
mdpi.com/journal/sensors

Special Issue Reprint

Robust Motion Recognition 
Based on Sensor Technology

Edited by 

Manuel Gil-Martín, Rubén San-Segundo and Fernando Fernández-Martínez



Robust Motion Recognition Based on
Sensor Technology





Robust Motion Recognition Based on
Sensor Technology

Guest Editors

Manuel Gil-Martı́n

Rubén San-Segundo

Fernando Fernández-Martı́nez

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Manuel Gil-Martı́n

Department of

Electronics Engineering

Universidad Politécnica
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Abstract: Belt conveyor idlers are freely rotating idlers supporting the belt of a conveyor, and can
induce severe frictional damage to the belt as they fail. Therefore, fast and accurate detection of
idler faults is crucial for the effective maintenance of belt conveyor systems. In this article, we
implement and evaluate the performance of an idler stall detection system based on a multivariate
deep learning model using accelerometers and microphone sensor data. Emphasis is place on the
scalability of the system, as large belt conveyor installations can span multiple kilometers, potentially
requiring hundreds or even thousands of sensor units to monitor. The accuracy of the proposed
system are analyzed and reported, along with its network bandwidth and energy requirements. The
results suggest that while implementing accurate large-scale idler stall detection is feasible, careful
consideration must be paid to observing the available network bandwidth and energy budget in
order to avoid prolonged downtimes.

Keywords: fault diagnosis; anomaly detection; belt conveyor idler; machine learning; wireless sensor
networks; scalability

1. Introduction

Conveyor belt idlers are cylindrical freely-rotating supports installed along the path
of a belt conveyor to support the belt and prevent it from sagging. Idler function is critical
to the lifespan of the belt, as the idlers reduce the wear and tear experienced by the belt
by supporting it and preventing any drag that could be induced by other structures. Idler
failures caused by fault conditions such as failed bearings can cause the idler to stall and
drag against the belt. Drag on the belt caused by stalled idlers can induce frictional damage,
to the point where the belt or even the whole conveyor system fails (Figure 1).

There have been multiple attempts to implement a system that can automatically
detect or predict the idler failures using various sensing technologies. Review articles from
Liu and Alharbi [1,2] summarize the current progress of such systems. Earlier designs
were often based on the use of thermometers or thermal cameras to identify faults by
detecting temperature increases caused by increased friction between the belt and failed
idler [3,4]. However, such designs have relatively low sensitivity, and can only detect failure
conditions at relatively late stages. More advanced designs often employ vibration sensors,
microphones, or acoustic emission sensors along with machine learning (ML) classifiers to
detect the vibrational patterns of failed idlers [1,2] (example: [5,6]). Such systems operate
by collecting the raw vibration/acoustic sample data from single or multiple sensor units,
preprocessing them (usually into spectrograms, wavelet plots, or handcrafted features),
then feeding the preprocessed data into ML classifiers. Most works have concentrated on
improving the feature extractor and/or model design; for example, a recent manuscript
from Alharbi [5] achieved improved detection accuracy by utilizing a pretrained model
and an Long Short-Term Memory (LSTM)-based feature extractor.

Sensors 2024, 24, 7989. https://doi.org/10.3390/s24247989 https://www.mdpi.com/journal/sensors1
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Figure 1. A belt idler moving freely (left) and intentionally stalled for depiction and data collection
purposes (right). The red arrows on the belt and the idler indicate the direction of the movements.
Other arrows, circles, and texts are simply used to emphasize important components of the system.

Unfortunately, due to the challenges and costs associated with installing and maintain-
ing such systems, most real-world belt conveyor operators do not implement such systems,
instead simply relying on manual inspections. This is largely due to the scale of belt con-
veyor installations, with manual inspection usually sufficient for small belt conveyors. For
larger installations, such as those seen in mines, steelworks, and power stations, the length
of the belt conveyor can span multiple kilometers [7], requiring hundreds or even several
thousand sensor units to be installed and maintained. Moreover, these sensor units are
often exposed to harsh conditions due to the nature of the tasks involved, and may not have
access to high-bandwidth networks or mainline electricity. This makes sensor installation
and maintenance challenging tasks, to the point where operators may simply choose not to
implement such a system and resort to traditional manual inspection techniques.

This suggests to us that the scalability of these systems needs to be studied and
improved in order to allow for wider adaptation of new proposed technologies. Until now,
most works have concentrated on improving the accuracy of detection systems, leaving the
scalability of these systems somewhat underexplored. The following problems must be
solved in order to enable wider adaptation of such technologies: resiliency of the system
against sensor failures, network bandwidth requirements, and energy requirements of the
system. Because hundreds or thousands of sensor units are exposed to harsh conditions,
some sensor failures are expected; thus, the detection system must be able to cope with
sensor losses. In addition, if the detection system is based on multivariate sensors, such as
accelerometers or acoustic sensors with relatively high sampling rates, then the network
bandwidth and energy requirements of the sensor units can grow prohibitively high as
the system scales. Thus, the system must be designed and analyzed with the network and
energy budgets in mind.

As the size of the system grows, the chance of sensor failure increases. Intuitively,
the chance of not experiencing a sensor failure at all at a given moment is xn, where
n is the number of the sensor units and x < 1 is the availability of the sensor at that
moment (assuming independent and identically distributed probabilities). As the number
of sensors grows, this probability decreases rapidly. There have been several studies on
diagnosing sensor faults and mitigating the effects of failures [8–10]. These articles mainly
concentrate on topics such as detecting sensor failures themselves [8], identifying typical
failure modes, and implementing rule-based or machine learning-based sensor failure
detection models, while some other articles concentrate on replacing faulty sensor data
samples with synthetic values (data imputation), which assumes that the sensor failure
has been already identified [9]. For example, in case of a multivariate system, a simple
nearest-neighbor estimator can be used to deduce the value of a missing sample by using
data samples from other operational sensor units [9].
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Another possible problem involves the network bandwidth and the energy require-
ments. Having multiple sensors over a large area means that it is often impractical to tether
all of them together into the power line and a wired network or shared data acquisition
(DAQ) unit. This means that the sensors may have to be battery-powered and transport
data samples using wireless technologies, which can imply severe network bandwidth
and energy restrictions. This is not necessarily a problem when the sensor units operate
at a relatively low sampling rate; some temperature-based idler fault detection systems
can indeed operate purely with harvested energy [11]. However, such systems have rela-
tively low sensitivity, and high-sensitivity detectors based on vibration/acoustic emission
sensors and ML classifiers are generally much more energy intensive. Furthermore, for
joint classification, measurements from multiple sensor units need to be transmitted into
a central data collection unit prior to classification. As deep learning-based sensing sys-
tems may need access to the raw unprocessed (or minimally processed) streams of sensor
readings for feature extraction [12], the bandwidth and the energy requirements associ-
ated with data transmission can grow to an impractical level, as each sensor unit could
generate and transmit up to a few megabits of data samples per second (as demonstrated
in later sections).

Therefore, naively transmitting every collected data sample can quickly become im-
practical in the case of deep learning-based multivariate sensing systems, and data re-
duction techniques may be needed in order to keep the network bandwidth and energy
budgets at a manageable level. Some systems use duty-cycled sensor data to reduce the
energy requirements [13,14]; in these articles, the authors try to balance the system accuracy
and energy efficiency of the system by carefully adjusting the duty cycle (on–off periods)
of the involved sensor units. Others have used compressive sensing techniques such as
sub-Nyquist sampling [15,16] or edge computing techniques such as autoencoders to com-
press the data [17]. These approaches try to reduce the amount of data generated by the
sensor units while minimizing the loss of information by either adjusting the sampling
rates or by applying lossy compression to the data. Another approach to the problem is
to not install sensor units directly onto the belt conveyor, but to install them on robots or
unmanned vehicles which scan the belt conveyor physically in prescheduled intervals [11].
However, such systems come with challenges of their own; for instance, because the sensor
units are not directly attached to the belt, and the vehicles themselves generate vibrational
and acoustic noises, the quality of the data can be degraded.

In this article, we implement and evaluate a belt conveyor idler monitoring system that
detects and identifies stalled idlers by using accelerometers and microphones as cheaper
substitutes for piezoelectric transducers. We analyze the reliability, network bandwidth,
and energy requirements of the proposed system to evaluate the practicality of the design.
Wired accelerometers and microphones installed on our belt conveyor testbed are used to
collect near-ideal-condition datasets. The data samples are then intentionally modified to
simulate sensor failures and measure the effect of the accelerometer/microphone sampling
rates on the accuracy of the model. The results of our analysis suggest that such systems can
indeed detect and locate stalled idlers accurately; however, careful consideration should be
given to network and energy efficiency so as not to exceed the network and energy budgets.

The main contribution point of this article is the scalability analysis results, which
address how well a deep learning-based idler fault detection model can scale in terms of
network bandwidth and energy costs as well as the system’s survivability when exposed
to harsh operating conditions under which some sensor units can suffer failures.

The rest of this paper is organized as follows: in Section 2, we discuss the methods
and equipment used to collect the dataset and the models used to implement the idler stall
detection and identification system; in Section 3, we display the experimental results of
the proposed system, including the model accuracy, network bandwidth, and estimated
energy requirements; in Section 4, we analyze and discuss the obtained results to derive
conclusions; finally, we summarize our results and wrap up the article in Section 5.
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2. Materials and Methods

2.1. Data Collection

We collected datasets from our own belt conveyor testbed, consisting of a sloped
v-trough belt conveyor with an upper belt length of 7 m. Analog accelerometers and
microphones were installed on the frame of the belt conveyor to collect data samples, as
shown in Figure 2. To simulate stalled idlers, the idlers were intentionally jammed with
stones (Figure 1). When jammed in this way, the idlers were unable to rotate freely and
dragged against the belt.

Figure 2. Design of the sensor units and their installed locations.

2.1.1. Hardware Setup

Vibration and acoustic data samples were collected using ADXL 1002 Micro-Electro-
Mechanical Systems (MEMS) analog single-axis accelerometers (from Analog Devices,
Wilmington, MA, USA), and electret microphones with Maxim Integrated MAX4466 am-
plifier modules (by Adafruit, New York, NY, USA) by connecting them to a NI-6353
DAQ unit, from National Instruments (Austin, TX, USA) with generic shielded cables.
MEMS accelerometers and electret microphones were used as substitutes for piezoelectric
accelerometers and acoustic emissions sensors, which are often preferred in academic
research projects; the rationale behind this choice was that these types of sensors are more
likely to be used in real-world deployments. While piezoelectric transducers usually pro-
vide higher sensitivity and larger bandwidth than their MEMS counterparts, they also come
at much higher cost, which is difficult to justify for large-scale deployments involving hun-
dreds to thousands of sensor units. As shown in the next section, the data quality of these
MEMS accelerometers and electret microphones is mostly sufficient for our purposes. All
equipments and sensor modules were imported to Pohang, South Korea via local electrical
component suppliers.

Two accelerometers and one microphone were grouped to form a ‘sensor unit’. Each
‘sensor unit’ was then enclosed in a weatherproof enclosure for outdoor installations, as
shown in Figure 2. The accelerometers were pointed perpendicular to the frame, one
pointing upward and the other pointing to the left, forming two orthogonal measurement
axes. Because the microphone is an omnidirectional unit, it receives sound waves from
every direction. In total, ten sensor units were produced and installed, providing thirty
analog measurement channels in total (twenty accelerometers and ten microphones). The
sensor outputs were directly sampled by a 32-channel 16-bit DAQ NI-6353 at a sampling
rate of 31.25 kSa/s, which is the maximum sampling rate achievable by the DAQ when
all 32 channels are scanned simultaneously. This is reasonably close to the Nyquist rate
of the sensors [18,19], which is 22 kSa/s and 40 kSa/s for the accelerometers and micro-
phones, respectively. All 32 channels of the DAQ were scanned, with 30 channels actually
connected to the sensors and the two remaining unused channels connected to dummy
resistors to suppress ghosting effects caused by the voltage range differences between the
microphones and accelerometers [20]. The collected samples were stored in files using
SigMF format version 1.0 [21], then transmitted to a centralized data server for further anal-
ysis. Python 3.11.2 and the nidaqmx Python library (version 0.9.0) were used to implement
the collection software.

4
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The locations of the sensor units are shown in Figure 3. The separation between the
sensor units along the frame were approximately 1.2 m, with some variations in placement
due to various physical restrictions.

Figure 3. Locations of the sensor units and idlers. Each sensor unit contains three sensors (two ac-
celerometers and one microphone), while each idler location contains three idlers (left, middle,
and right idler). The numbers (#1–#10) denote the identification numbers of the sensor units
used internally.

The overall system architectures are shown in Figure 4. It must be noted that the
testbed that we used to collect the datasets and train and evaluate the models was struc-
tured differently from the expected deployment scenarios, especially in that the testbed
relies on wired sensor units instead of wireless units. This was done intentionally in
order to collect high-quality samples without duty cycling. The data samples were inten-
tionally unsynchronized later on during the training and evaluation phases to simulate
unsynchronized wireless sensor units.

Figure 4. Overview of the system: (a) system architecture of the testbed used to collect the data
samples and (b) expected system architecture in actual deployment.
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2.1.2. Dataset Collection

Two types of data samples were collected: normal samples, which formed the normal
dataset, and samples with a stalled idler, which formed the anomaly dataset. The normal
dataset contained signal samples collected during the normal operation of the belt conveyor
with no stalled idlers, while the anomaly dataset contained signal samples with one stalled
idler at a known position. As shown in Figure 1, the idler was intentionally jammed to
cause a stall. Due to physical constraints, only the upper left/right idlers were jammed
(seven left idlers and seven right idlers, for a total of fourteen). The belt was not loaded
with payloads during data collection.

The list of collected datasets is summarized in Table 1. The speed of the belt is directly
related to the inverter frequency, with the slowest at 10 Hz (approximately 0.11 m/s) and
the fastest at 60 Hz (approximately 0.63 m/s).

Table 1. Collected datasets for the belt idler stall detection experiments.

Condition
Inverter Frequency (Hz)

Sum
10 20 30 40 50 60

Normal 11 h 11 h 11 h 11 h 11 h 11 h 66 h

Stalled
Idler

20 min
× 14
idlers

20 min
× 14
idlers

20 min
× 14
idlers

20 min
× 14
idlers

20 min
× 14
idlers

20 min
× 14
idlers

28 h

2.2. Model Implementation
2.2.1. Design Considerations

State-of-the-art idler fault detection systems usually rely on ML algorithms to process
sensor data and to identify faults [2]. While the properties of one of the most common
failure modes, namely, bearing faults, have been closely analyzed and can be inspected
algorithmically [22], this is not the only possible failure mode, and the observed power
spectra can be vastly different even in the case of bearing faults. This is because the
vibrations and acoustic noises created by the belt conveyor are not solely from the bearings,
but from various interactions; for example, the drag induced by the stalled bearing can also
generate various frequency components in the accelerometer and microphone sensor data
which cannot be easily accounted for.

Various neural network-based ML models have been considered, including simple
multilayer perceptrons, 1D convolutional neural networks (CNN), recurrent neural net-
works, and 2D-CNNs. In addition, various preprocessing techniques for the samples have
been considered, including the discrete Fourier transform (DFT) for ML models requiring
1D data shapes and the short-time Fourier transform (STFT) and continuous wavelet trans-
form for ML models requiring image-like 2D input data shapes. We selected a 2D-CNN, as
it showed the most promising results during our preliminary analysis.

It must be noted that STFT-based models tend to require more sample points to make
an inference than the other alternatives considered above. This is because the number
of sample points needed to calculate an STFT matrix is equal to twice the number of the
elements in the matrix when no overlaps are assumed. Wavelet transform-based models
and multivariate 1D time series-based models tend to require fewer sample points to make
an inference, although this is implementation-dependent and not necessarily always the
case. Nonetheless, this means that our STFT-based model is likely to suffer from higher
network overhead than alternative designs. While this is not favorable from the viewpoint
of scalability, proving the practicality of the model with STFT would also demonstrate the
practicality of the system with smaller models that would require less network bandwidth
to operate.

6
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2.2.2. Model Design

Multivariate time series sensor data streams are converted into time-frequency ma-
trices with STFT, then inputted to a 2D-CNN. MobileNet V2 [23] was modified to allow
30-channel STFT input data for use as our classification model. This model detects whether
an idler stall has occurred; in the event of a fault, it also identifies the location of the
stalled idler. The output of the model (the expected label) is either 0 if no idler is stalled,
or the position of the stalled idler (1–14) if a stall is detected. Python 3.11.2 and PyTorch
2.0.1+cu117 were used to implement the model.

2.2.3. Data Augmentation for Sensor Fault Tolerance

Augmented samples are used to train the model. The channels of the input data were
randomly selected and masked with zeros to simulate sensors that are missing due to
sensor malfunctions or communication failures caused by network instability. A discrete
uniform distribution with a probability of 0.5 was used to select and drop the channels
(sensors). In this way, the trained model learns to deal with missing sensor data.

We assumed that failed sensor units transmitted either no data or data consisting of
only zeros. While this is not necessarily true, similar effects can be achieved by imple-
menting a sensor failure detection system [8] and filtering out any faulty samples detected
with it.

Every random parameter used in the augmentation process was recalculated every
time the augmentation was applied in order to maximize the randomness of the results.

2.2.4. Preprocessing

The augmented samples were converted into time–frequency domain matrices by
applying STFT. The elements in the STFT matrices were then squared to obtain power
estimates, converted to the logarithmic scale (base-10), and normalized to approximately
[0, 1] using pre-estimated normalization factors. The resulting matrices were used as the
input features of the CNN model.

2.2.5. Training and Evaluation

The implemented model was trained using the collected data samples split in an
8:1:1 training–validation–testing ratio. Supervised learning was used to train the model.
The hyperparameters and various configurations used to train the model are displayed in
Table 2.

Samples with an inverter frequency of 30 Hz were intentionally excluded in order
to evaluate the generalization performance of the model. All other samples were used
as either training samples, validation samples, or testing samples. The excluded 30 Hz
samples were used later to test the accuracy of the model on unseen environments (unseen
inverter configurations), and are referred to as the “unseen test data”.

Table 2. Default hyperparameters and configurations used to train the proposed idler stall identifica-
tion model.

Name Value

Input Shape 30 × 256 × 256
Preprocessing Methods STFT

Augmentation channel mask
Batch Size 16

Learning Rate 0.0005
Epochs 50 (with early stopping)

Dataset Split 8:1:1 (train:val:test)
Loss Function Cross Entropy loss

Optimizer Adam

7
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In addition to the main identification model, an additional model was trained with
the augmentation step disabled in order to evaluate the effectiveness of the augmentation
in hardening the model. In addition, several more models were trained with decimated
samples to evaluate the minimum acceptable sampling rates of the system. Two different
downsampler configurations were considered: the first with an ideal (DFT-based) low-
pass filter, and the second without the low-pass filter, potentially allowing high-frequency
components to be aliased into low-frequency regions.

3. Results

3.1. Network Bandwidth and Energy Requirements

The network and energy usages of the sensor units were calculated to evaluate the
scalability of the system.

3.1.1. Theoretical Limits

The theoretical bound of the network bandwidth and energy requirements (of the
communication circuits) can be estimated using the Shannon capacity and a channel model.

The Shannon capacity of a wireless channel is

C = B log2(1 +
S
N
), (1)

where C is the channel capacity (bits/s), B is the bandwidth of the channel (in Hz), and
S/N is the signal-to-noise ratio of the received signal. The available bandwidth is usually
controlled by government agencies (the FCC in the case of the U.S.), and is not under our
control. The noise power N is higher than or equal to the Johnson–Nyquist noise, which
is approximately −174 dBm/Hz (linear-log scale conversion may be needed). Finally, the
signal power S is approximated by dividing the power loss by the transmission power
(assuming a linear scale), which is environment-dependent. If free (open) space is assumed,
then the free space path loss equation can be used to estimate the loss:

Pr

Pt
= DtDr(

λ

4πd
)2 (2)

where Pr is the received power (linear scale), Pt is the transmitted power, Dt is the transmit-
ter antenna gain, Dr is the receiver antenna gain, λ is the signal wavelength, and d is the
distance between the transmission and reception antennas.

By plugging this in to the Shannon capacity and integrating the capacity equation, it is
possible to estimate the minimum energy required to transmit the data.

However, the estimated results can be significantly off from the real-world results, as
the exact path loss model and various energy overheads experienced by the transceivers
are not known. Thus, instead of using the theoretical bounds, we simply use empirical
efficiency figures advertised by Wi-Fi HaLow [24] in the rest of this article. Wi-Fi HaLow is
a variation of the Wi-Fi standard optimized for long-distance machine-to-machine com-
munication systems. The claimed energy efficiency of a typical Wi-Fi HaLow node is
22.4 kbits/J [24], that is, 22.4 kbits of data transmission per 1 joule of energy.

The physical layer of Wi-Fi HaLow is based on a modified IEEE 802.11ac [25] physical
layer (PHY), downclocked to 10% of the original speed of the IEEE 802.11ac; therefore,
the theoretical maximum throughput of a Wi-Fi HaLow PHY is approximately 86.7 Mbps,
which is one-tenth the maximum throughput of IEEE 802.11ac. The realistic maximum
throughput is usually much lower, probably somewhere around 10 Mbps depending on
various environmental factors.

3.1.2. Continuous Data Streaming

The minimum network bandwidth required by our system to stream every sample into
the centralized data collector server continuously without downsampling or duty-cycling is
as follows:
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31, 250 Sa/s× 16 bits/Sa× 30 channels = 15 mbps. (3)

The required network bandwidth per sensing channel to transmit every sample would
then be

31, 250 Sa/s× 16 bits/Sa = 0.5 mbps. (4)

In our case, the system managed to stream every sample to our centralized server over
Wi-Fi in real time without issue; however, such luxuries cannot be expected in more realistic
large-scale belt conveyor installations. For example, as discussed above, the 15 Mbps
bandwidth requirement is fairly close to the achievable limit of a realistic Wi-Fi HaLow
network. A typical 5G New Radio (NR) Enhanced Mobile Broadband backhaul can support
approximately 100 Mbps of uplink speed [26], which is lower than the downlink speed
due to the asymmetricity of the uplink and downlink connections. This means that a
high-performance 5G modem should be able to handle approximately 200 sensor channels
(accelerometers or microphones) in our setups without applying data reduction techniques.
Adding additional transceivers may not necessarily improve the situation, as the spatial
diversity can quickly become the limiting factor. In such cases, data reduction (duty
cycling, downsampling, compression, etc.) is unavoidable. Other IoT-optimized wireless
communication protocols such as ZigBee and LoRa have very limited uplink bandwidth
and do not meet our bandwidth requirements, as these protocols are generally not designed
to carry raw data samples directly.

3.1.3. Per-Inference Network Requirements

To create the 256 × 256 × 30 spectrogram used by our inference model, we need
to transmit

256× 256× 30× 2× 2 bytes/Sa = 7.5 MiB (5)

of raw data to the central processing server. Similarly, the per-channel cost of the system is
0.25 MiB/ch. Using the 22.4 kbits/joule energy efficiency figure from Wi-Fi HaLow [24],
the required amount of energy can be estimated as follows:

7.5 MiB
22.4 kbits/J

= 2740 J = 0.76 Wh, (6)

amounting to approximately 91.4 J (0.025 Wh) per sensing channel, or 0.076 Wh for each
sensor unit with three sensing channels.

3.2. Data Visualization

The power spectral density (PSD) estimates of the normal dataset and anomaly dataset
(idler #1 stall, which is the nearest idler to the sensor unit #1) at the inverter frequencies of
10 Hz and 60 Hz are shown in Figures 5 and 6, providing a visualization of the collected
data. In addition, the spectrograms of the first sensor unit during normal operation and
during the idler #1 stall are shown in Figure 7. While there are some minor differences in
the plots, distinguishing the normal data from the anomaly data is difficult when using only
the PSD estimates. The STFT spectrograms are easier to distinguish, as the spectrograms
from the anomalous samples contain intermittent broadband frequency components.

3.3. Model Performance

The classification accuracy of the model is shown in Tables 3 and 4, along with the
effect of data augmentation (channel masking). The classification accuracy of the model is
reasonably high even when exposed to an unseen domain (inverter frequency of 30 Hz).
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3.3.1. Effects of Data Augmentation and Sensor Failures

The classification accuracy results of the models trained with and without channel
mask augmentation are displayed and compared in Tables 3 and 4. Three different con-
figurations were evaluated: with every sensor channel available, with 20% of the sensor
channels masked by zeros, and with 80% of the sensor channels masked by zeros.

The results displayed in Table 3 were calculated using test samples from the observed
environments (inverter frequencies of 10–20 Hz and 40–60 Hz), while the results in Table 4
were calculated with samples from the unseen environment (inverter frequency of 30 Hz),
which were excluded from the training dataset. The results on the unseen environment
show that resiliency of the model trained with augmentation is vastly better than the model
trained without augmentation.
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Figure 5. Power spectral density (PSD) estimates of the sensor data for an inverter frequency of
10 Hz: (a,d) PSD estimates of the microphone sensors for the normal and anomaly datasets, (b,e) PSD
estimates of the x-axis accelerometer sensors, and (c,f) PSD estimates of the y-axis accelerometer
sensors. The sensor numbers (#1–#10) in the plots above correspond to the sensor identification
numbers in Figure 3.

11



Sensors 2024, 24, 7989

Figure 6. Power spectral density (PSD) estimates of the sensor data for an inverter frequency of
60 Hz: (a,d) PSD estimates of the microphone sensors for the normal and anomaly datasets, (b,e) PSD
estimates of the x-axis accelerometer sensors, and (c,f) PSD estimates of the y-axis accelerometer
sensors. The sensor numbers (#1–#10) in the plots above correspond to the sensor identification
numbers in Figure 3.
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Figure 7. Spectrograms of the first sensor unit in the case of the normal operation (a–c) and in case
where the nearest idler is stalled (d–f) for an inverter frequency of 60 Hz; (a,d) spectrograms of the
microphone, (b,e) spectrograms of the x-axis accelerometer sensor, and (c,f) spectrograms of the
y-axis accelerometer sensor. The sensor numbers (#1–#10) in the plots above correspond to the sensor
identification numbers in Figure 3.
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Table 3. Model accuracy evaluation results with samples from observed environments (inverter
frequencies of 10–20 Hz and 40–60 Hz).

Channel Mask (% Masked)
Model Training Configurations

Without Augmentation With Augmentation

No Mask 99.522% 99.952%
10% masked 7.321% 99.856%
20% masked 6.770% 99.450%
30% masked 7.201% 99.474%
40% masked 4.833% 99.593%
50% masked 3.469% 99.761%
60% masked 3.469% 98.876%
70% masked 3.469% 97.584%
80% masked 3.469% 91.340%
90% masked 3.469% 58.158%

Table 4. Model accuracy evaluation results with samples from the unseen environment (inverter
frequency of 30 Hz).

Channel Mask (% Masked)
Model Training Configurations

Without Augmentation With Augmentation

No Mask 96.339% 97.100%
10% masked 7.237% 99.783%
20% masked 10.330% 96.653%
30% masked 4.869% 95.360%
40% masked 3.467% 88.740%
50% masked 3.443% 88.232%
60% masked 3.443% 83.279%
70% masked 3.443% 83.569%
80% masked 3.443% 75.933%
90% masked 3.443% 49.305%

3.3.2. Effects of the Input Data Dimensions

Next, we evaluated the effects of the input data dimensions on the accuracy of the
model. The choice of input dimensions can affect the accuracy of the model along with the
network bandwidth, energy requirements, and/or classification intervals.

The results in the Table 5 were obtained by progressively reducing the number of the
time series accelerometer and microphone samples used to detect and identify faults. The
DFT size and the overlap length of the STFT operations were left unmodified. It can be
seen that the accuracy starts to drop quickly when the input dimensions are reduced below
30 × 64 × 256.

Table 5. Model accuracy evaluation results with varying input data dimensions.

Input Dimensions
(ch × len × DFT_dim)

Accuracy
(Seen)

Accuracy
(Unseen; 30

Hz)

Transmitted
Data

(Per-Sensor)

Transmission
Energy

(Calculated,
Per-Sensor)

30 × 512 × 256 100.0% 96.537% 1.5 MiB 0.152 Wh
30 × 256 × 256 100.0% 96.230% 0.75 MiB 0.0762 Wh
30 × 128 × 256 99.95% 94.177% 0.375 MiB 0.0381 Wh
30 × 64 × 256 99.36% 83.467% 0.188 MiB 0.0190 Wh
30 × 32 × 256 88.665% 68.961% 0.094 MiB 0.0095 Wh
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3.3.3. Effects of Decimation and Downsampling

This subsection evaluates the effects of downsampling the data samples. This knowl-
edge can allow us to better understand the sampling rates and analog bandwidth re-
quirements of the sensor units, which can be used to optimize the network bandwidth
requirements of the system and permit the use of inexpensive lower-bandwidth sensor hard-
ware.

Two different downsampling configurations were evaluated, namely, downsampling
with and without a low-pass filter. In the former case, an ideal integer downsampler with an
ideal (square) low-pass filter was simulated by calculating spectrograms and dropping the
high-frequency components from the calculated spectrograms. The resulting spectrograms
were then directly input to the CNN models for identification. In the latter case, the raw
samples were directly decimated without applying a filter. This causes high-frequency
components in the samples to be down-aliased. While aliasing is often considered to be
bad, it can actually help the system to retain its classification accuracy when the spectrum
is sparse by behaving as a primitive compressive sensing system.

In the evaluation results shown in Tables 6–9, the first two tables display the perfor-
mance of the systems when assuming that every sensor unit is available, while the later
two show the performance when assuming that only 20% of the sensor units are available.
The models were retrained every time the downsampling configurations were changed, as
the downsampling process can remove or shift (by aliasing) the frequency components that
are utilized by the model for the classifications.

Table 6. Model accuracy evaluation results with downsampled accelerometer/microphone samples
(no low-pass filter applied).

Downsample
Factor

Input
Dimensions

(ch× len×DFT)

Accuracy
(Seen)

Accuracy
(Unseen; 30

Hz)

Transmitted
Data

(Per-Sensor)

×1 30 × 256 × 256 99.904% 97.100% 0.75 MiB
×2 30 × 256 × 128 99.833% 91.929% 0.375 MiB
×4 30 × 256 × 64 99.904% 82.711% 0.188 MiB
×8 30 × 256 × 32 99.856% 91.253% 0.094 MiB
×16 30 × 256 × 16 96.938% 91.966% 0.047 MiB
×32 30 × 256 × 8 96.675% 76.392% 0.023 MiB
×32 30 × 32 × 64 99.737% 79.352% 0.023 MiB

Table 7. Model accuracy evaluation results with downsampled accelerometer/microphone samples
when applying an ideal DFT low-pass filter.

Downsample
Factor

Input Dimensions
(ch× len×DFT_dim)

Accuracy (Seen)
Accuracy (Unseen;

30 Hz)

×1 30 × 256 × 256 99.952% 97.100%
×2 30 × 256 × 128 99.904% 91.699%
×4 30 × 256 × 64 99.330% 88.208%
×8 30 × 256 × 32 97.464% 97.378%
×16 30 × 256 × 16 98.780% 81.624%
×32 30 × 256 × 8 94.952% 83.835%
×32 30 × 32 × 64 97.967% 76.754%

There are some fluctuations in the evaluation results; the changes in the accuracy are
not monotonic when the downsampling factors are increased/decreased, which would
have been the case if the system and the models were ideal. This is probably because the
CNN models were retrained each time configuration changes were made. The models may
have ended up in different local minima due to the randomness involved in the training
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process. Nonetheless, the overall trends of the results agree with our expectations. The
system can definitely cope with somewhat reduced sampling rates, though it is difficult to
draw a clear line due to the aforementioned fluctuations.

Table 8. Model accuracy evaluation results using downsampled accelerometer/microphone samples
(no low-pass filter applied) with eight out of ten sensor units disabled (masked).

Downsample
Factor

Input Dimensions
(ch× len×DFT_dim)

Accuracy (Seen)
Accuracy (Unseen;

30 Hz)

×1 30 × 256 × 256 77.751% 67.645%
×2 30 × 256 × 128 81.746% 64.589%
×4 30 × 256 × 64 81.220% 74.931%
×8 30 × 256 × 32 70.454% 52.906%
×16 30 × 256 × 16 71.770% 80.766%
×32 30 × 256 × 8 62.249% 66.689%
×32 30 × 32 × 64 65.646% 51.371%

Table 9. Model accuracy evaluation results, using downsampled accelerometer/microphone samples
(ideal DFT low-pass filter applied) with eight of ten sensor units disabled (masked).

Downsample
Factor

Input Dimensions
(ch× len×DFT_dim)

Accuracy (Seen)
Accuracy (Unseen;

30 Hz)

×1 30 × 256 × 256 77.727% 67.657%
×2 30 × 256 × 128 95.789% 63.115%
×4 30 × 256 × 64 73.493% 62.305%
×8 30 × 256 × 32 67.201% 66.075%
×16 30 × 256 × 16 69.019% 62.921%
×32 30 × 256 × 8 67.727% 54.633%
×32 30 × 32 × 64 80.167% 49.583%

4. Discussion

As shown in Table 3, the accuracy of the implemented model is very high; however, it
is not yet ready for real-world deployment. As discussed previously, the scalability of the
system still needs to be addressed. In this section, we discuss possible change to the model
based on the experimental results presented in the previous section.

4.1. Comparison with Previous Works

It is difficult to compare our proposed model against previous works in an objective
manner due to the differences in testbed configurations and sensor configurations. In
particular, most previous systems have been designed and tested using only a single sensor
unit, i.e., a univariate sensing system, which is not suitable for the sensor configurations
used in our testbed.

Nonetheless, comparing these prior works with our system can provide invaluable
insights about the proposed system. Therefore, we describe the results from previous
studies in Table 10 below. Please note that the performance figures in the table below were
obtained from the original papers and were not recalculated or re-evaluated with our own
datasets, and as such cannot be compared directly.

We have used a relatively simple feature extractor and classifier model compared to
other researchers; on the other hand, our proposed system probably has an edge in terms
of the quality of the data samples. We have mainly concentrated on the scalability and
data quality of the proposed system, while previous researchers placed more effort on
optimizing the classification models.
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4.2. Scalability: Operating with a Subset of Sensors

In Tables 3 and 4, we show that the resiliency of the model against missing sensor
streams can be vastly improved by simply augmenting the training data. While the main
rationale behind this was to harden the model against sensor failures, it can be also used to
save network bandwidth and energy consumption by allowing the model to operate with
only a subset of the sensor units.

Table 10. Comparison of the proposed model against previous works. Note that the accuracy
measurements have not been recalculated using our datasets.

Parameter Ours Alharbi, F. [5] Yang, M. [6]

Year 2024 2024 2020

Sensor Type Accel + Microphones
(multivariate) Microphones Microphones

Feature Extraction STFT BPF, Neural Networks
(YAMNet, BiLSTM)

varies (handcrafted,
autoencoder, etc.)

Classifier CNN (MobileNet V2) XGBoost varies (SVM, DNN,
CNN attempted)

Sample length 4.2 s 0.48 s 14 s

Accuracy 1 99.9% (best case) approx. 95% 2 96.7%
1 Results as reported in the original paper. 2 The goal of the classifier is slightly different from ours (failure stage
estimation).

By only using a subset of sensor units for inference, the proposed system can save
a significant amount of energy and network bandwidth. The results in Table 3 suggest
that only four or five out of the ten sensor units are actually needed to make an accurate
classification in the case of our configuration. This can be implemented by simply turning
off the sensor units and replacing the missing data samples with zeros.

Further generalizations of the model in this aspect could make for an interesting future
research topic; for example, having a model that can dynamically select sensor units for
inference could make the maintenance and sectorization processes much more flexible. We
speculate that it would be possible to implement a reinforcement learning-based sensor
controller logic which dynamically connects/disconnects the sensor units as needed to
minimize the accuracy loss while maximizing the maintenance interval by conserving the
battery to maximize a target utility function. A similar concept has already been proposed
and demonstrated, with the authors demonstrating that reinforcement learning can be used
to select the best subset of temperature sensor units for monitoring the temperature of a
given area [27].

4.3. Scalability: Bandwidth and Energy Considerations

As shown in the previous section, the amount of data needing to be transmitted by our
idler stall identification system is 7.5 MiB per inference (0.75 MiB per sensor unit) when no
data reduction techniques are applied. Assuming a Wi-Fi Halow-based network backhaul,
this means that approximately 0.76 Wh of energy is used per transmission (0.076 Wh per
sensor unit).

The energy costs of the other parts of the sensor hardware are usually much lower,
and consequently mostly negligible: the ADXL1002 accelerometer needs approximately
0.005 W [18], the microphone module uses approximately 0.05 W [19,28], and the ADC and
MCU boards use approximately 0.038 W and 0.1 W of power, respectively (assuming an
ADS1256 ADC and STM32F0512 MCU) [29,30]. Therefore, the combined power draw of the
sensor unit, excluding the wireless components, is approximately 200 mW (pessimistically).
This means that the sensor unit uses 0.2 Wh of energy per hour, assuming that every chip
is always in full operation. Meanwhile, the energy required for a sample transmissions is
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approximately 0.076 Wh per inference, which can occur up to tens of times per minute if no
duty cycling is used.

If a sensor unit has a 3000 mAh 3.7 V Li-ion battery installed, a brand-new battery
would last for

3 Ah× 3.7 V
0.076 Wh

= 145 inferences (7)

counting only the energy used for wireless data transfer. This means that without mainline
power or a large solar panel, the battery of the sensor unit may quickly drain if no data
reduction is applied.

The simplest method to reduce this energy cost is to duty-cycle the sensors, that is,
to slow down the inference intervals and put the sensor units into sleep mode whenever
inference is not in progress. While this is one of the most commonly used power-saving
methods [11], it comes at the cost of slower identification speed and slightly reduced
sensitivity of the system due to the reduced number of inferences made in a unit of time.
Thus, while duty cycling can increase the battery lifespan and scalability of the system to
almost an arbitrary scale, its use must be minimized whenever possible.

Fortunately, there are many other opportunities to reduce the bandwidth requirements
of the system. For example, the results in Sections 3.3.2 and 3.3.3 (Tables 6–9) suggest that
the sampling rates and length of the input data of our system are somewhat redundant.
Because the network bandwidth and energy requirements are directly proportional to
these parameters, simply cutting the sampling rates to a quarter and the sample lengths
to half would reduce the associated costs by one-eighth. Even further reductions would
be possible with some loss of accuracy. When paired with a high-throughput network
backhaul (such as 5G NR), the one-eighth reduction rate would allow the system to support
approximately 1000–2000 sensor channels concurrently.

By combining duty cycling with downsampling and downsizing techniques, the
network efficiency and the battery life of the sensor units can be significantly boosted. For
example, if the sensor unit were duty cycled in a such way that it would transmit one data
sample per hour and the data rate reduction of one-eighth were applied to the sensor, the
sensor would last approximately

3 Ah× 3.7 V
(0.076/8) Wh

= 1168 inferences, (8)

which is approximately 1168 h, or 48 days. With larger battery modules and/or further
data reductions (1/16 reduction with subset selection, for example), it would be possible to
improve the battery life to approximately a year.

One of the insights obtained from the spectrograms of our sensor data (Figure 7)
is that the anomalous data samples often contained intermittent wideband frequency
components (Figure 7d) which were not present in the normal samples. This could explain
why the STFT-based model showed a higher accuracy over the alternative designs that
we considered during our preliminary analysis. STFT can capture both the short-term
power estimates and the long-term power fluctuations, which were not captured well by
other preprocessing techniques we tested, such as continuous wavelet transforms. If this is
indeed the case, then designing simpler handcrafted features that capture both aspects of
the spectrum could allow for further reduction of the data rates. Cyclostationary analysis
techniques such as those in [31] could also prove helpful if any repetitive patterns could be
found in the measurements.

4.4. Long-Term Stability

One of the challenges that is unaddressed in this article and left as future work is
improving the long-term stability of the system. A common problem of supervised fault
detection models such as the one proposed in this article is that the accuracy of the system
tends to degrade over time. This is because such models are often not designed with
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environmental variables in mind; as time passes, the surrounding environment often
changes, and the various properties of the system, including the conveyor and the sensors
themselves, may undergo drift as they age. While this would not happen in an ideal world
where the model is trained with an infinite amount of data samples from various domains,
real-world datasets are much more restricted and biased, causing the model to overfit to
specific conditions.

One way to overcome this problem is to use handcrafted features designed to be mostly
independent from external environmental factors and aging of the hardware. An alternative
approach to solve this problem would be to use unsupervised or semi-supervised learning
techniques, which would allow the model to be automatically retrained using more recent
unlabeled samples as needed and without human intervention. One such example is an
autoencoder-based unsupervised anomaly detection model consisting of an autoencoder
model (a deep learning-based lossy data compression–decompression model) intentionally
overfitted to normal operating conditions. Because the model is overfitted to normal
conditions, it does an excellent job of compressing normal samples, but does not compress
abnormal samples as efficiently. This can be used to detect the presence of anomalies [32].
The training process is mostly unsupervised, as the system (the conveyor) mostly operates
in normal condition; thus, most of the collected data samples are from these normal
operating conditions, and the model remains likely to overfit to them even when abnormal
samples are not filtered out carefully.

Continual learning could also be a possible solution to the same problem. As the name
suggests, continual learning is a technique involving continuous training and updating
of the model even after it is deployed in the field. In this case, the original training
datasets are usually not expected to be available. Common workarounds to the problem
include generating substitute samples using generative networks or carefully configuring
the regularization factors to prevent the model from experiencing catastrophic forgetting.
Recently, there have been attempts to bring such techniques to the world of anomaly
detection systems, for example, in [33]. Implementing such systems can help the model to
retain its performance even over a long period.

5. Conclusions

Conveyor belt idlers are cylindrical supports used to support the belts of belt conveyor
systems, and can cause major damage to the belts as they fail. Therefore, early detection of
idler failures is crucial to maintaining the condition of belt conveyor systems. In this article,
we have implemented and evaluated an idler stall detection system using our belt conveyor
testbed equipped with accelerometer and microphone sensor units. The scalability of
the implemented system in terms of resilience to sensor failures, network bandwidth
requirements, and energy requirements is carefully analyzed. The results suggest that our
proposed system can easily cope with a few sensor failures, and can be scaled up to meet
the requirements of larger belt conveyor installations; however, the energy budgets of the
sensor units must be carefully considered, as wireless data transmissions can quickly drain
the batteries of the sensor units.

Future research topics involving the proposed system include the possibility of dy-
namically connecting/disconnecting the sensor units to the network to conserve battery
life, as well as the possibility of long-term performance variations of the model and
workarounds/fixes, if needed.
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Abstract: Individual physiotherapy is crucial in treating patients with various pain and health issues,
and significantly impacts abdominal surgical outcomes and further medical problems. Recent techno-
logical and artificial intelligent advancements have equipped healthcare professionals with innovative
tools, such as sensor systems and telemedicine equipment, offering groundbreaking opportunities to
monitor and analyze patients’ physical activity. This paper investigates the potential applications
of mobile accelerometers in evaluating the symmetry of specific rehabilitation exercises using a
dataset of 1280 tests on 16 individuals in the age range between 8 and 75 years. A comprehensive
computational methodology is introduced, incorporating traditional digital signal processing, feature
extraction in both time and transform domains, and advanced classification techniques. The study
employs a range of machine learning methods, including support vector machines, Bayesian analysis,
and neural networks, to evaluate the balance of various physical activities. The proposed approach
achieved a high classification accuracy of 90.6% in distinguishing between left- and right-side motion
patterns by employing features from both the time and frequency domains using a two-layer neural
network. These findings demonstrate promising applications of precise monitoring of rehabilitation
exercises to increase the probability of successful surgical recovery, highlighting the potential to
significantly enhance patient care and treatment outcomes.

Keywords: physical activity monitoring; motion symmetry; rehabilitation; abdominal wall repair;
computational intelligence; accelerometers; machine learning

1. Introduction

Human activity recognition [1,2] and artificial intelligence (AI) [3] have a wide range
of applications in rehabilitation, neurology, and sports. Wearable sensors are widely used
in individual physiotherapy, detection of various types of pain, and improvements in
physical fitness [4]. Specialized rehabilitation exercises and physical activities [5] play a
crucial role in the pre-operative and post-operative stages of surgical treatment [6,7] to
optimize the healing and recovery process. This area is increasingly important in line
with population ageing, with demands for general surgery expected to rise. However,
post-operative complications following abdominal surgery are frequently reported.

Pre-operative assessment is crucial for optimizing surgical outcomes and minimizing
post-operative complications, despite the overall success rate sometimes being limited [8].
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Traditional pre-operative evaluation methods primarily rely on medical history, physical
examination, and imaging studies, which may not always capture the dynamic physio-
logical changes occurring in a patient’s daily activities. Various studies show positive
effects of rehabilitation in patients undergoing orthopedic surgery [9] and on recovery after
abdominal surgery [10]. Deep learning models have been developed to predict rare but
severe post-operative complications following specific surgical treatments [11,12].

Different studies focus on prehabilitation exercises and their evaluation [13–16] by
computational methods, and their monitoring via telemedicine equipment [17,18] to reduce
complication rates and risk factors associated with complex abdominal surgeries. Recent
advancements in inertial measurement units (IMUs) for motion capture have introduced
novel approaches to pre-operative assessment [7,19,20] and general rehabilitation, with
thermal cameras [21] and mobile accelerometers emerging as promising tools in this domain.
Mobile accelerometers, commonly found in smartphones and wearable devices [22–25], can
continuously monitor a patient’s movements, providing real-time data on physical activity,
posture, and mobility. This wealth of information offers a unique opportunity to enhance
the pre-operative assessment process, enabling a more comprehensive understanding of a
patient’s functional capacity and aiding surgeons in tailoring their decisions and approach
to abdominal wall repair.

The use of mobile accelerometers in pre-operative assessment allows for the collection
of objective and quantitative data on a patient’s movement patterns and activity levels.
By continuously monitoring these metrics, healthcare providers can gain insights into
a patient’s functional capacity, identify specific movement patterns, and pinpoint high-
risk patients. Various rehabilitation programs [26–28] study the effectiveness of specific
exercises involving repetitive muscle contractions, core stability, and balance exercises.
Further studies explore the use of force sensors to monitor respiratory functions and
measure the activation of abdominal wall muscles [29].

Utilizing mobile accelerometers for core muscle rehabilitation and pre-operative as-
sessment involves two key phases: preparing the patients for surgery by assessing their
core strength and stability, and aiding in their post-surgery recovery by monitoring and
guiding their rehabilitation. By integrating wearable sensors with artificial intelligence
tools, clinicians can now assess and monitor patient movements more precisely, allowing
for personalized rehabilitation plans.

Mobile accelerometers can play a significant role in both pre-operative and post-
operative rehabilitation. By tracking a patient’s progress in real-time, rehabilitation proto-
cols can be personalized, monitored remotely, and adjusted based on the patient’s response
to therapy. This enables more efficient and effective rehabilitation, potentially reducing
recovery time, minimizing complications, and improving overall patient satisfaction.

Data processing methods are based on the general methodology of signal process-
ing [30], computational intelligence [31], and time-frequency signal analysis. This approach
evaluates features for assessing the balance criterion associated with individual rehabilita-
tion exercises. The classification of symmetry in rehabilitation [32,33] can vary depending
on the specific motion parameters [34] being considered and the clinical context. Evaluating
separate rehabilitation exercises based on the development of sensor technology has been
crucial in realizing the potential for both clinical and remote rehabilitation. While there is
no fixed number of symmetry degrees universally used, an objective scoring system can be
proposed to evaluate the feasibility of balance assessment technology for adaptation into
remote rehabilitation settings. Specific exercises can be proposed for both prehabilitation
before different kinds of abdominal surgeries and to treat various motion disorders [35–37],
utilizing the important research area of body kinematics [38].

The integration of mobile accelerometers into the rehabilitation and pre-operative
assessment process [39] has the potential to enhance interaction between patients, rehabili-
tation specialists, and surgeons. By leveraging this technology, healthcare providers can
gain deeper insights into a patient’s daily life and functional capabilities, enabling them to
make more informed decisions and provide personalized care. As we explore the role of
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mobile accelerometers in the context of complex abdominal surgeries [40–43], including
open, robotic, and laparoscopic techniques, we will uncover the transformative impact they
can have on patient outcomes and the future of surgical practice.

There are many factors that influence ody motion symmetry and asymmetrical move-
ment patterns. They mainly include injuries, muscle strength, age, and neurological dis-
orders that can impact muscle control and coordination, resulting in asymmetry due to
impaired movement on one side of the body.

The goal of this paper is to discuss the benefits of using mobile accelerometers in
the evaluation of rehabilitation exercises to reduce the probability of complications after
surgeries. Associated topics include the abilities of this methodology to capture objective
and quantitative data, track changes in physical activity levels, and detect movement
patterns. Another goal is to address the challenges and limitations associated with this tech-
nology, such as data privacy concerns, device compatibility, and the need for standardized
algorithms to interpret accelerometer data. The proposed data analysis procedures con-
tribute to this research area by (i) demonstrating the use of smartphones, communication
links, and remote data stores to record accelerometric data during rehabilitation exercises,
(ii) proposing a fast symmetry level evaluation using a suggested global criterion function,
and (iii) designing a general web-page that allows data import, remote signal processing
in both time and frequency domains, and evaluation of the coefficient of symmetry. The
novelty of the paper lies in the use of communication links for data acquisition with remote
storage and the proposal of a symmetry coefficient evaluation.

2. Methods

This paper describes the use of wearable accelerometers to analyze the symmetry of dif-
ferent rehabilitation exercises using wearable sensors embedded in a mobile phone [44,45]
placed on the body. Figure 1 illustrates the framework for analyzing rehabilitation exercises
and data processing that include

(a) Activation of sensors in a smartphone and specification of their parameters in the
mobile Matlab environment.

(b) Data acquisition from the right and left part of the body with the selected sampling
frequency.

(c) Export of signals through communication links into the remote drive.
(d) Evaluation of accelerometric signals, estimation of the symmetry coefficient of left/right

parts of the body, and classification of motion features.

The selected rehabilitation exercises were acquired and processed in the Matlab 2024b
(MathWorks, Natick, MA, USA) computational environment. Data were recorded by mobile
Matlab connected to the Matlab cloud with saving data on the Matlab Drive.

The dataset includes records acquired by a smartphone equipped with a three-axis
accelerometer. All procedures involving human participants were conducted in accor-
dance with the ethical standards of the institutional research committee and the 1964
Helsinki Declaration and its later amendments. The study received ethical approval from
the Ethics Committee (UCT EK/7/2022), and the anonymity of the obtained data was
strictly maintained.

The analysis is based on eight exercises performed during 1280 tests on different
individuals. Detailed descriptions of observations can be found on IEEE DataPort (Reha-
bilitation Exercises and Computational Intelligence, 10.21227/xp41-7325) [46] for further
investigation. This repository includes the accelerometric data acquired during all ex-
periments, an informative video presentation of the rehabilitation exercises, the Matlab
graphical user interface, and a graphical video abstract of the paper.
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Figure 1. Principle of data processing during rehabilitation exercises presenting (a) mobile Matlab
initialization, (b) data acquisition using accelerometric sensors inside the smartphone, (c) export of
recorded signals to the remote drive, and (d) processing of data on the remote drive in time and
frequency domains to extract motion features and evaluate the coefficient of symmetry.

2.1. Data Acquisition

Figure 2 and Table 1 present a brief specification of the selected rehabilitation exer-
cises. The smartphone was affixed to the left or right leg or arm with the display facing
forward [47] and was used as a sensor for accelerometric data acquisition via the mobile
Matlab application, with a sampling frequency of 100 Hz. Signals from the left and right
sides of the body were acquired and processed in the Matlab environment. Each exercise
was repeated ten times and performed during 16 tests involving different individuals.

Figure 2. Selected rehabilitation exercises used for accelerometric data acquisition recorded by
wearable sensors (red squares) located on the left and right sides of the body used for data acquisition
and processing in the computational and visualization environment of the mobile Matlab system.
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Table 1. Description of selected exercises used for prehabilitation before the surgery treatment.

Exercise Name Description

E1 basic spinal motion both legs bent
E2 spinal motion one leg bent
E3 lifting of one leg other leg on the floor
E4 foot circles circles in the hip joint
E5 arm flection arms motion
E6 body cross-motion body sculpture rotation
E7 leg lifting one-leg lift
E8 squat high squat

The study included 16 participants, comprising 9 males and 7 females, with ages rang-
ing from 8 to 75 years and BMI value 23.4± 2.9 kg/m2. Detailed participant information is
presented in Table 2.

Table 2. Description of participants in the rehabilitation exercises, including age, gender, height, and
BMI of each individual.

Individual
Age Gender Height BMI

[year] m/f [cm] [kg/m2]

1-AP 75 m 187 27.7
2-HCH 45 f 152 21.6
3-AM 21 f 173 18.0
4-DM 21 m 184 21.6

5-DDM 47 m 178 26.5
6-DH 24 m 185 22.8
7-JH 21 m 176 22.3
8-JM 69 m 185 27.5
9-LN 22 m 182 19.0

10-VM 47 f 163 25.6
11-MS 34 m 192 27.1
12-AB 47 m 176 22.6
13-TT 22 f 175 24.5
14-KA 8 f 135 21.6
15-T2 22 f 175 24.5
16-H2 46 f 152 21.6

MEAN 35.7 173.1 23.4
STD 18.9 15.3 2.9

2.2. Signal Processing

In the field of rehabilitation, accelerometric data processing is essential for monitoring
and analyzing movement patterns. Computational intelligence tools play a significant
role in this domain by providing advanced methods for data analysis, interpretation, and
decision-making, which aid in developing personalized rehabilitation programs.

Fundamental signal processing methods include digital filtering techniques to remove
noise and extract relevant signal components. The Fourier transform converts accelero-
metric signals from the time domain to the frequency domain, facilitating the analysis
of periodic components. Alternatively, the Wavelet transform offers multi-resolution
analysis of accelerometric signals, enabling the detection of both transient and continu-
ous features. Machine learning algorithms, such as support vector machines, decision
trees, and neural networks, are then employed to classify movement patterns and predict
rehabilitation outcomes.

Three-dimensional accelerometers are widely used in rehabilitation to monitor and
assess body movement comprehensively, using acceleration data across three orthogonal
axes (x, y, and z). The resulting data, observed with the sampling frequency fs, form
column vectors dp for position p, representing the left (p = L) and right (p = R) parts of
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the body. Each sequence can then be divided into M subsequences, each N values long,
defining a vector [d(1)

L , · · · , d
(M)
L , d

(1)
R , · · · , d

(M)
R ] and forming a time-domain signal matrix:

DN×Q=
[

d1 d2 · · · dQ
]

(1)

with Q = 2×M columns. The elements of each column vector dq = {dq(n)}kN
n=(k−1)N+1 for

q=1, 2, · · · , Q specify the observed accelerometric data.
By applying the discrete Fourier transform (d f t) to each column of the matrix DN×Q,

we can construct the associated matrix GN×Q as follows:

GN×Q=d f t(DN×Q) (2)

This matrix contains the frequency components of the separate signal subwindows in its
column vectors, with frequency components ranging from 0 to fs Hz. The values in each
column q of the matrix GN×Q are evaluated by the following relation:

gq(k) =
N

∑
n=1

(dq(n)−d̄q) e−j (k−1) (n−1) 2 π/N (3)

for k = 1, 2, · · · , N, and the mean value d̄q of each column q of the matrix DN×Q for a
selected individual and the left and right sides of the body. Spectral components are
evaluated with the frequency resolution 1

N fs Hz and its values f (k) = k
N fs.

With the frequency components of each accelerometric signal subwindow, it is possible
to evaluate the relative power E(i)

q for each subwindow q of the observed sequence in the

frequency band B(i) = 〈 f (i)c1 , f (i)c2 〉 using spectral components evaluated by the discrete
Fourier transform according to Equation (3) by the relation:

E(i)
q =

∑n∈Φ(i)

∣∣gq(n)
∣∣2

∑N/2
n=1

∣∣gq(n)
∣∣2 (4)

where Φ(i) is the set of indices for the frequency components f (k)(i)∈ 〈 f (i)c1 , f (i)c2 〉. This pro-
cess can be applied for the whole matrix GN×Q to find Q features of separate subwindows
and selected frequency bands.

When analyzing a selected rehabilitation exercise, each subwindow can be described
(i) in the time domain by its mean and standard deviation, and (ii) in the frequency
domain by the power in the selected frequency bands. This forms a matrix with time-
and frequency-domain features for the left and right side of the body forming a vector
[p

(1)
L , · · · , p

(M)
L , p

(1)
R , · · · , p

(M)
R ].

Matrix DN×Q is used for the evaluation of means and standard deviations in the time
domain, as well as to evaluate power components to form a pattern matrix:

PR×Q= [p1, p2, · · · , pQ] (5)

that includes R features evaluated for each subwindow associated with the rehabilitation
experiment.

The associated target vector specifying the positions of sensors includes the values
[L, · · · , L, R, · · · , R] that can be substituted by target probabilities of each class:

TS×Q = [t1, t2, · · · , tQ] =

[
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0

]
(6)

for classification into two classes (S = 2) associated with the positions of the sensors on the
body during each rehabilitation exercise.

Motion symmetry is a valuable concept in analyzing rehabilitation exercises because
it allows clinicians and researchers to evaluate whether movements on both sides of the
body are aligned, balanced, and coordinated, which is essential for assessing the recovery
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progress. During rehabilitation, symmetry in motion between the left and right sides of the
body is often a goal, particularly before and after surgeries using specific motion capture
systems or wearable sensors.

Complete records of the accelerometric signal for the left and right sides of the body
were divided into M segments and for each of them, the evaluation was performed to
define the left-side feature F(L)

q (r) and the right-side feature F(R)
q (r) based on property r

for segment q = 1, 2, · · · , M. The symmetry index, based on a commonly used one, can be
calculated by the following relation:

cq(r) =
1
2

F(L)
q (r)− F(R)

q (r)

F(L)
q (r) + F(R)

q (r)
100 (7)

The average of cq(r) over all segments q ∈ 〈1, Q〉 results in the standard symmetry coeffi-
cient related to the selected feature r.

The alternative criterion for one experiment and a selected feature set can be evaluated
using the proposed relation:

C =

√√√√ 1
length(Ψ) ∑

r∈Ψ

1
Q

Q

∑
q=1

cq(r) (8)

where Ψ is the selected set of features using the global symmetry criterion evaluation.
Classifying rehabilitation exercises using accelerometers involves several steps, includ-

ing data collection, preprocessing, feature extraction, and classification. The classification
of Q signal segments by a specific machine learning method typically requires the determi-
nation of the pattern and target matrices. In this case, the pattern matrix PR,Q defined by
Equation (5), and target matrix TS,Q specified by Equation (6), respectively, were used. The
number of features was reduced to R = 2 for better visualization.

Commonly used algorithms for signal segment classification include support vector
machines (SVM), which are effective in high-dimensional spaces, Bayesian methods, and
the simple and commonly used k-nearest neighbor methods. Alternatively, neural network
methods, including deep learning approaches, are suitable for handling large and complex
systems. In the simplest case of a two-layer neural network with S1 and S2 elements in the
first and second layers, respectively, the outputs A

(1)
S1,Q and A

(2)
S2,Q of the individual layers

are evaluated by the following relations:

A
(1)
S1,Q = f1(W

(1)
S1,R PR,Q, b

(1)
S1,1) (9)

A
(2)
S2,Q = f2(W

(2)
S2,S1

A
(1)
S1,Q, b

(2)
S2,1)

with the network coefficients forming matrices W
(1)
S1,R and W

(2)
S2,S1

, and vectors b
(1)
S1,1 and

b
(2)
S2,1. The proposed model uses the sigmoidal transfer function f1 in the first layer and the

probabilistic softmax transfer function f2 in the second layer.
To determine the predictive model’s ability to perform classification during practical

implementation, the k-fold cross-validation method is often used. In this paper, the leave-
one-out method, with the same number of folds as the number of data points, is employed.

When implementing and evaluating models, it is crucial to consider the context and the
specific costs associated with false positives and false negatives. Sensitivity and specificity
provide a clear picture of the model’s performance in identifying both positive and negative
cases, aiding in making decisions about model deployment and potential improvements.
For classifying rehabilitation exercises using accelerometers into two classes, common
performance metrics can be used:

• Sensitivity (True positive rate, recall) defined as the proportion of actual positives that
are correctly identified by relation:
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TPR =
TP

TP + FN
(10)

• Specificity (True negative rate) defined as the proportion of actual negatives that are
correctly identified by relation:

TNR =
TN

TN + FP
(11)

• Accuracy defined as a probability of global correct classification:

AC =
TP + TN

TP + TN + FP + FN
(12)

where TP, TN, FP and FN stand for the number of true positive, true negative, false
positive, and false negative classifications [48].

3. Results

The proposed graphical user interface [49,50] is presented in Figure 3. It enables the
visualization of rehabilitation exercises through videos accessible from the initial web-
page. The motion accelerometric data acquisition and processing using a specific web-page
includes the following steps:

• Animating motion exercises for training and data acquisition by a mobile phone.
• Selecting accelerometric signals recorded by the smartphone of a chosen individual

and stored in the specified datastore.
• Trimming inaccurate data at the beginning and end of each record.
• Evaluating spectral components recorded on the right and left sides of the body using

the discrete Fourier transform, with results displayed in Figure 3b.
• Estimating the percentage power of signals in selected frequency ranges and speci-

fied subwindows.
• Visualizing motion features associated with the left and right sides of the body.
• Evaluating the proposed symmetry criterion coefficient for the selected rehabilita-

tion exercise.

Table 3 lists the individuals, types of rehabilitation exercises, and the symmetry
criterion values evaluated by Equation (8) using features in the frequency domain for each
exercise. The last column includes the average symmetry index values for each individual.
The last two rows present the overall average symmetry coefficients across all individuals
and their standard deviations.

Figure 4 presents the symmetry criteria for eight rehabilitation exercises, evaluated
using both time domain and spectral domain features. It shows the mean values of 16 tests,
each with 10 repetitions of each rehabilitation exercise for a selected individual. The highest
asymmetry, exceeding the mean value, was observed for exercises E2, E3, E4, and E6 by
both methods. The best symmetry criterion coefficients were observed for exercises E1
and E7.

More detailed results are presented in Table 3 for the set of individuals under study.
A comparison of symmetry criteria for 16 tests involving different individuals and 8 reha-
bilitation exercises, evaluated using time domain and spectral domain features, is shown
in Figure 5. The best symmetry was observed for individual 15, with a mean symmetry
coefficient of 1.1 across all rehabilitation exercises.
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Figure 3. Principle of data processing during rehabilitation exercises presenting (a) animation of
motion exercises to train individuals and data acquisition using a smartphone, (b) data import into the
proposed web-page, (c) frequency domain remote signal processing including symmetry coefficient
estimation, and (d) extraction and analysis of motion features.

Table 3. Results of symmetry values of the set of 16 tests of different individuals (Ind) for separate
exercises evaluated by the mixed-domain features, and their mean values associated with each
participant of the study.

Ind.
Exercise

Mean
E1 E2 E3 E4 E5 E6 E7 E8

1 1.5 1.7 2.1 2.4 2.3 7.7 1.0 5.7 3.0
2 1.5 3.7 4.5 2.1 1.1 0.6 2.9 3.7 2.5
3 2.0 0.8 1.9 3.2 3.5 7.3 1.6 1.6 2.7
4 3.0 0.8 1.8 1.4 0.3 3.5 3.5 3.3 2.2
5 3.1 6.2 6.7 3.8 3.8 2.9 1.6 0.6 3.6
6 4.8 3.6 5.1 5.8 3.6 7.0 1.3 3.0 4.3
7 0.5 0.7 1.5 3.9 2.5 1.3 0.8 1.9 1.6
8 3.9 3.1 3.7 0.8 3.2 3.8 4.2 7.6 3.8
9 2.9 4.8 5.9 4.7 5.9 2.5 1.5 0.9 3.6

10 2.5 5.7 0.8 5.6 0.1 4.0 2.3 0.5 2.7
11 0.1 3.9 4.7 2.3 2.9 1.2 1.6 4.4 2.6
12 1.3 2.5 1.8 1.1 2.0 0.8 4.5 3.0 2.1
13 0.7 3.5 0.8 4.0 1.3 4.7 1.8 1.6 2.3
14 4.3 0.6 1.4 7.5 3.6 4.6 7.3 3.4 4.1
15 1.0 1.0 2.0 1.0 1.3 0.4 0.8 1.3 1.1
16 1.4 1.7 4.0 3.6 0.6 1.7 1.3 5.5 2.5

Mean 2.1 2.8 3.0 3.3 2.4 3.4 2.3 3.0
Std 1.4 1.8 1.9 1.9 1.6 2.4 1.8 2.0
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Figure 4. Symmetry criteria for 8 rehabilitation exercises evaluated by (a) time domain and (b) mixed-
domain features presenting mean values by 16 tests of different individuals with 10 repetitions of
each rehabilitation exercise.
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Figure 5. Comparison of symmetry criteria for 16 tests involving different individuals and eight
rehabilitation exercises, evaluated using time domain and spectral domain features.

Features evaluated from the sensors on the left and right sides of the body for selected
exercises, as well as mixed-domain features, are presented in Figure 6. This comparison
shows results for selected exercises that demonstrate prevailing asymmetric and symmet-
ric motions, with centers of the right and left side positions and multiples of standard
deviations for c = 0.2, 0.5, 1.

Figure 7 presents the classification of the symmetry features for cross-motion (exer-
cise 6) using mixed features and three different methods: support vector machine, the
Bayesian method [51,52], and a two-layer neural network (NN) with 10 neurons in the first
layer and sigmoidal/softmax transfer functions in the first and second layers, respectively.
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Figure 6. Comparison of distribution of the time and spectral domain features for selected exercises
of (a) prevailing asymmetric motion (individual 6, exercise 6) and (b) prevailing symmetric motion
(individual 10, exercise 5) with centers of the right and left side positions and c multiples of standard
deviations for c = 0.2, 0.5, 1.
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Figure 7. Classification of symmetry features of the body cross-motion by mixed features using
(a) support vector machine, (b) the Bayes method, and (c) the two-layer neural network for a selected
individual 6-DH.

A summary of the accuracy and cross-validation errors for all individuals, a selected
rehabilitation exercise, and different classification methods is presented in Table 4. The
highest classification accuracy of 90.6% for individual 6-DH corresponds with their worst
coefficient of symmetry in Table 3. The cross-validation errors were calculated using the
leave-one-out method.
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Table 4. Symmetry classification of rehabilitation exercise patterns performed by the support vector
machine, Bayesian, and two-layer neural network methods using two features specified as the
power in the selected frequency band and the associated standard deviation of accelerometric data,
presenting the accuracy (AC) and the cross-validation error (CV) for exercise 6 and all individuals (Ind).

