distribution of sampling points through improved sampling
functions, they tend to concentrate points near the camera, whereas the areas of interest in
drone scenes are often at a distance. Under outdoor open scenes, NeRFs are constrained
by model complexity, as capturing and expressing the full information contained in drone
scenes requires a larger neural network and more GPU memory. Mega-NeRF [14] uses
multiple neural networks to represent different aspects of the scene, but this demands
significant computational resources, necessitating several GPUs working continuously
for days or even weeks. DVGO, Plenoxels, TensoRF, and Instant-NGP [15–18] introduce
feature grids to simplify the neural network architecture, significantly improving training
and inference speeds, but this may lead to speckle noise during visualization. In drone
scenes, the spatial area covered by a single pixel increases significantly with distance from
the camera. Mip-NeRF [19] encodes LOD (Levels of Detail)-like information into the neural
network’s input, allowing the model to dynamically adjust rendering precision based on
the distance between observer and object, but the training cost for this method is high
and the speed is slow. Moreover, complex lighting variations and sparse data capture
in outdoor scenes can cause outliers and fog artifacts, further affecting rendering quality.
Faced with these challenges, this paper seeks to address the following question: How
can we achieve higher-quality visualization of drone scenes with limited computational
resources and relatively fast convergence speed?

Considering the shortcomings of existing NeRF methods in drone-captured scenes, we
introduce a NeRF framework specifically designed for the 3D visualization of drone scenes.
The framework incorporates multi-resolution hash grids [18], which store features directly
in a hash table to obtain prior information about the scene and alleviate the computational
burden on the neural network, thus overcoming the high computational cost and long
training time associated with the vanilla NeRF model. Our major contributions can be
summarized as follows:

• We introduce a novel spatial compression technology to specifically address the multi-
circle surround top-down flight paths performed by drones, and to integrate it with an
efficient drone scene sampling method to significantly reduce the number of sampling
points and enhance the performance of NeRFs;

• We combine the speed advantages of the feature grid-based approach with methods
that maintain quality at a distant scale to accelerate the training process and effectively
eliminate aliasing in long-range views, thereby enhancing the rendering quality when
observed from a distance;
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• Under the constraints of using only drone imagery as the data source and limited
computational resources, we have realized the rapid convergence of the radiance field
and improved the visual quality of drone-scene visualizations.

2. Related Work

The classic Neural Radiance Fields (NeRFs) paper [6] has sparked a plethora of
subsequent research endeavors. We will discuss several approaches from a non-exhaustive
list that pertain to aspects relevant to our work.

2.1. NeRFs for Sample Strategy Improvement

The hierarchical volume sampling technique introduced by the vanilla NeRF has made
a significant impact on enhancing sampling outcomes. Further research has continued
to refine this sampling method from a variety of perspectives. “NeRF in detail” [20]
optimizes sample collection in NeRFs with a differentiable module, enhancing training and
outperforming the vanilla model in view synthesis quality while lowering computational
costs. NeuSample [21] accelerates rendering by substituting NeRFs’ coarse sampling with
a neural sample field without sacrificing quality. DONeRF [13] reduces needed samples
with a logarithmic strategy and depth priors. AdaNeRF [22] achieves real-time rendering
with an innovative dual network that improves sampling efficiency. Enerf [23] boosts
rendering speed with a depth-guided sampling that relies on predicted coarse geometry.
TermiNeRF [24] efficiently maps camera rays to influential ray positions, streamlining
neural-field model rendering and training. In this paper, we have adopted a simple yet
effective sampling strategy that is particularly suited to drone-captured scenes.

2.2. Unbounded Scenes NeRFs

Generally, NeRF models are confined to encoding bounded scenes. To extend their
application to unbounded scenes, current research has introduced a series of spatial con-
traction techniques. NeRF++ [25] introduces an “inverted sphere parametrization” to
map unbounded scenes into a finite space by separating foreground and background into
different coordinate systems. Mip-NeRF 360 [12] by Barron et al. maps infinite spherical
spaces into bounded ones for unbounded scene rendering. MeRF [26] offers a contraction
function for real-time large-scale rendering, maintaining linearity within a bounded space.
Nerfstudio [27] adopts an L∞ norm to compress into a cubic space, enhancing compatibil-
ity with voxel-based encoding and addressing discontinuities present in other methods.
ImmersiveNeRF [28] proposes a novel foreground–background hybrid representation,
focusing on unbounded scenes captured from an inside-out configuration. MMPI [29]
and Nex360 [30] expand MPI representation for complex scene synthesis from multiple
perspectives. We have utilized an intuitive and efficient spatial contraction approach that is
particularly well-suited for handling drone-captured surround top–down trajectories.

2.3. Large-Scale Scene NeRFs

The vanilla NeRF framework was designed primarily for small-scale scenes or objects.
However, extending a NeRF to handle large-scale scenes would greatly expand its range
of applications. A mega-NeRF [14] partitions the scene into segments and employs a
sub-NeRF to implicitly represent each block. A block-NeRF [10] reconstructs urban-scale
scenes from street-view images, using appearance embeddings and dynamic composition
of NeRF blocks for neural rendering. Switch-NeRF [31] employs a gating network for scene
decomposition and assigns points to various NeRF subnetworks for efficient large-scale
reconstruction. Urban Radiance Fields [32] enhance new viewpoint synthesis by merging
RGB and LiDAR data, adjusting for exposure, and using image segmentation for ray
density control. SUDS [33] innovatively encodes urban scenes using separate structures
for static, dynamic, and distant elements and reconstructs them using various unlabeled
signals, achieving detailed decomposition of background and object motion. However,
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these methods typically encounter issues of prolonged training durations and low efficiency.
We adopt the feature grid representation to speed up the large-scale scene optimization.

2.4. Grid-Based NeRFs

In the vanilla NeRF, each sample point’s position and direction require forward propa-
gation through a massive MLP neural network, and excessive MLP queries significantly
slow down a NeRF’s training speed. The feature grid method offers an efficient solu-
tion strategy. NSVF [34] utilizes a sparse voxel octree to organize voxel boundaries and
uses an MLP network for predicting each voxel’s geometry and appearance. DVGO [15]
and Plenoxels [16] optimize radiance fields using a sparse voxel-grid storing scene prior
information, enabling fast, efficient end-to-end optimization. TensoRF [17] reduces the
memory footprint and increases reconstruction speed by representing the radiance field
as a 4D tensor and applying tensor decompositions. Instant-NGP [18] employs a multi-
resolution hash table that reduces computational costs while maintaining quality, allowing
for high-resolution detail capture in short training times and reducing computation during
rendering. In this paper, following Instant-NGP [18], we replace the traditional large MLP
of NeRFs with the fusion of a multi-resolution hash table and a smaller MLP.

2.5. Anti-Aliasing NeRFs

To eliminate blurring and aliasing artifacts, recent work assesses the density and color
of volumes rather than individual points during the rendering process. Mip-NeRF [19]
proposes a continuous multiscale NeRF representation, using frustums instead of direct ray
sampling, and introduces Integrated Positional Encoding (IPE) for the finer characterization
of spatial regions. BungeeNeRF [35], also known as CityNeRF, expands NeRFs’ scale range
to render scenes from individual objects to entire city scales. It employs a progressively
refined NeRF with a hierarchical network structure that incrementally introduces new mod-
ules during training to capture details at varying observation distances. Exact-NeRF [36]
improves the Exact Integral Positional Encoding (EIPE) using a pyramidal frustum integral
formula, reducing edge blur and aliasing. LIRF [37] predicts local volumetric radiance
fields using samples within truncated cones to render high-quality images of new view-
points on a continuous scale. Meanwhile, we incorporate multilevel detail information by
defining the representation of volume as the mean feature of points within the volume.

3. Preliminaries

3.1. NeRF

NeRF [6] represents scenes with a five-dimensional vector function through a Multi-
Layer Perceptron (MLP), encoding 3D positions p = (x, y, z) and 2D-viewing direc-
tions d = (θ, ϕ) to color c = (r, g, b) and density σ(p): MLPΘ(p, d) = (c, σ). Train-
ing adjusts weights Θ to match 5D inputs to correct color and density. Training in-
volves casting rays through the scene, encoding sampling points via Fourier transforms:
γ(v) =

(
sin

(
20πv

)
, cos

(
20πv

)
, · · · , sin

(
2L−1πv

)
, cos

(
2L−1πv

))
. Volume rendering inte-

grates sampled colors along rays as follows: Ĉ(r) = ∑N
i=1 Ti(1 − exp(−σiδi))ci, where

Ti = exp
(
−∑i−1

j=1 σjδj

)
. And δi = ti+1 − ti is the distance between samples. Minimizing the

mean squared error (MSE) loss between predicted and true pixel colors iteratively improves

the model: Lossmse = ∑r∈R

∥∥∥Ĉpred(r)− Ĉgt(r)
∥∥∥2

2
.

3.2. Grid-Based Acceleration

The feature grid method offers an effective acceleration strategy that involves storing
features directly within a feature grid to obtain prior information about the scene, thereby
streamlining the process of querying the MLP network’s outputs. DVGO and Plenox-
els [15,16] use O

(
n3) complexity voxel grids for space discretization. TensoRF [17] lowers

complexity to O
(
n2) with vector–matrix decomposition. Multi-resolution hash grids [18]

increase efficiency further by representing scenes with hierarchical grids and reducing
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complexity to O(n) through hashing, allowing higher resolution with less memory and
providing O(1) lookup time.

By constructing multi-resolution hash grids, the input coordinates can be encoded into
trainable feature vectors indexed by multi-scale hash table indices. The multi-resolution
hash encoding encodes scene coordinates p through the function enc(p; θ) where θ rep-
resents the trainable encoding parameters, and inputs the result into an MLP network.
The specific steps of multi-resolution hash encoding are as follows. First, for any given
input coordinate p, locate its grid position in the conceptually different resolution layers,
creating a hash mapping that establishes indices from each grid vertex coordinate to the
hash table. Next, at different resolution levels, retrieve the feature vectors corresponding to
each vertex index from the hash tables (these feature vectors are trainable). Based on the
relative position of the input coordinate p in the grids of various resolutions, interpolate
the feature vectors of each vertex using trilinear interpolation to form a single feature
vector. Finally, concatenate the feature vectors from the grids of different resolutions to
complete the multi-resolution hash encoding. As the hash tables store a significant amount
of prior scene information, this method allows for the acceleration of training and rendering
through a smaller MLP network while maintaining rendering quality.

4. Methods

4.1. Overview

This study is dedicated to developing a NeRF framework specifically tailored for
drone-scenario 3D visualization. It begins by adopting a spatial compression approach
(Section 4.2) designed for drone scenes, which facilitates a compact representation of
space. Following this, an efficient sampling method (Section 4.3) is introduced, focusing
on increasing sample point coverage in areas proximate to the ground. Additionally, a
higher-resolution implicit voxel model is built using a multi-resolution hash grid. An
oversampling technique (Section 4.4) is then implemented to improve the representation of
distant scene information within the feature grid. Lastly, we outline the design of the loss
function (Section 4.5).

As shown in Figure 1, our NeRF framework starts by sampling 3D points along rays
emanating from pixels. During this process, we employ Space Boundary Compression to
effectively confine the scene within a smaller region and optimize the sampling procedure
using a Ground-Optimized Sampler. Subsequently, we generate additional sample points in
the vicinity of each sampled point on the ray using Cluster Sampling. These sampling points
then undergo Multi-Resolution Hash Encoding to obtain multi-resolution grid features
with geometric significance. These features, after being concatenated with direction vectors
encoded by spherical harmonics, are fed into a neural network. The network predicts the
density (σ) and color values (c). In the final step, image colors and opacities (α) can be
computed through volumetric rendering, followed by the calculation of the loss function.
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Figure 1. Overview: This figure illustrates the complete process from initial sampling to final
rendering. The black arrows represent the rays in the sampling scenarios, while the yellow arrows
indicate the arrows in the flowchart.

4.2. Space Boundary Compression

Under the premise of limited computational resources, it becomes particularly impor-
tant to precisely define scene boundaries. In unbounded scenes, mainstream strategies for
setting the values of the near and far planes to limit the sampling range include Normalized
Device Coordinate (NDC) Warping and Inverse-Sphere Warping [6,12]. The former maps
the infinite view frustum to a bounded cube, setting the near and far to 0 and 1, respectively,
which is appropriate for forward unbounded scenes, as shown in Figure 2a; the latter,
designed for inward-facing 360◦ unbounded scenes, sets near and far to a fixed very small
and very large value, respectively, and then maps the space beyond a certain range into a
sphere bounded by 2, as shown in Figure 2b.

Figure 2. Schematic diagrams of various spatial compression methods and camera trajectory. Top:
(a) forward-facing camera trajectory; (b) 360◦ object-centric camera trajectory; (c) drone-captured
surround top–down trajectory, highlighting the complex and sparse nature of drone camera paths.
Bottom: (a) NDC Warping; (b) Inverse-Sphere Warping; (c) Space Boundary Compression, which
optimizes sampling by eliminating minimally contributing regions.
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However, in drone scenes, these two methods may distort the space around the
camera, thereby reducing the efficiency of spatial allocation. NDC Warping maps the view
frustum inside a unit cube, and while this is a reasonable approach for forward unbounded
scenes, it can only express a limited area of the scene as the field of the view of the frustum
cannot exceed 120◦ without causing significant distortion. Inverse-Sphere Warping usually
assumes the camera center as the center of the scene, whereas drone imagery is often
taken from a height of one hundred to three hundred meters, tilting down twenty to forty
degrees, with the camera center significantly higher than the center of the scene. In this
case, Inverse-Sphere Warping centered on the camera would lead to the oversampling of
blank areas, potentially creating fluffy clouds of noise. Therefore, we propose a spatial
compression algorithm specifically designed for drone scenes.

This algorithm is named Space Boundary Compression, mainly aimed at large-scale
complex unbounded 3D spaces, to use the known boundaries of a given scene to reduce
computational complexity and improve rendering efficiency. The Axis-Aligned Bounding
Box (AABB) is a rectangular box that can completely encapsulate a 3D object or scene,
with its edges aligned with the coordinate axes. The AABB can be seen as a “container”
representing the height, width, and depth of the scene that NeRFs can render. It approxi-
mates the geometric shape of the object in a simplified form, thus simplifying the process
of testing the intersection of light rays with the object. The Space Boundary Compression
method uses the AABB to shrink the scene to a smaller area close to the ground.

Specifically, an AABB cube with edge lengths of 2 is first set, with its minimum vertex
coordinates set to [−1, −1, −1] and maximum vertex coordinates set to [1, 1, 1]. Then, for
drone imagery, the camera is proportionally shrunk and placed above the AABB to ensure
that all cameras are generally pointing toward the origin of the AABB, i.e., the center of the
scene. After certain training steps, a NeRF has successfully learned the contour features of
the scene. At this point, the range of the AABB is adjusted through the scene viewer [27]
so that it can just enclose all the cameras and the entire 3D scene, thus completing the
Space Boundary Compression. At this stage, the scale of the bounding box changes in
various dimensions, which can be referred to as “variable-scale axis-aligned bounding box”,
as shown in Figure 2c. Finally, the values of near and far are determined by calculating
the intersection points of the camera rays with the variable-scale axis-aligned bounding
box. In summary, this method not only defines the scene boundaries more effectively but
also enhances the efficiency of the NeRF sampling process by focusing on regions that
significantly contribute to the scene’s visual integrity. The values of the near and far planes
are dynamically determined by calculating the intersection points of the camera rays with
this bounding box, optimizing resource use and rendering quality.

4.3. Ground-Optimized Sampling

During the rendering of scenes by NeRFs, the process commences by generating a set
of rays for each pixel within the image. Subsequently, the algorithm samples points along
these rays and queries the neural network to calculate the radiance and volume density for
each point. A pivotal challenge lies in determining the positions of these sample points on
the rays. The vanilla NeRF [6] employs a Uniform Sampling method, where sample points
are allocated equally between the near and far planes, resulting in an excessive allocation of
sample points in blank scenes. DoNeRF [13] introduces a Logarithmic Sampling approach,
which concentrates more samples closer to the camera, while Mip-NeRF 360 [12] adopts
an even more pronounced Disparity Sampling technique, which significantly reduces the
sampling distance for close samples, as demonstrated in Figure 3a–c. However, these
sampling strategies are not suitable for drone-based scenarios. Drone imagery is often
captured from high altitudes, with the camera focusing more on the ground-level scene
information rather than areas close to the camera. Adhering to Logarithmic or Disparity
Sampling would lead to under-sampling of the ground, which lies farther from the camera,
and over-sampling of the air, resulting in an abundance of fluffy artifacts floating above
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the scene. Dense sampling in areas rich with scene content is crucial; otherwise, the visual
quality will be severely compromised.

Figure 3. Schematic diagram of various sampling methods: (a) Uniform Sampling; (b) Logarithmic
Sampling; (c) Disparity Sampling; (d) Ground-Optimized Sampling, increasing sampling points in
areas rich in detail.

Therefore, we propose a novel sampling scheme named “Ground-Optimized Sam-
pling”, designed to optimize the distribution of sample points and reduce the frequency of
network queries, thereby enhancing the efficiency of the rendering process, as depicted in
Figure 3d. The formula for Ground-Optimized Sampling is as follows:

p(di) = o + di·r (1)

di =

(
dmin +

(di − dmin + 1)5

(dmax − dmin + 1)5 ∗ (dmax − dmin)

)
, i = [0, 1, 2, . . . , N] (2)

where o denotes the origin of the ray, r represents the direction of the ray, N is the number
of the samples placed, and dmin and dmax correspond to the distance from the camera to the
near and far planes, respectively. During the execution of Ground-Optimized Sampling,
each sample undergoes what is termed “random perturbation”. The unique characteristic
of this perturbation is that it maintains the consistency of sample ordering while not altering
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the overall statistical distribution of the sample group. In addition, we employ a proposal
network [12] aimed at further reducing the number of sampling points during training
and more effectively concentrating these points on the ground surface. In conclusion, this
sampling method concentrates a greater number of sampling points in the areas of the
drone-captured scene that are rich in detail, ensuring that even the surfaces at the furthest
extents of the scene receive adequate sampling density. This significantly enhances the
reconstruction quality of these regions.

4.4. Cluster Sampling

Given that conventional MLP networks primarily tend to learn low-frequency func-
tions [38], they exhibit relatively weaker performance when tasked with fitting high-
frequency functions. A solution to this issue is the application of Fourier Encoding, which
projects sample points onto the frequency space, causing mutations in Euclidean space
to appear relatively smooth in frequency space. This transformation enables the MLP to
more easily fit these high-frequency variations, thereby enhancing the resolution of neural
rendering results [39]. Similarly, Hash Encoding [18] projects sample points from Euclidean
space into hash tables of varying resolutions, allowing grids of different resolutions to
capture information at corresponding frequencies. However, both of these encoding meth-
ods adopt a discrete form, leading to a single sampling point’s limited ability to capture
and represent pixel details at different scales, which results in aliasing effects in distant
views. In drone scenarios, the training set naturally leans towards distant views due to the
camera’s elevation above the ground.

Mip-NeRF [19] introduced an anti-aliasing encoding strategy. Rather than sampling
rays directly for each pixel, it projects a cone and subdivides it into several frustums,
which correspond to the sampling intervals. To approximate these frustums, Mip-NeRF
employs multivariate Gaussian functions, parameterizing each frustum as a Gaussian
distribution with a mean and covariance, thus fitting a uniform distribution of all sampling
points within the frustum. Subsequently, this method applies Fourier Encoding to the
Gaussian distribution and integrates it, achieving Integrated Fourier Encoding. This
strategy effectively prevents the generation of aliasing artifacts in distant views.

To improve the accuracy of scene rendering, increasing the sampling rate is an effective
strategy. Inspired by the super-sampling methods in NeRF-SR [40] and LIRF [37], we
introduce a novel super-sampling method termed “Cluster Sampling”. This method
aims to integrate the advantages of multi-resolution hash grids in terms of speed and
memory optimization with the superior distant view rendering capabilities of Integrated
Fourier Encoding. In Cluster Sampling, each sampling point on a ray generates a group
of additional sampling points, forming a “star cluster”. For each pixel, we cast a cone in
the multi-resolution hash grid and use star clusters to approximate each cone section. To
fit a uniform distribution of sampling points within a frustum, we sample one point at
equal distances in six orthogonal directions around the center point of each frustum. The
distance is defined as the radius of a sphere that is tangential to the frustum’s sides and
centered on the frustum’s center point. The following formula calculates the new sampling
points’ positions:

pij = pi + ri ∗ d ∗ oj, j = [0, 1, 2, . . . , 5] (3)

ri =

(√
p2

i − o2
)
∗ si

ti
, i = [0, 1, 2, . . . , N − 1] (4)

where pi represents the coordinates of the original sampling point, d is the direction of the
ray, oj denotes the offset vector indicating offsets along the six orthogonal directions of the
three-dimensional Cartesian coordinate system, ri is the radius of the sphere tangential to
the frustum sides, o is the origin of the ray, si is the radius of the frustum’s top surface, and
ti is the distance from the ray’s origin to the top surface of the frustum. N is the number of
original sampling points.
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In Mip-NeRF [19], the scale characteristics of Integrated Fourier Encoding are de-
termined by the covariance of a Gaussian distribution. As shown in Figure 4a, as the
covariance increases, the high-frequency encoding gradually decreases to near zero, ho-
mogenizing the high-frequency characteristics of all sample points within the frustum.
Conversely, as the covariance decreases, the volume of the frustum tends towards a sin-
gle sampling point, and the Integrated Fourier Encoding will degenerate to the Fourier
Encoding of the vanilla NeRF model, thus retaining more high-frequency information. In
effect, Integrated Fourier Encoding can be seen as an anti-aliasing Fourier Encoding that
allows for the smooth adjustment of encoding space volume and shape. It essentially acts
as a Gaussian low-pass filter that can filter out high-frequency signals when rendering
low-resolution distant views, achieving an anti-aliasing effect.

Figure 4. Schematic diagram of various encoding methods: (a) vanilla Fourier Encoding and Inte-
grated Fourier Encoding with various covariances; (b) vanilla Hash Encoding and Integrated Hash
Encoding with various covariances.

Considering that the size of the frustum is proportional to the depth of its location,
the decay of the encoding features also increases accordingly. To address this issue, it is
necessary to apply a weight to the encoding features of the sample points that decreases
with the extension of the ray. By applying Hash Encoding to the star cluster sample
points and performing a weighted average, the expected characteristics of the frustum
can be determined, thus achieving feature representation of the frustum. This process
is called “Integrated Hash Encoding”. Integrated Hash Encoding is designed to achieve
a function similar to Integrated Fourier Encoding, as illustrated in Figure 4b. We set a
covariance value proportional to the weights of the weighted average Hash Encoding. With
an increase in covariance, higher-level grid encoding features will be smoothed to near
zero, reducing fluctuations in the high-frequency range. However, as covariance decreases,
integrated hash encoding will degenerate to the vanilla Hash Encoding, leading to the
reappearance of high-frequency noise. Overall, this encoding method applies diminishing
weights to voxel features, thereby balancing the capability to capture details at varying
depths. It effectively suppresses the high-frequency noise generated within the hash grid
due to excessive discretization, resulting in a more continuous frequency representation
post-Hash Encoding.

4.5. Loss Function

In scenarios captured by drones, each image can only capture a limited amount of
scene details. Especially for the vanilla NeRF model that utilizes the minimization of
mean squared error (MSE) loss, this characteristic could lead to certain issues. Since the
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model solely relies on the true pixel colors as supervision information when optimizing
the radiance field, it might result in overfitting in areas with sparse scene information or
encountering local minima during gradient descent, which could produce outliers or noise
in those areas. To address this problem, we introduce the L1 norm as a regularization term.

The L1 norm loss, also known as Least Absolute Deviations, can be calculated with
the following formula:

LossL1 = ∑r∈R

∣∣∣Ĉpred(r)− Ĉgt(r)
∣∣∣ (5)

where Ĉpred(r) is the predicted value of the pixel, and Ĉgt(r) is the true value of the pixel.
The advantage of the L1 loss function is its robustness to outliers, as the penalty it imposes
on errors is linear and directly proportional to the size of the error, thus avoiding excessive
punishment for larger errors. In contrast, the MSE loss function squares the errors, which
can lead to a further magnification of larger errors. Therefore, the L1 loss function is more
advantageous in handling outliers.

When the scene includes various transient factors, such as moving objects, changes
in lighting, and shadows, which do not persist, there often arise view-dependent effects,
or what are called ‘floaters’. This is because the volumetric density prediction in large
scenes is not very accurate. To effectively handle these unstable factors, we employ entropy
regularization techniques, which tend to encourage opaque rendering and penalize semi-
transparent rendering.

Entropy regularization loss is a method that utilizes the concept of information entropy
and is inclined to encourage the model to generate outputs with strong certainty (i.e.,
opacity). In this context, low information entropy means that the distribution of the
volumetric density is more likely to be unimodal. Its calculation formula is as follows:

Lossentropy = entropy(∑N
i=1 Tiαi) (6)

entropy(x) = −xlog(x)− (1 − x)log(1 − x) (7)

where Ti is the cumulative transmittance, indicating the probability that light travels from
the near plane to the far plane without being intercepted, and αi is the transparency of
sample point i. This formula is a special form of binary cross-entropy for the case when the
true class is 1 (the loss when the true category is 1), and it takes smaller values when x is
close to 1, thus encouraging the model to generate transparency values close to 1. The goal
of entropy regularization loss is to concentrate the weights on the ray into as small a region
as possible, thereby optimizing the volumetric density distribution in space.

We chose the following formula to minimize the loss function:

Lossall = Lossmse + λ1LossL1 + λ2Lossentropy (8)

where λ1 and λ2 are hyperparameters used to balance the main loss items Lossmse, LossL1,
and Lossentropy.

5. Results

5.1. Dataset

To validate the effectiveness of the proposed framework, we employ circumnaviga-
tional flight paths for drone route planning and image capture, using the Metashape 1.8.0
software to restore the camera’s position and orientation. Figure 5 illustrates four distinct
scenes in our experiments, each spanning an approximate area of 100,000 square meters.
The rural household scene includes a complete village where the rooftops of farmhouses
exhibit high reflectivity due to sunlight exposure. The farmland scene encompasses ex-
tensive agricultural land, parts of which also show high reflectance due to intense solar
radiation. The water body scene comprises a large expanse of water surface, presenting a
challenge with its low texture and prominent reflective properties. The vegetation scene
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covers a vast natural vegetative area, containing many smaller objects. The characteristics
of these scenes pose significant challenges in accurately capturing and reproducing the
nuanced details of the physical environment. Our method is particularly suited to these
static scenes, especially for sampling points near the ground surface, which makes it unsuit-
able for high-density urban environments. In urban settings, the presence of tall buildings
and dynamic factors such as vehicles and pedestrians can interfere with image capture,
compromising the effectiveness of the method. Therefore, we chose to focus on natural
scenes that are compatible with our methodology, ensuring the accuracy and reliability of
our experimental results.

Figure 5. Dataset: our dataset contains 4 scenes. Among these, there are expansive low-texture
water surfaces, densely vegetated areas, and farmlands with strong reflections, factors that render the
reconstruction task particularly challenging.

For the dataset, each image with a resolution of 8192 × 5460 was downsampled by a
factor of 8. This downsampling is crucial for several reasons. (1) Insufficient Pose Accuracy:
High-resolution images make pixel-level pose accuracy difficult, as minor movements
cause large pixel shifts. Downsampling reduces this complexity, allowing models to focus
on broader, more significant visual features. (2) Incomplete Pixel Coverage: Handling
over 44 million pixels per image is not feasible due to hardware and time constraints.
Downsampling reduces the number of pixels, enabling more efficient training and better
use of computational resources. These adjustments are necessary to balance detail retention
with practical computational demands in drone imagery analysis. Of these, 90% of the
images were used for model training, while the remaining images were assessed using
three image quality metrics, PSNR, SSIM, and LPIPS [41–43], to evaluate the model.

5.2. Implementation Details

In the experiments conducted for the framework proposed in this study, the RAdam
optimizer was utilized for optimization, with an initial learning rate set at 0.01 and an
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epsilon value of 1 × 10−15. Throughout the training process, logarithmic decay was applied
to adjust the learning rate, gradually reducing it from 0.01 to 0.001. In the allocation of
sample points, the experiment incorporated a two-stage proposal network sampling [12],
selecting 16 samples in each phase. Subsequently, during the final sampling stage, 8 sam-
ples were chosen for optimization. Concerning the configuration of grid parameters, the
hierarchy levels of the multi-resolution hash grid were set at 20, with the lowest and highest
resolutions established at 16 and 8192, respectively. The hash table was sized at 221, and
each entry in the hash table was designed to have a feature dimension of 4. Regarding the
model architecture, the MLP used for learning the volumetric density features comprised
a layer with 64 neurons, while the MLP for learning appearance features consisted of
three layers, each with 256 neurons.

We implemented our proposed method in Nerfstudio [27], a widely used codebase.
The framework proposed in this study was implemented on the Windows Server 2022 Stan-
dard platform using PyTorch 1.13.1 and CUDA117 and was trained over 30,000 iterations
on a Quadro P5000 GPU with 16 GB of VRAM. The batch size for the rays was set at 4096.

5.3. Evaluation

We compare the proposed method against existing methods to demonstrate its ef-
fectiveness. The methods for comparison include Mip-NeRF [19], which replaces the ray
sampling method used in the vanilla NeRF [6] with an anti-aliasing view-cone sampling
method. Instant-NGP [18] introduces a multi-resolution hash grid with learnable parame-
ters. Nerfacto [27] combines the Hash Encoding of Instant-NGP with the Inverse-Sphere
Warping of Mip-NeRF 360 [12] to express unbounded scenes. TensoRF [17] employs tensor
decomposition algorithms to reduce the memory footprint of the feature grid. Mega-
NeRF [14] is a NeRF model designed for drones that uses distributed training to divide
large scenes into sub-scenes, each with its own small NeRF model. All NeRF methods,
except Mega-NeRF, were trained using the experimental setup, ray batch size, and iteration
count described in the previous section.

Specifically, to expand scene representation while avoiding memory overflow, we set
the hierarchy levels of the multi-resolution hash grid in Instant NGP to 16, with a maximum
resolution of 8192. TensoRF’s highest resolution is set to 512, with 32/96 components used
for density and appearance feature grids, respectively. In our study, Mega-NeRF is divided
into four sub-blocks. Due to the VRAM constraints of a single GPU, each block is configured
with a ray batch size of 2048 and an iteration count of 60,000.

Table 1 presents a comprehensive quantitative comparative analysis between the
method proposed in this study and existing NeRF methods. The method we presented
outperforms all other listed methods across all evaluation metrics, attaining the highest
PSNR and SSIM scores, as well as the lowest LPIPS score, which indicates its closeness to the
real image in terms of visual quality. Changes in the PSNR, SSIM, and LPIPS indicators over
time during model training are shown in Appendix A. Moreover, the method demonstrates
excellence in training time efficiency, requiring only 1.81 h, while Mega-NeRF requires
over a week to complete the same task. This drastic reduction in training time is achieved
through innovative approaches to sampling and neural network design. Specifically, by
optimizing the number of sampling points and employing a streamlined MLP architecture,
the proposed method not only expedites the training process but also maintains high-
quality rendering outputs, essential for detailed drone scenario visualizations. This suggests
that the method achieves a favorable balance between efficiency and quality.

Figure 6 shows the qualitative comparison results between the method of this study
and existing NeRF methods. Despite undergoing 30,000 iterations of training, Mip-NeRF
failed to converge successfully. Instant-NGP uses multi-level hash grids to represent scenes,
significantly shortening training time. However, speckle noise is present across all scenes,
and there is a lack of “highlights” information on reflective surface features. Although
TensoRF successfully captured some specular reflection information, it performs poorly
in presenting distant details. Nerfacto converges quickly in all scenarios but suffers from
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severe fogging issues in farmland and vegetation scenes. Mega-NeRF exhibits notice-
able distortion in high-frequency details, presenting a pronounced blurring effect across
all scenes.

Table 1. Quantitative comparison results with existing NeRF methods. We report PSNR (↑), SSIM (↑),
and LPIPS (↓) metrics on the test view. ↑ means higher value is better, while ↓ means lower value is
better. The best results are bolded.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ Time (h)

Mip-NeRF 14.39 0.418 0.845 11.50
Instant-NGP 23.54 0.657 0.378 2.45

Nerfacto 25.08 0.683 0.324 1.44
TensoRF 24.65 0.622 0.394 8.57

Mega-NeRF 22.84 0.488 0.596 178.10
Proposed method 26.15 0.705 0.298 1.81

Figure 6. Qualitative comparison results with existing NeRF methods.

In contrast, the method we propose offers significant advantages in the precise replica-
tion of real-world scenes in terms of geometric detail and texture sharpness, particularly
in the reproduction of roof and photovoltaic details in farmhouse scenarios. In rendering
water body scenes, our approach excels in simulating the gloss and reflective effects of
water surfaces, presenting a highly realistic visual representation of water and maintaining
high accuracy when rendering the vegetation at the water’s edge and the shoreline. For
farmland scenes, the proposed method not only accurately presents information on high-
lights but also captures the fine textural details of vegetation. In scenes with vegetation, our
approach demonstrates superior performance in simulating the layering and depth of plant
life, with a reproduction of density and color that closely matches the actual landscape.
In conclusion, the method we proposed shows significant accuracy in processing scenes
captured by drones, particularly excelling in reconstructing the reflection phenomena on
object surfaces, and rendering far-distance details that are closer to reality.
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5.4. Ablation

We conducted extensive ablation experiments on each component of the proposed
framework. All models were trained using the same experimental environment, ray batch
size, and iteration count as described in the previous section. The average results of
the ablation study are presented in Table 2. Model (A), which combined Inverse-Sphere
Warping with Uniform Sampling, produced relatively high LPIPS values, indicating a loss
in resolution and texture detail. Models (B) and (C) combined Inverse-Sphere Warping with
Logarithmic and Disparity Sampling, respectively, while Model (D) implemented Inverse-
Sphere Warping with Ground-Optimized Sampling. Model (E) used Space Boundary
Compression with Uniform Sampling, and Models (F) and (G), respectively, combined
Space Boundary Compression with Logarithmic and Disparity Sampling. These models
exhibited lower metrics when reconstructing drone scenes, reflecting their limitations in
effectively restoring scenes. Model (H) disabled Cluster Sampling, resulting in reduced
accuracy. Model (I) disabled the L1 loss function, which led to decreased performance.
Model (J), when employing Huber loss in place of the combined use of MSE loss and L1
loss, experienced a significant degradation in performance. Model (K) disabled entropy
regularization loss, which did not significantly affect the single-image metrics but slightly
impaired performance.

Table 2. Quantitative comparison results with ablation experiment. ↑ means higher value is better,
while ↓ means lower value is better. The best results are bolded.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
(A) Inverse-Sphere Warping
+ Uniform Sampling 25.89 0.681 0.341

(B) Inverse-Sphere Warping
+ Logarithmic Sampling 15.46 0.434 0.852

(C) Inverse-Sphere Warping
+ Disparity Sampling 16.09 0.440 0.851

(D) Inverse-Sphere Warping
+ Ground-Optimized Sampling 17.17 0.396 0.676

(E) Space Boundary Compression
+ Uniform Sampling 15.04 0.358 0.711

(F) Space Boundary Compression
+ Logarithmic Sampling 14.41 0.424 0.913

(G) Space Boundary Compression
+ Disparity Sampling 14.41 0.424 0.913

(H) w/o Cluster Sampling 26.00 0.693 0.311
(I) w/o L1 Loss 25.98 0.693 0.305
(J) w Huber Loss 25.85 0.682 0.323
(K) w/o Entropy Loss 26.12 0.703 0.300
Proposed method 26.15 0.705 0.298

In contrast, the proposed method stands out by achieving the highest PSNR of 26.15,
the highest SSIM of 0.705, and the lowest LPIPS of 0.298, clearly surpassing all other com-
parative methods in visual quality. These results thoroughly demonstrate the superiority
of the research framework in the field of drone scene reconstruction.

We compared the performance differences between various spatial compression meth-
ods and sampling strategies in image rendering through experimental research. Specifically,
we analyzed the Inverse-Sphere Warping introduced by Mip-NeRF 360 [12] and the Space
Boundary Compression technique proposed in this study. Regarding sampling strategies,
in addition to the Uniform Sampling used by the vanilla NeRF model [6], we also examined
the Logarithmic Sampling suggested by DoNeRF [13], the Disparity Sampling introduced
by Mip-NeRF 360 [12], and a novel Ground-Optimized Sampling method proposed herein.

Figure 7 presents a comparative result of the view quality combining different spatial
compression methods with various sampling strategies. It is important to note that even
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after 30,000 iterations of training, models utilizing Logarithmic and Disparity Sampling
strategies failed to adapt to the scene, resulting in a uniformly gray rendering outcome;
hence, these results were not displayed in the figure. The combination of Space Boundary
Compression with Ground-Optimized Sampling generated images with accurate color
restoration, clear edges, and rich texture details. In contrast, the combination of Inverse-
Sphere Warping with Uniform Sampling resulted in more pronounced spatial detail distor-
tion, especially in the representation of high-frequency details, such as building contours
and field textures. For grasslands sparsely covered with vegetation, this led to an inaccurate
distribution of vegetation and caused the photovoltaic panels on the roofs of farmhouses to
appear blurred. Images resulting from the combination of Inverse-Sphere Warping with
Ground-Optimized Sampling showed a significant decrease in clarity and color fidelity,
appearing extremely blurred and nearly devoid of all detail. The images produced by
combining Space Boundary Compression with Uniform Sampling exhibited poor global
consistency, particularly in the deeper parts of the scene where a noticeable blur effect
occurred, accompanied by the incorrect generation of terrain features. In comparison to
the real images, it is evident that the method combining Space Boundary Compression
with Ground-Optimized Sampling proposed in this paper achieved the highest fidelity in
scene reproduction, significantly enhancing the visual clarity and detail representation of
landscapes. Meanwhile, other methods underperformed in rendering distant landscape
details and lack sufficient accuracy. Overall, experimental results confirm the applicability
of Space Boundary Compression to drone-captured surround top-down trajectories, as well
as the efficacy of Ground-Optimized Sampling strategies in enhancing the quality of drone
scene reconstruction.

Figure 7. Qualitative comparison results of different space compression methods and sampling
strategy combinations.

As illustrated in Figure 8, the images rendered using the Cluster Sampling technique
display more refined and clearer contours of riverbanks, as well as the intricate details of
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the surrounding vegetation. The reflections and shadows on the water surface are also
enhanced, exhibiting more complex textures and well-defined layers. Particularly, for lake
surfaces illuminated by sunlight, the application of Cluster Sampling reveals more delicate
wave textures and a greater number of ripple effects. By contrast, images produced without
Cluster Sampling appear blurrier in terms of edge sharpness and detail resolution. Flat
areas on the lake surface show conspicuous speckle noise, and the ripple effects are overly
smooth and accompanied by artifacts. The light and shadow effects are also less detailed,
resulting in a general deterioration of the image’s texture quality. Comparison with real
images demonstrates that Cluster Sampling significantly improves the realism and detail
fidelity of rendered images, bringing them closer to the visual experience of actual scenes.
This finding confirms the effectiveness of Cluster Sampling in overcoming the limitations
of Hash Encoding and enhances the model’s ability to capture scene details, effectively
preventing the generation of speckle noise. In summary, Cluster Sampling integrates the
advantages of Mip-NeRF and multi-resolution hash grids, thereby augmenting the model’s
capacity for detail reproduction and achieving high-precision rendering of distant views.

Figure 8. Qualitative comparison results with and without applying Cluster Sampling.

Figure 9 reveals that, in the absence of an L1 regularization loss during model training,
the model incorrectly learned the color of vegetation in farmlands and produced noticeable
anomalies on the roads adjacent to the farmlands. For the farmland areas, the rendering
outcomes lacking L1 loss exhibited severe blurring and artifacts. In areas where power
lines intersect with vegetation, models not utilizing L1 regularization loss did learn the
color of the power lines; however, they failed to accurately capture the shape of the power
lines, erroneously blending the color of the power lines with the ground vegetation. In
contrast, models incorporating L1 regularization loss, along with the model employing
Huber loss, were able to effectively ignore the visual interference of power lines on the
ground vegetation. The application of L1 regularization loss in scene reconstruction
tasks contributes to the production of sharper images and better preservation of high-
frequency details. When compared with real images, the ones generated with L1 loss
demonstrated superior color accuracy, especially in reproducing details of vegetation
and roads. Conversely, images produced without the application of L1 loss displayed
fuzzier edges and distorted color representation, performing poorly in detail preservation
and noise control. This resulted in a reduction in overall image quality and a significant
deviation from the actual scene. Images generated using Huber loss effectively prevent the
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excessive amplification of larger errors; however, they still lack sufficient capture of high-
frequency details, resulting in an overall blurry and unsharp appearance. In conclusion, by
incorporating the L1 loss, the model can more effectively restore the detailed structures
within images, enhance the generalization capabilities in areas sparse with details, reduce
outliers, and maintain structural consistency, thus more authentically mirroring real-world
scenes.

 

Figure 9. Qualitative comparison results with and without L1 loss, and with Huber loss.

As depicted in Figure 10, the introduction of entropy regularization loss does not
markedly impact the visual quality, yet the absence of entropy regularization loss in ren-
dering depth maps reveals specific issues. In regions with dense vegetation, the lack of
entropy regularization loss results in the appearance of fluff-like artifacts. In flat farmland ar-
eas, a floating phenomenon of semi-transparent objects is observed. Depth maps that employ
entropy regularization loss show smoother color transitions, indicating an improvement in
the stability and uniformity of depth estimation. In contrast, depth maps without entropy
regularization loss exhibit sharp and uneven color variations, revealing increased uncertainty
and inconsistency in the model’s spatial prediction. This contrast sharply demonstrates the
efficacy of entropy regularization loss in enhancing the quality of depth predictions, par-
ticularly when dealing with complex scenes and dynamic factors. Overall, by minimizing
information entropy, this loss function aims to concentrate the weights along the ray onto a
smaller region, thereby rendering the predictions of volumetric density more focused and
precise. This reduction in the uncertainty and inconsistency caused by unstable factors is
manifested in depth maps as more concentrated and uniform depth values.

Figure 10. Qualitative comparison results with and without applying entropy loss.
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5.5. Limitations

We found that under our current experimental setup, the training of the algorithm is
typically confined to a maximum resolution of 1 K. This limitation results in noticeable
blurring or distortion when rendering scenes with highly detailed geometric structures.
Additionally, although our method can effectively handle data within a certain range, its
scalability remains limited under scenarios involving large datasets and high computational
demands. These constraints could potentially restrict the practical applicability of our
approach, especially in scenarios requiring high-resolution or large-scale data processing.

6. Conclusions and Future Work

We propose a neural rendering framework for drone-captured scenes that caters to the
demand for high-quality three-dimensional visualization. The framework utilizes spatial
boundary compression technology to divide the 3D space more effectively, which allows for
more efficient sampling and significantly reduces the number of network queries. With a
ground surface optimization sampling strategy, an abundance of samples is allocated to the
content-rich regions of the drone scenes, thus substantially improving the rendering quality
of these areas. The integration of Hash Encoding markedly increases the convergence
speed of training the NeRF model while avoiding the high video memory consumption
associated with querying a vast neural network. By applying a Cluster Sampling technique,
the frequency information after Hash Encoding becomes more coherent, achieving render-
ing accuracy at the sub-pixel level. Moreover, the use of an L1 photometric loss makes the
model less sensitive to anomalies, thereby lowering the noise level in image reconstruc-
tion and successfully decreasing rendering biases. By minimizing entropy regularization
loss, the system penalizes semi-transparent renderings and promotes the production of
opaque outputs, effectively suppressing the erroneous generation of fluffy artifacts and
semi-transparent materials within the scene, thereby significantly enhancing the scene’s
visual quality.

Experimental findings demonstrate that this framework is more apt for drone-captured
scenes compared to previous NeRF methods, attaining an optimized effect in 3D scene
visualization quality. In terms of rendering outcomes, the framework significantly preserves
“highlight” information on reflective ground surfaces, notably reducing speckle noise and
rendering inaccuracies, while the representation of distant details closely matches the actual
environment. This framework achieves a balance between expediting the training process
and improving rendering quality by prioritizing computational resource allocation to the
most detail-rich areas of the scene and using a series of optimization strategies to make
efficient use of the limited sample budget. We plan to introduce several key technologies in
our future research to enhance system performance and scalability. First, to address the
resolution limitations, we will explore the use of super-resolution algorithms [44] to enhance
the detail rendering capabilities of our images. Furthermore, considering the need for real-
time rendering, we plan to employ baking algorithms [26] to accelerate the rendering
process. To improve the scalability of our system, we will test our method on larger
datasets and consider integrating more advanced computational techniques and specific
scaling technologies. Specifically, we will investigate vertical scaling technologies [35,45]
designed for generating data representations at varying scales, including earth-scale, which
are crucial for efficiently processing extensive scenes; we will also explore horizontal
scaling [14] through distributed processing, ensuring our method can handle broader
scenes while maintaining quality and coherence. Additionally, to overcome the limitations
encountered with a single GPU when processing large-scale and complex datasets, we plan
to adopt a multi-GPU system in our future research.

By implementing these plans, we aim to significantly enhance the practical perfor-
mance and adaptability of our method. Inspired by findings from [46], we also plan
to design new metrics that effectively describe the rendering quality of NeRF models
across various spatial scales and resolutions, thereby enhancing the efficiency of rendering
effect assessments.
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Appendix A

This appendix includes graphs depicting the changes in Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) over time for each tested scenario. As depicted in Figure A1, these
graphs quantitatively demonstrate how the performance metrics of our model evolve as
a function of training time. In the graphs, the horizontal axis represents time, showing
the progression of model optimization over the duration of the training. The vertical
axis represents the metric values, where typically, the graphs for PSNR and SSIM exhibit
an upward trend, indicating improvements in image fidelity and structural similarity as
training progresses. Conversely, the graphs for LPIPS generally show a downward trend,
reflecting enhanced perceptual similarity between the generated images and the ground
truth. These visualizations help to understand the convergence behavior of our model and
highlight the effectiveness of the training methodology used in this study.

Figure A1. Temporal Evolution of PSNR, SSIM, and LPIPS Metrics During Model Training.
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Abstract: Currently, weed control robots that can accurately identify weeds and carry out removal
work are gradually replacing traditional chemical weed control techniques. However, the com-
putational and storage resources of the core processing equipment of weeding robots are limited.
Aiming at the current problems of high computation and the high number of model parameters
in weeding robots, this paper proposes a lightweight weed target detection model based on the
improved YOLOv8 (You Only Look Once Version 8), called RVDR-YOLOv8 (Reversible Column
Dilation-wise Residual). First, the backbone network is reconstructed based on RevCol (Reversible
Column Networks). The unique reversible columnar structure of the new backbone network not only
reduces the computational volume but also improves the model generalisation ability. Second, the
C2fDWR module is designed using Dilation-wise Residual and integrated with the reconstructed
backbone network, which improves the adaptive ability of the new backbone network RVDR and
enhances the model’s recognition accuracy for occluded targets. Again, GSConv is introduced at the
neck end instead of traditional convolution to reduce the complexity of computation and network
structure while ensuring the model recognition accuracy. Finally, InnerMPDIoU is designed by com-
bining MPDIoU with InnerIoU to improve the prediction accuracy of the model. The experimental
results show that the computational complexity of the new model is reduced by 35.8%, the number
of parameters is reduced by 35.4% and the model size is reduced by 30.2%, while the mAP50 and
mAP50-95 values are improved by 1.7% and 1.1%, respectively, compared to YOLOv8. The overall
performance of the new model is improved compared to models such as Faster R-CNN, SSD and
RetinaNet. The new model proposed in this paper can achieve the accurate identification of weeds in
farmland under the condition of limited hardware resources, which provides theoretical and technical
support for the effective control of weeds in farmland.

Keywords: deep learning; weed identification; YOLOv8; lightweight model

1. Introduction

Weeds pose a serious threat to crop production [1]. It is estimated that weed causes
crop yield losses of up to 43% worldwide every year. [2]. The traditional method of weed
management is spraying herbicides [3]. The use of chemical herbicides is important to
protect crop health and increase yields [4]. However, the standard in agriculture is to spray
herbicides extensively. Therefore, even if there are no weeds in the ground, herbicides
should be applied evenly. This behaviour not only adversely affects the environment
but also causes economic losses to the farming operation [5,6]. Therefore, the ability to
accurately identify and spray weeds by automated weed control systems is crucial for
maintaining and enhancing global food productivity [4].

In traditional image processing techniques, analysing and extracting morphological
and textural features of weed species is widely used to identify weeds in crops [7]. How-
ever, the process of extracting important features takes a long time and is susceptible to
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bias. In order to improve the generalisation of the model, machine learning techniques
such as support vector machines have been used to train computers for automatic weed
recognition [8]. In [9], the authors proposed a texture-based classifier for segmenting weeds
in major crops by considering the combination of wavelet features in neural networks.
In [10], a machine vision approach for weed identification using support vector machines
was proposed. However, traditional machine learning algorithms are time-consuming and
prone to bias in extracting key features [11].

Deep learning techniques are superior in feature extraction using convolutional neu-
ral networks [12]. For this reason, deep-learning-based object detection techniques have
been widely used in object recognition [13]. In [14], the authors combined a ResNeXt
feature extraction network with a Faster R-CNN [15] model to obtain good recognition
results on crop seedling and weed image datasets. In [16], the authors replaced the VGG
network portion in the original SSD [17] network with ResNet [18]. The improved SSD
model achieved an average detection accuracy of 89.7% for surface defects in solid wood.
In [19], the authors predicted wheat ears under different conditions based on migration
learning and RetinaNet [20]. The experiments proved that RetinaNet achieved high recog-
nition performance and recognition speed. From the above research results, the recogni-
tion method based on deep learning can well overcome the shortcomings of traditional
recognition methods.

In recent years, YOLO-based deep learning methods have been widely used in object
recognition research [21]. This method can effectively detect small targets in complex
scenes and have higher detection speeds compared with other methods [22,23]. In [24],
the authors conducted experiments on RetinaNet, SSD and YOLOv3 [25] for real-time pill
recognition and verified the effectiveness of the YOLOv3 algorithm. In [26], the authors
constructed a new backbone based on YOLOv4. By introducing a multi-branch structure
and combining methods such as dilation convolution, the new model improved the AP
value of small target weeds by 15.1% and the mAP by 4.2%. In [27], the authors constructed
a new model, YOLO-CBAM, by introducing the attention mechanism into YOLOv5. The
mAP of the new model was improved by 2.55% compared to YOLOv5, and its detection
speed and effectiveness could meet the requirements of real-time weed monitoring in the
field. In [28], the authors constructed a weed detection model called YOLOv7-FWeed
based on YOLOv7. The new model improved the accuracy of weed identification using an
F-ReLU and MaxPool multi-head self-attention module. The results show that the method
outperforms YOLOv7 in many aspects.

Ultralytics introduced YOLOv8 in 2023, proving its superiority as the state-of-the-art
version of YOLO by comparing it with previous YOLO series models [29]. However, since
the core processing device of a weeding robot has limited computational and storage
resources, it is of great practical significance to investigate a weeding recognition method
that can satisfy both requirements of high accuracy and lightweight [30]. In order to
solve the above problems, this paper designs a new method based on YOLOv8. The new
method can not only effectively identify multiple types of weeds, but also effectively reduce
the hardware overhead of the model. The main work of the paper can be summarised
as follows:

1. Based on RevColNet, the backbone network of YOLOv8 is reconfigured to reduce
the computational complexity and the number of parameters of the model, while
improving the feature extraction capability of the model.

2. The C2fDWR module is designed based on the Dilation-wise Residual of the DWRSeg
model and integrated into the RevCol backbone to form a new backbone RVDR,
which improves the model recognition capability and makes up for the model’s
shortcomings for small target detection.

3. GSConv and VoVGSCSPC are used instead of the traditional convolution module and
CSP module at the neck end of the model. This improved method reduces the size of
the model while ensuring its performance.
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4. The original network loss function is optimised using InnerMPDIoU Loss to provide
a more accurate loss metric.

2. Materials and Methods

2.1. YOLOv8 Model

Among the various existing detection methods, YOLO is widely used for the recogni-
tion of various types of objects due to its fast and accurate features. YOLOv8 is the most
advanced model of the YOLO series at present, which is built on the basis of YOLOv5, with
some new features added to further improve the accuracy and speed of recognition. The
architecture of the YOLOv8 model includes the input end, the backbone module, the neck
module and the head modules, which can be classified into five types according to their
depth and width: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x.

On the input side, adaptive scaling of the image, input dimension adjustment, mosaic
data enhancement and other functions are realised; the backbone module is mainly com-
posed of the CBS (Context-Based Spatial Attention) module, the C2f (Faster Implementation
of CSP Bottleneck with 2 convolutions) module and the SPPF (Spatial Pyramid Pooling
Fast) module. The CBS module contains the convolution, the batch normalisation and the
SiLU activation function. The use of the CBS module can speed up the convergence of the
model and prevent phenomena such as the disappearance of the gradient from occurring.
The C2f module is based on the C3 module; it is obtained by adding the Split operation and
jumping layer connection, which can make the gradient flow of the model richer under the
premise of ensuring the model is lightweight. The SPPF module can realise the fusion of
multi-scale features. The neck module uses a combination of FPN and PAN to make the
feature fusion more adequate. The head module uses the current mainstream decoupled
head structure. This structure separates detection and classification and determines the
positive and negative samples based on the scores obtained by weighting the scores of
classification and regression. This structure effectively improves the performance of the
model. The structure diagram of the YOLOv8 model is shown in Figure 1 below.

Figure 1. YOLOv8 network structure.

2.2. Improved YOLOv8 Model

The improved model structure is shown in Figure 2 below. Firstly, the model backbone
network is reconstructed using RevColNet (Reversible Column Network), which effectively
reduces the complexity of the model. Secondly, the designed C2fDWR module is incorpo-
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rated into the backbone network to improve the recognition ability of the model. Again,
GSConv is introduced at the neck end to effectively reduce the number of parameters of
the model while maintaining the detection accuracy. Finally, the original loss function is
replaced using InnerMPDIoU to improve the model generalisation ability. Through the
above improvements, not only the hardware overhead of the model is effectively reduced,
but also the prediction accuracy of the model is improved.

Figure 2. Improved model structure diagram.

2.2.1. Reconfiguration of the Backbone Network RevCol

The current YOLO series model backbone uses a top–down structure. This structure
is prone to losing the information embedded in the image when extracting features, which
in turn leads to the degradation of model performance. In order to solve this problem,
this paper proposes a reconstructed backbone network based on the Reversible Connected
Multi-Column Networks [31]. RevCol breaks through the information transfer mode of
traditional straight-through networks and adopts a multi-input design, where the starting
point of each column contains low-level information, and the semantic information is
extracted from it through a compressed image channel. Adopting a reversible connection
design between columns makes the network reversible, ensures that the data are transmit-
ted without loss between columns and adds supervision at the end of each column to limit
the feature extraction in each column. The macrostructure of RevCol is shown in Figure 3.

The input image is first segmented into a number of non-overlapping regions, which
are then processed in each of the four hierarchical modules and finally combined with the
inputs of the reversible operations to obtain the final result.

The microstructure of RevCol is shown below in Figure 4, where each level in Figure 4a
performs feature extraction by downsampling and ConvNeXt, and Figure 4b demonstrates
the design of reversible connections taken between columns, from which it can be seen that
there are two inputs to each level, one from the previous hierarchy in the same column and
the other from the previous column in the next hierarchy. The equations for the two inputs
are shown in Equations (1) and (2).
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Xt = Ft(Xt−1, Xt−m+1) + γXt−m, (1)

Xt−m = γ−1[Xt − Ft(Xt−1, Xt−m+1) ], (2)

where Xt is the level t feature, Ft( .) is the activation function, γ is an invertible operation
and γ−1 is its inverse. Each column is composed of m feature maps within a group.

Figure 3. The macrostructure of RevCol.

Figure 4. (a) Firsts column level; (b) second and subsequent middle columns.

In order to avoid the backbone network being too complex, leading to a rise in the
complexity and parameter count of the model, this paper sets the number of columns of
RevCol to 2. At the same time, the operations in Fusion Block are reconstructed, and for the
high-level semantic information, the downsampling is performed by convolution, batch
normalisation and activation function operations. For low-level semantic information,
convolution and upsampling are used for the operations, while the ConvNeXt module is
replaced in level with the C2f module in YOLOv8.
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2.2.2. Expandable Residual Attention Module DWR (Dilation-Wise Residual)

The traditional YOLO series model has certain deficiencies in small-target detection
due to its multi-scale nature, so this paper introduces a fusion-expandable residual attention
module [32]. This module is mainly applied to deep networks, and the multi-branching
structure meets the network’s needs for different sizes of receptive fields, and its structure
is shown in Figure 5. For each branch of the input feature map, a 3 × 3 kernel normalised
convolution operation is performed, and then the batch normalisation layer and ReLU layer
are combined for feature extraction. Since each output channel contains several small spatial
regions that need to be refined, the final output result is composed of these regions. Then,
on this basis, the semantic information is extracted by using the deep 3 × 3 convolution,
and then the semantic residuals are obtained using the BN layer, followed by concatenation
operations on the branches, and then all the feature maps are fused using the point-by-point
convolution method to obtain the final residuals. Finally, the final residuals are merged on
the input feature maps to construct a more complete feature representation. In addition,
features extracted with small receptive fields are relatively important, so the number of
hollow depth convolution channels with the lowest null rate is set to c, and the number of
other channels to c/2.

Figure 5. The structure of DWR.

Based on the DWR module, this paper further designs the C2fDWR module, whose
structure is shown in Figure 6 below.

Figure 6. The structure of C2FDWR.
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In order to make up for the deficiency of the model in small-target identification, the
designed C2fDWR module replaces the C2f module of the reconfigured backbone RevCol,
thus forming a new backbone network RVDR, whose structure is shown in Figure 7 below.
The STEM module can divide the input image into several non-overlapping blocks.

Figure 7. The new backbone network structure.

2.2.3. GSConv

To better accommodate weeding machine equipment with limited computational and
storage resources, the model needs to be designed for lightweighting. This design not only
reduces the computational cost, but also speeds up the model detection. And replacing the
traditional convolution with depth-separable convolution is a good method of lightweight-
ing. Compared with traditional convolution, depth-separable convolution can effectively
reduce the computational amount by layering the feature layer of the input channel, but
it also causes the loss of information between the channels. To address this problem, this
paper introduces the GSConv module based on depth-separable convolution [33], whose
main structure is shown in Figure 8 below. The number of input channels is C1, and
the number of output channels is C2. Firstly, after a standard convolution to make the
number of channels into C2/2, then through the depth-separable convolution to obtain the
same number of channels, finally, the two results will be subjected to joining and mixing
operations. Using GSConv can keep the information of multiple channels and enhance the
feature expression ability of the image while reducing the amount of operations.

Figure 8. The structure of GSConv.
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In this paper, GSConv is introduced to the neck layer to reduce the number of pa-
rameters and the computational complexity of the neck module. And the VoVGSCSPC
based on GSConv and GSbottleneck is used to replace the CSP module of the original
model to further improve the performance of YOLOv8n. GSbottleneck and VoVGSCSPC
are structured as shown in Figure 9 below.

Figure 9. Improved module based on GSConv: (a) GSbottleneck module; (b) VOVGSCSPC module.

2.2.4. Based on the Auxiliary Border InnerMPDIoU

The loss function used in the YOLOv8 model for bounding box regression is CIoU
Loss. CIoU is based on DIoU, and the aspect ratio of the bounding box is added to the loss
function so as to improve the accuracy of regression. But most of the BBR loss functions
represented by CIoU may have the same value under different prediction results, which
reduces the convergence speed and accuracy of bounding box regression. Therefore, in this
paper, a novel loss function based on the minimum point distance, MPDIoU, is introduced
as a loss function to improve the bounding box regression of the YOLOv8 model. MPDIoU
compares the similarity between the predicted bounding box and the actual labelled
bounding box during the bounding box regression process by directly calculating the
distance of the key points between the predicted box and the real box [34]. The formula for
MPDIoU is as follows:

LMPDIoU = 1 − MPDIoU, (3)

MPDIoU = IoU − d2
1

w2 + h2 − d2
2

w2 + h2 , (4)

d2
1 = (xB

1 − xA
1 )

2
+ (yB

1 − yA
1 )

2
, (5)

d2
2 = (xB

2 − xA
2 )

2
+ (yB

2 − yA
2 )

2
, (6)

IoU =
inter
union

, (7)

where A and B are the prediction frame and the real frame, respectively, w and h denote
the width and height of the input image, respectively, (xA

1 , yA
1 ) and (xA

2 , yA
2 ) denote the

coordinates of the upper-left point of A and the coordinates of the lower-right point of
A, respectively, inter represents the intersection of the Target Box and Anchor Box, union
represents the union of the Target Box and Anchor Box, and (xB

1 , yB
1 ) and (xB

2 , yB
2 ) stand for

the coordinates of the upper-left point of B and the coordinates of the lower-right point of
B, respectively.
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Most of the existing IoU improvement methods use the addition of new loss items.
This approach ignores the limitations that the loss term itself has. In this paper, InnerIoU is
introduced into MPDIoU, and a new loss function InnerMPDIoU is proposed as the model
bounding box regression loss function.