Ind.
SVM Method Bayes Method NN Method

AC [%] CV AC [%] CV AC [%] CV

1 69.6 0.39 59.8 0.37 76.1 0.34
2 72.0 0.42 54.8 0.53 76.3 0.16
3 84.9 0.25 79.6 0.28 84.9 0.16
4 63.4 0.45 54.8 0.56 66.7 0.44
5 76.8 0.37 73.7 0.23 82.1 0.18
6 86.5 0.21 81.3 0.25 90.6 0.11
7 72.6 0.38 71.6 0.35 72.6 0.21
8 63.4 0.45 59.1 0.48 74.2 0.25
9 66.3 0.40 64.1 0.47 78.3 0.30

10 73.7 0.39 63.2 0.40 75.8 0.20
11 68.1 0.44 52.7 0.48 69.2 0.22
12 60.9 0.48 52.2 0.47 72.8 0.23
13 68.5 0.46 64.1 0.34 70.7 0.35
14 71.4 0.31 72.5 0.33 81.3 0.21
15 69.1 0.43 50.0 0.39 66.0 0.39
16 72.3 0.33 67.0 0.38 76.6 0.32

4. Discussion

This paper focuses on evaluating rehabilitation exercises designed to strengthen the
abdominal wall and reduce complications during potential surgeries. Accelerometric
data from a variety of exercises were used for symmetry analysis of different motion
patterns across 16 individuals. The features obtained were evaluated in both the time and
spectral domains to classify rehabilitation segments and various exercises. This approach is
significant for improving body fitness levels, reducing potential chest pains, and serving as
pre-operative muscle training before open or robotic surgery [53].

The most important features for evaluating the rehabilitation exercises were based
on signals recorded by an accelerometer inside a smartphone positioned on a specific part
of the body. The worst mean coefficient of symmetry was found for exercise E6, with a
mean value of 3.4 and the highest standard deviation of 2.4, indicating the difficulty of
this rehabilitation motion for all participants. Exercises E1, E2, E5, and E7 were among the
easier ones, with their coefficients of symmetry below 3 and standard deviations below 2.

The classification accuracy reached 90.6% for the two-layer neural network, with a
cross-validation error of 0.11 (using the leave-one-out method) for individual 6-DH, who
had the highest asymmetry and a coefficient of symmetry of 7, as shown in Figure 7.
Rehabilitation specialists must also consider individuals’ ages, as some exercises are com-
plicated for elderly people, and their physical condition can affect the performance of
rehabilitation exercises.

Integrating sensor technology into pre-operative and post-operative care could help
develop a more sophisticated data-driven approach to surgical planning, monitoring, and
follow-up, improving outcomes and advancing the standards of surgical care. Sensors can
continuously track key indicators, such as range of motion and muscle strength. Early signs
of complications can be detected through subtle changes in these indicators.

Limiting factors of the use of accelerometers for the evaluation of rehabilitation sym-
metry include sensitivity to the placement of sensors, sensitivity to external factors (like
uneven surfaces), congenital asymmetry of movement, age of patients, and data interpreta-
tion. The influence of the last item can be reduced by correctly selected signal processing
methodology and AI application.

Evaluation of the rehabilitation exercises can be conducted through the proposed
web-page to inform individuals about their progress and to motivate them to perform
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rehabilitation exercises more precisely. Future studies should focus on more complex
computational methods and the use of multichannel sensor systems for time-synchronized
monitoring of motion patterns, allowing for a more detailed analysis of rehabilitation
exercises. These applications will include the use of more sophisticated sensors, advanced
computational methods, and deep learning strategies to monitor rehabilitation patterns,
potentially utilizing augmented reality and telerehabilitation.

5. Conclusions

The integration of mobile accelerometers and computational analysis in rehabilitation
exercises has the potential to significantly enhance healthcare and fitness levels. The
comprehensive data from appropriate sensors can lead to more personalized and data-
driven decision-making, improving patient outcomes. To realize the full potential of mobile
accelerometers in rehabilitation care, further research and collaboration between healthcare
professionals and technology developers are critical.

There is a high risk of developing post-operative complications after abdominal
surgery for patients with lower pre-operative physical activity. Hence, pre-operative
specific rehabilitation and physical activity measurement may be useful in decreasing
post-surgery complications.

The future of computational intelligence in the analysis of rehabilitation exercises
is promising, with the potential to significantly enhance the precision, personalization,
and effectiveness of rehabilitation programs. An emerging trend involves using wearable
sensors and digital technology to monitor motion activities. By integrating advanced
technologies such as machine learning, computer vision, and robotics, rehabilitation can
become more adaptive, patient-centered, and efficient, ultimately leading to better outcomes
and an improved quality of life for patients undergoing surgery.

In rehabilitation settings, the use of accelerometers is becoming more prevalent due to
their affordability, ease of use, and integration with other technologies. This makes them a
key tool in improving the quality and effectiveness of rehabilitation therapy.
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Abstract: This research presents a sleep posture monitoring system designed to assist the elderly and
patient attendees. Monitoring sleep posture in real time is challenging, and this approach introduces
hardware-based edge computation methods. Initially, we detected the postures using minimally
optimized sensing modules and fusion techniques. This was achieved based on subject (human)
data at standard and adaptive levels using posture-learning processing elements (PEs). Intermittent
posture evaluation was performed with respect to static and adaptive PEs. The final stage was
accomplished using the learned subject posture data versus the real-time posture data using posture
classification. An FPGA-based Hierarchical Binary Classifier (HBC) algorithm was developed to
learn and evaluate sleep posture in real time. The IoT and display devices were used to communicate
the monitored posture to attendant/support services. Posture learning and analysis were developed
using customized, reconfigurable VLSI architectures for sensor fusion, control, and communication
modules in static and adaptive scenarios. The proposed algorithms were coded in Verilog HDL,
simulated, and synthesized using VIVADO 2017.3. A Zed Board-based field-programmable gate
array (FPGA) Xilinx board was used for experimental validation.

Keywords: sleep posture recognition; adaptive posture analysis; FPGA; sensor fusion

1. Introduction

The human life cycle and health are linked to sleep duration and posture. Over the
last three decades, researchers have conducted sleep analysis and monitoring. According
to medical reports and history, the impacts of improper sleep on daily life include mus-
culoskeletal strain, respiratory issues, circulation problems, reduced sleep quality, and
digestive issues. Indirect poor sleep affects human behavior and daily activities. Research
has shown that 9% to 38% of the general population is affected by sleep apnea [1]; in
the future, this is expected to increase. Sleep posture recognition and analysis are crucial
for researchers and medical systems when recommending various medications and other
equivalent systems for better sleep in patients as well as the general population. The
American Sleep Disorders Association and Sleep Research Society have been investigating
the impact of sleep disorders on human activities for the last four decades [2,3].
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To date, sleep posture analysis has faced various challenges, including data acquisition,
in assisting patients and individuals. Data acquisition has been performed by researchers
using wearable and non-wearable pressure and non-contact sensing devices [4,5]. Piezore-
sistive arrays or pressure-sensor-based bedsheets and beds are utilized for data acquisition
for posture analysis [5,6]. A few challenges are raised with these methods; the data acqui-
sition error percentage is higher in this case, and a large amount of data are required to
compute the posture. Other researchers have conducted posture analysis using wearable
devices; this approach has been used in initial learning and regular patient monitoring [7,8].
Recent advancements in sleep posture data acquisition have been achieved using non-
contact methods, such as radar or ultrasonic sensor arrays [5] and vision approaches. Wear-
able sensors such as 3-axis accelerometers [9] and thermostats, as well as electromyography
(EMG), electroencephalography (EEG), and photoplethysmography (PPG) devices [10],
have been utilized for sleep posture data capture. These wearable sensors are integrated
into Fit-Bit modules or smart watches. Similarly, non-wearable technology and sensors,
such as multimodal sensor fusion [11] and smart phones [12], have been utilized for sleep
posture analysis by various researchers. Selection of the sensor type is a challenge in sleep
posture analysis.

Different sensor data have been processed using data processing analysis techniques,
such as data mining and classifiers. Computation methods play a vital role in sleep
posture data analysis. Classifiers such as random forests and binary-type decision trees,
as well as supervised classifiers such as hidden Markov models (HMMs), support vector
machines (SVMs), and k-nearest neighbors (kNNs) [13], have been employed. Classifiers
are used for learning, and real-time feature matching can be utilized to determine sleep
posture. In this regard, researcher-driven deep learning methods have been adopted in sleep
research, such as recurrent NNs (RNNs), long short-term memory (LSTM) networks [6],
convolutional NNs (CNNs), and generative adversarial NNs (GNNs) [14]. In this process,
computing devices such as microcontrollers, GPUs, and CPUs, as well as cloud computing,
are essential for sleep posture data acquisition, data processing with classifiers, and posture
accomplishment [15,16]. Research studies addressing sleep posture require low-power-
consuming devices and effective computation for analysis during learning and real-time
implementation in static and adaptive states. Edge computing devices, such as FPGAs,
are essential for real-time sleep posture systems at present and in the future, making it
challenging to provide complete solutions.

The proposed hardware-efficient methods provide sleep posture analysis for present
and future usage in real-time implementations. The FPGA-based adaptive sleep posture
analysis accelerator has three novel embedded methods:

1. An FPGA-based learning algorithm for acquiring data regarding the standard and
adaptive conditions of sleep postures. Real-time adaptive learning was developed for
various subjects (humans).

2. An FPGA-based hierarchical binary classifier (HBC) algorithm was developed for
the classification of sensor fusion data in the learning and analysis stages for event-
driven conditions.

3. Hardware-based sleep posture analysis is the next stage of the proposed method. The
FPGA-based solution for sleep posture analysis is the first of its kind for adaptive-
based event conditions.

This paper is structured as follows. This section presents the background and moti-
vation for sleep posture analysis research using FPGA implementation. In Section 2, the
details of the proposed methodology are presented with theoretical and hardware schemes.
The proposed method was validated, and the results are presented in Section 3 in the form
of synthesis, power consumption, and experimental details with comparison. The final
section concludes the study with future perspectives.
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2. Hardware-Based Algorithms

Sleep posture analysis was executed in two stages as per the proposed method.
Hardware-based algorithms were first developed for sleep posture analysis, and secondly,
hardware schemes for analysis were explored. See Table 1.

Table 1. Proposed research-related abbreviations.

Abbreviation Definition

SPR

S: Ultrasonic sensors {H_R, H_L, A_R, A_L, R_L and L_L}
P: Position of sensor at head (H), abdomen (A), and limb (L)
R: Position at right (R) and left (L) sides

PP Past posture

CP Current posture

T Time

Postures Right yearner (RY), left yearner (LY), left fetal (LF), right fetal (RF),
left lateral posture (LLP), and supine posture (SP)

LUT Look-up table

PC Pose current

Pp Pose past

TpC Pose T current

Tpp Pose T past

Ps Pose Static

2.1. Hardware-Based Algorithm for Sleep Posture Analysis

Figure 1 presents an overall flowchart of the proposed hardware-based sleep analysis.
The initial conditions are as follows: The algorithm checks whether there is a subject on
the bed. Next, it determines whether data have previously been recorded for this subject’s
profile. If the subject is new to the sensor radar, it starts learning all their postures; such an
adaptive process not only relies on near-sensor fusion data. If the subject is recognized, their
posture is classified using a hardware-based hierarchical binary classifier (HBC) algorithm.
The HBC provides the along class, and the subject is either in a static or adaptive state. In
a static pose, the subject’s posture is recorded. If the subject switches from one pose to
another, this is recorded along with the time spent in the respective postures.

 

Figure 1. Flowchart of proposed hardware-based sleep posture analysis. (a) right yearner (RY),
(b) left yearner (LY), (c) left fetal (LF), (d) right fetal (RF), (e) left lateral posture (LLP), and (f) supine
posture (SP).
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The sleep posture details are presented in Figure 2 and are broadly classified into four
groups: supine (SP), left (LP), right (RP), and frog posture (FP). Posture details are learned
by an edge computing device using sensor fusion data. These posture data are learned
at the sleep-posture-learning stage and are utilized in the sleep posture analysis in the
classifier stage, defining the type of posture.

(a)  (b) (c) (d) (e) (f) 

Figure 2. (a) right yearner (RY), (b) left yearner (LY), (c) left fetal (LF), (d) right fetal (RF), (e) left
lateral posture (LLP), and (f) supine posture (SP) [17].

2.1.1. Hardware-Based Algorithm for Sleep Posture Learning

This section addresses sleep posture learning. Algorithm 1 represents the pseudocode
of the sleep posture learning in versatile scenarios.

Algorithm 1: Pseudocode for hardware-based sleep posture learning

1. Initialize sensory distance into sensor fusion data (SF)
2. always @ (posedge clk) begin
3. {sleep_posture_analysis, learn_new_posture, adapt_sf_data, retry} = 0.
4. Case (state)
5. INIT: Next State = WAIT_PIR.
6. WAIT_PIR: Next_State = (PIR == 1)? CHECK_DATA_RANGE: WAIT_PIR.
7. CHECK_DATA_RANGE:
8. Next_state= (subject data == range data)? CHECK_POSE: ADAPT
9. CHECK_POSTURE:
10. next_state = (posture_HBC)? ANALYSIS: Learn.
11. ANALYSIS: {sleep_posture_analysis = 1, next_state = WAIT_PIR};
12. LEARN: {learn_new_posture = 1, next_state = WAIT_PIR};
13. ADAPT: {adapt_sf_data = 1, next_state = WAIT_PIR};
14. RETRY: next_state = (PIR == 1)? CHECK_DATA_RANGE: RETRY.
15. default: next_state = INIT.
16. end case, End.

Algorithm 1 describes the pseudocode for hardware-based sleep posture learning.
In step 1 (line 1), the sensors are initialized; the data in the sensor fusion from the sleep
posture details are presented in Figure 2. The flowchart of Algorithm 1 is shown in Figure 3.
The system clock synchronizes the sensor fusion data and enables the sleep posture to be
learned with a continuous, adaptive approach (lines 2 and 3). The PIR sensor data are
utilized to determine whether there is a human on the bed (line 6). Sensor fusion data are
classified into two forms, standard posture and time-invariant data, which are considered
adaptive sleep postures (line 8). Standard posture information related to existing subject
postures is then determined (line 10). The proposed method learns any new postures
and registers them using the hierarchical binary classifier (HBC) (line 12). Sleep postures
are analyzed using the HBC method (line 11). The subject’s movement from one posture
to another is evaluated as an adaptive posture (line 13). Adaptive posture evaluation is
essential for assisting the subject in their struggle with pain or other issues as it alerts
attendants to the medical assistance system. This is a continuous process in the estimation
of sleep postures (lines 14 and 15).
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Figure 3. Flowchart for sleep posture learning.

2.1.2. Hardware-Based Hierarchical Binary Classifier Algorithm for Sleep Posture

This subsection presents the sensor fusion data classified using the hierarchical binary
classifier (HBC) algorithm. Each sleep posture is learned as described in Section 2.1.1 and
classified with respect to sleep posture, as shown below.

Figure 4 presents the sensor fusion data captured for the left lateral posture (LLP) and
supine posture (SP). Table 2 lists the details of the sensor fusion data for sleep posture
analysis. Figure 4 and Table 2 provide basic information for the execution of the hierarchical
binary classifier (HBC) algorithm.

 
H_L = X H_R = X 

A_L = 1 A_R = 1 

L_L = 1 L_R = 1 

 

 

 
H_L = 1 H_R = 0 

A_L = 1 A_R = 0 

L_L = 1 R_R = 0 

Figure 4. Left lateral posture (LLP) and supine posture (SP) [17] with sensor fusion data.

Table 2. Sensor fusion data for sleep posture analysis.

Posture
Head_Right

(H_R)
Head_Left

(H_L)
Abdomen_Right

(A_R)
Abdomen_Left

(A_L)
Right Leg

(R_L)
Left Leg

(L_L)

Right yearner (RY) 1 1 0 1 0 1
Left yearner (LY) 1 1 1 0 1 0
Left fetal (LF) 1 1 1 1 0 1
Right fetal (RF) 1 1 1 1 1 0
Right lateral posture (RLP) 1 0 1 0 1 0
Left lateral posture (LLP) 0 1 0 1 0 1
Supine posture (SP) X X 1 1 1 1
Frog posture (FP) 1 1 1 1 0 0
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Algorithm 2 and the flow chart in Figure 5 provide details of the hardware-based HBC
algorithm for sleep posture learning and analysis. Data from the six pairs of sensors are
captured from the positions of the human limbs, abdomen, and head. Sensor fusion data
initialization and triggered operations are performed in lines 1 and 2, respectively. The
HBC classifies data into three positions: lower limb, abdomen, and head (lines 3–14).

Algorithm 2: Pseudocode for hardware-based hierarchical binary classifier algorithm

1. Initialize sensory distance into sensor fusion data (SF)
2. always @ (posedge clk) begin {H_R, H_L, A_R, A_L, R_L & L_L} = 0;
3. Case (Posture Data)
4. Posture: (R_L & L_L =2′b00)? Frog posture: Posture _1.
5. Posture _1: (R_L & L_L =2′b11)? Supine posture: Posture _2.
6. Posture _2: (R_L & L_L =2′b01)? Right posture: Left posture.
7. Case (Right posture)
8. Right_1: (A_R & A_L=2′b11)? Right Foetus: Right_2.
9. Right_2: ((A_R & A_L=2′b01) && (H_R & H_L=2′b11))? LY: RLP.
10. Case (Left posture)
11. Left_1: (A_R & A_L=2′b11)? Left Foetus: Left_2.
12. Left_2: ((A_R & A_L=2′b10) && (H_R & H_L=2′b11))? RY: LLP.
13. Default {H_R, H_L, A_R, A_L, R_L & L_L} = 0.
end case, End.

Figure 5. Flow chart of hierarchical binary classifier algorithm for sleep posture.

Early classification is performed using the lower limb position when the right and left
lower limbs (R_L and L_L) are equal to the two-bit information 2′b00. When the limbs are
detected as not positioned at the lower end of the bed, the subject’s pose is determined
to be a frog posture (line 4). If this condition fails, then the classifier switches to the next
state. When the lower limbs are 2′b11, the supine posture is recorded (line 5); otherwise,
the process switches to the next state. The classifier utilizes sensor data for the entire lower
limbs to establish the right (lines 7 to 9) or left (lines 10 to 12) side postures. When the
abdomen sensor data (A_R and A_L) are equal to 2′b11, they are recorded as the right fetal
position (line 8), similar to the left fetal position mentioned in line 11. When lower limb and
abdomen sensor fusion data cannot be classified, the HBC depends on the head position on
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the right or left side (H_R and H_L). The final stage of the hierarchy classifies the postures
of the left yearner (LY) and right lateral posture (RLP) (line 9), and similar line postures
are classified as the right yearner (RY) or left lateral posture (RLP) (line 12) based on the
hierarchy conditions. Default conditions are considered to indicate that the postures are
not available or improper (line 13). The adaptive approach considers improper posture
evaluation for learning and analysis using time-of-flight (ToF) methods.

2.1.3. Hardware-Based Adaptive Sleep Posture Analysis Algorithm

The proposed hardware-based adaptive algorithm for sleep posture analysis under
time-varying event conditions is presented in this subsection. Adaptive sleep posture anal-
ysis provides accurate information regarding the status of the patients/elderly individual’s
motion and sleep conditions. This method depends on the selection of the sensor, which
provides the time-of-flight-based sensing, time-stamped data, and time-dependent features
and drives the detection of human motion on the bed. Few researchers have used hidden
Markov models for motion detection [18,19]. The proposed hardware-based algorithm was
developed using a binary-based adaptive threshold for digitizing the motion action in sleep
postures. A human transitioning from a left lateral posture (LLP) to a supine posture (SP)
is shown in Figure 3.

The sensor captures and calculates the distance to the object or human based on the
echo signal between the sensor and human. The formula used is as follows:

Distance =
Speed of Signal× Time of Flight

2
(1)

Algorithm 3 and Figure 6 present the adaptive sleep posture evaluation method. In
this algorithm, the time-variant data are the main concern with respect to posture. This
algorithm operates concurrently to evaluate the timing of static and dynamic human
postures with respect to other postures. Once the human subject is identified through the
PIR sensor using sensor fusion data, their pose is determined. During sleep, patients in
pain change from one posture to another. In this context, postural dynamics are essential
for estimating patient challenges. Until the pose changes, it is considered to be the same
posture as that mentioned in line 4. When posture changes are not observed, the time
duration is evaluated using the counter count_1 (lines 9 to 10). If the pose is associated with
a time variable, it is evaluated in lines 6–8. The count parameter is deployed to calculate
the timing of the dynamic posture variants (line 7). The adaptive posture is defined as a
two-level posture, and the process reverts to the original posture, identified as per line 1.
Otherwise, the posture is evaluated using the HBC, and the learning time is recorded. This
timing is useful, and abrupt changes in the posture time will improve the adaptiveness of
the method.

Algorithm 3: Pseudocode of adaptive-based algorithm for sleep posture analysis

1. Sensor fusion data & Present posture, count_1 = 8′d0, count = 8′d0.
2. If (PIR)
3. Case (Pose)
4. Pose 1: (Pose current = Pose past)? Same posture: Pose 2.
5. Pose 2: (Pose_T_current = Pose_T_past)? Pose 6: Pose 3.
6. Case (Pose 3)
7. Pose 4: (Pose_ static = Poses)? count: count <= count + 1.
8. Pose 5: (count > count_step1)? HBC: Pose 1.
9. Case (Pose 6)
10. Pose 7: (Pose_ static = Pose current)? count_1: count_1 <= count_1 + 1.
11. end case, End.
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Figure 6. Flow chart of adaptive-based algorithm for sleep posture analysis.

3. Hardware Schemes for Sleep Posture Analysis

This section outlines hardware schemes that are equivalent to the hardware-based
algorithm proposed in Section 2. The hardware schemes for the sleep posture analysis are
given in the following. Initially, the hardware accelerator, learning, HBC, and adaptive
posture evaluation-based hardware schemes are presented.

3.1. Hardware Accelerator for Sleep Posture Analysis

Figure 7 presents the hardware accelerator for the analysis at the learning and evalua-
tion stages. The hardware accelerator is integrated with sensors as represented in orange
colours, a Wi-Fi module, and a display unit is represented with red colour line in the figure.
the data bus is represented with dark and light blue colour. The overall architecture is
controlled using the proposed algorithm with a control unit as represented with yellow
colour data bus. The control unit operates and synchronizes the overall system. Passive
infrared motion (PIR) sensors enable the system to capture the next level of data. In the
absence of a human on the bed, PIR provides logic ‘0’, and the accelerator continues in the
sleep condition until PIR = ‘1’. Six pairs of ultrasonic sensors were integrated to capture
sleep data. The sensors were concurrently triggered by a control unit. Every 20 bits of
sensory data are shared with the distance converter and the fusion module. The control unit
initially shares the data with the static posture-learning PE module; if any time-variant data
are observed, it switches to an adaptive posture-learning module using a demultiplexer
(DEMUX). Posture learning is performed by comparing the sensor fusion data with the
reference subject data.
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Figure 7. Overall hardware accelerator for sleep posture analysis.

The learning posture utilizes an HBC PE and communicates using 8-bit data. Postures
that are not part of the reference model or the time-variant-type posture are learned using
the adaptive posture-learning PE. If the pose is within the range of the reference poses,
the learning stage enables the posture evaluation of the PE. The posture evaluation PE
interfaces with the posture HB classifier module for evaluation. The defined posture is
processed as an output through the execution unit (EU). The output is presented in the form
of messages to the attendants/service team through the Wi-Fi module. These messages are
displayed on the FPGA-based, seven-segment LCD display. This novel approach is used
to adaptively analyze variations in the pose of the patient/elderly subject. In the learning
stage, if the posture is not a standard pose, it is recorded as an adaptive posture of the
subject. Under certain conditions, the subject performs the posture with respect to the time
variable, and the adaptive posture evaluation PE registers the posture and compares it to
the time-variant data between postures, and this is fed to the output.

3.2. Hardware Schemes for Sleep-Posture-Based Learning

The proposed equivalent internal architecture of Algorithm 1, referred to as the in-
tegration of the generic and adaptive posture-learning PEs, is presented in Figure 8. The
architecture, enabled by the PIR sensor and ultrasonic sensor fusion distance data, has
a FIFO memory structure. Prior postures are analyzed and estimated via either generic
posture learning or adaptive learning using the posture-matching module. The posture-
matching module was developed with three stages of FIFO, which are stored in FIFO_N-2,
FIFO_N-1, and FIFO_N. Each FIFO dimension is an array of six pairs of sensors {H_R, H_L,
A_R, A_L, R_L, and L_L}, each 20 bits in size. The shift encoder shifts the FIFO data from
N-2 to N and performs in line with the concurrent barrel-shifter-based approach.
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Figure 8. Internal architecture of sleep-posture-based learning.

The FIFO data are stored for every 1/6 s and compared using the ‘comp’ module.
L_L sensor-based arrays of N-2, N-1, and N are compared at the L_L comparator at the
same distance. H_R to L_L are encoded, and when 6′b11111 is presented in three iterations,
new generic learning is enabled in the posture-learning PE. Otherwise, adaptive posture
learning is enabled in the PE. The posture-learning PE consists of an internal control module
and FIFO posture learning. The internal control shares the present status with the control
unit, as presented in Figure 4 with different colours. FIFO posture learning is performed
for the standard postures of each subject, as presented in Table 2, from right yearner (RY) to
the frog posture (FP). Eight standard postures are included. A maximum of eight subjects
are recorded, and the learning methods replace unused subject data with new subject
data with control unit permissions. The authors attempted to optimize memory using
time-variant-based learning. This method is optimized for storing datasets, as the execution
of the real-time interference stage faces memory issues. In this regard, time-variant-based
learning is called adaptive learning, which is employed in two scenarios: past subjects with
a new posture and new subject postures. The adaptive posture-learning PE is activated as
per the posture-matching module; it stores New_1 to New_8. H_R to L_L sensor data are
stored as new, standard subject postures. It is also able to memorize new postures for a
new subject, which are labeled in the posture-learning PE. A known subject with a new
posture is allocated a new label beside the FP posture through the FIFO posture learning.
This was a novel attempt, at the inference level, to avoid dataset memory issues. Both
learning methods are regularly interfaced with the learning posture classifier PE for posture
estimation, as shown in Figure 9.

47



Sensors 2024, 24, 7104

 
Figure 9. Hardware scheme for sleep-posture-based hierarchical binary classifier (HBC) PE.

3.3. Hardware Schemes of Hierarchical Binary Classifier for Sleep Posture

Figure 9 presents the internal hardware schemes of the HBC for sleep posture and
signal information is represented in different colours. The proposed binary classifier was
developed in line with the [20,21] binary search tree. The binary search tree classifier was
organized with the center weights of the tree; in the proposed approach, it is heuristic, with
a hierarchical binary classifier.

The HBC is embedded with a 20-bit FIFO structure, (sensor distance) × 6 (H_R, H_L,
A_R, A_L, R_L and L_L) × 1, and receives the data from the learning or posture evaluation
modules, the hierarchical classifier logic, classifier logic control, right posture classifier
logic, and left posture classifier logic. As per the binary search tree, R_L and L_L enable
2-bit information to act as a selector in the hierarchical classifier logic. The frog posture (FP)
and supine posture (SP) were selected as 2′b00 and 2′b11 and 2′b01 and 2′b10 to enable the
right and left posture classifiers. As per the binary hierarchy, with A_R and A_L data, the
classifier logic control defines the right and left postures in detail. A_R and A_L as 2′b11
and R_L and L_L as 2′b10 define the right fetal (RF) postures and enable the selection of
the right lateral posture (RLP). The next level of hierarchy is defined with the top H_R and
H_L bits for the selection of the left postures, such as the lateral, fetal, and yearner postures.
Overall, data from the six pairs of sensors (6′b111101) define the left fetal position using
the left posture classifier logic. Similarly, lines 6′b010101 classify the left lateral posture
(LLP) and 6′b111010 the left yearner (LY) posture. Adaptive learning regularly performs
subclassification in the HBC according to new requirements. The posture modules are
interfaced with the HBC encoder and with the posture evaluation and learning modules.

3.4. Hardware Schemes for Adaptive Posture Evaluation

Algorithm 3 presents hardware-based adaptive posture evaluation using a time-
variant approach. The sensor’s distance varies with time and is considered adaptive
in sleep posture evaluation. Figure 10 presents the internal hardware schemes for adaptive
posture evaluation with different colour lines for data information.
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Figure 10. Hardware scheme for adaptive posture evaluation PE.

The adaptive posture evaluation is integrated with an adaptive period logic controller
and adaptive period calculator. At the logic controller, data originating from the sensor
distance bus are utilized to ascertain the past and current poses. When registered con-
currently, once the pose is initiated, the respective counters are triggered until the pose
changes. These counters operate with a device clock frequency of 100 MHz and are syn-
chronized with the AXI lite protocol. The Pose _ T _ Current and Pose _ T _ past counters
are counts utilized in the event of posture registration and reach the threshold for posture
change. If both the count and pose are the same, the posture is recognized as the same
as that classified with the HBC. Otherwise, the adaptive period calculator of time-variant
sleep posture data is enabled. The Pose _ T _ Current module of the period calculator
registers data for every 1/6 s and determines the difference using the 2’s complement adder
method. The duration from the current posture to the adjacent posture time is considered
the adjacent pose period. Once both the adaptive and adjacent pose periods are equal, the
HBC evaluates the posture-to-posture time. The adaptive period module iterates until the
adjacent pose periods match.

4. Results

The proposed FPGA-based accelerator for determining sleep posture under generic
and adaptive conditions is presented in this section. The results are compared in terms of
FPGA resource utilization in implementation, along with power consumption based on
the hardware schemes presented in Figures 7–10. The proposed approach was validated
through real-time experiments with six ultrasonic sensor pairs and a ZedBoard family
field-programmable gate array (FPGA).

4.1. Resource Utilization

The proposed approach is the first of its kind to use the FPGA-based accelerator for
non-contact sleep posture analysis. The hardware schemes were coded using Verilog HDL,
and the Xilinx simulator was used for their functional verification. Vivado tools 17.3 version
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was utilized for HDL synthesis for bit generation. Xilinx tools and the FPGA were procured
from the Xilinx university program.

Xilinx (San Jose, CA, USA) produced the Xilinx Zynq XC7Z020-1CSG484 ZedBoard,
which features approximately 85,000 programmable logic cells. The device incorporates
look-up tables (LUTs) and flip-flops for executing logic operations and short-term memory
storage. The board’s BRAM, accessible via AXI lite, comprises over 140 blocks of 36 kb
each (totaling 4.9 Mb), which are used to store sensor fusion and intermediate data. In
the proposed design, BRAM is primarily utilized in FIFO. The board also includes about
220 DSP slices (18 × 25 MACCs) for handling data transfer and other computational tasks.
Table 3 illustrates how these resources are employed in the proposed approach.

Table 3. ZedBoard FPGA resource utilization for sleep posture analysis accelerator.

Module LUT BRAM DSP Slices

Interfacing modules (sensors, communication (UART),
Xilinx IP cores) 6362 16 22

Sleep-posture-based learning PE 4404 12 15
Hierarchical binary classifier (HBC) PE 3916 8 12
Adaptive posture evaluation PE 5140 22 25
Control unit and PWDC sensor fusion 2692 9 12
Execution modules and display 1958 5 10
Total 24,472 72 96

Table 3 presents the device’s utilization of the sleep posture analysis accelerator. FPGA-
based accelerators provide fast computing and low power consumption [22–24]. The total
device utilization for the proposed approach in the form of look-up tables (LUTs), block
RAM (BRAM), and digital signal processing (DSP) slices was 46% (24,472), 51% (72), and
44% (96), respectively.

Figure 11 presents a quantitative analysis of the resources consumed by the device in
the interfacing module, which are 26% for LUT, 11% for BRAM, and 10% for the DSP slices.
Similarly, other modules include the sleep-posture-based-learning PE (18%, 9%, and 7%),
hierarchical binary classifier (HBC) PE (16%, 6%, and 6%), adaptive posture evaluation
PE (21%, 16%, and 11%), control unit and PWDC sensor fusion (11%, 6%, and 6%), and
execution module and display (8%, 4%, and 4%). It is observed from device utilization
that the interfacing modules and adaptive posture evaluation PE consume more resources.
The interface is embedded with UART using AXI lite to establish and communicate sleep
postures to other devices using Wi-Fi ESP8266 external devices. The resource consumption
of BRAM is approximately 51%, and the sensor fusion distance is passed in a few stages
through FIFO. AXI-based FIFO and an IP core are utilized as part of the programmable
logic (PL) of the ZedBoard FPGA.

Figure 12 shows the power consumption of the device when computing a reconfig-
urable device (FPGA). Overall, the static device power consumption as per the Xilinx power
estimator (XPE) is 1.2 watts. The PE evaluation of the adaptive posture consumed 32% of
the overall power. The power consumption of other components was also obtained from
the XPE analysis. Interfacing with external modules consumes the second-largest share
of power.

The total power consumption is 1.2 watts, with the dynamic power and static power
consumption comprising 0.96 watts and 0.24 watts. Hardware schemes were designed with
eight pipeline stages (S), and a device clock time (Tclk) of 10 ns; a total of 30 (N) iterations
were utilized for validation. The 370 ns latency of the proposed hardware schemes is
represented in Equations (2) and (3).

Latency per iteration = 8 × 10 ns = 80 ns (2)

Total latency = (N + S − 1) × Tclk = (30 + 8 − 1) × 10 ns = 370 ns. (3)
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Sleep Posture Analysis Accelerator 
Resource Utilization 

Figure 11. Resource utilization of sleep posture analysis accelerator.

 

Figure 12. Device power consumption of sleep posture analysis accelerator.

The overall accuracy is 98.4%. This was computed based on the data captured from
the multiple sensors and their fusion. The total number of correct data predictions were 30
and 29, respectively. Equations (4) and (5) represent the accuracy and error rate formulae.
An accuracy of 98.4% and error rate of 1.6% are mentioned in Equations (6) and (7).

Accuracy =
Number of Correct Predictions

Total Predictions
× 100 (4)

Error rate = 1 − Accuracy (5)

Accuracy =
29
30
× 100 = 98.4% (6)

Error rate = 1− 29
30
× 100 = 1.6% (7)

4.2. Experimental Results

This section describes the experimental setup and experiments for the validation of
the proposed sleep posture analysis accelerator.
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4.2.1. Experimental Setup

Figure 10 illustrates sleep posture analysis using the contactless approach proposed in
this study. As shown by the experimental setup in Figure 13, the side views of A_L and
A_R are different for each subject. The results are shown in Figure 14. The experimental
setup presents the integration of the six ultrasonic sensor pairs from rhydolabz that utilize
an ultrasound echo signal. The sensors were operated with a 40 KHz frequency and voltage
range of 3.3–5 V, and consumed a 5 mA current. The voltage was fetched from the voltage
regulators of 7805 IC modules. Ultrasonic sensors were employed to detect objects using
pulse-width modulation (PWM)-based echo signals that were digitized using an FPGA.
The ultrasonic sensor is capable of capturing data within the ideal distance of 3 m; however,
to remove redundancy and other noise, a 2.7 m to 0.3 m range was more suitable.

  

Figure 13. Illustration of experimental setup of contactless sleep posture analysis.

 
(a) without subject (b) without subject 

Figure 14. Experimental setup of bed for sleep posture analysis without and with human.

The PIR sensor was positioned between the H_L and H_R sensors to estimate whether
the bed was occupied by a human. The PIR sensor range covered around 3 m from its
position. As shown in Figure 14, the FPGA device was placed on a bedside table and was
used to compute the sleep posture as per the proposed approach. The bed size used in
this experiment was approximately 110 cm. The sensor was positioned from the bed at a
height of 2.4 m, and each sensor covered approximately 47 cm of the bed. The sensors were
positioned to cover an inner-bed range of 94 cm. Figure 10 shows the sensor positions on
the ceiling.

4.2.2. Experimental Results of Sleep Posture Learning

The experimental results of the proposed sleep posture learning method are illustrated
in Figure 15. Three subjects participated in this experiment. The human postures were
evaluated using ultrasonic sensorsIn this regard, the proposed method learns the distance
between sensors and determines the subject’s posture without using any database sets.
In processing the database sets, huge amounts of computing and processing power are
consumed at the inference stage. Figure 15a presents the supine posture of subject 1, which
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is displayed on the FPGA Zed Board LCD display. The resulting sleep posture details are
transmitted through the IoT module Wi-Fi ESP8266 to the monitoring or assisting team
for their next course of assistance. Similarly, other postures of subject 1 were learned and
registered as a reference for future usage, as in Figure 15c,d. The supine and right yearner
postures of subject 2 are demonstrated in Figure 15e,f. Subject 3 was positioned in the
left yearner posture and is displayed in Figure 15g,h. Figure 15b,d,h represent the supine,
left lateral, and left yearner postures on the FPGA Zed-Board LCD display. This display
is useful as interim information when transmitting posture details to the assisting team.
The experimental results are presented as follows: https://www.youtube.com/watch?v=
6nRHrVYnXTQ accessed on 14 September 2024.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 15. (a–h) Demonstration of results of sleep posture learning of various subjects. (a) Subject_1
Supine Posture. (b) Subject_1 Supine Posture Display. (c) Subject_1 Left Lateral Posture. (d) Subject_1
Left_Lateral_Display. (e) Subject_2 Supine Posture. (f) Subject_2 Right Yearner. (g) Subject_3 Left
Yearner. (h) Subject_3 Left Yearner display.

4.2.3. Experimental Results of Adaptive Sleep Posture Analysis

After learning the sleep posture at the inference stage, the proposed approach provides
a better solution for the estimation of posture analysis under both generic and adaptive
event conditions. Figure 16a–f demonstrate the adaptive sleep postures of the initial subject
in the experiment. In Figure 16a, the subject exhibits the left yearner (LY) posture. The
subject changed to the right yearner (RY) pose, as shown in Figure 16c, and the supine
posture (SP), as shown in Figure 16b. The same adaptive sleep posture taken during the
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interval of around 9.64 s from the LY end time to the RY start time was presented on the
FPGA LCD display as TD (duration).

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 16. (a–f) Demonstration of results of adaptive sleep posture analysis.

The same subject switched his adaptive posture from right yearner (RY), as demon-
strated in Figure 16c, to the left fetal (LF) position, as shown in Figure 16e, in the supine
posture. The duration was recorded as 11.44 s. Figure 16d shows the past FPGA Zed-Board
LCD display posture as right yearner (RY) and the current posture as left yearner (LY),
along with the time duration. Similarly, 16f represents the adaptive posture of the left
yearner to the right foetus. The experimental results are as follows (https://www.youtube.
com/watch?v=Z8UvHXnd6lY accessed on 14 September 2024).

Table 4 presents a comparison with other research methods of sleep posture analysis.
Most sleep posture detection methods have been developed for use with a bedsheet/mat.
The authors of [17,25] used more sensors for accuracy, as any misleading data from sensors
could impact the sleep posture analysis. However, this affected the power consumption. R.
Tapwal et al. [26] utilized two costly and limited flex force sensors in a method that detected
up to four postures only and proportionally consumed more power, at 17.5 watts. Hu, D
et al. [27] utilized 32 piezoelectric ceramic sensors for analysis, achieving better results for
nuanced pressure disturbances. The proposed methods perform sleep posture analysis
in generic and adaptive scenarios, can be carried out using an FPGA-based accelerator
with a low power consumption of around 1.2 watts, and can be operated using computing
modules with a 100 MHz clock frequency; meanwhile, other comparison methods have a
higher power consumption and require CPU resources. Data acquisition was performed
using the Arduino Nano or Uno operated at 16 MHz. In the proposed method, a single
reconfigurable device provided better results (98.4%) for both data acquisition and analysis.
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Table 4. Comparison of sleep posture analysis with relevant research methods.

Reference
Paper

Sensory Approach
Algorithm Hardware

Number of
Postures

Pros Accuracy Cons
Method Fusion

Q. Hu et al., 2021
[17]

1024 pressure
sensors Yes HOG, SVM,

and CNN

Arduino
Nano and

CPU
6

<400 ms,
sampling, and

processing,

86.94% to
91.24%

Contact
approach

Mater et al., 2020
[25] 1728 FSR sensors Yes HOG + LBP,

FFANN CPU 4 Health
monitoring 97%

Increased
usage of
sensors

R. Tapwal et al.,
2023
[26]

Two flex force
sensors Yes K-means

Arduino
Uno and

CPU
4 Health

monitoring ~99.3%

Consumes
17.5 W,
contact

approach

Hu, D et al., 2024
[27]

32 piezoelectric
sensors Yes S3CNN N/A 4

Effectively
detects

nuanced
pressure

disturbances

93.0% N/A

Proposed 6 ultrasonic
sensors Yes

HBC,
heuristic
learning

FPGA 8

Parallel
computing,

<370 ns,
sampling, and
computation.

98.4%

PR flow
would be

preferred in
future usage

5. Conclusions

Sleep posture analysis has attracted considerable attention as a means of monitoring
patients/children and the elderly. The proposed approach is the first of its kind to provide
a solution with hardware schemes. Hardware schemes were adopted, alongside machine-
learning-based heuristic methods, in the processing of sleep posture analysis at the learning,
classification, and evaluation stages with processing elements (PEs). Sound-based data
acquisition was successful in concurrently capturing and fusing data at a rate of 25 μs.
The proposed method provides a better solution at the inference stage by using hardware
schemes with adaptive subject sleep posture recognition and analysis with standard forms.
This avoids excessive memory use at the learning and evaluation stages. Each subject
and each posture-learning method was validated in 30 iterations, and the latency of the
proposed hardware was around 370 ns. The results of the experiment showed 98.4%
accuracy and a 1.6% error rate. The resource consumption of the optimized hardware
schemes was 51% for the BRAM, 46% for the LUTs, and 44% for the DSP slices. Overall,
1.2 watts of power was consumed for computation. It is hoped that the device will be
optimized in the future via partial reconfiguration methods and multi-subject sleep posture
detection for hospital patients and senior citizens.
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Abstract: The control of hand movement during sailing is important for performance. To quantify the
amount of regularity and the unpredictability of hand fluctuations during the task, the mathematical
algorithm Approximate Entropy (ApEn) of the hand acceleration can be used. Approximate Entropy
is a mathematical algorithm that depends on the combination of two input parameters including
(1) the length of the sequences to be compared (m), and (2) the tolerance threshold for accepting
similar patterns between two segments (r). The aim of this study is to identify the proper combinations
of ‘m’ and ‘r’ parameter values for ApEn measurement in the hand movement acceleration data
during sailing. Inertial Measurement Units (IMUs) recorded acceleration data for both the mainsail
(non-dominant) and tiller (dominant) hands across the X-, Y-, and Z-axes, as well as vector magnitude.
ApEn values were computed for 24 parameter combinations, with ‘m’ ranging from 2 to 5 and ‘r’ from
0.10 to 0.50. The analysis revealed significant differences in acceleration ApEn regularity between
the two hands, particularly along the Z-axis, where the mainsail hand exhibited higher entropy
values (p = 0.000673), indicating greater acceleration complexity and unpredictability. In contrast,
the tiller hand displayed more stable and predictable acceleration patterns, with lower ApEn values.
ANOVA results confirmed that parameter ‘m’ had a significant effect on acceleration complexity for
both hands, highlighting differing motor control demands between the mainsail and tiller hands.
These findings demonstrate the utility of IMU sensors and ApEn in detecting nuanced variations in
acceleration dynamics during sailing tasks. This research contributes to the understanding of hand-
specific acceleration patterns in sailing and provides a foundation for further studies on adaptive
sailing techniques and motor control strategies for both novice and expert sailors.

Keywords: approximate entropy (ApEn); inertial measurement units (IMUs); sailing simulation;
motion time-series analysis; handedness

1. Introduction

The subtle dance of our fingers, the precise movements of our hands, fine motor
control is woven into nearly every aspect of human life. It involves the coordination of
small muscles in the eyes, hands, and fingers, leading to dynamic movements such as
reaching and grasping [1]. This intricate coordination extends beyond everyday tasks,
playing a crucial role in various physical activities. In the context of sailing, achieving
optimal wind utilization necessitates fine motor control for precise adjustments to the
sails [2]. These adjustments can be interpreted as “reaching” and “side-to-side” tasks,
which are critical for the performance and safety of sailors. Investigating these movements
and handedness provides valuable insights into both healthy individuals and those with
various medical conditions [3].
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Handedness refers to the tendency to use one hand over the other and is linked to brain
lateralization, with each hemisphere controlling movement in the opposite hand [4]. It in-
cludes right-handedness, left-handedness, and ambidexterity. Handedness consists of two
components: hand preference (using the preferred hand for tasks) and hand performance
(differences in abilities between hands) [5,6]. Most individuals develop a hand preference
from a young age, influenced by genetic and environmental factors [7]. Generally, the
dominant hand is more adept at performing skilled tasks that require precision and fine
motor control, such as steering or aiming [8], whereas the non-dominant hand is frequently
tasked with supporting roles that involve broader, less refined motions, such as holding
or stabilizing. However, unskilled tasks like reaching may show no significant difference
between both hands [9,10]. This distinction between hand functions can be impactful
when assigning roles in complex activities like sailing, where the precision and sensitivity
required for steering (tiller control) are better suited to the dominant hand, while the less
intricate but forceful maneuvers needed to handle the mainsail are effectively managed
by the non-dominant hand. However, the relationship between hand skill and preference
remains complex and not fully understood, potentially due to variations dependent on
experience and environmental demands.

Research on motor skill lateralization has focused on how specialization contributes to
differences in hand preference and performance. Hemispheric asymmetry, the division of
control between brain hemispheres, has also been explored. For instance, Nelson et al. [11]
investigated handedness and limb control in adults, finding mixed support for the dynamic
dominance hypothesis, with right-handers generally performing better. Mutha et al.’s [12]
study challenges conventional handedness views, suggesting specialized mechanisms in
each arm–hemisphere system, with the dominant hemisphere aiding predictive control
and the non-dominant one stabilizing the arm at a goal position. Boulinguez-Ambroise
et al. [13] highlighted that although hemispheric dominance is an important factor, it does
not fully explain the variations observed in performance. This suggests that additional
cognitive and motor elements also contribute to the underlying mechanisms. Overall,
the interplay between hemispheric asymmetry and motor skill specialization is complex
and multidimensional, necessitating further research to comprehensively understand its
implications for hand preference and performance.

Hand function assessments frequently rely on questionnaires, which can introduce
subjectivity and bias. As noted by Mcsp and Dipcot [14], and further supported by Pe-
ters [15], self-reported measures often fail to accurately capture an individual’s actual hand
capabilities due to personal perceptions and emotional states [14,15]. This subjectivity
can lead to inconsistent results, particularly in clinical settings where objective measures
are crucial. Bear-Lehman and Abreu [16] also highlight that questionnaires may overlook
essential aspects of hand function, such as dexterity and strength [16]. This highlights the
importance of quantitative data for studying movement patterns between hands as well
as choosing the appropriate technology and measures for accurately capturing fine motor
control and dynamic hand movements [17].

Entropy, a measure of system randomness or uncertainty, is one such measure [18].
Numerous studies have used Inertial Measuring Units (IMUs) to measure reaching, apply-
ing kinematics and kinetics techniques. However, analyzing three-axis motion time-series
data for hand dominance differences in sailing has been overlooked, likely due to the
complexity of such data.

This study seeks to address the gap in research by examining the control of the hand
movement during multi-directional sailing simulation. Movement control of the hand can
be quantified using the ‘regularity statistic’ Approximate Entropy (ApEn) that quantifies
the unpredictability of fluctuations in hand acceleration time series. ApEn reflects the
likelihood that ‘similar’ patterns of observations will not be followed by additional ‘similar’
observations. Acceleration time series containing many repetitive patterns have a relatively
small ApEn; a less predictable and more complex process has a higher ApEn value. The
algorithm for computing ApEn depends on the ‘m’ and ‘r’ input parameters. The parameter
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‘m’ specifies the pattern length, and ‘r’ defines the criterion of similarities. The aim of this
study is to identify the proper combinations of ‘m’ and ‘r’ parameter values for ApEn
measurement in the hand movement acceleration data during sailing. The findings will
provide valuable insights to inform future investigations on the appropriate selection of
parameters for ApEn analyses in sailing.

2. Method

2.1. Participants

The study involved 10 participants, aged 18 to 30 years, who volunteered after an initial
screening process. Eligibility criteria included no prior experience in sailing, and the absence
of current or chronic health conditions and physical disabilities or injuries. Individuals with
clinically significant diseases or disorders were excluded. Participants underwent further
screening using the Adult Pre-Exercise Screening System [19] tool to identify those susceptible
to adverse exercise-related events and those showing signs of known illnesses. Hand domi-
nance was determined using the Edinburgh Handedness Inventory [20], revealing that eight
participants were right-handed and two were left-handed. Prior to the experiment, all partici-
pants received an information sheet detailing the research process and provided informed
consent. Ethical approval was granted by the Swinburne University Human Research Ethics
Committee (SUHREC—Ref: 20226403-12100).

2.2. Equipment

The study utilized a VSail-Trainer®, designed by the company Virtual Sailing Pty Ltd.
(Virtual Sailing, Parkville, VIC, 3052, Australia). It comprises one boat hull (size length:
230 cm, breadth: 150 cm) based on the Hansa 303 model boat (see Figure 1). The sailor
controls the simulator in a seated setup, controlling the virtual Hansa dinghy’s course via a
centrally located joystick and managing speed through the mainsheet. A 42-inch screen
displayed the virtual course, while sensors tracked the heel angle, tiller angle, and mainsail
tension. This real-time data enabled adjustments to the simulated sailing environment,
including wind conditions, gusts, and course variations.

 
a b 

Figure 1. (a) The virtual HUD display in the sailing simulator, also showing the triangular course.
(b) A participant during a trial with the sailing simulator.

The experimental setup was designed to simulate the ergonomics and control mech-
anisms of seated dinghy sailing, specifically the Hansa dinghy. A centrally positioned
joystick is a common adaptation in accessible sailing for individuals with physical disabili-
ties or those new to sailing. This choice aimed to minimize physical strain and enhance
participant engagement.

This study used 2 wireless IMUs, with tri-axial accelerometers (YEI 3-space sensor,
Yost Labs, Portsmouth, OH 45662, USA) to capture continuous hand acceleration during
sailing. These lightweight sensors (35 mm × 60 mm × 15 mm, 28 g) were secured to
participants’ hands using Velcro straps (see Figure 2). Raw acceleration was sampled at
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150 Hz (±16 g range) and captured using in-house Python software (version 2.7). The IMU
has ±1◦ orientation accuracy for dynamic conditions, with <0.08◦ resolution and 0.085◦
repeatability across all axes.

a b 

X 

Y 

Z 

Figure 2. The placement of the IMU sensors on the left and right wrist. IMU reference: the X-axis is
pointing forwards, the Y-axis is pointing laterally, and the Z-axis is for the depth. (a) Lateral View.
(b) Point of View.

2.3. Multi-Directional Sailing Task

Participants performed the multi-directional sailing simulation using both dominant
and non-dominant hands. The course was based on the Sydney 2000 Olympic Games
triangle course in Sydney Harbor, designed to challenge participants with upwind and
downwind segments. The sailing simulation course commenced with a standardized
30 s start protocol, characterized by northerly winds of 12 knots blowing towards the
south. While the simulator dynamically adjusted to user input, ensuring a realistic sailing
experience, each participant completed the same pre-defined course involving two tacks
and one gybe. To further standardize the sailing task, a “ghost” boat, representing the ideal
course trajectory, was incorporated into the visual display. This provided participants with
a real-time visual guide for the pre-defined course, ensuring consistent navigational cues
throughout the experiment.

This consistency in course maneuvers ensured that all participants encountered identi-
cal navigational challenges. Variations in individual performance stemmed from differences
in the tiller steering, mainsail trim (specifically twin-tail adjustment), and overall reaction
to the simulated conditions, rather than variations in the course itself.

2.4. Procedure

Participants were equipped and strapped with an IMU on both wrists to measure
accelerations during the sailing task (see Figure 2). Prior to testing, participants had a
familiarization session to familiarize themselves with the V-Sail simulator. During the
familiarization session, participants received instruction on sailing techniques, including the
use of the Heads-Up Display (HUD), which provided real-time data on the wind direction
and strength, twin tails’ alignment, boat angle, and course details. The participants were
also instructed on the placement of hands, where the dominant hand was typically assigned
to the tiller, as steering requires precise, fine motor adjustments. The non-dominant hand
was tasked with adjusting the mainsail, a function that, while critical, does not demand the
same level of precision as steering in the beginning stages. This division of labor reflects
common beginner sailing practices, where the dominant hand’s dexterity is leveraged
for steering, and the non-dominant hand supports sail handling, helping the participant
during the initial learning process.
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During the familiarization session, participants were taught to steer the boat using the
tiller, navigate to specific objects, and maneuver around obstacles. They then learned to adjust
the mainsail to optimize the sail angle for speed and maneuverability. After mastering basic
sailing techniques, participants practiced specific maneuvers such as tacking and gybing,
crucial for sailing against the wind or overcoming headwinds. The final stage involved
managing the heeling angle using pneumatic rams to reduce water resistance and improve
speed and control. The instructional procedures during the familiarization session were
standardized across all participants to ensure that the duration of practice and the feedback
provided were consistent across participants to eliminate any confounding effects.

Following the familiarization session, participants performed the testing session where
hand acceleration data were captured. During the testing session, participants were re-
quired to complete 5 laps of the triangular course, navigating outside the buoys, and cross
the finishing line as quickly as possible. The various performance measures were collected
using the wireless IMUs.

2.5. Entropy Measures of Acceleration Time-Series Data

The computation of ApEn, a pivotal metric in assessing motor control complexities,
hinges on several intricate parameters crucial for a meaningful analysis [21]. Among
these, ‘m’ and ‘r’ are the primary determinants. The parameter ‘m’ signifies the number
of sequences being compared for similarity, i.e., m = the length of embedding vectors,
while ‘r’ sets the threshold for considering sequences as similar. Additionally, secondary
determinants such as ‘N’ (number of data points) ensure a reliable estimate, while the time
delay establishes the temporal gap between compared points. The window size influences
the analysis scope by determining the portion of data analyzed at any given time. Data
normalization is employed to remove scale-induced bias. These parameters collectively
ensure the reliability and relevance of entropy calculations, requiring adjustments to align
with specific research objectives and the nature of the data.

Our study primarily concentrates on the primary determinants ‘m’ and ‘r’, as these
are directly modifiable and crucial for computing ApEn. These factors are essential for
balancing the identification of true complexity against the risk of misinterpretation due to
noise or inadequate data capture [21]. While other parameters like the N (total number
of data points), time delay, window size, and data normalization play supportive roles,
they either pertain to the broader study design, pre-processing requirements, or specific
considerations of the ApEn algorithm.

In the context of our research using a sailing simulator, identifying and fine-tuning
‘m’ and ‘r’ are paramount before addressing secondary determinants. A well-chosen ‘m’
ensures that the complexity analysis captures relevant hand patterns, while an appropriately
set ‘r’ distinguishes true behavioral variability from random noise. This allows for a better
understanding of motor control stability or irregularity in individuals during the sailing
simulator task.

For reliable entropy results, ‘m’ is typically selected as 2, with occasional use of
3 [22–24]. However, we decided to extend this to 5 to explore the potential influence of a
higher embedding dimension on entropy measures in our sailing simulator task. These ‘m’
values enable the analysis of sequential complexity from basic (m = 2, three consecutive
data points) to advanced (m = 5, patterns of six consecutive data points), ensuring the
capture of both simple repetitive patterns and more complex structures in the data.

Typically, values of ‘r’ like 0.1 or 0.2 are common [25,26]. However, due to the unique
application of the sailing simulator, we explored higher values up to 0.4. The chosen ‘r’
values (0.1 to 0.4) define the tolerance spectrum for matching data segments. A lower ‘r’
(0.10) enhances sensitivity to fine details, detecting subtle variations, while a higher ‘r’
(0.40) smooths over minor differences, aiding in recognizing broader patterns and reducing
sensitivity to noise.

63



Sensors 2024, 24, 6728

2.6. Statistical Procedures

The data processing procedures in this study followed well-established protocols to
ensure an accurate analysis of the Inertial Measurement Unit data collected during the
sailing simulation tasks.

1. The raw acceleration data from the IMUs were processed to remove noise and baseline
drift [27].

2. A zero-phase Butterworth high-pass filter with a cut-off frequency of 0.3 Hz was
applied to the acceleration data to eliminate low-frequency noise, ensuring that only
the relevant motion data were retained for a further analysis.

3. Following the high-pass filtering, the data underwent smoothing using a third-order
Savitzky–Golay filter with a frame size of 41 points. This filter was chosen to preserve
the features of the data while reducing high-frequency noise, making it suitable for
the entropy analysis.

4. Approximate Entropy (ApEn) values were then calculated, employing the method
described by [28]. ApEn was computed using varying combinations of the embedding
dimension ‘m’ (values 2 to 5) and the similarity threshold ‘r’ (values 0.1 to 0.5), applied
across all three axes (X, Y, Z), and the vector magnitude (Vm) of the hand motion
data. The approx_entropy function from the R ‘pracma’ library was used to perform
these calculations.

5. A one-way repeated measures ANOVA was conducted to statistically evaluate the
significance of differences in Approximate Entropy values between the tiller hand and
the mainsail hand. This analysis was performed separately for each of the four variables:
the X-axis, Y-axis, Z-axis, and vector magnitude. The analysis aimed to identify any
significant differences in the complexity of hand motion across these axes.

6. To further investigate the significant effects observed in the one-way repeated mea-
sures ANOVA, a post hoc Tukey’s Honest Significant Difference test was performed.
This allowed for targeted, pairwise comparisons between the conditions while up-
holding the appropriate statistical standards after the initial ANOVA analysis.

3. Results

To compute Approximate Entropy (ApEn) values from the motion time-series data,
we experimented with various combinations of parameter values, specifically ‘m’ values
ranging from 2 to 5, and ‘r’ values between 0.10 and 0.50. These computations were applied
to the X-axis, Y-axis, Z-axis, and vector magnitude of both dominant and non-dominant
hand motion data, resulting in a total of 24 parameter combinations for each ApEn analysis.

The mean and standard deviation (SD) of ApEn values for tiller (dominant) and
mainsail (non-dominant) hand acceleration patterns are presented in Table A1. The analysis
of variance (ANOVA) was conducted to assess the impact of both tiller and mainsail hands,
along with factors M and R, on ApEn values across four variables: X, Y, Z, and vector
magnitude (Vm). The results are detailed below.

For variable X, the ANOVA revealed no statistically significant difference between
the tiller and mainsail hands (p = 0.906). This high p-value suggests that the mean ApEn
values for variable X do not differ significantly between the two. However, the factor M
exhibited a highly significant effect on X, with a p-value of less than 0.001 (p = 4.03 × 10−5),
indicating that different levels of M contribute substantially to the variance in X.

While the analysis of variable Y yielded a p-value of 0.0851, suggesting a potential
difference between tiller and mainsail hand acceleration patterns, this difference did not
reach statistical significance at the conventional α = 0.05 level, indicating that any difference
in mean ApEn values between both hands may be minor. In contrast, the factor M had a
highly significant impact on Y (p = 7.41 × 10−5), similar to its effect on X.

Variable Z showed a statistically significant difference between the tiller and mainsail
hands (p = 0.000673), highlighting a strong difference in ApEn values between the two
hands. This finding suggests that the complexity of hand acceleration patterns, as measured
by ApEn, varies significantly between the tiller and mainsail hands on the Z-axis. Addi-
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tionally, the factor M had a highly significant effect on Z, with an extremely low p-value
(p = 5.36 × 10−7), further emphasizing its influence. The small residuals observed indicate
that the model explains most of the variance in Z.

For variable Vm, the ANOVA results indicated no statistically significant difference
between the tiller and mainsail hands (p = 0.145). This suggests that the mean ApEn values
for vector magnitude do not differ significantly between the two groups. Nevertheless,
similar to the other variables, the factor M demonstrated a highly significant effect on Vm
(p = 2.07 × 10−5), suggesting that M consistently influences the variance across different axes.

Given the significant ANOVA result for variable Z, a post hoc Tukey’s Honest Signifi-
cant Difference (HSD) test was conducted. The Tukey’s HSD test confirmed the ANOVA
results, revealing that the ApEn values for the mainsail (non-dominant) hand were signifi-
cantly higher than those for the tiller (dominant) hand on the Z-axis (p = 0.000673). These
findings suggest that the mainsail hand exhibits greater variability and less predictability
in its acceleration patterns during the sailing simulation task, in contrast to the dominant
tiller hand.

The influence of the ‘r’ parameter on ApEn values was examined across all measured
variables. As expected, elevating the ‘r’ parameter, which widens the tolerance for re-
semblance between data sequences, typically led to lower Approximate Entropy values.
This was observed consistently across all parameters such as the X-axis tiller hand mean
(decreasing from 0.272 at R0.1 to 0.028 at R0.4) and Y-axis mainsail hand mean (decreasing
from 0.282 at R0.1 to 0.020 at R0.4).

Table A1—ApEn values for the X-axis, Y-axis, Z-axis, and vector magnitude as a
function of the 20-point input parameter combinations m and r, for dominant and non-
dominant hands, in terms of the mean and standard deviation.

4. Discussion

This study explores entropy variations between tiller (dominant) and mainsail (non-
dominant) hand acceleration patterns within a multi-directional sailing simulation task.
Using ApEn, a well-established tool for assessing complexity and predictability in time-
series data, our research reveals subtle yet significant differences in the regularity and
complexity of acceleration profiles in this simulated environment.

Our study introduces a task with three-dimensional freedom, facilitating hand acceler-
ation analyses across the Y-, X-, and Z-axes. This innovative sailing simulation necessitated
a more thorough investigation of acceleration, particularly as the Z-axis exhibited notable
differences in the complexity of acceleration between the tiller and mainsail hands. While
the present sailing simulation task shared some commonalities with traditional reaching
paradigms, it incorporated additional elements to mitigate variability and maintain consis-
tency with established reaching protocols. Specifically, the simulation featured a “ghost”
boat that provided a target course, encouraging participants to minimize deviations from
the pre-defined path. This is similar to reaching tasks, where hand movements typically
exhibit uniformity and follow pre-defined trajectories with minimal variability. In contrast,
the dynamic nature of sailing, which requires continuous adjustments due to factors such
as wind and boat behavior, does result in less predictable and more varied hand move-
ments. As a result, previous research indicating parameters used in reaching tasks may
not apply to the dynamic nature of sailing. Our research highlights the need for sailing-
specific parameters to capture these nuanced hand accelerations, which differ based on
sailing complexity.

Our analysis of the sailing task revealed distinct entropy variations, with notably
higher ApEn values in the mainsail (non-dominant) hand. These elevated values indicate
greater irregularity and unpredictability in the mainsail hand’s acceleration patterns, likely
due to the complex demands of sailing. The tiller (dominant) hand, receiving more attention
and training in daily activities, exhibited enhanced motor control and precision, reflected
in its lower ApEn values across the X-, Y-, and Z-axes, as well as the vector magnitude.
Whilst there are no previous studies on entropy for both hands in sailing, research has
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indicated that inexperienced sailors exhibit a limited ability to adapt to changing conditions,
which may lead to less coordinated acceleration patterns between their hands during
maneuvers [25]. This is particularly relevant as inexperienced sailors often struggle with the
complexities of sail handling, resulting in more pronounced and exaggerated acceleration
patterns of the mainsail hand to manage the sail effectively [26]. While expert sailors exhibit
more refined and coordinated acceleration profiles, novices are likely to overcompensate
with their mainsail hand, leading to a higher incidence of upper-limb overuse injuries [27].
Therefore, our results align with previous findings suggesting that inexperienced sailors
primarily use their mainsail hand more than their tiller hand during sailing.

The parameter ‘r’ in the Approximate Entropy algorithm represents the tolerance or
similarity threshold used to determine whether two data sequences are considered suffi-
ciently alike to be classified as matching or resembling one another. The findings indicated
that increasing the ‘r’ parameter typically resulted in a more smooth and less complex
representation of the data. However, the rate of ApEn decreasing varied depending on
the specific parameter and axis, indicating differential sensitivity to changes in ‘r’. For
instance, while the X-axis tiller hand mean exhibited a substantial decrease, the Vm tiller
hand mean showed a less pronounced reduction. These findings highlight the importance
of considering parameter-specific responses to ‘r’ when interpreting ApEn values and
underscore that larger similarity thresholds can mask subtle variations in data complexity.
As the sailing task itself is very complex but also very sensitive, maintaining a low ‘r’ value
is vital to ensure the identification of nuanced differences in hand acceleration patterns.
However, if this task was less sensitive and required larger, slower acceleration profiles, a
larger ‘r’ value may be more appropriate to smooth over the natural variability and identify
the broader patterns.

The parameter ‘m’ in the Approximate Entropy algorithm represents the length of the
sequences being compared to assess similarity within the data. The analysis revealed that
increasing the ‘m’ parameter generally led to lower ApEn values, reflecting a more stringent
and less complex representation of the data. These findings also emphasize the importance
of carefully selecting the ‘m’ parameter to capture the appropriate level of detail in the
data. For tasks that require sensitivity to subtle variations in acceleration patterns, such
as the sailing simulation task described, a lower ‘m’ value for the Approximate Entropy
algorithm may be necessary. This is because the sailing task involves irregular acceleration,
necessitating the ability to capture subtle details in the data. Conversely, for other tasks
where the goal is to identify broader, more consistent acceleration profiles, a higher ‘m’
value may be more appropriate, as it can provide a less complex, smoother representation
of the data.

The Approximate Entropy metric has demonstrated its effectiveness in analyzing
motion time-series data, as evidenced by its ability to distinguish between the tiller and
mainsail hand acceleration patterns, particularly on the Z-axis, as confirmed by the post
hoc Tukey’s HSD test [28]. Additionally, ApEn was capable of capturing a wide range of
hand acceleration profiles, from subtle, precise changes to more broad, sweeping shifts.
Experimenting with ‘m’ values (2, 3, 4, and 5) and ‘r’ values ranging from 0.10 to 0.50
provided insights. The factors ‘m’ and ‘r’ consistently had a significant impact across all
variables (X, Y, Z, Vm), highlighting their influence on the complexity of hand acceleration
patterns. These findings offer valuable guidance for researchers aiming to optimize ‘m’ and
‘r’ parameter selections when using ApEn to gauge hand acceleration complexity in sailing.
Our research suggests that low ‘m’ (2) and ‘r’ (0.1) parameter values are sufficient to ensure
an adequate number of sequence vectors within the tolerance for estimating conditional
probabilities in our sailing simulation task.

The present study lays the foundation and key results for future research investigating
the use of IMUs in analyzing motion time-series data. Such analyses could benefit from the
application of Approximate Entropy due to its capacity to detect complexities and irregular-
ities in multi-directional sailing tasks. The parameters selected for ApEn calculation should
be carefully considered and varied to explore the sensitivity of the method in detecting
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differences in hand acceleration profiles. Our findings indicate that in the context of sailing
using a VSail simulator, selecting and adjusting ApEn parameters diligently are essential.
Optimal parameter combinations, such as m = 2, 3, 4, and 5 with r = 0.15, 0.20, 0.30, 0.40,
and 0.50, were identified as effective in detecting nuances in hand acceleration differences
and should be specifically utilized when examining reaching data within this domain. By
introducing a multi-directional reaching task using sailing, our research offers valuable
opportunities for functional diagnostics and assessments for multiple populations. Future
studies could also explore more flexible hand-task assignments or how more experienced
sailors adapt to sailing operations without hand assignments.