InnerIoU is a new improvement method. It differs from the traditional improvement
algorithm by analysing the use of different scales of auxiliary borders in the regression to
calculate the loss, so as to speed up the speed of border regression. InnerIoU introduces a
scale factor ratio to control the size of the auxiliary borders to calculate the loss, and the
general value of the ratio is within [0.5,1.5]. When the ratio is larger than 1, it will produce
an auxiliary border that is larger than the real border, thus increasing the effective range of
regression, which is helpful for the regression of low IoU samples. When the ratio is less
than 1, an auxiliary margin computational loss smaller than the true margin is incurred,
making the absolute value of the regression gradient larger than the absolute value of the
actual margin IoU gradient. Therefore, a high IoU sample regression is favoured at this
time [35]. The InnerMPDIoU calculation process is shown below.

IoUinner =
inter
union

, (8)

LInnerMPDIoU = LMPDIoU + IoU − IoUinner, (9)

where inter represents the intersection of the InnerTarget Box and InnerAnchor Box, and
union represents the union of InnerTarget Box and InnerAnchor Box. The formula of inter
and union is as follows:

inter =
[
min(bgt

r , br)− max(bgt
l , bl)

]
×
[
(min(bgt

b , bb)− max(bgt
t , bt)

]
, (10)

union = (wgt × hgt)× (ratio)2 + (w × h)× (ratio)2 − inter, (11)

where bl , br, bt and bb represent the positions of the four vertices of the InnerAnchor Box,
bgt

l , bgt
r , bgt

t and bgt
b represent the positions of the four vertices of the InnerTarget Box, ratio

represents the scale factor, wgt and hgt represent the width and height of the InnerTarget
Box, and w and h represent the width and height of the InnerAnchor Box, respectively. The
formulae for these variables are as follows:

bgt
l = xgt

c − wgt × ratio
2

, (12)

bgt
r = xgt

c +
wgt × ratio

2
, (13)

bgt
t = ygt

c − hgt × ratio
2

, (14)

bgt
b = ygt

c +
hgt × ratio

2
, (15)

bl = xc −
w × ratio

2
, (16)

br = xc +
w × ratio

2
, (17)

bt = yc −
h × ratio

2
, (18)
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bb = yc +
h × ratio

2
, (19)

where
(

xgt
c , ygt

c

)
represents the centre point in the InnerTarget Box and (xc, yc) represents

the centre point in the InnerAnchor Box.

3. Experiments

3.1. Dataset Production

This experiment is based on the publicly available dataset Weed25 [36], with farmland
and grassland as the research object. The dataset contains a total of 14,035 images and
25 weed categories. The 25 categories of weeds not only belong to 14 families, but also
contain the growth period of each type of weed, which is more diverse than the existing
dataset, and it is very suitable for applying to the training of weed detection models. The
dataset also includes deteriorating conditions, such as plants overlapping with weeds,
which makes detection difficult.

Due to the differences in the number of images of each weed in Weed25, we selected
12 of them with a similar number of images of different types of weeds as training samples,
and sequentially allocated the dataset of each category into the training set, validation set
and test set in the ratio of 8:1:1. The specific data distribution is shown in Figure 10.

Figure 10. The number of each detected object in the dataset.

3.2. Experimental Configuration

This experiment uses Ubuntu 20.02.4 LTS as the operating system, the GPU is the
NVIDIA GeForce RTX 2080Ti graphics card with 10 GB of video memory (ASUS, Taipei,
China), the Anaconda3 development training virtual environment is used, the code envi-
ronment is Python 3.9, PyTorch1.12.1 and Cuda is 11.3. The experiment uses the hyperpa-
rameter configuration: an initial learning rate of 0.01, an epoch of 300, a batch size of 32, a
momentum setting of 0.937, a weight loss factor of 0.0005 and an optimiser of SGD. Images
were taken at a height and angle of approximately 30–50 cm and 60–90◦, respectively, with
a digital camera (Nikon D5300 SLR, Osaka, Japan) or a smartphone (Huawei Enjoy 9S,
Chongqing, China).
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3.3. Model Evaluation Indicators

In this paper, the main evaluation indexes of the model are accuracy rate, recall rate
and mean average precision. The accuracy rate is the proportion of the number of samples
predicted by the detector to be positive classes that are really positive classes, the recall
rate is the proportion of the number of samples predicted by the detector to be positive
classes that are really positive classes, and mAP refers to the mean average precision,
which indicates the average precision of the detector’s detection results for all classes. The
formulas for the definition of accuracy and recall are as follows.

P =
TP

TP + FP
, (20)

R =
TP

TP + FN
, (21)

where TP means both the prediction and actual are true; FP means the prediction is true
and the actual is false; and FN means the prediction is false and the actual is true.

AP represents how well the model performs on each category. mAP is the average
of all APs, which measures the performance of the model on the overall dataset. mAP is
defined by the formula shown below. mAP50 represents the total category average accuracy
when IoU is equal to 0.5, and mAP50:95 represents the average accuracy of different IoU
values (from 0.5 to 0.95 in steps of 0.05).

mAP =
1
n

n

∑
i=1

∫ 1

0
P(R)dR (22)

In addition, the number of model parameters, computational complexity and model
file size were included in the model evaluation metrics in order to reflect the advantages
over other models.

4. Results and Discussion

4.1. Ablation Experiments

In order to prove the effectiveness of the improved method, this study conducted
ablation experiments on the Weed25 dataset, and the results of the experiments are shown
in Table 1 below.

Table 1. Improved point ablation experiment.

Models
mAP50

(%)
mAP50-95

(%)
FLOPs

(G)
Params

(M)
Size
(MB)

P
(%)

R
(%)

YOLOv8 92.1 62.3 8.1 3.00 6.3 90.4 88.5
+RevCol 92.8 62.9 6.3 2.27 4.9 91.6 87.9

+Slimneck 92.8 62.9 7.1 2.70 5.7 90.6 87.6
+RevCol+Slimneck 92.7 62.4 5.3 1.97 4.4 90.4 86.2

+RevCol+C2fDWR+Slimneck 92.9 63.2 5.2 1.94 4.4 91.5 86.3
+RevCol+C2fDWR+Slimneck+InnerMPDIoU 93.8 63.4 5.2 1.94 4.4 92.9 88.3

The analysis of the table shows that after incorporating RevCol for the YOLOv8 model,
the number of parameters of the model decreased by 24.2%, the model size and GFLOPS
decreased by 22.2%, and after incorporating Slimneck for the YOLOv8 model, the number
of parameters of the model decreased by 10%, the GFLOPS decreased by 12.3% and the
model size decreased by 9.5%. This proves the effectiveness of both improvement strategies.
After combining and integrating these two improvements into the network, although there
was a slight decrease in mAP50-95 values, the model’s parameter count, computational
complexity and model size were further reduced. And after incorporating C2fDWR on
this basis, not only the parameters and computational complexity of the model were
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reduced, but the mAP50-95 value was also improved from 62.4% to 63.4%, and finally after
incorporating InnerMPDIoU, the mAP50 value and accuracy were improved while ensuring
that the other parameters were basically unchanged. Finally, compared with YOLOv8, the
improved model proposed in this study reduced the computational complexity by 35.8%,
the number of parameters by 35.4% and the model size by 30.2%, while the mAP50 and
mAP50-95 values were improved to 93.8% and 63.4%, respectively, the precision value was
improved to 92.9% and the performance of the improved model outperformed the original
YOLOv8 model in several aspects.

The results of the ablation experiments based on other innovations for the ratio in
InnerMPDIoU are shown in Table 2 below.

Table 2. Ratio ablation experiment.

Models Ratio mAP50(%) mAP50-95(%) P(%) R(%)

RVDR-YOLOv8 0.71 92.4 62.8 89.8 88.1
RVDR-YOLOv8 0.81 92.6 62.9 88.8 88.1
RVDR-YOLOv8 0.91 92.6 63.3 91.6 86.1
RVDR-YOLOv8 1 92.9 63.3 91.8 87.1
RVDR-YOLOv8 1.15 93.1 63.0 89.8 87.5
RVDR-YOLOv8 1.17 93.2 63.3 90.1 89.0
RVDR-YOLOv8 1.25 93.8 63.4 92.9 88.3
RVDR-YOLOv8 1.27 93.1 63.4 89.9 89.3
RVDR-YOLOv8 1.35 93.0 63.3 89.0 89.1

When the ratio > 1, the obtained margins are larger than the actual margins, which
is favourable for the regression of low IoU samples. The experimental data show that the
model performs better at a ratio > 1 than at a ratio < 1, and the experiment works best
overall when the ratio = 1.25. The exact value of ratio needs to be adjusted according to
the dataset.

4.2. Comparison Experiments

In order to compare the models in terms of performance, we chose Faster R-CNN,
SSD, YOLOv3, YOLOv4tiny, YOLOv7tiny, YOLOv7l, EfficientDet and RetinaNet for the
comparative experiments, and chose the mAP50-95 values, the mAP50 values, the number
of model parameters and the computational complexity as the comparison metrics. The
results of the comparison experiments are shown in Table 3 below.

Table 3. The results of the experiments for comparison with other models.

Models mAP50(%) mAP50-95(%) FLOPs(G) Params(M)

Faster R-CNN 89.6 55.8 369.9 136.9
SSD 88.2 52.6 278.0 25.1

YOLOv3 84.5 51.6 155.4 61.6
YOLOv4tiny 74.9 38.7 16.2 5.9

YOLOv5n 92.2 61.8 7.1 2.5
YOLOv7tiny 90.7 57.6 13.2 6.0

YOLOv7l 91.4 58.9 105.3 37.3
EfficientDet 87.2 53.6 11.6 6.6
RetinaNet 90.3 59.0 126.7 19.9
YOLOv8n 92.1 62.3 8.1 3.0

RVDR-YOLOv8 93.8 63.4 5.2 1.9

As can be seen from Table 3, the improved model RVDR-YOLOv8 not only has
the smallest computational complexity and number of parameters, but also has a great
improvement in detection ability, which is the best performance among many models.
Based on the above conclusions, the RVDR-YOLOv8 model proposed in this paper, although
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not as fast as YOLOv8 in detection speed, still achieves real-time detection, and thus
outperforms other models in the weed detection task in an integrated manner.

4.3. Experimental Analysis

In order to demonstrate the enhancement effect of the proposed model compared to
the original model, comparative experiments are conducted in this paper. Table 4 shows
the AP values for each category derived from the original model and the improved model
tested on the dataset, and through the table it can be seen that the improved model has
improved the AP values of most of the categories to different degrees, indicating that the
improved method improves the model’s detection accuracy of the target. Values where
there has been an improvement are shown in red and deteriorating values are shown
in green.

Table 4. The YOLOv8n and our model for each category of AP.

Detect Objects
AP(%)

YOLOv8n Ours (RVDR-YOLOv8)

Abutilon theophrasti 74.7 76.2
Alligatorweed 57.6 58.8

Asiatic smartweed 33.4 32.6
Barnyard grass 60.1 61.2

Goosefoots 69.9 72.2
Bidens pilosa 72.6 73.0

Billygoat weed 65.9 65.1
Black nightshade 53.9 54.8
Ceylon spinach 77.9 80.5

Chinese knotweed 36.3 40.5
Cocklebur 74.6 75.2

Common dayflower 70.7 70.6

In order to visualise the feature extraction capability of the network, we use the Grad-
GAM technique to plot the heatmap of YOLOv8 and RVDR-YOLOv8 for target recognition
attention, as shown in Figure 11 below. By analysing the heatmap, it can be seen that the
improved model exhibits higher intensity in recognising the target region, thus suggesting
that the improved model has a stronger capability compared to the baseline model in
extracting the features and exploiting the features.

Figure 12 shows the confusion matrix of the improved model, where the horizontal
axis represents the true values and the vertical axis represents the predicted values, by
analysing the picture it can be seen that most of the true values correspond to the predicted
values, which shows that the model has a good performance.

Figure 13 shows the prediction results of YOLOv8 and RVDR-YOLOv8, and the
comparison shows that the improved model not only achieves accurate target localisation,
but also has some improvement for the confidence level.

Figure 14 shows the comparison graph between the original model and the improved
model in terms of the number of parameters, model size and GFLOPS, from which it can be
seen that the improved model has a greater degree of reduction in all the three evaluation
metrics, which demonstrates that the improved model is lighter compared to the original
model and is more suitable for application to weeding robots with limited computational
and storage resources.

Figure 15 shows the comparison of the improved model RVDR-YOLOv8 with Faster
R-CNN, SSD and other models in terms of the number of parameters. The comparison
results show that the improved model has a greater degree of reduction in the number of
parameters compared to the other models.
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Figure 11. (a) Input image; (b) YOLOv8 Grad-CAM figure; (c) RVDR-YOLOv8 Grad-CAM figure.

Figure 12. Confusion matrix graph of the improved YOLOv8 algorithm.
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Figure 13. Comparison of detection results: (a) detection effect of YOLOv8 model; (b) detection effect
of RVDR-YOLOv8 model.

Figure 14. Comparison of YOLOv8 and improved model results: (a) parameter comparison results;
(b) model size comparison results; (c) GFLOPS comparison results.
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Figure 15. Results of the improved model RVDR-YOLOv8 versus other models in terms of the
number of parameters.

5. Conclusions

The accurate identification of weeds is very important for implementing field weed
control. In this paper, a weed target detection model based on improved YOLOv8 is
proposed, which not only can accurately detect the target, but also makes the model
more lightweight. Specifically, firstly, the computational complexity of the model and
the number of network parameters are effectively reduced by reconfiguring the backbone
network RVDR. Subsequently, the GSConv and VoVGSCSPC modules are used at the neck
end to reduce the size of the model. Finally, the original loss function is optimised by
InnerMPDIoU Loss to improve the model detection accuracy. Compared to the original
model, the computational complexity is reduced by 35.8%, the number of parameters is
reduced by 35.36%, the model size is reduced by 30.15%, the mAP50 value is improved to
93.8% and the mAP50-95 value is improved to 63.4%, which makes the proposed improved
model well suited to be used in weed control robots with limited computational and
storage resources.

Although the improved model is able to achieve real-time detection, the FPS value is
decreased compared to the original model. Follow-up work will aim to improve the model
detection accuracy while reducing the model inference time.
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Abstract: In the intelligentization process of power transmission towers, automated identification
of stamped characters is crucial. Currently, manual methods are predominantly used, which are
time-consuming, labor-intensive, and prone to errors. For small-sized characters that are incomplete,
connected, and irregular in shape, existing OCR technologies also struggle to achieve satisfactory
recognition results. Thus, an approach utilizing an improved deep neural network model to enhance
the recognition performance of stamped characters is proposed. Based on the backbone network of
YOLOv5, a multi-scale residual attention encoding mechanism is introduced during the upsampling
process to enhance the weights of small and incomplete character targets. Additionally, a selectable
clustering minimum iteration center module is introduced to optimize the selection of clustering
centers and integrate multi-scale information, thereby reducing random errors. Experimental ver-
ification shows that the improved model significantly reduces the instability caused by random
selection of clustering centers during the clustering process, accelerates the convergence of small
target recognition, achieves a recognition accuracy of 97.6% and a detection speed of 43 milliseconds
on the task of stamped character recognition, and significantly outperforms existing Fast-CNN,
YOLOv5, and YOLOv6 models in terms of performance, effectively enhancing the precision and
efficiency of automatic identification.

Keywords: transmission pylons; embossed characters; deep neural networks; attention mechanism;
cluster-centering

1. Introduction

Angle steel is the main component material of an electric power tower; each angle
steel tower contains hundreds or even thousands of angle steel parts. From unloading to
shipment, the angle parts will go through the processes of hole-making, backing, trimming,
galvanizing, sorting, packing, and so on. Each part is given a dedicated steel stamp
number, usually generated using a character mold punch. As the steel stamp character
carries production information such as dispatch number, equipment number, worker code,
processing time, it is crucial for product quality control and responsibility tracing. At
present, the main use of traditional manual identification methods is not only inefficient
but also susceptible to subjective bias, there is an urgent need for technological innovation
to achieve automatic identification [1,2]. Although the existing OCR (Optical Character
Recognition) equipment [3] and advanced machine vision technology in many application
areas has been quite mature, in the field of transmission tower angle steel parts steel stamp
character recognition, there are still accuracy and consistency problems; it is difficult to
meet the requirements of industrial applications. This limitation is mainly due to the steel
characters in the manufacturing and the use of various complex factors that may occur
in the process, such as steel parts embossed with characters of the material, concave and
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convex height, tilt angle, mutilation, adhesion, and small size and shape irregularities,
etc., resulting in uneven distribution of the grayscale of the image and clarity degradation.
The characters in the segmentation and recognition process of the error rate are higher,
and the angle embossed character recognition has brought a huge challenge. Most of the
traditional character recognition methods are based on the similarity of template matching,
edge information in the image, shape features, and statistical classification techniques. To
address the feature extraction problem of steel-stamped characters, Geng et al. [4] used a
method based on fractal dimension and Hidden Markov features to binarize the characters
and then used multiple classifiers to recognize the embossed characters of license plates.
Zhang et al. [5] proposed an embossed character segmentation method, which firstly
screens the embossed character region, then performs morphological optimization, and
combines the extracted embossed character features with a BP neural network to achieve
embossed character recognition. These methods are sensitive to image noise and small
deformations of embossed characters, and it is difficult to deal with character sets with
concave and convex features and recognize embossed characters in complex backgrounds.

In recent years, image recognition methods based on deep learning [6] have gained
widespread attention for their fast and accurate performance, among which, YOLO (You
Only Look Once), proposed by Redmon et al. [7–14], defines target recognition as a regres-
sion problem, and directly predicts the bounding box and category probabilities from the
full image through a single neural network for end-to-end optimization, which has become
one of the most popular methods for image recognition. Jaderberg et al. [15] proposed a
method using synthetic data and artificial neural networks for natural scene text recogni-
tion, significantly improving recognition accuracy. Shi et al. [16] introduced an end-to-end
trainable neural network for image-based sequence recognition, particularly useful for
scene text recognition. Graves et al. [17] developed a multidimensional recurrent neural
network for offline handwriting recognition, demonstrating its effectiveness in handling
complex handwriting sequences. In many specific application areas, in order to further
improve the accuracy of recognition, many scholars have carried out a lot of innovative
research work based on the YOLO model framework. For example, Zhao Yan et al. [18]
proposed a detection model by combining the Darknet framework and the YOLOv4 al-
gorithm and enhanced the model’s ability to detect multi-scale defects in circuit board
characters by designing reasonable anchors using the k-means clustering algorithm. Y.S.
Si et al. [19] proposed an improved YOLOv4 model by employing MSRCP (Multi-scale
retinex with chromaticity preservation) algorithm for image enhancement in low-light en-
vironments, as well as incorporating an RFB-s structure in the model backbone to improve
the change of cow body pattern in terms of its robustness. In addition, by improving the
Non-Maximum Suppression (NMS) algorithm, the accuracy of the model in recognizing
the target is improved. Huaibo Song et al. [20] improved the YOLOv5s detection network
by introducing the Mixed Depth Separable Convolution (MixConv, MDC) module and
combining it with the Squeeze-and-Excitation (SE) module in order to reduce the model pa-
rameters with essentially no loss of model accuracy. In this improvement, the conventional
convolution, normalization, and activation function (CBH) module in the backbone part of
the feature extraction network of the YOLO v5-MDC network is replaced with the MDC
module, which effectively reduces the model parameters. Although the above-improved
target detection methods based on the YOLO network model have improved the detection
accuracy in specific applications, they generally suffer from high model complexity and
slow training speed. At the same time, these features further increase the difficulty of
detection when dealing with objects with small dimensions, different location information,
and irregular morphology.

For the current power tower parts angle steel concave and convex characteristics and
image noise and other problems, this paper designs a multi-scale residual attention coding
algorithm module and selectable clustering minimum iteration center to improve the model
of YOLOv5, and proposes a new deep learning network model based on the recognition of
embossed characters of steel parts, which has a total of two innovations: (1) In the YOLOv5
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architecture, the model is improved through the use of the Spatial Pyramid in the fast
space pyramid Pooling (SPPF) and the downsampling phase of the backbone network by
integrating the channel multiscale residual attention coding algorithm, which enhances
the network’s ability in terms of extracting shallow features and assigning weights to the
detection targets, thus optimizing the overall detection performance; and (2) Designing
a method of selecting the cluster centers aiming at selecting, in each iteration, cluster
centers that can minimize the differences within the clusters, ensuring that the cluster
centers selected in each iteration best represent the characteristics of individual characters,
thereby improving the accurate recognition of the shape and size of embossed characters.
The main contents of this paper are structured as follows: The first part briefly describes
the current state of research and the structure of the paper on the target detection of steel
imprinted characters on angles; the second part briefly describes the challenges faced by the
production of angles for transmission towers and the automated recognition of imprinted
characters; the third part proposes the recognition model YOLOv5-R for mutilated and tiny
imprinted characters; the fourth part compares the improved model with other models
in terms of experiments and performance analyses on different types of angle embossed
characters in detection tasks; and finally, the superiority of the improved model and its
application potential are summarized.

2. Power Tower Angle Steel Parts Processing

2.1. Angle Steel Tower Parts Processing Process and Steel Stamping

The power angle steel tower parts manufacturing process can be divided into under-
cutting, stamping, trimming, pre-assembly, galvanizing, sorting, classification, packing,
factory, and assembly, as shown in Figure 1. To ensure the stability and safety of power
transmission, strict control of the angle manufacturing process is particularly important,
from the selection of raw materials to the final product of strict inspection, each step re-
quires meticulous management and operation. One of the key steps is character imprinting,
which involves imprinting important information such as the production lot number, ma-
terial type, and production date on the steel. This information is important for product
tracking, maintenance, and quality control.

Figure 1. Transmission Tower Manufacturing Flow Chart.

Embossing techniques include cold embossing and hot embossing: Cold embossing
uses high pressure at room temperature to permanently press characters into a metal
surface through a mold. Hot embossing is done at higher temperatures and provides
deeper markings for applications that require very high abrasion resistance. Both methods
must ensure embossing quality and durability with precise control of several technical
parameters [21]. First, the design of the mold must be precise to match the size, shape,
and expected depth of the desired character. Second, embossing equipment selection
needs to take into account productivity, automation, and operational flexibility. At present,
automated embossing machines can improve production efficiency and reduce human
errors, which are especially suitable for mass production and are gradually popularized
and applied in some enterprises.
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2.2. Challenges of Angle Steel Embossed Character Recognition

The embossed characters on the angle steel parts of power towers carry key informa-
tion, such as production batch, material type, and manufacturing date, which are crucial for
tracking the product, maintenance, and quality monitoring, but at present, it mainly relies
on manual recognition, which has many problems such as low efficiency and high error
rate. The existing mature OCR technology landscape is widely used in various fields, but
the power pylons steel stamp character recognition makes it difficult to obtain ideal results.
The main reasons are as follows. First of all, based on the mold stamping out of the steel
characters, because of character mold wear and tear or even breakage, among other reasons,
resulting in stamping out of the steel characters, there is poor consistency, mutilation, and
other issues. Secondly, the imprinted characters may be subjected to environmental factors
such as corrosion or wear and tear and become illegible; this physical wear and tear or
chemical corrosion will lead to fuzzy edges of the characters, the font being faded, or
even part of the characters disappearing, as shown in Figure 2. Third, during production
and use, the angle may be covered with grease or other types of contaminants that can
form a covering layer on the surface of the characters, significantly reducing their visibility.
These reasons bring great challenges to the recognition of steel imprinted characters for
power pylons.

 

Figure 2. Part of angle steel embossed. (a) Galvanized Angle stamping characters; (b) Incomplete
Angle stamping characters; (c) Rusted Angle stamping characters; (d) Ungalvanized Angle stamping
characters; (e) Laser printed steel plate stamping characters.

3. Network Model

3.1. Angle Steel Embossed Character Recognition Based on YOLOv5

The YOLO improves processing efficiency by simplifying target detection to a single
regression analysis. The neural network divides the image into multiple grids, with each
grid cell independently predicting its internal target. Batch normalization and ReLU
activation functions are configured after each convolutional layer to optimize nonlinear
processing capability and overall stability. YOLOv5 is designed to optimize efficiency and
speed, making it suitable for resource-constrained environments while maintaining good
detection accuracy. Its core architecture includes multilayered convolutional layers, residual
blocks, and an anchor box mechanism. Convolutional layers capture visual features at
various levels using multi-scale convolutional kernels, while residual blocks solve the
problem of gradient vanishing in deep networks through skip connections. The anchor
box mechanism, by presetting bounding boxes of different sizes and ratios, accelerates the
model’s convergence speed for targets of various sizes and shapes, improving detection
accuracy, as shown in Figure 3. The arrows in the figure represent the flow of data through
the layers of the model, indicating the sequence of operations performed. The straight

441



Electronics 2024, 13, 2435

black arrows denote the standard forward pass through the Batch Normalization (BN),
ReLU activation, and Convolution (Conv) layers, while the curved red arrows indicate the
residual connections that add the input of a block to its output, helping to mitigate the
vanishing gradient problem in deep networks.

Figure 3. Residual network structure.

However, YOLOv5 performs poorly in recognizing damaged and rusty embossed
characters. These characters are usually small and prone to damage, leading to missed or
incorrect detections. Additionally, corrosion and wear can make it difficult to distinguish
characters from the background, reducing recognition accuracy. While the standard anchor
box mechanism optimizes detection for targets of various sizes and shapes, its preset
sizes and ratios may not be sufficient to cover all character variants, affecting the model’s
flexibility and adaptability. Residual blocks may fail to adequately retain critical informa-
tion when dealing with these detailed and damaged characters, resulting in decreased
recognition accuracy. To address these shortcomings, we introduced a multi-scale feature
fusion mechanism that better captures different levels of information in images, improving
detection capabilities for complex scenes and small targets. Additionally, we optimized
the YOLOv5 anchor box mechanism to better suit small target detection by introducing
a dynamic anchor box adjustment strategy that adjusts anchor box sizes dynamically
based on target size and shape, thereby improving detection accuracy. Furthermore, we
incorporated an attention mechanism into the network to enhance the model’s focus on
key features, thereby improving overall detection performance. With self-attention and
channel attention mechanisms, the model can more effectively distinguish targets from the
background, increasing recognition accuracy.

3.2. Multi-Scale Residual Channel Attention Coding Mechanism Design (MSRC)

Attention mechanism networks in image processing can finely control the channel
and spatial dimensions of the model and use masks to precisely manage the attention,
thus improving recognition accuracy. These include self-attention, domain attention,
and channel and spatial attention modules (CAM and SAM). Although this enhances
the image processing performance, the model still struggles to distinguish the nuances
between background noise and the actual target when dealing with small or crippled
targets, limiting the recognition rate. In addition, these problems may be further amplified
when the depth and complexity of the model increase, affecting the memory and utilization
of earlier features, thus limiting the improvement of recognition accuracy. To overcome
these limitations, in this paper, we design a multi-scale residual channel attention coding
algorithm mechanism that eliminates the insufficient filtering of non-critical information,
thereby enhancing small target and residual recognition, the structure of which is shown in
Figure 4. This mechanism can significantly improve the recognition accuracy of the model
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by enhancing the function of feature extraction and information integration, especially
when dealing with low-resolution and small-volume targets.

Figure 4. Multi-scale residual channel attention coding structure.

A multi-scale residual attention coding algorithm finely handles the feature map,
which effectively enhances the representation of features and the continuous flow of
information by combining the residual learning technique and the attention mechanism
in deep learning. The algorithm first applies residual connections that allow gradients to
flow directly through the network, preventing information from being lost during deep
transfer. A 1 × 1 convolutional kernel is then used to reduce the dimensionality of the
feature map, which not only simplifies the computational requirements of the model but,
at the same time, preserves the most critical information. The global pooling step follows
immediately after the spatial compression of the features, capturing the most globally
important features and providing an accurate basis for the final attentional weighting. The
normalized exponential function (Softmax function) is then used to assign the attentional
weights, which enhances the model’s ability to determine the importance of features by
amplifying meaningful feature differences and normalizing the weights, as shown in
Figure 5. Additionally, the Softmax function is applied at the final classification stage to
convert the output logits into a probability distribution, enabling the model to assign a
class label to each detected object with a confidence score. The calculation of the attentional
weights not only relies on the amount of information in the features themselves but also
takes into account the relative importance between the features with the following formula:

ai =
exp(F( fi))

∑3
k=1 exp(F( fi))

(1)

where ai represents the attention weight of the i feature map, exp denotes the natural
exponential function, which is used to ensure that the weight is positive and amplifies the
differences in the vector representation of the feature maps, and ∑3

k=1 exp(F( fi)) denotes to
ensure that the sum of the attention weights of all the feature maps is 1, which is achieved
by summing the exponential weights of all the feature maps to achieve the normalization
of the weights. Then the algorithm adjusts all feature maps to the same size weights using
the corresponding attention weights, and fuses the weighted feature map phases to form
the final fused feature map; the fusion formula is as follows:

g =
3

∑
i=1

ai × g(convi(Fi)) (2)

where g denotes the fused feature map, is the result of the i feature map by 1 × 1 convolution

processing, and
3
∑

i=1
denotes traversing all feature maps and adding their weighted results

to get the final fused feature map.
Residual attention coding calculates the degree of match between the feature maps and

the predefined templates through cosine similarity, which further evaluates the model’s
key to feature recognition accuracy. Cosine similarity measures the similarity between
two vectors through dot product and mode length normalization, which effectively deter-
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mines the consistency between the model output and the target template, as shown in the
following equation:

cos(Db
ai
) =

F(ai) · F(b)
|F(ai)||F(b)|

(3)

where, Db
ai

denotes the similarity between the ai and the template b, F(ai) denotes the
vector representation of the i feature map after a series of processing, F(b) denotes the
vector representation of the feature map as the reference template after the same processing,
· is used to calculate the dot product of the two vectors, |F(ai)| and |F(b)| denotes the
modes of F(ai) and F(b). Finally, to evaluate the attention weight of each feature map, the
computed similarity metric is fed into the Softmax layer for normalization, the similarity
is converted into probability. Finally, the sum of weighted feature maps is generated by
increasing the attentional weights of the up-sampled C1 and the corresponding other
predictor heads Ci to the same size and number of channels, which is calculated as follows:

A = ∑3
i=1 aiFi (4)

where A denotes the sum of weighted feature maps.

 

Figure 5. Multi-scale residual channel unit.

3.3. Design of Optional Clustering Minimum Iteration Center Module (OCMC)

In the YOLOv5 algorithm, the traditional K-means algorithm [22,23] is used to opti-
mize the anchor frame size. The distance from the sample points to the cluster center is
minimized by randomly selecting the initial cluster center and iteratively updating the
position. Despite its simplicity and efficiency, the K-means algorithm still faces problems
such as high computational complexity and dependence on a priori knowledge of the
number of clusters. This is especially true when dealing with high-dimensional data or
large-scale datasets since the distance from all data points to existing clustering centers
needs to be calculated each time a new center is selected. Secondly, the a priori selection that
still relies on the number of clusters is often difficult to determine in practical applications.
In addition, Euclidean distance, as the core metric of clustering, may not be sufficient to
express the actual similarity between data points in some application scenarios.

In order to deal with small and residual targets more effectively, an optimized cluster-
ing algorithm is proposed, and this algorithm replaces the traditional Euclidean distance by
using the intersection and union ratio (IoU) as a new distance metric, because the traditional
Euclidean distance cannot accurately reflect the similarity between anchor frames in target
detection. The IoU, on the other hand, takes into account the degree of overlap of the anchor
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frames in target detection, and it is a more reasonable metric for assessing the similarity
between anchor frames. In this way, the problem of random selection of clustering centers
can be effectively avoided, and the clustering process can more accurately reflect the shape
and size differences of targets. The algorithm will randomly select a sample from the data
set as the first clustering center. For each sample not selected as the center, its distance
is calculated to the nearest clustering center, and the calculated distance is taken as the
probability of selecting the next clustering center proportional to the inverse of the IoU
distance; the formula is as follows:

IoU(x, C) =
Area o f intersecting areas(x, C)

Area o f the phase area(x, C)
(5)

D(x, C) = 1 − IoU(x, C) (6)

P(x) =
D(X)2

∑x/∈C D(X)2 (7)

where x denotes the sample, C denotes the clustering center, D denotes the distance metric,
and IoU denotes the ratio of the area of the intersection region of the two bounding boxes
to the area of their concurrent region. This probabilistic model ensures that the selection of
clustering centers considers both randomness and reflects the actual physical proximity
between samples. During the iteration process, each cluster center is assigned to the nearest
cluster center based on the distance of each sample IOU. The center of each cluster is
then updated such that the sum of the IOU distances of all samples within the cluster is
minimized. The algorithm terminates when the change in the cluster center is less than a
threshold or the maximum number of iterations is reached, which is calculated as follows:

Cnew = argmin
C

∑
x∈Cluster(C)

D(x, C) (8)

where Cnew denotes the new clustering center.

3.4. Overall Framework of the Improved YOLOv5-R Network Model

To improve the detection accuracy of small-size and crippled targets, we introduce
the design of an optional clustering minimum iteration center module. By implementing
a multi-scale residual attention coding mechanism, extracting channel features through
global maximum pooling, and adjusting the response strength of each channel using the
sigmoid activation function, the model’s ability to handle complex backgrounds and multi-
size targets is enhanced, improving its capture of key features. This module optimizes the
clustering process by introducing the intersection and union ratio (IoU) as a new distance
metric to replace the traditional Euclidean distance, reducing the dependence on the a
priori knowledge of the number of clusters and reflecting more accurately the similarity
of the anchor frames in the detection of the targets, so as to improve the efficiency and
accuracy of clustering. The structure of the improved YOLOv5-R neural network is shown
in Figure 6, which is based on the YOLOv5 architecture and integrates the backbone net-
work, the multi-scale residual attention mechanism, the feature pyramid, and the detection
head. To optimize performance and retain more image details, the model is designed with
a specified input image size of 3 × 640 × 640. The input image is first passed through
high-resolution Convolutional Blocks (Channel Block Squeeze (CBS)), which use cascading
to extract complex and abstract features of the image layer by layer. The image features then
enter the multi-level CSP1_X (Common Spatial Pattern) module, while CSP1_X represents
the orange, purple, and gray feature layers in the figure. Each module handles features at a
certain granularity and reduces the computational cost and the model parameters through
the strategy of segmentation and merging. After the feature map is further refined, it is fed
into a multi-scale residual attention coding mechanism, which reduces the dimensionality
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while retaining the key information through a 1 × 1 convolution kernel, and Global Max
Pooling (GMP) to extract the salient features in the map. The weights of the features
processed by Global Max Pooling are then computed by a normalized exponential function
and integrated into a comprehensive feature graph for enhancing the accuracy of target
segmentation. The processed feature maps through the attention module are downsampled
to compress the image resolution while retaining the core information. The processed
feature maps are input into the feature pyramid network on the one hand, and additionally,
the classification probability is computed through the Softmax layer, which is combined
with the convolutional features of the CSP module in the feature pyramid through the mul-
tiplication operation, to ensure that the output classification results have a high confidence
level. Figure 6 shows the structure and information flow of the entire model. The upper
half of the figure demonstrates how the multi-scale residual attention encoding mechanism
is integrated into the feature pyramid to enhance feature extraction and target detection
capabilities. The input image first passes through high-resolution convolution blocks
(CBS), and then enters multi-level CSP1_X modules for feature extraction. The feature
map is further processed through the multi-scale residual attention encoding mechanism
and then enters the feature pyramid network for final target detection. The lower half of
the figure details the specific operational processes of certain modules in the upper half,
including the multi-scale residual attention module, CBS (Channel Block Squeeze) modules
for extracting high and complex abstract features of the image, CSP (Cross Stage Partial
Network) modules for processing features through partitioning and merging strategies to
reduce computational cost and model parameters, and SPPF (Spatial Pyramid Pooling-Fast)
modules for further refining and fusing feature maps. The orange dashed lines indicate
feature maps processed through 3 × 3 convolutions, which capture more local information
and details. These feature maps are then processed through 1 × 1 convolutions (yellow
dashed lines) to reduce dimensionality, simplify computation, and retain essential features.
Finally, the processed features are passed to the detection head, ultimately used for target
detection, as indicated by the blue dashed lines.

 

Figure 6. Structure diagram of YOLOv5-R network model.

The arrows indicate the flow of data through the network layers, while the different
colors represent various op-erations and modules. Beige represents Convolutional Block
Squeeze (CBS) modules for high-resolution feature extrac-tion. Orange, purple, and gray
indicate different levels of the Common Spatial Pattern (CSP) network (CSP1_1, CSP1_2,
CSP1_3) for feature processing. Light blue represents the Spatial Pyramid Pooling-Fast
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(SPPF) module for refining fea-ture maps. Light green shows processed feature maps at
different scales (P3, P4, P5) for detection. Blue represents the YOLO loss layers for class,
box, and objection losses. Yellow represents 1 × 1 convolution layers for dimensionality
re-duction, and orange dashed lines indicate 3 × 3 convolution layers for capturing details.
Blue dashed lines show the final steps to target detection. Black arrows show data flow,
red arrows represent residual connections, and blue arrows lead to YOLO loss calculation.
These details help to understand the structure and functionality of the model.

4. Experiment and Analysis

4.1. Experimental Environment

The homemade experimental dataset comes from an angle steel manufacturing com-
pany, where photos were collected using smartphones sourced from Apple Inc. (Cupertino,
CA, USA) and Huawei Technologies Co., Ltd. (Shenzhen, Guangdong, China), totaling
5212 photos of angles and plates, as shown in Figure 2. The collection process needs
to be conducted under good lighting conditions to avoid shadows and reflections, en-
suring image quality and character clarity. The resolution of the captured images is
1280 × 1280 pixels, and preprocessing includes cropping the regions containing the em-
bossed characters and converting the images to grayscale to reduce the impact of lighting
and color variations. The processed images are annotated using the makesense.ai web
tool to accurately label the position and category of each character. The annotated im-
ages and character information are stored in a database, forming a complete dataset. The
dataset includes images of angle steel embossed characters, their positional coordinates,
and category labels. During data collection, different types of angle steel, various shooting
angles, and lighting conditions are covered as much as possible to ensure the diversity
and representativeness of the dataset. The image resolution is adjusted to 640 × 640 pixels
for the experiments. Character labels include the numbers 0 to 9, letters A to Z (note
that the letter “O” and the number “0” are the same in the actual dataset, so the number
“0” is used uniformly), the special symbol “&” (representing the company code), and the
labels “box-” and “box+”, where “box+” indicates forward stenciled characters and “box-”
indicates inverted stenciled characters. These are categorized into 40 categories, as shown
in Figure 7. 80% of the dataset forms the training set, and the remaining 20% forms the
test set for performance evaluation. In the experiments, a desktop device with an NVIDIA
GeForce RTX 1650 4 GB graphics card is used, and the Pytorch deep learning framework is
employed for training and testing, as shown in Table 1.

 
Figure 7. Number of different categories in the captive dataset.
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Table 1. Desktop environment.

Processor Operating System

CPU Intel Core i5 9300H
GPU GeForceRTX1650 (4 GB)

Memory 8 GB
Python 3.8

Framework-Equipped Pytorch1.12.0CUDN11.2

4.2. Performance Metrics

In order to judge the performance of an optimization model, a set of reliable evaluation
metrics is essential. These metrics not only provide internal criteria for evaluating the
performance of a model but are often used as a reference for external evaluations. The
evaluation of most classification models usually considers the following key metrics,
including precision, recall, detection elapsed time, and mean average precision (mAP).

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

mAP =
1
N

N

∑
i=1

APi (11)

where TP (True Positives) denotes the number of positive category samples correctly
predicted as positive by the model, FP (False Positives) denotes the number of negative
category samples incorrectly predicted as positive by the model, FN (False Negatives)
denotes the number of positive category samples incorrectly predicted as negative by the
model, and N denotes the total number of categories and represents the average precision
of the i category.

4.3. Validation of Module Performance
4.3.1. Validation of Multi-Scale Residual Channel Attention Encoding Mechanism

The multi-scale residual attention encoding mechanism enhances the feature extraction
process by incorporating attention mechanisms and multi-scale processing. The attention
mechanism dynamically adjusts the weights in the feature maps, highlighting important
regions in the image, thus more effectively handling small, incomplete, and irregularly
shaped characters. Additionally, multi-scale processing captures features at different scales
enable the model to recognize characters of varying sizes and complexities. The attention
layers calculate the weights for each feature map, emphasizing the most relevant parts of
the input image. This is particularly useful for small and irregularly shaped characters, as
the network can focus more on these challenging areas. By processing the input at multiple
scales, the network can capture both coarse and fine details, which is crucial for recognizing
characters with significant variations in size and completeness.

To validate the effectiveness of the multi-scale residual attention encoding mecha-
nism for small and incomplete characters, a comparative experiment was designed to
compare the MSRA model and the baseline model. The dataset includes various small,
incomplete, and irregularly shaped characters from actual industrial applications, ensuring
the experiment’s authenticity and representativeness. The dataset was preprocessed with
operations such as image scaling, normalization, and noise removal to meet the model’s
input requirements, ensuring a balanced distribution of characters of different types and
complexities. The baseline model and the MSRA model were then trained separately. Dur-
ing the training process, the same training set and validation set were used, with identical
training parameters (using the Adam optimizer, a learning rate of 0.001, a batch size of 8,
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and 200 epochs) to ensure a fair comparison. The hardware and software environments
used for training were kept consistent.

As shown in Figure 8, the comparative performance of the baseline model and the
model with the MSRA module in terms of mAP_0.5, recall, and detection time is evident.
The final mAP_0.5 of the baseline model is 65%, while the MSRA model achieves 82%,
an improvement of 26%; the baseline model’s final recall is 70%, while the MSRA model
achieves 84%, an improvement of 20%; the baseline model’s final detection time is 110 ms,
while the MSRA model achieves 80 ms, a reduction of 27%. These data indicate that the
MSRA module significantly improves the model’s mAP_0.5 and recall while significantly
reducing detection time, demonstrating clear performance advantages.

 
Figure 8. Performance comparison of different models on mAP_0.5, recall and detection time.

Furthermore, as shown in Figure 9, Figure 9a represents the feature heatmap of the
baseline model, while Figure 9b represents the feature heatmap of the model with the
MSRA module. The red areas indicate the regions of high attention by the model, deemed
the most important feature regions, while the blue and green areas indicate regions of
lower attention. The heatmaps show that the baseline model’s performance in character
feature extraction is limited, primarily focusing on the central areas of the characters, with
less attention to the edges and details. In contrast, the MSRA model exhibits high attention
across the entire character area, especially at the edges and details. The red areas cover more
detailed parts of the characters, indicating that the MSRA module significantly enhances
the model’s ability to extract character features. By comparing these two feature heatmaps,
it is evident that the model’s ability to extract character features is significantly enhanced
with the addition of the multi-scale residual module, allowing it to more comprehensively
focus on various parts of the characters, particularly the details and edges.

  
(a) (b) 

Figure 9. Heat map of character features of different models. (a) Characteristic heat map of the
baseline model. (b) Characteristic heat map of the MSRA model.
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4.3.2. Validation of Optional Clustering Minimum Iteration Center Module

The optional clustering minimum iteration center module optimizes the selection
of clustering centers, reducing random errors in the clustering process and accelerating
convergence. This module dynamically selects the optimal clustering centers based on
data characteristics, avoiding the slow convergence and instability of traditional clustering
methods caused by improper initial center selection. To validate the effectiveness of the
selectable clustering minimum iteration center module (OCMC), a set of comparative
experiments was designed to test the model’s performance. Two models were designed for
the experiment: one with the OCMC module and the other as a baseline model (Baseline).
The experiment used clustering accuracy, number of iterations to converge, and recognition
accuracy as the main evaluation metrics. The Adam optimizer was used with an initial
learning rate of 0.001, which was reduced by 50% every 10 epochs. The dataset was divided
into training, validation, and test sets. During the model training phase, the baseline model
and the OCMC model were trained separately with the same training parameters (such
as learning rate, batch size, and number of training epochs) and hardware and software
environments. During the training process, loss values and accuracy were recorded. In the
performance evaluation phase, the model’s performance was evaluated on an independent
test set, with multiple tests conducted for each model to average out random errors.

As shown by the experimental results in Figure 10, the model with the SC module
outperforms the baseline model in all key metrics. The final clustering accuracy of the
baseline model is 75%, while the SC model achieves 78%; the final overall accuracy of the
baseline model is 82%, while the OCMC model achieves 84%. The loss curve of the baseline
model shows a slow decrease in loss value over the first 150 iterations, eventually stabilizing
at a final loss of 0.02. In contrast, the loss curve of the OCMC model shows a rapid decrease
in loss value over the first 90 iterations, remaining relatively stable in subsequent iterations,
with a final loss of 0.01. This indicates that the OCMC model converges significantly faster
than the baseline model, achieving a lower loss value in a shorter time, demonstrating
significant advantages in improving model training efficiency and performance.

Figure 10. Performance comparison of different models in terms of clustering accuracy, number of
convergence iterations, and recognition accuracy.

4.3.3. Ablation Experiment

To demonstrate the effectiveness of the Multiscale Residual Channel Attention Model
(MSRC) and the Optional Clustering Center Iteration Module (OCMC), this experiment was
carried out on a homemade dataset with ablation experiments, the results of which are shown
in Figure 11. The homemade dataset consists of various small, incomplete, and irregularly
shaped characters from actual industrial applications. The dataset was preprocessed through
image scaling, normalization, and noise removal to ensure consistency and balance. The details
of the dataset are as follows: source—angle steel manufacturer, sample size—5212 images, and
resolution—original images at 1280 × 1280 pixels, resized to 640 × 640 pixels for experiments.
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We conducted the experiments under the following settings: Adam optimizer, learning rate
of 0.001 (reduced by 50% every 10 epochs), batch size of 8, 200 epochs, hardware—NVIDIA
GeForce RTX1650 4 GB, and software—Pytorch framework.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. Cont.
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(g) 

Figure 11. Ablation experiments with YOLOv5-R, MSRC, and OCMC: + indicates addition of
modules. (a) prediction; (b) recall; (c) mAP_0.5; (d) mAP_0.5:0.9; (e) boundary box loss values; (f)
category loss values; (g) targeted loss of existence value.

The MSRC enhances the shallow features by using the global attention mechanism, and
then supplements the shallow information by using higher-level contextual information,
so that the model pays more attention to the features of the small targets and residual
characters, thus improving the detection performance of the small targets. As can be seen
from the data distribution in Figure 2, the size of the characters is smaller compared to the
corners, so the detection of embossed characters is more difficult. Figure 11a–d demonstrate
the results of the ablation experiments for the MSRC and OCMC modules. The results show
that the MSRC and OCMC modules contribute significantly to the benchmark model. In
the comparison with the benchmark model, the model with only the addition of the MSRC
and OCMC modules has slightly higher detection of embossed characters with crippled
small targets than the benchmark model in terms of accuracy, recall, and mAP_0.5 and
mAP_0.5:0.9 metrics, which verifies the effectiveness of the MSRC and OCMC. Among
them, the MSRC module is more effective in the detection ability of embossed characters
compared to OCMC. In addition, when MSRC and OCMC are stacked at the same time,
does the overall performance of the model get improved? From the results in Figure 11a–d,
it can be seen that the fused model YOLOv5-R enhances the recognition performance of
embossed characters to different degrees when compared with the addition of MSRC and
OCMC only, respectively, and improves the values of the various evaluation metrics by
about 10% compared with the baseline model.

The Optional Clustering Iterative Center Module (OCMC) enables the model to recog-
nize and classify targets more accurately by selectively clustering features and performing
iterative optimization, grouping the features using a clustering algorithm, and continuously
optimizing the location of the feature center. As shown in Figure 11e–g, the model with the
addition of the OCMC module and the MSRC module significantly reduces the values of
the bounding box loss value, the classification loss value, and the target presence loss value,
while the baseline model, YOLOv5, exhibits higher losses. In particular, the OCMC module
has lower loss values than the MSRC module for bounding box prediction, indicating that it
has higher accuracy in bounding box prediction and can locate target location information
and classify targets more accurately.

To further demonstrate the effectiveness of the improved models, Figure 12 illustrates
the performance comparison of different algorithms incorporating various modules in
recognizing embossed characters on steel parts. Figure 12a shows the recognition results
using the original YOLOv5 algorithm, Figure 12b presents the performance with the MSRC
module added, Figure 12c depicts the results with the OCMC module, and Figure 12d
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shows the outcomes using the enhanced YOLOv5-R algorithm. Each figure annotates the
detected characters’ bounding boxes and the corresponding confidence scores.

  
(a) (b) 

  
(c) (d) 

Figure 12. Performance comparison of different modules in recognizing embossed characters on steel
parts. (a) YOLOv5; (b) MSRC; (c) OCMC; (d) YOLOv5-R.

Comparatively, the average confidence score of the original YOLOv5 is 0.78, with
significant false positives and false negatives. Incorporating the MSRC module improves
the average confidence score to 0.84, reducing false positives and false negatives. The
OCMC module further enhances performance, achieving an average confidence score
of 0.87 and significantly minimizing false positives and false negatives. The enhanced
YOLOv5-R algorithm performs the best, with an average confidence score of 0.90 and the
fewest false positives and false negatives. This analysis demonstrates that the addition
of these modules enhances the algorithms’ robustness and accuracy in handling complex
scenarios such as blurred or incomplete characters, validating the effectiveness of the
optimization strategies.

4.4. Experimental Results and Analysis
4.4.1. Experiments on the Chars74K Dataset

To evaluate the effectiveness of the proposed method, we analyzed it in comparison
with other models on the Chars74K dataset, and the experimental results are shown in
Figure 13. The comparison models include the single-stage detection models YOLOv3,
YOLOv4, YOLOv5, YOLOv7, YOLOv8, SSD, RetinaNet, and EfficientDet, as well as the
two-stage detection model Faster R-CNN [24]. Lightweight convolutional neural network
(CNN) models have gained widespread attention and applications due to their efficient
computational performance and low resource consumption. For example, WearNet [25],
a novel lightweight CNN structure designed for surface scratch detection, reduces the
number of training parameters and the number of network layers through customized
convolutional blocks, while maintaining a high classification accuracy.

The recognition performance of different object detection networks on various types
of embossed characters on angle steel is shown in Figure 13. A comprehensive comparison
reveals that under various states of embossed characters, the YOLOv5-R object detection
algorithm can accurately detect incomplete and rusted embossed characters, demonstrat-
ing exceptionally high recognition accuracy. In contrast, the other eight object detection
algorithms exhibit varying degrees of false detections and missed detections. Compared to
other models, YOLOv8 has the fewest instances of false detections and missed detections,
second only to YOLOv5-R. This is primarily because the experiment simulated the recog-
nition performance under poor factory conditions. Therefore, the YOLOv5-R algorithm
proposed in this study excels in recognizing embossed characters and is highly capable of
adapting to the demands of challenging factory environments.
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(d) (e) (f) 

   
(g) (h) (i) 

Figure 13. Comparison of improved experimental results. (a) YOLOv3; (b) YOLOv4; (c) YOLOv5-R;
(d) YOLOv7; (e) YOLOv8; (f) SSD; (g) RetinaNet; (h) EfficientDet; (i) Faster R-CNN.

Figure 14 shows that the improved YOLOv5-R model, compared to the benchmark
model YOLOv5, has all evaluation metrics improved. Among them, the accuracy, recall,
and mAP_0.5 are improved by 13.4%, 16.4%, and 13.4%, respectively, and the detection
time is reduced by 54 ms. In addition, YOLOv5-R also shows significant advantages in
comparison with other models. Although YOLOv3 and YOLOv4 perform better in terms
of detection speed, they are significantly lower than YOLOv5-R in terms of accuracy and
recall. YOLOv7 and YOLOv8 are close to YOLOv5-R in some metrics, but their overall
performance is still not as good as that of YOLOv5-R. Faster R-CNN performs well in terms
of detection accuracy, but it is slower in terms of detection speed. YOLOv5-R is nearly five
times faster in detection time and also has significant advantages in accuracy and recall.
SSD and RetinaNet are both lower than YOLOv5-R in accuracy and recall and have longer
detection times. Although EfficientDet performs well in terms of efficiency, it still has lower
accuracy and recall than YOLOv5-R on the Chars74K dataset and a longer detection time.
The results show that the improved YOLOv5-R model outperforms the benchmark model
YOLOv5 and other comparative models in various evaluation metrics.

4.4.2. Experimenting with Homemade Datasets

To evaluate the performance of the model proposed in this paper in steel embossed
character recognition, the experiments compare it with the current popular Fast-CNN [26]
and YOLOv5 models. Figure 15 illustrates the recognition results for three different types of
steel embossed characters (normal, galvanized, and rusted stubs). Among them, Figure 15a
shows the original images of each type of steel part, Figure 15b shows the recognition
results of this paper’s model, and Figure 15c,d show the recognition results of YOLOv5
and Fast-CNN models, respectively.
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(c) (d) 

Figure 14. Experimental Comparison of Character Recognition on Chars74K Dataset. (a) predition;
(b) recall; (c) mAP_0.5; (d) detection time.

(a) Original image 
 

(b) YOLOv5-R 
 

(c) YOLOv5 
 

(d) Fast-CNN 

 

Figure 15. Different model recognition renderings.

As can be seen from Figure 15, the steel embossed characters recognized by the
YOLOv5 and Fast-CNN network models show the phenomenon of missed detection and
misrecognition, in which the misrecognition of galvanized and rusted and mutilated
steel parts is more serious, and when the IoU of the recognized character is less than
0.5, the number inside the box on the embossed character in the figure, it is judged to
be misrecognized. The recognition map obtained by the model in this paper can still be
correctly recognized and does not produce a leakage phenomenon under galvanized and
rusted defective steel parts. This indicates that adding the multi-scale residual attention
coding module to the network model can effectively enhance the model’s ability to capture

455



Electronics 2024, 13, 2435

fine-grained features and increase the weight of edge information, thus maintaining high
recognition accuracy and reducing information loss in complex backgrounds. In addition,
the traditional YOLOv5 model using a k-means++ clustering algorithm to determine the
anchor frame size may be affected by the initial center selection and outliers, which limits
the model’s adaptability to the actual data distribution. Fast-CNN, on the other hand,
faces high computational and training costs while lacking sufficient generalization ability,
although it learns the bounding box directly from the data through its region suggestion
network. Therefore, in this paper, based on the k-means++ clustering algorithm, we
design the module of selectable clustering minimum iteration center, which realizes the
fine selection of anchor box candidate sets by minimizing the IoU loss in clustering, thus
reducing the machinability and improving the characterization ability of anchor boxes in
the iterative process.

To validate the performance of the improved model, the experiments were tested
against the R-CNN family [26] and other YOLO versions using different evaluation met-
rics, and the results of the experiments are shown in Table 2. The recall is used in the
experiments as a measure of the proportion of all actual positive instances that have been
correctly recognized, and mAP50% refers to the average precision of the region of overlap
between the predicted frames and the real frames for all kinds of predicted frames with
IoU thresholds exceeding 0.5.

Table 2. Comparison of model experiment results.

Model Size/Million Recall Rate/%
Accuracy
Rate/%

mAP50/% Time/ms

Fast-CNN 19.0 59.2 61.1 65.2 78
YOLOv5s 7.01 88.3 89.3 90.7 89
YOLOv7 74.8 89.8 93.1 92.1 121
YOLOv8 20.7 96.4 98.3 98.9 145

YOLOv5-R 7.02 96.3 97.6 98.5 43

As shown in Table 2, the improved network model outperforms Fast-CNN, YOLOv5s,
and YOLOv7 on several performance evaluation metrics, and is close to the performance
of the current state-of-the-art YOLO family of network models, YOLOv8. Relative to the
benchmark YOLOv5 network model, this paper’s model improves recognition accuracy
by 8.3%, increases recall by 8.0%, and improves mAP50% by 7.8%, while reducing the
detection speed by 35 ms. This performance advantage stems from the introduction of
a multi-scale residual attention coding module, which efficiently analyzes and processes
the image features in detail at different layers to effectively capture features from fine-
grained to coarse-grained, which improves the model’s ability to recognize and localize
diverse targets in complex scenes, and greatly enhances the model’s target recognition
accuracy and processing speed. In addition, the selectable clustering minimum iteration
center module introduced in the model reduces randomness and error by optimizing the
selection of clustering centers, significantly reduces instability and error due to random
selection of clustering centers, accelerates the convergence speed of the clustering algorithm
and reduces the number of required iterations, effectively improving the accuracy and
efficiency of target detection when processing large amounts of data. Additionally, to
validate the practical application of the improved model, the performance of the equipment
in a factory environment was considered. In actual factory settings, desktop computers
typically have lower performance, so reducing detection computation time is crucial for
improving system response speed and overall efficiency. The improved model achieved a
detection time of less than 50 milliseconds on a device equipped with an NVIDIA GeForce
RTX1650 graphics card, which means that in real production deployments, real-time,
efficient character recognition can be achieved, significantly increasing production efficiency
and reducing human errors. Furthermore, reducing computation time helps lower energy
consumption and operational costs, making the system more sustainable and cost-effective.
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This enhancement ensures that the system can be widely deployed in various industrial
environments without significant modifications or additional investments in hardware.

5. Conclusions

This study developed an optimized stamped character recognition algorithm based on
the YOLOv5 architecture, incorporating an efficient multi-scale channel attention mecha-
nism to reduce resource consumption while processing irrelevant information, significantly
enhancing the weighting of key feature channels. A selectable clustering minimum iteration
center module was also integrated to optimize the feature capture efficiency for small and
irregular stamped characters. The test results show that, compared to existing methods, this
model demonstrated superior comprehensive performance in extracting features from fine
or incomplete stamped characters, achieving an 8.3% increase in recognition accuracy, an
8% increase in recall rate, and a 46 ms reduction in detection time compared to the baseline
YOLOv5 model. The model simplified the network structure and enhanced recognition
accuracy and processing speed. The next phase of research will explore how to strengthen
the robustness of the model while reducing its parameters for more effective application in
smart manufacturing.

Although the proposed method performs excellently in recognizing embossed char-
acters on power transmission towers, its design and optimization are tailored for this
specific application. For tasks such as handwritten character recognition, printed character
recognition, or other industrial character recognition, the characters involved have different
features and challenges. Therefore, the performance of this method in these scenarios may
not be as outstanding as in power transmission tower character recognition. To improve
generalizability, adjustments and optimizations are needed based on specific applications,
such as training on datasets of handwritten characters or optimizing the model to handle
higher character clarity. Nevertheless, the effectiveness of this method in other types of
character recognition tasks still requires further validation and optimization.
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Abstract: High-throughput liquid handling workstations are required to process large numbers of
test samples in the fields of life sciences and medicine. Liquid retention and droplets hanging in the
pipette tips can lead to cross-contamination of samples and reagents and inaccurate experimental
results. Traditional methods for detecting liquid retention have low precision and poor real-time
performance. This paper proposes an improved YOLOv8 (You Only Look Once version 8) object
detection algorithm to address the challenges posed by different liquid sizes and colors, complex
situation of test tube racks and multiple samples in the background, and poor global image structure
understanding in pipette tip liquid retention detection. A global context (GC) attention mechanism
module is introduced into the backbone network and the cross-stage partial feature fusion (C2f)
module to better focus on target features. To enhance the ability to effectively combine and process
different types of data inputs and background information, a Large Kernel Selection (LKS) module
is also introduced into the backbone network. Additionally, the neck network is redesigned to
incorporate the Simple Attention (SimAM) mechanism module, generating attention weights and
improving overall performance. We evaluated the algorithm using a self-built dataset of pipette
tips. Compared to the original YOLOv8 model, the improved algorithm increased mAP@0.5 (mean
average precision), F1 score, and precision by 1.7%, 2%, and 1.7%, respectively. The improved
YOLOv8 algorithm can enhance the detection capability of liquid-retaining pipette tips, and prevent
cross-contamination from affecting the results of sample solution experiments. It provides a detection
basis for subsequent automatic processing of solution for liquid retention.

Keywords: object detection; handling workstation; liquid retention detection; YOLOv8; attention
mechanism

1. Introduction

The discovery of the double helix structure of DNA has greatly promoted the devel-
opment of molecular biology and spawned new disciplines such as molecular genetics
and diagnostics. In particular, molecular diagnosis can detect and treat diseases earlier
and more accurately. In vitro diagnostic technology has become an indispensable part of
the medical and biological fields, and molecular diagnostics have become an important
research direction. The steps of molecular diagnostics generally include sample prepro-
cessing, nucleic acid extraction and purification, amplification, and detection. Each step
involves liquid extraction, distribution, mixing, sample transfer and handling, making the
entire process very complex and tedious. With the outbreak of COVID-19, a large number
of samples need to be tested. The complexity of molecular diagnostics, high technical
requirements for personnel, and the need to handle a large number of samples makes tra-
ditional manual extraction and detection methods slow, with limited sample, throughput
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and potential human error, unable to meet current demands. Therefore, high-precision,
high-throughput liquid handling workstations have become a very urgent need.

In sample processing, there is a desire to handle a large number of samples in one go
while eliminating errors caused by manual extraction. Thus, liquid handling workstations
are widely used in disease diagnosis, virus detection, biopharmaceuticals, chemistry, and
other fields. It can save labor costs and time, improve the accuracy of experimental
results, avoid human error, and achieve efficient operations. For example, Langer et al. [1]
rapidly produced and recovered cell spheroids using a high-throughput liquid workstation;
Coppola et al. [2] established an automated process for isolating and purifying peripheral
blood mononuclear cells using a liquid handling workstation; Annona et al. [3] used a
high-throughput liquid handling workstation to evaluate the accuracy of molecular biology
experimental procedures.

In liquid handling operations, pipette tips, as the core component of liquid handling
workstations, directly affect the accuracy and efficiency of experiments. During pipet-
ting, differences in sample solution concentration, hydrophobicity of tips from different
manufacturers, aspiration and dispense speeds, and pipetting volumes can lead to liquid
retention (droplet hanging) on the tips. This causes liquid residue on the outside or top of
the tips, resulting in incomplete sample transfer and cross-contamination, thus affecting
the accuracy of experimental results. Traditional methods for detecting liquid retention
often rely on visual inspection or simple sensor technologies, which have low detection
accuracy, poor real-time performance, and difficulty handling complex situations.

In order to improve the accuracy and efficiency of liquid retention detection, a method
of applying object detection technology to liquid handling workstations is proposed. By
integrating object detection technology, high-resolution cameras need to be deployed in
the pipette tip area, ensuring sufficient lighting inside the workstation to capture images
of the pipetting process in real time. Then, a pre-trained model is used to analyze the
images, automatically identifying whether there is liquid retention on the pipette tips. The
object detection model can accurately determine whether liquid retention has occurred by
analyzing the contours, colors, and morphological features of the liquid in the images. This
process can not only be performed after pipetting is completed but also enables real-time
monitoring during the operation, promptly detecting and correcting liquid retention issues
to avoid affecting subsequent experimental steps. Applying object detection technology
to high-throughput liquid handling workstations can significantly improve the accuracy
and efficiency of sample solution extraction and detection. It also enhances the level of
automation and data management capabilities in the experimental process, promoting the
development of laboratory automation in a more efficient and intelligent direction.

2. Related Work

With the continuous development of deep learning, computer vision tasks have been
increasingly refined, and object detection has become one of the main tasks in the field
of computer vision. Its purpose is to identify and locate objects in images and videos.
Due to issues such as different poses, features, brightness levels, sizes, light intensity
interference, occlusion, and noise, object detection remains a significant and challenging
task in computer vision. Object detection has been applied across various fields, including
building surveillance and fire protection systems, autonomous driving, intelligent logistics,
and medical image processing. For instance, Gautam et al. [4] used object detection to
analyze videos in intelligent building surveillance systems, addressing the problem of
personnel identification; Xie et al. [5] applied object detection for target tracking in logistics
warehouses, distinguishing between people and goods, and established a target tracking
evaluation system; Meda et al. [6] used object detection methods to identify rickets and
normal wrists in pediatric wrist X-rays.

Early object detection relied heavily on manually designed feature extraction and
classifiers [7]. This involved using a sliding window to scan every pixel block in the image,
extracting features and classifying each window. Albadawi et al. [8] utilized the Histogram
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of Oriented Gradients face detector to extract facial landmarks. HOG (Histogram of
Oriented Gradients) is one of the commonly used image feature descriptors, calculating
the gradient in horizontal and vertical directions to extract feature information from the
image, while also handling geometric and optical transformations of the image. Hütten
et al. [9] proposed using deep learning methods to enhance deformable part models (DPM)
for object detection tasks, the paper explores combining DPM with convolutional neural
networks (CNNs) to improve the accuracy and robustness of detecting complex deformable
objects. DPM also improves HOG features by decomposing the target object into multiple
parts, giving each part specific shape and positional relationships, thus showing strong
robustness to object deformation.

Object detection driven by deep learning has become the current mainstream method.
The object detection algorithm based on deep learning is divided into one-stage object
detection algorithms and two-stage object detection algorithms [10,11], both algorithms use
convolutional neural networks (CNNs) in their architectures. CNNs have strong feature
representation capabilities and better robustness, making them a typical model architecture
in current object detection. Two-stage object detection algorithms generate regions of
interest for predicted objects and then classify and predict their positions, whereas one-
stage algorithms directly extract features from the network to classify and predict object
positions. Two-stage object detection algorithms are slower but more accurate. He et al. [12]
proposed the Mask R-CNN object detection and segmentation algorithm, their approach
efficiently detects objects while simultaneously generating a high-quality segmentation
mask for each instance.

One-stage object detection algorithms, characterized by fast processing speed, lightweight
model architecture, and ease of deployment, have been widely applied in industry and various
fields. The algorithms for one-stage object detection are mainly YOLO (You only look once)
series and SSD series. The SSD [13] algorithm simultaneously predicts the locations and
categories of multiple objects in a single forward pass through the neural network, using
multiple convolutional layers to predict bounding boxes of different scales and aspect ratios.
The YOLO series object detection algorithms have been widely used and rapidly developed,
becoming typical algorithms for one-stage object detection. Jiang et al. [14] briefly describes
the development process of the YOLO algorithm and summarizes the methods of target
recognition and feature selection. The YOLO object detection algorithm takes the entire image
as input and directly regresses the bounding box locations and categories at the output layer.
Bochkovskiy et al. [15] updated the YOLO architecture in 2020 to YOLOv4, adding ResNet
(residual networks) [16] and FPN (feature pyramid networks) [17] for feature fusion. In 2022,
the YOLOv7 [18] algorithm improved both speed and accuracy. In 2024, Wang et al. [19]
introduced YOLOv9, incorporating the concept of Programmable Gradient Information (PGI) to
handle the various transformations required for detecting multiple objects with deep networks.
These developments demonstrate that the YOLO series algorithms have become the current
mainstream object detection algorithms.

This study aims to detect liquid retention on pipette tips in high-throughput liquid
handling workstations, identifying whether the tips have retained liquid to avoid inac-
curacies in pipetting and cross-contamination in experiments. The liquid retained on the
external and top parts of the tips poses detection challenges due to the small and variable
volumes, different concentrations and colors of solutions (e.g., transparent liquids), and the
varied colors of the pipette tips (e.g., black and transparent tips). Cao et al. [20] proposed a
multi-scaled deformable convolutional object detection network to address the challenges
of detecting small, dense objects and those with random geometric transformations. Ad-
ditionally, the high-throughput nature means numerous tips with narrow gaps between
them, significantly increasing the complexity and difficulty of detecting liquid retention
on pipette tips. In the field of biomedical engineering, liquid detection primarily focuses
on large-volume targets. For instance, Hwang et al. [21] used deep learning to monitor
residual liquid in intravenous drug administration, reducing injection-related accidents and
improving patient safety in hospitals. However, detecting micro-volume liquids presents

461



Electronics 2024, 13, 2836

higher challenges compared to large-volume liquid detection, and research in this area is
insufficient, further research in this direction needs to be improved and enhanced.

3. Materials and Methods

3.1. Yolov8 Algorithm

YOLOv8 [22] is a representative algorithm in object detection and is widely used in
the fields of object detection and image segmentation. The YOLOv8 network architecture
primarily consists of three parts: the backbone, the neck, and the head. The backbone is
composed of multiple repeated convolutional and residual modules, downsampling the
input image. Meanwhile, it introduces the C2f module to enhance image feature extraction.
The backbone ends with three max-pooling layers to extract and fuse features. The image
features are extracted by the backbone and used for analysis and processing in subsequent
network modules. The neck utilizes the FPN-PAN feature fusion method, combining feature
maps of different sizes through upsampling and downsampling, effectively integrating
extracted features. It adopts the decoupled-head structure in head models to compute
losses separately for regression and categories. The YOLOv8 network architecture is shown
in Figure 1.

 

Figure 1. YOLOv8 network architecture.

3.2. Improvement Model

The detection of liquid retention on pipette tips in high-throughput liquid handling
workstations faces the following challenges:

(1) The liquid retained on the external and top parts of the pipette tips is small in volume
and variable in size.

(2) The solutions have different concentrations and colors, such as transparent liquids,
and the pipette tips also come in different colors, such as black and transparent tips.

(3) The high throughput nature results in numerous pipette tips with narrow gaps be-
tween them, potentially causing occlusion issues.

These challenges significantly increase the difficulty [20] of object detection and the
likelihood of missed or false detections. To mitigate these issues, this paper proposes
an improved YOLOv8 network architecture. We selected the lightweight YOLOv8n as
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the baseline network architecture and made improvements based on it. The improved
network architecture is shown in Figure 2. The model incorporates the attention mechanism
modules GCNet [23] and LSK [24] into the backbone, as well as the GCNet module into
the C2f module. This enhances the network’s ability to capture and understand global
context information. The LSK module dynamically adjusts the receptive field during
feature extraction, enhancing the network’s ability to understand different background
information and improving the model’s ability to adapt to backgrounds of different sizes.
In the neck network, the attention mechanism SimAM [25] module is added between the
feature fusion and C2f_GC during the feature fusion process. This module designs an
energy function to calculate attention weights, allowing better focus on the primary target.

Figure 2. Improved YOLOv8 network structure.

3.2.1. Introducing the Attention Mechanism GCNet Module

GCNet combines the Non-local network [26] and SE [27] network structures, simpli-
fying and updating based on them. In the non-local network, the contextual information
captured for different query positions in the image is consistent, so GCNet creates a
query-independent network structure, reducing parameters and computational load. It
integrates with the SE module to form a multi-head attention mechanism, making GCNet
a lightweight attention mechanism module. When capturing contextual information, the
GCNet module disregards the query position, allowing all query positions to share one
attention map and removing the query convolution operation Wqxi, simplifying the non-
local network module. The specific simplified calculation is shown in Equation (1). Here,
“i” is the position to be calculated in the input feature, “j” is the index of all possible related
positions of xi, Np is the total number of pixels in the feature map, and Wk and Wv represent
linear transformation matrices.

zi = xi + ∑Np
j=1

exp(Wkxj)

∑
Np
m=1 exp(Wkxm)

(Wv ∗ xj) (1)

To further reduce computation and parameters, Wv convolution is moved before the
attention. The GCNet module can be summarized in three processes: First, the input image
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or feature map undergoes 1 × 1 convolution Wk and the Softmax function to calculate
attention weights, followed by global average pooling to obtain global contextual feature
vectors. Next, 1 × 1 convolution Wv and the ReLU activation function are used for feature
transformation to obtain new global contextual features. Finally, the new global contextual
features are fused into the features of each position through weighted fusion. To optimize
training parameters, the 1 × 1 convolution in the feature transformation part is replaced
by a bottleneck transform module, reducing the parameters from C·C to 2·C·C/r. We can
clearly see the process of the GCNet module in Table 1. In the original YOLOv8 network
structure, the C2f module divides the feature map into two parts along the first dimension,
improving the model’s non-linear representation capabilities. The C2f module consists
of multiple bottleneck blocks, each block contains two convolutional layers. First, the
input feature map undergoes preliminary transformation through the first convolutional
layer (cv1). The output feature map is divided into two parts, each processed by different
convolutional layers. Subsequently, these two parts are merged and processed by the
second convolutional layer (cv2), resulting in an enhanced feature map.

Table 1. GCNet module process.

Process Description

Attention Weights Calculation

1. The input image or feature map undergoes 1 × 1
convolution Wk.
2. The Softmax function is applied to calculate attention
weights.
3. Global average pooling is used to obtain global
contextual feature vectors.

Feature Transformation

1. 1 × 1 convolution Wv and the ReLU activation function
to obtain new global contextual features.
2. To optimize training parameters, the 1 × 1 convolution
is replaced by a bottleneck transform module, reducing
the parameters from C·C to 2·C·C/r.

Feature Fusion The new global contextual features are fused into the
features of each position through weighted fusion.

The improved YOLOv8 network structure incorporates the GCNet attention mech-
anism module in the backbone and C2f modules. After the input feature map passes
through the first convolutional layer (cv1), a GCNet module is added to capture the global
contextual information of the input feature map. The feature map is then processed by
different convolutional layers, and after merging the feature maps, another GCNet module
is added post the second convolutional layer (cv2). This enables the network to capture
long-range dependencies, and the integration of global contextual information, it improves
the network’s robustness to various interfering factors. The improved C2f_GC network
structure is shown in Figure 3. In the C2f_GC module, if the input tensor x is (h,w,c), where
c is the number of channels, h is the height of image, w is the width of image. After one
convolution operation, then it passes through GCNet module, if the attention mechanism is
used, the convolution module will be used to perform an operation to change the number
of channels c to 1, generating an attention map. Then, a reshape operation is performed to
change the size of tensor to (1,h × w), followed by Softmax function to calculate attention
weights, transforming it to (1,h × w,1). Then, multiplicative fusion with the input tensor is
performed by matrix multiplication, and the final output is (c,1,1). If the additive fusion is
used, the output will be (c,h,w). The attention mechanism fusion in the C2f_GC module
adopts multiplicative fusion.
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Figure 3. Improved C2f_GC network structure.

3.2.2. Introducing Attention Mechanism LSK Module Fusion

LKSNet is used for object detection in remote sensing images. To address the need
for different backgrounds for various objects and improve the recognition capability of
background information, LKSNet dynamically adjusts the receptive field of the extracted
features, handling the differences in background required for different objects. LKSNet
includes two residual sub-blocks, Large Kernel Selection (LK Selection) and Feed-forward
Network (FFN). LK Selection dynamically adjusts the network’s receptive field, and FFN is
used for channel and feature fusion. The LKS module comprises a large kernel convolution
and a spatial kernel selection mechanism, as shown in Figure 4.

Figure 4. LSK module network architecture.

Since different targets have different background information, the model needs to
automatically select the appropriate background range size. Large kernel convolutions con-
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tinuously change the Depth-wise convolution, thereby continuously adjusting the receptive
field. Depth-wise convolution satisfies the relationship as shown in Equations (2) and (3),
where k is the size of the i-th depth-wise convolution kernel, d is the dilation rate, RF is the
receptive field. The change in the convolution kernel and the increase in the dilation rate
will obviously increase the receptive field.

ki−1 ≤ ki, di = 1, di−1 < di < RFi−1 (2)

RF1 = k1, RFi = di(ki − 1) + RFi−1 (3)

In order to obtain more background information features in different regions of the
input data x, a series of decoupled depth-wise convolution kernels with different receptive
fields can be used. If there are n decoupled convolution kernels, each convolution operation
needs to be followed by a 1 × 1 convolution kernel for feature fusion. First, the convolution
kernels with different receptive fields are concatenated and then undergo average pooling
and max pooling. The features after average pooling (SAavg) and max pooling (SAmax)
are concatenated, converting the two channels of pooling features into N spatial attention
feature maps. The activation function Sigmoid is used to calculate the mask for each
spatial attention feature map, and finally, it is weighted with the features extracted by the
decoupled large convolution kernels.

This study integrates the LKS module into the backbone network and combines it with
the previously improved C2f_GC module. First, the C2f_GC module captures the global
contextual information of image features, and then the dynamic convolution kernels in the
LSK module continually adjust the required target background information, enhancing the
capabilities of feature fusion and feature extraction. In the LSK module, the dimensions
of input image x is (c,h,w), where the c is number of channels, h is the height of the
input image, and w is the width. First, the input image is passed through the depth-wise
convolution and the output is attention1, the number of image channels and size remain
unchanged, the kernel size of depth-wise convolution is 5, and the padding is 2. This is
followed by a depth-wise convolution where the kernel size is 7, padding is 9, dilation
rate is 3, the output is attention2, and attention2 also maintains the same dimensions and
number of channels. Each of these is then processed through a 1 × 1 convolution, the
dimensions of output are (c/2,h,w), the outputs are concatenated, followed by average
pooling and max pooling, and the dimensions of the output are changed to be (1,h,w).
Then, use the 7 × 7 convolution kernel for feature concatenation to change the number of
channels to 2. Finally, after weighted and concatenation of attention1 and attention2, the
number of channels c is restored after passing through the 1 × 1 convolution kernel. The
specific structure of the C2f_GC + LKS module is shown in Figure 5.

3.2.3. Introducing Attention Mechanism SimAM Module

In the field of computer vision, attention mechanism modules focus primarily on
channel attention and spatial attention. However, in the human brain, these two attention
mechanisms exist simultaneously. The SimAM module uses the neuroscience method
to make these two attention mechanisms work simultaneously. The weight of a single
neuron is calculated through the feature map in a layer. The SimAM attention mechanism
calculates the linear separability between the target neuron and other neurons to determine
which neurons have higher priority. The energy function for neurons in SimAM is defined
in Equation (4), where t is the target neuron, xi represents other neurons, i is the spatial
index, N (equal to h × w) is the total number of neurons in the channel, and wt and bt are
the weights and biases of the linear transformation. This energy function is minimized to
calculate the mean and variance of all neurons; the lower the energy, the more distinct the
neurons are, and thus it has a greater impact on visual processing.
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Figure 5. C2f_GC+LKS module network architecture.

gt(wt, bt, y, xi) = (yt − t̂)2
+

1
N − 1∑N−1

i=1 (yo − x̂i)
2 (4)

SimAM adjusts the extraction ability of feature maps by calculating the attention
weight of each channel. When the input image has dimensions H × W × C, the attention
weight calculation follows Equation (5), where wc is the weight for channel C, Fijc is the
feature value at position in channel C, and the spatial dimension size is N, and N equals to
H × W.

wc =
1
N ∑H

i=1 ∑W
j=1 Fijc (5)

Then, the weights are normalized by the mean and standard deviation of all channel
weights, and finally, the original feature map is adjusted by the normalized weight αc. The
normalization calculation is shown in Equation (6), where μω is the mean of all channel
weights and σω is the standard deviation of all channel weights. The normalized weight αc
is then used to adjust the original feature map.

αc =
ωc − μω

σω
(6)

In the neck network, the feature maps output by SPPF first pass through a SimAM
module before upsampling. After the first upsampling, the feature maps are concatenated
with the LKS module’s output from stage layer 4, followed by a second upsampling and
concatenation with the SimAM output from stage layer 3. Adding the SimAM attention
mechanism in the neck network involves the following: Assuming the input image x has
dimensions (c,h,w), with c as the number of channels, h as the height, and w as the width,
the number of other neurons in the spatial dimension is h × w−1, calculating the mean
μ of all input neurons, and then find the square of the difference between the neuron
and the mean. Then, calculate the attention weight y; the specific calculation is shown in
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Equation (7), and the output attention weight y is passed through the sigmoid activation
function and then weighted with the original input x to obtain the final output Y.

y =
(x − μ)2

4(∑ (x−μ)2

n + γ)
+ 0.5 (7)

By adding SimAM attention, the feature representation capability is improved, key
features are enhanced, and the noise and redundant information of the feature map are
reduced, so that the network can focus on important feature areas more effectively without
adding additional parameters, ensuring the light weight of the model.

4. Experiments and Analysis

4.1. Experimental Setting

The computer operating system used in this experiment is Windows 10 64-bit, equipped
with a 12 vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz, a GPU NVIDIA RTX
3080 (10 GB), and a Pytorch 2.0.0 framework used in the deep learning environment, con-
figured with Cuda11.1. In the experimental environment parameters, the optimizer uses
SGD, the learning rate is 0.01, the weight decay is 0.0005, the batch size is set to 16, and the
number of training epochs is set as 1200. The configuration environment and parameters
during the experiment are shown in Tables 2 and 3.

Table 2. Experimental configuration.

Name Configure

Operating system Windows 10
CPU 12 vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz
GPU NVIDIA RTX 3080 (10 GB)

Run memory 64 GB
Deep-learning Framework Pytorch2.0.0

Table 3. Training parameters.

Parameter Value

Learning Rate 0.01
Batch Size 16

Epochs 1200
Weight Decay 0.0005

Optimizer SGD

4.2. Experimental Dataset

The dataset used in this paper was obtained through independent collection. The
dataset mainly comes from the pipette tips used on the liquid handling platform. It is
collected indoors by a high-resolution camera. By collecting images of the normal tips
and liquid-hanging conditions of the pipette tips, different colors of pipette tips were used
in the collection process. At the same time, different solutions were used to simulate the
pipette tips hanging liquid. The dataset contains two types of targets, one is the normal
pipette tips without hanging liquid and liquid retention, and the other is the pipette tips
with hanging liquid and liquid retention. The entire dataset has a total of 1286 images,
including 736 images of pipette tips with hanging liquid and 550 images of normal pipette
tips without hanging liquid. Both normal and hanging liquid pipette tips are annotated
in the images. There are 923 training set images, 263 validation set images, and 100 test
set images. The detailed information of the dataset is shown in Figure 6, including the
midpoint coordinates, height, and width of each ground truth.
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Figure 6. Detailed information of the pipette tip dataset; (a) the center point coordinates of each
ground truth; (b) the height and width of each ground truth; (c) some examples and pictures of the
ground truth in datasets.

4.3. Model Evaluation Indicators

In order to evaluate the performance and effectiveness of the model, the evaluation
indicators used in this study are precision (P), mean average precision (mAP), F1 score,
GFLOPS, and FPS.

(1) Precision: Precision is the proportion of the actual positive value among all samples
classified as positives in the model’s prediction results. It can measure the accuracy of the
algorithm. The calculation of precision is represented by Equation (8). TP represents the
true case, FP represents the false positive case, and FN represents the false negative case.

P =
TP

TP + FP
(8)

(2) Mean average precision (mAP): mAP is a key evaluation indicator of the object
detection algorithm. It is the mean average precision. The higher the mAP (mean average
precision) value is, the better the performance of the algorithm is. mAP@0.5 represents
the precision calculated when the mAP is at an IoU threshold of 0.5. That is, when the IoU
between the detected object and the real object exceeds 0.5, it is considered that the correct
object is detected. The specific calculation formula is shown in Equation (9).

mAP =

m
∑

i=1
APi

m
(9)

(3) F1 score is the harmonic mean of precision and recall, and is an evaluation indicator
that comprehensively considers precision and recall. The specific calculation is shown in
Equation (10).

F1 =
2PR

P + R
(10)

(4) GFLOPS is the abbreviation for billion floating-point operations per second. FPS is
typically the frequency (rate) at which consecutive images (frames) are processed.

4.4. Ablation Experiments

In order to verify the effectiveness of the model improvement, this study conducted
an ablation experiment. The same training environment and training parameters were
used during the experiment. The baseline network selected in this study was YOLOv8. The
experimental results are shown in Table 4. In Table 4, we compared the impact of adding
the improved module on the detection results.
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Table 4. Ablation experiment. ‘
√

’ indicates that the corresponding improvement is used in the model
for detection.

Serial Number C2F_GC GC LKS SimAM mAP@0.5 F1 Score Precision FPS GFLOPS

1 - - - - 0.875 0.81 0.783 385 8.1
2

√
0.862 0.79 0.756 417 8.3

3
√

0.828 0.78 0.744 417 18.1
4

√ √
0.888 0.83 0.780 400 18.3

5
√ √ √

0.886 0.82 0.782 345 18.6
6

√ √ √ √
0.892 0.83 0.800 278 19.0

According to the ablation experiments, the mAP@0.5 (mean average precision) of the
baseline model is 87.50%. The mAP@0.5 of the second experiment is 86.20%, which shows
that when the attention mechanism GCNet module is added only to the C2f module, the
performance of the model decreases slightly. In the third experiment, the GCNet module
was added only to the backbone network, and the performance of the model also decreased.
However, in the fourth experiment, the attention GCNet module was added to both the
backbone and the C2f module, which increased mAP@0.5 by 1.3% and F1 by 2%. Through
experiments 2, 3 and 4, it is shown that the GCNet module has a synergistic effect. The
addition of the GCNet module to the backbone and the C2f module simultaneously makes
the model mutually reinforced, and the overall effect is better. The fifth and sixth experiments
show that the mAP@0.5 increases by 1.1% and 1.70%, respectively. The mAP@0.5 of the
improved algorithm reaches 89.20%, which is 1.7% higher than the baseline model.

After adding the attention module GCNet to the C2f module and the backbone net-
work, the model detection performance increased significantly. Adding the attention
mechanism module to the backbone significantly enhanced the model’s detection perfor-
mance, allowing the model to better understand the global image structure and improving
the ability to deal with non-target features that interfere with the network, thereby focusing
more on the target features. On this basis, adding the LSK attention mechanism module to
the backbone and the SimAM attention mechanism module to the neck network further
improved small target detection performance. The LSK module adaptively extracts infor-
mation from different target backgrounds, and the SimAM module generates attention
weights by calculating the self-similarity of feature maps, enabling the model to focus more
on key areas of the image. According to the experimental results in Table 4, the improved
Yolov8 shows superior performance compared to the original baseline model Yolov8, with
the mAP@0.5 increased by 1.7% and the F1 score improved by 2%. These results further
enhance the model’s accuracy and demonstrate its effectiveness. After training, the F1
score curve and PR (precision–recall) curve of the improved model and the baseline model
were plotted based on the training data, as shown in Figures 7 and 8.

The coverage of the F1 score curve and PR curve of the improved model has been signifi-
cantly improved, indicating that the accuracy of the detection results has been improved.

4.5. Comparison of Different Algorithms

In order to evaluate the detection ability of the improved algorithm reasonably and ef-
fectively, this study compares the algorithm with the mainstream models of object detection.
We used five common object detection models: YOLOv3, YOLOv5s, YOLOv6, YOLOv7-tiny,
and YOLOv8n, comparing them with the improved YOLOv8+C2f_GC+GC+LKS+SimAM
model on a self-constructed dataset. Consistency in experimental datasets, environments,
and parameters was ensured. The comparison results are shown in Table 5, and the PR
curves of the comparative experiments are shown in Figure 9. According to the exper-
imental results in Table 5 and Figure 9, the improved algorithm model outperformed
other object detection algorithms in terms of mean average precision (mAP@0.5), F1 score,
and precision. Although the detection speed of the improved YOLOv8 algorithm slightly
decreased, its detection performance was improved.
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Figure 7. PR curve.

 

Figure 8. F1 score curve.

Table 5. Different algorithm model comparison.

Algorithm mAP@0.5 F1 Score Precision FPS GFLOPS

YOLOv3 0.843 0.770 0.780 114 282.2
YOLOv5s 0.877 0.820 0.770 357 23.8
YOLOv6 0.883 0.810 0.731 435 13.1

YOLOv7-tiny 0.876 0.830 0.770 142 13.0
YOLOv8n 0.875 0.810 0.783 385 8.0

Ours 0.892 0.830 0.800 278 19.0
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Figure 9. PR curves of different algorithm comparison experiments.

Based on the results of the comparative experiments, we plotted the F1 score, mAP@0.5,
and precision parameters of the comparison results, as shown in Figure 10. This verified that
the performance of the improved algorithm on our self-constructed pipette tip hanging liquid
and liquid retention dataset was enhanced. Compared to other object detection algorithms,
our algorithm demonstrated higher precision and recall while maintaining speed, significantly
reducing the likelihood of missed detections and false detections. Based on the results of ablation
and comparative experiments, the improved YOLOv8 algorithm performed better than other
algorithms in the high-throughput pipette tip hanging liquid detection task.

Figure 10. Results of different algorithm.
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4.6. Test Results of Image Datasets

Based on the previous ablation experiments and comparative experiments, the im-
proved YOLOv8 model was verified. We tested 12 identical test images with the baseline
model YOLOv8 model and the improved YOLOv8 model and observed the test results.
The test results are shown in Figure 11, where (a) is the original annotated image, (b) is
the result predicted by the baseline model YOLOv8, and (c) is the result predicted by the
improved YOLOv8 model.

Figure 11. (a) Labels of pictures, where rectangles represent the ground truth boxes. (b) The results
predicted by the YOLOv8, rectangles represent the predicted boxes and the numbers indicate the
predicted probabilities. (c) The results predicted by the improved YOLOv8.

By comparing Figure 11, it can be seen that the improved algorithm can more accu-
rately locate the pipette tips with liquid retention and the normal pipette tips without
liquid hanging and retention, and at the same time, it improves the confidence to a certain
extent, while increasing the detection ability and accuracy of small targets and object. The
improved YOLOv8 model performs better.

5. Conclusions

In this paper, we proposed significant enhancements to the YOLOv8 algorithm to
address the detection challenges of liquid retention on pipette tips in high-throughput
liquid handling workstations. It also provides the basis for the automatic solution of the
liquid hanging on the pipette tip in the subsequent pipetting workstation. Our contributions
can be summarized as follows.

(1) Incorporation of attention mechanisms:

We integrated the GC attention mechanism into the backbone network and C2f modules
of YOLOv8, this enhancement allows the model to better capture global image structures
and focus more precisely on target features, thereby improving robustness against various
interference factors. To dynamically adjust the extraction of background information for
different targets, we integrated the LSK module into the backbone network, this module
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enhances the fusion capability for small target features, which is critical for detecting pipette
tips and liquid retention. We redesigned the neckbone network of YOLOv8 by incorporating
SimAM attention mechanism modules between the up and down sampling processes and
during the feature map fusion process of the backbone network. By calculating the self-
similarity of the feature maps to generate attention weights, our model focuses more effectively
on key regions of the image, thus improving overall detection performance.

(2) Performance improved on datasets:

We validated the effectiveness of our improved algorithm through ablation and com-
parative experiments. Our results demonstrated significant performance gains over the
baseline YOLOv8 model, with increases in mAP@0.5, F1 score, and precision by 1.7%,
2%, and 1.7%, respectively. We tested and compared our improved algorithm on a high-
throughput pipette tip dataset, achieving higher accuracy and enhancing overall detection
performance compared with the baseline model. These contributions collectively enhance
the detection capabilities and reliability of the improved YOLOv8 algorithm for appli-
cations in high-throughput liquid handling workstations, particularly in detecting small
targets such as pipette tips with liquid residue. It provides the basis for the automatic
solution of the liquid hanging on the pipette tip in the subsequent pipetting workstation.

However, further work is needed to lightweight this model, aiming to reduce parame-
ters and floating-point calculations while maintaining a high level of detection accuracy.
In future research, we will use model pruning methods to remove unimportant weights
to reduce the number of parameters. At the same time, we will try to use quantization
methods to convert the weights and activations in the model. This conversion can sig-
nificantly reduce the storage requirements and computational complexity of the model,
thereby improving the inference speed. These would improve prediction inference speed,
achieve higher detection speed and accuracy, and increase deployment efficiency and speed
on other devices such as embedded systems.
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Abstract: In recent years, with the rapid development of unmanned aerial vehicle (UAV) technology,
multi-view 3D reconstruction has once again become a hot spot in computer vision. Incremental
Structure From Motion (SFM) is currently the most prevalent reconstruction pipeline, but it still faces
challenges in reconstruction efficiency, accuracy, and feature matching. In this paper, we use deep
learning algorithms for feature matching to obtain more accurate matching point pairs. Moreover, we
adopted the improved Gauss–Newton (GN) method, which not only avoids numerical divergence
but also accelerates the speed of bundle adjustment (BA). Then, the sparse point cloud reconstructed
by SFM and the original image are used as the input of the depth estimation network to predict the
depth map of each image. Finally, the depth map is fused to complete the reconstruction of dense
point clouds. After experimental verification, the reconstructed dense point clouds have rich details
and clear textures, and the integrity, overall accuracy, and reconstruction efficiency of the point clouds
have been improved.

Keywords: structure from motion; feature matching; bundle adjustment; depth map estimation;
dense reconstruction

1. Introduction

As an emerging aerial survey modeling method, UAV remote sensing system has the
characteristics of maneuverability, portability, high positioning accuracy, low environmental
interference, high imaging resolution, and suitability for surveying high-risk areas. It is
widely used in regional monitoring, search and rescue, natural disaster analysis, and other
tasks. How to use the images taken by the UAV system to quickly and robustly reconstruct
the three-dimensional physical information of these scenes has always been a hot topic in
computer vision, photogrammetry, and mapping.

For the 3D reconstruction of outdoor large-scale scenes, the SFM method of geometric
vision is mostly used, which can recover the 3D model of the target from several disordered
images, and has low requirements on image data, strong applicability, and high versatility.
The principle of SFM is multi-view geometry. First, all images need to be feature extracted
and matched, then the camera position and posture corresponding to each image are
calculated, and finally the three-dimensional coordinates of these feature points are recon-
structed according to the matched feature points and camera posture to generate a sparse
point cloud model of the scene. The SFM algorithm has been studied for many years. In the
case of rich image information and clear texture, the classic SFM algorithm has achieved
great success. However, in the case of image features that are difficult to extract, such as
in strong reflections, repeated textures, weak textures, and featureless environments, the
reconstruction quality is often low or even fails. Therefore, the classic SFM algorithm still
needs to be well-optimized. The most classic SFM algorithm is the Photo Tourism system
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proposed by Snavely, et al. [1] in 2006. Its purpose is to use pictures on the Internet to
reconstruct the scene in 3D, then use image rendering and browsing technology to form
an advanced image browsing system. The author therefore developed a software called
Bundler to achieve this. The core of this software is incremental SFM. First, the Scale Invari-
ant Feature Transform (SIFT) algorithm is used to extract feature points; thereafter, nearest
neighbor feature matching, RANdom SAmple Consensus (RANSAC), and Direct Linear
Transformation (DLT) are used to restore the motion between cameras, and new images are
continuously added for bundle adjustment to reconstruct the target 3D point cloud. Later,
Wu, Schonberger, and Griwodz et al. [2–4] implemented three-dimensional reconstruction
algorithms named VisualSFM, Colmap, and Meshroom based on Bundler, respectively.
They optimized the SFM reconstruction efficiency by using SIFTGPU and multi-core bundle
adjustment, and reconstructed dense point clouds by using algorithms such as Parallelized
Multi-View Stereo (PMVS), Clustered Multi-View Stereo (CMVS), and depth map fusion.
These are relatively complete three-dimensional reconstruction algorithms.

2. Related Work

Afterward, many scholars focused their research on improving the details of SFM. For
example, Lei et al. [5] proposed a hybrid SFM reconstruction algorithm that combines the
detection results of SIFT and Speeded-Up Robust Features (SURF) feature points. While
increasing the number of feature points, its block-by-block incremental reconstruction
also improves the reconstruction efficiency. Yin et al. [6] used SIFT and Oriented Fast and
Rotated Brief (ORB) dual feature detection, filtered out matching points based on local
image correlation, reduced the number of BA [7] optimization iterations, and reduced the
reprojection error. Xue et al. [8] combined the SFM technique with the DLT algorithm, used
the SFM algorithm to obtain dimensionless sparse point clouds, and used the close-range
photogrammetry DLT algorithm to provide quantitative features such as scale informa-
tion and deformation that were missing in the SFM method. Qu et al. [9] compressed
the image feature vector, used principal component analysis to analyze the relationship
between images, and used weighted BA to estimate 3D coordinates, thereby speeding up
the calculation.

The rapid development of deep learning has brought about tremendous innovation in
computer vision. Given its great success in scene understanding, including target detection
and tracking, semantic segmentation, and stereo matching, some scholars have gradually
applied Convolutional Neural Networks (CNNs) to SFM, attempting to use deep learning
methods to reconstruct three-dimensional scenes. Lindenberger et al. [10] used a CNN to
detect feature points and generate feature descriptors. After feature matching, they used
deep feature metrics to optimize the feature point positions. In BA calculation, they used
feature metric errors instead of reprojection errors. This improved the mapping accuracy
but took up a lot of memory and was not suitable for large-scale scene reconstruction. The
MVSNet [11,12] proposed by Professor Quan Long’s team at the Hong Kong University of
Science and Technology uses binocular depth estimation to construct a cost volume, uses
3D convolution operations to transform the cost volume with differentiable homography to
predict depth information, and then reconstructs the 3D point cloud. The following year, the
GRU temporal network was used to replace the 3D convolution operation for improvement,
reducing the model size. The MVSNet series of multi-view stereo vision methods rely on
supervised training with labeled data, which leads to insufficient generalization ability
of the model. It is also difficult to obtain ground truth data during the training process.
Dai, Huang et al. [13,14] proposed unsupervised and self-supervised MVSNet models
respectively, which can learn to obtain depth maps from input multi-view images. The
above learning-based method only obtains the depth information of each image, which
is not a complete pipeline 3D reconstruction process. In addition, there will be a lack of
effective depth values in weak texture areas, and large scene differences will also lead to
poor reconstruction results.
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NeRF (Neural Radiance Field) [15], the best paper of ECCV 2020, uses neural networks
to reconstruct 3D scenes from multi-view 2D images. It can train a 3D model of complex
scenes using only 2D images and camera pose information as supervision. Subsequently,
Block-NeRF [16], MVSNeRF [17], and FastNeRF [18] were proposed, which made a series of
improvements in large-scale scene reconstruction, the number of training images, and the
training and rendering speeds. Although the NeRF reconstruction model is rich in detail
and has been studied by many people, its shortcomings are also obvious. Its reconstruction
stage requires not only 2D images but also the position of each image. It generally uses
the traditional method Colmap for sparse reconstruction to estimate the camera’s internal
and external parameters and 3D point information. In addition, NeRF can only represent
static scenes. The trained NeRF representation will not generalize to other scenes, and
reconstruction is prone to depressions in areas where the image is dark or black.

Since that the classic SFM algorithm is highly adaptable, highly versatile, and easy to
collect data, and currently commercial 3D reconstruction software is mostly based on this
principle, it still has significant advantages in practical engineering applications. Therefore,
this article aims to use multi-view three-dimensional reconstruction and deep learning
methods to improve and optimize based on the incremental SFM algorithm. Our main
contributions can be summarized as follows:

• We propose a high-resolution image feature extraction and feature matching method
based on SuperPoint [19] and SuperGlue [20] algorithm.

• We employ the BFGS-corrected [21] GN solver to minimize the reprojection error.
• In multi-view stereo, we utilize a Sparse-to-Dense depth regression network [22] to

predict a full-resolution depth map for reconstructing a dense point cloud.

3. The Proposed Algorithm

Our work is mainly divided into two parts: sparse point cloud reconstruction using
SFM and dense point cloud reconstruction by fusing depth map information. The pipeline
of the algorithm is shown in Figure 1.

Figure 1. Algorithm flow chart.

In the SFM algorithm, the camera must first be calibrated to obtain the camera internal
parameters. The GPS coordinates are then extracted from the EXIF information of the
images taken by the drone as the location prior information. To minimize the time required
for matching, only adjacent region images are compiled into image match pairs. Then,
SuperPoint [18] is used to extract feature points and generate feature descriptors. The
SuperGlue [19] algorithm is used for feature matching. The RANSAC algorithm is then
used to eliminate incorrect matching point pairs. The essential matrix is obtained with
the eight-point method, using the two images with the most matching feature point pairs.
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Triangulation is subsequently performed to obtain the 3D point cloud. New images are
continuously registered and a local bundle adjustment is executed to reconstruct the point
cloud of multiple images. A final global bundle adjustment is carried out to yield the sparse
point cloud.

Sparse point clouds are only 3D representations of image feature points. The number
of point clouds is small and cannot represent the three-dimensional features of the scene, so
the sparse point clouds need to be densely reconstructed. Point cloud dense reconstruction
uses the original image and the sparse point cloud reconstructed by SFM as input, and
predicts the depth map of each image based on the full convolutional neural network of the
codec structure, then fuses the depth map to complete the dense point cloud reconstruction.

3.1. UAV Dataset

The image dataset was collected using the orthophotography method of the DJI
Phantom 4 RTK UAV with an accuracy of 1 cm horizontal positioning and a resolution of
5472 × 3648. Based on the urban buildings and park landforms, we set the UAV route in a
bow shape with a flight range of approximately 120 × 120 m. At the same time, to ensure
image quality and the accuracy of the reconstructed model, we used close-up photography
to shoot at a flight altitude of approximately 30 m. A total of 400 images of the two areas
were collected.

When reconstructing sparse point clouds, the spatial and geometric relationships of the
target were determined by estimating the camera pose, which requires the camera intrinsic
parameters. To obtain the intrinsic parameters of the drone camera, the opencv4.5.5 stereo
calibration algorithm was used to calibrate and obtain the intrinsic parameter.

3.2. Selecting Image Pairs to Match

Considering that each image contains tens of thousands of feature points, exhaustively
matching features between image pairs will result in meaningless matching between a
large number of mismatched images and waste a lot of computing resources. To solve this
problem, we used the latitude and longitude coordinates of the two images to calculate the
Euclidean distance between them. Then we established a threshold for this distance. If the
calculated distance was lower than the established threshold, we considered the pair of
images as a match and continue with feature matching.

3.3. SuperPoint and SuperGlue Overview

Point features have characteristics such as simplicity in computation and strong ro-
bustness. Moreover, local feature matching is currently the most popular feature matching
algorithm. The point feature matching algorithm consists of three steps: feature point
detection, extraction feature descriptors, and feature point matching. This algorithm is a
key processing step in stereo vision and is widely used in fields such as image registration,
simultaneous localization and mapping (SLAM), SFM, etc. Classic feature detection algo-
rithms rely on manually designed criteria and gradient statistics such as SIFT, SURF, ORB,
etc. Due to mismatched key points and imperfect descriptors, some correspondences may
be incorrect. The impact of deep learning in the field of computer vision has led to a shift
from manually selecting features to learning features directly from image data. Examples
of such methods include Deepdesc [23], LIFT [24], D2-Net [25], SuperPoint, LoFTR [26],
etc. SuperPoint can be regarded as a learned version of SIFT, which follows the standard
paradigm of extracting local descriptors and has improved accuracy compared to classical
vision methods.

3.3.1. Feature Extraction

SuperPoint is an end-to-end self-supervised fully convolutional neural network that
extracts feature points and generates feature descriptors on full-size images. Its network
architecture is shown in Figure 2. The network takes gray images as input. The Encoder part
shares a VGGNet encoder. The interest point decoder branch is responsible for keypoint

479



Electronics 2024, 13, 2850

detection, and it outputs the probability of each pixel being an interest point. The descriptor
decoder branch outputs a 256-dimensional vector to represent the features of each pixel.

Figure 2. SuperPoint architecture.

SuperPoint, as a self-supervised network model algorithm for feature detection, has a
tremendous innovation in its training process:

1. During the pretraining of the feature point detector, synthetic images with pseudo-
labels are used. The output is a heatmap with the same size as the input image. Each
pixel of the heatmap represents the probability of that point being an interest point. By
using non-maximum suppression (NMS), sparse feature points can be obtained, and
the resulting model is called MagicPoint [27]. The synthetic images with clear edge
and corner features are randomly generated by the computer. These images include
triangles, squares, lines, cubes, checkerboards, and stars, among others. Since they
are computer-generated, each image comes with the coordinates of feature points on
the image. To further increase the robustness of the model, Gaussian noise and circles
without any feature points were randomly added to the images during training, which
resulted in better generalization and robustness compared to classical detectors.

2. Combined with the Homography Adaptation mechanism, the feature point detector
is trained using unlabeled real images. First, N (N = 100) random homography trans-
formations are applied to generate N Warp Images from the unlabeled images. These
Warp Images are then fed into the MagicPoint model, and the detected feature points
are projected back onto the original images. This combined set of projected feature
points serves as the ground truth for training. By following this process, the detected
feature points become more abundant and exhibit certain homography invariance.

3. The original images, along with their corresponding images after homographic trans-
formations, are fed into the SuperPoint network. Using the feature point locations and
the correspondence relationships between them, the network is trained to generate
feature points and descriptors.

3.3.2. Feature Matching

SuperGlue is a feature matching network based on graph neural networks and atten-
tion mechanisms. Its input consists of the feature point locations and descriptors of two
images, and its output is the feature correspondence. The network architecture is mainly
composed of two modules, as shown in Figure 3: Attention Graph Neural Network (GNN)
module and Optimal Matching Layer. The keypoint encoder encodes the feature point
positions and confidences of images A and B into vectors of the same dimensionality as
the feature descriptors. These vectors are then concatenated with the feature descriptors to
form feature vectors. Self-attention and cross-attention mechanisms are utilized to enhance
the matching performance of this vector. Following that, the process enters the optimal
matching layer, where the similarity score matrix is computed by calculating the inner
product of the feature matching vectors. Finally, the Sinkhorn algorithm [28] is iteratively
applied to solve for the optimal feature assignment matrix.
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Figure 3. SuperGlue architecture.

3.3.3. Matching Strategy

SuperPoint is suitable for fast and real-time video feature detection because its encoder
adopts shallow VGG network architecture, resulting in a smaller model that allows faster
inference. The official training dataset consists of both synthetic and real data, all of which
are low-resolution images. Downsampling them to 1/8 allows for extracting high-level
semantic information. However, aerial images captured by drones have higher resolutions.
If these high-resolution images are directly scaled down and fed into the network for
feature extraction, a large amount of key information will be lost. In addition, there is a
risk of erroneous feature extraction due to changes in image proportions. On the contrary,
using the original resolution as input would consume a lot of memory, which may cause a
memory crash.

Inspired by YOLT [29], we adopted a sliding window cropping approach for drone
images. Sub-images of size 640 × 480 pixels were generated using a sliding window
with a default input size defined by the network. Each sub-image had a 15% overlap
region. The feature extraction results of the sub-images were then merged, and non-
maximum suppression (NMS) was applied to filter out redundant features. This process
yields the feature point detection results for each original image. Subsequently, SuperGlue
feature matching was utilized, and the RANSAC algorithm was implemented to further
eliminate misaligned feature points. By substituting classical feature matching with a deep
learning-based approach and continuing with the subsequent 3D reconstruction process,
improvements in both the quantity and accuracy of feature point matching can significantly
enhance the SFM reconstruction performance.

3.4. Bundle Adjustment

The bundle adjustment method minimizes the error between the projection of the
3D space point and the corresponding pixel point in the image by adjusting the 3D space
point and the calculated camera projection matrix, thereby ensuring the accuracy of the 3D
space point coordinates. The core problem of BA is the least squares optimization problem
involving camera poses and 3D points, which can be described as follows:

f(X) =
1
2∑n

i ∑m
j ωij

∣∣∣∣xij − h
(
cj, pi

)∣∣∣∣2 (1)

Here, X denotes the set of unknown parameters, n denotes the number of 3D points,
m images, and the function h is a projection equation that projects 3D points in space onto
a two-dimensional image. cj is the camera pose, pi is a 3D point, and the camera pose
includes the rotation matrix Rj and the translation vector tj. The symbol ωij represents
whether point i is included in image j. If point i has a projected point in image j, ωij is equal
to 1; otherwise, it is 0. By optimizing cjandpi, we aim to minimize the distance between the
projected point and the true point xij as much as possible.

Similar to Colmap, we did not perform BA after every triangulation step because
incremental SFM only affects the model locally. After each triangulation, we applied local
BA to the images with the most connections. When the model grew to a certain percentage,
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we performed global BA. After adding all the images, we conducted another round of
global BA to reduce reconstruction errors and improve efficiency.

Currently, for the bundle adjustment method, the main solving methods are the
GN method and the Levenberg–Marquardt (LM) algorithm [30]. The GN method is an
approximate solution that expands the least squares function with a first-order Taylor series
to find the optimal value. It ignores the derivatives of higher-order terms, resulting in fast
convergence and greatly reduced computational complexity. However, it also brings new
problems. The Jacobian matrix of the first-order derivatives is positive semi-definite. When
the initial values of the input model deviate significantly from the true values or when the
Jacobian matrix becomes singular, this method is prone to divergence and fails to meet the
convergence requirements. The LM algorithm achieves problem solvability by adding a
damping term to GN, but since the specific value of the damping term is obtained through
continuous trial and error, it is difficult to obtain an accurate descent direction, resulting in
a slower descent speed during iteration.

The BFGS method is a local search second-order optimization algorithm and one of
the most widely used second-order algorithms in numerical optimization, with a good
positive definite property. The sparse BFGS [31] is a new solution method proposed using
the positive definite property of BFGS, but each iteration requires computing the high-order
information of the Hessian matrix, which increases the number and amount of calculations.
BFGS-GN [32] also iteratively solves the high-order derivative information of the objective
equation using the BFGS method and accurately represents the Hessian matrix in the
objective equation, solving the sensitivity to initial values in the BA method based on the
GN method.

The function f(X) in (1) can be approximated using Taylor series expansion around
the current guess Xk, written as:

f(X) ≈ fk + gk(X − Xk) + 1/2(X − Xk)
T∇2f(X − Xk)(X − Xk) (2)

Here, fk = f(Xk) and gk = ∇f(Xk) = 2JT
Kr, Jk is the Jacobian matrix. In order to

obtain the minimum value, the right side of Equation (2) is differentiated and the first-order
derivative is set to zero.

(JT
kJk +

∂2r
∂X2 r)δk = −gk (3)

Here, JT
kJk +

∂2r
∂X2 r is called a Hessian matrix, δk = Xk+1 − Xk. In the GN method, the

higher-order derivative matrix is discarded and JT
kJk is used instead of the Hessian matrix

to solve the descent direction of the equation.

JT
kJkδk = −gk (4)

During the iterative solving process, the Hessian matrix must be positive definite,
and the Jacobian matrix in Equation (4) needs to have full rank. The Jacobian matrix
represents the relationship between camera parameters and observed 3D coordinate points.
It varies with the input transformation. When the initial value is not good, the optimization
problem generally cannot be solved. This is the reason why the Gauss–Newton initial
value diverges.

BFGS is an extension of the Newton method optimization algorithm, written as:

Ak+1 = Ak −
Akδkδ

T
kAk

δT
kAkδk

+
zkzT

k
zT

kδk

(
zT

kδk > ε
)

(5)

where Ak is a gain matrix of the kth iteration and ε is a small positive value, set as 1 × 10−6.
In addition, zk denotes the gradient of the cost function, written as:

zk = (J T
k+1 − JT

k

)
δk+1 (6)
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According to the singularity-free matrix propagation in the BFGS algorithm, if Ak
is a positive definite matrix and zT

kδk > ε, then Ak+1 is also a positive definite matrix. If
zT

kδ < ε, Ak remains unchanged and Ak+1 is set to Ak. Therefore, there are two cases for
the gain matrix:

Ak+1 =

⎧⎨
⎩Ak − Akδkδ

T
kAk

δT
kAkδk

+
zkzT

k
zT

kδk

(
zT

kδk > ε
)

Ak otherwise
(7)

Using Ak+1 or ‖δk‖E modifies Hessian matrix to maintain positive definiteness no
matter how the input value changes and iterates, where E is the identity matrix.

Bk =

{
JT
kJk + Ak

(
zT

kδk > ε
)

JT
kJk + ‖δk‖E otherwise

(8)

Ak is a positive definite dense matrix with high computational complexity, and it
cannot be applied to solve large-scale BA problems. Therefore, given a filtered sparse
higher-order matrix Ak+1, we aimed to reduce the density of the gain matrix without
compromising accuracy by removing some elements and restoring its sparsity. The low-
order derivative matrix is calculated through JT

kJk. When the element at position (i, j) in the
JT
kJk matrix is zero, the corresponding element in the filter is also set to zero.

Nm,n =

{
0 JTJm,n = 0
1 JTJm,n �= 0

(9)

m and n represent the row and column indices of the JT
kJk matrix. The nonzero elements

are divided into two categories: diagonal elements and off-diagonal elements. By keeping
both of them in the gain matrix Ak+1, better solution values can be obtained. The gain
matrix is transformed into a sparse matrix using the Hadamard product of the filter.

As
k = Nm,n × Ak (10)

As
k is a sparse matrix with the same structure as the low-order derivative matrix. After

utilizing the sparse As
k in solving the descent direction, it becomes feasible to efficiently

solve the bundle adjustment problem.

Bk =

{
JT
kJk + As

k
(
zT

kδk > ε
)

JT
kJk + ‖δk‖E otherwise

(11)

Bk is the newly obtained Hessian matrix.

3.5. Multi-View Stereo

Using the camera poses and sparse point cloud information obtained from SFM as
input, it is possible to use multi-view stereo vision techniques for dense reconstruction.
The SFM point cloud is derived from feature matching, and the matched point pairs are
sparse. Therefore, the reconstructed point cloud model is also sparse, and cannot intuitively
display the scene structure and texture features. Dense reconstruction is required to make
the sparse point cloud denser. We used RGB images and corresponding sparse depth maps
to predict the global depth information of the image. Then, referring to the image sequence
and inverse projection matrix, we converted the depth map into a 3D point cloud, achieving
a dense reconstruction of the sparse point cloud. Both Sparse-to-Dense and DELTAS [33]
proposed an image depth regression model. The sparse point cloud is converted into a
sparse depth map with the same resolution as the color image. Then, both the converted
sparse depth map and the original RGB image are input into the model to perform image
depth estimation. These methods have achieved better results than classical methods on
datasets such as NYU-Depth-v2, ScanNet, and KITTI. The network architecture is shown
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in Figure 4, where the feature extraction layer consists of ResNet and the decoding layer
consists of four upsampling layers.

Figure 4. Sparse-to-Dense architecture.

Geometric Filtering

Projecting the depth values of each pixel in the depth map into three-dimensional
space results in a significant amount of redundant points and outliers. It is necessary to use
geometric consistency to remove the outliers in the depth map.

The point P1 on image I1 is projected onto image I2 according to its corresponding
depth value d1, resulting in point P2 on I2. The corresponding depth value of P2 on I2 is
d2. Then, based on d2, P2 is further projected back onto image I1 to obtain point P′

1. The
depth value of P′

1 is denoted as d′
1. By calculating the positional offset error between P1

and P′
1, as well as the depth error between d1 and d′

1, we can evaluate whether point P1 is
estimated correctly. When the condition indicated by Equation (12) is satisfied, it means
that the depth estimation result of point P1 is geometrically consistent with the view of
image I2. { ∣∣P′

1 − P1
∣∣ < 1

|d′
1−d1|
d1

< 0.01
(12)

In the depth map fusion strategy, point P1 needs to satisfy geometric consistency with
at least two views other than image I1 in order to be preserved. After performing outlier
filtering on all depth maps, the depth pixel points can be projected onto a three-dimensional
space using the camera’s inverse projection matrix, resulting in a dense 3D point cloud. In
this study, multi-threaded parallel acceleration was enabled during the depth map fusion
process, leading to improved efficiency.

4. Experiments

4.1. Feature Matching

To validate the robustness and effectiveness of the outdoor large-scale scene feature
matching algorithm, experiments were conducted using a dataset of aerial images captured
by unmanned aerial vehicles. A comparison was made in terms of feature point extraction
efficiency, matching efficiency, and matching accuracy. The visual results of feature match-
ing are shown in Figure 5. The experimental setup included the following hardware and
software environment: CPU: I9 12900KF, GPU: 3080Ti 12GB, 32GB memory, CUDA 11.7,
PyTorch 1.3.0.

Figure 5 demonstrates that the SIFT algorithm’s feature extraction capability on aerial
image datasets is still remarkable. Compared with SuperPoint, it extracts more feature
points and takes more time, as seen in Table 1. However, the number of matched point
pairs is lower than SuperPoint, indicating that the SIFT algorithm may not extract point
positions or descriptors accurately. To better compare the performance of feature extraction,
we cropped 80 images to a size of 640 × 480 and quantitatively compared different feature
extraction methods. The time consumption under the average number of feature points
per frame is shown in Table 1.
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Figure 5. Feature matching map.

Table 1. Feature extraction analysis.

Method Feature Points Match Points Time/s FPS

SIFT + SuperGlue + RANSAC 2392 1398 0.052 19.23
SuperPoint + SuperGlue + RANSAC 1927 1631 0.040 25.00

From the above, it can be concluded that SuperPoint has better robustness in feature
descriptors during feature point matching, with higher matching accuracy compared with
SIFT. In cases of weak texture or repetitive patterns, SuperPoint has a certain advantage.

4.2. Depth Map Estimation

Depth map estimation entails the calculation of depth information for each pixel
within a reference image, ensuring that the local tangent plane of each pixel mapping
closely mirrors the tangent plane of the actual scene. Given the inherent noise present in
the generated depth map, it is imperative to filter out any erroneous points. Following this
filtration process, depth map fusion is undertaken, with the depth values subsequently
back-projected into a three-dimensional space to generate a point cloud model.

To verify the accuracy of depth map estimation in this paper, we trained the model on
several open-source datasets including DTU, NYU-Depth-v2, and BlendedMVS [34]. This
was to improve the model’s generalization to aerial images and enhance the accuracy of
predicted depth maps. The sparse depth maps required for network input were obtained
from sparse point clouds obtained by deep learning-based matching and reconstruction.
We trained the network model on these three datasets, and the results of the predicted
depth maps are shown in Figure 6. It can be observed that the depth estimation achieves
good performance across all three datasets. In addition, we also conducted quantitative
evaluations on depth maps.
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Figure 6. Depth map estimation results (column 1 is the original image, column 2 is the sparse point
cloud map corresponding to the image, column 3 is the depth map estimated by the algorithm in this
paper, and column 4 is the ground truth corresponding to the original image).
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The evaluation metrics for depth map estimation are the root mean squared error
(RMSE) and the mean absolute relative error (REL) between the ground truth depth map
and the predicted depth map. It is written as:

RMSE =

√
1
n∑

∣∣di − d′
i
∣∣2 REL =

1
n

∣∣di − d′
i
∣∣

di
(13)

The quantitative results are listed in Table 2. Our performance compares favorably to
the Colmap fusion techniques. These two methods of MVSNet are even inferior to Colmap.

Table 2. Quantitative comparison with several other depth map estimation algorithms on
three datasets.

Dataset
Colmap Meshroom MVSNet [10] R-MVSNet [11] Ours

RMSE REL RMSE REL RMSE REL RMSE REL RMSE REL

DTU 1.183 0.213 1.343 0.238 2.56 0.323 2.68 0.318 0.875 0.129
NYU-Depth-

v2 1.524 0.325 2.191 0.376 3.117 0.512 4.235 0.54 1.479 0.213

BlendedMVS 2.21 0.491 3.412 0.837 2.361 0.419 3.168 0.612 1.779 0.290

4.3. Multi-View Stereo

After depth map estimation, it is necessary to back-project the pixels with depth values
into 3D space and use geometric consistency to remove erroneous point clouds and achieve
dense point cloud reconstruction. The experimental results are shown in Figure 7, where
scene 1 and scene 2 were reconstructed using 125 and 136 images respectively, covering an
area of 120 × 120 m. It can be seen from the figure that our method outperforms traditional
open-source algorithms such as Colmap and Meshroom, generating more complete and
detailed dense point clouds.

Figure 7. Sparse and dense point clouds.

We performed block matching on high-resolution images based on a deep learning
feature matching method, then used a compensated BFGS-GN bundle adjustment algorithm
to optimize the point cloud position. We used a fully convolutional neural network to
predict image depth and reconstruct dense point clouds using depth maps to successfully
achieve complete 3D reconstruction of drone aerial images.

In order to quantitatively evaluate the speed of the algorithm in this paper, the running
time comparison of each stage of the algorithm is shown in Table 3.
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Table 3. Comparison of 3D reconstruction time cost.

Images 125 136

Reconstruction Stage Colmap Meshroom Ours Colmap Meshroom Ours

Feature Detection 46 s 2.3 min 53 s 51 s 2.7 min 59 s
Feature Matching 1.3 min 2.6 min 1.1 min 1.5 min 3.1 min 1.2 min

SFM 7.7 min 9.2 min 8.3 min 8.6 min 11 min 9.0 min
Global BA 15 s 38 s 10 s 17 s 43 s 12 s

MVS 51.3 min 63.1 min 32.7 min 57.6 min 70.5 min 36.1 min
3D Points 8.9 M 11.3 M 13.2 M 26.3 M 28.5 M 31.4 M

To make the experimental comparison fairer, all methods used GPU. From Table 3, we
can see that the proposed algorithm reconstructs more 3D points and the whole process
takes the shortest time. The reason why the SFM process takes too much time is that more
feature points are extracted. The BA method of BFGS-GN has the highest efficiency.

5. Conclusions

The classic incremental motion restoration structure 3D reconstruction has problems
such as insufficient efficiency, difficulty in extracting weak texture features, and scene
offset when used for drone photography datasets. This paper is based on the feature
matching method of SuperPoint + SuperGlue, adopts a sliding window block feature
matching strategy, and uses the RANSAC algorithm to eliminate mismatched feature
pairs. After selecting the initial image pair for triangulation, the BFGS Gauss–Newton
method is used to minimize the reprojection error to optimize the camera pose and 3D
point cloud position. This method reduces the time of the BA process. Finally, the sparse
to dense fully convolutional neural network estimates the full-resolution depth map with
the sparse depth map and the original RGB image, and reconstructs the dense point cloud
with geometric consistency constraints. Experimental results show that the point cloud
reconstructed in this paper is more complete and has richer details. In general, it improves
the efficiency of 3D reconstruction and achieves satisfactory results in the 3D reconstruction
task of large scenes. Since incremental SFM is a cumbersome 3D reconstruction method
with extremely complex mathematical relationships, and cannot use raw RGB images for
end-to-end 3D reconstruction using deep learning, in the future we will further explore
improving the SFM algorithm based on deep learning, such as optimizing the estimation
of the camera pose in the triangulation step using deep learning to obtain a better 3D
reconstruction model.
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Abstract: Despite the recent advancements in 3D object detection, the conventional 3D point cloud
object detection algorithms have been found to exhibit limited accuracy for the detection of small
objects. To address the challenge of poor detection of small-scale objects, this paper adopts the
PointPillars algorithm as the baseline model and proposes a two-stage 3D target detection approach.
As a cutting-edge solution, point cloud processing is performed using Transformer models. Addi-
tionally, a redefined attention mechanism is introduced to further enhance the detection capabilities
of the algorithm. In the first stage, the algorithm uses PointPillars as the baseline model. The central
concept of this algorithm is to transform the point cloud space into equal-sized columns. During the
feature extraction stage, when the features from all cylinders are transformed into pseudo-images,
the proposed algorithm incorporates attention mechanisms adapted from the Squeeze-and-Excitation
(SE) method to emphasize and suppress feature information. Furthermore, the 2D convolution of
the traditional backbone network is replaced by dynamic convolution. Concurrently, the addition of
the attention mechanism further improves the feature representation ability of the network. In the
second phase, the candidate frames generated in the first phase are refined using a Transformer-based
approach. The proposed algorithm applies channel weighting in the decoder to enhance channel
information, leading to improved detection accuracy and reduced false detections. The encoder
constructs the initial point features from the candidate frames for encoding. Meanwhile, the decoder
applies channel weighting to enhance the channel information, thereby improving the detection
accuracy and reducing false detections. In the KITTI dataset, the experimental results verify the
effectiveness of this method in small objects detection. Experimental results show that the proposed
method significantly improves the detection capability of small objects compared with the baseline
PointPillars. In concrete terms, in the moderate difficulty detection category, cars, pedestrians, and
cyclists average precision (AP) values increased by 5.30%, 8.1%, and 10.6%, respectively. Moreover,
the proposed method surpasses existing mainstream approaches in the cyclist category.