5. Conclusions

In conclusion, this study highlights the importance of Approximate Entropy (ApEn)
as a tool for analyzing the complexities of hand acceleration patterns in a sailing simulation
task. The findings reveal significant differences in the regularity and predictability of
acceleration patterns between the tiller (dominant) and mainsail (non-dominant) hands,
with the mainsail hand exhibiting higher ApEn values, suggestive of greater variability
and complexity. The findings emphasize the importance of meticulously selecting and
adjusting the ‘m’ and ‘r’ parameters in an Approximate Entropy analysis to effectively
discern the subtleties of motor control during these types of tasks. The study establishes a
foundation for future research, particularly in the context of using IMUs to explore motion
time-series data in multi-directional tasks. By applying these insights, further exploration
into hand acceleration dynamics can enhance our understanding of motor control in both
healthy and clinical populations.
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Abstract: The goal of this study is to determine the feasibility of a wearable multi-sensor positioning
prototype to be used as a training tool to evaluate rowing technique and to determine the positioning
accuracy using multiple mathematical models and estimation methods. The wearable device consists
of an inertial measurement unit (IMU), an ultra-wideband (UWB) transceiver, and a global navigation
satellite system (GNSS) receiver. An experiment on a rowing shell was conducted to evaluate the per-
formance of the system on a rower’s wrist, against a centimeter-level GNSS reference trajectory. This
experiment analyzed the rowing motion in multiple navigation frames and with various positioning
methods. The results show that the wearable device prototype is a viable option for rowing technique
analysis; the system was able to provide the position, velocity, and attitude of a rower’s wrist, with a
positioning accuracy ranging between ±0.185 m and ±1.656 m depending on the estimation method.

Keywords: rowing; ultra-wideband (UWB); GNSS; inertial sensors (IMU); inertial navigation system
(INS); wearable technology

1. Introduction

The objective of most competitive rowing is to complete a 2000 m course in the fastest
time. Each stroke must be efficient, and each phase must be executed to perfection. The
stroke is a movement that goes through four main phases, the catch, the drive, the finish,
and the recovery. Rowing technique has been widely researched and evaluated based on
the rowing stroke [1–5]. Baudouin and Hawkins concluded that the propulsive force, that
directly affects boat velocity, occurs at the oar blade, which is affected by the force and
movement of the rower at the handle [5]. Therefore, looking at the oar handle neglects the
athlete’s anthropometrics and analyzes only the quality of the stroke. Past research has
demonstrated that oar handle kinematics correlate with the rower’s technique and skill
level [1,4]. Handle kinematics have been measured in terms of stroke length, stroke rate,
handle velocity, and handle acceleration [4–11]. However, handle positioning is an area
that has not been widely explored for estimating these metrics. Additionally, in crew boats,
handle position is of great relevance because it can be used to determine the synchrony of
the athletes [6,12–14].

Inertial sensors are the most common type of devices used to measure the kinematics
of handles in rowing [2,7]. A triad of inertial sensors coupled with an estimator is called an
inertial navigation system (INS) [15]. In the context of sport, an INS is often used to estimate
kinematic parameters that represent the orientation of a body segment or sport equipment
in an inertial frame [16]. Therefore, using an INS to track the motion of the oar handle
during the rowing motion is an appropriate approach. However, an INS solution degrades
with time due to sensor biases and process errors because it integrates accelerations and
angular rates to determine velocity, position, and attitude [15]. Specifically for rowing, one
study used inertial and surface electro-myography sensor networks placed on the body
of an athlete to identify the muscle activity and acceleration at each stroke phase [6]. This
method yielded an understanding of muscle recruitment sequencing and their correlation
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with the stroke cycle [6]. Moreover, it allowed for athlete synchronization analysis in crew
boats [6]. However, this depends on sensor placement and rower’s anthropometrics and
does not evaluate the motion of the handle. Oar kinematics provide important information
about rowers’ technique. Reference [4] developed a sensor network consisting of three
IMUs; two of these sensors were placed on the oars near to the oarlock, and the last
one was placed at the middle of the boat in front of the rower. Reference [4] assessed
the technique of 18 rowers based on stroke rate, stroke length, recovery/drive ratio, and
feathered/squared blade ratio. Most of the metrics for the results are based on the oar
angles measured by the inertial sensors. The results demonstrated that IMUs can be used
to obtain important information about oar kinematics. The same research group published
two other studies relevant to rowing technique analysis based on inertial sensors [10,11].
In [10], a mobile phone was strapped onto an oar to evaluate stroke length based on the oar
angle measured on the phone’s IMU and comparing the oar angle to a reference trajectory
obtained from a potentiometer [10]. Furthermore, in [11], an IMU was placed inside an oar
(instead of a mobile phone) and measured the oar orientation throughout a stroke using an
integration algorithm; the model was validated with a reference trajectory obtained from a
potentiometer located on the oarlock. This series of studies revealed that inertial sensors
can be used in many ways to evaluate rowing technique, especially when placed on the
oar. However, none of these papers evaluated the position of the handle, showing a gap in
the literature that this article will address. For applications in pedestrian navigation (i.e.,
running and jogging), pedestrian dead reckoning (PDR) is a method that has been used
to improve the navigation performance of low-cost INS based on the periodic motion of
the human gait [15]. In addition to PDR, INS errors are typically controlled with external
aiding sources of position and velocity, such as GNSS and UWB [17]. Moreover, PDR has
been adapted to sports with periodic motions such as cycling [18]; thus, a similar approach
is explored for rowing in this study called rowing dead reckoning (RDR).

Moreover, in rowing, radio-frequency-based sensors, such as GNSS and UWB, have
not been implemented in technique analysis nor used to control INS errors [2]. GNSS has
been used only to track the position and velocity of boats during competitions and train-
ing [19–21]. Differential GNSS (DGNSS) has been used as a reference trajectory to validate
positioning systems and models [22,23]. Carrier-phase DGNSS can achieve centimeter-level
accuracy in open-sky conditions [15], thus making it an appropriate method for validat-
ing positioning results. Ultra-wideband (UWB) ranging is a method used for indoor and
outdoor localization. Double sided two-way ranging (DS-TWR) is a process that requires
the exchange of four messages between a tag and an anchor to estimate the time of arrival
(TOA) between messages. Using this process avoids the need for clock and frequency
synchronization between tag and anchor [24]. In this paper, a DS-TWR-TOA method is
used to obtain distance measurements between two anchors and a single tag. Our previous
work studied the validity of UWB to track handle motion indoors on a rowing machine [24].
The system achieved an accuracy of±0.21m using a periodic extended Kalman filter (PEKF)
in a two-dimensional frame [24]. This paper further explores the system and the model in
an outdoor setting and expands the solution to a three-dimensional frame. This study de-
termines whether a wearable positioning system prototype (WPP) that uses UWB ranging,
inertial sensors, and a GNSS receiver is a viable tool for rowing technique analysis based on
the positioning of the oar handle during the rowing motion. This paper proposes and com-
pares five solutions: UWB, standalone INS, RDR INS, GNSS-aided INS, and UWB-aided
INS using a carrier-phase DGNSS as a reference.

The goal of this study is to show that the WPP can fill the gap in the literature by
providing information of the position of the oar handle, while demonstrating that radio-
frequency technologies such as UWB and GNSS can be used as an accurate source of
technique evaluation in rowing. The remainder of this paper is organized as follows:
Section 2 describes the WPP and its specifications and covers the mathematical models and
algorithms implemented to obtain the handle position in three dimensions. Section 3 shows
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the evaluation and results using each of the methods, and Section 4 provides conclusions
and recommendations.

2. Materials and Methods

2.1. System Description

The WPP consists of two sensor modules, one to access the output of the GNSS data
and the other for the UWB and inertial measurement unit (IMU) measurements. The
data are transferred in parallel to a logging personal computer (PC). The entire system
is powered by a 5V USB power bank. Figure 1 shows the WPP’s components ((a) all
components, (b) components ready to wear, (c) components on rower) and Table 1 shows
the sensor specifications.

Figure 1. Wearable positioning prototype components.

Table 1. Sensor specifications of positioning system.

Sensor Manufacturer Model Description Data Rate Accuracy

UWB Receiver Decawave DW1000 Single-chip wireless
transceiver 50 Hz ±10 cm

MEMS IMU InvenSense MPU6050 3-axis gyroscope + 3-axis
accelerometer 50 Hz Accel.: 4 g

Gyro.: 500 deg/s

GNSS Receiver U-Blox ZED-F9P Multi-band high
precision GNSS module 25 Hz RTK mode: ±0.01 m

+ 1 ppm CEP

GNSS Antenna U-Blox ANN-MB1 Multiband L1/L5 25 Hz N/A

The microcontrollers used for the sensor modules are a C099-F9P and a NUCLEO-
F446RE [25,26]. They were selected because the C099-F9P was specifically designed by
U-Blox to easily access GNSS data from the ZED-F9P chip [27] while the NUCLEO-F446RE
has available connections which allow for high data rate transmission between UWB radios
and reception of IMU measurements simultaneously.

A Raspberry Pi (RPi) with a Pimoroni Explorer Hat (PEH) was selected as the logging
computer due to its compactness and low power requirements. The RPi is controlled
using VNC Viewer, which is a remote desktop application. The purpose of using a remote
desktop is to eliminate additional hardware (i.e., a screen, mouse, and keyboard) and easy
monitoring of the logging process while the user is wearing the WPP. The addition of the
PEH is to allow the user to start and stop the logging functions with touch buttons [28].

The output is two log files, one for each module. The UWB/IMU file is a text file with
the information of the source (i.e., transmitter ID), the distance observations from the UWB
ranging, and the IMU measurements. The GNSS module outputs a customized binary
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format that can be transformed into a receiver independent exchange (RINEX) format and
then processed using the open-source software RTKLIB version 2.4.2 [29].

2.2. Methods

Oar handle kinematics can be described in terms of position, velocity, and attitude
angles, expressed in a three-dimensional space. The combination of these terms is often
referred to as a navigation solution [30]; it is possible to represent this solution in different
coordinate frames. This section introduces the navigation frames used in this study, an
overview of attitude angles and coordinate transformations, the mathematical models
for processing ultra-wideband ranging measurements, three algorithms used for inertial
navigation, and the experimental setup. Figure 2a,b show the boat setup schematic showing
the placement of the components with respect to the boat coordinate system.

Figure 2. (a) Boat setup schematic. (b) Boat setup on water.

2.2.1. Body Frame

The sensor or body frame aligns with the axes of the moving object [31]. This study
assumes that the origin of the sensor frame (GNSS antenna, UWB antenna, and IMU origin)
coincides with the center of gravity of the sensor device which in this case is mounted to
the wrist of the rower. This is represented with the superscript and the subscript denoted
as [�]bb.

East-North-Up (ENU)

The ENU frame is a local-level or navigation frame [31]. The general representation of
a navigation frame is described with the superscript and the subscript denoted as [�]nn. In
this paper, ENU uses the World Geodetic System (WGS84) as the reference model for the
Earth and has its origin determined by the location of a GNSS base station a few hundred
meters away. The coordinate system has the x-axis pointing in the direction of the east, the
y-axis towards the true north, and the z-axis in the up direction.

Boat Frame (XYZ)

The boat frame has an origin determined in front of the rower on the rowing shell.
The boat frame has the x-axis pointing in the direction along the boat towards the bow
(back of the rower), the y-axis towards the starboard (left of the rower), and the z-axis in
the vertical direction.

For inertial navigation, it is important to consider the properties of the coordinate
systems. The ENU frame is a quasi-inertial frame that allows for inertial navigation.
However, the XYZ frame is not inertial; this is because the boat is neither stationary
nor moving at a constant speed and instead accelerates and decelerates during different
phases of each stroke. Therefore, in order to obtain an inertial navigation solution, this
paper determined a boat frame that is instantaneously coincidental with the ENU frame
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at a moment where it is assumed the rower and oar are momentarily not moving (i.e.,
translating or rotating), thus creating a static frame for inertial navigation per stroke.

Attitude Angles and Coordinate Transformations

It is possible to transform one system to another one by carrying out a rotation about
each of the three rotational axes [31].

Roll (φ) is the angle between the body’s y-axis (yb) and the horizontal plane.
Pitch (θ) is the angle between the body’s x-axis (xb) with the horizontal plane.
Azimuth, yaw, or heading (ψ) is the difference between the forward axis with respect

to the north in ENU or the along track for the boat frame. Azimuth also represents the
rotation angle about the body’s z-axis (zb). The three terms are used interchangeably in
this paper.

The relationship between the navigation frame and the body frame can be described
with a transformation matrix Rb

n. The rotation sequence in this paper is pitch-roll-azimuth [32].
To do the opposite transformation, the transpose of the rotation matrix is used [30,31].

Rb
n =

⎡⎣cos ψ cos θ − sin ψ sin θ sin φ
− sin ψ cos φ

cos ψ sin θ + sin ψ sin φ cos θ

sin ψ cos θ + cos ψ sin θ sin φ
cos ψ cos φ

sin ψ sin θ − cos ψ sin φ cos θ

− sin θ cos φ
sin φ

cos θ cos φ

⎤⎦ (1)

2.2.2. UWB Positioning Models

The models presented in this study are based on parametric least squares (LS) and the
extended Kalman filter (EKF). These models include trilateration, periodic least squares
(PLS), constant velocity EKF, and periodic EKF (PEKF). These models were validated for
indoor rowing handle tracking in our previous work [24].

Importantly, trilateration gives a single position estimate per epoch that is used as the
input of PLS, constant velocity EKF, and PEKF. Moreover, both the constant velocity EKF
and PEKF are filtered versions of the trilateration model; however, PEKF uses the solution
from PLS as an initialization method.

Trilateration

The WPP receives two UWB ranging measurements at every epoch, one from each
transmitter placed in front of the rower. From the boat setup and geometry shown in
Figure 2a, having two observations and two unknowns gives a unique two-dimensional
solution (x- and z-axis). However, the motion is a three-dimensional movement. Therefore,
a range constraint (constant distance measurement) from the oarlock to the WPP is added
to provide a third observation and obtain a three-dimensional solution.

Each range measurement can be expressed as a function of the known and unknown
positions:

f (x) =
√(

xtx
i − xrx

)2
+

(
ytx

i − yrx
)2

+
(
ztx

i − zrx
)2 (2)

where xtx
i , ytx

i , and ztx
i are the X-, Y-, and Z-coordinates of the transmitter (or oarlock) i,

respectively, and xrx
i , yrx

i , and zrx
i are the unknown coordinates of the WPP.

The geometry of the WPP and the transmitters contributes to the accuracy and preci-
sion of the trilateration solution, and each set of estimated coordinates is unique. Our pre-
vious work showed that the system achieved an accuracy of ±0.21 m in a two-dimensional
frame [24].

Periodic Least Squares (PLS)

PLS is a nonlinear model with a function f (x, t) that describes a periodic wave that
models the handle motion during the rowing stroke. This model is based on the work
of [33–35] and receives the position estimates of trilateration as input. The number of
measurements that represent a stroke cycle varies depending on the stroke rate. A fixed
number is manually selected for the first stroke cycle of each test.
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The function returns a specific waveform for each axis, and it can be represented in
polar coordinates as

f (x, t) = A0 + A1 cos(ωt + φ1) + A2 cos(2ωt + φ2) (3)

where A0 is the direct current (DC) offset, A1 is the first harmonic amplitude, ω is the
angular frequency, t is the time, φ1 is the first harmonic phase angle, A2 is the second
harmonic amplitude, and φ2 is the second harmonic phase angle. Thus, the parameter
vector (x̂) becomes

x̂ = [A0 A1 A2φ1 φ2 ω]T (4)

The Jacobian matrix of (5) forms the design matrix Hk+1 and can be written at time
k+1 as

Hk+1,1 = 1
Hk+1,2 = cos(ωtk + φ1)
Hk+1,3 = cos(2ωtk + φ2)

Hk+1,4 = −A1 sin(ωtk + φ2)
Hk+1,5 = A2 sin(2ωtk + φ2)

Hk+1,6 = −A1tk sin(ωtk + φ1)− 2A2tk sin(2ωtk + φ2)

(5)

This method estimates the position of the handle throughout a full cycle (stroke) indepen-
dently for each axis (i.e., each axis has independent parameter vectors including frequency).

Extended Kalman Filter (EKF) Overview

EKF is an iterative estimation method for nonlinear functions that has been widely
used in navigation. EKF extends the LS estimation with the prediction of the state vector,
commonly known as the dynamic model [34–37]. The Kalman filter loop is shown in
Figure 3.

Figure 3. Discrete Kalman filter flowchart.
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Constant Velocity EKF

The EKF with constant velocity assumes that the object being tracked is moving at a
constant speed. The state vector is formed by two parameters, position (x, y, z) and velocity
(vx, vy, and vz):

x̂k =
[
x y z vx vy vz

]T (6)

In the dynamic model, the state transition matrix Φk+1 shows the relationship between
time and distance to predict the velocity and position of the handle at time k:

Φk+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 Δt 0 0
0 1 0 0 Δt 0
0 0 1 0 0 Δt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

The time between epochs is determined as Δt = tk − tk+1. When the measurement
vector zk+1 is also formed by position and velocity, the design matrix Hk+1 is a 6 × 6
identity matrix.

Periodic EKF (PEKF)

PEKF is an extended version of PLS that includes a prediction in the algorithm.
The filter is initialized with PLS for fast convergence. After the filter is initialized, the
measurements from trilateration are the input.

The state vector x̂ and the design matrix Hk+1 in PEKF are the same as in
Equations (4) and (6), and the transition matrix Φk+1 is a 6 × 6 identity matrix. This
dynamic model is selected because of the assumption that the best prediction is that the
next stroke is similar to the previous stroke. This assumption is vulnerable to changes in
frequency, but the addition of process noise allows the filter to place more weight on the
new set of observations than on the prediction from the previous stroke.

2.2.3. Strapdown Inertial Navigation System (INS)

An INS has three main components: an IMU, a pre-processing unit, and a mecha-
nization module [31]. In strapdown systems, the sensors are rigidly mounted onto the
body of the moving object. This study uses a low-cost micro-electromechanical system
(MEMS) IMU formed by two tri-axial sensors: an accelerometer and a gyroscope. The
mechanization module consists of a series of differential navigation equations that can be
written in the local-level frame as follows [30,31]:⎛⎜⎜⎝

.
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T are the time derivatives of the navigation states: position, velocity,
and attitude [31]. f b and Ωb

ib are the specific force and skew-symmetric matrix of the
angular rate measurements (ωb), respectively. Vl is the velocity vector and gl is the normal
gravity vector.

The mechanization module is initialized with a set of measurements ( f b and ωb) and
an initial alignment using attitude angles. The initial roll and pitch can be calculated using
the accelerometer measurements when the device is at rest, with the following equations:

φ = tan−1

⎛⎝ f b
y√

f b2
x + f b2

z

⎞⎠ (9)
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θ = tan−1

(
− f b

x
f b
z

)
(10)

In this study, the azimuth is defined by the user because the MEMS-grade IMU does not
have the ability to provide an orientation. A step-by-step description of the mechanization
process can be found in [31].

2.2.4. INS Loosely Coupled Integration

Loosely coupled integration is a cascade architecture where an aiding source is used to
estimate sensor biases and errors from the mechanization process by introducing a Kalman
filter [15,17,37,38].

The output of the loosely coupled integration is the corrected inertial navigation
solution (i.e., position, velocity, and attitude) and the estimates of the sensor biases. This
paper uses a closed-loop error-state Kalman filter algorithm. Figure 4 illustrates the loosely
coupled integration process. The Kalman filter state vector can be described as

δx =

⎡⎢⎢⎢⎢⎣
δrn

eb
δVn

eb
δΨn

nb
b f
bω

⎤⎥⎥⎥⎥⎦ (11)

where b f and bω are the accelerometer and gyroscope biases, respectively. It is assumed
that the bias states are modeled as first-order Gauss-Markov processes [31].

Figure 4. Loosely coupled integration flowchart.

The state transition matrix can be written as

Φk+1 =

⎛⎜⎜⎜⎜⎜⎝
I3×3 I3×3Δt 03×3 03×3 03×3

03×3 I3×3 −Ω
(

f̂ n
ib
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b Δt 03×3

03×3 03×3 I3×3 03×3 R̂n
b Δt

03×3 03×3 03×3 I3×3 − βb f
Δt 03×3

03×3 03×3 03×3 03×3 I3×3 − βbω
Δt

⎞⎟⎟⎟⎟⎟⎠ (12)

where βb f
and βbω

are the diagonal matrices of the inverse of the correlation time (τ) for
the sensor biases.
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The measurement vector is the difference between the INS and the aiding source
positions:

zk+1 = rINS − rAiding = δr (14)
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And the design matrix Hk+1 can be defined as follows:

Hk+1 = [I3×3 03×3 03×3 03×3 03×3] (15)

2.2.5. Rowing Dead Reckoning (RDR)

We propose an analogous model to PDR to estimate the kinematics of oar handles that
we call rowing dead reckoning (RDR). The first step of RDR is to identify a finish position
(new stroke).

At the finish position, the magnitude of the acceleration in the accelerometer’s x-axis
is the largest (because the propulsion has ended and the boat is not decelerating). Similarly,
the angular velocity on the gyroscope’s z-axis shows a well-defined peak (since the finish
corresponds to a change in direction of the oar). In Figure 5, the two peaks are highlighted
to show their correlation. This information is used to determine a new stroke and reset the
initial conditions of the mechanization equations to minimize the accumulation of errors.

Figure 5. X accelerometer and Z gyroscope raw data.

At the finish, it is assumed that the rower and oar are momentarily not moving (i.e.,
translating or rotating) in an instantaneous XYZ frame defined for the next stroke that
coincides and aligns with the ENU frame at that instant.

RDR Stroke Detection Algorithm:

1. procedure StrokeDetection (time (t), accelerometer ( f b
ib), gyroscope (ωb

ib))
2. Define threshold for acceleration magnitude, Tf

3. Define threshold for angular velocity, Tw
4. Choose sliding window size, N

5. Calculate mean values at time (t), f b
ib(t) , ωb

ib(t)

6. If { f b
ib(t) > Tf and ωb

ib(t) > Tω and f b
ib(t) > f b

ib(t− 1)} then

7. If { t− (t− 1) < 1s} then

8. continue

9. End if

10. Declare new stroke at time (t)
11. End if

12. End procedure
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The RDR stroke detection algorithm requires one to compute the mean values of
sensor readings to reduce noise and prevent false stroke detections. Additionally, a time
constraint of one-second separations between strokes is applied to prevent false detections.
Then, mechanization equations from strapdown INS are applied. The orientation of the
IMU at the instant that the recovery is detected, set to assumed values.

The next section describes the experimental setup for testing the WPP.

2.2.6. Experiment

A test of the WPP was conducted at the Victoria City Rowing Club (VCRC) using a
Hudson single scull, three Topcon HiPer SR multi-band GNSS receivers, and the proposed
WPP. In Figure 2a,b, the U-blox GNSS receiver in the WPP serves both as an example of a
low-cost wearable GNSS device (using single-frequency pseudo-ranges only) and a source
for the reference trajectory (using dual-frequency carrier-phase observations).

Two of the Topcon receivers are located on the stern and on the bow, and the third
is used as a base station for post-processing with a sampling rate of 10 Hz. The stroke
rate maintained for this experiment was between 18 and 36 strokes per minute, meaning
a maximum frequency of 0.6 Hz, well below the frequency of the sampling frequency of
the reference trajectory. In terms of the UWB radios and the U-blox receiver, the sampling
frequency was 50 Hz and 25 Hz, respectively.

The output of these receivers established the absolute position and orientation of
the rowing shell and the transformation between the navigation and body frame of
the shell. RTKLIB was used to post-process the data in carrier-phase DGNSS to obtain
centimeter-level accuracy.

The carrier-phase DGNSS solution obtained in post-processing was used as the refer-
ence trajectory to evaluate the results obtained from the models presented in this paper.
The expected accuracy from the Topcon receivers for DGNSS was 10 mm +0.8 ppm and
15 mm + 1.0 ppm for the horizontal and vertical axes (1σ), respectively [39]. For the WPP,
the U-blox receiver specified an accuracy of 12 mm +1.2 ppm (1σ) for both the horizontal
and vertical axes, also in carrier-phase DGNSS mode [40].

The UWB transmitters were placed on a customized stand facing the user, and the
WPP was attached to the user’s left wrist and waist.

Testing included rowing in various directions, speeds, stroke rates, and stroke lengths
for approximately 90 min. Figure 6 shows the trajectory of the boat for the 90 min; from
this figure, it is possible to observe that the trajectory was not in straight lines nor in the
same location (i.e., back and forth). The two “small” loops on the eastern side of the lake
were rowed in a clockwise direction, while the “large” loop on the western side of the lake
was rowed in a counterclockwise direction. The speed of the boat and stroke length varied
based on the side of the lake (i.e., water conditions), wind speed, and stroke rate. Figure 7
shows a subset of the test that was used to validate the models presented in this paper.
This window was selected because the trajectory includes a section of rowing at a constant
stroke rate, one section with an increase in rate (higher frequency), and one section with
a decrease in rate (lower frequency). Additionally, the trajectory included a slight turn to
the southwest. Recall that the purpose of this paper is to determine the feasibility of the
WPP to be used as a technique analysis tool by providing information on the position of the
handle based on UWB, GNSS, and INS with various mathematical models. The intention
of this test was to evaluate common rowing patterns in a regular training session.

The next section presents the results obtained from the experimentation using the
models shown in this section.
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Figure 6. Experiment trajectory.

Figure 7. Detailed evaluation window.

3. Results and Discussion

This section presents the results with each positioning model using a 120 s segment of
the data that includes changes in direction, speed, stroke rate, and stroke length.

3.1. UWB Results

The accuracy of the models, ranges (TX00 ± 0.121 m, TX01 ± 0.106 m), and range
constraint (±0.018 m) is evaluated using the GNSS reference trajectory. Figure 8 shows the
position estimates for the X-, Y-, and Z-coordinates, respectively. Figure 8a–c contains the
coordinate at the top and the error with respect to the reference at the bottom. The reference
trajectory is represented with a green line, the trilateration is represented with red dots, the
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EKF with constant velocity is represented with yellow dots, the PEKF is represented with
purple dots, and the time of update is represented with black triangles.

Figure 8. UWB positioning results, (a) X-coordinate, (b) Y-coordinate, (c) Z-coordinate in boat frame.

On the X-coordinate, PEKF reduced the variability of the trilateration solution and
represented the handle position very accurately. The error is observed to be below ±0.20 m.
The results from trilateration also represented the X-axis accurately but with some variance
between estimates. Lastly, EKF with constant velocity overestimated the catch and the
finish and returned the solution with the largest errors.

On the Y-axis, the handle motion shows two waves with different amplitudes at each
stroke. The larger wave corresponds to the catch and the smaller one corresponds to the
finish. PEKF represents both curves accurately. The results from trilateration follow the
handle motion with a larger visible variance. EKF with constant velocity is not able to
fully represent the two curves in the stroke. This is due to the rapid changes in velocities
at the peaks and valleys from each curve. The largest observed errors for this model are
within ±0.20 m, which is an acceptable accuracy in terms of positioning but not enough to
represent the motion of handles for technique analysis.

On the Z-coordinate, the models can estimate a periodic curve; however, the ampli-
tude is overestimated. This was expected as the accuracy of the ranges is approximately
±0.12 m and the amplitude of the motion is approximately 0.2 m. However, PEKF can
be used to estimate the time of the catch, which is valuable for crew coordination and
technique analysis.

PEKF outperformed trilateration and EKF with constant velocity. The output from this
model clearly shows the motion of the handle and estimates the curves from each stroke on
every axis.

3.2. INS Results

The roll and pitch angles used at the finish position are −38.5 deg and −24.9 deg,
respectively. These angles were obtained through testing and manual adjustments.

The azimuth is assumed to be −45 deg; thus, computed angles about the Z-axis are
with respect to an arbitrary start position rather than with respect to the forward axis of
the boat.

The epoch-by-epoch DGNSS reference trajectory was numerically differentiated to
obtain velocity and acceleration. The accuracy of the reference, from the carrier-phase
DGNSS specifications, is an order or magnitude better the inertial solution and not affected
by bias or drift.

Figure 9a shows the resulting acceleration of the oar handle in the instantaneous
inertial XYZ frame. The acceleration is well aligned at the beginning of the test. However,
it begins to drift over time. Some drift was expected due to the sensor biases; however, the
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bias effect on the attitude (Figure 9d) also influences the acceleration, thus affecting the
velocity and position estimates.

Figure 9. INS strapdown results, (a) acceleration, (b) velocity, (c) position, (d) attitude in instanta-
neous inertial boat frame.

Figure 9b shows the estimated velocity. All three axes are affected by the biases,
especially on the Z-coordinate because some of the acceleration on the horizontal plane is
transformed into this axis.

Lastly, Figure 9c shows the estimated position of the handle. The estimates on the
horizontal plane show similar characteristics as the reference trajectory and begin to drift
after some seconds. On the other hand, the effect of the biases and errors greatly influence
the Z-coordinate and none of the expected characteristics are observable.

The results shown above demonstrated that standalone INS is not sufficient to estimate
the position of the handle and requires an aiding method to reduce the effects of the
sensor biases.

3.3. Rowing Dead Reckoning (RDR)

RDR is expected to reduce drift errors as each stroke is analyzed independently.
Figure 10a shows the acceleration and reference trajectory in the instantaneous inertial XYZ
frame. This figure shows that all axes align with the reference trajectory, demonstrating
that RDR can reduce the drift from the sensor biases. This is confirmed on Figure 10d; the
attitude angles are reset at every stroke, reducing the drift.
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Figure 10. INS RDR results, (a) acceleration, (b) velocity, (c) position, (d) attitude in instantaneous
inertial boat frame.

Figure 10b shows the velocity, some drift remains affecting all three axes, especially
the X- and Z-coordinates. RDR constraints the solution and limits the effect of the biases
and errors. However, these biases and errors are not estimated or corrected.

Lastly, the position estimates on Figure 10c show that RDR improves the accuracy of
standalone INS without any additional hardware.

3.4. INS/GNSS Integration Results

This section shows the positioning results of the integrated solution from INS and
standalone GNSS. On Figure 11, the positions from the standalone GNSS are shown in red,
the reference trajectory is in green, and the INS/GNSS solution is in yellow.

First, Figure 11a–c show the position of the handle in ENU. The accuracy in the
horizontal plane is below the meter level, which is excellent for navigation. However, the
vertical plane is at the meter level. The ENU frame does not provide information about
the technique of the rower. Therefore, a transformation into the XYZ frame is needed.
Figure 11d–f show the resulting positions. The X- and Y-coordinates provide an estimation
of the motion of the handle. However, the accuracy is not sufficient to assess technique.
Furthermore, due to the meter-level accuracy of the Z-coordinate, the motion of the handle
cannot be observed. It should be noted that the transformation from the ENU to the XYZ
frame depends on the two reference GNSS receivers attached to the boat, making this
method impractical for a casual user wearing only a GNSS/INS smartwatch, for example.
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Figure 11. INS/GNSS results. Top ENU frame: (a) easting coordinate, (b) northing coordinate, (c) up
coordinate. Bottom boat frame: (d) X-coordinate, (e) Y-coordinate, (f) Z-coordinate.

3.5. INS/UWB Integration Results

Trilateration and PEKF demonstrated to be the best models to represent the motion of
the handle. Therefore, these are the two models used in the integration. This section shows
the results in the XYZ frame. Figure 12 shows the INS/trilateration integration at the top
(a–c) and the INS/PEKF integration at the bottom (d–f).

Both aiding sources greatly improved the INS solution and allowed for an accurate
representation of the motion of the handle in all axes. These figures demonstrate that UWB
can enhance the solution from INS to estimate biases, correct mechanization errors, and
allow for technique analysis. However, this method, similar to INS/GNSS, requires the
boat reference, provided by two additional GNSS receivers, to transform between frames.

Tables 1–4 summarize the errors calculated from each method and navigation frame.
The error is presented as the mean value and its standard deviation, which represents the
accuracy and precision of the solution.

Table 2. Error summary results in boat frame.

3D Outdoor Test Boat Frame Overall (120 s)

Method
X-axis Y-axis Z-axis

Mean Error-Std. (m) Mean Error-Std. (m) Mean Error-Std. (m)

Trilateration UWB 0.023 ± 0.105 −0.015 ± 0.104 0.048 ± 0.222

PEKF UWB 0.022 ± 0.121 −0.020 ± 0.062 0.045 ± 0.129

EKF Const. Vel. UWB −0.028 ± 0.152 0.002 ± 0.118 −0.025 ± 0.189

INS/GNSS −0.250 ± 0.458 −0.060 ± 0.503 1.269 ± 1.207

INS/Trilateration
UWB −0.061 ± 0.101 −0.094 ± 0.127 0.103 ± 0.148

INS/PEKF UWB −0.070 ± 0.117 −0.096 ± 0.106 0.136 ± 0.104
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Table 3. Error summary results in instantaneous boat frame.

3D Outdoor Test Instantaneous Inertial Boat Frame Overall (120 s)

Method
X-axis Y-axis Z-axis

Mean Error-Std. (m) Mean Error-Std. (m) Mean Error-Std. (m)

INS/RDR 0.172 ± 1.236 −0.583 ± 0.695 0.892 ± 0.856

Table 4. Error summary results in ENU frame.

3D Outdoor Test ENU Frame Overall (120 s)

Method
Easting Northing Up

Mean Error-Std. (m) Mean Error-Std. (m) Mean Error-Std. (m)

INS/GNSS −0.077 ± 0.496 0.131 ± 0.433 1.325 ± 1.207

INS/Trilateration
UWB 0.088 ± 0.129 0.077 ± 0.091 0.103 ± 0.148

INS/PEKF UWB 0.089 ± 0.105 0.086 ± 0.111 0.136 ± 0.104

 

Figure 12. INS/UWB results for boat frame. Top INS/trilateration: (a) X-coordinate, (b) Y-coordinate,
(c) Z-coordinate. Bottom INS/PEKF: (d) X-coordinate, (e) Y-coordinate, (f) Z-coordinate.

4. Conclusions

The WPP demonstrated to be a feasible option for rowing technique analyses because
it was able to provide position, velocity, and attitude when INS was integrated with UWB
or GNSS. Thus, providing a full understanding of the oar/wrist movement.

UWB trilateration, PEKF, and EKF with constant velocity had total accuracies in the
boat frame of ±0.267 m, ±0.187 m, and ±0.270 m, respectively, demonstrating that PEKF
was the most accurate UWB standalone positioning method. The integrated methods,
INS/GNSS, INS/trilateration UWB, and INS/PEKF UWB obtained accuracies of ±1.386 m,
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±0.219 m, and ±0.189 m, respectively, in the boat frame, highlighting that an integrated
method provides similar accuracy than standalone UWB with the additional information
of velocity and attitude from INS.

In the instantaneous inertial boat frame, integrating INS with RDR had a total ac-
curacy of ±1.656 m. This method was demonstrated to have reduced the effects of sen-
sor biases and reduced accumulated errors. However, it was the least accurate of the
integrated methods.

Lastly, in the ENU frame, the integrated methods INS/GNSS, INS/trilateration UWB,
and INS/PEKF UWB resulted in accuracies of ±1.375 m, ±0.216 m, and ±0.185 m, respec-
tively, showing that the accuracy of the positioning methods was maintained between
navigation frames and that it was possible to obtain the position of the moving boat.
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Abstract: Recognizing human activities from motion data is a complex task in computer
vision, involving the recognition of human behaviors from sequences of 3D motion data.
These activities encompass successive body part movements, interactions with objects, or
group dynamics. Camera-based recognition methods are cost-effective and perform well
under controlled conditions but face challenges in real-world scenarios due to factors such
as viewpoint changes, illumination variations, and occlusion. The latter is the most signifi-
cant challenge in real-world recognition; partial occlusion impacts recognition accuracy to
varying degrees depending on the activity and the occluded body parts while complete
occlusion can render activity recognition impossible. In this paper, we propose a novel
approach for human activity recognition in the presence of partial occlusion, which may be
applied in cases wherein up to two body parts are occluded. The proposed approach works
under the assumptions that (a) human motion is modeled using a set of 3D skeletal joints,
and (b) the same body parts remain occluded throughout the whole activity. Contrary to
previous research, in this work, we address this problem using a Generative Adversarial
Network (GAN). Specifically, we train a Convolutional Recurrent Neural Network (CRNN),
whose goal is to serve as the generator of the GAN. Its aim is to complete the missing
parts of the skeleton due to occlusion. Specifically, the input to this CRNN consists of raw
3D skeleton joint positions, upon the removal of joints corresponding to occluded parts.
The output of the CRNN is a reconstructed skeleton. For the discriminator of the GAN,
we use a simple long short-term memory (LSTM) network. We evaluate the proposed
approach using publicly available datasets in a series of occlusion scenarios. We demon-
strate that in all scenarios, the occlusion of certain body parts causes a significant decline in
performance, although in some cases, the reconstruction process leads to almost perfect
recognition. Nonetheless, in almost every circumstance, the herein proposed approach
exhibits superior performance compared to previous works, which varies between 2.2%
and 37.5%, depending on the dataset used and the occlusion case.

Keywords: human activity recognition; occlusion; reconstruction of skeleton joints;
generative adversarial networks; convolutional neural networks

1. Introduction

Without a doubt, the task of identifying human activities from motion data stands
as one of the most challenging tasks in the broad research field of computer vision. This
task can be described as the process of recognizing human behavior within a sequence of
images or videos, using visual data, obtained from the motion of the human subjects in the
3D space. These behaviors include a series of successive body part movements, commonly

Sensors 2025, 25, 1567 https://doi.org/10.3390/s25051567
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known as “actions” or activities. Specifically, an action may be defined as a unique type of
motion carried out by a human, usually of short duration [1]. Actions are not instantaneous
and often involve several body parts. This category also comprises interactions, either
between humans and objects or among multiple individuals involved in group activities.
It should be noted that in the context of this paper, (a) the term “activity” would be used
to collectively refer to all the aforementioned categories; (b) gestures, which are short and
typically involve only a few body parts will not be considered; and (c) experiments will be
based on segmented sequences, each containing exactly a single action to be recognized.

Camera-based Human Activity Recognition (HAR) methods are generally cost-
effective since they could rely on low-cost off-the-shelf hardware, while they exhibit
remarkable performance under laboratory settings. However, their performance tends
to degrade in real-world scenarios due to three primary factors, i.e., changes in view-
point/illumination, and occlusion. Variations in viewpoint may occur, for instance, when
the subject is observed from different angles than the one(s) used during training. To
address this, in previous work [2], it has been experimentally proven that the accuracy drop
due to viewpoint changes may be mitigated by employing multiple cameras. Moreover,
changes in illumination, and especially those leading to low-light conditions, predomi-
nantly affect video-based methods. Nevertheless, recent technological advances have led
to the development of camera sensors capable of capturing depth information (which is
unaffected by changes in illumination), thereby significantly improving performance under
low-light conditions. In such cases, combining video and depth data can facilitate robust
extraction of human silhouettes, for instance, as a 3D point set [3].

Therefore, occlusion remains the most significant challenge among the three issues
discussed previously. In real-world conditions, it is typically caused by furniture [4], other
people present [5], or even by the same subject (i.e., self-occlusion) [6], while complete
occlusion of some body parts renders activity recognition impossible. Partial occlusion,
however, can still affect the accuracy of recognition to some point, which varies, depending
on the activity and the body part(s) affected [7]. In previous work [8], this problem has
been addressed by treating it as a regression task solved using a deep neural network. This
network was trained so as to reconstruct the missing skeleton joints, therefore providing
a “complete” skeleton. Specifically, we used the 3D positions of skeleton joints upon
removing those that were assumed to “be occluded”, per case. The skeleton that occurred
upon reconstruction was used to classify it into one of the predefined activities. To the best
of our knowledge, this work was the first to treat the occlusion of moving body parts (i.e.,
subsets of skeleton joints) as a regression task. It has been demonstrated that the regression
of missing joints could significantly improve the accuracy of classification. Particularly,
it has been shown that a significant improvement of classification performance may be
achieved by using the artificially reconstructed skeleton samples, rather than those affected
by occlusion. This has been observed for any occlusion case and for almost any activity.

The novelty of this work is the reconstruction of the occluded data by treating this
problem as a Generative Adversarial Network (GAN) task. Specifically, a GAN methodol-
ogy is employed and various cases of partial occlusion are examined, i.e., occlusion of (a)
an arm; (b) a leg; (c) both arms; (d) both legs; and (e) an arm and a leg on the same side. A
Convolutional Recurrent Neural Network (CRNN) is trained to serve as the generator of
the GAN, with the aim of producing a full skeleton by completing the missing parts. The
input to this CRNN consists of raw 3D skeleton joint positions, but joints corresponding to
the occluded parts have been removed. The output of the CRNN is a reconstructed skeleton,
which is then fed into a long short-term memory (LSTM) network for classification into
one of the predefined activities. For the discriminator, a simple long short-term memory
(LSTM) network is used. Note that a separate network per occlusion case is trained and
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the effectiveness of the presented approach is evaluated by using four publicly available
human activity recognition datasets and compared to a rigorous evaluation protocol, pro-
posed in previous work [8]. As far as we know, the presented study is the first to address
the occlusion of moving body parts (i.e., specific subsets of skeleton joints) within the
framework of a GAN-based approach.

The rest of this paper is organized as follows: In Section 2, research works that deal
with the effect of occlusion in HAR-related scenarios are presented. Then, in Section 3, the
proposed reconstruction methodology is presented. Experimental results are presented in
Section 3.5 and discussed in Section 5, wherein plans for future work are also presented.
Finally, conclusions are drawn in Section 6.

2. Related Work

As previously noted, Human Activity Recognition (HAR) is among the most challeng-
ing research areas in computer vision, leading to a significant amount of research in this
field in recent years [1]. Most of these works are based on 2D representations of skeletal
motion [9–14]. Although it is both widely acknowledged and intuitive that occlusion
significantly compromises the performance of HAR approaches [15], there exist only a few
studies that specifically examine its impact on HAR performance or propose methods to
mitigate it. In previous work [7], we have studied the effect of occlusion in 3D skeleton
data. Specifically, it was simulated by removing body parts during the whole duration of
the activity, and experimentally it was proved that the removal of one or both arms led
to a significant drop of performance, in case of activities that are typically expressed by
arm motion.

Several research works have dealt with occlusion. Specifically, Angelini et al. [16]
generated synthetic partially occluded skeletons upon manually removing specific joints,
per case, and showed that an increase to the recognition performance could be achieved
by incorporating such occluded samples within the training procedure. Similarly, Iosifidis
et al. [15] utilized a multi-camera configuration, encircling the subject, and simulated
occlusion using the assumption that not all cameras can concurrently record skeleton
motion. Moreover, recognition was based on fusion using solely cameras that remained
“unaffected” by any case of occlusion. Moreover, Li et al. [17] used a bag of 3D points
to depict poses and simulated occlusion by rejecting 3D points located in areas deemed
to be affected by occlusion. Kim et al. [18] addressed the challenge of skeleton-based
action recognition in occlusion scenarios by leveraging an occluded part detector and
optimal joint group selection based on skeletal symmetry and angular information. In
a similar manner, Chen et al. [19] introduced a Part-aware and Dual-inhibition Graph
Convolutional Network (PDGCN) alongside a novel Dual Inhibition Training strategy
aimed at enhancing skeleton-based action recognition in conditions of occlusion and noise.
This is achieved by incorporating modules designed for occlusion simulation, global and
local representation learning, and the gradual fusion of features. Gu et al. [20] generated
occlusion masks, which were then utilized in both training and evaluation. In that case, a
regression network was employed to reconstruct the missing skeleton parts. A single-pose
embedding network was pre-trained in the work of Yang et al. [21]. The network’s goal was
to learn occlusion-robust representations of pose sequences. The authors used an encoder
to create the pose embeddings, and also a contrastive module to render this space occlusion
invariant. Ma et al [22] also worked on the problem of human pose transfer by using a
Flow-based Dual Attention (FDA) GAN, addressing occlusion and deformation in feature
fusion for pose generation. Their model incorporated deformable local attention and
flow similarity attention, so as to handle spatial correlations. Hernandez Ruiz et al. [23]
proposed a bidirectional GAN framework, namely “GAN-poser”, for human motion
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prediction, able to handle occlusion, by learning to fill missing body parts with “plausible”
motion patterns. Specifically, they enhanced the traditional GAN framework by including
both forward and backward pathways, allowing better modeling of sequence dependencies
and improving prediction quality. Moreover, Lee et al [24] proposed a Denoising Graph
Autoencoder (DGAE) model to address the issue of missing joints in skeleton-based human
action recognition (HAR) caused by occlusion and invisibility. By reconstructing missing
joint coordinates with minimal error, the proposed model enhances the performance of
HAR through the use of a masking Laplacian matrix to adjust feature weights and a
Laplacian matrix in the decoder for reconstruction.

On the other hand, GANs have been widely used in several sensor-based HAR tasks.
Irsch et al. [25] analyzed unlabeled data from wearable sensors to address data scarcity.
Similarly, Li et al. [26] used GANs for sensor data augmentation. Abedin et al. [27] explored
adversarial knowledge transfer for sequential sensor data. Rahman et al. [28] addressed
kinematic inconsistencies in synthetic data using physics-aware models to enhance realism.
Soleimani et al. [29] used GANs for cross-subject transfer learning and Jimale et al. [30]
used GANs to produce synthetic data that are able to more accurately represent real data.
Further, Qu et al. [31] compared the effects of GAN-generated synthetic spectrograms
on classification accuracy. Wang et al. [32] explored a generative adversarial framework
for sensor data generation, and Gammulle et al. [33] discussed a multi-level sequence
GAN model for recognizing group activities by learning intermediate representations.
Erol et al. [34] explored the use of GANs for augmenting radar-based data, improving
the accuracy and robustness of HAR systems. Zadeh et al. [35] employed GANs to
generate additional training data, while Wang et al. [36] leveraged GANs to combine
information from multiple sensor data streams. Hasan et al. [37] introduced an innovative
framework for gait recognition that tackles occlusion issues. This approach integrates
an Occlusion Detection and Reconstruction (ODR) component based on 3D generative
adversarial networks, along with a Feature Extraction for Gait Recognition (FEGR) module
that employs both 3D and 2D CNNs to capture partwise and complete body features. Xu
et al. [38] developed a technique named ActFormer, which is a GAN-based Transformer
architecture designed for generating 3D human motion conditioned on actions, capable of
managing both individual and multi-person interactive actions.

In the case of activity recognition using visual motion data, GANs are typically ap-
plied so as to generate realistic synthetic data to augment training datasets and/or enhance
motion data quality, thereby improving the robustness and accuracy of activity recognition
models in real-life scenarios. Various studies that are based on the use of 3D skeletal
motion data have demonstrated the significant impact of GANs on HAR through data
augmentation, transfer learning, and synthetic data generation. Fukushi et al. [39] pro-
posed a few-shot generative model for skeleton-based human actions that leverages large
source datasets to augment limited target domain samples using cross-domain and entropy
regularization losses. Song et al. [40] addressed the challenge of recognizing human ac-
tions from noisy skeleton data by proposing a noise adaptation scheme based on GANs
to handle noisy skeletons. Specifically, their model adapts features from noisy skeletons
to a low-noise space using adversarial learning. Zalapeda et al. [41] proposed the use
of synthetic data to augment the training dataset. They employed a GAN architecture
to generate synthetic skeleton data and investigated the effect of different proportions of
synthetic data in the training set. Degardin et al. [42] introduced Kinetic-GAN, i.e., an
architecture combining GANs and Graph Convolutional Networks (GCNs) to generate
realistic human body kinetics while maintaining spatial and temporal coherence. Avola
et al. [43] proposed an approach for data augmentation, wherein Continuous Recurrent
Neural Networks with GANs (C-RNN-GANs) were used to generate suitable synthetic
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action sequences to ensure robustness in cases such as incorrect skeleton extraction, per-
spective changes, and partial body occlusions. Shen et al. [44] addressed the challenge of
limited training data in skeleton-based recognition and proposed an architecture which
automatically approximates the distribution of input data and generates synthetic data,
namely Imaginative GAN (Im-GAN), able to generate realistic and diverse synthetic data.
Moreover, Pan et al. [45] presented a view normalization-based recognition framework to
address viewpoint variance. They proposed an architecture, namely VN-GAN, wherein the
generator estimates transformation parameters, applying them to normalize the viewpoint
of input skeleton sequences. Liu et al. [46] proposed a generative network to generate
high-quality human action data using motion style transfer and active learning. Finally, Li
et al. [47] used manually defined occlusion areas, transforming a skeleton into a feature
matrix. An attention model was integrated into a GAN to complete missing data of the
aforementioned feature matrix.

Despite significant progress in HAR, several limitations persist, particularly regarding
the challenge of occlusion. While the impact of occlusion on HAR performance is well-
known, only a few studies have specifically addressed this issue, often relying on simplified
scenarios where occlusion is simulated by manually removing specific joints or body
parts. Such approaches may not fully capture the complexity of real-world occlusions.
Additionally, methods like those proposed by Iosifidis et al. [15] depend on multi-camera
configurations, which, while effective, are impractical for many real-world applications due
to their cost and setup requirements. Moreover, many models are evaluated on controlled
datasets with predefined occlusion conditions, limiting their generalizability to diverse
or dynamic real-world environments. Reconstruction-based methods, such as those by
Gu et al. [20] and Hernandez Ruiz et al. [23], have shown promise, but reconstructed
joints often fail to accurately replicate real motion patterns, potentially affecting recognition
performance. Advanced architectures like FDA-GAN and Denoising Graph Autoencoders
(DGAEs) address occlusion with high computational demands, which can hinder real-time
deployment. Furthermore, reliance on synthetic data or simulations, as seen in works like
those by Yang et al. [21] and Chen et al. [19], raises concerns about their applicability
in real-world scenarios. Addressing these limitations, the proposed approach focuses on
developing a more robust, efficient, and generalizable approach to tackle occlusion in HAR.

3. Materials and Methods

3.1. Skeletal Data and Occlusion
3.1.1. Occlusion of Skeletal Data

Similarly to previous research efforts [2,48–53], the herein presented approach is also
based on 3D trajectories of human skeletons that have been captured using the Kinect
v1/v2 camera, comprising 20 or 25 joints, respectively. In Figure 1 a skeleton extracted
using Kinect v1 and v2, with joints grouped to form distinct body parts, is presented.

As already mentioned in Section 1, partial occlusion may compromise the performance
of HAR in real-life scenarios. Within the context of several applications, such as ambient
assisted environments, AR environments, etc., occlusion typically occurs due to, e.g.,
activities taking place behind furniture, or due to the presence of more than one person in
the same room. Of course, it should be obvious that the effects of occlusion vary depending
on the activity performed. For example, the occlusion of both legs when the subject
performs the action “kicking” results in a significant loss of visual information, which in
turn may result to failure of recognition, while the occlusion of both arms is not expected
to compromise recognition for this activity. Although the aforementioned example is quite
extreme, it is common sense that partial occlusion may hinder the overall effectiveness of
HAR approaches.
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Figure 1. A human body pose with the 20 and 25 skeletal joints that are extracted using the Microsoft
Kinect v1 (left) and v2 (right) cameras. Joints have been divided into subsets, each corresponding to
one of the five main body parts, i.e., torso (blue), left hand (green), right hand (red), left leg (orange),
and right leg (magenta). For illustrative purposes and also to facilitate comparisons between the
two different versions, body parts have been colored using the same colors. Numbering follows the
Kinect SDK in both cases; therefore, there exist several differences between the two versions.

3.1.2. Datasets

We are not aware of any publicly available datasets that contain real 3D occluded
actions. To address this and in order to evaluate the proposed methodology, structured sub-
sets of skeletal joints forming body parts (e.g., arms and legs) have been manually excluded
from four publicly available datasets that provide 3D skeletal information. Specifically,
these datasets are summarized in Table 1 and may be briefly described as follows:

• The PKU-MMD dataset [54] is a publicly available and open-source benchmark for 3D
human motion-based activity recognition. From this dataset, we opted for 11 actions
that are tightly related to activities of daily living (ADLs) [51,55], i.e., eating, falling,
handshaking, hugging, making a phone call, playing with a phone or tablet, read-
ing, sitting down, standing up, typing on a keyboard, and wearing a jacket, which
correspond to 21,456 data samples.

• The NTU-RGB+D dataset [56] is also a large-scale benchmark for 3D human activity
analysis. From this dataset, we opted for a subset consisting of medical conditions,
which includes 12 classes and 11,400 samples, i.e., sneezing/coughing, staggering,
falling, headache, chest pain, back pain, neck pain, nausea/vomiting, fanning oneself,
yawning, stretching, and blowing one’s nose.

• SYSU 3D Human–Object Interaction (HOI) [57] is a dataset that focuses on 3D hu-
man motion-based interactions between people and objects. It contains 480 activity
samples from 12 different activities, i.e., drinking, pouring, calling a phone, playing
with a phone, wearing backpacks, packing backpacks, sitting on a chair, moving a
chair, taking out a wallet, taking from a wallet, mopping, and sweeping. Within the
aforementioned activities, 40 subjects and one of the following objects per case were
involved: phone, chair, bag, wallet, mop, and besom. Each activity has 40 samples.

• The UTKinect-Action3D dataset [58] includes 10 different activities that were per-
formed by 10 different subjects, i.e., walking, sitting down, standing up, picking up,
carrying, throwing, pushing, pulling, waving hands, and clapping hands. Each activity
was performed twice by each subject, resulting in a total of 200 activity instances.

From the aforementioned datasets, we only used 3D skeleton motion data and disre-
garded other modalities. Also, PKU-MMD and NTU-RGB were recorded using Microsoft
Kinect v2 under three camera viewpoints, while SYSU-3D-HOI and UTKinect-Action3D
were recorded using Microsoft Kinect v1 under a single camera viewpoint.
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Table 1. Summary of datasets for human activity recognition (HAR) that have been used for the
experimental evaluation of this work.

Name Activities Participants Examples Types of Activities

PKU-MMD [54] 51 66 ∼20,000 Daily, sports, and health-
related activities

NTU RGB+D [56] 60 40 ∼56,000 Daily, interactive, and
health-related actions

SYSU-3D-HOI [57] 12 40 480 Human–Object Interac-
tions

UTKinect-Action-3D [58] 10 10 200 Interactive and gesture-
based actions

It should be noted that most public motion-based datasets, such as the ones herein
used for evaluation purposes, have been created under ideal laboratory conditions, and
thus occlusion is prevented. Since the creation of a large-scale dataset is a time-consuming
task, it was decided to follow an approach such as the one of [7,8,20], i.e., subsets of joints
that correspond to body parts will be manually discarded, assuming that these parts remain
occluded during the whole duration of each activity (see Figure 1). Moreover, and for the
sake of explanation, two visual examples of activities with/without occlusion are illustrated
in Figure 2, where the loss of visual information is easily comprehensible. Specifically,
an example of a successfully reconstructed skeleton, which leads to correct classification,
and another example of an unsuccessfully reconstructed skeleton, which leads to incorrect
classification, are both therein illustrated.

(a) (b)
Figure 2. Example skeleton sequences of the activities (a) handshaking and (b) hugging other person from
the PKU-MMD dataset, captured by Microsoft Kinect v2. First row: original skeletons, including all
25 joints (i.e., without any occlusion); second row: joints corresponding to (a) left arm; (b) both arms
(see Figure 1) have been discarded (i.e., the skeleton is partially occluded); third row: skeletons have
been reconstructed using the proposed deep regression approach. The example of (a) is successfully
reconstructed and correctly classified, while the example of (b) is unsuccessfully reconstructed and
incorrectly classified.

3.2. Generative Adversarial Networks

A generative adversarial network (GAN) [59] is a framework for machine learning,
mainly used in generative AI [60]. In brief, it consists of two neural networks that take
part in a game. Within this game, the gain of one network leads to a loss of the other.
The one network is the generator, while the other is the discriminator. The GAN aims
to learn how to generate “new” examples which follow the same statistics as those that
have been used for training. For example, in the presented approach, a GAN trained
on skeleton sequences shall be used; the goal of its generator will be to generate new
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skeleton sequences that will be “realistic” compared to the real ones that have been used
for training. This is achieved based on training through feedback by the discriminator,
which is able to discriminate between “realistic” and “non-realistic” images. Both generator
and discriminator are dynamically updated, i.e., they are trained in a way that the the
former learns to “fool” the latter. Specifically, a given sample that is generated by the
generator should be mapped to a specific distribution; each of them should be recognized
as belonging to the true distribution or not by the discriminator.

3.2.1. Generator

The generator is formulated as a regression task, i.e., the one presented in [8]. Specif-
ically, let X denote the original skeleton sequence and Xo the sequence resulting from
occlusion. The aim of regression, i.e., of the generator, is to estimate a set of parameters β of
a given function f , so that X = f (Xo, β) + ε, where ε is some error value, can be minimized.
The Convolutional Recurrent Neural Network (CRNN) model of previous work [8] is em-
ployed as the generator model for the GAN framework to achieve the objective. Therefore,
the purpose of this model is to execute f and learn β (i.e., its weights) in order to reduce
ε. When given an occluded skeleton sequence Xo, the network generates a reconstructed
skeleton sequence Xr, which is an approximation of X, by filling in the missing (occluded)
data (joints). Also, in this case, the CRNN includes an LSTM whose goal is to capture
temporal information of skeletal data. Figures 3 and 4 illustrate the architectures of the
CRNN and the LSTM networks, respectively.
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Figure 3. The architecture of the generator of the proposed GAN.
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Figure 4. The architecture of the discriminator of the proposed GAN architecture.
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3.2.2. Discriminator

The discriminator uses as input a generated image and a real image and reshapes
them according to the timeframes that have been set. Its architecture is quite simple: it
first feeds the aforementioned images into an LSTM layer, followed by two dense layers,
the first comprising 256 neurons and the last solely 1 neuron that produces a binary result,
i.e., to determine whether the image is real or not. The discriminator loss is a sigmoid
cross-entropy loss of the real and generated images. The architecture of the discriminator is
illustrated in Figure 4.

3.3. Classification

An occluded activity sample (i.e., a sample with missing body parts resulting from
occlusion) is fed as input to the trained CRNN network, whose role is to reconstruct the
missing skeletal data. For the sake of explanation, two visual examples of an activity
before and after reconstruction are shown in Figure 2. Upon reconstruction, the proposed
approach proceeds with the classification of this sample into one of the predefined activities.
For classification, a LSTM network with 1 layer is used. It should be herein emphasized that
the CRNN network is trained using only full skeletal data X, i.e., not affected by occlusion of
any body part(s). Conversely, during evaluation, the input to the LSTM network consists of
the corresponding skeletal sequences Xr, which have been reconstructed from X. A visual
overview of the proposed approach is illustrated in Figure 5.

Figure 5. A visual overview of the proposed approach.

To assess the performance of the herein proposed skeleton reconstruction approach, a
classifier to measure the accuracy of the model is used. The architecture of the classifier is
illustrated in Figure 6. Specifically, in case wherein three different camera viewpoints are
used, the input from all cameras are combined into one, reshaped to fit the predetermined
timeframes, and then fed into an LSTM layer. Following this step, two dense layers are
used, the first comprising 256 neurons and the last comprising 1 neuron that produces a
result which is an indication of the user’s activity (see Figure 6). For datasets with a single
camera viewpoint, the same network is used, hence with only one input (see Figure 7).
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Figure 6. The architecture of the classifier of the proposed approach for the three-camera case.
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Figure 7. The architecture of the classifier of the proposed approach for the one-camera case.

3.4. The GAN Objective

In this work, the objective of the Pix2Pix GAN framework [61] is adopted. Specifically,
the objective LcGAN of a conditional Generative Adversarial Network (GAN) is described
by the following:

LcGAN(G, D) = Ex,y[log D(x, y)] +Ex,z[log(1− D(x, G(x, z)))] . (1)

Previous approaches have suggested combining the GAN objective with a more
traditional loss, such as the L1 distance; in that case, it should be “close” to the real output:

LL1(G) = Ex,y,z[‖y− G(x, z)‖1] (2)
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Thus, upon combination, the final objective is

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G) (3)

3.5. Experiments
3.5.1. Experimental Setup and Network Training

Experiments were conducted on a personal workstation with an Intel™i7 4770 4-core
processor running at 3.40 GHz and 32GB RAM, using an NVIDIA™Geforce RTX 3070 GPU
with 8 GB VRAM and Ubuntu 20.04 (64 bit). The deep architecture was implemented in
Python using Keras 2.4.3 [62] with the Tensorflow 2.5 [63] backend. All data pre-processing
and processing steps were implemented in Python 3.9 using NumPy and SciPy. For the
training of the generator, the LeakyReLU activation function was used, except for the LSTM
layer where the tanh function was used, and the last dense layer where the linear activation
function was used. For the training of the classifier, the LeakyReLU and tanh activation
functions were used, respectively, except for the last layer, where the sigmoid activation
function was used. The batch size was set to 5 and 10 for the training of the classifier and
the GAN, respectively. The Adam optimizer was utilized in both cases, the dropout was
configured to 0.25, the learning rate to 0.001, and the training was conducted for 200 epochs,
using the loss of the validation set calculated via MSE as an early stopping method to
prevent overfitting. In all cases, 80% of the available activity samples was used for training,
10% for validation, and the remaining 10% for evaluation.

As in previous work [8], the herein presented approach takes temporal sequences of
3D skeleton data as input, while interpolation is applied to set the duration of all activity
samples equal to Tm, which is the size of the sample of max duration. Note that experiments
consider both single- and multi-view datasets. In the latter case, all available views are
utilized by feeding the network with all three skeleton sequences. It is also assumed that
occlusion affects the same body part(s), in every view, and within the whole duration of
the activity. The presented approach is based on the idea that since occlusion leads to
missing body parts (i.e., in this case some of the skeleton joints have been discarded, so
the respective coordinates are missing), the problem of “reconstructing” the respective
values of missing body parts could be devised as a generative adversarial network (GAN)
task. Again, as in [8], one network per occlusion case is trained, resulting in eight different
networks. Thus, by giving a sequence of skeletal data as input, while some action is being
performed, the missing skeletal joints are initially identified and then fed to the appropriate
trained network, based on the corresponding occlusion case. Then, using this network, it is
classified into an activity class. Note that even though the proposed approach requires more
memory to store all the aforementioned networks, this is compensated by the significant
increase in performance compared to the use of a single network. It should be emphasized
that all the classifiers are trained exclusively using samples not affected by occlusion.

At this stage, a sample with missing skeletal joints due to occlusion can be used
as input into the trained generator, which then reconstructs the missing skeletal data.
An example of this activity before and after reconstruction is shown in Figure 2. After
reconstruction, the data can be classified into one of the pre-defined classes using the
classifier. During the testing phase, the input of the classifier is a reconstructed skeletal
sequence Xr.

3.5.2. Evaluation Protocol

To experimentally evaluate the proposed methodology, the following series of experi-
ments is considered:
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i. Removal of structured sets of skeletal joints, corresponding to body parts, to simulate
occlusion (see Figure 1). Specifically, as already mentioned, cases of part removal
include (a) left arm; (b) right arm; (c) both arms; (d) left leg; (e) right leg; (f) both legs;
(g) left arm and left leg; (h) right arm and right leg. We used an LSTM network that
had been trained using exclusively samples that were not affected by occlusion, and
also the skeletons were reconstructed using a GAN;

ii. A “baseline” approach, where both training and evaluation of the LSTM took place
using exclusively samples not affected by occlusion;

iii. A “reference” approach where training of the LSTM took place using exclusively
samples not affected by occlusion, but was evaluated using occluded samples;

iv. An approach wherein samples affected by occlusion were included in the training
process of the LSTM, while validation was performed exclusively using occluded
samples. Here, a subset equal to 10% of the non-occluded samples of the training set
was selected. From these samples, all eight cases of occlusion have been generated,
thus “augmenting” the initial training data by 80%. Note that a single network was
used for all eight cases of occlusion.

Note that in this study, we strictly adhere to the predefined evaluation protocols
associated with each dataset, which dictate a single training and testing procedure on fixed
splits, so as to ensure comparability of results.

4. Results

Experimental results for all datasets are depicted in Tables 2–5, while most extensive
results, per class and per occlusion case, are depicted in the Appendix and specifically
in Tables A1–4. The following metrics have been extracted: accuracy per class, and F1-
score per class and weighted accuracy, where class weights were calculated based on the
class distribution. Moreover, confusion matrices for all datasets in the case of the baseline
experiment are depicted in Figure 8. Note that in Tables 2–5 and in Figure 9, confidence
intervals of the proposed approach are presented and compared to the best results reported
in previous works. Furthermore, the case of the classification of reconstructed samples
is depicted in Figures 10–13. We also performed comparisons using the aforementioned
protocol with two previous works. Specifically, in [64], a data augmentation approach was
presented, wherein a CNN was trained with the addition of artificially occluded samples
in the training set, while in [8], a deep regression approach for skeleton reconstruction was
presented. Note that although the same evaluation protocol and the same datasets are used
as in these works, the herein presented work formulates the problem of reconstruction as a
GAN task, and is hence based on a novel GAN architecture.

(a) PKU-MMD. (b) NTU-RGB+D. (c) SYSU-3D-HOI. (d) UTKinect-Action-3D.

Figure 8. Normalized confusion matrices for classification for all datasets, without removing any
body part.
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(a) PKU-MMD. (b) NTU-RGB+D.

(c) UT-Kinect-Action-3D. (d) SYSU-3D-HOI.

Figure 9. Confidence intervals using the proposed approach on all datasets, compared with the best
weighted accuracies reported in previous works. In case of the proposed approach, red dot denotes
the upper bound of the confidence interval, i.e., the best weighted accuracy achieved.

Table 2. Results on PKU-MMD dataset. “Bas.”/“Gans”/“Reg.”/“Occ.”/“Ref.” denote base-
line/Generative adversarial networks/ Regression/training with occluded samples/reference case.
“None” denotes the case without occlusion. LA, RA, LL, RL denote the occlusion of left arm, right
arm, left leg, right leg, respectively. Numbers denote Weighted Accuracy, numbers in bold indicate
best performance between “Rec.”/“Occ.”/“Ref.”. In case of Gans, by “max” and “min” we denote
the upper and the lower bounds of the confidence interval.

None LA RA LA+RA LL RL LL+RL LA+LL RA+RL

Gans -
max 0.86 0.87 0.78 0.93 0.93 0.93 0.86 0.89

min 0.83 0.85 0.75 0.91 0.92 0.91 0.84 0.87

Reg. - 0.82 0.84 0.70 0.89 0.90 0.91 0.84 0.86

Occ. - 0.78 0.65 0.83 0.80 0.87 0.84 0.87 0.80

Ref. - 0.68 0.40 0.21 0.90 0.80 0.80 0.48 0.41

Bas. 0.92 - - - - - - - - -
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Table 3. Results on NTU-RGB+D dataset. “Bas.”/“Gan”/“Reg.”/“Occ.”/“Ref.” denote base-
line/Generative adversarial networks/ Regression/training with occluded samples/reference case.
“None” denotes the case without occlusion. LA, RA, LL, RL denote the occlusion of left arm, right
arm, left leg, right leg, respectively. Numbers denote Weighted Accuracy, numbers in bold indicate
best performance between “Rec.”/“Occ.”/“Ref.”. In case of Gans, by “max” and “min” we denote
the upper and the lower bounds of the confidence interval.