Keywords: 3D object detection; attention mechanism; transformer

1. Introduction

LiDAR technology plays a pivotal role in the development of self-driving vehicles,
providing a reliable and robust means for environmental sensing and decision-making,
thus solidifying its status as a foundational component in this rapidly advancing field [1].
Unlike conventional image data, which only provide two-dimensional information, 3D
point cloud data offer richer spatial details, providing a comprehensive understanding of
the surrounding environment. This direct access to three-dimensional scene information
enables a more accurate and realistic perception of the world, critical for self-driving
applications. Point cloud data are primarily acquired by scanning LiDAR sensors, which
are characterized by disorder, unstructuredness, inconsistent density, and incomplete
information. Therefore, networks well studied in 2D object detection cannot be directly
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used for processing point cloud data [2]. The research in the field of 3D object detection has
primarily been categorized into three main branches, according to the utilized data sources:
LiDAR-based 3D object detection, camera-based 3D object detection [3], and multi-modal
3D object detection, which integrates both LiDAR and camera data [4]. This paper focuses
on LiDAR-based 3D object detection. The LiDAR-based 3D object detection models use
different forms of data processing and are broadly categorized into four types: point-based,
grid-based, point-voxel-based, and range-based methods [5].

The effectiveness of the 3D object detection method based on points is limited to a
large extent by the limitations of the sampling strategy. The higher the number of context
points, the stronger it is, but it can also lead to excessive memory requirements. Moreover,
the uneven distribution of points in point cloud data may lead to the oversampling of dense
areas and the undersampling of sparse areas, thus reducing the detection accuracy. A signif-
icant advantage of direct 3D data processing is the availability of rich spatial information,
which enables the extraction of more effective target features. Moreover, the point cloud
representation is suitable for complex environments, as it allows for the more comprehen-
sive capture of environmental information, leading to improved performance in various
challenging scenarios. Relevant research methods include PointNet++ [6], Pointformer [7],
Point-GNN [8], and 3DSSD [9]. Grid-based 3D object detection methods first transform
point cloud data into a discrete grid representation, a process known as “voxelization”. It
is necessary to convert the point cloud data into a pseudo-image and then input it into a
traditional 2D convolutional neural network for feature extraction so that mature 2D image
processing techniques can be applied to 3D data. The advantage of this algorithm lies in
its utilization of a discrete grid-based representation, which simplifies point cloud data
and enhances the algorithm efficiency. Typical algorithms include Pointpillars [10], Center-
Point [11], VoTr [12], and Part-A2 [13]. The 3D object detection method based on point voxel
usually uses the integrated feature information of both point and voxel for 3D object detec-
tion. The methods take advantage of both point cloud and voxel representations, with point
clouds capturing detailed geometric information. The point cloud captures detailed geomet-
ric information, while voxels provide a structured and mesh-like representation for efficient
computation. Compared to voxel-based detection methods, the point-voxel combination
approach offers improved detection accuracy, albeit with the trade-off of a longer inference
time. Representative algorithms contain SASSD [14], PVGNet [15], and CT3D [16]. Range-
based 3D object detection methods, such as RangeDet [17], to the point [18], and Rsn [19],
process point cloud data by generating distance images based on the distance information
between points, rather than working directly with the original 3D spatial coordinates. This
approach has proven effective in capturing local spatial information while avoiding the
challenges associated with traditional point-based and voxel-based approaches.

In this article, PointPillars, the most typical 3D target detection method based on grid,
is selected as the baseline model. Since it is processed directly on the native point cloud
data and the features are extracted using a two-dimensional convolutional neural network,
all these features significantly improve the inference speed. PointPillars divides the native
point cloud data into a sequence of vertically aligned pillars and then performs feature
extraction on the pillar representation by 2D convolution. The advantage of this is that
large-scale point cloud data can be processed more quickly, and important information in
the original state space can be preserved. It strikes a perfect balance between speed and
accuracy but suffers from the poor detection of small-sized objects. To address this, we
introduce an adapted attention mechanism in the feature encoding stage, optimize the
2D convolutional neural network, and finally perform candidate boxes refinement with
the help of Transformer [20]. A multitude of comparison experiments and rigorous abla-
tion studies have been meticulously performed on the KITTI dataset [21], demonstrating
significant advancements in small target detection facilitated by the proposed method.
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2. Related Work

This study focuses on 3D object detection using a grid-based approach. The funda-
mental idea of this approach is to first divide the cluttered point cloud into cubes of the
same size and then utilize three-dimensional or two-dimensional convolution for feature
extraction. The VoxelNet [22] algorithm proposed by Yin Zhou and Oncel Tuzel separates
the native point cloud data into equal-sized three dimensional voxels and uses voxel feature
encoding (VFE) to convert all the points within the voxels into uniform feature vectors. It
then utilizes the extracted features for object detection and semantic segmentation. This
network architecture is directly applicable to 3D point cloud data without the need for
manual feature engineering (e.g., BEV). Lang, A. H. et al. proposed the PointPillars [10]
algorithm. The algorithm achieves object detection by dividing the native point cloud data
into equal-sized cubes, next using a feature encoder network to transform the input point
cloud into a sparse pseudo image, obtaining high-level features through 2D convolution.
Compared with the traditional point-based and voxel-based methods, the distance-based
method improves the processing efficiency and reduces the computational complexity.
However, the process of voxelization, when used in the generation of distance images,
has the potential to result in the loss of fine-grained details within the point cloud data.
This, in turn, can have a detrimental effect on the accurate detection of small targets, as the
essential subtle features that are crucial for precise identification and localization might
be compromised. Consequently, the overall effectiveness and reliability of the detection
algorithm may be adversely impacted. Yin, T. et al. proposed the two-stage CenterPoint
algorithm [11], which is an algorithm based on a key point detector for object detection,
representation, and tracking. The multilevel pipeline flow of the object detection network
consists of two stages. In the first stage, it extracts the BEV features of LiDAR point clouds
using a voxel or column representation. Two-dimensional CNN detection heads are used
to determine the target centers, and these center features are used to return to the full 3D
bounding box. During the second phase, the detection frame generated from the prelimi-
nary stage is leveraged to extract point features at the center of the frame, which are then
used for regressing the detection frame score and subsequent refinement, resulting in a
robust and reliable multi-stage approach for 3D target detection. In the VoTr model [12]
developed by Mao, J. et al., the Transformer serves as the 3D backbone, replacing the
first-stage 3D sparse convolution model VOTR-SSD in SECOND, and the second-stage 3D
sparse convolution model VOTR-TSD in PV-RCNN. Additionally, it solves the challenge
that it is difficult for sparse, not-empty voxels to directly use Transformer. Through the fast
voxel query and attention mechanism proposed by the author, attention operations can be
effectively performed on sparse, not-empty voxels. This effectively utilizes the power of
Transformer to complete voxel-based tasks.

In recent years, numerous advancements have been made in pillar-oriented 3D target
detection. As a notable example, Anshul Paigwar et al. proposed Frustum-pointpillars [23],
the proposed method incorporates both point cloud features and RGB images to signifi-
cantly enhance LiDAR-based 3D object detection. Additionally, a novel approach to apply-
ing Gaussian-based masking to 3D points is introduced, which effectively distinguishes the
foreground objects from background clutter. This leads to the more accurate localization of
objects in three-dimensional space. Zhang, Lin, et al. developed the TGPP [24], the algo-
rithm segments the original point cloud into multiple pillars for subsequent processing,
and utilizes a multi-head attention mechanism to extract both global context features and
local structure features. The effectiveness of Transformer models in learning context-aware
representations has made them a promising direction for computer vision research. Build-
ing on this potential, Hualian Sheng et al. developed the CT3D [16] method. This method
utilizes SECOND [25] to generate candidate frames, which are then refined by leveraging
the strengths of Transformer models to learn and represent the intricate contextual infor-
mation of 3D point cloud data. This innovative approach has shown promising results
in improving the accuracy of 3D object detection. Beyond the application of Transformer
models for frame refinement, the CT3D approach also captures global context information
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among points by implementing a multi-tier self-attention mechanism. This mechanism
refines the points through a channel attention decoding module, which initially performs
repeated query and key matrix multiplication, followed by the dot–product reweighting of
the key to generate decoding weights. This approach preserves both global information
and emphasizes local information at the channel level. The Voxel Transformer for 3D Object
Detection [12] was introduced by Jiageng Mao and colleagues. The authors proposed a
generalized Transformer-based 3D backbone, which primarily comprises a sequence of
sparse and semi-fluid voxel modules. Through a special attention mechanism and fast
voxel querying, the sparse voxels can effectively perform self-attention, and capture a large
range of information.

In general, various 3D object detection methods possess distinct advantages. In this
work, we proposed a new attention method to enhance feature expressiveness based on
the SE [26] attention mechanism. Additionally, we introduce Transformer [20] to refine
candidate frames and modify the backbone network using dynamic convolution. Further
details are described below.

3. Network Architecture Overview

The algorithmic network framework in this paper adopts the PointPillars network due
to its very fast runtime efficiency, exceeding the radar scanning frequency. The algorithm
takes a point cloud as its input and is able to detect road vehicles, pedestrians, and cyclists,
utilizing 3D bounding frames to enclose the predicted objects. The algorithm is mainly
divided into three parts, and the network structure is shown in Figure 1.

Figure 1. Schematic diagram of network structure.

• Pillar feature attention net (PFANet).
• Backbone (2D CNN).
• Redefined detection head based on Transformer (RDHT).

In this section, we decouple them and briefly review each section.

3.1. Point Feature Attention Net

This part of the PFANet network architecture is used to convert the original point
cloud into a pseudo-image. The algorithm structure is shown in Figure 2 below.

Figure 2. Schematic diagram of the PFANet algorithm structure.

First, each pillar is defined as a small three-dimensional cell, obtained by dividing
the point cloud in the x–y plane (Cartesian coordinate system) at specific intervals. Then,
the points in each pillar are encoded into a nine-dimensional vector D. In light of the
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computational complexity associated with 3D point cloud processing, it is necessary to
place some limitations on the number of pillars and feature vectors used in the algorithm.
Specifically, the number of non-empty pillars will be restricted to a maximum of P, while
each pillar will contain no more than N feature vectors. By following the above method,
a point cloud data frame is encoded as a tensor with dimensions (D, P, N).

Secondly, we propose a point feature attention net (PFANet). In this work, we have
modified the squeeze-and-excitation network (SENet) and will introduce the Redefined-
SENet (R-SENet) in detail. By introducing R-SENet, this module can better utilize
global information.

3.1.1. SENet

The SENet includes both squeeze operation and an excitation operation to capture
inter-channel relationships [26]. In the squeeze phase, the module compresses the con-
volutional layer’s output feature map into a feature vector using global average pooling.
Subsequently, in the squeeze phase, the module uses global averaging pooling to compress
a dimension map of the output feature map of the convolution layer into feature vectors,
specifically converting the input of H × W × C into the output of 1 × 1 × C. Subsequently,
in the excitation phase, a fully connected layer with a nonlinear activation function gener-
ates a channel weighting vector. This vector is then utilized to each channel of the original
feature map, learning to adjust the importance of features across the channels. The specific
structure diagram is shown in Figure 3.

Figure 3. Schematic diagram of squeeze-and-excitation network.

3.1.2. Squeeze

The H × W × C feature map containing global information is directly squeezed into
a 1 × 1 × C feature vector Z. The channel features of each of the C feature maps are
compressed into a single value, which makes the generated channel-level statistics Z
contain contextual information, alleviating the problem of channel dependency.

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

3.1.3. Excitation

To capitalize on the information aggregated during the compression operation, the
model fully captures the channel dependencies through the excitation operation. This
function must satisfy two essential criteria: First of all, it must be flexible enough to learn
nonlinear interactions between channels. Secondly, it must be capable of learning non-
mutually exclusive relationships, allowing the model to emphasize multiple channels
simultaneously, unlike solo thermal activation which limits this capability.

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (2)

By the formula above, we can see that the SE module employs a gating mechanism
composed of two fully connected layers. The first fully connected layer reduces the compu-
tational load by compressing the C channels down to C/r channels. This is followed by
a ReLU nonlinear activation layer. The second fully connected layer then expands the di-
mensionality of the channels back to C. In the end, a Sigmoid activation function is utilized
to obtain the weights s, where the dimension of s is 1 × 1 × C. These weights are used to
adjust the C feature maps in the feature map U. Here, r represents the compression ratio.
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3.1.4. Redefined-SENet

This paper presents a novel improvement to the existing squeeze–excitation network
(SE Net) attention module. This improved module can be interpreted as a mechanism that
automatically learns the relative weights and importance of features, thereby enhancing the
representation of 3D point cloud data in the algorithm. In the squeezing stage, the input
features are compressed by the global average pooling operation to obtain the global feature
statistics. In the excitation stage, the compressed features are nonlinearly mapped, which is
suitable for learning the weight relationship between the features through a pair of fully
connected layers and activation functions. Since the traditional SE Net only carries out
feature compression along the spatial dimension, it turns each two-dimensional feature
channel into a real number. However, the pseudo-images generated in the point cloud
cannot be compressed to a certain dimension like the traditional 2D images. To solve
this problem, we squeeze and excite from the second and third dimensions of the vector
(D, P, N), respectively, i.e., P and N. The effective feature map has a heavy weight, and the
invalid or ineffective feature map has a small weight, so that the training model can achieve
better results. As illustrated in Figure 4, our proposed point feature attention net (PFANet)
incorporates a novel redefined-SENet (R-SENet) module, which outperforms the traditional
SE Net in terms of feature recognition capabilities. This improvement enables the module
to adaptively select and emphasize critical features, resulting in more accurate object
representation in 3D point clouds. Empirical evidence, as presented in our experimentation,
demonstrates that the proposed approach of extruding and stimulating P and N separately
significantly outperforms either extruding or stimulating P or N in isolation.

Figure 4. Schematic diagram of redefined-SENet (R-SENet).

3.2. Backbone (2D CNN)

In the original PointPillars backbone network, the architecture is divided into two
main stages: downsampling and upsampling. During the upsampling stage, a traditional
CNN network is employed for feature extraction. However, this type of network exhibits
significant limitations when it comes to the detection of small objects. To tackle this problem,
we introduce SA-Net [27] into the downsampling phase of the backbone network, aiming to
enhance the detection capabilities for small targets. Additionally, dynamic convolution [28]
is incorporated to augment the expressive power of the shallow network. Below is the
illustration of the backbone structure, as depicted in Figure 5. The detailed architecture of
the 2D backbone network is described in the following sections.

Spatial attention network (SA-Net) is a deep learning network designed to enhance
feature extraction capabilities, particularly for the detection of small targets. SA-Net
introduces a spatial attention mechanism to emphasize key regions within an image,
enabling the network to more effectively identify and locate small targets. During the
downsampling phase, SA-Net utilizes global contextual information to adjust feature
maps, thereby improving the accuracy and sensitivity of feature representation. This
method enables SA-Net to significantly improve the detection capability of the model when
detecting small targets.
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Figure 5. Schematic diagram of a 2D Backbone structure.

Optimized dynamic convolution [28] (ODConv) is a technique aimed at enhancing
the expressive power of convolutional neural networks. Traditional convolution operations
use fixed convolution kernels, whereas ODConv dynamically adjusts the parameters of
the convolution kernels based on different input data, adapting to various features and
contextual information. This dynamic adjustment mechanism enables the network to more
flexibly capture diverse features, particularly in shallow layers, significantly enriching
and refining feature representation. ODConv optimizes the convolution operation by
introducing learnable weights and activation functions; thus, the overall performance of
the model is improved.

In our research, we proposed the use of dynamic convolution to replace traditional
convolution in the algorithm, enabling the application of diverse convolution kernels for
different inputs. This approach allows for the use of attention-based weighting to increase
the average predicted number of objects, while reducing computational effort compared
to traditional convolution. Unlike traditional convolution, which requires sequential com-
putations, dynamic convolution performs these operations in parallel, leading to a more
efficient and effective object detection process. Our hypothesis that the introduction of
ODConv could result in a reduction in recognition accuracy was validated through ablation
experiments. The attention mechanism is currently divided into spatial attention and chan-
nel attention; SA-Net effectively combines these two attention mechanisms, although the
introduction of ODConv can be compensated by the attention mechanism to bring about a
decline in the accuracy of the defects. However, this change will still result in an increase
in the number of parameters, posing limitations.

Although dynamic convolution and attention mechanisms share the common goal of
enhancing the performance of neural networks, they operate in fundamentally different
ways. While dynamic convolution enables the algorithm to adaptively select convolu-
tion kernels for different inputs, the attention mechanism works to focus the network on
critical information. This synergistic combination of both approaches enhances the net-
work’s adaptability to small targets and complex scenes while maintaining computational
efficiency, a significant improvement over traditional convolution-based methods.

3.3. Redefined Detection Head Based on Transformer

Currently, candidate box refinement methods mainly rely on manual design, which
cannot fully capture the rich contextual information between points. In contrast, it is widely
used in natural language processing and computer vision in the field of Transformers can
effectively solve the restriction. Transformer possesses sequence invariance, enabling them
to avoid defining the order of point clouds, and can perform feature learning through
self-attention mechanisms. This enhances the feature extraction of native point cloud data,
making it more comprehensive and accurate. There are already numerous algorithms for
3D object detection tasks applying Transformer, such as PCT [29], Point Transformer [30],
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SOE-Net [31], VoxSeT [32], FlatFormer [33], and so on, all of which have achieved notable
results. The structure of Transformer is shown in Figure 6.

Figure 6. Schematic diagram of Transformer structure.

In this paper, proposal information is initially encoded into each original point through
an effective proposal-to-point embedding approach. Subsequently, remote interactions
between points are captured using self-attention mechanisms. After feature encoding,
the point features undergo conversion into a global proposal-aware representation via an
extended channel re-weighting scheme, ensuring valid decoding weights for all points.
This procedure enables the network to effectively leverage global information and refine its
predictions, leading to more accurate object detection. The details of this process will be
elaborated on in the next subsection of the paper.

3.3.1. Embedding

This embedding step maps the proposal to the original point cloud space, which refers
to the proposal-to-point embedding approach, resulting in a better representation of the
object and improved feature extraction. This is achieved as follows. The generated 3D
bounding box is transformed into a cylinder with no restriction on the height, and the
formula regarding r is as follows:

r = α

√(
l
2

)2
+
(w

2

)2
(3)

α is the hyperparameter. w and l denote the dimensions of the region’s width
and length, respectively. A total of 256 points are randomly sampled from it for sub-
sequent processing.

Calculate the relative coordinates of each point with respect to the center point and
the eight corner points of the corresponding candidate box, thereby constructing point
features. Point features can be represented as:

f i = A([Δpi
c, Δpi

1, . . . , Δpi
8, fi

r]) ∈ RD (4)

A is a linear layer that maps the features of the points to a higher dimensional space,
fi

r is the reflected intensity of the point cloud. Δpi
j is the computed relative coordinates

pi − pj, j = 1, . . . , 8, where pj is the coordinate of the j-th corner point. The point feature
is first mapped to a high-dimensional space via a linear layer, which is then input into a
multi-head attention layer. The feedforward network with residual structure encodes the
intricate contextual relations and relationships between points, effectively enriching and
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refining the original point features. This process contributes to the overall robustness of the
network, enabling more accurate object detection and localization.

3.3.2. Encoder

The encoder layer comprises three components: Add & Norm layers, a multi-head
attention mechanism, and a feed-forward neural network. The self-attention encoding
mechanism further refines point features by modeling the relative relationships between
the points within the proposal. This self-attention process aggregates global context in-
formation and dependencies, resulting in more comprehensive feature representations.
By leveraging self-attention, the mechanism can capture long-range interactions among
points, enabling the better feature extraction and representation of complex spatial relation-
ships and dependencies. The process used to perform feature extraction on the input is
shown in Figure 7. It is used for the process of feature extraction from the input, where
the multi-head attention layer is mainly used for the computation of attention, the matrix
operation of Q, K, V. The Add and Norm layers: “Add” stands for residual connection,
which helps prevent network degradation, while “Norm” stands for layer normalization,
which is used to normalize the activation values of each layer. And then the feed-forward
layer is for the extraction of features for forward propagation. The self-attention mechanism
is computed using the matrices Q (query), K (key), and V (value). These matrices are ob-
tained by linearly transforming the inputs using the learned linear transformation matrices
WQ, WK, and WV during the model’s training process. The output of self-attention is then
calculated as follows:

Figure 7. Schematic diagram of embedding-and-encoder structure.

Z = Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

The dimension of the Q and K matrices is dk, and dividing by the square root of dk
prevents the inner product from becoming too large. After applying the softmax function,
the result is multiplied by the V matrix to obtain the output. Multi-head attention consists of
multiple self-attention layers. First, the input X is passed through h different self-attention
layers, resulting in h output matrices Z. These matrices are then concatenated and passed
through a linear layer to produce the final output.

{
MultiHead(Q, K, V) = Concat(head1, . . . , headh)W0
head = Attention(QWi

Q, KWi
K, VWi

V)
(6)

The Add and Norm layer is composed of two distinct parts, Add and Norm, and their
calculations are performed in the following manner:

{
LayerNorm(X + MultiHeadAttention(X))
LayerNorm(X + FeedForward(X))

(7)

In this context, X denotes the input to either the multi-head attention or the feed-forward
layer. The “Add” operation refers to the residual connection X + MultiHeadAttention(X),
which is typically used to address the issue of training deep networks. This residual
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connection enables the network to concentrate on the current differences, a technique often
utilized in ResNet. The structure diagram of the Residual Network is shown in Figure 8.

Figure 8. Schematic diagram of the residual network.

“Norm” refers to Layer Normalization, which is typically used in RNN structures.
This process transforms the inputs of each layer of neurons to have the same mean and
variance, thereby accelerating convergence.

The feed-forward layer is straightforward, consisting of two fully connected layers:
the first layer applies the ReLU activation function, while the second layer does not apply
any activation function. This structure corresponds to the following equation.

max(0, XW1 + b1)W2 + b2 (8)

The input to the feed-forward layer is the output of multi-head attention after residual
connection and normalization. The feed-forward layer then conducts two linear transfor-
mations to delve deeper into the feature space. Its main purpose is to transform data from
a high-dimensional space to a lower-dimensional space, facilitating the extraction of more
complex features.

With multi-head attention, feed forward, add and norm described above, an encoder
block can be constructed, which receives an input matrix and outputs a matrix. In addition,
encoder can be formed by stacking multiple encoder blocks.

3.3.3. Decoder

In this module, all the point feature codes output by the encoder are decoded, the struc-
ture diagram is shown in Figure 9. Unlike the conventional Transformer decoder that pro-
cesses multiple query embeddings using a self-encoder–decoder mechanism, the decoder
in this paper disregards multiple queries because the proposed model requires only a single
prediction. The decoder module opts for a single prediction instead of utilizing M query
embeddings due to two primary reasons. Firstly, employing M query embeddings can
result in high memory latency, particularly when handling numerous proposals. Secondly,
While typically each of the M query embeddings independently transforms into M words
or objects, the proposal refinement model requires only a single prediction for streamlined
processing. The fundamental departure from the standard Transformer decoder lies in
the decoding approach. In the conventional Transformer Decoder, M multiple query em-
beddings undergo transformation via self- and encoder–decoder attention mechanisms.
In contrast, the decoder operates on a single query embedding to aggregate point features
across all channels and generate a single prediction. This streamlining of the decoding
process enables a more efficient and effective approach to refining point features for 3D
object detection tasks. The standard Transformer decoder aggregates global point features
using learnable vectors, and the final decoded weight vector for all point features per
attention head is:

Figure 9. Schematic diagram of decoder structure.
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w(S)
h = σ(

q̂hK̂T
h√

D′ ), h = 1, . . . , H, (9)

K̂
T
h is the key embedding of the h-th attention header and q̂h is the corresponding

query embedding. In order to emphasize the channel information for K̂T
h and q̂h, a decoding

weight vector is introduced for all channels.

w(EC)
h = s · σ̂

(
ρ
(
q̂hK̂T

h
)
� K̂T

h√
D′

)
, h = 1, . . . , H (10)

s is a linear projection of the decoded values compressed into a reweighted scalar,
where ρ(·) is the repetition operator such that R1×N → RD′×N . Such an approach enriches
localized and detailed channel interactions compared to conventional decoding methods.
Finally, the decoding proposal can be represented as:

y = [w1
(EC) · V̂1, . . . , wH

(EC) · V̂H ] (11)

Here, the value embedding V̂ is derived as the linear projection of X̂.

3.4. Detection Head and Loss

The outputs of the encoding–decoding module are fed into two feed-forward neural
networks (FFNs) to obtain confidence scores and box error values relative to the input
proposals. The positional error between the true box and the predicted box is calculated
as follows: ⎧⎪⎨

⎪⎩
Δx =

xg−x
d , Δy =

yg−y
d , Δz =

zg−z
h ,

Δw = log wg
w , Δl = log lg

l , Δh = log hg
h ,

Δθ = θg − θ,d =
√

l2 + w2

⎫⎪⎬
⎪⎭ (12)

In the formula, x, y, and z are the center points of the frame, w, l, and h are the width,
length, and height of the frame, θ denotes the facing angle of the prediction frame, and g is
the parameter of the real frame.

ct = min(1, max(0,
IoU − aB
aF − aB

)) (13)

where the superscript t is the regression target, encoded by the proposal, and subscript g,
aF and aB are the IOU thresholds for the foreground and background, respectively. The
loss of the network consists of the RPN loss Lrpn, the bounding box confidence loss Lreg,
and the confidence prediction loss Lcon f .

L = Lreg + Lcon f + Lrpn (14)

The confidence prediction loss uses binary cross-entropy loss:

Lcon f = −ct log(c)− (1 − ct) log(1 − c) (15)

Moreover, the box regression loss adopts:

Lreg = (IoU ≥ αR) ∑
μ∈x,y,z,l,w,h,θ

Lsmooth−L1
(
μ, μt) (16)

Lrpn loss consists of the focal-loss classification branch and the smooth-L1-loss
based regression.
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4. Experimental Setup and Evaluation Indicators

In this chapter, the algorithm is evaluated on the public dataset KITTI. Further elabo-
ration will be provided on the training process specifics and evaluation criteria. In addition,
a well-rounded ablation study is conducted to verify the usefulness of each module in
the algorithm.

4.1. Experimental Data

The models were trained and tested using the KITTI 3D object detection benchmark
(Geiger, Lenz, and Urtasun 2012) [21], which contained 7481 training LiDAR samples and
7518 testing LiDAR samples. All experiments utilized the identical dataset partitioning
means as the PointPillars, with the official training dataset divided into 3712 training
samples and 3769 validation samples. We tested the accuracy and performance of our
model by training it on the available training dataset, followed by a comprehensive com-
parison to the results achieved by state-of-the-art methods on both the validation and test
datasets. To ensure a fair and objective evaluation, we not only utilized the 3769 validation
samples but also tested the model on 7518 test samples, uploading the generated labels
from this process to the official KITTI website for independent assessment. This rigorous
testing process allowed us to obtain unbiased results, reflecting the true performance of
our model.

4.2. Model Training

This experiment utilizes the OpenPCDet 3D object detection framework. The CPU
used is an AMD EPYC 9754, the GPU is an NVIDIA GeForce GTX 4090D, with 24 GB
of memory. The algorithm model is trained on the Ubuntu 20.04 platform. For training,
the Adam_onecycle optimizer minimizes the loss function with a maximum of 160 itera-
tions, a batch size of 5, an initial learning rate of 0.001, a momentum optimization coefficient
of 0.8, and a weight decay rate of 0.01.

4.3. Testing Results

The algorithm developed by this work is evaluated on the KITTI 3D target detection
benchmark, which contains three targets: car, pedestrian, and cyclist. Test scenarios for
each category are segmented into easy, moderate, and hard levels. For evaluation purposes,
this paper utilizes the average precision (AP) metric to compare different methods, with 3D
IoU thresholds set at 0.7 for cars and 0.5 for cyclists and pedestrians.

4.3.1. Compare with PointPillars on Validation Samples

For fair comparison, the algorithm used in this paper is trained on a desktop worksta-
tion with the same loss function and the same hyperparameters. Tables 1 and 2 present the
comparison results between our algorithm and the PointPillars algorithm.

Table 1. Three-dimensional object detection accuracy compared to PointPillars (%).

Methods
Runtime

(ms)

APCar (%) APPedestrian (%) APCyclist (%)
mAP (%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard

PointPillars 13 87.23 78.58 75.72 52.38 47.12 43.18 85.49 64.42 59.80 63.37
Ours 33 92.06 83.05 80.90 62.38 54.57 50.69 89.43 71.27 67.02 69.63

The data in bold font in the table is the best performance.

502



Electronics 2024, 13, 2915

Table 2. BEV detection accuracy compared to PointPillars (%).

Methods
Runtime

(ms)

APCar (%) APPedestrian (%) APCyclist (%)
mAP (%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard

PointPillars 13 91.89 88.16 86.84 58.17 52.55 48.86 87.87 67.97 63.40 69.56
Ours 33 93.40 89.16 89.01 63.97 56.78 53.18 90.12 73.96 69.69 73.30

The data in bold font in the table is the best performance.

The reported results are based on the average accuracy across 40 recall positions.
Table 1 reveals that our proposed method has a significant improvement compared to the
baseline model, PointPillars. Car detection AP increased by 4.73%, 4.47%, and 5.18% across
the three difficulty scenarios, respectively. The pedestrian detection AP increased by 10%,
7.45%, and 7.51%, respectively; and the detection of AP by cyclists increased by 6.85%,
7.22%, and 6.26%, respectively. Meanwhile, as shown in Table 2, our method also greatly
improved on BEV detection accuracy. In the three difficulty scenarios, the car detection AP
saw increases of 1.51%, 1%, and 2.17% across the three scenarios, respectively. Similarly,
the pedestrian detection AP increased by 5.8%, 4.23%, and 4.32%, while the cyclist detection
AP showed increases of 18.22%, 5.49%, and 4.25%, respectively.

To provide a thorough analysis of the detection performance across all categories,
the mean average precision (mAP) value was computed by aggregating the AP values
under moderate difficulty for each category. Compared with the existing PointPillars
algorithm, the method achieved a significant improvement in the 3D target detection
accuracy of 6.26%. Furthermore, in the BEV detection accuracy, our model registered a
3.74% increase. Moreover, our model achieved an impressive inference speed, which was
only 20 ms slower than the industry-standard limit model, despite running on identical
hardware and software configurations.

4.3.2. Compare with Others Methods

To validate the algorithm’s universality, it was tested and compared on both the valida-
tion and test sets in this article. The experimental results are summarized in Tables 3 and 4,
with bold formatting highlighting the highest-performing detection outcomes.

Table 3. Three-dimensional object detection accuracy comparison with other algorithms on validation
set (%).

Methods
APCar (%) APPedestrian (%) APCyclist (%)

mAP (%)
Easy Mod Hard Easy Mod Hard Easy Mod Hard

VoxelNet 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11 53.99
SECOND 90.55 81.61 78.61 55.94 51.14 46.17 82.96 66.74 66.74 64.84
PointPillars 86.42 77.29 75.60 53.60 48.36 45.22 82.38 64.24 60.05 62.25
Pointformer 90.05 79.65 78.89 - - - - - - -
SVGA-
Net 90.59 80.23 79.15 - - - - - - -

TGPP 87.74 77.89 74.65 56.92 59.85 45.09 80.05 62.95 59.67 61.97
PSA-
Det3D 87.46 78.80 74.47 49.72 42.81 39.58 75.82 61.79 55.12 60.05

Ours 92.06 83.05 80.90 62.38 54.57 50.69 89.43 71.27 67.02 69.63

The data in bold font in the table is the best performance.
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Table 4. Three-dimensional object detection accuracy comparison with other algorithms on test set
(%).

Methods
APCar (%) APPedestrian (%) APCyclist (%)

mAP (%)
Easy Mod Hard Easy Mod Hard Easy Mod Hard

PointPillars 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92 58.29
PointRCNN 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 57.94
SA-SSD 88.75 79.79 74.16 - - - - - - -
Pointformer 87.13 77.06 69.25 50.67 42.43 39.60 75.01 59.80 53.99 59.76
RangeDet 85.41 77.36 72.60 - - - - - - -
SVGA-
Net 87.33 80.47 75.91 48.48 40.39 37.92 78.58 62.28 54.88 61.04

IA-SSD 88.34 80.13 75.04 46.51 39.03 35.61 78.35 61.94 55.70 60.36
EOTL 79.97 69.13 58.57 48.65 40.11 35.99 75.20 58.96 50.41 56.06
Ours 87.33 78.90 74.31 43.88 36.49 34.19 77.61 63.69 56.88 59.69

The data in bold font in the table is the best performance.

To evaluate the improved algorithm on the KITTI dataset, it was compared with
several typical algorithms. VoxelNet [22], SECOND [25], PointPillars [10], Pointformer [7],
SVGA-Net [34], TGPP [24], and PSA-Det3D [35] algorithms were selected for comparison.
At the three difficulty levels, our proposed method achieves results comparable to or better
than state-of-the-art methods, confirming the effectiveness of our approach, as shown in
Table 3.

Furthermore, to facilitate a more equitable comparison with other state-of-the-art meth-
ods, the method proposed in this paper was evaluated using the 3D detection benchmark
on the KITTI test server. First of all, according to the KITII website and the suggestions
made by Mapillary team in their paper [36], we used 40 recall positions instead of 11 re-
call positions. Second, the algorithm of this paper is tested on a test set, and the data
for comparison in Table 4 below are from the KITTI website. We have selected typical
methods in recent years, such as PointPillars [10], PointRCNN [37], SA-SSD [14], Point-
former [7], RangeDet [17], SVGA Net [34], IA-SSD [38], and EOTL [39]. Our method shows
better progress in the bicycle category, performs satisfactorily in the automobile category,
and exhibits some effectiveness for small object detection. The experiments confirm the
effectiveness of the proposed algorithmic enhancements.

4.3.3. Visual Comparison Analysis

This paper exclusively utilizes the point cloud dataset for training, with visualization
employed to facilitate a more intuitive comparison. To further analyze and visually demon-
strate the usefulness of our proposed method compared to the baseline, this subsection
presents the bounding box prediction results of both approaches in two different scenarios.
Each scenario is presented separately for detailed analysis, observation, and illustration.
Each scenario includes an RGB image and two point cloud images with the detected
boxes, which are visually compared for clarity. The color coding for each category is as
follows: cars are depicted with green bounding boxes, pedestrians with blue bounding
boxes, and cyclists with yellow bounding boxes. We randomly selected two scenes for
testing. Scene 1, depicted in Figure 10, shows the original image, while Figure 11 displays
the detection results from both algorithms applied to this scene. Similarly, in Scene 2,
as described in Figure 12, visual comparisons between the two algorithms are shown in
Figure 13, respectively.

Figure 11a test results show some common detection failures. In contrast, Figure 11b
has tight and oriented 3D bounding boxes. The prediction results for cars are more accurate,
with no misclassifications for pedestrians and cyclists. The same results can be seen in
Figure 13a,b. Detecting pedestrians and cyclists proves to be more challenging; pedestrians
and cyclists are often misclassified, and environmental noise can be easily misinterpreted
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as cyclists and pedestrians. The visual analysis further demonstrates that the proposed
algorithm significantly improves upon the baseline model.

Figure 10. Original photo of Scene 1.

(a) Baseline method detection scenario (b) Ours method detection scenario

Figure 11. Detection results of two algorithms in Scenario 1.

Figure 12. Original photo of Scene 2.

(a) Baseline method detection scenario (b) Ours method detection scenario

Figure 13. Detection results of two algorithms in Scenario 2.
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5. Ablation Studies

To affirm the effectiveness of our proposed method, we conducted a series of ablation
experiments that objectively evaluated the performance of each algorithm presented in
this paper. In this subsection, we present the results of the ablation experiments in detail,
which were designed to assess the efficacy of each module. Following standard 3D object
detection practices, we split the KITTI dataset into “train” and “val” subsets, with 3712 and
3769 samples, respectively.

Referring to the data shown in Table 5, the APs for each category are averaged across
the three levels of difficulty. Evidently, the method with the addition of the Transformer
module has a significant improvement of 3.96% compared to the baseline for the model.
The method, with the addition of ODConv as well as the Transformer module, has an
improvement of 4.88% compared to the baseline for the model. Methods that add the
ODConv, Transformer, and Attention modules have a 7.38% improvement over the baseline
for the model. Building upon the analysis provided earlier, firstly, it can be seen that the
introduction of Transformer for candidate box refinement in the baseline for the model has
a significant effect and captures the rich contextual information between points better than
the baseline for the model. Second, based on the introduction of Transformer, the traditional
convolution in some of the convolutional layers is replaced with dynamic convolution in
the backbone network. By dynamically adjusting the shape and size of the convolutional
kernel, the performance of the convolutional neural network is thus improved, and it is
improved by 0.92% from the above. Our analysis revealed that the introduction of adapted
SE attention in the feature encoding network and SA attention in the backbone network
plays a critical role in bolstering the representation capability of the features. This results
in a significant enhancement in feature representation compared to simply adding the
Transformer module, with an improvement of 3.42% in detection accuracy.

Table 5. Performance across different modules of the algorithm (%).

ODConV Transformer Attention 3D mAP (%) Car. 3D (%) Ped. 3D (%) Cyc. 3D (%)

� 64.37 80.03 47.78 65.30
� 69.95 82.17 53.14 74.53

� 65.68 80.80 48.91 67.33
� � 65.52 80.44 48.23 67.90
� � 70.87 85.44 51.51 75.65
� � � 72.37 85.33 55.88 75.90

The data in bold font in the table is the best performance, the “�” indicates that this module is added.

According to Table 6, the application of the R-SENet model demonstrates superior
detection capability compared to the traditional SENet model. For the three categories
under moderate difficulty, the improvement is 0.11%, 2.27%, and 1.19%, respectively.
The realization proves that squeezing and motivation for P and N are much better than
squeezing and motivation for P or N alone.

Table 6. R-SENet performance compared to SENet.

Methods Car. 3D (%). Ped. 3D (%) Cyc. 3D (%) 3D mAP

+SENet 82.94 52.3 70.08 68.44
+R-SENet 83.05 54.57 71.27 69.63

The data in bold font in the table is the best performance.

6. Conclusions

This paper introduces an enhanced Transformer-based PointPillars feature encod-
ing network aimed at enhancing small object detection. Among them, the introduced
candidate box refinement module is the core part of this algorithm, which significantly
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enhances the detection capabilities for small targets. Experimental results in the KITTI 3D
detection benchmark show that the algorithm outperforms PointPillars in target detection
performance, achieving a 6.26% average accuracy improvement under comparable condi-
tions. This places it competitively among recent advancements in the field. The results of
the ablation experiments confirmed that our developed improvements to the PointPillars
algorithm achieved better performance than the baseline model. Additionally, the com-
parison between our proposed R-SENet and the traditional SENet revealed that R-SENet
demonstrated various levels of improvement in all three categories, suggesting that the
Redefined-SENet module was a valuable addition to our model. While the incorporation
of the Transformer module has undoubtedly enhanced the performance of our proposed
model, it has also introduced some trade-offs in terms of computational efficiency. In par-
ticular, incorporating this module has led to slower computation and an expansion in
the parameter count. Moving forward, our goal is to enhance our approach by exploring
new architectural designs that streamline computational efficiency and reduce parameter
overhead, all while preserving the high accuracy of our model.
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Abstract: Automated harvesting systems rely heavily on precise and real-time fruit recognition,
which is essential for improving efficiency and reducing labor costs. Strawberries, due to their
delicate structure and complex growing environments, present unique challenges for automated
recognition systems. Current methods predominantly utilize pixel-level and box-based approaches,
which are insufficient for real-time applications due to their inability to accurately pinpoint straw-
berry locations. To address these limitations, this study proposes StrawSnake, a contour-based
detection and segmentation network tailored for strawberries. By designing a strawberry-specific
octagonal contour and employing deep snake convolution (DSConv) for boundary feature extraction,
StrawSnake significantly enhances recognition accuracy and speed. The Multi-scale Feature Rein-
forcement Block (MFRB) further strengthens the model by focusing on crucial boundary features and
aggregating multi-level contour information, which improves global context comprehension. The
newly developed TongStraw_DB database and the public StrawDI_Db1 database, consisting of 1080
and 3100 high-resolution strawberry images with manually segmented ground truth contours, respec-
tively, serves as a robust foundation for training and validation. The results indicate that StrawSnake
achieves real-time recognition capabilities with high accuracy, outperforming existing methods in
various comparative tests. Ablation studies confirm the effectiveness of the DSConv and MFRB
modules in boosting performance. StrawSnake’s integration into automated harvesting systems
marks a substantial step forward in the field, promising enhanced precision and efficiency in straw-
berry recognition tasks. This innovation underscores the method’s potential to transform automated
harvesting technologies, making them more reliable and effective for practical applications.

Keywords: deep learning; snake convolution; transform; contour segmentation

1. Introduction

The development of automatic picking machines is crucial for advancing agricultural
intelligence, where crop perception plays a central role. These machines face numerous
challenges that require sophisticated visual perception technology, such as manipulating
the robotic arm [1], the classification of ripeness [2] or the detection of individuals [3] and
diseases [4]. Strawberries, which grow in clusters and exhibit significant variability in
shape, size, and ripeness, present unique challenges. The dense foliage and stems further
complicate the task by obstructing the view and making accurate strawberry localization
particularly difficult for the visual systems of harvesting robots. Current mainstream
strawberry recognition technologies primarily rely on bounding box and pixel classification
methods. While bounding boxes provided by object detection and masks from instance
segmentation are commonly used, contour segmentation technology offers superior bound-
ary accuracy. Unlike bounding boxes, which can be affected by complex backgrounds,
and masks, which demand high memory usage, contour segmentation delivers precise
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boundaries, thereby enhancing the visual system’s capability to differentiate and locate
individual strawberries amidst cluttered environments. The research into contour segmen-
tation for strawberry recognition is of significant value, as it promises to overcome the
limitations of existing methods. By improving the accuracy and efficiency of crop detection,
this technology can lead to more effective automation in harvesting, ultimately contributing
to increased agricultural productivity and reduced labor costs.

In current strawberry recognition work based on deep learning, there is little explo-
ration of strawberry contours. However, recently, in the identification of other crops, Wang
et al. [5] combined saliency detection and traditional color difference with a real-time
deep-snake [6] deep learning contour segmentation model to achieve fast detection and
recognition of apple fruits. In addition, in terms of dataset work, Borrero et al. released a
large-scale high-resolution dataset of strawberry images, along with corresponding manu-
ally labeled instance segmentation masked images. They used Mask R-CNN to achieve
strawberry instance segmentation. However, these methods still struggle to meet the
real-time and high-precision operational requirements of the visual system in harvesting
robots, as the picking robots are typically equipped with energy-limited power supplies
and low-computing devices.

As shown in Figure 1, the dense growing area of strawberries produce a lot of overlap-
ping areas. The mainstream detection-based method (Figure 1b) cannot be able to make an
accurate judgment of the strawberry position. In addition, the segmentation-based method
(Figure 1c) requires pixel-level judgment and a large amount of computation. Inspired
by classic strawberry identification approaches, we think that strawberry contour can
provide a more efficient presentation. The strawberry contour consists of a sequence of
strawberry boundary points along the contour. In contrast to the detection-based and
segmentation-based methods, the strawberry contour is not limited to a bounding box and
has fewer computational parameters. Therefore, the contour-based representation is well
suited for strawberry identification.

Figure 1. The existing issues of strawberry detection. The yellow boxes represent the strawberry
detection area.

Based on the exploration of apple contours in Ref. [5], we also use the Deep Snake
framework for strawberry contour segmentation. Due to the extensive occlusion of straw-
berries by leaves and stems, we need a more powerful contour boundary segmentation
capability. As shown in Figure 2, standard convolutional kernels are designed to extract
local features (Figure 2a), deformable convolutional kernels can enrich their applications
and adapt to geometric deformations of different targets (Figure 2b), and dynamic snake
convolutions (DSConv) can effectively focus attention on fine and curved boundary struc-
tures, enhancing perception of geometric structures adaptively (Figure 2c). Therefore,
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we propose using dynamic snake convolutions to extract strawberry boundary features
combined with a Transform feature fusion module, to learn and aggregate multi-level
strawberry contour features, forming the “StrawSnake”.

 

Figure 2. Diagram of the action of different convolutions. These arrows represent the calculation
ideas when the convolution kernel is computed. The red dots represent the initial image values and
the green represents the convolution kernel.

Building on the Deep Snake framework, we also adopted a two-stage pipeline ap-
proach for strawberry instance segmentation, treating strawberry recognition as a contour
segmentation problem. Additionally, based on the characteristics of strawberry posture,
we specifically designed an octagon contour composed of strawberry extremal points as
the initial strawberry contour. Finally, we used StrawSnake to deform the initial contour
into the strawberry boundary. Our main contributions can be summarized as follows:

(1) We propose a real-time contour segmentation network (StrawSnake) for strawberry
detection in virtue of the structure of the deep snake model and design an octagon
contour specifically for strawberry contour segmentation, which can effectively en-
close the strawberries tightly, and a contour feature aggregation module is used to
aggregate the multi-level strawberry contour features.

(2) We propose using dynamic snake convolutions to extract strawberry boundary fea-
tures combined with a Transform feature fusion module, to learn and aggregate
multi-level strawberry contour features

(3) We use an edge detection algorithm to annotate the ground truth of the strawberry
contour on StrawDI_Db1 [7] and our TongStraw_DB as the training data. We conduct
extensive experiments to verify StrawSnake is boosting the performance of strawberry
segmentation. The experimental results show that our method achieves state-of-the-
art performance in both accuracy and speed.

2. Related Work

Currently, most of the strawberry recognition work is carried out by mature object
detection networks such as FCN [8], Mask RCNN [9], YOLO series [10], etc. Here, we
introduce the latest segmentation methods for strawberry detection and other fruits.

2.1. Classical vs. Deep Learning-Based Strawberry Detection Approaches

Most classic strawberry detection approaches are based on hand-crafted shape features
and employ an active contour model such as a Snake model. However, it is difficult
to extract very deep and complex features using these traditional methods [11–13]. In
contrast, the deep learning-based approach achieves higher performance on classification
and detection problems compared to traditional computer vision. Deep learning introduces
the concept of end-to-end learning, where algorithms are presented with a large number
of images annotated with object classes. For example, Bai et al. [14] proposed to build the
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Swin Transformer [15] prediction head on the high-resolution feature map of YOLOv7 [10]
to better use spatial position information to enhance the detection of small target flowers
and fruits, and improve the spatial interaction and feature extraction capability of the
model in similar color and overlapping occlusion scenes. Similar to this, Pang et al. [16]
proposed an improvement method based on YOLO for strawberry detection. By building a
CSP2 module, they created a double cooperative attention mechanism to improve feature
representation in complex environments.

2.2. Strawberry Instance Segmentation

Instance segmentation algorithms based on deep learning have recently been applied
to different studies in the agricultural field. At first, Pérez et al. [7] proposed a method
for instance segmentation of strawberries using an improved Mask RCNN technique.
They designed a new backbone network and mask network architecture; eliminated the
target classifier and bounding box regressor; and, without increasing the complexity order,
replaced the non-maximum suppression algorithm with a new region grouping filtering
algorithm. Similarly, Usman et al. [17] also used the Mask R-CNN architecture to segment
these seven diseases. They used the ResNet backbone and followed a systematic data
enhancement approach that allowed for segmentation of target diseases under complex
environmental conditions. Cao et al. proposed a lightweight StrawSeg segmentation
framework for strawberry instances [18]. They directly segmented each strawberry with
a single lens, independent of object detection. They designed a new feature aggregation
network to combine features of different scales and improve the resolution and reduce
the channel of features. In addition, there are also some works that used contour instance
segmentation. To solve the problem of inaccurate image segmentation of strawberries with
different maturity due to fruit adhesion, accumulation and other reasons, Wang et al. [19]
proposed a strawberry image segmentation method based on improved DeepLabV3+
model [20]. The technology introduces the attention mechanism to the backbone of the
DeepLabV3+ network.

2.3. Feature Fusion Strategy

Feature fusion is the process of combining feature information from different levels
or different networks to obtain a richer and more comprehensive representation. The
purpose of feature fusion is to improve the performance of the model, enabling it to better
understand and process complex data. Some work has also been carried out on fruit
detection models, e.g., Swin Transformer [15], CBAM [21], and GAM [22]. Zhao et al. [23]
addressed the complex background and small lesion size issues in strawberry disease
images by proposing a new, faster R-CNN architecture for detecting 7 types of strawberry
diseases. The multi-scale feature fusion network composed of ResNet, FPN, and CBAM
blocks can effectively extract rich features of strawberry diseases. The mAP value is 92.18%,
with an average detection time of only 229 ms. In our work, based on the significant
differences between contour boundary features and surrounding features, we prioritize
these important feature channels and enhance the model’s global context understanding
capability, proposing a novel feature fusion strategy.

3. Our Methods

Figure 3 shows the pipeline of our framework, which adopts a two-stage pipeline,
including the initial strawberry contour proposal (Figure 3A) and the strawberry contour
deformation (Figure 3B). We take advantage of DeepSnake’s structure to construct the
initial strawberry contour and contour deformation. The difference is that we use the
YOLO V8 [24] to improve the detection effect of small-sized strawberries. Specifically, we
designed a suitable octagon for strawberries (Figure 3A(f)) in the initial contour proposal.
In addition, our StrawSnake consists of four parts: a feature encoding block, a feature
fusion block, a feature aggregation block and an offset prediction layer. We will introduce
these blocks in detail in Section 3.2.

513



Electronics 2024, 13, 3103

k

Figure 3. The pipeline of our framework. The white point represents the extreme value point, and
the red point represents the deformed contour point.

3.1. Contour Feature Representation

Given an initial contour with N vertices {x i|i = 1, ..., N} the program learns the
features and vertex coordinates to represent each vertex {x i|i = 1, ..., N} as a feature vector
fi. The input feature fi for a vertex xi is a concatenation of learning-based features and the
vertex coordinate. We use [ F(x i); xi] to represent the input feature, including the feature
and position information. In addition, we use the bilinear interpolation of features at the
vertex coordinate xi to compute the contour feature F(x i), as shown in Figure 4.

 
Figure 4. The schematic for the contour features. The red arrow represents the interpolation method
of conventional convolution to circular convolution.

3.2. Initial Strawberry Contour Proposal
Strawberry Contour Design

Refs. [14,25] have proved that an octagon whose edges are centered on the extreme
points can provide precise initial contours. Thus, we also choose the octagon as the initial
strawberry contour. Firstly, we used the YOLO V8 detector to obtain the bounding box for
the strawberry and denote xBox|i = 1, 2, 3, 4 as four midpoints at the four box borders.
Then we connected four midpoints to construct a quadrilateral contour (Figure 3b). In
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addition, we denoted pixels at the top, leftmost, bottom and rightmost as four extreme
points in a strawberry. StrawSnake will take the quadrilateral contour as the input, and
output the offsets that point from each xBox (Figure 3c). In order to obtain more contour
vertex offsets, we uniformly upsample 60 points on the quadrilateral contour in our ex-
periment (Figure 3d). At the same time, StrawSnake will output 60 offsets to deform the
strawberry extreme points. After that, we generated four lines based on the extreme points
to construct the octagon contour (Figure 3e). In general, the aspect ratio of strawberries
is approximately 1:2. Thus, we designed an octagon contour specifically for strawberries,
which can effectively enclose the strawberries tightly. For the top and bottom extreme
points, a line will extend from the extreme point as the midpoint in both directions to 1/4
of the border length. For the left and right extreme points, the extension length is 1/3 of
the border length. In particular, the line will be truncated if it meets the box corner. Finally,
the initial strawberry contour (Figure 3f).

Figure 5 shows the schematic of contour vertex deformation. Through contour de-
formation, the model can adjust the vertex position iteratively, make the final contour
more consistent with the target boundary, correct the error, and improve the segmenta-
tion accuracy. It can also flexibly adjust the contour shape to adapt to various complex
object boundaries.

Figure 5. The schematic of contour vertex deformation. Purple points represent the initial contour
vertexes. Blue points represent the strawberry contour points. Yellow lines represent the initial
contour. Green lines represent the strawberry contour line.

3.3. Dynamic Snake Convolution (DSConv)

In this section we will discuss how to perform Dynamic Snake Convolution (DSConv)
to extract local features of tubular structures. Given a standard 2D convolution coordinate
K, the central coordinate is Ki = (xi, yi). A 3 × 3 convolution kernel K is represented by:

K = {(x − 1, y − 1), (x − 1, y), . . . , (x + 1, y + 1)} (1)

In order to give more flexibility to the convolution kernel so that it can focus on the
complex geometric features of the target, we introduce deformation deflection Δ, inspired
by [26]. However, if the model is completely free to learn deformation and migration, the
perception field will often deviate from the target, especially in the case of thin tubular
structures. Therefore, we adopted an iterative strategy (Figure 3) to select the next position
of each target to be processed for observation in order to ensure continuity of attention and
not to spread the perception too far due to large deformation shifts.

As shown in Figure 6, we linearize the standard convolution kernel in both the X-axis
and Y-axis directions in the dynamic snake convolution. We consider a convolution kernel
of size 9, taking the X-axis direction as an example, and the specific position of each grid
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in K is expressed as: Ki±c = (xi±c,yi±c), Where c = 0, 1, 2, 3, 4 represents the horizontal
distance from the central grid. Starting at the center position Ki, the position away from
the center grid depends on the position of the previous grid: Ki+1 increases the offset
Δ = {δ|δ∈[−1, 1]} with respect to Ki. Therefore, the offsets need to be accumulated Σ to
ensure that the convolution kernel conforms to the linear morphology. The change of X-axis
direction in Figure 4 is as follows:

Ki±c =

⎧⎪⎪⎨
⎪⎪⎩

(xi+c, yi+c) = (xi + c, yi +
i+c
∑
i

Δy)

(xi−c, yi−c) =

(
xi − c, yi +

i
∑

i−c
Δy

) (2)

The change in the Y-axis direction is:

Kj±c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xj+c, yj+c

)
= (xj +

j+c
∑
j

Δx, yi + c)

(
xj−c, yj−c

)
=

(
xj +

j
∑

j−c
Δx, yi − c

) (3)

Due to two-dimensional (X-axis, Y-axis) variations, our dynamic serpentine convo-
lution kernel covers a selective range of 9 × 9 receptive fields during deformation. The
dynamic serpentine convolution kernel is designed to better accommodate elongated
boundary overlapping regions based on dynamic structures to better perceive key features.

Ki-1
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Ki

Ki+c xi+c ,yi+c xi+c ,yi + yi +c
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Ki-2 Ki
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Figure 6. Schematic diagram of coordinate calculation (Left) and optional receptive field (Right).

3.4. Multi-Scale Feature Reinforcement Block (MFRB)

The role of the Multi-Scale Feature Reinforcement Block is to enhance our model’s
ability to recognize and segment various targets by integrating features from different
scales. It helps the model capture both detailed and global information about the target at
different scales. Conventional networks commonly employ basic element-wise addition
or feature concatenation operations to fuse multi-scale features. However, we believe that
such a simple feature fusion strategy may not fully capitalize on the inherent potential of
the diverse features. With the recent rise in popularity of Transformer architectures for
multi-modal visual-linguistic tasks, we argue that more advanced fusion techniques are
warranted. Drawing inspiration from potent attention mechanisms, we have integrated
attention mechanisms to optimize the fusion of multi-scale features extracted by the encoder.
In light of this, we introduce FFM (depicted in Figure 7a), which leverages the self-attention
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mechanisms of Transformers to achieve effective fusion. Our fusion module can be defined
as follows:

FH
i = Reshape(Norm(Softmax(QiKT

i )kiVi + Fi (4)

where FI
i and FD

i are concatenated and reshaped to form Fi , which is then identically
mapped to query Qi, Ki and value Vi embeddings, and Fi denotes the output of our
fusion module. In addition, we introduce a learnable coefficient ki to adaptively adjust the
attention significance, enabling a more flexible fusion of multi-scale features.

Figure 7. Multi-Scale Feature Reinforcement Block.

In conventional single-encoder architecture design, it is observed that not all multi-
channel features contribute positively to semantic prediction. Furthermore, some uncorre-
lated feature mappings may diminish the model’s performance. Consequently, we have
developed RFM (illustrated in Figure 7b), derived from SEB [27], to strengthen the fused
multi-scale features. We incorporate a residual connection to SEB to bolster the training,
and employ point-wise convolution for adaptable computation on the features after Feature
Fusion Module (FFM). The formulation of our reinforcement fusion module is as follows:

FO
i = Conv

1×1
(Fi +

(
Osigmoid(Conv

1×1
(Zi))

)
∗ Fi ) (5)

where O represents a matrix of ones and * is the Hadamard product operation. Zi stores
the average pooling results of each feature map in Fi .

3.5. Detector Selection

We adopt YOLO V8 as the detector for all experiments. YOLO V8 is a one-stage
detector and achieves impressive accuracy and speed. It fused the low-level and high-level
features at multiple scales and has a good effect on detecting small objects. Thus, it is very
suitable for detecting strawberries in traffic scenes, and can guarantee the accuracy of the
strawberry boundary box as much as possible.

3.6. Loss Function

In our StrawSnake, the smooth L1 loss function [28] is used to learn the vertex defor-
mation for training StrawSnake. It can be defined as follows

Smooth L1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(6)
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The loss function for four strawberry extreme points is defined as

Lex =
1
4

4

∑
i=1

L1(xp
i − xex

i ) (7)

where xp is the predicted extreme point. xex is the strawberry extreme point.
This loss function is used for direct regression to predict the vertex position of the

contour. Vertex regression loss helps the model accurately predict the coordinates of each
vertex, making the predicted profile as close as possible to the true profile. In addition, the
loss function of initial contour deformation is defined as

Lit =
1
N

N

∑
i=1

L1

(
xi − xgt

i

)
(8)

where N is the number of sampling points. xi is the deformed points. xgt
i is the ground

truth points at the strawberry contour.
This function ensures that the energy of the contour is minimized, so that the contour

can be accurately positioned to the target boundary, while maintaining the smoothness and
continuity of the contour. The accuracy and reliability of contour prediction are improved
by direct regression of vertex position.

4. Experiment and Result

We implemented our experiment, and trained and tested network performance on an
Inter Xeon(R)Sliver 4110 CPU@2.10GHz, 16G NVIDIA GeForce 2080Ti GPU, Ubuntu 22.04
operating system computer. The network is built based on the PyTorch framework and
adopts an adaptive gradient optimizer to minimize the loss function. The learning rate is
initialized to 0.0008 and the weight decay rate is 0.01. The number of iterations is 250. After
every 50 iterations, we test the effect of model training on the validation set and return the
index parameters.

4.1. Datasets and Contour Labels

In our experiment, we made a data set using our own collection (TongStraw_DB) and
a public dataset StrawDI_Db1 [7]. Firstly, we form our dataset (TongStraw_DB) through
network resources and on-site collection of 1048 images in the natural environment in
Haimen County (NanTong City, JiangSu Province, China) to train and validate our model.
According to the distribution of the strawberries, they can be divided into strawberries
unobstructed by branches and leaves (single unobstructed, multiple strawberries and
adjacent strawberries), shaded by branches and leaves, and overlapping strawberries.

At the same time, the data set contains other external factors that affect strawberry
recognition, such as patterned labels, plastic bags of strawberries, poor lighting conditions
(large areas of shadows, highlight areas), and strawberries with water droplets. The specific
structure of the dataset is shown in Table 1. This article selects another hundred strawberry
pictures that are different from the test set for image enhancement. By changing the
brightness of the picture and flipping the picture horizontally or vertically, the number of
training sets is increased to 300.

Table 1. Class information for the test dataset.

Single
Strawberry

Overlapped
Strawberries

Connected
Strawberries

Branch Shade
Strawberries

Multiple
Strawberries

Total

Poor light conditions 63 225 15 42 52 397
Set of plastic bags 3 6 3 0 0 12

With water droplets 36 86 7 14 14 157
Patterned label 3 6 1 0 0 10

The testset 175 556 60 117 140 1048
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To construct strawberry contour labels, we first converted the instance annotation
image Figure 8B(c) into binary annotation, and then used an edge detection algorithm
to obtain clear coordinates of the strawberry boundaries (Figure 8B(d)). Afterwards, we
converted the ground truth into the standard COCO annotation format, including file
name, image size, bounding box, pixel mask, and strawberry contour coordinates.