None LA RA LA+RA LL RL LL+RL LA+LL RA+RL

Gans -
max 0.64 0.50 0.35 0.68 0.71 0.70 0.64 0.49

min 0.61 0.47 0.33 0.65 0.68 0.67 0.61 0.47

Reg. - 0.57 0.53 0.55 0.59 0.57 0.62 0.58 0.59

Occ. - 0.53 0.49 0.52 0.52 0.51 0.53 0.56 0.53

Ref. - 0.59 0.27 0.16 0.44 0.41 0.33 0.40 0.25

Bas. 0.68 - - - - - - - - -

Table 4. Results on UTKinect-Action3D dataset. “Bas.”/“Gan”/“Reg.”/“Occ.”/“Ref.” denote
baseline/Generative adversarial networks/Regression/training with occluded samples/reference
case. “None” denotes the case without occlusion. LA, RA, LL, RL denote the occlusion of left arm,
right arm, left leg, right leg, respectively. Numbers denote Weighted Accuracy, numbers in bold
indicate best performance between “Rec.”/“Occ.”/“Ref.”. In case of Gans, by “max” and “min” we
denote the upper and the lower bounds of the confidence interval.

None LA RA LA+RA LL RL LL+RL LA+LL RA+RL

Gans -
max 0.60 0.60 0.55 0.75 0.70 0.80 0.55 0.70

min 0.55 0.56 0.50 0.72 0.64 0.74 0.51 0.66

Reg. - 0.50 0.57 0.40 0.67 0.61 0.64 0.51 0.57

Occ. - 0.42 0.33 0.54 0.52 0.62 0.44 0.64 0.44

Ref. - 0.16 0.15 0.09 0.50 0.61 0.46 0.22 0.11

Bas. 0.79 - - - - - - - - -

Table 5. Results on SYSU-3D-HOI dataset. “Bas.”/“Gan”/“Reg.”/“Occ.”/“Ref.” denote base-
line/Generative adversarial networks/Regression/training with occluded samples/reference case.
“None” denotes the case without occlusion. LA, RA, LL, RL denote the occlusion of left arm, right
arm, left leg, right leg, respectively. Numbers denote Weighted Accuracy, numbers in bold indicate
best performance between “Rec.”/“Occ.”/“Ref.”. In case of Gans, by “max” and “min” we denote
the upper and the lower bounds of the confidence interval.

None LA RA LA+RA LL RL LL+RL LA+LL RA+RL

Gans -
max 0.48 0.50 0.44 0.50 0.52 0.50 0.50 0.48

min 0.42 0.43 0.37 0.45 0.45 0.43 0.43 0.42

Reg. - 0.42 0.45 0.32 0.46 0.48 0.46 0.43 0.39

Occ. - 0.41 0.33 0.45 0.42 0.47 0.37 0.44 0.37

Ref. - 0.15 0.22 0.10 0.20 0.18 0.16 0.20 0.13

Bas. 0.54 - - - - - - - - -
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In the case of the PKU-MMD dataset, the weighted accuracy (WA) was 0.92 without
any body part removal. Specifically, it ranged between 0.21 and 0.90 in case of some body
part removal, while it ranged between 0.78 and 0.93 upon reconstruction with the GAN. In
all cases, significant improvement was observed in terms of WA. Moreover, reconstruction
with the GAN outperformed the regression approach [8] in all cases, and the augmentation
approach [64] in 6 out of 8 cases. Since most of the activities used to evaluate our approach
primarily involve upper body motion (i.e., are expressed by the motion of left and/or
right arm), this is also reflected to the results of Table A1, wherein it may be observed that
in cases of occluded arms, the improvement is significantly large, with the most notable
example being the case of both arms, wherein WA improves from 0.21 to 0.78. Upon careful
observation of the confusion matrices depicted in Figure 11, for each occlusion case, the
following should be noticed when comparing the case where all joints were used:

a. In the case of any occluded arm, class make a phone call/answer phone is often confused
with playing with phone/tablet. In the case of the occluded right arm, class eat meal/snack
is very often confused with reading. This happens less often in the case of the occluded
left arm. Also, in a few cases, class handshaking is confused with hugging, and class
reading with typing on a keyboard.

b. In the case of any occluded leg, class make a phone call/answer phone is often confused
with playing with phone/tablet. Also, in the case of occluded left leg, class reading is
often confused with eat meal/snack, while in the case of occluded right leg, class eat
meal/snack is very often confused with reading.

c. In the case of occluded left arm and left leg, class make a phone call/answer phone in
the majority of testing examples is confused with playing with phone/tablet and class
hugging with playing with phone/tablet or handshaking.

d. In the case of occluded right arm and right leg, class make a phone call/answer phone
is often confused with playing with phone/tablet or handshaking, eat meal/snack is very
often confused with reading, and class handshaking is often confused with make a phone
call/answer phone.

In all cases, the majority of classes demonstrate excellent performance, equivalent to
the case without any occlusion. Compared to the augmentation approach of [64], it should
be noted that reconstruction using GANs was superior in 6 out of the 8 cases of occlusion.
Specifically, augmentation showed superior performance in the case of both occluded arms
and in the case of occluded left arm and left leg, although in that case, reconstruction using
GANs exhibited equivalent performance. Finally, as shown in Figure 9a, in most cases, the
lower bound of the weighted accuracy’s confidence interval exceeds a better performance
than all other approaches.

In the case of the NTU-RGB+D dataset, the WA was 0.68 without any body part
removal and ranged between 0.16 and 0.59 in the case of some body part removal, while it
ranged between 0.35 and 0.71 upon reconstruction with the GAN. In that case, in 5 out of
8 cases, significant improvement was observed in terms of WA, while performance was
almost equal with the other two approaches in the case of removal of right arm or right
arm and right leg. In the remaining three cases, the regression approach demonstrated the
best performance. Moreover, reconstruction with GAN outperformed the augmentation
approach in 7 out of 8 cases. Since activities used to evaluate the proposed approach mainly
consisted of upper body motion, also in the case of the NTU-RGB+D dataset, in the results
of Table A2, it could be observed that in all the remaining cases of occluded arms, the
improvement of WA is large, with the most notable example being the case of both arms,
wherein WA improves from 0.16 to 0.35, although the other two approaches demonstrated
superior performance in that case. Upon careful observation of the confusion matrices
depicted in Figure 10, and considering the classification results without occlusion of any
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part, for each occlusion case it should be noticed that most activities are affected by the
occlusion of the right arm and performance is far from being excellent in the majority
of these cases. Notably, reconstruction with GANs exhibits best performance in case of
occluded legs. Finally, also in this dataset and as shown in Figure 9b, in most cases, the
lower bound of the weighted accuracy’s confidence interval exceeds best performance of
all other approaches.

(a) LA (b) RA (c) LA+RA (d) LL

(e) RL (f) LL+RL (g) LA+LL (h) RA+RL

Figure 10. Normalized confusion matrices for classification for the NTU-RGB+D dataset. LA, RA, LL
and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.

(a) LA (b) RA (c) LA+RA (d) LL

(e) RL (f) LL+RL (g) LA+LL (h) RA+RL

Figure 11. Normalized confusion matrices for classification for the PKU-MMD dataset. LA, RA, LL
and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.
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In the case of the SYSU-3D-HOI dataset, the WA was 0.54 without any body part
removal and ranged between 0.10 and 0.22 in the case of some body part removal, while
it ranged between 0.44 and 0.52 upon reconstruction with the GAN, as may be observed
in the results of Table 4. Moreover, the reconstruction with GANs outperformed the other
two methods in 7 out of 8 cases. In every case of occlusion, significant improvement was
observed in terms of WA when compared to the reference case. It should be noticed that
due to the small size of this dataset, performance was inadequate in several classes even
without occlusion, while reconstruction in several cases exhibited superior performance. It
was quite a surprise to observe that reconstruction with GANs steadily exhibited almost
constant performance for all occlusion cases, whilst in many occasions it was also superior
to the baseline approach, i.e., to the absence of occlusion. Also, due to the small size of the
dataset, often several classes fail to be recognized. Finally, also in this dataset and as shown
in Figure 9b, in several cases, the lower bound of the weighted accuracy’s confidence
interval does not exceed best performance of all other approaches; however, this was
expected due to the small dataset size.

In the case of the UTKinect-Action-3D dataset, the WA was 0.79 without body part
removal, and ranged between 0.09 and 0.61 in the case of some body part removal and
also between 0.55 and 0.80 upon reconstruction with GAN. Moreover, reconstruction with
GANs outperformed the other two methods in 7 out of 8 cases. Since activities used to
evaluate the proposed approach mainly consisted of upper body motion, also in the case
of the UTKinect-Action-3D dataset, in the results of Table 3 it could be observed that in
all the remaining cases of occluded arms, the improvement of WA is exceptional, with
the most notable examples the cases of occluded right arm and right leg, wherein WA
improves from 0.11 to 0.70 and right arm and left arm wherein WA improves from 0.09
to 0.55. Upon careful observation of the confusion matrices depicted in Figure 13 and
considering the classification results without occlusion of any part, for each occlusion case
we should notice that occlusion affects half of the activities, especially those that are based
on the motion of arms. Finally, also in this dataset and as shown in Figure 9c, in most cases
the lower bound of the weighted accuracy’s confidence interval exceeds best performance
of all other approaches.

(a) LA (b) RA (c) LA+RA (d) LL

(e) RL (f) LL+RL (g) LA+LL (h) RA+RL

Figure 12. Normalized confusion matrices for classification for the SYSU-3D-HOI dataset. LA, RA, LL
and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.
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In all cases, the occlusion of some body parts leads to a severe drop in performance;
in many cases, the accuracy and F1-score of some classes dropped to zero/near zero
values. In some instances, the reconstruction was successful, resulting in nearly perfect
recognition. However, even in these cases, the classification of reconstructed samples for
several activities and specific occlusion scenarios showed slightly inferior performance
compared to the occluded samples. We believe that in these cases, the occluded body
part is less “relevant” for those activities. Nonetheless, there are instances where the
reconstruction approach may fail, leading to misleading joint positions, as demonstrated in
the example of Figure 2.

(a) LA (b) RA (c) LA+RA (d) LL

(e) RL (f) LL+RL (g) LA+LL (h) RA+RL

Figure 13. Normalized confusion matrices for classification for the UT-Kinect-Action-3D dataset.
LA, RA, LL and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg,
respectively.

5. Discussion and Future Work

The results across all datasets demonstrate that the occlusion of body parts significantly
impacts recognition performance, often causing a severe drop in accuracy and F1-scores,
with some classes dropping to near-zero values. However, reconstruction using GANs
consistently showed notable improvements, outperforming alternative approaches in most
cases. Specifically, in datasets like PKU-MMD and UTKinect-Action-3D, the weighted
accuracy improved dramatically in scenarios involving occluded arms, underscoring the
effectiveness of GAN-based reconstruction in handling upper-body motion activities.

Despite these successes, certain limitations persist. For activities less dependent on
the occluded body parts, reconstruction sometimes exhibited slightly inferior performance
compared to the baseline, suggesting a diminished relevance of those parts for the specific
activities. Additionally, while GANs excelled in mitigating the effects of occlusion, occa-
sional reconstruction failures resulted in misleading joint positions, potentially affecting
classification accuracy. These findings highlight both the potential and the challenges of
leveraging GANs for robust activity recognition in occlusion scenarios.

Future research work may target various aspects of the HAR problem with a focus
on occlusion. Our regression approach could be enhanced and improved by, for example,
replacing the interpolation step currently used with a temporal augmentation approach
similar to that of Kwon et al. [65]. Additionally, incorporating other state-of-the-art archi-
tectures, such as transformers [66], into the classification process could yield significant
improvements. Moreover, the aspect of occlusion in HAR, including scenarios like tem-
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porally partial occlusion, warrants further investigation. Since handcrafted features have
been experimentally shown to enhance the recognition performance of deep learning ap-
proaches [67], experimenting with other feature extraction methodologies based on the
geometry and motion of skeletons, such as the approach proposed by Avola et al. [43],
would be of great interest. Finally, we also believe that conducting real-life experiments in
an assistive living environment would be extremely valuable.

6. Conclusions

In this paper, a methodology for reconstructing human skeleton sequences was de-
veloped by employing a generative adversarial network. The generator in this network
was a convolutional recurrent neural network, which was trained to generate the com-
plete skeleton by filling in the missing parts. The input to the generator consisted of the
raw 3D positions of the skeleton joints, with the occluded joints removed. The output
of the generator was a reconstructed skeleton, which was then passed through a long
short-term memory network for classification into one of the predefined activities. For the
discriminator, a simple long short-term memory network trained only on non-occluded
samples was used. It was demonstrated that in all scenarios, the occlusion of certain body
parts resulted in a significant decline in performance, although the reconstruction process
achieved nearly perfect recognition in some cases. Through experimental evaluation, it
has also been demonstrated that the proposed approach offers improved performance
compared to previous methodologies, which varied between 2.2% and 37.5%, depending
on the chosen dataset and the specific occlusion scenario.

To conclude, in real-life applications, i.e., in dynamic and real-life scenarios, human
activity recognition from visual data faces several limitations when dealing with occlusion.
Real-life occlusions are inherently unpredictable, caused by factors such as environmental
obstacles, people entering or leaving the frame, and self-occlusion, making them difficult
to accurately model in controlled studies. Furthermore, most HAR datasets are collected
in constrained environments with limited variability and predefined activities, reducing
their generalizability to diverse real-world conditions. Sensor limitations, such as restricted
camera angles and the impact of environmental factors like lighting or background clutter,
intensify the challenges of recognizing occluded actions in dynamic settings. Current
models often depend on synthetic or static occlusion scenarios for training, which fail
to capture the complexity of real-world occlusions, and their computational demands
can hinder real-time deployment. Additionally, standard evaluation metrics may not
reflect the nuances of occlusion in real-world applications, and overlapping activities can
create further ambiguity in recognition. Finally, ethical and privacy concerns during data
collection in public spaces limit the scope of real-world studies, while participant behavior
under observation may introduce biases. Addressing these limitations requires the use of
multi-sensor systems, dynamic dataset creation, advanced occlusion-handling models, and
robust ethical frameworks for real-world applicability.
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CRNN Convolutional Recurrent Neural Network
CsiGAN Channel State Information Generative Adversarial Network
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GAN Generative Adversarial Network
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HAR Human Activity Recognition
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RNN Recurrent Neural Network
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Abstract: The growing urban population and traffic congestion underline the importance of building
pedestrian-friendly environments to encourage walking as a preferred mode of transportation.
However, a major challenge remains, which is the absence of such pedestrian-friendly walking
environments. Identifying locations and routes with high pedestrian concentration is critical for
improving pedestrian-friendly walking environments. This paper presents a quantitative method to
map pedestrian walking behavior by utilizing real-time data from mobile phone sensors, focusing on
the University of Moratuwa, Sri Lanka, as a case study. This holistic method integrates new urban
data, such as location-based service (LBS) positioning data, and data clustering with unsupervised
machine learning techniques. This study focused on the following three criteria for quantifying
walking behavior: walking speed, walking time, and walking direction inside the experimental
research context. A novel signal processing method has been used to evaluate speed signals, resulting
in the identification of 622 speed clusters using K-means clustering techniques during specific
morning and evening hours. This project uses mobile GPS signals and machine learning algorithms
to track and classify pedestrian walking activity in crucial sites and routes, potentially improving
urban walking through mapping.

Keywords: walking behavior; mobile GPS tracking; machine learning; pedestrian-friendly environment

1. Introduction

Investigating pedestrian behavior and improving walking space in streets are becom-
ing increasingly crucial considering the proven benefits to health, sustainability, and the
development of safer pedestrian-friendly areas [1,2]. Consequently, an increasing amount
of research has been carried out examining the relationship between the urban environment
and individuals’ behavior on streets [3]. However, many of these studies focus on the macro
level; in addition to considering the urban characteristics on a wider scale, it is important to
also consider microscale factors of urban design that influence behavior on streets [1]. This
requires collecting data on the micro-level walking behavior of individuals on the streets to
obtain precise information and develop target solutions for promoting walking.

Behavior mapping is a commonly utilized technique for the direct and systematic
monitoring of individual behaviors and locations [1]. This mapping was first used in indoor
locations, primarily in the fields of psychology, sociology, and criminology. It has since
become commonly employed in public spaces like streets, parks, and playgrounds [4,5].
Currently, this mapping extends to street design and street planning. Shoval et al. [6]
utilized psychological mapping to generate real-time maps of subjective and objective
emotions to analyze Jerusalem’s urban surroundings for the first time. Building upon that
study, there is currently a growing interest in mapping behavior across several fields [7–9].

Sensors 2024, 24, 3822. https://doi.org/10.3390/s24123822 https://www.mdpi.com/journal/sensors117



Sensors 2024, 24, 3822

Recent technological advances have enabled these studies to use real-time surveying,
tracking technologies, and global positioning systems (GPS). GPS data have been gathered
since the 1990s to analyze transportation and access system performance, including mea-
suring traffic flow, studying travel patterns, calculating route choices, etc. [10]. This opens
a new research area by combining modern technical methods with real-time interactive
communication. The availability of technology for the establishment of the geographic
coordinates of mobile phones and other devices has significantly increased, leading to the
emergence of a wide range of applications of location-based services (LBS) [11]. Similarly,
Wi-Fi signals were also utilized in these studies [9]. The incorporation of LBS improves the
quantitative metrics, offering significant spatial observation of the pattern of pedestrian
movement. Smartphones, with their wireless connection, inertial sensors, and cameras,
have greatly impacted digital health and gait analysis studies. Smartphones are currently
providing physiological assessment and data entry/collection capabilities through several
sensing modalities, which are accessible via apps [12].

However, this study found a few significant research gaps. The emergence of walking
behavior depends on a combination of sociocultural variables, individual choices, and ha-
bitual patterns rather than a physical setting [13]. Therefore, to enhance our understanding
of walking behavior patterns, we must acknowledge the complexity of this field.

Obtaining a detailed comprehension of individual experience in terms of time (second)
and space (meters) offers new possibilities for study and strategic decision-making [6]. It is
crucial to integrate the environment and individual characteristics of multiple individual
inputs on the map to form a clear visual representation of different patterns [7]. The use
of standard GPS positions is collected at intervals of a few seconds, resulting in hundreds
of data points at each interval and large datasets for a thorough analysis. Thus, the first
need is to map patterns of pedestrian walking behavior, as existing research highlights
the importance of modern data gathering and analysis approaches, including objective
walking patterns from large-scale tracking and machine learning analysis, to study the
types of pedestrian walking patterns [14].

Most walking behavior studies have measured pedestrian walking utilizing walking
duration, flows, and number of walkers [15]. Nevertheless, these studies are limited by
their dependence on observational methodologies. Thus, while they offer new insights,
their method has limitations [16]. Multiple authors identify the following five essential
components in the observation process: 1. a visual representation of the observed areas;
2. a precise explanation of the human behavior observed, tracked, described, or outlined;
3. a timetable of recurring intervals for observation and recording; 4. a methodological
observation process; and 5. a system for programming analysis that reduces the recording
workload [1]. While walkability studies highlight the complexity of walking activities,
there is still a lack of systematic categorization of pedestrian actions, creating a knowledge
gap [9]. Further, research on walking patterns disregards the individual travel direction and
time of the day. The individual travel direction has a significant impact on walking behavior
changes; in addition, the direction in which people walk is influenced by built environment
scenarios [17]. Also, time series analysis can be used to study changes in behavior over
time [8]. The absence of this information presents difficulty in acquiring walking patterns.
Hence, the second need involves considering individual travel direction and temporal
factors to map and analyze walking behavior using real-time tracking applications. This
approach allows researchers to collect more detailed and accurate data, resulting in more
effective urban planning efforts.

The behavior of human walking is naturally complex and shaped by a variety of
environmental and psychological factors. Subjective verification, which is frequently based
on personal user experience and perception, plays a crucial role in validating the accuracy of
measurement models, ensuring that they accurately reflect the complex nature of real-world
walking scenarios. Current research on evaluating human walking behavior primarily
concentrates on the construction of index systems, as well as data collecting and processing.
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However, it does not include any verification of the reliability of measurement findings or
the validity of measurement models [18].

In this context, analyzing pedestrian walking patterns using machine learning algo-
rithms is critical for improving road safety and optimizing traffic management. Traditional
techniques, such as artificial neural networks (ANNs) and hidden Markov models (HMMs),
have been widely used in this domain [19]. However, these algorithms frequently encounter
significant issues, such as overfitting and substantial data dependency, in real-time pro-
cessing scenarios. For example, Ajmaya and Eklund’s [19] study on recognizing pedestrian
events using IMU and GPS data emphasized the challenges of improving ANN models,
as well as the vast amount of training data required to obtain reliable results. Further-
more, the study by Gong et al. [20] identified limitations in using density-based spatial
clustering of applications with noise (DBSCAN-TE) and support vector machine (SVM)
methodologies, such as the need for parameter estimation and the lack of instant speed
and acceleration features, which reduce the accuracy and efficiency of detecting pedestrian
stops and movements.

Although data-driven methods have the potential to assist in making informed design
decisions, it is still uncertain which new sources of information and approaches could be
utilized to obtain insights into studying pedestrian walking behaviors in urban areas, result-
ing in a shortage of knowledge. Given the focus of our work, machine learning approaches
have also been utilized in various areas of GNSS positioning. For instance, Zhang et al. [21]
used unsupervised machine learning techniques to enhance precise positioning and navi-
gation in complex environments. By integrating best integer equivariant (BIE) estimation
with unsupervised K-means clustering algorithms, the proposed methods significantly
improved both accuracy and reliability. The experiment demonstrates that the use of this
approach could achieve millimeter-level precision, highlighting the effectiveness of ma-
chine learning techniques in such applications. In this study [21], K-means achieved high
accuracy rates for inferring transportation modes, particularly when speed profiles were
used as attributes. This implies that K-means clustering can handle the spatial and temporal
patterns in pedestrian movement data without considerable parameter modification.

Given the limitations and potentialities in current studies, this research developed a
framework utilizing unsupervised machine learning techniques to map pedestrian walking
behavior in streets with real-time tracking data using mobile phones. This research endeav-
ors to explore pedestrian walking behavior by utilizing mapping techniques to provide
insight that exceeds traditional methods. Researchers can collect complex characteristics of
pedestrian behavior, such as movement patterns, and interaction with the built environ-
ment using real-time tracking technologies and advanced mapping approaches. Integrating
tracking technologies with subjective and objective experiences of human behavior could
greatly enhance urban planning [6]. Extensive mapping not only helps to improve urban
design to promote pedestrian activity but also creates convenient urban environments.

2. Materials and Methods

2.1. Case Study

We developed an approach for mapping pedestrian walking behavior on the streets of
the University of Moratuwa and its vicinity. Campus walking areas are prioritized in urban
sustainable development and developing pedestrian-friendly surroundings [2]. Given
the nature of the experiment, this study examined walking behavior at the University of
Moratuwa and its surrounds, as shown in Figure 1. The case study includes public locations,
residential neighborhoods, cultural and commercial areas, and diverse university spaces
to evaluate walking behavior patterns in varied environments and situations. Pedestrian
traffic was seen in these areas, as many individuals were walking around the university
because university students choose different routes daily to get to the university.
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Figure 1. Case study area.

2.2. Experimental Design and Workflow

University students who live near the University of Moratuwa were selected as a
sample. These students, aged 23 to 27 years, were chosen for this study because they were
well-acquainted with their surroundings due to their daily commuting from their accom-
modation (boarding) to the university. Initially, 60 individual samples with a 50% gender
distribution were chosen. The experiment was only carried out on weekdays. Weekday
tests allowed for more focused monitoring of university pedestrian behavior. Specific times
for the experiments were set to prevent overcrowding and congestion. The times were 7:00
to 9:00 a.m. and 4:00 to 6:00 p.m. These times of the day were carefully chosen to include
both morning and evening peak hours to thoroughly examine pedestrian behavior.

As pointed out in the study by [18,22], which investigated several accelerometer
placements, including at the hip (belt), wrist, upper arm, ankle, and thigh of the test
person, using numerous accelerometers aids in activity identification. Thus, as illustrated
in Figure 2, in this study, participants were advised to secure their mobile phones to their
waistbands with designated holders. This strategy guaranteed that the phones remained in
a consistent and steady position throughout the data collection process. The test persons
were advised to keep the mobile phone in a vertical orientation within the holder to
preserve consistency. This placement of the phones enabled the accurate gathering of data
on walking speed, acceleration, and GPS position during the experiments.

Also, to effectively capture speed data when walking, the following parameters needed
to be considered: holding the phone upright in portrait orientation by ensuring that the
X-axis (horizontal) is parallel to the direction of movement while the Y-axis (vertical) is
perpendicular to the ground. This orientation enables the phone’s sensors to better capture
forward movement (along the X-axis) and up-and-down motion (along the Y-axis), both of
which are important for estimating speed.

Data for this study were collected using the Redmi Note 12 Pro smartphone, which
has a powerful sensor suite that includes an accelerometer, gyroscope, and GPS receiver.
Throughout the experiment, the use of these sensors was of utmost importance for collecting
data on walking speed, acceleration, and geographic positions. Furthermore, the smart-

120



Sensors 2024, 24, 3822

phone’s long-lasting battery allowed for continuous data collection over lengthy periods.

Figure 2. Experiment setup.

Each participant was instructed to use their mobile phone to record their walking
speed, acceleration, and other variables available through the mobile app. Over four
weeks, participants were required to record these characteristics as they traveled around
the case study area during both the morning and evening. To minimize bias from long-
distance walking and associated fatigue, each recording session was limited to 10 min.
Accurate instructions on how to carry the phones were provided to participants. To
ensure precise data collection, participants were additionally directed not to check their
phones while walking and to keep focused on their surroundings. Every participant was
informed of this study’s purpose and the possible results, and they were all given specific
instructions to explore and experience the environment throughout the study walking
sessions. Throughout the process of this research, ethical standards and privacy have been
carefully upheld.

2.3. Data Analysis

Clustering individuals based on their walking speed, direction, and time enables the
precise classification of walking behavior. K-means clustering aids in identifying clusters [9].
Mapping identifies locations with high levels of pedestrian traffic and their distribution.
Clustering identifies areas with high levels of foot traffic or congestion hotspots, allowing
for more analysis to guide more effective solutions. Data analysis included three steps.

Framework of This Study

Figure 3 illustrates the framework used for evaluating location data and analyzing
pedestrian walking behavior. This framework offers a structured approach to gaining
insights from the dataset.

• Data collection using the sensor logger app;
• Data preparation—Before beginning the data preprocessing, each CSV file is classified

based on the time of travel and travel direction to gain additional insights for a
comprehensive dataset;

• Data preprocessing—The initial phase of the farmwork involves manual data preprocessing;
• Data preparation for K-means clustering—The dataset was cleaned and normalized

to detect clusters of pedestrian walking behavior. We used a bespoke algorithm to
preprocess the dataset;

• Mapping the results—The work principally centers on cluster analysis, employing
unsupervised machine learning methods to reveal noteworthy trends and identify the
homogeneous profile among pedestrians;

• Data validation—Data validation is conducted through the outputs of mapping using
K-means clustering and expert subjective assessment.
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Figure 3. Framework of this study. Framework of this study. The data classification component
under the data clustering is based on the methodology proposed by Schimpl et al. [23].

1. Data collection using sensor logger app.

Sensor logger is a smartphone app that collects objective participant data. Figure 4
illustrates the interface of the sensor logger mobile application, which is used to gather data.
The application is available for Android, iPhone, and Apple Watch. The main reason for
choosing this mobile app is its ability to adjust walking speed according to the Naisthmith
rule, which sets it apart from other apps. It was useful for tracking small speeds caused by
terrain changes when walking. Also, by using this mobile app, one can capture diverse
walking dynamics. It mostly records the participant’s geographical location and timestamp
as they walk along the path. The program records acceleration, location, gyroscope, speed,
step count, sound, heart rate, wrist motion, and other elements to capture the walking
behavior. While the sensor logger app collects a range of data types, this analysis prioritizes
the use of metrics appropriate to this study’s aims. We specifically focus on using location
data in conjunction with metrics like walking speed, longitude, latitude, accuracy, time,
etc. In this mobile application, speed is calculated by measuring the change in consecutive
GPS coordinates over time. The application determines speed by recording latitude and
longitude at each time point and calculating the distance walked throughout each interval.
The app’s privacy practices may involve the management of subsequent data. The data can
be exported in several forms, such as Zip, CSV, JSON, and SQLite.

The entire dataset was initially normalized using the Naisthmith method to ensure
consistency in the measurements of walking speed across various terrains. The Naisthmith
rule is a common technique for calculating the actual working speed when facing slopes or
uneven surfaces.

The Naismith rule can be described using the following:

Equivalent distance = Horizontal distance + (Vertical distance ∗ α) (1)
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The horizontal distance refers to the distance at which an object moves on a level
surface, whereas the vertical distance indicates the rate of ascent or descent. The parameter
α represents Naisthmith’s number, a constant coefficient that quantifies the additional
exertion needed as a result of variations in altitude, which is usually set to 7.92.

 
Figure 4. Sensor logger mobile application.

2. Data Preparation

The data collected includes multiple characteristics, such as time, elapsed seconds,
longitude, latitude, altitude, speed, bearing accuracy, vertical accuracy, horizontal accuracy,
and bearing. The dataset chosen for this study is presented in Table 1. The mobile data
covers 4 weeks and includes a complete dataset of 96,924 points. Before starting the data
preprocessing, each CSV file based on time travel and travel direction has to be classified to
gain additional insights for a comprehensive dataset.

Table 1. Types of data collected for this study.

Second
Elapsed

(Seconds)

Bearing
Accuracy
(Degrees)

Speed
Accuracy

(ms−1)

Vertical
Accuracy

(m)

Horizontal
Accuracy

(m)

Speed
(ms−1)

Bearing
(Degree)

Altitude
(m)

Longitude
(Degrees)

Latitude
(Degrees)

4188.1 0 0.0806 34.74 9.94 0.0001 0 −77.2 79.9002 6.7956
2096.2 0 0 4.18 11.70 0.0001 0 −76.4 79.8990 6.7953
1699.1 0 0.15 1.13 13.32 0.0002 0 −73.8 79.9000 6.7963

3. Data preprocessing

The dataset included individual speed points captured using speed-tracking tech-
niques in the mobile phone app. Following the framework proposed, an initial phase in
the data preprocessing was the removal of outliers from each user’s output. Outliers are
samples that appear to be inconsistent with the overall trend of the GPS signal. They could
be peaks, discontinuities, saturation, etc. To properly assess a signal, it must be removed
without affecting the rest of the data. In the context of analyzing walking behavior patterns,
outliers were defined as speed values outside the normal walking range, as follows: a speed
of 0.0 ms−1, indicating negligible movement, such as waiting, and a speed of 2.5 ms−1 or
more, which is likely inaccurate due to GPS signal errors.

In addition to outlier removal, the dataset was analyzed for direction of travel and
time. The manual process involved analyzing each user’s outputs for GPS points and
assigning the relevant direction based on timestamps using QGIS.

When assessing GPS signals for walking behavior, it is critical to focus on potential
outliers induced by rapid and major shifts in the signal, such as significant braking. Before
running the algorithm, the outlier removal strategy was used to thoroughly evaluate the
data for outliers and ensure the correct classification of valid samples.

4. Data preparation for K-means clustering

Clustering techniques are divided into types based on splitting, density, and model.
The K-means algorithm offers several advantages over other established approaches, such
as straightforward mathematical principles, quick convergence, the improved scalability to
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big datasets, the effective management of high-dimensional datasets, and straightforward
implementation. This approach is adaptable and can be utilized across several fields, as
well as simply adapted to new scenarios. The reason for choosing K-means clustering is its
capability to cluster data by reducing the sum of squared error (SSE) inside clusters.The
sum of squared error (SSE) is given by the following equation:

d =
k

∑
k=1

n

∑
i=1

(xi − uk)
2 (2)

The main function of the sum of the squared error is represented by d, where k is the
number of clusters, n is the number of observations, xi is an observation i, and uk is the
centroid generated for the cluster of xi.

However, typical K-means clustering has limitations. To address these issues in this
unsupervised machine learning model, a framework has been developed by following
specific techniques.

• Utilizes only numerical input variables—K-means uses distance-based metrics to
analyze the similarity between data points, restricting the evaluation to only numerical
factors. The analysis utilized geographic longitude and latitude coordinates to identify
the pattern of walking behavior. In addition, the undefined (NaN) values were
removed. Clustering results may be distorted if NaN values are included in the raw
dataset (CSV output);

• Outlier removal in data classification—To cluster the data for studying walking behav-
ior, the major dynamic being considered here is walking speed, which was collected
through a mobile application. To categorize the speed of data, the existing literature
has been examined. The speed property divides walking speeds into the following
four categories: “Slow”, “Normal”, “Fast”, and “Very Fast” [23]. It is imperative to
evaluate the potential impact of outlier data on the K-means clustering analysis during
the preparatory phase at this stage. The IQR-based outlier removal method was used
on each speed category to remove data points that were outside the permitted range.
Table 2 shows the average value of accuracy in each cluster after removing the outliers
and categorizing them into clusters.

Table 2. Average values of each cluster used in K-means clustering.

Cluster
Bearing

Accuracy
(Degrees)

Speed
Accuracy

(ms−1)

Vertical
Accuracy (m)

Horizontal
Accuracy (m)

Speed
(ms−1)

Slow 0 0 0.259 0.543 0.6775
Normal 0 0.1485 0 0.600 1.1081

Fast 0 0 0 0.677 1.4091
Very Fast 0 0 0.548 0.667 1.5447

• Data Normalization—Data normalization was performed using the min–max scaler
method [24] in Python using the sci-kit-learn package. The min–max scaler is given
as follows:

x1 =
x−min(x)

max(x)−min(x)
(3)

Let x1 represent the normalized value, x represents the initial value within a particular
range, min(x) represents the minimum value of the attribute within that range, and
max(x) represents the maximum attribute value within that range.
This phase ensured that the results were not affected by variations in scales and that
all scales had an equal impact on model fitting.

• The optimal number of clusters—This study utilized the K-means method to identify
unique patterns in the data based on geographical coordinates (latitude and longitude)
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and walking speeds. Clustering algorithms depend on a random initialization of the
cluster centroid. Silhouette analysis (SA) was used to address the issue and determine
the ideal number of clusters for each speed category [25]. Introduced by Rousseeuw in
1987, the silhouette analysis (SA) technique calculates the silhouette score, a statistic
that varies between −1 and 1. This score provides information on the proximity and
density of clusters, indicating their closeness or distance from one other and the total
density of the clusters.

5. Mapping the Results

The silhouette analysis (SA) approach helped to identify the ideal number of clusters
within each speed category. The next step was to map these clusters to reveal distinc-
tive patterns within the case study area. Basic QGIS mapping techniques were used to
accomplish this.

6. Data Validation

Validating the results is essential after finishing the analytical process. Validating these
results is challenging because spatial quality is a normative criterion [26]. This study used a
unique method that contrasted the results of the unsupervised machine learning algorithm
with the preferred speed of each cluster as identified by the students participating in
the research.

For this method, 150 clusters, which is one-third of all cluster setups, were carefully
chosen for assessment. These clusters were specifically used because they were within one
standard deviation. A total of 150 pictures were manually captured during the evaluation
procedure in the study area. Travel direction and traveled time were considered for each
cluster when taking the photos. The research participants were required to walk in a
specific direction and only identify what was directly in front of them; thus, the analysis
disregards the whole 360-degree field of vision and instead focuses on a 120-degree field of
view based on their walking path.

The camera features an 8-megapixel resolution and an f/2.2 aperture, ensuring sat-
isfactory image detail and effective light capture, respectively. Featuring a 120-degree
ultrawide field of vision, this device is capable of effectively capturing wide and expansive
scenes as well as group photographs. Furthermore, the camera’s 1/4.0-inch sensor size and
1.12 μm pixel size is advantageous. Students were asked to rate their preferred speed of
walking when looking at images categorized as slow, normal, fast, and very quick.

3. Results

3.1. Results of Cluster Mapping

By using the K-means clustering techniques, a total of 622 speed clusters were identi-
fied during both morning hours (07.00 to 09.00 a.m.) and evening hours (4.00 to 06.00 p.m.)
independently. The results discussed below are based on collected data and represent the
areas most extensively used by students. GIS and spatial analysis are employed to map the
results of the clustering of walking behavior, which includes point distribution maps that
illustrate pedestrian concentration on the road.

This study mapped pedestrian density in various locations within each of the four speed
categories during morning and evening hours. Figure 5 illustrates the spatial distribution
of pedestrian density among different speed clusters in the morning, whereas Figure 6
illustrates pedestrian concentration in the evening. The identification of unique spatial
behaviors within each cluster is facilitated by the display of data in both morning and
evening timestamps, which enables the observation of a variety of patterns. Figures 7 and 8
depict the walking behavior patterns in the morning and evening based on cluster analysis.
The points indicate the centroid of each cluster derived from K-means clustering.
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(a) (b) 

  
(c) (d) 

Figure 5. Pedestrian concentration in slow walking speeds (a), normal walking speeds (b), fast
walking speeds (c), and very fast walking speeds (d) in the morning hours.

3.2. Results of Data Validation

Appendix A shows the results of ratings obtained by machine learning and the record-
ings from the students. For each of the 150 clusters, two ratings were estimated. Out of the
150 ratings, 126 were found to be the same, which is considered acceptable. The results were
assessed for validity using Kappa Statistics to quantify the inter-rater reliability between
the ratings made using machine learning and the recordings from the students. The values
were calculated using Python. Table 3 presents the summary of the results.

Table 3. Statistics of the machine learning and the recordings from the students indicating the
agreement value.

Agreement Cohen’s Kappa Coefficient Std. Err.

85.3% 0.8 0.013
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(a) (b) 

  

(c) (d) 

Figure 6. Pedestrian concentration in slow walking speeds (a), normal walking speeds (b), fast
walking speeds (c), and very fast walking speeds (d) in the evening hours.

 
Figure 7. Pedestrian concentration in different walking speed ranges in the morning hours.
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Figure 8. Pedestrian concentration in different walking speed ranges in the evening hours.

4. Discussion

This research enhances the understanding of the complex connections between urban
environments and pedestrian behavior by utilizing quantitative location data and speed
data of pedestrians, along with qualitative validation of the findings. “Big Data” analysis
is used to process and analyze significant and complicated datasets that typical data pro-
cessing systems are not able to handle. Various methods exist for gathering and analyzing
vast amounts of data, but there is a need for a standardized framework to extract insights.
In this paper, a method is proposed for conducting experiments using the pedestrian to
collect and analyze data and extract insights to conclude behavior, rather than relying on
biased observational data or the existing literature.

This study’s findings provide useful insights into pedestrian behavior patterns within
various speed categories. The clustering study using unsupervised machine learning
discovered several clusters for each of the following speed categories: slow, normal, fast,
and very fast. The clusters indicate regions with different pedestrian densities and speeds
of movement. Mapping highlights locations with a significant concentration of each cluster
on different roadways. The slow mean walking speed is 0.69 ms−1, the normal mean
walking speed is 1.11 ms−1, the fast mean speed is 1.41 ms−1, and the very fast mean speed
is 1.81 ms−1.

In this case, both in the morning and evening hours, a significant increase in pedestrian
traffic on Bandaranayake Mawatha and Molpe Road can be observed. In those areas, there
is a high concentration of slow and normal walking pedestrians. The field observations
show that these locations correspond to the main entry for vehicles at the University of
Moratuwa, where there is a notable rise in vehicular traffic and dense retail structures along
Molpe Road.

According to a study by [27], young adults walk at a speed of 89 m/min in educational
areas and 80 m/min in commercial areas. According to the speed ranges in this study,
the speed falls within the normal range. Results show that pedestrians passing around
the university area (Bandaranayake Mawatha) and the nearby commercial area (Molpe
Road) tend to walk at a normal speed, which aligns with the existing findings of the
aforementioned literature.

Inside the University of Moratuwa, during the morning hours, there is a high degree of
pedestrian concentration observed in the Lagan area. This congestion can be categorized as
slow and normal speed clusters. Based on on-site observation, this location in the university
is predominantly a green environment, which is similar to findings of [28] research that
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indicates that individuals tend to walk slower in greener environments. In addition, the
concentration of speed in different areas of the University of Moratuwa is constant.

This study found a substantial correlation (85%) between machine-generated scores
and subjective assessments. This verification demonstrates the effectiveness of our strategy,
which benefits substantially from the large dataset employed for analysis.

Finally, using the experimental study, we were able to visualize, accurately analyze,
and validate walking behavior patterns. Visualization is essential for managing tracking
data. GPS is important in urban research because it provides precise and observable data
that can be combined to create a new evidence base for predicting future urban trends.

5. Conclusions and Outlook

The objective of this research is to present an approach for analyzing pedestrian paths
in urban environments. Individuals’ walking patterns are evaluated on multiple streets
inside the case study location. Our employed method provides a full understanding of
pedestrian dynamics by gathering real-time tracking data and using unsupervised machine
learning methods to assess walking behavior.

This work provides insights into walking behaviors. Firstly, this study adds to the cur-
rent body of knowledge by developing a theoretical basis for using unsupervised K-means
clustering machine learning algorithms to assess pedestrian walking behavior using large-
scale GPS data. Secondly, our work expands the transportation planning and urban design
and planning literature by using large-scale data analysis with established methodologies.

The authors’ analysis of outcomes utilizing machine learning algorithms and mobile
location data collection led to the following conclusions and interpretations. K-means
clustering was used to determine the number of unique clusters within the case study
area. This method was tested at various times of day and discovered that there is a
different pattern in morning and evening walking behavior, demonstrating constancy in
pedestrian concentration in the studied area. These patterns may arise as a result of urban
design components and activities in an area that influences pedestrian movement patterns.
Therefore, it is recommended in future research to analyze the spatial and environmental
aspects of the study region to enrich the existing body of knowledge.

This study, however, is limited by continuous data collection due to technical chal-
lenges, resulting in missing information on certain days. This study only collected pedes-
trian movement data for a limited number of days and had a small sample size comprising
only university students. The primary objective of this work was to examine the suggested
methodology and showcase its efficacy in real-time tracking data by employing machine
learning techniques to analyze pedestrian locomotion patterns. This study was conducted
across two time periods, focusing on temporal aspects. Future research could benefit
from extending the duration of observations, analyzing the temporal patterns of different
activities in depth, and studying the diverse street users.
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Appendix A

Table A1. Summary table of the evaluation using machine learning and subjective evaluation
conducted by the students.

Cluster No
Machine

Evaluation
Subjective
Evaluation

Cluster No
Machine

Evaluation
Subjective
Evaluation

1 Very Fast Very Fast 76 Fast Fast
2 Very Fast Very Fast 77 Normal Normal
3 Very Fast Fast 78 Fast Fast
4 Very Fast Fast 79 Fast Fast
5 Fast Fast 80 Fast Fast
6 Very Fast Very Fast 81 Normal Fast
7 Very Fast Very Fast 82 Very Fast Fast
8 Normal Normal 83 Fast Normal
9 Very Fast Fast 84 Slow Slow
10 Very Fast Very Fast 85 Normal Normal
11 Very Fast Very Fast 86 Fast Fast
12 Slow Normal 87 Very Fast Very Fast
13 Slow Slow 88 Very Fast Fast
14 Fast Fast 89 Fast Fast
15 Slow Slow 90 Very Fast Very Fast
16 Very Fast Very Fast 91 Fast Fast
17 Normal Normal 92 Slow Slow
18 Normal Normal 93 Normal Fast
19 Fast Fast 94 Fast Fast
20 Fast Very Fast 95 Very Fast Very Fast
21 Very Fast Very Fast 96 Slow Slow
22 Fast Fast 97 Fast Fast
23 Normal Normal 98 Normal Normal
24 Fast Fast 99 Slow Slow
25 Slow Slow 100 Slow Slow
26 Fast Fast 101 Normal Fast
27 Slow Slow 102 Normal Normal
28 Slow Slow 103 Normal Normal
29 Fast Fast 104 Fast Fast
30 Normal Normal 105 Slow Slow
31 Normal Normal 106 Normal Normal
32 Normal Normal 107 Normal Normal
33 Normal Normal 108 Slow Slow
34 Normal Normal 109 Very Fast Very Fast
35 Normal Normal 110 Slow Slow
36 Very Fast Very Fast 111 Very Fast Very Fast
37 Very Fast Fast 112 Fast Fast
38 Fast Fast 113 Fast Fast
39 Fast Normal 114 Fast Fast
40 Slow Slow 115 Fast Fast
41 Slow Slow 116 Slow Slow
42 Very Fast Very Fast 117 Slow Normal
43 Slow Slow 118 Fast Fast
44 Very Fast Very Fast 119 Slow Slow
45 Slow Slow 120 Normal Slow
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Table A1. Cont.

Cluster No
Machine

Evaluation
Subjective
Evaluation

Cluster No
Machine

Evaluation
Subjective
Evaluation

46 Normal Normal 121 Normal Normal
47 Slow Slow 122 Normal Normal
48 Fast Fast 123 Slow Slow
49 Normal Normal 124 Slow Slow
50 Slow Normal 125 Slow Slow
51 Normal Normal 126 Normal Normal
52 Slow Slow 127 Slow Normal
53 Very Fast Very Fast 128 Normal Normal
54 Normal Normal 129 Normal Normal
55 Slow Slow 130 Very Fast Normal
56 Very Fast Very Fast 131 Slow Fast
57 Slow Slow 132 Very Fast Very Fast
58 Normal Normal 133 Very Fast Very Fast
59 Normal Normal 134 Slow Slow
60 Fast Fast 135 Slow Slow
61 Slow Slow 136 Normal Normal
62 Normal Normal 137 Fast Very Fast
63 Normal Slow 138 Normal Normal
64 Slow Slow 139 Fast Very Fast
65 Slow Slow 140 Slow Slow
66 Slow Slow 141 Very Fast Very Fast
67 Very Fast Very Fast 142 Slow Slow
68 Normal Normal 143 Very Fast Very Fast
69 Very Fast Very Fast 144 Very Fast Very Fast
70 Normal Normal 145 Normal Normal
71 Normal Fast 146 Normal Normal
72 Slow Slow 147 Normal Normal
73 Very Fast Very Fast 148 Normal Normal
74 Fast Fast 149 Fast Normal
75 Very Fast Very Fast 150 Fast Fast
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Abstract: A Cable-Driven Continuum Robot (CDCR) that consists of a set of identical Cable-Driven
Continuum Joint Modules (CDCJMs) is proposed in this paper. The CDCJMs merely produce 2-DOF
bending motions by controlling driving cable lengths. In each CDCJM, a pattern-based flexible
backbone is employed as a passive compliant joint to generate 2-DOF bending deflections, which
can be characterized by two joint variables, i.e., the bending direction angle and the bending angle.
However, as the bending deflection is determined by not only the lengths of the driving cables but also
the gravity and payload, it will be inaccurate to compute the two joint variables with its kinematic
model. In this work, two stretchable capacitive sensors are employed to measure the bending
shape of the flexible backbone so as to accurately determine the two joint variables. Compared
with FBG-based and vision-based shape-sensing methods, the proposed method with stretchable
capacitive sensors has the advantages of high sensitivity to the bending deflection of the backbone,
ease of implementation, and cost effectiveness. The initial location of a stretchable sensor is generally
defined by its two endpoint positions on the surface of the backbone without bending. A generic
shape-sensing model, i.e., the relationship between the sensor reading and the two joint variables, is
formulated based on the 2-DOF bending deflection of the backbone. To further improve the accuracy
of the shape-sensing model, a calibration method is proposed to compensate for the location errors of
stretchable sensors. Based on the calibrated shape-sensing model, a sliding-mode-based closed-loop
control method is implemented for the CDCR. In order to verify the effectiveness of the proposed
closed-loop control method, the trajectory tracking accuracy experiments of the CDCR are conducted
based on a circle trajectory, in which the radius of the circle is 55 mm. The average tracking errors of
the CDCR measured by the Qualisys motion capture system under the open-loop and the closed-loop
control are 49.23 and 8.40 mm, respectively, which is reduced by 82.94%.

Keywords: cable-driven continuum robot; stretchable capacitive sensors; shape-sensing model;
closed-loop control

1. Introduction

A Cable-Driven Continuum Robot (CDCR) is a multi-degree-of-freedom mechanism
actuated by light cables, which consists of a number of identical Cable-Driven Continuum
Joint Modules (CDCJMs) [1–3]. Each CDCJM is composed of a base platform, a pattern-
based flexible backbone, four driving cables, and a moving platform. Supported by the
flexible backbone, the 2-DOF bending motions of the CDCJM are realized by controlling
the driving cable lengths. The CDCR has the advantages of high flexibility and good
adaptability. Therefore, it has been widely applied for dexterous manipulation in confined
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and complex spaces, such as minimally invasive surgery [4–7], collapsed buildings [8],
space station mock-up environments [9,10], and the on-wing inspection of gas turbine
engines [11,12].

A CDCR generally adopts a flexible backbone as its passive compliant joint to realize
the 2-DOF bending deflections. Due to the disadvantage of low stiffness, the bending
deflection of the flexible backbone is determined by not only the driving cable lengths
but also the gravity and payload, which results in an inaccurate kinematic model of the
CDCR. Therefore, the shape sensing of the flexible backbone is significant for a CDCR,
since employs external measurement devices to measure the bending shape of the flexible
backbone.

The commonly used shape-sensing methods of the continuum robots include the elec-
tromagnetic (EM)-tracking-based shape-sensing method [13–15], the vision-based shape-
sensing method [16–18], and the shape-sensing method based on Fiber Bragg Grating
(FBG) sensor [19–21]. The EM-tracking-based method employs an EM tracking system to
simultaneously realize tip tracking and the shape measurement of the continuum robots.
The EM tracking system consists of the EM field generator and multiple distributed EM
sensors, in which the EM sensors are located along the continuum robots. Based on the
position and orientation of each EM sensor, shape reconstruction algorithms are proposed
in conjunction with the kinematic models of continuum robots. In [22], an extended Kalman
filter is employed for the shape estimation of a surgical snake robot based on the EM sensor
data. In [23], the shape reconstruction algorithm based on the quadratic Bezier curves is
conducted for a CDCR, in which the pose information measured through the EM sensors
and the length information of the robot are utilized to fit the shape of the robot. The
shape-sensing method based on EM sensors is easy to integrate due to the small size of
each EM sensor. However, it will result in the distortion of the EM field when there exist
magnetic and conductive objects, which will decrease the measurement accuracy of the
EM tracking system. Furthermore, the EM tracking method has limited workspace, and its
tracking accuracy varies with the distance from the center of the EM field.

The vision-based shape-sensing method employs stereo cameras, infrared cameras, or
high-speed cameras to measure the shape of the CDCR. In [24], the shape-sensing method
based on stereo vision is proposed, which employs the Self-Organizing Mapping (SOM)
algorithm for the shape reconstruction of a continuum robot based on the point cloud
derived by the cameras. In [25], a marker-based shape-sensing method is proposed, in
which multiple markers are located along the continuum robot. The positions of markers
are measured through cameras, which are utilized to calculate the actual shape of the
continuum robot. Although the vision-based shape-sensing method has high measurement
accuracy, the measurement results are significantly affected by the external environment,
which limits its application in confined spaces. Furthermore, the vision-based shape-
sensing method has a serious time delay, which is not conducive to real-time control of
a CDCR.

The FBG-sensor-based shape-sensing method employs the changes in fiber wave-
lengths to estimate the shape of continuum robots. In [21], the FBG fiber is inserted into
the continuum robot with 1-DOF bending motion, in which the strain of the FBF fiber is
employed to calculate the curvature of the continuum robot. In [26], the helical FBG sensors
are located on the continuum robot, which are utilized for the curvature, torsion, and force
measurement. The FBG-sensor-based shape-sensing method has the advantages of high
resolution, high sensitivity, and high signal-to-noise ratio. However, the FBG sensors have
to employ the interrogation system to demodulate the wavelengths of fibers, which is not
conducive to integration.

The shape-sensing methods mentioned above cannot simultaneously have the advan-
tages of high measuring accuracy, strong anti-interference capability, and the ability to
measure the large bending deflection of the flexible backbone in confined spaces. Therefore,
the shape-sensing method based on stretchable capacitive sensors is employed in this work.
The stretchable capacitive sensors are a class of elastic strain sensors, which are made
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of flexible fabric and conductive nanomaterial to realize strain detection. They have the
advantages of a high stretch rate, high sensitivity, and high stability. The capacitive value of
the sensor will increase with its stretched length. The conventional shape-sensing methods
based on stretchable sensors employ the parallel sensor location scheme, i.e., the location
directions of sensors are parallel to the axis direction of the flexible backbone [27]. Such a
sensor location scheme usually adopts four stretchable sensors for the shape measurement
of the backbone with the 2-DOF bending deflections, which has good robustness. When the
backbone produces the bending deflections, the shapes of sensors are assumed as a circle
attached to the surface of the backbone, which can simplify the shape-sensing modeling
analysis. However, the accuracy of the shape-sensing model with such a sensor location
scheme will significantly decrease when there are location position errors of stretchable
sensors. Furthermore, the parallel location scheme will increase the number of sensors.

In this paper, shape-sensing and closed-loop control based on stretchable capacitive
sensors is proposed for the CDCR with a pattern-based flexible backbone. For the CDCJM
with 2-DOF bending motions, two stretchable capacitive sensors are employed to measure
the bending deflection of the flexible backbone so as to calculate the joint variables of the
CDCJM. Two endpoints of each sensor are located on the surface of the backbone, and
the location of each sensor can be described by four parameters. A generic shape-sensing
modeling method is developed based on the 2-DOF bending deflections of the backbone,
i.e., the relationship between the stretched lengths of two sensors and two joint variables.
Due to the location errors of sensors, the calibration is conducted to further increase
the accuracy of the shape-sensing model and realize the accurate shape measurement
of the CDCR. The proposed shape-sensing method is insensitive to the location position
errors of sensors, which can develop an accurate shape-sensing model with fewer sensors
compared with the shape-sensing method applying the parallel sensor location scheme.
Therefore, it has the advantages of high accuracy, high resolution ratio, and low cost.
Based on the calibrated shape-sensing model, the sliding-mode-based closed-loop control
is implemented for the CDCR.

The rest of this paper is organized as follows. Section 2 presents the configuration
design of the CDCR with a pattern-based flexible backbone. Section 3 addresses the
kinematic analysis of the CDCJM and the CDCR, including the displacement analysis,
the velocity analysis, and the inverse kinematic analysis. Section 4 presents the shape-
sensing modeling method of the CDCJM based on two stretchable capacitive sensors and
the calibration method to compensate for the location errors of sensors. Furthermore,
the closed-loop control is conducted for the CDCR based on the calibrated shape-sensing
model. In Section 5, experiments on the CDCJM and the CDCR are conducted to validate
the effectiveness of the proposed shape-sensing model and the closed-loop control method.
The conclusion of this paper is given in Section 6.

2. Configuration Design of the Cable-Driven Continuum Robot

As shown in Figure 1, a CDCR usually employs a modular design method, which is
composed of a set of identical serially connected CDCJMs. Each CDCJM merely allows
2-DOF bending motions, which consist of a base platform, a moving platform, a flexible
backbone, and driving cables referring to Figure 2. The moving platform of the ith CDCJM
is the base platform of the (i + 1)th CDCJM. The driving cables are evenly mounted on the
base and moving platforms, respectively. The flexible backbone is fixed at the centers of the
base and moving platforms.

In this paper, a pattern-based flexible backbone is employed for the CDCJM, which
possesses low bending stiffness but high tensile stiffness and high torsion stiffness to achieve
the designated 2-DOF bending motions of the CDCJM. The rectangular patterns employed
are inspired by elastic couplings. As shown in Figure 3, each patterned segment has two
rectangular patterns. The structure parameters of the pattern-based flexible backbone
include the inner diameter d1, the thickness t, the width of the pattern a, the distance
between two adjacent patterns l, and the central angle subtended by the pattern β. Since
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the existing stiffness modeling methods of the patterned-based flexible backbone cannot
develop accurate analytical stiffness models when the flexible backbone produces large
bending deflections, an FEA-based data-driven parameter stiffness modeling method is
proposed. Such a stiffness modeling method uses a set of structure parameters within their
dimension bounds and the simulation stiffness values computed by the FEA software to
train the stiffness model. The Gaussian Process Regression (GPR) is employed due to its
capability of solving nonlinear regression problems with fewer training data. Based on the
trained stiffness models, the structure parameter optimization of the flexible backbone is
conducted using the particle swarm optimization method to minimize the ratio of bending
stiffness to tensile stiffness and the ratio of bending stiffness to torsion stiffness. The
optimized structure parameters are given as follows: d1 = 9 mm, t = 4 mm, l1 = 1.1 mm,
a = 0.8 mm, and β = 171.5◦.

Figure 1. Schematic diagrams of a Cable-Driven Continuum Robot: (a) the initial pose without
bending motions; (b) an arbitrary pose.

Figure 2. Schematic diagrams of a Cable-Driven Continuum Joint Module with three driving cables:
(a) the initial pose without bending motions; (b) an arbitrary pose.
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Figure 3. Schematic diagram and structure parameters of the pattern-based flexible backbone.
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3. Kinematic Analysis of the Cable-Driven Continuum Robot

The kinematic analysis issues of the CDCR include the forward kinematics analysis,
the differential kinematics analysis, and the inverse kinematics analysis. Since the CDCR
can be considered as multiple CDCJMs connected in series, the kinematic analysis of the
CDCR can be derived from the kinematic analysis of the CDCJM.

3.1. Kinematic Analysis of the Cable-Driven Continuum Joint Module

Two joint variables are introduced to simplify the kinematic analysis of the CDCJM, as
shown in Figure 4. Based on the unique stiffness properties of low bending stiffness but
high tensile and torsion stiffness, the bending shape of the optimized pattern-based flexible
backbone can be considered as an arc in space with constant curvature. Therefore, the
2-DOF bending motions of the CDCJM can be expressed by two joint variables, including
the bending direction angle α ∈ [0, 2π] and the bending angle θ ∈ [0, π/4].

݈݈̇ ,ߙ ,ߙ̇ߠ ߠ̇ ݔ̇
Figure 4. Three spaces and mapping of the Cable-Driven Continuum Joint Module.

Two coordinate systems, {B} and {E}, are defined for the kinematic analysis of the
CDCJM. The origins and axis directions of {B} and {E} are depicted in Figure 5. The
attachment points of the ith cable at the base and moving platforms are denoted by Bi and
Ei, respectively. The plane Ob AOe is the bending plane of the CDCJM. ObB and OeE are the
intersecting lines of the bending plane with the base and moving platforms, respectively.

3.1.1. Displacement Analysis

The displacement analysis of the CDCJM is to derive the kinematic relationship
between cable lengths and the pose of the moving platform. The relationship between
driving cable lengths and the joint variables is computed by the closed-loop vector method.
As shown in Figure 5, the ith cable length is computed by the norm of the vector

−−→
BiEi:

−−→
BiEi =

−−→
BiOb +

−−→
ObOe +

−−→
OeEi (1)

where
−−→
BiOb,

−−→
ObOe, and

−−→
OeEi are relative to the structure parameters and joint variables of

the CDCJM. Their specific expressions can refer to [28].
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Figure 5. Kinematic diagrams of the Cable-Driven Continuum Joint Module: (a) the initial pose;
(b) an arbitrary pose.
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The analytical expression of the ith cable length is given by

‖−−→BiEi‖2 = (rb − rm)2 + 4 sin2 θ

2

(
L
θ
− rb cos βi

)(
L
θ
− rm cos βi

)
(2)

where L is the length of the flexible backbone. βi = α + (i− 1)π/2 is the rotation angle
from

−−→
ObBi to

−−→
ObB. rb and rm denote the attachment points of cables fixed on the base and

moving platforms, respectively.
According to (2), the expressions of two joint variables are computed by

α = arctan
l2
2 − l2

4
l2
3 − l2

1
(3)

(1− cos θ)

θ
=

√(
l2
3 − l2

1
)2

+
(
l2
2 − l2

4
)2

4L(rb + rm)
(4)

Referring to [28], θ is given as

θ = 3.1136−√9.6557− 11.3636a (5)

where a =
√(

l2
3 − l2

1
)2

+
(
l2
2 − l2

4
)2/(4L(rb + rm)).

Based on the screw theory, the 2-DOF bending motions of the CDCJM can be described
by the rotational movement around an instantaneous screw axis ξ. The rotational angle
is θ. The pose of the moving platform is derived by the two-variable local Product-Of-
Exponential (POE) formula

TB,E(α, θ) = eξ̂θTB,E(0) (6)

where ξ̂ =
[

ω̂ v
0 0

] ∈ se(3) is the twist of the CDCJM. ω and v represent the directional vector
and the position vector of ξ with respect to frame B, respectively.

In (6), TB,E(0) is the initial pose of CDCJM:

TB,E(0) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 L
0 0 0 1

⎤⎥⎥⎦ (7)

Referring to [28], v and ω are given by

v = L
[
−1

2
cos α −1

2
sin α

1
θ
− 1

2
cot

1
θ

]T
(8)

ω =
[− sin α cos α 0

]T (9)

According to (8) and (9), the screw axis is uniquely determined by the joint variables.

3.1.2. Velocity Analysis

As shown in Figure 4, the joint velocity is utilized for the velocity analysis of the
CDCJM, in which the major issue is to compute the Jacobian matrix. The Jacobian matrix
between the cable velocity and the joint velocity can be directly calculated according
to (2), (3) and (5):

JlΦ =

⎡⎢⎢⎣
∂l1
∂α

∂l2
∂α

∂l3
∂α

∂l4
∂α

∂l1
∂θ

∂l2
∂θ

∂l3
∂θ

∂l4
∂θ

⎤⎥⎥⎦
T

(10)
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Based on the Jacobian matrix JlΦ, the cable velocity can be derived as

dl = JlΦ dΦ (11)

where dl =
[

dl1 dl2 dl3 dl4
]T is the cable velocity and dΦ =

[
dα dθ

]T is the
joint velocity.

Based on [28], the instantaneous spatial velocity of the moving platform can be given
by

V̂ B
B,E = ṪB,E(α, θ)T−1

B,E(α, θ) (12)

where V̂ B
B,E ∈ se(3) is a twist described in frame B, whose coordinates are formulated by

V B
B,E = (vB

m, ωB
m) ∈ �6×1. ωB

m and vB
m represent the instantaneous angular velocity and

the linear velocity of the CDCJM, respectively. Their specific expressions are given in [28].
ṪB,E(α, θ) is the derivative of TB,E(α, θ) with respect to the joint variables.

According to (12), the linear velocity of point Oe is derived by

vB
Oe

= ωB
m × p + vB

m (13)

where p =
−−→
ObOe.

Then, JxΦ is formulated as

JxΦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L sin α(cos θ − 1)
θ

L cos α(θ sin θ + cos θ − 1)
θ2

L cos α(1− cos θ)

θ

L sin α(θ sin θ + cos θ − 1)
θ2

0
L(− sin θ + θ cos θ)

θ2

− cos α sin θ − sin α
− sin α sin θ cos α

1− cos θ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

Therefore, the velocity of point Oe can be calculated as

dx = JxΦ dΦ (15)

where dx =
[
vB

Oe
, ωB

m

]T
.

3.2. Kinematic Analysis of the Cable-Driven Continuum Robot
3.2.1. Forward Kinematic Analysis

Due to the modular design approach, the forward kinematic model of the CDCR is
derived from the product of the forward kinematic models of the CDCJMs:

T0,n(α, θ) = T0,1(α1, θ1) · · · T i−1,i(αi, θi) · · · Tn−1,n(αn, θn) (16)

According to (16), the pose of CDCR with respect to the base frame can be derived
when given the number of the CDCJMs and their joint variables.

3.2.2. Differential Kinematic Analysis

Based on (16), the instantaneous spatial velocity of the CDCR is given by

V̂ s
= Ṫ0,nT−1

0,n = Ṫ0,1T−1
0,1 + T0,1

(
Ṫ1,2T−1

1,2

)
T−1

0,1 + · · ·+ T0,n−1

(
Ṫn−1,nT−1

n−1,n

)
T−1

0,n−1 (17)

Substituting (12) into (17) and introducing the operator ∨, (17) can be rewritten as

V s = V1
0,1 + AdT0,1 V2

1,2 + · · ·+ AdT0,n−1 Vn
n−1,n (18)
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where the operator ∨ denotes the mapping from se(3) to �6×1. V s = (vs, ωs) ∈ �6×1 is the
twist coordinate of V̂s, in which ωs and vs represent the spatial angular velocity and the
spatial linear velocity of the CDCR with respect to its base frame, respectively.

AdT0,i ∈ �6×6 is the adjoint transformation of T0,i:

AdT0,i =

[
R0,i p0,iR0,i

03×3 R0,i

]
(19)

Therefore, (18) can be represented by

V s =
[

J1 AdT0,1 J2 · · · AdT0,n−1 Jn
]
φ̇ = Jsφ̇ (20)

where Jn is the spatial Jacobian matrix of the ith CDCJM. φ̇ =
[
φ̇

T
1 , · · · , φ̇

T
n

]T
is the joint

velocity of the CDCR.

3.2.3. Inverse Kinematic Analysis

The inverse kinematic analysis of the CDCR is to calculate the driving cable lengths
when given the tip pose of the CDCR, which is significant for the trajectory planning of the
CDCR. Referring to Figure 4, the inverse kinematic analysis of the CDCR is divided into
two steps. The driving cable lengths can be calculated through (2) when given the joint
variables of the CDCR. The analytical expression of the joint variables relative to the tip
pose of the CDCR is difficult to derive since the CDCR is a hyper-redundant robot.

In this paper, the Newton-Rapson iteration method is employed. Given the desired

pose Td
0,n of the CDCR and the initial guess of joint variables φ0 =

[
α0, θ0

]T
, the pose

T0
0,n of the CDCR based on the initial guess of joint variables is derived through (16). The

derivation between T0
0,n and Td

0,n is given by

dx =

(
log Td

0,n

(
T0

0,n

)−1
)∨

(21)

Based on the differential kinematics analysis, the differential changes in joint variables
are computed by

dφ = (Js)+dx (22)

Then, the joint variables are updated as

φi+1 = φi + dφi+1 (23)

where the right superscripts represent the iterations.
According to (21)–(23), the joint variables are constantly updated until the error be-

tween the desired pose and the tip pose computed by the updated joint variables is within
the allowable range.

4. Shape Sensing of the Cable-Driven Continuum Robot

4.1. Stretchable Capacitive Sensor

To achieve accurate motion control for the CDCR, a closed-loop motion control scheme
is employed for each CDCJM, in which sensor feedback for the bending deflection of the
flexible backbone, i.e., the bending angle and the bending directional angle, is essential.
Since the flexible backbone of the CDCJM can achieve a large bending angle of 45◦ with
unlimited bending direction angles, the sensor has to possess the properties of a high stretch
rate and high sensitivity in order to accurately detect the two joint angles. Among various
strain sensors, the stretchable capacitive sensors made of flexible fabric and conductive
nanomaterial are a class of elastic strain sensors with high sensitivity and high linearity
for strain detection. As such, the stretchable capacitive sensor of Model RH-ESSA-01
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from ElasTech is employed in this work, which has a maximum stretch rate of 50% and a
minimum resolution of 0.05%.

The deflection of the stretchable capacitive sensor is the stretched deflection along its
longitude direction. With the stretched deflection, the capacitance of the sensor will change.
The employed stretchable sensors shown in Figure 6 have a length of 50 mm and a width
of 20 mm, in which the effective sensing length is 40 mm. The relationship between the
stretched length of the sensor and its corresponding capacitance is given in Figure 7. The
result verifies the employed stretchable sensor has high linearity. The analytical expression
through the curve fitting is given by

C = 2.082Δls + 61.75 (24)

Figure 6. Prototypes of the stretchable capacitive sensors.

Figure 7. Relationship between the stretched length of a stretchable capacitive sensor and its corre-
sponding capacitance.

4.2. Shape-Sensing Model of the Cable-Driven Continuum Joint Module

The shape-sensing model of the CDCJM is to derive the analytical expressions between
the stretched lengths of stretchable sensors and the joint variables α and θ of the CDCJM.
In this paper, a generic shape-sensing modeling method is proposed for the CDCJM, in
which two joint variables can be measured through the stretched lengths of two stretchable
capacitive sensors. Two stretchable capacitive sensors are located in arbitrary positions
on the surface of the flexible backbone, and the location of each sensor is defined by
its two endpoints. The width of the sensors is ignored in this paper, and each sensor
can be simplified as a straight line. Since the surface of the flexible backbone without
bending is a cylinder, the sensor can be considered as a helix along the cylinder, as shown
in Figure 8. When the CDCJM produces the bending motions, the shape of the flexible
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backbone becomes a part of the torus, as shown in Figure 9. The location of each sensor
varies from the bending deflections of the flexible backbone. The stretched length of a
sensor is used to calculate the variation in the distance between two endpoints of the sensor
on the surface of the backbone.

As shown in Figure 8, the two endpoints of the sensor are denoted by S1 and S2,
respectively. An arbitrary point on the sensor is denoted by point S. Frame {B} referring
to Figure 5 is employed as the base frame of the flexible backbone. The intersection point
between the xb axis of frame {B} and the backbone surface is denoted by point A. The
flexible backbone is unfolded into a plane ABB′A′ along the straight line AB. A rectangular
coordinate system is established at point A. The helix in the plane ABB′A′ is a straight
line S1S2, in which the angle between the x-axis and the line S1S2 is denoted by λ and
the intercept of the line S1S2 on the y-axis is denoted by b. The helix is projected onto the

bottom of the flexible backbone and the projected arc is denoted by
�

S′1S′2. The projection

point of point S is denoted by S′. t ∈ [t0, t0 + Δt] is the angle between the vector
−−→
ObS′ and

the xb-axis, in which t0 is the angle between the vector
−−→
ObS′1 and the xb-axis. Therefore,

the location of the sensor is defined by four parameters, i.e., b, λ, t0, and Δt. b and t0 are
employed to determine the endpoint position of the sensor. λ is employed to describe
the attachment angle of the sensor. Δt is employed to represent the length of the sensor.
a = [b, λ, t0, Δt] is produced to denote the location of the sensor.
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Figure 8. Schematic diagrams of the flexible backbone without bending and the corresponding
projection views: (a) model of the flexible backbone attached with a stretchable capacitive sensor;
(b) two-dimensional unfolded surface of the flexible backbone; (c) bottom plane of the flexible
backbone and the corresponding projection of the sensor.

As shown in Figure 9, the intersection between the plane parallel to the bottom of the
flexible backbone at point S and the neutral axis of the flexible backbone is denoted by
point F. A local coordinate system {F} is established at point F, in which the axes of frame
{F} are consistent with those of frame {B} when the flexible backbone is in the initial state.
The coordinates of the point S with respect to frame {F} and frame {B} are given by

PF
S(0) = [r cos(t), r sin(t), 0]T (25)

PB
S (0) =

⎡⎣ xB
S (0)

yB
S (0)

zB
S (0)

⎤⎦ =

⎡⎣ r cos t
r sin t

r · t tan λ + b

⎤⎦ (26)

where r = (d1 + 2t)/2 is the radius of the flexible backbone.
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Figure 9. Schematic diagrams of the flexible backbone with a stretchable capacitive sensor in its
bending state: (a) model of the flexible backbone without bending; (b) model of the flexible backbone
with the bending deflection.

When the flexible backbone produces the bending deflection, a coordinate system {N}
is introduced as a local frame, in which the origin is located at point F. The N1 axis points
to the center of curvature M and the N3 axis is tangent to the neutral axis of the flexible
backbone. The coordinates of point S expressed in frame {N} becomes

PN
S (α) = [r cos(t− α), r sin(t− α), 0]T (27)

The unit directional vectors of the N1, N2, and N3 axes described in frame {B} are
derived by

N1 =

⎡⎣ cos α cos(γ(t))
sin α cos(γ(t))
− sin(γ(t))

⎤⎦ (28)

N2 =

⎡⎣ − sin α
cos α

0

⎤⎦ (29)

N3 = N1 × N2 (30)

Therefore, the orientation matrix of frame {N} is given by

N = [N1, N2, N3] (31)

Based on the constant curvature assumption, the coordinate of point F described in
frame {B} is calculated by

PB
F(α, θ) =

⎡⎣ xB
F

yB
F

zB
F

⎤⎦ =

⎡⎣ R(1− cos(γ(t))) cos α
R(1− cos(γ(t))) sin α

R sin(γ(t))

⎤⎦ (32)

where R = L/θ is the radius of the backbone bending curvature. γ(t) = z0θ/L =
(r · t tan λ + b)θ/L is the angle between the line FM and the line Ob M.
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According to (27), (32), and (31), the coordinates of the point S with respect to frame
{B} are derived by

PB
S (α, θ) = N · PN

S (α) + PB
F(α, θ)

=

⎡⎢⎢⎢⎢⎣
r cos(−t + α) cos(α) cos(γ(t)) + r sin(−t + α) sin(α)+

R(1− cos(γ(t))) cos(α)
r cos(−t + α) sin(α) cos(γ(t))− r sin(−t + α) cos(α)+

R(1− cos(γ(t))) sin(α)
−r cos(−t + α) sin(γ(t)) + R sin(γ(t))

⎤⎥⎥⎥⎥⎦
(33)

Based on the geometrical relationship shown in Figure 8, the initial length of the sensor
is derived by

ls(0) =
Δt · r
cos λ

(34)

where ls(0) represents the length of the sensor in the initial state.
Differentiating the both sides of (33), it becomes(

dPB
S

dt

)2

=

(
∂x
∂t

)2
+

(
∂y
∂t

)2
+

(
∂z
∂t

)2

=
(tan λ)2θ2r2

(
L
θ − r cos(t− α)

)2

L2 + r2

= (tan λ)2r2
(

1− r
L

θ cos(t− α)
)2

+ r2

= r2 ·
(
(tan λ)2(1− kθ cos(t− α))2 + 1

)
(35)

where k = r/L.
Therefore, the stretched length of the sensor relative to α and θ is calculated by

Δls =
∫ t0+Δt

t0

dPB
S dt− ls(0)

= r
∫ t0+Δt

t0

(√
(tan λ)2(1− kθ cos(t− α))2 + 1− 1

cos λ

)
dt

(36)

According to (36), the numerical iteration method is employed to solve the joint vari-
ables when given the stretched lengths of sensors. Therefore, it needs to solve the Jacobian
matrix between the stretched lengths of sensors and the joint variables. Differentiating both
sides of (36), it becomes

∂Δls
∂α

= r(g(θ, α, λ, t0, k)− g(θ, α, λ, t0 + Δt, k)) (37)

∂Δls
∂θ

= r

⎛⎝∫ t0+Δt

t0

−
(

g(θ, α, λ, t, k)2 − 1
)

k cos(t− α)

g(θ, α, λ, t, k)
dt

⎞⎠ (38)

where g(θ, α, λ, t, k) =
√
(tan λ)2(1− kθ cos(t− α))2 + 1.
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Assume that the number of stretchable capacitive sensors is m. The Jacobian matrix
between the stretched lengths of sensors and the joint variables is defined as

Ja =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Δls1

∂α

∂Δls1

∂θ
∂Δls2

∂α

∂Δls2

∂θ
...

...
∂Δlsm

∂α

∂Δlsm

∂θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(39)

where Δlsi(i = 1, 2, ..., m) represents the tensile length of the ith sensor.
When the flexible backbone produces the bending deflection, the stretched lengths

of sensors la
s =

[
la
s1, · · · , la

sm
]T are derived according to their capacitances. Given the

initial guess of joint variables, the initial stretched lengths of sensors l0
s =

[
l0
s1, · · · , l0

sm
]T

are calculated based on (36). Then, the derivation between l0
s and la

s is calculated. The
differential changes in joint variables are given by

dφ = (Ja)
+dls (40)

The joint variables are updated referring to (23) until dΔls is within the allowable
range. In order to further verify the feasibility of the proposed shape-sensing model based
on the numerical iteration method, a computation example is provided. In this example,
two stretchable capacitive sensors are employed, such that Ja ∈ �2×2. The structure
parameters of the flexible backbone and the locations of two sensors are given in Table 1.

Table 1. Structure parameters of the flexible backbone and the locations of the sensors for the
computation example.

Property Value

Flexible backbone length L 120 mm
Flexible backbone radius r 10 mm

Attachment position of the first sensor a1 [20 mm, 5π/12 rad, π/2 rad, π/3 rad]
Attachment position of the second sensor a2 [50 mm, 2π/5 rad, π/12 rad, π/3 rad]

The stretched lengths of the two sensors are given by Δls1 = −3.15 mm and Δls2 =
−3.39 mm. The initial guesses of the joint variables are α = 0.76 rad and θ = 1.07 rad. The
average stretched length error of two sensors is calculated and its convergence result is
shown in Figure 10. The updated joint variables are α = 1.26 rad and θ = 1.57 rad.

Figure 10. Convergence result of the stretched length error.
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4.3. Calibration of Locations for Stretchable Capacitive Sensors

Due to the location errors of sensors, there exist derivations between the nominal
stretched lengths and the actual stretched lengths, which will decrease the accuracy of
the developed shape-sensing model. Therefore, it is necessary to calibrate the locations of
sensors. Referring to (36), the stretched lengths of the sensors are determined by λ, t0, and
Δt. d = [λ, t0, Δt] is produced to denote the stretched parameters of the sensor that need to
be calibrated. Based on (36), the derivatives of the stretched length for a sensor relative to
λ, t0, and Δt are calculated by

∂Δls
∂λ

= r

⎛⎝∫ t0+Δt

t0

⎛⎝ tan λ(1− kθ cos(−t + α))2
(
(tan λ)2 + 1

)
g(θ, α, λ, t, k)

− sin λ

(cos λ)2

⎞⎠dt

⎞⎠ (41)

∂Δls
∂t0

= r(g(θ, α, λ, t0 + Δt, k)− g(θ, α, λ, t0, k)) (42)

∂Δls
∂Δt

= r(g(θ, α, λ, t0 + Δt, k)− 1
cos λ

) (43)

The Jacobian matrix of the sensor stretched lengths relative to λ, t0, and Δt is given by

Jb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Δls1

∂λ

∂Δls1

∂t0

∂Δls1

∂Δt
∂Δls2

∂λ

∂Δls2

∂t0

∂Δls2

∂Δt
...

...
...

∂Δlsm

∂λ

∂Δlsm

∂t0

∂Δlsm

∂Δt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(44)

Similarly, the numerical iteration method is utilized to derive the actual locations of
sensors based on (44).

4.4. Closed-Loop Control of the Cable-Driven Continuum Robot

Based on the calibrated shape-sensing model, closed-loop control is conducted for
the CDCR, as shown in Figure 11. In this paper, sliding mode control is employed as the
control method for the CDCR, which is a robust control method that can effectively solve
the control problem under parameter uncertainty.

Figure 11. Block diagram of the closed-loop control method for the Cable-Driven Continuum Robot.

For the CDCR, the dynamic equation expressed in the motor frame is given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = f (q, q̇) + u (45)

where M(q)q̈, C(q, q̇)q̇, and G(q) are the generalized mass term, coriolis and centrifugal
force terms, and the gravitational force term of the CDCR, respectively. f (q, q̇) is the
frictional force term of the CDCR. u is the actuation force term of the motors. q is the
rotation angle vector of the motors.
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Given the desired pose xd of the CDCR, the desired rotation angle vector qd can be
computed based on the inverse kinematic analysis. The rotation angle errors of the motors
are denoted by q̃ = qd − q. Therefore, (45) can be rewritten as

M(q) ¨̃q + C(q, q̇) ˙̃q = G(q)− f (q, q̇)− u + M(q)q̈d + C(q, q̇)q̇d

= η− u
(46)

The sliding mode surface is given as

s = cq̃ + ˙̃q (47)

ṡ = c ˙̃q + ¨̃q (48)

where c ∈ �m×m is a diagonal matrix. m is the number of motors.
Substituting (48) into (46), it becomes

M(q)ṡ = M(q)c ˙̃q− C(q, q̇) ˙̃q− u + η (49)

Let μ = η−M(q)c ˙̃q + C(q, q̇)cq̃ + s, (49) becomes

M(q)ṡ = −s− u + μ− C(q, q̇)s (50)

The Lyapunov function is constructed as

V =
1
2

sTM(q)s (51)

According to (51), its differential equation is calculated as

V̇ = sTM(q)ṡ +
1
2

sTṀs (52)

Let u = ksup(s) + kps, V̇ is positive when k ≥ sup‖μ‖.

5. Experimental Results

5.1. Experimental Verification of the Cable-Driven Continuum Joint Module

The experiment of the CDCJM includes the stability measurement of the stretchable
sensors and the accuracy test of the developed shape-sensing model under the proposed
calibration method. The experimental prototype of the CDCJM is shown in Figure 12,
which consists of motors, the prototype of the CDCJM, the motion capture system, and two
stretchable sensors. The Qualisys motion capture system includes six cameras and markers,
which have a measurement accuracy of 0.32 mm. The type of camera is an Opus 500. The
markers are evenly fixed on the base platform and the moving platform of the CDCJM, in
which the coordinates of the markers are measured to calculate the pose of the CDCJM.
The transformation matrix TB

E is calculated by

TB
E = Tcam

E (Tcam
B )−1 (53)

where Tcam
E and Tcam

B represent the transformation matrices of frame {E} frame {B} with
respect to the camera coordinate system, respectively.
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Figure 12. Experimental setup of the Cable-Driven Continuum Joint Module: (a) pose measurement
system with motion capture cameras; (b) prototype of the Cable-Driven Continuum Joint Module
with two stretchable capacitive sensors.

In order to measure the stability of the stretchable capacitive sensors, the moving
platform of the CDCJM follows a circle trajectory, in which the bending angle θ is a
constant of 0.3 rad and the bending direction angle α varies from 0 rad to 2π rad. The
nominal locations of two stretchable capacitive sensors are dnom1 = [4π/9, π/2, π/2] rad
and dnom2 = [−π/3, 3π/4, π] rad, respectively. The initial length of each sensor is 50 mm,
and its prestretch length is 6 mm. The capacitance changes in two stretchable sensors are
shown in Figure 13. With the bending motions of the CDCJM, the capacitances of the two
stretchable sensors vary with their stretched lengths. When the CDCJM returns to its initial
pose, the capacitance changes in the two stretchable sensors are zero.

Figure 13. Capacitance of two stretchable sensors during the sensor stability test experiment.

Furthermore, the calibration of the locations for two stretchable sensors is conducted to
increase the accuracy of the developed shape-sensing model. When given the nominal joint
variables, the nominal stretched lengths of two sensors and their corresponding capacitance
changes can be calculated according to (36) and (24), respectively. Three experimental
poses are shown in Figure 14. The actual capacitance changes are measured through the
data collection module. The capacitance errors of two sensors between the nominal values

148



Sensors 2024, 24, 3385

and the measured values are shown in Figures 15 and 16, which results from the location
errors of the sensors. The average capacitance errors of the two sensors before calibration
are 0.4433 pF and 0.3916 pF, respectively. Based on the numerical iteration method, the
calibrated locations of two stretchable sensors are dc1 = [1.3897, 1.1887, 1.5708] rad and
dc2 = [−1.1545, 2.9663, 3.1416] rad, respectively. According to the calibrated parameters,
the capacitance errors of the two sensors after calibration are reduced to 0.1123 pF and
0.0679 pF, respectively. Based on the calibrated shape-sensing model, the verification
trajectory is introduced, in which the bending angle θ is a constant of 0.15 rad and the
bending direction angle α varies from 0 rad to 2π rad. The capacitance errors of the two
sensors between the calibrated values and the actual values after calibration are 0.0988 pF
and 0.0367 pF, respectively. The errors of α and θ between the measured values and the
actual values are about 0.03 rad and 0.01 rad, respectively.

Figure 14. Experimental poses of the Cable-Driven Continuum Joint Module.

Figure 15. Calibration results of the first stretchable sensor: (a) capacitance errors before calibration;
(b) convergence result of the capacitance errors; (c) capacitance errors after calibration; (d) capacitance
errors of the verification trajectory after calibration.
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Figure 16. Calibration results of the second stretchable sensor: (a) capacitance errors before calibration;
(b) convergence result of the capacitance errors; (c) capacitance errors after calibration; (d) capacitance
errors of the verification trajectory after calibration.

5.2. Experimental Verification of the Cable-Driven Continuum Robot

In order to verify the effectiveness of the kinematics control method based on the
calibrated shape-sensing model, the experiment of the CDCR is conducted. The prototype
of the CDCR with multiple stretchable sensors is shown in Figure 17, which is composed of
four CDCJMs. The flexible backbone of each CDCJM employs two stretchable sensors to
measure its joint variables. The trajectory tracking accuracy of the CDCR is measured based
on a circle trajectory, in which the radius of the circle is 55 mm. As shown in Figure 18, the
tracking errors of the CDCR under the open-loop control and the closed-loop control are
49.23 and 8.40 mm, respectively. Compared with the tracking error under the open-loop
control, the tracking error under the closed-loop control is reduced by 82.94%.

Figure 17. Experimental pose of the Cable-Driven Continuum Robot.
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Figure 18. Trajectory tracking accuracy of the Cable-Driven Continuum Robot under open-loop
control and closed-loop control.

6. Conclusions

This paper proposes a generic shape-sensing modeling method for a Cable-Driven
Continuum Robot (CDCR) with a flexible backbone. For the Cable-Driven Continuum
Joint Module (CDCJM) with 2-DOF bending motions, its joint variables can be measured
through stretched lengths of two stretchable sensors. Combined with the calibration of the
locations for the sensors, the accurate measurement of the joint variables can be realized.
The proposed shape-sensing modeling method has the advantages of good stability, high
resolution ratio, high accuracy, and good antidisturbance ability. Based on the calibrated
shape-sensing model, the sliding-mode-based closed-control method is implemented for
the CDCR. The accuracy of the calibrated shape-sensing model is measured during the
experiments, in which the capacitance errors of the sensors between the calibrated values
and the actual values are 0.0988 pF and 0.0367 pF, respectively. The corresponding errors
of the two joint variables α and θ are about 0.03 rad and 0.01 rad, respectively. According
to the experimental result, the tracking error of the CDCR is reduced from 49.23 mm to
8.40 mm under the closed-loop control, which verifies the effectiveness of the proposed
kinematic control method based on the calibrated shape-sensing model.
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Abbreviations

The following abbreviations are used in this manuscript:

CDCR Cable-Driven Continuum Robot
CDCJM Cable-Driven Continuum Joint Module
EM ElectroMagnetic
FBG Fiber Bragg Grating
SOM Self Organizing Mapping
DOF Degree Of Freedom
FEA Finite Element Analysis
GPR Gaussian Process Regression
POE Product Of Exponential
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Abstract: Recent technological advances have made it possible to produce tiny robots equipped with
simple sensors and effectors. Micro-robots are particularly suitable for scenarios such as exploration
of hostile environments, and emergency intervention, e.g., in areas subject to earthquakes or fires. A
crucial desirable feature of such a robot is the capability of adapting to the specific environment in
which it has to operate. Given the limited computational capabilities of a micro-robot, this property
cannot be achieved by complicated software but it rather should come from the flexibility of simple
control mechanisms, such as the sensory–motor loop. In this work, we explore the possibility of
equipping simple robots controlled by Boolean networks with the capability of modulating their
sensory–motor loop such that their behavior adapts to the incumbent environmental conditions.
This study builds upon the cybernetic concept of homeostasis, which is the property of maintaining
essential parameters inside vital ranges, and analyzes the performance of adaptive mechanisms
intervening in the sensory–motor loop. In particular, we focus on the possibility of maneuvering
the robot’s effectors such that both their connections to network nodes and environmental features
can be adapted. As the actions the robot takes have a feedback effect to its sensors mediated by
the environment, this mechanism makes it possible to tune the sensory–motor loop, which, in turn,
determines the robot’s behavior. We study this general setting in simulation and assess to what extent
this mechanism can sustain the homeostasis of the robot. Our results show that controllers made of
random Boolean networks in critical and chaotic regimes can be tuned such that their homeostasis
in different environments is kept. This outcome is a step towards the design and deployment of
controllers for micro-robots able to adapt to different environments.

Keywords: sensory-motor loop; Boolean networks; homeostasis

1. Introduction

The pace at which robot technology proceeds has rapidly stepped up in recent years.
In addition to complex robots, such as humanoid ones and unmanned rovers, small robots
of millimeter or micrometer size have been released. Such robots are often inspired by
insects and bugs, and are usually equipped with a few simple sensors and actuators, and
are characterized by limited computational capabilities. A prominent scenario for these
robots is that of swarms to be applied in exploration of hostile environments and emergency
intervention. The missions robots have to accomplish in these situations require capabilities
such as autonomy and adaptiveness. AI techniques provide effective and efficient solutions
to address these issues. Nevertheless, the reduced computational capabilities of micro-
robots make these techniques often inapplicable, hence the need for alternative forms
of control that are simpler yet still able to produce adaptive behaviors. A theoretical
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framework for defining this problem and finding solutions to it is that of embodied AI [1,2],
which relies on the sensory–motor loop that connects the robot with the environment and
makes it possible for a robot to adapt. The sensors produce the information the robot uses
to determine its actions, which modify the environment through the effectors; this, in turn,
generates possibly new sensor readings. Hence, the actions of the robot can influence its
sensing. This feedback loop is at the basis of elementary yet non-trivial behaviors, such
as gradient following and motion avoiding dangerous areas. The sensory–motor loop
also plays a significant role in the integration in time of sensor signals, often making it
possible to extract relevant information from the environment that is not directly perceived
by sensors. For example, by combining movement and light perception, a robot can
estimate the height of an object [3]. However, for a robot to be adaptive, mechanisms to
change and tune the sensory–motor loop are needed. As beautifully stated by Ashby [4],
organisms adapt to their environment “for the better”. In robotics, this condition is usually
expressed in terms of a merit factor expressed in terms of a utility function, which guides
the adaptation process. The utility function is mostly based on the specific task the robot
has to accomplish and it is given by the designer beforehand. This is of course a common
and feasible approach when the most relevant features of the environment and the task
can be modeled in advance. Nevertheless, in some situations, like emergencies, such
predefined utility functions might not capture the actual “good” for the robot. In such cases,
the robots should be equipped with general, task-agnostic rules for acting and adapting.
These rules are commonly called values. The ultimate value is self-maintaining, which can
be formally stated as homeostasis, i.e., the capability of keeping the system in a working
condition despite the changes in the environment. Notably, the ability of maintaining
homeostasis in changing environments can be interpreted as a way of making sense of
the environmental features that are relevant to the robot. This perspective is not new, as it
has been thoroughly discussed in fields such as cybernetics and cognitive systems [3–13].
Keeping this context as a reference, in this work, we discuss the results of a study aimed
at investigating and exploring possible adaptive mechanisms for micro-robots controlled
by simple circuits. Since the typologies and features of micro-robots are—and will be—
extremely varied, we focus on a kind of control software that can match any specific
instance of physical robots. Therefore, the level of abstraction of our investigation is at
the control layer, independently of the actual physical robot. In particular, we concentrate
our attention to control software based on Boolean networks and we study the properties
of simulated robots that have to keep their homeostasis in front of environment changes.
This work is aimed at providing guidelines and suggestions for designing new control
mechanisms capable of enabling adaptivity, especially in micro-robots. Other authors have
approached the topic of homeostasis from different perspectives, e.g., through the lens of
active inference [14] and within the framework of active perception [15], to name just a few.

Our investigation is inspired by cybernetics, minimally cognitive robotics and dynam-
ical systems, and tries to bridge this theoretical background to robot control methods and
technologies. To the best of our knowledge, this is the first time such a study is presented.
Nevertheless, Boolean network controllers for robots—and their connections to dynamical
criticality—have been already studied, mainly by some authors of this contribution, [16,17].
In [17], an offline adaptation of a robot controlled by Boolean networks has been presented,
while online adaptation has been investigated in [16], where it is shown that Boolean
networks poised at a dynamical regime between order and disorder are the one that enable
the robot to achieve the best performance. The adaptive mechanisms devised in [16] are
similar to those used in this work. Nevertheless, in previous works, robots learned to
accomplish a specific task in a given environment, while they have to be able to adapt and
maintain their operative status in this work.

In Section 1, we introduce the model used in our experiments. As we are dealing
with simulated robots, we will use the terms agent and robot interchangeably. In Section 2,
we present the robot’s and environment’s models along with the adaptive mechanism
employed by the robot to achieve homeostatic condition when coping with a changed
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environment. The results for the specific scenario of coupled robot–environment sys-
tems studied are described in Section 3, while Section 4 discusses their possible general
implications. Section 5 is devoted to the presentation of the conclusion.

2. The Model

The main elements that have to be defined for setting up experiments of autonomous
agents in a changing environment are (i) an autonomous agent, and (ii) a dynamic environ-
ment in which the moves of an agent can have effects in a simple (enough to be useful for
designing experiments) but effective way. Further, (iii) it is necessary to allow the agent to
establish what is advantageous and what is not.

This last characteristic is perhaps the most delicate, as we aim at meanings/benefits
to emerge without design, or to be “autonomously decided” by the system immersed in
a dynamically changing environment, without an explicit design by the experimenters.
At the same time, much of the meaning/usefulness actually depends on the interaction
between the agent and the particular environment and on the active feedback loops. The
role of the sensory–motor mechanisms lies precisely in this last aspect, which we will focus
on in this work. In order to highlight this last aspect, we will assume that the agent is
already in a “good” situation due to a previous history (evolution for living beings, explicit
design for artificial systems), and it is exposed to new environments. A general goal of any
agent in such a situation is to keep its internal situation stable and coherent (homeostasis).
If the new environment has changed this situation, the agent should react by influencing
the environment in order to restore the state of well-being.

2.1. Agent’s Model

We are interested in simulating an agent moving in an unknown environment: the
agent and the environment each have their own dynamics, while the exchange of infor-
mation between the two systems occurs through the sensors and actuators of the agent.
The internal states of the agent and their relationships are represented through a random
Boolean network (RBN). The environment must have non-obvious dynamics, which can
be modified through the interaction of an external system (the robot) with the features of
the environment itself. An elegant way to model a reactive environment is to realize it via
another RBN.

Boolean networks (BNs) are simple but powerful discrete models of gene regulatory
networks, introduced by Kauffman [18,19]. BNs can be defined mathematically as a directed
graph with N nodes whose node states are described by Boolean variables xi , i = 1, ... , N,
which can take the values ON or OFF, and their evolution over time is described by Boolean
functions fi

(
xi1 , ... , xiMi

)
, where Mi is the number of inputs of node i. Random Boolean

networks (RBNs) are a special class of BNs, a class determined by parameters that impose
constraints on the connections between nodes and on their dynamics.

A noteworthy RBN class is one in which each node receives an exact number of inputs,
determined by the K parameter, chosen randomly from the other nodes and avoiding
self-loops, and in which the probability of having the value 1 in each entry in the truth
tables of the Boolean functions is determined by the p parameters, called bias. In these
works [20,21], the authors showed that this mathematical relationship between p and K,
K = [2p (1− p)] −1, describes the set of RBNs that fall in the order-disorder phase transition,
the so-called critical line for RBNs. Perturbations in RBNs in the ordered dynamical regime
generally die out quickly, whereas they spread out in disordered networks. Networks in
disorder regime are also characterized by very long cyclic attractors.

In contrast, networks in the critical regime—those falling into the region described by
the above equation—show a balance between adaptability and robustness that has led to
the formulation of the conjecture that life and computation exist at the edge of chaos, the
criticality hypothesis [22–25].
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Critical RBNs have proven capable of properly reproducing many biological pro-
cesses [26–34] and have proven efficient when used as controllers of artificial agents, such
as robots [27].

The robot’s effectors can therefore be represented through nodes that are able to
influence the state of nodes belonging to the environment (hereinafter called “features”),
while its sensors are nodes that receive signals from some features of the environment. For
simplicity, we assume that the value of a sensor node is influenced by only one feature of
the environment, and similarly the value of an effector node influences only one feature
of the environment. In a physical implementation, this implies that the Boolean value of
each output node of the network controls an effector via a given encoding (e.g., in the
case of a device controlled by an impulse, the Boolean values naturally correspond to
minimum/maximum voltage applied). Similarly, an input node assumes a Boolean value
which is the result of an encoding from a possibly continuous to Boolean domain (e.g.,
values from [0, 1] can be converted simply by introducing a threshold). The state of the
robot’s well-being is measured by the distance from homeostasis of a subset of its nodes
(the “essential nodes”). To avoid trivial dynamics, the three sets (sensor nodes, effector
nodes and essential nodes), whose sum of cardinalities is less than the total number of
robot nodes, are non-overlapping (see Figure 1).

There is a “universal time”, common to the robot and the environment, which proceeds
in discrete steps and regulates the succession of events. However, the internal processes of
the robot can be slower or faster than the environmental processes: each of the two systems
therefore has an internal variable (called, respectively, agent_step and env_step) which
establishes how many “universal” steps must pass to allow the application of the internal
dynamical rules. If the values of these variables are the same both systems proceed in
synchronization, otherwise the system that has a higher value is “slower” than the other
one; as a special case, if the value of both the variables is equal to 1, robot and environment
proceed paired, at maximum speed.

Figure 1. Agent interacting with an environment. It detects the environment features by using its
sensors and acts on some features of the environment by using the effector nodes. The essential nodes
are highlighted in pink.
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It is therefore needed to describe the interaction between two systems that can have
different speeds. For each sensor node, it is necessary to define (i) the perceived value
of the environmental feature to which it is associated and (ii) its response to that value.
It was therefore decided that (a) the perceived value is equal to the average of a number of
universal steps of the environment equal to agent_step, while (b) the response of the sensor
node is equal to “0” or “1” depending on that the perceived average is below or above a
threshold θ∈]0,1[ (in the particular case that env_step is equal to 1, the perceived value is
the value of the node itself, and any threshold does not modify its value).

An effector node acts on a specific feature of the environment. The mechanism is
symmetrical to the previous one: (a) the value perceived by the environmental feature is
equal to the average of a number of universal steps of the robot equal to env_step, while (b)
the response of the feature is equal to “0” or “1” depending on that the perceived average
is below or above a threshold θ∈]0,1[. This “response” is the value that the node effector of
the robot manages to apply on the feature of the environment. See Figure 2.

Figure 2. Example of how nodes are read with an environment with env_step = 1 and agent with
agent_step = 4. In this case, the environment just averages on one value of the agent, while the agent
averages the 4 last environment steps.

As anticipated, we assume that the robot without an environment is already in its
ideal situation: once exposed to an unknown environment it must therefore act in such a
way as to restore this situation, at least for the essential nodes. The ideal profile is therefore
defined as the average, essential node by essential node, taken over a η steps performed by
the robot without any environment (be Xid,η the vector of these averages).

We then evaluate the distance from this ideal situation during the life of an agent T
times (each evaluation being interspersed with ω agent steps) and consider the average of
these values; in this paper we assume the Euclidean distance:

D =
∑T

n=1 d
(

Xe,ω, Xid,η

)
T

=
∑T

n=1 ‖Xe,ω, Xid,η‖2
T

(1)

The lifetime of an agent measured in universal steps is therefore equal to T “trials”,
multiplied by ω steps, multiplied by agent_step:

Lagent = ω · T · agent_step (2)
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2.2. Adaptive Mechanisms

To use the characteristics of the environment in order to maintain its well-being
(homeostasis), the robot must therefore choose the features on which to act and those from
which to derive utility.

To avoid trivial situations in this paper we do not allow the robot to choose the features
of the environment from which to draw utility, nor its nodes that are connected to these
features. The aim of the robot is therefore given its characteristics (its internal structure
and the characteristics of the sensor nodes), to discover where and how to act on the
environment (through the choice of the effector nodes and the features of the environment
on which they act), in order to receive from it (through the features of the environment
to which the sensor nodes are connected) the stimuli needed to maintain homeostasis
(minimize the distance of the essential nodes from their ideal profiles).

We can think of the robot’s learning as a succession of its versions, each deriving from
the best of the previous ones. Each version has the same lifespan and starts from the same
initial conditions and is evaluated in the way just described (Equation (1)). The robot thus
tests in an organized manner the various possibilities offered by the interaction between
itself and the environment, until it reaches the maximum possible number of tests. In each
change step, the next version is accepted only if its distance from the ideal profiles of the
essential nodes is equal to or lower than that of the previous one: at the end of the process
the final version of the robot is obtained.

Changes can be performed following three strategies:

1. Change the effector nodes, leaving the features of the environment on which they
act unchanged;

2. Maintain the effector nodes, and change the features of the environment on which
they act;

3. Change both the effector nodes and the features of the environment on which they act.

The basic steps defining adaptation strategy 1 and 3 are actually the same as those
used in the online adaptation mechanism proposed in [27]. See Figure 3.

Figure 3. Example of evolution of an agent. The generation 1 is rejected because a higher value of D.

3. Results

Below, we will present results for the case that, roughly speaking, we can describe as
“fast environment and slow robot”, that is, the case where env_step = 1 and agent_step = 10.

In general, this scenario should give the dynamics of the environment time to relax on
one of its attractors upon the perturbation received by the agent on its features.
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This should, in turn, allow the robot to receive a response (sensory input) mediated
by the environment that is as time consistent as possible with the action that triggered
it (performed by the robot itself), thus unaffected by possible fluctuations resulting from
transients of the environment dynamics.

We are also interested in observing how the dynamical regime expressed by a Boolean
network can influence its bouquet of responses if immersed in unknown environments.

We calculate Derrida’s coefficient to evaluate the dynamical regime in which a Boolean
network operates. Derrida’s coefficient λ measures the average level of propagation of
a perturbation after a simulation step. Statistically, λ > 1 characterizes chaotic networks,
λ < 1 ordered networks while λ = 1 critical networks. To calculate it for a single Boolean
state, we copied or negated one of its variables; we then performed a synchronous update
for both the original and the perturbed state and finally measured the Hamming distance
between the two resulting states. Next, we averaged the values by repeating this procedure
80 times for each of the 250 initial conditions, resulting in 20,000 total occurrences.

3.1. The Three Strategies

We carried out a series of experiments, in which robots were immersed in unknown
environments. These environments must have their own dynamics and timing: for this
purpose we once again used the RBN framework. We, therefore, created 10 instances of
RBNs, each having 50 nodes and average connectivity equal to 3: the bias p equal to 0.21
implies a critical dynamical regime (as a check, we measured the Derrida coefficients of
each environment, which all turned out to be close to 1.0).

In a preliminary series of experiments, we evaluated the homeostasis recovery capacity
of ensembles of robots (with critical and chaotic dynamical regimes) once they were exposed
to each of 10 environments. Once immersed in an environment, each robot was typically
distanced from its “ideal” state, and applied one of the three strategies reported above to
decrease (if not eliminate completely) this distance (measured as in Equation (1)). In each
environment Ej, we used the relative decrease in the distance from the ideal profile as an
evaluation of the capacity for homeostasis of robot Ri:

Gi
(
Ej
)
=

Di
initial

(
Ej
)− Di

f inal
(
Ej
)

Di
initial

(
Ej
) (3)

so that the performance of each robot Ri is the average relative decrement:

Pi =
1

10∑10
j=1 Gi

(
Ej
)

(4)

In the following, we will use robots having an internal system schematized by using
RBNs composed of 100 nodes, of which 3 sensor nodes, 3 effector nodes and 3 effective
nodes. The three subsets are non-overlapping, and direct connections (i) between sensor
nodes and effector nodes, (ii) between sensor nodes and effective nodes, and (iii) between
effective nodes and effector nodes are excluded.

Statistics using ensembles of 50 robots have indicated that the third strategy is the one
that allows for better versatility (see Table 1): in what follows we will therefore focus on
this modality.
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Table 1. The average performances of ensembles (whose cardinality is equal to 40) of critical and
chaotic robots when using the three adaptation strategies. The average is made on the relative
decrease (Formula (3)). Strategy 3, which allows changes both in the choice of effector nodes and in
the environmental features touched, has better results than the other two strategies.

Average Performance

Ordered RBNs Critical RBNs Chaotic RBNs

STRAT. 1 0 0.075 0.196

STRAT. 2 0 0.131 0.264

STRAT. 3 0 0.194 0.308

In these experiments, as in the following ones, the difference between the robots of the
ordered, critical and chaotic sets lies—without loss of generality—in the Boolean functions
used. Each created topology was then combined with sets of Boolean functions having
biases equal to 0.1, 0.21 and 0.5: the common connectivity k = 3 leads these RBNs, if isolated,
to exhibit, respectively, ordered, critical or chaotic behaviors.

The ordered ensembles have always shown zero average performance values: we
will therefore avoid dealing with them. In Table 1, the data seem to indicate a better
performance than chaotic RBNs: to interpret the result, however, a more detailed analysis
is necessary (see Section 3.3). During the research, we tested different sets of parameters: in
the simulations presented in this work, we used the values indicated in Table 2.

Table 2. Values of the main parameters used during the simulations in this work. The length of each
simulation is equal to omega*trial_number*trial_step = 280,000 “universal steps”. The probability
that an effector node is modified (prob_change_effector) or of modifying the choice of a feature of the
environment to be influenced (prob_change_feature) is equal to 0.0 or 0.5 depending on the strategy
chosen; the sensor nodes and the environmental features they monitor do not change.

Variable Value Variable Value

trial_number 2800 Number of nodes (agent) 100

trial_step 20 Number of nodes (environment) 50

w 5 Average connectivity k 3

prob_change_sensor 0; Bias: Ordered ensemble 0.1

prob_change_effector 0; 0.5 Bias: Critical ensemble 0.21

prob_change_feature 0; 0.5 Bias: Disordered ensemble 0.5

3.2. A Common Behavior

An interesting characteristic, common to all adaptation strategies, concerns the type
of action that agents can exercise once adapted to the new environment. Agents typically
change both the features of the environment influenced by them (when they can, and
therefore with the exception of strategy (1) and their effector nodes: the action conducted
by these nodes does not, however, always have the same effects. In fact, a constant action
exercised on particular areas of the environment may have the effect of an oscillating signal
on the sensor nodes (the critical agent C1 in Figure 4), while an oscillating action on other
areas of the environment causes a different signal oscillating on the sensor nodes (the
critical agent C2 in Figure 5 or the disordered agent D1 in Figure 6). In these cases, the
need for a final oscillating situation of the essential nodes depends on the fact that the three
agents all require average node activities different from stable values equal to 0 or 1, but
the notable point is that this situation can be obtained either by exercising a constant action
and an oscillating one.

161



Sensors 2024, 24, 3393

 

 
Figure 4. The first row shows the trajectory of the effector, sensor and essential nodes of the critical
agent C1 when it is exposed to one of the environments. The second row reports the trajectory of
the effector nodes (in the case the agent has modified its effector set, different from the previous
ones), sensor and essential nodes of the same agent once it has adapted to the new environment. The
features of the environment on which the agent exercises its final action can be different from those
on which it initially acted. It is possible to note that a constant action on the environment (first plot of
the second row) leads to an oscillating signal in the sensor nodes (second plot of the second row):
this action brought the average activity of the essential nodes (third plot of the second row) close to
the homeostatic average, in this case equal to [0.2, 0.2, 0.0].

 

 
Figure 5. The first row shows the trajectory of the effector, sensor and essential nodes of the critical
agent C2 when it is exposed to one of the environments. As in Figure 4, the second row reports the
trajectory of the effector, sensor and essential nodes of the same agent once it has adapted to the new
environment. It is possible to note that a different oscillating action on the environment (second row,
first plot) leads to an oscillating signal in the sensor nodes (second row, second plot) able to induce on
the essential nodes (second row, third plot) an average activity the close to the homeostatic average
[0.2, 0.0, 0.8].
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Figure 6. The first row shows the trajectory of the effector, sensor and essential nodes of the dis-
ordered agent D1 when it is exposed to one of the environments. As in Figure 4, the second row
reports the trajectory of the effector, sensor and essential nodes of the same agent once it has adapted
to the new environment. It is possible to note that a different oscillating action on the environment
(second row, first plot) leads to an oscillating signal in the sensor nodes (second row, second plot)
able to induce on the essential nodes (second row, third plot) an average activity the close to the
homeostatic average [0.6, 0.0, 0.1].

The agents therefore used the environment to which they were exposed in a non-
trivial way, including its dynamic characteristics in their effector–sensor loop to achieve
homeostasis. Remarkably, the methods used are such as to make this action difficult to
identify based on internal observations alone: a similar action (the induction of particular
oscillations in the essential nodes) was achieved in one case through a constant action on
the environment (agent C1) and in other cases through an oscillating action (agents C2
and D1).

The scheme we adopted therefore allows us to identify the dynamic role of the coupling
between the environment and the agent, highlighting the explicit action of the agent of
incorporation into the effector–sensor loop of the dynamics of the environment for the
purposes of its own well-being.

3.3. The Third Strategy

We therefore focused on the third strategy, using larger ensembles (each ensemble
being composed of 500 RBNs). It is possible to make some interesting considerations.

A first observation concerns the fact that the critical ensemble shows a great variety
of behaviors, from RBNs that have not received any perturbation from the environment,
to RBNs that have been strongly perturbed, in a way that is little influenced by the Der-
rida coefficient, consistently always placed around the value 1.0 (Figure 7a). The chaotic
ensemble shows much greater uniformity (Figure 7c).
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(a) (b) 

  
(c) (d) 

Figure 7. (a) The initial distance from the ideal profile of the 500 critical RBNs as soon as they are
exposed in each of the 10 environments (each point corresponds to the average distance value over
the 10 environments). (b) The average distance from the ideal profile of the 500 critical RBNs once the
adaptation has been performed following strategy 3. (c) The average initial distance from the ideal
profile of the 500 chaotic RBNs. (d) The average final distance from the ideal profile of the 500 chaotic
RBNs once the adaptation has been performed following strategy 3. In all graphs, the X axis indicates
the Derrida coefficient of each individual RBN.

Both ensembles show improvements once the RBNs are allowed to adapt to different
environments (Figure 7b,d). Again, the RBNs belonging to the chaotic ensemble show a
uniformity of behavior that seems absent from the critical ensemble.

This diversity of behavior allows us to make various considerations. The chaotic
regime (better to say “extremely disordered”) leads to a uniformity of behavior, little
dependent on the details of the individual instances. All RBNs are perturbed by external
environments, without exception; all RBNs show traces of improvement once adaptation
is allowed. The RBNs belonging to the critical ensemble show extreme diversity: many
are not perturbed by the environments to which they have been exposed, many have been
highly perturbed, more than the most perturbed chaotic RBN. Many of the perturbed RBNs
show improvements. From an evolutionary point of view, this greater diversity of behavior
is an advantage, allowing the subsequent selection of the variant most suited to the need.
Table 3 shows how many of the critical RBNs were not perturbed by the new environments,
and how many, even if initially perturbed, did not improve.
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Table 3. The table shows in the first row the number of critical RBNs that have been improved by
adaptation phase, i.e., whose final distance from the homeostatic condition is less than the initial
distance. The second row shows the networks that have been affected by the change in environment,
but have not been able to move closer to their homeostatic condition, i.e., for the network i it occurs
that Di

f inal

(
Ej

)
≥ Di

initial

(
Ej

)
. Finally, the last row shows the networks whose homeostasis has not

been perturbed by environmental change.

# RBNs Critical RBNs

Improved 266

Did not improve but perturbed 173

Not perturbed 61

It is interesting to observe what happens to critical RBNs that have been perturbed
by exposure to unknown environments and improved once they were allowed to adapt
(a situation similar to that of the RBNs belonging to the chaotic ensemble).

In this case, it is possible to see that there are critical RBNs capable of completely
zeroing out the distance from their ideal profiles, and that there are RBNs that, despite
starting from a very disadvantaged position, are able to express notable recoveries (the
blurring of the colors in Figure 8b, in which the yellow dots and gray dots show even
greater improvements than orange and blue dots).

  
(a) (b) 

  
(c) (d) 

Figure 8. (a) The average initial distance from the ideal profile of the critical RBNs that were perturbed
and then improved through the application of strategy 3, highlighted in different colors depending
on the initial distance. (b) The average distance from the ideal profile once the adaptation has been
performed following strategy 3. (c) The average initial distance from the ideal profile of the chaotic
RBNs. (d) The average final distance from the ideal profile of the chaotic RBNs once the adaptation
has been performed following strategy 3. In all graphs, the colors identify 4 bands depending on the
distance: blue for the interval [0.0–0.25[, orange for the interval [0.25–0.50[, gray for [0.50–0.75[ and
yellow for [0.75–1.00].
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Similar capabilities are not shown by the RBNs belonging to the chaotic ensemble,
which maintain uniformity of behavior (the stable division into separate colored bands).
Furthermore, in this situation, the RBNs belonging to the critical ensemble also show an
average recovery capacity higher than that of the RBNs belonging to the chaotic ensemble
(Table 4).

Table 4. The average performances of the ensembles of critical and chaotic robots (whose cardinality
is 500 for chaotic RBNs and 266 for critical RBNs that showed improvement) when using the third
adaptation strategy, i.e., the best performing one (see Table 1).

Critical RBNs (Only the Improved Ones) Chaotic RBNs

MIN 0.001 0.115

MAX 1.000 0.658

AVERAGE 0.382 0.310

MEDIAN 0.377 0.300

In other words, if we extract from the critical ensemble the RBNs that are sensitive to
the environment and capable of improvement, we obtain systems that are typically better
than the corresponding systems showing a chaotic dynamical regime. The results therefore
agree with Kauffman’s hypotheses, which imagines a particular role for critical dynamical
regimes, which (i) show greater initial variability are susceptible to selection and (ii) are
capable of supporting a high degree of adaptability. On the other hand, the uniformity
of behavior of the chaotic ensemble prevents the possibility of having particularly high-
performance RBNs.

4. Discussion

The model chosen for our experiments, although simple, makes it possible to address
fundamental questions concerning robot adaptation. Rephrasing Ashby [4] in current
terms, we have explored possible ways for achieving adaptation (“identify the nature
of the change which shows learning”) and investigated the circumstances that make this
adaptation more efficient (“to find why such changes should tend to cause better adaptation
for the whole organism”).

The use of RBNs to control the agents on the one hand provides generality to the
results we observed—indeed, only the dynamical regime matters—and, on the other hand,
it shows that network-based controllers can be subject to adaptive mechanisms that confer
non-trivial adaptive capabilities to robots. Furthermore, the choice of homeostasis as a
merit factor for guiding adaptation addresses the issue of providing robots with autonomy:
once a robot is capable of changing some of its control parameters such that its survival is
preserved, then other task-specific utility functions can be optimized. This capability may
well constitute a basic competence for a layer in a subsumption architecture [35].

A prudent reader might observe that a limitation of our results is that they have been
attained in simulation only. Tests on real robots are indeed required to thoroughly assess
the robustness of the phenomena we observed. However, previous works with Boolean
network controlled robots [17] have validated on real robots (i.e., e-puck robots [36]) the
results obtained in simulation. Furthermore, the adaptive process that we used is analogous
to an adaptive walk in a configuration space, which can be considered as a special case
of evolutionary algorithms used in robotics. Many results in evolutionary robotics and
automatic design of control software for robots have been validated on real robots, for
example [37–42]. Therefore, we are rather confident that the core behavior observed can be
also observed when the controller we have studied is implemented on physical robots.

Central in our model is the adaptation of the sensory–motor loop, which is at the basis
of behavior-based robotics. Here, we suppose that the sensors of the robot are given and
not subject to adjustments, whereas the actuators are those devices that can be adapted
to the environment in such a way that the robot can keep its homeostasis. As a side
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comment, we observe that this setting loosely resembles approaches based on the free
energy principle [43], in which actions are taken such that the free energy of the system is
minimized. Having only the actuators that can undergo changes clearly shows whether
the agent is actually able to choose suitable actions to adapt: when the agent is placed
in a new environment and its homeostasis is negatively perturbed, only by means of
proper actions it can influence the environment to produce good and valuable inputs to its
sensors. This has two main implications. The first one is that robots capable of adapting
successfully exploit the features of the new environment to which they are exposed. In
other terms, the anomalies produced by the environment trigger new effective behaviors in
the robots. Therefore, effective behavior control in robots can profit from the combination
of some degree of adaptation with tests in differing environments. The second important
consequence is that the new action-sensor feedback, created by adaptation, that restores
homeostasis in the agent identifies a sense-making property: the agent selects those features
of the environment that matters to its survival and learns how to act on them under the
conditions posited by the sensors and the internal mechanisms of the agent.

Finally, our results provide support to the conjecture that critical regimes are the most
suited for adaptation and evolution. Another proof of the advantage of critical networks as
controllers in Boolean network robots was already observed in the work [16]. The cited
work analyzed the performance of an online adaptation scheme very similar to the one
used in this paper, but employing real robots in obstacle avoidance and foraging tasks.
However, the results reported in this work are more general, in that the Boolean network
representing the agent does not attempt to improve a task-specific figure of merit, but
instead tries to adapt to achieve its homeostatic condition.

This result can be generalized to other network-based controllers, such as nanowire
networks [44].

5. Conclusions

In this work, we have investigated how robots controlled by Boolean networks can ad-
just their sensory–motor loop to adapt to environment changes, such that their homeostasis
is restored. Some general implications of the results we obtained have been discussed in the
previous section. However, we would like to point out that this work, through the proposed
conceptual and experimental framework, paves the way for the discovery of the general
principles that enable agent homeostasis in scenarios characterized by changing environ-
ments. The importance of the criticality of the agent’s controller adds to Ashby’s “Principle
of Requisite Variety” [45,46] and begins to outline the framework of a truly homeostatic
robot, a crucial first step toward robot autonomy and possibly to machines endowed with
feeling [47]. A possible roadmap of future work involves testing this agent–environment
framework (i) with real robots endowed with a physical body (ii) with the ability to adapt
both its robotic morphology and its controller; (iii) with changing environments (ecological
niches); (iv) in coevolutionary settings (i.e., both the agent and environment can change in
response of the other previous and current perceivable actions); and finally (v) in multi-
robot scenarios. In addition, our efforts will be devoted to characterize the processing of
information flow that homeostasis induces between sensors, controllers, actuators, and the
environment, which can be analyzed with Information Theory measures.

We are currently running experiments with larger networks to assess the results
concerning the dynamical regimes. In addition, experiments with different relative update
frequencies between agents and environment are under study. In addition to these further
analyses, feasibility studies concerning the implementation on physical robots of the
mechanisms we have studied in simulation are planned. Micro-robots can now be cheaply
produced and it is plausible that they can be equipped with network-based controllers.
In these robots, the essential variables might be represented by energy and efficiency
parameters; therefore, basic capabilities of keeping these variables within working ranges
would be of extreme utility. This survival competence can then provide the basis for
more advanced and special purpose behaviors. Finally, the experimental setting we have
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designed makes it possible to investigate the relation between adaptation and high-level
principles, such as the free energy principle and autopoiesis.
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Abstract: We aimed to evaluate the intra-session relative and absolute reliability of obstacle-crossing
parameters during overground walking in young adults, and to determine the number of trials
required to ensure reliable assessment. We analysed data from 43 young male adults who were
instructed to walk at a self-selected velocity on a pathway and to step over an obstacle (height = 15 cm;
width = 80 cm, thickness = 2 cm) three times. Spatial–temporal gait parameters of the approaching
and crossing phases (i.e., before and after the obstacle) and obstacle clearance parameters (i.e., vertical
and horizontal distance between the foot and the obstacle during crossing) were computed using a
three-dimensional motion analysis system. Intraclass correlation coefficients were used to compute
the relative reliability, while standard error of measurement and minimal detectable change were
used to assess the absolute reliability for all possible combinations between trials. Results showed
that most spatial–temporal gait parameters and obstacle clearance parameters are reliable using the
average of three trials. However, the mean of the second and third trials ensures the best relative and
absolute reliabilities of most obstacle-crossing parameters. Further works are needed to generalize
these results in more realistic conditions and in other populations.

Keywords: reliability; obstacle-crossing; gait

1. Introduction

Reliability does represent a crucial consideration as a methodology for application
in gait analysis. Indeed, if gait analysis is intended to serve as an outcome measure for
diagnostic, monitoring, or therapeutic purposes, the level of reliability for each computed
gait parameter has to be established.

This is certainly one of the reasons that has prompted scientists and researchers
to focus on the reliability assessment of gait measurements in both healthy [1–5] and
pathological [3,6–11] populations. In previous studies conducted on overground/flat
conditions in healthy patients [2] and stroke individuals [6,7], speed and stride length [2,6,7],
as well as cadence and gait cycle time [7], showed good reliability. In addition, knee, hip,
and ankle angles showed good to excellent reliability in healthy individuals [1] and adults
with spinal cord injury [6].

However, few studies have investigated the number of trials needed to ensure reliable
intra-session gait assessment [2,9,12]. For instance, Soulard et al. (2021) [2] showed that
three trials were enough to ensure reliable gait assessment during the 10 m walk test in both
single and dual-task conditions in healthy adults [2]. Interestingly, the common feature of
the above-mentioned gait reliability studies is the assessment of unobstructed level walking
tasks. However, not much is known about the reliability of gait parameters under more
challenging conditions, such as crossing physical obstacles while overground walking
(obstructed walking task). This observation is somewhat surprising since obstacle-crossing
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performance during walking has been widely studied using vision/camera-based systems
in various populations, including children [13,14], older healthy adults [15,16], individuals
with obesity [17], and people with Parkinson’s disease [18–21], multiple sclerosis [22],
traumatic brain injuries [23], or stroke [24,25]. This observation is also of great concern
since obstacles are likely encountered during community ambulation in an everyday envi-
ronment (e.g., obstacles on sidewalks or in corridors of railway or subway stations [26]). In
addition, it is widely agreed that measuring clearance parameters during the performance
of the obstacle-crossing task is of significant clinical importance, assuming that lower
toe clearances [27] and horizontal distances [28] could result in a high probability of foot
contact and hence an increased risk of stumbles, trips, and falls.

To our knowledge, no study has yet investigated the reliability of these widely used
gait and clearance parameters during obstacle-crossing in young healthy adults, whereas
the reliability of gait parameters computed using vision/camera-based systems has pre-
viously been assessed during unobstructed walking in healthy adults (e.g., [29–32]). To
address some of the aforementioned limitations, the purpose of the present work was
to evaluate the reliability, relative and absolute, of obstacle-crossing parameters during
overground walking in young adults. We further aimed to determine the number of trials
required to ensure reliable obstacle-crossing measurements. Indeed, determining the num-
ber of trials required to ensure reliable measurement is a prerequisite to allow comparisons
between groups at a single time point [33]. Note that this question has been the subjects
of a number of studies in a variety of applications fields, including human movement,
sport, and health, to name a few (e.g., [2,34–47]). In particular, intra-session reliability can
favourably be used to assess the number of trials to ensure reliable measurements [2,9,38,48]
to optimize gait assessments in clinical practice.

2. Materials and Methods

This study is a secondary analysis of previously published obstacle-crossing stud-
ies [22,49,50].

2.1. Participants

Data from 43 Brazilian males (age = 29.1 ± 5.91 years old, body mass = 76.3 ± 9.97 kg,
body height = 1.77 ± 0.06 cm, BMI = 24.4 ± 2.72 kg/m2, mean ± SD) were analysed.
Participants had no diagnosis of muscular or neurodegenerative disease. Participants
were informed about the experimental procedures and signed informed consent. The
study was approved by the University Institution Review Board (authorization number:
CAAE#99191318.0.0000.5398). This study and all methods were performed in accordance
with the Declaration of Helsinki.

2.2. Experimental Protocol

Participants were instructed to walk barefoot at a self-selected velocity on an 8.5 m
long pathway and to step over a physical obstacle (height = 15 cm; width = 80 cm,
thickness = 2 cm) placed in the middle of the pathway. To ensure that participants crossed
the obstacle with the right leg as the leading limb, the starting point of each trial was
adjusted, and at least two strides were completed before crossing the obstacle. Participants
completed three trials.

2.3. Gait Assessment

Kinematic data were recorded using ten infrared cameras (Vicon Motion System®,
Oxford, UK, 200 Hz). Two markers were positioned at the top of the obstacle. Also,
four markers were placed on the lateral aspect of the calcaneus and head of the
second metatarsus of the right limb and the medial aspect of the calcaneus and head
of the second metatarsus of the left limb. Conventional labelling of the limbs was used:
the leading foot crossed the obstacle first, and the trailing foot crossed second. Signals
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were filtered with a low-pass (6 Hz) Butterworth filter of fifth-order (zero-lag). These
pre-processed signals were used to compute the following parameters:

Spatial–temporal gait parameters (length, width, duration, velocity, and double-
support time) of the approaching phase (stride before the obstacle) and of the crossing
phase (step over the obstacle);

Leading and trailing foot placement prior to the obstacle (horizontal distance from the
second metatarsal marker to the obstacle);

Leading and trailing vertical toe foot clearance during obstacle-crossing (vertical
distance at the moment that the second metatarsal marker was above the obstacle);

Leading and trailing foot placement after the obstacle (horizontal distance from the
heel marker to the obstacle).

2.4. Statistical Analysis

To examine the potential difference between trials for each obstacle-crossing parameter,
a repeated measures analysis of variance (RM-ANOVA) was first carried out. In cases
where a difference was observed (type I error rate set at α = 0.05), a pairwise comparison
post hoc test was performed to compare differences between pairs of trials, using the
Benjamini–Hochberg approach to account for multiple testing.

To assess relative reliability across the three trials, the intraclass correlation coefficient
(ICC) based on a two-way random effects model (absolute agreement, ICC(2.1)) was
calculated. ICC(2.1) values inferior to 0 were considered ‘poor’, between 0.01 and 0.20 as
‘slight’, between 0.21–0.40 as ‘fair’, between 0.41–0.60 as ‘moderate’, between 0.61–0.80 as
‘substantial’, and 0.80–1.00 as ‘almost perfect’ relative reliability [51].

To assess absolute reliability across the three trials, the standard error of measurement
(SEM) and the minimum detectable change (MDC) were computed. SEM, with the same
unit as obstacle-crossing parameters, corresponds to the absolute measure of the variability
of the errors of measurements and informs on the precision of obstacle-crossing parame-
ters of individual participants [52]. SEM was calculated using the following formula [53]:
SEM = SD

√
(1-ICC(2.1)), where SD is the standard deviation of the obstacle-crossing pa-

rameters from all participants and ICC(2.1) is the relative reliability. MDC is the minimum
value for which a difference can be considered “real”. MDC was calculated using the
following formula [54]: MDC = SEM × 1.96 × √2. The SEM% and MDC% were also
expressed as a percentage of the mean for each obstacle-crossing parameter. Lower val-
ues for SEM% and MDC% indicate higher absolute reliability. Precisely, SEM% values
were considered ‘low’ (SEM% ≤ 10%) or ‘high’ (SEM% > 10%) [55], while MDC% val-
ues were considered ‘low’ (MDC% ≤ 20%), ‘acceptable’ (20% < MDC% < 40%), or ‘high’
(MDC% ≥ 40%) [56].

To quantify the agreement between pairs of trials for each of the 16 obstacle-crossing
parameters, Lin’s concordance correlation coefficient (CCC) and associated 95% confidence
intervals [57,58], as well as the Shieh exact test for agreement [59], were used. The CCC
indicates how close the measurement pairs fall to the 45-degree line (perfect agreement).
Hence, the CCC is a measure of the reproducibility of measurements. The CCC ranges
from −1 to 1, with perfect agreement at 1 and perfect discordance at −1. Agreement was
considered ‘poor’ for CCC values < 0.40, ‘moderate’ for CCC values ranging from 0.40 to
0.70, and ‘good’ for CCC values > 0.70 [60].

Limits of agreement (LOA) and Bland–Altman plots of the differences between trials
and their arithmetic mean were used to assess the magnitude of disagreement between
trials for each obstacle-crossing parameter. LOA allows the quantification of bias and the
determination of a range of agreement, within which 95% of the differences between one
measurement and the other are included. The bias is significant when the line of equality
is not within the 95% CI of the mean difference. The smallest worthwhile change (SWC)
was used to determine the maximum allowed difference between trials presented in Bland–
Altman plots [61]. The SWC provides a method to evaluate a real change in performance
between trials. If the SWC is low and included in the LOA or Shieh 95% CI, it indicates a
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low variation between trials. Two trials are considered in agreement if the LOA or Shieh
exact test does not exceed the maximum allowed difference between trials (SWC).

All statistical analyses were performed using R software 4.3.1® (R Core Team, Vienna, Austria)
for Windows 10©. The list of all R packages used is provided in the Supplementary Materials.

3. Results

3.1. Difference between Trials

Most obstacle-crossing parameters exhibited no significant differences between tri-
als. The only three exceptions were observed for the stride width and the double sup-
port time (p = 0.04, eta-squared = 0.01) during the approaching phase, and for the trail-
ing foot horizontal distance after the obstacle (p = 0.02, eta-squared = 0.02). For these
three parameters, pairwise t-tests showed that trial 1 (T1) differed from trials 2 and 3.
Stride width was lower in T1 compared to T2 and T3 (p = 0.02 for T1–T2, p = 0.04 for
T1–T3), double support time was greater for T1 compared to T2 and T3 (p = 0.05 for T1–T2,
p = 0.03 for T1–T3), while for the trailing foot horizontal distance after obstacle, T3 was
higher compared to T1 and T2 (p = 0.03).

Table 1 provides the arithmetic mean and standard deviation of obstacle-crossing
parameters for each trial and the mean of the three trials.

Table 1. Arithmetic mean and standard deviation of obstacle-crossing parameters for each trial and
for their mean.

Condition Parameter
T1 T2 T3 T123

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Approaching phase Stride double support time (s) 0.36 (0.05) 0.35 (0.06) 0.35 (0.05) 0.36 (0.05)
Stride duration (s) 1.10 (0.13) 1.09 (0.11) 1.09 (0.10) 1.09 (0.11)
Stride length (cm) 131 (11.4) 131 (11.5) 132 (11.2) 131 (11.3)

Stride velocity (cm/s) 120 (17.2) 122 (15.5) 122 (15.4) 121 (15.9)
Stride width (cm) 10.6 (2.49) 11.3 (2.74) 11.2 (2.86) 11.0 (2.70)

Crossing phase Step double support time (s) 0.22 (0.04) 0.20 (0.05) 0.21 (0.04) 0.21 (0.04)
Step duration (s) 0.64 (0.08) 0.62 (0.07) 0.63 (0.07) 0.63 (0.07)
Step length (cm) 72.7 (9.49) 73.4 (9.78) 73.6 (9.33) 73.2 (9.47)

Step velocity (cm/s) 115 (20.8) 119 (21.5) 118 (19.0) 118 (20.4)
Step width (cm) 10.2 (3.40) 10.4 (3.80) 10.1 (3.79) 10.2 (3.64)

Obstacle clearance Leading foot horizontal distance
prior to obstacle (cm) 108 (13.0) 108 (10.4) 108 (10.1) 108 (11.1)

Trailing foot horizontal distance
prior to obstacle (cm) 43.0 (10.3) 44.1 (8.77) 42.9 (10.1) 43.3 (9.71)

Leading foot horizontal distance
after obstacle (cm) 25.7 (6.61) 25.0 (6.63) 26.8 (7.75) 25.8 (7.00)

Trailing foot horizontal distance
after obstacle (cm) 91.6 (11.5) 91.8 (10.4) 95.0 (12.1) 92.8 (11.4)

Leading foot toe clearance (cm) 9.93 (4.21) 9.99 (4.37) 10.8 (5.19) 10.2 (4.59)
Trailing foot toe clearance (cm) 31.4 (8.68) 32.2 (8.01) 32.0 (6.53) 31.9 (7.74)

Note: SD: arithmetic standard deviation, T1: trial 1, T2: trial 2, T3: trial 3, T123: arithmetic mean of the three trials.

3.2. Absolute and Relative Reliabilities

Figure 1 and Table 2 present the ICC(2.1) values for each obstacle-crossing parameter
for all comparisons of trials. Table 2 also provides the SEM, SEM%, MDC, and MDC%.
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Overall, when pooling the values of the three trials, the relative reliability ranged from
moderate to practically perfect, whereas the absolute reliability was good for nine out of
the sixteen parameters. Furthermore, the highest relative and absolute reliabilities were
found when pooling values from T2–T3, followed by T1–T2–T3, T1–T3, and T1–T2.

3.2.1. Spatial–Temporal Gait Parameters during the Approaching Phase

Relative reliability: Regardless of the comparison of trials considered, spatial–temporal
gait parameters during the approaching phase showed either substantial or almost perfect
reliability. Indeed, ICC(2.1) ranged from 0.61 to 0.80 for stride width for all trial comparisons,
for stride length, and double support time for T1–T2, T1–T3, and T1–T2–T3, while ICC(2.1)
ranged from 0.81 to 1.00 for stride duration and stride velocity for all trial comparisons,
and for stride length and double support time for T2–T3.

Absolute reliability: Regardless of the comparison of trials considered, SEM% and
MDC% values were low for most of the spatial–temporal gait parameters during the
approaching phase (SEM% < 10 and MDC% < 20%), with the exception of the stride width
(SEM% > 10% and 20% < MDC% < 40%, for all trial comparisons), and MDC% of the double
support time (MDC% = 20.4%, for T1–T2).

Number of trials to ensure reliable measurements: The comparisons of means of
ICC(2.1) between trials showed that, for all spatial–temporal gait parameters during the
approaching phase, slightly higher ICC(2.1) and lower SEM% and MDC% were obtained
when pooling the second and third trials, compared to the first and second trials, the
first and third trials, or the three trials.

3.2.2. Spatial–Temporal Gait Parameters during the Crossing Phase

Relative reliability: Regardless of the comparison of trials considered, step length, step
duration, and step velocity showed either substantial or almost perfect relative reliability.
Indeed, ICC(2.1) ranged from 0.61 to 0.80, for step duration for all trial comparisons and
for step velocity for T1–T2, T1–T3, and T1–T2–T3, while ICC(2.1) ranged from 0.81 to 1.00,
for step length for all trial comparisons and for step velocity for T2–T3. Furthermore, step
width and double support time showed slight relative reliability (ICC(2.1) = 0.19 for double
support time for T1–T2), fair relative reliability (ICC(2.1) ranged from 0.21 to 0.40, for step
width for T1–T2 and T1–T3), moderate relative reliability (ICC(2.1) ranged from 0.41 to 0.60
for step width for T1–T2–T3, and for double support time for T1–T3 and T1–T2–T3), or
substantial relative reliability (ICC(2.1) ranged from 0.61 to 0.80 for step width and double
support time for T2–T3 only).

Absolute reliability: Regardless of the comparison of trials considered, SEM% and
MDC% were low or acceptable (SEM% < 10% and MDC% < 40%) for step length, duration,
and velocity. Step width and double support time showed high SEM% and MDC% values
(SEM% > 10% and MDC% > 40%), except for double support time when pooling the second
and third trials with an acceptable MDC% (MDC% = 34.4%).

Number of trials to ensure reliable measurements: The comparisons of means of
ICC(2.1) between trials showed that, for almost all spatial–temporal gait parameters during
the crossing phase, slightly higher ICC(2.1) (except for step duration, the best relative
reliability was found for T1–T3, ICC(2.1) = 0.78) and lower SEM% (all parameters) and
MDC% (all parameters) were obtained when pooling the second and third trials, compared
to the first and second trials, the first and third trials, or the three trials.