Figure 8. Illustration of the strawberry contour annotation process. (a) Original image. (b) Bounding
box image with the strawberry. (c) Extraction of the mask. (d) Polygonal annotation of the strawberry
contour. The green boxes represent the marked detection boxes, and the dots represent the marked
outline points.

StrawDI_Db1 is a database used for designing and evaluating methods for strawberry
instance segmentation. It provides ground-truth segmentation, which generates a mask
for each image, where strawberry pixels are identified with labels associated with each
strawberry. In this database, the contours of strawberries are accurately marked. The
StrawDI_Db1 database contains 3100 photos taken in a strawberry plantation in Spain,
captured at various times during the entire harvesting activity. These photos are stored in
JPEG format with a resolution of 4032 × 3024 pixels and 8 bits per color channel. They are
released in PNG format, resized to 1008 × 756 pixels, and divided into training, validation,
and test subsets, consisting of 2200, 100, and 800 images respectively. The main challenges
faced in implementing the strawberry instance segmentation method with this database are
the differences in brightness, perspective, size, and shape of strawberries, as well as possible
clustering and occlusion. Figure 8A shows representative images of these difficulties and
their corresponding ground-truth segmentation. Difficult images in the strawberry images
represent images that contain too many different types of strawberries and have complex
overlaps with each other and the leaves.

4.2. Evaluation Criteria
Evaluation Criteria for Object Detection and Semantic Segmentation

On the TongStraw_DB dataset, to facilitate further development of the algorithm,
we use mean intersection-over-sum (mIoU) to measure the segmentation accuracy, just as
DeepSnake does. It includes FG (foreground segmentation), BG (background segmentation)
and AVG (average segmentation). We regard the strawberry bounding as contour lines
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with widths equal to 8 pixels. The schematic diagram of mIoU evaluation is shown in
Figure 9.

Figure 9. The schematic diagram of mIoU evaluation. The green region is the segmented strawberry.
The yellow region is the ground truth. The red region is the rightly segmented strawberry.

The three sizes of strawberries (small, medium and large) were used as a measure
to evaluate the segmentation accuracy of the instance on the StrawDI_Db1 dataset. In
the region of each instance: small is area <322; medium is 322 < area < 962; and large is
area >962. The evaluation of instance segmentation uses average precision (AP). Mask IoU
is used to measure the AP metric. The standard AP adopts an IoU of 0.5 and 0.75 (APIoU=0.5,
APIoU=0.75) to distinguish whether a pixel is correctly predicted. Mean average precision
(mAP) in general, and for each of the different strawberry sizes that can be identified, is
small (mAPsmall), medium (mAPmedium) and big (mAPbig).

4.3. Results Comparison
4.3.1. Visually Intuitive Evaluation

First of all, we first compared the visual results of StrawSnake with those of Refs. [7,10]
in three scenarios on the StrawDI_Db1 dataset. In Figure 10, the first column shows the
original images of the three scenarios, while the remaining columns show the visual results
of references [7,10], and StrawSnake. Red rectangles indicate areas where the boundary
segmentation is not precise, such as at the boundary between leaves and strawberries.
Red arrows indicate missed detection or false detection positions. It is evident that in
the first scenario, the Ref. [7] missed a green immature strawberry in the top right corner
and did not clearly segment mature strawberries with leaf occlusion, as it only used
the instance segmentation model Mask-RCNN. Ref. [10], on the other hand, using the
contour segmentation model DeepSnake, provided segmentation of leaves occluding the
strawberries, although not as refined. In contrast, our StrawSnake provided more refined
segmentation results, demonstrating the effects of our DSConv and MFRB in boundary
handling and feature fusion. The second scenario is relatively simple, but both Refs. [7,10]
encountered the same issues as in the first scenario, whereas StrawSnake still produced
perfect results. The third scenario is the most complex, with multiple green immature small
strawberries, leading to a missed detection in our method as well. The other two methods
missed detecting both small strawberries. In summary, for mature red large strawberries,
all three methods could detect them fairly well, but our method showed greater refinement.
For immature green strawberries, the detection ability of the other two methods was quite
low. This demonstrates that StrawSnake has a more refined and higher-precision visual
detection capability.
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Figure 10. Visual results comparison between [7,10] and StrawSnake.

Additionally, Figure 11 shows the qualitative visual results of our StrawSnake on
two datasets. Figure 11A presents the high-quality visual results of our method in some
classic scenarios. Figure 11B includes complex situations such as occlusion of immature
small strawberries and mature red strawberries, indicating that our method, in complex sit-
uations, relies too heavily on the specificity of boundaries, lacking the ability to understand
context that led to these unsatisfactory results.

Figure 11. Qualitative results generated by our StrawSnake and unsatisfactory results in complex
situations. The dotted lines of different colors represent the detection boxes of different strawberries,
and the implementations of different colors represent the Outlines of different strawberries.

4.3.2. Quantitative Evaluation

For quantitative evaluation of our StrawSnake, we use classic contour-based meth-
ods for comparison. The experimental images are all from 200 testing images on the
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StrawDI_Db1 dataset. It should be noted that DeepSnake is not a segmentation model for
strawberries, so we do not compare it to our StrawSnake. In the specific area of strawberry
instance segmentation, different versions of Mask R-CNN were used by [7,8,25], with the
choice of backbone being the main difference between them. In Table 2 and Figure 12,
we summarize the performance comparisons of these methods with our approach. The
experiments were conducted on the StrawDI_Db1 database of strawberry crop images
provided based on [7]. Firstly, the method proposed by [25] achieved an average precision
(mAP) of 45.36 with a processing speed of 5 frames per second (fps). On the other hand, the
method proposed by [7] offered a lower precision level (mAP = 43.85) but could operate
at a higher rate of 10 fps. The method proposed by [8] achieved an average precision of
mAP = 52.61 with a processing speed of 30 fps, showing an overall improvement in per-
formance compared to the previous two. The trade-off between segmentation quality and
processing time is particularly crucial for the application of models in real-time automatic
harvesting systems. To run these networks, these systems must have high computational
capabilities to be executed in a very short time. In contrast, the algorithm applied in this
study, specifically designed for this task, effectively reduces the computation time (approx-
imately 10 milliseconds). In our StrawSnake research, the contour-based segmentation
architecture aimed to reduce processing time to achieve real-time performance. Experi-
mental results demonstrate high efficiency in terms of accuracy and speed: mAP = 59.23,
fps = 39.2. These values are significantly higher than those obtained using other strawberry
contour segmentation methods.

Table 2. Performance comparison of the models in terms of AP and FPS on the StrawDI_Db1.

Methods Perez et al. [8] Yu et al. [25] Ref. [7] StrawSnake

mAP 52.61 45.36 43.85 59.23
mAPsmall 16.96 7.35 7.54 24.26

mAPmedium 65.26 50.03 51.77 71.29
mAPbig 53.31 78.30 75.90 82.87

APIoU=0.5 69.37 76.57 74.24 81.54
APIoU=0.75 57.84 47.09 45.13 66.73

fps 30 10 5 39.2

Perez 2021.

Yu et al. 

Pérez 2020.

StrawSnake

Fps

m
A

P

Figure 12. Performance comparison of the models in terms of mean fps and mAP values in the
StrawDI_Db1 test set [7,8,25].

Furthermore, we also conducted experimental tests on the TongStraw_DB dataset.
Here, StrawSnake (DSConv) indicates the absence of using MFRB. A comparison with other
segmentation methods in Table 3 shows that our StrawSnake achieved an FG of 85.6%,
which is significantly higher than Yifan et al. [14] by 6.1%, 9.1%, and 4.4% respectively. The
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AGV reached 87.4%, reflecting improvements of 4.9%, 6.1%, and 4.4%. The BG reached
88.3%, with enhancements of 5.6%, 4.9%, and 3.8% respectively. It is evident that the
StrawSnake designed for strawberry segmentation outperforms other methods. Despite a
slight decrease in speed due to the inclusion of DSConv and MFRB, real-time performance
of 39.5 fps is still achieved.

Table 3. Comparison of results with the latest methods on TongStraw_DB.

FG BG AVG fps

Cao et al. [18] 79.5% 82.7% 82.5% 36.8
Wang et al. [19] 76.5% 80.9% 81.3% 22.2
Yifan et al. [14] 80.5% 84.5% 83.0% 18.6

DSsnake [6] 81.2% 80.5% 81.6% 33
StrawSnake
(DSConv) 83.1% 86.9% 85.7% 41.1

StrawSnake+
(MFRB) 80.2% 83.6% 82.4% 40.7

StrawSnake 85.6% 88.3% 87.4% 39.5

4.3.3. Ablation Studies

As shown in Table 4, we conducted a total of 8 groups of ablation experiments,
analyzing and comparing in detail the impact of each module on our method, as shown
in Table 1. The detectors used were based on the CenterNet and YOLO V8 architectures.
For example, the second group of experiments indicates that when DSConv and MFRB
are not used, the mAP = 39.71, APIoU=0.5 = 72.52, APIoU=0.75 = 45.82. In summary, through
comparisons of experiments in the first group, the third group, and the other three groups,
it was found that DSConv increased the mAP by an average of 6.21%, APIoU=0.5 by 5.53%,
and APIoU=0.75 by 4.81%, with an average decrease in operating speed of 5fps. Similarly,
through comparisons of experiments in the first group, the fourth group, and the other
three groups, it was found that MFRB increased the mAP by an average of 2.52%, APIoU=0.5

by 2.77%, and APIoU=0.75 by 2.35%, with an average decrease in operating speed of 5.8fps.

Table 4. Ablation experiment.

CenterNet YOLO V8 DSConv MFRB mAP APIoU=0.5 APIoU=0.75 fps

1
√

- - - 36.56 70.29 44.70 41.2
2 -

√
- - 39.71 72.52 45.82 42.5

3
√

-
√

- 42.88 75.63 49.95 36.6
4

√
- -

√
39.42 72.60 47.57 35.8

5
√

-
√ √

45.72 78.59 52.78 33.9
6 -

√ √
- 54.81 78.12 63.37 40.2

7 -
√

-
√

51.36 75.89 61.25 40.8
8 -

√ √ √
59.23 81.54 66.73 39.2

5. Conclusions

This paper presents a strawberry fruit contour segmentation method called StrawSnake,
characterized by contour representation. It overcomes the issues of poor generality and
robustness in traditional computer vision algorithms, showing high precision and real-time
capabilities. In strawberry fruit detection, we propose using DSConv to learn boundary
information and improve the differentiation between strawberries and leaves. By utilizing
MFRB for feature fusion learning, we enhance the accuracy of strawberry feature extraction.
We established the TongStraw_DB dataset for strawberry contour and conducted analysis
using StrawDI_Db1. Compared with state-of-the-art methods, our approach demonstrates
significant advantages in small object detection and boundary extraction based on visually
intuitive results. However, challenges remain in detecting multiple overlapping straw-
berries and immature green strawberries, leading to some false detections. Quantitative
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evaluation on StrawDI_Db1 shows our method achieves mAP = 59.23 and fps = 39.2. On
TongStraw_DB, the evaluation results in AVG = 87.4 and fps = 39.5. This validates that
our method maintains a high advantage in both accuracy and speed. Finally, through
ablation experiments, we demonstrate the performance improvement brought by DSConv
and MFRB.
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Abstract: Due to the absence of tailored designs that address challenges such as variations in scale,
disparities in illumination, and instances of occlusion, the implementation of current person re-
identification techniques remains challenging in practical applications. An Efficient Multi-Branch
Attention Network over OSNet (EMANet) is proposed. The structure is composed of three parts,
the global branch, relational branch, and global contrastive pooling branch, and corresponding
features are obtained from different branches. With the attention mechanism, which focuses on
important features, DAS attention evaluates the significance of learned features, awarding higher
ratings to those that are deemed crucial and lower ratings to those that are considered distracting.
This approach leads to an enhancement in identification accuracy by emphasizing important features
while discounting the influence of distracting ones. Identity loss and adaptive sparse pairwise loss
are used to efficiently facilitate the information interaction. In experiments on the Market-1501
mainstream dataset, EMANet exhibited high identification accuracies of 96.1% and 89.8% for Rank-1
and mAP, respectively. The results indicate the superiority and effectiveness of the proposed model.

Keywords: person re-identification; multi-feature fusion; attention mechanism; multi-branch net-
work

1. Introduction

With the continuous improvement of people’s awareness of public safety, in order to
maintain social security and prevent criminal behavior, intelligent monitoring technology
has attracted wide attention from society. Person re-identification (Re-ID) is a fundamental
task in computer vision. It aims to retrieve the same person from different cameras in a
surveillance network. It generally involves feature extraction of the input image, distance
metrics of the extracted features, and similarity ranking based on the distance value. When
the distance between a query image and images in a gallery is relatively short, it signifies a
high degree of similarity, significantly enhancing the likelihood that these images belong to
the same individual. Therefore, extracting discriminative pedestrian image features plays a
central role in person re-identification [1,2]. However, due to a series of problems such as
different camera viewpoints, environmental noise interference, light changes, and changes
in pedestrian posture, the enhancement of retrieval accuracy poses significant challenges.

Traditional person re-identification methods mainly focus on two aspects: Firstly,
traditional person re-identification relies on hand-designed feature extraction. For example,
the core idea of the HOG (histogram of oriented gradient) [3] method is to calculate and
count the histogram of oriented gradient in the local area of the image to form the feature,
which can quickly describe the local gradient feature of the object. The core idea of the SIFT
(scale invariant feature transform) [4] method is to find key points in different scale spaces
and calculate the direction of key points, so as to realize the scale invariant description of
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image features. The LOMO (local maximal occurrence) [5] method can effectively describe
the appearance information of pedestrians by calculating the color histogram of the image
and combining the local maximal occurrence strategy. Secondly, traditional person re-
identification relies on the similarity measure. For example, XQDA (cross-view quadratic
discriminant analysis) [6] is used to learn the best similarity measure. Traditional methods
have many limitations in extracting image information based on low-level visual features
and cannot extract discriminative features in the face of complex and variable scenes of
pedestrian images [7].

Although person re-identification has been studied in the academic community for
many years, since 2016, with the successful application of deep learning in many fields,
researchers have begun to try to apply deep learning to person re-identification [8]. With
the advancement of deep learning, the early focus of Re-ID research has shifted towards
developing robust feature representations to discern individual identities, while concur-
rently exploring effective distance metric techniques to establish image similarities. The
feature representation of pedestrians can be divided into global features and local fea-
tures. Global features refer to the feature extraction of the overall or global information
of pedestrian images. This feature extraction process is not limited to a local region of the
pedestrian but takes into account the whole range of the pedestrian. For the input image
pair, Wang et al. [9] used two independent convolutional neural networks to extract the
features of each image, respectively, combining the efficiency of single image feature extrac-
tion and the advantages of the Cross-image Information Extraction (CIR) method. In order
to make the network learn more discriminative features, some studies add the attention
mechanism. Song et al. [10] used the attention mechanism to separate the characters from
the background in pedestrian images, and only extracted the pedestrian features in the
image to avoid the noise introduced by the background. Although global feature learning
has the advantage of being relatively simple, it does not always capture the specific regions
of pedestrian images that are more discriminative. This means that the global features,
although able to capture the overall information, may ignore those local details in the image
that are crucial for distinguishing different pedestrians. Therefore, some s researchers have
used local feature learning for person re-identification.

Local feature learning improves the model’s robustness to locally misaligned scenes
in pedestrian images by focusing on local regions of the image and learning the aggregated
features of these regions. As a common local feature extraction method, image segmentation
has been widely used in pedestrian recognition and other fields. Due to the particularity
of person body structure, researchers usually divide images into several parts, such as
head, upper body, legs, and feet, following the natural structure of the human body, in
order to better capture and extract local features related to pedestrian identity. For example,
Somers et al. [11] designed a body part attention module that uses external human semantic
information to generate relevant local features. Sun et al. [12] proposed the PCB method
to divide the pedestrian feature map into six equal blocks to learn local features and used
the concatenated local features as feature descriptors. They also proposed the RPP method
to adaptively partition image blocks according to the content similarity of each block.
However, there are misaligned pedestrian images, so Zhang et al. designed a dynamic
alignment network, AlignedReID [13], which has the ability to automatically and accurately
align image blocks from top to bottom without relying on additional information. This
automatic alignment mechanism enhances the robustness and performance of the person
re-identification network. Pang et al. [14] designed the Generating Local Part (GLP) module
to divide the feature map and generate features of occluded parts.

Recently, transformers have been widely used in nearly every computer vision scene.
Dosovitskiy et al. [15] introduced the Transformer model into the field of image recognition
for the first time and proposed the Vision Transformer (ViT) model. The Vision Transformer
model formulates images as sequential data, subsequently inputting them into the Trans-
former model to accomplish various classification tasks. He et al. [16] proposed a Re-ID
method, which integrates side information embeddings and a jigsaw patches module with
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a transformer to obtain robust features in a pure Transformer framework for improving
performance. Based on the ViT model, Heo et al. [17] proposed the Pooling-based Vision
Transformer (PiT) model. The PiT combines pooling layers, which can reduce the large size
of space in the ViT structure. The results show that after introducing the pooling layer, the
spatial interaction area of Transformer becomes wider and the interaction rate is higher.
Li et al. [18] utilized the disentangling capability of the Transformer model to propose
the Part-aware Transformer, which is capable of decoupling robust features from distinct
human body parts, making it suitable for the task of occluded person re-identification.
Transformer-based methods often exhibit superior performance on extensive datasets, yet
they typically necessitate greater computational resources and an abundant amount of
training samples.

Aiming at the problems of environmental noise interference and the failure to take
into account feature extraction at different scales and granularities in current person re-
identification methods, inspired by the Relational network [2], this paper proposes an
Efficient Multi-Branch Attention Network over OSNet [19]. Additionally, based on the
OSNet backbone network, the attention mechanism module is introduced to refine the
semantic expression of features, effectively improving the performance of the model. The
correlation between features is increased by the combination of adjacent features. Finally,
the multi-loss joint function is used to strengthen the supervised training of the model. The
specific work of model construction and experimental deployment will be carried out in
the following papers. Experimental results on widely used datasets demonstrate that the
method proposed in this paper achieves impressive performance and robustness in Re-ID
tasks. The primary contributions of this paper are as follows:

(1) This paper proposes an Efficient Multi-Branch Attention Network (EMANet), which
comprises three branches: the global branch, relational branch, and global contrastive
pooling branch.

(2) We introduce the DAS attention module, which focuses and increases attention to
salient image regions, seamlessly integrating it into the backbone network to increase
the accuracy of the person re-identification network.

(3) EMANet outperforms existing methods, achieving competitive results in popular
benchmarks. Through rigorous ablation studies and visualization, we systematically
validate the significance and contribution of each module and branch.

2. Methods

This section first introduces the overall network architecture and attention mecha-
nism proposed in this paper, then introduces the global branch, relational branch, global
contrastive pooling branch, and finally the loss functions.

2.1. Network Architecture

This paper proposes an Efficient Multi-Branch Attention Network over OSNet (EMANet).
The overall network structure is shown in Figure 1. Initially, pedestrian images are prepro-
cessed and resized to a uniform size of 256 × 128, which are then fed into the backbone
network for training. Extensive experiments [20–22] have demonstrated that attention
mechanisms significantly enhance the network’s feature extraction capabilities. Conse-
quently, DAS (Deformable Attention to Capture Salient Information) [23] is incorporated
after the convolution of the third and fourth layers of OSNet. Compared to previous ap-
proaches for achieving attention in CNNs, DAS offers dense attention to the input features
and examines the feature context in a holistic manner. Subsequently, following the fifth
convolutional layer, the deep semantic features are routed into three separate branches: the
global branch, relational branch, and global contrastive pooling branch. The multi-feature
vectors F1, F2, and F3 obtained from the three branches are fused into the feature vector F in
the channel dimension. Finally, vector F is used as the basis for classification calculation.
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Figure 1. The overall architecture of EMANet. The network comprises three branches: the global
branch, relational branch, and global contrastive pooling branch. The blue part represents the DAS.

2.2. Attention Mechanism Module

In order to improve the ability of the network to capture prominent features and
make it focus more on the characteristics of pedestrians, an attention mechanism module
is integrated into the backbone network. DAS attention combines Depthwise Separable
Convolution (DSC) and Deformable Convolution (DC) to focus and increase attention on
significant regions and compute the dense attention (pixel-wise) weights. It enhances the
ability of convolutional networks to extract features in a computationally efficient way to
provide focused attention on relevant content. The module is shown in Figure 2.

 

Figure 2. The leftmost heatmap depicts the saliency map generated by the OSNet without the
integration of attention mechanism. In contrast, the rightmost heatmap showcases the same layer’s
activation pattern after the application of the DAS.

The number of channels of the feature is first reduced using the Depthwise Separable
Convolution operation, which transforms the number of channels from c to α × c, where
0 < α < 1. The purpose of setting the size reduction hyperparameter α is to balance
computational efficiency with accuracy. After reducing the number of channels, Instance
Normalization is applied, followed by GELU nonlinear activation. These operations
enhance the representativity of the features and contribute to the effectiveness of the
attention mechanism. Equation (1) shows the compression process where X is the input
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feature and W1 represents the Depthwise Separable Convolution. Default α used in our
implementation for this paper is 0.2.

Xc = GELU(InstanceNorm(XW1)) (1)

The input features are compressed by Equation (1) and then passed through a De-
formable Convolution. Deformable Convolution adds 2D displacement to the mesh sam-
pling positions of standard convolution rules, so that the sampling mesh can be freely
deformed. Equation (2) shows the operation of Deformable Convolution, where k is the
size of the kernel and its weights are wk applied on the fixed reference points of pre f the
same way as regular kernels in CNNs. Δp is a trainable floating point parameter that helps
the kernel to find the most relevant features. wk is also trainable parameter between 0 and 1.

de f orm(p) =
K

∑
k=1

wk·wp·X
(

pre f ,k + Δpk

)
(2)

Following the Deformable Convolution, we apply Layer Normalization, and then a
Sigmoid activation function σ is used, as shown in Equation (3). The Deformable Convolu-
tion operation changes the number of feature channels from α × c to the original input c.

A = σ(LayerNorm(de f orm(Xc))) (3)

The attention tensor A obtained after Equation (3) represents the weight corresponding
to each element of the original feature map. Each element in the tensor has a value between
0 and 1. These values determine which parts of the original feature map we emphasize or
filter out. Finally, to incorporate the DAS mechanism into the CNN model, we perform
pointwise multiplication between the original input tensor and the attention tensor obtained
in the previous step. The symbol ‘�’ denotes the pointwise multiplication operation.

Xout = X � A (4)

The output of the multiplication in Equation (4) is directly utilized as input data for
the subsequent layer of the CNN model, enabling a seamless integration with the attention
mechanism without any adjustments to the backbone architecture.

2.3. Global Branch

The purpose of the global branch is to capture the overall features of the person
image. Contrary to the majority of research that adopts ResNet [24] as the backbone
network, our method selects OSNet as the backbone, with its architecture depicted in
Figure 3. OSNet exhibits two notable advantages over ResNet. Firstly, it achieves light
model weight by leveraging depthwise separable convolutions to significantly reduce the
number of parameters. Secondly, it enhances the receptive field by extracting features
from multiple scales, allowing for broader contextual understanding. OSNet introduces a
Unified Aggregation Gate mechanism, which dynamically integrates multi-scale features
based on the input. This mechanism enables the network to adaptively modulate the
weights of features at different scales, thereby facilitating a more efficient utilization of
multi-scale information and yielding discriminative global features. Consequently, the
output of OSNet, without further specialized processing, serves as the global branch to
obtain a 512 × 1 × 1 feature vector F1.
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Figure 3. The architecture of OSNet. AG: Aggregation Gate.

2.4. One-vs.-Rest Relational Branch

Local features usually include the information from various regions of the feature map,
yet they often represent only a fraction of the overall image and neglect the relationship
between different body parts. To address this, the relational branch associates the local
information with the corresponding remaining parts. As an illustration, Figure 4 depicts an
example of extracting the local relational feature q1.

Figure 4. One-vs.-rest relational module.

Concretely, we denote by pi (i = 1, 2, · · · , 6) each part-level feature of size C × 1 × 1.
Take a local feature pi as an example, and apply average pooling to the rest of the local
specific to obtain ri. The calculation formula is shown in Equation (5).

ri =
1
5 ∑

j �=i
pi, i, j = 1, 2, · · · , 6 (5)

We then add a 1 × 1 convolutional layer for each pi and ri, respectively, to obtain
feature maps pi and ri of size c × 1 × 1. The two features pi and ri are concatenated and
fed into a sub-network that performs dimensionality reduction from 2c to c, yielding
the relational information between pi and ri. The feature qi contains information of the
original one pi itself and other body parts. Finally, skip connections are used to transfer the
relational information of pi and ri to pi. The calculation formula is shown in Equation (6).

qi = pi + Rp(T(pi, ri)), (i = 1, . . . 6) (6)
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where T represents the concatenation of pi and ri, forming a vector of size 2c. Rp represents
a sub-network consisting of a 1 × 1 convolution, batch normalization, and ReLU layers.
The channel dimension is reduced from 2c to c via the sub-network operation.

2.5. Global Contrastive Pooling Branch

The global contrastive pooling branch can effectively mitigate the interference from
background information, thereby enabling the extracted global features to be more concen-
trated on the pedestrian area. The GCP module is shown in Figure 5.

Figure 5. Global contrastive pooling module.

Initially, average and max pooling are performed on all part-level features. We denote
the resulting feature maps obtained through average pooling and max pooling as pavg and
pmax, respectively. Subsequently, we compute a contrastive feature pcont by subtracting pmax
from pavg, representing the discrepancy between them. It aggregates the most salient and
discriminatory information from body parts except the one for pmax. We then add a 1 × 1
convolutional layer to reduce the number of channels of pcont and pmax from C to c, denoted
by pcont and pmax, respectively. The two features pcont and pmax are concatenated and fed
into a sub-network that performs dimensionality reduction from 2c to c, finally transferring
the complementary information of the contrastive feature pcont to pmax. The number of
channels of the output contrastive feature is consistent with pmax. The calculation formula
is shown in Equation (7).

q0 = pmax + Rg(T(pmax, pcont)) (7)

where T represents the concatenation of pi and ri, forming a vector of size 2c. Rp represents
a sub-network consisting of a 1 × 1 convolution, batch normalization, and ReLU layers.
The channel dimension is reduced from 2c to c via the sub-network operation. Finally, the
obtained feature q0 is used as the output of the contrastive pooling branch, denoted as F3.

2.6. Loss Functions

In this paper, we introduce two loss functions: the ID Loss and the adaptive sparse
pairwise loss [25]. The network proposed in this paper adopts the above two loss functions
to jointly supervise learning.

Label smooth cross entropy loss function is an improvement of cross entropy loss,
which is used to optimize the pedestrian re-identification classification task. The loss
function is calculated as follows:

Define the ID loss as follows:

Lid = − 1
N

N

∑
i=1

qilog(pi) (8)
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where N represents the number of samples, pi denotes the predicted probability for the ith
identity, and qi is the smooth label of identity i, which serves to prevent overfitting, which
is defined as follows:

qi =

{
1 − ε N−1

N , i = y
ε
N , i �= y

(9)

where y represents the person label and ε represents the error rate, which is used to reduce
the confidence of the model on the labels of the training set and improve the generalization
ability and is set to 0.1 in this paper.

Triplet Loss [26] and Circle Loss [27], which are widely used in person re-identification
tasks, are based on a dense sampling mechanism, where each instance serves as an anchor
to sample its positive and negative samples to form triplets. However, this mechanism
inevitably introduces some positive pairs with minimal visual similarity, affecting the
training effect. To address this, we propose using adaptive sparse pairwise loss, which
selects only one hardest positive sample pair and one hardest negative sample pair for
each class. The negative sample pair is the hardest negative sample pair between the class
and all other classes, and the positive sample pair is the hardest positive sample pair in
all sample sets. Adaptive sparse pairwise loss uses an adaptive positive mining strategy,
which can dynamically adapt to different intra-class changes. The loss function is calculated
as follows:

Lsp =
1
K

K

∑
i

log

(
1 + e

s−i −(αiS+i,h+(1−αi)S
+
i,lh)

τ

)
(10)

where K represents the total number of pedestrian categories in per mini-batch, τ is the
temperature parameter, and S−

i is denoted as the negative sample pair in the ith class.
S+

i,h is denoted as a positive sample pair in the ith class. S+
i,lh is denoted as the least-hard

positive. αi is an adaptive weight to balance the hardest and the least-hard positive pairs
for each class.

In order to improve the robustness of the network, ID Loss and adaptive sparse
pairwise loss are combined and added to different stages of model training. The total loss
function is the sum of the loss functions of each branch. The calculation formula is given in
Equation (11), where λ is the balance parameter.

Lsum = Lid + λLsp (11)

3. Experiments

Section 3.1 introduces the datasets and the evaluation protocols. Section 3.2 gives some
implementation details. Section 3.3 compares our method to others. Section 3.4 provides
ablation experiments to verify the effectiveness of the proposed method. Section 3.5
conducts numerous rigorous experiments to elucidate the impact of various parameters.

3.1. Datasets and Evaluation Protocols

In our experiments, we use three well-known image-based datasets: CUHK03 [28],
DukeMTMC-reID [29], and Market-1501 [30].

CUHK03: CUHK03 is a dataset consisting of 1467 identities for 13,164 images. It is
divided into two parts, CUHK-03 (labeled) with manually labeled pedestrian bounding
boxes and CUHK-03 (detected) with DPM detected pedestrian bounding boxes.

DukeMTMC-reID: DukeMTMC-reID contains manually annotated boxes generated by
eight cameras. It is composed by 36,411 images of 1404 identities. There are 16,522 images
of 702 identities in the training set. The query and testing sets have 2228 and 17,661 images
of 702 identities, respectively. For each identity in each camera, one image was selected as
the query set in the test set, while the rest of the images were reserved as the image library.

Market-1501: Market-1501 has 32,668 images of 1501 person identities automati-
cally detected from six disjoint cameras. The training set consists of 12,936 images of
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751 identities. The query set has 3368 probe images of 750 identities and the gallery set has
19,732 images with 750 identities.

In the task of person re-identification, two commonly utilized metrics, namely, Cumu-
lative Matching Characteristic (CMC) and mean Average Precision (mAP), are employed to
assess the performance. The traditional accuracy indicator, commonly known as Rank-1
accuracy, serves as a metric to quantify the congruency between the identity predicted by
the model with the highest probability and the corresponding ground truth. Conversely,
Rank-5 accuracy offers an alternative perspective, assessing the accuracy by considering
the identities predicted by the model with the five highest probabilities.

3.2. Implementation Details

Our model was implemented using the PyTorch 1.12.1. We conducted experiments
with an NVIDIA GTX 3090 GPU, utilizing OSNet as the backbone network and employing
the weights pre-trained on ImageNet for fine-tuning. All images were resized to 256 × 128.
The data augmentation included random flip and random erasing [31] with a probability
of 50%. There were 64 images per mini-batch and four images per person ID. We employed
the AMSGrad [32], with a momentum of 0.9 and an initial learning rate of 0.0015. The
network was trained for 150 epochs. Additionally, we implemented a learning rate decay
strategy, where the learning rate was reduced by a factor of 0.1 every 60 epochs.

3.3. Contrast Test

In order to verify the superiority of the person re-identification algorithm proposed in
this paper, the EMANet is compared with some existing advanced person re-identification
methods. The selected datasets for the experiment include CUHK03, DukeMTMC-reID,
and Market-1501, and the experimental results do not adopt Re-ranking method. The
performance comparison is shown in Table 1.

Table 1. Performance (%) comparison of different algorithm on CUHK03, DukeMTMC-reID, Market-
1501 datasets. The best results of all experiments are shown in bold. The symbol ‘-’ denotes that the
relevant paper does not provide data.

Metheds
CUHK03-Labeled CUHK03-Detected DukeMTMC-reID Market-1501

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

OSNet - - 72.3 67.8 88.6 73.5 94.8 84.8

SVDNet [33] 40.9 37.8 41.5 37.3 76.7 56.8 82.3 62.1

Pyramid [34] 78.9 76.9 78.9 74.4 89.0 79.0 96.7 88.2

AlignedReID - - 61.5 59.6 69.7 82.1 91.8 79.1

DGNet [35] - - - - 86.6 74.8 94.8 86.0

BDB [36] 79.4 76.7 76.4 73.5 89.0 76.0 95.3 86.7

CASN [37] 73.7 68.0 71.5 64.4 87.7 73.7 94.4 82.8

FED [21] - - - - 89.4 78.0 95.0 86.3

SCS+ [38] 80.3 77.2 77.1 74.3 90.3 80.9 96.0 89.4

With Res2Net50 [39] - - - - 88.1 77.6 95.0 87.1

UV-ReID-ABLM [40] - - - - 81.4 61.8 89.9 75.0

ICAM [41] - - - - 85.6 71.6 93.3 82.3

PSF-C-Net [42] - - - - 87.1 76.9 95.2 87.3

EMANet 88.1 89.4 83.6 85.4 90.6 81.0 96.1 89.8

From Table 1, it is observed that EMANet outperforms most mainstream methods,
achieving the result in both Rank-1 of 96.1% and the mAP of 89.8% on Market-1501, which
exhibits excellent performance. EMANet achieves the best results in both Rank-1 of 90.6%
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and the mAP of 81.0% on DukeMTMC-reID, surpassing the second-best method by 0.3%
and 0.1%, respectively. Similarly, on CUHK03-Labeled, our method achieves the best
Rank-1 of 88.1% and the mAP of 89.4%, surpassing the second best method by 8.7% and
12.2%. Specifically, compared to the benchmark network OSNet, EMANet demonstrates
improvements of 11.3% and 17.6% in Rank-1 and mAP on the CUHK03-Detected. In
comparison to SVDNet, which based on global feature learning, EMANet improves Rank-1
and mAP by 13.8% and 27.7% on Market-1501, respectively. In comparison to Pyramid for
multi-scale feature extraction, EMANet improves Rank-1 and mAP on DukeMTMC-reID by
1.6% and 2.0%, respectively. This suggests that EMANet can obtain discriminative feature
representation through multi-scale feature extraction.

3.4. Ablation Experiment

In order to verify the effectiveness of the different branches and DAS attention mecha-
nism, ablation experiments were performed using the DukeMTMC-reID dataset. In the
experiment, Baseline is the network proposed in the literature [19], where Attention repre-
sents the DAS, GCP represents the global contrastive pooling branch, and Re represents the
relational branch. The results of ablation experiments are shown in Table 2. After adding
the GCP and Re branch, the mAP and Rank-1 are improved by 0.7% and 3.9%, respectively.
Utilizing the combined application of the attention mechanism, GCP, and Re branch, we
observe a significant enhancement. Specifically, the Rank-1 accuracy has increased by 2.0%,
while mAP has improved by 7.5%. The experimental results show that adding branches to
a certain extent can improve the performance of the network, and multiple branches play a
complementary role in the network structure.

Table 2. Results of each module added on the DukeMTMC-reID dataset. The best results are shown
in bold.

Method Rank-1 mAP

BaseLine 88.6 73.5
BaseLine + GCP 89.0 74.2
BaseLine + Re 89.6 75.5

BaseLine + GCP + Re 89.3 77.4
BaseLine + Attention + GCP + Re 90.6 81.0

In order to further verify that our method has a strong ability to extract pedestrian
features, a heatmap based on different branches is displayed in Figure 6. Specifically,
Figure 6a represents the original pedestrian image, Figure 6b depicts the heatmap activation
of the baseline network, Figure 6c shows the heatmap after the addition of the attention
mechanism, and Figure 6d displays the heatmap corresponding to the inclusion of the
relational module. Figure 6e presents the heatmap resulting from the addition of the GCP
module. The red areas represent the focal regions attended to by the models, whereas the
blue areas denote less significant regions. As seen in Figure 6, after integrating the attention
mechanism into the benchmark network, the pedestrian area extracted by the network
becomes larger and is concentrated on distinguishable parts. The heatmap activation
demonstrates that the relational module enables each horizontal local area to incorporate
information from the remaining horizontal local areas. Subsequently, with the addition
of the GCP module, the feature map of the whole body can be extracted. The ablation
experiments demonstrate the effectiveness of the multi-branch module, and the interplay
between the various branches enhances the accuracy of the person re-identification model.

In our experimental analysis presented in Table 3, we conduct experiments to analyze
the influences of DAS in different layers. As shown in Table 3, when selecting a single
layer for DAS integration, Layers 3 and 4 exhibit promising performance gains. When
inserting DAS in multiple layers, Layer 34 obtains the best performance. In the context
of our experimental results, the performance of Layer 234 exhibits a marginal decrease
compared to that of Layer 34. This slight decrement in performance may be attributed to the
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fact that the feature representations at the second layer are not yet sufficiently mature and
stable, thereby limiting the optimal functioning of the attention mechanism. Conversely,
by incorporating the DAS at Layer 34, the model is able to leverage the more stable and
meaningful features extracted from preceding layers, enabling the attention mechanism to
focus on key information more effectively.

     
(a) (b) (c) (d) (e) 

Figure 6. (a) The original pedestrian image; (b) The heatmap activation of the baseline network;
(c) The heatmap activation after the addition of the attention mechanism; (d) The heatmap activation
of the relational module; (e) The heatmap activation of the GCP module.

Table 3. The performances of different layers to place DAS on the Market1501 dataset. The best
results are shown in bold.

Method mAP Rank-1 Rank-5 Rank-10

Layer 1 87.8 94.3 97.9 89.8
Layer 2 89.1 94.8 98.1 89.7
Layer 3 88.6 95.2 98.5 89.6
Layer 4 89.7 95.1 98.1 99.3

Layer 12 88.9 95.6 97.8 98.1
Layer 23 89.5 95.9 98.2 98.7
Layer 34 89.8 96.1 98.5 99.3

Layer 234 89.3 95.6 98.2 99.0

3.5. Parameters Analysis

In this section, we conduct a series of rigorous experiments on the Market1501 dataset
to elucidate the impact of various parameters on the performance of our method.

Parameter analysis of λ: The parameter λ represents the weight of the ASP loss in
Equation (11). In our experiments, the λ parameter was varied from 0.001 to 0.5. The
results of these experiments are presented in Figure 7a. It can be observed that the overall
performance of the network is not overly sensitive to the variation of the λ parameter.
Specifically, when the value of λ is set to 0.2, the network achieves the best performance.

Parameter analysis of τ: The Parameter τ is the temperature parameter in the ASP loss.
The parameter τ was varied from 0.01 to 0.08 with an interval of 0.01. The experimental
results are shown in the Figure 7b. It is particularly important to note that when temperature
τ is 0.04, we method achieves the best Rank-1.

Numbers of grids: In the One-vs.-rest relational branch and global contrastive pooling
branch, the feature maps are segmented horizontally into different amounts, such as qP2

and qP4 , and represent splitting the feature map into two and four horizontal regions,
respectively. It is noteworthy that the variables qP2 , qP4 , and qP6 embody distinct local rela-
tional characteristics, thereby exhibiting diverse global contrastive features. We conducted
experiments on the DukeMTMC-reID and Market1501 datasets to find the best number
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of grids, and the results are shown in Table 4. We can see that the model shows the best
performance when the number of grids is 6.

  
(a) (b) 

Figure 7. (a) Influence of λ on mAP and Rank-1 on Market1501; (b) influence of τ on mAP and Rank-1
on Market1501.

Table 4. Comparison between qP2 , qP4 , and qP6 .

Amount
DukeMTMC-reID Market-1501

Ranl-1 mAP Ranl-1 mAP

qP2 88.7 79.3 94.1 88.3
qP4 88.6 80.4 95.2 88.4
qP6 90.6 81.0 96.1 89.8

After conducting a thorough parameter study, it was observed that the highest mAP
is attained at a parameter λ setting of 0.2, a parameter τ of 0.2, and a horizontal division of
6 blocks. Based on these findings, we adopted the same optimal hyperparameters for the
entirety of the experimental procedures conducted in this study.

3.6. Inference Time Analysis

In order to evaluate the impact of three branches on feature extraction time, we con-
ducted an attention-based experiment. The inference time after adding different branches
is listed in Table 5. Therein, feature extraction time refers to the time required for each 64
images processed in the inference process.

Table 5. Inference times of three branches for the DukeMTMC-reID and Market-1501 datasets.

Title 1 DukeMTMC-reID Market-1501

BaseLine + Attention 0.2134 s 0.1947 s
BaseLine + Attention + GCP 0.2253 s 0.2183 s
BaseLine + Attention + Re 0.2545 s 0.2337 s

BaseLine + Attention + GCP + Re 0.2845 s 0.2786 s

It can be observed from the table that the inference time of the network increases with
increasing branches. The increase in time means that the network takes extra time to extract
features of different expressivity.

4. Results Visualization

To demonstrate the effectiveness of the proposed algorithm in a more intuitive manner,
Figure 8 shows the trends of Rank-1, Rank-5, Rank-10, and mAP during a single training
process of the proposed network. As can be observed from Figure 8, all metrics gradually
increase with the increasing number of epochs. Specifically, during the first 40 epochs,
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the upward trend is relatively significant, and by the 120th epoch, the various evaluation
metrics have gradually exhibited a stable pattern. Therefore, in this study, a total of
150 epochs was chosen for in-depth analysis.

 
(a) (b) 

Figure 8. (a) mAP and Rank-n change with epochs on Market1501; (b) mAP and Rank-n change with
epochs on DukeMTMC-reID.

We compare the ranking results on the Market-1501 dataset with the results from other
methods in Figures 9–11. Query refers to the query image, and the images marked 1 to 10
are the top ten results that are most relevant to the query image retrieved from the gallery
library. The positive sample images, which are unlabeled, represent entities of the same
pedestrian as the query. The negative sample images, annotated with red bounding boxes,
represent entities of different pedestrians from the query. As can be seen from Figure 8,
there are still negative samples in the retrieved pedestrian images, but most of them are
correct pedestrian images in the retrieved results.

 

Figure 9. PCB visualized experimental results on Market-1501.
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Figure 10. AlignedReID visualized experimental results on Market-1501.

 

Figure 11. EMANet visualized experimental results on Market-1501.

5. Conclusions

In this paper, we propose an Efficient Multi-Branch Attention Network over OS-
Net (EMANet) for extracting discriminative pedestrian features. The EMANet primarily
consists of three branches: a global branch, a relational branch, and a global contrastive
pooling branch. The global branch extracts the overall information of pedestrians, while
the relational branch captures the relationship between local features. The global con-
trastive pooling branch effectively removes interference from the background, ensuring
that the extracted global features are more focused on the pedestrian area. By incorporating
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attention mechanisms into the OSNet backbone network, the model can automatically
select and weight the importance of different features, enabling it to focus more on salient
regions and features. The network is trained jointly using identity loss and adaptive sparse
pairwise loss. Finally, the model is verified on three datasets. The experimental results
demonstrate that the proposed method is effective for person re-identification tasks and
worthy of reference.
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Abstract: Facial expression recognition (FER) utilizes artificial intelligence for the detection and
analysis of human faces, with significant applications across various scenarios. Our objective is to
deploy the facial emotion recognition network on mobile devices and extend its application to diverse
areas, including classroom effect monitoring, human–computer interaction, specialized training for
athletes (such as in figure skating and rhythmic gymnastics), and actor emotion training. Recent
studies have employed advanced deep learning models to address this task, though these models
often encounter challenges like subpar performance and an excessive number of parameters that do
not align with the requirements of FER for embedded devices. To tackle this issue, we have devised
a lightweight network structure named RS-Xception, which is straightforward yet highly effective.
Drawing on the strengths of ResNet and SENet, this network integrates elements from the Xception
architecture. Our models have been trained on FER2013 datasets and demonstrate superior efficiency
compared to conventional network models. Furthermore, we have assessed the model’s performance
on the CK+, FER2013, and Bigfer2013 datasets, achieving accuracy rates of 97.13%, 69.02%, and
72.06%, respectively. Evaluation on the complex RAF-DB dataset yielded an accuracy rate of 82.98%.
The incorporation of transfer learning notably enhanced the model’s accuracy, with a performance of
75.38% on the Bigfer2013 dataset, underscoring its significance in our research. In conclusion, our
proposed model proves to be a viable solution for precise sentiment detection and estimation. In the
future, our lightweight model may be deployed on embedded devices for research purposes.

Keywords: FER; lightweight network; CNN; squeeze and excitation attention

1. Introduction

Facial expression recognition is a multifaceted cognitive process that requires the
integration of visual and auditory stimuli, prior knowledge, and social context. It plays a
crucial role in social interactions, emotional understanding, and empathy. This technology
is extensively utilized in human–computer interaction, virtual assistants, and the diagnosis
and treatment of mental health conditions. Therefore, the development of precise and
effective facial emotion recognition models is essential. These models not only enhance the
functionality of various real-world applications but also have significant implications across
multiple research domains. Currently, numerous researchers have conducted extensive
studies on facial emotion recognition, proposing a variety of models. While existing re-
search has yielded significant improvements in overall recognition accuracy, the number of
parameters and computational demands of these models are often too large for deployment
on mobile devices. We intend to propose an advanced model that integrates the current
state-of-the-art attention mechanism to enhance overall recognition performance while
maintaining a minimal number of parameters, thereby facilitating its application to future
mobile devices.
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Previous research in the field of facial expression recognition (FER) has primarily
focused on extracting artificial or superficial facial characteristics [1–4]. Shallow networks
have been shown to be highly effective in various tasks, with Nassif A B et al. [5] enhancing
facial expression classification accuracy through the use of skip connections. Attention
mechanisms have also been successfully integrated into these networks, emphasizing
emotionally salient regions for improved recognition [6]. Some studies [7–14] have aimed
to enhance detection accuracy and effectiveness by employing CNNs or machine learning
algorithms, leveraging deep learning techniques to automatically extract facial features and
optimize models with training data to enhance the capabilities of FER [15]. Furthermore,
other studies [16–22] have combined deep feature learning methods with traditional man-
ual feature learning techniques, such as fusing multimodal and multi-temporal features
through deep learning and manual methods to generate feature maps [19,20]. Malika
et al. [23] proposed an intelligent framework to reduce the dimensionality of facial images
and optimize classifier parameters for more accurate emotion recognition. Tanoy Debnath
suggested a fusion of features extracted from facial expression images using a local binary
pattern (LBP) to enable rapid convergence of the classification model [24].

With the growing demand for data storage and processing in large-scale CNN net-
works, researchers have proposed lightweight CNNs as a solution for face emotion recogni-
tion [25]. In the realm of expression recognition, Helaly et al. [26] developed a comprehen-
sive framework to identify six primary emotions. It has been observed that convolutional
neural networks tend to focus most of the extracted features on the central region of the
face (nose, mouth, eyes), potentially leading to recognition errors if the feature extraction
is biased towards the side of the face [27]. The integration of transfer learning [28,29]
has marked a significant advancement in facial expression recognition (FER), enabling
the utilization of a single type of data and function without constraints, thus showcasing
the generalization capability of artificial intelligence. Presently, numerous researchers
are adopting pre-trained models for face emotion recognition, following transfer learning
fine-tuning [9]. This strategy diminishes the reliance on the machine’s memory and pro-
cessor. With the escalating complexity of models and computational requirements, there
is a pressing need to enhance the current lightweight face recognition models in terms of
FLOPs, parameters, and model size. Seng Chun Hoo et al. [30] introduced an enhanced
ConvNeXt (ECN) module within ConvFaceNeXt, which notably reduces FLOP counts
while maintaining high accuracy. Taking cues from FaceNet, Zong-Yue Deng et al. [31]
devised a deep learning model with a memory size of only 3.5 M, achieving remarkable
accuracy in real-time scenarios. Factors like changes in posture, age, and variations in
lighting conditions can all influence the efficacy of face recognition. Xie S. et al. [32] de-
veloped a framework consisting of two independent branches for processing facial and
expression information. Utilizing adversarial learning, the TDGAN network effectively
separates other facial attributes from each expression image and subsequently transfers
the expression to a specified face. However, the absence of mutual integration and com-
pensation negatively affects the recognition accuracy of the network. Chenqi K. et al. [33]
proposed a method that combines semantic and noise levels to infer human editing in
images by analyzing visual features and noise. This method not only detects tampering
in facial images but also pinpoints the specific area of manipulation, aiding in image au-
thenticity and integrity verification. On the other hand, Hardjadinata H. et al. [34] utilized
Xception and DenseNet deep learning architectures to enhance accuracy and efficiency in
facial expression recognition systems. Xception’s deep separable convolution efficiently
captures spatial dependencies, making it suitable for facial feature extraction and recogni-
tion. DenseNet’s densely connected patterns between layers promote feature reuse and
gradient flow, potentially enhancing the model’s ability to capture facial expression details.
Xunru L. et al. [35] proposed a lightweight and high-precision improved MobileNetV3
network for facial expression recognition, but due to its large flops and model size, it has
a certain impact on the storage and model calculation process of small mobile devices.
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Our lightweight network effectively improves the accuracy of facial expression recognition
across diverse datasets by reducing parameters.

Most current research focuses on improving model accuracy, often neglecting the
computational cost and model size, which can impose significant burdens on computing
systems. The model we propose integrates existing deep separable convolution with a
custom attention layer, building on prior research. This network model enhances accu-
racy while simultaneously reducing model size. Our approach offers novel insights and
advancements for future model enhancements. It not only retains the benefits of classic
models but also explores feature enhancement and fusion, demonstrating considerable
application potential and research value.

In this study, a lightweight network named ‘RS-Xception’ is proposed, consisting
of a total of 1.92 M parameters, positioning it as a valuable network architecture in the
domain of facial expression recognition. The key contributions of this research are outlined
as follows:

• Development of a lightweight model: The model integrates deep separable convo-
lution and the SE module, which leads to a reduced number of parameters and
computational load, making it suitable for resource-constrained environments while
maintaining high performance.

• Model adaptability and scalability: RS-Xception demonstrates strong performance
across three standard datasets and exhibits adaptability and generalization capabilities
across a more complex dataset (RAF-DB).

• Technical validation: Transfer learning is employed to compare the model with other
architectures on the same dataset, showcasing its superior performance. Furthermore,
transfer learning is leveraged to enhance the accuracy of the model, highlighting its
potential to enhance generalization capabilities.

2. Materials and Methods

For the FER, we have designed a lightweight model with a simple architecture but
excellent practical effect. The Squeeze and Excitation (SE) module enhances the attention
mechanism of the model by adaptively reweighting channel features to improve focus on
facial expression details. This adaptive feature enhancement boosts important features
for better accuracy in facial expression recognition, while suppressing irrelevant features
to reduce computational complexity and overfitting risks. The residual connection en-
hances the stability and efficiency of training deep networks by providing a shortcut path,
alleviating gradient vanishing issues in facial expression recognition. Additionally, the
residual connection facilitates feature transmission across different levels, enabling the
model to capture more expression details effectively. The modular network architecture
allows flexible adjustments and extensions for various facial expression recognition tasks,
controlling model complexity by adding or removing modules to handle tasks ranging
from simple expression recognition to a complex sentiment analysis. The global average
pooling layer reduces parameters in the fully connected layer, preventing overfitting and
enhancing generalization to unseen data.

The main structure of Xception consists of a residual convolutional network and deep
separable convolution, which replaces the traditional convolution method with deep sepa-
rability. This network, inspired by the Xception network’s residual convolution network
combined with deep separable convolution, utilizes fewer parameters and computational
resources, making it more efficient for feature extraction and classification in facial tasks,
particularly in resource-limited environments. With fewer parameters, the network can
be trained faster than the original Xception model, which is beneficial for tasks like facial
recognition that involve large datasets or require quick iteration. Despite maintaining high
classification performance, the network may exhibit better generalization capabilities on
small-scale facial datasets, as it is easier to train and fine-tune with limited data. Addition-
ally, the incorporation of SE blocks in the network enhances the recalibration of channel
feature responses, suppresses unnecessary noise, accelerates facial feature detection and
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localization, improves feature learning, and aids in the refined learning and classification
of facial features. Thanks to its modular design and minimal parameters, the proposed
network offers high flexibility and scalability when adapting to various datasets and tasks,
allowing for easier customization and optimization.

The model utilizes convolutional layers, separable convolutional layers, and SE blocks
to extract useful features from the input image. It autonomously learns from basic features
like edges and textures to more complex features such as shapes and object patterns.
Through multiple convolutions and activation functions, the model refines the feature map
to incorporate advanced semantic information. Each layer’s feature representation builds
upon the previous layer, forming a hierarchical structure that effectively captures intricate
patterns and relationships.

2.1. Depthwise Separable Convolution

We use Depthwise Separable Convolutions (DSCs) to reduce the number of parameters.
In a standard convolution, there are N such convolution kernels, resulting in a final
output feature map with N channels. On the other hand, depthwise convolution [36]
is much simpler. Each convolutional kernel only has a single channel and is responsible
for processing a layer of feature maps in the depth direction. DSCs are used to eliminate
fully connected layers and reduce the parameter count. A DSC consists of two layers: a
depthwise convolution and a pointwise convolution. These layers separate spatial cross-
correlation from channel cross-correlation. In Figure 1, a filter (D × D) is applied to each
of the M input channels, followed by N convolutional filters (1 × 1 × M) to combine
the M input channels into N output channels. The values in the convolutional combined
feature map (1 × 1 × M) are applied independently of their spatial relationship within the
channel. Depth-separable convolution reduces computation by 1/N + 1/D2 compared to
standard convolution.

Figure 1. Depthwise Separable Convolution.

2.2. SE-ResNet

SENet is an image recognition network model that was proposed in 2017. The network
aims to improve classification accuracy by enhancing key features by comparing the
correlation between feature channels. There are three main actions involved in SENet [37].

The global feature information is extracted from the previous convolutional layer
through a squeeze operation, followed by global average pooling on the feature map.
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The results are in feature maps Zc with dimensions of 1 × 1 × C, where each element c is
calculated using Equation (1).

Zc = Fsq(uc) =
1

W × H∑W
i=1 ∑H

j=1 uc(i,j) (1)

The operation of global average pooling, denoted as Fsq in Equation (1), involves
pooling each channel’s eigenmap into feature maps of size 1 × 1 × C, where C represents
the number of channels. This results in a reduction in spatial dimensions. Subsequently,
there are two fully connected layers. The first layer aims to decrease the number of channels
from C to C/r, where r is the compression ratio. This ‘compression layer’ helps reduce
computational requirements by reducing feature dimensionality and overall model com-
plexity.

The excitation action is defined as in Equation (2).

Sc = Fex(Z, W) = σ(W2δ(W1Z)) (2)

The sigmoid activation function, denoted as σ, is utilized in this research. Furthermore,
the excitatory function known as the Rectifier Linear Unit (ReLU) is represented by δ. In
order to manipulate the dimensionality, weights W1 and W2 are employed to decrease and
amplify it correspondingly.

The Scale operation encompasses the multiplication of the eigentensor with the exci-
tation, which captures the significance of every channel through comprehensive feature
learning. Subsequently, the acquired weights are utilized to multiply the corresponding
channel, thus distinguishing the primary and secondary details of the graph. The calibra-
tion operation, as elucidated in Equation (3), is employed to attain the ultimate output of
the block.

Xc = Fscale(uc, Sc) = uc·Sc (3)

The SENet model effectively captures and utilizes the global feature information
of the image while reducing the computational burden. This structure is particularly
beneficial when dealing with large images or when there is a need for extensive compu-
tational resources, as it can significantly simplify the model’s complexity and computa-
tional requirements.

The problem of gradient vanishing in deep networks is effectively addressed by
ResNet [38], which was proposed by He et al. To mitigate this issue, surplus blocks are
introduced to traditional CNNs. The ResNet architecture contains several residual blocks.
The principle of the residual block is to introduce the output of the first several layers
directly to the input of the later layers by using a skip connection. This structure allows the
network to better learn the differences between the input and output, which can enhance
the performance of the model. Various studies have validated the effectiveness of residual
blocks in alleviating the vanishing gradient problem in deep networks. As a result, multiple
architectures have integrated these residual blocks.

The SE-ResNet, a network framework proposed in this study, amalgamates the es-
tablished SENet and ResNet architectures. To enhance its comprehension, SE blocks from
SENet have been incorporated into ResNet as depicted in Figure 2. The role of the SE block
is to enhance the information channel and suppress the less useful one. By merging the
feature information of the preceding convolutional layer with the subsequent one through
residual blocks, this methodology effectively tackles the issues of accuracy decline due to
image disappearance and gradient vanishing, which typically arise when the number of
network layers increases.
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Figure 2. Squeeze and Excitation block.

2.3. RS-Xception

The RS-Xception is a newly designed convolutional neural network specifically tai-
lored for image classification tasks, as depicted in Figure 3. Table 1 presents a comparison
between different deep learning models and ours. The metrics considered for comparison
are the number of parameters, depth (number of layers), floating-point operations per
second (FLOPSs), and inference time on the CPU. Our model outperforms others in terms
of efficiency, with fewer parameters, lower depth, reduced FLOPSs, and faster inference
times. This makes our model a compelling option for scenarios with constrained computing
resources. Despite having a lower parameter count, the RS-Xception displays an exceptional
level of accuracy, thereby rendering it suitable for lightweight tasks. The primary convolu-
tional layer makes use of a 7 × 7 convolutional kernel to initiate the convolution process.
Subsequently, batch normalization and the ReLU activation function are employed. Following
this, an additional feature extraction is conducted using a 3 × 3 convolution kernel.

Figure 3. Model structure.

Module 1, the initial module, is comprised of two separable layers for convolution.
It also includes a 1 × 1 convolutional layer that adjusts the channel count and a residual
connection that contains Squeeze and Excitation (SE) blocks. Batch normalization is applied,
as well as ReLU activation functions. Maximum pooling is employed to reduce spatial
dimensions. Modules 2 to 5 are exact replicas of Module 1, but with an increasing number
of filters for the convolutional layer in each module. Residual connections and SE blocks
are present in all modules for the purpose of transferring information and recalibrating
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channels. The final classification layer consists of a 3 × 3 convolutional layer, responsible
for generating the ultimate class probabilities. Global average pooling (GAP) is utilized
to reduce the spatial dimension to a single dimension. The softmax activation function is
then applied to produce the final classification probability. The SE block is employed to
capture channel interconnectedness and recalibrate different channels. The RS-Xception
architecture takes inspiration from the Xception model but is adapted to be more compact
and suitable for resource-constrained environments. The model utilizes the depth-separable
convolution of Xception with fewer layers and a smaller convolutional kernel size. In a
resource-constrained environment, residual joining, SE blocks, and global average pooling
are combined to reduce the number of parameters, computational requirements, and risk
of overfitting. By combining separable convolutions, residual connections, and SE blocks,
RS-Xception achieves commendable performance in lightweight models. In the last output
layer, the softmax activation function is used to detect seven emotions.

Table 1. Comparison of parameters of each model.

Model Parameters Depth Flops
Time (ms) per

Inference Step (CPU)

Xception 22.9 M 81 8900 M 109.4
VGG16 138.4 M 16 15,517 M 69.5
VGG19 143.7 M 19 19,682 M 84.8

ResNet50 25.6 M 107 4100 M 58.2
ResNet101 44.7 M 209 7900 M 89.6
ResNet152 60.4 M 311 11,000 M 127.4

InceptionV3 23.9 M 189 6000 M 42.2
InceptionResNetV2 55.9 M 449 17,000 M 130.2

MobileNet 4.3 M 55 600 M 22.6
MobileNetV2 3.5 M 105 312.86 M 25.9
DenseNet121 8.1 M 242 5690 M 77.1

Improved
MobilenetV2 [39] 3.26 M 25 \ \
Ours (SE block) 1.91 M 28 70 M 15.9

The proposed simulation model replicates the complete design of the VGG model’s
3 × 3 convolutional layer [40]. The residual block consists of two convolutional layers
with the same number of output channels. Each convolution operation is followed by a
batch normalization layer and a ReLU activation function. After that, the input is added
to the residual block before applying the final ReLU activation function, bypassing the
intermediate convolution process. Residual connections are incorporated after each depth-
separable convolution module to facilitate efficient flow of information and gradients in
deep networks. Additionally, an SE block is integrated into the depth-separable convolu-
tion, allowing for channel recalibration at the output of each module. This recalibration
process enables the model to prioritize important channels by assigning them higher
weights, thereby focusing more on crucial features for the final task. By enhancing the effec-
tive training of deep networks, the residual connection aids in capturing complex features
and improving model performance without introducing extra computational complexity.

To maintain the output shape of the convolutional layer consistent with the input, an
extra convolution (1× 1) is employed to adjust the channels. Each convolutional layer needs
to be followed by a batch normalization layer. As the maximum pooling layer in the stride
of 2, the width and height of the feature map need not be reduced. In each consecutive
module, the number of channels doubles compared to the previous module, while the
height and width are halved. The grayscale image in the structural flow chart (Figure 3)
represents the feature extraction map generated by the model from the input image. The
model extracts key facial features from the original image, which are subsequently inputted
into the attention module. This attention module emphasizes the critical information within
the feature map before passing it to the next step. In order to enhance the efficiency of
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training, the cross-entropy loss function (Equation (4)) is utilized. The categorical cross-
entropy loss function is derived from cross-entropy, a metric that quantifies the disparity
between two probability distributions. Specifically in classification tasks, it evaluates the
model’s predicted probability distribution for each class against the actual distribution of
the target. A lower probability prediction of the correct class in the cross-entropy loss incurs
a higher penalty, encouraging the model to enhance the likelihood of accurate classification.
When paired with the softmax activation function at the output layer, the categorical cross-
entropy enables the model to not only identify the most probable classes, but also to express
the level of confidence in each prediction as probabilities, thereby furnishing additional
information for subsequent decision-making processes.