3.2.3. Obstacle Clearance Parameters

Relative reliability: Regardless of the comparison of trials considered, obstacle clear-
ance parameters showed either moderate, substantial, or almost perfect mean relative
reliability. The highest ICC(2.1) values were found for leading toe clearance with substan-
tial to almost perfect reliability (0.78 ≤ ICC(2.1) ≤ 0.89 for all trial comparisons), followed
by trailing foot horizontal distance prior to the obstacle, and leading and trailing foot
horizontal distance after the obstacle with substantial reliability (0.61 ≤ ICC(2.1) ≤ 0.80 for
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all trial comparisons). The lowest ICC values were found for the trailing foot toe clearance
(moderate reliability, ICC(2.1) = 0.58, for T1–T3) and for the leading foot horizontal distance
prior to an obstacle (moderate reliability, 0.51 ≤ ICC(2.1) ≤ 0.56, for T1–T2, T1–T3, and
T1–T2–T3).

Absolute reliability: Regardless of the comparison of trials considered, SEM% and
MDC% were low or acceptable for leading foot horizontal distance prior to the obstacle
and trailing foot horizontal distance after the obstacle (SEM% < 10% and MDC% < 40%).
Regardless of the comparison of trials considered, high SEM% values were found for
leading and trailing foot toe clearance, leading foot horizontal distance after the obstacle,
and trailing foot horizontal distance prior to the obstacle (for T1–T2, T1–T3, and T1–T2–T3).
High MDC% (MDC% > 40%) values were observed for the leading (all trial comparisons)
and trailing (T1–T2, T1–T3) limb toe clearances, as well as for the horizontal distance after
the obstacle for the leading limb (T1–T3, T2–T3, T1–T2–T3).

Number of trials to ensure reliable measurements. The comparisons of means of
ICC(2.1) between trials showed that, for almost all clearance parameters, slightly higher
ICC(2.1) and lower SEM% and MDC% were obtained when pooling the second and third
trials, compared to the first and second trials, the first and the third trials, or the three trials.

3.3. Agreement between Trials

When considering the maximum allowed difference between trials (SWC), regardless
of the obstacle-crossing parameter, all pairs of trials were considered in agreement because
the SWC was always within the LOA and Shieh ranges.

3.3.1. Spatial–Temporal Gait Parameters during the Approaching Phase

Good agreement (CCC > 0.70) between each pair of trials was found for all spatial–
temporal gait parameters during the approaching phase.

The best results were found for T2–T3 for all parameters, followed by T1–T2 and
T1–T3 for stride width, stride duration, and stride velocity, or followed by T1–T3 and T1–T2
for stride length and double support time.

3.3.2. Spatial–Temporal Gait Parameters during the Crossing Phase

Moderate (0.40 < CCC < 0.70) and good (CCC > 0.70) agreements between each pair of
trials were found for all spatial–temporal gait parameters during the crossing phase, with
the exception of the step width for T1–T2 (CCC = 0.34) and T1–T3 (CCC = 0.31), and of the
double support time for T1–T2 (CCC = 0.19) with poor agreement between trials.

The best results were found when pooling values from T2–T3 for step length, step
width, step velocity, and double support time (except for step duration, agreements between
trials were better for T1–T3, CCC = 0.77 vs. CCC = 0.76 for T2–T3), followed by T1–T2 and
T1–T3 for step length and step width, or followed by T1–T3 and T1–T2 for step velocity
and double support time.

3.3.3. Obstacle Clearance Parameters

Moderate (0.40 < CCC < 0.70) and good (CCC > 0.70) agreements between each pair of
trials were found for all obstacle clearance parameters.

The best results were found when pooling values from T2–T3 for leading and trailing
foot toe clearance and foot horizontal distance prior to the obstacle. However, for leading
and trailing foot horizontal distance after obstacle, agreements between trials were better
for T1–T2 (CCC = 0.71 vs. CCC = 0.69 for T2–T3 for leading horizontal distance after
obstacle, and CCC = 0.72 vs. CCC = 0.63 for T2–T3 for trailing foot distance after obstacle),
followed by T1–T2 and T1–T3.

Table 3 presents the CCC, LOA, Shieh exact test agreement, and SWC. Figure 2 presents
the Bland–Altman of each gait and obstacle-crossing parameter.
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4. Discussion

The aim of this study was to evaluate the intra-session relative and absolute reliabil-
ity of obstacle-crossing parameters during overground walking in young adults and to
determine the number of trials required to ensure reliable assessment.

Overall, our results showed for the first time that spatial–temporal gait parameters
and clearance parameters were reliable, except for the step width (between T1–T2 and
T1–T3) and double support time (between T1–T2) during the crossing phase. In addition,
for most spatial–temporal gait and clearance parameters, the reliability and agreement were
better when pooling trials 2 and 3 than when the first trial was used for comparison. This
suggests that when conducting an obstacle-crossing task in young adults—under the spe-
cific experimental conditions used in the present study, at least—a first practice trial should
be performed before the experimental trials to enhance the reliability of the parameters
studied, or that the first experimental trial should be discarded from data analysis.

4.1. Intra-Session Reliability during Obstacle-Crossing
4.1.1. Approaching Phase

Relative reliability for all spatial–temporal gait parameters measured in young adults
during the approaching phase was always either substantial or almost perfect. Regard-
ing absolute reliability, all parameters except step width (SEM% ≥ 10%) exhibited good
absolute reliability in all trial comparisons, and MDC% was low or acceptable for all gait
parameters in all trial comparisons. Comparisons between trials showed that participants
had a higher step width in the last two trials compared to the first one. Perhaps after the
first trial, the strategy chosen was to increase their pre-crossing base of support after the
trial to ensure more stability before the crossing phase. Regarding agreements between
trials, results were considered good for all spatial–temporal gait parameters in all trial
comparisons. Hence, young male adults had almost identical gait patterns during all
trials during the approaching phase. In addition, for all spatial–temporal gait parameters,
relative and absolute reliabilities and agreement between trials were better when using
the mean of the second and third trials, compared to the first and second trials, to the
first and third trials, or to the three trials. This could suggest that participants adapted
a more stable/consistent gait pattern after the execution of the first trial, which could
have been used as a learning/warming-up trial. These results are similar to those re-
cently reported in healthy adults during unobstructed level walking [2]. In that study,
20 healthy participants performed three trials of a 10-m walking test, and spatial–temporal
gait parameters were computed using inertial motor units (Physilog® 5, 200Hz GaitUp,
Lausanne, Switzerland). Results showed that speed, double support, and stride length
had almost perfect relative reliability (0.81 < ICC(2.1)). In addition, absolute reliability was
good, with low SEM% (1.74% ≤ SEM% ≤ 6.58% in all trial comparisons) and low MDC%
(4.82% ≤MDC% ≤ 18.25% for all trial comparisons) for these three spatial–temporal gait
parameters [2].

4.1.2. Crossing Phase

Contrary to what was observed for the approaching phase, not all spatial–temporal
gait parameters were found to have substantial or almost perfect relative reliability, good
absolute reliability, or good agreement between trials.

The relative reliability of step length, duration, and velocity was substantial to almost
perfect regardless of the trial comparisons considered. Conversely, step width and double
support time showed slight to moderate relative reliability (0.19 ≤ ICC(2.1) ≤ 0.47), with
the worst results when the first trial was included. Regarding absolute reliability, both
step width and double support time showed poor reliability in all trial comparisons, ex-
cept the MDC% of double support time, which was acceptable for the T2–T3 comparison
(MDC% = 34.4). In addition, agreements between trials were poor for step width (T1–T2
and T1–T3) and double support time (T1–T2), compared to the other spatial–temporal
parameters (moderate or good) between each pair of trials. Comparison between trials
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showed no differences in step width or double support time during the crossing phase
(p < 0.05). One hypothesis is that the lower reliability found for step width and double
support time parameters during the crossing phase compared to the approaching phase
could be explained by the more unusual nature of this step compared to the approaching
phase (i.e., walking on flat ground) and due to the higher demand of the task in neuro-
muscular [62] and cognitive resources [63] than flat ground walking. Also, medial lateral
dynamic balance during the crossing phase might be harder to maintain, so it is difficult
for the participants to maintain a stable behaviour for crossing step width. However, it
is worth noting that agreements between trials were better for all spatial–temporal gait
parameters, with the exception of step duration (for which the best value was obtained for
T1–T3) when pooling values from the second and third trials.

4.1.3. Obstacle Clearance

Relative reliability for all clearance parameters measured in young adults was either
moderate to almost perfect (0.51 ≤ ICC(2.1) ≤ 0.89), and the reliability was enhanced from
substantial to almost perfect when pooling the second and third trials (0.63 ≤ ICC(2.1) ≤ 0.89).

However, the absolute reliability was low for four clearance parameters (leading and
trailing foot horizontal distance after obstacle, trailing foot horizontal distance after obstacle,
and leading foot toe clearance) for T1–T2, T1–T3, and T1–T2–T3, and three clearance
parameters for T2–T3 (leading and trailing foot toe clearance and leading foot horizontal
distance after obstacle). In addition, MDC% was high (i.e., 40%≤MDC%) for two clearance
parameters for T1–T2 (leading and trailing foot clearance), T2–T3 (leading foot toe clearance
and horizontal distance after obstacle), and T1–T2–T3 (leading foot toe clearance and
horizontal distance after obstacle), and for three clearance parameters for T1–T3 (leading
and trailing foot toe clearance and leading foot horizontal distance after obstacle).

On the one hand, in general, clearance parameters were less reliable than spatial–
temporal gait parameters measured during the approaching and crossing phases (with
the exception of stride width and double support time during the crossing phase). As
mentioned, the more unusual nature of this step compared to flat ground walking might
have played a role in individuals’ behaviour and clearance strategy. In addition, it is
possible that the higher cognitive load and precise motor control during obstacle-crossing
compared to unobstructed walking [63] may contribute to the reduced reliability of clear-
ance parameters. On the other hand, similar to what was observed for spatial–temporal gait
parameters computed before and after the obstacle, for most obstacle clearance parameters,
both relative and absolute reliabilities were better when using the mean of the second and
third trials, compared to the first and second trials, to the first and third trials, or to the
three trials. This reinforces the idea of a learning/warming-up effect after the first trial for
individuals when they perform an obstacle-crossing task. However, comparisons between
trials showed that trailing foot horizontal distance after the obstacle was higher in the third
trial compared to the first and second. Together, these results suggest that, contrary to
spatial–temporal parameters, individuals might need more than three trials to have reliable
behaviour. Regarding agreements between trials, moderate to good agreement was found
for all parameters between each pair of trials. Similarly to relative and absolute reliabilities,
the best results were found for four out of six clearance parameters (leading and trailing
toe clearance and distance prior to obstacle) when pooling the second and third trials.
However, agreements between trials were better for T1–T2 for both leading and trailing
foot distances after the obstacle.

As shown by measures of agreement (CCC and Bland–Altman, see Figure 2), there
should not be any systematic bias in measurements since no obvious relation existed between
the difference and the mean of any pair of two trials. In addition, the LOA were relatively
small, with few to no outliers depending on the obstacle clearance parameter considered.

Having high absolute reliability (10% < SEM%) indicates that there were intra-individual
variabilities between trials.
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4.2. Study Limitations, Strengths, and Perspectives

To the authors’ best knowledge, this is the first study that assessed the reliability, both
relative and absolute, and agreements between trials of spatial–temporal gait parameters
and obstacle clearance parameters in young adults. It should be noted that although pre-
vious studies have reported either the absolute or relative reliability of these parameters
(e.g., [64–66]), none of them addressed our specific research questions. Indeed, we aimed to
evaluate the intra-session relative and absolute reliability of obstacle-crossing parameters
during overground walking in young healthy adults, and to determine the number of trials
required to ensure reliable assessment. Contrary to us, the study from Punt et al. (2017)
assessed virtual obstacle-crossing task during treadmill walking in stroke survivors [64],
while Grinberg et al. (2021) did not assess obstacle-crossing parameters during overground
walking [66], and Said et al. (2009) did not involve young healthy adults [65]. In addition,
the sample size of the present study is relatively high (n = 43), compared to previously
conducted gait reliability studies [1–3,5,8,11,38]. At this point, it is important to mention
that, fully in line with the scientific roadmap we have set up to assess the intra-session
reliability of the 10 m walk test [2], we focused on young healthy adults as a first step
to provide normative reference values for a young healthy population (e.g., see [67–69]).
Naturally, the reliability must now be further tested in other populations with different
socio-demographic, anthropometric, clinical, and lifestyle characteristics, including indi-
viduals who are overweight or obese (e.g., see [70] for a review), children, adolescents,
middle age, and the elderly (e.g., see [71] for a review), and pathological populations
(e.g., see [72–74] for reviews) who may also present different levels of fatigue (e.g., see [75]
for a review) or physical fitness (e.g., see [76] for a review).

Finally, the present findings highlighted that most spatial–temporal and obstacle
clearance parameters were reliable across the three trials and that better relative and
absolute reliabilities, as well as agreements between trials, were found when pooling the
second and third trials. Nevertheless, several limitations warrant further consideration and
caution regarding the interpretation of the results.

The reliability and agreement were assessed during a single experimental session,
which prevented us from studying the inter-session reliability. In addition, only young
healthy males aged between 20–40 years old were included, and only one experimental
condition (15 cm height obstacle; self-selected walking speed; single-task condition) was
assessed. In other words, strictly speaking, our conclusion applies only to the population
tested and the experimental conditions used in the present study. These experimental
conditions could be considered as relatively mild and easy in that the task consisted
of crossing a physical obstacle 15 centimetres high at a comfortable speed without any
other particular constraint. Further works are thus needed to generalize them in more
realistic conditions. For instance, it could be interesting to replicate this reliability study
while walking over different and challenging obstacle paradigms that may predispose
the participants to an increased risk of foot contact with the obstacle [77–79] and/or with
individuals with balance and gait disorders for whom the consequences of imbalance
and tripping over obstacles could be more dramatic [80,81]. Hence, these specific issues
deserve investigations, which are included in our immediate plans. Another potential
future investigation would be to perform more than three trials of obstacle-crossing. This
would probably enhance the reliability of all parameters, especially the clearances with the
obstacle. This might enable us to determine the minimum number of trials to be carried
out, and the number of trials from which data analysis should begin in order to obtain
reliable and valid data.

5. Conclusions

Most spatial–temporal gait parameters and obstacle clearance parameters computed
using a three-dimensional motion analysis system in young adults during an obstacle-
crossing task are reliable using the average of three trials. Our findings further suggest
using the mean of the second and third trials to ensure the best relative and absolute
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reliabilities of most obstacle-crossing parameters. However, our findings only apply to
the population tested and to the relatively mild and easy experimental conditions used
in the present study. Further works are thus needed to generalize them in more realistic
conditions and in other populations.
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Abstract: Sprinting plays a significant role in determining the results of road cycling races worldwide.
However, currently, there is a lack of systematic research into the kinematics of sprint cycling,
especially in an outdoor, environmentally valid setting. This study aimed to describe selected
joint kinematics during a cycling sprint outdoors. Three participants were recorded sprinting over
60 meters in both standing and seated sprinting positions on an outdoor course with a baseline
condition of seated cycling at 20 km/h. The participants were recorded using array-based inertial
measurement units to collect joint excursions of the upper and lower limbs including the trunk.
A high-rate GPS unit was used to record velocity during each recorded condition. Kinematic data
were analyzed in a similar fashion to running gait, where multiple pedal strokes were identified,
delineated, and averaged to form a representative (average± SD) waveform. Participants maintained
stable kinematics in most joints studied during the baseline condition, but variations in ranges
of movement were recorded during seated and standing sprinting. Discernable patterns started
to emerge for several kinematic profiles during standing sprinting. Alternate sprinting strategies
emerged between participants and bilateral asymmetries were also recorded in the individuals tested.
This approach to studying road cycling holds substantial potential for researchers wishing to explore
this sport.

Keywords: sprint cycling; road cycling; inertial measurement units; kinematics; elite

1. Introduction

In competitive cycling, sprinting is an essential component that determines the result
of many races. In the three Men’s Grand Tours, The Giro d’Italia, Tour de France, and Vuelta
a España, one in every three stages are decided by a mass, small bunch, or a head-to-head
sprint [1–3]. A sprint is defined by a sudden increase in power output and effort leading to
a sustained acceleration [1]. This can happen in the closing meters of the race as competitors
attempt to be the first cyclist across the finish line [2]. In this situation, the sprints are most
commonly completed in an out-of-saddle (standing) position; however, for longer sprints
or sustained attacks during a particular stage, these sprint-type efforts may be completed
in an in saddle (seated) position. Menaspà and colleagues [2] determined that sprints in
the men’s races last an average of 13 s in duration, with an average speed of 64 km/h,
while Peiffer et al. [4] reported that sprints in women’s races typically last 22 s, with an
average speed of 54 km/h. Despite being such an important component in competitive
cycling, there is a paucity of information concerning the kinematics involved in the action
of sprinting.

Most research investigating biomechanics in road cycling has been performed in a
controlled laboratory setting and does not focus on the action of sprinting. For example,
Bertucci et al. [5] compared the difference in crank torque and the rate of perceived exertion
(RPE) of riding on an ergometer in a lab against riding a bicycle outdoors. They observed
notable differences in both variables, with increases recorded for values collected on the
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ergometer. This is believed to be due to an increased stiffness and damping of forces on
the ergometer, as well as the fact that the rider is overcoming the load of the flywheel
on the ergometer opposed to their own mass on the bicycle outdoors [6]. Changes in
environment (laboratory vs. outdoors) are likely to influence the cyclist’s biomechanics
during sprint cycling, particularly through the upper limbs, as the front steering mechanism
of a bicycle is not fixed, unlike an ergometer [6]. Further, a systematic review by Johnston
et al. [7] investigating cycling knee biomechanics reported that all 14 studies included were
completed in a controlled laboratory on either a stationary ergometer or stationary bicycle.
These researchers drew similar conclusions to Fregly et al. [6] and Burnie et al. [8], who
highlighted the limitations in knowledge when a biomechanical analysis is not conducted
in an environment representative of that in which the sport is competed [7].

Previously, Costes et al. [9] reported that the upper limb transfers 3–5% of energy into
total crank power output during cycling. This upper limb function becomes more critical
with high-intensity cycling, in which the power output is reduced to 10–20% if upward
forces are not produced on the handlebar [10]. During seated cycling, the energy produced
by muscles is delivered into three points: pedals, seat, and handlebars [11]. It has been
hypothesized the upper limb joints stabilize the trunk as well as creating seat force and
transferring energy down to the lower limb. An increase in the force produced by the legs
leads to an increase in the upward force at the hip joint. This force production results in
a decrease in the seat reaction force, which requires cyclists to compensate by generating
upper-limb force to pull on the handlebar until they can reach an adoption point [12].
Moreover, alternate bilateral movements of the left and right leg result in decreased trunk
stabilization, which results in the upper limb absorbing extra force to increase stability
during cycling [9]. These findings are derived from an understanding of the mechanical
movements in cycling. However, no empirical kinematic data support these hypotheses.
Thus, this research aimed to describe selected joint kinematics during a cycling sprint
outdoors. We sought to evaluate two different types of cycling sprints: standing and
seated sprinting, comparing these to a seated baseline condition of cycling at 20 km/h. We
also piloted a running gait analysis approach to process the cycling kinematics, allowing
insights from multiple pedal revolutions to be assessed.

2. Materials and Methods

We recruited three participants for this cross-section, case series study design. Each
participant was judged to be “Tier 3” or “Highly Trained/National Level” based on the
6-tier system proposed by McKay et al. [13]. Participant 1, who is female (age: 21 years,
weight: 56 kg, height: 1.55 m), competes at an elite and U23 level in international triathlon
competition and is ranked in the Top 500 in the World Triathlon Rankings and the Top
70 in the Asian Triathlon Rankings. Participant 2, who is male (age: 20 years, weight: 69 kg,
height: 1.79 m), competes at a U23 level in international triathlon competition and is ranked
in the Top 15 of the U23 Triathlon Australia Rankings. Participant 3, who is male (age:
19 years, weight: 76 kg, height: 1.87 m) competes at a U23 level in international triathlon
competition and is ranked in the Top 15 of the U23 Triathlon Australia Rankings. Although
these participants were from a triathlon background, they had predominantly competed
in draft-legal races more akin to cycling criterium racing. They were also coached by a
nationally accredited cycling coach. All participants provided written consent prior to any
data collection and the study was approved by the Curtin University Human Research
Ethics Committee (HRE2019-0418).

Data collection occurred over a one-week period in August and September 2023 at an
outdoor cycling track in Manning, Western Australia (Temperature: 20.6–29.8 ◦C, Humidity:
31.5–57.5%). The cycling track was an 800 m long loop including a 150 m straight section.
The entire track was used for the 10 min warm-up but only the straight portion was to
collect sprinting data. During the sprints, three-dimensional trunk, upper and lower limb
kinematics were measured at 200 Hz via a set of wireless inertial measurement units (IMU)
(Noraxon Myomotion, Scottsdale, AZ, USA) using previously reported placements [14,15].
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Briefly, 15 sensors were attached to participants over the following locations: C7, T12, L5,
pelvis and bilaterally on the hands, forearms, upper arms, thighs, shanks, and feet. Each
sensor has an accelerometer of ±200 g, a gyroscope of ±7000◦/s and a magnetometer of
16 gauss. The system was previously reported to have a valid evaluation of kinematics in
team sports compared to traditional optical motion capture [15].

Upon arrival at the track, participants’ body mass (while wearing their standard cy-
cling attire) and standing height were measured (using a Transtek BS-801-BT Body Scale
and Craftright 30 m Tape Measure, respectively). Next, participants had IMUs attached
to them, according to the manufacturer’s specifications, in the positions described. In
addition to the IMU, a single global positioning system (GPS) (Catapult S5, Catapult Sports,
Melbourne, Australia) collecting samples at 10 Hz was attached to each participant’s bicycle
seat post to measure their velocity profile. All participants used their own bike, shoes,
and cycling clothing so as not to interfere with the personalized set-ups cyclists normally
adopt. We understand that allowing participants to use their own equipment introduces
potential biases to the data; however, we endeavored to follow an ecologically valid
approach, as all previous studies had only tested cyclists in a laboratory, merely making in-
ferences to real-world cycling challenging. Following this, participants completed a 10 min
warm-up at a self-selected effort with three 6 s familiarization sprints at minutes 6, 7, and
8 post-start [8,16].

After the warm-up, data collection commenced. First, participants were asked to
simply cycle seated through the outdoor course at a constant speed of 20 km/h. This
provided a baseline condition from which to compare kinematic changes during seated and
standing sprinting. Participants completed the baseline condition once. Then, participants
were recorded while sprinting within a 60 m “testing zone” which was set and marked
on the 150 m straight section of the course. Prior to commencing the sprint, participants
entered the testing zone at a speed of approximately 20 km/h, using their bicycle computer
to monitor their speed. This procedure was completed six times, with the first three sprints
completed standing (out of saddle) and the last three sprints seated (in saddle) [3]. After
each sprint effort, participants were provided with a 3 min recovery period.

The GPS data were uploaded to manufacturer-supplied software (Catapult Sports,
Melbourne, Australia). For each of the participants’ six trials, the maximum velocity
achieved was determined for both in- and out-of-saddle conditions. Only the best trial
(out of the three available) based on the maximum velocity as recorded by the GPS was
analyzed further for kinematics. To determine this, three-dimensional kinematics were
extracted from the IMUs using the manufacturer-supplied software (Noraxon myoResearch
ver3.18, Scottsdale, AZ, USA). The kinematic data was sectioned into single pedal cycles
for the middle eight revolutions of the 60 m seated, standing, and control conditions.
An automatic algorithm detected the minimum knee flexion of the first revolution to
the next minimum knee flexion of the next revolution. This was performed for both left
and right knees and delineated all the kinematics into separate single cycles. Specific
kinematics were selected and analyzed. This selection was based on previous work which
emphasized the importance of the upper limb and trunk in sprinting [12] and included
bilateral wrist flexion/extension, elbow flexion/extension, shoulder flexion/extension, and
abduction/adduction. The truck kinematics analyzed included thoracic and lumbar spine
flexion/extension, lateral flexion and axial rotation. Further, bilateral lower limb kinematics,
including hip flexion/extension and abduction/adduction, knee flexion/extension, and
ankle plantar/dorsiflexion, were also examined. Each cycle of the selected kinematics was
then time-normalized to 0–100% of a cycle. The eight time-normalized revolutions for the
selected kinematics were averaged to obtain an average (±SD) kinematic curve similar to
those produced during typical running gait biomechanical analysis. Lastly, acceleration
values for each participant were calculated using data recorded by the GPS.

The average, minimum and maximum joint excursion for the selected kinematics were
obtained for the trunk and bilaterally for the upper and lower limbs. As this study was a
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series of three cases examining methods to obtain and process in-field cycling kinematic
data, only descriptive statistics (mean and standard deviations (±SD)) were reported.

3. Results

A lower peak velocity was observed during the in-saddle (Figure 1) conditions com-
pared to out-of-saddle conditions (Figure 2). This was consistent across each of the par-
ticipants. Participant 1 reached a peak velocity of 11.6 m/s at an acceleration of 0.7 m/s2

for standing sprinting and 10.4 m/s at an acceleration of 0.5 m/s2 for seated sprinting.
Participant 2 reached 13.1 m/s at an acceleration of 0.8 m/s2 for standing sprinting and
11.7 m/s at an acceleration of 0.6 m/s2 for seated sprinting, while Participant 3 reached
13.9 m/s at an acceleration of 0.9 m/s2 during standing sprinting and 13.0 m/s at an
acceleration of 0.9 m/s2 during seated sprinting.

Figure 1. Velocity over time for each participant during the seated sprint condition.

Figure 2. Velocity over time for each participant during the standing sprint condition.

Upper limb kinematic analysis revealed that participants maintained a stable joint
angle through the pedal stoke during baseline cycling, with very small changes (≈5◦)
in their range of movement (Table 1 and Figure 3A,D,G,J,M). During seated sprinting,
wave-like patterns started to emerge with increases in joint excursions (≈20◦). When
participants performed standing sprinting, discernable cyclic patterns emerged, espe-
cially for wrist flexion and extension (Figure 3C) and shoulder abduction and adduction
(Figure 3O). Other joint kinematics did seem to display a wave-like pattern, but individual
differences also emerged. For example, Participant 2’s elbow and shoulder flexion and
extension displayed a different pattern to that of Participant 1 and 3 (Figure 3I,L). These
differences occurred during the up phase of the pedal stroke for the elbow and throughout
the whole stroke for the shoulder. Larger joint excursion (30–40◦) was also noted in wrist
and elbow flexion and extension and shoulder abduction and adduction. Shoulder flexion
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reduced by approximately 20◦ during standing sprinting compared to seated sprinting and
baseline cycling.

In general, participants adopted a flexed lumbar spine and an extended thoracic spine
during baseline cycling (Table 1 and Figure 4). Further lateral flexion and axial rotation
in the lumbar and thoracic spine were close to neutral during baseline cycling; however,
there were individual differences (Figure 4A,D,G,J,M,P). Participant 2 adopted a posture of
left laterally flexed thoracic spine and a right laterally flexed lumbar spine during baseline
cycling (Figure 4D,M). Participants adopted approximately 5◦–10◦ less lumbar flexion as
they moved from baseline cycling through to standing sprinting (Figure 4J–L). However,
Participants 1 and 3 adopted a more neutral thoracic spine posture while Participant
2 maintained an extended thoracic spine while sprinting in both seated and standing
positions (Figure 4B,C). Small joint excursions (approximately 10◦ peak-to-peak) were
recoded for thoracic and lumbar lateral flexion and axial rotation movements (Figure 4F,I).
Thoracic axial rotation also displayed a wave-like pattern during the standing sprint
(Figure 4I).

Table 1. Avatars of typical postures adopted by participants for each condition. Near-top dead center
(left leg)/bottom dead center (right leg) are depicted. Please note that as the head position was not
measured, the software has assumed a neutral head position was maintained relative to the spinal
column and grayed the head and cervical spine.

Baseline Seated Standing

Participant 1

   

Participant 2

   

Participant 3
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Figure 3. This figure illustrates the wrist flexion (positive) and extension (negative) (A–C), wrist radial
(positive) and ulnar (negative) deviation (D–F), elbow flexion (positive) and extension (negative)
(G–I), shoulder flexion (positive) and extension (negative) (J–L) and shoulder abduction (positive)
and adduction (negative) (M–O) average joint positions and standard deviation across baseline,
seated and standing cycling conditions for Participant 1 (�: blue—left and green—right), Participant
2 ( : red—left and yellow—right), Participant 3 (�: gray—left and purple—right). In each panel
where applicable the zero (0) has been shown with a dotted line.

Hip and knee flexion and extension followed a very similar pattern for all participants
in the three conditions tested (Table 1 and Figure 5A–C,G–I). Greater hip and knee extension
(up to 10◦) were recorded in all participants during the standing sprints (Table 1 and
Figure 5C,I). Hip abduction and adduction and ankle dorsiflexion and plantar flexion
were varied during baseline cycling (Figure 5D,J). These kinematics developed into more
discernable, wave-like patterns when participants performed the seated and standing
sprints (Figure 5E,F,K,L).
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Figure 4. This figure illustrates the thoracic flexion (positive) and extension (negative) (A–C), thoracic
lateral flexion (positive = right lateral flexion, negative = left lateral flexion) (D–F), thoracic axial
rotation (positive = right axial rotation, negative = left axial rotation) (G–I), lumbar flexion (posi-
tive) and extension (negative) (J–L) lumbar lateral flexion (positive = right lateral flexion, negative
= left lateral flexion) (M–O), lumbar axial rotation (positive = right axial rotation, negative = left
axial rotation) (P–R) positions and standard deviation across baseline, seated, and standing cycling
conditions for Participant 1 (�: blue—lateral and green—axial), Participant 2 ( : red—lateral and
yellow—axial), Participant 3 (�: gray—lateral and purple—axial). In each panel where applicable the
zero (0) has been shown with a dotted line.
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Figure 5. Illustrates the hip flexion (positive) and extension (negative) (A–C), hip abduction (positive)
and adduction (negative) (D–F), knee flexion (positive) and extension (negative) (G–I) and ankle
dorsiflexion (positive) and plantarflexion (negative) (J–L) average joint positions and standard
deviation across baseline, seated and standing cycling conditions for Participant 1 (�: blue—left
and green—right), Participant 2 ( : red—left and yellow—right), Participant 3 (�: gray—left and
purple—right). In each panel where applicable the zero (0) has been shown with a dotted line.

4. Discussion

This study aimed to describe selected kinematics during road cycle sprints and to
understand the influence that completing the sprint seated versus standing had on these
kinematics. Further, a method of analyzing cycling kinematics similarly to running kine-
matics was trialed to judge the utility of this approach. We found that standing sprinting
produced greater final velocity and acceleration compared to seated sprinting. The upper
limb and trunk kinematics remained stable during baseline cycling but discernable patterns
started to emerge during seated sprinting and were much more pronounced and obvi-
ous during standing sprinting. Lower limb kinematics tended to follow distinct patterns,
especially sagittal plane movement in the hips and knees. Ankle moment showed more
variation during baseline cycling but was more pattern-like during sprinting.

The velocity profiles observed from out-of-saddle and in-saddle sprinting differed in
this study. There was a difference in final velocity for standing versus seated sprinting,
which was consistent for all participants. It has been shown that greater power output
occurs during standing sprint-cycling versus seated sprint-cycling [17,18], and this can
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explain the difference noted in the present study. Further, a previous biomechanical
review described the relationship between increased leg-produced force, increased hip-
reaction force, and decreased seat-reaction force during seated sprints and suggested
cyclist compensate for this by pulling on the handlebars until they stand and sprint out
of saddle [11]. Stone and Hull [19] suggested during standing sprinting, the hips are
placed further forward compared to seated sprinting, creating greater crank arm-leverage,
which explains the increased speed observed during this form of sprinting. The shoulder
flexion kinematics from our study support this hypothesis, as decreased shoulder flexion
was observed in all three participants during the standing sprint. Further investigations
involving greater numbers of cyclists of all abilities are needed to confirm these findings.

Analysis of upper body kinematics showed that participants adopted a more stable
posture during baseline cycling, with increasing ranges of movement as they sprinted.
Holliday et al. [20] also showed larger average movement in the elbow during more intense
(90% of max) compared to less intense cycling (60% of max). The average elbow flexion val-
ues reported by Holliday et al. [20] are similar to the values we obtained from participants
during seated sprinting compared to higher levels of cycling intensity. These authors also
reported little change in the shoulder flexion angle between the intensities tested, which
is similar to our observations when our baseline condition was contrasted against seated
sprinting. It was only during the standing sprint when shoulder flexion angles decreased
in all participants. This can be explained by Stone and Hull’s [19] hypothesis that cyclists
place their hips further forward during standing sprints. Only small shoulder abduction
and adduction ranges were recorded in our study and there was variance in this angle
between participants, especially during the baseline and seated sprint conditions. This
can be attributed to the differences in handlebar width between our participants’ bicycles,
especially considering that the difference in ranges and postures diminished during the
standing sprint, where handlebar width may be less of a factor. Shoulder abduction and
adduction movement may be an important consideration for bicycle fit and future studies
may want to consider this movement in their research.

Concerning wrist joint excursions, although there were smaller ranges of movement
in wrist flexion and extension as well as wrist radial and ulnar deviation during baseline
cycling, these ranges increased during seated and standing sprinting. Further, differences
between participants and differences between left and right wrists were also noted, es-
pecially for wrist radial and ulnar deviation. In fact, some of the values obtained for
wrist radial deviation were potentially close to a full range of motion [21]. These find-
ings are of interest, considering that radial deviation may be of more significance for
cycling performance than previously considered. The wrist joint may play a similar role in
sprint cycling performance to that which the ankle joint plays sprint running performance.
Martín-Fuentes & van den Tillaar [22] found that the time from dorsal flexion to toe-off
had a significant impact on performance among sprint runners. Future research describing
the relationship between sprint cycling performance and time and radial deviation range
should seek to determine if the wrist in sprint cycling is like the ankle in sprint running. If
such an association is found, specific training can be considered for the improvement of
sprint cycling performance, as ankle-specific training is already integrated in training for
elite sprint running [23]. Wrist kinematics should be further investigated in a larger sample
of track cyclists to elucidate the role the wrist plays in cycling sprinting.

The trunk kinematics recorded in our study showed that participants adopted a
forward-flexed posture in the lumbar spine with smaller ranges in the frontal and transverse
plane for both the lumbar and thoracic spine. Participants’ forward flexed posture in the
lumbar spine decreased during sprinting. Participants also adopted an extended posture
in the thoracic spine, and this extension also decreased as participants sprinted. Our
lumbar spine results are similar to those previously reported, but our thoracic spine results
differ substantially from those of other researchers [20]. The differences can be attributed
to two main factors. Firstly, Holliday et al. [20] calculated and reported thoracic spine
orientation angle relative to the laboratory coordinate system while our thoracic spine is
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reported relative to the lumbar spine. Our method has been shown to be a valid approach
to understanding spinal kinematics in fast bowling during cricket games [24]. Secondly,
Holliday et al. [20] tested participants using an ergometer in a laboratory, while our data
were obtained during field-based cycling. It may be that during cycling, it is paramount
to have an extended thorax for forward gaze to allow cyclist to gauge road conditions,
maintain balance, and avoid obstacles. Frontal and transverse plane kinematics were
smaller in magnitude and range compared to those recorded in the sagittal plane. However,
substantial differences were recorded between participants and cycling conditions. For
example, Participant 2 adopted a somewhat scoliotic posture during baseline cycling with
pronounced left lateral flexion in the thoracic spine offset by right lateral flexion in the
lumbar spine. This posture did not manifest during seated or standing sprinting, in which
a more neutral spine posture was adopted. More research is needed to further understand
trunk kinematics in cycling.

The lower limb kinematics in our study demonstrate a distinct pattern of movement,
especially in the hips and knees in the sagittal plane during all conditions, the hips in
the frontal plane, and the ankle in the sagittal plane during the sprinting conditions. Our
results for hip flexion and extension, hip abduction and adduction, and knee flexion and
extension during baseline cycling show similar patterns to those reported by Yum et al. [25].
However, the magnitudes of the ranges of motion are larger in our study. This may be
attributed to the fact our participants rode at 20 km/h during baseline cycling while Yum
et al. [25] had their participants ride at 10–12 km/h on an ergometer. In contrast, our results
recorded during seated sprinting for knee extension at bottom dead center are similar in
magnitude to those found in the work of Holliday et al., [20]. However, our results for
hip extension at top dead-center are lower compared to these authors’ results. Kinematics
derived from IMUs have been shown to be very similar to optical motion capture data,
especially in the knee, but variances have been recorded for hip kinematics, and this may,
in part, explain the discrepancy in results.

Our results for ankle dorsi and plantar flexion during baseline cycling differed from
those of Yum et al. [25], with our participants adopting a more plantarflexed posture. Our
participants used clipless pedals to attach their shoes to the bicycle, while pictures of Yum
et al.’s [25] configuration suggested their participants rode barefoot on an ergometer. The
use of clipless pedals allows cyclists to exert pull forces during the upward phase of the
pedal stroke and, as such, allows them to exhibit a more plantarflexed foot. Our results also
show that participants adopted more knee extension and ankle dorsiflexion range as they
sprinted. These results are in agreement with the results of others who have also showed
these changes with incremental cycling intensities. However, our results show little change
in the hip extension range, while others have shown increases. Our participants needed to
adopt postures that allowed forward vision, while the other researchers cited performed
their experiments in a laboratory where forward vision was not prioritized.

A further confounder of comparison with the available literature is the potential differ-
ences between ergometer frame stiffness and actual bike frame stiffness characteristics and
how these can influence cyclists’ kinematics. During seated cycling, the energy produced
by muscles is delivered to three points: pedals, seat, and handlebars [11]. Baker and
Davies [10] reported the importance of upper limb function during high-intensity cycling
and the role of the handlebar; this was conducted on a relatively stable laboratory ergome-
ter. Building on this finding, Costes et al. [9] highlighted the upper limb energy-transfer
contributions (3–5%) to total crank power output during real-world cycling, but found that
this is compromised if upward forces are not produced on the handlebar. Turpin et al. [12]
hypothesized how upper limb joints stabilize the trunk to create seat force and transfer
energy down to the lower limb. While our current data do not provide insight on how the
forces produced by the legs interact with seat reaction force, we do provide initial evidence
on the truck kinematics and how these seek to compensate for system stiffness differences
between seated and standing sprinting and the handlebar interaction.
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Our method of collecting, analyzing, and reporting cycling kinematics has shown
that field-based cycling kinematics do vary from those observed during laboratory-based
studies and that extrapolating results from the laboratory may be problematic. Further,
the characterization of whole pedal stroke data, like the approach used in running gait
analysis, shows promise, as these data are rich and insightful. Features such as movement
variability as well as bilateral differences during the whole pedal stroke can be analyzed.
Further, subtle differences between cyclists can also be studied. This may improve our
understanding of this popular sport and may lead to performance enhancements, injury
prevention, and optimal rehabilitation and return to cycling after injury. It may also give us
insights into errors made by cyclists, which can result in serious crashes and injury.

Our study is limited by the small sample size and, thus, the ability to extrapolate the
findings to a broader population. Consistent findings across a larger sample of cyclists
are needed to improve the level of evidence. Furthermore, our participants are triathletes,
and although they were familiar with criterium racing as well as being coached by a
nationally accredited cycling coach, potential inclusion of varying levels of road cyclists
and/or track cyclists is needed. This approach will ensure a rich data source for the
optimization of cycling. Allowing participants to use their own equipment can easily add
to the variance obtained in our kinematics. Further, environmental factors such as wind
cannot be controlled or accounted for. Our approach, however, allows scientists interested
in cycling to study these phenomena, allowing us to expand our knowledge about cycling.

5. Conclusions

Our study showed that our participants maintained a stable posture in most joints
studied during baseline cycling, but substantial changes in kinematics were noted as they
performed seated and standing sprints. In particular, discernable patterns started to emerge
in the upper limb joints and the ankle. Specific postures in the trunk were maintained
depending on the cycling activity. Our approach also showed that although the patterns of
kinematics in many joints were similar to those reported in previous laboratory studies, the
magnitude of the ranges of movement do differ. Our approach also highlighted insightful
results where movement variability within and between cyclists can be studied. Future
research should examine the in-field kinematics of a larger sample of road and track cyclists
during sprinting. This could facilitate a definitive examination of the association of certain
kinematic strategies with a superior sprinting performance. This information will greatly
enhance coaching and training strategies in competitive cycling.
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Abstract: A transformer neural network is employed in the present study to predict Q-values in a
simulated environment using reinforcement learning techniques. The goal is to teach an agent to
navigate and excel in the Flappy Bird game, which became a popular model for control in machine
learning approaches. Unlike most top existing approaches that use the game’s rendered image as
input, our main contribution lies in using sensory input from LIDAR, which is represented by the
ray casting method. Specifically, we focus on understanding the temporal context of measurements
from a ray casting perspective and optimizing potentially risky behavior by considering the degree of
the approach to objects identified as obstacles. The agent learned to use the measurements from ray
casting to avoid collisions with obstacles. Our model substantially outperforms related approaches.
Going forward, we aim to apply this approach in real-world scenarios.

Keywords: reinforcement learning; motion sensors; ray casting; signal processing; time series
processing; transformer model; robotics; Flappy Bird game; agent control

1. Introduction

The autonomous control of robots using reinforcement learning (RL) has emerged as
one of the important topics in machine learning. The extensive use of deep neural network
technology has made it the most common choice for creating control systems that rely
on information collected from a robot’s operating environment. This paper focuses on
processing the collected data within a time framework and using motion information to
control the robot’s actions. The architecture used is the transformer model [1], which can
efficiently process long time series [2].

The popular computer game Flappy Bird created by Vietnamese programmer Dong
Nguyen [3] acts as the simulation environment here. The goal of the player, who controls a
simulated robot bird, is to fly continuously forward without a collision. The bird encounters
a succession of pairs of pipes obstructing its path, and they are suspended from the top
and protrude from the bottom of the game environment. A constant distance is maintained
between each pair of pipes, forming a gap through which the bird can fly. The vertical
position of this gap is randomly generated, introducing a dynamic element to the game.
The ever-changing environment demands that players adapt and quickly react. Gravity
pulls the bird downward, whereas the player’s actions push the bird upward. Horizontal
velocity remains constant. The game concludes instantly if the bird collides with either a
pipe or the ground.

There are several approaches to train players in Flappy Bird. One typical approach is
to use the image generated by the game [4], with various adaptations. Another modification
involves introducing an extra negative reward when the agent collides with the upper edge
of the game screen [5]. Further modifications are based on the creation of three training
difficulty levels, easy, medium, and hard [6], which are distinguished by the width of the
gap between pipes. The subsequent method involved a computer expert who extracted
key information from the pipes and the agent, which is then used to predict actions [7].
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In this paper, the player–bird is equipped with a simulated light detection and ranging
(LIDAR) sensor represented by the ray casting method to detect pipelines and ground. The
player can utilize time-series signal processing to maneuver around pipelines and avoid
collisions. The goal is to use motion data to navigate through obstacles, such as pipes and
the ground. In this model, a custom-built deep neural network, called here the “motion
transformer”, is employed for both time series and ray casting signal processing.

A similar approach to processing temporal components is used by [8–10]. However,
these papers primarily focus on processing human activity data while also incorporating
spatial components. All spatial measurements are interpreted as features. The transformer
model in the present study is only looking for time correlations and not for correlations
between the rays of the sensor.

The transformer model has already been used for action prediction, where it deter-
mines the next action based on the current state, previous actions, and rewards. However,
this model specifically uses a causal transformer, limiting information processing only to
one direction from the past to the future [11]. Another application utilizes the transformer
model in RL as the replacement of convolutional layers for feature extraction. This is the
case of the Swin Transformer model used for image processing [12]. It differs from the
present paper, which does not incorporate the entire game screen as part of its input. The
next application of the transformer model is in the temporal domain, but it only considers
using the last timestep for action prediction, while the remaining timesteps are only used
in the learning process to compute the model’s error. It also uses a causal transformer [13].

Additional strategies for enhancing time-series prediction involve utilizing the last
timestep, averaging features across timesteps, and determining the maximum value
across timesteps.

The vision transformer [14] uses the features from the last timestep for action pre-
diction, notably through its use of the class token. In the present paper, the last timestep
represents the final state of the game, eliminating the necessity for an additional class token
in the time series.

The average of the features across timesteps is used in the paper [15], and their
maximum value is reported in [16]. The final alternative involves merging features over
time, though this approach may result in a proliferation of inputs to the subsequent layer
and contribute to overfitting in the model [17].

In contrast to previous research on Flappy Bird, the present paper aims to use the
understanding of the temporal context from ray casting measurements. We employed the
transformer model to process historical state measurements, subsequently aggregating
these data in a judicious manner to forecast the current action of the agent. The sensor
simulated in our study has a more restricted field of view when compared to the methods
used in prior research [18]. Therefore, our model is designed to leverage its past knowledge
of obstacles within the environment for effective navigation. Unlike neural network models
that have been already applied to the Flappy Bird problem, our goal is to devise a method
that can effectively condense information transmitted over time. This will allow us to
express the qualities of actions for the current state of the agent and its corresponding
response. Consequently, our model is designed to predict a categorical distribution of
actions based on the current state of the agent, taking into account the agent’s previously
evaluated states. This approach allows the model to make informed decisions based on
both the current and past states of the agent.

The key contributions of this paper are as follows:

• Improved performance: Our transformer model with a distance sensor significantly
outperformed existing methods (an increase of over 50 times in both average and
maximum scores). This suggests that real robots equipped with similar sensors can
potentially achieve considerably higher accuracy when processing long sequences of
sensor data.
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• Sensor-focused learning: Unlike previous approaches, our agent solely relies on sensor
data (not on the full game image) to learn from past experiences, identify obstacles,
and navigate the environment. This suggests that focusing on relevant sensor data can
be an efficient strategy for controlling robots.

• Visualizing and tracking the temporal similarity of sensor data: This research intro-
duces a visualization technique to track similarities within sensor data sequences
during a transformer’s model training. This technique helps adjust the model to focus
on the crucial measurements that impact the game’s strategy and ultimate outcome, ef-
fectively discarding non-critical information. This approach was developed to reduce
training times and lower memory requirements for the agent.

• Real-world applicability: Our findings have the potential to be applied to real robots
operating in hazardous environments (comparable to the Flappy Bird simulation,
where the agent can crash). By incorporating a “private zone” concept and deep
learning guidance, robots could potentially navigate complex tasks while minimizing
collisions and extending their operational lifespan.

This paper is organized as follows. Section 2 provides a review of the core algorithmic
and computational approaches employed in this work. These include the dueling network
architecture for Q-learning, the motion transformer architecture, the DeepMind Reverb
database server used for machine learning, ray casting for obstacle detection, episodic
memory incorporated into the transformer’s input, and the private zone concept that aids
in obstacle avoidance. Section 3 details the optimization process for the chosen methods
and their hyperparameters. This section explores factors such as the number of timesteps
used, the feature reduction techniques applied, and the optimal size of the private zone. It
concludes with a crash analysis to assess the potential for enhancing the ultimate outcomes.
Section 4 discusses future applications of this method and explores promising ways to
improve it. Finally, Section 5 summarizes the key findings and conclusions presented
throughout the paper.

2. Materials and Methods

The transformer model is trained by the dueling deep Q network approach. To
achieve effective learning, we need to collect data on various paths explored within the
state space and share the updated characteristics of our computational model. This task is
facilitated by a specialized DeepMind Reverb database server. The state space only contains
measurements from ray casting. The measurements from ray casting therefore warrant
a dedicated exposition. Since the transformer is built on episodic memory, its usage in
the Flappy Bird problem is independently addressed. Finally, an innovative approach
involves the establishment of a private zone surrounding the agent to enhance its ability
to maintain a secure distance while navigating obstacles. The introduction of this concept
markedly improves performance throughout the learning process. A thorough analysis of
these methodologies will be conducted in subsequent sections.

2.1. Dueling Deep Q Network

The principle of dueling network architecture is to extract features from the state
space that are relevant for value function and advantage function prediction. The value
function expresses how advantageous the current state of an agent is for its policy. The
agent prioritizes traversing states that possess higher values. This strategy ensures the
maximization of the overall value function. In order to make an informed selection among
a multitude of potential actions, it is essential to ascertain the benefit associated with each
action. This is achieved through the utilization of an advantage function [19]. In the case of
a discrete action space, the probabilities of each action need to be expressed in the form of
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logits, which are predicted by a deep neural network model [20]. Logits represent Q-values,
which can be computed according to the following relation [21]:

Q(s, a) = V(s) + (A(s, a)− 1
|A|∑a′

A(s, a′)) (1)

Q(s, a) expresses the quality function for a given action a and in a given state s. V(s)
expresses the value function for a given state s. A(s, a) expresses the advantage function
for a given action a in a given state s. The average of the advantage function across actions
in a given state s is subtracted from the A(s, a) function. Therefore, the advantage action
has a zero mean [22].

The model is trained with the logarithmic hyperbolic cosine (LogCosh) error function,
which is less sensitive to outliers than the more conventional mean squared error (MSE)
function [23]. The error function of the model is expressed by the following:

L(θ) = E(s,a,r,s′)∼U (D)

[
LogCosh

(
yDQN −Q(s, a; θ)

)]
(2)

yDQN = r + γmax
a′

Q
(
s′, a′; θ−

)
(3)

U (D) represents the uniform sampling from the replay buffer D that contains trajecto-
ries. Q(s, a; θ) expresses the Q-value predicted by the model. The reward is symbolized
by r. a′ is the next action expressed by the maximum Q-value in the next state s′. θ− are
parameters of the exponential moving average (EMA) model [24].

2.2. Motion Transformer

The motion transformer architecture is based on the encoder block in the transformer
model [25]. The purpose of the encoder block is to traverse the input vector across the
timeline in both directions. In this way, it is possible to look for relationships in historical
data from past to future or from future to past and possibly associate them appropriately
with the last timestep. The last timestep represents the source of information in the classical
Markov decision process (MDP) [26]. A state vector representing the local memory of the
model is fed to the model’s input. The task of the model learning process is then to optimize
the global memory (parameters) of the model so that the state space is ideally transformed
into an action space. However, the output of the encoder block again represents a sequence;
i.e., for each timestep, it predicts a set of extracted features from the input vector. Here,
several methods are presented for extracting one particular distribution of the current
action at. One possible approach is to only use the extracted features from the last timestep
to predict the distribution of actions at, similarly to the class token [27]. The idea is to
use the last timestep st to predict action at as in classical MDP. If some historical features
are needed, they are inserted during the last timestep thanks to the attention mechanism.
Another possibility is to use the average or maximum across all timesteps for each extracted
feature separately.

Figure 1 shows the architecture of the motion transformer. The architecture consists of
a preprocessing layer that adds position information to the input vector within the time
series. This is followed by several encoder blocks that extract features along the time axis.
The layer labeled X represents the reduction layer of the extracted features across the time
series. Its type was varied during experiments. The last layers are value and advantage,
representing fully connected output layers. Equation (1) is then applied to the output of
the motion transformer.
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Figure 1. The architecture of the motion transformer model.

Figure 2 depicts the architecture of the preprocessing layer, which includes a projection
layer in the form of a fully connected layer with a linear activation function. Its role is
to transform the number of input features into the number of hidden features used in
the rest of the model. Subsequently, a positional embedding, which is represented by
trainable variables, is summed with the output of a fully connected layer. Thus, in this
paper, embeddings for the time series are trained, along with the model [28].

 

Figure 2. The architecture of the preprocessing layer.
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The encoder block architecture is depicted in Figure 3. It consists of a pair of resid-
ual [29] sub-blocks. The first is multi-head attention [30], which processes the time series
according to the following relations:

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO + bO (4)

headi = Attention
(

QWQ
i + bQ

i , KWK
i +bK

i , VWV
i + bV

i

)
(5)

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

Figure 3. Architecture of encoder layer.
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WO represents weights, and bO represents the biases of the linear transformation after
merging heads. The process of merging heads comprises concatenating tensors along the
head dimension (axis). WQ

i , WK
i , and WV

i represent weights, and bQ
i ,bK

i , and bV
i represent

biases of the linear transformation of the input vector of layer Q (Query), K (Key), and
V (Value) into the space handled by the attention function. dk represents the number of
dimensions K after the linear projection of the layer input vector.

The second block is a multi-layer perceptron (MLP) [31], and its task is to nonlinearly
transform the processed time series. The nonlinear activation function used is Gaussian
error linear units (GeLUs) [32], applied after the first fully connected layer. It can be
expressed by the following relation:

y = GeLU(xW1 + b1)W2 + b2 (7)

W1 and b1 represent weight and bias parameters for the first fully connected layer
to which the nonlinear transformation is subsequently applied. The parameters W2 and
b2 represent the second layer of the block. This layer is responsible for executing a linear
transformation on the output derived from the preceding layer. The dimension of this
transformed output equals the dimension of the original input vector. Typically, the first
layer of the block has 4 times more neurons than the last layer of the block [33].

2.3. Database Reverb

The DeepMind Reverb database server is used to effectively manage the collected
trajectories and distribute the updated model parameters. This dedicated database server
is tailored for RL algorithms where it acts as a replay buffer. Users can control strategies for
selecting and removing elements from the database and options for controlling the ratio
between sampled and inserted elements. The database server may contain several tables
where trajectories or the parameters of the model are stored. An important feature is the
compression of the stored data that the database server provides. In the case of overlapped
trajectories, it is important to avoid storing duplicate trajectories [34]. The strategy used for
sampling trajectories is the uniform sampler, which selects trajectories from the table with
equal probability. The strategy for removing trajectories from a table is the first-in-first-out
(FIFO) method. The ratio between sampled and inserted items is empirically set to 32 with
10% tolerance.

The client–server architecture used is illustrated in Figure 4. The server represents
the database repository where trajectories are stored. The actor represents the client in
the form of an agent, which gathers the experience in the form of trajectories through its
interactions with the environment and stores the trajectories in the database server. The
learner represents a client that retrieves trajectories from the database server and uses
them to train an agent model. Following the training process, the agent receives the newly
updated model parameters via the database server. A similar principle is used in the Acme
framework [35].

Figure 4. Client–server training.

2.4. LIDAR

The method used to detect nearby objects and track the agent’s movement within
the game environment employs a ray casting technique, specifically referred to as LIDAR
for simplicity. It consists of 180 rays that are directed from the front of the agent to the
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right edge of the screen (see Figure 5). The endpoints of rays are determined by the
following relations:

x = dMAX ∗ cos
(

α− playerα −
π

2

)
+ playerx (8)

y = dMAX ∗ sin
(

α− playerα −
π

2

)
+ playery (9)

 

Figure 5. LIDAR sensor represented by ray casting.

dMAX represents the maximum ray’s length. The angle α determines the direction of
ray radiation, and a playerα expresses the pitch angle of the player to the plane of the game
space. The starting point of the ray is expressed by the coordinates of the front of the agents
playerx and playery.

When the bird is pushed upward, it rotates towards the sky at a 45-degree angle. In
the absence of player input, the bird slowly rotates towards the ground until reaching an
angle of −90 degrees and then falls straight down.

The maximum ray length is the distance between the front of the agent and the right
edge of the screen. Thus, the perpendicular ray touches the edge of the screen (if there are
no obstacles) while other rays at a higher or lower angle usually do not reach the edge of
the screen. This behavior mirrors the actual spread of ideal light and the measurements
of its reflections from ideally reflective objects at different angles. In contrast, when other
methods use an image generated by the game, the system sees it as a whole.

Here, rays emitted through ray casting spread out in a semicircular pattern and can
detect obstacles within a limited area ahead of the agent. Moreover, if the bird is not
positioned at the correct height and orientation relative to the game environment’s plane,
the detection rays do not even register the ground. Consequently, the agent cannot know its
altitude throughout each episode. The sensor operates at an angular resolution of 1 degree
and has a range limited only by the visible part of the environment ahead of the player.
Collision with a ray occurs when the ray hits the surface of a pipe or the ground. The
distance to the object is measured as the Euclidean distance between the agent’s front,
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where the ray originates, and the collision point. However, these values are not statistically
optimal for the model’s input; hence, it is convenient to normalize them to the range [0, 1].

dnorm
α =

dα

dMAX
(10)

dnorm
α represents the normalized distance to the object at an angle α. dα expresses the

measured value of the distance to the object. dMAX represents the maximum ray’s length.
The dMAX is defined as follows:

dMAX =0.8 ∗ Screenw − Playerw (11)

Playerw represents the width of the agent. The following measurements are given in
pixels. The agent has a width of 34 and a height of 24. Screenw represents the width of the
screen. The screen is the visible part of a game environment that can be seen when the
game is rendered. The screen width is 288, and the height is 512.

2.5. Episodic Memory

The agent’s state space consists of a fixed-length window of measurements from the
timestep history. Therefore, it is necessary to create memory to store these measurements
during a game episode. The entire contents of this memory serve as an input vector for
the motion transformer. The first-in-first-out (FIFO) data structure ensures the flow of
information in one direction, expressing the passage of time in the game environment. As
new measurements are acquired during the episode, they replace the oldest ones in the
queue. At the beginning of each episode, the queue is initialized with the initial state of
the environment. While similarities are observed in the intended result relative to Atari
stacking frames at the channel level [36], the present approach introduces a new timestep
dimension in the input vector. This enables the model to exploit temporal relationships
among measurements. The size of the memory determines how far back the model can
effectively analyze measured states in the local history. Insufficient memory capacity
can hinder information availability and impede effective action prediction. Conversely,
excessively large memory unnecessarily drains computational resources.

Figure 6 illustrates the principle of applied episodic memory. The new state arrives at
the end of the queue from the bottom. The oldest state leaves from the beginning of the
queue, i.e., the top part. The input to the motion transformer represents all items that are
stored in the queue and are ordered as they come in.

Figure 6. Architecture of episodic memory.
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2.6. Private Zone around the Agent

In experiments, it was found that the agent tends to take risks and moves too close to
the edges of the pipe when passing through the gap between pipes. There is a possibility of
penalizing the agent for risky behavior in the policy. Therefore, a penalty for an obstacle
approaching inside the agent’s private zone was introduced. With this penalty in place, the
agent is motivated to find the optimal solution for the given problem while considering its
proximity to recognized obstacles. In a real-world application, object recognition would
typically involve a dedicated deep neural network, which aims to distinguish between
obstacles and desired objects, such as food or coins, in other gaming scenarios [37].

The agent needs to maintain a safe distance while navigating through obstacles to
ensure its policy is not risky. This distance can be experimentally determined by finding
the optimal radius for the private zone, which is represented by a circle. The circular
model is chosen due to the sensor data being obtained in a circular polar grid format. As
the rays are emitted from the agent’s surface, the center of the private zone circle must
coincide with the sensor’s center. In the case where the simulation contains obstacles and
objects the agent may need to interact with, such as collectibles, it is necessary to define
this private zone dynamically. The classification process of obstacles vs. collectibles can
be complex and involve sophisticated methods [38,39], and keeping the identified object
between consecutive measurements can require specialized methods [40,41]. However, in
the present game environment, where only obstacles exist, simple classification suffices.

r =
MAX(Playerw, Playerh) + x

2
(12)

The radius of the private zone circle is defined as r, where Playerw represents the
width of the agent and Playerh represents the height of the agent. Hyperparameter x
specifies the size of the private zone. Since the rays radiate from ethe dges of the agent
and not its center, when x is set to 0, the private zone’s radius is equal to half of the agent’s
maximum dimension.

Figure 7 illustrates the agent’s private zone, where the parameter x is set to 30. The
gap between pipes is fixed at a size of 100 units (i.e., pixels), and the width of each pipe
measures 52 units. As can be seen, a high value of x penalizes the agent if it attempts to
navigate through the gap between pipes. Conversely, an x value that is too low diminishes
the existence of a private zone, prompting the agent to take increased risks.

 

Figure 7. Agent’s private zone.
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3. Results

In order to improve the performance of the deep neural network controlling Flappy
Bird’s obstacle avoidance, various techniques required finetuning. This included selecting
the right control system architecture and algorithmic techniques, as well as choosing
appropriate hyperparameters during implementation. The following section provides
detailed explanations of the key aspects of this process.

One aspect involved optimizing the number of timesteps retained in episodic memory.
This determined the extent to which the agent would recall the short-term history and utilize
it in its action predictions. Additionally, the study focused on refining the architecture
of the model. Specifically, it explored whether it was effective to use the last timestep of
the output series of actions. Alternatives included the global average or global maximum
pooling. These operations involve computing the average or maximum of features across
the timestep axis. These methods are commonly employed for reduction tasks, as seen
in vision transformers and convolutional neural networks. Lastly, attention was directed
towards determining the optimal size of the private zone, with options set to 30, 15, and 0.

The first tested configuration used 16 timesteps as the episodic memory size. Figure 8
shows the cosine similarity between embeddings for different pairs of timesteps. The
closest similarities are in the region of the upper-left corner of the heatmap. Therefore, the
subsequent experiment aimed to decrease the number of timesteps to diminish the density
of similarities among timesteps and refine the optimal number of timesteps. Since there
exists similarity among the initial timesteps, it is feasible to restrict their number. A total
of 12 timesteps were used, which was anticipated to decrease the density of similarities,
particularly in the upper-left corner.

Figure 8. Similarity of timestep embeddings between 16 different timesteps.

The second experiment was to use only 12 timesteps. The cosine similarity between
timestep embeddings is depicted in Figure 9. In contrast to using 16 timesteps, the density
of timestep embedding similarities in the upper-left corner decreased, but the score of the
agent did not significantly deteriorate. Figure 9 is not merely a subset of Figure 8; the
difference in the density of similarities is apparent. Additionally, the similarity distribution
is not perfectly symmetrical along the diagonal, with past steps showing more resemblance
to future steps, especially for distant timeframes. This trend, however, is not observed in
recent timesteps. Based on these observations, it could be beneficial in future experiments
to explore using fewer past timesteps, as they exhibit similarities to future steps. Timesteps
fewer than 12 or higher than 16 were not tested in this study.
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Figure 9. Similarity of timestep embeddings between 12 different timesteps.

In our investigation, we found that as the timestep increases, the similarity of em-
beddings decreases. This trend is particularly evident in the final timestep, regardless of
whether there are 16 or 12 timesteps configured. Typically, the Markov decision process is
applied only to the current state st. This implies that the most unique timestep must be the
last timestep, which was also supported by measurement with both the 16 and 12 timestep
configurations. Specifically, the last timestep exhibits the highest similarity only relative to
itself. In this paper, a typical Markov decision process is modified. The historical states and
current state are used simultaneously st-N:t, with the exception of the first state st due to its
lack of existing history. Some historical states can probably have similar meanings for the
agent. This adaptation draws parallels with word embedding, where words with similar
meanings have a higher positive cosine similarity, but on the other hand, words with much
different meanings have a small cosine similarity near zero [42].

In the following measurements, the comparison of the last timestep, global average,
and global maximum pooling used data collected from 500 episodes. The average and
maximum scores across episodes were measured for a deterministic, pre-trained agent. The
score represents the number of pipes that the agent successfully passed through.

Table 1 shows the results of comparisons between different reduction techniques. The
average of features along the timestep axis is significantly better than other approaches.

Table 1. Results of tested reduction methods.

Architecture Timesteps Highest Score Average Score

Global average pooling 16 2970 324.198
Last timestep 16 2809 286.394

Global maximum pooling 16 1948 329.194
Global average pooling 12 2348 380.284

Last timestep 12 1922 335.114
Global maximum pooling 12 1128 152.858

The highest score is emphasized in boldface font.

Table 2 presents a comparison of the best results achieved in both the highest score
and average score in this paper in contrast to other papers. This paper has significantly
better scores.
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Table 2. Caption.

Paper Highest Score Average Score

[43] 15 3.300
[4] 80 16.400
[6] 215 82.200
[5] - 102.170
[7] 1491 209.298

This paper without a private zone 2970 380.284
This paper with a private zone 74,755 13,156.590

The score obtained in this paper is highlighted in boldface font.

Figures 10–12 show the tracking of the shifting pipelines along the timeline. The
agent uses the history from 16 timesteps. A link to a video showing an animation of
the changing attention matrix along with the changing environment is provided in the
Supplementary Materials.

Figure 10. Agent with 16 timesteps entering the gap between the upper and lower pipes. (The
brighter the color, the higher the attention value).

From the analysis of the agent’s policy, it is evident that the agent takes risks and
approaches the upper or lower pipes while passing through the gap between the pipes.
To address this issue, it is necessary to designate a zone for the agent, beyond which, if
obstacles are detected, the agent incurs a penalty of −0.5.

Likewise, the same −0.5 penalty stipulated in [5] for the agent reaching the top of the
screen is also applied to the obstacles in the agent’s private zone. In this game environment,
all objects are regarded as obstacles.

Conversely, if the agent maintains a distance from the obstacles that is above a critical
threshold, it is rewarded with a “still alive” reward valued at +0.1, similarly to [44].
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Figure 11. Agent with 16 timesteps in the gap between the upper and lower pipes. (The brighter the
color, the higher the attention value).

Figure 12. Agent with 16 timesteps passed the gap between the upper and lower pipes. (The brighter
the color, the higher the attention value).

Figure 13 shows a histogram of the agent’s score across various feature reduction
techniques and private zone sizes. Experiments involving different feature reduction
methods did not incorporate a penalty in the reward function for approaching obstacles too
closely. Meanwhile, experiments with varying private zone sizes utilized global average
pooling with 16 timesteps for feature reduction. Comparing the use of global maximum
pooling to global average pooling, it is evident that the agent has a higher likelihood of
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scoring below 10 when employing the former method. The deep Q network generally
overestimates the predicted Q-values [45]. Consequently, employing global maximum
pooling may result in an overestimation of Q-values and a more risk-prone policy for
the agent.

 

Figure 13. Histogram of score.

In the present study, it was observed that when only the last timestep was utilized,
akin to the class token in the vision transformer [46], the global average pooling performed
similarly to global maximum pooling.

The most stable control of Flappy Bird among the tested options of feature reduction
was achieved via the global average pooling reduction method. It provided the highest
maximum scores and average scores compared to the other methods of feature reduction. In
contrast to global maximum pooling, global average pooling weighs down the activation by
combining maximal and non-maximal activations [47]. This behavior leads to a reduction in
the overestimation of Q-values predicted by the model and a less risky policy for the agent.

It was observed that using the optimal private zone size resulted in the agent achieving
scores that were many times higher. The probability of obtaining a score of less than 100
was extremely low. Furthermore, a high probability of obtaining a score greater than 1000
was observed compared to agents without a private zone.

Table 3 presents a comparison between different private zone sizes. From a selection
of several options, results indicate an optimal private zone size of 15. Excessively large
values of private zone sizes would also penalize the agent for flying through the pipeline
gap until it passes its center, which counts as a high positive reward of +1.0 to the exclusion
of the other values of the reward function [48].

Table 3. Comparison of scores with different sizes of private zones.

Private Zone Highest Score Average Score

None 2970 380.284
0 10,250 2138.858
15 74,755 13,156.590
30 11,383 1645.654

Figure 14 presents the crash analysis for the collisions of the Flappy Bird without the
private zone and with the optimal size private zone. While the score with the private zone
is better by several orders of magnitude, the crush analysis shows that there still exists
room for improvement. A robust solution should have an equal probability of hitting
potential obstacles, while the results show that the Flappy Bird tends to crash almost
exclusively into the bottom end of the upper pipe. The introduction of the private zone has
minimized potential impact points, allowing future focus on suppressing these collisions.
One approach to achieving this goal is to design a more robust reward function.
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Figure 14. Crash analysis with and without the private zone.

Table 4 displays the hyperparameters used in all the experiments performed. Their
values are set based on a combination of recommended settings. The recommended size
of the replay buffer and the discount factor are taken from [49]. The multiplier of the
MLP block dimension, type of learning rate schedule, and gradient clipping are based
on [50]. A private zone with a value of None indicates the absence of a penalty rule for
approaching obstacles in the reward function. The other numerical values of the private
zone size express the x of Equation (12).

Table 4. Hyperparameters of the agent and learner model.

Hyperparameter Description Value

port Database server port 8000
max_replay_size Maximum database memory 1,000,000

samples_per_insert Samples per insert ratio for reverb 32
temp_init Initial Boltzmann temperature for exploration 0.500
temp_min Minimal Boltzmann temperature 0.010

temp_decay Decay of Boltzmann temperature 0.999999

warmup_steps Warmup steps for learning rate
cosine scheduler 1000

train_steps Training steps 1,000,000
batch_size Batch size 256

gamma Discount factor 0.990
tau Tau factor (for EMA model) 0.005

num_layers Num. of encoder blocks 2
embed_dim Embedding dimension 128

ff_mult Multiplier of MLP block dimension 4
num_heads Num. of attention heads 6

learning_rate Learning rate 3 × 10−4

global_clipnorm Globally normalized clipping of gradient 1
weight_decay Weight decay for AdamW optimizer 1 × 10−4

frame_stack Size of short-term (episodic) memory 16 or 12
player_private_zone Size of agent’s private zone None, 0, 15 or 30

4. Discussion

Utilizing a transformer neural network to control a simulated agent via ray casting
as a simple LIDAR sensor has potentially diverse applications across several domains.
Remote sensing technology integrated with advanced AI-based control can be beneficial in
the following contexts:

In virtual reality and games, avatars or characters can benefit from more natural and
responsive interactions.
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The method for improving navigation using ray casting in 2D could potentially be
expanded to utilize true LIDAR in 3D space. In the future, this could lead to advancements
in robotics; autonomous vehicles like self-driving cars, drones, or any kind of mobile robots
that require effective navigation; and obstacle avoidance capabilities. In disaster-stricken
areas, such robots can aid in search and rescue missions. Enhanced agents can streamline
tasks such as inventory management and material handling in warehouses. Additionally,
robotic arms could better manipulate objects in dynamic environments.

In each of these contexts, the integration of ray casting and transformer neural net-
work control should enable the agent to make informed decisions based on temporal and
spatial information.

When considering the selection of algorithmic procedures and hyperparameters, there
exists ample room for exploration and experimentation with various possibilities.

When storing high-dimensional states in episodic memory, it would be more conve-
nient to only extract the significant features for storage. For this purpose, an AutoEncoder-
type model could be used to compress the input vector.

Another consideration is the initialization of episodic memory. Currently, it duplicates
the initial state, but one alternative includes creating an embedding for the empty state
containing episodic memory at each episode’s start. The next option is to dynamically
adjust the number of timesteps with respect to the input to the motion transformer, while
ensuring the proper assignment of positional embedding for incrementing states from
the timesteps.

A promising research direction is exploring the impact of cosine similarity on the opti-
mal number of timesteps. This involves investigating whether the similarity of timestep em-
beddings can reduce the necessary number of timesteps. Further study is needed to validate
the effect of positional embedding in reducing timesteps across various game environments.

In the case of the Flappy Bird game, future research should also try the possibility
of adding a weighted reward for keeping a safe distance from the upper pipe more than
from other obstacles. This research direction follows from the results of the error analysis.
The subject of further research is also to study and rectify failures after the agent has
performed a very large number of steps in the environment. Potential improvements might
be anticipated in algorithms based on the deep Q Learning principle, such as dueling deep
Q learning or double deep Q learning. Numerical instability should also be checked, as
well as more advanced Actor–Critic-type models such as A2C or PPO.

Further improvements could be attained by establishing a dynamic private zone
around the agent. The private zone could be delineated by deep neural network prediction,
whether objects crossing the private zone boundary are obstacles or aids in achieving a
specific task. Such a model could directly adjust the complex reward function necessary for
task completion without exposing the agent to risky behavior.

5. Conclusions

Our study presents novel guidance control using LIDAR sensors represented by
the ray casting method for obstacle detection and agent navigation within obstacle-filled
environments. The designed motion transformer model effectively grasped the temporal
dynamics between sensor readings. The findings demonstrate the model’s ability to
adaptively respond to the agent’s movement among pipelines, as reflected in the attention
matrix. The model’s attention mechanism prioritizes past or present sensor data, or a
combination thereof, based on the spatial distribution of pipelines in the surroundings.
Additionally, the results show that employing average reduction techniques helps mitigate
the risk of overestimating Q values. Furthermore, the incorporation of a private zone for
the agent contributes to the formulation of a less risky navigation policy.

In this paper, the average score (the number of passes through pipeline gaps) obtained
by the agent without a private zone is 182 percent better compared to the best results
obtained by the competitors. The highest score achieved by the agent without a private
zone compared to the best competitors’ obtained results is 199 percent better. The agent
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with a private zone of 15 pixels achieved an average score that was 6286 percent better
than the best competitors’ average agent score and a maximum score that was 5014 percent
better than the competition’s best results in terms of maximum agent score.

Supplementary Materials: The following supporting information can be downloaded at the follow-
ing: interactive charts: https://wandb.ai/markub/rl-toolkit/groups/FlappyBird-v0 (accessed on 16
October 2023); source codes: https://github.com/markub3327/rl-toolkit (accessed on 16 October
2023) and https://github.com/markub3327/flappy-bird-gymnasium (accessed on 16 October 2023);
YouTube video: https://youtu.be/aZQxuDCyHoI (accessed on 22 December 2023).
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Abstract: This paper introduces an efficient barrier model for enhancing smart building surveillance
in harsh environment with thin walls and structures. After the main research problem of minimizing
the total number of wall-recognition surveillance barriers, we propose two distinct algorithms,
Centralized Node Deployment and Adaptation Node Deployment, which are designed to address
the challenge by strategic placement of surveillance nodes within the smart building. The Centralized
Node Deployment aligns nodes along the thin walls, ensuring consistent communication coverage
and effectively countering potential disruptions. Conversely, the Adaptation Node Deployment
begins with random node placement, which adapts over time to ensure efficient communication
across the building. The novelty of this work is in designing a novel barrier system to achieve energy
efficiency and reinforced surveillance in a thin-wall environment. Instead of a real environment, we
use an ad hoc server for simulations with various scenarios and parameters. Then, two different
algorithms are executed through those simulation environments and settings. Also, with detailed
discussions, we provide the performance analysis, which shows that both algorithms deliver similar
performance metrics over extended periods, indicating their suitability for long-term operation in
smart infrastructure.

Keywords: smart building; surveillance; infrastructure; walls; efficiency

1. Introduction

In the era of smart cities, the concept of smart buildings has emerged as a vital
component of urban infrastructure to provide convenient lives to citizens. In the realm of
smart buildings, seamless communication and continuous surveillance between various
components of the infrastructure are crucial. One of the primary obstacles in establishing
such communication is the presence of physical barriers like walls—structures which can
significantly disrupt data flow, diminish detection accuracy, and affect the system’s overall
performance. These buildings are characterized by their integration of IoT (Internet of
Things) technologies, facilitating advanced automation and real-time control over various
subsystems, such as energy management, security, and environmental controls [1–8]. Also,
it is highly anticipated that 5G and 6G communication technologies are utilized in smart
buildings and expansive spaces [9–15].

However, the increase in smart buildings and their effective operations depend on
the availability and efficiency of communication systems in these structures. One of the
most significant challenges faced in deploying effective communication systems within
smart buildings is the presence of physical barriers, primarily walls, which can significantly
disrupt the flow of data. These result in coverage gaps and reductions in the overall perfor-
mance of the communication system. This issue becomes exacerbated when we deliberate
on solid walls, which present a formidable obstacle to the propagation of electromagnetic
waves, leading to disconnected spaces within the building and jeopardizing the optimal
functioning of the smart system.
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On the other hand, surveillance and secure monitoring are considered as critical tasks
in smart buildings; these tasks can be supported by heterogeneous mobile robots, drones,
UAVs (Unmanned Aerial Vehicles), IoT devices, and intelligent components [16–22]. To
provide reinforced surveillance and secure monitoring, the concept of a barrier can be
applied to smart buildings because the formation of a barrier and its creation guarantee that
any penetrations or mobile objects are detected by system members in the built surveillance
barriers within the requested three-dimensional space and plane area [23–29]. Essentially,
it has been known that the barrier has been used for numerous applications, including
virtual emotion surveillance, digital twins, maritime transportation systems, public and
private areas, patrol services, border surveillance, smart complex surveillance, virtual
emotion informatics, and geographic segmentation surveillance [30–34]. However, it is
not sufficient to form secure building surveillance in smart buildings with the walls in
order to deliberate on energy-efficient formations when the walls are present because these
may affect the detection and the communication by the deployed system members or
components equipped with wireless transmitters and receivers. Thus, it is highly necessary
to proceed by handling the issue so as to enhance secure surveillance in smart buildings
with consideration of energy efficiency.

To solve this issue, this paper proposes an approach: the preemptive placement of
communication nodes within thin walls. The idea is to leverage the thin walls, seen as
obstacles, as conduits for communication. By strategically embedding nodes within these
walls and positioning additional nodes in the adjacent spaces, a communication barrier
can be created. This barrier bridges the disconnect caused by the physical walls, thereby
enabling seamless data transfer between spaces.

The objective function of this study is to pursue energy-efficient surveillance in smart
buildings within the walls. It follows that the main task in the proposed system is to
minimize the number of nodes or system members while ensuring optimal communication
with surveillance. This consideration is important, as an excessive number of nodes can
lead to higher costs, increased energy consumption, and potential signal interference. The
potential for signal interference also rises with an increase in the number of nodes. As more
nodes are placed in proximity, there is a higher likelihood of overlapping signals, which
can lead to data corruption and a drop in network performance [8]. Therefore, the balance
between the number of nodes and communication effectiveness is a complex challenge
that requires a careful and innovative approach to ensure that smart buildings can function
efficiently without incurring prohibitive costs.

Based on the above motivations, the main contributions of the paper are
summarized below:

• First, we design an efficient barrier system for enhancing smart building surveillance in
harsh environments with walls and infrastructure. The proposed system is designed to
consider energy-efficient surveillance and optimal formations of system components;

• Then, this paper presents a formal definition of the research problem to minimize the
number of nodes or system components, in order to ensure secure surveillance and
communication among system components;

• To resolve the problem, we propose two different algorithms for the preemptive
placement of nodes within thin walls and the adjacent spaces. These algorithms aim
to minimize the number of nodes to an optimal level and to optimize their placement,
striking a balance between system efficiency, cost effectiveness, and environmental
sustainability;

• Instead of real circumstances, we utilize an ad hoc server for simulations with various
scenarios and parameters. Then, the performances of the proposed algorithms are
analyzed for obtained outcomes through those simulations using various settings and
scenarios; as well, detailed discussions are provided for the obtained results.

In the following sections of this paper, we have systematically arranged our discussion
and analysis to offer a comprehensive perspective on our research. In Section 2, we provide
a detailed problem definition and present an overview of the system. This section serves as
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the foundation of our study, outlining the specific challenges associated with communica-
tion in smart buildings and the system parameters that our proposed algorithms operate
within. In Section 3, we introduce our two algorithms for the preemptive placement of
nodes within thin walls and the adjacent spaces. Each algorithm is explained in detail,
including its design principles, operation, and expected performance characteristics. Our
objective here is to provide a thorough understanding of the mechanisms of these algo-
rithms and how they aim to solve the problem defined in Section 2. In Section 4, we delve
into an evaluation of our proposed algorithms. Using a series of simulations, we illus-
trate the performance of each algorithm under various conditions. This section provides
explanations of how our algorithms function, demonstrating their potential to improve
communication within smart buildings. In Section 5, we conduct a comparative study of
the two algorithms. Drawing on the results from the previous section, we analyze and
contrast the performance of each algorithm. This comparative analysis allows us to identify
the relative strengths and weaknesses of each algorithm, offering valuable insights into
which one provides a more optimal solution to the problem of communication disruption
and secure surveillance with energy efficiency in smart buildings.

2. Proposed Framework

First of all, we design the efficient barrier model for solidifying smart building surveil-
lance in harsh environments with walls and structures. And the essential terms and
definitions in regard to the proposed model are represented. Also, the primary research
problem in the paper is formally defined.

2.1. System Overview and Assumptions

The proposed system revolves around a smart building environment, considered as
a three-dimensional space, wherein certain areas are obstructed by thin walls that act as
physical barriers for communication. These walls divide the space into two parts, creating a
challenge for data transfer between different sections of the building. The system members,
or sensors, are randomly deployed throughout the available space, excluding the wall.
These sensors are the key components in our communication system, serving as the nodes
that facilitate data transfer across the building. Their placement is random, reflecting the
unpredictability and variation found in real-world deployment. The wall in this system,
though physically thin, is considered impenetrable for the communication signals used by
the sensors.

Figure 1 depicts a brief overview of the given space. When we consider a two-
dimensional plane, a thin wall is located vertically, which may affect surveillance and
communication between the left border and right border.

Figure 1. A brief overview of the whole space.
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Then, the below assumptions and settings are engraved to activate the proposed
system:

• The three-dimensional space is considered as the region of interest within the smart
building as a whole. And the smart building contains thin walls, which are located
everywhere within the building;

• The proposed system consists of a group of system members or components, including
IoT devices, mobile robots, and sensors, where each component has equal detection or
communication range and is equipped with wireless transmitters and receivers;

• The connection between two system members is created if there exists an overlapped
space between the detection ranges of two neighbors.

2.2. Notations, Essential Terms, Problem Definition

The basic terms which are utilized in the proposed system are presented and the main
research problem is also defined in this subsection. The goal is to create a barrier in a
three-dimensional space, reducing the number of nodes. There is a very thin wall in the
space that separates the two spaces. The input is the sensing radius and the output returns
the number of nodes used when the number of barriers is greater than or equal to a certain
number of barriers.

Definition 1 (wall-recognition surveillance security barriers). Suppose that there is a smart build-
ing space, where the space includes walls or similar complex infrastructure that may affect wireless
communication, data transfer, transmission, and reflection. Given the space with thin walls, the
system allows heterogeneous members, including a group of IoT devices, mobile robots, sensors, and
cameras, which are equipped with a wireless transmitter and receiver. And each member has the
maximum allowed number of connections through the thin wall that covers one hop distance or
detection range of the system member. The wall-recognition surveillance security barriers in smart
buildings, called WalRecogSurv, are constructed by a sub-group of system members to detect any
penetration or object movement between specific directions.

Definition 2 (MinWalRecogSurv problem). It is given that it is necessary to generate a group
of wall-recognition surveillance security barriers in a smart building. The MinWalRecogSurv
problem is to minimize the total number of wall-recognition surveillance security barriers in the
smart building environment, such that the requested allowed number of connections through walls
or installations within the walls is satisfied.

Hence, the objective of the MinWalRecogSurv problem is to

Minimize δ (1)

Also, the indispensable notations, with their brief descriptions and explanations, are
summarized in Table 1.

Table 1. Notations.

Notations Descriptions

S a 3D smart building surveillance space
M a set of system members
W a set of wall-recognition surveillance security barriers
δ the number of system members
r the detection range of system member
t the allowed number of connections through the wall
p the possible number of connections among system members
q the requested number of wall-recognition surveillance security barriers
i an identifier of a system member, where i ≤ δ, mi ∈ M
j an identifier of a system member, where j ≤ δ, mj ∈ M
k an identifier of a wall-recognition barrier, where k ≤ q, wk ∈ W
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3. Proposed Methods

This section presents our proposed schemes to resolve the MinWalRecogSurv problem
in the smart building space. The implementation processes and steps of both approaches
are specified.

3.1. Algorithm 1: Centralized Node Deployment

First of all, an approach for centralizing node position, referred to as Centralized Node
Deployment, is devised to solve the MinWalRecogSurv problem, which returns δ as the mini-
mal number of system members required to build wall-recognition surveillance security
barriers. The Centralized Node Deployment scheme largely consists of the following steps:

• The first step is to place the nodes in a row along the centerline of the thin wall. This
centralized deployment ensures that nodes are evenly distributed along the length of
the wall, which is important for maintaining consistent communication coverage;

• When nodes are placed inside thin walls, the algorithm randomly deploys nodes
on both sides of adjacent walls. Randomness here means that nodes are placed at
various points on adjacent walls, but within a defined range, to ensure effective signal
transmission with nodes within thin walls. This step introduces a variation factor
that reflects real-world conditions, in which nodes can be placed in various locations,
depending on the specific requirements and constraints of the building;

• The final step is to form a communication barrier based on nodes placed inside the
thin wall by [35]. This barrier overcomes communication interruptions caused by thin
walls and enables effective data transfer between randomly placed nodes on either side
of the wall. The formation of this communication barrier optimizes communication
paths between nodes and improves data transmission within smart buildings. Then,
we estimate the total number of current surveillance barriers and return it as the
final outcome.

Figure 2 shows the implementation strategy of Algorithm 1: Centralized Node Deploy-
ment, with consideration of a centerline in the wall. As can be seen in Figure 2, such a
strategy ensures that system members or nodes are distributed evenly in the given smart
building space. Also, Figure 3 depicts the executed state of Algorithm 1: Centralized Node
Deployment. As shown in Figure 3, Algorithm 1 helps the fair distribution of system mem-
bers through the wall when the wall-recognition surveillance security barriers in the smart
building space are created with the requested number of allowed connections through the
wall, or installations within the wall, consequently.

Figure 2. The implementation procedure of Algorithm 1 along the centerline of the wall.
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Figure 3. The execution status of Algorithm 1 with the determined node deployments within the wall.

Algorithm 1 Centralized Node Deployment
Inputs: S, M, r, t, q, Output: δ

1: verify M with r within S;
2: recognize the walls in S;
3: set W ← ∅;
4: place nodes in centerline in the walls;
5: while q number of WalRecogSurv are not formed do
6: seek a new WalRecogSurv through the centerline in the walls with t and p;
7: if a new WalRecogSurv wk is found then
8: set W ← W ∪ wk;
9: end if

10: end while
11: calculate |W|;
12: update |W| to δ;
13: return δ;

Furthermore, the pseudocode of Centralized Node Deployment is explained in Algo-
rithm 1 with formal representations.

3.2. Algorithm 2: Adaptation Node Deployment

Secondly, an approach for adapting node position, called Adaptation Node Deployment,
is developed to work out the defined MinWalRecogSurv problem, seeking the minimal
number of system members such that the requested number of allowed connections through
the wall, or installations within the wall, is met. Then, the Adaptation Node Deployment
approach is largely composed of the procedures below:

• The first step assumes that there is no wall and randomly deploys nodes in the entire
space of the smart building. This random placement reflects the variability in and
irregularity of node placement in the real world;

• This step creates a barrier based on the initial node placement by [35]. This barrier
assumes that there is no wall and forms a communication flow between nodes; each
node can transmit and receive data to and from adjacent nodes. After the barrier is
created, it finds this flow to see how communication is formed;

• After finding the flow, it finds the point where the flow and the wall intersect. This
intersection is an area where communication disconnection may occur, and additional
nodes are placed at that point to resolve this. This keeps the communication flow
through the wall smooth and enables data transfer to other areas within the smart
building. Then, we measure the total number of current surveillance barriers and
return it as final result.
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Figure 4 presents the arbitrary deployment of Algorithm 2: Adaptation Node Deployment.
The random deployments are performed through the entire space of the smart building.
Then, Figure 5 describes the implementation procedure of Algorithm 2. As can be seen
in Figure 5, Algorithm 2 searches for the flow to see how communication is formed after
the barriers are generated. Moreover, Figure 6 shows the execution status of Algorithm 2
with the node locations adopted within the wall. It follows that, after finding the flows,
Algorithm 2 recognizes the wall intersections so that it keeps the communication flow and
the detection through the wall within the smart building.

Figure 4. The arbitrary deployment of Algorithm 2.

Figure 5. The implementation procedure of Algorithm 2 with consideration of adapted flows.

Figure 6. The execution status of Algorithm 2 with the node locations adopted within the wall.
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Algorithm 2 Adaptation Node Deployment
Inputs: S, M, r, t, q, Output: δ

1: identify M with r within S;
2: detect the walls in S;
3: set W ← ∅;
4: while q number of flows are not generated do
5: seek a new flow between left border and right border with t and p;
6: if a new flow is found then
7: add it to W;
8: end if
9: end while

10: calculate |W|;
11: search for the points where the flow and the wall intersect;
12: add those points to |W|;
13: update |W| to δ;
14: return δ;

Moreover, the pseudocode of Adaptation Node Deployment is specified in Algorithm 2,
based on formal notations and descriptions.

4. Performance Analysis

In this section, we evaluate the performances of the proposed Algorithm 1: Centralized Node
Deployment and Algorithm 2: Adaptation Node Deployment after several groups of simulations are
performed. In the simulations, we utilize several settings and parameters, covering different
sensing or detection ranges of system members, different numbers of connections through the
wall, different possible numbers of connections among system members, several numbers of
wall-recognition surveillance security barriers, etc. The simulation settings are summarized
as follows. The size of the smart building is considered as a 1000 (width) × 1000 (height) ×
1000 (depth) space. The sensing or detection range of system member r ranges from 50 to 200,
where each system member has equal detection radius. In essence, a sole thin wall in the smart
building is considered in each simulation. The allowed number of connections through the
wall t ranges from 10 to 30. And the possible number of connections among system members
p is considered between 1 and 4. Also, the requested number of wall-recognition surveillance
security barriers ranges from 20 through 50. As such, the objective value of δ is the number of
system members, which is the final output value of the proposed algorithms and the average
value of 100 different graphs and experiments. All experiments are conducted using C++ in
an arm64cpu computer; the resulting graphs are created by MATLAB.

First, our schemes are described in Table 2, including the pros and cons compared to
other studies.

Table 2. Pros and sons of previous studies and our scheme.

Studies Pros Cons

[23]
- Initial work of barriers - 2D environment
- Sleep-wakeup scheduling - Not practical product
- Homogeneous capability - Biased theoretical analysis
- Heterogeneous capability - Not expanded environment

[25]
- Controllable trajectories - 2D environment
- Static and mobile sensors - Not practical product
- Bidding mechanism - Biased theoretical analysis
- Deterministic countermeasures - Not expanded environment

[33]
- Two-way-enabled barriers - 2D environment
- Slab dividing strategy - Not practical product
- Perpendicular detection - Biased simulation analysis
- Horizontal detection - Not expanded environment

Our scheme
- 3D environment - Sole thin wall
- Smart building with thin wall - Not practical product
- Green property - Biased simulation analysis
- Deployment strategy with wall - Not expanded environment
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In the first group of experiments, Algorithm 1: Centralized Node Deployment and
Algorithm 2: Adaptation Node Deployment are performed over different sensing ranges with
the allowed number of connections through the wall t = 20 and p = 3 in the 1000× 1000×
1000 smart building size, as shown in Figure 7. It is noted that the experimental outcome is
composed of two axes, so that the X-coordinate specifies the sensing range of the system
members and the Y-coordinate presents the total number of system members δ of objective
value, so as to build the requested number of wall-recognition surveillance security barriers
completely. In Figure 7, sensing radius or detection range has been set as 50, 100, 150,
or 200. Figure 7a,b demonstrates the performance of two different algorithms according
to different sensing ranges with q = 20 and q = 30, respectively. Also, Figure 7c,d shows
the performance comparison of two algorithms when q = 40 and q = 50 are given in the
experiment. As shown in Figure 7, it is verified that the total number of system members δ
is decreasing as the sensing range of node is increasing because the bigger sensing range
allows more space to be detected by each node. Also, we can confirm that Algorithm 2:
Adaptation Node Deployment shows better performance than Algorithm 1: Centralized Node
Deployment in the first experimental scenario.

(a) q = 20 (b) q = 30

(c) q = 40 (d) q = 50

Figure 7. Performance comparison for the total number of nodes or system members of the requested
number of wall-recognition surveillance security barriers q in different sensing ranges with the
allowed number of connections through the wall t = 20 and p = 3 in 1000 × 1000 × 1000 smart
building size.

For the second set of simulations, we also executed two algorithms, Algorithm 1:
Centralized Node Deployment and Algorithm 2: Adaptation Node Deployment, using vari-
ous sensing radii with the allowed number of connections through the wall t = 20 and
q = 50 in 1000 × 1000 × 1000 smart building size, as can be seen in Figure 8.
Similar to the first group of experiments, the experimental outcome results consist of
two axes, where the X-coordinate represents the sensing radius of system members and
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the Y-coordinate specifies the total number of system members δ as the final outcome. In
Figure 8, sensing radius or detection range has been set as 50, 100, 150, or 200. Figure 8a,b
shows the performance comparison if two algorithms are executed with p = 1 and p = 2.
And Figure 8c,d stands for the performance of two algorithms when p = 3 and p = 4 are
utilized in the system. According to Figure 8, it is observed that the total number of system
members δ is decreasing significantly as the sensing range of the node is increasing. The
reason is that the larger sensing range gives more opportunity to search for neighbors
or system members when the wall-recognition surveillance security barriers are formed.
Moreover, it is demonstrated that Algorithm 2: Adaptation Node Deployment outperforms
Algorithm 1: Centralized Node Deployment for all applicable missions in the second scenario
of simulation. And the performance difference between two algorithms is diminished if
the sensing range of system members increases.

(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Figure 8. Performance comparison for the total number of nodes or system members of the possible
number of connections among system members in different sensing ranges with the allowed number
of connections through the wall t = 20 and q = 50 in 1000× 1000× 1000 smart building size.

Lastly, as the third group of experiments, we achieved two schemes for Algorithm 1:
Centralized Node Deployment and Algorithm 2: Adaptation Node Deployment based on the
scenario that covers the requested number of wall-recognition surveillance security barriers
q in different sensing ranges with the allowed number of connections through the wall
t = 10, 20, 30 and p = 3 in 1000× 1000× 1000 smart building size. In particular, Algorithm 1:
Centralized Node Deployment with various t values for the allowed number of connections
through the wall is implemented and is compared with Algorithm 2: Adaptation Node
Deployment. Similar to previous groups of experiments, the simulation results are presented
with two axes, in which the X-coordinate stands for the sensing radius of system members
and the Y-coordinate represents the total number of system members δ for the obtained
result. Figure 9a,b depicts the performance comparison for Algorithm 1: Centralized Node
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Deployment with the allowed number of connections through the wall t = 10, 20, 30 and
Algorithm 2: Adaptation Node Deployment, depending on q = 50 and q = 40. And Figure 9c,d
presents the results of Algorithm 1: Centralized Node Deployment with t = 10, 20, 30 and
Algorithm 2: Adaptation Node Deployment when the requested number of wall-recognition
surveillance security barriers q = 30 and q = 20 are given. From Figure 9, it is identified that
the total number of system members δ is decreasing significantly as the sensing range of the
node is increasing as a whole because the larger sensing range of each node gives a higher
chance to cover a wide space and to connect with other nodes. In addition, Algorithm 1:
Centralized Node Deployment with t = 20 has the best performance compared to the other
cases in the third scenario of simulation.

(a) q = 50 (b) q = 40

(c) q = 30 (d) q = 20

Figure 9. Performance comparison for the total number of nodes or system members of the requested
number of wall-recognition surveillance security barriers q in different sensing ranges with the
allowed number of connections through the wall t = 10, 20, 30 and p = 3 in 1000× 1000× 1000 smart
building size.

5. Conclusions

In this paper, we proposed and evaluated two distinct algorithms, Centralized Node
Deployment and Adaptation Node Deployment, to overcome the challenge of communication
disruption in smart buildings caused by physical barriers like thin walls. Our findings
underscore the effectiveness of both algorithms, with their unique deployment strategies
contributing to the optimal functioning of the communication system within the build-
ing. The Centralized Node Deployment algorithm, with its strategic node placement along
the thin walls, proved effective in maintaining consistent communication coverage and
effectively mitigating potential communication disruptions. Notably, it showed superior
performance as the number of required barriers increased, indicating its ability to handle
complex communication obstacles. On the other hand, the Adaptation Node Deployment
algorithm, starting with random node placement and adapting over time, also demon-
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strated its capability to ensure efficient communication across the building. While its
initial performance varied, over extended periods, its performance converged with that
of the Centralized Node Deployment algorithm. Interestingly, as the lifetime of the system
increased, the performance gap between the two algorithms diminished. This finding
indicates that both algorithms, despite their differing initial strategies, are well-suited for
long-term communication optimization in smart buildings. Overall, our study contributes
valuable insights into the strategic placement of communication nodes in smart buildings,
aiming to facilitate seamless and efficient communication in the face of physical barriers.
We believe that our research will serve as a strong foundation for future work in this area,
potentially leading to even more efficient algorithms and strategies for communication in
smart buildings. Moreover, we plan to expand smart complex infrastructure consisting of
multiple number of thin walls and thick walls, as well as to apply realistic experimental
environments based on the proposed framework and strategies.
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Abstract: Climbing plants, such as common beans (Phaseolus vulgaris L.), exhibit complex motion
patterns that have long captivated researchers. In this study, we introduce a stereo vision machine
system for the in-depth analysis of the movement of climbing plants, using image processing and
computer vision. Our approach involves two synchronized cameras, one lateral to the plant and the
other overhead, enabling the simultaneous 2D position tracking of the plant tip. These data are then
leveraged to reconstruct the 3D position of the tip. Furthermore, we investigate the impact of external
factors, particularly the presence of support structures, on plant movement dynamics. The proposed
method is able to extract the position of the tip in 86–98% of cases, achieving an average reprojection
error below 4 px, which means an approximate error in the 3D localization of about 0.5 cm. Our
method makes it possible to analyze how the plant nutation responds to its environment, offering
insights into the interplay between climbing plants and their surroundings.

Keywords: plant nutation movement; computer vision; image processing; climbing plants

1. Introduction

The nutational movement of climbing plants refers to the rhythmic, circular, or nod-
ding motion exhibited by certain plant parts, such as stems, tendrils, or growing tips, as
they explore and interact with their environment during the process of climbing [1]. This
movement is often associated with the search for support structures, such as poles, trellises,
or other plants, which the climbing plant can use for stability and upward growth [2]. It
occurs as a result of differential growth rates on different sides of the plant organ. As the
plant grows, the cells on one side of the organ elongate more rapidly than those on the
opposite side, causing the organ to bend or curve [3]. This bending or curving allows the
plant to explore its surroundings and find a suitable support for climbing.

Climbing plants, such as common beans (Phaseolus vulgaris L.), employ various mech-
anisms for climbing, including twining, where the plant winds around a support, and the
use of tendrils, specialized structures that coil around objects for support [4].

The study of nutation movements in climbing plants is part of the broader field of plant
tropisms, which involves the growth responses of plants to external stimuli such as light,
gravity, and mechanical touch, first studied in the pioneering works of Charles Darwin [5].
This nutation movement allows climbing plants to optimize their growth in response
to their environment, increasing their chances of successful climbing and their access to
sunlight for photosynthesis. Moreover, it has been the inspiration for the development of
new techniques and methods in robotics [6], computational intelligence [7,8], and other
bioinspired innovations [9].

This current study of nutation and other plant movements requires the recording of
time-lapse images of plants, due to the long time span in which the movements occur,
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and the use of artificial vision algorithms for the efficient analysis of the videos obtained.
For example, Navarro et al. [10] developed a specific capture chamber to monitor the
growth of plants at intervals from 30 s to hours or even days. The captured images were
then analyzed with computer vision algorithms based on thresholding, morphological
operators, and blobs detection. Using the parameters obtained from the blobs, features such
as area, length, compactness, and perimeter were extracted for further analysis. Stolarz
et al. [11] developed software called the “Circumnutation Tracker” to analyze the circular
movement of the tip of the plants in zenithal time-lapse videos. The X and Y positions
of the tip are manually selected by the user, and the system includes useful tools for
the visualization and characterization of the plant movement, automatically extracting
circumnutation parameters.

More recently, Tenzer and Clifford [12] proposed a technique to analyze the growing
movement of hydroponic plants using different neural networks on grayscale images.
U-net, Linknet, FPN, PSPNet, and a 34-layer ResNet architecture were used for comparison,
obtaining a maximum area under the curve (AUC) for the validation set over 0.92. Another
recent method based on deep learning was presented by Mao et al. [13], which proposed a
U-net network architecture to segment the plant. This method is an improvement of their
free software “Plant Tracer”, which analyzed plant movement using the classic computer
vision techniques of object tracking and blob detection. Díaz-Galián et al. [14] presented a
methodology to analyze the movement of plants using different reference points, which
were obtained from image analysis. This methodology included coordinates transformation,
curve fitting, and statistical analysis, allowing a comparison between different plant species.
Plant movement has also been analyzed using other types of sensors. For example, Geldhof
et al. [15] developed a digital inertial measurement unit (IMU) sensor to measure in real-
time the movement of leaves, achieving a precision of pitch and roll angles under 0.5◦.
However, the exact 3D position of the leaves was not obtained.

The aim of this work is to develop a stereo system for the visual tracking of plant
nutation movement, which enables obtaining the precise 3D location of the tip of the plant.
This work was focused on the study of the common bean (Phaseolus vulgaris L.), since the
ultimate purpose is to analyze the differences in the movement between using or not using
a support pole for plants. Previous work from the MINT Lab research group suggests
that the dynamic patterns of plant nutation are influenced by the presence of support
to climb in their vicinity [2]. This fact has also been observed by other researchers. For
example, Guerra et al. [16] analyzed the 3D kinematics of the movement of climbing plants,
demonstrating that plants are not only able to perceive their environment but can also scale
the movement of their tendrils depending on the size of the support.

The objective of this present study is not to analyze these kinematic changes under
different environmental conditions but to develop computational tools for the accurate 3D
measurement of plant tip movement that will be used in further studies. Consequently, for
our analysis to be effective in a broader range of conditions, we obtained data on plants
from different settings, i.e., with and without a support to climb onto. Since the proposed
method is able to reconstruct the 3D position of the tip in both conditions, our method
promises to offer a framework for future studies to analyze how plant nutation responds to
different environments.

2. Materials and Methods

The proposed computer vision method to track the movement of the plant tip is shown
in Figure 1. It consists of five main stages: calibration, data acquisition, plant tip detection
in the top and side images, 3D position estimation, and visualization of the results.

In the following subsections, the characteristics of the experimental setup and the
stereo imaging system are presented first. Then, a brief introduction to the mathematical
foundations and artificial vision algorithms used is given. Finally, the procedure used to
estimate the position of the plant tip at each of the moments captured in the time-lapse
videos is described.
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Figure 1. Pipeline for the proposed computer vision method used to track the plant tip movement.

2.1. Experimental Setup

The experiments were carried out by the MINT Lab research group at the Scientific
and Technical Research Area of the University of Murcia (Spain). These experiments were
conducted under controlled conditions and consisted of two scenarios. In the first scenario,
the climbing plant was placed near a pole, which served as a support for the plant to grip
when it reached its position; in the second scenario, the plant was placed within a cabin
with no pole in it. The pole was 90 cm in height and 1.8 cm in diameter and was placed
at a distance of 30 cm from the plant center. Concerning the soil, a mixture of peat moss
and perlite (70–30%) was used throughout all the experiments. Both cabins were equipped
with white parabolic reflectors to provide symmetrical lighting. The temperature of the
growth chamber was kept constant at 20 ◦C and the relative humidity at 85% ± 5%. We
have to note that, although this is a high relative humidity, plants are able to accomplish
their life cycles successfully with no harm, especially in controlled conditions in which heat
stress can be prevented. A L16:D8 h photoperiod was provided via high-pressure sodium
lamps (Lumatek pulse-start HPS Lamp 250 W; height: 150 cm and photon fluence rate:
430 ± 50 μmol m−2 s−1 at leaf level). During the 8 h of darkness, a dim phototropically
inactive green safelight (fluence rate under 5 μmol m−2 s−1) was activated, which was
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enough to take pictures in the dark using a 4.2 μm high dynamic range (115 dB) image
sensor.

Figure 2 shows an example of these two scenarios, with and without a supporting pole.
Specifically, the plant species used for this experiment were the common bean (Phaseolus
vulgaris L.). Seeds of the cultivar “Garrafal Oro Vega” variety were provided by Semillas
Ramiro Arnedo S.A., Spain (https://www.ramiroarnedo.com). “Garrafal Oro Vega” is
a variety with abundant foliage, having medium-sized leaves and containing 18–20 cm
long pods. The plants went through multiple stages from germination to the start of the
recording. The seeds took 48 h to germinate. Upon germination, the young seedlings
were transferred to coconut fiber growing pellets and kept on propagation trays for further
development. Once the first true leaves matured, which took around 8–12 days from the
young seedling stage, healthy-looking, 25–30 cm tall plants were selected and transferred
into the recording booths for video capture. The videos were recorded until the plant either
grabbed the pole, or the tip came out of the experimental area (i.e., the area visible to the
cameras), which usually happened after 3 or 4 days.

Figure 2. Images of the experiments conducted. At the top, zenithal and lateral images of the
experiment in the no-pole condition; at the bottom, images of the pole condition.

It can be observed in Figure 2 that a dark color was used at the bottom part of the
booth. The purpose of this dark cover was to increase the contrast with the plant contour,
thus enhancing the performance of the algorithm for extracting the position of the plant tip
in the videos corresponding to the top view in time-lapse. We made sure that the white
part remained disproportionately more than the black part. The proportion of the lower
black part was calibrated so that the plants did not show any shade avoidance response,
thereby altering the nutation movement.

Once the young seedlings were transferred to the coconut fiber growing pellets and
kept on propagation trays for further development, 30 mL of water was initially added
every day. Afterwards, when the plants started to mature, they were watered so that around
80% moisture was maintained throughout the growing stage. For recording purposes, the
plants were transferred into big, black plastic pots. At the onset of the recording, 400 mL of
water was added to each plant, which was found sufficient to keep the soil moist throughout
the recording phase. No extra water was added during the four days of recording.

To estimate the nutational movement of the plant, a stereo pair of cameras was used,
recording synchronously and in time-lapse. The target of the motion tracking was the plant
tip. The configuration of the stereo vision system is shown in Figure 3. This imaging system
consisted of two Brinno TLC200 Pro cameras (Brinno Ltd., Taipei, Taiwan) positioned at the
top and side of the plant, forming a 90◦ angle. The technical specifications of the cameras
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are shown in Table 1. This top-side configuration of the cameras was chosen because it can
offer high accuracy in detecting the tip of the plant, although it may not be the best choice
for tracking other parts of the plant.

Figure 3. Configuration of the stereo imaging system that was used. The recording cabin was a
cylinder of 1 m height and 93 cm radius. The lateral camera was situated at 55 cm from the floor, the
zenithal camera at 1.3 m, and the lamp at 1.5 m. The upper reflector had a height of 1 m.

Table 1. Technical specifications of the cameras used in the stereo system.

Characteristics

Sensor

Type: 1/3′′ HDR sensor
Dynamic range: 115 db
Resolution: 1.3 Mega pixel (1280 × 720 px)
Pixel size: 4.2 μm
Sensibility: 3650 mV/lux-sec

Optical lens
Type: CS Mount
Aperture: F 2.0
Field of view: 112◦
Focal length: 19 mm

To synchronize the captured images, the recording was started simultaneously on
both cameras. Each camera used its own internal clock. The images were captured at
one-minute intervals for a continuous 24 h recording, lasting from 3 to 4 days. Because
each camera had its own clock, there could be a slight offset in the images between the
two cameras for some recordings. To determine the number of frames corresponding to
this offset, the light–dark cycle used in the experiments to provide the L16:D8 photoperiod
was used. For this purpose, the zenithal images were used as a reference, based on the
photoperiod changes. During one of the lighting changes, the offset between the top and
side view images was computed, measured as the number of frames of difference. This
number was used in the further analysis of the sequence.

2.2. Mathematical Methods

In general, a camera maps 3D points in space to 2D points on the image plane. The
cameras used in the experiments were modeled using a pinhole camera model. In a pinhole
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model, a ray from a point in space passes through a fixed point called the projection center.
The intersection of this ray with a chosen plane in space, the image plane, is the projection
of the point on the image plane [17]. The projective transformation given by a pinhole
camera model is as follows:

sp = A[Rt]Pw (1)

where:

• s is an arbitrary scaling factor of the projective transformation.
• p is the 2D pixel on the image plane.
• Pw is the 3D point expressed in the world coordinate system.
• A is the matrix with the intrinsic parameters of the camera.
• R and t are the rotation and translation, respectively, describing the coordinate change

from the world to the camera coordinate system.

The matrix with the intrinsic parameters is composed of the focal lengths, fx and fy,
expressed in pixel units, and the principal point of the camera, (Cx, Cy).

A =

⎡⎣ fx 0 Cx
0 fy Cy
0 0 1

⎤⎦ (2)

This matrix with the intrinsic parameters does not depend on the scene, so it can
be reused once estimated, as long as the focal length remains fixed. On the other hand,
matrix [R|t] contains the extrinsic parameters of the camera. This matrix performs the
homogeneous transformation and represents the change of basis from the world coordinate
system to the camera coordinate system, as follows:⎡⎢⎢⎣

Xc
Yc
Zc
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Xw
Yw
Zw
1

⎤⎥⎥⎦ (3)

Combining these two matrices yields the projective transformation, which maps the 3D
points in the world to the 2D points on the image plane in normalized camera coordinates.

s

⎡⎣u
v
1

⎤⎦ =

⎡⎣ fx 0 Cx
0 fy Cy
0 0 1

⎤⎦
⎡⎢⎢⎣

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Xw
Yw
Zw
1

⎤⎥⎥⎦ (4)

The pinhole camera model does not consider the distortion caused by the lenses used
in the cameras. To accurately represent a real camera, the camera model includes both
radial and tangential lens distortion. Radial distortion occurs when light rays bend more at
the edges of the lens than at the optical center. The radial distortion coefficients model this
type of distortion as follows:

xdistorted = x
(
1 + k1r2 + k2r4 + k3r6)

ydistorted = y
(
1 + k1r2 + k2r4 + k3r6) (5)

where:

• x, y is the location of the pixel without distortion.
• k1 k2, and k3 are the radial distortion coefficients of the lens.
• r2 = x2 + y2.
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On the other hand, tangential distortion occurs when the lenses and the image plane
are not perfectly parallel. In this case, the tangential distortion coefficients model this type
of distortion as follows:

xdistorted = x +
[
p2

(
r2 + 2x2)+ 2p1xy

]
ydistorted = y +

[
p1

(
r2 + 2y2)+ 2p2xy

] (6)

where:

• x, y is the location of the pixel without distortion.
• p1 and p2 are the tangential distortion coefficients of the camera.
• r2 = x2 + y2.

Using this basis, the computer vision algorithms that have been used in the imple-
mentation of the pipeline for the method used to track the plant nutation movement are
described in the following points.

2.2.1. Perspective-n-Point (PnP)

The pose computation problem consists of solving the rotation and translation of
an object with respect to the camera, while minimizing the reprojection error for corre-
spondences between the 3D points in the world and the 2D points on the image. Several
methods have been proposed to estimate the pose of an object relative to the camera [18,19].
These methods can be used for calibration using a planar calibration object [20].

2.2.2. Calibration of a Stereo Pair System

The procedure outlined in the previous subsection enables the obtaining of the intrinsic
parameters of the camera as well as the camera pose relative to the calibration object. If the
calibration object is visible to both cameras, we have the pose (R1, t1) of the first camera
relative to the calibration object and the pose (R2, t2) of the second camera. These two
poses are related as follows:

R2 = R× R1 ; t2 = R× t1 + t (7)

Therefore, by using the previous equation, it is possible to obtain the pose of the first
camera relative to the second camera. Once the pose of the first camera relative to the
second one is obtained, the essential matrix can be constructed as follows:

E =

⎡⎣ 0 −t2 −t1
t2 0 −t0
−t1 t0 0

⎤⎦× R (8)

where ti are the components of the translation vector t = [t0, t1, t2 ]. From this, the funda-
mental matrix can be computed as follows:

F = CameraMatrix−T × E× CameraMatrix−1 (9)

2.2.3. Background Segmentation

The background segmentation problem involves detecting changes that occur in a
sequence of images. Pixels in an image are classified either as part of the background or as
part of an object of interest based on a background model. In real applications, depending
on the characteristics of the problem, different methods have been proposed: models based
on color thresholding, clustering, and fuzzy logic, and, more recently, neural network-based
models [21] have been used. The usual steps in image segmentation are:

1. The background model is initialized with some of the video frames.
2. Once the background model is initialized, each pixel in the image is classified based

on the background model.
3. The background model is updated with information from the last processed image.
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In the algorithms developed to extract the position of the plant’s tip in time-lapse
images, the Gaussian mixture method was used. This method uses multiple Gaussian
functions per pixel to model the background of the scene. This method takes into account
that a pixel can have different states over time. The implementation of this method in the
OpenCV library is based on Zivkovic [22].

2.3. Motion Tracking and 3D Position Estimation

This section first describes the procedure used to calibrate the stereo system. Next, the
steps in the process of extracting the position of the plant tip from the images captured by
the stereo system cameras are outlined. Finally, it describes how the nutation motion of the
plant was tracked based on the 2D position of the extracted plant tip from the images.

2.3.1. Camera Calibration

The stereo system calibration was carried out following the procedure described in the
previous subsection. The calibration process was conducted in two phases. First, each of the
stereo cameras was individually calibrated. A calibration object with a 10 × 7 chessboard
pattern and dimensions of 59.4 × 84.1 cm was used for the calibration. These dimensions
were chosen to cover a large part of the image plane, allowing the precise estimation of the
distortion coefficients.

Once the individual calibration of the cameras was completed, the stereo system
calibration was performed to estimate the projection matrices for each camera and the
fundamental matrix. In this case, a calibration object with dimensions of 42.0 × 59.4 cm
was used, visible in both cameras for a sufficient number of poses to carry out the stereo
system calibration. Table 2 shows the results of the calibration, measured in terms of the
reprojection error, that is, the distance from the calibration pattern key points detected in
the images to a corresponding world point projected into the same images.

Table 2. Results of the stereo system calibration. The mean reprojection error (Mean RE) and the
standard deviation of the reprojection error (Stdev RE) are shown for the top camera, the side camera,
and the complete stereo system.

Reprojection Errors (in Pixels)

Scenario Mean RE Top
Camera

Stdev RE
Top Camera

Mean RE Side
Camera

Stdev RE Side
Camera

Mean RE
Stereo System

Stdev RE
Stereo System

No Pole 0.47202 0.34563 0.29831 0.27472 0.61930 0.55591
Pole 0.30597 0.20053 0.28490 0.18405 0.91065 0.80017

In Figure 4, the points used in the calibration of the stereo system can be observed,
combining the positions of all the images used for calibration.

Figure 4. Points used in calibration of the stereo system (in green). Left: calibration scenario without
pole. Right: calibration scenario with pole. The small red and blue arrows indicate the camera’s
position in the scene.
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2.3.2. Detection of the Plant Tip in the Overhead View

The process consisted of two steps, as shown in Figure 5. First, for each frame, n
points, where the plant tip could be located, were detected. Once the candidate points were
obtained, a selection process for the position of the plant tip was performed for each frame,
followed by interpolation for frames where no candidate points were detected. The steps
of the first step can be seen in Figure 6.

Figure 5. Procedure designed for extracting the plant tip position.

Figure 6. Algorithm for extracting possible positions of the plant tip in each frame of the top view.
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The following are the highlights of the algorithm used in the first step of the process:

• The segmentation of the plant contour was performed using the mixture of Gaussians
algorithm.

• After each change in lighting, the process reset the background model to reduce the
stabilization time.

• To detect when a lighting change occurred, the process checked the area of the selected
contours, and, if the area exceeded a threshold specified by the lighting_change_area
parameter, it was assumed that a lighting change had occurred.

• After a lighting change, the process did not check again for a lighting change until
after the frame period specified by the lighting_change_est_time parameter to prevent
the repeated detection of a lighting change in every frame after the background model
had been reset.

The process for selecting the plant tip position among the candidate points followed
these two criteria:

1. If there was only one candidate point, it was selected.
2. If there was more than one candidate point, the point closest to the last point selected

for previous frames was selected. In segments of frames where there was no candidate
point, the position of the plant tip was estimated by performing linear interpolation
using the plant tip position in the previous and subsequent frames of the segment.

2.3.3. Detection of the Plant Tip in the Lateral View

This process consisted of two stages, as in the case of the process used for extracting
the position of the plant tip in the top view images. First, for each frame, the n points, where
the plant tip could be located, were detected. Once the candidate points were obtained,
a selection process for the plant tip position was executed for each frame, followed by
interpolation for frames where no candidate points were detected. The steps of the first
stage are depicted in Figure 7.

Figure 7. Algorithm for extracting possible positions of the plant tip in each frame of the side view.
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The highlights of this algorithm used in the first stage of the process are:

• The segmentation of the plant contour was performed using the mixture of Gaussians
algorithm, just as for the segmentation of the plant contour in the top view.

• For detecting changes in lighting, the same procedure used in processing images from
the top view was followed.

• There were cases where multiple fragments of the plant contour are obtained when
applying the background model to the image. In these cases, the use of the epipolar
line helped to identify the fragment where the plant tip was located.

• Once the contours near the epipolar line were selected, a minimum path algorithm
was used to select the potential position of the plant tip within the contour.

The process for selecting the plant tip position among the candidate points followed
the same criteria as indicated in the previous section.

2.3.4. Correcting Wrong Detections and Obtaining the 3D Positions of the Plant Tip

The algorithms described in the previous subsections were not always able to detect
the plant tip position in all cases, as mentioned in each section. For this reason, a “Plant
Tracker” tool was developed to allow the user to modify the automatically performed plant
tip extractions. This tool consists of three screens, as shown in Figure 8. Once the user has
completed the manual corrections, the application allows the extraction of a CSV file with
the estimation of the 3D position for a selected range of frames.

Figure 8. Sample view of the Plant Tracker tool developed to supervise the obtained locations. Top
left: main window of the program; button “(1) Manual marking” opens the window labeled 1, and
button “(2) Plant movement reconstruction” opens the window labeled 2.
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3. Results and Discussion

In this section, the results obtained in the processing of the available videos are
presented. The videos were processed in pairs, corresponding to the zenithal and side
views of each same experiment. The nutation movement followed by the tip of the bean
plant in three of the conducted experiments is shown in Figure 9.

Figure 9. Visualization of the obtained nutation movement of the bean plants. Left: position result
for video pair 4 without pole. Middle: position result for video pair 7 without pole. Right: position
result for video pair 10 without pole. Red and blue arrows indicate the camera’s position in the scene,
and the green dot marks the position of the pot’s base.

3.1. Results of the Detection of the Tip of the Plant

Table 3 shows the cumulative results of the type of detection used to extract the position
of the plant tip in the frames of the time-lapse videos corresponding to the experiments. The
types of detection correspond to the following categories: Automatic: The algorithm for
extracting the plant tip position found only one candidate point. Manual: The points that
the user had to correct. Estimated: The algorithm for extracting the plant tip position found
more than one candidate point and selected the one that represented the most probable
position of the plant tip. Interpolated: The algorithm for extracting the plant tip position
did not find a candidate point. The plant tip position in the frame was determined by
interpolating the position from the plant position in the preceding and subsequent frames.

Table 3. Results of the plant tip detection procedure in the images for the three video pairs. For
each video pair, the condition (with or without a supporting pole), the frames that were analyzed,
the camera (top or lateral), and the extraction of the tip location (automatic, manual, estimated or
interpolated location) are indicated.

Type of Detection

Video Pole Frames 1 View Automatic Manual Estimated Interpolated

Pair 4 No 2483–4746
Lateral 1586 331 293 54

Top 1878 74 265 47

Pair 7 Yes 3850–5798
Lateral 1607 272 246 100

Top 2063 27 113 22

Pair 7 No 750–2600
Lateral 1285 208 287 71

Top 1724 53 74 0

Pair 10 No 3850–5798
Lateral 1353 251 236 109

Top 1570 151 209 19
1 Range of frames that have been processed from the video.

258



Sensors 2024, 24, 747

Figure 10 shows the reprojection error in pixels for each frame of the videos (side and
top views) of the time-lapse within the range for which the 3D position estimation of the
plant tip was performed.

Figure 10. Visualization of reprojection errors of some videos along time. Top row: errors for video
pair 4 without pole. Middle: errors for video pair 7 without pole. Bottom row: errors for video pair
10 without pole.

3.2. Discussion of the Results

The plant tip detection algorithms were able to extract the correct position in a range
of 86–98% of the cases, as observed in Table 3. The number of corrections made by the user
was higher for the plant positions extracted in the lateral plant videos. This was mainly due
to moments when the plant tip overlapped with the plant stem in the images. An example
of this case is shown in Figure 11. This error is due to the use of a minimum path algorithm
to find the plant tip in the segmented contour of the plant. When the plant tip overlapped
with the stem, the position farthest from the plant’s base corresponded to the elevated part
of the plant stem visible in the image.
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Figure 11. A sample of an incorrect detection of the plant tip in the side view image.

Regarding the reprojection errors, the graphs shown in Figure 10 follow a sawtooth
pattern across all processed videos, with the maximum reprojection errors aligned in both
the top and side view videos of each time-lapse. Figure 12 shows the positions where the
reprojection error is greater than 10 px.

Figure 12. Visualization of the obtained 3D points in the analyzed videos, represented in a blue color.
The points with a reprojection error greater than 10 px are marked in red. Red and blue arrows
indicate the camera’s position in the scene, and the green dots mark the position of the pot’s base.
Left: video pair 4 without pole. Middle: video pair 7 without pole. Right: video pair 10 without
pole.

The average reprojection error for each of the analyzed videos is shown in Table 4.
In general, it can be considered that the proposed method is able to achieve excellent

results, obtaining an average reprojection error of only 3.7 px, which is below 0.3% of the
width of the images. This value can be roughly translated into an estimated average error
in the 3D localization of about 0.5 cm, although this measurement depends on other factors,
such as the position of the plant tip. The total number of frames where there is a high error
(greater than 10 px) is less than 5.4%. On the other hand, although the method required
manual correction by an operator during some frames, as we have seen, this only occurred
in 8.3% of the frames. In the remaining 91.7% of the frames, the automatic algorithm
worked to locate the tip of the plants. Thus, the accuracy and robustness obtained by the
proposed method in tracking the plant tips is suitable for practical use in circumnutation
movement experimentation.
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Table 4. Results of the reprojection errors for the three video pairs. The mean reprojection error
(Mean RE), the standard deviation of the reprojection error (Stdev RE), the total number of points
analyzed, and the number of points with a reprojection error greater than 10 px (RE Points > 10 px)
are shown for each video pair.

Reprojection Errors (in Pixels)

Video View Mean RE Stdev RE Total Points RE Points > 10 px

Pair 4
Lateral 3.98679 2.84289 2264 39

Top 6.49004 5.74389 2264 373

Pair 7 Lateral 2.05453 2.52104 1851 33
Top 2.66366 3.13255 1851 47

Pair 10 Lateral 2.99391 2.62791 1949 41
Top 4.08886 3.31717 1949 119

The direct comparison of our results with other methods is not feasible, since other
works measure their results in terms of different parameters. For example, in the “Cir-
cumnutation Tracker” software of Stolarz et al. [11], manual annotation of the positions is
required for all the frames of the videos. Tenzer and Clifford’s [12] plant monitoring method
only segments the plants, without locating the 3D position of the tip, so the accuracy is
given in terms of the area under the ROC curve for the classification problem. In the inertial
tracker proposed by Geldhof et al. [15], the errors are expressed as the precision of pitch
and roll angles, being under 0.5◦. The recent method by Mao et al. [13] using deep learning
is able to achieve an average error of 1.02 mm in the location of the apex of the plant, in
videos of 640 × 480 px of resolution; however, only one video is analyzed per plant, so the
3D locations are not extracted.

The largest reprojection errors in our method are found in the area closest to the lateral
camera. By overlaying the points used in the calibration onto the trace corresponding to
the nutation movement of the plant tip, it is observed that not all the space travelled by the
plant tip was covered. Furthermore, the greatest reprojection errors are located in the area
where there are no calibration points, as shown in Figure 13.

Figure 13. Visualization of 3D points with a reprojection error greater than 10 px (marked in red) and
calibrations points (marked in green). Left: video pair 4 without pole. Middle: video pair 7 without
pole. Right: video pair 10 without pole. Red and blue arrows indicate the camera’s position in the
scene, and the green dots mark the position of the pot’s base.

To prevent this error in future experiments, it will be verified during the calibration
process that there are enough calibration points across the entire space traveled by the plant
tip in its nutation movement.
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4. Conclusions

The study of the nutation movement of plants has aroused great interest in the research
community in different areas, from philosophy to computer science, and has been a great
source of inspiration for new algorithms and bioinspired systems. This paper has presented
the development of a stereo vision system for studying the movement of climbing plants.
The system consists of a pair of RGB cameras that synchronously record a side and top view
of the plants in time-lapse. This study is focused on the common bean as a typical climbing
plant model. Subsequently, the images are analyzed with a computer vision algorithm that
obtains the tip of the plant and, using a previous calibration of the stereo pair, estimates the
position in 3D coordinates. The method is able to extract the correct tip position in 86–98%
of cases, depending on the video, with an average reprojection error below 4 px, which is
translated to an approximate error in the 3D localization of about 0.5 cm. The proposed
method allows researchers to know precisely and robustly the nutation movements of the
plants and to compare their behavior under different situations, such as the use or absence
of support structures for climbing.

In future work, it would be interesting to apply the latest deep learning methods
to perform the accurate segmentation of the plants in the images, as well as subsequent
matching between the stereo pair images for a complete estimation of the 3D position of
the plant. In this way, it would be possible to know not only the position of the tip of the
plant, but also of other parts such as the stems and leaves.

Author Contributions: Conceptualization, P.C.; methodology, A.P., P.C. and G.G.-M.; software,
D.R.R.-M.; validation, D.R.R.-M. and G.G.-M.; investigation, D.R.R.-M., A.P., P.C. and G.G.-M.;
resources, P.C. and A.P.; data curation, D.R.R.-M.; writing—original draft preparation, D.R.R.-M. and
G.G.-M.; writing—review and editing, P.C.; visualization, D.R.R.-M.; supervision, P.C. and G.G.-M.;
project administration, P.C.; and funding acquisition, P.C. and G.G.-M. All authors have read and
agreed to the published version of this manuscript.

Funding: This research was partly funded by project 22130/PI/22 financed by the Region of Murcia
(Spain) through the Regional Program for the Promotion of Scientific and Technical Research of
Excellence (Action Plan 2022) of the Fundación Séneca-Agencia de Ciencia y Tecnología de la Región
de Murcia and partly by the Office of Naval Research Global (Award # N62909-19-1-2015), awarded
to P.C. and A.P.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study are available from the authors upon reasonable
request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of this study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References

1. Mugnai, S.; Azzarello, E.; Masi, E.; Pandolfi, C.; Mancuso, S. Nutation in Plants. In Rhythms in Plants: Dynamic Responses in a
Dynamic Environment; Springer: Cham, Switzerland, 2015; pp. 19–34. [CrossRef]

2. Raja, V.; Silva, P.L.; Holghoomi, R.; Calvo, P. The dynamics of plant nutation. Sci. Rep. 2020, 10, 19465. [CrossRef] [PubMed]
3. Gilroy, S. Plant tropisms. Curr. Biol. 2008, 18, R275–R277. [CrossRef] [PubMed]
4. Sperotto, P.; Acevedo-Rodríguez, P.; Vasconcelos, T.N.; Roque, N. Towards a standardization of terminology of the climbing habit

in plants. Bot. Rev. 2020, 86, 180–210. [CrossRef]
5. Darwin, C.; Darwin, F. The Power of Movement in Plants; John Murray: London, UK, 1880.
6. Gallentine, J.; Wooten, M.B.; Thielen, M.; Walker, I.D.; Speck, T.; Niklas, K. Searching and intertwining: Climbing plants and

GrowBots. Front. Robot. AI 2020, 7, 118. [CrossRef]
7. Meroz, Y. Plant tropisms as a window on plant computational processes. New Phytol. 2021, 229, 1911–1916. [CrossRef]
8. Calvo, P.; Lawrence, N. Planta Sapiens: Unmasking Plant Intelligence; W. W. Norton & Company: Hachette, UK, 2022.
9. Burris, J.N.; Lenaghan, S.C.; Stewart, C.N. Climbing plants: Attachment adaptations and bioinspired innovations. Plant Cell Rep.

2018, 37, 565–574. [CrossRef]

262



Sensors 2024, 24, 747

10. Navarro, P.J.; Fernández, C.; Weiss, J.; Egea-Cortines, M. Development of a configurable growth chamber with a computer vision
system to study circadian rhythm in plants. Sensors 2012, 12, 15356–15375. [CrossRef] [PubMed]
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Abstract: Musculoskeletal conditions affect millions of people globally; however, conventional
treatments pose challenges concerning price, accessibility, and convenience. Many telerehabilitation
solutions offer an engaging alternative but rely on complex hardware for body tracking. This
work explores the feasibility of a model for 3D Human Pose Estimation (HPE) from monocular
2D videos (MediaPipe Pose) in a physiotherapy context, by comparing its performance to ground
truth measurements. MediaPipe Pose was investigated in eight exercises typically performed in
musculoskeletal physiotherapy sessions, where the Range of Motion (ROM) of the human joints was
the evaluated parameter. This model showed the best performance for shoulder abduction, shoulder
press, elbow flexion, and squat exercises. Results have shown a MAPE ranging between 14.9% and
25.0%, Pearson’s coefficient ranging between 0.963 and 0.996, and cosine similarity ranging between
0.987 and 0.999. Some exercises (e.g., seated knee extension and shoulder flexion) posed challenges
due to unusual poses, occlusions, and depth ambiguities, possibly related to a lack of training data.
This study demonstrates the potential of HPE from monocular 2D videos, as a markerless, affordable,
and accessible solution for musculoskeletal telerehabilitation approaches. Future work should focus
on exploring variations of the 3D HPE models trained on physiotherapy-related datasets, such as the
Fit3D dataset, and post-preprocessing techniques to enhance the model’s performance.

Keywords: telerehabilitation; musculoskeletal; 3D Human Pose Estimation; MediaPipe Pose; ROM;
2D camera; monocular; videos; deep learning

1. Introduction

Musculoskeletal conditions are the leading cause of physiotherapy demand globally;
it is estimated that approximately 1.71 billion people have a musculoskeletal condition
worldwide, and its prevalence is expected to increase [1]. Conventional musculoskeletal
rehabilitation typically involves multiple in-clinic sessions, high travelling and waiting
times, little schedule flexibility and complementary home exercises, becoming inconvenient
and expensive for both patients and clinics [2]. Consequently, providing quality care to
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a patient at a distance (i.e., telerehabilitation) through digital and gamified solutions has
become a topic of growing interest [2].

The development of telerehabilitation has increased in recent years, due to factors
including technological innovation, the impact of the COVID-19 pandemic, and the rising
concern about patient-centered treatment [3,4]. Telerehabilitation has been demonstrated
to offer enhanced accessibility, affordability, personalization, and real-time monitoring;
furthermore, it empowers patients to take charge of their well-being while ensuring con-
venience, adherence, and motivation [3,5]. Moreover, by reducing wait times, facilitating
long-term management, and fostering patient education, telerehabilitation is emerging as
an indispensable component of modern healthcare, reshaping the future of physiotherapy
services [4]. Musculoskeletal telerehabilitation should resemble traditional sessions and
allow for equivalent outcomes compared to conventional methods, in order to ensure its
widespread acceptance and integration into healthcare systems [3]. Human body tracking
is, therefore, a key element, since it allows physiotherapists to be aware of the movement
and performance of their patients during the physiotherapy session [6], while following
the relevant clinical and motion information, such as the Range of Motion (ROM) of the
human joints. The joint ROM is defined as “the amount of movement that occurs at a
joint to produce movement of a bone in space”, i.e., the angle range of a joint during an
exercise [7]. It is a valuable musculoskeletal metric since it provides information to identify
limitations and imbalances in joint movement, gives useful knowledge for developing an
appropriate treatment, and helps to ensure that exercises are being performed correctly
and safely, maximizing the benefits of the exercise and minimizing the risk of injury [7].

Human body tracking systems for musculoskeletal rehabilitation purposes include
optical marker-based systems [8], wearables [9,10], markerless 3D or RGB-D (Red Green
Blue-Depth) camera-based systems [5,11], and markerless 2D or RGB (Red Green Blue)
camera-based systems [12].

Optical marker-based and wearable sensor systems provide highly accurate body
tracking but can be expensive and cumbersome [13,14]. On the other hand, 3D and 2D
camera-based systems are more convenient for patients as no body-worn markers/sensors
are required (markerless); however, 3D cameras may be costly when compared to 2D
cameras, often have software restrictions (e.g., Orbbec Astra 3D cameras are incompat-
ible with MacOS X), and depend on calibration and luminosity conditions [15]. Two-
dimensional camera-based systems are a promising, accessible, and affordable body track-
ing approach [16]. These only require images or videos from a regular 2D camera (available
in most standard computers and smartphones) to reconstruct the human body, typically
through deep learning models [12]. Considering the advantages of 2D camera-based
systems, this work aims to evaluate if these approaches are feasible for musculoskeletal
telerehabilitation purposes. To the best of our knowledge, this is the first work investigating
a 2D camera-based approach for human body tracking in a diverse set of exercises typi-
cally used in musculoskeletal telerehabilitation (and conventional) sessions. Furthermore,
this work provides an in-depth description of novel methodologies for coordinate system
definition, Range of Motion (ROM) calculation, and data alignment between acquisition
systems with different frame rates.

The remainder of the work is structured into the following segments. Section 2
describes the background and main concepts of 2D camera-based systems, drawing conclu-
sions about the most suitable model for the purpose (MediaPipe Pose). Section 3 details
the experimental study conducted to evaluate the MediaPipe Pose model for 3D body
tracking from monocular video feeds. Section 4 summarizes the main experimental results.
Section 5 provides the discussion of the study outcomes. Section 6 draws the main findings
and conclusions about this work.

2. Background

In the context of 2D camera-based systems using deep learning algorithms, human
body tracking is commonly referred to as Human Pose Estimation (HPE), and the human
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body is typically represented by a skeleton model—a tree-like structure composed of
landmarks (human joints and other keypoints) connected by edges (body segments) [12],
as shown in Figure 1. The joints include shoulders, elbows, wrists, hips, knees, and ankles.
Keypoints from the vertebral column, hands, feet, and face may also be integrated into the
pose estimation. This body representation uses relatively low-dimensional parameters and
is highly valuable for motion capture techniques [12].

Figure 1. Example of skeletal human body representation: 33 landmarks of MediaPipe Pose , where
the right-side landmarks are represented in blue, the left-side landmarks in orange, and the nose
landmark in white.