Loss = −∑

output
size

i=1 yi·logŷi (4)

In Equation (4), it is observed that the value of yi can only be 0 or 1. When yi is 0,
the outcome is also 0, whereas the outcome is present only when yi is 1. In essence, the
categorical cross-entropy concentrates on a single outcome, making it suitable for use with
softmax in single-label classification tasks.

In this study, we assessed the efficiency of RS-Xception on three datasets: CK+,
FER2013, and Bigfer2013. Firstly, we provide a description of the datasets and experi-
mental conditions. Next, we employ several existing methods to evaluate the performance
of the proposed model on the test dataset, ensuring its effectiveness. The performance
evaluation indicators used include 4 indicators represented by Equations (5)–(8), ROC
curve, and confusion matrix. Finally, we incorporate transfer learning into our approach
and observe an improvement in the model’s accuracy.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5)

Precision = TP/(TP + FP) (6)

Recall = TP/(TP + FN) (7)

F1 − score = (2 × Precision × Recall)/(Precision + Recall) (8)

3. Results

3.1. Dataset Details

This section describes three datasets: CK+ [41], FER 2013, and Bigfer 2013. The CK+
dataset, also known as Cohn–Kanade, is frequently utilized as a controlled dataset in
laboratory settings to evaluate FER systems, as depicted in Figure 4. It is specifically
developed to overcome the limitations present in the CK dataset, the most obvious of
which is the lack of validated sentiment labels. The dataset consists of 45 samples for
anger, 59 samples for disgust, 25 samples for fear, 69 samples for happiness, 28 samples
for sadness, 83 samples for surprise, 593 samples for neutral, and 18 samples for contempt.
The data are split into training (80%), PublicTest (10%), and PrivateTest (10%) sets. Each
image in the dataset has been resized to 48 × 48 pixels in grayscale format. FER2013, on
the other hand, is an extensive and unrestricted dataset, which consists of grayscale face
images with dimensions of 48 × 48 pixels, ensuring consistent face positioning across all
images. FER2013 contains a total of 35.9 K images and is annotated with seven distinct
expression labels, namely anger, disgust, fear, happiness, neutral, sadness, and surprise.
The dataset is divided into three subsets: the training set, the public test set, and the final
test set. The training set consists of approximately 28,709 images, while the public test
set and final test set each contain around 3589 images. This dataset serves as a valuable
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resource for researchers and developers in the fields of expression recognition and sentiment
analyses due to its diverse range of expressions and challenging real-world conditions.
The Bigfer2013 dataset combines 35.9 K records from FER2013 and 13.7 K records from
the ‘Muxspace’ dataset. It contains 14,685 happy images (29.63%), 13,066 neutral images
(26.36%), 6345 sad images (12.8%), 5205 angry images (10.5%), 5142 fearful images (10.37%),
4379 images of surprise (8.82%), and 755 images of disgust (1.52%). Figure 5 compares the
FER 2013 and Bigfer 2013 datasets.

Figure 4. CK+ image example.

Figure 5. Comparison of Fer 2013 and Bigfer 2013 expression data.

3.2. Experimental Results

The deep learning model is executed on a computer equipped with an Intel(R) Xeon(R)
Silver 4214R CPU (Intel Corporation, Santa Clara, CA, USA) operating at 2.40 GHz (with
two processors), 128 GB of RAM, and an NVIDIA GeForce RTX 3090 graphics card. For the
experiments described in this article, Python 3.9 is utilized, and the model experiments are
conducted using the TensorFlow framework along with the cross-platform computer vision
and machine learning software library OpenCV. Finally, the Adam optimizer is employed
for optimization.

During data preprocessing, we randomly rotate the images by angles of ±15 degrees to
enhance the model’s ability to recognize expressions from various angles and orientations.
Additionally, we normalize the pixel values of the images to a range between 0 and 1,
which mitigates the effects of lighting variations on the model. This process significantly
enhances and normalizes the facial expression recognition dataset, thereby improving the
model’s performance and robustness and providing a solid data foundation for subsequent
research and applications. By applying various transformations to the original images,
we generate a more diverse set of training samples, which further enhances the model’s
generalization capability.
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3.2.1. RS-Xception Performance on CK+

This model underwent training for a total of 100 epochs. The initial learning rate utilized
was 0.001. During the training process, samples were processed in batches of 16. The
validation and test samples provided within the dataset were utilized to evaluate the RS-
Xception’s performance. In addition, there is no specified test data available in this particular
database, unlike the FER2013 database. Achieving notable results, the model obtained a
recognition accuracy of 97.13% during its peak period. Furthermore, the loss of the multi-class
classification task approached zero. When considering recognition accuracy, the proposed
model surpasses the FER system of the current horizontal framework. In Figure 6, the
performance evaluation results are displayed, specifically showcasing the precision, recall,
and F1 score of 96.30%, 96.20%, and 96.06%, respectively, shown in Table 2. Figure 7 presents
the confusion matrix and ROC curve outcomes generated by the model on the CK+ database
test set. These results demonstrate the efficacy of the trained model in accurately recognizing
the majority of facial images associated with affective classes. Ultimately, these findings
further validate the effectiveness of the enhanced FER model, highlighting its exceptional
performance in recognizing facial expressions within numerous samples.

Table 2. The performance evaluation of the experiment.

Experiments Accuracy Precision Recall F1 Score

On CK+ 97.13% 96.30% 96.20% 96.06%
On FER2013 69.02% 67.51% 67.55% 67.46%

On Bigfer2013 72.06% 71.86% 71.21% 71.38%
DTL on Bigfer2013 75.38% 75.86% 75.22% 74.88%

On RAF-DB 82.98% 82.06% 81.98% 81.93%

(a) (b) 

(c) (d) 

Figure 6. (a) Training precision graph of CK+ (blue line), FER2013 (scarlet line), Bigfer2013 (green line),
and RAF-DB datasets (brown line). (b) Training loss function values of CK+, FER2013, Bigfer2013,
and RAF-DB datasets. (c) Validation accuracy graphs of CK+, FER2013, Bigfer2013, and RAF-DB
datasets. (d) Validation loss function values of CK+, FER2013, Bigfer2013, and RAF-DB datasets.
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(a) (b) 

Figure 7. Confusion matrix (a) and ROC curve (b) of CK+ data (class 0–7 represents neutral, anger,
contempt, disgust, fear, happiness, sadness, and surprise).

3.2.2. RS-Xception Performance on FER2013

We will describe the performance of the RS-Xception model on FER2013 datasets. The
model achieved an impressive recognition accuracy of 69.02% and a low loss rate of 0.94%
when handling multi-class classification tasks. Moreover, the proposed technique produced
a precision, recall, and F1 score of 67.51%, 67.55%, and 67.46%, respectively, when assessed
on the test set, shown in Table 2. This test set comprised seven classes extracted from
the FER2013 dataset. For a comprehensive overview, we included the confusion matrix
and ROC curve of the RS-Xception model, obtained from the test samples of the FER2013
dataset. These visuals are accessible in Figure 8. These results undeniably showcase the
proficiency of the proposed model in effectively recognizing facial images encompassing
various emotions. The confusion matrix further validates the model’s predictive capabilities
for the seven categories, with the happiness class outperforming the rest. Importantly,
it should be noted that while the improved model demonstrates commendable overall
performance, there may be variations in the classification performance for different classes.

 
(a) (b) 

Figure 8. Confusion matrix (a) and ROC curve (b) of FER2013 dataset (class 0–6 represents angry,
disgusted, scared, happy, sad, surprised, and neutral).

553



Electronics 2024, 13, 3217

3.2.3. RS-Xception Performance on Bigfer2013

In our study, we utilized the Bigfer2013 dataset to train a model. The training process
involved 100 epochs, using the Adam optimizer and a multi-class classification loss function.
The initial learning rate was set to 0.001. During training, we processed samples in batches
of 16. The Fer2013 dataset served as a basis for our work, with the Bigfer2013 dataset being
an extension that included additional annotated images. All images in the dataset were
48 × 48 in size and featured diverse characters, which enhanced the model’s generalization
capability. The training set and validation set are 80% and 20% of the dataset, respectively.
When evaluating the improved model on the Bigfer2013 test samples, we achieved a
validation accuracy, precision, recall, and F1 score of 72.06%, 71.86%, 71.21%, and 71.38%,
respectively, shown in Table 2. The confusion matrix and ROC curve of the model on the
Bigfer2013 dataset are presented in Figure 9. Notably, within a certain range, as the data
increase, the accuracy also increases, thus confirming the effectiveness of our model on
diverse datasets.

 
(a) (b) 

Figure 9. Confusion matrix (a) and ROC curve (b) of Bigfer2013 dataset (class 0–6 represents angry,
disgusted, scared, happy, sad, surprised, and neutral).

Although the CK+ dataset has a small sample size, it offers detailed expression in-
formation and high annotation accuracy, making it a valuable supplementary dataset for
enhancing model performance. On the other hand, the fer2013 dataset, despite its uneven
classification of expressions and significant variability, provides a large and diverse set
of data that can aid in training a model with strong generalization capabilities. However,
fer2013 does suffer from collection errors and human accuracy is limited to around 65 ± 5%.
To address these limitations, we introduced the Bigfer 2013 dataset, which includes a sub-
stantial number of network images to augment the existing data and improve the model’s
generalization abilities. The enhanced model performance can be observed through the
increased data volume, improved generalization capabilities, and the practicality of the
model when dealing with large datasets. To evaluate the applicability and generalization
ability of the model, we conducted tests using a more complex dataset, RAF-DB, for val-
idation. This dataset presents additional challenges owing to its unique characteristics,
which include image quality, background complexity, the naturalness of expression, and
the quality of annotations. The model performed well on the RAF-DB dataset, achieving
an accuracy of 82.98%, a recall rate of 81.98%, and an F1 score of 81.93%. These findings
highlight the difficulties encountered by the model when dealing with diverse datasets,
emphasizing the necessity for further optimization and adjustments to improve its gen-
eralization ability. To assess the performance of our model thoroughly, we conducted a
comparative study against the prevailing classification networks. In order to maintain
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fairness in the comparison, none of the network models utilized pre-trained weights in this
experiment. The detailed experimental findings can be found in Table 3. In the comparison
experiments, the improved MobilenetV2 model is highlighted due to its similar number of
layers to our proposed network. However, our model has 1.35 million fewer parameters
than the improved MobilenetV2. Furthermore, our model achieves higher accuracy rates of
1.17% and 0.4% when compared to the CK+ and Fer2013 datasets, showcasing the efficiency
of our method. The comparison of accuracy between the proposed model and existing
models is shown in Figure 10.

Table 3. Comparison of the accuracy of some of the latest models.

Approach Dataset Accuracy (%)

CBAM [42] CK+ 95.1
IE-DBN [43] CK+ 96.02

CCFS + SVM [1] CK+ 96.05
Improved MobilenetV2 [39] CK+ 95.96

Model by Sidhom O et al. [44] Fer2013 66.1
Self-Cure Net [45] Fer2013 66.17

Improved MobileViT [46] Fer2013 62.2
Improved MobilenetV2 [39] Fer2013 68.62

PSR [47] RAF-DB 80.78
E-FCNN [4] RAF-DB 78.31
TDGAN [32] RAF-DB 81.91

Ours CK+ 97.13
Ours Fer2013 69.02
Ours RAF-DB 82.98

Figure 10. The comparison of accuracy between the proposed model and existing models.

Lightweight face recognition models, such as CBAM, improved MobileNetV2, and
IE-DBN, demonstrate enhanced performance on the CK+ dataset by emphasizing local
modules. However, our proposed network consistently outperforms these models. The CK+
dataset, collected in a controlled environment, minimizes noise, thereby presenting a unique
challenge. While the results of current methods presented in the table approach 100%,
our proposed network still achieves outstanding results. In contrast, the FER2013 dataset,
characterized by a larger volume of data and more complex environmental conditions,
poses a greater challenge for model evaluation. In this context, the model by Sidhom
O. et al. employs a three-stage hybrid feature extraction method to enhance efficiency.
Meanwhile, improved MobileNetV2 and E-FCNN improve accuracy on this dataset by
extracting texture features. However, these networks overlook the interaction between the
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overall context and finer details, and local attention can adversely affect the recognition of
similar emotions. Our proposed network addresses this by focusing on local details while
the pooling operation accounts for the interaction between details and the overall context,
resulting in excellent performance on the FER2013 dataset. To validate the efficiency of
our model, we compare its training results on the more complex RAF-DB dataset against
other advanced models. The RAF-DB dataset contains diverse images, leading networks
such as TDGAN and E-FCNN to prioritize texture information, expression data, and
other unrelated facial features. However, these different branches often lack integrated
communication. Furthermore, the highly imbalanced distribution of various expression
images in the RAF-DB dataset can significantly hinder network performance. Nevertheless,
our proposed network achieves state-of-the-art performance on the RAF-DB dataset.

The high accuracy, recall, and F1 score in the CK+ dataset demonstrate the superior
performance of the model on this dataset. The evaluation results from the Fer2013 dataset
also show good performance in predicting positive classes, with a high proportion of
correct predictions in this category. The model’s reliability is further supported by a com-
prehensive evaluation of the accuracy, recall, and F1 score. Additionally, the comparison
between the accuracy and recall of the model on the BigFer2013 dataset indicates an over-
all improvement in performance with an increase in data, highlighting the model’s high
generalization and robustness. The AUC of the ROC curve in the CK+ dataset was 1.00,
indicating excellent overall performance, with AUC values for each category close to or
equal to 1.00, demonstrating high classification performance and minimal misclassifications.
Similarly, the AUC of the Fer2013 dataset was 0.93, with AUC values for each category
around 0.90, showcasing good classification effects and model efficiency. The AUC in
the ROC curve of BigFer2013 was 0.95, surpassing the AUC of the Fer2013 dataset, with
improved classification effects on each category, suggesting that increasing the amount of
data can enhance the model’s performance.

3.3. Ablation Experiments

The experiment revolved around the examination of six distinct pre-trained models,
namely MobileNet [48], DenSENet 121 [49], ResNet18, ResNet50, ResNet101, and SENet 18.
The numerical value adjacent to each model’s name denotes its depth. From a practical
perspective, when engaging in transfer learning (TL) [28], it becomes crucial to meticulously
choose a pre-trained model and establish a dimensional similarity matrix for meticulous
fine-tuning. There exist three common approaches to fine-tuning a network: (1) training
the original model, (2) training selected layers while keeping others frozen, and (3) solely
training the classifier while the convolutional base remains frozen. For tasks sharing
similarities, it proves to be adequate to fine-tune a single classifier and/or multiple layers
to acquire a new skill. Nevertheless, regarding divergent tasks, comprehensive model
training becomes obligatory. In the ablation experiment, we used an additional classifier
and a fully connected layer.

The proposed system for FER utilizes a CNN to capture important information from
images. The CNN is composed of multiple layers, each progressively learning more
intricate features. At the shallow layer, basic properties such as edges and corners are
detected, while deeper layers understand more complex patterns. The FER task, which
entails identifying emotions from facial expressions, is akin to other image-based operations
like classification. To build the FER model, we compared the accuracy of various pre-trained
CNN models (ResNet50, ResNet101, MobileNet, ResNet18, DenSENet 121, and SENet 18).
These models have been fine-tuned using sentiment data, accomplished by redefining the
classification layer. Specifically, the last dense layer of the pre-trained model is modified
and replaced with a new dense layer responsible for classifying the facial image into one
of seven emotion types: anger, disgust, fear, happiness, neutral, sadness, and surprise. A
dense layer receives inputs and produces vectors with desired dimensions. Pre-trained
models, such as ResNet50 and MobileNet, streamline the training process by replacing
the last fully connected layer with a new dense layer for classification. This approach
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involves freezing all pre-trained parameters, replacing the original output module with
a fully connected layer for classification. Feature extraction in these models relies on
the pre-trained parameters, and the number of layers in the model significantly impacts
transfer learning accuracy. For tasks like facial expression recognition (FER), the bottom
layer must be substituted with a new dense layer tailored to the number of emotion
categories. Due to the extensive parameterization of these models, training them from
scratch is time-consuming. Therefore, replacing the last dense layer only requires training
the parameters in a small number of layers, which reduces a lot of time, prompting the
use of pre-training and transfer learning methodologies to evaluate their performance.
As such, the output layer of the FER model comprises seven elements, representing the
classification after fine-tuning from the convolutional base and additional dense layers of
the pre-trained model.

We evaluated six classical models using the FER2013 dataset. Afterward, the pre-
trained model underwent fine-tuning using sentiment data and was updated for FER
through the redefinition of the dense layer. The transfer learning process is depicted
in Figure 11. To mitigate the potential issue of overfitting due to limited data in the
FER database, we employed various dynamic data augmenters throughout the learning
process. For each model, training and validation were conducted over 200 epochs using
the Adam optimizer and a batch size of 16. The loss function employed was cross-entropy.
We initiated the learning rate at 0.001. The DTL framework implemented in advanced
mainstream models exhibits recognition accuracy ranging from 58% to 70% on the FER2013
dataset. Our proposed model achieves comparable or even higher accuracy, reaching 69.02%
on the FER2013 dataset, without utilizing transfer learning, as evidenced in Figure 12.
Moreover, our model demonstrates superiority over the other six pre-trained CNN models
in terms of its performance on the FER2013 dataset. Our model also exhibits the fewest
parameters compared to the pre-trained models examined. Furthermore, it outperforms the
other models in training and validation accuracy. These experimental findings effectively
showcase the remarkable efficiency of the proposed FER framework.

Although the RS-Xception achieves the accuracy of transfer learning for these six
advanced models, we aim to further improve its accuracy by utilizing transfer learning
methods [32]. To accomplish this, we employed a sentiment dataset that has been prepro-
cessed through activities such as scaling and cropping. We utilized a pre-trained model on
FER2013 and kept its parameters intact. Following the last GAP of the model, we added
two additional dense layers, freezing all parameters of the original layers. These two dense
layers utilized a fully connected nature to output seven expression classifications using
softmax. By transferring frozen and modified models on Bigfer2013, we only trained the
parameters of the last two fully connected layers, significantly reducing the training time.
The latter dataset introduces various styles (brightness, direction, region) that differ from
the former, allowing us to test the model’s generalization ability. To ensure that the accuracy
of the training results is not compromised due to insufficient data, we included this dataset
for comparison. Our proposed transfer learning technique achieves a precision, recall, and
F1 score of 75.86%, 75.22%, and 74.88%, shown in Table 2, respectively, on the test set of
seven categories. Additionally, we present the transfer learning confusion matrix and ROC
curves in the Bigfer2013 dataset, shown in Figure 13. As shown in Figure 14, it is evident
that the transfer learning model has achieved a substantial improvement in accuracy, reach-
ing a rate of 75.38%. This result shows that transfer learning plays an important role in
improving the model’s recognition accuracy and generalization capabilities.
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Figure 11. The process of model transfer learning (ResNet50, ResNet101, MobileNet, ResNet18,
DenSENet 121, SENet 18).
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(a) (b) 

Figure 12. (a) The comparison of the training accuracy of RS-Xception on the FER2013 dataset and the
transfer learning training accuracy of the other 6 models on the FER2013 dataset. (b) The comparison
of the training validation accuracy of RS-Xception on the FER2013 dataset and the transfer learning
validation accuracy of the other 6 models on the FER2013 dataset.

 
(a) (b) 

Figure 13. (a) The confusion matrix of the model after Bigfer2013 transfer learning. (b) The ROC
curve of the model after Bigfer2013 transfer learning (class 0-6 represents angry, disgusted, scared,
happy, sad, surprised, and neutral).
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(a) (b) 

Figure 14. (a) The comparison of the validation accuracy of the model on the BigFer2013 dataset
and transfer learning on the Bigfer2013 dataset, and (b) comparison of the loss function value of the
model on the BigFer2013 dataset with the value of the loss function of transfer learning on Bigfer2013.

4. Discussion and Conclusions

In this paper, we propose a lightweight network structure based on ResNet and SENet,
incorporating the concept of the Xception network. The proposed model demonstrates
good accuracy when evaluated on commonly used FER datasets such as CK+, FER2013,
and Bigfer2013. We evaluate the performance of the improved model using evaluation
criteria like the accuracy, F1 score, recall, and precision. Additionally, we compare our
model with advanced models by replacing the dense layer with six different pre-trained
models for transfer learning. We fine-tuned the parameters of these models and compared
their performance on the same dataset. We find that the proposed model achieved accuracy
of transfer learning for these six advanced models. Furthermore, we perform transfer
learning on our model and observe a significant improvement in accuracy, highlighting the
importance of transfer learning in enhancing model accuracy and generalization ability.
Compared to advanced deep transfer learning frameworks, our model performs best in
recognizing facial emotions in most samples. Figure 15 shows the recognition effect of
the proposed model on some images. Many current studies emphasize local modules
or texture features through attention mechanisms to highlight key areas of the face, or
adopt multi-stage hybrid feature extraction methods to enhance model efficiency. While
these approaches do improve recognition performance, they also increase computational
complexity and often overlook the interaction between the overall background and fine
details. Our method adeptly addresses the relationship between global and local features
by introducing pooling operations. This not only reduces the number of parameters
but also significantly enhances the computational efficiency and accuracy of the model.
Consequently, our method preserves global background information while capturing finer
local features, leading to more accurate and efficient facial expression recognition.

In this experiment, we limited the preprocessing of the images, focusing solely on
the different image styles and quantities across datasets. This approach may introduce
noise that could interfere with the model’s judgment and subsequently reduce its accuracy.
In future work, we will emphasize image preprocessing and incorporate techniques such
as MF.
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Figure 15. Results of expression classification using the proposed model.

The application of deep learning models in various fields presents the challenge
of enhancing their adaptability to different tasks and environments. The RS-Xception
model’s design focuses on improving adaptability by incorporating flexible structures and
adaptive feature learning mechanisms like SE blocks. While the fundamental concepts of
RS-Xception, such as deep separable convolution and SE blocks, are not entirely novel, their
integration and application in a lightweight design, strong adaptability, and optimization
for real-time applications continue to offer potential for innovation and practicality in
technology development. The exploration and utilization of its feature recalibration mecha-
nism also hold both novelty and practical value in current and future technology scenarios.
The model we proposed has a small number of parameters, which addresses the issue
of insufficient processing power in lightweight chips. By analyzing the confusion matrix
and ROC curves of different datasets, we observe that the number of expressions in each
dataset affects the recognition accuracy of the model’s categories. Our study highlights
the effectiveness of transfer learning in improving model accuracy and reducing training
costs, showcasing its potential in future network structure development. Currently, our
model only utilizes simple cropping and rotation techniques. While RS-Xception has made
progress in lightweight design with deep separable convolutions and SE blocks, there is
potential for further optimization. Advanced techniques like brightening, zooming in, and
zooming out could enhance the model’s robustness in varying lighting conditions, facial
orientations, and expressions.

We propose an innovative lightweight network that integrates the SE attention mech-
anism with a Depthwise Separable Convolutional residual structure to address the com-
putational and parameter limitations of current deep learning models. Looking ahead,
our objective is to optimize and deploy this model on embedded devices to facilitate mul-
timodal deep learning of facial expressions and speech information, thereby enhancing
recognition accuracy. We will investigate intonation, speech rate, and linguistic content in
audio data, combining these elements with visual features to more precisely infer emotional
states. Furthermore, we plan to employ pruning techniques to streamline the model and
reduce computational demands while preserving efficient performance. Ultimately, we
aim to develop a facial expression recognition system capable of processing multimodal
inputs in real time and delivering rapid emotional feedback.
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Abstract: Pneumonia is an inflammation of lung tissue caused by various infectious microorganisms
and noninfectious factors. It affects people of all ages, but vulnerable age groups are more susceptible.
Imaging techniques, such as chest X-rays (CXRs), are crucial in early detection and prompt action.
CXRs for this condition are characterized by radiopaque appearances or sometimes a consolidation
in the affected part of the lung caused by inflammatory secretions that replace the air in the infected
alveoli. Accurate early detection of pneumonia is essential to avoid its potentially fatal consequences,
particularly in children and the elderly. This paper proposes an enhanced framework based on
convolutional neural network (CNN) architecture, specifically utilizing a transfer-learning-based
architecture (MobileNet V1), which has outperformed recent models. The proposed framework
is improved using a hybrid method combining the operation of two optimization algorithms: the
dung beetle optimizer (DBO), which enhances exploration by mimicking dung beetles’ navigational
strategies, and Fick’s law algorithm (FLA), which improves exploitation by guiding solutions toward
optimal areas. This hybrid optimization effectively balances exploration and exploitation, significantly
enhancing model performance. The model was trained on 7750 chest X-ray images. The framework
can distinguish between healthy and pneumonia, achieving an accuracy of 98.19 ± 0.94% and a
sensitivity of 98 ± 0.99%. The results are promising, indicating that this new framework could be
used for the early detection of pneumonia with a low cost and high accuracy, especially in remote
areas that lack expertise in radiology, thus reducing the mortality rate caused by pneumonia.

Keywords: deep learning; X-ray image classification; machine learning in healthcare; convolutional
neural networks; optimization algorithms

1. Introduction

Bacterial, viral, and fungal pathogens can exacerbate pulmonary disorders linked to
pneumonia [1]. Specifically, in susceptible populations such as the elderly and individuals
with preexisting medical conditions, it is a grave condition that can result in severe illness
or even mortality [2]. Each year, millions of people contract pneumonia, a potentially lethal
respiratory illness. If left untreated, it can have significant detrimental consequences and
is typically challenging to identify [3]. Developing novel strategies to promptly and accu-
rately detect pneumonia is crucial for minimizing patient mortality [4]. Computer-aided
diagnostic solutions are urgently required in countries with inadequate medical infras-
tructure, especially in emerging nations. These methods, utilizing artificial intelligence,
aid radiologists in detecting acute infection by analyzing chest X-ray pictures [5]. Deep
learning techniques, a type of machine learning algorithm, are highly proficient in image
recognition tasks. They are specifically employed to extract distinctive attributes from chest
X-ray images. This is achieved by training a neural network with a substantial number of
photos, enabling it to identify patterns and characteristics in the images. This technique
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can be used to categorize photos of pneumonia into different groups, such as healthy or
diseased [6].

Machine-learning-based artificial intelligence (AI) research has been making consider-
able progress in medicine in the past few years. These techniques are now increasingly used
for the diagnosis of diseases, creating predictive models to aid clinical decision making and
identifying disease-associated factors [7,8]. During this global crisis, several models have
been distributed in COVID-19 developments, and one of the most outstanding approaches
is metaheuristic algorithms (MAs) [9,10]. One of the most important parts of using models
to predict pneumonia outcomes is the choice of the features that can most likely influ-
ence the disease diagnosis. There are three main types of feature selection methods: filter
method [11,12], wrapper method [13], and embedded-based [14]. KNN is generally really
good and does not require knowledge of the data or assumptions to be made for any under-
lying data; its single parameter can be tuned. The proposed system also enjoys a lower time
complexity when compared to a support vector machine (SVM), making this an attractive
solution for many MA and feature selection applications. Mohamed et al. [15] proposed a
feature selector inspired by the evolution behaviors among predators and parasites, as well
as the host, in nature to solve the problem of big data dimensionality and cooperate with
KNN for finding the most relevant feature combination. Many deterministic and evolu-
tionary optimization methods have been developed and used to solve single-objective and
multiple-objective optimization problems [16,17]. Metaheuristic algorithms (MAs) have
demonstrated the capability to solve different optimization problems [18,19]. Traditional
approaches that use gradients for optimization are treated as a black box and are more
versatile, which means that sometimes MAs are also more efficient than gradient-based
approaches [20,21]. Some of the most prominent algorithms among MAs are the genetic
algorithm (GA) [22], differential evolution (DE) [23], simulated annealing (SA) [24], and
particle swarm optimization (PSO) [25]. In this work, an efficient model that classifies
pneumonia into two groups, healthy and infected, is developed and tested using chest
X-ray images. Toward maintaining a high accuracy and minimizing false-negative cases,
we present a deep learning technique for automated pneumonia classification. In addition,
we apply a hybrid optimization that combines two metaheuristic algorithms, FLA and
DBO, that have achieved promising results in this area.

The impetus for this research stems from the pressing need to improve pneumonia
diagnosis, a leading cause of mortality and morbidity worldwide, especially in vulnerable
populations such as the elderly and immunocompromised individuals. Current diagnostic
methods, while effective, have limitations, including variability in diagnostic criteria
and dependence on high-quality imaging and expert interpretation. These challenges
often result in delayed or inaccurate diagnoses, particularly in resource-limited settings.
Our study aims to address these gaps by harnessing the power of deep learning and
innovative optimization techniques to enhance the accuracy and efficiency of pneumonia
detection from chest X-rays. By developing more robust and reliable diagnostic tools,
this research seeks to facilitate quicker clinical decision making, reduce the strain on
healthcare systems, and, ultimately, improve patient outcomes by enabling timely and
precise treatment interventions.

The subsequent sections of this paper are organized in the following manner. Section 2
of this document discusses different approaches employed for the detection and catego-
rization of pneumonia. Sections 3 and 4 outline the methodologies employed to construct
the proposed model, encompassing preprocessing techniques and feature extraction using
convolutional neural networks (CNNs). Section 5 presents a comprehensive assessment of
the models and a detailed analysis of the obtained results. Section 6 serves as the final part
of this paper, summarizing the most significant findings.

2. Literature Review

Pneumonia identification from CXR images has been one of the foremost areas of
interest, with many deep learning and machine learning techniques promising to advance
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diagnostic performance. Nevertheless, each system expresses its own limitations, partic-
ularly concerning the challenge of performance consistency for long and diverse data or
leveraging optimization algorithms effectively. This section reviews major past works and
indicates how our study responds to prevailing shortcomings.

Yi et al. [26] performed pneumonia classification by proposing a model using DCNN.
Their mentioned accuracy was 96.09%, the precision rate was 98.61%, and the recall was
93.33%. However, their approach did not involve robust optimization techniques to im-
prove generalization capability and was specifically not designed for large datasets. Ku-
mar et al. [27] proposed a few transfer learning-based models, such as InceptionV3 and
ResNet50, with a very impressive accuracy of 96.82% being achieved. Although effective,
this method had some limitations in domain feature extraction and relied on pretrained
networks; hence, it may not generalize well to new datasets. Mannepalli and Namdeo. [28]
developed a hybrid multiscale CNN which was enhanced by embedding self-attention
mechanisms that attained an accuracy of 97%. Although their results looked promising, the
model did not use advanced optimization techniques to improve feature selection further.

In 2021, Manickam et al. [29] adopted a U-Net architecture with transfer learning
for pneumonia diagnosis. The proposed approach yielded an accuracy of 93.06% and a
precision of 88.97%. Although the segmentation performance of U-Net sounds impressive,
the overall performance of the model was limited due to a relatively lower recall of 96.78%
and the unavailability of advanced optimization techniques. Ieracitano et al. [30] proposed
a fuzzy-enhanced deep learning method, CovNNet, which managed uncertainties in CXR
images but was less effective than other methods and achieved only 80.9% accuracy.

Alqudah et al. [31] classified pneumonia by combining CNN with a support vector
machine and obtained 94% accuracy. Yet, even though this hybrid approach provided im-
provements compared to traditional CNNs, the model still represented high computational
cost and performance that was unfavorable due to the need for extracting features from
high-dimensional data. Szepesi and Szilágyi [32] further investigated CNN models with a
new type of dropout layer placement that achieved 97.21% in accuracy, 97.40% in precision,
and 97.34% in recall. This superior architecture has proven to be a worthy contribution to
architectural novelty. Punitha and colleagues [33] developed a computer-aided diagnosis
(CAD) system utilizing an artificial neural network (ANN) in conjunction with an artificial
bee colony (ABC) algorithm, resulting in an accuracy rate of 92.37%. Despite its efficacy in
specific contexts, the model’s dependence on ABC for the extraction of features resulted in
reduced precision and recall rates in comparison to leading methodologies.

Furthermore, several studies utilized deep learning techniques with chest X-ray (CXR)
pictures to identify pneumonia. As an example, Ho and Gwak [34] created an ensemble
model that integrates handcrafted features, radiomic data, and deep learning characteristics,
resulting in an accuracy of 94.1%, precision of 94.5%, and recall rate of 94.1%. Their
study highlighted the advantages of merging different features; however, they did not
utilize hybrid optimization methods to improve performance further. In addition, Trivedi
and Gupta [35] presented a streamlined deep learning framework known as MobileNet,
which attained an accuracy of 94.23%. This model’s strength lay in its efficiency for
mobile applications, while performance lagged compared to more complex architectures.
In response to the limitations found in previous studies, this work proposes a hybrid
optimization approach geared toward improving the process of feature selection and
model performance in pneumonia detection. Next, the methodology section describes in
detail how our model leverages the power of deep learning frameworks and optimization
techniques in an attempt to achieve better results.

The results highlight the possible utility of this framework in pneumonia identification
and assessment of severity, as shown in Table 1. All of them point out novel solutions
and algorithms that can enhance the capability of computer-aided diagnosis (CAD) as
well as the accurateness and efficiency of CAD in radiological imaging, with considerable
improvement in the performance across various imaging methods.
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Table 1. Summary of different studies on pneumonia detection using various AI methods.

Ref. Method Accuracy Precision Recall F1-Score

[26] DCNN 96.09% 98.61% 93.33% -

[27] Trained transfer learning models 96.82% 95.97% 97.54% 96.74%

[28] U-Net architecture and transfer learning 93.06% 88.97% 96.78% 92.71%

[29] Fuzzy-enhanced deep learning method 80.9% 85.2% 82.5% -

[30] CNN with SVM 94% 96.68% 93.3% -

[31] Novel dropout layer placement in the convolutional part 97.21% 97.40% 97.34% 97.37%

[32] Hybrid multiscale convolutional network adaptive manta ray
foraging optimization 97% 95% - 96%

[33] ANN with ABC for region-based fractal analysis 92.37% - - -

[34] Combines handcrafted, radiomic, deep features 94.1% 94.5% 94.1% 94.0%

[35] DL-based on “MobileNet” 94.23% 97% 98% 97%

From the comparison between models in the literature reviewed above, we can observe
that former methods tend to exploit either via transfer learning model or regular convolu-
tional networks, and they rarely utilize a combination of all optimization approaches. On
the other hand, DBO and FLA are both used in our work, and this combination enables
a more stable tradeoff between exploration and exploitation, which gives rise to better
performance. It performed with an accuracy of 98.19%, which was higher than the current
maximum accuracy (97.21% in Table 1). Furthermore, our model’s precision and recall are
higher than those of others, making it a reliable tool for predicting pneumonia

3. Proposed Methodology

Our proposed method for pneumonia detection uses chest X-ray images, and first
aggregates data consisting of several radiological images labeled as “NORMAL” and
“PNEUMONIA”. Each image is preprocessed to a standard size and contrast, enhancing
the model’s capability to extract relevant features. After the division of images, CNNs
extract deep, intricate features. The process is carried out in a multistep process where
data representation is passed through multiple filters and pooling layers to enhance model
predictiveness and better capture differentiated patterns of respiratory conditions as anoma-
lies. Toward further refining the model’s predictions, feature selection methodologies are
implemented and enhanced through hybrid optimization by the meta-heuristic algorithms,
identifying the most significant features for classification with high precision. This hybrid
approach will improve the model’s performance by maintaining a balance in exploring and
exploiting the search space during feature selection to retain only the most relevant features.
In addition, we make use of data augmentation to increase variety in our training data and
avoid overfitting to make the finally deployed model more robust. Some metrics used to
ensure these algorithms are clinically viable are accuracy, sensitivity, and specificity. Testing
and refining of the model are performed constantly to improve the predictions. As shown
in Figure 1, this final model is tested with images that it has never seen to engage in more
realistic scenarios. The proposed methodology here may provide an efficient automatic
tool for the early detection of pneumonia by effectively integrating traditional machine
learning approaches and deep learning architectures to support medical practitioners in
reaching faster and more accurate diagnostic conclusions.
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Figure 1. Flowchart showing the stages of the hybrid optimization process.

The robustness of our methodology is derived from incorporating a hybrid opti-
mization technique that optimizes the model’s hyperparameters, greatly improving its
performance. Merging the dung beetle optimization algorithm (DBOA) with Fick’s law
algorithm (FLA) establishes a well-rounded exploration and exploitation framework, fa-
cilitating the model’s convergence towards optimal solutions. The subsequent section
elaborates on how this hybrid approach enhances feature selection and elevates overall
predictive accuracy.

3.1. Data Overview

The dataset comprises 7750 images in total, and chest X-ray images are divided into
two main classes: PNEUMONIA and NORMAL. This provides the basis for training
our deep learning model and testing its performance. The dataset is equally weighted
between the two classes, which should prevent the model from biasing learning to correctly
identify and distinguish healthy findings from findings that are typically associated with
pneumonia. Pulmonary structures have various clues in the X-ray images, as shown in
Figure 2. PNEUMONIA shows an increased opacity in the lungs, which may indicate the
presence of fluid (consolidation) or features suggestive of other infection-related changes
in the lungs. In comparison, for NORMAL, we can see clear lung fields, and no significant
abnormalities are present. Therefore, the diversity and the quality of these images are very
important for the feature extraction and classification processes, which are used to build a
reliable diagnostic tool for early detection of pneumonia changes (such as the ones often
happening in COVID-19).
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Pneumonia Normal

Normal Pneumonia

Figure 2. A random sample of chest X-ray images illustrates the two categories in the model.

3.2. EDA and Preprocessing

During the exploratory data analysis (EDA) and preprocessing stage of our chest X-ray
and CT image dataset, we conduct an exhaustive analysis of the image data to evaluate its
properties and ready it for the next modeling step. We will first load a balanced dataset
with a total of 7750 images, equally distributed into PNEUMONIA and NORMAL labels. It
contains images that are fetched from a specified folder whose structure comes from the
folders of their labels. These images are preprocessed in several steps to convert them into
a suitable form for deep learning models. We resize each image to 224 × 224 pixels and
then convert it to RGB from BGR to fit the desired input of our model architecture. Images
are also normalized to pixel values ranging from 0 to 1, which helps with the convergence
of neural networks during training. Data preparation for training, validation, and testing
can be performed by dividing our dataset into training, testing, and validation sets, where
90% of the data are used for training and 10% for testing. This dataset is divided into
training and validation sets (80/20 split). A model is trained from the training set. Due
to this stratified splitting, all three sets contain all classes in the same proportion, making
sample distribution balanced across the sets essential to avoid biased model training.
Visual exploration of the data: We plot the data to see the distribution and characteristics
of the dataset. We plot bar charts to check the distribution of function classes in both
the training and test sets and confirm that class imbalance might not impact our training
and evaluation. Also, it displays example images of the dataset to gain an idea of the
variations within the classes as well as in between. These visualizations serve to verify
the existence of informative patterns among the normal and pneumonia X-rays. Statistical
analysis—Again, we test the model on its performance matrix, such as using accuracy,
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precision, recall, and F1-score. In addition, we calculate the sensitivity and specificity of
each class to analyze how well the model identifies each disease status. Being pretty self-
explanatory, these metrics are essential for gauging whether or not the model is performing
well and how it will perform in different conditions of a dataset. This meticulous EDA
and preprocessing step lays down the first stone for building a performant model that
can label X-ray images correctly, either PNEUMONIA or NORMAL, for the diagnosis of
respiratory diseases associated with the lung. These metrics are essential for evaluating
the model’s performance and its ability to function under various conditions within the
dataset. The meticulous exploratory data analysis (EDA) and preprocessing steps establish
the foundational work for constructing a performant model capable of accurately labeling
X-ray images as either PNEUMONIA or NORMAL, facilitating the diagnosis of respiratory
diseases associated with the lungs.

The preprocessing of chest X-ray images plays a pivotal role in enhancing the per-
formance of our deep learning models. Each image undergoes several crucial prepro-
cessing steps—resizing, normalization, and augmentation—that directly influence model
training and effectiveness. Initially, images are resized to a uniform dimension (e.g.,
224 × 224 pixels), ensuring that the neural network receives inputs of consistent size, which
is vital for maintaining the integrity of spatial features across different images. Following
resizing, normalization is applied to adjust the pixel values so that they fall within a specific
range (typically 0 to 1). This step is critical for stabilizing the learning process as it ensures
that the model is not biased toward images with higher pixel intensity variations, thus
facilitating faster and more stable convergence during training. Augmentation techniques
such as random rotations, shifts, and flips are employed to artificially expand the training
dataset. This not only helps prevent the model from overfitting but also enhances its ability
to generalize from the training data to new, unseen images by exposing the model to a
wider variety of scenarios and perspectives found in medical images. Together, these
preprocessing techniques contribute significantly to the robustness and accuracy of the
model, enabling it to perform with high reliability in clinical settings.

3.3. Dung Beetle Optimizer

The dung beetle optimizer (DBO) is an exploration-oriented algorithm that navigates
the search process by means of guidance based on dung beetles’ navigation strategy. It,
thus, enables the model to overcome local optima in pursuit of better solutions. In contrast,
Fick’s law algorithm (FLA) improves exploration by simulating diffusion to guide solution
spreading. With the combination of DBO and FLA, we combine two types of evolutionary
algorithms in a complementary manner to balance exploration and exploitation, which
helps ensure better model optimization, which results in higher pneumonia detection
accuracy. A flowchart representation of the relationship between both optimizers and
within the training process is shown in Figure 1.

In this part, we present an original swarm intelligence (SI)-based optimization al-
gorithm called the dung beetle optimizer (DBO). The concept defined for this technique
derives from the actions of dung beetles, and the mathematical simulation of this process
is explained as follows: Depending on the type and stage of decomposition, dung beetles
like *Copris ochus Motschul-sky*, *Onthophagus gibbulus*, and *Caccobius jessoensis
Harold* are typical decomposers in ecosystems all over the world. These beetles are known
to be a rather curious lot as far as dung is concerned; they shape the dung into balls and
roll it. This behavior is as interesting as it is essential for their survival and reproduction.
These are rowdy insects that use the sun in order to maintain a straight course while rolling
dung balls. This suggested navigational skill is crucial in the simulation model for the
DBO algorithm and its implementation. The transport algorithm emulating rolling in the
relocation of a dung beetle in the defined search space is identified mathematically. The
position update equation provided for the dung beetle algorithm can be clarified with a
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correct description of each parameter in the equation. The following it the corrected and
detailed explanation:

xi(t + 1) = xi(t) + α × k × xi(t − 1) + b × Δx, (1)

where

• xi(t + 1) represents the position of the i-th dung beetle at the next iteration t + 1.
• xi(t) denotes the position of the i-th dung beetle at the iteration t.
• xi(t − 1) indicates the position of the i-th dung beetle at the previous iteration t − 1.
• k is the deflection coefficient, influencing how past movements affect current direction.
• b is a constant (0 < b < 1) that scales the influence of the distance from the

worst position.
• α is a coefficient set to either 1 or −1, which adjusts the direction based on external

factors like wind or uneven terrain.
• Δx is the magnitude of the distance from the worst position in the search space,

calculated as |Δx = xi(t) − Xw|, where Xw refers to the worst position observed.

This model allows the algorithm to explore the search space efficiently, avoiding local
optima by incorporating past movement and the relative quality of current positions.

3.3.1. Updating the Rolling Direction

To mimic the dung beetle’s ability to adjust its rolling direction based on environmental
cues, we use the tangent function, which only considers values within the interval [0, π]
where θ is the deflection angle, constrained within [0, π]:

xi(t + 1) = xi(t) + tan(θ)× |xi(t)− xi(t − 1)| (2)

Here, (xi(t + 1)) represents the new position of the i-th dung beetle at the next iter-
ation, adjusted by the current position (xi(t)) and influenced by the change in direction,
which is guided by the tangent of the deflection angle (θ). The term (tan(θ)) determines
how sharply the beetle changes direction, with (θ) constrained within the interval [0, π]
to ensure a manageable turning angle that mimics natural beetle behavior. The difference
(|xi(t)− xi(t − 1)|) denotes the magnitude of the distance between the current and previ-
ous positions, representing the beetle’s past trajectory, which helps inform its new course.
This update equation allows the beetle to adjust its rolling direction smoothly, balancing
between its previous path and the environmental cues (e.g., the sun’s position or terrain
unevenness) represented by the deflection angle.

3.3.2. Boundary Selection Strategy

The boundary selection strategy mimics the dung beetle’s behavior in which the insect
selects appropriate ground in which to deposit eggs. The spawning area boundaries are
dynamically defined by

Lb∗ = max(X∗ × (1 − R), Lb) (3)

Ub∗ = min(X∗ × (1 + R), Ub) (4)

where

• X* is the current position known to be the best in local search.
• Lb and U b represent, respectively, the lower and upper limits of the problem space.
• R = 1 − t/Tmax is adapted iteratively with the iteration number t and the maximum

number of iterations Tmax.

This will make the area of spawning active and, thus, the search area dynamic, which
helps to enrich the pattern of the DBO algorithm further when searching for the solution.
This extension not only extends the optimization techniques but also enriches the usage of
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bio-inspired algorithms in problem-solving processes by mimicking the peculiar behaviors
that are found in nature.

3.4. Fick’s Law Optimization

Fick’s law is a basic law in physics and chemistry that defines the linear movement
of substances in a concentration gradient. Based on this principle, Fick’s law algorithm
(FLA) continuously reenacts the movement of diffusion in searching for better solutions.
Another important principle in diffusion is Fick’s law, which states that the rate of diffusion
increases with an increase in concentration gradient. The FLA further distorts this notion
in such a way that by relocating the positions of the molecular fragmentations in different
districts, they end up stabilizing positions, and the process works best. The optimization
process begins by initializing a population matrix X, represented as

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . . . . x1,D
x2,1 x2,2 . . . . . . x2,D

...
...

...
...

...
...

...
...

...
...

xN,1 xN,2 . . . . . . xN,D

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

where N is the population size, and D is the dimensionality per individual member of the
population. A typical element, Xi,j of the matrix represents the j-th dimension of the i-th
molecule. The matrix is initialized with the following equation:

xi,j = lb + rand(1, D)× (ub − lb) (6)

where lb and ub are the lower and upper bounds of the search space, respectively. The popu-
lation is split into two subfamilies, N1 and N2, to measure their respective fitness. Molecules
move from regions of high concentration to low, guided by the iteration parameter TFt,
defined by the following equation:

TFt = sin h
(

t/ T
)c1

(7)

The representation of this algorithm is as follows, where t is the current iteration
number, and T is the maximum number of iterations. The molecular position update
mechanism involves three distinct stages: diffusion operator (DO), equilibrium operator
(EO), and steady-state operator (SSO), which are used to find the best value for the system.
The updated equation is

Xt
i =

⎧⎨
⎩

DO i f TFt < 0.9
EO i f 0.9 ≤ TFt ≤ 1

SSO i f TFt > 1
(8)

where
(
TFt) in Equation (7) represents the transition factor at the current iteration (t), and

it is calculated using the hyperbolic sine function
(

sin h
( t

T
)c1

)
, where (t) is the current

iteration number, (T) is the maximum number of iterations, and (c1) is a control param-
eter that determines the behavior of the transition function. The transition factor

(
TFt)

influences the algorithm’s ability to explore or exploit the search space over time.
In Equation (8),

(
Xt

i
)

denotes the position of the (i)-th molecule at the (t)-th iteration,
which is updated through different operators based on the value of

(
TFt). If

(
TFt < 0.9

)
,

the diffusion operator (DO) is applied, facilitating exploration of the search space. If(
0.9 ≤ TFt ≤ 1

)
, the equilibrium operator (EO) is used, balancing exploration and ex-

ploitation. Finally, if
(
TFt > 1

)
, the steady-state operator (SSO) is applied, emphasizing

exploitation to refine the solution in the later stages of optimization.
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3.4.1. Exploration Phase

In the diffusion-only phase where TFt < 0.9, the transports of molecules from
one region to the other occur with respect to the concentration gradient. The parame-
ter guiding this transfer, TtDO, is defined by

Tt
DO = C5 × TFt − r, (9)

The constant C5 is normally set to 2, and r is a random number generated from a
uniform distribution with expectations in the ranges 0 and 1. The direction of molecule
movement is determined by

Xt
p,i

{
f rom i to j ; Tt

DO < rand
f rom j to i ; others

(10)

The number of molecules moving from region i to j is calculated as follows:

NTij ≈ Xi × r1 × (C4 − C3) + Ni × C3 (11)

where C3, and C4 are other constants, and r1 is another random number between 0 and 1.
This optimization framework is able to capture the diffusion process, and the search space
can be adapted dynamically in accordance with the natural diffusion laws alluded to by
Fick’s second law.

In Equation (9),
(
Tt

DO
)

represents the transfer parameter during the diffusion operator
phase, which determines the movement of molecules from one region to another. The
parameter

(
Tt

DO
)

is calculated using a constant (C5), typically set to 2, and the current tran-
sition factor (TFt). The term (r) is a random number generated from a uniform distribution
between 0 and 1, introducing randomness to simulate natural diffusion behavior.

In Equation (10), the molecule movement direction between regions (i) and (j) is
determined by comparing the value of

(
Tt

DO
)

with a random number (rand) from a uni-
form distribution. If

(
Tt

DO
)

is less than (rand), molecules move from region (i) to region
(j); otherwise, they move from region (j) to region (i). In Equation (11), the number of
molecules

(
NTij

)
moving from the region (i) to the region (j) is calculated based on the

concentration of molecules in the region (i), denoted by (Xi), multiplied by a random
number (r1) between 0 and 1. The constants (C3) and (C4) represent diffusion coefficients
that affect the movement, where (C3) accounts for local adjustments, and (C4) influences
the overall gradient. The term (Ni) represents the number of molecules initially present
in the region (i), and the product (Ni × C3) ensures the diffusion process respects the
molecule distribution in the current region.

3.4.2. Transition Phase from Exploration to Exploitation

As the system moves from exploration to exploitation, binding modes become ex-
tremely important in setting all those molecular positions and adjusting them so that they
will be stable at an equilibrium position. The result will be at equilibrium in which all
parts of the region across a level surface are equally flat, and this process makes it easy to
conduct very detailed searching near the current best solutions. This systematic transition
is critical to both expose potential solutions more thoroughly and avoid missing local
nuances within the search space by subsetting out observations based on probabilities.
The FLA can navigate complex optimization landscapes using switches between wide ex-
ploratory movements and fine exploitative adjustments to identify global optima without
prematurely converging upon local optima. This balanced methodology is fundamental
to the effectiveness of this algorithm with a variety of optimization problems. The second
phase is stricken in Fick’s law algorithm (FLA) as it indicates the proper transition from
the initial exploration phase, when individuals appear to discover fresh things, to focused
exploitation, gathering the last bits of information. It occurs via the equilibrium operator
(EO), which makes molecules move to an equilibrium state, where their concentration is
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stable in all parts of the system. This is a key turning point; it focuses the search on the best
prospects that have been identified during exploration.

3.4.3. Equilibrium Operator (EO)

During the EO phase, molecules adapt their positions to balance out the concentration
gradients that become nearly negligible, effectively simulating the natural diffusion process
reaching a state of equilibrium. The position update during this phase is governed by the
following equation:

Xt+1
p,g = Xt

EO,p + Qt
EO,g × Xt

p,g + Qt
EO,g ×

(
MSt

p,Eo × Xt
EO,g − Xt

p,g

)
(12)

where

• Xt
p,g and Xt

EO,g denote the positions in groups p and g.

• MSt
p,Eo represents the relative quantity of group g.

• Qt
EO,g is the diffusion rate factor for the region of group g, calculated as follows:

Qt
EO,g = Rt

1 × DFt
g × DRFt

EO,g (13)

where

• DFt
g is the directional factor (±1).

• Rt
1 is a random number between 0 and 1.

• DRFt
EO,g represents the diffusion rate, defined by:

DRFt
EO,g = exp(−

Jt
p,EO

TFt ) (14)

• Jt
p,EO is the flux, computed as

Jt
p,Eo = −D

dct
g,EO

dxt
p,EO

(15)

where dct
g,EO and dxt

p,EO denote the concentration and position differences between regions
g and p, respectively. The flow of molecules is directed by minimizing the concentration
differences, effectively simulating the diffusion process as dictated by Fick’s law.

3.4.4. Optimization in Stable Phase

The stable phase of the algorithm involves refining the molecule positions. Where
each molecule moves towards the optimal position, the distance of movement is inversely
proportional to the fitness; molecules with higher fitness have smaller movement distances.
The updated formula for molecule positions in this stable phase is

Xe = Dalphs × eΠ × cos (I I × 2π), (16)

where

• Xe: represents the new position. This is the result of the equation and indicates the
updated or new position after applying the transformation based on the other variables.

• Dalphs: This variable is a coefficient or parameter that scales the exponential and cosine
functions. It could represent a distance factor, a scaling factor, or some characteristic
value related to the system being modeled.

• e: This is the base of the natural logarithm (approximately equal to 2.71828). It is used
here in an exponential function to model growth or decay.

• II: This is a random number that balances global and local search efforts. It is calculated as

II = (Fc − 1) × rand +1 (17)
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where

• rand: A random number, typically between 0 and 1.
• Fc: A control factor used to balance the exploration (global search) and exploitation

(local search) phases of an algorithm. It determines the extent to which the search
process should focus on exploring new areas versus exploiting known good areas.
When Fc is high, the algorithm tends to explore more globally; when Fc is low, it
focuses more on local searches.

• cos(II × 2π): This is the cosine function, which introduces oscillatory behavior into
the equation. The argument II × 2π ensures that the cosine function cycles through its
periodic behavior, contributing to the new position Xe.

In summary, this equation Xe uses a combination of exponential growth/decay and
oscillatory (cosine) behavior, influenced by a random factor II that is itself controlled
by Fc, to determine a new position in a search or optimization process. The aim is to
balance between exploring new areas and exploiting known good areas in the search
space. Total time complexity calculation: The total time complexity of the FLAS across all
phases, considering the complexity contributions from different phases, can be aggregated
as follows:

O(FLA) = O(N × D) + O(T ×
(

O(NT12 × D) + O
(
(N/2 − NT12)× D

)
) +

O
(
(N/2 − Ntrans f er)× D

)
+ 6 × O(N/2 × D)

) (18)

Simplifying this, considering the largest terms dominate in Big O notation, particularly
when T is large:

O(FLA) = O(N × D) + O(T × 8 × N/2 × D)
= O(N × D + 4 × T × N × D)
= O(N × D × (1 + 4 × T))

(19)

This formula illustrates that the time complexity of FLA is linear with respect to both
the population size and the dimensionality, and it scales linearly with the number of itera-
tions multiplied by a factor of three. This demonstrates that while the algorithm is efficient
per iteration, its overall computational expense grows significantly with increasing itera-
tions and population size, which is a common trait among population-based optimization
algorithms.

In Equation (18), the total time complexity of the FLA, (O(FLA)), is calculated by sum-
ming the contributions of different phases in the optimization process. The term (O(N × D))
refers to the complexity of initializing the population with (N) population members and (D)
dimensions. The subsequent terms, (O(T × (O(NT12 × D))) and (O((N/2 − NT12)× D)),
represent the complexities associated with managing the diffusion of molecules and the
handling of nontransferred molecules during the optimization process across (T) iterations.
The terms

(
O
(

Ntrans f er × D
))

and
(

O
(

N/2 − Ntrans f er × D
))

correspond to the complex-
ities related to the molecule transfer phase. The final term, (6 × O(N/2 × D)), accounts for
additional operations involved in the optimization.

In Equation (19), the simplified form of the total time complexity emphasizes that
the most dominant terms contribute to the overall computational expense. By simpli-
fying the expression, we see that the total time complexity, (O(N × D × (1 + 4 × T))),
grows linearly with both the population size (N) and the dimensionality (D), as well
as with the number of iterations (T). This result highlights that while the algorithm
is efficient on a per-iteration basis, its overall computational load increases with larger
population sizes and more iterations, which is a characteristic trait of population-based
optimization algorithms.

In this section, we elaborate on the dung beetle optimizer (DBO) and Fick’s law
algorithm (FLA) to explain how each formula contributes to the optimization process and
how the variables and parameters interact to drive the solution toward the optimal point.
In Equation (1), the key variables such as (xi(t + 1)) (representing the updated position of
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the ith individual) and (xi(t)), (xi(t − 1)) (representing current and past positions) allow
the DBO to balance exploration based on prior movements. Parameters like (α) and (k)
adjust for the effects of external factors and directional changes, while (Δx) ensures that the
algorithm can avoid local optima by considering the worst position observed. This enables
the DBO to efficiently explore the solution space and make meaningful adjustments.

Similarly, Equation (2) governs the rolling direction adjustment of the population
based on environmental cues, using the tangent function to fine-tune the position updates.
The deflection angle (θ), within the interval [0, (π)], controls how much adjustment is made,
allowing the optimizer to maintain its path while correcting direction when necessary.

In FLA, diffusion principles are applied in Equation (8) and the subsequent related
equations. These equations simulate molecular diffusion as a way to spread out and refine
solutions based on the concentration gradients between areas of the search space. Variables
such as (TDO),

(
NTij

)
, and the iterative concentration updates ((Δc)) ensure that solutions

are adjusted with precision, moving towards equilibrium through controlled diffusion.
Equilibrium operators (Equation (12)) stabilize the molecular positions, ensuring balanced
search efforts.

The final time complexity equations (Equations (18) and (19)) offer a comprehensive
evaluation of the computational expense of the algorithm, ensuring that the proposed
method maintains efficiency even as the number of iterations or population size grows.

By explaining these equations in detail, we clarify how DBO and FLA integrate
exploration and exploitation mechanisms, systematically driving the population toward
optimal solutions. This breakdown highlights the precision with which the optimization is
carried out, leveraging biological and physical principles to improve model performance.

Algorithm 1 describes the detailed process of hybrid optimization, combining the
dung beetle optimizer (DBO) and Fick’s law algorithm (FLA), integrating 18 equations that
collectively form the backbone of this optimization framework. Each of these equations
plays a critical role in shaping the exploration–exploitation balance, parameter updates,
and boundary conditions essential for the hybrid optimization’s success.

The process begins with the initialization phase, governed by equations that determine
the initial positions and fitness evaluations of the population members. Equation (5) defines
the population matrix, while Equation (6) initializes the individual elements within this
matrix. These equations ensure that the search space is appropriately covered and that
each individual starts with a diverse set of parameter configurations.

During the exploration phase, the DBO’s update rules, encapsulated in Equation (1),
drive the population’s movement across the search space. The role of Equation (1) is to
emulate the navigational strategy of dung beetles, which helps the optimizer efficiently
traverse the solution landscape and escape local optima. Meanwhile, boundary selection
strategies, defined by Equations (3) and (4), ensure that the individuals remain within the
allowable search space by dynamically adjusting the bounds based on the best-known
solutions. This guarantees that the optimizer maintains control over the search domain
while enabling sufficient exploration.

As the algorithm transitions from exploration to exploitation, FLA comes into play,
with Equation (2) governing how solutions are fine-tuned based on the fitness evaluations
of neighboring individuals. This refinement process is critical for ensuring that the solutions
converge toward the global optimum by focusing on exploitation and fine-tuning the results
after a broader exploration phase. The transition between the exploration and exploitation
phases is further reinforced by equations like Equation (7), which defines the iteration
parameter guiding the switching behavior between these phases.

Within the exploitation phase, Equations (8)–(12) dictate the update strategies for
refining the solution space. These equations introduce concepts from Fick’s law, simulating
diffusion processes that allow the optimizer to adjust molecular positions effectively. This
phase ensures that solutions are thoroughly explored within localized areas, refining
the precision of the optimizer’s movements toward the most promising regions of the
search space.
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Additionally, the boundary adjustments and population refinement techniques are
continually updated using Equations (13)–(15), which define the diffusion rate factors
and concentration gradients. These equations simulate molecular interactions, ensuring
that the optimization process smoothly transitions from global to local searches while
maintaining accuracy in the adjustments. Equation (16) provides further refinement by
updating the positions based on exponential and cosine functions, balancing exploration
and exploitation.

The iterative nature of the algorithm is captured by Equation (18), which calculates
the total time complexity of the process. This complexity depends on population size,
dimensionality, and iteration counts, showing the efficiency of the algorithm across different
scales. Equation (19) simplifies the complexity, demonstrating that while the algorithm is
computationally intensive, it maintains efficiency even as iterations increase.

Together, these 18 equations define how DBO and FLA interact to guide the population
toward optimal solutions, balancing broad exploratory searches with precise exploitation.
The interaction between these equations ensures that the hybrid optimization is robust,
adaptable, and capable of producing high-quality solutions for the pneumonia detection
model. Each step of the algorithm is grounded in these equations, providing a mathemati-
cally rigorous framework that supports the optimization’s convergence to an optimal set of
parameters.

Algorithm 1: Detailed hybrid DBO and FLA optimization process.

1: Input: Population size N, parameter bounds parameter_bounds, objective function obj_func,
maximum iterations
max_iterations
2: Output: Best found parameters and corresponding loss
3: Initialize population with N individuals randomly within parameter_bounds
4: Evaluate fitness of each individual in population using obj_func
5: Identify best_idx with the lowest fitness
6: for iteration ← 1 to max_iterations do

7: Exploration phase using DBO
8: for i ← 1 to N do
9: Apply DBO update rule to population[i] using the best individual population[best_idx]
See Equation (1)
10: Ensure population[i] respects parameter_bounds by clipping or wrapping
11: end for
12: Evaluate fitness of the updated population
13: Sort population by fitness ascending
14: Exploitation phase using FLA
15: for i ← 1 to N − 1 do
16: if fitness[i] > fitness[i + 1] then Condition for FLA interaction
17: Apply FLA update between population[i] and population[i + 1] based on their fitness See
Equation (2)
18: end if
19: end for
20: Re-evaluate fitness of the modified population
21: Update current_best_idx if a new lower fitness is found
22: if fitness[current_best_idx] < fitness[best_idx] then
23: best_idx ← current_best_idx
24: Update global best solution with population[best_idx] and its fitness
25: end if
26: Optionally record history or intermediate outputs for analysis
27: end for
28: return population[best_idx], fitness[best_idx]
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Although all 18 equations play a critical role in shaping the hybrid optimization
framework, we chose to integrate only Equations (1) and (2) explicitly in Algorithm 1 to
maintain clarity and focus on the core mechanics of the algorithm. These two equations
encapsulate the primary operations of the dung beetle optimizer (DBO) and Fick’s law
algorithm (FLA), which are the fundamental drivers of exploration and exploitation in the
optimization process. Equation (1) governs the DBO’s position update mechanism, which
allows the algorithm to explore the search space efficiently by simulating the dung beetle’s
navigation strategy. Similarly, Equation (2) directs the fine-tuning adjustments during the
FLA exploitation phase, ensuring precise refinement of solutions.

By highlighting these two equations, we emphasize the novel contributions of the
hybrid optimization process without overburdening the reader with excessive mathematical
details. The remaining equations, though crucial, serve as supportive mechanisms for
initialization, boundary adjustments, diffusion rates, and convergence criteria, which are
standard components in most evolutionary algorithms. Therefore, while Equations (3)–(18)
ensure the algorithm’s completeness and effectiveness, they are not explicitly included in
Algorithm 1 to avoid overwhelming complexity. This approach allows us to strike a balance
between showcasing the algorithm’s innovative components and maintaining readability
for those less familiar with the intricate mathematical foundations of the entire process.

3.5. CNN Architecture

The input size 224 × 224 is used to process each image with three color channels in
the convolutional neural network coded for this study. The architecture begins with a
convolutional layer containing 32 filters, each of size 3 × 3 with an ReLU activation function,
as it allows for nonlinearity to be introduced into our model. Next, a max-pooling layer
with a 2 × 2 window to perform spatial dimensionality reduction lowers the computational
cost. Each subsequent layer copies this structure and contains 32 more filters of the same
size (32 in total) before one more 2 × 2 max pool layer. In order to prevent overfitting,
after the second pooling operation, a large dropout rate of 80% is used, which somehow
turns off a share of feature detectors during the training at random and thus makes the
net learn more robust features. Following convolutional and pooling layers, the network
flattens the multidimensional output of the convolutional and pooling layers into a one-
dimensional array that feeds into a fully connected neural network. The fully connected
segment of the network has 128 neurons and constitutes a dense layer with ReLU activation
function again to keep up with nonlinearity. The output layer is the final layer that has
two neurons for the two class predictions and uses a SoftMax activation function since we
want the predicted class labels to be output as a probability distribution over all the class
labels. Adam optimizer is used to optimize the architecture with a learning rate of 0.001.
The network is trained to minimize cross-entropy loss, which is a commonly used choice
in classification problems. The model performance is further improved by using early
stopping, which stops training if the validation loss does not decrease for ten consecutive
epochs, together with the learning rate reduction technique, which decreases the learning
rate by five times if no improvement is observed in five epochs, down to a minimum value
of 0.0001. It does so by automatically training the model based on different learning rates
while at the same time adjusting the learning rate to validation performance, thus avoiding
overfitting on the training set and maintaining robustness with unseen data. The model
has trained 25 epochs by feeding it batches of 16 images and data augmentation being
performed in real time (random rotations, width, and height shifts, horizontal flips) to
allow the model to generalize. The result of this architecture of the model is presented
in Table 2.
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Table 2. Parameters of the convolutional neural network architecture.

Parameter Value

Input Image Size 224 × 224 × 3

Convolution Layers 2

Filters per Conv Layer 32

Filter Size 3 × 3

Activation Function (Conv Layers) ReLU

Pooling Layers 2

Pooling Type Max Pooling

Pooling Window Size 2 × 2

Dropout Rate 0.8

Dense Layers 1

Neurons in Dense Layer 128

Activation Function (Dense Layer) ReLU

Output Layer Neurons 2

Activation Function (Output Layer) Softmax

Optimizer Adam

Learning Rate 0.001

Loss Function Categorical Cross-entropy

Batch Size 16

Epochs 25

Data Augmentation Rotation, Width and Height Shift, Horizontal
Flip

Early Stopping Patience 10 epochs

Reduce LR on Plateau Factor 0.2

Minimum LR 0.0001

4. MobileNet Architecture

In the next subsection, the architecture of the MobileNet pretrained frameworks is
used based on depthwise separable convolution. That structure factors the convolution
into depthwise and pointwise layers, reducing the load of computation and model size
drastically while retaining robustness. This is optimized for MobileNet and a great use case
in embedded vision applications, reducing the sizes of parameters well and working quite
satisfactorily to date. The model is designed for medical image analysis, with an input
shape of 224 × 224 pixels and three color channels. To avoid overfitting, a modified version
of MobileNet was obtained by integrating two dense layers—one with 1024 neurons and
another with 512—each with attached dropout rates of 10% and 50%, respectively. We used
a final softmax layer to classify the images into two classes (normal and pneumonia).

Extensive tuning of hyperparameters was performed in order to improve the perfor-
mance of the MobileNet model. Different key hyperparameters like learning rate, dropout
rate, number of dense layers, and batch size were carefully tuned in order to have an
optimal model learning using the Adam optimizer while setting the loss function as cate-
gorical cross-entropy. In order to improve the outcome of this experiment further, some
augmentation techniques like random rotation, horizontal flip, width, and height shift
were performed during training time. These techniques are important in preventing over-
fitting in a model, as are dropout and normalization, enhancing the generalizing capability
from training data onto new, unseen images. By exposing the model to a wider array of
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scenarios that naturally occur in medical imaging, we make it significantly more robust
and applicable to real-world clinical settings.

It was applied on 25 epochs, incorporating early stopping and learning rate reduction
strategies to tune, check convergence, and avoid overfitting. Data are divided into training,
validation, and test sets to ensure that the model generalizes unseen statistics well. It was
compared to the baseline CNN model to check the performance of the MobileNet model.
With MobileNet, the performance in classification was improved with a more homogeneous
accuracy, improving behavior across classes, especially relevant in medical diagnostics,
which is the balance of misclassifications.

Accuracy of MobileNet Model: 98.19% Above the CNN model, the minimum was
around 95.35%. Precision, recall, and F1-score: Other metrics from the confusion matrix
also supported the good performance of the MobileNet-based model, showing that both
precision (edge towards false positive) and recall values are high, i.e., good sensitivity
and low false positive rate. This amount of scrutiny interpolated to the confusion matrix
analysis also showed how well our model can categorize both types. A pipeline was
designed for evaluation using various criteria; after experimental results from a good
dataset, it was concluded that with its features, the model is able to distinguish pneumonia
from nonpneumonia diseases more efficiently.

5. Results and Discussion

As a result of the experiments, images were split into two categories (CNN), and
MobileNet architectures were used. In terms of classification for this particular task,
these two operated like black boxes: NORMAL and PNEUMONIA. The CNN model
achieved an overall accuracy rate of 95.35 ± 1.48%. The precision for NORMAL was
96 ± 1.38% while that of PNEUMONIA was 94 ± 1.67%, so considering F1-scores exceeding
95 ± 1.53% from both categories, this is all very good performance. For NORMAL, sen-
sitivity was roughly 94.38 ± 1.63%, with a specificity of 96.38 ± 1.32%. The results were
the opposite of PNEUMONIA. Its sensitivity, on the other hand, hit a higher 96.38 ± 1.32%
and specificity 94.33 ± 1.63%, respectively. MobileNet, however, still came out ahead
with superior results: its accuracy reached 97.94 ± 1.00%. It achieved a precision of 99
± 0.70% for NORMAL as well as 97 ± 1.20% resistance in the case of pneumonia, while
F1-scores for these were both 9898 ± 0.99%. For NORMAL, sensitivity zoomed all the
way up to 9797 ± 1.20%. A specificity of 98.97 ± 0.71% was equally good. PNEUMONIA
sensitivity was even higher than this at 99 ± 0.70% and specificity only slightly lower, or
96.91 ± 1.22%. It achieved an accuracy of 98.19 ± 0.94%. MobileNet was further optimized
using a combination optimization technology. In this optimized environment, NORMAL
achieved an impeccable precision of 100% and a sensitivity of 97 ± 1.20%, plus an outstand-
ing specificity of 99.74 ± 0.31%. In the case of PNEUMONIA, its performance followed
suit: the precision rate came to 97 ± 1.2%, with sensitivity standing at an impressive 100%
and specificity reaching 96.65 ± 1.27%. These results are displayed in Table 3.

Comparing what is in the table, this analysis shows how well our convolutional
neural network (CNN) and MobileNet designs detected pneumonia compared with other
research models that produced lower results for performance indicators. An accuracy
of 95.35 ± 1.48% was achieved by our main CNN model, along with identical precision
and recall, as well as an F1-score that was equal in all categories. This indicates balanced
performance even across various categories in which different classes of pneumonia cases
are diagnosed. When the hyperparameters of the MobileNet architecture were fine-tuned,
accuracy improved to 97.94 ± 1.00%. Also, when a hybrid optimizer was further applied to
the MobileNet, we saw a slight increase in accuracy, now to 98.19 ± 0.94%. At the same time,
high-performance levels were maintained, as measured by all metrics. This optimization
highlights that just making minor changes can have a major impact on how efficient and
accurate the model is when ultimately used for medical imaging tasks. Figure 3 shows the
performance of these models.
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Table 3. Comparison of classification models.

Metric CNN MobileNet
Optimized
MobileNet

Accuracy 95.35 ± 1.48% 97.94 ± 1.00% 98.19 ± 0.94%

NORMAL

Precision 96 ± 1.38% 99 ± 0.70% 100%

Recall 94.38 ± 1.63% 97 ± 1.20% 97 ± 1.20%

F1-score 95 ± 1.53% 98 ± 0.99% 98 ± 0.99%

Specificity 96.38 ± 1.32% 98.97 ± 0.71% 99.74 ± 0.31%

PNEUMONIA

Precision 94 ± 1.67% 97 ± 1.20% 97 ± 1.2%

Recall 96.38 ± 1.32% 99 ± 0.70% 100%

F1-score 95 ± 1.53% 98 ± 0.99% 98 ± 0.99%

Specificity 94.33 ± 1.63% 96.91 ± 1.22% 96.65 ± 1.27%

(a)

(b)

(c)

Figure 3. Comparative performance analysis of CNN (a), MobileNet (b), and optimized MobileNet
(c) models across training epochs.
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Figure 4 illustrates a comparison between the actual and predicted classifications for a
chest X-ray labeled as “NORMAL”. The left panel displays the original chest X-ray image,
showcasing a clear lung structure with no visible abnormalities indicative of a healthy
condition. The right panel presents the corresponding predicted result from the model,
overlaid with a Grad-CAM (gradient-weighted class activation mapping) heatmap. This
heatmap highlights the regions of the image that the model considered most influential
in making its classification decision. The areas in warmer colors (yellow, red) denote
the regions with higher relevance to the model’s decision-making process, while cooler
colors (blue, green) indicate regions of lower importance. The model correctly classifies the
image as “NORMAL”, as evidenced by the alignment of the heatmap’s focus on relevant
areas, such as the lung fields, confirming the model’s interpretability and the accuracy of
its classification.

(a) (b)

Figure 4. Comparison of actual chest X-ray NORMAL (a) and model prediction with Grad-CAM
heatmap highlighting key regions influencing the classification (b).

The references selected for this research led us to the conclusion that these articles
produced subpar results. For example, one study utilized a U-Net architecture and transfer
learning for CXR picture classification, achieving a mere 93.06% accuracy, which is far
lower than our own methods. Another study employing a fuzzy-enhanced deep learning
technique known as CovNNet achieved an accuracy of 80.9%. This information is shown
in Table 4. This comparison demonstrates our models’ superior ability to accurately
differentiate pneumonia cases using imaging data. It also confirms the benefits of our
advanced machine learning techniques and optimization strategies by showing that other
studies report findings that have a lesser impact on scientific contribution. Figure 3 shows
the result of our system’s prediction.

Table 4. Comparison of AI methods for chest X-ray detection.

Ref. Method Accuracy Precision Recall F1-Score

[27] Trained output-base transfer
learning model 96.82% 95.97% 97.54% 96.74%

[28] U-Net architecture and
transfer learning 93.06% 88.97% 96.78% 92.71%
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Table 4. Cont.

Ref. Method Accuracy Precision Recall F1-Score

[29] fuzzy-enhanced deep learning
method called CovNNet 80.9% 85.2% 82.5% -

[33] ANN with ABC for region-based
fractal analysis 92.37% - - -

[34] Combines handcrafted, radiomic,
deep features 94.1% 94.5% 94.1% 94.0%

Proposed hybrid model combining MobileNet
with attention mechanism 98.19 ± 0.94% 98 ± 0.99% 98 ± 0.99% 98 ± 0.99%

In addition to presenting statistical results such as algorithm recognition rates, we
conducted a comprehensive exploratory analysis of the diagnostic data utilized in our
study. This analysis provides insights into the overall distribution and characteristics of the
X-ray images, including both NORMAL and PNEUMONIA cases. By examining the entire
dataset rather than selected samples, we aim to offer a more intuitive understanding of the
diagnostic challenges and the algorithm’s performance across diverse cases. Furthermore,
we discuss the intrinsic limitations of our model, which prevent a 100% recognition rate.
Factors such as image quality, variations in disease presentation, and inherent ambiguities
in medical imaging data contribute to these limitations. These aspects underscore the
complexities of medical diagnosis and highlight why certain images remain challenging
for automated systems to interpret correctly. This discussion is crucial for contextualizing
the capabilities and boundaries of computer-assisted diagnostic systems in real-world
medical settings.

6. Conclusions

Previous works within the field that have explored detailed learning experiences
of a deep convolutional neural network, CNN, and MobileNet models for pneumonia
recognition showcased a significant performance in classifying X-ray images labeled as
“NORMAL” or “PNEUMONIA”. Not only are they highly accurate, but they are also
very time-efficient in medical diagnostics, which is crucial during health crises like the
COVID-19 pandemic. CNN model: Our CNN showed a good result, and it gave an overall
accuracy of 95.35%, which is high in comparison with most works, especially having
balanced precision, recall, and F1-scores on both classes (NORMAL, PNEUMONIA). These
results were further boosted by a MobileNet architecture to 97.94% accuracy, and the hybrid
optimization method was able to push this number up slightly more, reaching an accuracy
of 98.19%. These results provide confirmation of the models, as well as demonstrate that
deep learning and optimization techniques may be utilized to improve diagnostic accuracy
even more. Additionally, the utilization of a range of optimization algorithms, e.g., dung
beetle optimization, as well as utilizing Fick’s law, was incorporated in the process to
enhance and explain further algorithmic efficiency patterns assumed within digital image
processing frameworks. These strategies have expanded the field of AI in healthcare,
providing some innovative measures to approach complicated diagnostics.

This work demonstrates the power of using state-of-the-art neural nets in the analysis
of medical images and emphasizes the importance of using innovative AI technologies to
enhance the diagnostic process, which is crucial for timely disease identification. In the
future, this research may look at expanding on the dataset using multimodal data and
how we can supplement metaheuristic algorithmic changes to even further extend the
possibilities of AI capabilities in healthcare.

One limitation of the current study lies in its reliance on a single modality of
data—chest X-ray images. While the results indicate that the proposed hybrid optimization
framework improves pneumonia detection, its applicability to other pathological diagnoses
using different medical imaging techniques remains unexplored. Furthermore, the dataset
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size, although sufficient for this task, may not fully capture the variability seen in larger
and more diverse populations, potentially limiting the model’s generalizability to different
patient groups. Future research should focus on expanding this approach to multimodal
data, integrating CT scans, MRI, or even clinical records and genetic data to enhance the
robustness and accuracy of diagnoses across a broader spectrum of diseases. Additionally,
exploring the application of this framework to other critical diseases, such as tuberculosis or
lung cancer, could provide valuable insights into its versatility. Further work on optimizing
computational efficiency and testing the model in real-world clinical settings would also
be beneficial.
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Abstract: The automatic generation of stable robotic grasping postures is crucial for the application
of computer vision algorithms in real-world settings. This task becomes especially challenging in
complex environments, where accurately identifying the geometric shapes and spatial relationships
between objects is essential. To enhance the capture of object pose information in 3D visual scenes,
we propose a planar robotic grasping detection algorithm named SU-Grasp, which simultaneously
focuses on local regions and long-distance relationships. Built upon a U-shaped network, SU-Grasp
introduces a novel dual-stream encoding strategy using the Swin Transformer combined with spatial
semantic enhancement. Compared to existing baseline methods, our algorithm achieves superior
performance across public datasets, simulation tests, and real-world scenarios, highlighting its robust
understanding of complex spatial environments.

Keywords: robotic grasping detection; 3D computer vision; self-attention mechanism; multi-scale
feature extraction; cross-modal fusion

1. Introduction

With recent advancements in automation technology, intelligent robots are expanding
beyond industrial applications into various fields [1]. Civil engineering robotics, in partic-
ular, has become a popular research focus in recent years [2]. Robotic arms can perform
numerous automated tasks by extracting object features from visual signals, including
rock drilling [3] and construction [4–6]. However, traditional robots are typically prepro-
grammed for fixed assembly line operations, making it challenging for them to adapt to
the complex and dynamic environments of construction sites [2]. Developing reliable and
efficient grasping algorithms is, thus, essential for advancing the automation capabilities of
construction robots.

As more and more deep learning algorithms have been proposed, significant progress
has been achieved in learning high-level semantic representations. Deep learning, which
minimizes the need for manual feature extraction, has become the mainstream approach
for a wide range of visual perception tasks [7,8]. In robotic grasping applications, neural
networks model visual signals to effectively learn the spatial representation of each object,
enabling the computation of optimal grasping poses for target objects. Based on the type of
visual input, existing end-to-end grasping prediction algorithms can be categorized into
three main types [9,10]:

(1) Grasping detection based on 2D image. The most straightforward approach to robotic
grasping is adapting object detection models to suit grasping tasks. Established
models like YOLO [11] have been widely adapted for robotic grasping, particularly
useful when capturing objects with fixed shapes [12,13]. However, 2D vision-based
grasping methods rely heavily on simplified physical models and the assumption of a
fully observable environment, limiting their applicability.
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(2) Grasping detection based on point cloud segmentation. This approach involves
preprocessing the point cloud, extracting features using deep learning, and predicting
grasping poses with a specialized detector head. JSIS3D [14], for instance, proposes
a parallel point-by-point network structure capable of simultaneously predicting
object classes and embedding 3D points into higher-dimensional feature vectors for
clustering. TemporalLidarSeg [15] introduces a dense feature encoding framework
to address the sparsity of mesh data. However, 3D instance segmentation requires
high-precision point cloud data, imposing stringent hardware requirements, which
currently restricts its adoption in general robotic arm grasping tasks.

(3) Grasping posture distribution map prediction based on RGB-D vision. Considering
that there are infinite feasible grasping postures for an object, the pixel-level grasp
representation method has been proposed in recent years [16–19]. For an RGB-D input
image, these models output a set of predictions for each pixel, including grasp confidence
and parameters (e.g., depth, width, and rotation angle). Chalvatzaki et al. [16] apply the
U-Net 2D image segmentation algorithm to grasping tasks, capturing local spatial
details and high-level semantic features in RGB-D images. Le Tuan Tang et al. [17]
propose a method that combines CNN with point-pair-based 6D pose estimation to
achieve rapid 3D object recognition. Jin Lei et al. [18] utilize a pose regression module
to combine the original image with regions of interest, reducing the search space
through translation refinement and rotation prediction.

These approaches still struggle to accurately recognize spatial relationships among
various unknown objects in unstructured scenes. Additionally, current 3D vision algo-
rithms often process depth images as grayscale images, concatenating them with RGB
channels as input [9,20]. However, significant semantic differences exist between color and
depth images: color images primarily represent object appearance, while depth images
convey spatial information, such as distance, surface curvature, and orientation. Directly
combining these two types of images may compromise the model’s ability to fully interpret
their distinct visual semantics.

To address these issues, we propose the SU-Grasp algorithm by improving the tradi-
tional U-shaped network. Inspired by Swin-Unet [21], our approach leverages the sliding
window self-attention mechanism [22] within a U-network structure for effective multi-
scale visual feature extraction. Based on that, we further treat spatial and color information
as distinct semantic modalities and design a dual-stream encoding strategy to facilitate
cross-modal interaction. Additionally, we introduce the normal vector angle image as a
prior feature to enrich spatial semantic representation. An overview of the SU-Grasp struc-
ture is shown in Figure 1. Experimental results demonstrate that SU-Grasp outperforms
existing baselines in both accuracy and efficiency.

Our contributions are summarized as follows:

• We propose a novel robotic grasping algorithm, SU-Grasp, based on a dual-stream
structure. The image segmentation model Swin-Unet [21] is adapted to encode spatial
and color inputs separately, minimizing semantic interference. Additionally, the
optimal point for cross-modal information fusion is carefully explored.

• We introduce the normal vector angle image as a supplementary input to enhance
spatial representation. By preprocessing the depth image, a normal vector angle image
is generated, providing prior knowledge of the scene’s spatial structure and guiding
the model to focus on angular variations along object boundaries.

• SU-Grasp achieves accuracy rates of 97.9% and 95.1% on the public datasets Cornell
and Jacquard, respectively, outperforming existing baseline methods and demonstrat-
ing strong spatial comprehension. The results from simulation and real experiments
further show that our approach generalizes well to various complex planar grasping
scenarios.
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Figure 1. Structural diagram of the SU-Grasp. We encode the color modality (RGB image) and the
spatial modality (depth image and normal vector angle image, abbreviated as DI image) separately,
followed by cross-modal fusion. The decoder outputs the grasp confidence and grasp parameters for
each pixel. Red boxes in the figure indicate the top three results with the highest confidence.

2. Related Works

2.1. Deep Learning for Robotic Grasping

Extensive research has been conducted in the field of robotic grasping. While the
problem may appear to be simply locating an appropriate grasp point on an object, the
actual task involves multiple factors, such as the target object, the object’s shape and
physical properties, and the specific gripper used for grasping [20].

Early robotic arm grasping algorithms primarily utilized unimodal inputs. Pinto et al. [23]
employed an architecture similar to AlexNet [24], demonstrating that increasing the dataset
size improved their CNN’s ability to generalize to new data. Johns et al. [25] utilized
simulated depth images to assess the grasp outcome for each predicted grasp pose and
selected the optimal grasp by refining the predicted pose using a grasp uncertainty function.

The availability of affordable RGB-D sensors has further facilitated the application
of deep learning, allowing for direct feature extraction from multi-modal data to identify
object characteristics. Yan et al. [26] developed a point cloud prediction network that
generates grasp predictions by first preprocessing the data to extract color, depth, and
masked images and then constructing a 3D point cloud of the object, which is fed into a
critic network for grasp prediction. Chu et al. [27] reframed orientation regression as a
classification task, leveraging CNNs’ high classification accuracy to improve grasp detection
results. Kumra et al. [28] proposed a modular solution for grasping novel objects using
a generative residual convolutional neural network. This network leverages n-channel
input data to produce images that allow for inference of grasp rectangles for each pixel in
the image.

The algorithms mentioned above fail to fully utilize the latent spatial semantics in
depth images, making it challenging for models to comprehensively handle both color
and spatial information. Additionally, CNN-based architectures remain dominant due
to their rapid response times, which limits multi-scale feature extraction. Therefore, it is
essential to develop an algorithm that maintains fast response times while offering robust
comprehension capabilities.

2.2. Modality Fusion for RGB-D Images

In 3D computer vision tasks, RGB images contain rich color and texture information,
while depth images emphasize 3D layout and spatial positioning [29]. Effectively combin-
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ing the complementary information from RGB and depth features for cross-modal feature
fusion has been a primary focus in such tasks.

Fu et al. [30] firstly converted the depth map into a three-channel representation and
used a shared backbone for six-channel RGB-D feature extraction. Li et al. [31] captured
complementary features between RGB and depth cues through an interwoven attention
mechanism. Liu et al. [32] extracted saliency maps from various layers by selectively fusing
cross-modal features and applying a fusion refinement module. Liang et al. [33] introduced
a multi-modal interactive attention unit to filter and enhance cross-modal features along
the channel dimension. Feng et al. [34] designed a deep interleaved backbone that transfers
information between modality-specific encoders, enabling multi-modal feature fusion at
various levels.

Since robotic arm grasp pose prediction requires high response speeds, this paper
introduces an innovative adaptation of the traditional U-shaped network by implementing a
dual-stream encoder. This design reduces the parameter count and improves computational
efficiency while still achieving effective cross-modal fusion of color and spatial information.

3. Swin-Unet-Based Predictive Model for Planar Grasping

This section focuses on enhancing the multi-scale perception capabilities of the grasp
prediction model. Swin-Unet [21] is selected as the foundational framework, leveraging
its sliding window self-attention mechanism and U-shaped network structure to simulta-
neously improve the algorithm’s sensitivity to local geometric features and global visual
relationships.

3.1. Task Definition

We focus on planar grasping for parallel gripper end-effectors, with the robotic
arm constrained to grasp only from a direction perpendicular to the plane. Follow-
ing [28], we use a distribution graph to represent the predicted grasp posture, denoted as
G = {Q, W, Θ} ∈ R

3∗W∗H , where Q, W, and Θ represent three distribution heatmaps
indicating the success probability, grasp width, and rotation angle, respectively, with each
pixel serving as the potential grasp center. Therefore, the grasp prediction task can be
divided into three subtasks: predicting the grasp center position, grasp rectangle width,
and rotation angle.

3.2. Swin-Unet Backbone

Considering the similarities between grasping prediction and image segmentation
tasks, we select the medical image segmentation model Swin-Unet [21] as our initial
backbone. Swin-Unet is a U-shaped architecture based on the Swin Transformer [22],
comprising an encoder, a bottleneck layer, a decoder, and skip connections. The network
divides the input image into non-overlapping patches and extracts multi-scale features
using an encoder that employs a sliding window attention mechanism. Subsequently, the
decoder, equipped with patch expanding layers, performs up-sampling, progressively
restoring the spatial resolution of the feature maps to enable pixel-level predictions.

We choose Swin-Unet due to two key designs that make it highly suited for robotic
grasping tasks:

• The Swin Transformer captures low-level features across multiple scales. The encoder con-
nects information across individual image patches. The internal window attention
mechanism (W-MSA) captures local information and fine details of graspable ob-
jects, while the shifted window attention mechanism (SW-MSA) captures long-range
dependencies between more distant pixels.

• The U-shaped structure enables effective high-level semantic aggregation. To minimize
information loss during down-sampling, Swin-Unet uses skip connections to transfer
shallow features from the encoder to corresponding decoder layers, aiding the decoder
in effectively aggregating high-level semantic information.
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Combining these two advantages, Swin-Unet is selected as the backbone for our SU-
Grasp model. This architecture enables the simultaneous capture of local details (such as
object contours) and long-range relationships (such as spatial connections between different
visual elements in cluttered environments) in 3D vision.

However, experiments revealed that Swin-Unet struggles to learn stable grasping
poses in 3D visual scenes (see Section 5.3 for details). This may be attributed to two main
factors: (1) depth images and RGB color images convey distinct semantic information,
making them challenging to encode simultaneously; and (2) Swin-Unet has limitations in
comprehending the physical dynamics involved in grasping.

To address these challenges, we modified the original encoder into a dual-stream
structure, enabling more efficient fusion of color and depth information. Additionally, we
introduced the normal vector angle image as supplementary spatial input, as detailed in
Section 4.1.

3.3. Loss Function

In the Swin-Unet decoder, three detection heads (i.e., Q, W, and Θ) are attached in
parallel at the output layer. This structure allows for efficient inference, requiring only a
single forward pass to determine the optimal grasping pose.

Following the approach in [28,35], we frame grasp pose estimation as a regression

problem by establishing a mapping function F : I →
∼
G , where I denotes the input RGB-D

image and
∼
G denotes the predicted heatmap of the model outputs (Q, W, Θ). To optimize

this mapping, we define the loss function based on minimizing the distance between
predictions and target values, as follows:

L =
N

∑
i

∑
m∈{Q,W,Θ}

wm ×
∣∣∣∣
∣∣∣∣∼Gm

i − Lm
i

∣∣∣∣
∣∣∣∣
2
, (1)

where N denotes the sample size, Li denotes ground truth, and wm denotes the weight of
each predicted heatmap loss value.

To determine the final grasping posture, we identify the pixel position with the highest
grasp confidence in the heatmap Q, defined as G*

pos = argmaxposQ. Then, we extract the width
and angle of the grasp posture from the heatmaps W and Θ at the corresponding position.

4. Dual-Stream Encoding Strategy Based on Spatial Semantic Enhancement

This section mainly focuses on how to improve the multi-modal understanding ability
of the original Swin-Unet network for grasping tasks in 3D scenes. First, we introduce the
normal vector angle image to extract latent spatial prior knowledge from the depth image.
To mitigate semantic interference arising from multi-channel inputs, we transform the
encoder of Swin-Unet into a dual-stream structure and develop a modality fusion method
for effectively integrating color and spatial information.

4.1. Introduction of Normal Vector Angle Images

To effectively leverage the color and spatial information contained in RGB-D images,
we categorize the 3D vision signals into two semantic modalities: color modality and
spatial modality. Drawing from the process of how humans grasp objects, we propose
that the spatial modality plays two critical roles. First, it aids in establishing the overall
position of the target object. Second, it provides local geometric information of the object’s
surface, which is crucial for identifying the most stable grasping point and determining the
appropriate rotation angle.

Rather than relying on the model to autonomously learn the hidden semantics of the
object’s surface orientation, explicitly representing this information through the normal
vector angle image may simplify the learning task.
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Therefore, we incorporate the normal vector angle image into our network input
as prior information. Specifically, for each pixel in the depth image, we calculate the
unit surface normal vector N

(
nx, ny, nz

)
and its angles relative to the camera coordinate

system’s XYZ axes. The formulas are as follows:

ax = arccos(N· x),ay = arccos(N· y),az = arccos(N· z), (2)

where x(1, 0, 0), y(0, 1, 0), z(0, 0, 1) represent the unit vectors of the XYZ coordinate axes,
respectively. After scaling these angles to a range of 0 to 255, we generate a three-channel
normal vector angle image Inrm. This image is then concatenated with the depth image to
form the enhanced input for the spatial modality (abbreviated as the DI image).

Since the normal vector angle images for all samples can be precomputed, our model is
able to maintain an end-to-end training mode. In the following sections, we will collectively
refer to the RGB color images and DI spatial images as RGB-DI images, which will serve as
inputs to the model.

Figure 2 displays the grayscale visualization of a sample normal vector angle image,
revealing how effectively it highlights changes in object surface orientation. This provides
valuable cues for the model in recognizing object shapes and determining the optimal
rotation angle for the robotic arm during grasping.

Figure 2. Example of each channel in the normal vector angle image.

4.2. Dual-Stream Multi-Modal Fusion Encoder

With the addition of the normal vector angle image, the total number of input channels
(referred to as the RGB-DI image) increases to seven. Directly feeding this combined input
into the original network could result in suboptimal feature fusion, as the data distribution
characteristics vary significantly between modalities. The RGB image in the color modality
emphasizes object textures and relative positions, while the DI image in the spatial modality
primarily highlights changes in geometric shape characteristics.

Therefore, the dual-stream architecture [36] is adopted to leverage the distinct strengths
and complementary features of different modalities. As shown in Figure 3, two compact
sub-encoders with similar structures are used to separately process color and spatial im-
ages. The resulting feature maps are then concatenated and further encoded to facilitate
cross-modal interaction.

592



Electronics 2024, 13, 4432

Figure 3. Overview of the SU-Grasp framework. Firstly, a normal vector angle image is derived
from the depth image. A dual-stream encoder based on Swin Transformer is then employed to
separately extract multi-scale features for color and spatial information. Finally, a U-shaped structure
decodes these features into three pixel-level prediction heatmaps for grasping parameters, specifically
representing grasp confidence, grasp width, and rotation angle.

4.3. Cross-Modal Fusion Strategy

To facilitate cross-modal fusion, we leverage the hierarchical structure of Swin-Unet
and innovatively enhance its encoder through a channel-level splicing method [37]. The
implementation details of our model SU-Grasp are as follows:

(1) In the first half of the original Swin-Unet encoder, we set the hyperparameter C (rep-
resenting the dimension of the embedding vector for each patch) to half of its original
value. This structure is then replicated to create two sub-encoders, as indicated by the
green dashed boxes in Figure 4b.

(2) The RGB color image and the DI spatial image are input into their respective sub-
encoders, each of which up-samples the features twice using Swin Transformer blocks.
The features from the two sub-encoders are then concatenated, restoring the embed-
ding dimension to 4C, as shown within the blue dashed boxes in Figure 4b.

(3) The concatenated vector from the previous step includes both color segmentation
features and spatial shape features. By sequentially passing through the cross-modal
fusion encoder, bottleneck, and decoder, the grasp parameter prediction heatmaps
can ultimately be generated.
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(4) Correspondingly, the skip connection module for the two lower levels needs to be
adjusted. The outputs from the two sub-encoders are concatenated with the feature
map from the deeper level decoder, as illustrated in the following formula:

Din
n =

([
E1

4−n, E2
4−n, Dout

n−1

])
(3)

where Din
n and Dout

n denote the input and output of the nth-level decoder, and E1
4−n

and E2
4−n denote the output of the two sub-encoders corresponding to the nth level

decoder for n ∈ {2, 3}.
(5) Leveraging the hierarchical structure of Swin-Unet, the fusion point for the dual-

stream architecture can be adjusted to occur earlier or later in the processing sequence.
We conduct experiments to investigate the impact of selecting different fusion points,
which are detailed in Section 5.4.

Figure 4. (a) A simplified diagram of the original Swin-Unet. (b) The modified structure featuring a
dual-stream cross-modal fusion encoder. This modification can be understood as halving the first
part of the original encoder.

In summary, our SU-Grasp framework employs independent sub-encoders to sepa-
rately extract multi-scale features from RGB and DI images. Compared to directly inputting
seven-channel data, this dual-stream encoding strategy allows for individual extraction
of semantic features from each modality, followed by more efficient fusion, enhancing
the model’s understanding of the input data. Additionally, this approach reduces the
complexity of the algorithm and accelerates training through parallel computing.
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5. Experiments

5.1. Datasets

We conduct our experiments using two public datasets, Cornell [38] and Jacquard [39].
The Cornell dataset comprises 885 images featuring 244 common household items, with a
total of 8019 grasp frames labeled, including 5110 feasible grasp frames and 2909 infeasible
ones. The Jacquard dataset, created by Amaury et al. [39], automated the generation of
labeled images for robot grasping by simulating a CAD environment. It contains over
50,000 images across 10,000 object categories along with 1 million machine-annotated
grasping labels.

To assess the model’s accuracy on these datasets, a successful grasp is defined by the
following conditions:

(1) The predicted grasp center P̂(x̂, ŷ) falls within 20 pixels of the labeled center P(x, y);
(2) The difference between the predicted grab angle and the labeled angle is within 30◦;
(3) The Jaccard coefficient between the predicted grasp box and ground truth needs to be

greater than 0.3. The Jaccard coefficient is used to quantify the similarity between two
grasping boxes, and it is calculated using the following formula:

Jaccard
(
Ŝ, S

)
=

∣∣Ŝ ∩ S
∣∣∣∣Ŝ ∪ S
∣∣ , (4)

where Ŝ and S denote the area occupied by the predicted grasp box and ground truth,
respectively.

5.2. Implementation Details

The primary objectives of our experiments are to verify the following: (1) whether the
Swin Transformer outperforms traditional CNN architectures in terms of grasp accuracy
and efficiency, and (2) the effectiveness of the innovations presented in this paper. To
evaluate these objectives, we selected several well-performing CNN algorithms from the
two datasets as our baseline models. These include the Multi-Modal Grasp Predictor
(MMGP) [20], the ResNet50 multi-grasp predictor [27], and GRCNN [28].

We set the embedding vector dimension C to 64, with a patch size of 4 × 4 and a
window size of 7. The block depth for each stage of the Swin Transformer is configured
to 2, while the number of attention heads is set to 1, 2, 4, 8, 4, 2, and 1, respectively. The
learning rate decreases from 10−4 gradually to 10−5. The dropout rate is set to 0.1 to prevent
overfitting. All experiments are conducted using a single NVIDIA RTX 4090 GPU.

For the Cornell dataset experiments, the batch size is set to 32, and the models are
trained for 1000 epochs. In contrast, for the Jacquard dataset, the number of epochs is
reduced to 500 to save computational time.

5.3. Results Analysis

The accuracy and runtime of each model on the test sets of the two datasets are
presented in Table 1.

Table 1. Model’s performance comparison on Cornell and Jacquard datasets.

Model
Cornell Dataset Jacquard Dataset

Accuracy Running Time (ms) Accuracy Running Time (ms)

MMGP [20] 0.872 64 0.835 65
ResNet [27] 0.957 58 0.854 55

GRCNN [28] 0.973 122 0.946 124
Swin-Unet [21] 0.968 108 0.944 112

SU-Grasp (ours) 0.979 78 0.951 81
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As shown in Table 1, SU-Grasp achieves the highest accuracy on both datasets com-
pared to the other baselines and significantly outperforms the other models in terms of
runtime. This demonstrates that SU-Grasp can deliver faster and more accurate grasp
prediction responses. Compared to the baseline models, SU-Grasp’s two-stage encoding
structure enables a more efficient execution of the two subtasks: “object localization” and
“grasp prediction”. Additionally, it mitigates the data distribution interference between
RGB images and depth information. This will directly enhance the model’s inference
efficiency while maintaining a smaller parameter count. Such capabilities are essential for
practical applications that demand quick responses.

Figure 5 illustrates the training loss variation curves for the SU-Grasp, Swin-Unet,
and GRCNN models across both datasets. SU-Grasp consistently demonstrates superior
training speed and effectiveness, indicating that the integration of the normal vector angle
image and the dual-stream encoder structure significantly enhances the model’s ability
to comprehend spatial information in the scene, resulting in improved grasp prediction
performance.

Figure 5. Training loss variation curves of three models (SU-Grasp, Swin-Unet, and GRCNN) on the
Cornell and Jacquard datasets.

Figure 6 presents some prediction results and output heatmaps generated by SU-
Grasp. It is evident that SU-Grasp effectively captures the edge variations in objects within
the scene and selects optimal grasp postures based on their overall geometric appearance.
However, the model exhibits a tendency to overly emphasize object boundaries while
neglecting physical principles, which could lead to an imbalance of forces acting on the
object during the grasping process.

5.4. Ablation Analysis

To evaluate the impact of the normal vector angle image and the dual-stream encoder
structure on accelerating model training, we conduct two ablation experiments using the
Cornell dataset.

5.4.1. Ablation of the Normal Vector Angle Image

We train Swin-Unet and SU-Grasp using RGB-D and RGB-DI as inputs, respectively.
For the training of SU-Grasp with RGB-D, the channel allocation ratio in the dual-stream
encoder is adjusted from 1:1 to 3:1. The total loss values for each model were recorded, as
illustrated in Figure 7.
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Figure 6. Visualization of SU-Grasp’s prediction results and output heatmaps. The blue boxes in
(a) represent the predicted poses with the highest success probability. The heatmaps in (b) represent
the predicted values of success probability, grasp width, and rotation angle.

From Figure 7, we observe that, when the training data for Swin-Unet are switched
from RGB-D to RGB-DI, the loss values exhibit greater fluctuations, negatively impacting
the convergence speed of Swin-Unet. In contrast, SU-Grasp demonstrates accelerated
convergence when using RGB-DI as input. This indicates that the multi-modal fusion
mechanism, supported by the prior information provided by the normal vector angle
image, helps the model learn spatial representations more efficiently.
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Figure 7. Changes in total loss values in ablation experiment of the normal vector angle image.

To further investigate the role of normal vector angle images in the training of SU-
Grasp, we plot the losses of the three output heatmaps (Q, W, Θ) when using RGB-D and
RGB-DI as inputs in Figure 8.

Figure 8. Changes in total loss values in ablation experiment of the normal vector angle image.

As can be observed in Figure 8b,c, adding normal vector angle images to the model’s
input significantly accelerates the convergence speed of the loss values for grasp width W
and angle Θ. This outcome aligns closely with our original design intention: the normal
vector angle image provides clearer surface information of objects, which assists the model
in identifying an optimal perpendicular cutting plane for stable grasping. As a result, it
accelerates the learning process of understanding grasp width W and rotation angle Θ,
both of which are closely related to the local geometric information of objects.

5.4.2. Ablation of the Dual-Stream Encoder Structure

To explore the optimal structure of the dual-stream encoder, we set up four models:
(1) the original Swin-Unet, (2) our SU-Grasp, (3) SU-Grasp-Early (where the dual-stream
structure is fused early, immediately after the first up-sampling), and (4) SU-Grasp-Late
(where the dual-stream structure is fused after all up-sampling is completed, followed
directly by the bottleneck module). All four models utilize RGB-DI as input, and the
changes in loss values are presented in Figure 9.
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Figure 9. Changes in total loss values in ablation experiment of the dual-stream encoder structure.

In Figure 9, as the fusion point shifts further back—from the input-level early fusion
of Swin-Unet to the full-level late fusion of SU-Grasp-Late—the model’s convergence
speed initially accelerates but then begins to decelerate. This observation suggests that the
position of cross-modal fusion directly influences the effectiveness of the integration. Based
on the experimental results, fusion occurring after the second up-sampling proves to be
the most effective, which is why it has been selected as the final structure for our model,
SU-Grasp.

5.5. Simulation Test

The Cornell and Jacquard datasets are both focused on single-object grasping tasks,
which limits the ability to assess algorithms’ robustness and their capacity to understand
complex environments that may contain multiple unknown objects. To address this limita-
tion, we designed a simulation environment using PyBullet, as illustrated in Figure 10a.

Figure 10. Simulation test results of SU-Grasp.
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The simulation test process proceeds as follows. After initializing the simulation envi-
ronment, a virtual camera captures the RGB-D image. Based on the algorithm’s predictions,
the robotic arm is then driven to the corresponding positions to attempt grasping an object
in the scene. To evaluate the algorithm’s ability to perceive complex, unstructured envi-
ronments, several unknown 3D objects are randomly generated, incorporating potential
occlusions, tilts, leans, and other intricate states.

Based on our experiments, SU-Grasp achieves an average grasping success rate of
81.3%, which is significantly higher than that of Swin-Unet (69.0%) and GRCNN (72.8%).
Figure 10b illustrates some outputs from SU-Grasp during simulation, showcasing its
ability to quickly identify object positions even in cluttered scenes.

However, we also observed instances of “contour grasping”, as shown in the fourth
image of Figure 10b. This indicates a potential misinterpretation of object boundaries as
critical grasping points. This issue may stem from the model’s limited understanding of
physical principles, suggesting a need for further improvements.

5.6. Real-World Test

We tested SU-Grasp’s performance in real-world scenarios using a Franka Emika
7-DOF robotic arm and an Intel Realsense D435 depth camera. The grasping process was
divided into several main steps: data collection, data preprocessing, network inference,
motion planning, robotic arm control, and reset (as illustrated in Figure 11). During data
preprocessing, the RANSAC algorithm [40] was employed to process 3D visual signals.
Once the grasping parameters were predicted by the network, the MoveIt motion planning
framework [41] was used for path planning through inverse kinematics in a simulated
environment.

 

Figure 11. Illustration of grasping tests in real-world scenarios.

To evaluate grasp success, the end-effector’s force-torque sensor determined if the
object was securely gripped. Upon a successful grasp, the robotic arm would remove the
object from the workspace; if unsuccessful, it would return to its initial position. When the
grasping of an object failed a total of five times, we manually removed the object.
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We conducted tests in five different scenarios, involving several randomly arranged
stacked objects, including rectangular boxes, measuring tapes, plastic bottles, double-sided
tapes, and pencils. The experimental results are presented in Table 2, where “

√
” indicates

a successful grasp and “×” indicates a failure.

Table 2. Model’s performance comparison in real-world tests.

Test
ID

Objects in the Scene
Grasping Success Rate Grasp Attempt Count

GRCNN SU-Grasp GRCNN SU-Grasp

1 Rectangular Box × 5 100% (
√ √ √ √ √

) 100% (
√ √ √ √ √

) 7 (2 2 1 1 1) 5 (1 1 1 1 1)

2 Rectangular Box × 4,
Measuring Tape × 1 80% (

√ √ √ √ ×) 80% (
√ √ √ √ ×) 11 (2 1 2 1 5) 9 (1 1 1 1 5)

3
Rectangular Box × 2,

Plastic Bottle × 2,
Double-Sided Tape × 1

80% (
√ √ × √ √

) 100% (
√ √ √ √ √

) 13 (2 1 5 3 2) 8 (1 1 2 2 2)

4
Rectangular Box × 2,
Measuring Tape × 2,

Pencil × 1
80% (

√ √ × √ √
) 80% (

√ √ × √ √
) 14 (2 2 5 4 1) 11 (1 1 5 3 1)

5 Pencil × 2, Plastic Bottle
× 2, Measuring Tape × 1 60% (

√ √ × √ ×) 80% (
√ √ √ √ ×) 15 (2 1 5 2 5) 10 (2 1 1 1 5)

Average 80% 88% 12.0 8.6

× The red markings in the table indicate that the corresponding object has reached the maximum number of
grasping attempts allowed, signifying a failed grasp.

Table 2 documents the performance of SU-Grasp and GRCNN in terms of grasp success
rate and average number of attempts across different scenarios. The experiments showed
that, although both models achieved a success rate of over 80%, SU-Grasp demonstrated
greater robustness to environmental challenges, such as stacked occlusions and shadow
interference. This allowed for it to more accurately identify an optimal grasp posture for
individual objects. In contrast, GRCNN often perceived visually overlapping objects as a
single entity, resulting in ineffective object localization.

The experiments also revealed that the success rate for grasping measuring tapes is
relatively low, likely due to their small size and smooth surface, which make them prone
to slipping during the robotic arm’s grasp. Nonetheless, the model continues to exhibit
the tendency noted in Section 5.5, where grasping is centered around the object’s contour
points. While this does not affect the grasping of larger objects, like boxes and bottles, more
precise grasping predictions are necessary for smaller items like measuring tapes. This
indicates that the model still faces challenges in understanding more complex physical
knowledge, such as material smoothness and mass distribution.

6. Discussion

In this study, to balance spatial understanding with response speed, we chose to
enhance the existing Swin-Unet model rather than adopting the more conventional CNN
framework. As demonstrated by the results in Section 5, the integration of normal vector
angle images enables the model to rapidly capture the geometric contours of objects and
find stable grasping angles efficiently. The dual-stream encoding strategy further leverages
the complementary strengths of color and spatial information, allowing for the model to
accurately locate each object in complex environments and achieve better generalization
performance.

In a broader context, this study offers valuable insights for other complex visual tasks.
For instance, similar dual-stream encoding methods could be advantageous in scenarios
requiring precise geometric understanding, such as obstacle detection in autonomous
driving or assisting with complex procedures in medical settings.

Despite the positive results, this study has certain limitations. First, the model occa-
sionally identifies the boundary contour of an object as the grasp center, likely due to the
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prevalence of elongated objects in the training set, which may have influenced the model’s
interpretation of the ideal grasp center. Additionally, the model encounters difficulty se-
lecting more stable materials as grasp points when handling small, smooth objects, where
visual cues and practical experience would typically favor materials with higher friction.

To address these challenges, our future work will focus on incorporating physical
knowledge into the model to improve grasp center localization. For example, by employing
multi-round prompts to guide large vision-language models (VLMs), we can encourage a
finer focus on object geometry and material characteristics.

7. Conclusions

To address the challenge of insufficient spatial understanding in existing robotic grasp-
ing detection algorithms, we propose the SU-Grasp model, which integrates a dual-stream
encoding strategy based on sliding window attention and spatial semantic enhancement
within a U-shaped network architecture. By explicitly incorporating spatial information
through the normal vector angle image, our model can better discern the geometric features
of objects, thus enhancing its grasping decision-making process.

Our method achieved accuracy rates of 97.9% and 95.1% on the Cornell and Jacquard
datasets, respectively, outperforming existing baselines in both accuracy and training ef-
ficiency. Moreover, in complex simulated and real-world environments with multiple
unknown objects with varying poses and occlusions, SU-Grasp maintained average grasp-
ing success rates of 83% and 88%. These results underscore SU-Grasp’s robust spatial
understanding and generalization capabilities, enabling robotic arms to effectively adapt to
diverse and intricate engineering environments.
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Abstract: The human body is often occluded by a variety of obstacles in the monitoring system,
so occluded person re-identification is still a long-standing challenge. Recent methods based on
pose guidance or external semantic clues have improved the representation and related performance
of features; there are still problems, such as weak model representation and unreliable semantic
clues. To solve the above problems, we proposed a feature extraction network, named shared feature
fusion with pose-guided and unsupervised semantic segmentation (SFPUS). This network will extract
more discriminative features and reduce the occlusion noise on pedestrian matching. Firstly, the
multibranch joint feature extraction module (MFE) is used to extract feature sets containing pose
information and high-order semantic information. This module not only provides robust extraction
capabilities but can also precisely segment occlusion and the body. Secondly, in order to obtain
multiscale discriminant features, the multiscale correlation feature matching fusion module (MCF)
is used to match the two feature sets, and the Pose–Semantic Fusion Loss is designed to calculate
the similarity of the feature sets between different modes and fuse them into a feature set. Thirdly,
to solve the problem of image occlusion, we use unsupervised cascade clustering to better prevent
occlusion interference. Finally, performances of the proposed method and various existing methods
are compared on the Occluded-Duke, Occluded-ReID, Market-1501 and Duke-MTMC datasets. The
accuracy of Rank-1 reached 65.7%, 80.8%, 94.8% and 89.6%, respectively, and the mAP accuracy
reached 58.8%, 72.5%, 91.8% and 80.1%. The experiment results demonstrate that our proposed
SFPUS holds promising prospects and performs admirably compared with state-of-the-art methods.

Keywords: occluded person re-identification; pose guided; unsupervised semantic segmentation;
multiscale feature

1. Introduction

Person re-identification is recognized as a sub-problem of image retrieval. Its primary
objective is to detect if particular target pedestrians are captured in multiple images or video
sequences from various perspectives. This innovative technology serves to compensate for
the visual limitations of fixed cameras and can be integrated with pedestrian detection and
tracking technology, making it a pivotal technology within the domain of intelligent security
and safety production. With the advancement of deep learning technology in recent years,
great progress has been made in holistic person re-identification. Nevertheless, the current
approaches largely focus on obtaining robust direct features from the pedestrian images,
disregarding the significance of high-order semantic information features. Additionally,
these methods are predominantly implemented on complete images, with less attention
on occluded images. However, in the actual scenario, the task of person re-identification
will be seriously disturbed by environmental factors. For example, in stations, campuses
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and shopping centers, it is easy for pedestrians to be blocked by obstacles, making it
difficult for the network to match incomplete or invisible body parts. Consequently,
the matching accuracy of occluded person re-identification is much lower than holistic
person re-identification. Therefore, how to deal with the occlusion problem is a crucial
and challenging task in the person re-identification task, which has important practical
significance [1].

In contrast to holistic person re-identification, the occluded person re-identification
task is more challenging. There are three major challenges in this field: (1) Various noises
are introduced due to the presence of occlusions, so that there is less discriminant in-
formation contained in the pedestrian image, resulting in difficulty in image matching.
(2) Occlusions may have similar features to human body parts, leading to the failure of
feature learning [2]. (3) Some of the existing efficient matching methods require strict
personnel alignment in advance, but they cannot fully demonstrate their true potential in
the face of severe occlusion. In recent years, numerous methods have been proposed to
address the problem of occluded person re-identification, but most methods only rely on
first-order information for feature learning [3,4]. We believe that in addition to first-order
information, the introduction of high-order semantic information could yield better results
for occluded person re-identification [5].

In Figure 1, we can see that the lower body of the pedestrian in the input image is
obstructed by the billboard, leading to a reduction in the discriminating features of the
pedestrian. In addition, the occlusion might also cause the network to extract the wrong
discriminant information. Some early methods [2] use the pose information of pedestrians
to represent unoccluded body parts on the spatial feature map and directly divide the
global features into local features. Although these methods are intuitive, they require the
strict alignment of spatial features, so the effect is not ideal in the case of extremely serious
occlusion. Some pose-guided methods [3,6] use graph-based methods to model topological
information by learning node-to-node or edge-to-edge correspondences, but there are still
problems in Challenge (2). These methods only rely on first-order keypoint information,
so the extracted information is not robust enough and cannot deeply mine higher-order
semantic information within the image [7]. Recently, there are some methods [8,9] based
on injecting external semantic clues into the pose or body parts to achieve pixel-level
semantic segmentation, which belongs to supervised person re-identification. This method
requires complete real labels, which is costly, and especially depends on the accuracy of the
additional trained human parsing model. Furthermore, the complex network structure and
objective function are not suitable for person re-identification training [10,11]. Therefore, the
core motivation of this paper is to accomplish unsupervised semantic segmentation without
injecting external semantic clues and eventually obtain a feature set that combines first-
order keypoint information and high-order semantic information using the pose-guided
method. As illustrated in Figure 1, we propose a multibranch network that integrates
pose-guided and unsupervised semantic segmentation. In the feature extraction stage,
the identical input image is processed by pose-guided and semantic segmentation. The
features extracted by the pose-guided branch cover the topological structure information
of the human body, such as the position of keypoints. This method can help the model to
obtain the relationship between the keypoints so as to strengthen the mapping of global
features and improve the context link [12,13]. However, the method relying only on pose
guidance is still susceptible to occlusion noise. Therefore, we solve this problem by creating
an additional branch network called unsupervised semantic segmentation. This method
can compensate for the deficiency of supervised person re-identification that requires real
labels. It can learn the inter-class difference features and intraclass similarity features
of pedestrian identity from unlabeled datasets, reduce the labeling cost and ensure the
network does not have to depend on a pretrained model. It can precisely segment occlusion
at the pixel level and recognize the high-order semantic information in pedestrian images
such as private objects that is crucial for discrimination [14–16]. Finally, in order to acquire
multiscale features [17], we calculate the similarity between the pose-guided feature set

606



Electronics 2024, 13, 4523

and the semantic segmentation feature set to match and fuse them. The final feature set
combines the advantages of the two methods, which makes the pedestrian representation
richer. It can cover different levels of information, accurately describe the appearance and
structure of occluded pedestrians and improve the recognition accuracy of the model.

Figure 1. A schematic diagram of the joint pose-guided and unsupervised semantic segmentation
multibranch network (SFPUS) in occlusion ReID. SFPUS is able to derive corresponding feature sets
via pose guidance and semantic segmentation, subsequently calculating the similarity between these
feature sets for precise matching. Ultimately, we obtain high-order discriminant features devoid of
occlusion or noise.

The main contributions of this paper are as follows:

• An innovative multibranch network incorporating first-order human topological
structure information and high-order semantic information has been proposed, which
can more effectively mitigate the impact of irrelevant and occlusion noise. As far as
we know, this is the first time that high-order semantic information is introduced into
occluded person re-identification.

• A multiscale feature matching and fusion module is proposed, which uses Pose–
Semantic Fusion Loss to calculate similarity, promote meaningful discriminant feature
transmission, realize information fusion and a complementary mechanism and im-
prove the recognition accuracy of the model.

• The unsupervised semantic segmentation method is used to realize the ability of
autonomous learning without relying on the pretrained model.

• In order to prove the effectiveness of our method, we conducted a substantial number
of experiments on the occlusion and holistic person re-identification datasets. The
experimental results show that the performance of our proposed model is at an
advanced level.

The main parts of this paper, the “Proposed Method” and “Experiment”, are written
in Section 3 and Section 4, respectively, while the “Related Works” and “Conclusion” are
written in Section 2 and Section 5, respectively.

607



Electronics 2024, 13, 4523

2. Related Works

2.1. Holistic Person Re-Identification

Person re-identification addresses the issue of aligning pedestrian images across
disjoint cameras. The primary challenge in this task is the substantial intraclass and inter-
class disparities due to varying perspectives, poses, illuminations and occlusions [18,19].
According to the feature learning method, the existing holistic person re-identification
methods can be subcategorized as manual segmentation-based methods [20–22] and deep
learning-based methods [5,23–31].

The method based on manual segmentation focuses on segmentation features to match
human visual cognition and captures color, texture and detail information to represent
pedestrians. Specifically, Gray et al. [32] extracted features of color and texture channels
to accomplish the goal of preserving visual invariance in pedestrian representation. Con-
currently, Yang et al. [21] proposed a novel approach for defining salient colors, which
is utilized to ascertain the distribution in various color spaces to produce corresponding
pedestrian representations. However, manual segmentation methods are more challenging
when dealing with large-scale data.

Due to the remarkable success of deep neural networks in various computer vision
tasks, the application of deep learning methods to person re-identification tasks has gar-
nered significant interest. Yi et al. [33] designed a deep re-identification framework, which
employs an interconnected structure to capture the correlation of identical pedestrians
under varied viewpoints. Tay et al. [34] utilized human attributes to construct multi-level
attribute data and formulate an attention map to extract fine-grained discriminatory fea-
tures. To address the issues caused by varying camera styles, Zhong et al. [35] utilized
CycleGAN to generate images and used them with the original input to train the Re-ID
model, thereby achieving the method of learning camera invariant description subspace.
Qu et al. [13] proposed a parallel hybrid attention network, which integrates self-attention
and deep convolution in parallel design to extract information from different dimensions.
However, these methods focus on matching the holistic pedestrian image, but are ineffec-
tive in matching occluded images, limiting their applicability in real surveillance scenarios.
Therefore, this paper primarily focuses on the problem of occluded person re-identification.

2.2. Occluded Person Re-Identification

The goal of occluded person re-identification is to find people with the same appear-
ance in disjoint cameras. This task is more challenging due to incomplete information and
spatial dislocation [36]. According to the use of external visual cues, the current occluded
person re-identification methods can be categorized into the no-external-clue-assisted
method [37] and external-clue-assisted method.

The non-external-clue-assisted method has attracted a lot of attention since it drives the
model to learn discriminative representations spontaneously in the visible region. Zhuo [1]
trained the network to adapt to different types of occlusion by simulating the occlusion
scene. The occlusion simulator uses a mechanism similar to random erasure to promote
the network to adapt to occlusion. Zhao et al. [38] innovated a new data enhancement
technique especially designed for the occluded Re-ID, which introduced incrementally
generated occlusion blocks to make occlusion samples for training. Furthermore, He [39]
utilized a fully convolutional network to generate a discriminative spatial feature map
containing coordinate information and then process the discriminative spatial feature map
through a pyramid pool to extract spatial pyramid features. Tan et al. [40] used the multi-
head attention module to learn global features so that the model can adaptively extract
the necessary local information. However, these methods only rely on the performance of
the model itself, frequently demonstrating subpar performance in confronting complex
occlusion scenarios. In contrast, our SFPUS network uses pose and semantic information
to extract more robust features in occlusion situations.

The external-clue-assisted method uses external clues to extract the representation of
pedestrian non-occluded areas, thereby enabling the occluded Re-ID network to extract
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features optimum for recognition. Miao et al. [2] used the pose-guided model to detect
keypoints, generated a weight map centered on keypoints and weighted the feature map
to calculate whether the body parts were occluded, subsequently guiding the model to
concentrate on non-occluded areas to unearth local features. In addition, Zhang et al. [41]
proposed a semantic perception network, which uses human segmentation to learn global
and local representations of pedestrians. Chen et al. [42] proposed a mask module based
on attention guidance to achieve accurate positioning of human body parts.

2.3. Pose-Guided and Semantic Segmentation

Pose guidance is a field that covers many types of tasks in computer vision. With
the increasing complexity of person re-identification application scenarios, the method
of employing pose guidance for extracting pedestrian image representation has emerged
as a focal area of research for Re-ID. For example, Gao et al. [3] proposed an end-to-end
framework based on pose-guided and visibility prediction, in which the visibility prediction
is implemented in a self-supervised form and combined with a graph matching strategy
to complete feature alignment. Zheng et al. [43] used pose information to standardize the
learning of semantic alignment features. Wang et al. [6] introduced the GCN module on
the basis of pose guidance and transmitted information between keypoints to generate
a high-order relation module to solve the impact of occlusion and outliers. In addition,
Ma et al. [44] proposed a local internal and external relationship converter based on pose
guidance to capture the features of different visible regions.