HPE can be classified based on various criteria (Figure 2), and models can be catego-
rized into 2D HPE or 3D HPE. The former calculates the 2D coordinates (x, y) of human
keypoints, while the latter determines the 3D coordinates (x, y, z) of human joints. The
primary difference lies in the depth coordinate (z). Additionally, 3D HPE can be classified
as single-view (or monocular), when a single 2D camera is used in a fixed position, or as
multi-view, when two or more 2D cameras are used to observe the person from different
viewpoints [12]. When considering the number of people detected, algorithms can be cate-
gorized as single-person or multi-person. Single-person approaches involve identifying the
keypoints of a single body in the image or video, while multi-person approaches require the
model to identify multiple bodies and their respective landmarks, becoming a challenging
task. Multi-person approaches are further divided into top-down and bottom-up methods.
Top-down methods first detect individual subjects and then estimate the keypoints (and
poses), while bottom-up methods first localize body parts across the image and then asso-
ciate them to assemble complete human poses. Bottom-up approaches tend to have faster
inference, however, top-down methods yield higher accuracy [12].
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Top-down Bottom-up

2D Camera-Based Human Pose Estimation

Single-person Multi-viewMulti-person Single-view

2D 3D

Top-down Bottom-up

Single-person Multi-person

Figure 2. Classification of 2D camera-based models for Human Pose Estimation (HPE).

This work is focused on single-view (or monocular) and single-person approaches.
Firstly, monocular approaches require a single camera (fewer resources); furthermore, in
telerehabilitation, the treatment sessions are commonly patient-centered, meaning that the
camera needs to detect a single subject (single-person approach).

The emergence of deep learning techniques has significantly enhanced the perfor-
mance of the models for 2D HPE; 3D HPE approaches arise as an extension of 2D HPE [12].
Two of the main challenges of HPE methods are occlusions and rare poses, due to limited
training data [12,17]. The sources of occlusions are the person (self-occlusions), other
people (in multi-person detections), or external objects [18]. In 2D HPE, numerous
approaches have been explored to address occlusions, by adapting the architecture of
the deep learning algorithm [12]. In 3D HPE, occlusions can be addressed by collecting
information from different viewpoints (a multi-view approach), as an occluded segment
in one view may become visible from alternative perspectives [12]. For this work, multi-
view approaches are not explored, as the primary goal is to use a single 2D camera for
human body tracking.

The performance of 2D HPE has been researched in the literature [12] and various open-
source models have been developed, such as PoseNet [19], MoveNet [20], AlphaPose [21],
OpenPose [22], and MediaPipe Pose or BlazePose [23]. The evaluation of these models
for rehabilitation-related purposes shows encouraging results [24–27]. Three-dimensional
HPE models in the literature include VNect [28], XNect [18], and MediaPipe Pose [23,29].
Although other algorithms have been evaluated in previous research [12], their implemen-
tations are typically obfuscated and are rarely evaluated in a physiotherapy context [16].

Considering the aim of this project, MediaPipe Pose was selected; it is a deep learning-
based model for 3D HPE from monocular 2D videos with promising performance that
combines fast performance, reasonable accuracy, and accessibility [23,29]. MediaPipe Pose
predicts the 3D central position of the human joints (Figure 1), in meters, which may
be used for several purposes, including calculating the Range of Motion (ROM) of the
human joints. This metric is extremely valuable in musculoskeletal physiotherapy since
physiotherapists use it to assess the mobility and functioning of joints, and monitor the
patient’s evolution [7]. Furthermore, this parameter evaluates pose accuracy independently
from scale and body proportions [30].
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3. Materials and Methods

3.1. Experimental Design

An experimental study was designed to evaluate the performance of MediaPipe
Pose on a wide range of exercises typically performed in musculoskeletal physiother-
apy sessions, by comparing it to a gold standard motion tracking system, namely the
Qualisys Motion Capture system (Gothenburg, Sweden; https://www.qualisys.com/,
accessed on 3 August 2023). Eight exercises were selected: Shoulder Flexion/Extension
(SF), Shoulder Abduction/Adduction (SA), Elbow Flexion/Extension (EF), Shoulder Press
(SP), Hip Abduction/Adduction (HA), Squat (SQ), March (MCH), and Seated Knee Flex-
ion/Extension (SKF). The exercises are described in Table 1 and shown in Figure 3. The
exercise selection was based on their engagement of diverse joints (shoulder, elbow, hip,
and knee), body poses, moving limbs (upper and lower limbs), and planes of movement
(frontal and sagittal). A broad range of movements allows the evaluation of the model
given different conditions, each presenting various challenges in diversity, complexity,
and occlusions.

Our study involved eight healthy participants (seven females and one male) aged
between 19 and 21 years old. In order to assess the physical condition and musculoskeletal
health of the participants, a questionnaire was designed to gather relevant information,
including neuro-musculoskeletal injuries clinically diagnosed in the last three months,
movements that elicited pain, and any previous musculoskeletal surgeries. All subjects were
deemed eligible and were enrolled in the study. The experimental protocol was approved
by the Ethics Committee of the Escola Superior de Saúde de Santa Maria (Reference:
CE2022/09). A written informed consent was obtained from all participants.

Figure 3. Eight exercises selected for the experimental study: Shoulder Flexion/Extension (SF),
Shoulder Abduction/Adduction (SA), Elbow Flexion/Extension (EF), Shoulder Press (SP), Hip
Abduction/Adduction (HA), Squat (SQ), March (MCH), and Seated Knee Flexion/Extension (SKF).
Shoulder press and squat exercises are illustrated by a sequence of two representative images of
the movement.
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Table 1. Exercises commonly performed in musculoskeletal physiotherapy sessions, and description
of the limb in motion, the plane of movement, and the evaluated joint.

Exercises Limb in Motion Plane of Movement Evaluated Joint

1. Shoulder Flexion/Extension (SF) Right arm Sagittal Right shoulder
2. Shoulder Abduction/Adduction (SA) Right arm Frontal Right shoulder
3. Elbow Flexion/Extension (EF) Arms (bilateral) Sagittal Right elbow
4. Shoulder Press (SP) Arms (bilateral) Frontal Right shoulder
5. Hip Abduction/Adduction (HA) Right leg Frontal Right hip
6. Squat (SQ) Legs (bilateral) Sagittal Right knee
7. March (MCH) Legs (bilateral) Sagittal Right hip
8. Seated Knee Flexion/Extension (SKF) Right leg Sagittal Right knee

3.2. Experimental Data Acquisition

Experimental data acquisition was conducted in the biomechanics laboratory of the
Centro de Investigação em Reabilitação (CIR) at the Escola Superior de Saúde do Instituto
Politécnico do Porto. Healthy participants performed eight exercises displayed on a screen
to guide them through the execution of the movements. Before initiating each exercise,
a preview of the movement was shown to illustrate the exercise that the participants
were expected to perform. Then, the acquisition consisted of each participant performing
two sets of seven exercise repetitions, with a 10-second resting period between sets. Be-
tween acquisitions, participants were advised to rest by sitting on a chair before starting
the following exercise. A total of 64 acquisitions (eight participants × eight exercises) were
collected, of which only 63 were studied due to a technical issue during the shoulder flexion
exercise performed by Subject 5. For each acquisition, the following data were collected
simultaneously: (1) ground truth data, i.e., 3D coordinates (x, y, z) of various anatomical
landmarks, using the Qualisys Motion Capture system (recording data at 100 frames per
second, FPS) from the laboratory; and (2) monocular 2D video recordings, using a Nikon
Coolpix A10 camera (operating with 1280 × 720 resolution at 30 FPS). Figure 4 depicts the
experimental setup.

3.60 m
35º

2D Camera 1 2D Camera 2

Qualisys Cameras

Subject

3.45 m

Figure 4. Experimental setup for the data acquisition, showing some of the Qualisys cameras, two
2D cameras, and the relative position between the subject and the two 2D cameras.
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Before starting the data acquisition, the Qualisys configuration involved the calibration
of the 12 infrared cameras, followed by the placement of motion capture (MoCap) markers
on specific anatomical regions of the participants. For this study, data from only six MoCap
markers placed on the right side of the body were required. It was essential to determine
and establish the correct position of the anthropometric points, as these were used as
ground truth measurements; therefore, the anatomical points of the MoCap markers were
defined and confirmed by a physiotherapist researcher experienced in palpatory anatomy.
Figure 5 shows the anatomical location of the markers, and Table 2 describes the association
between the anatomical location of the six Qualisys MoCap markers and the human joints.
For the 2D video recording, two identical 2D cameras were used (only one was operating
at any one time); 2D camera 1 recorded frontal plane exercises and was parallel to the
participant’s frontal plane, and 2D camera 2 recorded sagittal plane exercises and was
positioned at an angle of 35◦ to the participant’s frontal plane (Figure 4). The previous
information describes the camera position that minimizes the number of occlusions during
the exercise execution.

2. Lateral epicondyle
of the humerus

3. Styloid apophysis
of the radius

4. Greater trochanter

5. Lateral epicondyle
of the femur

1. Acromion

6. Lateral malleolus

Figure 5. Anatomical location of the six Qualisys MoCap markers.

Table 2. Relation between the anatomical location of the six Qualisys MoCap markers and the
human joints.

MoCap Anatomical Location Joint

1. Acromion Shoulder
2. Lateral epicondyle of humerus Elbow
3. Styloid apophysis of radius Wrist
4. Greater trochanter Hip
5. Lateral epicondyle of the femur Knee
6. Lateral malleolus of the ankle Ankle

3.3. Data Preprocessing

The 2D videos from the experimental acquisition were given as input for the MediaPipe
Pose model to estimate the 3D coordinates of the human joints. The raw data from the
Qualisys system and the MediaPipe Pose model consisted of the 3D positions of the MoCap
markers and the 3D central positions of the joints, respectively. For the ROM evaluation,
both data sources provide approximately equivalent information after converting the
3D positions into amplitude values. Additionally, proper alignment was necessary for
comparing ground truth and predicted values from the same time point. The procedures
are described next.

270



Sensors 2024, 24, 206

3.3.1. 3D Cartesian Coordinate System

For physiotherapy purposes, defining a 3D coordinate system coincident with the
normal vectors of the anatomical planes is valuable information, particularly when deter-
mining the joint amplitude or Range of Motion (ROM).

The Qualisys coordinate system is shown in Figure 6. The direction of the axes of
the Qualisys coordinate system was assumed to be parallel to the normal vectors of the
anatomical planes of the participant (Figure 7).

x

y

z

Figure 6. The 3D Cartesian coordinate system of Qualisys (in orange) and its spatial relation with
respect to the participant position during data acquisition.

x

y

z

Sagittal
normal

Frontal
normal

Transverse
normal

Figure 7. Comparison of the normal vectors of the anatomical planes (in black) with the Qualisys
coordinate system (in orange).

The MediaPipe Pose coordinate system depends on the relative position between the
2D camera and the participant, as illustrated in Figure 8. The origin is the midpoint between
the hips; the XY plane of the MediaPipe Pose coordinate system is parallel to the X’Y’ plane
of the camera plane. The Z-axis is the third direction according to the right-hand rule. Due
to the camera position dependency, no direct relationship between the MediaPipe Pose and
anatomical coordinate systems can be assumed. Therefore, a virtual coordinate system was
defined coincident with the anatomical planes, such that the Z-axis is the normal vector
to the frontal plane, the X-axis the normal vector to the sagittal plane, and the Y-axis the
normal vector to the transverse plane (Figure 9).

Figure 10 shows the three main steps to define the virtual coordinate system. The
origin is the midpoint between the hips, and the direction of the axes was defined using
the torso joint positions (shoulders and hips) estimated by MediaPipe Pose in the first
frame. Firstly, the frontal plane normal (Z-axis) was defined as the normal vector to the best
plane containing the four torso keypoints, using the RANSAC regressor [31]. Secondly, the
transverse plane normal (Y-axis) was defined as the vector from the shoulders’ midpoint
to the hips’ midpoint. Lastly, the sagittal plane normal (X-axis) was calculated using the
right-hand rule. The direction of the axes of the MediaPipe Pose virtual coordinate system
was assumed to be parallel to the normal vectors of the anatomical planes of the participant
(Figure 11).
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Figure 8. Relation between the participant position and the Cartesian coordinate system of the
MediaPipe Pose model for three camera orientations: (a) camera plane parallel to participant frontal
plane; (b) camera plane rotated around the Y-axis relative to participant frontal plane; and (c) camera
plane rotated around the X-axis relative to participant frontal plane. The camera 2D coordinate
system is represented by the X’-axis and Y’-axis, which are parallel to the X-axis and Y-axis of the
algorithm coordinate system, respectively.

x

y

z

Figure 9. The virtual 3D coordinate system of MediaPipe Pose coincident with the normal vectors of
the anatomical planes. The origin is the midpoint between the hips. The X-axis is the sagittal plane
normal, the Y-axis is the transverse plane normal, and the Z-axis is the frontal plane normal. The four
points (representing the shoulders and hips) are used to define the virtual 3D coordinate system.
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RH: right hip; LH: left hip
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Figure 10. Representation of virtual 3D coordinate system definition: (1) Z-axis or frontal plane
normal; (2) Y-axis or transverse plane normal; and (3) X-axis or sagittal plane normal.
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Figure 11. Comparison of the normal vectors of the anatomical planes (in black) with the MediaPipe
Pose virtual coordinate system (in blue).
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3.3.2. Amplitude Calculation

In musculoskeletal physiotherapy, the Range of Motion (ROM) is defined according to
the neutral-zero method; the ROM is determined by moving the distal segment of a joint
from a neutral starting position (zero position) to the end position around a rotation axis [7].
Therefore, the joint amplitude is the angle between the body segment (projected in the
plane of movement) and a reference direction (zero position), as shown in Figure 12. The
body segment is the vector between two joints: the joint where the ROM is being evaluated
and the closest joint to the evaluated joint in the moving limb. The projection of the body
segment of the plane of movement ensures that only the angle component of that plane
is being investigated. For instance, for the shoulder abduction/adduction exercise, only
the frontal plane component assesses the shoulder joint on abduction/adduction motions;
the sagittal plane component evaluates it on flexion/extension motions. The normal to the
plane of movement is the only information necessary for the projection of the body segment
on that plane. The reference direction is the vector with respect to which the amplitude is
defined, meaning that it corresponds to the 0◦ amplitude (zero position). The information
for the amplitude calculation for each exercise is shown in Table 3.

Joint 1

Angle
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Figure 12. Amplitude calculation between the projected body segment vector and a reference direction.

Table 3. Information for the ROM evaluation: plane of movement in which the exercise occurs, the
body segment, and the reference direction. ↓ represents vertically downward direction.

Exercises Plane of Movement Body Segment (Joint 1–Joint 2) Reference Direction

1. SF Sagittal Shoulder–elbow ↓
2. SA Frontal Shoulder–elbow ↓
3. EF Sagittal Elbow–wrist ↓
4. SP Frontal Shoulder–elbow ↓
5. HA Frontal Hip–knee ↓
6. SQ Sagittal Knee–hip Foot-knee
7. MCH Sagittal Hip–knee ↓
8. SKF Sagittal Knee–foot ↓

3.3.3. Data Alignment

After determining the raw amplitude data, finding matching time points between
Qualisys and MediaPipe Pose amplitudes was required. This was achieved by implement-
ing five steps (Figure 13): (1) converting frames into a time scale, in seconds, knowing
the frame rate of Qualisys (100 FPS) and 2D videos (30 FPS); (2) finding maximum (peak)
amplitudes, and the respective time points; (3) aligning amplitude acquisitions by the first
peak time point; (4) downsampling Qualisys time points by selecting the ones that matched
MediaPipe Pose time points; and (5) fine-tuning the alignment by selecting the pair of
peak amplitudes (one from Qualisys and the other from MediaPipe Pose) that yielded the
highest Pearson correlation coefficient between them.
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Since each exercise was repeated multiple times during a single acquisition, segmenta-
tion was performed to extract the exercise repetitions from the recordings. Data segments
corresponding to resting periods, exercise familiarization, or uncompleted trials were not
considered repetitions.

(0) Raw amplitude data (1) Time scale conversion (2) Peak detection

(3) First peak alignment (4) Qualisys downsampling (5) Alignment fine-tuning

or

or

Figure 13. Data alignment between the Qualisys ground truth amplitudes (in orange) and MediaPipe
Pose predicted amplitudes (in blue).

3.4. Evaluation Metrics

A comprehensive analysis of the performance of the MediaPipe Pose model in ampli-
tude prediction was conducted by comparing the model amplitudes with the ground truth
amplitudes for each exercise across all participants. Firstly, two error metrics were selected
to assess the model accuracy: Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE), defined by Equations (1) and (2), respectively:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (1)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (2)

where n is the number of observations (i.e., the number of collected frames for each exercise),
yi is the ground truth value for observation i, and ŷi is the predicted value for observation i.
Then, to quantify the correlation between two variables (Qualisys ground truth amplitudes
and MediaPipe Pose predicted amplitudes), two metrics were evaluated: Pearson correla-
tion coefficient and cosine similarity. Pearson correlation coefficient measures the linear
relationship between two sets of data points and takes into account both their magnitude
and direction, meaning that it is sensitive to the scale of the data [32]. Additionally, cosine
similarity measures similarity as the cosine of the angle between two vectors [33]. Unlike
Pearson correlation, this metric is not sensitive to the magnitude of data, only to their
direction, meaning that it assesses the morphology of the acquisition without considering
its scale. Finally, the properties of a linear regression between the Qualisys and MediaPipe
Pose data were investigated.
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4. Results

For the ROM study, results consisted of pairs of ground truth amplitudes measured by
Qualisys and amplitudes predicted by MediaPipe Pose collected from eight participants per-
forming eight exercises frequently performed in physiotherapy sessions. Figure 14 shows
representative traces of Qualisys ground truth (in orange) and MediaPipe Pose predicted
(in blue) amplitudes over time during the SA and SKF exercises performed by Subject 1,
highlighting the raw amplitude data before the alignment procedure (Figure 14a,b) and the
aligned amplitude data (Figure 14c,d).

(a) (b)

(c) (d)

Figure 14. Example of Qualisys ground truth (in orange) and MediaPipe Pose predicted (in blue)
amplitudes for Subject 1 performing SA exercise and SKF exercise. (a,b) show the raw amplitude
before the alignment procedure, and (c,d) the aligned amplitude data, before segmenting the sample
to extract the exercise repetitions.

The evaluation of the MediaPipe Pose model for ROM estimation was conducted from
two perspectives: peak amplitudes and motion amplitudes. Peak amplitudes represent the
maximum articular angle measured in each exercise repetition. It is an important parameter
for physiotherapists to assess their patients’ progress during treatment [7]. Moreover,
investigating all amplitude predictions during exercise execution (motion amplitudes) is
also important, as it can provide a comprehensive evaluation of the algorithm’s performance
for a wider range of angles.

MAE and MAPE (Equations (1) and (2)) for both peak and motion amplitudes are
shown in Table 4. MAPE evaluation was based on previously used criteria [34], and
different colors were used to highlight various performances (Table 4). For the peak
amplitude analysis, MAE varied from 3.7◦ (HA) to 28.8◦ (SF), and MAPE varied from 6.6%
(SKF) to 28.7% (SF). Both MAE and MAPE were higher for upper-body exercises than for
lower-body exercises. For most exercises, the model had a MAPE below or close to 10%
(highly accurate forecasts), suggesting promising results. For motion amplitudes, absolute
angles between 0◦ and 1◦ were eliminated (threshold = 1◦) to prevent infinite errors. MAE
varied from 3.2◦ (HA) to 18.7◦ (SP), and MAPE between 14.9% (SA) and 107.4% (MCH). SA,
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SP, EF, and SQ exercises showed the lowest MAPE, while MCH, SKF, SF, and HA exercises
showed the highest MAPE.

Table 4. MAE, in degrees, and MAPE, in percentage, between Qualisys and MediaPipe Pose ampli-
tudes (peak and motion) for each exercise. MAPE color code [34]: <10% (highly accurate forecast) in
green; 10–20% (good forecast) in yellow; 20–50% (reasonable forecast) in light orange; >50% (inaccu-
rate forecast) in dark orange. (s) and (f) indicate sagittal and frontal plane exercises, respectively.

Exercise
Peak Amplitudes

Motion Amplitudes

(Threshold = 1◦)

MAE (◦) MAPE (%) MAE (◦) MAPE (%)

1. SF (s) 28.8 28.7 15.6 66.60

2. SA (f) 13.0 10.2 7.7 14.90

3. EF (s) 11.7 9.6 10.6 24.2

4. SP (f) 13.8 9.5 18.7 23.0

5. HA (f) 3.7 9.0 3.2 62.9

6. SQ (s) 7.6 7.9 8.3 25.0

7. MCH (s) 6.3 7.7 6.3 107.4

8. SKF (s) 4.9 6.6 9.9 78.10

The results to quantify the correlation between two variables (Qualisys ground truth
amplitudes and MediaPipe Pose predicted amplitudes) are shown in Table 5. For peak
amplitudes, the Pearson coefficient varied between 0.744 (SP) and 0.961 (MCH). When
Pearson coefficients are above 0.9 (as shown in SA, EF, HA, and MCH), the association
between ground truth and predicted data is considered very strong [35]. The p-value
was <0.001, indicating a statistically significant Pearson coefficient [32]. Cosine similarity
was equal to or greater than 0.992 for all exercises, suggesting a strong relationship between
data morphology from Qualisys and MediaPipe Pose, regardless of their magnitudes. For
motion amplitudes, the Pearson coefficient was equal to or greater than 0.904 (very strong
correlation [35]) for all exercises; cosine similarity values were equal to or greater than 0.940.
Similarly to the MAPE study of motion amplitudes, frontal plane upper-body exercises
(SA and SP), EF, and SQ exercises were the ones with the highest cosine similarity value
(above 0.990).

Table 5. Correlation analysis between the Qualysis and MediaPipe Pose amplitudes (peak and
motion) for each exercise: Pearson correlation coefficient (r) and cosine similarity coefficient (cos_sim).
The p-value was <0.001, indicating a statistically significant Pearson coefficient. Color code: >0.9
in green; 0.8–0.9 in yellow; 0.7–0.8 in light orange. (s) and (f) indicate sagittal and frontal plane
exercises, respectively.

Peak Amplitudes Motion Amplitudes
Exercise

r cos_sim r cos_sim

1. SF (s) 0.894 0.992 0.904 0.949

2. SA (f) 0.939 0.999 0.996 0.999

3. EF (s) 0.903 0.997 0.963 0.990

4. SP (f) 0.744 0.999 0.985 0.997

5. HA (f) 0.915 0.995 0.985 0.987

6. SQ (s) 0.833 0.998 0.981 0.993

7. MCH (s) 0.961 0.996 0.964 0.979

8. SKF (s) 0.765 0.997 0.942 0.961

276



Sensors 2024, 24, 206

Amplitudes measured by Qualisys and predicted by MediaPipe Pose were displayed
on plots to visualize the relationship between ground truth and predictions, demonstrated
by the high Pearson coefficient and cosine similarity seen in Table 5. Representative plots of
the relationship between Qualisys and MediaPipe Pose motion amplitudes for SA and SKF
exercises are shown in Figure 15. Results for all exercises are in Table 6. The coefficient of
determination (R2) assesses how well the linear regression fits the data. R2 values ranged
between 0.82 (SF) and 0.99 (SA). R2 values were the highest for the frontal plane (SA, SP,
HA) and SQ exercises. MCH and EF also showed high R2, while SKF and SF were the
exercises with the lowest R2 results. Frontal plane exercises, SQ, and MCH plots showed an
approximately linear relationship between data (Figure 15a), and SF, SKF, and EF showed
an approximately cubic polynomial relationship between data (Figure 15b).

(a) (b)

Figure 15. Relation between Qualisys and MediaPipe Pose motion amplitudes for (a) SA exercise
and (b) SKF exercise. Each color represents a different subject, and the yellow line is the linear
regression that best fits the amplitude data for the exercise; the coefficient of determination (R2) and
the linear regression equation (slope and intercept) are also shown, where y and x are the Qualisys
and MediaPipe Pose amplitudes, respectively.

Table 6. Linear regression between motion amplitudes of Qualisys and MediaPipe Pose for each
exercise: slope and intercept values for the equation that better fits the transformation of predictions
(MediaPipe Pose points) into expected data (Qualisys points), coefficient of determination (R2), and
curve shape. (s) and (f) indicate sagittal and frontal plane exercises, respectively.

Exercise
Motion Amplitudes

Slope Intercept R2 Curve Shape

1. SF (s) 0.75 11.3 0.82 Not linear
2. SA (f) 0.89 1.72 0.99 Linear
3. EF (s) 1.23 −11.86 0.93 Not linear
4. SP (f) 0.96 −14.2 0.97 Linear
5. HA (f) 0.92 3.39 0.97 Linear
6. SQ (s) 1.05 5.12 0.96 Linear
7. MCH (s) 1.03 −0.82 0.93 Linear
8. SKF (s) 1.13 −4.19 0.89 Not linear

5. Discussion

Error and correlation analyses provided valuable insights about the MediaPipe Pose
performance. Firstly, the model predictions for peak amplitudes showed low MAE and
MAPE, indicating a promising performance of MediaPipe Pose, in particular for lower-body
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exercises, where the ROM is commonly lower than in upper-body exercises. Secondly, the
model predictions for motion amplitudes showed higher MAE and MAPE than for peak
amplitudes, suggesting that the algorithm performed better in static poses (peak ampli-
tudes) than in dynamic movements (motion amplitudes) [35]; furthermore, MediaPipe
Pose showed lower MAPE for frontal plane upper-body (SA and SP), EF, and SQ exercises
than for HA, SF, MCH, and SKF exercises.

SA is a frontal plane, upper-body, and unilateral exercise. The model’s performance
for frontal plane exercises was expected to be better than for sagittal plane exercises since,
for the frontal configuration, the movement occurs in a plane approximately parallel to
the camera plane; thus, all joints are approximately at the same angle to the camera (same
depth). Depth ambiguities, mainly associated with side-views where different depths
need to be determined for each joint, are a primary challenge in monocular 3D HPE [36],
which are avoided in frontal plane exercises. Besides depth ambiguities, other factors
influence the 3D estimations, justifying why other frontal plane exercises (SP and HA) did
not show performance as good as the SA exercise. For instance, training data with a lack of
representative examples for movements, such as SP and HA, may also make the prediction
by the algorithm more challenging [37].

For motion amplitudes, EF is a sagittal plane, upper-body, and unilateral exercise with
one of the lowest MAPE. In this exercise, only the right forearm (i.e., right wrist joint) was
moving, and during the exercise execution, this body segment was not occluded. The low
MAPE values for motion amplitudes suggested that MediaPipe Pose can correctly predict
the right elbow and wrist (only joints considered for this exercise). On the other hand, SKF
was the exercise with one of the highest MAPE. This exercise involves unusual poses and
self-occlusions that may be challenging for MediaPipe Pose. This is likely due to the lack of
training data representing those poses and self-occlusions [17,37].

SQ and MCH exercises are more prone to self-occlusions and unusual poses since
their execution involves moving several joints simultaneously. Interestingly, SQ was one of
the exercises with the lowest amplitude error (MAPE), probably because the right knee,
hip, and ankle are the only joints evaluated in the ROM analysis and these are visible (not
occluded) during the exercise execution. The MCH exercise is a bilateral movement, where
each leg moves one at a time. Although only the right leg (further from the camera) motion
was evaluated, the motion of the left leg (closer to the camera) in front of the right leg
(self-occlusion) may contribute to a high amplitude error (MAPE) [17].

In summary, MediaPipe Pose errors reported previously may be due to depth am-
biguities [38], self-occlusions [17], or challenging poses [39]. Furthermore, erroneous 2D
estimations may also affect the 3D HPE [40]; MediaPipe Pose estimates the 3D positions
from the predicted 2D positions (2D to 3D lifting technique). 3D HPE models may incorpo-
rate 2D to 3D lifting techniques, where an intermediate 2D pose is first estimated, and then
lifted to 3D, i.e., estimate the 3D position of the joints from their 2D positions, meaning
that higher 2D errors may contribute to higher 3D errors. The amount of annotated data
can also influence deep learning algorithms; wider variability of scenarios (unusual poses
and occlusions) present in the training dataset has been found to contribute to a better
performance of these models [41]. The MediaPipe Pose model was trained on a customized
dataset [23,29], capturing a wide range of fitness poses. Nevertheless, some poses from the
selected exercises may not be widely represented in its dataset, making the model predic-
tion harder. Additionally, the experimental data acquisition by the Qualisys system [42,43],
as well as data preprocessing oversimplification when converting 3D joint positions into
amplitude values, may introduce errors in the ground truth data.

For motion amplitudes, despite the high MAPE results seen in some exercises (as
high as 107.4%), a strong correlation between Qualisys ground truth and MediaPipe Pose
predicted amplitudes was observed (Pearson coefficient and cosine similarity above 0.9) [35].
Taken together, MAPE and correlation results seemed to indicate that MediaPipe Pose
predictions replicated the shape of the curve of the Qualisys data (high correlation), but
shifted or scaled (high MAPE). Therefore, for the frontal plane, SQ and MCH exercises, the
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linear function shown in Table 6 could be used to map MediaPipe Pose predictions into
Qualisys ground truth amplitudes, in order to decrease the error between them. Similarly,
a fine-tuned cubic polynomial function could be applied to SF, EF, and SKF exercises [44].

Overall, the exercise with the best results was SA, a frontal plane, upper-body, and
unilateral exercise, while the exercises with the lowest performance were the MCH and
SKF, where complex poses and numerous occlusions can be found, and SF, where the depth
may be harder to estimate.

6. Conclusions

This work explored the potential of using approaches for 3D HPE from monocular
2D video feeds in musculoskeletal telerehabilitation. Specifically, the performance of
MediaPipe Pose was evaluated on a wide range of exercises commonly performed in
physiotherapy sessions, covering different body poses. The investigation of MediaPipe
Pose for 3D HPE was focused on joint ROM, the metric used by physiotherapists in both
telerehabilitation and conventional sessions to follow patients. As a valuable addition to
existing research, this study also provided an in-depth description of (1) a novel approach
for defining a 3D Cartesian coordinate system, invariant to camera orientation, suitable
for both 2D and 3D camera acquisitions; (2) the calculation of the Range of Motion (ROM),
considering the physiotherapy definition; and (3) the description of the data alignment
procedure for acquisition systems with different frame rates.

The MediaPipe Pose model yielded promising results, with the SA, SP, EF, and SQ
exercises generally showing better performance than the remaining exercises. Overall, the
exercise with the best results was SA, a frontal plane, upper-body, and unilateral exercise,
while the exercises with the lowest performance were the MCH, SKF, and SF.

In conclusion, this study supports the potential of using MediaPipe Pose for 3D body
tracking from monocular 2D videos in musculoskeletal telerehabilitation applications, to
eliminate the need for complex specialized hardware, such as 3D depth cameras or wear-
ables. Although the results varied under different conditions, the MediaPipe Pose model
showed encouraging performance. Future work should include testing other state-of-the-
art algorithms, increasing the sample size of participants in the study, extending the dataset
to subjects with musculoskeletal diseases, investigating post-preprocessing techniques
to enhance the results, and gathering additional training data focused on physiotherapy-
specific motions (such as the Fit3D dataset [45]) and poses to handle challenges, such
as occlusions and depth ambiguities. With further refinements to the models, 3D body
tracking from monocular 2D video feeds appears to be a viable, affordable, and accessible
approach for musculoskeletal telerehabilitation solutions. In the future, this can help the
development of better physiotherapy options for patients with musculoskeletal disorders.
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Abbreviations

The following abbreviations are used in this manuscript:

HPE Human Pose Estimation
MoCap Motion Capture
ROM Range of Motion
FPS Frames per Second
SF Shoulder Flexion/Extension
SA Shoulder Abduction/Adduction
EF Elbow Flexion/Extension
SP Shoulder Press
HA Hip Abduction/Adduction
SQ Squat
MCH March
SKF Seated Knee Flexion/Extension
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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Abstract: Sensor- orientation is a critical aspect in a Human Activity Recognition (HAR) system based
on tri-axial signals (such as accelerations); different sensors orientations introduce important errors
in the activity recognition process. This paper proposes a new preprocessing module to reduce the
negative impact of sensor-orientation variability in HAR. Firstly, this module estimates a consistent
reference system; then, the tri-axial signals recorded from sensors with different orientations are
transformed into this consistent reference system. This new preprocessing has been evaluated to
mitigate the effect of different sensor orientations on the classification accuracy in several state-
of-the-art HAR systems. The experiments were carried out using a subject-wise cross-validation
methodology over six different datasets, including movements and postures. This new preprocessing
module provided robust HAR performance even when sudden sensor orientation changes were
included during data collection in the six different datasets. As an example, for the WISDM dataset,
sensors with different orientations provoked a significant reduction in the classification accuracy
of the state-of-the-art system (from 91.57 ± 0.23% to 89.19 ± 0.26%). This important reduction was
recovered with the proposed algorithm, increasing the accuracy to 91.46 ± 0.30%, i.e., the same result
obtained when all sensors had the same orientation.

Keywords: human activity recognition; gravity estimation; sensor-orientation-independent; forward
movement direction; wearable sensors; acceleration signals; deep learning; convolutional neural
networks

1. Introduction

In the last decade, there has been an increasing interest in Human Activity Recognition
(HAR) for recognizing the physical activities that people perform during their day-to-day
lives. State-of-the-art systems for HAR integrate different signal processing and deep
learning techniques [1–8], reaching promising results in different applications, e.g., sports
monitoring [9–11] (such as fitness tracking, training adaptation, or personal incentivizing),
rehabilitation [12], and respiratory diseases spread minimization [13].

In these applications, sensor orientation is a critical aspect when using tri-axial signals
(such as accelerations); different sensor orientations can introduce important errors in
the activity recognition process. In real scenarios (not supervised by experts), people
place their sensors in different orientations, compromising the system performance. For
example, fit bands and smartwatches can rotate along the wrist, presenting very different
orientations. This fact affects the final recognition performance, requiring strategies to
reduce the negative impact of these changes.

State-of-the-art HAR systems include robust features for dealing with different sensor
orientations, but they do not incorporate specific algorithms for correcting the mismatches
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in sensor orientation. This work proposes a preprocessing module to correct these mis-
matches by extracting a consistent reference system and transforming the tri-axial accel-
eration signals from the sensor reference system to this consistent reference system. The
proposed algorithm increases the robustness of the HAR system against sensor orientation
changes, obtaining important improvements over several state-of-the-art systems and
datasets. The main contributions of this paper are as follows:

• A new preprocessing algorithm for mitigating the effects of sensor orientation variabil-
ity. Firstly, this algorithm generates a consistent reference system from the estimation
of gravitational and forward movement directions. Secondly, the tri-axial acceleration
recorded from the sensor is transformed from the sensor reference system to the consis-
tent reference system. This proposal has demonstrated robust activity recognition even
when sudden and abrupt sensor orientation changes happened during data recording.

• A study of the effect of the proposed algorithm depending on the type of activity, i.e.,
movements or postures.

• The evaluation of the proposal using six well-known HAR systems and datasets in a
subject-wise cross-validation scenario, including a wide variety of subjects, activities,
devices, and locations.

This paper is organized as follows. Section 2 reviews the literature, discussing different
previous works related to the topic of this work. Section 3 describes the materials and
methods used, including the system architecture, the proposed algorithm for adapting
the sensor orientation through a consistent reference system, the signal processing and
deep learning approaches, and the evaluation details. Section 4 describes the datasets and
discusses the experiments and the obtained results. Finally, Section 5 summarizes the main
conclusions of the paper.

2. Related Works

In the HAR field, the use of wearable devices is widely extended [14–16]. HAR
systems based on tri-axial inertial signals (such as accelerations) have an important problem
regarding the sensor orientations. In real scenarios (not supervised by experts), people
place their sensors in different orientations (fit bands and smartwatches can rotate along
the wrist), compromising the system performance.

In the literature, there are few proposals dealing with different sensor orientations [17].
Most of these studies have focused their contributions on extracting robust features (such
as the magnitude of the accelerometer vector [18] or specific vertical and horizontal fea-
tures [19]) that are not sensitive to orientation changes. These features showed good
robustness, but they did not obtain the best performance. In the same way, San-Segundo
et al. [20] used different mitigation techniques to deal with heterogeneities in HAR using
smartphones and smartwatches. They used different feature extraction strategies such as
filtering or session-specific normalization of feature data.

Only two previous works have been identified which propose similar algorithms to
compute consistent axes for representing tri-axial acceleration. In the first study, Hen-
praserttae et al. [21] estimated the vertical and forward–backward axes of the body in
several movements. These initial experiments were very promising, but the experimental
setup only included recordings from five subjects and six daily activities, using data from
the same subjects to train and test their system. In a real application, the system must be
tested with different subjects compared to those used in training. The second work [22]
developed two methods to remove the effect of absolute sensor orientation from the raw
sensor data: a heuristic transformation and a singular value decomposition-based trans-
formation. These techniques did not provide significant improvements for reducing the
degradation due to wrong sensor orientation.

This paper solves the limitations of these previous works, proposing a new algorithm
for estimating a full consistent reference system (composed of three main axes) and trans-
forming tri-axial acceleration from the sensor system to the consistent reference system.
This preprocessing algorithm has been evaluated on state-of-the-art HAR systems consider-
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ing six different datasets in realistic scenarios (training and testing with different subjects).
This work covers the research gap between these preliminary studies and the proposal of a
full solution evaluated with several datasets in realistic scenarios.

In order to complete the related work section, it is interesting to comment that the
analysis of acceleration signals has been applied to other fields such as driving [23]. In
this work, deep learning techniques have been used to estimate the vehicle movement
direction. This forward movement directional vector is useful for multiple applications
such as characterizing driving styles or detecting dangerous events. In addition, some
previous works [24–26] have performed IMU-based attitude estimation in automotive
and human–robotic interaction systems. In fact, the authors have analyzed the effects
of the bias and error of the IMUs and introduce other signals to improve the attitude
estimation. Regarding driving applications, there also exist previous works [27] that have
been focused on vehicle trajectory extraction, reconstruction, and evaluation to develop
automated driving systems.

3. Materials and Methods

This section includes information about the proposed algorithm to adapt the acceler-
ation coordinates to a consistent reference system, the architecture of the state-of-the-art
system (describing the main modules), and the evaluation of the systems in different
scenarios.

3.1. System Architecture

Figure 1 shows a general module diagram of an HAR system, incorporating the
new algorithm as a previous step before the signal processing. Once the acceleration
data are obtained from inertial units or smartphones, the consistent reference system is
obtained. Then, the original acceleration is transformed from the sensor coordinates to
this consistent reference system. This new representation is independent of the sensor
orientation. Afterward, it is possible to apply signal processing techniques such as Fast
Fourier Transform to extract relevant information from the motion signals in the frequency
domain. Finally, these spectra are included in a Convolutional Neural Network to model
and classify the different physical activities. This architecture has been used to obtain
state-of-the-art performance in the datasets considered in this study.

Figure 1. System architecture including the new algorithm before signal processing.

3.2. Estimating a Consistent Reference System to Represent the Total Acceleration

The proposed approach aims to create a consistent reference system independently
of the sensor orientation and represent the total acceleration according to this consistent
reference system. This process is composed of the following main steps (see Figure 2):

1. Firstly, the gravity vector is estimated from the total acceleration recorded from the
accelerometer. Each coordinate of gravity is computed by applying a sliding mean
over the three coordinates (X, Y, and Z in the sensor reference system) of the total
acceleration through a convolution operation. Computing the average, we remove
subject movements, leaving only the gravity [28]. For this step, a sliding mean filter
of 5 s was used to compute the mean over each gravitational coordinate. In this way,
we obtain the three components of gravity at each sample point. The filter size was
analyzed in preliminary experiments, but it did not affect the results.

2. Secondly, we obtain the horizontal acceleration by subtracting the component in
the gravity (vertical) direction from the total acceleration vector. After subtracting
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the vertical component, we compute the forward direction at each sample point by
applying a sliding mean (5 s) over the horizontal acceleration. Unit vectors in the
gravitational and the forward directions are computed dividing the original vectors
by their magnitudes.

3. Thirdly, to complete the three axes system, the third unit vector is computed (at each
sample point) as the cross product of gravitational and forward unit vectors.

4. Finally, the algorithm computes the new coordinates of the total acceleration according
to this new reference system. The transformation of the total acceleration coordinates
from the sensor reference system to the consistent reference system is accomplished
by using Equation (1), where the sub-index “new” denotes the consistent reference
system, and the sub-index “orig” refers to the sensor reference system. For example,
ux_new refers to the x coordinate of the new reference system, while ux_orig refers to
the x coordinate of the sensor reference system. In this equation, Vx_new, Vy_new, and
Vz_new are the acceleration coordinates according to the consistent reference system,
and Vx_orig, Vy_orig and, Vz_orig are the acceleration coordinates respect to the sensor
reference system. The unit vectors of the consistent reference system are the forward
(x), gravitational (y), and cross-based computed direction (z) vectors. To transform
the acceleration from one reference system to another, it is necessary to use the three
coordinates of the unitary vector for both sensor and consistent reference systems.
These coordinates are referred to the sensor reference system. These unitary vectors
(and their coordinates) are used to compute the elements of the transformation matrix
as shown in Equation (1).⎡⎣Vx_new

Vy_new
Vz_new

⎤⎦ =

⎡⎣ux_new·ux_orig ux_new·uy_orig ux_new·uz_orig
uy_new·ux_orig uy_new·uy_orig uy_new·uz_orig
uz_new·ux_orig uz_new·uy_orig uz_new·uz_orig

⎤⎦⎡⎣Vx_orig
Vy_orig
Vz_orig

⎤⎦ (1)

Figure 2. Generation of the consistent reference system through the algorithm. (Red part of Step
2 Maybe you could say that it represents the plane perpendicular to gravitational component that
contains forward component.)

286



Sensors 2023, 23, 5845

Figure 2 shows the evolution of the algorithm, including the representation of the
motion vector based on the sensor reference system and the generation of the consistent
reference system.

This proposed approach computes the forward-direction vector of the acceleration
signal to build the consistent reference system. The computation of the consistent reference
system requires an additional computational overhead of 10%, but it does not affect the
real time nature of the system. Even this additional computation overhead is reached when
including the computation of the consistent reference, the real-time inference time was
RT < 10−2 (1 h of signal is inference in of than 10 s).

This algorithm works for movements such as running or cycling, but it has an impor-
tant limitation when dealing with posture classification. When a person is, for example,
sitting or standing, there is no motion in forward direction (this vector is zero), so it is not
possible to compute any consistent reference system. To solve this limitation, we have used
the gravitational component as a reference: in the case of postures, instead of using the
described algorithm, we directly subtracted the component of the gravity direction from
the total acceleration signals of the postures. The gravity is computed from movements,
not from postures, so it was necessary to have an initial module for separating postures
and motion activities as we will see later.

3.3. Signal Processing and Deep Learning Approaches

After the new preprocessing, a signal processing module divides the recording signals
into analysis windows and compute the spectrum of each window. The posterior classi-
fication module aims to identify the activity at each window. The system segments the
physical activity recordings using overlapped Hanning windows of 5 s using a step of
1 s. This configuration has been successfully used in previous works [2,29,30] reporting
state-of-the-art performance.

After windowing, we compute the Fast Fourier Transform to generate the spectrum
of each window in a range of frequencies between 0 and 10 or 20 Hz depending on the
sampling frequency of the dataset. The magnitude bins of the spectrum are the input to
the deep neural network. The use of FFT coefficients is justified because these features
offered better results than time domain sequences or time domain features in previous
works [20,31].

In state-of-the-art HAR systems, the recognition module is based on deep learning
algorithms such as CNN [3,29]. The best deep learning architecture proposed in previous
works [2,29], and also used in this work, is composed of two main parts: a feature learning
subnet and a classification subnet. The first subnet learns features from window spectra,
using two convolutional layers with intermediate max pooling layers. The second subnet
uses fully connected layers to classify the learned features as a predicted activity. The
architecture includes layers after max pooling and fully connected layers to avoid overfitting
during training. The last layer uses a SoftMax activation function to offer the predictions of
each activity for every analysis window, while intermediate layers use ReLU for reducing
the impact of the gradient vanishing effect. We use categorical cross-entropy as the loss
metric and the root-mean-square propagation method as the optimizer. This deep neural
network has been used to model the data from all the analyzed datasets, using a different
number of neurons in the last layer depending on the number of classes in each dataset.

Figure 3 represents the architecture used in this work to model and classify the
physical activity of all the datasets, where M denotes the number of samples for each
signal (corresponding to the magnitude bins of the spectra) and C indicates the number of
recognized activities.
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Figure 3. Convolutional Neural Network architecture used in this work for all the datasets.

3.4. Evaluation Setup

In this work, we have considered a subject-wise cross-validation, which is a version
of the k-fold cross-validation procedure where the folds contain recordings from different
subjects. In this methodology, the data are divided into k groups or folds to train, validate,
and test the system with different data. However, it is assured that all the recordings
from the same subject are included only in a fold. In this case, a subset of subjects is
used for testing, and data from different subjects are used for training and validation in
each iteration. The system is trained, validated, and tested with recordings from different
subjects. Once the system model is fitted on the training subset, the validation subset is
used for optimizing the model hyperparameters. Finally, the system is evaluated with the
testing subset. This process is repeated several times, leaving different subjects for testing
in each iteration. The results are the average of the results obtained for all trials (10 folds in
this work). This methodology simulates a real-life scenario where the system is evaluated
with recordings from subjects different from those used for training.

As evaluation metrics, we have used accuracy, which is defined as the ratio between
the number of correctly classified samples and the number of total samples. Considering
a classification problem with N testing samples and C classes, accuracy is defined in
Equation (2), where Pii refers to the elements of the principal diagonal in the confusion
matrix.

Accuracy =
1
N

C

∑
i=1

Pii (2)

Confidence intervals are used to show statistical significance values and provide
confidence about the reliability of the results. These intervals include plausible values
for a specific metric. We will assure that there exists a significant difference between the
results of two experiments when their confidence intervals do not overlap. Equation (3)
represents the computation of confidence intervals attached to a specific accuracy value
and N samples when the confidence level is 95%.

CI(95%) = ±1.96

√
accuracy ·(100− accuracy )

N
(3)

4. Results and Discussion

This section describes the datasets used in this study, the experimental setups, the
results, and the main discussions.

4.1. Datasets

For this work, we have used six publicly available HAR datasets. The combination of
these datasets contains different sensing devices and a wide variety of physical activities,
including repetitive movements such as running or walking and postures such as sitting
and standing. The datasets used are WISDM_lab (Activity Prediction) [32], WISDM_wild
(Actitracker) [33], MotionSense [34], USC-HAD [35,36], PAMAP2 [37], and HARTH [38].
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The WISDM_lab dataset contains physical activity from 36 subjects that were carrying
a smartphone in their front pants leg pocket. The recording device included an embedded
accelerometer sampling at 20 Hz. The data collection was supervised by one of the labora-
tory team members to ensure the quality of the data. The subjects performed the following
activities: walking, jogging, ascending stairs, descending stairs, sitting, and standing. As
the samples from ascending and descending stairs were limited, both classes were joined
as one: stairs activity. This dataset includes more than 15 h of recorded activity.

The WISDM_wild dataset includes physical activity recordings performed by 209
subjects while wearing a smartphone (HTC Evo model) with an accelerometer sensor
using a sampling frequency of 20 Hz. The dataset contains in-the-wild data because the
recordings were collected in real conditions without expert supervision. They labeled the
data through a drop-down data label chooser in an application. In this context, there were
no restrictions about where to wear the device, so the subjects could record the activity
while keeping the smartphone inside a shirt pocket or a trousers pocket, even while holding
it in the hand. The subjects performed the following activities: walking, jogging, stairs,
sitting, standing, and lying down. This dataset includes 40 h of recorded activity.

The MotionSense dataset contains recordings of different physical activities performed
by 24 subjects at the Queen Mary University of London’s Mile End campus. These par-
ticipants wore in their trousers’ front pocket a smartphone (iPhone 6S model) with an
accelerometer sampling at 50 Hz. The subjects performed the following activities: walking
downstairs, walking upstairs, sitting, standing, walking, and jogging. This dataset contains
8 h of recordings.

The USC-HAD dataset includes recordings from 14 subjects performing physical
activities while wearing an IMU (MotionNode, online: https://sipi.usc.edu/had/mi_
ubicomp_sagaware12.pdf, available on 11 June 2023) packed into a pouch and attached to
the front right hip. In this case, the sensor orientation variability could be lower thanks
to the attachment. This measurement unit included an accelerometer sampling at 100 Hz.
The physical activities included in this dataset are walking forward, walking left, walking
right, walking upstairs, walking downstairs, running forward, jumping, sitting, standing,
sleeping, elevator up, and elevator down. This dataset includes approximately 8 h of
recorded activity.

The PAMAP2 dataset contains recordings of different physical activities performed
by nine people wearing three IMUs (Inertial Measurement Units) (Trivisio, Yutz, France)
with accelerometers sampling at 100 Hz. These units are placed onto three different body
locations: chest, wrist on the dominant arm, and ankle on the dominant side. In this case,
the sensor orientation variability could be lower thanks to the attachments. The subjects
performed the following activities: lying, sitting, standing, walking, running, cycling,
Nordic walk, ascending stairs, descending stairs, ironing, vacuum cleaning, and rope
jumping. This dataset includes more than 5.5 h of recorded activity.

The HARTH dataset includes recordings of different physical activities performed by
22 people wearing two accelerometer sensors (Axivity AX3 model) sampling at 100 Hz.
These units are placed onto the right front thigh (approximately 10 cm above the upper
kneecap) and lower back (approximately third lumbar vertebra). This dataset contains data
collected under laboratory conditions and in a free-living setting where no further instruc-
tions on where and when to carry out the activities but including the sensor attachments.
In this case, the sensor orientation variability could be lower thanks to the attachments.
The physical activities included in this dataset are walking, running, shuffling (standing
with leg movement), ascending stairs, descending stairs, standing, sitting, lying, cycling
while sitting, and cycling while standing. The recordings of inactive cycling while sitting
(without leg movement) and inactive cycling while standing (without leg movement) were
not used in this work because these activities are too unusual. This dataset includes more
than 17 h.

Table 1 includes the main characteristics of the datasets used in this work, including the
number of subjects, the number of physical activities (repetitive movements and postures),
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the devices used for recording the motion, their location, and the sampling frequency of
the accelerometers.

Table 1. Main characteristics of the datasets used.

Dataset # Subject # Activity # Rep. Mov. # Posture Device
Device/Sensor

Location
Sampling
Rate (Hz)

WISDM_lab 36 5 3 2 Smartphone Front pants pocket 20
WISDM_wild 209 6 3 3 Smartphone Free 20
MotionSense 24 6 4 2 Smartphone Front pants pocket 50
USC-HAD 14 12 7 5 Sensor Front right hip 100
PAMAP2 9 12 9 3 Sensor Hand, chest, and ankle 100
HARTH 22 10 7 3 Sensor Thigh and lower back 100

Table 2 displays the overall duration of recorded physical activity for the datasets used
in this work, as well as the time for each specific physical activity within each dataset.

Table 2. Time for each activity within the datasets used characteristics of the datasets used.

Dataset Total Time (h) Time per Activity

WISDM_lab 15 Walking (20,970 s), jogging (16,453 s), stairs (11,063 s), sitting (2954 s), and standing (2306 s)

WISDM_wild 40 Walking (60,684 s), jogging (21,813 s), stairs (2515 s), sitting (32,607 s), standing (14,030), and
lying down (13,424 s)

MotionSense 8 Walking downstairs (2578 s), walking upstairs (3198 s), sitting (6863 s), standing (6210 s),
walking (6987 s), and jogging (2617 s)

USC-HAD 8
Walking forward (3772 s), walking left (2588 s), walking right (2755 s), walking upstairs (2118 s),
walking downstairs (1974 s), running forward (1765 s), jumping (1072 s), sitting (2615 s),
standing (2360 s), sleeping (3750 s), elevator up (1653 s), and elevator down (1602 s)

PAMAP2 5.5
Lying (1925 s), sitting (1852 s), standing (1899 s), walking (2387 s), running (978 s), cycling (1646
s), Nordic walk (1881 s), ascending stairs (1173 s), descending stairs (1051 s), ironing (1755 s),
vacuum cleaning (2387 s), and rope jumping (488 s)

HARTH 17
Walking (11,661 s), running (2917 s), shuffling (standing with leg movement) (1180 s),
ascending stairs (817 s), descending stairs (740 s), standing (7327 s), sitting (29,003 s), lying
(4285 s), cycling while sitting (3965 s), and cycling while standing (544 s)

4.2. Experimental Setups and Results

Some of our HAR previous works were focused on optimizing the different modules
of the HAR system obtaining the highest recognition performance over PAMAP2 [2,3],
MotionSense [39], or USC-HAD [1] datasets. This work is focused on showing how the
proposed algorithm could correct the recognition errors due to changes in the recording
sensor orientation. The hypothesis to demonstrate in these experiments is that the proposed
algorithm can compensate the degradations suffered by state-of-the-art HAR systems
when random rotations are introduced in the sensors. The goal is to recover the system
degradation, obtaining the same performance compared to the baseline experiment (where
all the sensors were properly oriented). We considered four different experimental setups
or situations to demonstrate this hypothesis:

1. Baseline. First, we used the original data from the datasets for training and testing
a state-of-the-art HAR system. Most of the datasets (except for WISDM_wild) were
obtained under laboratory conditions; the data collection protocol was controlled by
experts and all the recording devices were located using the same orientation; thus,
there was no effect due to sensor orientation.

2. Rotated. Second, we included random rotations over the tri-axial accelerometer
signals to simulate changes in sensor orientation. These changes were based on the
rotation matrix, which performed a transformation in Euclidean space. Since we
managed tri-axial signals, we applied the rotation over one out of the three axes
that were randomly selected for each subject, keeping the remaining axes fixed. The
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rotation matrices used for each axis are included in Equation (4). We performed
preliminary studies using different angle values, but no effect was observed, so we
finally applied a rotation of θ equal to 45◦ for this work.

Rx(θ) =

⎡⎣1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎤⎦; Ry(θ) =

⎡⎣ cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

⎤⎦; Rz(θ) =

⎡⎣cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤⎦ (4)

3. Rotated and algorithm. Third, we applied the proposed algorithm to compensate
for the random sensor rotations by extracting a consistent reference system and
transforming the acceleration from the sensor reference system to the consistent
reference system. The same algorithm was applied to all types of activities, including
movements and postures.

4. Rotated and algorithm per type of activity. Finally, we repeated the third experimental
setup but applying specific approaches depending on the type of activity (movements
or postures). We used the approach based on the consistent reference system to
movements and the solution of subtracting the gravity for postures.

In cases of developing an HAR system dealing with several types of activities, it
would be necessary to include an initial classifier module [2] to distinguish between
movements and postures and then apply specific approaches based on the type of activities
(computing the new reference system or just subtracting the component of the gravity
direction), as shown in Figure 4. Considering this system, an initial classifier was included
to automatically detect the type of activity: movements vs. postures. This module was
implemented using the same CNN architecture presented in Section 3.3, but with a SoftMax
function at the end to classify two classes: movements and postures. This classifier has a
very high average accuracy (over 95%) because it deals with a simple classification task.
Afterward, each example is processed in a different way depending on this classification.
The results presented in this work also include the errors produced by this automatic
pre-classification.

Figure 4. HAR system dealing with different types of activities.

In the case of processing each type of activity separately, we applied the most advan-
tageous approach for each case as mentioned in the algorithm description section. For
movements (they have a forward movement direction), we generated a consistent reference
system based on the person’s movement direction. For postures (as they do not have a
motion forward direction), we directly subtracted the gravitational component.

Table 3 includes the accuracy of the experiments in the four experimental setups for
all the datasets. Table 3 already includes the impact of the initial classification module to
distinguish between movements and postures. We observe that the performance of the
results when considering miss-oriented sensors (column “Rotated” of Table 3) decreased
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significantly compared to the baseline system (column “Baseline” of Table 3); including
random rotations over the acceleration signals makes the system performance decrease.
For example, in the case of WISDM_lab dataset, we initially reached an accuracy of 91.57 ±
0.23% and decreased to 89.19 ± 0.26% when including random rotations.

Table 3. Results of the four experimental setups for all the datasets. References are included with the
descriptions of state-of-the-art HAR systems in each case.

Datasets and
State-of-the-Art

Systems

Accuracy (%) Depending on the Experimental Setup

Baseline
Rotated (Changes in
Sensor Orientation)

Rotated and
Algorithm

Rotated and Different
Approaches per Type of

Activity

WISDM_lab [32] 91.57 ± 0.23 89.19 ± 0.26 90.28 ± 0.25 91.36 ± 0.24
WISDM_wild [33] 73.54 ± 0.23 71.17 ± 0.23 71.52 ± 0.23 81.54 ± 0.20
MotionSense [39] 95.48 ± 0.24 88.22 ± 0.37 87.78 ± 0.38 92.09 ± 0.31

USC-HAD [1] 63.56 ± 0.56 58.62 ± 0.58 56.48 ± 0.58 59.35 ± 0.58
PAMAP2—Chest [2,3] 72.29 ± 0.63 65.35 ± 0.67 67.44 ± 0.66 68.12 ± 0.66
PAMAP2—Wrist [2,3] 77.27 ± 0.59 68.52 ± 0.65 70.06 ± 0.64 74.71 ± 0.61
PAMAP2—Ankle [2,3] 70.17 ± 0.64 63.46 ± 0.68 62.50 ± 0.68 67.93 ± 0.66

HARTH—Back [38] 88.58 ± 0.25 81.89 ± 0.30 80.21 ± 0.31 87.52 ± 0.26
HARTH—Thigh [38] 91.67 ± 0.22 83.90 ± 0.29 81.72 ± 0.30 87.56 ± 0.26

In a first attempt, we used the same algorithm for all the activities (column “Rotated
and algorithm” of Table 3). We were able to recover part of the degradation, but it was not
possible to reach the same accuracy obtained in the baseline (without random rotations).
For WISDM_lab dataset, we obtained an accuracy of 90.28 ± 0.25%. Extracting a consistent
reference system with postures can be counterproductive because it cannot be extracted
properly.

In a second attempt, we decided to apply specific approaches depending on the type of
activity: the consistent new reference system for repetitive movements and subtracting the
component of the gravity direction for postures. In this case (column “Rotated and different
approaches per type of activity” of Table 3), we were able to reach a similar performance
to the baseline experimental setup. For example, in the case of WISDM_lab dataset, we
obtained an accuracy of 91.83 ± 0.23% that was reduced to 91.36 ± 0.24% when including
the initial classifier module (with a 99.90 ± 0.03% of classification accuracy). Adapting the
algorithm to the type of activity solved the degradation from sensor orientation. In the case
of WISDM_wild, we not only recovered the degradation but also achieved an important
improvement in performance compared to the baseline system. One of the reasons for this
improvement is that this dataset already contains real data whose collection protocol was
not supervised by experts, so the original data were already affected by some rotations that
were mitigated by our proposed approach. Only a slight reduction of performance (2.37%)
was obtained by comparing the baseline and rotated setup, which means that the original
data were noisy and already included sensor rotations.

Table 4 includes the results of the experiments for all the datasets distinguishing types
of activity. Results suggest that the errors due to the changes in sensor orientation could be
mitigated by applying specific algorithms because the final systems could attain a similar
performance compared to the baseline.
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Table 4. Results of three experimental setups for the different datasets for each type of activity.

Dataset Type of Activity

Accuracy (%) Depending on the Experimental Setup

Baseline (Supervised
by Experts)

Rotated
Rotated and Algorithm

per Type of Activity

WISDM_lab
Rep. Mov. 91.41 ± 0.25 88.64 ± 0.28 91.82 ± 0.24
Postures 96.71 ± 0.48 71.67 ± 1.22 88.17 ± 0.87

WISDM_wild
Rep. Mov. 88.46 ± 0.21 89.18 ± 0.21 91.09 ± 0.19
Postures 63.76 ± 0.38 47.46 ± 0.40 58.66 ± 0.39

MotionSense
Rep. Mov. 90.98 ± 0.45 87.39 ± 0.52 91.81 ± 0.43
Postures 98.55 ± 0.21 84.39 ± 0.62 96.57 ± 0.31

USC-HAD
Rep. Mov. 59.72 ± 0.76 55.29 ± 0.77 58.66 ± 0.76
Postures 67.75 ± 0.84 62.77 ± 0.87 67.19 ± 0.84

PAMAP2—Chest
Rep. Mov. 76.72 ± 0.71 63.38 ± 0.81 73.80 ± 0.74
Postures 73.93 ± 1.14 57.91 ± 1.28 75.16 ± 1.12

PAMAP2—Wrist
Rep. Mov. 84.42 ± 0.61 73.23 ± 0.74 80.23 ± 0.67
Postures 71.28 ± 1.18 57.33 ± 1.29 72.27 ± 1.16

PAMAP2—Ankle
Rep. Mov. 80.17 ± 0.67 75.97 ± 0.71 76.07 ± 0.71
Postures 74.88 ± 1.13 54.88 ± 1.29 64.02 ± 1.25

HARTH—Back
Rep. Mov. 91.71 ± 0.37 88.20 ± 0.43 89.89 ± 0.40
Postures 88.16 ± 0.31 84.62 ± 0.35 87.85 ± 0.32

HARTH—Thigh Rep. Mov. 92.79 ± 0.34 87.46 ± 0.44 90.04 ± 0.40
Postures 93.83 ± 0.23 84.29 ± 0.35 87.48 ± 0.32

Figure 5 displays four confusion matrices for the MotionSense dataset by which to
compare different experimental setups. These matrices show the classification results in
the rotated setup for the repetitive movements (Figure 5a, related to 87.39 ± 0.52% of
accuracy) and postures (Figure 5c, related to 87.39 ± 0.52% of accuracy). Additionally, we
show confusion matrices for the rotation and algorithm per type of activity experimental
setup: repetitive movements (Figure 5b, related to 91.81 ± 0.43% of accuracy) and postures
(Figure 5d, related to 96.57 ± 0.31% of accuracy). It is possible to observe that the confusion
for the different classes is reduced when applying our algorithm.

Figure 5. Confusion matrices for repetitive movements and postures classification results in the
MotionSense dataset, using rotated experimental setup (a,c) and rotation and algorithm per type of
activity experimental setup (b,d).
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Table 5 details the precision and recall results per activity for these experiments, where
it is observed that both metrics of every class, including repetitive movements and postures,
increase when applying the algorithm, except for recall of walking downstairs. However,
it is important to mention that this class is compared to very similar activities, such as
walking upstairs, walking, and jogging.

Table 5. Precision and recall results per activity on two experimental setups for the MotionSense
dataset.

Type of Activity Activity

Results (%) Depending on the Experimental Setup

Rotated Rotated and Algorithm per Type of Activity

Precision Recall Precision Recall

Repetitive
Movements

Walking downstairs 74.48 ± 1.54 88.87 ± 1.21 80.80 ± 1.47 86.04 ± 1.34
Walking upstairs 79.17 ± 1.37 83.68 ± 1.28 89.05 ± 1.08 89.74 ± 1.05

Walking 95.27 ± 0.53 84.51 ± 0.85 96.13 ± 0.46 92.33 ± 0.62
Jogging 94.20 ± 0.88 98.13 ± 0.52 95.56 ± 0.78 98.62 ± 0.45

Postures
Sitting 87.30 ± 0.81 82.22 ± 0.90 95.80 ± 0.47 97.74 ± 0.35

Standing 81.54 ± 0.94 86.78 ± 0.84 97.45 ± 0.40 95.27 ± 0.53

4.3. Discussions and Insights

The first insight obtained from results in Table 3 was the important degradation
suffered by state-of-the-art HAR systems when random sensor rotations are introduced
in the tri-axial accelerations. This important degradation justified the main contribution
of this study, namely, the proposal and evaluation of a new pre-processing algorithm to
compensate for sensor rotations in state-of-the-art HAR systems.

The proposed algorithm builds a consistent reference system independently of the
sensor orientation and represents the acceleration according to this consistent reference
system (independently of the sensor orientation). The creation of the consistent reference
system is based on the estimation of gravitational and forward movement directions.
These orthogonal directions (plus the cross product) form a tri-axial orthogonal system.
The acceleration representation is transformed from the sensor axial system to this new
reference system, which is more consistent in its movements.

During the experiments, we realized that this algorithm works well for movements
such as running or cycling but not for postures such as sitting or standing. In postures,
there is no motion in the forward direction, so it is not possible to extract the new reference
system. As an alternative, we proposed subtracting the gravity from the total acceleration.
This insight was very important because it allowed the combination of several strategies
and the design of a complete solution (applicable to all types of activities).

This complete solution has been evaluated with state-of-the-art HAR systems based on
deep learning algorithms over six different datasets. These datasets cover a very wide range
of activities, subjects, and recording conditions. The experiments section showed the results
of four different situations: the baseline situation (where all the sensors were correctly
oriented), the rotated scenario (with the introduction of random rotations to the sensors),
and two applications of the proposed algorithm (i.e., same strategy for all the activities
or differentiating between movements and postures). From the experiments in Table 3,
we can conclude that the proposed method is able to recover the degradation produced
in the HAR systems when random rotations are introduced in the tri-axial acceleration.
This recovery is complete when we apply a different strategy depending on the type of
activity (movements or postures). This result is very important because this is the first work
proposing a complete solution (for any kind of activity). Another insight obtained from the
results is the less degradation in movements compared to postures when including sensor
rotations (Table 4): postures are more sensible to changes in sensor orientation.

To compare our system with previous works, we computed the mitigation capability as
the percentage of degradation which the algorithm can recover or compensate. The previous
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work with the best mitigation capability was [19], extracting vertical and horizontal features.
The best proposed method was able to recover 86% of the performance decrease due to
sensor rotation. In our case, the algorithm proposed in this paper recovered (on average,
along six different datasets) 100% of the performance decrement. We observed that the
algorithm proposed in this paper was able to deal with severe sensor rotations, especially
in locations such as the wrist for the PAMAP2 dataset (see the improvement of 6.19%
comparing rotated and last columns in Table 3).

5. Conclusions

Changes in sensor orientation are an important problem that affects the performance
of HAR systems in many different applications. In this paper, a new preprocessing algo-
rithm has been proposed to reduce the negative impact of these changes. This algorithm
creates a consistent reference system (based on the estimation of gravitational and forward
movement directions) and transforms the tri-axial accelerometer signals representation.
This algorithm has been very useful for movements; in this case, it is easy to leverage the
gravitational and forward component information to create a consistent reference system
with which to represent the movement. In the case of postures (sitting or standing), a
forward movement vector does not exist, and it cannot be used for extracting the consistent
reference system. In these cases, subtracting the gravitational component of the signals has
been more useful.

The proposed approach was included in a preprocessing module (i.e., before the signal
processing module) of a state-of-the-art HAR system and evaluated over six different HAR
datasets that include repetitive movements and postures. We used a subject-wise cross-
validation methodology: different subjects were used for training, validation, and testing
the system in each iteration. For the WISDM dataset, the sensor orientation errors reduced
the classification accuracy from 91.56 ± 0.23% to 89.19 ± 0.26%. This performance decrease
was mitigated with the proposed algorithm, increasing the accuracy to 91.46 ± 0.30% when
applying specific approaches depending on the type of activity, and reaching the same
results that those achieved with the sensor correctly oriented.

However, this study has a limitation: the current algorithm is applied over isolated
sensors, so it could be interesting to deal with several sensors at the same time. An
interesting solution could be to estimate the consistent reference system from one sensor
and then use this system for all the sensors. Another interesting future work could be the
analysis of the best sensor location to estimate the consistent reference system. Finally, we
would like to apply the proposed algorithm to data with real device orientation changes.
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