Semantic segmentation is a classic problem in the field of computer vision. It aims
to classify each pixel in the image, divide the image into different regions and assign
corresponding category labels to each region. Different from traditional image classifi-
cation, semantic segmentation needs to classify each pixel to provide a more detailed
understanding. Semantic segmentation is subdivided into two categories: supervised and
unsupervised. Supervised semantic segmentation uses labeled datasets for training, but
obtaining such datasets is time-consuming and expensive. The unsupervised semantic
segmentation method aims to achieve the accurate segmentation of images without relying
on labeled data. By assigning a category ID to every pixel in the image based on the
associated object, this methodology divides the image into regions that are associated with
semantic information. More accurate representation of pedestrians’ visual characteristics is
made possible by this fine-grained segmentation, which also offers richer semantic infor-
mation [45–48]. Therefore, the application of semantic segmentation to Re-ID in occlusion
scenes has received more and more attention. For example, Zhang [45] proposed a feature
alignment method based on semantic segmentation, which can use attention to strengthen
the representation of local features. He et al. [8] used the COCO-pretrained semantic
segmentation model to generate a feature map as a probability prediction map, which was
used as an attention weight to weigh the original feature map. In the field of person Re-ID,
in order to cope with the lack of labeled datasets in this field, the above methods use super-
vised semantic segmentation. The additional pretraining model is used to preliminarily
process the data to obtain the labeled information for semantic segmentation. This method
has a good effect in overall person re-identification, but it is not effective in occluded person
re-identification. This is because the presence of occlusion will cause noise in the labeled
information obtained by the pretraining model, and the accuracy of semantic segmentation
based on these noisy labeled data will be greatly reduced. In contrast, our SFPUS network
uses unsupervised semantic segmentation and exhibits autonomous learning capacity. In
order to achieve this goal, we mainly use cascade clustering. Firstly, cascade clustering
aims to gradually refine and optimize the steps of data through multiple clustering steps.
Through this idea, the method can deal with complex clustering tasks. Its multi-stage
design makes the method have high adaptability and accuracy in dealing with complex
datasets. The basic principle of cascade clustering is as follows:
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1. Preliminary clustering. First, one or more clustering algorithms are used to initially
cluster the data. The purpose of this step is to group the data quickly and lay the foundation
for subsequent refinement clustering.

2. Refined clustering. In the second stage, on the basis of preliminary clustering,
cascade clustering performs finer clustering on each subset, which makes the final clustering
result more accurate.

3. Iterative optimization. In each clustering stage, the algorithm determines whether
to continue to optimize by evaluating the quality of the current clustering results. Such an
iterative process allows for the clustering results to be continuously refined.

Compared with the aforementioned methods, our network combines pose-guided and
unsupervised semantic segmentation for the first time. We use Pose–Semantic Fusion Loss
to achieve multiscale feature fusion, clearly analyze and aggregate more discriminative
features and establish an excellent complementary mechanism, which makes up for the
disadvantages of the two methods and effectively alleviates the failure of feature learning
caused by occlusion.

Specifically, in order to solve the problem of occluded person re-identification, we ex-
plore the possibility of combining pose-guided with unsupervised semantic segmentation
and propose a novel multibranch feature extraction network structure, namely, the MFE
module (multibranch joint feature extraction module). In order to amalgamate the benefits
of both methods, make up for their shortcomings and achieve a comprehensive charac-
terization of pedestrians, we have also proposed the MCF module (multiscale correlation
feature matching fusion module). As illustrated in Figure 2, MFE combines pose-guided
and semantic segmentation. By detecting the key nodes of the human body to capture
the pose information of pedestrians and identify the human body parts, the first-order
human body topology information is obtained, and the high-order pixel-level semantic
information provided by semantic segmentation is combined. It accurately identifies the
visible and occluded parts of pedestrians in the image, purposefully selects the effective
content that complies with the pedestrian re-identification task, actualizes the effective
feature articulation of the data, improves the utilization of high-order semantic information,
mines the disparities between spatial features and semantic information, enhances the
model’s capacity to extract features and innovatively constructs a multibranch network
architecture. It makes the model pay more attention to the pedestrian area rather than
the occlusion area. In the MCF module, from the perspective of the mapping mechanism
of semantic space and image feature space, with an aim to amalgamate the features of
multiple modalities, we design Pose–Semantic Fusion Loss to calculate the similarity of
feature sets between different modalities so as to construct a dynamic matching mechanism,
solve the problem that multiscale and multimodal feature information cannot be fused,
achieve accurate and rich pedestrian image representation capability and improve the
robustness of the model. Among them, the semantic segmentation used in this paper is an
unsupervised method. This method uses pedestrian identity tags to locate human parts and
potential personal items at the pixel level, designs cascade clustering on the feature map
and clusters the pixels of the feature map through iteration. And the clustering assignment
is regarded as a human part or personal item, and useful semantic information can be
captured by itself without additional semantic clues. This method can extract the semantic
features of pedestrians without manually labeling data or injecting additional semantics,
thereby reducing the research expenditure and enhancing the generalization performance
of the model.
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Figure 2. The proposed SFPUS network consists of two modules. The first module is the multibranch
joint feature extraction module, which is mainly composed of two parts: the pose-guided feature
aggregation module (PFA) and the pixel-level occlusion segment and human semantic-parsing
module (PEEP).

2.4. Multiscale Feature Fusion

Multiscale feature fusion aims to integrate and combine information at different
scales to obtain more comprehensive and richer data representation. Multiscale feature
fusion technology plays an important role in the field of person re-identification. By
fusing information at different scales, the accuracy and robustness of person matching
can be improved, and a more effective solution for person re-identification tasks can be
provided. For example, based on the architecture of a CNN, Wang [49] extracted feature
levels through a bottom–up path, encoded the image into a global context embedding and
then gradually disseminated information on different scales through top–down paths and
horizontal connections. Finally, the features of different scales were combined together
through multiscale feature fusion. Qian et al. [50] proposed a new multiscale deep learning
model MuDeep based on the Siamese network. The model aims to learn discriminative
feature representations on multiple scales through automatically determined scale weights
and combine them together. Liu et al. [51] proposed a video person re-identification model
based on multiscale feature fusion, which extracts frame-level features of different scales,
and then concatenates them together to form a vector, which improves the degree of feature
recognition. However, the above methods only use different levels of neural networks for
feature extraction and simple splicing of multiscale features. These methods lead to huge
semantic gaps due to different depths, which makes the semantic information contained
in pedestrian representation not rich enough. Our SFPUS network uses an unsupervised
semantic segmentation network, which can not only accurately identify pedestrians and
occlusions but also extract pedestrian representations with richer semantic information. In
addition, low-level features in neural networks usually lack representation ability, while
high-level semantic features often lose information about fine spatial details. Therefore, we
combine pose-guided and semantic segmentation, which not only integrates multiscale
features but also makes up for the shortcomings between different levels of features and
obtains richer pedestrian representation and improves model performance.

3. Proposed Method

In this section, we will provide a detailed description of the specific methods of the
proposed SFPUS network, as illustrated in Figure 2. The SFPUS network consists of two
modules. The first module is the multibranch joint feature extraction module, which is
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mainly composed of two parts: the pose-guided feature aggregation module (PFA) and
the pixel-level occlusion segment and human semantic-parsing module (PEEP). These two
modules extract the features of the same image from the perspective of spatial features
and semantic segmentation, thereby acquiring the global pose correlation features rich
in spatial information and the pixel-level human semantic detail features, respectively.
The second module is the multiscale correlation feature matching fusion module, which
matches and fuses the two feature sets obtained by MFE. Among them, the PFA module
complements the global pose information of the human body that the PEEP module lacks.
And the PEEP module makes up for the shortcomings of the PFA module in which the
occlusion recognition is not accurate enough. So, the final feature set mines the useful
feature information in the image from different angles as much as possible to achieve the
purpose of complementarity.

3.1. Multibranch Joint Feature Extraction Module
3.1.1. Pose-Guided Feature Aggregation Module

The PFA module primarily consolidates the feature information processed by the two
steps of the visual context transformer encoder and the pose-guided one.

Visual context transformer encoder. We use the image classification model of the
transformer architecture to construct the encoder [52]. Given a pedestrian image x ∈
RH×W×C, H, W and C signify the height, width and number of channels, respectively. The
encoder first cuts the image x into N fixed-size slices through a sliding window. The stride
size of the sliding window is labeled as S, the size of each image slice is labeled as L and
the number of slices is labeled as N. N can be expressed as follows:

N =

(
H + S − L

S

)
×
(

H + S − L
S

)
(1)

The transformer encoder processes an array of slices as its input and applies a
defined trainable linear projection function f (x) to each slice with the aim to flatten
and project it onto multidimensional embedded information, denoted as M ∈ RN×D,
(Mi = f (xi), i = 1, 2, . . . , N). Furthermore, to retain the precise positioning information
of the slice, we employ learnable location coding, incorporating learnable classification
markers xclass into M and generating a global feature representation through the output
classification markers encoder Fg. Finally, since the images obtained from pedestrian
re-recognition are significantly impacted by camera variations, we further incorporate
learnable camera sequence information Cid. The final input sequence can be formulated
as follows:

Einput = {xclass; Mi}+ PE + λcmCid (2)

where PE represents the positional embedding and λcm constitutes the weight hyperparame-
ter that regulates the camera embedding. The resulting Einput is processed through multiple
layers of transformers, yielding a final output spanning FE ∈ R(N+1)×D, which can be di-
vided into two parts, encoder global features and local features, comprising Fg ∈ RN×D

and Fl ∈ RN×D. In order to assure that the discriminative features adhere to logic and
organization, the local features are sequentially partitioned into K groups, each of which
has the size of (N/K)× D. Finally, the global feature Fg ∈ RN×D is provided as input to
the shared transformer layer, enabling learning of the local feature Fl = {F1, F2, F3, . . . , Fk}.

Pose-guided module. For a given pedestrian image x, the pose-guided module ex-
tracts a total of M keypoints from x. These keypoints are then subsequently utilized in
generating feature heat maps H = {h1, h2, . . .}, each of which undergoes a downsampling
operation to the size of (H/4)× (W/4). Furthermore, we set a threshold γ to filter the
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high-confidence keypoints and low-confidence keypoints. Finally, we assign M labels to
each heat map, and the labels are denoted as follows:

Li =

{
0, Ci < γ

1, Ci ≥ γ
(3)

where Ci is denoted as the confidence score for the critical point.
Pose-guided feature aggregation. The heat map H derived from what was pose-

guided is linked to a fully connected layer to achieve a heat map H′ with compara-
ble dimensionality to the encoder local feature Fl . To acquire the pose-guided features
Pi = {P1, P2, . . . , PM}, we multiply the heat map H′ by the elements of Fl . In order to
obtain the information that contains the maximum amount of information about the fea-
tures of each part of the human body, we design a matching algorithm, which treats the
local features and the pose-guided features as an ensemble similarity measure problem.
Consequently, the feature set Fp = {Si, i = 1, 2, . . . , M} of the pose-guided aggregation is
generated by the algorithm. The algorithm is formulated as follows:

M = argmax

⎛
⎝

〈
Pi, Fj

l

〉
‖Pi‖

∥∥∥Fj
l

∥∥∥
⎞
⎠, (4)

Fpi = Pi + FM
l , (5)

where FM
l denotes the inner product most similar to Pi in Fl .

3.1.2. Pixel-Level Occlusion Segment and Human Semantic-Parsing Module

The PEEP module encompasses three principal processes, namely, selection of reliable
training set samples, pixel-level human-aligned representation learning and cascaded
clustering for pseudo-part-label generation. We first perform the first process and then
repeat the last two processes until the network converges. Finally, the goal of occlusion
segmentation and human semantic parsing is achieved.

Selection of reliable training set samples. The unsupervised semantic segmentation
learning framework proposed in this paper is initialized based on the HRNet network as
the original model. First, the original model is used to extract the features of the samples
of the unlabeled person re-identification dataset, and the data instances are clustered and
selected to generate a reliable training set. Second, the original model is fine-tuned using
this reliable training set. Next, the first and second steps will be repeated until the size of
the reliable training set becomes stable. Finally, we use the fine-tuned model for semantic
segmentation. The specific process is shown in Figure 3.

Since the samples of the person re-identification dataset are unlabeled, the K-means
algorithm is first used to cluster them into several centers. The formula can be summarized
as follows:

min
Yt ,c1,c2,...,cK

Km

∑
km=1

∑
yt

i=km

∥∥φθ

(
xt

i
)
− ck

∥∥
2 (6)

In the formula, K is the predefined number of clusters, and Ci, i ∈ 1, 2, . . . , K is the
corresponding cluster center.

Due to the limited ability of the original model, the samples in each cluster may
contain outliers. Therefore, we define a binary mask vi and use a threshold λ to indicate
whether the sample belongs to a cluster:

vi =

{
1, cos

(
φθ

(
xt

i
)
, cxt

i

)
> λ

0, otherwise,
(7)

In the formula, cxt
i

represents the clustering center corresponding to the image xt
i .
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Figure 3. The process diagram of selecting reliable training set samples. Firstly, the original model
HRNet is used to extract the features of the unlabeled dataset and then the reliability samples are
generated by clustering, where each cluster represents an ID pedestrian. Next, the original model is
fine-tuned using a reliable training set, and these two steps are repeated until stable.

According to the definition, if the cosine similarity cos is greater than the threshold λ,
it is selected as a reliable sample; otherwise, it is discarded. After that, we use the selected
samples to fine-tune the original model. The selection process of specific reliable samples is
shown in Figure 4.

Figure 4. A schematic diagram of sample selection. The reliable samples covered in the green circle
are used for model fine-tuning. As the model area is stable, more meaningful training samples can
be mined.

Pixel-level human-aligned representation learning. Given an array of n trained
pedestrian images {Xi}n

i=1, they are from n different pedestrians and their identity labels
{yi}n

i=1 (where yi ∈ {1, 2, . . . nid}). For the input image Xi, we are able to generate a global
feature mapping via a backbone mapping function (defined as fθ).

Mh×w×c
g = fθ(xi) (8)

where θ is the skeleton parameter; h, w and c are the height, width and channel, respec-
tively; and Mg(x, y) characterizes the spatial location (x, y). The pixel-level human-aligned
representation accomplishes this task by embodying a human body part with a cluster of
pixels pertaining to that particular segment, which is a collection of pixels weighted by a
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set of confidence maps, where each confidence map is used to replace a specific human
body part. Assuming that there are K − 1 human body parts and 1 background part in an
image, we need to estimate the confidence map of K different semantic parts for this image,
and we also regard the personal items of pedestrians as a class of human body parts. The
confidence maps are symbolically designated as P0, P1, . . . PK−1, with each confidence map
representing a semantic section. Pk(x, y) is denoted as the confidence of the pixel (x, y)
belonging to the semantic part K. Subsequently, the feature map of the confidence map K is
represented as follows:

Mk = Pk × Mg (9)

where it represents the elemental product, and the set of k − 1 elemental products from
K = 1 to K = k − 1 forms the foreground feature map Mf . In addition to this, the occluded
semantic portion should belong to the background confidence map portion of Pk(x, y) for
K = 0, and the occluded pixels in the image will not contain any semantic parsing.

Cascaded clustering for pseudo-part-label generation. The existing methods inte-
grate the results of previous studies [10,46,53,54] in order to attain a pixel-level representa-
tion of human body parts. We devise cascading clustering on the feature map Mg in order
to generate pseudo-tags of human body parts, which encapsulate both human body parts
and personal belongings.

The specific steps of cascade clustering are shown in Figure 5. In the first step, since
foreground pixels have higher weights [55–57] than background pixels, all Mg pixels for
the same pedestrian are categorized into foreground and background based on the weights.
In this step, the network automatically identifies foreground portions that are distinctive,
thereby enabling unsupervised cascade clustering to discern both body segments and
potentially beneficial personal objects. For all pixels in an Mg, we use the maximum value
normalized activation:

a(x, y) =

∥∥Mg(x, y)
∥∥

2
max(i,j)

∥∥Mg(i, j)
∥∥

2
(10)

where (i, j) represents the position of Mg and the maximum value of a(x, y) is 1.

Figure 5. The specific process of generating pseudo-part labels using cascade clustering. Firstly,
the input image is activated by the backbone network and normalized by the maximum value to
obtain all the Mg images of the pedestrian. Secondly, the foreground pixels are extracted through
L2-normalization and iteratively clustered. Finally, the softmax classifier is used to partition the
clustering results and assign pseudo-labels to each part of the pedestrian.

In the second step, our objective is to meticulously segment all foreground pixels
attributed to diverse individuals within the initial clustering phase into K − 1 semantic
parts. This step necessitates particular consideration because in the presence of occlusion,
the number of semantic parts within a single image can potentially be less than K − 1. This
is due to the fact that the samples for which we perform clustering are the set of all Mg
foreground pixels in the image of the same person rather than the Mg foreground pixels of
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a single image. Therefore, this approach is robust to occlusion situations and ensures that
the semantic parts assigned between different images are quantitatively and semantically
consistent. In this step, we concentrate on identifying the similarities and disparities
between pixels, and hence we implement L2-normalization to fulfill this objective:

Fs(x, y) =
Mg(x, y)∥∥Mg(x, y)

∥∥
2

(11)

Next, we use the previously performed clustering assignments as the pseudo-labeling
of body parts, which involves the use of individual items as a foreground part for supervis-
ing the learning process of body semantic parsing. We assign label 0 to the background
and the body parts to labels {1, 2, . . . K − 1} based on the average position from top to
bottom. The PEEP module discerns the part representations through an iterative process of
cascading clustering over feature mappings and using these assignments as pseudo-labels.
The critical aspect of this iterative mechanism is that the generated pseudo-labels are pro-
gressively refined as the number of iterations increases, thereby enabling the estimation of
body parts to be increasingly accurate. Finally, we use the softmax function as a classifier
to classify the generated pseudo-labels with the following formula:

Pk(x, y) = so f tmax
(

LT
K Mg(x, y)

)

=
exp

(
LT

K Mg(x, y)
)

∑K−1
i=0 exp

(
LT

i Mg(x, y)
) (12)

where L is the linear layer parameter, and Pk(x, y) is the confidence level of the pixel (x, y)
of the semantic part K.

3.2. Multiscale Correlation Feature Matching Fusion Module

In Section 3.1, the pose-guided feature heat map obtained by the PFA module focuses
on human keypoints and pedestrian poses and can effectively mine spatial features and
global information in the image but is less effective in segmenting local occluded pollutants.
On the other hand, the semantic-guided feature heat map obtained by the PEEP module
focuses on high-level semantic information, such as human body parts and personal
belongings, and can accurately segment the occluded objects in the image but ignores the
relevance of global contextual information. Therefore, by merging pose-guided semantic-
guided features, we are able to produce a more precise saliency heat map. Drawing
on the pose-guided feature aggregation set Fp derived from the PFA module and the
feature aggregation set enriched with high-level semantic information of the human body
procured from the PEEP module, we can calculate their similarity to obtain the features
that better represent the identity of pedestrians and obtain the final feature set Fv = { f i

v|i =
1, 2, . . . , Nv}, which is given by the following:

k = argmax

( 〈
Pi, Sj

〉
‖Pi‖

∥∥Sj
∥∥
)

, (13)

f i
v = Pi + Sk, (14)

The final feature set effectively diminishes the impact of obstructions on pedestrian
recognition whilst acquiring pivotal features enveloping human semantic data and human
pose details. This significantly enhances the efficiency of Re-ID.

To better enable the matching and fusion of pose features and semantic features, we
propose the Pose–Semantic Fusion Loss:

fp = AvgPooling
(

Fmp
)
, (15)

fs = AvgPooling(Fs), (16)
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L f =
1
B

B

∑
i

〈
f i
p, f i

s

〉
∥∥∥ f i

p

∥∥∥∥∥ f i
s
∥∥ , (17)

where fp and fs are obtained from Fmp and Fs after averaging pooling layers, respectively,
and B is the training batch size. If Fmp and Fs are similar, L f is smaller and vice versa
is larger.

Because the pose-guided branch network has a poor effect on occlusion recognition, the
feature set contains unnecessary or harmful information, resulting in feature redundancy.
In addition, if the similarity between Fmp and Fs is too low to cause L f to be very small, the
learnable pose guidance view should be adaptively adjusted. Therefore, in order to avoid
feature redundancy and guide the decoder view feature representation learning, we apply
the average pooling layer on the pose-guided feature set Fmp to obtain the pooled feature
set fp and then use the identity loss and triple loss to guide the pose-guided pooled feature
set fp and pose-guided feature set Fmp for learning, as shown in the following formula:

Lde = Lid
(
P
(

fp
))

+
1
B

L

∑
i=1

Lid

(
P
(

Fi
mp

))

+Ltri
(

fp
)
+

1
B

L

∑
i=1

Ltri

(
Fi

mp

) (18)

4. Experiment

4.1. Datasets and Evaluation Metrics

To illustrate the effectiveness of the method proposed in this paper, we evaluated
two tasks including occluded person re-identification and holistic person re-identification
on four Re-ID datasets.

Occluded-Duke consists of 15,618 training images, 2210 occluded query images and
17,661 gallery images [2], which is a sub-dataset of DukeMTMC-reID for removing occluded
images and removing some overlapping images [58].

The Occluded-REID dataset is captured by the mobile phone, comprising 2000 images
of 200 occluded pedestrians [1]. Each identity feature contains five comprehensive full-body
person images and five occluded person images with varying degrees of severe occlusions.

Market-1501 contains 1501 identities observed from 6 camera viewpoints, 12,936 train-
ing images for 751 identities, 19,732 gallery images and 2228 query images [59].

DukeMTMC-reID contains 36,411 images of 1404 identities captured from 8 camera
viewpoints; it contains 16,522 training images, 17,661 gallery images and 2228 query
images [58].

Evaluation Metrics. We use cumulative matching characteristic (CMC) curves and
mean accuracy (mAP) to evaluate the quality of different Re-ID models.

4.2. Implementation Details

Data preprocessing. The train and test images were adjusted to 256 × 128 size, and the
train images were enhanced by random horizontal flipping, filling, random cropping [60]
and random erasing [60–62] (probability is 0.5).

Optimization. Firstly, we pretrained the encoder with initial weights using the
ImageNet-21K dataset and subsequently fine-tuned it on ImageNet1K to optimize perfor-
mance. For the Occluded-Duke dataset, we set the number of layers of the decoder to 2,
while for the other datasets, the number of layers of the decoder was set to 6. Concurrently,
we established the hidden dimension D at 768 and the batch processing size at 64, and each
ID comprises 4 images. We set the initial value of the learning rate to 0.004 and used the
cosine method to attenuate the learning rate. In addition, we set the threshold γ in the
pose-guided algorithm to 0.2.
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Cascade clustering. We used the K-means algorithm as the clustering method and
re-allocated the clustering after each n epoch. This approach aims to achieve an equilibrium
between parameter updating and generating pseudo-labels. All the experiments were
implemented on the GTX3090Ti GPU based on the PyTorch toolbox.

4.3. Comparison with the State of the Art

We compare our method with the state-of-the-art methods on two benchmarks, in-
cluding occluded person ReID and holistic person ReID.

Results on Occluded-Duke and Occluded-ReID. Table 1 shows the results of the
occlusion dataset. As shown in Table 1, three methods are compared: (1) Methods based on
manual segmentation, including Part-Aligned [63], PCB [5], CLIP-Re-D [64], DRL-Net [37]
and PRE-Net [65]. Compared with these two methods, the mAP accuracy of SFPUS is
significantly improved, which indicates that compared with rough manual segmentation,
the use of pose information and semantic information to segment pedestrian images is
more effective. (2) Methods based on deep learning network, including HOReID [6],
PGFL-KD [43], PGFA [2], PGMANet [66] and ISP [10]. With the help of introducing
human semantic analysis or pose guidance, these methods are not much different from
the accuracy of our model and are very competitive. They do not notice the advantages
of fusing global pose correlation features and pixel-level human semantic detail features.
This method can mine useful feature information in the image as much as possible from
different angles to achieve complementary purposes, making the SFPUS network more
competitive. (3) Methods combining pose-guided and semantic information, including
SGSFA [45] and GASM [8]. Although these methods are similar to our ideas, they do not
effectively integrate pose information and semantic information, so the mAP accuracy of
SFPUS still performs well, which proves the effectiveness of our MCF module.

Table 1. Performance comparison with state-of-the-art methods on Occluded-Duke, Occluded-REID.

Methods
Occluded-Duke Occluded-REID

Rank-1 mAP Rank-1 mAP

Part-Aligned [63]
PCB [5]

CLIP-ReID [64]
DRL-Net [37]
PRE-Net [65]

28.8
42.6
61.0
65.0
67.1

44.6
33.7
53.5
50.8
54.3

-
41.3

-
-
-

-
38.9

-
-
-

HOReID [6]
PGFL-KD [43]

PGFA [2]
PGNANet [66]

ISP [10]
Mos [67]

FD-GAN [4]
Ad-Occluded [68]

PVPM [3]

55.7
63.0
51.4
51.3
62.8
61.0
40.8
44.5
47.0

43.8
54.1
37.3
40.9
52.3
49.2

-
32.2
37.7

80.3
80.7

-
-
-
-
-
-

66.8

70.2
70.3

-
-
-
-
-
-

59.5

SGSFA [45]
GASM [8]

62.3
-

47.4
-

63.1
74.5

53.2
65.6

SFPUS (ours) 65.7 58.8 80.8 72.5

It can be seen that the Rank-1 accuracy of our proposed method SFPUS on the
Occluded-ReID dataset reaches 65.7%, and the mAP value reaches 58.8%. The Rank-1
accuracy of our method is 2.7% higher than that of the most advanced method, and the
mAP accuracy is improved by 4.7%, which proves that the SFPUS model effectively elimi-
nates the background bias that is not conducive to pedestrian Re-ID and reduces the impact
of occlusion. In summary, SFPUS is a shared feature fusion network that combines pose
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guidance and unsupervised semantic segmentation. By fusing feature sets containing
first-order keypoint information and high-order semantic information, the influence of
occlusion noise on pedestrian matching is reduced.

Results on Holistic ReID datasets. In order to verify the effectiveness of the model
on the holistic ReID task, we conducted experiments on two holistic ReID datasets, Market-
1501 and DukeMTMC-reID. Table 2 shows the results of the Market-1501 and DukeMTMC-
reID datasets. There are three methods for comparison: (1) part feature-based methods,
including PCB [5], DSR [69], BOT [70] and VPM [71]; (2) methods based on global fea-
tures, including MVPM [72], SFT [73], CAMA [74], IANet [75] Circle [76], CLIP-Re-D [64],
PAT [77], UPAR [78], ISR [79], DRL-Net [37] and PRE-Net [65]; and (3) methods based on
additional cues, including SPReID [46], P2Net [80], PGFA [2], SGSFA [45] and GASM [8].
Specifically, our method achieves SOTA performance on the Market-1501 and DukeMTMC-
reID datasets (94.8%/Rank-1 accuracy and 91.8%/mAP, respectively), which is 6.1% higher
than the mAP accuracy of the state-of-the-art methods. It can be seen that although our
method is not designed for the holistic ReID task, it still achieves competitive results, which
reflects the superiority of our method.

Table 2. Performance comparison with state-of-the-art methods on Market-1501 and DukeMTMC-reID.

Methods
Market-1501 DukeMTMC

Rank-1 mAP Rank-1 mAP

BOT [70]
VPM [71]
DSR [69]
PCB [5]

94.1
93.0
83.6
92.3

85.7
80.8
64.3
77.4

86.4
83.6

-
81.8

76.4
72.6

-
66.1

MVPM [72]
SFT [73]

CAMA [74]
IANet [75]
Circle [76]

CLIP-ReID [64]
PAT [77]

UPAR [78]
ISR [79]

DRL-Net [37]
PRE-Net [65]
MSGR [49]

91.4
93.4
94.7
94.4
94.2
95.7
71.9
55.4
87.0
94.7
94.5
93.7

80.5
82.7
84.5
83.1
84.9
89.8
45.2
40.6
70.5
86.9
86.0
83.6

83.4
86.9
85.8
87.1

-
90.0
67.9

-
-

88.1
88.9
86.8

70.0
73.2
72.9
73.4

-
80.7
48.9

-
-

76.6
76.5
76.9

SPReID [46]
P2Net [80]
PGFA [2]

SGSFA [45]
GASM [8]

92.5
95.2
91.2
62.3

-

81.3
85.6
76.8
47.4

-

84.4
86.5
82.6
63.1
74.5

70.1
73.1
65.5
53.2
65.6

SFPUS (ours) 94.8 91.8 89.7 80.9

4.4. Ablation Study

In this section, to validate the effectiveness of our method, we perform ablation
experiments on the datasets.

Effectiveness of proposed modules. In this section, in order to analyze the effec-
tiveness of each module in our SFPUS network, six networks of PFA, PEEP, PFA + PEEP,
PEEP + MMF, PFA + MMF and PFA + PEEP + MMF are designed, corresponding to Index1 6
in Table 3, and finally tested on the Occluded-Duke dataset.

The experimental results are as shown in Table 3. (1) Through the observation of
Index1 and Index2 data, it can be seen that when the PFA or PEEP module is used alone,
the mAP value of the PEEP network is 8.5% higher than that of the PFA network. This
is because the use of semantic segmentation can distinguish pedestrians and occlusions
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more accurately than pose guidance and better suppress the negative effects of occlusions,
thereby improving the accuracy of the model. (2) Index3 uses both PFA and PEEP modules.
By comparing with the PEEP network, it can be seen that the mAP value of the former
decreases by 3.8%, which proves the necessity of the MMF module. If the two feature
sets obtained by pose-guided and semantic segmentation are not matched and fused, the
performance of the model will decrease. (3) In Index4 and Index5, we added the MMF
module on the basis of using the PFA or PEEP module, respectively, but their mAP values
are still much lower than the mAP values when using the three modules at the same time.
This is because the fusion of the pose-guided dataset and the semantic segmentation dataset
can obtain more accurate and rich pedestrian representation. Since the pose-guided one
only focuses on the keypoints of the human body and the surrounding image information,
when the keypoints are occluded, the feature information will be missed or the occlusion
will be included in the feature extraction. However, semantic segmentation only focuses on
human body parts and ignores the global pose information of the human body. When facing
multiple pedestrian occlusions, the target pedestrian cannot be identified. Therefore, pose-
guided and semantic segmentation are complementary. In summary, the three modules
of PFA, PEEP and MMF are indispensable in SFPUS. Only when these three modules are
used at the same time can the best model performance be achieved.

Analysis of the numerical value of threshold γ. The value of the threshold γ repre-
sents the confidence of the keypoints of the human body, which determines the fineness of
the features of the body parts extracted by posture guidance. We set the threshold value of
γ from 0 to 0.8 for an ablation study. It can be seen from Table 4 and Figure 6 that when the
threshold is set to 0.2, the model achieves the best performance. When the threshold γ is
set too small, the model will regard the image that does not belong to the human body as
a keypoint to participate in feature extraction, resulting in background noise and wrong
posture information being included in the model, thus reducing the accuracy of the model.
When the threshold γ is set too large, some keypoints with low confidence but that are still
effective will be filtered out, which makes the model unable to make full use of the attitude
information and limits its performance.

Analysis of the number of K clustering categories. In essence, the number of cluster
centers K determines the model’s understanding of image semantic information and the
fineness of segmentation results. If the number of K is set too low, it means that the cluster-
ing results are less, which may lead to some details being ignored, and different semantic
regions cannot be well distinguished, thus affecting the accuracy of the segmentation. On
the other hand, if the number of K is set too high, it may lead to over-segmentation, and the
image is divided into too many small areas, which will increase noise and unnecessary de-
tails, and reduce the generalization ability and robustness of the model. Therefore, selecting
the appropriate K value requires comprehensive consideration of Re-ID task requirements,
dataset characteristics and computing resources. Through ablation experiments and model
evaluation, the best K value setting can be found to achieve the optimal semantic segmenta-
tion effect. Therefore, we have conducted a detailed study on the number of cluster centers
K and finally obtained the best number that affects the performance of the model. As shown
in Table 5, when the number of K is equal to 7, the accuracy of the model reaches the highest.

Table 3. Performance of different module combinations on the Occluded-Duke datasets set in the
SFPUS network.

Index PFA PEEP MMF R-1 R-5 R-10 mAP

1
2
3
4
5
6

�

�

�
�

�
�
�

�

�
�
�

55.1
62.8
58.43
63.5
57.6
65.7

70.2
76.1
73.2
77.3
72.4
79.5

75.6
80.9
77.2
81.4
76.5
83.3

43.8
52.3
48.5
54.4
46.7
58.8
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Figure 6. Visualization of performance of different thresholds γ and number of clusters K on
Occluded-Duke.

Table 4. Performance of different thresholds γ on Occluded-Duke and Market-1501.

Threshold γ
Occluded-Duke Market-1501

Rank-1 mAP Rank-1 mAP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

60.4
62.8
65.7
64.9
64.1
63.6
63.8
63.0
62.2

56.3
57.4
58.8
58.5
57.9
57.4
57.5
56.8
56.4

91.3
93.6
94.8
94.4
93.6
93.1
93.3
92.6
92.2

89.2
91.3
91.8
91.5
91.2
91.0
91.1
90.6
90.1

Comparison of unsupervised semantics and supervised semantics. In this section,
we will verify the superiority of unsupervised semantics over supervised semantics in
the field of person re-identification through experiments. In Table 6, ‘baseline’ refers to
using HRNet as the baseline model. ‘+extra injection’ refers to the use of other modules to
incorporate additional semantic information into the model based on the baseline and the
supervised guidance model to cluster part of the human body labels. ‘PEEP’ refers to the
unsupervised clustering of images using our proposed PEEP module. The experimental
results show that the performance of unsupervised semantic segmentation is always
better than that of additional semantic injection. The main reasons why we believe that
unsupervised semantic segmentation is more advantageous are as follows:
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Table 5. Performance of different clustering number K on Occluded-Duke and Market-1501.

Number of K
Occluded-Duke Market-1501

Rank-1 mAP Rank-1 mAP

4
5
6
7
8
9

58.6
60.7
63.1
65.7
64.3
63.3

56.2
56.8
57.2
58.8
58.4
57.3

89.6
90.4
92.5
94.8
93.6
92.8

87.3
87.9
90.2
91.8
91.3
90.6

• Have the ability of autonomous learning: The unsupervised semantic segmentation
method can learn the semantic representation in the image autonomously in a self-
supervised manner, can make full use of the information of the image itself and does
not require additional labeling costs. In contrast, injecting external semantic clues can
only use limited semantic clues for feature learning. This method is limited by the
quality and accuracy of the clues, especially when the external clues do not match the
actual image, which will lead to performance degradation.

• No label data required: The unsupervised semantic segmentation method can be
trained without labeled data, which makes it possible to pretrain on a large number of
unlabeled data to extract more feature information. In contrast, the method of injecting
external semantic cues requires tag data to provide semantic information. Due to the
difficulty of obtaining effective tag data in occlusion scenarios, the performance of this
method is limited.

• Better generalization ability: Based on the first two reasons, the features learned by
unsupervised semantic segmentation are more general and not limited by specific tasks
or datasets, so they perform better in occlusion scenes and have more generalization
ability. Injecting external semantic cues will make the model overly dependent on
specific cue information, resulting in performance degradation on other datasets or
tasks, so it performs poorly in occlusion scenes.

Table 6. Comparison of unsupervised semantics and extra semantics.

Model
Occluded-Duke Market-1501

Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

Baseline
+extra injection
SFPUS (ours)

55.1
58.2
65.7

70.2
73.8
81.1

43.8
48.4
58.8

94.2
94.5
95.3

96.3
96.8
98.6

84.9
86.7
91.8

4.5. Visualizations

Luo [81] utilizes the technique of gradient-weighted class activation maps (Grad-CAM)
to illuminate the distribution of contributions from distinct image regions in classifying
an object category. Figure 7 shows the baseline and our SFPUS attention maps during the
inference process. It can be observed that the first three sets of images depict the scenario
where pedestrians are occluded by objects, such as billboards or barriers. With the baseline
for obstructed pedestrians, the model fails to accurately identify the person. Accordingly,
the extracted features of the occluded objects are misidentified as the pedestrian features,
thereby diminishing the precision of the model. However, after using our SFPUS method,
as can be seen from heat map (c), our SFPUS network enables the model not only to evade
the interference of obstructions but also accentuate the extraction of more discriminatory
pedestrian features, such as backpacks and clothing. The final three sets of images exemplify
the scenarios wherein other pedestrians obstruct the target pedestrians. As can be seen
from heat map (b), when multiple pedestrians appear in the picture, the baseline will jointly
extract the features of multiple pedestrians, resulting in recognition failure. But our SFPUS
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model can accurately discern the target pedestrians, significantly elevating the precision of
the model.

Figure 7. Attention heat map visualization of SFPUS networks and baselines.

5. Conclusions

In this paper, in order to solve the occluded ReID task, we propose an innovative
network, shared feature fusion with pose-guided and unsupervised semantic segmentation
(SFPUS), which is designed to extract pedestrian representation containing human topology
and high-order semantic information. SFPUS comprises two important modules: the
multimodal joint feature extraction module (MFE) and multimodal correlation feature
matching fusion module (MFM). The MFE module utilizes the PFA module to obtain robust
human body topology information and makes use of the PEEP module to segment the
occlusion at the pixel level to obtain the high-order semantic information that contains
the discriminative pedestrian identity. Subsequently, the MFM module matches and fuses
the pose-guided and the semantic-guided feature set to obtain features that eliminate
the influence of occlusions and are rich in discriminative information. We demonstrate
the complementary nature of pose-guided and semantic segmentation and the superior
performance of SFPUS through a large number of experiments.
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Abstract: Helmet-wearing detection for electric vehicle riders is essential for traffic safety,
yet existing detection models often suffer from high target occlusion and low detection
accuracy in complex road environments. To address these issues, this paper proposes
YOLO-CBF, an improved YOLOv7-based detection network. The proposed model inte-
grates coordinate convolution to enhance spatial information perception, optimizes the
Focal EIOU loss function, and incorporates the BiFormer dynamic sparse attention mech-
anism to achieve more efficient computation and dynamic content perception. These
enhancements enable the model to extract key features more effectively, improving de-
tection precision. Experimental results show that YOLO-CBF achieves an average mAP
of 95.6% for helmet-wearing detection in various scenarios, outperforming the original
YOLOv7 by 4%. Additionally, YOLO-CBF demonstrates superior performance compared to
other mainstream object detection models, achieving accurate and reliable helmet detection
for electric vehicle riders.

Keywords: helmet detection; deep learning; YOLOv7; coordinate convolution; Focal-EIOU

1. Introduction

Electric vehicles offer a cost-effective solution for “last mile” travel but face higher
crashes risks [1]. Helmets are the primary safety equipment for electric bike riders, provid-
ing crucial protection in the event of an crash [2,3]. Therefore, it is of great significance to
study the detection of helmet wearing by electric vehicle drivers.

Numerous researchers have delved into the field of helmet detection, successfully
achieving automatic helmet detection for electric vehicle drivers [4–6]. Paulchamy et al. [7]
proposed an intelligent miner helmet that integrates air quality monitoring, utilizing Zigbee
technology for data transmission to enhance miner safety. Bhagat et al. [8] employed
OpenCV’s cascaded classifier for helmet detection, significantly improving the accuracy
and efficiency of the detection model. Wonghabut et al. [9] introduced a law enforcement
assistance model that leverages CCTV surveillance cameras to automatically detect helmet
usage, thereby improving public safety supervision through deep learning technology to
enhance the efficiency and accuracy of law enforcement. Dahiya et al. [10] developed an
automatic detection system, HRDS, for identifying cyclists without helmets in real-time
monitoring videos, achieving an accuracy of over 92%. Vishnu et al. [11] first subtracted
video frames using adaptive backgrounds to identify moving objects, then used a CNN
to determine whether motorcycle riders were wearing helmets among the moving objects.
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Wu et al. [12] achieved high accuracy and real-time helmet detection by optimizing the
network structure and using transfer learning training, replacing the original Backbone
network of YOLOv3.

At present, there are many helmet detection models based on deep learning [13,14],
and the YOLO series detection models [15–17] have the characteristics of high accuracy and
fast speed, which are very suitable for deployment in application scenarios. In addition, the
speed and accuracy of current mainstream solutions still cannot meet the requirements of
application scenarios. The YOLOv7 neural network algorithm is highly effective in object
detection and is widely used for automatic helmet detection. However, detecting helmets in
target images with limited pixels, small relative sizes, and complex road backgrounds poses
challenges, often leading to missed or false detections. To address these issues, this paper
adopts YOLOv7 as the base model and enhances it to achieve accurate helmet-wearing
detection for electric vehicle riders, significantly improving detection accuracy

The main contributions and innovative points of this paper are as follows:

1. Dataset Construction: To address the lack of a dataset for electric vehicle driver
helmets in China, a comprehensive dataset was constructed. This dataset includes
images under various lighting conditions, perspectives, congestion levels, and road
environments on both urban and rural roads.

2. Helmet Wearing Object Detection Network (YOLO-CBF): A new helmet-wearing ob-
ject detection network, YOLO-CBF, was developed. Where, C represents coordinated
revolution module, B represents Biformer dynamic spark attention module, and F
represents fusion coordinated revolution module. This network enhances spatial in-
formation perception by incorporating coordinate information into the convolutional
process through a specially designed coordinate convolution module. Additionally, by
integrating dual-level routing attention into the Backbone of YOLOv7, the network’s
ability to capture regional features is significantly improved, enhancing detection
performance in occlusion scenarios.

3. Improved Loss Function (Focal EIOU Loss): The Focal EIOU Loss function was
adopted to address the slow convergence speed and inaccurate regressionce issues.
This new loss function achieves quicker convergence and improved localization
results, thereby improving overall detection accuracy.

2. Related Work

2.1. YOLOv7 Detection Model

The input, the backbone network, and the head structure are the three main parts of
the YOLOv7 detection model. As shown in Figure 1, the input consists of three-channel
images at a resolution of 640 × 640 pixels. The backbone network includes convolutional
layers, the ELAN module [18], and the MP module. The ELAN module is designed for
feature extraction and channel control, enabling the network to learn a wider range of
features. The head structure consists of the SPPC-SPC module, the PAFP structure, and
the output layer. This configuration facilitates feature fusion by combining high-level and
low-level feature maps, followed by further feature extraction and final prediction output
of the processed feature maps.
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Figure 1. The overall structure of YOLOv7.

2.2. Attention Mechanism

The attention mechanism enhances segmentation accuracy by adjusting feature
weights during training to model long-range feature dependencies. Common attention
mechanisms are classified into channel attention and spatial attention. The representative
model of channel attention mechanism is Squeeze and Excitation Networks (SENet) [19],
and the representative model of spatial attention mechanism is Spatial Transformer Net-
works (STN) [20]. Channel attention compresses features through global pooling operations,
captures inter-channel dependencies, and selectively enhances or suppresses specific chan-
nels. Spatial attention incorporates contextual information by calculating the similarity
between features, identifying key regions of the image for processing, and addressing the
limitations of local receptive fields.

3. The Proposed YOLO-CBF

3.1. Motivation

The original YOLOv7 model has demonstrated strong performance in object detection,
but it struggles with detecting small, distant targets and densely overlapping objects in
complex driving scenarios, often resulting in missed or false detections. This is particularly
problematic for helmet detection in electric vehicle riders, where accuracy is crucial. To
overcome these limitations, we propose the YOLO-CBF network. By incorporating a
BiFormer [21] dynamic sparse attention module, we reduce the computational and storage
burden, while improving the model’s ability to focus on the most important features.
Additionally, we replace the traditional convolutional layer with CoordConv [22], which
enables the model to better capture spatial relationships between pixels, enhancing its
ability to detect object shapes, structures, and layouts.

Furthermore, traditional bounding box loss functions like ln-norm or IoU often fail
to deliver accurate results in bounding box regression, leading to slow convergence and
imprecise predictions. To address this, we introduce the Efficient Intersection over Union
(EIOU) loss function, which explicitly considers the overlapping area, center point, and
edge length of bounding boxes. This allows for more accurate and faster convergence,
especially in cases with anchor boxes that have low overlap with the target, ultimately
improving detection performance in challenging real-world scenarios.

3.2. Overview

Figure 2 illustrates the overall structure of the YOLO-CBF model. The CBS module
consists of three components: a convolutional layer, Batch Normalization, and the SiLU acti-
vation function, which collectively give the module its name (C for Conv, B for BatchNorm,
and S for SiLU). The ELAN (Efficient Layer Aggregation Network) module enhances the
accuracy and robustness of object detection by effectively aggregating feature information
from multiple layers. The REP module is split into two parts: one for training and one
for deployment. The training module includes three branches: the top branch uses a
3 × 3 convolution for feature extraction, the middle branch applies a 1 × 1 convolution
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for feature smoothing, and the final branch is an identity operation. The inference module
consists of a 3 × 3 convolution with stride 1, which is reparameterized based on the training
module (the structures of the CBS, ELAN, and ELAN-W modules are depicted in Figure 3).

 

Figure 2. An overview of the YOLO-CBF.

 

Figure 3. Detailed module structure of YOLO-CBF.

3.3. BiFormer Dynamic Sparse Attention Module

To overcome the scalability limitations of the traditional multi-head self-attention
mechanism, which becomes increasingly inefficient with larger input sizes, this paper
introduces the BiFormer dynamic sparse attention mechanism into the YOLOv7 model.
While the standard multi-head attention excels in capturing global semantic information,
its computational complexity grows significantly as input dimensions increase. By contrast,
BiFormer addresses these challenges by dynamically selecting important features for
attention, thereby enhancing both model efficiency and performance. The structure of the
BiFormer module, along with the design of the BiFormer block, is shown in Figure 4.

 

Figure 4. Left: The overall structure of BiFormer Right: Details of BiFormer Block.
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Built upon the Bi-level Routing Attention (BRA) module, the model integrates the
innovative BiFormer universal visual converter. The BiFormer dynamic sparse attention
mechanism leverages the BRA module to finely segment the input feature map and se-
lectively compute attention weights based on feature correlations. Specifically, the BRA
module derives query (Q), key (K), and value (V) vectors via linear mapping and uses
an adjacency matrix to build a directed graph, which identifies the participation relation-
ships among various key-value pairs. This approach ensures that each region establishes
connections only with others deemed relevant, facilitating dynamic sparse connections.
Such sparse connections efficiently allocate computational resources, reduce complex-
ity, and enhance scalability and efficiency by focusing computational efforts on highly
correlated regions.

This model can capture picture features of various levels and scales, using a four-level
pyramid structure and a 32-times down-sampling rate. BiFormer uses overlapping block
embedding in the first stage. A block merging module is used in the second through fourth
stages to increase the number of channels while decreasing the input spatial resolution. For
feature transformation, continuous BiFormer blocks are then used. After introducing the
BiFormer dynamic sparse attention mechanism, YOLOv7 better utilizes the self-attention
mechanism in object detection tasks, improving its perception ability and detection accuracy
towards targets.

Compared to traditional attention mechanisms, BiFormer dynamic sparse attention
offers two distinct advantages:

1. Dynamic Region Selection: It dynamically selects regions for attention calculation
based on input image characteristics, avoiding the computational complexity of fully
connected operations.

2. Connections: By introducing sparse connections, the model focuses only on feature
regions with high correlation, enhancing performance and efficiency. This approach
enables more effective computation allocation and allows the model to adapt seam-
lessly to input data of varying scales and resolutions.

To address the scalability challenges of multi-head self-attention, this paper integrates
BiFormer dynamic sparse attention into YOLOv7. This improvement allows for more
adaptable computation distribution and enhances content awareness, enabling dynamic
sparsity that is responsive of queries within the model.

3.4. Fusion Coordinate Convolution Module

Traditional convolutional methods often lack sensitivity to spatial position informa-
tion, which is essential for tasks involving positional awareness, such as helmet-wearing
detection. Therefore, this paper introduces CoordConv to improve the perception and
utilization of spatial information from input data.

CoordConv extends convolutional neural networks by appending two channels to the
input feature map to encode i and j coordinates. This modification allows the network to
flexibly learn translation invariance or dependencies, improving its ability to understand
and utilize object positions within images. As depicted in Figure 5, CoordConv enables the
network in helmet detection tasks to predict object positions more accurately by providing
richer spatial information, thereby enhancing the network’s understanding of the spatial
layout of objects.
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Figure 5. Traditional convolution and coordinate convolution, where the left side is the traditional
convolution layer and the right side represents the coordinate convolution layer.

Furthermore, CoordConv enhances the network’s robustness when dealing with
occlusion, rotation, scale variations, and other scenarios. By incorporating coordinate
information, the network can better distinguish features from different locations, thereby
improving its ability to adapt to complex transformations within images. This approach
provides flexible and powerful tools for handling various tasks, enabling the network to
better understand and process spatial relationships within images.

3.5. Optimized Focal and Efficient IOU Loss

Precise BBR is vital for accurately pinpointing objects in object detection. However,
many current BBR loss functions have two primary limitations:

1. Both ln-norm and IoU-based loss functions often struggle to fully capture the objec-
tives of BBR, resulting in slower convergence and less accurate regression outcomes.

2. Several loss functions neglect the imbalance issue in BBR, where anchor boxes with
little overlap with the target box can significantly influence BBR optimization.

To address these issues, the EIOU loss function is introduced. EIOU specifically
evaluates variations in three geometric factors essential for BBR. Extending from EIOU, a
novel loss function called Focal EIOU [23] is proposed, defined by Equation (1):

LEIOU = LIOU + Ldis + Lasp = 1 − IOU +
ρ2(b, bgt)

C2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(1)

where Cw and Ch are the width and height of the minimum enclosing box that covers two
boxes. The loss function is divided into three parts in this paper: IoU loss LIoU, aspect
loss Lasp, and distance loss Ldis. This division allows the paper to retain the beneficial
characteristics of CIoU losses. Additionally, EIoU loss focuses on minimizing differences
in width and height between the target and anchor boxes directly, resulting in quicker
convergence and improved localization accuracy.

However, when LEIoU approaches zero, the overall gradient diminishes, reducing
the impact of reweighting boxes with small LEIoU. This paper introduces a reweighting
mechanism for the EIoU loss based on the value of IoU to overcome this problem, resulting
in the Focal EIoU loss as shown in Equation (2):

LFocal−EIOU = IoUγLEIOU (2)

Among them, IoU = |A∩B|
|A∪B| and γ are parameters that adjust the extent of outlier suppression.
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4. Experiments and Analysis

4.1. Dataset Construction

To address the current lack of a dataset for electric vehicle driver helmets and the
need for diverse scenario representation, real-life images of electric vehicle helmets were
collected and compiled into a custom dataset for helmet-wearing detection. This dataset
serves as the foundation for comparative and ablation experiments in training and testing.
The images were gathered from various traffic scenarios in Changsha, Hunan Province,
covering non-peak and peak commuting times, as well as urban and suburban road sections.
This diversity ensures the model’s robustness and applicability in real-world settings. The
images were captured using a phone with an original pixel size of 3120 × 3120, resized
to 640 × 640 for consistency. A subset of experimental dataset samples is illustrated in
Figure 6.

 

Figure 6. Partial samples in the dataset.

Post-acquisition, images were annotated using Labelimg software (version 1.8.6).
Following the format of PASCAL VOC 2012, the dataset consists of 962 images show-
ing electric vehicle helmet-wearing in natural road environments. During annotation,
images feature electric vehicle drivers with helmets labeled as “helmets”, and those
without helmets labeled as “no helmets”. Electric vehicles without drivers and pedes-
trians are not labeled. Upon input to the model, images are automatically adjusted to
512 × 512 dimensions. The dataset was split into training, validation, and testing sets using
random seeding, with a distribution ratio of 7:1.5:1.5.

4.2. Implementation Details

All experiments in this study used the same environmental configuration and hyper-
parameter settings. Table 1 shows the hyperparameter settings. The model underwent
training and testing on the Windows 11 system. Developed based on the Pytorch (ver-
sion 3.9) framework. The CPU model is the Intel i7-11800h processor, with a running
memory of 16GB and a GPU of the Nvidia 3050 4GB mobile graphics card.

Table 1. Hyperparameter settings.

Momentum Initial Learning Rate Epoch Batch Size Weight Decay

0.937 0.01 150 4 0.0005

Four metrics—Recall, Precision, AP (Average Precision), and mAP (mean Average
Precision) were used in this research to thoroughly and impartially assess the detection
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ability of the upgraded YOLOv7 model. The specific calculation formulas for each indicator
are shown in Equations (3)–(6):

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

AP =
∫ 1

0
P(R)dR (5)

mAP =
∑s

j=1 APj

s
(6)

Precision (P) represents the percentage of true positive samples among all samples
predicted as positive by the model. Recall (R) measures the percentage of true positive
samples among all actual positive samples. True Positives (TP) are the samples correctly
predicted as positive, while False Positives (FP) are the samples predicted as positive but are
actually negative. False Negatives (FN) are the samples predicted as negative, though the
actual value is positive. The total number of categories is denoted by S. Average Precision
(AP) is the mean of precision values across different recall levels, and the mean Average
Precision (mAP) represents the average of AP values across all categories. Specifically, mAP
(IoU = 0.5) refers to the average precision computed when the Intersection over Union (IoU)
between predicted and actual bounding boxes is 0.5.

4.3. Comparison Results

AP, Precision, Recall, and mAP are the key evaluation metrics used to assess the
model’s performance. To evaluate the effectiveness of the proposed YOLO-CBF model, we
compared it with several other models, including YOLOX [24], YOLOv5 [25], YOLOv7 [26],
YOLOv8 [27], YOLOv9 [28], YOLOv10 [29], Tsai’s model [30], and the improved YOLOv7
model presented in this paper. The comparative experimental results, shown in Table 2,
reveal that the YOLO-CBF model outperforms the other models in helmet detection tasks,
achieving an average accuracy of 92.4%, which exceeds the performance of other widely-
used detection models. The enhanced model consistently outperforms the original YOLOv7
across all metrics.

Table 2. Comparison results on private datasets.

Model
AP (Helmet

%)
AP (No Helmet

%)
P (%) R (%) mAP (IoU = 0.5)

YOLOv5 81 90 83.2 78.8 85.5
YOLOX 89.4 94.1 84.4 84.8 91.8
YOLOv7 85.5 90.4 92.1 100 88.0
YOLOv8 89.2 92 89.8 78.4 90.6

Tsai’s 81.7 88.7 91.3 100 85.2
YOLOv9 86.5 90.4 85.2 77.3 88.4
YOLOv10 90.8 92.1 87.0 83.0 91.4

YOLO-CBF 91.5 92.9 95.1 99 92.4

Experiments were conducted on a public safety helmet dataset to validate the general-
ization and robustness of the YOLO-CBF model. Additionally, more images were collected
using web crawlers and video capture to augment the dataset, enriching the scenarios
and balancing the categories. As shown in Figure 7, the dataset includes images of sunny
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and cloudy days, as well as urban and rural roadways. The selected experimental dataset
contains 3056 images, of which 2501 were used for training and 555 for testing. The results
of model comparisons are presented in Table 3.

Figure 7. Public dataset samples.

Table 3. Comparison results on public datasets.

Model AP (Helmet)% AP (No Helmet)% P (%) R (%) mAP (IoU = 0.5)%

YOLOv5 85.9 72.4 78.6 65.3 79.2
YOLOX 95.74 94.7 84.6 92.9 95.2
YOLOv7 95.1 88.1 97.0 99.0 91.6
YOLOv8 94.9 92.1 95.9 97.0 93.5

Tsai’s 93.3 91.7 91.2 99.0 92.5
YOLOv9 96.6 92.4 91.1 89.7 94.5
YOLOv10 95.9 91.0 92.5 99.0 93.5

YOLO-
CBF 96.3 94.8 94.7 99.0 95.6

As shown in Table 3, the YOLO-CBF model proposed in this paper demonstrates
excellent performance on public datasets, surpassing other models in both helmet-wearing
and non-helmet-wearing accuracy. Its mAP is 0.4% higher than the best-performing YOLOX
and 14.6% higher than the worst-performing YOLOv5, highlighting the model’s strong
generalization and robustness.

4.4. Ablation Study

Ablation experiments were conducted on the upgraded YOLOv7 modules using
the same experimental setup to assess the efficacy of the model’s improvements. The
results, shown in Table 4, demonstrate that the enhanced model improves helmet-wearing
detection accuracy. The introduction of the CoordConv module increased the model’s mAP
by 2%, highlighting its significant impact on detection performance. The BiFormer module
further boosted recall, markedly improving helmet detection compared to the original
YOLOv7. Additionally, the inclusion of Focal EIOU refined the model’s accuracy, making it
more precise and comprehensive. These improvements collectively enhance the overall
performance of helmet detection, confirming the effectiveness of the proposed method in
detecting helmet-wearing for electric vehicle riders in complex scenarios.

Table 4. Effectiveness of YOLOv7, CoordConv, BiFormer and Focal-EIoU on private datasets.

YOLOv7 CoordConv BiFormer Focal-EIOU mAP (%) P (%) R (%)
√

- - - 88.0 92.1 100√ √
- - 90.0 96.8 97.4√ √ √

- 92.2 95.6 99.0√ √ √ √
92.4 95.1 99.5

The optimal model weight parameter file obtained during training was tested on
actual urban roads, featuring various challenges such as blurred images, occlusions, and
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small detection targets, which are typical of everyday road conditions. Figure 8 illus-
trates the detection results. It is evident that the original YOLOv7 model struggles with
issues like misidentifying worn helmets as not worn, mistakenly classifying non-worn
helmets as worn, and failing to detect whether electric bike riders are wearing helmets.
Additionally, the model incorrectly labels pedestrians as not wearing helmets, leading
to false positives and reduced detection accuracy. In contrast, the proposed object detec-
tion model demonstrates accurate results without errors or omissions. These findings
confirm that the improvements introduced in this paper are effective for real-world road
environment detection.

Figure 8. Visual comparison: (a) the original image, (b) the detection result of YOLOv7, and (c) the
detection result of the YOLO-CBF model.

To further validate the model’s universality and practicality, ablation experiments
were conducted on the public dataset mentioned in Section 4.3. The results are presented
in Table 5. The initial model achieved an accuracy of 91.6%. After replacing the traditional
convolution with CoordConv, the mAP increased by 1.6%, demonstrating that CoordConv
significantly enhances detection performance. Subsequently, the addition of a BiFormer
attention module with double-layer path attention, which captures dependency relation-
ships between different positions in the sequence, further boosted the mAP by 2.2%. To
address the slow convergence and inaccuracies associated with traditional box regression
methods, Focal EIOU was adopted as the model’s loss function, resulting in an additional
0.2% improvement in mAP.
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Table 5. Effectiveness of YOLOv7, CoordConv, BiFormer and Focal-EIoU on public datasets.

YOLOv7 CoordConv BiFormer Focal-EIoU mAP (%) P (%) R (%)
√

- - - 91.6 94.0 99√ √
- - 93.2 94.1 98√ √ √

- 95.4 94.4 99√ √ √ √
95.6 94.7 99

Overall, integrating CoordConv, the Focal EIOU loss function, and the BiFormer
attention mechanism into the original YOLOv7 model significantly enhances its detection
capabilities, resulting in a 4.0% increase in mAP compared to the baseline model. The
improved model is lightweight, offers superior detection performance, is easy to deploy,
and meets the requirements for electric vehicle helmet detection in real-world scenarios.

5. Conclusions

The YOLO-CBF model proposed in this article significantly improves the accuracy
and robustness of helmet wearing detection for electric vehicle drivers through a series of
innovative improvements. On the basis of YOLOv7, this model introduces CoordConv
to enhance spatial information perception ability, optimizes Focal EIOU loss function to
improve the accuracy of bounding box regression, and combines BiFormer dynamic sparse
attention mechanism to improve the detection performance of the model in complex scenes.
These improvements have enabled YOLO-CBF to perform well in various complex road
environments, with an average accuracy (mAP) of 95.6%, which is a 4% improvement
compared to the original YOLOv7. In addition, YOLO-CBF has demonstrated excellent de-
tection performance in comparative experiments with multiple mainstream object detection
models, especially in dealing with small targets, high occlusion, and complex backgrounds.

However, despite significant progress in detection accuracy, YOLO-CBF still faces
some challenges in practical applications. Firstly, the training and inference process of
the model requires high computational resources, especially when dealing with large-
scale datasets, which significantly increases the computational and time costs. Secondly,
although the model performs well on public datasets, its generalization ability still needs
further validation and optimization when facing data from different regions and traffic
rules. In addition, in extreme scenarios such as low light and high occlusion, the detection
accuracy of the model may decrease, especially when the target pixels are limited and the
relative size is small, the performance of the model still has certain limitations.

The future research direction will focus on improving the efficiency and generalization
ability of the model. On the one hand, by further expanding the dataset and covering
more diverse scenes and lighting conditions, the adaptability and robustness of the model
can be enhanced. On the other hand, exploring more efficient network architectures and
optimization algorithms to reduce the computational complexity and storage requirements
of models while maintaining or further improving detection performance is key to achiev-
ing model lightweighting and real-time deployment. In addition, by combining multitask
learning and jointly optimizing helmet detection with other related tasks such as traffic
violation detection and vehicle type recognition, it is expected to further improve the
overall performance of the model. Finally, studying the performance of the model under
adversarial attacks and exploring methods to enhance its robustness is of great significance
for addressing potential security threats.

Through these improvements, the YOLO-CBF model is expected to play a greater role
in future traffic monitoring and safety management, providing more reliable guarantees
for the safety of electric vehicle drivers.
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